WO2022265116A1 - ニオブ含有酸化物粉末、それを用いた電極、蓄電デバイス、負極活物質組成物、及び全固体二次電池 - Google Patents

ニオブ含有酸化物粉末、それを用いた電極、蓄電デバイス、負極活物質組成物、及び全固体二次電池 Download PDF

Info

Publication number
WO2022265116A1
WO2022265116A1 PCT/JP2022/024428 JP2022024428W WO2022265116A1 WO 2022265116 A1 WO2022265116 A1 WO 2022265116A1 JP 2022024428 W JP2022024428 W JP 2022024428W WO 2022265116 A1 WO2022265116 A1 WO 2022265116A1
Authority
WO
WIPO (PCT)
Prior art keywords
niobium
containing oxide
oxide powder
negative electrode
active material
Prior art date
Application number
PCT/JP2022/024428
Other languages
English (en)
French (fr)
Inventor
和幸 川辺
慎一郎 大谷
圭 島本
匠 竹中
輝昭 藤井
Original Assignee
Ube株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube株式会社 filed Critical Ube株式会社
Priority to US18/571,465 priority Critical patent/US20240290963A1/en
Priority to JP2023530445A priority patent/JPWO2022265116A1/ja
Priority to EP22825103.9A priority patent/EP4357304A1/en
Priority to KR1020237042665A priority patent/KR20240022482A/ko
Publication of WO2022265116A1 publication Critical patent/WO2022265116A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G33/00Compounds of niobium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/46Metal oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • C01P2002/54Solid solutions containing elements as dopants one element only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/85Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by XPS, EDX or EDAX data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/45Aggregated particles or particles with an intergrown morphology
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/54Particles characterised by their aspect ratio, i.e. the ratio of sizes in the longest to the shortest dimension
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a niobium-containing oxide powder suitable as an electrode material for an electric storage device, an electrode using the same, an electric storage device, a negative electrode active material composition, and an all-solid secondary battery.
  • lithium titanate is attracting attention as an active material for electric storage devices for electric vehicles such as HEV, PHEV, and BEV because of its excellent input/output characteristics especially in a low temperature region when used as an active material. .
  • Electricity storage devices for electric vehicles are required to have high energy density from the perspective of improving fuel efficiency or electricity consumption.
  • lithium titanate has excellent input/output characteristics, the energy density remains at 175 mAh/g, so there remains a problem in further increasing the energy. Therefore, as an alternative candidate, there is a movement to utilize niobium-containing oxides, mainly niobium titanate, which has a high energy density of 380 mAh/g, as a negative electrode material.
  • Patent Document 1 A x TiM y Nb 2-y O 7 ⁇ z (0 ⁇ x ⁇ 5, 0 ⁇ y ⁇ 0.5, ⁇ 0.3 ⁇ z ⁇ 0.3, M is other than Ti and Nb A is Li or Na, and M is at least one metal selected from the group consisting of Mg, Al, V, Fe, Mo, Sn and W).
  • a niobium titanium composite oxide is disclosed. According to Patent Document 1, it is possible to provide an active material having a high capacity, large current discharge performance, and excellent cycle life performance when applied as an electrode material for an electricity storage device.
  • Patent Document 2 monoclinic niobium-titanium composite oxide particles capable of occluding and releasing Li ions, and at least a part of the surface of the niobium-titanium composite oxide particles coated with Fe, Co and Ni
  • Lithium titanate has attracted attention for maintaining a good interface between the active material and the solid electrolyte. Lithium titanate is expected to maintain the interface between the active material and the solid electrolyte for a long period of time during charge/discharge because the volume change due to charging/discharging is very small.
  • lithium titanate has excellent input/output characteristics, the energy density remains at 175 mAh/g, so there remains a problem in further increasing the energy.
  • Patent Document 3 discloses a sulfide solid electrolyte and a general formula Ti 1 ⁇ ⁇ Nb 2 ⁇ ⁇ O 7 ⁇ ⁇ in which D 50 ( ⁇ m)/BET (m 2 /g) is 0.005 or more and 5.0 or less.
  • An electrode mixture containing the niobium-titanium composite oxide represented is disclosed. According to Patent Document 3, it is disclosed that excellent charge/discharge efficiency can be obtained when applied as an electrode mixture of a solid battery.
  • the energy storage devices using the negative electrode active materials and electrodes of Patent Documents 1 and 2 cannot simultaneously improve the energy density, improve the cycle performance and discharge rate characteristics, and reduce the resistance in the low temperature range. .
  • a niobium-containing oxide powder and a negative electrode active material that can be used as a negative electrode material for an all-solid secondary battery and can greatly improve battery characteristics, particularly initial discharge capacity, initial efficiency, and charge rate characteristics.
  • An object of the present invention is to provide a composition and an all-solid secondary battery containing the composition.
  • a niobium-containing oxide powder that can be used as an electrode material for an electricity storage device, has excellent discharge rate characteristics and cycle characteristics, and can suppress an increase in resistance after cycles,
  • An object of the present invention is to provide an electrode using the and an electricity storage device.
  • the present inventors conducted various studies to achieve the object of the first aspect, and found that when a niobium-containing oxide powder is used as a negative electrode active material for an all-solid secondary battery, the solid electrolyte and the niobium-containing oxide It has been found that reducing the interfacial resistance is very important. Therefore, as a result of repeated research to reduce the interfacial resistance between the solid electrolyte and the niobium-containing oxide regardless of the particle size or specific surface area, it was found that a specific metal element was added to the niobium-containing oxide particles that constitute the niobium-containing oxide powder.
  • a first aspect of the present invention relates to a niobium-containing oxide powder, a negative electrode active material composition, and an all-solid secondary battery containing the same.
  • the first aspect of the present invention provides the following (1) to (7).
  • D50 of primary particles corresponding to a volume accumulation of 50% in a volume-based particle size distribution by a laser diffraction scattering method is 0.6 ⁇ m or more (1) or (2) ), the niobium-containing oxide powder described in .
  • a negative electrode active material composition comprising the niobium-containing oxide powder according to any one of ) to (3).
  • An all-solid secondary battery comprising a positive electrode layer, a negative electrode layer and a solid electrolyte layer, wherein the negative electrode layer comprises the negative electrode active material composition according to any one of (4) to (6).
  • the present inventors conducted various studies to achieve the object of the second aspect, and found that a specific metal element was removed from the niobium-containing oxide powder by adding a surface treatment step to the niobium-containing oxide powder.
  • a niobium-containing oxide powder present at a specific concentration on the surface of the niobium-containing oxide particles.
  • a metal element with a low valence is present on the particle surface of the niobium-containing oxide rather than a metal element with a high valence.
  • the effect was observed even if the surface of the niobium-containing oxide particles was not coated with a conductive agent such as carbon fiber, so this technique is different from the conventional carbon coating. It was found that an electricity storage device in which the niobium-containing oxide powder is applied as an electrode material is excellent in discharge rate characteristics and cycle characteristics, and can suppress an increase in resistance after cycling, and the present invention (invention according to a second aspect) completed.
  • the second aspect of the present invention provides the following (8) to (14).
  • a niobium-containing oxide powder represented by the general formula Ti 1-x/2 Nb 2 O 7-x (X 0 to 2), the niobium-containing oxide constituting the niobium-containing oxide powder
  • M1 is a metal element with a valence of 3+ or 2+ excluding Ti or Nb
  • the element M1 present on the particle surface is a Group 2, Group 12, Group 13, or Group 14 metal element
  • the element M1 present on the particle surface is selected from the element group consisting of Al 3+ , Mg 2+ , Ca 2+ , Sr 2+ , Zn 2+ , Ga 3+ , Ge 2+ and In 2+ .
  • the D50 of the primary particles corresponding to a volume accumulation of 50% in the volume-based particle size distribution by a laser diffraction scattering method is 0.3 ⁇ m or more (8)-( The niobium-containing oxide powder according to any one of 11).
  • An electrode for a power storage device comprising the niobium-containing oxide powder according to any one of (8) to (12).
  • An electricity storage device comprising the electrode according to (13).
  • the initial discharge capacity, initial efficiency, and charge rate characteristics are excellent. It is possible to provide a niobium-containing oxide powder suitable as an electrode material for an all-solid secondary battery, a negative electrode active material composition using the same, and an all-solid secondary battery.
  • a niobium-containing oxide powder suitable as an electrode material for an electricity storage device that is excellent in discharge rate characteristics and cycle characteristics and can suppress an increase in resistance after cycles, Electrodes and electrical storage devices can be provided.
  • FIG. 1 shows the results of the Mg1s depth profile.
  • Examples of specific compounds include TiNb 2 O 7 which is a niobium-titanium composite oxide capable of intercalating and deintercalating Li ions and Na ions, Nb 2 O 5 which is a niobium oxide, and the like.
  • TiNb 2 O 7 is preferable from the viewpoint of improving initial discharge capacity, initial efficiency, and charge rate characteristics.
  • the niobium-titanium composite oxide may partially contain a titanium oxide phase (eg, rutile-type TiO 2 , TiO, etc.) derived from synthetic raw materials.
  • a titanium oxide phase eg, rutile-type TiO 2 , TiO, etc.
  • the ratio of the number of moles of Nb to the number of moles of Ti is preferably in the range of 1.5 to 2.5, more preferably 1.8 to 2.0. is preferred. Within this range, the electron conductivity of the niobium-containing oxide is improved and the rate characteristics are excellent.
  • the crystal system of the niobium-containing oxide according to the first aspect of the present invention is not limited, it is generally monoclinic.
  • the aspect ratio tends to be large, but from the viewpoint of improving the electrode density, it is preferably in the range of 1.0 to 4.0.
  • the niobium-containing oxide powder according to the first aspect of the present invention contains at least one metal element selected from the group consisting of Mo and Ce.
  • Containing at least one metal element selected from the group consisting of Mo and Ce means that the niobium oxide powder according to the first aspect of the present invention is subjected to inductively coupled plasma atomic emission spectrometry (ICP-AES) or X-ray fluorescence spectrometry (XRF ), at least one metal element selected from the group consisting of Mo and Ce is detected.
  • ICP-AES inductively coupled plasma atomic emission spectrometry
  • XRF X-ray fluorescence spectrometry
  • the lower limit of the amount detected by inductively coupled plasma emission spectrometry is usually 0.001% by mass.
  • Mo and Ce may be contained on the particle surfaces of the niobium-containing oxide powder.
  • the valences of Mo and Ce are not particularly limited, and may be 3+ or 2+, or 4+ or more. From the viewpoint of improving initial discharge capacity, initial efficiency, and charge rate characteristics, it is preferable to contain Mo.
  • the content (% by mass) of at least one metal element selected from the group consisting of Mo and Ce in the niobium-containing oxide powder according to the first aspect of the present invention, determined by X-ray fluorescence analysis (XRF), is 0.5%. 01 or more and 1.2 or less. If the content of at least one metal element selected from the group consisting of metal elements Mo and Ce is within this range, an all-solid secondary battery with excellent initial discharge capacity, initial efficiency, and charge rate characteristics can be obtained.
  • the content is the total content of the two metal elements.
  • At least one selected from the group consisting of Mo and Ce is present in the surface region rather than the internal region of the niobium-containing oxide particles constituting the powder. It contains a large amount of metal elements. That is, at least one metal element selected from the group consisting of Mo and Ce is localized on the surface of the niobium-containing oxide particles, and more specifically, rather than the internal region of the niobium-containing oxide particles, At least one metal element selected from the group consisting of Mo and Ce is localized and contained in the surface region.
  • a depth of about 20 nm from the surface of the niobium-containing oxide particles measured by energy dispersive X-ray spectroscopy It is sufficient that at least one metal element selected from the group consisting of Mo and Ce is contained in a large amount in the so-called near-surface region, and at a depth position of 20 nm from the surface of the niobium-containing oxide particles, While at least one selected metal element is detected, it is preferable that Mo and Ce are not detected at a depth of 100 nm from the surface. It can be determined that at least one metal element selected from the group consisting of Mo and Ce is localized.
  • the form of at least one metal element selected from the group consisting of Mo and Ce localized on the surface of the niobium-containing oxide particles is not particularly limited. At least one metal element selected from the group consisting of elements and Ce elements may be localized on the surface, and may be in the form of a metal, or in the form of a metal compound such as a metal oxide. There may be.
  • the niobium-containing oxide powder according to the first aspect of the present invention has peaks attributed to Mo—O bonds or Ce—O bonds in the narrow spectrum of the metal element M1 in the surface analysis of X-ray photoelectron spectroscopy (XPS). It is preferable to have
  • having a peak attributed to a Mo—O bond or a Ce—O bond means having a Mo peak top or a Ce peak top in a surface analysis of X-ray photoelectron spectroscopy.
  • the atomic concentration (atm%) of Mo or Ce on the surface (0 nm) is 100%
  • the atomic concentration (atm%) of Mo or Ce at a depth of 100 nm from the surface is preferably less than 5%.
  • the niobium-containing oxide powder according to the first aspect of the present invention contains Al, Mg, Ca, Sr, Zn, Ga, and Ge as further dissimilar elements other than at least one metal element selected from the group consisting of Mo and Ce. , In, B, W, and S. At least one element selected from the group consisting of elements is preferably contained.
  • the niobium-containing oxide powder according to the first aspect of the present invention contains such dissimilar elements together with Mo and Ce, so that the electronic conductivity of the surface of the niobium-containing oxide powder is adjusted, and the element Mo and It is presumed that this is because the electrical resistance can be suppressed more than when Ce is contained alone.
  • the specific surface area of the niobium-containing oxide powder according to the first aspect of the present invention is the surface area per unit mass measured using nitrogen as an adsorbed gas. A measuring method will be described in Examples described later.
  • the niobium-containing oxide powder according to the first aspect of the present invention may have a specific surface area of 8.0 m 2 /g or less, and an electricity storage device having excellent initial discharge capacity, initial efficiency, and charge rate characteristics can be obtained. can be done. 6.0 m 2 /g or less is more preferable, and 5.5 m 2 /g or less is even more preferable.
  • D50 of the niobium-containing oxide powder according to the first aspect of the present invention is an index of the volume median particle size. It means a particle size at which the cumulative volume frequency calculated from the volume fraction obtained by laser diffraction/scattering particle size distribution measurement is integrated from the smaller particle size to 50%. A measuring method will be described in Examples described later.
  • the niobium-containing oxide powder according to the first aspect of the present invention may be primary particles or secondary particles in which primary particles are agglomerated.
  • primary particles composed of niobium-containing oxide particles contain agglomerated secondary particles, a part thereof may not form secondary particles and may be in the form of primary particles themselves.
  • the D50 of the secondary particles is preferably 11 ⁇ m or more from the viewpoint of improving the electrode density, and is preferably 12 ⁇ m or more. It is more preferable, and 13 ⁇ m or more is even more preferable. Furthermore, the upper limit of D50 of the secondary particles is preferably 20 ⁇ m or less, more preferably 18 ⁇ m or less, and even more preferably 14 ⁇ m or less. In addition, D50 of a secondary particle represents D50 before the crushing process of a secondary particle is carried out by ultrasonic irradiation.
  • the concentration of the metal elements Mo and Ce has a gradient between the surface and the inside of the primary particles, and the surface (for example, the surface of the primary particles).
  • the concentration of the metal element Mo or Ce is high in the so-called surface region from the surface to a depth of about 20 nm), preferably inside (for example, the position of 100 nm from the surface of the primary particle to the inside)
  • the metal element Mo or Ce is preferably absent. This is because when the metal elements Mo and Ce are present in such a state, an all-solid secondary battery having excellent initial efficiency and charge rate characteristics can be obtained.
  • D50 of the primary particles of the niobium-containing oxide powder according to the first aspect of the present invention is preferably 0.4 ⁇ m or more, and preferably 0.5 ⁇ m or more, from the viewpoint of initial discharge capacity and charge rate characteristics.
  • the above is more preferable, and 0.6 ⁇ m or more is more preferable.
  • the upper limit of D50 is preferably 3 ⁇ m or less, more preferably 2.5 ⁇ m or less, and even more preferably 2 ⁇ m or less.
  • the D50 of the primary particles represents the D50 after crushing (applying ultrasonic waves with an ultrasonic device).
  • the niobium-containing oxide powder may contain primary particles having a primary particle size of less than 0.4 ⁇ m in a range of 15% to 20%, and primary particles having a primary particle size of less than 0.5 ⁇ m in a range of 15% to 25%. may contain primary particles less than 0.6 ⁇ m in the range of 15% to 30%. It may contain in the range 45% to 75% primary particles greater than 3 ⁇ m, may contain in the range 25% to 75% primary particles greater than 2 ⁇ m, and 25% to 80% primary particles greater than 1.2 ⁇ m. % range may be included.
  • the zeta potential of the niobium-containing oxide powder according to the first aspect of the present invention is preferably less than 0 mV, more preferably -5 mV or less.
  • the lower limit of the zeta potential is preferably greater than -60 mV, more preferably greater than -35 mV.
  • the zeta potential represents the potential difference between the slip plane in the electric double layer and the portion well away from the interface, and it is speculated that this potential difference affects the Li permeation on the niobium-containing oxide powder surface.
  • a measuring method will be described in Examples described later.
  • Method for producing niobium-containing oxide powder according to the first aspect An example of the method for producing a niobium-containing oxide powder according to the first aspect of the present invention will be described below by dividing it into a raw material preparation step, a firing step, and a surface treatment step.
  • the method for producing the niobium-containing oxide powder according to is not limited to this.
  • the starting materials are mixed.
  • an oxide or salt containing Ti and Nb is used as a starting material.
  • the salt used as the starting material is a salt such as a hydroxide salt, carbonate, or nitrate that decomposes at a relatively low melting point to form an oxide. is preferred.
  • a Henschel mixer an ultrasonic dispersing device, a homomixer, a mortar, a ball mill, a centrifugal ball mill, a planetary ball mill, a vibrating ball mill, an attritor high-speed ball mill, a bead mill, a roll mill and the like can be used.
  • ⁇ Baking process> the mixture obtained above is fired. Firing is carried out in the temperature range of 500 to 1200°C, more preferably in the range of 700 to 1000°C.
  • General-purpose equipment can be used by performing the sintering at a temperature of 1000° C. or less.
  • the mixed powder constituting the mixture before firing is prepared so that D95 in the particle size distribution curve measured with a laser diffraction/scattering particle size distribution analyzer is 5 ⁇ m or less. preferably.
  • D95 is the particle size at which the cumulative volume frequency calculated by volume fraction is 95% when integrated from the smaller particle size.
  • the firing method is not particularly limited as long as it can be fired under the above conditions.
  • Available firing methods include a fixed bed firing furnace, a roller hearth firing furnace, a mesh belt firing furnace, a fluidized bed firing furnace, and a rotary kiln firing furnace.
  • a roller hearth type firing furnace, a mesh belt type firing furnace, and a rotary kiln type firing furnace are preferable.
  • the rotary kiln firing furnace does not require a container to hold the mixture, and can be fired while continuously feeding the mixture, and the heat history of the fired material is uniform, making it possible to obtain a homogeneous oxide.
  • the firing furnace is particularly preferable for producing the niobium-containing oxide powder according to the first aspect of the present invention.
  • the niobium-containing oxide obtained above is subjected to surface treatment.
  • the niobium-containing oxide according to the first aspect of the present invention has at least one metal element selected from the group consisting of Mo and Ce localized on the surface of particles constituting the niobium-containing oxide powder. It is characterized by being able to form a dense negative electrode layer when applied as a negative electrode material of a battery and to impart excellent charge rate characteristics.
  • a compound containing at least one metal element selected from the group consisting of Mo and Ce hereinafter sometimes referred to as a treatment agent
  • a treatment agent a compound containing at least one metal element selected from the group consisting of Mo and Ce
  • the niobium-containing oxide powder can be produced, more preferably, the niobium-containing oxide powder according to the first aspect of the present invention can be produced by the following surface treatment step or the like.
  • the surface of the niobium-containing oxide particles can be suitably and relatively easily provided with at least one metal element selected from the group consisting of Mo and Ce. can do.
  • the method of mixing the niobium-containing oxide powder of the substrate and the compound containing at least one metal element selected from the group consisting of Mo and Ce is not particularly limited, and either wet mixing or dry mixing can be used. However, it is preferable to uniformly disperse a compound containing at least one metal element selected from the group consisting of Mo and Ce on the surface of the particles constituting the niobium-containing oxide powder of the base material. Wet mixing is preferred in
  • the treatment agent and niobium-containing oxide powder of the base material are put into water or an alcohol solvent and mixed in a slurry state.
  • the alcohol solvent those having a boiling point of 100° C. or lower, such as methanol, ethanol, and isopropyl alcohol, are preferable because the solvent can be easily removed.
  • an aqueous solvent is industrially preferred.
  • the compound (treatment agent) containing at least one metal element selected from the group consisting of Mo and Ce is not particularly limited, but examples thereof include oxides, phosphorous oxides, hydroxides, sulfate compounds, nitrate compounds, fluorides. compounds, chlorides, organic compounds, and metal salt compounds such as ammonium salts and phosphates.
  • Mo compounds include molybdenum oxide, molybdenum trioxide, molybdenum trioxide hydrate, molybdenum boride, phosphomolybdic acid, molybdenum disilicide, molybdenum chloride, molybdenum sulfide, and silicomolybdic acid hydrate.
  • molybdenum oxide sodium molybdenum carbide, molybdenum acetate dimer, lithium molybdate, sodium molybdate, potassium molybdate, calcium molybdate, magnesium molybdate, manganese molybdate, ammonium molybdate, etc., among others, Molybdenum trioxide, molybdenum trioxide hydrate, molybdenum chloride, molybdenum sulfide and lithium molybdate are preferred.
  • Ce compounds include cerium oxide, cerium hydroxide, cerium fluoride, cerium sulfate, cerium nitrate, cerium carbonate, cerium acetate, cerium oxalate, cerium chloride, cerium boride, and cerium phosphate. Among them, cerium sulfate and its hydrate are preferred.
  • the added amount of the compound containing at least one metal element selected from the group consisting of Mo and Ce is the amount of at least one metal element selected from the group consisting of Mo and Ce in the niobium-containing oxide. Any amount may be used as long as it falls within the scope of the invention. addition is preferred. Moreover, it may be added in a proportion of 12% by mass or less, preferably 10% by mass or less, more preferably 8% by mass or less, relative to the niobium-containing oxide powder of the substrate.
  • the heat treatment temperature is a temperature at which at least one metal element selected from the group consisting of Mo and Ce diffuses into at least the surface region of the niobium-containing oxide particles constituting the niobium-containing oxide powder of the substrate.
  • a temperature at which the specific surface area does not significantly decrease due to sintering of the niobium-containing oxide of the substrate is preferred.
  • the upper limit of the heat treatment temperature is preferably 700° C. or less, more preferably 600° C. or less.
  • the lower limit of the heat treatment temperature is preferably 300° C. or higher, more preferably 400° C. or higher.
  • the heat treatment time is preferably 0.1 to 8 hours, more preferably 0.5 to 5 hours.
  • the temperature and time at which the at least one metal element selected from the group consisting of Mo and Ce diffuses into at least the surface region of the niobium-containing oxide powder of the substrate is at least one selected from the group consisting of Mo and Ce. Since the reactivity differs depending on the compound containing the metal element, it is preferable to set it appropriately. Moreover, the heating method in the heat treatment is not particularly limited. Usable heat treatment furnaces include a fixed bed furnace, a roller hearth furnace, a mesh belt furnace, a fluidized bed furnace, and a rotary kiln furnace.
  • the atmosphere during heat treatment may be either an air atmosphere or an inert atmosphere such as a nitrogen atmosphere. In particular, when a metal salt compound is used for the surface treatment, an atmospheric atmosphere is preferred in which anion species are easily removed from the particle surface.
  • niobium-containing oxide powder after the heat treatment obtained as described above is slightly agglomerated, it is not necessary to perform pulverization that destroys the particles. It suffices to perform pulverization and classification to the extent that the
  • the niobium-containing oxide powder according to the first aspect of the present invention may be granulated and heat-treated after being mixed with a treating agent in the surface treatment step to obtain a powder containing secondary particles in which primary particles are agglomerated. Any method may be used for granulation as long as secondary particles can be produced, but a spray dryer is preferable because it can process a large amount.
  • the dew point may be controlled in the heat treatment process. If the heat-treated powder is exposed to the atmosphere as it is, the amount of moisture contained in the powder increases. Therefore, it is preferable to handle the powder in an environment where the dew point is controlled during cooling in the heat treatment furnace and after the heat treatment.
  • the heat-treated powder may be classified as necessary to bring the particles into the desired maximum particle size range.
  • the heat treatment temperature is preferably 450°C or higher, and preferably lower than 550°C. This is because if the heat treatment temperature exceeds 550° C., the specific surface area is greatly reduced, and the battery performance, particularly the rate characteristics, is greatly deteriorated.
  • the retention time is preferably 1 hour or more, because it is presumed that if the retention time is short, the water content in the powder will increase and the particle surface state will be affected.
  • a negative electrode active material composition according to a first aspect of the present invention comprises the niobium-containing oxide powder according to the first aspect of the present invention and an inorganic solid electrolyte having conductivity of metal ions belonging to Group 1 of the periodic table. and a negative electrode active material composition.
  • the content of the inorganic solid electrolyte is not particularly limited. It is more preferably 30% by mass or more. The higher the content of the inorganic solid electrolyte, the easier it is to obtain contact between the niobium-containing oxide powder and the solid electrolyte, which is preferable.
  • the battery capacity of the all-solid secondary battery will be small, so it may be 70% by mass or less, preferably 60% by mass or less, and 50% by mass or less. is more preferred.
  • the content of the inorganic solid electrolyte is preferably as small as possible in order to increase the battery capacity of the all-solid secondary battery.
  • Other substances include, for example, carbon materials [pyrolytic carbons, cokes, graphites (artificial graphite, natural graphite, etc.), organic polymer compound combustion bodies, carbon fibers], tin and tin compounds, silicon and silicon compounds.
  • lithium-containing metal oxides are used.
  • lithium titanate containing Li 4 Ti 5 O 12 as a main component can be mentioned as a metal oxide containing lithium.
  • the periodic table of the present specification refers to the periodic table of long period elements based on the regulations of IUPAC (International Union of Pure and Applied Chemistry).
  • An inorganic solid electrolyte is an inorganic solid electrolyte, and a solid electrolyte is a solid electrolyte in which ions can move. Since inorganic solid electrolytes are solid in the steady state, they are usually not dissociated or released into cations and anions.
  • the inorganic solid electrolyte is not particularly limited as long as it has conductivity of metal ions belonging to Group 1 of the periodic table, and generally has almost no electronic conductivity.
  • the inorganic solid electrolyte has the conductivity of metal ions belonging to Group 1 of the periodic table.
  • Representative examples of the inorganic solid electrolyte include (A) a sulfide inorganic solid electrolyte and (B) an oxide inorganic solid electrolyte.
  • a sulfide inorganic solid electrolyte is preferably used because it has high ion conductivity and can form a dense compact with few grain boundaries only by applying pressure at room temperature.
  • the sulfide inorganic solid electrolyte contains sulfur atoms (S), has conductivity of metal ions belonging to Group 1 of the periodic table, and has electronic insulation. things are preferred.
  • the sulfide inorganic solid electrolyte can be produced by reacting a metal sulfide belonging to Group 1 of the periodic table with at least one sulfide represented by the following general formula (III), and the general formula (III) You may use together 2 or more types of sulfide represented by.
  • MxSy ( III) (M represents any one of P, Si, Ge, B, Al, Ga, and Sb, and x and y represent numbers that give a stoichiometric ratio depending on the type of M.)
  • the metal sulfide belonging to Group 1 of the periodic table represents any one of lithium sulfide, sodium sulfide, and potassium sulfide, more preferably lithium sulfide and sodium sulfide, and still more preferably lithium sulfide.
  • the sulfide represented by the general formula ( III ) is any one of P2S5 , SiS2 , GeS2 , B2S3 , Al2S3 , Ga2S3 and Sb2S5 is preferred, and P 2 S 5 is particularly preferred.
  • composition ratio of each element in the sulfide inorganic solid electrolyte produced as described above is a mixture of the metal sulfide belonging to Group 1 of the periodic table, the sulfide represented by the general formula (III), and elemental sulfur. It can be controlled by adjusting the amount.
  • the sulfide inorganic solid electrolyte according to the first aspect of the present invention may be amorphous glass, crystallized glass, or a crystalline material.
  • Li2SP2S5 Li2SP2S5 - Al2S3 , Li2S - GeS2 , Li2S - Ga2S3 , Li2S - GeS2 - Ga2S3 , Li 2 S—GeS 2 —P 2 S 5 , Li 2 S—GeS 2 —Sb 2 S 5 , Li 2 S—GeS 2 —Al 2 S 3 , Li 2 S—SiS 2 , Li 2 S—Al 2 S 3 , Li 2 S—SiS 2 —Al 2 S 3 , Li 2 S—SiS 2 —P 2 S 5 , Li 10 GeP 2 S 12 .
  • LPS glasses and LPS glass-ceramics produced by combining Li 2 SP 2 S 5 are preferred.
  • the mixing ratio of the metal sulfide belonging to Group 1 of the periodic table and the sulfide represented by the general formula (III) is not particularly limited as long as it can be used as a solid electrolyte.
  • the mixing ratio (molar ratio) of the sulfide represented by the formula (III) is preferably 50:50 to 90:10. If the mixing ratio of the metal sulfide is 50 or more and 90 or less, the ionic conductivity can be sufficiently increased.
  • the mixing ratio is more preferably 60:40 to 80:20, more preferably 70:30 to 80:20.
  • the sulfide inorganic solid electrolyte includes LiI, LiBr, LiCl, and LiF in addition to metal sulfides belonging to Group 1 of the periodic table and sulfides represented by the general formula (III) in order to increase ion conductivity. It may contain at least one lithium salt such as lithium halide, lithium oxide, lithium phosphate, etc. selected from.
  • the mixing ratio of the sulfide inorganic solid electrolyte and these lithium salts is preferably a mixing ratio (molar ratio) of "sulfide inorganic solid electrolyte: lithium salt" of 60:40 to 95:5. , more preferably 80:20 to 95:5.
  • Algerodite-type solid electrolytes such as Li 6 PS 5 Cl and Li 6 PS 5 Br are also suitable examples of sulfide inorganic solid electrolytes other than those described above.
  • the method for producing the sulfide inorganic solid electrolyte is preferably a solid phase method, a sol-gel method, a mechanical milling method, a solution method, a melt quenching method, etc., but is not particularly limited.
  • the oxide inorganic solid electrolyte preferably contains oxygen atoms, has metal ion conductivity belonging to Group 1 of the periodic table, and has electronic insulation.
  • oxide inorganic solid electrolytes examples include Li3.5Zn0.25GeO4 having a LISICON (lithium superionic conductor) type crystal structure, La0.55Li0.35TiO3 having a perovskite type crystal structure , LiTi 2 P 3 O 12 having a NASICON (Natrium superionic conductor) type crystal structure, Li 7 La 3 Zr 2 O 12 (LLZ) having a garnet type crystal structure, lithium phosphate (Li 3 PO 4 ), lithium phosphate LiPON in which some of the oxygen in the _ _ _ _ _ O 12 and the like are preferably exemplified.
  • LISICON lithium superionic conductor
  • La0.55Li0.35TiO3 having a perovskite type crystal structure
  • LiTi 2 P 3 O 12 having a NASICON (Natrium superionic conductor) type crystal structure
  • Li 7 La 3 Zr 2 O 12 (LLZ) having a garnet type crystal structure
  • the volume average particle diameter of the inorganic solid electrolyte is not particularly limited, it may be 0.01 ⁇ m or more, preferably 0.1 ⁇ m or more.
  • the upper limit may be 100 ⁇ m or less, preferably 50 ⁇ m or less.
  • the volume average particle size of the inorganic solid electrolyte can be measured using a laser diffraction/scattering particle size distribution analyzer.
  • the amount of the inorganic solid electrolyte mixed is not particularly limited, but it may be 1% by mass or more, preferably 5% by mass or more, more preferably 20% by mass or more, in the active material composition. It is more preferably 30% by mass or more.
  • the larger the amount of the inorganic solid electrolyte mixed the easier it is to obtain contact between the niobium-containing oxide powder and the solid electrolyte, which is preferable.
  • the amount of the inorganic solid electrolyte mixed is too large, the battery capacity of the all-solid secondary battery becomes small, so the amount should be 70% by mass or less, preferably 50% by mass or less.
  • the amount of the inorganic solid electrolyte to be mixed is small in order to increase the battery capacity of the all-solid secondary battery.
  • the negative electrode active material composition according to the first aspect of the present invention may contain a conductive agent and a binder in addition to the niobium-containing oxide powder and the inorganic solid electrolyte.
  • the conductive agent for the negative electrode is not particularly limited as long as it is an electron conductive material that does not cause chemical change.
  • natural graphite flaky graphite, etc.
  • graphites such as artificial graphite
  • carbon blacks such as acetylene black, ketjen black, channel black, furnace black, lamp black, thermal black
  • single-phase carbon nanotubes multi-walled carbon nanotubes
  • Graphite layers are multi-layered concentric cylinders) (non-fishbone), cup-layered carbon nanotubes (fishbone), node-type carbon nanofibers (non-fishbone structure), platelet-type carbon nanofibers ( carbon nanotubes such as card-shaped), and the like.
  • Graphites, carbon blacks, and carbon nanotubes may be appropriately mixed and used.
  • the specific surface area of carbon blacks is preferably 30 m 2 /g to 3000 m 2 /g, more preferably 50 m 2 /g to 2000 m 2 /g.
  • the specific surface area of graphites is preferably 30 m 2 /g to 600 m 2 /g, more preferably 50 m 2 /g to 500 m 2 /g.
  • the carbon nanotubes have an aspect ratio of 2-150, preferably 2-100, and more preferably 2-50.
  • the amount of the conductive agent added varies depending on the specific surface area of the active material, the type and combination of the conductive agent, and should be optimized.
  • the content is preferably 0.5% by mass to 5% by mass. By making it in the range of 0.1% by mass to 10% by mass, the active material ratio is made sufficient, thereby making the initial discharge capacity of the electricity storage device per unit mass and unit volume of the negative electrode layer sufficient. , the conductivity of the negative electrode layer can be further enhanced.
  • binders for the negative electrode include polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), polyvinylpyrrolidone (PVP), a copolymer of styrene and butadiene (SBR), and a copolymer of acrylonitrile and butadiene. coalesced (NBR), carboxymethyl cellulose (CMC), and the like.
  • PTFE polytetrafluoroethylene
  • PVDF polyvinylidene fluoride
  • PVPVP polyvinylpyrrolidone
  • SBR styrene and butadiene
  • COD carboxymethyl cellulose
  • the molecular weight of polyvinylidene fluoride is 20,000 to 1,000,000. From the viewpoint of further enhancing the binding property of the negative electrode layer, it is preferably 25,000 or more, more preferably 30,000 or more, and even more preferably 50,000 or more.
  • the molecular weight is preferably 100,000 or more.
  • the amount of the binder added varies depending on the specific surface area of the active material and the type and combination of the conductive agent, and should be optimized. % should be included. From the viewpoint of enhancing the binding property and securing the strength of the negative electrode layer, the content is preferably 0.5% by mass or more, more preferably 1% by mass or more, and even more preferably 2% by mass or more. It is preferably 10% by mass or less, more preferably 5% by mass or less, from the viewpoint of preventing a reduction in the active material ratio and a decrease in the initial discharge capacity of the electricity storage device per unit mass and unit volume of the negative electrode layer.
  • the method for producing the negative electrode active material composition according to the first aspect of the present invention is not particularly limited. Suitable examples include a method of mixing with a machine, a stirrer, a disperser, etc., and a method of adding the niobium-containing oxide powder to a slurry containing a solid electrolyte.
  • the negative electrode active material composition containing the niobium-containing oxide according to the first aspect of the present invention provides superior initial discharge capacity, initial efficiency, and charge rate characteristics in an all-solid secondary battery compared to conventional ones is Although it is not necessarily clear, it can be considered as follows.
  • the negative electrode active material composition according to the first aspect of the present invention comprises an inorganic solid electrolyte having conductivity of metal ions belonging to Group 1 of the periodic table and niobium-containing oxide particles on the surface of which a group consisting of Mo and Ce is added. and a niobium-containing oxide in which at least one selected metal element exists locally.
  • niobium-containing oxides and inorganic solid electrolytes especially sulfide inorganic solid electrolytes
  • the niobium-containing oxides and sulfide inorganic solid electrolytes chemically react to form a high-resistance, low-ion-conducting electrolyte at their interface. reaction products adhere to the battery, and the battery characteristics, especially the charge rate characteristics, are degraded.
  • the localized presence of at least one metal element selected from the group consisting of Mo and Ce on the surface of the niobium-containing oxide particles according to the first aspect of the present invention prevents undesirable reactions with the solid electrolyte. can be suppressed.
  • the characteristics of the all-solid secondary battery can be improved.
  • no reaction with the solid electrolyte occurs, so the problem of the present application does not arise.
  • the niobium-containing oxide of the present application was applied to a lithium ion secondary battery using an organic electrolyte, no improvement in charge rate characteristics was observed.
  • the negative electrode active material composition according to the first aspect of the present invention can be used for the negative electrode of all-solid secondary batteries. At this time, it is preferable that the negative electrode active material composition according to the first aspect of the present invention is pressure-molded to form a pressure-molded body.
  • the conditions for pressure molding are not particularly limited, but the molding temperature may be 15° C. to 200° C., preferably 25° C. to 150° C., and the molding pressure may be 180 MPa to 1080 MPa, preferably 300 MPa to 800 MPa.
  • the negative electrode active material composition according to the first aspect of the present invention can form a dense compact with few voids, and therefore can form a dense negative electrode layer with few voids.
  • the compact obtained using the negative electrode active material composition according to the first aspect of the present invention has a filling rate of 72.5% to 100%, preferably 73.5% to 100%.
  • the filling rate is, for example, the molded body density of the negative electrode active material composition calculated from the volume and mass of the molded body of the negative electrode active material composition, and the density of each material constituting the negative electrode active material composition (true density ) can be measured using
  • the all-solid secondary battery according to the first aspect of the present invention comprises a positive electrode layer, a negative electrode layer, and a solid electrolyte layer positioned between the positive electrode layer and the negative electrode layer. is used for the negative electrode layer.
  • the method for producing the negative electrode layer is not particularly limited. Suitable examples include a method of applying to an electric body, drying, and press-molding.
  • Examples of the negative electrode current collector include aluminum, stainless steel, nickel, copper, titanium, calcined carbon, and those whose surfaces are coated with carbon, nickel, titanium, or silver. Moreover, the surface of these materials may be oxidized, and the surface of the negative electrode current collector may be roughened by surface treatment.
  • Examples of the form of the negative electrode current collector include sheet, net, foil, film, punched material, lath, porous material, foam, fiber group, non-woven fabric, and the like.
  • Porous aluminum is preferable as the form of the negative electrode current collector. The porosity of the porous aluminum is 80% or more and 95% or less, preferably 85% or more and 90% or less.
  • constituent members such as the positive electrode layer and the solid electrolyte layer can be used without particular limitations.
  • a positive electrode active material used as a positive electrode layer for an all-solid secondary battery a composite metal oxide with lithium containing one or more selected from cobalt, manganese, and nickel is used.
  • These positive electrode active materials can be used individually by 1 type, or can be used in combination of 2 or more types.
  • lithium composite metal oxides examples include LiCoO 2 , LiCo 1-x M x O 2 (where M is Sn, Mg, Fe, Ti, Al, Zr, Cr, V, Ga, Zn, and one or more elements selected from Cu, 0.001 ⁇ x ⁇ 0.05), LiMn 2 O 4 , LiNiO 2 , LiCo 1-x Ni x O 2 (0.01 ⁇ x ⁇ 1), LiCo1 / 3Ni1 / 3Mn1 / 3O2 , LiNi0.5Mn0.3Co0.2O2 , LiNi0.8Mn0.1Co0.1O2 , LiNi0.8Co 0.15 Al 0.05 O 2 , a solid solution of Li 2 MnO 3 and LiMO 2 (M is a transition metal such as Co, Ni, Mn, Fe), and LiNi 1/2 Mn 3/2 O 4
  • M is a transition metal such as Co, Ni, Mn, Fe
  • LiCoO2 and LiMn2O4 LiCoO2 and LiN
  • a lithium-containing olivine-type phosphate can also be used as the positive electrode active material.
  • Lithium-containing olivine-type phosphate containing at least one selected from iron, cobalt, nickel and manganese is particularly preferred. Specific examples thereof include LiFePO 4 , LiCoPO 4 , LiNiPO 4 , LiMnPO 4 and the like. A part of these lithium-containing olivine-type phosphates may be substituted with other elements, and a part of iron, cobalt, nickel and manganese may be replaced with Co, Mn, Ni, Mg, Al, B, Ti, V and Nb.
  • LiFePO4 or LiMnPO4 is preferred.
  • the lithium-containing olivine-type phosphate can be used, for example, by being mixed with the positive electrode active material.
  • the conductive agent for the positive electrode is an electronically conductive material that does not cause chemical changes.
  • examples thereof include graphite such as natural graphite (flaky graphite, etc.), artificial graphite, etc., carbon black such as acetylene black, ketjen black, channel black, furnace black, lamp black, thermal black, and the like.
  • graphite and carbon black may be appropriately mixed and used.
  • the amount of the conductive agent added to the positive electrode active material composition is preferably 1 to 10% by mass, particularly preferably 2 to 5% by mass.
  • the positive electrode active material composition contains at least the positive electrode active material and the solid electrolyte, and if necessary, a conductive agent such as acetylene black and carbon black, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), Binders such as copolymers of styrene and butadiene (SBR), copolymers of acrylonitrile and butadiene (NBR), carboxymethyl cellulose (CMC), ethylene propylene diene terpolymer, and the like may also be included.
  • a conductive agent such as acetylene black and carbon black, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), Binders such as copolymers of styrene and butadiene (SBR), copolymers of acrylonitrile and butadiene (NBR), carboxymethyl cellulose (CMC), ethylene propylene diene terpol
  • the method for producing the positive electrode is not particularly limited, and for example, a method of press forming the powder of the positive electrode active material composition, or a method of adding the powder of the positive electrode active material composition to a solvent to form a slurry, and then forming the positive electrode active material composition.
  • a method of press forming the powder of the positive electrode active material composition or a method of adding the powder of the positive electrode active material composition to a solvent to form a slurry, and then forming the positive electrode active material composition.
  • Preferable examples include a method of applying the substance to an aluminum foil or a stainless steel lath plate as a current collector, followed by drying and pressure molding.
  • the surface of the positive electrode active material may be surface-coated with another metal oxide.
  • Surface coating agents include metal oxides containing Ti, Nb, Ta, W, Zr, Al, Si or Li. Specifically , Li4Ti5O12 , Li2Ti2O5 , LiTaO3 , LiNbO3 , LiAlO2 , Li2ZrO3 , Li2WO4 , Li2TiO3 , Li2B4O7 , Li3PO4 , Li2MoO4 , Li3BO3 , LiBO2 , Li2CO3 , Li2SiO3 , SiO2 , TiO2 , ZrO2 , Al2O3 , B2O3 , etc. .
  • the solid electrolyte layer is located between the positive electrode layer and the negative electrode layer, and although the thickness of the solid electrolyte layer is not particularly limited, it may have a thickness of 1 ⁇ m to 100 ⁇ m.
  • the sulfide inorganic solid electrolyte or the oxide inorganic solid electrolyte can be used as the constituent material of the solid electrolyte layer, and may be different from the solid electrolyte used for the electrodes.
  • the solid electrolyte layer may contain a binder such as butadiene rubber or butyl rubber.
  • the upper limit of X is preferably 2 or less, more preferably 1.5 or less, still more preferably 1 or less, and particularly preferably 0.5 or less.
  • the lower limit of X should just be 0 or more.
  • Examples of specific compounds include TiNb 2 O 7 which is a niobium-titanium composite oxide capable of intercalating and deintercalating Li ions and Na ions, Nb 2 O 5 which is a niobium oxide, and the like.
  • the niobium-titanium composite oxide may partially contain a titanium oxide phase (eg, rutile-type TiO 2 , TiO, etc.) derived from synthetic raw materials.
  • the ratio of the number of moles of Nb to the number of moles of Ti is preferably in the range of 1.5 to 2.5, more preferably 1.8 to 2.2. and even more preferably in the range of 1.8 to 2.0. Within this range, the electron conductivity of the composite oxide is improved and the rate characteristics are excellent.
  • the crystal system of the niobium-containing oxide according to the second aspect of the present invention is not limited, it is generally monoclinic.
  • the aspect ratio tends to be large, but from the viewpoint of improving the electrode density, it is preferably in the range of 1.0 to 4.0.
  • the niobium-containing oxide powder according to the second aspect of the present invention has a metal element M1 (M1 is a metal element with a valence of 3+ or 2+ excluding Ti or Nb) on the surface of the particles.
  • M1 is a metal element with a valence of 3+ or 2+ excluding Ti or Nb
  • the presence of the metal element M1 means that the metal element M1 is detected in the inductively coupled plasma atomic emission spectroscopy (ICP-AES) or X-ray fluorescence spectroscopy (XRF) of the niobium oxide powder according to the second aspect of the present invention.
  • ICP-AES inductively coupled plasma atomic emission spectroscopy
  • XRF X-ray fluorescence spectroscopy
  • the lower limit of the amount detected by inductively coupled plasma emission spectrometry is usually 0.001% by mass.
  • the content (% by mass) of the metal element M1 in the niobium-containing oxide powder according to the second aspect of the present invention obtained from X-ray fluorescence analysis (XRF) may be 0.01 or more and 1.2 or less, It is preferably 0.01 or more and 1.0 or less, more preferably 0.01 or more and 0.9 or less, and still more preferably 0.01 or more and 0.8 or less. If the content of the metal element M1 is within this range, an electricity storage device that is excellent in discharge rate characteristics and cycle characteristics and that suppresses an increase in resistance after cycling can be obtained.
  • the metal element M1 is localized more in the surface region than in the internal region of the niobium-containing oxide particles constituting the powder. That is, the metal element M1 is present on the surface of the niobium-containing oxide particles, and more specifically, the metal element M1 is localized and present more in the surface region than in the internal region of the niobium-containing oxide particles. do.
  • the so-called A large amount of the metal element M1 should be contained in the region near the surface, and it is preferable that the metal element M1 is not detected at a depth of 100 nm from the surface. It can be determined that the metal element M1 is localized on the surface. That is, when measured by energy dispersive X-ray spectroscopy, it means that it is less than the amount detected by the measurement, and the lower limit of the detected amount in measurement by energy dispersive X-ray spectroscopy is the element or state to be measured. Although the value varies depending on the content, it is usually 0.5 atm%. In addition to this, there are surface analysis methods such as X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES).
  • XPS X-ray photoelectron spectroscopy
  • AES Auger electron spectroscopy
  • the niobium-containing oxide powder according to the second aspect of the present invention preferably has a peak attributed to the M1-O bond in the narrow spectrum of the metal element M1 in the surface analysis of X-ray photoelectron spectroscopy (XPS).
  • having a peak attributed to the M1-O bond means having a peak top of the metal element M1 in surface analysis by X-ray photoelectron spectroscopy.
  • the metal element M1 is Mg
  • the 2p3 peak of Ti is corrected to 458.7 eV
  • the Mg1s peak has a peak top at 1300-1310 eV.
  • the atomic concentration (atm%) of the metal element M1 on the surface (0 nm) is 100%
  • the atomic concentration (atm%) of the metal element M1 at a depth of 100 nm from the surface. is preferably less than 5%.
  • the element M1 present on the surface of the niobium-containing oxide particles, which constitutes the niobium-containing oxide powder is a metal element with a valence of 3+ or 2+ excluding Ti or Nb.
  • Element M1 is preferably a group 2, group 12, group 13 or group 14 metal element, such as Al 3+ , Mg 2+ , Ca 2+ , Sr 2+ , Zn 2+ , Ga 3+ , Ge 2+ , It is more preferable to contain at least one selected from the group of elements consisting of In 2+ (that is, in the form of metal elements, the group of elements consisting of Al, Mg, Ca, Sr, Zn, Ga, Ge, In It is more preferable to include any one or more selected from.).
  • niobium-containing oxide powder according to the second aspect of the present invention contains these elements, it is possible to obtain an electricity storage device that has excellent discharge rate characteristics and cycle characteristics and suppresses an increase in resistance after cycling. is.
  • niobium-containing oxide powder according to the second aspect of the present invention an element group consisting of B, Mo, W, and S as further dissimilar elements other than the metal elements having a valence of 3+ or 2+ excluding Ti or Nb. It is preferable to contain at least one element selected from Among these, S is particularly preferred.
  • the niobium-containing oxide powder according to the second aspect of the present invention contains such a dissimilar element together with the element M1, so that the electronic conductivity of the surface of the niobium-containing oxide powder is improved more than when the element M1 is contained alone. presumed to be for
  • the specific surface area of the niobium-containing oxide powder according to the second aspect of the present invention is the surface area per unit mass when nitrogen is used as the adsorbed gas. A measuring method will be described in Examples described later.
  • the niobium-containing oxide powder according to the second aspect of the present invention may have a specific surface area of 8.0 m 2 /g or less, and an electricity storage device having excellent initial discharge capacity and rate characteristics can be obtained. 6.0 m 2 /g or less is preferable, and 5.5 m 2 /g or less is more preferable.
  • D50 of the niobium-containing oxide powder according to the second aspect of the present invention is an index of the volume median particle size. It means a particle size at which the cumulative volume frequency calculated from the volume fraction obtained by laser diffraction/scattering particle size distribution measurement is integrated from the smaller particle size to 50%. A measuring method will be described in Examples described later.
  • the niobium-containing oxide powder according to the second aspect of the present invention may be primary particles or secondary particles in which primary particles are agglomerated.
  • primary particles composed of niobium-containing oxide particles contain agglomerated secondary particles, a part thereof may not form secondary particles and may be in the form of primary particles themselves.
  • the lower limit of D50 of the secondary particles is preferably 11 ⁇ m or more from the viewpoint of improving the electrode density, and is preferably 12 ⁇ m or more. It is more preferable, and 13 ⁇ m or more is even more preferable.
  • the upper limit of D50 of the secondary particles is preferably 20 ⁇ m or less, more preferably 18 ⁇ m or less, and even more preferably 14 ⁇ m or less.
  • the D50 of the secondary particles represents the D50 before the crushing treatment (applying ultrasonic waves with an ultrasonic device), that is, the D50 before the secondary particles are crushed by ultrasonic irradiation.
  • the concentration of the metal element M1 has a gradient between the surface and the inside of the primary particles, and the surface (for example, 20 nm from the surface of the primary particles A state in which the concentration of the metal element M1 is high in the so-called near-surface region up to a depth of about 100.degree. is preferred. This is because when the metal element M1 exists in such a state, an electricity storage device having excellent initial discharge capacity and rate characteristics can be obtained.
  • the lower limit of D50 is preferably 0.3 ⁇ m or more, It is more preferably 0.6 ⁇ m or more, and still more preferably 0.7 ⁇ m or more.
  • the upper limit of D50 may be 3 ⁇ m or less, preferably 2 ⁇ m or less, and more preferably 1.2 ⁇ m or less.
  • the D50 of the primary particles represents the D50 after crushing (applying ultrasonic waves with an ultrasonic device).
  • the niobium-containing oxide powder may contain primary particles having a primary particle size of less than 0.6 ⁇ m in a range of 15% to 30%, and primary particles having a primary particle size of less than 0.7 ⁇ m in a range of 15% to 45%. may contain. It may contain in the range of 45% to 75% of primary particles larger than 3 ⁇ m, may contain in the range of 25% to 75% of primary particles larger than 2 ⁇ m, and 25% of primary particles larger than 1.2 ⁇ m. It may be contained in the range of up to 80%.
  • the zeta potential of the niobium-containing oxide powder according to the second aspect of the present invention is preferably less than 0 mV, more preferably -5 mV or less.
  • the lower limit of the zeta potential is preferably greater than -60 mV, more preferably greater than -35 mV.
  • the zeta potential represents the potential difference between the slip plane in the electric double layer and the portion well away from the interface, and it is speculated that this potential difference affects the Li permeation on the niobium-containing oxide powder surface.
  • a measuring method will be described in Examples described later.
  • Method for producing niobium-containing oxide powder according to the second aspect An example of the method for producing a niobium-containing oxide powder according to the second aspect of the present invention will be described below by dividing it into a raw material preparation step, a firing step, and a surface treatment step.
  • the method for producing the niobium-containing oxide powder according to is not limited to this.
  • ⁇ Raw material preparation process First, the starting materials are mixed. Mixing of the starting materials may be performed in the same manner as in the first aspect described above.
  • the compound containing the metal element M1 is added before the firing step described later, the compound may be hereinafter referred to as a treating agent or treating agent 1.
  • ⁇ Baking process> the mixture obtained above is fired. Firing is carried out in the temperature range of 500 to 1200°C, more preferably in the range of 700 to 1100°C. General-purpose equipment can be used by performing the sintering at a temperature of 1100° C. or lower.
  • the mixed powder constituting the mixture before firing is prepared so that D95 in the particle size distribution curve measured with a laser diffraction/scattering particle size distribution analyzer is 5 ⁇ m or less. preferably.
  • D95 is the particle size at which the cumulative volume frequency calculated by volume fraction is 95% when integrated from the smaller particle size.
  • the firing method is not particularly limited as long as it can be fired under the above conditions, and may be the same as the first aspect described above.
  • the niobium-containing oxide obtained above is subjected to surface treatment.
  • the niobium-containing oxide according to the second aspect of the present invention is characterized by localized presence of M1 (M1 is a metal element with a valence of 3+ or 2+ excluding Ti or Nb) on the surface of the particles.
  • M1 is a metal element with a valence of 3+ or 2+ excluding Ti or Nb
  • a dense negative electrode layer can be formed and excellent charge rate characteristics can be imparted.
  • a compound containing the metal element M1 hereinafter sometimes referred to as a treating agent or treating agent 2 is added to produce the niobium-containing oxide powder according to the second aspect of the present invention.
  • the niobium-containing oxide powder according to the second aspect of the present invention can be produced by the following surface treatment process.
  • the following surface treatment step it is possible to appropriately and relatively easily create a state in which the metal element M1 exists on the surface of the niobium-containing oxide particles.
  • the method of mixing the niobium-containing oxide powder of the base material and the compound containing the metal element M1 is not particularly limited, and either wet mixing or dry mixing method can be employed. It is preferable to uniformly disperse the compound containing the metal element M1 on the surfaces of the particles constituting the powder, and wet mixing is preferable in that respect.
  • the treatment agent 2 and the niobium-containing oxide powder of the base material are put into water or an alcohol solvent and mixed in a slurry state.
  • the alcohol solvent those having a boiling point of 100° C. or lower, such as methanol, ethanol, and isopropyl alcohol, are preferable because the solvent can be easily removed.
  • an aqueous solvent is industrially preferable.
  • the compound (treatment agent) containing the metal element M1 is not particularly limited, but examples include oxides, phosphorous oxides, and hydroxides. compounds, sulfate compounds, nitrate compounds, fluorides, chlorides, organic compounds, and metal salt compounds such as ammonium salts and phosphates.
  • the compound containing Al includes, for example, aluminum oxide, aluminum phosphate, aluminum hydroxide, aluminum sulfate, aluminum nitrate, aluminum fluoride, aluminum chloride, aluminum acetate, sulfuric acid, aluminum ammonium, aluminum alkoxide, etc., and among them, aluminum sulfate and its hydrate are preferable.
  • the metal element M1 is Mg, it is not particularly limited, but for example, magnesium oxide, magnesium phosphate, magnesium hydroxide, magnesium sulfate, magnesium nitrate, magnesium fluoride, magnesium chloride, magnesium acetate, magnesium ammonium phosphate, or magnesium alkoxides, etc., among which magnesium sulfate and its hydrate are preferred.
  • the amount of the compound containing the metal element M1 to be added may be any amount as long as the amount of the metal element M1 in the niobium-containing oxide falls within the scope of the present invention. It may be added at a rate of 0.03% by mass or more, preferably at a rate of 0.05% by mass or more, and more preferably at a rate of 0.1% by mass or more. Moreover, it is preferably added in a proportion of 12% by mass or less, more preferably 10% by mass or less, and even more preferably 8% by mass or less based on the niobium-containing oxide powder of the substrate.
  • the heat treatment conditions and heat treatment method may be the same as in the first aspect described above.
  • niobium-containing oxide powder after the heat treatment obtained as described above is slightly agglomerated, it is not necessary to perform pulverization that destroys the particles. It suffices to perform pulverization and classification to the extent that the
  • the niobium-containing oxide powder according to the second aspect of the present invention may be mixed with the treatment agent 2 in the surface treatment step, then granulated and heat-treated to obtain a powder containing secondary particles in which primary particles are agglomerated.
  • Any method may be used for granulation as long as secondary particles can be produced, but a spray dryer is preferable because it can process a large amount.
  • the dew point may be controlled in the heat treatment process. If the powder after the heat treatment is exposed to the atmosphere as it is, the powder absorbs moisture in the atmosphere. Therefore, it is preferable to handle the powder in an environment where the dew point is controlled during cooling in the heat treatment furnace and after the heat treatment.
  • the heat-treated powder may be classified as necessary to bring the particles into the desired maximum particle size range. These conditions may be the same as those of the first aspect described above.
  • An active material according to the second aspect of the present invention contains the niobium-containing oxide powder according to the second aspect of the present invention. It may contain one or more substances other than the niobium-containing oxide powder according to the second aspect of the present invention.
  • Other substances include, for example, carbon materials [pyrolytic carbons, cokes, graphites (artificial graphite, natural graphite, etc.), organic polymer compound combustion bodies, carbon fibers], tin and tin compounds, silicon and silicon compounds.
  • lithium-containing metal oxides are used.
  • lithium titanate containing Li 4 Ti 5 O 12 as a main component can be mentioned as a metal oxide containing lithium.
  • a power storage device comprises an electrode containing the active material according to the second aspect of the present invention, and utilizes intercalation and de-intercalation of lithium ions into such an electrode. It is a device that stores and releases energy as a result, and examples thereof include hybrid capacitors, lithium batteries, and all-solid secondary batteries.
  • the positive electrode includes an active material such as activated carbon in which capacitance is formed by physical adsorption similar to the electrode material of the electric double layer capacitor, and graphite.
  • an active material whose capacity is formed by intercalation and deintercalation, or an active material whose capacity is formed by redox, such as a conductive polymer, is used for the negative electrode, and the active material according to the second aspect of the present invention is used for the negative electrode.
  • the active material according to the second aspect of the present invention is usually used in the form of an electrode sheet for the hybrid capacitor.
  • the lithium battery according to the second aspect of the present invention is a general term for lithium primary batteries and lithium secondary batteries.
  • the term lithium secondary battery is used as a concept including so-called lithium ion secondary batteries and all-solid-state lithium ion secondary batteries.
  • the lithium battery is composed of a positive electrode, a negative electrode, and a non-aqueous electrolyte in which an electrolyte salt is dissolved in a non-aqueous solvent, or a solid electrolyte. It can be used as a material.
  • the active material according to the second aspect of the present invention is usually used in the form of an electrode sheet for the lithium battery. Although this active material may be used as either a positive electrode active material or a negative electrode active material, the case where it is used as a negative electrode active material will be described below.
  • the negative electrode according to the second aspect of the present invention is a negative electrode layer containing a negative electrode active material (active material according to the second aspect of the present invention), a conductive agent and a binder on one or both sides of a negative electrode current collector.
  • This negative electrode layer is usually in the form of an electrode sheet.
  • a negative electrode current collector having pores such as a porous body
  • a negative electrode layer containing a negative electrode active material (active material according to the second aspect of the present invention), a conductive agent, and a binder is placed in the pores. have.
  • the conductive agent for the negative electrode is not particularly limited as long as it is an electron conductive material that does not cause chemical change, and the same material as in the first aspect described above can be used, and the amount added can also be the same. can. If it is less than 0.1% by mass, the conductivity of the negative electrode layer cannot be ensured, and if it exceeds 10% by mass, the active material ratio decreases, and the discharge capacity of the electricity storage device per unit mass and unit volume of the negative electrode layer becomes insufficient. Therefore, it is not suitable for increasing the capacity.
  • the conductive agent may be added at the time of electrode preparation, or the active material itself may be coated with the conductive agent. This is because the conductivity of the negative electrode layer can be further improved by coating with a conductive agent such as carbon fiber.
  • binder for the negative electrode the same one as in the first aspect described above can be used, and the addition amount thereof can also be the same.
  • the negative electrode current collector the same one as in the first aspect described above can be used.
  • a negative electrode active material including the active material according to the second aspect of the present invention
  • a conductive agent and a binder are uniformly mixed in a solvent to form a paint
  • the negative electrode collection is performed. It can be obtained by applying it on an electric body, drying it, and compressing it.
  • a negative electrode current collector having pores such as a porous body
  • a paint in which a negative electrode active material (active material according to the second aspect of the present invention), a conductive agent, and a binder are uniformly mixed in a solvent can be obtained by pressurizing and filling the pores of the current collector, or by immersing the current collector having pores in the paint and diffusing it into the pores, followed by drying and compression.
  • a method of uniformly mixing a negative electrode active material (active material according to the second aspect of the present invention), a conductive agent, and a binder in a solvent to form a paint for example, the mixture is mixed in a kneading vessel such as a planetary mixer.
  • a kneader in which a stirring rod revolves while rotating on its own axis, a twin-screw extruder kneader, a planetary stirring and defoaming device, a bead mill, a high-speed swirling mixer, a powder suction continuous dissolving and dispersing device, and the like can be used.
  • a process may be divided according to solid content density
  • the negative electrode active material the active material according to the second aspect of the present invention
  • the conductive agent, and the binder in the solvent the specific surface area of the active material, the type of the conductive agent, and the binder Since it varies depending on the type and combination of these, it should be optimized, but a kneader that revolves while the stirring rod rotates in a kneading vessel such as a planetary mixer, a twin-screw extruder kneader, and a planetary agitator.
  • the high solid content concentration is preferably 60% to 90% by mass, more preferably 60% to 80% by mass.
  • the content is 60% by mass or more, shear force can be obtained, and when it is 90% by mass or less, the load on the apparatus is reduced, and when it is 80% by mass or less, it is more preferable.
  • the mixing procedure is not particularly limited, but may be a method of simultaneously mixing the negative electrode active material, the conductive agent and the binder in a solvent, or a method of mixing the conductive agent and the binder in advance in a solvent and then mixing the negative electrode active material. and a method of preparing negative electrode active material slurry, conductive agent slurry and binder solution in advance and mixing them.
  • the negative electrode active material is additionally mixed, and the negative electrode active material slurry, the conductive agent slurry, and the binder solution are prepared in advance. , are preferably mixed.
  • organic solvent can be used as the solvent.
  • organic solvent include aprotic organic solvents such as 1-methyl-2-pyrrolidone, dimethylacetamide, and dimethylformamide, either alone or in combination of two or more, preferably 1-methyl-2-pyrrolidone.
  • the positive electrode has a positive electrode layer containing a positive electrode active material, a conductive agent and a binder on one or both sides of a positive electrode current collector.
  • the positive electrode active material a material capable of intercalating and deintercalating lithium is used.
  • the active material may be a composite metal oxide with lithium containing cobalt, manganese, or nickel, or a lithium-containing olivine-type phosphate. These positive electrode active materials can be used singly or in combination of two or more.
  • lithium composite metal oxides examples include LiCoO 2 , LiMn 2 O 4 , LiNiO 2 , LiCo 1-x Ni x O 2 (0.01 ⁇ X ⁇ 1), LiCo 1/3 Ni 1/3 Mn 1/3 O 2 , LiNi 1/2 Mn 3/2 O 4 and the like, and part of these lithium composite oxides may be replaced with other elements, and part of cobalt, manganese and nickel may be replaced with B , Nb, Sn, Mg, Fe, Ti, Al, Zr, Cr, V, Ga, Zn, Cu, Bi, Mo, La, etc., or substitute a part of O with S or It can be substituted with F or coated with a compound containing these other elements.
  • Lithium-containing olivine-type phosphates include, for example, LiFePO 4 , LiCoPO 4 , LiNiPO 4 , LiMnPO 4 , LiFe 1-x MxPO 4 (M is at least one selected from Co, Ni, Mn, Cu, Zn and Cd). is a seed, and X is 0 ⁇ X ⁇ 0.5.) and the like.
  • Examples of the conductive agent and binder for the positive electrode include those similar to those for the negative electrode.
  • Examples of the positive electrode current collector include aluminum, stainless steel, nickel, titanium, calcined carbon, and aluminum or stainless steel surface-treated with carbon, nickel, titanium, or silver. The surface of these materials may be oxidized, or the surface of the positive electrode current collector may be roughened by surface treatment.
  • Examples of forms of current collectors include sheets, nets, foils, films, punched materials, laths, porous bodies, foams, fibers, nonwoven fabrics, and the like.
  • Non-aqueous electrolyte is obtained by dissolving an electrolyte salt in a non-aqueous solvent.
  • the non-aqueous electrolyte is not particularly limited, and various types can be used.
  • the electrolyte salt one that dissolves in a non - aqueous electrolyte is used.
  • CF3 ) 2 LiN( SO2C2F5 ) 2 , LiCF3SO3 , LiC( SO2CF3 ) 3 , LiPF4 ( CF3 ) 2 , LiPF3 ( C2F5 ) 3 , LiPF3 (CF 3 ) 3 , LiPF 3 (iso-C 3 F 7 ) 3 , LiPF 5 (iso-C 3 F 7 ) and other lithium salts containing chain-like fluorinated alkyl groups, and (CF 2 ) 2 ( Lithium salts containing cyclic alkylene fluoride chains such as SO 2 ) 2 NLi, (CF 2 ) 3 (SO 2 ) 2 NLi, lithium bis[oxalate-O,O′]borate and difluoro[oxalate-O, Lithium salts having an anion of an oxalate complex such as lithium
  • electrolyte salts are LiPF 6 , LiBF 4 , LiPO 2 F 2 and LiN(SO 2 F) 2
  • the most preferred electrolyte salt is LiPF 6
  • electrolyte salts can be used singly or in combination of two or more.
  • a suitable combination of these electrolyte salts includes LiPF 6 and at least one lithium salt selected from LiBF 4 , LiPO 2 F 2 and LiN(SO 2 F) 2 in the non-aqueous electrolyte. preferably contained in
  • the concentration of all these electrolyte salts dissolved and used is usually preferably 0.3M or more, more preferably 0.5M or more, and still more preferably 0.7M or more, relative to the non-aqueous solvent. Moreover, the upper limit thereof is preferably 2.5M or less, more preferably 2.0M or less, and even more preferably 1.5M or less.
  • chain ester is used as a concept including chain carbonates and chain carboxylic acid esters.
  • Cyclic carbonates include ethylene carbonate (EC), propylene carbonate (PC), 1,2-butylene carbonate, 2,3-butylene carbonate, 4-fluoro-1,3-dioxolan-2-one (FEC), trans or cis-4,5-difluoro-1,3-dioxolane-2-one (hereinafter collectively referred to as "DFEC"), vinylene carbonate (VC), vinylethylene carbonate (VEC), and 4-ethynyl-1 , 3-dioxolan-2-one (EEC), ethylene carbonate, propylene carbonate, 1,2-butylene carbonate, 2,3-butylene carbonate, 4-fluoro-1,3 - At least one selected from dioxolan-2-one and 4-ethynyl-1,3-dioxolan-2-one (EEC) is from the viewpoint of improving the charge rate characteristics of the electricity storage device and suppressing the amount of gas generated during high-temperature operation.
  • DFEC 4-fluor
  • cyclic carbonates having an alkylene chain selected from propylene carbonate, 1,2-butylene carbonate and 2,3-butylene carbonate.
  • the ratio of the cyclic carbonate having an alkylene chain in the total cyclic carbonate is preferably 55% by volume to 100% by volume, more preferably 60% by volume to 90% by volume.
  • non-aqueous electrolyte ethylene carbonate, propylene carbonate, 1,2-butylene carbonate, 2,3-butylene carbonate, 4-fluoro-1,3-dioxolan-2-one and 4-ethynyl-1
  • At least one lithium salt selected from LiPF 6 , LiBF 4 , LiPO 2 F 2 and LiN(SO 2 F) 2 is added to a non-aqueous solvent containing one or more cyclic carbonates selected from 3-dioxolan-2-ones. It is preferable to use a non-aqueous electrolyte in which an electrolyte salt containing The above is more preferable.
  • the concentration of the total electrolyte salt is 0.5M to 2.0M
  • the electrolyte salt contains at least LiPF 6 and further contains 0.001M to 1M of LiBF 4 , LiPO 2 F 2 and LiN(SO 2 F)
  • a non-aqueous electrolyte containing at least one lithium salt selected from 2 it is preferable to use a non-aqueous electrolyte containing at least one lithium salt selected from 2 .
  • the proportion of the lithium salt other than LiPF 6 in the non-aqueous solvent is 0.001M or more, the effect of improving the charge rate characteristics of the electricity storage device and suppressing the amount of gas generated during high-temperature operation is likely to be exhibited.
  • the proportion of lithium salts other than LiPF 6 in the non-aqueous solvent is preferably 0.01M or more, particularly preferably 0.03M or more, and most preferably 0.04M or more.
  • the upper limit is preferably 0.8M or less, more preferably 0.6M or less, and particularly preferably 0.4M or less.
  • the non-aqueous solvents are preferably mixed and used in order to achieve appropriate physical properties.
  • the combination includes, for example, a combination of a cyclic carbonate and a chain carbonate, a combination of a cyclic carbonate, a chain carbonate and a lactone, a combination of a cyclic carbonate, a chain carbonate and an ether, and a combination of a cyclic carbonate, a chain carbonate and a chain ester. combinations, combinations of cyclic carbonates, chain carbonates and nitriles, and combinations of cyclic carbonates, chain carbonates and S ⁇ O bond-containing compounds, and the like.
  • one or two or more asymmetric chain carbonates selected from methyl ethyl carbonate (MEC), methyl propyl carbonate (MPC), methyl isopropyl carbonate (MIPC), methyl butyl carbonate, and ethyl propyl carbonate
  • MEC methyl ethyl carbonate
  • MPC methyl propyl carbonate
  • MIPC methyl isopropyl carbonate
  • DMC dimethyl carbonate
  • DEC diethyl carbonate
  • dipropyl carbonate dibutyl carbonate
  • pivalic acid esters such as methyl pivalate, ethyl pivalate, and propyl pivalate , methyl propionate, ethyl propionate, propyl propionate, methyl acetate, and ethyl acetate (EA).
  • chain esters having a methyl group selected from dimethyl carbonate, methyl ethyl carbonate, methyl propyl carbonate, methyl isopropyl carbonate, methyl butyl carbonate, methyl propionate, methyl acetate and ethyl acetate (EA) are preferred.
  • a chain carbonate having a methyl group is particularly preferred.
  • chain carbonates when chain carbonates are used, it is preferable to use two or more of them. Furthermore, it is more preferable that both the symmetrical chain carbonate and the asymmetrical chain carbonate are included, and it is even more preferable that the content of the symmetrical chain carbonate is higher than that of the asymmetrical chain carbonate.
  • the content of the chain ester is not particularly limited, it is preferably used in the range of 60% by volume to 90% by volume with respect to the total volume of the non-aqueous solvent.
  • the content is 60% by volume or more, the viscosity of the non-aqueous electrolyte does not become too high, and when the content is 90% by volume or less, the electrical conductivity of the non-aqueous electrolyte decreases, improving the charge rate characteristics of the electricity storage device.
  • the above range is preferable because there is little possibility that the effect of suppressing the amount of gas generated during high-temperature operation is reduced.
  • the volume ratio of the symmetrical chain carbonate in the chain carbonate is preferably 51% by volume or more, more preferably 55% by volume or more.
  • the upper limit is more preferably 95% by volume or less, and even more preferably 85% by volume or less. It is particularly preferred if the symmetrical chain carbonate includes dimethyl carbonate. Moreover, it is more preferable that the asymmetric chain carbonate has a methyl group, and methyl ethyl carbonate is particularly preferable. In the above case, the charge rate characteristics of the electricity storage device are improved and the effect of suppressing the amount of gas generated during high-temperature operation is improved, which is preferable.
  • the ratio of cyclic carbonate to chain ester is 10:90 to 45 (volume ratio) of cyclic carbonate and chain ester from the viewpoint of improving the charge rate characteristics of the electrical storage device and enhancing the effect of suppressing the amount of gas generated during high-temperature operation. :55 is preferred, 15:85 to 40:60 is more preferred, and 20:80 to 35:65 is particularly preferred.
  • the structure of the lithium battery according to the second aspect of the present invention is not particularly limited, and includes a coin battery having a positive electrode, a negative electrode, and a single-layer or multi-layer separator, and a positive electrode, a negative electrode, and a rolled separator. Cylindrical batteries, square batteries, and the like are examples.
  • an insulating thin film having a high ion permeability and a predetermined mechanical strength is used.
  • examples thereof include polyethylene, polypropylene, cellulose paper, glass fiber paper, polyethylene terephthalate, polyimide microporous film, etc.
  • Multilayer films composed of a combination of two or more types can also be used.
  • the surfaces of these separators can be coated with resins such as PVDF, silicone resins and rubber-based resins, particles of metal oxides such as aluminum oxide, silicon dioxide and magnesium oxide.
  • the pore size of the separator may generally be in a range useful for batteries, and is, for example, 0.01 ⁇ m to 10 ⁇ m.
  • the thickness of the separator may be within the range for general batteries, for example, 5 ⁇ m to 300 ⁇ m.
  • a solid electrolyte is a solid electrolyte in which ions can move.
  • inorganic solid electrolytes are solid in the steady state, they are not usually dissociated or released into cations and anions.
  • the inorganic solid electrolyte is not particularly limited as long as it has conductivity of metal ions belonging to Group 1 of the periodic table, and generally has almost no electronic conductivity.
  • Representative examples of the inorganic solid electrolyte include (A) a sulfide inorganic solid electrolyte and (B) an oxide inorganic solid electrolyte.
  • a sulfide solid electrolyte is preferably used because it has high ion conductivity and can form a dense compact with few grain boundaries only by applying pressure at room temperature.
  • the periodic table referred to here refers to the long-period periodic table.
  • the sulfide inorganic solid electrolyte may be amorphous glass, crystallized glass, or a crystalline material.
  • Specific examples of the sulfide inorganic solid electrolyte include the following combinations, but are not particularly limited. Li 2 SP 2 S 5 , Li 2 SP 2 S 5 —Al 2 S 3 , Li 2 S — GeS 2 , Li 2 S—Ga 2 S 3 , Li 2 S—GeS 2 —Ga 2 S 3 , Li 2 S—GeS 2 —P 2 S 5 , Li 2 S—GeS 2 —Sb 2 S 5 , Li 2 S—GeS 2 —Al 2 S 3 , Li 2 S—SiS 2 , Li 2 S—Al 2 S 3 , Li 2 S—SiS 2 —Al 2 S 3 , Li 2 S—SiS 2 —P 2 S 5 , Li 10 GeP 2 S 12 .
  • LPS glasses and LPS glass-ceramics produced by combining Li 2 SP 2 S 5 are preferred.
  • Algerodite-type solid electrolytes such as Li 6 PS 5 Cl and Li 6 PS 5 Br are also suitable examples of sulfide inorganic solid electrolytes other than those described above.
  • the oxide inorganic solid electrolyte preferably contains oxygen atoms, has metal ion conductivity belonging to Group 1 of the periodic table, and has electronic insulation.
  • oxide inorganic solid electrolytes examples include Li3.5Zn0.25GeO4 having a LISICON (lithium superionic conductor) type crystal structure, La0.55Li0.35TiO3 having a perovskite type crystal structure , LiTi 2 P 3 O 12 having a NASICON (Natrium superionic conductor) type crystal structure, Li 7 La 3 Zr 2 O 12 (LLZ) having a garnet type crystal structure, lithium phosphate (Li 3 PO 4 ), lithium phosphate LiPON in which part of the oxygen in the _ _ _ _ _ O 12 and the like are preferably exemplified.
  • LISICON lithium superionic conductor
  • La0.55Li0.35TiO3 having a perovskite type crystal structure
  • LiTi 2 P 3 O 12 having a NASICON (Natrium superionic conductor) type crystal structure
  • Li 7 La 3 Zr 2 O 12 (LLZ) having a garnet type crystal structure
  • the volume average particle diameter of the inorganic solid electrolyte is not particularly limited, it is preferably 0.01 ⁇ m or more, more preferably 0.1 ⁇ m or more.
  • the upper limit is preferably 100 ⁇ m or less, more preferably 50 ⁇ m or less.
  • Example 1-1 liquid system lithium ion secondary battery [Example 1-1] ⁇ Raw material preparation process> Nb 2 O 5 (average particle size 0.2 ⁇ m) and anatase-type TiO 2 (specific surface area 10 m 2 /g) were weighed and mixed at a molar ratio of 1:1. This mixed powder was heat-treated at 1000° C. for 5 hours. Powder X-ray diffraction measurement was performed on the obtained sintered powder sample under the conditions of a sampling interval of 0.01° and a scanning speed of 2°/min.
  • ⁇ Surface treatment process> Ion - exchanged water was added to the obtained calcined powder sample, and the mixture was pulverized by stirring so that the solid content concentration of the slurry was 30% by mass. ) 3 ⁇ 16H 2 O) was added in an amount of 0.8% by weight with respect to 100 g of the pulverized fired powder to prepare a mixed slurry.
  • This mixed slurry was mixed in a paint shaker for 3 hours, dried at a temperature of 60 ° C., and then heat-treated at 500 ° C. for 1 hour using a muffle furnace to obtain a niobium-containing oxide according to Example 1-1.
  • a material powder niobium titanate (hereinafter referred to as TNO) was produced.
  • Example 1-2 In the surface treatment step, the same procedure as in Example 1-1 was performed, except that the amount of aluminum sulfate hexahydrate (Al 2 (SO 4 ) 3 16H 2 O) added as treatment agent 2 was as shown in Table 1. A niobium-containing oxide powder according to Example 1-2 was produced.
  • Example 1-3 In the raw material adjustment step, the niobium-containing oxide powder synthesized in Example 1-1 was subjected to particle size adjustment treatment. Niobium-containing oxide powder and zirconia beads ( ⁇ 2.0 mm) were mixed, ball-milled, and then sieved with a 75 ⁇ m sieve to obtain a niobium-containing oxide powder whose particle size had been adjusted.
  • the surface treatment step the same as Example 1-1 except that the amount of aluminum sulfate hexahydrate (Al 2 (SO 4 ) 3.16H 2 O) added as the treatment agent 2 was as shown in Table 1. , to produce a niobium-containing oxide powder according to Example 1-3.
  • Example 1-4 In the surface treatment step, the mixed slurry containing the treatment agent 2 is not mixed with a paint shaker, but instead is lightly mixed by handshaking for 3 minutes, dried at a temperature of 60 ° C., and then placed in a muffle furnace.
  • a niobium-containing oxide powder according to Example 1-4 was produced in the same manner as in Example 1-3, except that the powder was heat treated at 500° C. for 1 hour.
  • Examples 1-5, 1-6, 1-7, 1-8, 1-9 In the surface treatment step, except that the type of treatment agent 2 and the amount of treatment agent 2 added were changed as shown in Table 1, the same procedure as in Example 1-1 was carried out, and Example 1-5 (magnesium sulfate 7 water hydrate: ⁇ gSO 4 ⁇ 7H 2 O), Example 1-6 (indium sulfate: In 2 (SO 4 ) 3 ), Example 1-7 (calcium fluoride: CaF 2 ), Example 1-8 (sulfuric acid Zinc: ZnSO 4 ), Examples 1-9 (gallium sulfate: Ga 3 (SO 4 ) 3 ) were used to produce niobium-containing oxide powders.
  • Example 1-10 By performing the surface treatment step in the same manner as in Example 1-5 except that Nb 2 O 5 (niobium pentoxide, Niobium (V) oxide, average particle size 0.2 ⁇ m) was used as the niobium-containing oxide powder, A surface-treated niobium-containing oxide powder according to Examples 1-10 was produced.
  • Nb 2 O 5 niobium pentoxide, Niobium (V) oxide, average particle size 0.2 ⁇ m
  • Comparative Example 1-1 A niobium-containing oxide powder according to Comparative Example 1-1 was produced in the same manner as in Example 1-1, except that the treatment agent 2 was not added in the surface treatment step.
  • Example 1-1 In the surface treatment step, the same procedure as in Example 1-1 was performed, except that the amount of aluminum sulfate hexahydrate (Al 2 (SO 4 ) 3 16H 2 O) added as treatment agent 2 was as shown in Table 1. A niobium-containing oxide powder according to Reference Example 1-1 was produced.
  • Comparative Example 1-3 A niobium-containing oxide powder according to Comparative Example 1-3 was produced in the same manner as in Example 1-10, except that the treatment agent 2 was not added in the surface treatment step.
  • Niobium-containing oxide powders of Examples 1-1 to 1-10, Reference Examples 1-1, and Comparative Examples 1-1 to 1-3 (hereinafter, niobium-containing powders of Examples, Reference Examples, and Comparative Examples
  • the content of metal elements with a valence of 3+ or 2+ excluding Ti or Nb, or molybdenum, aluminum, magnesium, indium, calcium, zinc, and gallium contained in the oxide powder) is measured as follows. did.
  • XRF ⁇ X-ray fluorescence analysis
  • SSA specific surface area
  • the specific surface areas (SSA) (m 2 /g) of the niobium-containing oxide powders of Examples 1-1 to 1-10, Reference Examples 1-1, and Comparative Examples 1-1 to 1-3 were determined by fully automatic BET.
  • a specific surface area measuring device (trade name “Macsorb HM model-1208” manufactured by Mountec Co., Ltd.) was used, and nitrogen gas was used as the adsorption gas.
  • 0.5 g of the measurement sample powder was weighed, placed in a ⁇ 12 standard cell (HM1201-031), degassed at 100° C. under vacuum for 0.5 hours, and then measured by the BET single-point method.
  • ⁇ Calculation of D50 Dry laser diffraction scattering method>
  • the D50 of the niobium-containing oxide powders of Examples 1-1 to 1-10, Reference Examples 1-1, and Comparative Examples 1-1 to 1-3 was measured using a laser diffraction/scattering particle size distribution analyzer (Nikkiso Co., Ltd. It was calculated from a particle size distribution curve measured using Microtrac MT3300EXII). Put 50 mg of sample into a container containing 50 ml of ion-exchanged water as a measurement solvent, shake the container by hand until the powder is evenly dispersed in the measurement solvent by visual inspection, and place the container in the measurement cell. It was measured.
  • the crushing treatment applied ultrasonic waves (30 W, 3 s) with an ultrasonic device in the device. Further, a measurement solvent was added until the transmittance of the slurry fell within the appropriate range (the range indicated by the green bar on the device), and the particle size distribution was measured. D50 of the mixed powder before and after pulverization was calculated from the obtained particle size distribution curve. The D50 before pulverization corresponds to the D50 of secondary particles, and the D50 after pulverization corresponds to the D50 of primary particles.
  • the negative electrode sheet was prepared as follows in a room controlled to a room temperature of 25° C. and a dew point of ⁇ 20° C. or less.
  • the niobium-containing oxide powder of each example was taken out from the aluminum laminate bag in a room controlled at a temperature of 25°C and a dew point of -20°C or lower.
  • the niobium-containing oxide powder taken out from each example was mixed as follows at a ratio of 90% by mass as an active material, 5% by mass of acetylene black as a conductive agent, and 5% by mass of polyvinylidene fluoride as a binder.
  • the paint was prepared by Polyvinylidene fluoride, acetylene black, and 1-methyl-2-pyrrolidone dissolved in 1-methyl-2-pyrrolidone in advance are mixed in a planetary stirring deaerator, then niobium-containing oxide powder is added, and the total solid content is The mixture was adjusted to a concentration of 64% by mass and mixed with a planetary stirring deaerator. Thereafter, 1-methyl-2-pyrrolidone was added to adjust the total solid content concentration to 50% by mass, and the mixture was mixed in a planetary stirring deaerator to prepare a paint. The obtained coating material was applied onto an aluminum foil and dried to prepare a negative electrode single-sided sheet for a coin battery described later and a negative electrode double-sided sheet for a laminated battery described later. The target basis weight for coating was 7.5 mg/cm 2 .
  • Electrode density The negative electrode single-sided sheet coated in the manner described above was pressed with a roll press (roller diameter 60 ⁇ 150 mm, press pressure equivalent to 40 MPa), and then the density of the negative electrode layer was measured as “electrode density”. Table 1 shows the evaluation results. When the electrode density is high, more active material can be packed per fixed volume, and as a result, the capacity that can be used as a battery increases, which is preferable.
  • EC ethylene carbonate
  • DMC dimethyl carbonate
  • a circle having a diameter of 14 mm was punched out from the negative electrode single-sided sheet prepared by the method described above, pressed at a pressure of 2 t/cm 2 , and vacuum-dried at 120° C. for 5 hours to prepare an evaluation electrode.
  • the prepared evaluation electrode and metal lithium are opposed to each other via a glass filter (ADVANTEC GA-100 and Wattman GF / C).
  • a 2032-type coin battery was produced by adding a non-aqueous electrolyte solution prepared by the method described in ⁇ Preparation of Electrolyte Solution> and sealing.
  • ⁇ Battery initial characteristics initial discharge capacity, measurement of 5C rate discharge characteristics>
  • a current of 0.2 mA/cm 2 was applied to the coin-type battery produced by the method described in ⁇ Production of coin battery> above in a constant temperature bath at 25 ° C., with the direction in which Li is occluded in the evaluation electrode as charging.
  • the battery After charging to 1 V at a density of 1 V and then constant-current constant-voltage charging at 1 V until the charging current reaches a current density of 0.05 mA/cm 2 , the battery is charged to 2 V at a current density of 0.2 mA/cm 2 . Three cycles of constant current discharge were performed.
  • the initial discharge capacity (mAh/g) was determined by dividing the discharge capacity (mAh) at the third cycle by the weight of the niobium-containing oxide powder.
  • the 5C rate discharge capacity ratio (%) was calculated by dividing the 5C discharge capacity by the initial discharge capacity.
  • Table 1 shows the result of calculating the 5C rate discharge capacity rate of No.
  • the C in 1C represents the current value when charging and discharging.
  • 1C refers to the current value that can fully discharge (or fully charge) the theoretical capacity in 1/1 hour
  • 0.1C means the current value that can fully discharge (or fully charge) the theoretical capacity in 1/0.1 hour. Point.
  • the discharge capacity maintenance rate measured for the coin battery of Comparative Example 1-1 was set to 100, and the discharge capacity maintenance of Examples 1-1 to 1-10, Comparative Examples 1-2 to 1-3, and Reference Example 1-1 Table 1 shows the results of calculating the rate as a relative ratio (relative ratio %). Furthermore, the coin battery after 15 cycles was subjected to IMP measurement at a frequency of 0.01 Hz to 1 MHz and a temperature of 0° C., and the resistance value ( ⁇ ) was obtained from the size of the circular arc obtained. Taking the resistance value measured in the coin battery of Comparative Example 1-1 as 100, the resistance values of Examples 1-1 to 1-10, Comparative Examples 1-2 to 1-3, and Reference Example 1-1 are relative ratios. Table 1 shows the results calculated as the resistance value after the cycle (relative ratio %). It is considered that the lower the resistance value after the cycle, the more the resistance increase can be suppressed.
  • Electrodes using the niobium-containing oxide powders of Examples 1-1 to 1-10 had metal elements with a valence of 3+ or 2+ other than Ti or Nb on the surfaces of the niobium-containing oxide particles, which constitute the niobium-containing oxide powders. By containing, it was found that the initial discharge capacity is high, the discharge rate characteristics and cycle characteristics are excellent, and the increase in resistance after cycles can be suppressed.
  • Example 1-3 in which the niobium-containing oxide base material was changed to a grain-prepared product
  • Example 1-4 in which the surface treatment method was changed to handshake, showed similar improvement effects.
  • Example 1-5 containing a 2+ valence metal element (Mg)
  • the discharge rate characteristics and cycle characteristics are improved more than in Example 1-2 (Al) containing a 3+ valence metal element.
  • the discharge rate characteristics are maintained satisfactorily, the increase in resistance after the cycle is satisfactorily suppressed, and the It had enhanced characteristics.
  • Examples 1-1 to 1-10 and Reference Example 1-1 a metal element M1 having a valence of 3+ or 2+ excluding Ti or Nb was introduced by the surface treatment step, so that niobium was contained.
  • the metal element M1 was present on the surface of the oxide particles.
  • the niobium-containing oxide powders of Comparative Examples 1-1 to 1-3 did not exhibit a decrease in initial discharge capacity, a decrease in rate characteristics, or an improvement in cycle characteristics, and did not lead to improvement in battery characteristics. rice field.
  • Comparative Example 1-2 in which a metal element (Al) with a valence of 3+ was added during the synthesis of the base material instead of being coated, the electrode density, initial discharge capacity, and rate characteristics tended to decrease.
  • niobium-containing oxide powder of Example 1-5 Mg2+ was detected in addition to Ti4+ and Nb5+, while only Ti4+ and Nb5+ were detected in the niobium-containing oxide powder of Comparative Example 1-1. Furthermore, the niobium-containing oxide powder of Example 1-5 was sputtered with Ar ions under the conditions of an acceleration voltage of 2 kV and an etching rate of 3.1 nm/min (in terms of SiO 2 ), and the Mg1s depth profile of the primary particles was measured. Carried out.
  • the Mg concentration decreases from the particle surface toward the inside of the particle, and if the Mg atomic concentration at the surface (0 nm) is 100%, the Mg atomic concentration at a depth of 100 nm from the surface is less than 5%. rice field.
  • the Mg1s depth profile results are shown in FIG. From this, by introducing the metal element M1 having a valence of 3+ or 2+ excluding Ti or Nb in the surface treatment step, the metal element M1 is localized on the surface of the niobium-containing oxide particles. It was confirmed.
  • niobium-containing oxide aluminum sulfate hexahydrate (Al 2 (SO 4 ) 3 16H 2 O
  • Li 6 PS 5 Cl powder volume average particle size obtained using a laser diffraction/scattering particle size distribution analyzer: 6 ⁇ m
  • zirconia balls (diameter 3 mm, 20 g) were put into an 80 mL zirconia pot, and the mixed powder was put thereinto. After that, this pot was set in a planetary ball mill, and stirring was continued for 15 minutes at a rotation speed of 200 rpm to obtain a negative electrode active material composition of Example 2-1.
  • the obtained negative electrode active material composition was pressed (360 MPa) for 10 minutes at room temperature to prepare a pellet (molded body) having a diameter of 10 mm and a thickness of about 0.7 mm.
  • a pellet-shaped electrode containing this negative electrode active material composition, a pellet-shaped solid electrolyte layer (LPS glass having a molar ratio of Li 2 S:P 2 S 5 75:25) as a separator layer, and a lithium indium alloy as a counter electrode
  • a lithium indium alloy as a counter electrode
  • the foils were laminated in this order, and the laminate was sandwiched between stainless steel current collectors to produce an all-solid secondary battery, and battery characteristics were evaluated. Table 3 shows the results.
  • Example 2-1 Listed in Table 3 below in the same manner as in Example 2-1 above, except that the niobium-containing oxide powder was changed to the niobium-containing oxide of Comparative Example 1-1 (a compound to which the treatment agent 2 was not added). All-solid-state secondary batteries were produced, and battery characteristics were evaluated. Table 3 shows the results.
  • a current equivalent to 0.05 C the theoretical capacity of the niobium-containing oxide, is placed in a constant temperature bath at 25°C, with the all-solid-state secondary battery fabricated by the method described above being charged in the direction in which Li is occluded in the evaluation electrode.
  • the battery After charging to 0.5V at 0.5V and constant voltage charging until the charging current reaches a current equivalent to 0.01C, the battery is discharged to 2V at a current equivalent to 0.05C.
  • a constant current discharge was performed to The initial discharge capacity (mAh/g) was obtained by dividing the discharge capacity (mAh) by the mass of the niobium-containing oxide. The initial efficiency was obtained by dividing the discharge capacity by the charge capacity.
  • the battery was charged to 0.5 V with a current corresponding to 0.4 C, which is the theoretical capacity of the niobium-containing oxide, and then discharged to 2 V at a current of 0.05 C to determine the 0.4 C charge capacity.
  • the rate characteristic (%) was calculated by dividing the 0.4C charge capacity by the initial discharge capacity. For the rate characteristics, relative values were examined with the value of Comparative Example 2-1 as 100% as a reference. Table 3 shows the evaluation results.
  • the electrode including the negative electrode layer using the niobium-containing oxide powder of Example 1-1 has Ti or Nb on the surface of the niobium-containing oxide particles constituting the niobium-containing oxide powder. It was found that the inclusion of the metal element M1 having a valence of 3+ or 2+ excluding M1 results in excellent charge rate characteristics.
  • Example 3-1 ⁇ Raw material preparation process> Nb 2 O 5 (average particle size 0.2 ⁇ m) and anatase-type TiO 2 (specific surface area 10 m 2 /g) were weighed and mixed at a molar ratio of 1:1. This mixed powder was heat-treated at 1000° C. for 5 hours. Powder X-ray diffraction measurement was performed on the obtained sintered powder sample under the conditions of a sampling interval of 0.01° and a scanning speed of 2°/min.
  • ⁇ Surface treatment process> Ion - exchanged water was added to the obtained calcined powder sample and stirred to make the solid content concentration of the slurry 30% by mass, followed by pulverization. 0.4% by mass was added to 100 g of the fired powder to prepare a mixed slurry.
  • This mixed slurry was mixed in a paint shaker for 3 hours, dried at a temperature of 60 ° C., and then heat-treated at 500 ° C. for 1 hour using a muffle furnace to obtain a niobium-containing oxide according to Example 3-1.
  • a powder niobium-titanium composite oxide powder (hereinafter sometimes referred to as TNO powder)) was produced.
  • Example 3-2 In the surface treatment step, the TNO powder according to Example 3-2 was prepared in the same manner as in Example 3-1 except that the amount of lithium molybdate (Li 2 MoO 4 ) added as a treatment agent was set as shown in Table 4. manufactured.
  • Example 3-1 A TNO powder according to Comparative Example 3-1 was produced in the same manner as in Example 3-1, except that no treatment agent was added in the surface treatment step.
  • XRF ⁇ X-ray fluorescence analysis
  • ⁇ Calculation of D50 Dry laser diffraction scattering method>
  • the D50 of the niobium-containing oxide powders of Examples 3-1, 3-2, 4-1 to 4-8 and Comparative Examples 3-1, 4-1, and 4-2 was measured by a laser diffraction/scattering particle size distribution analyzer. (manufactured by Nikkiso Co., Ltd., Microtrac MT3300EXII) was used to calculate the particle size distribution curve.
  • a 50 mg sample was placed in a container containing 50 mL of ion-exchanged water as a measurement solvent, and the container was shaken by hand until the powder was visually uniformly dispersed in the measurement solvent.
  • the crushing treatment was performed by irradiating ultrasonic waves (30 W, 3 s) with an ultrasonic device in the apparatus. Further, a measurement solvent was added until the transmittance of the slurry fell within the proper range (the range indicated by the green bar on the device), and the particle size distribution was measured. D50 of the mixed powder before and after pulverization was calculated from the obtained particle size distribution curve. The D50 before pulverization corresponds to the D50 of secondary particles, and the D50 after pulverization corresponds to the D50 of primary particles.
  • zirconia balls (diameter 3 mm, 20 g) were put into an 80 mL zirconia pot, and the mixed powder was put thereinto.
  • Example 3-1 A negative electrode active material composition shown in Table 4 below was prepared in the same manner as in Example 3-1, except that the TNO powder produced by the production method shown in Table 4 was used.
  • This pot was set in a planetary ball mill, and mechanical milling was performed at a rotation speed of 510 rpm for 16 hours to obtain a yellow powdery sulfide inorganic solid electrolyte (LPS glass).
  • LPS glass yellow powdery sulfide inorganic solid electrolyte
  • a pellet-shaped solid electrolyte layer was obtained by pressing 80 mg of the obtained LPS glass at a pressure of 360 MPa using a pellet molding machine having a molding part with an area of 0.785 cm 2 .
  • the C in 1C represents the current value when charging and discharging.
  • 1C refers to the current value that can fully discharge (or fully charge) the theoretical capacity in 1/1 hour
  • 0.1C means the current value that can fully discharge (or fully charge) the theoretical capacity in 1/0.1 hour. show.
  • Example 3-1 and 3-2 of the negative electrode active material composition of the present invention compared to Comparative Example 3-1, the initial discharge capacity, initial efficiency, and chargeability were excellent in the all-solid secondary battery. It can be seen that it has rate characteristics.
  • the metal element Mo since the metal element Mo was introduced in the surface treatment step, the metal element Mo was localized on the surface of the niobium-containing oxide particles. Met.
  • Examples 4-1 to 4-8 Comparative Examples 4-1 and 4-2
  • the negative electrode active material described in Table 5 was used.
  • Compositions were prepared and evaluated.
  • the addition amount of lithium molybdate (Li 2 MoO 4 ) as a treatment agent was as shown in Table 5.
  • a TNO powder was produced in the same manner as above.
  • Example 4-6 and 4-7 in the surface treatment step, instead of lithium molybdate (Li 2 MoO 4 ) as a treatment agent, cerium sulfate tetrahydrate was used in the amount shown in Table 5.
  • a TNO powder was produced in the same manner as in Example 3-1 except for the above.
  • Example 4-8 TNO powder was produced in the same manner as in Example 4-1, except that the conditions in the raw material preparation step were adjusted so that the specific surface area and primary particle D50 were the values shown in Table 5.
  • Comparative Examples 4-1 and 4-2 TNO powder was produced in the same manner as in Examples 4-1 and 4-8, except that no treating agent was added. It should be noted that the initial discharge capacity and charge rate characteristics of Examples 4-1 to 4-8 and Comparative Examples 4-1 and 4-2 are obtained when each value of Comparative Example 4-1 is taken as 100%. As a reference, relative values were investigated.
  • Examples 4-1 to 4-8 of the negative electrode active material composition of the present invention compared to Comparative Examples 4-1 and 4-2, even at 45 ° C., the initial discharge capacity, initial efficiency, and charge rate characteristics.
  • the metal elements Mo and Ce were introduced in the surface treatment step, the metal elements Mo and Ce were localized on the surface of the niobium-containing oxide particles. existed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Composite Materials (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

一般式Ti1-x/2Nb2O7-x(X=0~2)で表されるニオブ含有酸化物粉末であって、前記ニオブ含有酸化物粉末を構成する、ニオブ含有酸化物粒子の表面にMoおよびCeからなる群より選ばれる少なくとも一種の金属元素が局在化して存在することを特徴とするニオブ含有酸化物粉末。

Description

ニオブ含有酸化物粉末、それを用いた電極、蓄電デバイス、負極活物質組成物、及び全固体二次電池
 本発明は、蓄電デバイスの電極材料等として好適なニオブ含有酸化物粉末、それを用いた電極、及び蓄電デバイス、ならびに、負極活物質組成物及び全固体二次電池に関する。
 近年、蓄電デバイスの電極材料として種々の材料が研究されている。その中でもチタン酸リチウムは、活物質材料として用いた場合に、特に低温領域での入出力特性に優れる点から、HEV、PHEV、BEVといった電気自動車用の蓄電デバイスの活物質材料として注目されている。
 電気自動車用の蓄電デバイスには、燃費または電費向上の観点から高いエネルギー密度が求められる。チタン酸リチウムは入出力特性に優れる点があるものの、エネルギー密度が175mAh/gに留まるため、更なる高エネルギー化には課題が残る。そこで代替候補として、380mAh/gと高いエネルギー密度を持つチタン酸ニオブを中心とするニオブ含有酸化物を負極材料として活用する動きが見られている。
 特許文献1には、ATiMNb2―y7±z(0≦x≦5、0≦y≦0.5、-0.3≦z≦0.3、MはTi及びNb以外の少なくとも一種類の金属、AはLiまたはNa、前記Mは、Mg,Al、V、Fe,Mo,Sn及びWよりなる群から選ばれる少なくとも一種の金属)で表される単斜晶型のニオブチタン複合酸化物が開示されている。特許文献1によれば、蓄電デバイスの電極材料として適用した場合に、高容量で大電流放電性能とサイクル寿命性能に優れた活物質を提供することができるとされている。
 特許文献2には、Liイオンを吸蔵放出することが可能な単斜晶型のニオブチタン複合酸化物粒子と、前記ニオブチタン複合酸化物粒子の表面の少なくとも一部を被覆し、Fe、Co及びNiからなる群から選択される1種類以上の金属元素を含有し、かつ下記(2)式を満たす平均繊維径5nm以上100nm以下の範囲の炭素繊維とを含み、前記ニオブチタン複合酸化物粒子の平均一次粒子径が0.05μm以上2μm以下の範囲である活物質が開示されている。特許文献2によれば、容量、サイクル寿命及び大電流放電性能に優れる蓄電デバイスが得られるとされている。
 また、近年、有機電解液に代えて、無機固体電解質を用いた全固体二次電池が注目されている。全固体二次電池は正極、負極および電解質すべてが固体からなるため、安全性、信頼性を大きく改善できる可能性があり、また安全装置の簡略化が図れることから高エネルギー密度化が可能となるため、電気自動車や大型蓄電池等への応用が期待されている。
 全固体二次電池では、優れたイオン伝導性や長期サイクル特性を実現するという観点より、良好な固-固界面を形成させ、その界面を継続的に維持することが非常に重要である。活物質と固体電解質の良好な界面を維持するために、チタン酸リチウムが注目されている。チタン酸リチウムは充放電に伴う体積変化が非常に小さいため、充放電中、活物質と固体電解質との界面が長期にわたって維持されることが期待されている。しかし、チタン酸リチウムは入出力特性に優れる点があるものの、エネルギー密度が175mAh/gに留まるため、更なる高エネルギー化には課題が残る。そこで代替候補として、387mAh/gと高いエネルギー密度を持つニオブチタン複合酸化物を中心とするニオブ含有酸化物を負極材料として活用する動きが見られている。
 特許文献3には、硫化物固体電解質とD50(μm)/BET(m/g)が0.005以上5.0以下である一般式Ti1±αNb2±β7±γで表されるニオブチタン複合酸化物とを含む電極合剤が開示されている。特許文献3によれば、固体電池の電極合剤として適用した場合に、優れた充放電効率を得ることができることが開示されている。
特開2017-224625号公報 特開2020-149829号公報 国際公開2021/049665号
 しかしながら、特許文献1のチタン酸ニオブを負極材料として適用した蓄電デバイスでは、置換元素量が多いと電池の初期容量(電池容量)が低下するという課題があった。なお、電池容量を上げるメリットとして、単位重量または単位面積あたりのエネルギー密度向上に繋がるので、電気自動車の走行距離延長や蓄電池の設置スペース確保に繋がる点などが挙げられる。
 特許文献2の活物質では、ニオブチタン複合酸化物粒子の表面が金属元素を含有する炭素繊維で被覆されているが、炭素繊維は電池容量に寄与しないため、結果として、電池容量が低下してしまい、単位重量または単位面積あたりのエネルギー密度が低下してしまうという課題があった。
 以上の点から、特許文献1や特許文献2の負極活物質や電極を使用した蓄電デバイスでは、エネルギー密度向上とサイクル性能や放電レート特性改善、ならびに低温領域での抵抗低減を両立することはできない。
 また特許文献3のBET比表面積に対するD50の比を所定範囲にしたチタンニオブ複合酸化物と硫化物固体電解質からなる電極合剤を用いることで全固体二次電池の電池特性の改善が見られたものの、充電レート特性に関しては更なる改善が必要であった。
 本発明は、第1の観点として、全固体二次電池の負極材料として用いられ、電池特性、特に初期放電容量、初期効率、及び充電レート特性を大きく改善できるニオブ含有酸化物粉末、負極活物質組成物、及びそれを含む全固体二次電池を提供することを目的とする。
 また、本発明は、第2の観点として、蓄電デバイスの電極材料として用いられ、放電レート特性、サイクル特性に優れ、及び、サイクル後の抵抗増加を抑制することができるニオブ含有酸化物粉末、それを用いた電極、及び蓄電デバイスを提供することを目的とする。
 本発明者らは、上記第1の観点に係る目的を達成すべく種々検討した結果、ニオブ含有酸化物粉末を全固体二次電池の負極活物質として用いる場合、固体電解質とニオブ含有酸化物の界面抵抗を低減することが非常に重要であることがわかった。そこで粒径や比表面積によらず固体電解質とニオブ含有酸化物の界面抵抗を低減するために研究を重ねた結果、特定の金属元素を、ニオブ含有酸化物粉末を構成する、ニオブ含有酸化物粒子表面に局在化させたニオブ含有酸化物粉末を用いることで、界面抵抗を著しく低減できることを見出し、本発明(第1の観点に係る発明)を完成した。前記ニオブ含有酸化物粉末と固体電解質とを含む負極活物質組成物を全固体二次電池に用いることで初期放電容量、初期効率、及び充電レート特性を高めることができる。尚、本発明者らが検討を行ったところ、特許文献1や特許文献2に記載されているTiまたはNb元素の一部を異種金属で置換した場合では固体電解質との界面抵抗を低減させることはできず、本発明(第1の観点に係る発明)に記載している効果は得られない。
 本発明の第1の観点は、ニオブ含有酸化物粉末、負極活物質組成物、及びそれを含む全固体二次電池に関する。
すなわち、本発明の第1の観点は、下記(1)~(7)を提供するものである。
 (1)一般式Ti1-x/2Nb7-x(X=0~2)で表されるニオブ含有酸化物粉末であって、前記ニオブ含有酸化物粉末を構成する、ニオブ含有酸化物粒子の表面にMoおよびCeからなる群より選ばれる少なくとも一種の金属元素が局在化して存在することを特徴とするニオブ含有酸化物粉末。
 (2)前記ニオブ含有酸化物粉末において、粒子表面に存在する前記金属元素の含有率(質量%)が0.01以上1.2以下であることを特徴とする(1)に記載のニオブ含有酸化物粉末。 
 (3)前記ニオブ含有酸化物において、レーザー回折散乱法による体積基準粒度分布において体積累積が50%に相当する一次粒子のD50が0.6μm以上であることを特徴とする(1)又は(2)に記載のニオブ含有酸化物粉末。
 (4)ニオブ含有酸化物粉末と、周期律表第1族に属する金属イオンの伝導性を有する無機固体電解質と、を含む負極活物質組成物であって、前記ニオブ含有酸化物粉末が(1)~(3)のいずれか一項に記載のニオブ含有酸化物粉末を含むことを特徴とする負極活物質組成物。
 (5)前記無機固体電解質が、硫化物無機固体電解質である(4)に記載の負極活物質組成物。
 (6)前記無機固体電解質の含有量が1質量%以上、50質量%以下である(4)又は(5)に記載の負極活物質組成物。
 (7)正極層、負極層および固体電解質層を備えた全固体二次電池であって、前記負極層が(4)~(6)のいずれか一項に記載の負極活物質組成物を含む層であることを特徴とする全固体二次電池。
 また、本発明者らは、上記第2の観点に係る目的を達成すべく種々検討した結果、ニオブ含有酸化物粉末に表面処理工程を加えることで、特定の金属元素を、ニオブ含有酸化物粉末を構成する、ニオブ含有酸化物粒子表面に特定の濃度で存在するニオブ含有酸化物粉末を見出した。特に、価数が高い金属元素よりも、価数が低い金属元素が、ニオブ含有酸化物の粒子表面に存在することで、顕著な効果が見られることが分かった。本発明(第2の観点に係る発明)ではニオブ含有酸化物粒子の表面を炭素繊維などの導電剤で被覆しなくても効果が見られたため、従来のカーボン被覆とは異なる技術である。そのニオブ含有酸化物粉末が電極材料として適用された蓄電デバイスが、放電レート特性、サイクル特性に優れ、及び、サイクル後の抵抗増加を抑制できることを見出し、本発明(第2の観点に係る発明)を完成した。
 すなわち、本発明の第2の観点は、下記(8)~(14)を提供するものである。
 (8)一般式Ti1-x/2Nb7-x(X=0~2)で表されるニオブ含有酸化物粉末であって、前記ニオブ含有酸化物粉末を構成する、ニオブ含有酸化物粒子の表面にM1(M1は、TiまたはNbを除く価数3+または2+の金属元素である)が局在化して存在することを特徴とするニオブ含有酸化物粉末。
 (9)前記ニオブ含有酸化物粉末において、粒子表面に存在する元素M1が、第2族、第12族、第13族、又は第14族の金属元素であることを特徴とする(8)に記載のニオブ含有酸化物粉末。
 (10)前記ニオブ含有酸化物粉末において、粒子表面に存在する元素M1が、Al3+、Mg2+、Ca2+、Sr2+、Zn2+、 Ga3+、Ge2+、及びIn2+からなる元素群から選ばれるいずれか一つ以上を含むことを特徴とする(8)又は(9)に記載のニオブ含有酸化物粉末。
 (11)前記ニオブ含有酸化物粉末において、粒子表面に存在する元素M1の含有率(質量%)が0.01以上1.2以下であることを特徴とする(8)~(10)のいずれか一項に記載のニオブ含有酸化物粉末。
 (12)前記ニオブ含有酸化物粉末において、レーザー回折散乱法による体積基準粒度分布において体積累積が50%に相当する一次粒子のD50が0.3μm以上であることを特徴とする(8)~(11)のいずれか一項に記載のニオブ含有酸化物粉末。
 (13)(8)~(12)のいずれか一項に記載のニオブ含有酸化物粉末を含むことを特徴とする、蓄電デバイスの電極。
 (14)(13)に記載の電極を含むことを特徴とする蓄電デバイス。
 本発明の第1の観点によれば、ニオブ含有酸化物粉末の粒径や比表面積によらず固体電解質との界面抵抗を低減することで、初期放電容量、初期効率、及び充電レート特性に優れた全固体二次電池の電極材料としての好適なニオブ含有酸化物粉末、それを用いた負極活物質組成物、及び全固体二次電池を提供することができる。
 また、本発明の第2の観点によれば、放電レート特性、サイクル特性に優れ、及び、サイクル後の抵抗増加を抑制できる蓄電デバイスの電極材料として好適なニオブ含有酸化物粉末、それを用いた電極、及び蓄電デバイスを提供することができる。
図1は、Мg1sデプスプロファイルの結果を示す図である。
《第1の観点に係る発明》
 以下、第1の観点に係る発明について説明する。
 [第1の観点に係るニオブ含有酸化物粉末]
 本発明の第1の観点に係るニオブ含有酸化物粉末は、一般式Ti1-x/2Nb7-x(X=0~2)で表されるニオブ含有酸化物粉末であって、前記ニオブ含有酸化物粉末を構成する、ニオブ含有酸化物粒子の表面にMoおよびCeからなる群より選ばれる少なくとも一種の金属元素が局在化して存在することを特徴とするニオブ含有酸化物粉末であるものをいう。なお、X=0~2とは0≦X≦2以下であることを示す。以降も同様である。
 <一般式Ti1-x/2Nb7-x(X=0~2)で表されるニオブ含有酸化物>
 本発明の第1の観点に係るニオブ含有酸化物粉末は、一般式Ti1-x/2Nb7-x(X=0~2)で表されるニオブ含有酸化物を含有する。具体的な化合物の例には、LiイオンやNaイオンを吸蔵・放出することが可能なニオブチタン複合酸化物であるTiNb、ニオブ酸化物であるNb等が含まれる。初期放電容量、初期効率、及び充電レート特性を向上させる観点では、TiNbが好ましい。ニオブチタン複合酸化物については、一部に合成原料由来のチタン酸化物相(例えばルチル型TiO、TiOなど)を含んでもよい。ニオブチタン複合酸化物の場合、Nbのモル数とTiのモル数の比(Nb/Ti比)は、1.5~2.5の範囲が好ましく、さらに好ましいのは、1.8~2.0の範囲が好ましい。この範囲であると、ニオブ含有酸化物の電子伝導性が向上し、レート特性に優れる。
 本発明の第1の観点に係るニオブ含有酸化物について、結晶系に制限はないが、単斜晶型であることが一般的である。単斜晶型の場合、アスペクト比が大きくなる傾向だが、電極密度向上の観点から、1.0~4.0の範囲であることが好ましい。
 <MoおよびCeからなる群より選ばれる少なくとも一種の金属元素の含有>
 本発明の第1の観点に係るニオブ含有酸化物粉末はMoおよびCeからなる群より選ばれる少なくとも一種の金属元素を含有する。MoおよびCeからなる群より選ばれる少なくとも一種の金属元素を含有するとは、本発明の第1の観点に係るニオブ酸化物粉末の誘導結合プラズマ発光分析(ICP-AES)または蛍光X線分析(XRF)において、MoおよびCeからなる群より選ばれる少なくとも一種の金属元素が検出されることをいう。なお、誘導結合プラズマ発光分析による検出量の下限は、通常、0.001質量%である。ニオブ含有酸化物粉末の粒子表面にMoおよびCeが二種含有されてもよい。また、Mo、Ceとしては、その価数は特に限定されず、価数3+または2+であってもよいし、価数4+以上であってもよい。初期放電容量、初期効率、及び充電レート特性を向上させる観点では、Moを含有することが好ましい。
 <MoおよびCeからなる群より選ばれる少なくとも一種の金属元素の含有率>
 蛍光X線分析(XRF)から求めた本発明の第1の観点に係るニオブ含有酸化物粉末のMoおよびCeからなる群より選ばれる少なくとも一種の金属元素の含有率(質量%)は、0.01以上1.2以下であればよい。金属元素MoおよびCeからなる群より選ばれる少なくとも一種の金属元素の含有率がこの範囲であれば、初期放電容量、初期効率、及び充電レート特性に優れた全固体二次電池が得られる。0.01以上1.0以下であることが好ましく、充電レート特性のさらなる向上という観点からは、より好ましくは0.015以上0.9以下、さらに好ましくは0.04以上0.85以下、特に好ましいのは0.07以上0.75以下である。ただし、MoおよびCeがニオブ含有酸化物粉末の粒子表面に同時に含有する場合の前記含有率(質量%)は、二種の金属元素合計の含有率である。
 また、本発明の第1の観点に係るニオブ含有酸化物粉末では、粉末を構成するニオブ含有酸化物粒子の内部領域よりも、表面領域の方にMoおよびCeからなる群より選ばれる少なくとも一種の金属元素が多く含有される。すなわち、MoおよびCeからなる群より選ばれる少なくとも一種の金属元素は、ニオブ含有酸化物粒子の表面に局在化して存在し、より具体的には、ニオブ含有酸化物粒子の内部領域よりも、表面領域の方にMoおよびCeからなる群より選ばれる少なくとも一種の金属元素が局在化して多く含有される。一例として、走査透過型電子顕微鏡を用いた、前記ニオブ含有酸化物粒子の断面分析において、エネルギー分散型X線分光法により測定される、前記ニオブ含有酸化物粒子の表面から20nm程度の深さまでのいわゆる表面近傍の領域においてMoおよびCeからなる群より選ばれる少なくとも一種の金属元素が多く含有されればよく、ニオブ含有酸化物粒子の表面から20nmの深さ位置において、MoおよびCeからなる群より選ばれる少なくとも一種の金属元素が検出される一方で、表面から100nmの深さ位置において、MoおよびCeが検出されないことが好ましく、このような状態である場合に、ニオブ含有酸化物粒子の表面にMoおよびCeからなる群より選ばれる少なくとも一種の金属元素が局在化していると判断することができる。すなわち、エネルギー分散型X線分光法により測定した場合に、該測定による検出量以下であるとの意味であり、エネルギー分散型X線分光法による測定における検出量の下限は、測定する元素や状態によって値が前後するが、通常、0.5atm%である。この他にも、X線光電子分光法(XPS)やオージェ電子分光法(AES)による表面分析の手法が挙げられる。
 なお、本発明の第1の観点において、ニオブ含有酸化物粒子の表面に局在化して存在するMoおよびCeからなる群より選ばれる少なくとも一種の金属元素の形態としては、特に限定されず、Mo元素およびCe元素からなる群より選ばれる少なくとも一種の金属元素が表面に局在化して存在するものであればよく、金属の状態であってもよいし、金属酸化物などの金属化合物の形態であってもよい。
 本発明の第1の観点に係るニオブ含有酸化物粉末は、X線光電子分光分析(XPS)の表面分析における金属元素M1のナロースペクトルにおいて、Mo-O結合またはCe-O結合に帰属するピークを有することが好ましい。ここで、Mo-O結合またはCe-O結合に帰属するピークを有するとは、X線光電子分光の表面分析において、MoのピークトップまたはCeのピークトップを有していることを示す。また、スパッタ処理によるデプスプロファイル測定において、表面(0nm)のMoまたはCeの原子濃度(atm%)を100%とした場合、表面から100nmの深さ位置におけるMoまたはCeの原子濃度(atm%)は5%未満であることが好ましい。
 <さらなる異種元素の含有>
 本発明の第1の観点に係るニオブ含有酸化物粉末は、MoおよびCeからなる群より選ばれる少なくとも一種の金属元素以外のさらなる異種元素として、Al、Mg、Ca、Sr、Zn、 Ga、Ge、In、B、W、及びSからなる元素群からなる群より選ばれる少なくとも1種の元素を含有することが好ましい。本発明の第1の観点に係るニオブ含有酸化物粉末は、このような異種元素を、MоやCeと共に含有することで、ニオブ含有酸化物粉末の表面の電子伝導性が調整され、元素MоやCe単独含有より、電気抵抗を抑制できるためだと推測される。
 <比表面積>
 本発明の第1の観点に係るニオブ含有酸化物粉末の比表面積とは、窒素を吸着ガスとして用いて測定した、単位質量あたりの表面積のことである。測定方法については、後述する実施例にて説明する。
 本発明の第1の観点に係るニオブ含有酸化物粉末は、比表面積が8.0m/g以下であればよく、初期放電容量、初期効率、及び充電レート特性に優れた蓄電デバイスを得ることができる。6.0m/g以下がより好ましく、5.5m/g以下がさらに好ましい。
 <D50>
 本発明の第1の観点に係るニオブ含有酸化物粉末のD50とは体積中位粒径の指標である。レーザー回折・散乱型粒度分布測定によって求めた体積分率で計算した累積体積頻度が、粒径の小さい方から積算して50%になる粒径を意味する。測定方法については、後述する実施例にて説明する。
 本発明の第1の観点に係るニオブ含有酸化物粉末について、一次粒子であっても、一次粒子が凝集した二次粒子であっても良い。ニオブ含有酸化物粒子からなる一次粒子が凝集した二次粒子を含む場合、その一部としては、二次粒子を形成しておらず、一次粒子そのものの形態となっていてもよい。
 本発明の第1の観点に係るニオブ含有酸化物粉末が二次粒子の場合、二次粒子のD50は、電極密度向上の観点から、下限値は、11μm以上であることが好ましく、12μm以上がより好ましく、13μm以上がさらに好ましい。さらに、二次粒子のD50の上限値は、20μm以下であることが好ましく、18μm以下がより好ましく、14μm以下がさらに好ましい。なお、二次粒子のD50は、超音波照射によって二次粒子を解砕処理する前のD50を表す。
 本発明の第1の観点に係るニオブ含有酸化物粉末に含まれる一次粒子においては、一次粒子の表面と内部とで金属元素MоやCeの濃度に勾配があり、表面(たとえば、一次粒子の表面から20nm程度の深さまでのいわゆる表面近傍の領域)の金属元素MоやCeの濃度が高い状態、好ましくは内部(たとえば、一次粒子の表面から内部に向かって100nmの位置)に金属元素MоやCeが存在しない状態であることが好ましい。金属元素MоやCeがこのような状態で存在する場合、初期効率、及び充電レート特性に優れた全固体二次電池が得られるからである。
 本発明の第1の観点に係るニオブ含有酸化物粉末の一次粒子のD50は、初期放電容量、充電レート特性の観点から、D50の下限値は、好ましくは0.4μm以上であり、0.5μm以上がさらに好ましく、0.6μm以上がより好ましい。また、D50の上限値は、3μm以下が好ましく、2.5μm以下がより好ましく、2μm以下がさらに好ましい。なお、一次粒子のD50は、解砕処理(超音波器で超音波をかけた)後のD50を表す。また、該ニオブ含有酸化物粉末は一次粒子径0.4μm未満の一次粒子を15%~20%の範囲で含んでいてもよく、0.5μm未満の一次粒子を15%~25%の範囲で含んでもよく、0.6μm未満の一次粒子を15%~30%の範囲で含んでいてもよい。3μmを超える一次粒子を45%~75%の範囲で含んでもよく、2μmを超える一次粒子を25%~75%の範囲で含んでいてもよく、1.2μmを超える一次粒子を25%~80%の範囲で含んでいてもよい。
 <電気泳動法によるゼータ電位>
 本発明の第1の観点に係るニオブ含有酸化物粉末のゼータ電位は、0mVより小さいことが好ましく、より好ましくは-5mV以下であることが好ましい。ゼータ電位の下限は、好ましくは-60mVより大きく、より好ましくは-35mVより大きいことが好ましい。本発明の第1の観点に係るニオブ含有酸化物粉末のゼータ電位が上記の範囲を示す場合、初期の放電レート特性、ならびに、長期でのサイクル後の抵抗増加抑制に優れた蓄電デバイスが得られるからである。ゼータ電位は、電気二重層中の滑り面と、界面から充分に離れた部分との間の電位差を表すが、この電位差がニオブ含有酸化物粉末表面でのLi+透過性に影響すると推測される。測定方法については、後述する実施例にて説明する。
 [第1の観点に係るニオブ含有酸化物粉末の製造方法]
 以下に、本発明の第1の観点に係るニオブ含有酸化物粉末の製造方法の一例を、原料の調製工程、焼成工程、及び表面処理工程に分けて説明するが、本発明の第1の観点に係るニオブ含有酸化物粉末の製造方法はこれに限定されない。
 <原料の調製工程>
 まず、出発原料を混合する。特にニオブチタン複合酸化物の場合、出発原料として、Tiと、Nbとを含む酸化物または塩を用いる。また、ニオブチタン複合酸化物のその他の添加元素を含む場合、出発原料として用いる塩は、水酸化物塩、炭酸塩、硝酸塩のような、比較的低融点で分解して酸化物を生じる塩であることが好ましい。また、後述の焼成工程において十分に元素拡散が進むように、出発原料に平均粒径が2μm以下、好ましくは平均粒径が0.5μm以下の粉末を用いることが好ましい。
 原料の混合方法については、特に制限はなく、湿式混合または乾式混合のいずれの方法でも良い。例えば、ヘンシェルミキサー、超音波分散装置、ホモミキサー、乳鉢、ボールミル、遠心式ボールミル、遊星ボールミル、振動ボールミル、アトライター式の高速ボールミル、ビーズミル、ロールミル等を用いることができる。
 <焼成工程>
 次に、上記で得られた混合物を焼成する。焼成は500~1200℃の温度範囲で、より好ましくは700~1000℃の範囲で行う。焼成温度を1000℃以下で行うことで汎用の設備を利用することができる。なお、混合物を短時間で焼成する場合は、焼成前に混合物を構成する混合粉末を、レーザー回折・散乱型粒度分布測定機にて測定される粒度分布曲線におけるD95が5μm以下になるように調製することが好ましい。ここで、D95とは、体積分率で計算した累積体積頻度が、粒径の小さい方から積算して95%になる粒径のことである。
 前記条件で焼成できる方法であれば、焼成方法は特に限定されるものではない。利用できる焼成方法としては、固定床式焼成炉、ローラーハース式焼成炉、メッシュベルト式焼成炉、流動床式焼成炉、ロータリーキルン式焼成炉が挙げられる。ただし、短時間で効率的な焼成をする場合は、ローラーハース式焼成炉、メッシュベルト式焼成炉、ロータリーキルン式焼成炉が好ましい。特に、ロータリーキルン式焼成炉は、混合物を収容する容器が不要で、連続的に混合物を投入しながら焼成ができる点、被焼成物への熱履歴が均一で、均質な酸化物を得ることができる点から、本発明の第1の観点に係るニオブ含有酸化物粉末を製造するには特に好ましい焼成炉である。
 <表面処理工程>
 次に、上記で得られたニオブ含有酸化物について、表面処理を実施する。本発明の第1の観点に係るニオブ含有酸化物は、ニオブ含有酸化物粉末を構成する粒子の表面にMoおよびCeからなる群より選ばれる少なくとも一種の金属元素が局在化して存在することを特徴としており、電池の負極材料として適用した場合に緻密な負極層を形成することができるとともに優れた充電レート特性を付与することができる。前記焼成工程にて、前記MoおよびCeからなる群より選ばれる少なくとも一種の金属元素を含有する化合物(以下、処理剤と記すことがある)を加えて、本発明の第1の観点に係るニオブ含有酸化物粉末を製造することもできるが、より好ましくは、次のような表面処理工程などで、本発明の第1の観点に係るニオブ含有酸化物粉末を製造することができる。特に、次のような表面処理工程を採用することで、適切かつ比較的簡便に、ニオブ含有酸化物粒子の表面に、MoおよびCeからなる群より選ばれる少なくとも一種の金属元素が存在する状態とすることができる。
 基材のニオブ含有酸化物粉末と前記MoおよびCeからなる群より選ばれる少なくとも一種の金属元素を含有する化合物との混合方法に特に制限はなく、湿式混合または乾式混合のいずれの方法も採用することができるが、基材のニオブ含有酸化物粉末を構成する粒子の表面に前記MoおよびCeからなる群より選ばれる少なくとも一種の金属元素を含有する化合物を均一に分散させることが好ましく、その点においては湿式混合が好ましい。
 湿式混合としては、水またはアルコール溶媒中に処理剤と基材のニオブ含有酸化物粉末を投入し、スラリー状態で混合させる。アルコール溶媒としては、メタノール、エタノール、イソプロピルアルコールなど沸点が100℃以下のものが溶媒除去しやすい点で好ましい。また、回収、廃棄のしやすさから、工業的には水溶媒が好ましい。
 MoおよびCeからなる群より選ばれる少なくとも一種の金属元素を含有する化合物(処理剤)としては、特に限定されないが、例えば、酸化物、リン酸化物、水酸化物、硫酸化合物、硝酸化合物、フッ化物、塩化物、有機化合物、及びアンモニウム塩やリン酸塩などの金属塩化合物が挙げられる。具体的には、Moの化合物としては、酸化モリブデン、三酸化モリブデン、三酸化モリブデン水和物、ほう化モリブデン、りんモリブデン酸、二けい化モリブデン、塩化モリブデン、硫化モリブデン、けいモリブデン酸水和物、酸化ナトリウムモリブデン、炭化モリブデン、酢酸モリブデン二量体、モリブデン酸リチウム、モリブデン酸ナトリウム、モリブデン酸カリウム、モリブデン酸カルシウム、モリブデン酸マグネシウム、モリブデン酸マンガン、モリブデン酸アンモニウム、などが挙げられ、なかでも、三酸化モリブデン、三酸化モリブデン水和物、塩化モリブデン、硫化モリブデン、モリブデン酸リチウムが好ましい。また、Ceの化合物としては、酸化セリウム、水酸化セリウム、フッ化セリウム、硫酸セリウム、硝酸セリウム、炭酸セリウム、酢酸セリウム、しゅう酸セリウム、塩化セリウム、ホウ化セリウム、りん酸セリウムなどが挙げられ、なかでも、硫酸セリウムおよびその水和物が好ましい。
 前記MoおよびCeからなる群より選ばれる少なくとも一種の金属元素を含有する化合物の添加量としては、ニオブ含有酸化物中の前記MoおよびCeからなる群より選ばれる少なくとも一種の金属元素の量が本発明の範囲内に収まれば、どのような量でも良いが、基材のニオブ含有酸化物粉末に対して0.03質量%以上の割合で添加すればよく、0.05質量%以上の割合で添加することが好ましい。また、基材のニオブ含有酸化物粉末に対して12質量%以下の割合で添加すればよく、好ましくは10質量%以下の割合であり、より好ましくは8質量%以下の割合である。
 上記表面処理を行った後に熱処理を行うことが好ましい。熱処理温度としては、前記MoおよびCeからなる群より選ばれる少なくとも一種の金属元素が、基材のニオブ含有酸化物粉末を構成するニオブ含有酸化物粒子の、少なくとも表面領域に拡散する温度であって、基材のニオブ含有酸化物が焼結することによる、比表面積の大幅な減少が発生しない温度が良い。熱処理温度の上限値としては700℃以下が好ましく、より好ましくは600℃以下である。熱処理温度の下限値としては、300℃以上が好ましく、より好ましくは400℃以上である。熱処理時間としては、好ましくは0.1時間~8時間であり、より好ましくは0.5時間~5時間である。前記MoおよびCeからなる群より選ばれる少なくとも一種の金属元素が、基材のニオブ含有酸化物粉末の、少なくとも表面領域に拡散する温度及び時間は、前記MoおよびCeからなる群より選ばれる少なくとも一種の金属元素を含有する化合物によって反応性が異なるため、適宜設定するのが良い。また、熱処理における加熱方法は特に限定されるものではない。利用できる熱処理炉としては、固定床式焼成炉、ローラーハース式焼成炉、メッシュベルト式焼成炉、流動床式焼成炉、ロータリーキルン式焼成炉などが挙げられる。熱処理時の雰囲気としては、大気雰囲気でも、窒素雰囲気などの不活性雰囲気のどちらでも良い。特に、表面処理に金属塩化合物を用いた場合は、粒子表面からアニオン種が除去されやすい大気雰囲気が好ましい。
 以上のようにして得られた熱処理後のニオブ含有酸化物粉末は、軽度の凝集はあるものの、粒子を破壊するような粉砕を行わなくても良く、そのため、熱処理後には、必要に応じて凝集を解す程度の解砕や分級を行えば良い。
 本発明の第1の観点に係るニオブ含有酸化物粉末は、表面処理工程で処理剤と混合した後に造粒して熱処理を行い、一次粒子が凝集した二次粒子を含む粉末にしても良い。造粒は二次粒子ができるのであれば、どのような方法でも良いが、スプレードライヤーが大量に処理できるため好ましい。
 本発明の第1の観点に係るニオブ含有酸化物粉末に含まれる水分量を低減させるために、熱処理工程で露点管理を行っても良い。熱処理後の粉末は、そのまま大気に晒すと粉末に含まれる水分量が増加するため、熱処理炉内での冷却時と熱処理後は、露点管理された環境下で粉末を扱うことが好ましい。熱処理後の粉末は、粒子を所望の最大粒径の範囲にするために必要に応じて分級を行っても良い。熱処理工程で露点管理をする場合は、本発明の第1の観点に係るニオブ含有酸化物粉末をアルミラミネート袋などで密閉した後に露点管理外の環境下に出すことが好ましい。露点管理下においても、熱処理後のニオブ含有酸化物粉末の粉砕を行うと破砕面から水分を取り込みやすくなり、粉末に含まれる水分量が増加するため、熱処理を行った場合には粉砕を行わないことが好ましい。熱処理条件としては、温度と保持時間が特定の範囲にあることで二次粒子形態や表面処理工程に大きく影響する。熱処理温度としては、450℃以上が好ましく、550℃未満が好ましい。熱処理温度が550℃を超えると比表面積が大きく低下し、電池性能、特にレート特性が大幅に低下するためである。また保持時間は1時間以上が好ましい、保持時間が短い場合、粉末に含まれる水分量が増加に加え、粒子表面状態にも影響を与えると推測されるためである。
〔第1の観点に係る負極活物質組成物〕
 本発明の第1の観点に係る負極活物質組成物は、本発明の第1の観点に係るニオブ含有酸化物粉末と、周期律表第1族に属する金属イオンの伝導性を有する無機固体電解質と、を含む負極活物質組成物である。無機固体電解質の含有量は特に限定されないが、前記活物質組成物中に、1質量%以上であればよく、5質量%以上であることが好ましく、20質量%以上であることがより好ましく、30質量%以上であることがさらに好ましい。無機固体電解質の含有量が多いほどニオブ含有酸化物粉末と固体電解質の接触が得られやすいため好ましい。また無機固体電解質の含有量が多すぎると全固体二次電池の電池容量が小さくなるため、70質量%以下であればよく、60質量%以下であることが好ましく、50質量%以下であることがより好ましい。通常、全固体二次電池の電池容量を大きくするため無機固体電解質の含有量は少ない方が好ましいが、含有量が少ない場合、ニオブ含有酸化物粉末と固体電解質の接触が取りづらくなる。本発明の第1の観点に係る負極活物質組成物に用いられる前記ニオブ含有酸化物粉末を用いることで無機固体電解質の含有量は少ない場合においても満足のいくニオブ含有酸化物粉末と固体電解質の接触が得られる。本発明の第1の観点に係るニオブ含有酸化物粉末及び無機固体電解質以外の物質を1種又は2種以上含んでいてもよい。他の物質としては、例えば、炭素材料〔熱分解炭素類、コークス類、グラファイト類(人造黒鉛、天然黒鉛等)、有機高分子化合物燃焼体、炭素繊維〕、スズやスズ化合物、ケイ素やケイ素化合物、リチウムを含む金属酸化物が使用される。特に、リチウムを含む金属酸化物として、LiTi12を主成分とするチタン酸リチウムが挙げられる。
 <周期律表>
 本明細書の周期律表とは、IUPAC(国際純正応用化学連合)の規定に基づく長周期型の元素の周期律表をいう。
〔無機固体電解質〕
 無機固体電解質は、無機の固体電解質のことであり、固体電解質とは、その内部においてイオンを移動させることができる固体状の電解質のことである。無機固体電解質は定常状態では固体であるため、通常カチオンおよびアニオンに解離または遊離していない。無機固体電解質は周期律表第1族に属する金属イオンの伝導性を有するものであれば特に限定されず電子伝導性をほとんど有さないものが一般的である。
 本発明の第1の観点において、無機固体電解質は、周期律表第1族に属する金属イオンの伝導性を有する。無機固体電解質は(A)硫化物無機固体電解質と(B)酸化物無機固体電解質が代表例として挙げられる。本発明の第1の観点において、高いイオン伝導性を有し、室温での加圧のみで、粒界の少ない緻密な成形体が形成できるため、硫化物無機固体電解質が好ましく用いられる。
(A)硫化物無機固体電解質
 硫化物無機固体電解質は、硫黄原子(S)を含有し、かつ、周期律表第1族に属する金属イオンの伝導性を有し、かつ、電子絶縁性を有するものが好ましい。前記硫化物無機固体電解質は周期律表第1族に属する金属硫化物と下記一般式(III)で表される硫化物の少なくとも1種を反応させるにより製造することができ、一般式(III)で表される硫化物を2種以上併用しても良い。
        M           (III)
(MはP、Si、Ge、B、Al、Ga、及びSbのいずれかを示し、x及びyは、Mの種類に応じて、化学量論比を与える数を示す。)
 前記周期律表第1族に属する金属硫化物は硫化リチウム、硫化ナトリウム、および硫化カリウムのいずれかを示し、硫化リチウムおよび硫化ナトリウムがより好ましく、硫化リチウムが更に好ましい。
 一般式(III)で表される硫化物としては、P、SiS、GeS、B、Al、GaおよびSbのいずれかであることが好ましく、Pが特に好ましい。
 前記のように製造された硫化物無機固体電解質における各元素の組成比は、前記周期律表第1族に属する金属硫化物、前記一般式(III)で表される硫化物および単体硫黄の配合量を調整することにより制御できる。
 本発明の第1の観点に係る硫化物無機固体電解質は非結晶ガラスであっても良く、結晶化ガラスであっても良く、結晶性材料であっても良い。
 硫化物無機固体電解質として、具体的に以下の組み合わせが好適に挙げられるが特に限定されない。
 LiS-P、LiS-P-Al、LiS-GeS、LiS-Ga、LiS-GeS-Ga、LiS-GeS-P、LiS-GeS-Sb、LiS-GeS-Al、LiS-SiS、LiS-Al、LiS-SiS-Al、LiS-SiS-P、Li10GeP12
 前記組み合わせのなかでも、LiS-Pを組み合わせて製造されるLPSガラスおよびLPSガラスセラミックスが好ましい。
 前記周期律表第1族に属する金属硫化物と前記一般式(III)で表される硫化物の混合割合は、固体電解質として使用可能であれば、特に限定されないが、「金属硫化物:一般式(III)で表される硫化物」の混合比(モル比)で、50:50~90:10の割合であることが好ましい。金属硫化物の混合比が50以上、90以下であれば十分にイオン伝導度を高めることができる。その混合比は60:40~80:20であることがより好ましく、70:30~80:20が更に好ましい。
 前記硫化物無機固体電解質は、イオン伝導度を高めるために周期律表第1族に属する金属硫化物と前記一般式(III)で表される硫化物以外に、LiI、LiBr、LiCl、及びLiFから選ばれる少なくとも1種のハロゲン化リチウムや酸化リチウム、リン酸リチウム等のリチウム塩を含んでも良い。ただし、前記硫化物無機固体電解質とこれらリチウム塩の混合割合は、「硫化物無機固体電解質:リチウム塩」の混合比(モル比)で、60:40~95:5の割合であることが好ましく、より好ましくは80:20~95:5である。
 また上記以外の硫化物無機固体電解質として、LiPSClやLiPSBrなどのアルジェロダイト型固体電解質も好適に挙げられる。
 前記硫化物無機固体電解質の製造方法は、固相法、ゾルゲル法、メカニカルミリング法、溶液法、溶融急冷法等が好適に挙げられるが特に限定されない。
(B)酸化物無機固体電解質
 酸化物無機固体電解質は、酸素原子を含有し、かつ、周期律表第1族に属する金属イオン伝導性を有し、かつ、電子絶縁性を有するものが好ましい。
 酸化物無機固体電解質としては、例えば、LISICON(Lithium super ionic conductor)型結晶構造を有するLi3.5Zn0.25GeO、ペロブスカイト型結晶構造を有するLa0.55Li0.35TiO、NASICON(Natrium super ionic conductor)型結晶構造を有するLiTi12、ガーネット型結晶構造を有するLiLaZr12(LLZ)、リン酸リチウム(LiPO)、リン酸リチウムの酸素の一部を窒素で置換したLiPON、LiBO-LiSO、LiO-B-P、LiO-SiO、およびLiBaLaTa12等が好適に挙げられる。
 無機固体電解質の体積平均粒径は特に限定されないが、0.01μm以上であればよく、0.1μm以上であることが好ましい。上限としては、100μm以下であればよく、50μm以下であることが好ましい。無機固体電解質の体積平均粒径は、レーザー回折・散乱型粒度分布測定機を使用して測定することができる。
 無機固体電解質の混合量は特に限定されないが、前記活物質組成物中に、1質量%以上であればよく、5質量%以上であることが好ましく、20質量%以上であることがより好ましく、30質量%以上であることがさらに好ましい。無機固体電解質の混合量が多いほどニオブ含有酸化物粉末と固体電解質の接触が得られやすいため好ましい。また無機固体電解質の混合量が多すぎると全固体二次電池の電池容量が小さくなるため、70質量%以下であればよく、50質量%以下であることが好ましい。通常、全固体二次電池の電池容量を大きくするため無機固体電解質の混合量は少ない方が好ましいが混合量が少ない場合ニオブ含有酸化物粉末と固体電解質の接触が取りづらくなる。本発明の第1の観点に係る負極活物質組成物に用いられる前記ニオブ含有酸化物粉末を用いることで無機固体電解質の混合量は少ない場合においても満足のいくニオブ含有酸化物粉末と固体電解質の接触が得られる。
 〔その他の含有物〕
 本発明の第1の観点に係る負極活物質組成物は、前記ニオブ含有酸化物粉末と前記無機固体電解質の他、導電剤、結着剤を含んでも良い。
 前記負極用の導電剤としては、化学変化を起こさない電子伝導材料であれば特に制限はない。例えば、天然黒鉛(鱗片状黒鉛等)、人造黒鉛等のグラファイト類、アセチレンブラック、ケッチェンブラック、チェンネルブラック、ファーネスブラック、ランプブラック、サーマルブラック等のカーボンブラック類、単相カーボンナノチューブ、多層カーボンナノチューブ(グラファイト層が多層同心円筒状)(非魚骨状)、カップ積層型カーボンナノチューブ(魚骨状(フィッシュボーン))、節型カーボンナノファイバー(非魚骨構造)、プレートレット型カーボンナノファイバー(トランプ状)等のカーボンナノチューブ類等が挙げられる。また、グラファイト類とカーボンブラック類とカーボンナノチューブ類を適宜混合して用いてもよい。特に限定されることはないが、カーボンブラック類の比表面積は好ましくは30m/g~3000m/gであり、さらに好ましくは50m/g~2000m/gである。また、グラファイト類の比表面積は、好ましくは30m/g~600m/gであり、さらに好ましくは50m/g~500m/gである。また、カーボンナノチューブ類のアスペクト比は、2~150であり、好ましくは2~100、より好ましくは2~50である。
 導電剤の添加量は、活物質の比表面積や導電剤の種類や組合せにより異なるため、最適化を行うべきであるが、負極活物質組成物中に、0.1質量%~10質量%含まれていればよく、好ましくは0.5質量%~5質量%である。0.1質量%~10質量%の範囲とすることにより、活物質比率を十分なものとし、これにより、負極層の単位質量及び単位体積あたりの蓄電デバイスの初期放電容量を十分なものとしながら、負極層の導電性をより高めることができる。
 前記負極用の結着剤としては、例えば、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、ポリビニルピロリドン(PVP)、スチレンとブタジエンの共重合体(SBR)、アクリロニトリルとブタジエンの共重合体(NBR)、カルボキシメチルセルロース(CMC)等が挙げられる。特に限定されることはないが、ポリフッ化ビニリデンの分子量は、2万~100万である。負極層の結着性をより高める観点から、2.5万以上であることが好ましく、3万以上であることがより好ましく、5万以上であることがさらに好ましい。活物質と導電剤との接触を妨げずに導電性をより高める観点から、50万以下であることが好ましい。特に活物質の比表面積が10m/g以上の場合には、分子量は10万以上であることが好ましい。
 前記結着剤の添加量は、活物質の比表面積や導電剤の種類や組合せにより異なるため、最適化を行うべきであるが、負極活物質組成物中に、0.2質量%~15質量%含まれていればよい。結着性を高め負極層の強度を確保する観点から、0.5質量%以上であることが好ましく、1質量%以上であることがより好ましく、2質量%以上であることがさらに好ましい。活物質比率が減少し、負極層の単位質量及び単位体積あたりの蓄電デバイスの初期放電容量を低減させない観点から、10質量%以下であることが好ましく、5質量%以下であることがさらに好ましい。
〔第1の観点に係る負極活物質組成物の作製方法〕
 本発明の第1の観点に係る負極活物質組成物の作製方法は、特に限定されず、例えば、前記ニオブ含有酸化物粉末に対して、特定の割合の前記無機固体電解質の粉末を添加し混合機、撹拌機、分散機等で混合する方法、固体電解質を含むスラリーに前記ニオブ含有酸化物粉末を加える方法が好適に挙げられる。
 本発明の第1の観点に係るニオブ含有酸化物を含む負極活物質組成物が、全固体二次電池において従来よりも優れた初期放電容量、初期効率、及び充電レート特性が得られた理由は必ずしも明確ではないが、以下のように考えられる。
 本発明の第1の観点に係る負極活物質組成物は、周期律表第1族に属する金属イオンの伝導性を有する無機固体電解質とニオブ含有酸化物粒子の表面にMoおよびCeからなる群より選ばれる少なくとも一種の金属元素が局在化して存在するニオブ含有酸化物とを含む。通常ニオブ含有酸化物と無機固体電解質、特に硫化物無機固体電解質を混合させると、ニオブ含有酸化物と硫化物無機固体電解質が化学的に反応して、それらの界面にイオン伝導性の低い高抵抗の反応物が付着し電池特性、特に充電レート特性が低下する。一方で本発明の第1の観点に係るニオブ含有酸化物粒子の表面にMoおよびCeからなる群より選ばれる少なくとも一種の金属元素が局在化して存在することにより固体電解質との好ましくない反応を抑制することができる。その結果、全固体二次電池において特性が改善できると考えられる。
 ここで、有機電解液を用いたリチウムイオン二次電池においては、固体電解質との反応は生じないため、本願の課題が生じることはない。有機電解液を用いたリチウムイオン二次電池において、本願のニオブ含有酸化物を適用させたところ、充電レート特性の向上は見られなかった。
 本発明の第1の観点に係る負極活物質組成物は、全固体二次電池の負極に使用することができる。この際には、本発明の第1の観点に係る負極活物質組成物について、加圧成形を行うことで、加圧成形体とすることが好ましい。加圧成形の条件は、特に限定されないが、成形温度が、15℃~200℃であればよく、好ましくは25℃~150℃であり、成形圧力が、180MPa~1080MPaであればよく、好ましくは300MPa~800MPaである。本発明の第1の観点に係る負極活物質組成物は、空隙の少なく緻密な成形体を形成可能であり、そのため、空隙の少なく緻密な負極層とすることができる。本発明の第1の観点に係る負極活物質組成物を用いて得られる成形体は、充填率が、72.5%~100%であり、好ましくは73.5~100%である。なお、充填率は、たとえば、負極活物質組成物の成形体の体積および質量から計算される負極活物質組成物の成形体密度と、負極活物質組成物を構成する各材料の密度(真密度)とを用いて測定することができる。
〔第1の観点に係る全固体二次電池〕
 本発明の第1の観点に係る全固体二次電池は、正極層、負極層、及び正極層と負極層の間に位置する固体電解質層により構成されているが、本発明の第1の観点に係るニオブ含有酸化物粉末と周期律表第1族に属する金属イオンの伝導性を有する無機固体電解質を含む負極活物質組成物は、負極層に用いられる。負極層の作製方法は、特に限定されず、例えば、前記負極活物質組成物を加圧形成する方法や負極活物質組成物を溶剤に加えてスラリーにした後、この負極活物質組成物を集電体に塗布して、乾燥、加圧成型する方法などが好適に挙げることができる。
 前記負極集電体としては、例えば、アルミニウム、ステンレス鋼、ニッケル、銅、チタン、焼成炭素、あるいはそれらの表面にカーボン、ニッケル、チタン、銀を被覆させたもの等が挙げられる。また、これらの材料の表面を酸化してもよく、表面処理により負極集電体表面に凹凸を付けてもよい。また、前記負極集電体の形態としては、例えば、シート、ネット、フォイル、フィルム、パンチングされたもの、ラス体、多孔質体、発泡体、繊維群、不織布の成形体などが挙げられる。前記負極集電体の形態として、多孔質アルミニウムが好ましい。前記多孔質アルミニウムの空孔率は80%以上、95%以下であり、好ましくは85%以上、90%以下である。
 本発明の第1の観点に係る負極活物質組成物を含む負極層を備えていれば正極層、固体電解質層等の構成部材は特に制限なく使用できる。
 例えば、全固体二次電池用正極層として用いられる正極活物質としては、コバルト、マンガン、及びニッケルから選ばれる1種又は2種以上を含有するリチウムとの複合金属酸化物が使用される。これらの正極活物質は、1種単独で用いるか又は2種以上を組み合わせて用いることができる。
 このようなリチウム複合金属酸化物としては、例えば、LiCoO、LiCo1-x(但し、MはSn、Mg、Fe、Ti、Al、Zr、Cr、V、Ga、Zn、及びCuから選ばれる1種又は2種以上の元素、0.001≦x≦0.05)、LiMn、LiNiO、LiCo1-xNi(0.01<x<1)、LiCo1/3Ni1/3Mn1/3、LiNi0.5Mn0.3Co0.2、LiNi0.8Mn0.1Co0.1、LiNi0.8Co0.15Al0.05、LiMnOとLiMO(Mは、Co、Ni、Mn、Fe等の遷移金属)との固溶体、及びLiNi1/2Mn3/2から選ばれる1種以上が好適に挙げられ、2種以上がより好適である。また、LiCoOとLiMn、LiCoOとLiNiO、LiMnとLiNiOのように併用してもよい。
 更に、正極活物質として、リチウム含有オリビン型リン酸塩を用いることもできる。特に鉄、コバルト、ニッケルおよびマンガンから選ばれる少なくとも1種以上含むリチウム含有オリビン型リン酸塩が好ましい。その具体例としては、LiFePO、LiCoPO、LiNiPO、LiMnPO等が挙げられる。
 これらのリチウム含有オリビン型リン酸塩の一部は他元素で置換してもよく、鉄、コバルト、ニッケル、マンガンの一部をCo、Mn、Ni、Mg、Al、B、Ti、V、Nb、Cu、Zn、Mo、Ca、Sr、W及びZr等から選ばれる1種以上の元素での置換が可能であり、またはこれらの他元素を含有する化合物や炭素材料で被覆することもできる。これらの中では、LiFePOまたはLiMnPOが好ましい。
 また、リチウム含有オリビン型リン酸塩は、例えば前記の正極活物質と混合して用いることもできる。
 正極用の導電剤は、化学変化を起こさない電子伝導材料であれば特に制限はない。例えば、天然黒鉛(鱗片状黒鉛等)、人造黒鉛等のグラファイト、アセチレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラック等のカーボンブラック等が挙げられる。また、グラファイトとカーボンブラックを適宜混合して用いてもよい。導電剤の正極活物質組成物への添加量は、1~10質量%が好ましく、特に2~5質量%が好ましい。
 正極活物質組成物は、前記の正極活物質および固体電解質を少なくとも含有し、必要に応じてアセチレンブラック、カーボンブラック等の導電剤、及びポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、スチレンとブタジエンの共重合体(SBR)、アクリロニトリルとブタジエンの共重合体(NBR)、カルボキシメチルセルロース(CMC)、エチレンプロピレンジエンターポリマー等の結着剤等を含んでも良い。正極の作製方法は、特に限定されず、例えば、前記正極活物質組成物の粉末を加圧形成する方法や正極活物質組成物の粉末を溶剤に加えてスラリーにした後、この正極活物質組成物を集電体のアルミニウム箔やステンレス製のラス板等に塗布して、乾燥、加圧成型する方法などが好適に挙げることができる。
 正極活物質の表面は別の金属酸化物で表面被覆されていてもよい。表面被覆剤としてはTi,Nb、Ta,W,Zr、Al,SiまたはLiを含有する金属酸化物等が挙げられる。具体的には、LiTi12,LiTi,LiTaO,LiNbO,LiAlO,LiZrO,LiWO,LiTiO,Li,LiPO,LiMoO,LiBO,LiBO,LiCO,LiSiO,SiO,TiO,ZrO,Al,B等が挙げられる。
 固体電解質層は正極層と負極層の間に位置しており、固体電解質層の厚みは特に限定されないが1μm~100μmの厚さを有していてもよい。固体電解質層の構成材料は前記硫化物無機固体電解質や酸化物無機固体電解質を利用することができ、電極に使用する固体電解質と異なっていても良い。また固体電解質層はブタジエンゴムやブチルゴム等のバインダを含んでいてもよい。
 全固体二次電池の構造には特に限定はなく、コイン型電池、円筒型電池、角型電池、ラミネート電池等を適用できる。
《第2の観点に係る発明》
 次いで、第2の観点に係る発明について説明する。
 [第2の観点に係るニオブ酸化物粉末]
 本発明の第2の観点に係るニオブ酸化物粉末は、一般式Ti1-x/2Nb7-x(X=0~2)で表されるニオブ含有酸化物粉末であって、前記ニオブ含有酸化物粉末を構成する、ニオブ含有酸化物粒子の表面にM1(M1は、TiまたはNbを除く価数3+または2+の金属元素である)が存在することを特徴とするニオブ含有酸化物粉末であるものをいう。
 <一般式Ti1-x/2Nb7-x(X=0~2)で表されるニオブ含有酸化物>
 本発明の第2の観点に係るニオブ含有酸化物粉末は、一般式Ti1-x/2Nb7-x(X=0~2)で表されるニオブ含有酸化物を含有する。Xの上限値は2以下が好ましく、1.5以下がより好ましく、1以下がさらに好ましく、0.5以下が特に好ましい。Xの下限値は0以上であればよい。具体的な化合物の例には、LiイオンやNaイオンを吸蔵・放出することが可能なニオブチタン複合酸化物であるTiNb、ニオブ酸化物であるNb等が含まれる。ニオブチタン複合酸化物については、一部に合成原料由来のチタン酸化物相(例えばルチル型TiO、TiOなど)を含んでもよい。ニオブチタン複合酸化物の場合、Nbのモル数とTiのモル数の比(Nb/Ti比)は、1.5~2.5の範囲が好ましく、さらに好ましいのは、1.8~2.2の範囲であり、さらにより好ましいのは、1.8~2.0の範囲である。この範囲であると、複合酸化物の電子伝導性が向上し、レート特性に優れる。
 本発明の第2の観点に係るニオブ含有酸化物について、結晶系に制限はないが、単斜晶型であることが一般的である。単斜晶型の場合、アスペクト比が大きくなる傾向だが、電極密度向上の観点から、1.0~4.0の範囲であることが好ましい。
 <金属元素M1>
 本発明の第2の観点に係るニオブ含有酸化物粉末は粒子の表面に金属元素M1(M1は、TiまたはNbを除く価数3+または2+の金属元素である)が存在する。金属元素M1が存在するとは、本発明の第2の観点に係るニオブ酸化物粉末の誘導結合プラズマ発光分析(ICP-AES)または蛍光X線分析(XRF)において、金属元素M1が検出されることをいう。なお、誘導結合プラズマ発光分析による検出量の下限は、通常、0.001質量%である。
 <金属元素M1の含有率>
 蛍光X線分析(XRF)から求めた本発明の第2の観点に係るニオブ含有酸化物粉末の金属元素M1の含有率(質量%)は、0.01以上1.2以下であればよく、好ましくは0.01以上1.0以下であり、より好ましくは0.01以上0.9以下であり、さらに好ましくは0.01以上0.8以下である。金属元素M1の含有率がこの範囲であれば、放電レート特性、サイクル特性に優れ、及び、サイクル後の抵抗増加を抑制した蓄電デバイスが得られる。0.05以上0.5以下が好ましく、放電レート特性のさらなる向上という観点や、サイクル後の抵抗増加の抑制効果をより高めるという観点からは、0.1以上0.3以下がより好ましく、さらに好ましくは0.1以上0.25以下であり、特に好ましくは0.1以上0.2以下である。また、充電レート特性のさらなる向上という観点からは、より好ましくは0.015以上0.9以下、さらに好ましくは0.04以上0.85以下、特に好ましいのは0.07以上0.75以下である。ただし、金属元素M1として、複数の金属元素が、ニオブ含有酸化物粉末の粒子表面に同時に含有する場合の前記含有率(質量%)は、複数の金属元素合計の含有率である。
 また、本発明の第2の観点に係るニオブ含有酸化物粉末では、粉末を構成するニオブ含有酸化物粒子の内部領域よりも、表面領域の方に金属元素M1が局在化して多く存在する。すなわち、金属元素M1は、ニオブ含有酸化物粒子の表面に存在し、より具体的には、ニオブ含有酸化物粒子の内部領域よりも、表面領域の方に金属元素M1が局在化して多く存在する。一例として、走査透過型電子顕微鏡を用いた、前記ニオブ含有酸化物粒子の断面分析において、エネルギー分散型X線分光法により測定される、前記ニオブ酸化物粒子の表面から20nm程度の深さまでのいわゆる表面近傍の領域において金属元素M1が多く含有されればよく、表面から100nmの深さ位置において、金属元素M1が検出されないことが好ましく、このような状態である場合に、ニオブ含有酸化物粒子の表面に金属元素M1が局在化していると判断することができる。すなわち、エネルギー分散型X線分光法により測定した場合に、該測定による検出量以下であるとの意味であり、エネルギー分散型X線分光法による測定における検出量の下限は、測定する元素や状態によって値が前後するが、通常、0.5atm%である。この他にも、X線光電子分光法(XPS)やオージェ電子分光法(AES)による表面分析の手法が挙げられる。
 本発明の第2の観点に係るニオブ含有酸化物粉末は、X線光電子分光分析(XPS)の表面分析における金属元素M1のナロースペクトルにおいて、M1-O結合に帰属するピークを有することが好ましい。ここで、M1-O結合に帰属するピークを有するとは、X線光電子分光の表面分析において、金属元素M1のピークトップを有していることを示す。例えば、金属元素M1がМgの場合、Tiの2p3ピークを458.7eVと補正したとき、マグネシウム(Мg1s)のナロースペクトル(1250~1350eV)で、Мg1sピークが1300~1310eVでピークトップを有していることを言う。また、スパッタ処理によるデプスプロファイル測定において、表面(0nm)の金属元素M1の原子濃度(atm%)を100%とした場合、表面から100nmの深さ位置における金属元素M1の原子濃度(atm%)は5%未満であることが好ましい。
 <金属元素M1の具体例>
 前記ニオブ含有酸化物粉末において、ニオブ含有酸化物粉末を構成する、ニオブ含有酸化物粒子表面に存在する元素M1は、TiまたはNbを除く価数3+または2+の金属元素である。元素M1は、第2族、第12族、第13族、又は第14族の金属元素であることが好ましく、Al3+、Mg2+、Ca2+、Sr2+、Zn2+、 Ga3+、Ge2+、In2+からなる元素群から選ばれるいずれか一つ以上を含むことがより好ましい(すなわち、金属元素の形態で表記すると、Al、Mg、Ca、Sr、Zn、 Ga、Ge、Inからなる元素群から選ばれるいずれか一つ以上を含むことがより好ましい。)。Al3+、Mg2+、Ca2+、Zn2+、Ga3+、In2+からなる元素群から選ばれるいずれか一つ以上を含むことがさらに好ましく、Al3+、Mg2+、Zn2+、Ga3+、In2+からなる元素群から選ばれるいずれか一つ以上を含むことが特に好ましい。なお、これらの金属元素は、2種以上含まれていてもよい。本発明の第2の観点に係るニオブ含有酸化物粉末は、これらの元素を含有することで、放電レート特性、サイクル特性に優れ、及び、サイクル後の抵抗増加を抑制した蓄電デバイスが得られるからである。
 <さらなる異種元素の含有>
 本発明の第2の観点に係るニオブ含有酸化物粉末は、前記のTiまたはNbを除く価数3+または2+の金属元素以外のさらなる異種元素として、B、Mo、W、及びSからなる元素群から選ばれる少なくとも1種の元素を含有することが好ましい。これらの中で、特にSがより好ましい。本発明の第2の観点に係るニオブ含有酸化物粉末は、このような異種元素を、元素M1と共に含有することで、元素M1単独含有よりもニオブ含有酸化物粉末の表面の電子伝導性が向上するためだと推測される。
 <比表面積>
 本発明の第2の観点に係るニオブ含有酸化物粉末の比表面積とは、窒素を吸着ガスとして用いて、単位質量あたりの表面積のことである。測定方法については、後述する実施例にて説明する。
 本発明の第2の観点に係るニオブ含有酸化物粉末は、比表面積が8.0m/g以下であればよく、初期放電容量及びレート特性に優れる蓄電デバイスを得ることができる。6.0m/g以下が好ましく、5.5m/g以下がより好ましい。
 <D50>
 本発明の第2の観点に係るニオブ含有酸化物粉末のD50とは体積中位粒径の指標である。レーザー回折・散乱型粒度分布測定によって求めた体積分率で計算した累積体積頻度が、粒径の小さい方から積算して50%になる粒径を意味する。測定方法については、後述する実施例にて説明する。
 本発明の第2の観点に係るニオブ含有酸化物粉末について、一次粒子であっても、一次粒子が凝集した二次粒子であっても良い。ニオブ含有酸化物粒子からなる一次粒子が凝集した二次粒子を含む場合、その一部としては、二次粒子を形成しておらず、一次粒子そのものの形態となっていてもよい。
 本発明の第2の観点に係るニオブ含有酸化物粉末が二次粒子の場合、二次粒子のD50は、電極密度向上の観点から、下限値は、11μm以上であることが好ましく、12μm以上がより好ましく、13μm以上がさらに好ましい。さらに、二次粒子のD50の上限値は、20μm以下であることが好ましく、18μm以下がより好ましく、14μm以下がさらに好ましい。なお、二次粒子のD50は、解砕処理(超音波器で超音波をかける)前のD50、すなわち、超音波照射によって二次粒子を解砕処理する前のD50を表す。
 本発明の第2の観点に係るニオブ含有酸化物粉末に含まれる一次粒子においては、一次粒子の表面と内部とで金属元素M1の濃度に勾配があり、表面(たとえば、一次粒子の表面から20nm程度の深さまでのいわゆる表面近傍の領域)の金属元素M1の濃度が高い状態、好ましくは内部(たとえば、一次粒子の表面から内部に向かって100nmの位置)に金属元素M1が存在しない状態であることが好ましい。金属元素M1がこのような状態で存在する場合、初期放電容量及びレート特性に優れる蓄電デバイスが得られるからである。
 本発明の第2の観点に係るニオブ含有酸化物粉末の一次粒子のD50は、放電レート特性及びサイクル特性両立の観点からは、D50の下限値は、好ましくは0.3μm以上であればよく、より好ましくは0.6μm以上であり、0.7μm以上がさらに好ましい。また、D50の上限値は、3μm以下であればよく、2μm以下が好ましく、1.2μm以下がより好ましい。なお、一次粒子のD50は、解砕処理(超音波器で超音波をかけた)後のD50を表す。また、該ニオブ含有酸化物粉末は一次粒子径0.6μm未満の一次粒子を15%~30%の範囲で含んでいてもよく、0.7μm未満の一次粒子を15%~45%の範囲で含んでいてもよい。3μmを超える一次粒子を45%~75%の範囲で含んでいてもよく、2μmを超える一次粒子を25%~75%の範囲で含んでいてもよく、1.2μmを超える一次粒子を25%~80%の範囲で含んでいてもよい。
 <電気泳動法によるゼータ電位>
 本発明の第2の観点に係るニオブ含有酸化物粉末のゼータ電位は、0mVより小さいことが好ましく、より好ましくは-5mV以下であることが好ましい。ゼータ電位の下限は、好ましくは-60mVより大きく、より好ましくは-35mVより大きいことが好ましい。本発明の第2の観点に係るニオブ含有酸化物粉末のゼータ電位が上記の範囲を示す場合、初期の放電レート特性、ならびに、長期でのサイクル後の抵抗増加抑制に優れた蓄電デバイスが得られるからである。ゼータ電位は、電気二重層中の滑り面と、界面から充分に離れた部分との間の電位差を表すが、この電位差がニオブ含有酸化物粉末表面でのLi+透過性に影響すると推測される。測定方法については、後述する実施例にて説明する。
 [第2の観点に係るニオブ含有酸化物粉末の製造方法]
 以下に、本発明の第2の観点に係るニオブ含有酸化物粉末の製造方法の一例を、原料の調製工程、焼成工程、及び表面処理工程に分けて説明するが、本発明の第2の観点に係るニオブ含有酸化物粉末の製造方法はこれに限定されない。
 <原料の調製工程>
 まず、出発原料を混合する。出発原料の混合は、上述した第1の観点と同様とすればよい。なお、前記金属元素M1を含有する化合物を後述の焼成工程の前に添加する場合は当該化合物を以下、処理剤、又は処理剤1と記すことがある。
 <焼成工程>
 次に、上記で得られた混合物を焼成する。焼成は500~1200℃の温度範囲で、より好ましくは700~1100℃の範囲で行う。焼成温度を1100℃以下で行うことで汎用の設備を利用することができる。なお、混合物を短時間で焼成する場合は、焼成前に混合物を構成する混合粉末を、レーザー回折・散乱型粒度分布測定機にて測定される粒度分布曲線におけるD95が5μm以下になるように調製することが好ましい。ここで、D95とは、体積分率で計算した累積体積頻度が、粒径の小さい方から積算して95%になる粒径のことである。
 前記条件で焼成できる方法であれば、焼成方法は特に限定されず、上述した第1の観点と同様とすればよい。
 <表面処理工程>
 次に、上記で得られたニオブ含有酸化物について、表面処理を実施する。本発明の第2の観点に係るニオブ含有酸化物は、粒子の表面にM1(M1は、TiまたはNbを除く価数3+または2+の金属元素である)が局在化して存在することを特徴としており、電池の負極材料として適用した場合に緻密な負極層を形成することができるとともに優れた充電レート特性を付与することができる。前記焼成工程にて、前記金属元素M1を含有する化合物(以下、処理剤、又は処理剤2と記すことがある)を加えて、本発明の第2の観点に係るニオブ含有酸化物粉末を製造することもできるが、より好ましくは、次のような表面処理工程などで、本発明の第2の観点に係るニオブ含有酸化物粉末を製造することができる。特に、次のような表面処理工程を採用することで、適切かつ比較的簡便に、ニオブ含有酸化物粒子の表面に、金属元素M1が存在する状態とすることができる。
 基材のニオブ含有酸化物粉末と前記金属元素M1を含有する化合物との混合方法に特に制限はなく、湿式混合または乾式混合のいずれの方法も採用することができるが、基材のニオブ含有酸化物粉末を構成する粒子の表面に前記金属元素M1を含有する化合物を均一に分散させることが好ましく、その点においては湿式混合が好ましい。
 湿式混合としては、水またはアルコール溶媒中に処理剤2と基材のニオブ含有酸化物粉末を投入し、スラリー状態で混合させる。アルコール溶媒としては、メタノール、エタノール、イソプロピルアルコールなど沸点が100℃以下のものが溶媒除去しやすい点で好ましい。また、回収、廃棄のしやすさから、工業的には水溶媒が好ましい。
 金属元素M1(M1は、TiまたはNbを除く価数3+または2+の金属元素である)を含有する化合物(処理剤)としては、特に限定されないが、例えば、酸化物、リン酸化物、水酸化物、硫酸化合物、硝酸化合物、フッ化物、塩化物、有機化合物、及びアンモニウム塩やリン酸塩などの金属塩化合物が挙げられる。具体的には前記金属元素M1がAlの場合、Alを含有する化合物として、例えば、酸化アルミニウム、リン酸アルミニウム、水酸化アルミニウム、硫酸アルミニウム、硝酸アルミニウム、フッ化アルミニウム、塩化アルミニウム、酢酸アルミニウム、硫酸アルミニウムアンモニウム、あるいはアルミニウムアルコキシドなどが挙げられ、なかでも、硫酸アルミニウム、その水和物が好ましい。前記金属元素M1がMgの場合、特に限定されないが、例えば、酸化マグネシウム、リン酸マグネシウム、水酸化マグネシウム、硫酸マグネシウム、硝酸マグネシウム、フッ化マグネシウム、塩化マグネシウム、酢酸マグネシウム、リン酸マグネシウムアンモニウム、あるいはマグネシウムアルコキシドなどが挙げられ、なかでも、硫酸マグネシウム、その水和物が好ましい。
 前記金属元素M1を含有する化合物の添加量としては、ニオブ含有酸化物中の前記金属元素M1の量が本発明の範囲内に収まれば、どのような量でも良いが、基材のニオブ含有酸化物粉末に対して0.03質量%以上の割合で添加すればよく、0.05質量%以上の割合で添加することが好ましく、0.1質量%以上の割合で添加することがより好ましい。また、基材のニオブ含有酸化物粉末に対して12質量%以下の割合で添加することが好ましく、より好ましくは10質量%以下の割合であり、さらに好ましくは8質量%以下の割合である。
 上記表面処理を行った後に熱処理を行うことが好ましい。熱処理条件や熱処理方法は、上述した第1の観点と同様とすればよい。
 以上のようにして得られた熱処理後のニオブ含有酸化物粉末は、軽度の凝集はあるものの、粒子を破壊するような粉砕を行わなくても良く、そのため、熱処理後には、必要に応じて凝集を解す程度の解砕や分級を行えば良い。
 本発明の第2の観点に係るニオブ含有酸化物粉末は、表面処理工程で処理剤2と混合した後に造粒して熱処理を行い、一次粒子が凝集した二次粒子を含む粉末にしても良い。造粒は二次粒子ができるのであれば、どのような方法でも良いが、スプレードライヤーが大量に処理できるため好ましい。
 本発明の第2の観点に係るニオブ含有酸化物粉末に含まれる水分量を低減させるために、熱処理工程で露点管理を行っても良い。熱処理後の粉末は、そのまま大気に晒すと粉末に大気中の水分が吸着するため、熱処理炉内での冷却時と熱処理後は、露点管理された環境下で粉末を扱うことが好ましい。熱処理後の粉末は、粒子を所望の最大粒径の範囲にするために必要に応じて分級を行っても良い。これらの条件は、上述した第1の観点と同様とすればよい。
 [第2の観点に係る活物質材料]
 本発明の第2の観点に係る活物質材料は、本発明の第2の観点に係るニオブ含有酸化物粉末を含むものである。本発明の第2の観点に係るニオブ含有酸化物粉末以外の物質を1種又は2種以上含んでいてもよい。他の物質としては、例えば、炭素材料〔熱分解炭素類、コークス類、グラファイト類(人造黒鉛、天然黒鉛等)、有機高分子化合物燃焼体、炭素繊維〕、スズやスズ化合物、ケイ素やケイ素化合物、リチウムを含む金属酸化物が使用される。特に、リチウムを含む金属酸化物として、LiTi12を主成分とするチタン酸リチウムが挙げられる。
 [第2の観点に係る蓄電デバイス]
 本発明の第2の観点に係る蓄電デバイスは、本発明の第2の観点に係る活物質材料を含む電極を備え、このような電極へのリチウムイオンのインターカレーション、脱インターカレーションを利用してエネルギーを貯蔵、放出するデバイスであって、例えば、ハイブリッドキャパシタやリチウム電池、全固体二次電池などが挙げられる。
 [第2の観点に係るハイブリッドキャパシタ]
 本発明の第2の観点に係るハイブリッドキャパシタとしては、正極に、活性炭など電気二重層キャパシタの電極材料と同様の物理的な吸着によって容量が形成される活物質や、グラファイトなど物理的な吸着とインターカレーション、脱インターカレーションによって容量が形成される活物質や、導電性高分子などレドックスにより容量が形成される活物質を使用し、負極に本発明の第2の観点に係る活物質材料を使用するデバイスである。本発明の第2の観点に係る活物質材料は、通常、前記ハイブリッドキャパシタの電極シートの形態にて用いられる。
 [第2の観点に係るリチウム電池]
 本発明の第2の観点に係るリチウム電池は、リチウム一次電池及びリチウム二次電池を総称する。また、本明細書において、リチウム二次電池という用語は、いわゆるリチウムイオン二次電池や全固体型リチウムイオン二次電池も含む概念として用いる。
 前記リチウム電池は、正極、負極及び非水溶媒に電解質塩が溶解されている非水電解液、または固体電解質等により構成されているが、本発明の第2の観点に係る活物質材料は電極材料として用いることができる。本発明の第2の観点に係る活物質材料は、通常、前記リチウム電池の電極シートの形態にて用いられる。この活物質材料は、正極活物質及び負極活物質のいずれとして用いてもよいが、以下には負極活物質として用いた場合を説明する。
 <第2の観点に係る負極>
 本発明の第2の観点に係る負極は、負極集電体の片面または両面に、負極活物質(本発明の第2の観点に係る活物質材料)、導電剤及び結着剤を含む負極層を有する。この負極層は、通常、電極シートの形態とされる。多孔質体などで空孔を有する負極集電体の場合は、空孔中に負極活物質(本発明の第2の観点に係る活物質材料)、導電剤、結着剤を含む負極層を有する。
 前記負極用の導電剤としては、化学変化を起こさない電子伝導材料であれば特に制限はなく、上述した第1の観点と同様のものを用いることができ、その添加量も同様とすることができる。0.1質量%未満では、負極層の導電性が確保できなくなり、10質量%超では、活物質比率が減少し、負極層の単位質量及び単位体積あたりの蓄電デバイスの放電容量が不十分になるため高容量化に適さない。なお、導電剤の添加形式は、電極作成時でもよく、活物質そのものに導電剤を被覆する形でも構わない。炭素繊維などの導電剤で被覆することで、負極層の導電性が更に向上しうるためである。
 前記負極用の結着剤としては、上述した第1の観点と同様のものを用いることができ、その添加量も同様とすることができる。
 前記負極集電体としては、上述した第1の観点と同様のものを用いることができる。
 前記負極の作製方法としては、負極活物質(本発明の第2の観点に係る活物質材料を含む)、導電剤及び結着剤を溶剤中に均一に混合し塗料化した後、前記負極集電体上に塗布し、乾燥、圧縮することによって得ることができる。多孔質体などで空孔を有する負極集電体の場合は、負極活物質(本発明の第2の観点に係る活物質材料)、導電剤及び結着剤を溶剤中に均一に混合した塗料を集電体の空孔に圧入して充填、または前記塗料中に空孔を有する集電体を浸潰し空孔中に拡散した後に、乾燥、圧縮することによって得ることができる。
 負極活物質(本発明の第2の観点に係る活物質材料)、導電剤及び結着剤を溶剤中に均一に混合し塗料化する方法としては、例えば、プラネタリーミキサーなどの混練容器内で攪拌棒が自転しながら公転するタイプの混練機、二軸押し出し型混練機、遊星式撹拌脱泡装置、ビーズミル、高速旋回型ミキサ、粉体吸引連続溶解分散装置などを用いることができる。また、製造工程として、固形分濃度によって工程を分け、これらの装置を使い分けてもよい。
 負極活物質(本発明の第2の観点に係る活物質材料)、導電剤及び結着剤を溶剤中に均一に混合するには、活物質の比表面積、導電剤の種類、結着剤の種類やこれらの組合せにより異なるため、最適化を行うべきであるが、プラネタリーミキサーなどの混練容器内で攪拌棒が自転しながら公転するタイプの混練機、二軸押し出し型混練機、遊星式撹拌脱泡装置などを用いる場合には、製造工程として固形分濃度によって工程を分け、固形分濃度が高い状態で混練した後、徐々に固形分濃度を下げ塗料の粘度を調製するのが好ましい。固形分濃度が高い状態としては、好ましくは60質量%~90質量%、さらに好ましくは60質量%~80質量%である。60質量%以上であればせん断力が得られるので好ましく、90質量%以下であれば装置の負荷が軽減されるので好ましく、80質量%以下であればより好ましい。
 混合手順としては、特に限定されることはないが、負極活物質と導電剤と結着剤を同時に溶剤中で混合する方法、導電剤と結着剤をあらかじめ溶剤中で混合した後に負極活物質を追加混合する方法、負極活物質スラリーと導電剤スラリーと結着剤溶液をあらかじめ作製し、それぞれを混合する方法などが挙げられる。これらの中でも均一に分散させるには、導電剤と結着剤をあらかじめ溶剤中で混合した後に負極活物質を追加混合する方法及び負極活物質スラリーと導電剤スラリーと結着剤溶液をあらかじめ作製し、それぞれを混合する方法が好ましい。
 溶剤としては、有機溶媒を用いることができる。有機溶剤としては、1-メチル-2-ピロリドン、ジメチルアセトアミド、ジメチルホルムアミドなど非プロトン性有機溶媒を単独、または2種類以上混合したものが挙げられ、好ましくは1-メチル-2-ピロリドンである。
 溶剤に有機溶剤を用いる場合には、結着剤をあらかじめ有機溶剤に溶解させて使用するのが好ましい。
 <正極>
 正極は、正極集電体の片面または両面に、正極活物質、導電剤及び結着剤を含む正極層を有する。
 前記正極活物質としては、リチウムを吸蔵及び放出可能な材料が使用され、例えば、活物質としては、コバルト、マンガン、ニッケルを含有するリチウムとの複合金属酸化物やリチウム含有オリビン型リン酸塩などが挙げられ、これらの正極活物質は、1種単独で又は2種以上を組み合わせて用いることができる。このような複合金属酸化物としては、例えば、LiCoO、LiMn、LiNiO、LiCo1-xNi(0.01<X<1)、LiCo1/3Ni1/3Mn1/3、LiNi1/2Mn3/2等が挙げられ、これらのリチウム複合酸化物の一部は他元素で置換してもよく、コバルト、マンガン、ニッケルの一部をB、Nb、Sn、Mg、Fe、Ti、Al、Zr、Cr、V、Ga、Zn、Cu、Bi、Mo、La等の少なくとも1種以上の元素で置換したり、Oの一部をSやFで置換したり、あるいは、これらの他元素を含有する化合物を被覆することができる。リチウム含有オリビン型リン酸塩としては、例えば、LiFePO、LiCoPO、LiNiPO、LiMnPO、LiFe1-xMxPO(MはCo、Ni、Mn、Cu、Zn、及びCdから選ばれる少なくとも1種であり、Xは、0≦X≦0.5である。)等が挙げられる。
 前記正極用の導電剤及び結着剤としては、負極と同様のものが挙げられる。前記正極集電体としては、例えば、アルミニウム、ステンレス鋼、ニッケル、チタン、焼成炭素、アルミニウムやステンレス鋼の表面にカーボン、ニッケル、チタン、銀を表面処理させたもの等が挙げられる。これらの材料の表面を酸化してもよく、表面処理により正極集電体表面に凹凸を付けてもよい。また、集電体の形態としては、例えば、シート、ネット、フォイル、フィルム、パンチングされたもの、ラス体、多孔質体、発泡体、繊維群、不織布の成形体などが挙げられる。
 <非水電解液>
 非水電解液は、非水溶媒中に電解質塩を溶解させたものである。この非水電解液には特に制限は無く、種々のものを用いることができる。
 前記電解質塩としては、非水電解質に溶解するものが用いられ、例えば、LiPF、LiBF、LiPO、LiN(SOF)、LiClO等の無機リチウム塩、LiN(SOCF、LiN(SO、LiCFSO、LiC(SOCF、LiPF(CF、LiPF(C、LiPF(CF、LiPF(iso-C、LiPF(iso-C)等の鎖状のフッ化アルキル基を含有するリチウム塩や、(CF(SONLi、(CF(SONLi等の環状のフッ化アルキレン鎖を含有するリチウム塩、ビス[オキサレート-O,O’]ホウ酸リチウムやジフルオロ[オキサレート-O,O’]ホウ酸リチウム等のオキサレート錯体をアニオンとするリチウム塩が挙げられる。これらの中でも、特に好ましい電解質塩は、LiPF、LiBF、LiPO、及びLiN(SOF)であり、最も好ましい電解質塩はLiPFである。これらの電解質塩は、1種単独又は2種以上を組み合わせて使用することができる。また、これらの電解質塩の好適な組み合わせとしては、LiPFを含み、更にLiBF、LiPO、及びLiN(SOF)から選ばれる少なくとも1種のリチウム塩が非水電解液中に含まれている場合が好ましい。
 これら全電解質塩が溶解されて使用される濃度は、前記の非水溶媒に対して、通常0.3M以上が好ましく、0.5M以上がより好ましく、0.7M以上が更に好ましい。またその上限は、2.5M以下が好ましく、2.0M以下がより好ましく、1.5M以下が更に好ましい。
 一方、前記非水溶媒としては、環状カーボネート、鎖状カーボネート、鎖状エステル、エーテル、アミド、リン酸エステル、スルホン、ラクトン、ニトリル、S=O結合含有化合物等が挙げられ、環状カーボネートを含むことが好ましい。なお、「鎖状エステル」なる用語は、鎖状カーボネート及び鎖状カルボン酸エステルを含む概念として用いる。
 環状カーボネートとしては、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、1,2-ブチレンカーボネート、2,3-ブチレンカーボネート、4-フルオロ-1,3-ジオキソラン-2-オン(FEC)、トランスもしくはシス-4,5-ジフルオロ-1,3-ジオキソラン-2-オン(以下、両者を総称して「DFEC」という)、ビニレンカーボネート(VC)、ビニルエチレンカーボネート(VEC)、及び4-エチニル-1,3-ジオキソラン-2-オン(EEC)から選ばれる一種又は二種以上が挙げられ、エチレンカーボネート、プロピレンカーボネート、1,2-ブチレンカーボネート、2,3-ブチレンカーボネート、4-フルオロ-1,3-ジオキソラン-2-オン及び4-エチニル-1,3-ジオキソラン-2-オン(EEC)から選ばれる一種以上が、蓄電デバイスの充電レート特性の向上や高温動作時のガス発生量を抑制する観点からより好適であり、プロピレンカーボネート、1,2-ブチレンカーボネート及び2,3-ブチレンカーボネートから選ばれるアルキレン鎖を有する環状カーボネートの一種以上が更に好適である。全環状カーボネート中のアルキレン鎖を有する環状カーボネートの割合が55体積%~100体積%であることが好ましく、60体積%~90体積%であることが更に好ましい。
 したがって、前記非水電解液としては、エチレンカーボネート、プロピレンカーボネート、1,2-ブチレンカーボネート、2,3-ブチレンカーボネート、4-フルオロ-1,3-ジオキソラン-2-オン及び4-エチニル-1,3-ジオキソラン-2-オンから選ばれる一種以上の環状カーボネートを含む非水溶媒に、LiPF、LiBF、LiPO、及びLiN(SOF)から選ばれる少なくとも一種のリチウム塩を含む電解質塩を溶解させた非水電解液を用いることが好ましく、前記環状カーボネートとしては、プロピレンカーボネート、1,2-ブチレンカーボネート及び2,3-ブチレンカーボネートから選ばれるアルキレン鎖を有する環状カーボネートの一種以上が更に好ましい。
 また、特に、全電解質塩の濃度が0.5M~2.0Mであり、前記電解質塩として、少なくともLiPFを含み、更に0.001M~1MのLiBF、LiPO、及びLiN(SOF)から選ばれる少なくとも一種のリチウム塩が含まれる非水電解液を用いることが好ましい。LiPF以外のリチウム塩が非水溶媒中に占める割合が0.001M以上であると、蓄電デバイスの充電レート特性の向上や高温動作時のガス発生量の抑制効果が発揮されやすく、1.0M以下であると蓄電デバイスの充電レート特性の向上や高温動作時のガス発生量の抑制効果が低下する懸念が少ないので好ましい。LiPF以外のリチウム塩が非水溶媒中に占める割合は、好ましくは0.01M以上、特に好ましくは0.03M以上、最も好ましくは0.04M以上である。その上限は、好ましくは0.8M以下、さらに好ましくは0.6M以下、特に好ましくは0.4M以下である。
 また、前記非水溶媒は、適切な物性を達成するために、混合して使用されることが好ましい。その組合せは、例えば、環状カーボネートと鎖状カーボネートの組合せ、環状カーボネートと鎖状カーボネートとラクトンとの組合せ、環状カーボネートと鎖状カーボネートとエーテルの組合せ、環状カーボネートと鎖状カーボネートと鎖状エステルとの組合せ、環状カーボネートと鎖状カーボネートとニトリルとの組合せ、環状カーボネート類と鎖状カーボネートとS=O結合含有化合物との組合せ等が挙げられる。
 鎖状エステルとしては、メチルエチルカーボネート(MEC)、メチルプロピルカーボネート(MPC)、メチルイソプロピルカーボネート(MIPC)、メチルブチルカーボネート、及びエチルプロピルカーボネートから選ばれる1種又は2種以上の非対称鎖状カーボネート、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、ジプロピルカーボネート、及びジブチルカーボネートから選ばれる1種又は2種以上の対称鎖状カーボネート、ピバリン酸メチル、ピバリン酸エチル、ピバリン酸プロピル等のピバリン酸エステル、プロピオン酸メチル、プロピオン酸エチル、プロピオン酸プロピル、酢酸メチル、及び酢酸エチル(EA)から選ばれる1種又は2種以上の鎖状カルボン酸エステルが好適に挙げられる。
 前記鎖状エステルの中でも、ジメチルカーボネート、メチルエチルカーボネート、メチルプロピルカーボネート、メチルイソプロピルカーボネート、メチルブチルカーボネート、プロピオン酸メチル、酢酸メチル及び酢酸エチル(EA)から選ばれるメチル基を有する鎖状エステルが好ましく、特にメチル基を有する鎖状カーボネートが好ましい。
 また、鎖状カーボネートを用いる場合には、2種以上を用いることが好ましい。さらに対称鎖状カーボネートと非対称鎖状カーボネートの両方が含まれるとより好ましく、対称鎖状カーボネートの含有率が非対称鎖状カーボネートより多く含まれると更に好ましい。
 鎖状エステルの含有率は、特に制限されないが、非水溶媒の総体積に対して、60体積%~90体積%の範囲で用いるのが好ましい。該含有率が60体積%以上であれば非水電解液の粘度が高くなりすぎず、90体積%以下であれば非水電解液の電気伝導度が低下して蓄電デバイスの充電レート特性の向上や高温動作時のガス発生量の抑制効果が低下するおそれが少ないので上記範囲であることが好ましい。
 鎖状カーボネート中に対称鎖状カーボネートが占める体積の割合は、51体積%以上が好ましく、55体積%以上がより好ましい。その上限としては、95体積%以下がより好ましく、85体積%以下であると更に好ましい。対称鎖状カーボネートにジメチルカーボネートが含まれると特に好ましい。また、非対称鎖状カーボネートはメチル基を有するとより好ましく、メチルエチルカーボネートが特に好ましい。上記の場合に蓄電デバイスの充電レート特性の向上や高温動作時のガス発生量の抑制効果が向上するので好ましい。
 環状カーボネートと鎖状エステルの割合は、蓄電デバイスの充電レート特性の向上や高温動作時のガス発生量の抑制効果を高める観点から、環状カーボネート:鎖状エステル(体積比)が10:90~45:55が好ましく、15:85~40:60がより好ましく、20:80~35:65が特に好ましい。
 <第2の観点に係るリチウム電池の構造>
 本発明の第2の観点に係るリチウム電池の構造は特に限定されるものではなく、正極、負極及び単層又は複層のセパレータを有するコイン電池、さらに、正極、負極及びロール状のセパレータを有する円筒型電池や角型電池等が一例として挙げられる。
 前記セパレータとしては、大きなイオン透過度を持ち、所定の機械的強度を持った絶縁性の薄膜が用いられる。例えば、ポリエチレン、ポリプロピレン、セルロース紙、ガラス繊維紙、ポリエチレンテレフタレート、ポリイミド微多孔膜などが挙げられ、2種以上を組み合わせて構成された多層膜としたものも用いることができる。またこれらのセパレータ表面にPVDF、シリコン樹脂、ゴム系樹脂などの樹脂や、酸化アルミニウム、二酸化珪素、酸化マグネシウムなどの金属酸化物の粒子などをコーティングすることもできる。前記セパレータの孔径としては、一般的に電池用として有用な範囲であればよく、例えば、0.01μm~10μmである。前記セパレータの厚みとしては、一般的な電池用の範囲であればよく、例えば5μm~300μmである。
 <固体電解質>
 固体電解質とは、その内部においてイオンを移動させることができる固体状の電解質のことである。特に、無機固体電解質は定常状態では固体であるため、通常カチオンおよびアニオンに解離または遊離していない。無機固体電解質は周期律表第1族に属する金属イオンの伝導性を有するものであれば特に限定されず電子伝導性をほとんど有さないものが一般的である。無機固体電解質は(A)硫化物無機固体電解質と(B)酸化物無機固体電解質が代表例として挙げられる。特に、高いイオン伝導性を有し、室温での加圧のみで、粒界の少ない緻密な成形体が形成できるため、硫化物固体電解質が好ましく用いられる。ここで言う周期律表は長周期型の周期律表を指す。
硫化物無機固体電解質は非結晶ガラスであっても良く、結晶化ガラスであっても良く、結晶性材料であっても良い。硫化物無機固体電解質として、具体的に以下の組み合わせが好適に挙げられるが特に限定されない。
 LiS-P、LiS-P-Al、LiS-GeS、LiS-Ga、LiS-GeS-Ga、LiS-GeS-P、LiS-GeS-Sb、LiS-GeS-Al、LiS-SiS、LiS-Al、LiS-SiS-Al、LiS-SiS-P、Li10GeP12
 前記組み合わせのなかでも、LiS-Pを組み合わせて製造されるLPSガラスおよびLPSガラスセラミックスが好ましい。また上記以外の硫化物無機固体電解質として、LiPSClやLiPSBrなどのアルジェロダイト型固体電解質も好適に挙げられる。
 酸化物無機固体電解質は、酸素原子を含有し、かつ、周期律表第1族に属する金属イ
オン伝導性を有し、かつ、電子絶縁性を有するものが好ましい。
 酸化物無機固体電解質としては、例えば、LISICON(Lithium super ionic conductor)型結晶構造を有するLi3.5Zn0.25GeO、ペロブスカイト型結晶構造を有するLa0.55Li0.35TiO、NASICON(Natrium super ionic conductor)型結晶構造を有するLiTi12、ガーネット型結晶構造を有するLiLaZr12(LLZ)、リン酸リチウム(LiPO)、リン酸リチウムの酸素の一部を窒素で置換したLiPON、LiBO-LiSO、LiO-B-P、LiO-SiO、およびLiBaLaTa12等が好適に挙げられる。
 無機固体電解質の体積平均粒径は特に限定されないが、0.01μm以上であることが好ましく、0.1μm以上であることがより好ましい。上限としては、100μm以下であることが好ましく、50μm以下であることがより好ましい。
 次に、実施例及び比較例を挙げてより具体的に説明するが、本発明は以下の実施例に限定されるものではなく、発明の趣旨から容易に類推可能な様々な組み合わせを包含する。
《第2の観点に係る実施例》
 まず、本発明の第2の観点に係る実施例、比較例について説明する(実施例1-1~1-10、比較例1-1~1-3、参考例1-1、実施例2-1、比較例2-1)。
(液系リチウムイオン二次電池)
 [実施例1-1]
 <原料調製工程>
 Nb(平均粒径0.2μm)とアナターゼ型TiO(比表面積10m/g)をモル比で1:1となるように秤量し、混合した。この混合粉末を1000℃で5時間熱処理を施した。得られた焼成粉末試料について、サンプリング間隔0.01°、スキャン速度2°/minの条件にて粉末X線回折測定を実施した。リートベルト法による結晶構造解析結果から、合成した試料が目的とするニオブ酸化物(TiNb:Titanium niobium oxide, ICDD(PDF2010)のPDFカード01-077-1374)であることが確認された。
 <表面処理工程>
 得られた焼成粉末試料に、スラリーの固形分濃度が30質量%となるようにイオン交換水を加え撹拌することで解砕し、処理剤2として硫酸アルミニウム16水和物(Al(SO・16HO)を、解砕した焼成粉末100gに対して0.8重量%加え、混合スラリーを作製した。この混合スラリーを、ペイントシェーカーで3時間混合処理した後、温度60℃で、乾燥した後、マッフル炉を用いて500℃で、1時間熱処理することで、実施例1-1に係るニオブ含有酸化物粉末(チタン酸ニオブ(以下、TNO))を製造した。
 [実施例1-2]
 表面処理工程において、処理剤2として硫酸アルミニウム16水和物(Al(SO・16HO)の添加量を表1に示すようにしたこと以外は実施例1-1と同様に行い、実施例1-2に係るニオブ含有酸化物粉末を製造した。
 [実施例1-3]
 原料調整工程において、実施例1-1で合成されたニオブ含有酸化物粉末について、粒度調整処理を行った。ニオブ含有酸化物粉末とジルコニアビーズ(φ2.0mm)を混合後、ボールミル処理を行った後、75μmの篩にて篩処理することで、粒度調整処理がされたニオブ含有酸化物粉末を得た。表面処理工程においては、処理剤2として硫酸アルミニウム16水和物(Al(SO・16HO)の添加量を表1に示すようにしたこと以外は実施例1-1と同様に行い、実施例1-3に係るニオブ含有酸化物粉末を製造した。
 [実施例1-4]
 表面処理工程において、処理剤2を含む混合スラリーをペイントシェーカーで混合処理せず、代わりに3分間のハンドシェイクにて軽く混合処理した後、温度60℃で、乾燥した後、マッフル炉を用いて500℃で、1時間熱処理したこと以外は実施例1-3と同様に行い、実施例1-4に係るニオブ含有酸化物粉末を製造した。
 [実施例1-5,1-6、1-7、1-8、1-9]
 表面処理工程において、処理剤2の種類と、処理剤2の添加量を表1に示すように変更したこと以外は実施例1-1と同様に行い、実施例1-5(硫酸マグネシウム7水和物:МgSO・7HO)、実施例1-6(硫酸インジウム:In(SO)、実施例1-7(フッ化カルシウム:CaF)、実施例1-8(硫酸亜鉛:ZnSO)、実施例1-9(硫酸ガリウム:Ga(SO)を用いた表面処理が施された、ニオブ含有酸化物粉末を製造した。
 [実施例1-10]
 ニオブ含有酸化物粉末としてNb(五酸化ニオブ、Niobium (V) oxide、平均粒径0.2μm)を用いた以外は、実施例1-5と同様に表面処理工程を行うことで、実施例1-10に係る表面処理が施されたニオブ含有酸化物粉末を製造した。
 [比較例1-1]
 表面処理工程において、処理剤2を添加しなかったこと以外は、実施例1-1と同様に比較例1-1に係るニオブ含有酸化物粉末を製造した。 
 [参考例1-1]
 表面処理工程において、処理剤2として硫酸アルミニウム16水和物(Al(SO・16HO)の添加量を表1に示すようにしたこと以外は実施例1-1と同様に行い、参考例1-1に係るニオブ含有酸化物粉末を製造した。
 [比較例1-2]
 原料調整工程において、Nb(平均粒径0.2μm)とアナターゼ型TiO(比表面積10m/g)をモル比で1:1となるように秤量し、さらに、処理剤1として硫酸アルミニウム16水和物(Al(SO・16HO)を1.6質量%混合した。この粉末を1000℃で5時間熱処理を施した。得られた粉末試料に、処理剤2を添加しなかったこと以外は、実施例1-1と同様に表面処理工程を施し、比較例1-2に係るニオブ含有酸化物粉末を製造した。
 [比較例1-3]
 表面処理工程において、処理剤2を添加しなかったこと以外は、実施例1-10と同様に比較例1-3に係るニオブ含有酸化物粉末を製造した。 
 [金属元素M1含有率の測定]
 実施例1-1~1-10、参考例1-1、及び、比較例1-1~1-3のニオブ含有酸化物粉末(以下、各実施例、各参考例、各比較例のニオブ含有酸化物粉末と記すことがある)に含まれる、TiまたはNbを除く価数3+または2+の金属元素もしくはモリブデン、アルミニウム、マグネシウム、インジウム、カルシウム、亜鉛、ガリウムの含有率を以下のようにして測定した。
 <蛍光X線分析(XRF): 金属元素M1の含有率同定>
 蛍光X線誘分析装置(エスアイアイ・テクノロジー株式会社製、商品名「SPS5100」)を用いて、各実施例、各比較例のニオブ含有酸化物粉末に含まれる元素を定量分析した。TiまたはNbを除く価数3+または2+の金属元素M1の含有率を以下の計算式で求めた。
 含有率(%)=(金属元素M1の含有量)/(金属元素M1含有TNOの質量)×100
 [粉末物性の測定]
 各実施例、比較例のニオブ含有酸化物粉末の各種物性を以下のようにして測定した。
 <比表面積(SSA)の測定>
 実施例1-1~1-10、参考例1-1、及び、比較例1-1~1-3のニオブ含有酸化物粉末の比表面積(SSA)(m/g)は、全自動BET比表面積測定装置(株式会社マウンテック製、商品名「Macsorb HM model-1208」)を使用して、吸着ガスは窒素ガスを使用した。測定サンプル粉末を0.5g秤量し、φ12標準セル(HM1201-031)に入れ、100℃真空下で0.5時間脱気した後、BET一点法で測定した。
 <D50の算出:乾式レーザー回折散乱法>
 実施例1-1~1-10、参考例1-1、及び、比較例1-1~1-3のニオブ含有酸化物粉末のD50は、レーザー回折・散乱型粒度分布測定機(日機装株式会社製、マイクロトラックMT3300EXII)を使用して測定した粒度分布曲線より算出した。50mlのイオン交換水を測定溶媒として収容した容器に50mgの試料を投入し、目視で粉が測定溶媒中に均一に分散したと分かるくらいまで容器を手で振り、容器を測定セルに収容して測定した。解砕処理は、装置内の超音波器で超音波(30W、3s)をかけた。さらに測定溶媒をスラリーの透過率が適正範囲(装置の緑のバーで表示される範囲)になるまで加えて粒度分布測定を行った。得られた粒度分布曲線から、解砕前後の混合粉末のD50を算出した。なお、解砕前D50が二次粒子のD50、解砕後D50が一次粒子のD50、に相当する。
 [電池特性の評価]
 実施例1-1~1-10、参考例1-1、及び、比較例1-1~1-3のニオブ含有酸化物粉末を用いてコイン型電池を作製し、それらの電池特性を評価した。評価結果を表1に示す。
 <負極シートの作製>
 負極シートは、室温25℃、露点-20℃以下に管理された部屋で次のようにして作製した。各実施例のニオブ含有酸化物粉末を、温度25℃、露点-20℃以下に管理された部屋でアルミラミネート袋から取り出した。取り出した各実施例のニオブ含有酸化物粉末を活物質として90質量%、アセチレンブラックを導電剤として5質量%、ポリフッ化ビニリデンを結着剤として5質量%の割合で、次のように混合して塗料を作製した。あらかじめ1-メチル-2-ピロリドンに溶解させたポリフッ化ビニリデンとアセチレンブラックと1-メチル-2-ピロリドンを遊星式撹拌脱泡装置にて混合した後、ニオブ含有酸化物粉末を加え、全固形分濃度が64質量%となるように調製して、遊星式撹拌脱泡装置にて混合した。その後、1-メチル-2-ピロリドンを加え全固形分濃度が50質量%となるように調製し遊星式撹拌脱泡装置にて混合して塗料を調製した。得られた塗料をアルミニウム箔上に塗布し乾燥させて、後述のコイン電池に用いる負極片面シート、及び後述のラミネート電池に用いる負極両面シートを作製した。なお、塗工時の目標目付けは7.5mg/cmとした。
 <電極密度の測定>
 上記の要領で塗工した負極片面シートをロールプレス機(ロールφ60×150mm、プレス圧40MPa相当)でプレスした後、負極層の密度を“電極密度”とし測定した。評価結果を表1に示す。電極密度が高いと、一定体積当たりに、より多くの活物質を詰めることができ、結果、電池として利用できる容量が増えるため好ましい。
 <電解液の調製>
 特性評価用の電池に用いる電解液は、次のように調製した。温度25℃で露点-70℃以下に管理されたアルゴングローブボックス内で、エチレンカーボネート(EC):ジメチルカーボネート(DMC)=1:2(体積比)の非水溶媒を調製し、これに電解質塩としてLiPFを1Mの濃度になるように溶解して後述のコイン電池用電解液を調製した。
 <コイン電池の作製>
 前述の方法で作製した負極片面シートを直径14mmの円形に打ち抜き、2t/cmの圧力でプレス加工した後、120℃で5時間真空乾燥することによって評価電極を作製した。作製した評価電極と金属リチウム(厚み0.5mm、直径16mmの円形に成形したもの)をグラスフィルター(ADVANTEC製GA-100とワットマン製GF/Cを各1枚ずつ)を介して対向させ、前述の<電解液の調製>にて説明した方法で調製した非水電解液を加えて封止することによって、2032型コイン電池を作製した。
 <電池初期特性:初期放電容量、5Cレート放電特性の測定>
 25℃の恒温槽内にて、上述の<コイン電池の作製>で説明した方法で作製したコイン型電池に、評価電極にLiが吸蔵される方向を充電として、0.2mA/cmの電流密度で1Vまで充電を行い、さらに1Vで充電電流が0.05mA/cmの電流密度になるまで充電させる定電流定電圧充電を行った後、0.2mA/cmの電流密度で2Vまで放電させる定電流放電を3サイクル行った。3サイクル目の放電容量(mAh)をニオブ含有酸化物粉末の重量で割ることで、初期放電容量(mAh/g)として求めた。次に、初期放電容量の0.3Cに相当する電流で1Vまで充電した後、5Cの電流で2Vまで放電させて、5C放電容量を求めた。その5C放電容量を初期放電容量で除することで5Cレート放電容量率(%)を算出した。そして、比較例1-1のコイン電池にて測定した5Cレート放電容量率を100とし、実施例1-1~1-10、ならびに比較例1-2~比較例1-3、参考例1-1の5Cレート放電容量率を相対比として算出した結果を、5Cレート放電特性(相対比%)として表1に示す。ニオブ含有酸化物の5Cレート放電特性が高いと、蓄電デバイスの電極材料として適用した場合に、蓄電デバイスの充電レート特性の向上が期待できる。1CのCとは充放電するときの電流値を表す。例えば、1Cは理論容量を1/1時間で完全放電(もしくは完全充電)できる電流値を指し、0.1Cなら理論容量を1/0.1時間で完全放電(もしくは完全充電)できる電流値を指す。
 <電池長期特性:サイクル容量維持率、サイクル後の抵抗値の測定>
 上述の<コイン電池の作製>で説明した方法で作製したコイン型電池を用いて、25℃の恒温槽内にてサイクル試験を行った。評価電極にLiが吸蔵される方向を充電として、初期放電容量の0.5Cに相当する電流値で0.8Vまで充電を行い、さらに0.8Vで充電電流が0.05Cに相当する電流値になるまで充電させる定電流定電圧充電を行った後、初期放電容量の0.5Cに相当する電流値で2Vまで放電させる定電流放電を1サイクルとし、計15サイクル繰り返し実施した。15サイクル実施した後の放電容量を初期放電容量で割ることで、放電容量維持率(%)として求めた。比較例1-1のコイン電池にて測定した放電容量維持率を100とし、実施例1-1~1-10、ならびに比較例1-2~1-3、参考例1-1の放電容量維持率を相対比として算出した結果(相対比%)を、表1に示す。さらに、15サイクル後のコイン電池について、周波数0.01Hz~1メガHz、温度0℃においてIMP測定を行い、得られた円弧の大きさから抵抗値(Ω)を求めた。比較例1-1のコイン電池にて測定した抵抗値を100とし、実施例1-1~1-10、ならびに比較例1-2~1-3、参考例1-1の抵抗値を相対比として算出した結果を、サイクル後の抵抗値(相対比%)として表1に示す。サイクル後の抵抗値が低いほど、抵抗増加が抑制できていると考えられる。
Figure JPOXMLDOC01-appb-T000001
<評価結果>
 実施例1-1~1-10のニオブ含有酸化物粉末を用いた電極は、ニオブ含有酸化物粉末を構成する、ニオブ含有酸化物粒子表面にTiまたはNbを除く価数3+または2+の金属元素を含有することで、初期放電容量が高く、放電レート特性、サイクル特性に優れ、及び、サイクル後の抵抗増加を抑制することができることが分かった。特に、ニオブ含有酸化物の基材を粒度調製品に変更した実施例1-3や、表面処理方法をハンドシェイクに変更した実施例1-4でも、同様の改善効果を示した。よって、本発明の効果は、ニオブ含有酸化物の基材種や表面処理方法に依存しない点が確認できた。さらに、価数3+の金属元素を含有する実施例1-2(Al)よりも、価数2+の金属元素(Mg)を含有する実施例1-5では、放電レート特性ならびにサイクル特性において改善効果が高まる傾向が見られた。また、参考例1-1のように、価数3+の金属元素であるアルミニウムを比較的多くした場合でも、放電レート特性を良好に保ちながら、サイクル後の抵抗増加を良好に抑制しつつ、サイクル特性が高められたものであった。なお、実施例1-1~1-10、参考例1-1においては、表面処理工程により、TiまたはNbを除く価数3+または2+の金属元素M1を導入したものであることから、ニオブ含有酸化物粒子表面に、金属元素M1が存在するものであった。一方で、比較例1-1~1-3のニオブ含有酸化物粉末は、初期放電容量の低下、レート特性の低下、または、サイクル特性に改善が見られず、電池特性の改善には至らなかった。特に、価数3+の金属元素(Al)を被覆ではなく基材合成時から添加した比較例1-2においては、電極密度や初期放電容量、レート特性が低下する傾向が見られた。
 <X線光電子分光(XPS)分析の結果>
 実施例1-5、比較例1-1のニオブ含有酸化物粉末に関して、アルバック・ファイ製QuanteraII 走査型X線光電子分光装置を用いて、一次粒子表面近傍に局在化して存在する元素を測定した。各試料をAl板にサンプリングした後、X線源AlKα(モノクロ, 1486.6eV,50W)、分析領域200μmφ、帯電中和機構利用(電子銃+Arイオン)で測定を実施した。実施例1-5のニオブ含有酸化物粉末ではTi4+やNb5+に加えてMg2+が検出された一方で、比較例1-1のニオブ含有酸化物粉末ではTi4+とNb5+のみしか検出されなかった。さらに、実施例1-5のニオブ含有酸化物粉末に関して、加速電圧2kV、エッチングレート3.1nm/min(SiO換算)の条件でArイオンによるスパッタ処理を行い、一次粒子のMg1sデプスプロファイル測定を実施した。Mgの濃度は粒子表面から粒子内部に向けて濃度が減少し、表面(0nm)のMgの原子濃度を100%とすると、表面から100nmの深さ位置におけるMgの原子濃度は5%未満であった。Мg1sデプスプロファイルの結果を図1に示す。このことから、表面処理工程により、TiまたはNbを除く価数3+または2+の金属元素M1を導入することで、ニオブ含有酸化物粒子表面に金属元素M1が局在化して存在するものであることを確認した。
 <電気泳動法によるゼータ電位測定の結果>
 実施例1-1、1-2、1-5、1-6、参考例1-1のニオブ含有酸化物粉末に関して、ゼータ電位測定装置(Malvern社製、装置名「Zetasizer Nano ZS」)を用いて、電気泳動法によるゼータ電位(mV)を測定した。各々のニオブ含有酸化物粉末を0.02g秤量し、200mLのイオン交換水に入れ、25℃の環境下にて測定した。結果を以下表2に示す。
Figure JPOXMLDOC01-appb-T000002
 上記のニオブ含有酸化物粉末に関しては、ゼータ電位に差があることを確認した。ゼータ電位が0mVより小さく-60mVより大きいと、初期特性の5Cレート放電特性が高く、長期特性のサイクル後の抵抗値が低くなり、両性能をバランスよく示すことが分かった。 さらに、実施例1-1と実施例1-2、1-5、1-6を比較すると、ゼータ電位が-35mVより大きいと、初期特性の5Cレート放電特性がより一層改善されることが分かった。推測の域を出ないが、表面被覆状態の違いにより、イオン拡散層を反映するゼータ電位が変位した結果、急速充電時における粒子表面でのLi+移動性に影響を与えたものと推測される。
(全固体二次電池) 
[実施例2-1]
 アルゴン雰囲気下のグローブボックス内で、上記実施例1-1のニオブ含有酸化物(硫酸アルミニウム16水和物(Al(SO・16HO)を1.6質量%加えて表面処理した化合物)及び硫化物固体電解質であるLiPSCl粉末(レーザー回折・散乱型粒度分布測定機を使用して得られる体積平均粒径:6μm)をニオブ含有酸化物:LiPSCl=60:40の質量比になるように秤量し、メノウ乳鉢で混合した。次に80mLのジルコニアポットにジルコニアボール(直径3mm、20g)を投入し、混合した粉末を投入した。その後、このポットを遊星型ボールミル機にセットし、回転数200rpmで15分間撹拌を続け、実施例2-1の負極活物質組成物を得た。得られた負極活物質組成物を室温で10分プレス(360MPa)することで直径10mm、厚さ約0.7mmのペレット(成形体)を作製した。この負極活物質組成物を含むペレット状電極、セパレータ層としてペレット状の固体電解質層(LiS:P=75:25のモル比であるLPSガラス)、及び対極としてのリチウムインジウム合金箔をこの順で積層し、積層体をステンレススチール製の集電体で挟むことで全固体二次電池を作製し、電池特性を評価した。結果を表3に示す。
[比較例2-1]
 ニオブ含有酸化物粉末を、比較例1-1のニオブ含有酸化物(処理剤2を添加していない化合物)に変更した以外は、上記実施例2-1と同様にして、下記表3に記載の全固体二次電池を作製し、電池特性を評価した。結果を表3に示す。
 <レート特性の測定>
 25℃の恒温槽内にて、上述の方法で作製した全固体二次電池に、評価電極にLiが吸蔵される方向を充電として、ニオブ含有酸化物の理論容量の0.05Cに相当する電流で0.5Vまで充電を行い、さらに0.5Vで充電電流が0.01Cに相当する電流になるまで充電させる定電流定電圧充電を行った後、0.05Cに相当する電流で2Vまで放電させる定電流放電を行った。放電容量(mAh)をニオブ含有酸化物の質量で割ることで、初期放電容量(mAh/g)として求めた。また、放電容量を充電容量で割ることで初期効率を求めた。次に、ニオブ含有酸化物の理論容量の0.4Cに相当する電流で0.5Vまで充電した後、0.05Cの電流で2Vまで放電させて、0.4C充電容量を求めた。その0.4C充電容量を初期放電容量で除することでレート特性(%)を算出した。レート特性は、比較例2-1の値を100%としたときを基準とし、相対的な値を調べた。評価結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 全固体二次電池の系においても、実施例1-1のニオブ含有酸化物粉末を用いた負極層を含む電極は、ニオブ含有酸化物粉末を構成する、ニオブ含有酸化物粒子表面にTiまたはNbを除く価数3+または2+の金属元素M1を含有することで、充電レート特性に優れることが分かった。
《第1の観点に係る実施例》
 次いで、本発明の第1の観点に係る実施例、比較例について説明する(実施例3-1、3-2、比較例3-1、実施例4-1~4-8、比較例4-1、4-2)。
[実施例3-1]
 <原料調製工程>
 Nb(平均粒径 0.2μm)とアナターゼ型TiO(比表面積10m/g)をモル比で1:1となるように秤量し、混合した。この混合粉末を1000℃で5時間熱処理を施した。得られた焼成粉末試料について、サンプリング間隔0.01°、スキャン速度2°/minの条件にて粉末X線回折測定を実施した。リートベルト法による結晶構造解析結果から、合成した試料が目的とするニオブ酸化物(TiNb:Titanium diniobium oxide,ICDD(PDF2010)のPDFカード01-077-1374)であることが確認された。
 <表面処理工程>
 得られた焼成粉末試料に、スラリーの固形分濃度が30質量%となるようにイオン交換水を加え撹拌することで解砕し、処理剤としてモリブデン酸リチウム(LiMoO)を、解砕した焼成粉末100gに対して0.4質量%加え、混合スラリーを作製した。この混合スラリーを、ペイントシェーカーで3時間混合処理した後、温度60℃で、乾燥した後、マッフル炉を用いて500℃で、1時間熱処理することで、実施例3-1に係るニオブ含有酸化物粉末(ニオブチタン複合酸化物粉末(以下、TNO粉末と記すことがある))を製造した。
 [実施例3-2]
 表面処理工程において、処理剤としてモリブデン酸リチウム(LiMoO)の添加量を表4に示すようにしたこと以外は実施例3-1と同様に行い、実施例3-2に係るTNO粉末を製造した。
 [比較例3-1]
 表面処理工程において、処理剤を添加しなかったこと以外は、実施例3-1と同様に比較例3-1に係るTNO粉末を製造した。 
 [金属元素MoおよびCe含有率の測定]
 実施例3-1,3-2,4-1~4-8、比較例3-1,4-1,4-2のTNO粉末に含まれる、金属元素MoおよびCeの含有率を以下のようにして測定した。
 <蛍光X線分析(XRF):金属元素MoおよびCeの含有率の同定>
 蛍光X線誘分析装置(エスアイアイ・テクノロジー株式会社製、商品名「SPS5100」)を用いて、各実施例、各比較例のTNO粉末に含まれる元素を定量分析した。金属元素Mo、Ceの含有率を以下の計算式で求めた。
 含有率(%)=(金属元素Mo、Ceの質量)/(金属元素Mo、Ce含有TNOの総質量)×100
 [粉末物性の測定]
 実施例3-1,3-2,4-1~4-8、比較例3-1,4-1,4-2のTNO粉末の各種物性を以下のようにして測定した。
 <比表面積の測定>
 実施例3-1,3-2,4-1~4-8、比較例3-1,4-1,4-2のTNO粉末の比表面積(m/g)は、全自動BET比表面積測定装置(株式会社マウンテック製、商品名「Macsorb HM model-1208」)を使用して、吸着ガスは窒素ガスを使用した。測定サンプル粉末を0.5g秤量し、φ12標準セル(HM1201-031)に入れ、100℃真空下で0.5時間脱気した後、BET一点法で測定した。
 <D50の算出:乾式レーザー回折散乱法>
 実施例3-1,3-2,4-1~4-8、比較例3-1,4-1,4-2のニオブ含有酸化物粉末のD50は、レーザー回折・散乱型粒度分布測定機(日機装株式会社製、マイクロトラックMT3300EXII)を使用して測定した粒度分布曲線より算出した。50mLのイオン交換水を測定溶媒として収容した容器に50mgの試料を投入し、目視で粉が測定溶媒中に均一に分散するまで容器を手で振り、容器を測定セルに収容して測定した。解砕処理は、装置内の超音波器で超音波(30W、3s)を照射した。さらに測定溶媒をスラリーの透過率が適正範囲(装置の緑のバーで表示される範囲)になるまで加えて粒度分布測定を行った。得られた粒度分布曲線から、解砕前後の混合粉末のD50を算出した。なお、解砕前D50が二次粒子のD50、解砕後D50が一次粒子のD50、に相当する。
 〔負極活物質組成物の作製〕
 アルゴン雰囲気下のグローブボックス内で、実施例3-1のTNO粉末及び硫化物無機固体電解質であるLiPSCl粉末(レーザー回折・散乱型粒度分布測定機を使用して得られる体積平均粒径:6μm)をTNO:LiPSCl=60:40の質量比になるように秤量し、メノウ乳鉢で混合した。次に80mLのジルコニアポットにジルコニアボール(直径3mm、20g)を投入し、混合した粉末を投入した。その後、このポットを遊星型ボールミル機にセットし、回転数200rpmで15分間撹拌を続け、実施例3-1の負極活物質組成物を得た。
 [実施例3-2、比較例3-1]
 表4に記載の製造方法にしたTNO粉末を用いたこと以外は実施例3-1と同様にして、下記表4に記載の負極活物質組成物を調製した。
 〔負極活物質組成物の物性測定〕
 上記負極活物質組成物をそれぞれ100mg秤量し、これらの試料を、室温で10分プレス(360MPa)することで直径10mm、厚さ約0.7mmのペレット(成形体)を作製した。
  [電池特性の評価]
 実施例3-1,3-2,4-1~4-8、比較例3-1,4-1,4-2の負極活物質組成物のペレットを用いて全固体二次電池を作製し、それらの電池特性を評価した。評価結果を表4に示す。
 〔硫化物無機固体電解質の合成〕
 アルゴン雰囲気下のグローブボックス内で、硫化リチウム(LiS)及び五硫化二リン(P)をLiS:P=75:25のモル比になるように秤量し、メノウ乳鉢で混合し、原料組成物を得た。
 次に、80mLのジルコニアポットにジルコニアボール(直径3mm、160g)と得られた原料組成物2gを投入し、アルゴン雰囲気下で容器を密閉した。このポットを遊星型ボールミル機にセットし、回転数510rpmで16時間メカニカルミリングを行い、黄色粉体の硫化物無機固体電解質(LPSガラス)を得た。得られたLPSガラス80mgを面積0.785cmの成形部を有するペレット成形機を用いて、360MPaの圧力でプレスすることでペレット状の固体電解質層を得た。
〔全固体二次電池の作製〕
 実施例3-1,3-2,4-1~4-8、比較例3-1,4-1,4-2の負極活物質組成物のペレット、上記ペレット状の固体電解質層、及び対極としてのリチウムインジウム合金の箔をこの順で積層し、積層体をステンレススチール製の集電体で挟むことで全固体二次電池を作製した。
 <初期放電容量、初期効率、充電レート特性の測定>
 25℃の恒温槽内にて、上述の方法で作製した全固体二次電池に、評価電極にLiが吸蔵される方向を充電として、TNOの理論容量の0.05Cに相当する電流で0.5Vまで充電を行い、さらに0.5Vで充電電流が0.01Cに相当する電流になるまで充電させる定電流定電圧充電を行った後、0.05Cに相当する電流で2Vまで放電させる定電流放電を行った。放電容量(mAh)をTNOの質量で割ることで、初期放電容量(mAh/g)として求めた。また、放電容量を充電容量で割ることで初期効率を求めた。次に、TNOの理論容量の0.4Cに相当する電流で0.5Vまで充電した後、0.05Cの電流で2Vまで放電させて、0.4C充電容量を求めた。その0.4C充電容量を初期放電容量で除することで充電レート特性(%)を算出した。初期放電容量、および充電レート特性は、実施例3-1,3-2、比較例3-1については、比較例3-1のそれぞれの値を100%としたときを基準とし、相対的な値を調べた。評価結果を表4に示す。1CのCとは充放電するときの電流値を表す。例えば、1Cは理論容量を1/1時間で完全放電(もしくは完全充電)できる電流値を指し、0.1Cなら理論容量を1/0.1時間で完全放電(もしくは完全充電)できる電流値を表す。
Figure JPOXMLDOC01-appb-T000004
 上記表4において、本発明の負極活物質組成物の実施例3-1、3-2では、比較例3-1に比べ、全固体二次電池において優れた初期放電容量、初期効率、及び充電レート特性を有していることがわかる。なお、実施例3-1、3-2においては、表面処理工程により、金属元素Moを導入したものであることから、ニオブ含有酸化物粒子表面に、金属元素Moが局在化して存在するものであった。
 [実施例4-1~4-8、比較例4-1、4-2]
 表5に記載の製造方法にしたTNO粉末を用いたこと、45℃の恒温槽中で電池評価を行ったこと以外は実施例3-1と同様にして、下記表5に記載の負極活物質組成物を調製し、評価した。
 なお、実施例4-1~4-5においては、表面処理工程において、処理剤としてモリブデン酸リチウム(LiMoO)の添加量を表5に示すようにしたこと以外は実施例3-1と同様に行い、TNO粉末を製造した。
 実施例4-6,4-7においては、表面処理工程において、処理剤としてモリブデン酸リチウム(LiMoO)に代えて、硫酸セリウム・4水和物を表5に示す添加量にて使用したこと以外は実施例3-1と同様に行い、TNO粉末を製造した。
 実施例4-8においては、比表面積および一次粒子D50が表5に示す値となるよう原料調製工程における条件を調整したこと以外は実施例4-1と同様に行い、TNO粉末を製造した。
 比較例4-1,4-2においては、処理剤を添加しなかったこと以外は、実施例4-1,4-8と同様に行い、TNO粉末を製造した。
 なお、初期放電容量、および充電レート特性は、実施例4-1~4-8、比較例4-1,4-2については、比較例4-1のそれぞれの値を100%としたときを基準とし、相対的な値を調べた。
Figure JPOXMLDOC01-appb-T000005
 上記表5において、本発明の負極活物質組成物の実施例4-1~4-8では、比較例4-1、4-2に比べ、45℃においても優れた初期放電容量、初期効率、及び充電レート特性を有していることがわかった。
 なお、実施例4-1~4-8においては、表面処理工程により、金属元素Mo、Ceを導入したものであることから、ニオブ含有酸化物粒子表面に、金属元素Mo、Ceが局在化して存在するものであった。
[比較例4-3]
 Nb、アナターゼ型TiO、および酸化モリブデン(MoO)をモル比で1:1:0.1となるように秤量し、混合した。この混合粉末を1000℃で5時間熱処理を施した。このようにTNO作製時にMoO加えたサンプルを用いて実施例3-1と同様に電池評価を行ったところ充電レート特性は80%となり、本発明の効果である充電レート特性の改善は見られなかった。この結果より全固体二次電池の充電レート特性を改善するためにはニオブ含有酸化物粒子の表面にMoなどの金属元素M1が局在化して存在することが必要であることがわかった。
 上記実施例3-1,3-2,4-1~4-8の結果より、固体電解質とTNOの界面抵抗を著しく低減することができ、その負極活物質組成物を用いることで優れた電池特性を示す。

Claims (14)

  1.  一般式Ti1-x/2Nb7-x(X=0~2)で表されるニオブ含有酸化物粉末であって、前記ニオブ含有酸化物粉末を構成する、ニオブ含有酸化物粒子の表面にMoおよびCeからなる群より選ばれる少なくとも一種の金属元素が局在化して存在することを特徴とするニオブ含有酸化物粉末。
  2.  前記ニオブ含有酸化物粉末において、粒子表面に存在する前記金属元素の含有率(質量%)が0.01以上1.2以下であることを特徴とする請求項1に記載のニオブ含有酸化物粉末。 
  3.  前記ニオブ含有酸化物において、レーザー回折散乱法による体積基準粒度分布において体積累積が50%に相当する一次粒子のD50が0.6μm以上であることを特徴とする請求項1又は2に記載のニオブ含有酸化物粉末。
  4.  ニオブ含有酸化物粉末と、周期律表第1族に属する金属イオンの伝導性を有する無機固体電解質と、を含む負極活物質組成物であって、
     前記ニオブ含有酸化物粉末が請求項1~3のいずれか一項に記載のニオブ含有酸化物粉末を含むことを特徴とする負極活物質組成物。
  5.  前記無機固体電解質が、硫化物無機固体電解質である請求項4に記載の負極活物質組成物。
  6.  前記無機固体電解質の含有量が1質量%以上、50質量%以下である請求項4又は5に記載の負極活物質組成物。
  7.  正極層、負極層および固体電解質層を備えた全固体二次電池であって、前記負極層が請求項4~6のいずれか一項に記載の負極活物質組成物を含む層である全固体二次電池。
  8.  一般式Ti1-x/2Nb7-x(X=0~2)で表されるニオブ含有酸化物粉末であって、前記ニオブ含有酸化物粉末を構成する、ニオブ含有酸化物粒子の表面にM1(M1は、TiまたはNbを除く価数3+または2+の金属元素である)が局在化して存在することを特徴とするニオブ含有酸化物粉末。
  9.  前記ニオブ含有酸化物粉末において、粒子表面に存在する元素M1が、第2族、第12族、第13族、又は第14族の金属元素であることを特徴とする請求項8に記載のニオブ含有酸化物粉末。
  10.  前記ニオブ含有酸化物粉末において、粒子表面に存在する元素M1が、Al3+、Mg2+、Ca2+、Sr2+、Zn2+、 Ga3+、Ge2+、及びIn2+からなる元素群から選ばれるいずれか一つ以上を含むことを特徴とする請求項8又は9に記載のニオブ含有酸化物粉末。
  11.  前記ニオブ含有酸化物粉末において、粒子表面に存在する元素M1の含有率(質量%)が0.01以上1.2以下であることを特徴とする請求項8~10のいずれか一項に記載のニオブ含有酸化物粉末。
  12.  前記ニオブ含有酸化物粉末において、レーザー回折散乱法による体積基準粒度分布において体積累積が50%に相当する一次粒子のD50が0.3μm以上であることを特徴とする請求項8~11のいずれか一項に記載のニオブ含有酸化物粉末。
  13.  請求項8~12のいずれか一項に記載のニオブ含有酸化物粉末を含むことを特徴とする、蓄電デバイスの電極。
  14.  請求項13に記載の電極を含むことを特徴とする蓄電デバイス。
PCT/JP2022/024428 2021-06-18 2022-06-17 ニオブ含有酸化物粉末、それを用いた電極、蓄電デバイス、負極活物質組成物、及び全固体二次電池 WO2022265116A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US18/571,465 US20240290963A1 (en) 2021-06-18 2022-06-17 Niobium-containing oxide powder, electrode using same, power storage device, negative electrode active material composition, and all-solid-state secondary battery
JP2023530445A JPWO2022265116A1 (ja) 2021-06-18 2022-06-17
EP22825103.9A EP4357304A1 (en) 2021-06-18 2022-06-17 Niobium-containing oxide powder, electrode using same, power storage device, negative electrode active material composition, and all-solid-state secondary battery
KR1020237042665A KR20240022482A (ko) 2021-06-18 2022-06-17 나이오븀 함유 산화물 분말, 그것을 이용한 전극, 축전 디바이스, 음극 활물질 조성물, 및 전고체 이차 전지

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2021-101982 2021-06-18
JP2021101982 2021-06-18
JP2021-126189 2021-07-30
JP2021126189 2021-07-30
JP2022-060659 2022-03-31
JP2022060659 2022-03-31

Publications (1)

Publication Number Publication Date
WO2022265116A1 true WO2022265116A1 (ja) 2022-12-22

Family

ID=84526548

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/024428 WO2022265116A1 (ja) 2021-06-18 2022-06-17 ニオブ含有酸化物粉末、それを用いた電極、蓄電デバイス、負極活物質組成物、及び全固体二次電池

Country Status (5)

Country Link
US (1) US20240290963A1 (ja)
EP (1) EP4357304A1 (ja)
JP (1) JPWO2022265116A1 (ja)
KR (1) KR20240022482A (ja)
WO (1) WO2022265116A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117936878A (zh) * 2024-01-24 2024-04-26 上海屹锂新能源科技有限公司 含Anderson型多金属氧酸盐的固态电解质的制备方法及其应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100216627A1 (en) * 2003-11-06 2010-08-26 Drexel University Method of making mixed metal oxide ceramics
WO2017135323A1 (ja) * 2016-02-01 2017-08-10 株式会社 東芝 二次電池、組電池、電池パック、及び車両
JP2017224625A (ja) 2013-07-08 2017-12-21 株式会社東芝 非水電解質二次電池用負極活物質、非水電解質二次電池、電池パック及び車
JP2020149829A (ja) 2019-03-13 2020-09-17 株式会社東芝 活物質、電極、二次電池、電池パック及び車両
WO2021049665A1 (ja) 2019-09-13 2021-03-18 三井金属鉱業株式会社 電極合材並びにそれを用いた電極層及び固体電池

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7353715B2 (ja) 2019-10-25 2023-10-02 株式会社ディスコ 被加工物の研削方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100216627A1 (en) * 2003-11-06 2010-08-26 Drexel University Method of making mixed metal oxide ceramics
JP2017224625A (ja) 2013-07-08 2017-12-21 株式会社東芝 非水電解質二次電池用負極活物質、非水電解質二次電池、電池パック及び車
WO2017135323A1 (ja) * 2016-02-01 2017-08-10 株式会社 東芝 二次電池、組電池、電池パック、及び車両
JP2020149829A (ja) 2019-03-13 2020-09-17 株式会社東芝 活物質、電極、二次電池、電池パック及び車両
WO2021049665A1 (ja) 2019-09-13 2021-03-18 三井金属鉱業株式会社 電極合材並びにそれを用いた電極層及び固体電池

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JINJ YONG S, AUROUX ALINE, VEDRINE JACQUES C: "Spectroscopic Studies of Molybdate Species deposited on a Nb,O, Support", J. CHEM. SOC. FARADAY TRANS. I, vol. 85, no. 12, 1 January 1989 (1989-01-01), pages 4179 - 4191, XP093016114, DOI: 10.1039/F19898504179 *
YANG PENG; ZUO SHUFENG; SHI ZHINAN; TAO FEI; ZHOU RENXIAN: "Elimination of 1,2-dichloroethane over (Ce,Cr)xO2/MOycatalysts (M=Ti, V, Nb, Mo, W and La)", APPLIED CATALYSIS B. ENVIRONMENTAL, ELSEVIER, AMSTERDAM, NL, vol. 191, 14 March 2016 (2016-03-14), AMSTERDAM, NL , pages 53 - 61, XP029500323, ISSN: 0926-3373, DOI: 10.1016/j.apcatb.2016.03.017 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117936878A (zh) * 2024-01-24 2024-04-26 上海屹锂新能源科技有限公司 含Anderson型多金属氧酸盐的固态电解质的制备方法及其应用

Also Published As

Publication number Publication date
US20240290963A1 (en) 2024-08-29
KR20240022482A (ko) 2024-02-20
JPWO2022265116A1 (ja) 2022-12-22
EP4357304A1 (en) 2024-04-24

Similar Documents

Publication Publication Date Title
JP7323007B2 (ja) 蓄電デバイスの電極用チタン酸リチウム粉末および活物質材料、並びにそれを用いた電極シートおよび蓄電デバイス
JP7099475B2 (ja) 非水系電解質二次電池用正極活物質、非水系電解質二次電池用正極活物質の製造方法
JP7237148B2 (ja) 硫化物系無機固体電解質材料用の窒化リチウム組成物の製造方法および硫化物系無機固体電解質材料の製造方法
JP7310155B2 (ja) リチウムイオン二次電池用正極活物質とその製造方法、リチウムイオン二次電池用正極合剤ペーストおよびリチウムイオン二次電池
JP2011249293A (ja) リチウム遷移金属化合物及びその製造方法、並びにリチウムイオン電池
JP7427821B2 (ja) 硫化物系無機固体電解質材料、固体電解質、固体電解質膜およびリチウムイオン電池
JP2023164486A (ja) 硫化物系無機固体電解質材料用の五硫化二リン組成物
KR20200138256A (ko) 리튬 이온 이차 전지용 정극 활물질 및 그의 제조 방법
JP5807730B1 (ja) 蓄電デバイスの電極用チタン酸リチウム粉末および活物質材料、並びにそれを用いた電極シートおよび蓄電デバイス
WO2022265116A1 (ja) ニオブ含有酸化物粉末、それを用いた電極、蓄電デバイス、負極活物質組成物、及び全固体二次電池
JP7412883B2 (ja) リチウムイオン二次電池用正極活物質およびその製造方法
JP7188957B2 (ja) 硫化物系無機固体電解質材料、固体電解質、固体電解質膜およびリチウムイオン電池
KR20130099341A (ko) 리튬 이차 전지용 전극 활물질, 그 제조방법, 이를 포함하는 리튬 이차 전지용 전극 및 이를 채용한 리튬 이차 전지
JP2023126791A (ja) 硫化物系無機固体電解質材料用の硫化リン組成物
JP2023180901A (ja) チタン酸リチウム粉末、それを用いた負極活物質組成物、及び全固体二次電池
WO2024166953A1 (ja) ニオブ含有酸化物粉末、それを用いた電極、及び蓄電デバイス
WO2022211106A1 (ja) チタン含有酸化物粉末、それを用いた負極活物質組成物、及び全固体二次電池
JP2023101247A (ja) チタン酸リチウム粉末、それを用いた電極、及び蓄電デバイス
JP2024146389A (ja) 電極用ニオブ-チタン複合酸化物粉末、それを用いた電極、及び蓄電デバイス
WO2024034405A1 (ja) 硫化物系無機固体電解質材料用硫化リン組成物、硫化物系無機固体電解質材料の製造方法および硫化リン組成物の品質管理方法
JP7238783B2 (ja) 三酸化タングステン
JP2024085264A (ja) ニオブ含有酸化物粉末、それを用いた電極、及び蓄電デバイス
WO2024101239A1 (ja) 硫化物系無機固体電解質材料の製造方法、硫化リン組成物の製造方法、硫化リン組成物の評価方法および硫化リン組成物
JP2023035188A (ja) チタン酸リチウム粉末、それを用いた電極、及び、蓄電デバイス
JP7584841B2 (ja) 正極活物質、その製造方法、及びそれを含むリチウム二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22825103

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023530445

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 18571465

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2022825103

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022825103

Country of ref document: EP

Effective date: 20240118