WO2022265116A1 - ニオブ含有酸化物粉末、それを用いた電極、蓄電デバイス、負極活物質組成物、及び全固体二次電池 - Google Patents
ニオブ含有酸化物粉末、それを用いた電極、蓄電デバイス、負極活物質組成物、及び全固体二次電池 Download PDFInfo
- Publication number
- WO2022265116A1 WO2022265116A1 PCT/JP2022/024428 JP2022024428W WO2022265116A1 WO 2022265116 A1 WO2022265116 A1 WO 2022265116A1 JP 2022024428 W JP2022024428 W JP 2022024428W WO 2022265116 A1 WO2022265116 A1 WO 2022265116A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- niobium
- containing oxide
- oxide powder
- negative electrode
- active material
- Prior art date
Links
- 239000010955 niobium Substances 0.000 title claims abstract description 295
- 229910052758 niobium Inorganic materials 0.000 title claims abstract description 289
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 title claims abstract description 269
- 239000000843 powder Substances 0.000 title claims abstract description 252
- 239000000203 mixture Substances 0.000 title claims description 76
- 239000007773 negative electrode material Substances 0.000 title claims description 69
- 238000003860 storage Methods 0.000 title claims description 39
- 229910052751 metal Inorganic materials 0.000 claims abstract description 130
- 239000002245 particle Substances 0.000 claims abstract description 112
- 239000002184 metal Substances 0.000 claims abstract description 109
- 229910052750 molybdenum Inorganic materials 0.000 claims abstract description 53
- 229910052684 Cerium Inorganic materials 0.000 claims abstract description 51
- 239000007784 solid electrolyte Substances 0.000 claims description 105
- 229910003480 inorganic solid Inorganic materials 0.000 claims description 68
- 239000007787 solid Substances 0.000 claims description 50
- 239000011164 primary particle Substances 0.000 claims description 46
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 claims description 31
- 230000005611 electricity Effects 0.000 claims description 29
- 229910052719 titanium Inorganic materials 0.000 claims description 25
- 229910052782 aluminium Inorganic materials 0.000 claims description 23
- 238000009826 distribution Methods 0.000 claims description 21
- 230000000737 periodic effect Effects 0.000 claims description 20
- 229910021645 metal ion Inorganic materials 0.000 claims description 10
- 238000000790 scattering method Methods 0.000 claims description 6
- 238000009825 accumulation Methods 0.000 claims description 4
- 238000000034 method Methods 0.000 description 60
- 230000000052 comparative effect Effects 0.000 description 52
- 239000010410 layer Substances 0.000 description 49
- 238000004381 surface treatment Methods 0.000 description 41
- 229910052744 lithium Inorganic materials 0.000 description 40
- 239000010936 titanium Substances 0.000 description 40
- 239000011149 active material Substances 0.000 description 36
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 35
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 33
- 238000005259 measurement Methods 0.000 description 33
- VZSRBBMJRBPUNF-UHFFFAOYSA-N 2-(2,3-dihydro-1H-inden-2-ylamino)-N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]pyrimidine-5-carboxamide Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C(=O)NCCC(N1CC2=C(CC1)NN=N2)=O VZSRBBMJRBPUNF-UHFFFAOYSA-N 0.000 description 29
- 239000006258 conductive agent Substances 0.000 description 29
- 150000001875 compounds Chemical class 0.000 description 28
- 238000010438 heat treatment Methods 0.000 description 27
- 239000003795 chemical substances by application Substances 0.000 description 26
- 238000002156 mixing Methods 0.000 description 25
- 238000010304 firing Methods 0.000 description 24
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 24
- 239000002131 composite material Substances 0.000 description 23
- 239000011163 secondary particle Substances 0.000 description 23
- 239000011230 binding agent Substances 0.000 description 22
- 238000004519 manufacturing process Methods 0.000 description 22
- 239000002904 solvent Substances 0.000 description 22
- 150000005678 chain carbonates Chemical class 0.000 description 19
- 239000011777 magnesium Substances 0.000 description 19
- 239000000463 material Substances 0.000 description 19
- HMUNWXXNJPVALC-UHFFFAOYSA-N 1-[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]piperazin-1-yl]-2-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethanone Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)N1CCN(CC1)C(CN1CC2=C(CC1)NN=N2)=O HMUNWXXNJPVALC-UHFFFAOYSA-N 0.000 description 17
- RJSRQTFBFAJJIL-UHFFFAOYSA-N niobium titanium Chemical compound [Ti].[Nb] RJSRQTFBFAJJIL-UHFFFAOYSA-N 0.000 description 17
- -1 salt compounds Chemical class 0.000 description 17
- 229910001275 Niobium-titanium Inorganic materials 0.000 description 16
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 16
- 150000005676 cyclic carbonates Chemical class 0.000 description 15
- 239000007774 positive electrode material Substances 0.000 description 15
- 150000003839 salts Chemical class 0.000 description 15
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 14
- 239000013078 crystal Substances 0.000 description 14
- 239000003792 electrolyte Substances 0.000 description 14
- 238000011156 evaluation Methods 0.000 description 14
- 230000008569 process Effects 0.000 description 14
- 239000002994 raw material Substances 0.000 description 14
- 238000007600 charging Methods 0.000 description 13
- 229910052759 nickel Inorganic materials 0.000 description 13
- 238000010298 pulverizing process Methods 0.000 description 13
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 12
- 238000004833 X-ray photoelectron spectroscopy Methods 0.000 description 12
- 239000003125 aqueous solvent Substances 0.000 description 12
- 230000000694 effects Effects 0.000 description 12
- 229910044991 metal oxide Inorganic materials 0.000 description 12
- 150000004706 metal oxides Chemical class 0.000 description 12
- 239000011255 nonaqueous electrolyte Substances 0.000 description 12
- 238000002360 preparation method Methods 0.000 description 12
- 239000002002 slurry Substances 0.000 description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 12
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 11
- 230000007423 decrease Effects 0.000 description 11
- 150000002500 ions Chemical class 0.000 description 11
- 229910003002 lithium salt Inorganic materials 0.000 description 11
- 159000000002 lithium salts Chemical class 0.000 description 11
- 239000011701 zinc Substances 0.000 description 11
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 10
- 238000004458 analytical method Methods 0.000 description 10
- 239000007789 gas Substances 0.000 description 10
- 239000011521 glass Substances 0.000 description 10
- 239000003973 paint Substances 0.000 description 10
- 239000007772 electrode material Substances 0.000 description 9
- 150000002148 esters Chemical class 0.000 description 9
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 9
- 229910001416 lithium ion Inorganic materials 0.000 description 9
- 229910052749 magnesium Inorganic materials 0.000 description 9
- 239000011812 mixed powder Substances 0.000 description 9
- 238000003756 stirring Methods 0.000 description 9
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 8
- 229910013870 LiPF 6 Inorganic materials 0.000 description 8
- 229910019142 PO4 Inorganic materials 0.000 description 8
- 239000002033 PVDF binder Substances 0.000 description 8
- 230000001351 cycling effect Effects 0.000 description 8
- 229910000484 niobium oxide Inorganic materials 0.000 description 8
- URLJKFSTXLNXLG-UHFFFAOYSA-N niobium(5+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Nb+5].[Nb+5] URLJKFSTXLNXLG-UHFFFAOYSA-N 0.000 description 8
- 235000021317 phosphate Nutrition 0.000 description 8
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 8
- 239000011148 porous material Substances 0.000 description 8
- 239000000126 substance Substances 0.000 description 8
- 229920000049 Carbon (fiber) Polymers 0.000 description 7
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 7
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 7
- 239000012298 atmosphere Substances 0.000 description 7
- 239000004917 carbon fiber Substances 0.000 description 7
- 229910052742 iron Inorganic materials 0.000 description 7
- 229910052748 manganese Inorganic materials 0.000 description 7
- 239000011572 manganese Substances 0.000 description 7
- 238000000465 moulding Methods 0.000 description 7
- 239000000758 substrate Substances 0.000 description 7
- 229910052725 zinc Inorganic materials 0.000 description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 6
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 6
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 6
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- NIPNSKYNPDTRPC-UHFFFAOYSA-N N-[2-oxo-2-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(CNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 NIPNSKYNPDTRPC-UHFFFAOYSA-N 0.000 description 6
- AFCARXCZXQIEQB-UHFFFAOYSA-N N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(CCNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 AFCARXCZXQIEQB-UHFFFAOYSA-N 0.000 description 6
- 229910010413 TiO 2 Inorganic materials 0.000 description 6
- 239000002585 base Substances 0.000 description 6
- 239000011575 calcium Substances 0.000 description 6
- 239000006229 carbon black Substances 0.000 description 6
- 235000019241 carbon black Nutrition 0.000 description 6
- 239000011248 coating agent Substances 0.000 description 6
- 239000011888 foil Substances 0.000 description 6
- 229910052733 gallium Inorganic materials 0.000 description 6
- 229910002804 graphite Inorganic materials 0.000 description 6
- 239000010439 graphite Substances 0.000 description 6
- 230000006872 improvement Effects 0.000 description 6
- 230000001965 increasing effect Effects 0.000 description 6
- 238000009830 intercalation Methods 0.000 description 6
- 229910001386 lithium phosphate Inorganic materials 0.000 description 6
- 229910052976 metal sulfide Inorganic materials 0.000 description 6
- 239000010935 stainless steel Substances 0.000 description 6
- 229910001220 stainless steel Inorganic materials 0.000 description 6
- 239000007858 starting material Substances 0.000 description 6
- 238000005211 surface analysis Methods 0.000 description 6
- TWQULNDIKKJZPH-UHFFFAOYSA-K trilithium;phosphate Chemical compound [Li+].[Li+].[Li+].[O-]P([O-])([O-])=O TWQULNDIKKJZPH-UHFFFAOYSA-K 0.000 description 6
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 5
- 239000006230 acetylene black Substances 0.000 description 5
- JQOREDBDOLZSJY-UHFFFAOYSA-H bis(2,2-dioxo-1,3,2,4-dioxathialumetan-4-yl) sulfate hexahydrate Chemical compound O.O.O.O.O.O.[Al+3].[Al+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O JQOREDBDOLZSJY-UHFFFAOYSA-H 0.000 description 5
- 229910052796 boron Inorganic materials 0.000 description 5
- 239000003990 capacitor Substances 0.000 description 5
- 229910052799 carbon Inorganic materials 0.000 description 5
- 239000002041 carbon nanotube Substances 0.000 description 5
- 229910021393 carbon nanotube Inorganic materials 0.000 description 5
- 238000000576 coating method Methods 0.000 description 5
- 229910017052 cobalt Inorganic materials 0.000 description 5
- 239000010941 cobalt Substances 0.000 description 5
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 5
- 239000010949 copper Substances 0.000 description 5
- 239000008151 electrolyte solution Substances 0.000 description 5
- 238000002149 energy-dispersive X-ray emission spectroscopy Methods 0.000 description 5
- NMHMDUCCVHOJQI-UHFFFAOYSA-N lithium molybdate Chemical compound [Li+].[Li+].[O-][Mo]([O-])(=O)=O NMHMDUCCVHOJQI-UHFFFAOYSA-N 0.000 description 5
- 230000007774 longterm Effects 0.000 description 5
- 239000011268 mixed slurry Substances 0.000 description 5
- JKQOBWVOAYFWKG-UHFFFAOYSA-N molybdenum trioxide Chemical compound O=[Mo](=O)=O JKQOBWVOAYFWKG-UHFFFAOYSA-N 0.000 description 5
- 239000003960 organic solvent Substances 0.000 description 5
- 239000008188 pellet Substances 0.000 description 5
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 5
- 229910052718 tin Inorganic materials 0.000 description 5
- 239000011135 tin Substances 0.000 description 5
- 229910052721 tungsten Inorganic materials 0.000 description 5
- ZZXUZKXVROWEIF-UHFFFAOYSA-N 1,2-butylene carbonate Chemical compound CCC1COC(=O)O1 ZZXUZKXVROWEIF-UHFFFAOYSA-N 0.000 description 4
- LWLOKSXSAUHTJO-UHFFFAOYSA-N 4,5-dimethyl-1,3-dioxolan-2-one Chemical compound CC1OC(=O)OC1C LWLOKSXSAUHTJO-UHFFFAOYSA-N 0.000 description 4
- 239000002227 LISICON Substances 0.000 description 4
- 229910018091 Li 2 S Inorganic materials 0.000 description 4
- 229910013063 LiBF 4 Inorganic materials 0.000 description 4
- 229910012258 LiPO Inorganic materials 0.000 description 4
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 4
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 4
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 4
- 150000001450 anions Chemical class 0.000 description 4
- 239000012300 argon atmosphere Substances 0.000 description 4
- 229910021383 artificial graphite Inorganic materials 0.000 description 4
- 229920001577 copolymer Polymers 0.000 description 4
- 229910052802 copper Inorganic materials 0.000 description 4
- 230000001186 cumulative effect Effects 0.000 description 4
- 238000009831 deintercalation Methods 0.000 description 4
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 4
- 238000007599 discharging Methods 0.000 description 4
- 238000001035 drying Methods 0.000 description 4
- 230000002708 enhancing effect Effects 0.000 description 4
- JBTWLSYIZRCDFO-UHFFFAOYSA-N ethyl methyl carbonate Chemical compound CCOC(=O)OC JBTWLSYIZRCDFO-UHFFFAOYSA-N 0.000 description 4
- 239000010408 film Substances 0.000 description 4
- 229910052738 indium Inorganic materials 0.000 description 4
- 238000002354 inductively-coupled plasma atomic emission spectroscopy Methods 0.000 description 4
- GLNWILHOFOBOFD-UHFFFAOYSA-N lithium sulfide Chemical compound [Li+].[Li+].[S-2] GLNWILHOFOBOFD-UHFFFAOYSA-N 0.000 description 4
- 230000014759 maintenance of location Effects 0.000 description 4
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 4
- 239000004570 mortar (masonry) Substances 0.000 description 4
- 229910021382 natural graphite Inorganic materials 0.000 description 4
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 4
- 239000010452 phosphate Substances 0.000 description 4
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 4
- 230000000704 physical effect Effects 0.000 description 4
- 239000004810 polytetrafluoroethylene Substances 0.000 description 4
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 4
- 238000000682 scanning probe acoustic microscopy Methods 0.000 description 4
- 229910052710 silicon Inorganic materials 0.000 description 4
- 239000002203 sulfidic glass Substances 0.000 description 4
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 4
- 229910052720 vanadium Inorganic materials 0.000 description 4
- 238000004876 x-ray fluorescence Methods 0.000 description 4
- 229910052726 zirconium Inorganic materials 0.000 description 4
- LDXJRKWFNNFDSA-UHFFFAOYSA-N 2-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)-1-[4-[2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidin-5-yl]piperazin-1-yl]ethanone Chemical compound C1CN(CC2=NNN=C21)CC(=O)N3CCN(CC3)C4=CN=C(N=C4)NCC5=CC(=CC=C5)OC(F)(F)F LDXJRKWFNNFDSA-UHFFFAOYSA-N 0.000 description 3
- WZFUQSJFWNHZHM-UHFFFAOYSA-N 2-[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]piperazin-1-yl]-1-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethanone Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)N1CCN(CC1)CC(=O)N1CC2=C(CC1)NN=N2 WZFUQSJFWNHZHM-UHFFFAOYSA-N 0.000 description 3
- FOLJHXWWJYUOJV-UHFFFAOYSA-N 4-ethynyl-1,3-dioxolan-2-one Chemical compound O=C1OCC(C#C)O1 FOLJHXWWJYUOJV-UHFFFAOYSA-N 0.000 description 3
- 229910013733 LiCo Inorganic materials 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- MKYBYDHXWVHEJW-UHFFFAOYSA-N N-[1-oxo-1-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propan-2-yl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(C(C)NC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 MKYBYDHXWVHEJW-UHFFFAOYSA-N 0.000 description 3
- 241000209094 Oryza Species 0.000 description 3
- 235000007164 Oryza sativa Nutrition 0.000 description 3
- 239000011324 bead Substances 0.000 description 3
- 229910052791 calcium Inorganic materials 0.000 description 3
- 239000003575 carbonaceous material Substances 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 239000004020 conductor Substances 0.000 description 3
- 238000007580 dry-mixing Methods 0.000 description 3
- 229940021013 electrolyte solution Drugs 0.000 description 3
- 238000001962 electrophoresis Methods 0.000 description 3
- 239000000835 fiber Substances 0.000 description 3
- 238000011049 filling Methods 0.000 description 3
- 229910052732 germanium Inorganic materials 0.000 description 3
- 150000004679 hydroxides Chemical class 0.000 description 3
- 238000009413 insulation Methods 0.000 description 3
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 3
- 235000019341 magnesium sulphate Nutrition 0.000 description 3
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 3
- RCIJMMSZBQEWKW-UHFFFAOYSA-N methyl propan-2-yl carbonate Chemical compound COC(=O)OC(C)C RCIJMMSZBQEWKW-UHFFFAOYSA-N 0.000 description 3
- KKQAVHGECIBFRQ-UHFFFAOYSA-N methyl propyl carbonate Chemical compound CCCOC(=O)OC KKQAVHGECIBFRQ-UHFFFAOYSA-N 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 239000012071 phase Substances 0.000 description 3
- 238000003825 pressing Methods 0.000 description 3
- 235000009566 rice Nutrition 0.000 description 3
- 238000005245 sintering Methods 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 238000001179 sorption measurement Methods 0.000 description 3
- 238000001228 spectrum Methods 0.000 description 3
- 229910052712 strontium Inorganic materials 0.000 description 3
- VAYTZRYEBVHVLE-UHFFFAOYSA-N 1,3-dioxol-2-one Chemical compound O=C1OC=CO1 VAYTZRYEBVHVLE-UHFFFAOYSA-N 0.000 description 2
- BJWMSGRKJIOCNR-UHFFFAOYSA-N 4-ethenyl-1,3-dioxolan-2-one Chemical compound C=CC1COC(=O)O1 BJWMSGRKJIOCNR-UHFFFAOYSA-N 0.000 description 2
- SBLRHMKNNHXPHG-UHFFFAOYSA-N 4-fluoro-1,3-dioxolan-2-one Chemical compound FC1COC(=O)O1 SBLRHMKNNHXPHG-UHFFFAOYSA-N 0.000 description 2
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- BTBUEUYNUDRHOZ-UHFFFAOYSA-N Borate Chemical compound [O-]B([O-])[O-] BTBUEUYNUDRHOZ-UHFFFAOYSA-N 0.000 description 2
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 2
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- 229910005228 Ga2S3 Inorganic materials 0.000 description 2
- 229910005842 GeS2 Inorganic materials 0.000 description 2
- 229910000846 In alloy Inorganic materials 0.000 description 2
- 229910019271 La0.55Li0.35TiO3 Inorganic materials 0.000 description 2
- 229910018092 Li 2 S-Al 2 S 3 Inorganic materials 0.000 description 2
- 229910018133 Li 2 S-SiS 2 Inorganic materials 0.000 description 2
- 229910018119 Li 3 PO 4 Inorganic materials 0.000 description 2
- 229910001216 Li2S Inorganic materials 0.000 description 2
- 229910009293 Li2S-GeS2-Ga2S3 Inorganic materials 0.000 description 2
- 229910009290 Li2S-GeS2-P2S5 Inorganic materials 0.000 description 2
- 229910009331 Li2S-SiS2-P2S5 Inorganic materials 0.000 description 2
- 229910009353 Li2S—GeS2—Al2S3 Inorganic materials 0.000 description 2
- 229910009108 Li2S—GeS2—Ga2S3 Inorganic materials 0.000 description 2
- 229910009110 Li2S—GeS2—P2S5 Inorganic materials 0.000 description 2
- 229910009102 Li2S—GeS2—Sb2S5 Inorganic materials 0.000 description 2
- 229910007282 Li2S—SiS2—Al2S3 Inorganic materials 0.000 description 2
- 229910007298 Li2S—SiS2—P2S5 Inorganic materials 0.000 description 2
- 229910012323 Li3.5Zn0.25GeO4 Inorganic materials 0.000 description 2
- 229910012735 LiCo1/3Ni1/3Mn1/3O2 Inorganic materials 0.000 description 2
- 229910012851 LiCoO 2 Inorganic materials 0.000 description 2
- 229910032387 LiCoO2 Inorganic materials 0.000 description 2
- 229910011281 LiCoPO 4 Inorganic materials 0.000 description 2
- 229910010707 LiFePO 4 Inorganic materials 0.000 description 2
- 229910015643 LiMn 2 O 4 Inorganic materials 0.000 description 2
- 229910014395 LiNi1/2Mn3/2O4 Inorganic materials 0.000 description 2
- 229910013290 LiNiO 2 Inorganic materials 0.000 description 2
- 229910003005 LiNiO2 Inorganic materials 0.000 description 2
- 229910013086 LiNiPO Inorganic materials 0.000 description 2
- 229910013872 LiPF Inorganic materials 0.000 description 2
- 229910013884 LiPF3 Inorganic materials 0.000 description 2
- 229910012305 LiPON Inorganic materials 0.000 description 2
- 229910012465 LiTi Inorganic materials 0.000 description 2
- 101150058243 Lipf gene Proteins 0.000 description 2
- 229910002097 Lithium manganese(III,IV) oxide Inorganic materials 0.000 description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 2
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 2
- RJUFJBKOKNCXHH-UHFFFAOYSA-N Methyl propionate Chemical compound CCC(=O)OC RJUFJBKOKNCXHH-UHFFFAOYSA-N 0.000 description 2
- 229910017299 Mo—O Inorganic materials 0.000 description 2
- VCUFZILGIRCDQQ-KRWDZBQOSA-N N-[[(5S)-2-oxo-3-(2-oxo-3H-1,3-benzoxazol-6-yl)-1,3-oxazolidin-5-yl]methyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C1O[C@H](CN1C1=CC2=C(NC(O2)=O)C=C1)CNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F VCUFZILGIRCDQQ-KRWDZBQOSA-N 0.000 description 2
- 239000002228 NASICON Substances 0.000 description 2
- 241000156302 Porcine hemagglutinating encephalomyelitis virus Species 0.000 description 2
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 2
- 238000003991 Rietveld refinement Methods 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- KEAYESYHFKHZAL-UHFFFAOYSA-N Sodium Chemical compound [Na] KEAYESYHFKHZAL-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 2
- KXKVLQRXCPHEJC-UHFFFAOYSA-N acetic acid trimethyl ester Natural products COC(C)=O KXKVLQRXCPHEJC-UHFFFAOYSA-N 0.000 description 2
- 125000002947 alkylene group Chemical group 0.000 description 2
- DIZPMCHEQGEION-UHFFFAOYSA-H aluminium sulfate (anhydrous) Chemical compound [Al+3].[Al+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O DIZPMCHEQGEION-UHFFFAOYSA-H 0.000 description 2
- TYYRFZAVEXQXSN-UHFFFAOYSA-H aluminium sulfate hexadecahydrate Chemical compound O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.[Al+3].[Al+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O TYYRFZAVEXQXSN-UHFFFAOYSA-H 0.000 description 2
- VSCWAEJMTAWNJL-UHFFFAOYSA-K aluminium trichloride Chemical compound Cl[Al](Cl)Cl VSCWAEJMTAWNJL-UHFFFAOYSA-K 0.000 description 2
- 150000003863 ammonium salts Chemical class 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- FWBMVXOCTXTBAD-UHFFFAOYSA-N butyl methyl carbonate Chemical compound CCCCOC(=O)OC FWBMVXOCTXTBAD-UHFFFAOYSA-N 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 239000002134 carbon nanofiber Substances 0.000 description 2
- 150000001768 cations Chemical class 0.000 description 2
- HSJPMRKMPBAUAU-UHFFFAOYSA-N cerium(3+);trinitrate Chemical compound [Ce+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O HSJPMRKMPBAUAU-UHFFFAOYSA-N 0.000 description 2
- OZECDDHOAMNMQI-UHFFFAOYSA-H cerium(3+);trisulfate Chemical compound [Ce+3].[Ce+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O OZECDDHOAMNMQI-UHFFFAOYSA-H 0.000 description 2
- 239000006231 channel black Substances 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 150000001805 chlorine compounds Chemical class 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 239000000571 coke Substances 0.000 description 2
- 238000002485 combustion reaction Methods 0.000 description 2
- 238000010280 constant potential charging Methods 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 239000002178 crystalline material Substances 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 2
- 238000004993 emission spectroscopy Methods 0.000 description 2
- 238000004146 energy storage Methods 0.000 description 2
- FKRCODPIKNYEAC-UHFFFAOYSA-N ethyl propionate Chemical compound CCOC(=O)CC FKRCODPIKNYEAC-UHFFFAOYSA-N 0.000 description 2
- 150000002222 fluorine compounds Chemical class 0.000 description 2
- 239000006260 foam Substances 0.000 description 2
- 239000006232 furnace black Substances 0.000 description 2
- 239000002223 garnet Substances 0.000 description 2
- 239000002241 glass-ceramic Substances 0.000 description 2
- 238000005469 granulation Methods 0.000 description 2
- 230000003179 granulation Effects 0.000 description 2
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical compound [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 description 2
- LHJOPRPDWDXEIY-UHFFFAOYSA-N indium lithium Chemical compound [Li].[In] LHJOPRPDWDXEIY-UHFFFAOYSA-N 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- 238000009616 inductively coupled plasma Methods 0.000 description 2
- 230000002687 intercalation Effects 0.000 description 2
- 239000003273 ketjen black Substances 0.000 description 2
- 238000004898 kneading Methods 0.000 description 2
- 150000002596 lactones Chemical class 0.000 description 2
- 239000006233 lamp black Substances 0.000 description 2
- AMXOYNBUYSYVKV-UHFFFAOYSA-M lithium bromide Chemical compound [Li+].[Br-] AMXOYNBUYSYVKV-UHFFFAOYSA-M 0.000 description 2
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical compound [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 description 2
- PQXKHYXIUOZZFA-UHFFFAOYSA-M lithium fluoride Chemical compound [Li+].[F-] PQXKHYXIUOZZFA-UHFFFAOYSA-M 0.000 description 2
- YIXJRHPUWRPCBB-UHFFFAOYSA-N magnesium nitrate Chemical compound [Mg+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O YIXJRHPUWRPCBB-UHFFFAOYSA-N 0.000 description 2
- 239000000395 magnesium oxide Substances 0.000 description 2
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 2
- 235000012245 magnesium oxide Nutrition 0.000 description 2
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 2
- 238000003701 mechanical milling Methods 0.000 description 2
- 229940017219 methyl propionate Drugs 0.000 description 2
- CWQXQMHSOZUFJS-UHFFFAOYSA-N molybdenum disulfide Chemical compound S=[Mo]=S CWQXQMHSOZUFJS-UHFFFAOYSA-N 0.000 description 2
- PDKHNCYLMVRIFV-UHFFFAOYSA-H molybdenum;hexachloride Chemical compound [Cl-].[Cl-].[Cl-].[Cl-].[Cl-].[Cl-].[Mo] PDKHNCYLMVRIFV-UHFFFAOYSA-H 0.000 description 2
- ZKATWMILCYLAPD-UHFFFAOYSA-N niobium pentoxide Inorganic materials O=[Nb](=O)O[Nb](=O)=O ZKATWMILCYLAPD-UHFFFAOYSA-N 0.000 description 2
- 150000002823 nitrates Chemical class 0.000 description 2
- 150000002825 nitriles Chemical class 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 239000004745 nonwoven fabric Substances 0.000 description 2
- 150000002894 organic compounds Chemical class 0.000 description 2
- 239000005486 organic electrolyte Substances 0.000 description 2
- 229920000620 organic polymer Polymers 0.000 description 2
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 125000004430 oxygen atom Chemical group O* 0.000 description 2
- 239000000123 paper Substances 0.000 description 2
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 2
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 2
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 2
- 238000000634 powder X-ray diffraction Methods 0.000 description 2
- 239000002296 pyrolytic carbon Substances 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 150000003377 silicon compounds Chemical class 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 235000012239 silicon dioxide Nutrition 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 229910001415 sodium ion Inorganic materials 0.000 description 2
- TVXXNOYZHKPKGW-UHFFFAOYSA-N sodium molybdate (anhydrous) Chemical compound [Na+].[Na+].[O-][Mo]([O-])(=O)=O TVXXNOYZHKPKGW-UHFFFAOYSA-N 0.000 description 2
- 229910052979 sodium sulfide Inorganic materials 0.000 description 2
- GRVFOGOEDUUMBP-UHFFFAOYSA-N sodium sulfide (anhydrous) Chemical compound [Na+].[Na+].[S-2] GRVFOGOEDUUMBP-UHFFFAOYSA-N 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 2
- 239000002226 superionic conductor Substances 0.000 description 2
- 230000001629 suppression Effects 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 239000006234 thermal black Substances 0.000 description 2
- 150000003606 tin compounds Chemical class 0.000 description 2
- 238000002834 transmittance Methods 0.000 description 2
- GXZZNUGESLEFGV-UHFFFAOYSA-N trioxomolybdenum;hydrate Chemical compound O.O=[Mo](=O)=O GXZZNUGESLEFGV-UHFFFAOYSA-N 0.000 description 2
- 238000004846 x-ray emission Methods 0.000 description 2
- BNGXYYYYKUGPPF-UHFFFAOYSA-M (3-methylphenyl)methyl-triphenylphosphanium;chloride Chemical compound [Cl-].CC1=CC=CC(C[P+](C=2C=CC=CC=2)(C=2C=CC=CC=2)C=2C=CC=CC=2)=C1 BNGXYYYYKUGPPF-UHFFFAOYSA-M 0.000 description 1
- QIJNJJZPYXGIQM-UHFFFAOYSA-N 1lambda4,2lambda4-dimolybdacyclopropa-1,2,3-triene Chemical compound [Mo]=C=[Mo] QIJNJJZPYXGIQM-UHFFFAOYSA-N 0.000 description 1
- IRPGOXJVTQTAAN-UHFFFAOYSA-N 2,2,3,3,3-pentafluoropropanal Chemical compound FC(F)(F)C(F)(F)C=O IRPGOXJVTQTAAN-UHFFFAOYSA-N 0.000 description 1
- VUAXHMVRKOTJKP-UHFFFAOYSA-M 2,2-dimethylbutanoate Chemical compound CCC(C)(C)C([O-])=O VUAXHMVRKOTJKP-UHFFFAOYSA-M 0.000 description 1
- UHOPWFKONJYLCF-UHFFFAOYSA-N 2-(2-sulfanylethyl)isoindole-1,3-dione Chemical compound C1=CC=C2C(=O)N(CCS)C(=O)C2=C1 UHOPWFKONJYLCF-UHFFFAOYSA-N 0.000 description 1
- IHCCLXNEEPMSIO-UHFFFAOYSA-N 2-[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]piperidin-1-yl]-1-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethanone Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C1CCN(CC1)CC(=O)N1CC2=C(CC1)NN=N2 IHCCLXNEEPMSIO-UHFFFAOYSA-N 0.000 description 1
- KLZUFWVZNOTSEM-UHFFFAOYSA-K Aluminum fluoride Inorganic materials F[Al](F)F KLZUFWVZNOTSEM-UHFFFAOYSA-K 0.000 description 1
- 229910011255 B2O3 Inorganic materials 0.000 description 1
- 229910015186 B2S3 Inorganic materials 0.000 description 1
- 229910004261 CaF 2 Inorganic materials 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229920002943 EPDM rubber Polymers 0.000 description 1
- 241000709691 Enterovirus E Species 0.000 description 1
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- 229910005839 GeS 2 Inorganic materials 0.000 description 1
- 229910011131 Li2B4O7 Inorganic materials 0.000 description 1
- 229910010171 Li2MoO4 Inorganic materials 0.000 description 1
- 229910007562 Li2SiO3 Inorganic materials 0.000 description 1
- 229910007407 Li2Ti2O5 Inorganic materials 0.000 description 1
- 229910007848 Li2TiO3 Inorganic materials 0.000 description 1
- 229910007786 Li2WO4 Inorganic materials 0.000 description 1
- 229910007822 Li2ZrO3 Inorganic materials 0.000 description 1
- 229910002986 Li4Ti5O12 Inorganic materials 0.000 description 1
- 229910010092 LiAlO2 Inorganic materials 0.000 description 1
- 229910013178 LiBO2 Inorganic materials 0.000 description 1
- 229910013375 LiC Inorganic materials 0.000 description 1
- 229910000552 LiCF3SO3 Inorganic materials 0.000 description 1
- 229910011570 LiFe 1-x Inorganic materials 0.000 description 1
- 229910052493 LiFePO4 Inorganic materials 0.000 description 1
- 229910015118 LiMO Inorganic materials 0.000 description 1
- 229910000668 LiMnPO4 Inorganic materials 0.000 description 1
- 229910013385 LiN(SO2C2F5)2 Inorganic materials 0.000 description 1
- 229910003327 LiNbO3 Inorganic materials 0.000 description 1
- 229910012748 LiNi0.5Mn0.3Co0.2O2 Inorganic materials 0.000 description 1
- 229910002995 LiNi0.8Co0.15Al0.05O2 Inorganic materials 0.000 description 1
- 229910015965 LiNi0.8Mn0.1Co0.1O2 Inorganic materials 0.000 description 1
- 229910013880 LiPF4 Inorganic materials 0.000 description 1
- 229910012463 LiTaO3 Inorganic materials 0.000 description 1
- 229910039444 MoC Inorganic materials 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 229910016323 MxSy Inorganic materials 0.000 description 1
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 1
- 229910004600 P2S5 Inorganic materials 0.000 description 1
- 239000005062 Polybutadiene Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 229910020343 SiS2 Inorganic materials 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- JAWMENYCRQKKJY-UHFFFAOYSA-N [3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-ylmethyl)-1-oxa-2,8-diazaspiro[4.5]dec-2-en-8-yl]-[2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidin-5-yl]methanone Chemical compound N1N=NC=2CN(CCC=21)CC1=NOC2(C1)CCN(CC2)C(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F JAWMENYCRQKKJY-UHFFFAOYSA-N 0.000 description 1
- OBOYOXRQUWVUFU-UHFFFAOYSA-N [O-2].[Ti+4].[Nb+5] Chemical compound [O-2].[Ti+4].[Nb+5] OBOYOXRQUWVUFU-UHFFFAOYSA-N 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- HDYRYUINDGQKMC-UHFFFAOYSA-M acetyloxyaluminum;dihydrate Chemical compound O.O.CC(=O)O[Al] HDYRYUINDGQKMC-UHFFFAOYSA-M 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- ILRRQNADMUWWFW-UHFFFAOYSA-K aluminium phosphate Chemical compound O1[Al]2OP1(=O)O2 ILRRQNADMUWWFW-UHFFFAOYSA-K 0.000 description 1
- 229940009827 aluminum acetate Drugs 0.000 description 1
- FOJJCOHOLNJIHE-UHFFFAOYSA-N aluminum;azane Chemical compound N.[Al+3] FOJJCOHOLNJIHE-UHFFFAOYSA-N 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- MXZRMHIULZDAKC-UHFFFAOYSA-L ammonium magnesium phosphate Chemical compound [NH4+].[Mg+2].[O-]P([O-])([O-])=O MXZRMHIULZDAKC-UHFFFAOYSA-L 0.000 description 1
- APUPEJJSWDHEBO-UHFFFAOYSA-P ammonium molybdate Chemical compound [NH4+].[NH4+].[O-][Mo]([O-])(=O)=O APUPEJJSWDHEBO-UHFFFAOYSA-P 0.000 description 1
- 239000011609 ammonium molybdate Substances 0.000 description 1
- 235000018660 ammonium molybdate Nutrition 0.000 description 1
- 229940010552 ammonium molybdate Drugs 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- YXTPWUNVHCYOSP-UHFFFAOYSA-N bis($l^{2}-silanylidene)molybdenum Chemical compound [Si]=[Mo]=[Si] YXTPWUNVHCYOSP-UHFFFAOYSA-N 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- LGLOITKZTDVGOE-UHFFFAOYSA-N boranylidynemolybdenum Chemical compound [Mo]#B LGLOITKZTDVGOE-UHFFFAOYSA-N 0.000 description 1
- 229920005549 butyl rubber Polymers 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- WUKWITHWXAAZEY-UHFFFAOYSA-L calcium difluoride Chemical compound [F-].[F-].[Ca+2] WUKWITHWXAAZEY-UHFFFAOYSA-L 0.000 description 1
- 229910001634 calcium fluoride Inorganic materials 0.000 description 1
- BIOOACNPATUQFW-UHFFFAOYSA-N calcium;dioxido(dioxo)molybdenum Chemical compound [Ca+2].[O-][Mo]([O-])(=O)=O BIOOACNPATUQFW-UHFFFAOYSA-N 0.000 description 1
- 150000001733 carboxylic acid esters Chemical class 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- GWXLDORMOJMVQZ-UHFFFAOYSA-N cerium Chemical compound [Ce] GWXLDORMOJMVQZ-UHFFFAOYSA-N 0.000 description 1
- 229960001759 cerium oxalate Drugs 0.000 description 1
- 229910000420 cerium oxide Inorganic materials 0.000 description 1
- VYLVYHXQOHJDJL-UHFFFAOYSA-K cerium trichloride Chemical compound Cl[Ce](Cl)Cl VYLVYHXQOHJDJL-UHFFFAOYSA-K 0.000 description 1
- ZMZNLKYXLARXFY-UHFFFAOYSA-H cerium(3+);oxalate Chemical compound [Ce+3].[Ce+3].[O-]C(=O)C([O-])=O.[O-]C(=O)C([O-])=O.[O-]C(=O)C([O-])=O ZMZNLKYXLARXFY-UHFFFAOYSA-H 0.000 description 1
- TYAVIWGEVOBWDZ-UHFFFAOYSA-K cerium(3+);phosphate Chemical compound [Ce+3].[O-]P([O-])([O-])=O TYAVIWGEVOBWDZ-UHFFFAOYSA-K 0.000 description 1
- VGBWDOLBWVJTRZ-UHFFFAOYSA-K cerium(3+);triacetate Chemical compound [Ce+3].CC([O-])=O.CC([O-])=O.CC([O-])=O VGBWDOLBWVJTRZ-UHFFFAOYSA-K 0.000 description 1
- GHLITDDQOMIBFS-UHFFFAOYSA-H cerium(3+);tricarbonate Chemical compound [Ce+3].[Ce+3].[O-]C([O-])=O.[O-]C([O-])=O.[O-]C([O-])=O GHLITDDQOMIBFS-UHFFFAOYSA-H 0.000 description 1
- QCCDYNYSHILRDG-UHFFFAOYSA-K cerium(3+);trifluoride Chemical compound [F-].[F-].[F-].[Ce+3] QCCDYNYSHILRDG-UHFFFAOYSA-K 0.000 description 1
- MEXSQFDSPVYJOM-UHFFFAOYSA-J cerium(4+);disulfate;tetrahydrate Chemical compound O.O.O.O.[Ce+4].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O MEXSQFDSPVYJOM-UHFFFAOYSA-J 0.000 description 1
- UNJPQTDTZAKTFK-UHFFFAOYSA-K cerium(iii) hydroxide Chemical compound [OH-].[OH-].[OH-].[Ce+3] UNJPQTDTZAKTFK-UHFFFAOYSA-K 0.000 description 1
- 230000005591 charge neutralization Effects 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 229920001940 conductive polymer Polymers 0.000 description 1
- 238000010277 constant-current charging Methods 0.000 description 1
- 238000010281 constant-current constant-voltage charging Methods 0.000 description 1
- 229910052593 corundum Inorganic materials 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 239000013530 defoamer Substances 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- QLVWOKQMDLQXNN-UHFFFAOYSA-N dibutyl carbonate Chemical compound CCCCOC(=O)OCCCC QLVWOKQMDLQXNN-UHFFFAOYSA-N 0.000 description 1
- VUPKGFBOKBGHFZ-UHFFFAOYSA-N dipropyl carbonate Chemical compound CCCOC(=O)OCCC VUPKGFBOKBGHFZ-UHFFFAOYSA-N 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- HHEIMYAXCOIQCJ-UHFFFAOYSA-N ethyl 2,2-dimethylpropanoate Chemical compound CCOC(=O)C(C)(C)C HHEIMYAXCOIQCJ-UHFFFAOYSA-N 0.000 description 1
- CYEDOLFRAIXARV-UHFFFAOYSA-N ethyl propyl carbonate Chemical compound CCCOC(=O)OCC CYEDOLFRAIXARV-UHFFFAOYSA-N 0.000 description 1
- MJEMIOXXNCZZFK-UHFFFAOYSA-N ethylone Chemical compound CCNC(C)C(=O)C1=CC=C2OCOC2=C1 MJEMIOXXNCZZFK-UHFFFAOYSA-N 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 229910000373 gallium sulfate Inorganic materials 0.000 description 1
- SBDRYJMIQMDXRH-UHFFFAOYSA-N gallium;sulfuric acid Chemical compound [Ga].OS(O)(=O)=O SBDRYJMIQMDXRH-UHFFFAOYSA-N 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 229910000337 indium(III) sulfate Inorganic materials 0.000 description 1
- XGCKLPDYTQRDTR-UHFFFAOYSA-H indium(iii) sulfate Chemical compound [In+3].[In+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O XGCKLPDYTQRDTR-UHFFFAOYSA-H 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 230000010220 ion permeability Effects 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- XGZVUEUWXADBQD-UHFFFAOYSA-L lithium carbonate Chemical compound [Li+].[Li+].[O-]C([O-])=O XGZVUEUWXADBQD-UHFFFAOYSA-L 0.000 description 1
- 229910052808 lithium carbonate Inorganic materials 0.000 description 1
- HSZCZNFXUDYRKD-UHFFFAOYSA-M lithium iodide Inorganic materials [Li+].[I-] HSZCZNFXUDYRKD-UHFFFAOYSA-M 0.000 description 1
- FUJCRWPEOMXPAD-UHFFFAOYSA-N lithium oxide Chemical compound [Li+].[Li+].[O-2] FUJCRWPEOMXPAD-UHFFFAOYSA-N 0.000 description 1
- 229910001947 lithium oxide Inorganic materials 0.000 description 1
- UEGPKNKPLBYCNK-UHFFFAOYSA-L magnesium acetate Chemical compound [Mg+2].CC([O-])=O.CC([O-])=O UEGPKNKPLBYCNK-UHFFFAOYSA-L 0.000 description 1
- 239000011654 magnesium acetate Substances 0.000 description 1
- 235000011285 magnesium acetate Nutrition 0.000 description 1
- 229940069446 magnesium acetate Drugs 0.000 description 1
- 229910001629 magnesium chloride Inorganic materials 0.000 description 1
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical compound [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 description 1
- ORUIBWPALBXDOA-UHFFFAOYSA-L magnesium fluoride Chemical compound [F-].[F-].[Mg+2] ORUIBWPALBXDOA-UHFFFAOYSA-L 0.000 description 1
- 229910001635 magnesium fluoride Inorganic materials 0.000 description 1
- 239000000347 magnesium hydroxide Substances 0.000 description 1
- 229910001862 magnesium hydroxide Inorganic materials 0.000 description 1
- 235000012254 magnesium hydroxide Nutrition 0.000 description 1
- GVALZJMUIHGIMD-UHFFFAOYSA-H magnesium phosphate Chemical compound [Mg+2].[Mg+2].[Mg+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O GVALZJMUIHGIMD-UHFFFAOYSA-H 0.000 description 1
- 239000004137 magnesium phosphate Substances 0.000 description 1
- 229910000157 magnesium phosphate Inorganic materials 0.000 description 1
- 229960002261 magnesium phosphate Drugs 0.000 description 1
- 235000010994 magnesium phosphates Nutrition 0.000 description 1
- MODMKKOKHKJFHJ-UHFFFAOYSA-N magnesium;dioxido(dioxo)molybdenum Chemical compound [Mg+2].[O-][Mo]([O-])(=O)=O MODMKKOKHKJFHJ-UHFFFAOYSA-N 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000007578 melt-quenching technique Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 150000002736 metal compounds Chemical class 0.000 description 1
- PQIOSYKVBBWRRI-UHFFFAOYSA-N methylphosphonyl difluoride Chemical group CP(F)(F)=O PQIOSYKVBBWRRI-UHFFFAOYSA-N 0.000 description 1
- MEFBJEMVZONFCJ-UHFFFAOYSA-N molybdate Chemical compound [O-][Mo]([O-])(=O)=O MEFBJEMVZONFCJ-UHFFFAOYSA-N 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 229910021343 molybdenum disilicide Inorganic materials 0.000 description 1
- 229910000476 molybdenum oxide Inorganic materials 0.000 description 1
- TXCOQXKFOPSCPZ-UHFFFAOYSA-J molybdenum(4+);tetraacetate Chemical class [Mo+4].CC([O-])=O.CC([O-])=O.CC([O-])=O.CC([O-])=O TXCOQXKFOPSCPZ-UHFFFAOYSA-J 0.000 description 1
- 239000002048 multi walled nanotube Substances 0.000 description 1
- QHMGFQBUOCYLDT-RNFRBKRXSA-N n-(diaminomethylidene)-2-[(2r,5r)-2,5-dimethyl-2,5-dihydropyrrol-1-yl]acetamide Chemical compound C[C@@H]1C=C[C@@H](C)N1CC(=O)N=C(N)N QHMGFQBUOCYLDT-RNFRBKRXSA-N 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- BMMGVYCKOGBVEV-UHFFFAOYSA-N oxo(oxoceriooxy)cerium Chemical compound [Ce]=O.O=[Ce]=O BMMGVYCKOGBVEV-UHFFFAOYSA-N 0.000 description 1
- PQQKPALAQIIWST-UHFFFAOYSA-N oxomolybdenum Chemical compound [Mo]=O PQQKPALAQIIWST-UHFFFAOYSA-N 0.000 description 1
- 150000003014 phosphoric acid esters Chemical class 0.000 description 1
- DHRLEVQXOMLTIM-UHFFFAOYSA-N phosphoric acid;trioxomolybdenum Chemical compound O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.OP(O)(O)=O DHRLEVQXOMLTIM-UHFFFAOYSA-N 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- CYQAYERJWZKYML-UHFFFAOYSA-N phosphorus pentasulfide Chemical compound S1P(S2)(=S)SP3(=S)SP1(=S)SP2(=S)S3 CYQAYERJWZKYML-UHFFFAOYSA-N 0.000 description 1
- IUGYQRQAERSCNH-UHFFFAOYSA-N pivalic acid Chemical class CC(C)(C)C(O)=O IUGYQRQAERSCNH-UHFFFAOYSA-N 0.000 description 1
- 229920002857 polybutadiene Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- DPLVEEXVKBWGHE-UHFFFAOYSA-N potassium sulfide Chemical compound [S-2].[K+].[K+] DPLVEEXVKBWGHE-UHFFFAOYSA-N 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- QMKUYPGVVVLYSR-UHFFFAOYSA-N propyl 2,2-dimethylpropanoate Chemical compound CCCOC(=O)C(C)(C)C QMKUYPGVVVLYSR-UHFFFAOYSA-N 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000005060 rubber Substances 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 229920002050 silicone resin Polymers 0.000 description 1
- 229920002379 silicone rubber Polymers 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011684 sodium molybdate Substances 0.000 description 1
- 235000015393 sodium molybdate Nutrition 0.000 description 1
- 238000003980 solgel method Methods 0.000 description 1
- 238000010532 solid phase synthesis reaction Methods 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 229910052567 struvite Inorganic materials 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 150000004763 sulfides Chemical class 0.000 description 1
- 150000003457 sulfones Chemical class 0.000 description 1
- 125000004434 sulfur atom Chemical group 0.000 description 1
- WQSRXNAKUYIVET-UHFFFAOYSA-N sulfuric acid;zinc Chemical compound [Zn].OS(O)(=O)=O WQSRXNAKUYIVET-UHFFFAOYSA-N 0.000 description 1
- 150000005687 symmetric chain carbonates Chemical class 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
- 125000001889 triflyl group Chemical group FC(F)(F)S(*)(=O)=O 0.000 description 1
- RIUWBIIVUYSTCN-UHFFFAOYSA-N trilithium borate Chemical compound [Li+].[Li+].[Li+].[O-]B([O-])[O-] RIUWBIIVUYSTCN-UHFFFAOYSA-N 0.000 description 1
- 238000011179 visual inspection Methods 0.000 description 1
- 229910001845 yogo sapphire Inorganic materials 0.000 description 1
- 238000000733 zeta-potential measurement Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G33/00—Compounds of niobium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/22—Electrodes
- H01G11/30—Electrodes characterised by their material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/22—Electrodes
- H01G11/30—Electrodes characterised by their material
- H01G11/46—Metal oxides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0561—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
- H01M10/0562—Solid materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/131—Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/139—Processes of manufacture
- H01M4/1391—Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
- H01M4/366—Composites as layered products
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/485—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/50—Solid solutions
- C01P2002/52—Solid solutions containing elements as dopants
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/50—Solid solutions
- C01P2002/52—Solid solutions containing elements as dopants
- C01P2002/54—Solid solutions containing elements as dopants one element only
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/70—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/80—Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
- C01P2002/85—Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by XPS, EDX or EDAX data
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/30—Particle morphology extending in three dimensions
- C01P2004/45—Aggregated particles or particles with an intergrown morphology
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/51—Particles with a specific particle size distribution
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/54—Particles characterised by their aspect ratio, i.e. the ratio of sizes in the longest to the shortest dimension
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/61—Micrometer sized, i.e. from 1-100 micrometer
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/62—Submicrometer sized, i.e. from 0.1-1 micrometer
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/80—Particles consisting of a mixture of two or more inorganic phases
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/12—Surface area
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/40—Electric properties
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/027—Negative electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2220/00—Batteries for particular applications
- H01M2220/20—Batteries in motive systems, e.g. vehicle, ship, plane
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0065—Solid electrolytes
- H01M2300/0068—Solid electrolytes inorganic
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to a niobium-containing oxide powder suitable as an electrode material for an electric storage device, an electrode using the same, an electric storage device, a negative electrode active material composition, and an all-solid secondary battery.
- lithium titanate is attracting attention as an active material for electric storage devices for electric vehicles such as HEV, PHEV, and BEV because of its excellent input/output characteristics especially in a low temperature region when used as an active material. .
- Electricity storage devices for electric vehicles are required to have high energy density from the perspective of improving fuel efficiency or electricity consumption.
- lithium titanate has excellent input/output characteristics, the energy density remains at 175 mAh/g, so there remains a problem in further increasing the energy. Therefore, as an alternative candidate, there is a movement to utilize niobium-containing oxides, mainly niobium titanate, which has a high energy density of 380 mAh/g, as a negative electrode material.
- Patent Document 1 A x TiM y Nb 2-y O 7 ⁇ z (0 ⁇ x ⁇ 5, 0 ⁇ y ⁇ 0.5, ⁇ 0.3 ⁇ z ⁇ 0.3, M is other than Ti and Nb A is Li or Na, and M is at least one metal selected from the group consisting of Mg, Al, V, Fe, Mo, Sn and W).
- a niobium titanium composite oxide is disclosed. According to Patent Document 1, it is possible to provide an active material having a high capacity, large current discharge performance, and excellent cycle life performance when applied as an electrode material for an electricity storage device.
- Patent Document 2 monoclinic niobium-titanium composite oxide particles capable of occluding and releasing Li ions, and at least a part of the surface of the niobium-titanium composite oxide particles coated with Fe, Co and Ni
- Lithium titanate has attracted attention for maintaining a good interface between the active material and the solid electrolyte. Lithium titanate is expected to maintain the interface between the active material and the solid electrolyte for a long period of time during charge/discharge because the volume change due to charging/discharging is very small.
- lithium titanate has excellent input/output characteristics, the energy density remains at 175 mAh/g, so there remains a problem in further increasing the energy.
- Patent Document 3 discloses a sulfide solid electrolyte and a general formula Ti 1 ⁇ ⁇ Nb 2 ⁇ ⁇ O 7 ⁇ ⁇ in which D 50 ( ⁇ m)/BET (m 2 /g) is 0.005 or more and 5.0 or less.
- An electrode mixture containing the niobium-titanium composite oxide represented is disclosed. According to Patent Document 3, it is disclosed that excellent charge/discharge efficiency can be obtained when applied as an electrode mixture of a solid battery.
- the energy storage devices using the negative electrode active materials and electrodes of Patent Documents 1 and 2 cannot simultaneously improve the energy density, improve the cycle performance and discharge rate characteristics, and reduce the resistance in the low temperature range. .
- a niobium-containing oxide powder and a negative electrode active material that can be used as a negative electrode material for an all-solid secondary battery and can greatly improve battery characteristics, particularly initial discharge capacity, initial efficiency, and charge rate characteristics.
- An object of the present invention is to provide a composition and an all-solid secondary battery containing the composition.
- a niobium-containing oxide powder that can be used as an electrode material for an electricity storage device, has excellent discharge rate characteristics and cycle characteristics, and can suppress an increase in resistance after cycles,
- An object of the present invention is to provide an electrode using the and an electricity storage device.
- the present inventors conducted various studies to achieve the object of the first aspect, and found that when a niobium-containing oxide powder is used as a negative electrode active material for an all-solid secondary battery, the solid electrolyte and the niobium-containing oxide It has been found that reducing the interfacial resistance is very important. Therefore, as a result of repeated research to reduce the interfacial resistance between the solid electrolyte and the niobium-containing oxide regardless of the particle size or specific surface area, it was found that a specific metal element was added to the niobium-containing oxide particles that constitute the niobium-containing oxide powder.
- a first aspect of the present invention relates to a niobium-containing oxide powder, a negative electrode active material composition, and an all-solid secondary battery containing the same.
- the first aspect of the present invention provides the following (1) to (7).
- D50 of primary particles corresponding to a volume accumulation of 50% in a volume-based particle size distribution by a laser diffraction scattering method is 0.6 ⁇ m or more (1) or (2) ), the niobium-containing oxide powder described in .
- a negative electrode active material composition comprising the niobium-containing oxide powder according to any one of ) to (3).
- An all-solid secondary battery comprising a positive electrode layer, a negative electrode layer and a solid electrolyte layer, wherein the negative electrode layer comprises the negative electrode active material composition according to any one of (4) to (6).
- the present inventors conducted various studies to achieve the object of the second aspect, and found that a specific metal element was removed from the niobium-containing oxide powder by adding a surface treatment step to the niobium-containing oxide powder.
- a niobium-containing oxide powder present at a specific concentration on the surface of the niobium-containing oxide particles.
- a metal element with a low valence is present on the particle surface of the niobium-containing oxide rather than a metal element with a high valence.
- the effect was observed even if the surface of the niobium-containing oxide particles was not coated with a conductive agent such as carbon fiber, so this technique is different from the conventional carbon coating. It was found that an electricity storage device in which the niobium-containing oxide powder is applied as an electrode material is excellent in discharge rate characteristics and cycle characteristics, and can suppress an increase in resistance after cycling, and the present invention (invention according to a second aspect) completed.
- the second aspect of the present invention provides the following (8) to (14).
- a niobium-containing oxide powder represented by the general formula Ti 1-x/2 Nb 2 O 7-x (X 0 to 2), the niobium-containing oxide constituting the niobium-containing oxide powder
- M1 is a metal element with a valence of 3+ or 2+ excluding Ti or Nb
- the element M1 present on the particle surface is a Group 2, Group 12, Group 13, or Group 14 metal element
- the element M1 present on the particle surface is selected from the element group consisting of Al 3+ , Mg 2+ , Ca 2+ , Sr 2+ , Zn 2+ , Ga 3+ , Ge 2+ and In 2+ .
- the D50 of the primary particles corresponding to a volume accumulation of 50% in the volume-based particle size distribution by a laser diffraction scattering method is 0.3 ⁇ m or more (8)-( The niobium-containing oxide powder according to any one of 11).
- An electrode for a power storage device comprising the niobium-containing oxide powder according to any one of (8) to (12).
- An electricity storage device comprising the electrode according to (13).
- the initial discharge capacity, initial efficiency, and charge rate characteristics are excellent. It is possible to provide a niobium-containing oxide powder suitable as an electrode material for an all-solid secondary battery, a negative electrode active material composition using the same, and an all-solid secondary battery.
- a niobium-containing oxide powder suitable as an electrode material for an electricity storage device that is excellent in discharge rate characteristics and cycle characteristics and can suppress an increase in resistance after cycles, Electrodes and electrical storage devices can be provided.
- FIG. 1 shows the results of the Mg1s depth profile.
- Examples of specific compounds include TiNb 2 O 7 which is a niobium-titanium composite oxide capable of intercalating and deintercalating Li ions and Na ions, Nb 2 O 5 which is a niobium oxide, and the like.
- TiNb 2 O 7 is preferable from the viewpoint of improving initial discharge capacity, initial efficiency, and charge rate characteristics.
- the niobium-titanium composite oxide may partially contain a titanium oxide phase (eg, rutile-type TiO 2 , TiO, etc.) derived from synthetic raw materials.
- a titanium oxide phase eg, rutile-type TiO 2 , TiO, etc.
- the ratio of the number of moles of Nb to the number of moles of Ti is preferably in the range of 1.5 to 2.5, more preferably 1.8 to 2.0. is preferred. Within this range, the electron conductivity of the niobium-containing oxide is improved and the rate characteristics are excellent.
- the crystal system of the niobium-containing oxide according to the first aspect of the present invention is not limited, it is generally monoclinic.
- the aspect ratio tends to be large, but from the viewpoint of improving the electrode density, it is preferably in the range of 1.0 to 4.0.
- the niobium-containing oxide powder according to the first aspect of the present invention contains at least one metal element selected from the group consisting of Mo and Ce.
- Containing at least one metal element selected from the group consisting of Mo and Ce means that the niobium oxide powder according to the first aspect of the present invention is subjected to inductively coupled plasma atomic emission spectrometry (ICP-AES) or X-ray fluorescence spectrometry (XRF ), at least one metal element selected from the group consisting of Mo and Ce is detected.
- ICP-AES inductively coupled plasma atomic emission spectrometry
- XRF X-ray fluorescence spectrometry
- the lower limit of the amount detected by inductively coupled plasma emission spectrometry is usually 0.001% by mass.
- Mo and Ce may be contained on the particle surfaces of the niobium-containing oxide powder.
- the valences of Mo and Ce are not particularly limited, and may be 3+ or 2+, or 4+ or more. From the viewpoint of improving initial discharge capacity, initial efficiency, and charge rate characteristics, it is preferable to contain Mo.
- the content (% by mass) of at least one metal element selected from the group consisting of Mo and Ce in the niobium-containing oxide powder according to the first aspect of the present invention, determined by X-ray fluorescence analysis (XRF), is 0.5%. 01 or more and 1.2 or less. If the content of at least one metal element selected from the group consisting of metal elements Mo and Ce is within this range, an all-solid secondary battery with excellent initial discharge capacity, initial efficiency, and charge rate characteristics can be obtained.
- the content is the total content of the two metal elements.
- At least one selected from the group consisting of Mo and Ce is present in the surface region rather than the internal region of the niobium-containing oxide particles constituting the powder. It contains a large amount of metal elements. That is, at least one metal element selected from the group consisting of Mo and Ce is localized on the surface of the niobium-containing oxide particles, and more specifically, rather than the internal region of the niobium-containing oxide particles, At least one metal element selected from the group consisting of Mo and Ce is localized and contained in the surface region.
- a depth of about 20 nm from the surface of the niobium-containing oxide particles measured by energy dispersive X-ray spectroscopy It is sufficient that at least one metal element selected from the group consisting of Mo and Ce is contained in a large amount in the so-called near-surface region, and at a depth position of 20 nm from the surface of the niobium-containing oxide particles, While at least one selected metal element is detected, it is preferable that Mo and Ce are not detected at a depth of 100 nm from the surface. It can be determined that at least one metal element selected from the group consisting of Mo and Ce is localized.
- the form of at least one metal element selected from the group consisting of Mo and Ce localized on the surface of the niobium-containing oxide particles is not particularly limited. At least one metal element selected from the group consisting of elements and Ce elements may be localized on the surface, and may be in the form of a metal, or in the form of a metal compound such as a metal oxide. There may be.
- the niobium-containing oxide powder according to the first aspect of the present invention has peaks attributed to Mo—O bonds or Ce—O bonds in the narrow spectrum of the metal element M1 in the surface analysis of X-ray photoelectron spectroscopy (XPS). It is preferable to have
- having a peak attributed to a Mo—O bond or a Ce—O bond means having a Mo peak top or a Ce peak top in a surface analysis of X-ray photoelectron spectroscopy.
- the atomic concentration (atm%) of Mo or Ce on the surface (0 nm) is 100%
- the atomic concentration (atm%) of Mo or Ce at a depth of 100 nm from the surface is preferably less than 5%.
- the niobium-containing oxide powder according to the first aspect of the present invention contains Al, Mg, Ca, Sr, Zn, Ga, and Ge as further dissimilar elements other than at least one metal element selected from the group consisting of Mo and Ce. , In, B, W, and S. At least one element selected from the group consisting of elements is preferably contained.
- the niobium-containing oxide powder according to the first aspect of the present invention contains such dissimilar elements together with Mo and Ce, so that the electronic conductivity of the surface of the niobium-containing oxide powder is adjusted, and the element Mo and It is presumed that this is because the electrical resistance can be suppressed more than when Ce is contained alone.
- the specific surface area of the niobium-containing oxide powder according to the first aspect of the present invention is the surface area per unit mass measured using nitrogen as an adsorbed gas. A measuring method will be described in Examples described later.
- the niobium-containing oxide powder according to the first aspect of the present invention may have a specific surface area of 8.0 m 2 /g or less, and an electricity storage device having excellent initial discharge capacity, initial efficiency, and charge rate characteristics can be obtained. can be done. 6.0 m 2 /g or less is more preferable, and 5.5 m 2 /g or less is even more preferable.
- D50 of the niobium-containing oxide powder according to the first aspect of the present invention is an index of the volume median particle size. It means a particle size at which the cumulative volume frequency calculated from the volume fraction obtained by laser diffraction/scattering particle size distribution measurement is integrated from the smaller particle size to 50%. A measuring method will be described in Examples described later.
- the niobium-containing oxide powder according to the first aspect of the present invention may be primary particles or secondary particles in which primary particles are agglomerated.
- primary particles composed of niobium-containing oxide particles contain agglomerated secondary particles, a part thereof may not form secondary particles and may be in the form of primary particles themselves.
- the D50 of the secondary particles is preferably 11 ⁇ m or more from the viewpoint of improving the electrode density, and is preferably 12 ⁇ m or more. It is more preferable, and 13 ⁇ m or more is even more preferable. Furthermore, the upper limit of D50 of the secondary particles is preferably 20 ⁇ m or less, more preferably 18 ⁇ m or less, and even more preferably 14 ⁇ m or less. In addition, D50 of a secondary particle represents D50 before the crushing process of a secondary particle is carried out by ultrasonic irradiation.
- the concentration of the metal elements Mo and Ce has a gradient between the surface and the inside of the primary particles, and the surface (for example, the surface of the primary particles).
- the concentration of the metal element Mo or Ce is high in the so-called surface region from the surface to a depth of about 20 nm), preferably inside (for example, the position of 100 nm from the surface of the primary particle to the inside)
- the metal element Mo or Ce is preferably absent. This is because when the metal elements Mo and Ce are present in such a state, an all-solid secondary battery having excellent initial efficiency and charge rate characteristics can be obtained.
- D50 of the primary particles of the niobium-containing oxide powder according to the first aspect of the present invention is preferably 0.4 ⁇ m or more, and preferably 0.5 ⁇ m or more, from the viewpoint of initial discharge capacity and charge rate characteristics.
- the above is more preferable, and 0.6 ⁇ m or more is more preferable.
- the upper limit of D50 is preferably 3 ⁇ m or less, more preferably 2.5 ⁇ m or less, and even more preferably 2 ⁇ m or less.
- the D50 of the primary particles represents the D50 after crushing (applying ultrasonic waves with an ultrasonic device).
- the niobium-containing oxide powder may contain primary particles having a primary particle size of less than 0.4 ⁇ m in a range of 15% to 20%, and primary particles having a primary particle size of less than 0.5 ⁇ m in a range of 15% to 25%. may contain primary particles less than 0.6 ⁇ m in the range of 15% to 30%. It may contain in the range 45% to 75% primary particles greater than 3 ⁇ m, may contain in the range 25% to 75% primary particles greater than 2 ⁇ m, and 25% to 80% primary particles greater than 1.2 ⁇ m. % range may be included.
- the zeta potential of the niobium-containing oxide powder according to the first aspect of the present invention is preferably less than 0 mV, more preferably -5 mV or less.
- the lower limit of the zeta potential is preferably greater than -60 mV, more preferably greater than -35 mV.
- the zeta potential represents the potential difference between the slip plane in the electric double layer and the portion well away from the interface, and it is speculated that this potential difference affects the Li permeation on the niobium-containing oxide powder surface.
- a measuring method will be described in Examples described later.
- Method for producing niobium-containing oxide powder according to the first aspect An example of the method for producing a niobium-containing oxide powder according to the first aspect of the present invention will be described below by dividing it into a raw material preparation step, a firing step, and a surface treatment step.
- the method for producing the niobium-containing oxide powder according to is not limited to this.
- the starting materials are mixed.
- an oxide or salt containing Ti and Nb is used as a starting material.
- the salt used as the starting material is a salt such as a hydroxide salt, carbonate, or nitrate that decomposes at a relatively low melting point to form an oxide. is preferred.
- a Henschel mixer an ultrasonic dispersing device, a homomixer, a mortar, a ball mill, a centrifugal ball mill, a planetary ball mill, a vibrating ball mill, an attritor high-speed ball mill, a bead mill, a roll mill and the like can be used.
- ⁇ Baking process> the mixture obtained above is fired. Firing is carried out in the temperature range of 500 to 1200°C, more preferably in the range of 700 to 1000°C.
- General-purpose equipment can be used by performing the sintering at a temperature of 1000° C. or less.
- the mixed powder constituting the mixture before firing is prepared so that D95 in the particle size distribution curve measured with a laser diffraction/scattering particle size distribution analyzer is 5 ⁇ m or less. preferably.
- D95 is the particle size at which the cumulative volume frequency calculated by volume fraction is 95% when integrated from the smaller particle size.
- the firing method is not particularly limited as long as it can be fired under the above conditions.
- Available firing methods include a fixed bed firing furnace, a roller hearth firing furnace, a mesh belt firing furnace, a fluidized bed firing furnace, and a rotary kiln firing furnace.
- a roller hearth type firing furnace, a mesh belt type firing furnace, and a rotary kiln type firing furnace are preferable.
- the rotary kiln firing furnace does not require a container to hold the mixture, and can be fired while continuously feeding the mixture, and the heat history of the fired material is uniform, making it possible to obtain a homogeneous oxide.
- the firing furnace is particularly preferable for producing the niobium-containing oxide powder according to the first aspect of the present invention.
- the niobium-containing oxide obtained above is subjected to surface treatment.
- the niobium-containing oxide according to the first aspect of the present invention has at least one metal element selected from the group consisting of Mo and Ce localized on the surface of particles constituting the niobium-containing oxide powder. It is characterized by being able to form a dense negative electrode layer when applied as a negative electrode material of a battery and to impart excellent charge rate characteristics.
- a compound containing at least one metal element selected from the group consisting of Mo and Ce hereinafter sometimes referred to as a treatment agent
- a treatment agent a compound containing at least one metal element selected from the group consisting of Mo and Ce
- the niobium-containing oxide powder can be produced, more preferably, the niobium-containing oxide powder according to the first aspect of the present invention can be produced by the following surface treatment step or the like.
- the surface of the niobium-containing oxide particles can be suitably and relatively easily provided with at least one metal element selected from the group consisting of Mo and Ce. can do.
- the method of mixing the niobium-containing oxide powder of the substrate and the compound containing at least one metal element selected from the group consisting of Mo and Ce is not particularly limited, and either wet mixing or dry mixing can be used. However, it is preferable to uniformly disperse a compound containing at least one metal element selected from the group consisting of Mo and Ce on the surface of the particles constituting the niobium-containing oxide powder of the base material. Wet mixing is preferred in
- the treatment agent and niobium-containing oxide powder of the base material are put into water or an alcohol solvent and mixed in a slurry state.
- the alcohol solvent those having a boiling point of 100° C. or lower, such as methanol, ethanol, and isopropyl alcohol, are preferable because the solvent can be easily removed.
- an aqueous solvent is industrially preferred.
- the compound (treatment agent) containing at least one metal element selected from the group consisting of Mo and Ce is not particularly limited, but examples thereof include oxides, phosphorous oxides, hydroxides, sulfate compounds, nitrate compounds, fluorides. compounds, chlorides, organic compounds, and metal salt compounds such as ammonium salts and phosphates.
- Mo compounds include molybdenum oxide, molybdenum trioxide, molybdenum trioxide hydrate, molybdenum boride, phosphomolybdic acid, molybdenum disilicide, molybdenum chloride, molybdenum sulfide, and silicomolybdic acid hydrate.
- molybdenum oxide sodium molybdenum carbide, molybdenum acetate dimer, lithium molybdate, sodium molybdate, potassium molybdate, calcium molybdate, magnesium molybdate, manganese molybdate, ammonium molybdate, etc., among others, Molybdenum trioxide, molybdenum trioxide hydrate, molybdenum chloride, molybdenum sulfide and lithium molybdate are preferred.
- Ce compounds include cerium oxide, cerium hydroxide, cerium fluoride, cerium sulfate, cerium nitrate, cerium carbonate, cerium acetate, cerium oxalate, cerium chloride, cerium boride, and cerium phosphate. Among them, cerium sulfate and its hydrate are preferred.
- the added amount of the compound containing at least one metal element selected from the group consisting of Mo and Ce is the amount of at least one metal element selected from the group consisting of Mo and Ce in the niobium-containing oxide. Any amount may be used as long as it falls within the scope of the invention. addition is preferred. Moreover, it may be added in a proportion of 12% by mass or less, preferably 10% by mass or less, more preferably 8% by mass or less, relative to the niobium-containing oxide powder of the substrate.
- the heat treatment temperature is a temperature at which at least one metal element selected from the group consisting of Mo and Ce diffuses into at least the surface region of the niobium-containing oxide particles constituting the niobium-containing oxide powder of the substrate.
- a temperature at which the specific surface area does not significantly decrease due to sintering of the niobium-containing oxide of the substrate is preferred.
- the upper limit of the heat treatment temperature is preferably 700° C. or less, more preferably 600° C. or less.
- the lower limit of the heat treatment temperature is preferably 300° C. or higher, more preferably 400° C. or higher.
- the heat treatment time is preferably 0.1 to 8 hours, more preferably 0.5 to 5 hours.
- the temperature and time at which the at least one metal element selected from the group consisting of Mo and Ce diffuses into at least the surface region of the niobium-containing oxide powder of the substrate is at least one selected from the group consisting of Mo and Ce. Since the reactivity differs depending on the compound containing the metal element, it is preferable to set it appropriately. Moreover, the heating method in the heat treatment is not particularly limited. Usable heat treatment furnaces include a fixed bed furnace, a roller hearth furnace, a mesh belt furnace, a fluidized bed furnace, and a rotary kiln furnace.
- the atmosphere during heat treatment may be either an air atmosphere or an inert atmosphere such as a nitrogen atmosphere. In particular, when a metal salt compound is used for the surface treatment, an atmospheric atmosphere is preferred in which anion species are easily removed from the particle surface.
- niobium-containing oxide powder after the heat treatment obtained as described above is slightly agglomerated, it is not necessary to perform pulverization that destroys the particles. It suffices to perform pulverization and classification to the extent that the
- the niobium-containing oxide powder according to the first aspect of the present invention may be granulated and heat-treated after being mixed with a treating agent in the surface treatment step to obtain a powder containing secondary particles in which primary particles are agglomerated. Any method may be used for granulation as long as secondary particles can be produced, but a spray dryer is preferable because it can process a large amount.
- the dew point may be controlled in the heat treatment process. If the heat-treated powder is exposed to the atmosphere as it is, the amount of moisture contained in the powder increases. Therefore, it is preferable to handle the powder in an environment where the dew point is controlled during cooling in the heat treatment furnace and after the heat treatment.
- the heat-treated powder may be classified as necessary to bring the particles into the desired maximum particle size range.
- the heat treatment temperature is preferably 450°C or higher, and preferably lower than 550°C. This is because if the heat treatment temperature exceeds 550° C., the specific surface area is greatly reduced, and the battery performance, particularly the rate characteristics, is greatly deteriorated.
- the retention time is preferably 1 hour or more, because it is presumed that if the retention time is short, the water content in the powder will increase and the particle surface state will be affected.
- a negative electrode active material composition according to a first aspect of the present invention comprises the niobium-containing oxide powder according to the first aspect of the present invention and an inorganic solid electrolyte having conductivity of metal ions belonging to Group 1 of the periodic table. and a negative electrode active material composition.
- the content of the inorganic solid electrolyte is not particularly limited. It is more preferably 30% by mass or more. The higher the content of the inorganic solid electrolyte, the easier it is to obtain contact between the niobium-containing oxide powder and the solid electrolyte, which is preferable.
- the battery capacity of the all-solid secondary battery will be small, so it may be 70% by mass or less, preferably 60% by mass or less, and 50% by mass or less. is more preferred.
- the content of the inorganic solid electrolyte is preferably as small as possible in order to increase the battery capacity of the all-solid secondary battery.
- Other substances include, for example, carbon materials [pyrolytic carbons, cokes, graphites (artificial graphite, natural graphite, etc.), organic polymer compound combustion bodies, carbon fibers], tin and tin compounds, silicon and silicon compounds.
- lithium-containing metal oxides are used.
- lithium titanate containing Li 4 Ti 5 O 12 as a main component can be mentioned as a metal oxide containing lithium.
- the periodic table of the present specification refers to the periodic table of long period elements based on the regulations of IUPAC (International Union of Pure and Applied Chemistry).
- An inorganic solid electrolyte is an inorganic solid electrolyte, and a solid electrolyte is a solid electrolyte in which ions can move. Since inorganic solid electrolytes are solid in the steady state, they are usually not dissociated or released into cations and anions.
- the inorganic solid electrolyte is not particularly limited as long as it has conductivity of metal ions belonging to Group 1 of the periodic table, and generally has almost no electronic conductivity.
- the inorganic solid electrolyte has the conductivity of metal ions belonging to Group 1 of the periodic table.
- Representative examples of the inorganic solid electrolyte include (A) a sulfide inorganic solid electrolyte and (B) an oxide inorganic solid electrolyte.
- a sulfide inorganic solid electrolyte is preferably used because it has high ion conductivity and can form a dense compact with few grain boundaries only by applying pressure at room temperature.
- the sulfide inorganic solid electrolyte contains sulfur atoms (S), has conductivity of metal ions belonging to Group 1 of the periodic table, and has electronic insulation. things are preferred.
- the sulfide inorganic solid electrolyte can be produced by reacting a metal sulfide belonging to Group 1 of the periodic table with at least one sulfide represented by the following general formula (III), and the general formula (III) You may use together 2 or more types of sulfide represented by.
- MxSy ( III) (M represents any one of P, Si, Ge, B, Al, Ga, and Sb, and x and y represent numbers that give a stoichiometric ratio depending on the type of M.)
- the metal sulfide belonging to Group 1 of the periodic table represents any one of lithium sulfide, sodium sulfide, and potassium sulfide, more preferably lithium sulfide and sodium sulfide, and still more preferably lithium sulfide.
- the sulfide represented by the general formula ( III ) is any one of P2S5 , SiS2 , GeS2 , B2S3 , Al2S3 , Ga2S3 and Sb2S5 is preferred, and P 2 S 5 is particularly preferred.
- composition ratio of each element in the sulfide inorganic solid electrolyte produced as described above is a mixture of the metal sulfide belonging to Group 1 of the periodic table, the sulfide represented by the general formula (III), and elemental sulfur. It can be controlled by adjusting the amount.
- the sulfide inorganic solid electrolyte according to the first aspect of the present invention may be amorphous glass, crystallized glass, or a crystalline material.
- Li2SP2S5 Li2SP2S5 - Al2S3 , Li2S - GeS2 , Li2S - Ga2S3 , Li2S - GeS2 - Ga2S3 , Li 2 S—GeS 2 —P 2 S 5 , Li 2 S—GeS 2 —Sb 2 S 5 , Li 2 S—GeS 2 —Al 2 S 3 , Li 2 S—SiS 2 , Li 2 S—Al 2 S 3 , Li 2 S—SiS 2 —Al 2 S 3 , Li 2 S—SiS 2 —P 2 S 5 , Li 10 GeP 2 S 12 .
- LPS glasses and LPS glass-ceramics produced by combining Li 2 SP 2 S 5 are preferred.
- the mixing ratio of the metal sulfide belonging to Group 1 of the periodic table and the sulfide represented by the general formula (III) is not particularly limited as long as it can be used as a solid electrolyte.
- the mixing ratio (molar ratio) of the sulfide represented by the formula (III) is preferably 50:50 to 90:10. If the mixing ratio of the metal sulfide is 50 or more and 90 or less, the ionic conductivity can be sufficiently increased.
- the mixing ratio is more preferably 60:40 to 80:20, more preferably 70:30 to 80:20.
- the sulfide inorganic solid electrolyte includes LiI, LiBr, LiCl, and LiF in addition to metal sulfides belonging to Group 1 of the periodic table and sulfides represented by the general formula (III) in order to increase ion conductivity. It may contain at least one lithium salt such as lithium halide, lithium oxide, lithium phosphate, etc. selected from.
- the mixing ratio of the sulfide inorganic solid electrolyte and these lithium salts is preferably a mixing ratio (molar ratio) of "sulfide inorganic solid electrolyte: lithium salt" of 60:40 to 95:5. , more preferably 80:20 to 95:5.
- Algerodite-type solid electrolytes such as Li 6 PS 5 Cl and Li 6 PS 5 Br are also suitable examples of sulfide inorganic solid electrolytes other than those described above.
- the method for producing the sulfide inorganic solid electrolyte is preferably a solid phase method, a sol-gel method, a mechanical milling method, a solution method, a melt quenching method, etc., but is not particularly limited.
- the oxide inorganic solid electrolyte preferably contains oxygen atoms, has metal ion conductivity belonging to Group 1 of the periodic table, and has electronic insulation.
- oxide inorganic solid electrolytes examples include Li3.5Zn0.25GeO4 having a LISICON (lithium superionic conductor) type crystal structure, La0.55Li0.35TiO3 having a perovskite type crystal structure , LiTi 2 P 3 O 12 having a NASICON (Natrium superionic conductor) type crystal structure, Li 7 La 3 Zr 2 O 12 (LLZ) having a garnet type crystal structure, lithium phosphate (Li 3 PO 4 ), lithium phosphate LiPON in which some of the oxygen in the _ _ _ _ _ O 12 and the like are preferably exemplified.
- LISICON lithium superionic conductor
- La0.55Li0.35TiO3 having a perovskite type crystal structure
- LiTi 2 P 3 O 12 having a NASICON (Natrium superionic conductor) type crystal structure
- Li 7 La 3 Zr 2 O 12 (LLZ) having a garnet type crystal structure
- the volume average particle diameter of the inorganic solid electrolyte is not particularly limited, it may be 0.01 ⁇ m or more, preferably 0.1 ⁇ m or more.
- the upper limit may be 100 ⁇ m or less, preferably 50 ⁇ m or less.
- the volume average particle size of the inorganic solid electrolyte can be measured using a laser diffraction/scattering particle size distribution analyzer.
- the amount of the inorganic solid electrolyte mixed is not particularly limited, but it may be 1% by mass or more, preferably 5% by mass or more, more preferably 20% by mass or more, in the active material composition. It is more preferably 30% by mass or more.
- the larger the amount of the inorganic solid electrolyte mixed the easier it is to obtain contact between the niobium-containing oxide powder and the solid electrolyte, which is preferable.
- the amount of the inorganic solid electrolyte mixed is too large, the battery capacity of the all-solid secondary battery becomes small, so the amount should be 70% by mass or less, preferably 50% by mass or less.
- the amount of the inorganic solid electrolyte to be mixed is small in order to increase the battery capacity of the all-solid secondary battery.
- the negative electrode active material composition according to the first aspect of the present invention may contain a conductive agent and a binder in addition to the niobium-containing oxide powder and the inorganic solid electrolyte.
- the conductive agent for the negative electrode is not particularly limited as long as it is an electron conductive material that does not cause chemical change.
- natural graphite flaky graphite, etc.
- graphites such as artificial graphite
- carbon blacks such as acetylene black, ketjen black, channel black, furnace black, lamp black, thermal black
- single-phase carbon nanotubes multi-walled carbon nanotubes
- Graphite layers are multi-layered concentric cylinders) (non-fishbone), cup-layered carbon nanotubes (fishbone), node-type carbon nanofibers (non-fishbone structure), platelet-type carbon nanofibers ( carbon nanotubes such as card-shaped), and the like.
- Graphites, carbon blacks, and carbon nanotubes may be appropriately mixed and used.
- the specific surface area of carbon blacks is preferably 30 m 2 /g to 3000 m 2 /g, more preferably 50 m 2 /g to 2000 m 2 /g.
- the specific surface area of graphites is preferably 30 m 2 /g to 600 m 2 /g, more preferably 50 m 2 /g to 500 m 2 /g.
- the carbon nanotubes have an aspect ratio of 2-150, preferably 2-100, and more preferably 2-50.
- the amount of the conductive agent added varies depending on the specific surface area of the active material, the type and combination of the conductive agent, and should be optimized.
- the content is preferably 0.5% by mass to 5% by mass. By making it in the range of 0.1% by mass to 10% by mass, the active material ratio is made sufficient, thereby making the initial discharge capacity of the electricity storage device per unit mass and unit volume of the negative electrode layer sufficient. , the conductivity of the negative electrode layer can be further enhanced.
- binders for the negative electrode include polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), polyvinylpyrrolidone (PVP), a copolymer of styrene and butadiene (SBR), and a copolymer of acrylonitrile and butadiene. coalesced (NBR), carboxymethyl cellulose (CMC), and the like.
- PTFE polytetrafluoroethylene
- PVDF polyvinylidene fluoride
- PVPVP polyvinylpyrrolidone
- SBR styrene and butadiene
- COD carboxymethyl cellulose
- the molecular weight of polyvinylidene fluoride is 20,000 to 1,000,000. From the viewpoint of further enhancing the binding property of the negative electrode layer, it is preferably 25,000 or more, more preferably 30,000 or more, and even more preferably 50,000 or more.
- the molecular weight is preferably 100,000 or more.
- the amount of the binder added varies depending on the specific surface area of the active material and the type and combination of the conductive agent, and should be optimized. % should be included. From the viewpoint of enhancing the binding property and securing the strength of the negative electrode layer, the content is preferably 0.5% by mass or more, more preferably 1% by mass or more, and even more preferably 2% by mass or more. It is preferably 10% by mass or less, more preferably 5% by mass or less, from the viewpoint of preventing a reduction in the active material ratio and a decrease in the initial discharge capacity of the electricity storage device per unit mass and unit volume of the negative electrode layer.
- the method for producing the negative electrode active material composition according to the first aspect of the present invention is not particularly limited. Suitable examples include a method of mixing with a machine, a stirrer, a disperser, etc., and a method of adding the niobium-containing oxide powder to a slurry containing a solid electrolyte.
- the negative electrode active material composition containing the niobium-containing oxide according to the first aspect of the present invention provides superior initial discharge capacity, initial efficiency, and charge rate characteristics in an all-solid secondary battery compared to conventional ones is Although it is not necessarily clear, it can be considered as follows.
- the negative electrode active material composition according to the first aspect of the present invention comprises an inorganic solid electrolyte having conductivity of metal ions belonging to Group 1 of the periodic table and niobium-containing oxide particles on the surface of which a group consisting of Mo and Ce is added. and a niobium-containing oxide in which at least one selected metal element exists locally.
- niobium-containing oxides and inorganic solid electrolytes especially sulfide inorganic solid electrolytes
- the niobium-containing oxides and sulfide inorganic solid electrolytes chemically react to form a high-resistance, low-ion-conducting electrolyte at their interface. reaction products adhere to the battery, and the battery characteristics, especially the charge rate characteristics, are degraded.
- the localized presence of at least one metal element selected from the group consisting of Mo and Ce on the surface of the niobium-containing oxide particles according to the first aspect of the present invention prevents undesirable reactions with the solid electrolyte. can be suppressed.
- the characteristics of the all-solid secondary battery can be improved.
- no reaction with the solid electrolyte occurs, so the problem of the present application does not arise.
- the niobium-containing oxide of the present application was applied to a lithium ion secondary battery using an organic electrolyte, no improvement in charge rate characteristics was observed.
- the negative electrode active material composition according to the first aspect of the present invention can be used for the negative electrode of all-solid secondary batteries. At this time, it is preferable that the negative electrode active material composition according to the first aspect of the present invention is pressure-molded to form a pressure-molded body.
- the conditions for pressure molding are not particularly limited, but the molding temperature may be 15° C. to 200° C., preferably 25° C. to 150° C., and the molding pressure may be 180 MPa to 1080 MPa, preferably 300 MPa to 800 MPa.
- the negative electrode active material composition according to the first aspect of the present invention can form a dense compact with few voids, and therefore can form a dense negative electrode layer with few voids.
- the compact obtained using the negative electrode active material composition according to the first aspect of the present invention has a filling rate of 72.5% to 100%, preferably 73.5% to 100%.
- the filling rate is, for example, the molded body density of the negative electrode active material composition calculated from the volume and mass of the molded body of the negative electrode active material composition, and the density of each material constituting the negative electrode active material composition (true density ) can be measured using
- the all-solid secondary battery according to the first aspect of the present invention comprises a positive electrode layer, a negative electrode layer, and a solid electrolyte layer positioned between the positive electrode layer and the negative electrode layer. is used for the negative electrode layer.
- the method for producing the negative electrode layer is not particularly limited. Suitable examples include a method of applying to an electric body, drying, and press-molding.
- Examples of the negative electrode current collector include aluminum, stainless steel, nickel, copper, titanium, calcined carbon, and those whose surfaces are coated with carbon, nickel, titanium, or silver. Moreover, the surface of these materials may be oxidized, and the surface of the negative electrode current collector may be roughened by surface treatment.
- Examples of the form of the negative electrode current collector include sheet, net, foil, film, punched material, lath, porous material, foam, fiber group, non-woven fabric, and the like.
- Porous aluminum is preferable as the form of the negative electrode current collector. The porosity of the porous aluminum is 80% or more and 95% or less, preferably 85% or more and 90% or less.
- constituent members such as the positive electrode layer and the solid electrolyte layer can be used without particular limitations.
- a positive electrode active material used as a positive electrode layer for an all-solid secondary battery a composite metal oxide with lithium containing one or more selected from cobalt, manganese, and nickel is used.
- These positive electrode active materials can be used individually by 1 type, or can be used in combination of 2 or more types.
- lithium composite metal oxides examples include LiCoO 2 , LiCo 1-x M x O 2 (where M is Sn, Mg, Fe, Ti, Al, Zr, Cr, V, Ga, Zn, and one or more elements selected from Cu, 0.001 ⁇ x ⁇ 0.05), LiMn 2 O 4 , LiNiO 2 , LiCo 1-x Ni x O 2 (0.01 ⁇ x ⁇ 1), LiCo1 / 3Ni1 / 3Mn1 / 3O2 , LiNi0.5Mn0.3Co0.2O2 , LiNi0.8Mn0.1Co0.1O2 , LiNi0.8Co 0.15 Al 0.05 O 2 , a solid solution of Li 2 MnO 3 and LiMO 2 (M is a transition metal such as Co, Ni, Mn, Fe), and LiNi 1/2 Mn 3/2 O 4
- M is a transition metal such as Co, Ni, Mn, Fe
- LiCoO2 and LiMn2O4 LiCoO2 and LiN
- a lithium-containing olivine-type phosphate can also be used as the positive electrode active material.
- Lithium-containing olivine-type phosphate containing at least one selected from iron, cobalt, nickel and manganese is particularly preferred. Specific examples thereof include LiFePO 4 , LiCoPO 4 , LiNiPO 4 , LiMnPO 4 and the like. A part of these lithium-containing olivine-type phosphates may be substituted with other elements, and a part of iron, cobalt, nickel and manganese may be replaced with Co, Mn, Ni, Mg, Al, B, Ti, V and Nb.
- LiFePO4 or LiMnPO4 is preferred.
- the lithium-containing olivine-type phosphate can be used, for example, by being mixed with the positive electrode active material.
- the conductive agent for the positive electrode is an electronically conductive material that does not cause chemical changes.
- examples thereof include graphite such as natural graphite (flaky graphite, etc.), artificial graphite, etc., carbon black such as acetylene black, ketjen black, channel black, furnace black, lamp black, thermal black, and the like.
- graphite and carbon black may be appropriately mixed and used.
- the amount of the conductive agent added to the positive electrode active material composition is preferably 1 to 10% by mass, particularly preferably 2 to 5% by mass.
- the positive electrode active material composition contains at least the positive electrode active material and the solid electrolyte, and if necessary, a conductive agent such as acetylene black and carbon black, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), Binders such as copolymers of styrene and butadiene (SBR), copolymers of acrylonitrile and butadiene (NBR), carboxymethyl cellulose (CMC), ethylene propylene diene terpolymer, and the like may also be included.
- a conductive agent such as acetylene black and carbon black, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), Binders such as copolymers of styrene and butadiene (SBR), copolymers of acrylonitrile and butadiene (NBR), carboxymethyl cellulose (CMC), ethylene propylene diene terpol
- the method for producing the positive electrode is not particularly limited, and for example, a method of press forming the powder of the positive electrode active material composition, or a method of adding the powder of the positive electrode active material composition to a solvent to form a slurry, and then forming the positive electrode active material composition.
- a method of press forming the powder of the positive electrode active material composition or a method of adding the powder of the positive electrode active material composition to a solvent to form a slurry, and then forming the positive electrode active material composition.
- Preferable examples include a method of applying the substance to an aluminum foil or a stainless steel lath plate as a current collector, followed by drying and pressure molding.
- the surface of the positive electrode active material may be surface-coated with another metal oxide.
- Surface coating agents include metal oxides containing Ti, Nb, Ta, W, Zr, Al, Si or Li. Specifically , Li4Ti5O12 , Li2Ti2O5 , LiTaO3 , LiNbO3 , LiAlO2 , Li2ZrO3 , Li2WO4 , Li2TiO3 , Li2B4O7 , Li3PO4 , Li2MoO4 , Li3BO3 , LiBO2 , Li2CO3 , Li2SiO3 , SiO2 , TiO2 , ZrO2 , Al2O3 , B2O3 , etc. .
- the solid electrolyte layer is located between the positive electrode layer and the negative electrode layer, and although the thickness of the solid electrolyte layer is not particularly limited, it may have a thickness of 1 ⁇ m to 100 ⁇ m.
- the sulfide inorganic solid electrolyte or the oxide inorganic solid electrolyte can be used as the constituent material of the solid electrolyte layer, and may be different from the solid electrolyte used for the electrodes.
- the solid electrolyte layer may contain a binder such as butadiene rubber or butyl rubber.
- the upper limit of X is preferably 2 or less, more preferably 1.5 or less, still more preferably 1 or less, and particularly preferably 0.5 or less.
- the lower limit of X should just be 0 or more.
- Examples of specific compounds include TiNb 2 O 7 which is a niobium-titanium composite oxide capable of intercalating and deintercalating Li ions and Na ions, Nb 2 O 5 which is a niobium oxide, and the like.
- the niobium-titanium composite oxide may partially contain a titanium oxide phase (eg, rutile-type TiO 2 , TiO, etc.) derived from synthetic raw materials.
- the ratio of the number of moles of Nb to the number of moles of Ti is preferably in the range of 1.5 to 2.5, more preferably 1.8 to 2.2. and even more preferably in the range of 1.8 to 2.0. Within this range, the electron conductivity of the composite oxide is improved and the rate characteristics are excellent.
- the crystal system of the niobium-containing oxide according to the second aspect of the present invention is not limited, it is generally monoclinic.
- the aspect ratio tends to be large, but from the viewpoint of improving the electrode density, it is preferably in the range of 1.0 to 4.0.
- the niobium-containing oxide powder according to the second aspect of the present invention has a metal element M1 (M1 is a metal element with a valence of 3+ or 2+ excluding Ti or Nb) on the surface of the particles.
- M1 is a metal element with a valence of 3+ or 2+ excluding Ti or Nb
- the presence of the metal element M1 means that the metal element M1 is detected in the inductively coupled plasma atomic emission spectroscopy (ICP-AES) or X-ray fluorescence spectroscopy (XRF) of the niobium oxide powder according to the second aspect of the present invention.
- ICP-AES inductively coupled plasma atomic emission spectroscopy
- XRF X-ray fluorescence spectroscopy
- the lower limit of the amount detected by inductively coupled plasma emission spectrometry is usually 0.001% by mass.
- the content (% by mass) of the metal element M1 in the niobium-containing oxide powder according to the second aspect of the present invention obtained from X-ray fluorescence analysis (XRF) may be 0.01 or more and 1.2 or less, It is preferably 0.01 or more and 1.0 or less, more preferably 0.01 or more and 0.9 or less, and still more preferably 0.01 or more and 0.8 or less. If the content of the metal element M1 is within this range, an electricity storage device that is excellent in discharge rate characteristics and cycle characteristics and that suppresses an increase in resistance after cycling can be obtained.
- the metal element M1 is localized more in the surface region than in the internal region of the niobium-containing oxide particles constituting the powder. That is, the metal element M1 is present on the surface of the niobium-containing oxide particles, and more specifically, the metal element M1 is localized and present more in the surface region than in the internal region of the niobium-containing oxide particles. do.
- the so-called A large amount of the metal element M1 should be contained in the region near the surface, and it is preferable that the metal element M1 is not detected at a depth of 100 nm from the surface. It can be determined that the metal element M1 is localized on the surface. That is, when measured by energy dispersive X-ray spectroscopy, it means that it is less than the amount detected by the measurement, and the lower limit of the detected amount in measurement by energy dispersive X-ray spectroscopy is the element or state to be measured. Although the value varies depending on the content, it is usually 0.5 atm%. In addition to this, there are surface analysis methods such as X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES).
- XPS X-ray photoelectron spectroscopy
- AES Auger electron spectroscopy
- the niobium-containing oxide powder according to the second aspect of the present invention preferably has a peak attributed to the M1-O bond in the narrow spectrum of the metal element M1 in the surface analysis of X-ray photoelectron spectroscopy (XPS).
- having a peak attributed to the M1-O bond means having a peak top of the metal element M1 in surface analysis by X-ray photoelectron spectroscopy.
- the metal element M1 is Mg
- the 2p3 peak of Ti is corrected to 458.7 eV
- the Mg1s peak has a peak top at 1300-1310 eV.
- the atomic concentration (atm%) of the metal element M1 on the surface (0 nm) is 100%
- the atomic concentration (atm%) of the metal element M1 at a depth of 100 nm from the surface. is preferably less than 5%.
- the element M1 present on the surface of the niobium-containing oxide particles, which constitutes the niobium-containing oxide powder is a metal element with a valence of 3+ or 2+ excluding Ti or Nb.
- Element M1 is preferably a group 2, group 12, group 13 or group 14 metal element, such as Al 3+ , Mg 2+ , Ca 2+ , Sr 2+ , Zn 2+ , Ga 3+ , Ge 2+ , It is more preferable to contain at least one selected from the group of elements consisting of In 2+ (that is, in the form of metal elements, the group of elements consisting of Al, Mg, Ca, Sr, Zn, Ga, Ge, In It is more preferable to include any one or more selected from.).
- niobium-containing oxide powder according to the second aspect of the present invention contains these elements, it is possible to obtain an electricity storage device that has excellent discharge rate characteristics and cycle characteristics and suppresses an increase in resistance after cycling. is.
- niobium-containing oxide powder according to the second aspect of the present invention an element group consisting of B, Mo, W, and S as further dissimilar elements other than the metal elements having a valence of 3+ or 2+ excluding Ti or Nb. It is preferable to contain at least one element selected from Among these, S is particularly preferred.
- the niobium-containing oxide powder according to the second aspect of the present invention contains such a dissimilar element together with the element M1, so that the electronic conductivity of the surface of the niobium-containing oxide powder is improved more than when the element M1 is contained alone. presumed to be for
- the specific surface area of the niobium-containing oxide powder according to the second aspect of the present invention is the surface area per unit mass when nitrogen is used as the adsorbed gas. A measuring method will be described in Examples described later.
- the niobium-containing oxide powder according to the second aspect of the present invention may have a specific surface area of 8.0 m 2 /g or less, and an electricity storage device having excellent initial discharge capacity and rate characteristics can be obtained. 6.0 m 2 /g or less is preferable, and 5.5 m 2 /g or less is more preferable.
- D50 of the niobium-containing oxide powder according to the second aspect of the present invention is an index of the volume median particle size. It means a particle size at which the cumulative volume frequency calculated from the volume fraction obtained by laser diffraction/scattering particle size distribution measurement is integrated from the smaller particle size to 50%. A measuring method will be described in Examples described later.
- the niobium-containing oxide powder according to the second aspect of the present invention may be primary particles or secondary particles in which primary particles are agglomerated.
- primary particles composed of niobium-containing oxide particles contain agglomerated secondary particles, a part thereof may not form secondary particles and may be in the form of primary particles themselves.
- the lower limit of D50 of the secondary particles is preferably 11 ⁇ m or more from the viewpoint of improving the electrode density, and is preferably 12 ⁇ m or more. It is more preferable, and 13 ⁇ m or more is even more preferable.
- the upper limit of D50 of the secondary particles is preferably 20 ⁇ m or less, more preferably 18 ⁇ m or less, and even more preferably 14 ⁇ m or less.
- the D50 of the secondary particles represents the D50 before the crushing treatment (applying ultrasonic waves with an ultrasonic device), that is, the D50 before the secondary particles are crushed by ultrasonic irradiation.
- the concentration of the metal element M1 has a gradient between the surface and the inside of the primary particles, and the surface (for example, 20 nm from the surface of the primary particles A state in which the concentration of the metal element M1 is high in the so-called near-surface region up to a depth of about 100.degree. is preferred. This is because when the metal element M1 exists in such a state, an electricity storage device having excellent initial discharge capacity and rate characteristics can be obtained.
- the lower limit of D50 is preferably 0.3 ⁇ m or more, It is more preferably 0.6 ⁇ m or more, and still more preferably 0.7 ⁇ m or more.
- the upper limit of D50 may be 3 ⁇ m or less, preferably 2 ⁇ m or less, and more preferably 1.2 ⁇ m or less.
- the D50 of the primary particles represents the D50 after crushing (applying ultrasonic waves with an ultrasonic device).
- the niobium-containing oxide powder may contain primary particles having a primary particle size of less than 0.6 ⁇ m in a range of 15% to 30%, and primary particles having a primary particle size of less than 0.7 ⁇ m in a range of 15% to 45%. may contain. It may contain in the range of 45% to 75% of primary particles larger than 3 ⁇ m, may contain in the range of 25% to 75% of primary particles larger than 2 ⁇ m, and 25% of primary particles larger than 1.2 ⁇ m. It may be contained in the range of up to 80%.
- the zeta potential of the niobium-containing oxide powder according to the second aspect of the present invention is preferably less than 0 mV, more preferably -5 mV or less.
- the lower limit of the zeta potential is preferably greater than -60 mV, more preferably greater than -35 mV.
- the zeta potential represents the potential difference between the slip plane in the electric double layer and the portion well away from the interface, and it is speculated that this potential difference affects the Li permeation on the niobium-containing oxide powder surface.
- a measuring method will be described in Examples described later.
- Method for producing niobium-containing oxide powder according to the second aspect An example of the method for producing a niobium-containing oxide powder according to the second aspect of the present invention will be described below by dividing it into a raw material preparation step, a firing step, and a surface treatment step.
- the method for producing the niobium-containing oxide powder according to is not limited to this.
- ⁇ Raw material preparation process First, the starting materials are mixed. Mixing of the starting materials may be performed in the same manner as in the first aspect described above.
- the compound containing the metal element M1 is added before the firing step described later, the compound may be hereinafter referred to as a treating agent or treating agent 1.
- ⁇ Baking process> the mixture obtained above is fired. Firing is carried out in the temperature range of 500 to 1200°C, more preferably in the range of 700 to 1100°C. General-purpose equipment can be used by performing the sintering at a temperature of 1100° C. or lower.
- the mixed powder constituting the mixture before firing is prepared so that D95 in the particle size distribution curve measured with a laser diffraction/scattering particle size distribution analyzer is 5 ⁇ m or less. preferably.
- D95 is the particle size at which the cumulative volume frequency calculated by volume fraction is 95% when integrated from the smaller particle size.
- the firing method is not particularly limited as long as it can be fired under the above conditions, and may be the same as the first aspect described above.
- the niobium-containing oxide obtained above is subjected to surface treatment.
- the niobium-containing oxide according to the second aspect of the present invention is characterized by localized presence of M1 (M1 is a metal element with a valence of 3+ or 2+ excluding Ti or Nb) on the surface of the particles.
- M1 is a metal element with a valence of 3+ or 2+ excluding Ti or Nb
- a dense negative electrode layer can be formed and excellent charge rate characteristics can be imparted.
- a compound containing the metal element M1 hereinafter sometimes referred to as a treating agent or treating agent 2 is added to produce the niobium-containing oxide powder according to the second aspect of the present invention.
- the niobium-containing oxide powder according to the second aspect of the present invention can be produced by the following surface treatment process.
- the following surface treatment step it is possible to appropriately and relatively easily create a state in which the metal element M1 exists on the surface of the niobium-containing oxide particles.
- the method of mixing the niobium-containing oxide powder of the base material and the compound containing the metal element M1 is not particularly limited, and either wet mixing or dry mixing method can be employed. It is preferable to uniformly disperse the compound containing the metal element M1 on the surfaces of the particles constituting the powder, and wet mixing is preferable in that respect.
- the treatment agent 2 and the niobium-containing oxide powder of the base material are put into water or an alcohol solvent and mixed in a slurry state.
- the alcohol solvent those having a boiling point of 100° C. or lower, such as methanol, ethanol, and isopropyl alcohol, are preferable because the solvent can be easily removed.
- an aqueous solvent is industrially preferable.
- the compound (treatment agent) containing the metal element M1 is not particularly limited, but examples include oxides, phosphorous oxides, and hydroxides. compounds, sulfate compounds, nitrate compounds, fluorides, chlorides, organic compounds, and metal salt compounds such as ammonium salts and phosphates.
- the compound containing Al includes, for example, aluminum oxide, aluminum phosphate, aluminum hydroxide, aluminum sulfate, aluminum nitrate, aluminum fluoride, aluminum chloride, aluminum acetate, sulfuric acid, aluminum ammonium, aluminum alkoxide, etc., and among them, aluminum sulfate and its hydrate are preferable.
- the metal element M1 is Mg, it is not particularly limited, but for example, magnesium oxide, magnesium phosphate, magnesium hydroxide, magnesium sulfate, magnesium nitrate, magnesium fluoride, magnesium chloride, magnesium acetate, magnesium ammonium phosphate, or magnesium alkoxides, etc., among which magnesium sulfate and its hydrate are preferred.
- the amount of the compound containing the metal element M1 to be added may be any amount as long as the amount of the metal element M1 in the niobium-containing oxide falls within the scope of the present invention. It may be added at a rate of 0.03% by mass or more, preferably at a rate of 0.05% by mass or more, and more preferably at a rate of 0.1% by mass or more. Moreover, it is preferably added in a proportion of 12% by mass or less, more preferably 10% by mass or less, and even more preferably 8% by mass or less based on the niobium-containing oxide powder of the substrate.
- the heat treatment conditions and heat treatment method may be the same as in the first aspect described above.
- niobium-containing oxide powder after the heat treatment obtained as described above is slightly agglomerated, it is not necessary to perform pulverization that destroys the particles. It suffices to perform pulverization and classification to the extent that the
- the niobium-containing oxide powder according to the second aspect of the present invention may be mixed with the treatment agent 2 in the surface treatment step, then granulated and heat-treated to obtain a powder containing secondary particles in which primary particles are agglomerated.
- Any method may be used for granulation as long as secondary particles can be produced, but a spray dryer is preferable because it can process a large amount.
- the dew point may be controlled in the heat treatment process. If the powder after the heat treatment is exposed to the atmosphere as it is, the powder absorbs moisture in the atmosphere. Therefore, it is preferable to handle the powder in an environment where the dew point is controlled during cooling in the heat treatment furnace and after the heat treatment.
- the heat-treated powder may be classified as necessary to bring the particles into the desired maximum particle size range. These conditions may be the same as those of the first aspect described above.
- An active material according to the second aspect of the present invention contains the niobium-containing oxide powder according to the second aspect of the present invention. It may contain one or more substances other than the niobium-containing oxide powder according to the second aspect of the present invention.
- Other substances include, for example, carbon materials [pyrolytic carbons, cokes, graphites (artificial graphite, natural graphite, etc.), organic polymer compound combustion bodies, carbon fibers], tin and tin compounds, silicon and silicon compounds.
- lithium-containing metal oxides are used.
- lithium titanate containing Li 4 Ti 5 O 12 as a main component can be mentioned as a metal oxide containing lithium.
- a power storage device comprises an electrode containing the active material according to the second aspect of the present invention, and utilizes intercalation and de-intercalation of lithium ions into such an electrode. It is a device that stores and releases energy as a result, and examples thereof include hybrid capacitors, lithium batteries, and all-solid secondary batteries.
- the positive electrode includes an active material such as activated carbon in which capacitance is formed by physical adsorption similar to the electrode material of the electric double layer capacitor, and graphite.
- an active material whose capacity is formed by intercalation and deintercalation, or an active material whose capacity is formed by redox, such as a conductive polymer, is used for the negative electrode, and the active material according to the second aspect of the present invention is used for the negative electrode.
- the active material according to the second aspect of the present invention is usually used in the form of an electrode sheet for the hybrid capacitor.
- the lithium battery according to the second aspect of the present invention is a general term for lithium primary batteries and lithium secondary batteries.
- the term lithium secondary battery is used as a concept including so-called lithium ion secondary batteries and all-solid-state lithium ion secondary batteries.
- the lithium battery is composed of a positive electrode, a negative electrode, and a non-aqueous electrolyte in which an electrolyte salt is dissolved in a non-aqueous solvent, or a solid electrolyte. It can be used as a material.
- the active material according to the second aspect of the present invention is usually used in the form of an electrode sheet for the lithium battery. Although this active material may be used as either a positive electrode active material or a negative electrode active material, the case where it is used as a negative electrode active material will be described below.
- the negative electrode according to the second aspect of the present invention is a negative electrode layer containing a negative electrode active material (active material according to the second aspect of the present invention), a conductive agent and a binder on one or both sides of a negative electrode current collector.
- This negative electrode layer is usually in the form of an electrode sheet.
- a negative electrode current collector having pores such as a porous body
- a negative electrode layer containing a negative electrode active material (active material according to the second aspect of the present invention), a conductive agent, and a binder is placed in the pores. have.
- the conductive agent for the negative electrode is not particularly limited as long as it is an electron conductive material that does not cause chemical change, and the same material as in the first aspect described above can be used, and the amount added can also be the same. can. If it is less than 0.1% by mass, the conductivity of the negative electrode layer cannot be ensured, and if it exceeds 10% by mass, the active material ratio decreases, and the discharge capacity of the electricity storage device per unit mass and unit volume of the negative electrode layer becomes insufficient. Therefore, it is not suitable for increasing the capacity.
- the conductive agent may be added at the time of electrode preparation, or the active material itself may be coated with the conductive agent. This is because the conductivity of the negative electrode layer can be further improved by coating with a conductive agent such as carbon fiber.
- binder for the negative electrode the same one as in the first aspect described above can be used, and the addition amount thereof can also be the same.
- the negative electrode current collector the same one as in the first aspect described above can be used.
- a negative electrode active material including the active material according to the second aspect of the present invention
- a conductive agent and a binder are uniformly mixed in a solvent to form a paint
- the negative electrode collection is performed. It can be obtained by applying it on an electric body, drying it, and compressing it.
- a negative electrode current collector having pores such as a porous body
- a paint in which a negative electrode active material (active material according to the second aspect of the present invention), a conductive agent, and a binder are uniformly mixed in a solvent can be obtained by pressurizing and filling the pores of the current collector, or by immersing the current collector having pores in the paint and diffusing it into the pores, followed by drying and compression.
- a method of uniformly mixing a negative electrode active material (active material according to the second aspect of the present invention), a conductive agent, and a binder in a solvent to form a paint for example, the mixture is mixed in a kneading vessel such as a planetary mixer.
- a kneader in which a stirring rod revolves while rotating on its own axis, a twin-screw extruder kneader, a planetary stirring and defoaming device, a bead mill, a high-speed swirling mixer, a powder suction continuous dissolving and dispersing device, and the like can be used.
- a process may be divided according to solid content density
- the negative electrode active material the active material according to the second aspect of the present invention
- the conductive agent, and the binder in the solvent the specific surface area of the active material, the type of the conductive agent, and the binder Since it varies depending on the type and combination of these, it should be optimized, but a kneader that revolves while the stirring rod rotates in a kneading vessel such as a planetary mixer, a twin-screw extruder kneader, and a planetary agitator.
- the high solid content concentration is preferably 60% to 90% by mass, more preferably 60% to 80% by mass.
- the content is 60% by mass or more, shear force can be obtained, and when it is 90% by mass or less, the load on the apparatus is reduced, and when it is 80% by mass or less, it is more preferable.
- the mixing procedure is not particularly limited, but may be a method of simultaneously mixing the negative electrode active material, the conductive agent and the binder in a solvent, or a method of mixing the conductive agent and the binder in advance in a solvent and then mixing the negative electrode active material. and a method of preparing negative electrode active material slurry, conductive agent slurry and binder solution in advance and mixing them.
- the negative electrode active material is additionally mixed, and the negative electrode active material slurry, the conductive agent slurry, and the binder solution are prepared in advance. , are preferably mixed.
- organic solvent can be used as the solvent.
- organic solvent include aprotic organic solvents such as 1-methyl-2-pyrrolidone, dimethylacetamide, and dimethylformamide, either alone or in combination of two or more, preferably 1-methyl-2-pyrrolidone.
- the positive electrode has a positive electrode layer containing a positive electrode active material, a conductive agent and a binder on one or both sides of a positive electrode current collector.
- the positive electrode active material a material capable of intercalating and deintercalating lithium is used.
- the active material may be a composite metal oxide with lithium containing cobalt, manganese, or nickel, or a lithium-containing olivine-type phosphate. These positive electrode active materials can be used singly or in combination of two or more.
- lithium composite metal oxides examples include LiCoO 2 , LiMn 2 O 4 , LiNiO 2 , LiCo 1-x Ni x O 2 (0.01 ⁇ X ⁇ 1), LiCo 1/3 Ni 1/3 Mn 1/3 O 2 , LiNi 1/2 Mn 3/2 O 4 and the like, and part of these lithium composite oxides may be replaced with other elements, and part of cobalt, manganese and nickel may be replaced with B , Nb, Sn, Mg, Fe, Ti, Al, Zr, Cr, V, Ga, Zn, Cu, Bi, Mo, La, etc., or substitute a part of O with S or It can be substituted with F or coated with a compound containing these other elements.
- Lithium-containing olivine-type phosphates include, for example, LiFePO 4 , LiCoPO 4 , LiNiPO 4 , LiMnPO 4 , LiFe 1-x MxPO 4 (M is at least one selected from Co, Ni, Mn, Cu, Zn and Cd). is a seed, and X is 0 ⁇ X ⁇ 0.5.) and the like.
- Examples of the conductive agent and binder for the positive electrode include those similar to those for the negative electrode.
- Examples of the positive electrode current collector include aluminum, stainless steel, nickel, titanium, calcined carbon, and aluminum or stainless steel surface-treated with carbon, nickel, titanium, or silver. The surface of these materials may be oxidized, or the surface of the positive electrode current collector may be roughened by surface treatment.
- Examples of forms of current collectors include sheets, nets, foils, films, punched materials, laths, porous bodies, foams, fibers, nonwoven fabrics, and the like.
- Non-aqueous electrolyte is obtained by dissolving an electrolyte salt in a non-aqueous solvent.
- the non-aqueous electrolyte is not particularly limited, and various types can be used.
- the electrolyte salt one that dissolves in a non - aqueous electrolyte is used.
- CF3 ) 2 LiN( SO2C2F5 ) 2 , LiCF3SO3 , LiC( SO2CF3 ) 3 , LiPF4 ( CF3 ) 2 , LiPF3 ( C2F5 ) 3 , LiPF3 (CF 3 ) 3 , LiPF 3 (iso-C 3 F 7 ) 3 , LiPF 5 (iso-C 3 F 7 ) and other lithium salts containing chain-like fluorinated alkyl groups, and (CF 2 ) 2 ( Lithium salts containing cyclic alkylene fluoride chains such as SO 2 ) 2 NLi, (CF 2 ) 3 (SO 2 ) 2 NLi, lithium bis[oxalate-O,O′]borate and difluoro[oxalate-O, Lithium salts having an anion of an oxalate complex such as lithium
- electrolyte salts are LiPF 6 , LiBF 4 , LiPO 2 F 2 and LiN(SO 2 F) 2
- the most preferred electrolyte salt is LiPF 6
- electrolyte salts can be used singly or in combination of two or more.
- a suitable combination of these electrolyte salts includes LiPF 6 and at least one lithium salt selected from LiBF 4 , LiPO 2 F 2 and LiN(SO 2 F) 2 in the non-aqueous electrolyte. preferably contained in
- the concentration of all these electrolyte salts dissolved and used is usually preferably 0.3M or more, more preferably 0.5M or more, and still more preferably 0.7M or more, relative to the non-aqueous solvent. Moreover, the upper limit thereof is preferably 2.5M or less, more preferably 2.0M or less, and even more preferably 1.5M or less.
- chain ester is used as a concept including chain carbonates and chain carboxylic acid esters.
- Cyclic carbonates include ethylene carbonate (EC), propylene carbonate (PC), 1,2-butylene carbonate, 2,3-butylene carbonate, 4-fluoro-1,3-dioxolan-2-one (FEC), trans or cis-4,5-difluoro-1,3-dioxolane-2-one (hereinafter collectively referred to as "DFEC"), vinylene carbonate (VC), vinylethylene carbonate (VEC), and 4-ethynyl-1 , 3-dioxolan-2-one (EEC), ethylene carbonate, propylene carbonate, 1,2-butylene carbonate, 2,3-butylene carbonate, 4-fluoro-1,3 - At least one selected from dioxolan-2-one and 4-ethynyl-1,3-dioxolan-2-one (EEC) is from the viewpoint of improving the charge rate characteristics of the electricity storage device and suppressing the amount of gas generated during high-temperature operation.
- DFEC 4-fluor
- cyclic carbonates having an alkylene chain selected from propylene carbonate, 1,2-butylene carbonate and 2,3-butylene carbonate.
- the ratio of the cyclic carbonate having an alkylene chain in the total cyclic carbonate is preferably 55% by volume to 100% by volume, more preferably 60% by volume to 90% by volume.
- non-aqueous electrolyte ethylene carbonate, propylene carbonate, 1,2-butylene carbonate, 2,3-butylene carbonate, 4-fluoro-1,3-dioxolan-2-one and 4-ethynyl-1
- At least one lithium salt selected from LiPF 6 , LiBF 4 , LiPO 2 F 2 and LiN(SO 2 F) 2 is added to a non-aqueous solvent containing one or more cyclic carbonates selected from 3-dioxolan-2-ones. It is preferable to use a non-aqueous electrolyte in which an electrolyte salt containing The above is more preferable.
- the concentration of the total electrolyte salt is 0.5M to 2.0M
- the electrolyte salt contains at least LiPF 6 and further contains 0.001M to 1M of LiBF 4 , LiPO 2 F 2 and LiN(SO 2 F)
- a non-aqueous electrolyte containing at least one lithium salt selected from 2 it is preferable to use a non-aqueous electrolyte containing at least one lithium salt selected from 2 .
- the proportion of the lithium salt other than LiPF 6 in the non-aqueous solvent is 0.001M or more, the effect of improving the charge rate characteristics of the electricity storage device and suppressing the amount of gas generated during high-temperature operation is likely to be exhibited.
- the proportion of lithium salts other than LiPF 6 in the non-aqueous solvent is preferably 0.01M or more, particularly preferably 0.03M or more, and most preferably 0.04M or more.
- the upper limit is preferably 0.8M or less, more preferably 0.6M or less, and particularly preferably 0.4M or less.
- the non-aqueous solvents are preferably mixed and used in order to achieve appropriate physical properties.
- the combination includes, for example, a combination of a cyclic carbonate and a chain carbonate, a combination of a cyclic carbonate, a chain carbonate and a lactone, a combination of a cyclic carbonate, a chain carbonate and an ether, and a combination of a cyclic carbonate, a chain carbonate and a chain ester. combinations, combinations of cyclic carbonates, chain carbonates and nitriles, and combinations of cyclic carbonates, chain carbonates and S ⁇ O bond-containing compounds, and the like.
- one or two or more asymmetric chain carbonates selected from methyl ethyl carbonate (MEC), methyl propyl carbonate (MPC), methyl isopropyl carbonate (MIPC), methyl butyl carbonate, and ethyl propyl carbonate
- MEC methyl ethyl carbonate
- MPC methyl propyl carbonate
- MIPC methyl isopropyl carbonate
- DMC dimethyl carbonate
- DEC diethyl carbonate
- dipropyl carbonate dibutyl carbonate
- pivalic acid esters such as methyl pivalate, ethyl pivalate, and propyl pivalate , methyl propionate, ethyl propionate, propyl propionate, methyl acetate, and ethyl acetate (EA).
- chain esters having a methyl group selected from dimethyl carbonate, methyl ethyl carbonate, methyl propyl carbonate, methyl isopropyl carbonate, methyl butyl carbonate, methyl propionate, methyl acetate and ethyl acetate (EA) are preferred.
- a chain carbonate having a methyl group is particularly preferred.
- chain carbonates when chain carbonates are used, it is preferable to use two or more of them. Furthermore, it is more preferable that both the symmetrical chain carbonate and the asymmetrical chain carbonate are included, and it is even more preferable that the content of the symmetrical chain carbonate is higher than that of the asymmetrical chain carbonate.
- the content of the chain ester is not particularly limited, it is preferably used in the range of 60% by volume to 90% by volume with respect to the total volume of the non-aqueous solvent.
- the content is 60% by volume or more, the viscosity of the non-aqueous electrolyte does not become too high, and when the content is 90% by volume or less, the electrical conductivity of the non-aqueous electrolyte decreases, improving the charge rate characteristics of the electricity storage device.
- the above range is preferable because there is little possibility that the effect of suppressing the amount of gas generated during high-temperature operation is reduced.
- the volume ratio of the symmetrical chain carbonate in the chain carbonate is preferably 51% by volume or more, more preferably 55% by volume or more.
- the upper limit is more preferably 95% by volume or less, and even more preferably 85% by volume or less. It is particularly preferred if the symmetrical chain carbonate includes dimethyl carbonate. Moreover, it is more preferable that the asymmetric chain carbonate has a methyl group, and methyl ethyl carbonate is particularly preferable. In the above case, the charge rate characteristics of the electricity storage device are improved and the effect of suppressing the amount of gas generated during high-temperature operation is improved, which is preferable.
- the ratio of cyclic carbonate to chain ester is 10:90 to 45 (volume ratio) of cyclic carbonate and chain ester from the viewpoint of improving the charge rate characteristics of the electrical storage device and enhancing the effect of suppressing the amount of gas generated during high-temperature operation. :55 is preferred, 15:85 to 40:60 is more preferred, and 20:80 to 35:65 is particularly preferred.
- the structure of the lithium battery according to the second aspect of the present invention is not particularly limited, and includes a coin battery having a positive electrode, a negative electrode, and a single-layer or multi-layer separator, and a positive electrode, a negative electrode, and a rolled separator. Cylindrical batteries, square batteries, and the like are examples.
- an insulating thin film having a high ion permeability and a predetermined mechanical strength is used.
- examples thereof include polyethylene, polypropylene, cellulose paper, glass fiber paper, polyethylene terephthalate, polyimide microporous film, etc.
- Multilayer films composed of a combination of two or more types can also be used.
- the surfaces of these separators can be coated with resins such as PVDF, silicone resins and rubber-based resins, particles of metal oxides such as aluminum oxide, silicon dioxide and magnesium oxide.
- the pore size of the separator may generally be in a range useful for batteries, and is, for example, 0.01 ⁇ m to 10 ⁇ m.
- the thickness of the separator may be within the range for general batteries, for example, 5 ⁇ m to 300 ⁇ m.
- a solid electrolyte is a solid electrolyte in which ions can move.
- inorganic solid electrolytes are solid in the steady state, they are not usually dissociated or released into cations and anions.
- the inorganic solid electrolyte is not particularly limited as long as it has conductivity of metal ions belonging to Group 1 of the periodic table, and generally has almost no electronic conductivity.
- Representative examples of the inorganic solid electrolyte include (A) a sulfide inorganic solid electrolyte and (B) an oxide inorganic solid electrolyte.
- a sulfide solid electrolyte is preferably used because it has high ion conductivity and can form a dense compact with few grain boundaries only by applying pressure at room temperature.
- the periodic table referred to here refers to the long-period periodic table.
- the sulfide inorganic solid electrolyte may be amorphous glass, crystallized glass, or a crystalline material.
- Specific examples of the sulfide inorganic solid electrolyte include the following combinations, but are not particularly limited. Li 2 SP 2 S 5 , Li 2 SP 2 S 5 —Al 2 S 3 , Li 2 S — GeS 2 , Li 2 S—Ga 2 S 3 , Li 2 S—GeS 2 —Ga 2 S 3 , Li 2 S—GeS 2 —P 2 S 5 , Li 2 S—GeS 2 —Sb 2 S 5 , Li 2 S—GeS 2 —Al 2 S 3 , Li 2 S—SiS 2 , Li 2 S—Al 2 S 3 , Li 2 S—SiS 2 —Al 2 S 3 , Li 2 S—SiS 2 —P 2 S 5 , Li 10 GeP 2 S 12 .
- LPS glasses and LPS glass-ceramics produced by combining Li 2 SP 2 S 5 are preferred.
- Algerodite-type solid electrolytes such as Li 6 PS 5 Cl and Li 6 PS 5 Br are also suitable examples of sulfide inorganic solid electrolytes other than those described above.
- the oxide inorganic solid electrolyte preferably contains oxygen atoms, has metal ion conductivity belonging to Group 1 of the periodic table, and has electronic insulation.
- oxide inorganic solid electrolytes examples include Li3.5Zn0.25GeO4 having a LISICON (lithium superionic conductor) type crystal structure, La0.55Li0.35TiO3 having a perovskite type crystal structure , LiTi 2 P 3 O 12 having a NASICON (Natrium superionic conductor) type crystal structure, Li 7 La 3 Zr 2 O 12 (LLZ) having a garnet type crystal structure, lithium phosphate (Li 3 PO 4 ), lithium phosphate LiPON in which part of the oxygen in the _ _ _ _ _ O 12 and the like are preferably exemplified.
- LISICON lithium superionic conductor
- La0.55Li0.35TiO3 having a perovskite type crystal structure
- LiTi 2 P 3 O 12 having a NASICON (Natrium superionic conductor) type crystal structure
- Li 7 La 3 Zr 2 O 12 (LLZ) having a garnet type crystal structure
- the volume average particle diameter of the inorganic solid electrolyte is not particularly limited, it is preferably 0.01 ⁇ m or more, more preferably 0.1 ⁇ m or more.
- the upper limit is preferably 100 ⁇ m or less, more preferably 50 ⁇ m or less.
- Example 1-1 liquid system lithium ion secondary battery [Example 1-1] ⁇ Raw material preparation process> Nb 2 O 5 (average particle size 0.2 ⁇ m) and anatase-type TiO 2 (specific surface area 10 m 2 /g) were weighed and mixed at a molar ratio of 1:1. This mixed powder was heat-treated at 1000° C. for 5 hours. Powder X-ray diffraction measurement was performed on the obtained sintered powder sample under the conditions of a sampling interval of 0.01° and a scanning speed of 2°/min.
- ⁇ Surface treatment process> Ion - exchanged water was added to the obtained calcined powder sample, and the mixture was pulverized by stirring so that the solid content concentration of the slurry was 30% by mass. ) 3 ⁇ 16H 2 O) was added in an amount of 0.8% by weight with respect to 100 g of the pulverized fired powder to prepare a mixed slurry.
- This mixed slurry was mixed in a paint shaker for 3 hours, dried at a temperature of 60 ° C., and then heat-treated at 500 ° C. for 1 hour using a muffle furnace to obtain a niobium-containing oxide according to Example 1-1.
- a material powder niobium titanate (hereinafter referred to as TNO) was produced.
- Example 1-2 In the surface treatment step, the same procedure as in Example 1-1 was performed, except that the amount of aluminum sulfate hexahydrate (Al 2 (SO 4 ) 3 16H 2 O) added as treatment agent 2 was as shown in Table 1. A niobium-containing oxide powder according to Example 1-2 was produced.
- Example 1-3 In the raw material adjustment step, the niobium-containing oxide powder synthesized in Example 1-1 was subjected to particle size adjustment treatment. Niobium-containing oxide powder and zirconia beads ( ⁇ 2.0 mm) were mixed, ball-milled, and then sieved with a 75 ⁇ m sieve to obtain a niobium-containing oxide powder whose particle size had been adjusted.
- the surface treatment step the same as Example 1-1 except that the amount of aluminum sulfate hexahydrate (Al 2 (SO 4 ) 3.16H 2 O) added as the treatment agent 2 was as shown in Table 1. , to produce a niobium-containing oxide powder according to Example 1-3.
- Example 1-4 In the surface treatment step, the mixed slurry containing the treatment agent 2 is not mixed with a paint shaker, but instead is lightly mixed by handshaking for 3 minutes, dried at a temperature of 60 ° C., and then placed in a muffle furnace.
- a niobium-containing oxide powder according to Example 1-4 was produced in the same manner as in Example 1-3, except that the powder was heat treated at 500° C. for 1 hour.
- Examples 1-5, 1-6, 1-7, 1-8, 1-9 In the surface treatment step, except that the type of treatment agent 2 and the amount of treatment agent 2 added were changed as shown in Table 1, the same procedure as in Example 1-1 was carried out, and Example 1-5 (magnesium sulfate 7 water hydrate: ⁇ gSO 4 ⁇ 7H 2 O), Example 1-6 (indium sulfate: In 2 (SO 4 ) 3 ), Example 1-7 (calcium fluoride: CaF 2 ), Example 1-8 (sulfuric acid Zinc: ZnSO 4 ), Examples 1-9 (gallium sulfate: Ga 3 (SO 4 ) 3 ) were used to produce niobium-containing oxide powders.
- Example 1-10 By performing the surface treatment step in the same manner as in Example 1-5 except that Nb 2 O 5 (niobium pentoxide, Niobium (V) oxide, average particle size 0.2 ⁇ m) was used as the niobium-containing oxide powder, A surface-treated niobium-containing oxide powder according to Examples 1-10 was produced.
- Nb 2 O 5 niobium pentoxide, Niobium (V) oxide, average particle size 0.2 ⁇ m
- Comparative Example 1-1 A niobium-containing oxide powder according to Comparative Example 1-1 was produced in the same manner as in Example 1-1, except that the treatment agent 2 was not added in the surface treatment step.
- Example 1-1 In the surface treatment step, the same procedure as in Example 1-1 was performed, except that the amount of aluminum sulfate hexahydrate (Al 2 (SO 4 ) 3 16H 2 O) added as treatment agent 2 was as shown in Table 1. A niobium-containing oxide powder according to Reference Example 1-1 was produced.
- Comparative Example 1-3 A niobium-containing oxide powder according to Comparative Example 1-3 was produced in the same manner as in Example 1-10, except that the treatment agent 2 was not added in the surface treatment step.
- Niobium-containing oxide powders of Examples 1-1 to 1-10, Reference Examples 1-1, and Comparative Examples 1-1 to 1-3 (hereinafter, niobium-containing powders of Examples, Reference Examples, and Comparative Examples
- the content of metal elements with a valence of 3+ or 2+ excluding Ti or Nb, or molybdenum, aluminum, magnesium, indium, calcium, zinc, and gallium contained in the oxide powder) is measured as follows. did.
- XRF ⁇ X-ray fluorescence analysis
- SSA specific surface area
- the specific surface areas (SSA) (m 2 /g) of the niobium-containing oxide powders of Examples 1-1 to 1-10, Reference Examples 1-1, and Comparative Examples 1-1 to 1-3 were determined by fully automatic BET.
- a specific surface area measuring device (trade name “Macsorb HM model-1208” manufactured by Mountec Co., Ltd.) was used, and nitrogen gas was used as the adsorption gas.
- 0.5 g of the measurement sample powder was weighed, placed in a ⁇ 12 standard cell (HM1201-031), degassed at 100° C. under vacuum for 0.5 hours, and then measured by the BET single-point method.
- ⁇ Calculation of D50 Dry laser diffraction scattering method>
- the D50 of the niobium-containing oxide powders of Examples 1-1 to 1-10, Reference Examples 1-1, and Comparative Examples 1-1 to 1-3 was measured using a laser diffraction/scattering particle size distribution analyzer (Nikkiso Co., Ltd. It was calculated from a particle size distribution curve measured using Microtrac MT3300EXII). Put 50 mg of sample into a container containing 50 ml of ion-exchanged water as a measurement solvent, shake the container by hand until the powder is evenly dispersed in the measurement solvent by visual inspection, and place the container in the measurement cell. It was measured.
- the crushing treatment applied ultrasonic waves (30 W, 3 s) with an ultrasonic device in the device. Further, a measurement solvent was added until the transmittance of the slurry fell within the appropriate range (the range indicated by the green bar on the device), and the particle size distribution was measured. D50 of the mixed powder before and after pulverization was calculated from the obtained particle size distribution curve. The D50 before pulverization corresponds to the D50 of secondary particles, and the D50 after pulverization corresponds to the D50 of primary particles.
- the negative electrode sheet was prepared as follows in a room controlled to a room temperature of 25° C. and a dew point of ⁇ 20° C. or less.
- the niobium-containing oxide powder of each example was taken out from the aluminum laminate bag in a room controlled at a temperature of 25°C and a dew point of -20°C or lower.
- the niobium-containing oxide powder taken out from each example was mixed as follows at a ratio of 90% by mass as an active material, 5% by mass of acetylene black as a conductive agent, and 5% by mass of polyvinylidene fluoride as a binder.
- the paint was prepared by Polyvinylidene fluoride, acetylene black, and 1-methyl-2-pyrrolidone dissolved in 1-methyl-2-pyrrolidone in advance are mixed in a planetary stirring deaerator, then niobium-containing oxide powder is added, and the total solid content is The mixture was adjusted to a concentration of 64% by mass and mixed with a planetary stirring deaerator. Thereafter, 1-methyl-2-pyrrolidone was added to adjust the total solid content concentration to 50% by mass, and the mixture was mixed in a planetary stirring deaerator to prepare a paint. The obtained coating material was applied onto an aluminum foil and dried to prepare a negative electrode single-sided sheet for a coin battery described later and a negative electrode double-sided sheet for a laminated battery described later. The target basis weight for coating was 7.5 mg/cm 2 .
- Electrode density The negative electrode single-sided sheet coated in the manner described above was pressed with a roll press (roller diameter 60 ⁇ 150 mm, press pressure equivalent to 40 MPa), and then the density of the negative electrode layer was measured as “electrode density”. Table 1 shows the evaluation results. When the electrode density is high, more active material can be packed per fixed volume, and as a result, the capacity that can be used as a battery increases, which is preferable.
- EC ethylene carbonate
- DMC dimethyl carbonate
- a circle having a diameter of 14 mm was punched out from the negative electrode single-sided sheet prepared by the method described above, pressed at a pressure of 2 t/cm 2 , and vacuum-dried at 120° C. for 5 hours to prepare an evaluation electrode.
- the prepared evaluation electrode and metal lithium are opposed to each other via a glass filter (ADVANTEC GA-100 and Wattman GF / C).
- a 2032-type coin battery was produced by adding a non-aqueous electrolyte solution prepared by the method described in ⁇ Preparation of Electrolyte Solution> and sealing.
- ⁇ Battery initial characteristics initial discharge capacity, measurement of 5C rate discharge characteristics>
- a current of 0.2 mA/cm 2 was applied to the coin-type battery produced by the method described in ⁇ Production of coin battery> above in a constant temperature bath at 25 ° C., with the direction in which Li is occluded in the evaluation electrode as charging.
- the battery After charging to 1 V at a density of 1 V and then constant-current constant-voltage charging at 1 V until the charging current reaches a current density of 0.05 mA/cm 2 , the battery is charged to 2 V at a current density of 0.2 mA/cm 2 . Three cycles of constant current discharge were performed.
- the initial discharge capacity (mAh/g) was determined by dividing the discharge capacity (mAh) at the third cycle by the weight of the niobium-containing oxide powder.
- the 5C rate discharge capacity ratio (%) was calculated by dividing the 5C discharge capacity by the initial discharge capacity.
- Table 1 shows the result of calculating the 5C rate discharge capacity rate of No.
- the C in 1C represents the current value when charging and discharging.
- 1C refers to the current value that can fully discharge (or fully charge) the theoretical capacity in 1/1 hour
- 0.1C means the current value that can fully discharge (or fully charge) the theoretical capacity in 1/0.1 hour. Point.
- the discharge capacity maintenance rate measured for the coin battery of Comparative Example 1-1 was set to 100, and the discharge capacity maintenance of Examples 1-1 to 1-10, Comparative Examples 1-2 to 1-3, and Reference Example 1-1 Table 1 shows the results of calculating the rate as a relative ratio (relative ratio %). Furthermore, the coin battery after 15 cycles was subjected to IMP measurement at a frequency of 0.01 Hz to 1 MHz and a temperature of 0° C., and the resistance value ( ⁇ ) was obtained from the size of the circular arc obtained. Taking the resistance value measured in the coin battery of Comparative Example 1-1 as 100, the resistance values of Examples 1-1 to 1-10, Comparative Examples 1-2 to 1-3, and Reference Example 1-1 are relative ratios. Table 1 shows the results calculated as the resistance value after the cycle (relative ratio %). It is considered that the lower the resistance value after the cycle, the more the resistance increase can be suppressed.
- Electrodes using the niobium-containing oxide powders of Examples 1-1 to 1-10 had metal elements with a valence of 3+ or 2+ other than Ti or Nb on the surfaces of the niobium-containing oxide particles, which constitute the niobium-containing oxide powders. By containing, it was found that the initial discharge capacity is high, the discharge rate characteristics and cycle characteristics are excellent, and the increase in resistance after cycles can be suppressed.
- Example 1-3 in which the niobium-containing oxide base material was changed to a grain-prepared product
- Example 1-4 in which the surface treatment method was changed to handshake, showed similar improvement effects.
- Example 1-5 containing a 2+ valence metal element (Mg)
- the discharge rate characteristics and cycle characteristics are improved more than in Example 1-2 (Al) containing a 3+ valence metal element.
- the discharge rate characteristics are maintained satisfactorily, the increase in resistance after the cycle is satisfactorily suppressed, and the It had enhanced characteristics.
- Examples 1-1 to 1-10 and Reference Example 1-1 a metal element M1 having a valence of 3+ or 2+ excluding Ti or Nb was introduced by the surface treatment step, so that niobium was contained.
- the metal element M1 was present on the surface of the oxide particles.
- the niobium-containing oxide powders of Comparative Examples 1-1 to 1-3 did not exhibit a decrease in initial discharge capacity, a decrease in rate characteristics, or an improvement in cycle characteristics, and did not lead to improvement in battery characteristics. rice field.
- Comparative Example 1-2 in which a metal element (Al) with a valence of 3+ was added during the synthesis of the base material instead of being coated, the electrode density, initial discharge capacity, and rate characteristics tended to decrease.
- niobium-containing oxide powder of Example 1-5 Mg2+ was detected in addition to Ti4+ and Nb5+, while only Ti4+ and Nb5+ were detected in the niobium-containing oxide powder of Comparative Example 1-1. Furthermore, the niobium-containing oxide powder of Example 1-5 was sputtered with Ar ions under the conditions of an acceleration voltage of 2 kV and an etching rate of 3.1 nm/min (in terms of SiO 2 ), and the Mg1s depth profile of the primary particles was measured. Carried out.
- the Mg concentration decreases from the particle surface toward the inside of the particle, and if the Mg atomic concentration at the surface (0 nm) is 100%, the Mg atomic concentration at a depth of 100 nm from the surface is less than 5%. rice field.
- the Mg1s depth profile results are shown in FIG. From this, by introducing the metal element M1 having a valence of 3+ or 2+ excluding Ti or Nb in the surface treatment step, the metal element M1 is localized on the surface of the niobium-containing oxide particles. It was confirmed.
- niobium-containing oxide aluminum sulfate hexahydrate (Al 2 (SO 4 ) 3 16H 2 O
- Li 6 PS 5 Cl powder volume average particle size obtained using a laser diffraction/scattering particle size distribution analyzer: 6 ⁇ m
- zirconia balls (diameter 3 mm, 20 g) were put into an 80 mL zirconia pot, and the mixed powder was put thereinto. After that, this pot was set in a planetary ball mill, and stirring was continued for 15 minutes at a rotation speed of 200 rpm to obtain a negative electrode active material composition of Example 2-1.
- the obtained negative electrode active material composition was pressed (360 MPa) for 10 minutes at room temperature to prepare a pellet (molded body) having a diameter of 10 mm and a thickness of about 0.7 mm.
- a pellet-shaped electrode containing this negative electrode active material composition, a pellet-shaped solid electrolyte layer (LPS glass having a molar ratio of Li 2 S:P 2 S 5 75:25) as a separator layer, and a lithium indium alloy as a counter electrode
- a lithium indium alloy as a counter electrode
- the foils were laminated in this order, and the laminate was sandwiched between stainless steel current collectors to produce an all-solid secondary battery, and battery characteristics were evaluated. Table 3 shows the results.
- Example 2-1 Listed in Table 3 below in the same manner as in Example 2-1 above, except that the niobium-containing oxide powder was changed to the niobium-containing oxide of Comparative Example 1-1 (a compound to which the treatment agent 2 was not added). All-solid-state secondary batteries were produced, and battery characteristics were evaluated. Table 3 shows the results.
- a current equivalent to 0.05 C the theoretical capacity of the niobium-containing oxide, is placed in a constant temperature bath at 25°C, with the all-solid-state secondary battery fabricated by the method described above being charged in the direction in which Li is occluded in the evaluation electrode.
- the battery After charging to 0.5V at 0.5V and constant voltage charging until the charging current reaches a current equivalent to 0.01C, the battery is discharged to 2V at a current equivalent to 0.05C.
- a constant current discharge was performed to The initial discharge capacity (mAh/g) was obtained by dividing the discharge capacity (mAh) by the mass of the niobium-containing oxide. The initial efficiency was obtained by dividing the discharge capacity by the charge capacity.
- the battery was charged to 0.5 V with a current corresponding to 0.4 C, which is the theoretical capacity of the niobium-containing oxide, and then discharged to 2 V at a current of 0.05 C to determine the 0.4 C charge capacity.
- the rate characteristic (%) was calculated by dividing the 0.4C charge capacity by the initial discharge capacity. For the rate characteristics, relative values were examined with the value of Comparative Example 2-1 as 100% as a reference. Table 3 shows the evaluation results.
- the electrode including the negative electrode layer using the niobium-containing oxide powder of Example 1-1 has Ti or Nb on the surface of the niobium-containing oxide particles constituting the niobium-containing oxide powder. It was found that the inclusion of the metal element M1 having a valence of 3+ or 2+ excluding M1 results in excellent charge rate characteristics.
- Example 3-1 ⁇ Raw material preparation process> Nb 2 O 5 (average particle size 0.2 ⁇ m) and anatase-type TiO 2 (specific surface area 10 m 2 /g) were weighed and mixed at a molar ratio of 1:1. This mixed powder was heat-treated at 1000° C. for 5 hours. Powder X-ray diffraction measurement was performed on the obtained sintered powder sample under the conditions of a sampling interval of 0.01° and a scanning speed of 2°/min.
- ⁇ Surface treatment process> Ion - exchanged water was added to the obtained calcined powder sample and stirred to make the solid content concentration of the slurry 30% by mass, followed by pulverization. 0.4% by mass was added to 100 g of the fired powder to prepare a mixed slurry.
- This mixed slurry was mixed in a paint shaker for 3 hours, dried at a temperature of 60 ° C., and then heat-treated at 500 ° C. for 1 hour using a muffle furnace to obtain a niobium-containing oxide according to Example 3-1.
- a powder niobium-titanium composite oxide powder (hereinafter sometimes referred to as TNO powder)) was produced.
- Example 3-2 In the surface treatment step, the TNO powder according to Example 3-2 was prepared in the same manner as in Example 3-1 except that the amount of lithium molybdate (Li 2 MoO 4 ) added as a treatment agent was set as shown in Table 4. manufactured.
- Example 3-1 A TNO powder according to Comparative Example 3-1 was produced in the same manner as in Example 3-1, except that no treatment agent was added in the surface treatment step.
- XRF ⁇ X-ray fluorescence analysis
- ⁇ Calculation of D50 Dry laser diffraction scattering method>
- the D50 of the niobium-containing oxide powders of Examples 3-1, 3-2, 4-1 to 4-8 and Comparative Examples 3-1, 4-1, and 4-2 was measured by a laser diffraction/scattering particle size distribution analyzer. (manufactured by Nikkiso Co., Ltd., Microtrac MT3300EXII) was used to calculate the particle size distribution curve.
- a 50 mg sample was placed in a container containing 50 mL of ion-exchanged water as a measurement solvent, and the container was shaken by hand until the powder was visually uniformly dispersed in the measurement solvent.
- the crushing treatment was performed by irradiating ultrasonic waves (30 W, 3 s) with an ultrasonic device in the apparatus. Further, a measurement solvent was added until the transmittance of the slurry fell within the proper range (the range indicated by the green bar on the device), and the particle size distribution was measured. D50 of the mixed powder before and after pulverization was calculated from the obtained particle size distribution curve. The D50 before pulverization corresponds to the D50 of secondary particles, and the D50 after pulverization corresponds to the D50 of primary particles.
- zirconia balls (diameter 3 mm, 20 g) were put into an 80 mL zirconia pot, and the mixed powder was put thereinto.
- Example 3-1 A negative electrode active material composition shown in Table 4 below was prepared in the same manner as in Example 3-1, except that the TNO powder produced by the production method shown in Table 4 was used.
- This pot was set in a planetary ball mill, and mechanical milling was performed at a rotation speed of 510 rpm for 16 hours to obtain a yellow powdery sulfide inorganic solid electrolyte (LPS glass).
- LPS glass yellow powdery sulfide inorganic solid electrolyte
- a pellet-shaped solid electrolyte layer was obtained by pressing 80 mg of the obtained LPS glass at a pressure of 360 MPa using a pellet molding machine having a molding part with an area of 0.785 cm 2 .
- the C in 1C represents the current value when charging and discharging.
- 1C refers to the current value that can fully discharge (or fully charge) the theoretical capacity in 1/1 hour
- 0.1C means the current value that can fully discharge (or fully charge) the theoretical capacity in 1/0.1 hour. show.
- Example 3-1 and 3-2 of the negative electrode active material composition of the present invention compared to Comparative Example 3-1, the initial discharge capacity, initial efficiency, and chargeability were excellent in the all-solid secondary battery. It can be seen that it has rate characteristics.
- the metal element Mo since the metal element Mo was introduced in the surface treatment step, the metal element Mo was localized on the surface of the niobium-containing oxide particles. Met.
- Examples 4-1 to 4-8 Comparative Examples 4-1 and 4-2
- the negative electrode active material described in Table 5 was used.
- Compositions were prepared and evaluated.
- the addition amount of lithium molybdate (Li 2 MoO 4 ) as a treatment agent was as shown in Table 5.
- a TNO powder was produced in the same manner as above.
- Example 4-6 and 4-7 in the surface treatment step, instead of lithium molybdate (Li 2 MoO 4 ) as a treatment agent, cerium sulfate tetrahydrate was used in the amount shown in Table 5.
- a TNO powder was produced in the same manner as in Example 3-1 except for the above.
- Example 4-8 TNO powder was produced in the same manner as in Example 4-1, except that the conditions in the raw material preparation step were adjusted so that the specific surface area and primary particle D50 were the values shown in Table 5.
- Comparative Examples 4-1 and 4-2 TNO powder was produced in the same manner as in Examples 4-1 and 4-8, except that no treating agent was added. It should be noted that the initial discharge capacity and charge rate characteristics of Examples 4-1 to 4-8 and Comparative Examples 4-1 and 4-2 are obtained when each value of Comparative Example 4-1 is taken as 100%. As a reference, relative values were investigated.
- Examples 4-1 to 4-8 of the negative electrode active material composition of the present invention compared to Comparative Examples 4-1 and 4-2, even at 45 ° C., the initial discharge capacity, initial efficiency, and charge rate characteristics.
- the metal elements Mo and Ce were introduced in the surface treatment step, the metal elements Mo and Ce were localized on the surface of the niobium-containing oxide particles. existed.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Composite Materials (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
Abstract
Description
特許文献3には、硫化物固体電解質とD50(μm)/BET(m2/g)が0.005以上5.0以下である一般式Ti1±αNb2±βO7±γで表されるニオブチタン複合酸化物とを含む電極合剤が開示されている。特許文献3によれば、固体電池の電極合剤として適用した場合に、優れた充放電効率を得ることができることが開示されている。
本発明の第1の観点は、ニオブ含有酸化物粉末、負極活物質組成物、及びそれを含む全固体二次電池に関する。
(1)一般式Ti1-x/2Nb2O7-x(X=0~2)で表されるニオブ含有酸化物粉末であって、前記ニオブ含有酸化物粉末を構成する、ニオブ含有酸化物粒子の表面にMoおよびCeからなる群より選ばれる少なくとも一種の金属元素が局在化して存在することを特徴とするニオブ含有酸化物粉末。
(2)前記ニオブ含有酸化物粉末において、粒子表面に存在する前記金属元素の含有率(質量%)が0.01以上1.2以下であることを特徴とする(1)に記載のニオブ含有酸化物粉末。
(3)前記ニオブ含有酸化物において、レーザー回折散乱法による体積基準粒度分布において体積累積が50%に相当する一次粒子のD50が0.6μm以上であることを特徴とする(1)又は(2)に記載のニオブ含有酸化物粉末。
(4)ニオブ含有酸化物粉末と、周期律表第1族に属する金属イオンの伝導性を有する無機固体電解質と、を含む負極活物質組成物であって、前記ニオブ含有酸化物粉末が(1)~(3)のいずれか一項に記載のニオブ含有酸化物粉末を含むことを特徴とする負極活物質組成物。
(5)前記無機固体電解質が、硫化物無機固体電解質である(4)に記載の負極活物質組成物。
(6)前記無機固体電解質の含有量が1質量%以上、50質量%以下である(4)又は(5)に記載の負極活物質組成物。
(7)正極層、負極層および固体電解質層を備えた全固体二次電池であって、前記負極層が(4)~(6)のいずれか一項に記載の負極活物質組成物を含む層であることを特徴とする全固体二次電池。
(8)一般式Ti1-x/2Nb2O7-x(X=0~2)で表されるニオブ含有酸化物粉末であって、前記ニオブ含有酸化物粉末を構成する、ニオブ含有酸化物粒子の表面にM1(M1は、TiまたはNbを除く価数3+または2+の金属元素である)が局在化して存在することを特徴とするニオブ含有酸化物粉末。
(9)前記ニオブ含有酸化物粉末において、粒子表面に存在する元素M1が、第2族、第12族、第13族、又は第14族の金属元素であることを特徴とする(8)に記載のニオブ含有酸化物粉末。
(10)前記ニオブ含有酸化物粉末において、粒子表面に存在する元素M1が、Al3+、Mg2+、Ca2+、Sr2+、Zn2+、 Ga3+、Ge2+、及びIn2+からなる元素群から選ばれるいずれか一つ以上を含むことを特徴とする(8)又は(9)に記載のニオブ含有酸化物粉末。
(11)前記ニオブ含有酸化物粉末において、粒子表面に存在する元素M1の含有率(質量%)が0.01以上1.2以下であることを特徴とする(8)~(10)のいずれか一項に記載のニオブ含有酸化物粉末。
(12)前記ニオブ含有酸化物粉末において、レーザー回折散乱法による体積基準粒度分布において体積累積が50%に相当する一次粒子のD50が0.3μm以上であることを特徴とする(8)~(11)のいずれか一項に記載のニオブ含有酸化物粉末。
(13)(8)~(12)のいずれか一項に記載のニオブ含有酸化物粉末を含むことを特徴とする、蓄電デバイスの電極。
(14)(13)に記載の電極を含むことを特徴とする蓄電デバイス。
以下、第1の観点に係る発明について説明する。
本発明の第1の観点に係るニオブ含有酸化物粉末は、一般式Ti1-x/2Nb2O7-x(X=0~2)で表されるニオブ含有酸化物粉末であって、前記ニオブ含有酸化物粉末を構成する、ニオブ含有酸化物粒子の表面にMoおよびCeからなる群より選ばれる少なくとも一種の金属元素が局在化して存在することを特徴とするニオブ含有酸化物粉末であるものをいう。なお、X=0~2とは0≦X≦2以下であることを示す。以降も同様である。
本発明の第1の観点に係るニオブ含有酸化物粉末は、一般式Ti1-x/2Nb2O7-x(X=0~2)で表されるニオブ含有酸化物を含有する。具体的な化合物の例には、LiイオンやNaイオンを吸蔵・放出することが可能なニオブチタン複合酸化物であるTiNb2O7、ニオブ酸化物であるNb2O5等が含まれる。初期放電容量、初期効率、及び充電レート特性を向上させる観点では、TiNb2O7が好ましい。ニオブチタン複合酸化物については、一部に合成原料由来のチタン酸化物相(例えばルチル型TiO2、TiOなど)を含んでもよい。ニオブチタン複合酸化物の場合、Nbのモル数とTiのモル数の比(Nb/Ti比)は、1.5~2.5の範囲が好ましく、さらに好ましいのは、1.8~2.0の範囲が好ましい。この範囲であると、ニオブ含有酸化物の電子伝導性が向上し、レート特性に優れる。
本発明の第1の観点に係るニオブ含有酸化物粉末はMoおよびCeからなる群より選ばれる少なくとも一種の金属元素を含有する。MoおよびCeからなる群より選ばれる少なくとも一種の金属元素を含有するとは、本発明の第1の観点に係るニオブ酸化物粉末の誘導結合プラズマ発光分析(ICP-AES)または蛍光X線分析(XRF)において、MoおよびCeからなる群より選ばれる少なくとも一種の金属元素が検出されることをいう。なお、誘導結合プラズマ発光分析による検出量の下限は、通常、0.001質量%である。ニオブ含有酸化物粉末の粒子表面にMoおよびCeが二種含有されてもよい。また、Mo、Ceとしては、その価数は特に限定されず、価数3+または2+であってもよいし、価数4+以上であってもよい。初期放電容量、初期効率、及び充電レート特性を向上させる観点では、Moを含有することが好ましい。
蛍光X線分析(XRF)から求めた本発明の第1の観点に係るニオブ含有酸化物粉末のMoおよびCeからなる群より選ばれる少なくとも一種の金属元素の含有率(質量%)は、0.01以上1.2以下であればよい。金属元素MoおよびCeからなる群より選ばれる少なくとも一種の金属元素の含有率がこの範囲であれば、初期放電容量、初期効率、及び充電レート特性に優れた全固体二次電池が得られる。0.01以上1.0以下であることが好ましく、充電レート特性のさらなる向上という観点からは、より好ましくは0.015以上0.9以下、さらに好ましくは0.04以上0.85以下、特に好ましいのは0.07以上0.75以下である。ただし、MoおよびCeがニオブ含有酸化物粉末の粒子表面に同時に含有する場合の前記含有率(質量%)は、二種の金属元素合計の含有率である。
なお、本発明の第1の観点において、ニオブ含有酸化物粒子の表面に局在化して存在するMoおよびCeからなる群より選ばれる少なくとも一種の金属元素の形態としては、特に限定されず、Mo元素およびCe元素からなる群より選ばれる少なくとも一種の金属元素が表面に局在化して存在するものであればよく、金属の状態であってもよいし、金属酸化物などの金属化合物の形態であってもよい。
本発明の第1の観点に係るニオブ含有酸化物粉末は、MoおよびCeからなる群より選ばれる少なくとも一種の金属元素以外のさらなる異種元素として、Al、Mg、Ca、Sr、Zn、 Ga、Ge、In、B、W、及びSからなる元素群からなる群より選ばれる少なくとも1種の元素を含有することが好ましい。本発明の第1の観点に係るニオブ含有酸化物粉末は、このような異種元素を、MоやCeと共に含有することで、ニオブ含有酸化物粉末の表面の電子伝導性が調整され、元素MоやCe単独含有より、電気抵抗を抑制できるためだと推測される。
本発明の第1の観点に係るニオブ含有酸化物粉末の比表面積とは、窒素を吸着ガスとして用いて測定した、単位質量あたりの表面積のことである。測定方法については、後述する実施例にて説明する。
本発明の第1の観点に係るニオブ含有酸化物粉末のD50とは体積中位粒径の指標である。レーザー回折・散乱型粒度分布測定によって求めた体積分率で計算した累積体積頻度が、粒径の小さい方から積算して50%になる粒径を意味する。測定方法については、後述する実施例にて説明する。
本発明の第1の観点に係るニオブ含有酸化物粉末のゼータ電位は、0mVより小さいことが好ましく、より好ましくは-5mV以下であることが好ましい。ゼータ電位の下限は、好ましくは-60mVより大きく、より好ましくは-35mVより大きいことが好ましい。本発明の第1の観点に係るニオブ含有酸化物粉末のゼータ電位が上記の範囲を示す場合、初期の放電レート特性、ならびに、長期でのサイクル後の抵抗増加抑制に優れた蓄電デバイスが得られるからである。ゼータ電位は、電気二重層中の滑り面と、界面から充分に離れた部分との間の電位差を表すが、この電位差がニオブ含有酸化物粉末表面でのLi+透過性に影響すると推測される。測定方法については、後述する実施例にて説明する。
以下に、本発明の第1の観点に係るニオブ含有酸化物粉末の製造方法の一例を、原料の調製工程、焼成工程、及び表面処理工程に分けて説明するが、本発明の第1の観点に係るニオブ含有酸化物粉末の製造方法はこれに限定されない。
まず、出発原料を混合する。特にニオブチタン複合酸化物の場合、出発原料として、Tiと、Nbとを含む酸化物または塩を用いる。また、ニオブチタン複合酸化物のその他の添加元素を含む場合、出発原料として用いる塩は、水酸化物塩、炭酸塩、硝酸塩のような、比較的低融点で分解して酸化物を生じる塩であることが好ましい。また、後述の焼成工程において十分に元素拡散が進むように、出発原料に平均粒径が2μm以下、好ましくは平均粒径が0.5μm以下の粉末を用いることが好ましい。
次に、上記で得られた混合物を焼成する。焼成は500~1200℃の温度範囲で、より好ましくは700~1000℃の範囲で行う。焼成温度を1000℃以下で行うことで汎用の設備を利用することができる。なお、混合物を短時間で焼成する場合は、焼成前に混合物を構成する混合粉末を、レーザー回折・散乱型粒度分布測定機にて測定される粒度分布曲線におけるD95が5μm以下になるように調製することが好ましい。ここで、D95とは、体積分率で計算した累積体積頻度が、粒径の小さい方から積算して95%になる粒径のことである。
次に、上記で得られたニオブ含有酸化物について、表面処理を実施する。本発明の第1の観点に係るニオブ含有酸化物は、ニオブ含有酸化物粉末を構成する粒子の表面にMoおよびCeからなる群より選ばれる少なくとも一種の金属元素が局在化して存在することを特徴としており、電池の負極材料として適用した場合に緻密な負極層を形成することができるとともに優れた充電レート特性を付与することができる。前記焼成工程にて、前記MoおよびCeからなる群より選ばれる少なくとも一種の金属元素を含有する化合物(以下、処理剤と記すことがある)を加えて、本発明の第1の観点に係るニオブ含有酸化物粉末を製造することもできるが、より好ましくは、次のような表面処理工程などで、本発明の第1の観点に係るニオブ含有酸化物粉末を製造することができる。特に、次のような表面処理工程を採用することで、適切かつ比較的簡便に、ニオブ含有酸化物粒子の表面に、MoおよびCeからなる群より選ばれる少なくとも一種の金属元素が存在する状態とすることができる。
本発明の第1の観点に係る負極活物質組成物は、本発明の第1の観点に係るニオブ含有酸化物粉末と、周期律表第1族に属する金属イオンの伝導性を有する無機固体電解質と、を含む負極活物質組成物である。無機固体電解質の含有量は特に限定されないが、前記活物質組成物中に、1質量%以上であればよく、5質量%以上であることが好ましく、20質量%以上であることがより好ましく、30質量%以上であることがさらに好ましい。無機固体電解質の含有量が多いほどニオブ含有酸化物粉末と固体電解質の接触が得られやすいため好ましい。また無機固体電解質の含有量が多すぎると全固体二次電池の電池容量が小さくなるため、70質量%以下であればよく、60質量%以下であることが好ましく、50質量%以下であることがより好ましい。通常、全固体二次電池の電池容量を大きくするため無機固体電解質の含有量は少ない方が好ましいが、含有量が少ない場合、ニオブ含有酸化物粉末と固体電解質の接触が取りづらくなる。本発明の第1の観点に係る負極活物質組成物に用いられる前記ニオブ含有酸化物粉末を用いることで無機固体電解質の含有量は少ない場合においても満足のいくニオブ含有酸化物粉末と固体電解質の接触が得られる。本発明の第1の観点に係るニオブ含有酸化物粉末及び無機固体電解質以外の物質を1種又は2種以上含んでいてもよい。他の物質としては、例えば、炭素材料〔熱分解炭素類、コークス類、グラファイト類(人造黒鉛、天然黒鉛等)、有機高分子化合物燃焼体、炭素繊維〕、スズやスズ化合物、ケイ素やケイ素化合物、リチウムを含む金属酸化物が使用される。特に、リチウムを含む金属酸化物として、Li4Ti5O12を主成分とするチタン酸リチウムが挙げられる。
本明細書の周期律表とは、IUPAC(国際純正応用化学連合)の規定に基づく長周期型の元素の周期律表をいう。
無機固体電解質は、無機の固体電解質のことであり、固体電解質とは、その内部においてイオンを移動させることができる固体状の電解質のことである。無機固体電解質は定常状態では固体であるため、通常カチオンおよびアニオンに解離または遊離していない。無機固体電解質は周期律表第1族に属する金属イオンの伝導性を有するものであれば特に限定されず電子伝導性をほとんど有さないものが一般的である。
硫化物無機固体電解質は、硫黄原子(S)を含有し、かつ、周期律表第1族に属する金属イオンの伝導性を有し、かつ、電子絶縁性を有するものが好ましい。前記硫化物無機固体電解質は周期律表第1族に属する金属硫化物と下記一般式(III)で表される硫化物の少なくとも1種を反応させるにより製造することができ、一般式(III)で表される硫化物を2種以上併用しても良い。
(MはP、Si、Ge、B、Al、Ga、及びSbのいずれかを示し、x及びyは、Mの種類に応じて、化学量論比を与える数を示す。)
Li2S-P2S5、Li2S-P2S5-Al2S3、Li2S-GeS2、Li2S-Ga2S3、Li2S-GeS2-Ga2S3、Li2S-GeS2-P2S5、Li2S-GeS2-Sb2S5、Li2S-GeS2-Al2S3、Li2S-SiS2、Li2S-Al2S3、Li2S-SiS2-Al2S3、Li2S-SiS2-P2S5、Li10GeP2S12。
本発明の第1の観点に係る負極活物質組成物は、前記ニオブ含有酸化物粉末と前記無機固体電解質の他、導電剤、結着剤を含んでも良い。
本発明の第1の観点に係る負極活物質組成物の作製方法は、特に限定されず、例えば、前記ニオブ含有酸化物粉末に対して、特定の割合の前記無機固体電解質の粉末を添加し混合機、撹拌機、分散機等で混合する方法、固体電解質を含むスラリーに前記ニオブ含有酸化物粉末を加える方法が好適に挙げられる。
本発明の第1の観点に係る負極活物質組成物は、周期律表第1族に属する金属イオンの伝導性を有する無機固体電解質とニオブ含有酸化物粒子の表面にMoおよびCeからなる群より選ばれる少なくとも一種の金属元素が局在化して存在するニオブ含有酸化物とを含む。通常ニオブ含有酸化物と無機固体電解質、特に硫化物無機固体電解質を混合させると、ニオブ含有酸化物と硫化物無機固体電解質が化学的に反応して、それらの界面にイオン伝導性の低い高抵抗の反応物が付着し電池特性、特に充電レート特性が低下する。一方で本発明の第1の観点に係るニオブ含有酸化物粒子の表面にMoおよびCeからなる群より選ばれる少なくとも一種の金属元素が局在化して存在することにより固体電解質との好ましくない反応を抑制することができる。その結果、全固体二次電池において特性が改善できると考えられる。
ここで、有機電解液を用いたリチウムイオン二次電池においては、固体電解質との反応は生じないため、本願の課題が生じることはない。有機電解液を用いたリチウムイオン二次電池において、本願のニオブ含有酸化物を適用させたところ、充電レート特性の向上は見られなかった。
本発明の第1の観点に係る全固体二次電池は、正極層、負極層、及び正極層と負極層の間に位置する固体電解質層により構成されているが、本発明の第1の観点に係るニオブ含有酸化物粉末と周期律表第1族に属する金属イオンの伝導性を有する無機固体電解質を含む負極活物質組成物は、負極層に用いられる。負極層の作製方法は、特に限定されず、例えば、前記負極活物質組成物を加圧形成する方法や負極活物質組成物を溶剤に加えてスラリーにした後、この負極活物質組成物を集電体に塗布して、乾燥、加圧成型する方法などが好適に挙げることができる。
例えば、全固体二次電池用正極層として用いられる正極活物質としては、コバルト、マンガン、及びニッケルから選ばれる1種又は2種以上を含有するリチウムとの複合金属酸化物が使用される。これらの正極活物質は、1種単独で用いるか又は2種以上を組み合わせて用いることができる。
このようなリチウム複合金属酸化物としては、例えば、LiCoO2、LiCo1-xMxO2(但し、MはSn、Mg、Fe、Ti、Al、Zr、Cr、V、Ga、Zn、及びCuから選ばれる1種又は2種以上の元素、0.001≦x≦0.05)、LiMn2O4、LiNiO2、LiCo1-xNixO2(0.01<x<1)、LiCo1/3Ni1/3Mn1/3O2、LiNi0.5Mn0.3Co0.2O2、LiNi0.8Mn0.1Co0.1O2、LiNi0.8Co0.15Al0.05O2、Li2MnO3とLiMO2(Mは、Co、Ni、Mn、Fe等の遷移金属)との固溶体、及びLiNi1/2Mn3/2O4から選ばれる1種以上が好適に挙げられ、2種以上がより好適である。また、LiCoO2とLiMn2O4、LiCoO2とLiNiO2、LiMn2O4とLiNiO2のように併用してもよい。
これらのリチウム含有オリビン型リン酸塩の一部は他元素で置換してもよく、鉄、コバルト、ニッケル、マンガンの一部をCo、Mn、Ni、Mg、Al、B、Ti、V、Nb、Cu、Zn、Mo、Ca、Sr、W及びZr等から選ばれる1種以上の元素での置換が可能であり、またはこれらの他元素を含有する化合物や炭素材料で被覆することもできる。これらの中では、LiFePO4またはLiMnPO4が好ましい。
また、リチウム含有オリビン型リン酸塩は、例えば前記の正極活物質と混合して用いることもできる。
次いで、第2の観点に係る発明について説明する。
本発明の第2の観点に係るニオブ酸化物粉末は、一般式Ti1-x/2Nb2O7-x(X=0~2)で表されるニオブ含有酸化物粉末であって、前記ニオブ含有酸化物粉末を構成する、ニオブ含有酸化物粒子の表面にM1(M1は、TiまたはNbを除く価数3+または2+の金属元素である)が存在することを特徴とするニオブ含有酸化物粉末であるものをいう。
本発明の第2の観点に係るニオブ含有酸化物粉末は、一般式Ti1-x/2Nb2O7-x(X=0~2)で表されるニオブ含有酸化物を含有する。Xの上限値は2以下が好ましく、1.5以下がより好ましく、1以下がさらに好ましく、0.5以下が特に好ましい。Xの下限値は0以上であればよい。具体的な化合物の例には、LiイオンやNaイオンを吸蔵・放出することが可能なニオブチタン複合酸化物であるTiNb2O7、ニオブ酸化物であるNb2O5等が含まれる。ニオブチタン複合酸化物については、一部に合成原料由来のチタン酸化物相(例えばルチル型TiO2、TiOなど)を含んでもよい。ニオブチタン複合酸化物の場合、Nbのモル数とTiのモル数の比(Nb/Ti比)は、1.5~2.5の範囲が好ましく、さらに好ましいのは、1.8~2.2の範囲であり、さらにより好ましいのは、1.8~2.0の範囲である。この範囲であると、複合酸化物の電子伝導性が向上し、レート特性に優れる。
本発明の第2の観点に係るニオブ含有酸化物粉末は粒子の表面に金属元素M1(M1は、TiまたはNbを除く価数3+または2+の金属元素である)が存在する。金属元素M1が存在するとは、本発明の第2の観点に係るニオブ酸化物粉末の誘導結合プラズマ発光分析(ICP-AES)または蛍光X線分析(XRF)において、金属元素M1が検出されることをいう。なお、誘導結合プラズマ発光分析による検出量の下限は、通常、0.001質量%である。
蛍光X線分析(XRF)から求めた本発明の第2の観点に係るニオブ含有酸化物粉末の金属元素M1の含有率(質量%)は、0.01以上1.2以下であればよく、好ましくは0.01以上1.0以下であり、より好ましくは0.01以上0.9以下であり、さらに好ましくは0.01以上0.8以下である。金属元素M1の含有率がこの範囲であれば、放電レート特性、サイクル特性に優れ、及び、サイクル後の抵抗増加を抑制した蓄電デバイスが得られる。0.05以上0.5以下が好ましく、放電レート特性のさらなる向上という観点や、サイクル後の抵抗増加の抑制効果をより高めるという観点からは、0.1以上0.3以下がより好ましく、さらに好ましくは0.1以上0.25以下であり、特に好ましくは0.1以上0.2以下である。また、充電レート特性のさらなる向上という観点からは、より好ましくは0.015以上0.9以下、さらに好ましくは0.04以上0.85以下、特に好ましいのは0.07以上0.75以下である。ただし、金属元素M1として、複数の金属元素が、ニオブ含有酸化物粉末の粒子表面に同時に含有する場合の前記含有率(質量%)は、複数の金属元素合計の含有率である。
前記ニオブ含有酸化物粉末において、ニオブ含有酸化物粉末を構成する、ニオブ含有酸化物粒子表面に存在する元素M1は、TiまたはNbを除く価数3+または2+の金属元素である。元素M1は、第2族、第12族、第13族、又は第14族の金属元素であることが好ましく、Al3+、Mg2+、Ca2+、Sr2+、Zn2+、 Ga3+、Ge2+、In2+からなる元素群から選ばれるいずれか一つ以上を含むことがより好ましい(すなわち、金属元素の形態で表記すると、Al、Mg、Ca、Sr、Zn、 Ga、Ge、Inからなる元素群から選ばれるいずれか一つ以上を含むことがより好ましい。)。Al3+、Mg2+、Ca2+、Zn2+、Ga3+、In2+からなる元素群から選ばれるいずれか一つ以上を含むことがさらに好ましく、Al3+、Mg2+、Zn2+、Ga3+、In2+からなる元素群から選ばれるいずれか一つ以上を含むことが特に好ましい。なお、これらの金属元素は、2種以上含まれていてもよい。本発明の第2の観点に係るニオブ含有酸化物粉末は、これらの元素を含有することで、放電レート特性、サイクル特性に優れ、及び、サイクル後の抵抗増加を抑制した蓄電デバイスが得られるからである。
本発明の第2の観点に係るニオブ含有酸化物粉末は、前記のTiまたはNbを除く価数3+または2+の金属元素以外のさらなる異種元素として、B、Mo、W、及びSからなる元素群から選ばれる少なくとも1種の元素を含有することが好ましい。これらの中で、特にSがより好ましい。本発明の第2の観点に係るニオブ含有酸化物粉末は、このような異種元素を、元素M1と共に含有することで、元素M1単独含有よりもニオブ含有酸化物粉末の表面の電子伝導性が向上するためだと推測される。
本発明の第2の観点に係るニオブ含有酸化物粉末の比表面積とは、窒素を吸着ガスとして用いて、単位質量あたりの表面積のことである。測定方法については、後述する実施例にて説明する。
本発明の第2の観点に係るニオブ含有酸化物粉末のD50とは体積中位粒径の指標である。レーザー回折・散乱型粒度分布測定によって求めた体積分率で計算した累積体積頻度が、粒径の小さい方から積算して50%になる粒径を意味する。測定方法については、後述する実施例にて説明する。
本発明の第2の観点に係るニオブ含有酸化物粉末のゼータ電位は、0mVより小さいことが好ましく、より好ましくは-5mV以下であることが好ましい。ゼータ電位の下限は、好ましくは-60mVより大きく、より好ましくは-35mVより大きいことが好ましい。本発明の第2の観点に係るニオブ含有酸化物粉末のゼータ電位が上記の範囲を示す場合、初期の放電レート特性、ならびに、長期でのサイクル後の抵抗増加抑制に優れた蓄電デバイスが得られるからである。ゼータ電位は、電気二重層中の滑り面と、界面から充分に離れた部分との間の電位差を表すが、この電位差がニオブ含有酸化物粉末表面でのLi+透過性に影響すると推測される。測定方法については、後述する実施例にて説明する。
以下に、本発明の第2の観点に係るニオブ含有酸化物粉末の製造方法の一例を、原料の調製工程、焼成工程、及び表面処理工程に分けて説明するが、本発明の第2の観点に係るニオブ含有酸化物粉末の製造方法はこれに限定されない。
まず、出発原料を混合する。出発原料の混合は、上述した第1の観点と同様とすればよい。なお、前記金属元素M1を含有する化合物を後述の焼成工程の前に添加する場合は当該化合物を以下、処理剤、又は処理剤1と記すことがある。
次に、上記で得られた混合物を焼成する。焼成は500~1200℃の温度範囲で、より好ましくは700~1100℃の範囲で行う。焼成温度を1100℃以下で行うことで汎用の設備を利用することができる。なお、混合物を短時間で焼成する場合は、焼成前に混合物を構成する混合粉末を、レーザー回折・散乱型粒度分布測定機にて測定される粒度分布曲線におけるD95が5μm以下になるように調製することが好ましい。ここで、D95とは、体積分率で計算した累積体積頻度が、粒径の小さい方から積算して95%になる粒径のことである。
次に、上記で得られたニオブ含有酸化物について、表面処理を実施する。本発明の第2の観点に係るニオブ含有酸化物は、粒子の表面にM1(M1は、TiまたはNbを除く価数3+または2+の金属元素である)が局在化して存在することを特徴としており、電池の負極材料として適用した場合に緻密な負極層を形成することができるとともに優れた充電レート特性を付与することができる。前記焼成工程にて、前記金属元素M1を含有する化合物(以下、処理剤、又は処理剤2と記すことがある)を加えて、本発明の第2の観点に係るニオブ含有酸化物粉末を製造することもできるが、より好ましくは、次のような表面処理工程などで、本発明の第2の観点に係るニオブ含有酸化物粉末を製造することができる。特に、次のような表面処理工程を採用することで、適切かつ比較的簡便に、ニオブ含有酸化物粒子の表面に、金属元素M1が存在する状態とすることができる。
本発明の第2の観点に係る活物質材料は、本発明の第2の観点に係るニオブ含有酸化物粉末を含むものである。本発明の第2の観点に係るニオブ含有酸化物粉末以外の物質を1種又は2種以上含んでいてもよい。他の物質としては、例えば、炭素材料〔熱分解炭素類、コークス類、グラファイト類(人造黒鉛、天然黒鉛等)、有機高分子化合物燃焼体、炭素繊維〕、スズやスズ化合物、ケイ素やケイ素化合物、リチウムを含む金属酸化物が使用される。特に、リチウムを含む金属酸化物として、Li4Ti5O12を主成分とするチタン酸リチウムが挙げられる。
本発明の第2の観点に係る蓄電デバイスは、本発明の第2の観点に係る活物質材料を含む電極を備え、このような電極へのリチウムイオンのインターカレーション、脱インターカレーションを利用してエネルギーを貯蔵、放出するデバイスであって、例えば、ハイブリッドキャパシタやリチウム電池、全固体二次電池などが挙げられる。
本発明の第2の観点に係るハイブリッドキャパシタとしては、正極に、活性炭など電気二重層キャパシタの電極材料と同様の物理的な吸着によって容量が形成される活物質や、グラファイトなど物理的な吸着とインターカレーション、脱インターカレーションによって容量が形成される活物質や、導電性高分子などレドックスにより容量が形成される活物質を使用し、負極に本発明の第2の観点に係る活物質材料を使用するデバイスである。本発明の第2の観点に係る活物質材料は、通常、前記ハイブリッドキャパシタの電極シートの形態にて用いられる。
本発明の第2の観点に係るリチウム電池は、リチウム一次電池及びリチウム二次電池を総称する。また、本明細書において、リチウム二次電池という用語は、いわゆるリチウムイオン二次電池や全固体型リチウムイオン二次電池も含む概念として用いる。
本発明の第2の観点に係る負極は、負極集電体の片面または両面に、負極活物質(本発明の第2の観点に係る活物質材料)、導電剤及び結着剤を含む負極層を有する。この負極層は、通常、電極シートの形態とされる。多孔質体などで空孔を有する負極集電体の場合は、空孔中に負極活物質(本発明の第2の観点に係る活物質材料)、導電剤、結着剤を含む負極層を有する。
正極は、正極集電体の片面または両面に、正極活物質、導電剤及び結着剤を含む正極層を有する。
非水電解液は、非水溶媒中に電解質塩を溶解させたものである。この非水電解液には特に制限は無く、種々のものを用いることができる。
本発明の第2の観点に係るリチウム電池の構造は特に限定されるものではなく、正極、負極及び単層又は複層のセパレータを有するコイン電池、さらに、正極、負極及びロール状のセパレータを有する円筒型電池や角型電池等が一例として挙げられる。
固体電解質とは、その内部においてイオンを移動させることができる固体状の電解質のことである。特に、無機固体電解質は定常状態では固体であるため、通常カチオンおよびアニオンに解離または遊離していない。無機固体電解質は周期律表第1族に属する金属イオンの伝導性を有するものであれば特に限定されず電子伝導性をほとんど有さないものが一般的である。無機固体電解質は(A)硫化物無機固体電解質と(B)酸化物無機固体電解質が代表例として挙げられる。特に、高いイオン伝導性を有し、室温での加圧のみで、粒界の少ない緻密な成形体が形成できるため、硫化物固体電解質が好ましく用いられる。ここで言う周期律表は長周期型の周期律表を指す。
Li2S-P2S5、Li2S-P2S5-Al2S3、Li2S-GeS2、Li2S-Ga2S3、Li2S-GeS2-Ga2S3、Li2S-GeS2-P2S5、Li2S-GeS2-Sb2S5、Li2S-GeS2-Al2S3、Li2S-SiS2、Li2S-Al2S3、Li2S-SiS2-Al2S3、Li2S-SiS2-P2S5、Li10GeP2S12。
オン伝導性を有し、かつ、電子絶縁性を有するものが好ましい。
まず、本発明の第2の観点に係る実施例、比較例について説明する(実施例1-1~1-10、比較例1-1~1-3、参考例1-1、実施例2-1、比較例2-1)。
[実施例1-1]
<原料調製工程>
Nb2O5(平均粒径0.2μm)とアナターゼ型TiO2(比表面積10m2/g)をモル比で1:1となるように秤量し、混合した。この混合粉末を1000℃で5時間熱処理を施した。得られた焼成粉末試料について、サンプリング間隔0.01°、スキャン速度2°/minの条件にて粉末X線回折測定を実施した。リートベルト法による結晶構造解析結果から、合成した試料が目的とするニオブ酸化物(TiNb2O7:Titanium niobium oxide, ICDD(PDF2010)のPDFカード01-077-1374)であることが確認された。
得られた焼成粉末試料に、スラリーの固形分濃度が30質量%となるようにイオン交換水を加え撹拌することで解砕し、処理剤2として硫酸アルミニウム16水和物(Al2(SO4)3・16H2O)を、解砕した焼成粉末100gに対して0.8重量%加え、混合スラリーを作製した。この混合スラリーを、ペイントシェーカーで3時間混合処理した後、温度60℃で、乾燥した後、マッフル炉を用いて500℃で、1時間熱処理することで、実施例1-1に係るニオブ含有酸化物粉末(チタン酸ニオブ(以下、TNO))を製造した。
表面処理工程において、処理剤2として硫酸アルミニウム16水和物(Al2(SO4)3・16H2O)の添加量を表1に示すようにしたこと以外は実施例1-1と同様に行い、実施例1-2に係るニオブ含有酸化物粉末を製造した。
原料調整工程において、実施例1-1で合成されたニオブ含有酸化物粉末について、粒度調整処理を行った。ニオブ含有酸化物粉末とジルコニアビーズ(φ2.0mm)を混合後、ボールミル処理を行った後、75μmの篩にて篩処理することで、粒度調整処理がされたニオブ含有酸化物粉末を得た。表面処理工程においては、処理剤2として硫酸アルミニウム16水和物(Al2(SO4)3・16H2O)の添加量を表1に示すようにしたこと以外は実施例1-1と同様に行い、実施例1-3に係るニオブ含有酸化物粉末を製造した。
表面処理工程において、処理剤2を含む混合スラリーをペイントシェーカーで混合処理せず、代わりに3分間のハンドシェイクにて軽く混合処理した後、温度60℃で、乾燥した後、マッフル炉を用いて500℃で、1時間熱処理したこと以外は実施例1-3と同様に行い、実施例1-4に係るニオブ含有酸化物粉末を製造した。
表面処理工程において、処理剤2の種類と、処理剤2の添加量を表1に示すように変更したこと以外は実施例1-1と同様に行い、実施例1-5(硫酸マグネシウム7水和物:МgSO4・7H2O)、実施例1-6(硫酸インジウム:In2(SO4)3)、実施例1-7(フッ化カルシウム:CaF2)、実施例1-8(硫酸亜鉛:ZnSO4)、実施例1-9(硫酸ガリウム:Ga3(SO4)3)を用いた表面処理が施された、ニオブ含有酸化物粉末を製造した。
ニオブ含有酸化物粉末としてNb2O5(五酸化ニオブ、Niobium (V) oxide、平均粒径0.2μm)を用いた以外は、実施例1-5と同様に表面処理工程を行うことで、実施例1-10に係る表面処理が施されたニオブ含有酸化物粉末を製造した。
表面処理工程において、処理剤2を添加しなかったこと以外は、実施例1-1と同様に比較例1-1に係るニオブ含有酸化物粉末を製造した。
表面処理工程において、処理剤2として硫酸アルミニウム16水和物(Al2(SO4)3・16H2O)の添加量を表1に示すようにしたこと以外は実施例1-1と同様に行い、参考例1-1に係るニオブ含有酸化物粉末を製造した。
原料調整工程において、Nb2O5(平均粒径0.2μm)とアナターゼ型TiO2(比表面積10m2/g)をモル比で1:1となるように秤量し、さらに、処理剤1として硫酸アルミニウム16水和物(Al2(SO4)3・16H2O)を1.6質量%混合した。この粉末を1000℃で5時間熱処理を施した。得られた粉末試料に、処理剤2を添加しなかったこと以外は、実施例1-1と同様に表面処理工程を施し、比較例1-2に係るニオブ含有酸化物粉末を製造した。
表面処理工程において、処理剤2を添加しなかったこと以外は、実施例1-10と同様に比較例1-3に係るニオブ含有酸化物粉末を製造した。
実施例1-1~1-10、参考例1-1、及び、比較例1-1~1-3のニオブ含有酸化物粉末(以下、各実施例、各参考例、各比較例のニオブ含有酸化物粉末と記すことがある)に含まれる、TiまたはNbを除く価数3+または2+の金属元素もしくはモリブデン、アルミニウム、マグネシウム、インジウム、カルシウム、亜鉛、ガリウムの含有率を以下のようにして測定した。
蛍光X線誘分析装置(エスアイアイ・テクノロジー株式会社製、商品名「SPS5100」)を用いて、各実施例、各比較例のニオブ含有酸化物粉末に含まれる元素を定量分析した。TiまたはNbを除く価数3+または2+の金属元素M1の含有率を以下の計算式で求めた。
含有率(%)=(金属元素M1の含有量)/(金属元素M1含有TNOの質量)×100
各実施例、比較例のニオブ含有酸化物粉末の各種物性を以下のようにして測定した。
実施例1-1~1-10、参考例1-1、及び、比較例1-1~1-3のニオブ含有酸化物粉末の比表面積(SSA)(m2/g)は、全自動BET比表面積測定装置(株式会社マウンテック製、商品名「Macsorb HM model-1208」)を使用して、吸着ガスは窒素ガスを使用した。測定サンプル粉末を0.5g秤量し、φ12標準セル(HM1201-031)に入れ、100℃真空下で0.5時間脱気した後、BET一点法で測定した。
実施例1-1~1-10、参考例1-1、及び、比較例1-1~1-3のニオブ含有酸化物粉末のD50は、レーザー回折・散乱型粒度分布測定機(日機装株式会社製、マイクロトラックMT3300EXII)を使用して測定した粒度分布曲線より算出した。50mlのイオン交換水を測定溶媒として収容した容器に50mgの試料を投入し、目視で粉が測定溶媒中に均一に分散したと分かるくらいまで容器を手で振り、容器を測定セルに収容して測定した。解砕処理は、装置内の超音波器で超音波(30W、3s)をかけた。さらに測定溶媒をスラリーの透過率が適正範囲(装置の緑のバーで表示される範囲)になるまで加えて粒度分布測定を行った。得られた粒度分布曲線から、解砕前後の混合粉末のD50を算出した。なお、解砕前D50が二次粒子のD50、解砕後D50が一次粒子のD50、に相当する。
実施例1-1~1-10、参考例1-1、及び、比較例1-1~1-3のニオブ含有酸化物粉末を用いてコイン型電池を作製し、それらの電池特性を評価した。評価結果を表1に示す。
負極シートは、室温25℃、露点-20℃以下に管理された部屋で次のようにして作製した。各実施例のニオブ含有酸化物粉末を、温度25℃、露点-20℃以下に管理された部屋でアルミラミネート袋から取り出した。取り出した各実施例のニオブ含有酸化物粉末を活物質として90質量%、アセチレンブラックを導電剤として5質量%、ポリフッ化ビニリデンを結着剤として5質量%の割合で、次のように混合して塗料を作製した。あらかじめ1-メチル-2-ピロリドンに溶解させたポリフッ化ビニリデンとアセチレンブラックと1-メチル-2-ピロリドンを遊星式撹拌脱泡装置にて混合した後、ニオブ含有酸化物粉末を加え、全固形分濃度が64質量%となるように調製して、遊星式撹拌脱泡装置にて混合した。その後、1-メチル-2-ピロリドンを加え全固形分濃度が50質量%となるように調製し遊星式撹拌脱泡装置にて混合して塗料を調製した。得られた塗料をアルミニウム箔上に塗布し乾燥させて、後述のコイン電池に用いる負極片面シート、及び後述のラミネート電池に用いる負極両面シートを作製した。なお、塗工時の目標目付けは7.5mg/cm2とした。
上記の要領で塗工した負極片面シートをロールプレス機(ロールφ60×150mm、プレス圧40MPa相当)でプレスした後、負極層の密度を“電極密度”とし測定した。評価結果を表1に示す。電極密度が高いと、一定体積当たりに、より多くの活物質を詰めることができ、結果、電池として利用できる容量が増えるため好ましい。
特性評価用の電池に用いる電解液は、次のように調製した。温度25℃で露点-70℃以下に管理されたアルゴングローブボックス内で、エチレンカーボネート(EC):ジメチルカーボネート(DMC)=1:2(体積比)の非水溶媒を調製し、これに電解質塩としてLiPF6を1Mの濃度になるように溶解して後述のコイン電池用電解液を調製した。
前述の方法で作製した負極片面シートを直径14mmの円形に打ち抜き、2t/cm2の圧力でプレス加工した後、120℃で5時間真空乾燥することによって評価電極を作製した。作製した評価電極と金属リチウム(厚み0.5mm、直径16mmの円形に成形したもの)をグラスフィルター(ADVANTEC製GA-100とワットマン製GF/Cを各1枚ずつ)を介して対向させ、前述の<電解液の調製>にて説明した方法で調製した非水電解液を加えて封止することによって、2032型コイン電池を作製した。
25℃の恒温槽内にて、上述の<コイン電池の作製>で説明した方法で作製したコイン型電池に、評価電極にLiが吸蔵される方向を充電として、0.2mA/cm2の電流密度で1Vまで充電を行い、さらに1Vで充電電流が0.05mA/cm2の電流密度になるまで充電させる定電流定電圧充電を行った後、0.2mA/cm2の電流密度で2Vまで放電させる定電流放電を3サイクル行った。3サイクル目の放電容量(mAh)をニオブ含有酸化物粉末の重量で割ることで、初期放電容量(mAh/g)として求めた。次に、初期放電容量の0.3Cに相当する電流で1Vまで充電した後、5Cの電流で2Vまで放電させて、5C放電容量を求めた。その5C放電容量を初期放電容量で除することで5Cレート放電容量率(%)を算出した。そして、比較例1-1のコイン電池にて測定した5Cレート放電容量率を100とし、実施例1-1~1-10、ならびに比較例1-2~比較例1-3、参考例1-1の5Cレート放電容量率を相対比として算出した結果を、5Cレート放電特性(相対比%)として表1に示す。ニオブ含有酸化物の5Cレート放電特性が高いと、蓄電デバイスの電極材料として適用した場合に、蓄電デバイスの充電レート特性の向上が期待できる。1CのCとは充放電するときの電流値を表す。例えば、1Cは理論容量を1/1時間で完全放電(もしくは完全充電)できる電流値を指し、0.1Cなら理論容量を1/0.1時間で完全放電(もしくは完全充電)できる電流値を指す。
上述の<コイン電池の作製>で説明した方法で作製したコイン型電池を用いて、25℃の恒温槽内にてサイクル試験を行った。評価電極にLiが吸蔵される方向を充電として、初期放電容量の0.5Cに相当する電流値で0.8Vまで充電を行い、さらに0.8Vで充電電流が0.05Cに相当する電流値になるまで充電させる定電流定電圧充電を行った後、初期放電容量の0.5Cに相当する電流値で2Vまで放電させる定電流放電を1サイクルとし、計15サイクル繰り返し実施した。15サイクル実施した後の放電容量を初期放電容量で割ることで、放電容量維持率(%)として求めた。比較例1-1のコイン電池にて測定した放電容量維持率を100とし、実施例1-1~1-10、ならびに比較例1-2~1-3、参考例1-1の放電容量維持率を相対比として算出した結果(相対比%)を、表1に示す。さらに、15サイクル後のコイン電池について、周波数0.01Hz~1メガHz、温度0℃においてIMP測定を行い、得られた円弧の大きさから抵抗値(Ω)を求めた。比較例1-1のコイン電池にて測定した抵抗値を100とし、実施例1-1~1-10、ならびに比較例1-2~1-3、参考例1-1の抵抗値を相対比として算出した結果を、サイクル後の抵抗値(相対比%)として表1に示す。サイクル後の抵抗値が低いほど、抵抗増加が抑制できていると考えられる。
実施例1-1~1-10のニオブ含有酸化物粉末を用いた電極は、ニオブ含有酸化物粉末を構成する、ニオブ含有酸化物粒子表面にTiまたはNbを除く価数3+または2+の金属元素を含有することで、初期放電容量が高く、放電レート特性、サイクル特性に優れ、及び、サイクル後の抵抗増加を抑制することができることが分かった。特に、ニオブ含有酸化物の基材を粒度調製品に変更した実施例1-3や、表面処理方法をハンドシェイクに変更した実施例1-4でも、同様の改善効果を示した。よって、本発明の効果は、ニオブ含有酸化物の基材種や表面処理方法に依存しない点が確認できた。さらに、価数3+の金属元素を含有する実施例1-2(Al)よりも、価数2+の金属元素(Mg)を含有する実施例1-5では、放電レート特性ならびにサイクル特性において改善効果が高まる傾向が見られた。また、参考例1-1のように、価数3+の金属元素であるアルミニウムを比較的多くした場合でも、放電レート特性を良好に保ちながら、サイクル後の抵抗増加を良好に抑制しつつ、サイクル特性が高められたものであった。なお、実施例1-1~1-10、参考例1-1においては、表面処理工程により、TiまたはNbを除く価数3+または2+の金属元素M1を導入したものであることから、ニオブ含有酸化物粒子表面に、金属元素M1が存在するものであった。一方で、比較例1-1~1-3のニオブ含有酸化物粉末は、初期放電容量の低下、レート特性の低下、または、サイクル特性に改善が見られず、電池特性の改善には至らなかった。特に、価数3+の金属元素(Al)を被覆ではなく基材合成時から添加した比較例1-2においては、電極密度や初期放電容量、レート特性が低下する傾向が見られた。
実施例1-5、比較例1-1のニオブ含有酸化物粉末に関して、アルバック・ファイ製QuanteraII 走査型X線光電子分光装置を用いて、一次粒子表面近傍に局在化して存在する元素を測定した。各試料をAl板にサンプリングした後、X線源AlKα(モノクロ, 1486.6eV,50W)、分析領域200μmφ、帯電中和機構利用(電子銃+Arイオン)で測定を実施した。実施例1-5のニオブ含有酸化物粉末ではTi4+やNb5+に加えてMg2+が検出された一方で、比較例1-1のニオブ含有酸化物粉末ではTi4+とNb5+のみしか検出されなかった。さらに、実施例1-5のニオブ含有酸化物粉末に関して、加速電圧2kV、エッチングレート3.1nm/min(SiO2換算)の条件でArイオンによるスパッタ処理を行い、一次粒子のMg1sデプスプロファイル測定を実施した。Mgの濃度は粒子表面から粒子内部に向けて濃度が減少し、表面(0nm)のMgの原子濃度を100%とすると、表面から100nmの深さ位置におけるMgの原子濃度は5%未満であった。Мg1sデプスプロファイルの結果を図1に示す。このことから、表面処理工程により、TiまたはNbを除く価数3+または2+の金属元素M1を導入することで、ニオブ含有酸化物粒子表面に金属元素M1が局在化して存在するものであることを確認した。
実施例1-1、1-2、1-5、1-6、参考例1-1のニオブ含有酸化物粉末に関して、ゼータ電位測定装置(Malvern社製、装置名「Zetasizer Nano ZS」)を用いて、電気泳動法によるゼータ電位(mV)を測定した。各々のニオブ含有酸化物粉末を0.02g秤量し、200mLのイオン交換水に入れ、25℃の環境下にて測定した。結果を以下表2に示す。
[実施例2-1]
アルゴン雰囲気下のグローブボックス内で、上記実施例1-1のニオブ含有酸化物(硫酸アルミニウム16水和物(Al2(SO4)3・16H2O)を1.6質量%加えて表面処理した化合物)及び硫化物固体電解質であるLi6PS5Cl粉末(レーザー回折・散乱型粒度分布測定機を使用して得られる体積平均粒径:6μm)をニオブ含有酸化物:Li6PS5Cl=60:40の質量比になるように秤量し、メノウ乳鉢で混合した。次に80mLのジルコニアポットにジルコニアボール(直径3mm、20g)を投入し、混合した粉末を投入した。その後、このポットを遊星型ボールミル機にセットし、回転数200rpmで15分間撹拌を続け、実施例2-1の負極活物質組成物を得た。得られた負極活物質組成物を室温で10分プレス(360MPa)することで直径10mm、厚さ約0.7mmのペレット(成形体)を作製した。この負極活物質組成物を含むペレット状電極、セパレータ層としてペレット状の固体電解質層(Li2S:P2S5=75:25のモル比であるLPSガラス)、及び対極としてのリチウムインジウム合金箔をこの順で積層し、積層体をステンレススチール製の集電体で挟むことで全固体二次電池を作製し、電池特性を評価した。結果を表3に示す。
ニオブ含有酸化物粉末を、比較例1-1のニオブ含有酸化物(処理剤2を添加していない化合物)に変更した以外は、上記実施例2-1と同様にして、下記表3に記載の全固体二次電池を作製し、電池特性を評価した。結果を表3に示す。
25℃の恒温槽内にて、上述の方法で作製した全固体二次電池に、評価電極にLiが吸蔵される方向を充電として、ニオブ含有酸化物の理論容量の0.05Cに相当する電流で0.5Vまで充電を行い、さらに0.5Vで充電電流が0.01Cに相当する電流になるまで充電させる定電流定電圧充電を行った後、0.05Cに相当する電流で2Vまで放電させる定電流放電を行った。放電容量(mAh)をニオブ含有酸化物の質量で割ることで、初期放電容量(mAh/g)として求めた。また、放電容量を充電容量で割ることで初期効率を求めた。次に、ニオブ含有酸化物の理論容量の0.4Cに相当する電流で0.5Vまで充電した後、0.05Cの電流で2Vまで放電させて、0.4C充電容量を求めた。その0.4C充電容量を初期放電容量で除することでレート特性(%)を算出した。レート特性は、比較例2-1の値を100%としたときを基準とし、相対的な値を調べた。評価結果を表3に示す。
次いで、本発明の第1の観点に係る実施例、比較例について説明する(実施例3-1、3-2、比較例3-1、実施例4-1~4-8、比較例4-1、4-2)。
<原料調製工程>
Nb2O5(平均粒径 0.2μm)とアナターゼ型TiO2(比表面積10m2/g)をモル比で1:1となるように秤量し、混合した。この混合粉末を1000℃で5時間熱処理を施した。得られた焼成粉末試料について、サンプリング間隔0.01°、スキャン速度2°/minの条件にて粉末X線回折測定を実施した。リートベルト法による結晶構造解析結果から、合成した試料が目的とするニオブ酸化物(TiNb2O7:Titanium diniobium oxide,ICDD(PDF2010)のPDFカード01-077-1374)であることが確認された。
得られた焼成粉末試料に、スラリーの固形分濃度が30質量%となるようにイオン交換水を加え撹拌することで解砕し、処理剤としてモリブデン酸リチウム(Li2MoO4)を、解砕した焼成粉末100gに対して0.4質量%加え、混合スラリーを作製した。この混合スラリーを、ペイントシェーカーで3時間混合処理した後、温度60℃で、乾燥した後、マッフル炉を用いて500℃で、1時間熱処理することで、実施例3-1に係るニオブ含有酸化物粉末(ニオブチタン複合酸化物粉末(以下、TNO粉末と記すことがある))を製造した。
表面処理工程において、処理剤としてモリブデン酸リチウム(Li2MoO4)の添加量を表4に示すようにしたこと以外は実施例3-1と同様に行い、実施例3-2に係るTNO粉末を製造した。
表面処理工程において、処理剤を添加しなかったこと以外は、実施例3-1と同様に比較例3-1に係るTNO粉末を製造した。
実施例3-1,3-2,4-1~4-8、比較例3-1,4-1,4-2のTNO粉末に含まれる、金属元素MoおよびCeの含有率を以下のようにして測定した。
蛍光X線誘分析装置(エスアイアイ・テクノロジー株式会社製、商品名「SPS5100」)を用いて、各実施例、各比較例のTNO粉末に含まれる元素を定量分析した。金属元素Mo、Ceの含有率を以下の計算式で求めた。
含有率(%)=(金属元素Mo、Ceの質量)/(金属元素Mo、Ce含有TNOの総質量)×100
実施例3-1,3-2,4-1~4-8、比較例3-1,4-1,4-2のTNO粉末の各種物性を以下のようにして測定した。
実施例3-1,3-2,4-1~4-8、比較例3-1,4-1,4-2のTNO粉末の比表面積(m2/g)は、全自動BET比表面積測定装置(株式会社マウンテック製、商品名「Macsorb HM model-1208」)を使用して、吸着ガスは窒素ガスを使用した。測定サンプル粉末を0.5g秤量し、φ12標準セル(HM1201-031)に入れ、100℃真空下で0.5時間脱気した後、BET一点法で測定した。
実施例3-1,3-2,4-1~4-8、比較例3-1,4-1,4-2のニオブ含有酸化物粉末のD50は、レーザー回折・散乱型粒度分布測定機(日機装株式会社製、マイクロトラックMT3300EXII)を使用して測定した粒度分布曲線より算出した。50mLのイオン交換水を測定溶媒として収容した容器に50mgの試料を投入し、目視で粉が測定溶媒中に均一に分散するまで容器を手で振り、容器を測定セルに収容して測定した。解砕処理は、装置内の超音波器で超音波(30W、3s)を照射した。さらに測定溶媒をスラリーの透過率が適正範囲(装置の緑のバーで表示される範囲)になるまで加えて粒度分布測定を行った。得られた粒度分布曲線から、解砕前後の混合粉末のD50を算出した。なお、解砕前D50が二次粒子のD50、解砕後D50が一次粒子のD50、に相当する。
アルゴン雰囲気下のグローブボックス内で、実施例3-1のTNO粉末及び硫化物無機固体電解質であるLi6PS5Cl粉末(レーザー回折・散乱型粒度分布測定機を使用して得られる体積平均粒径:6μm)をTNO:Li6PS5Cl=60:40の質量比になるように秤量し、メノウ乳鉢で混合した。次に80mLのジルコニアポットにジルコニアボール(直径3mm、20g)を投入し、混合した粉末を投入した。その後、このポットを遊星型ボールミル機にセットし、回転数200rpmで15分間撹拌を続け、実施例3-1の負極活物質組成物を得た。
[実施例3-2、比較例3-1]
表4に記載の製造方法にしたTNO粉末を用いたこと以外は実施例3-1と同様にして、下記表4に記載の負極活物質組成物を調製した。
上記負極活物質組成物をそれぞれ100mg秤量し、これらの試料を、室温で10分プレス(360MPa)することで直径10mm、厚さ約0.7mmのペレット(成形体)を作製した。
実施例3-1,3-2,4-1~4-8、比較例3-1,4-1,4-2の負極活物質組成物のペレットを用いて全固体二次電池を作製し、それらの電池特性を評価した。評価結果を表4に示す。
アルゴン雰囲気下のグローブボックス内で、硫化リチウム(Li2S)及び五硫化二リン(P2S5)をLi2S:P2S5=75:25のモル比になるように秤量し、メノウ乳鉢で混合し、原料組成物を得た。
次に、80mLのジルコニアポットにジルコニアボール(直径3mm、160g)と得られた原料組成物2gを投入し、アルゴン雰囲気下で容器を密閉した。このポットを遊星型ボールミル機にセットし、回転数510rpmで16時間メカニカルミリングを行い、黄色粉体の硫化物無機固体電解質(LPSガラス)を得た。得られたLPSガラス80mgを面積0.785cm2の成形部を有するペレット成形機を用いて、360MPaの圧力でプレスすることでペレット状の固体電解質層を得た。
実施例3-1,3-2,4-1~4-8、比較例3-1,4-1,4-2の負極活物質組成物のペレット、上記ペレット状の固体電解質層、及び対極としてのリチウムインジウム合金の箔をこの順で積層し、積層体をステンレススチール製の集電体で挟むことで全固体二次電池を作製した。
25℃の恒温槽内にて、上述の方法で作製した全固体二次電池に、評価電極にLiが吸蔵される方向を充電として、TNOの理論容量の0.05Cに相当する電流で0.5Vまで充電を行い、さらに0.5Vで充電電流が0.01Cに相当する電流になるまで充電させる定電流定電圧充電を行った後、0.05Cに相当する電流で2Vまで放電させる定電流放電を行った。放電容量(mAh)をTNOの質量で割ることで、初期放電容量(mAh/g)として求めた。また、放電容量を充電容量で割ることで初期効率を求めた。次に、TNOの理論容量の0.4Cに相当する電流で0.5Vまで充電した後、0.05Cの電流で2Vまで放電させて、0.4C充電容量を求めた。その0.4C充電容量を初期放電容量で除することで充電レート特性(%)を算出した。初期放電容量、および充電レート特性は、実施例3-1,3-2、比較例3-1については、比較例3-1のそれぞれの値を100%としたときを基準とし、相対的な値を調べた。評価結果を表4に示す。1CのCとは充放電するときの電流値を表す。例えば、1Cは理論容量を1/1時間で完全放電(もしくは完全充電)できる電流値を指し、0.1Cなら理論容量を1/0.1時間で完全放電(もしくは完全充電)できる電流値を表す。
表5に記載の製造方法にしたTNO粉末を用いたこと、45℃の恒温槽中で電池評価を行ったこと以外は実施例3-1と同様にして、下記表5に記載の負極活物質組成物を調製し、評価した。
なお、実施例4-1~4-5においては、表面処理工程において、処理剤としてモリブデン酸リチウム(Li2MoO4)の添加量を表5に示すようにしたこと以外は実施例3-1と同様に行い、TNO粉末を製造した。
実施例4-6,4-7においては、表面処理工程において、処理剤としてモリブデン酸リチウム(Li2MoO4)に代えて、硫酸セリウム・4水和物を表5に示す添加量にて使用したこと以外は実施例3-1と同様に行い、TNO粉末を製造した。
実施例4-8においては、比表面積および一次粒子D50が表5に示す値となるよう原料調製工程における条件を調整したこと以外は実施例4-1と同様に行い、TNO粉末を製造した。
比較例4-1,4-2においては、処理剤を添加しなかったこと以外は、実施例4-1,4-8と同様に行い、TNO粉末を製造した。
なお、初期放電容量、および充電レート特性は、実施例4-1~4-8、比較例4-1,4-2については、比較例4-1のそれぞれの値を100%としたときを基準とし、相対的な値を調べた。
なお、実施例4-1~4-8においては、表面処理工程により、金属元素Mo、Ceを導入したものであることから、ニオブ含有酸化物粒子表面に、金属元素Mo、Ceが局在化して存在するものであった。
Nb2O5、アナターゼ型TiO2、および酸化モリブデン(MoO3)をモル比で1:1:0.1となるように秤量し、混合した。この混合粉末を1000℃で5時間熱処理を施した。このようにTNO作製時にMoO3加えたサンプルを用いて実施例3-1と同様に電池評価を行ったところ充電レート特性は80%となり、本発明の効果である充電レート特性の改善は見られなかった。この結果より全固体二次電池の充電レート特性を改善するためにはニオブ含有酸化物粒子の表面にMoなどの金属元素M1が局在化して存在することが必要であることがわかった。
Claims (14)
- 一般式Ti1-x/2Nb2O7-x(X=0~2)で表されるニオブ含有酸化物粉末であって、前記ニオブ含有酸化物粉末を構成する、ニオブ含有酸化物粒子の表面にMoおよびCeからなる群より選ばれる少なくとも一種の金属元素が局在化して存在することを特徴とするニオブ含有酸化物粉末。
- 前記ニオブ含有酸化物粉末において、粒子表面に存在する前記金属元素の含有率(質量%)が0.01以上1.2以下であることを特徴とする請求項1に記載のニオブ含有酸化物粉末。
- 前記ニオブ含有酸化物において、レーザー回折散乱法による体積基準粒度分布において体積累積が50%に相当する一次粒子のD50が0.6μm以上であることを特徴とする請求項1又は2に記載のニオブ含有酸化物粉末。
- ニオブ含有酸化物粉末と、周期律表第1族に属する金属イオンの伝導性を有する無機固体電解質と、を含む負極活物質組成物であって、
前記ニオブ含有酸化物粉末が請求項1~3のいずれか一項に記載のニオブ含有酸化物粉末を含むことを特徴とする負極活物質組成物。 - 前記無機固体電解質が、硫化物無機固体電解質である請求項4に記載の負極活物質組成物。
- 前記無機固体電解質の含有量が1質量%以上、50質量%以下である請求項4又は5に記載の負極活物質組成物。
- 正極層、負極層および固体電解質層を備えた全固体二次電池であって、前記負極層が請求項4~6のいずれか一項に記載の負極活物質組成物を含む層である全固体二次電池。
- 一般式Ti1-x/2Nb2O7-x(X=0~2)で表されるニオブ含有酸化物粉末であって、前記ニオブ含有酸化物粉末を構成する、ニオブ含有酸化物粒子の表面にM1(M1は、TiまたはNbを除く価数3+または2+の金属元素である)が局在化して存在することを特徴とするニオブ含有酸化物粉末。
- 前記ニオブ含有酸化物粉末において、粒子表面に存在する元素M1が、第2族、第12族、第13族、又は第14族の金属元素であることを特徴とする請求項8に記載のニオブ含有酸化物粉末。
- 前記ニオブ含有酸化物粉末において、粒子表面に存在する元素M1が、Al3+、Mg2+、Ca2+、Sr2+、Zn2+、 Ga3+、Ge2+、及びIn2+からなる元素群から選ばれるいずれか一つ以上を含むことを特徴とする請求項8又は9に記載のニオブ含有酸化物粉末。
- 前記ニオブ含有酸化物粉末において、粒子表面に存在する元素M1の含有率(質量%)が0.01以上1.2以下であることを特徴とする請求項8~10のいずれか一項に記載のニオブ含有酸化物粉末。
- 前記ニオブ含有酸化物粉末において、レーザー回折散乱法による体積基準粒度分布において体積累積が50%に相当する一次粒子のD50が0.3μm以上であることを特徴とする請求項8~11のいずれか一項に記載のニオブ含有酸化物粉末。
- 請求項8~12のいずれか一項に記載のニオブ含有酸化物粉末を含むことを特徴とする、蓄電デバイスの電極。
- 請求項13に記載の電極を含むことを特徴とする蓄電デバイス。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US18/571,465 US20240290963A1 (en) | 2021-06-18 | 2022-06-17 | Niobium-containing oxide powder, electrode using same, power storage device, negative electrode active material composition, and all-solid-state secondary battery |
JP2023530445A JPWO2022265116A1 (ja) | 2021-06-18 | 2022-06-17 | |
EP22825103.9A EP4357304A1 (en) | 2021-06-18 | 2022-06-17 | Niobium-containing oxide powder, electrode using same, power storage device, negative electrode active material composition, and all-solid-state secondary battery |
KR1020237042665A KR20240022482A (ko) | 2021-06-18 | 2022-06-17 | 나이오븀 함유 산화물 분말, 그것을 이용한 전극, 축전 디바이스, 음극 활물질 조성물, 및 전고체 이차 전지 |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021-101982 | 2021-06-18 | ||
JP2021101982 | 2021-06-18 | ||
JP2021-126189 | 2021-07-30 | ||
JP2021126189 | 2021-07-30 | ||
JP2022-060659 | 2022-03-31 | ||
JP2022060659 | 2022-03-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022265116A1 true WO2022265116A1 (ja) | 2022-12-22 |
Family
ID=84526548
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/024428 WO2022265116A1 (ja) | 2021-06-18 | 2022-06-17 | ニオブ含有酸化物粉末、それを用いた電極、蓄電デバイス、負極活物質組成物、及び全固体二次電池 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20240290963A1 (ja) |
EP (1) | EP4357304A1 (ja) |
JP (1) | JPWO2022265116A1 (ja) |
KR (1) | KR20240022482A (ja) |
WO (1) | WO2022265116A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117936878A (zh) * | 2024-01-24 | 2024-04-26 | 上海屹锂新能源科技有限公司 | 含Anderson型多金属氧酸盐的固态电解质的制备方法及其应用 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100216627A1 (en) * | 2003-11-06 | 2010-08-26 | Drexel University | Method of making mixed metal oxide ceramics |
WO2017135323A1 (ja) * | 2016-02-01 | 2017-08-10 | 株式会社 東芝 | 二次電池、組電池、電池パック、及び車両 |
JP2017224625A (ja) | 2013-07-08 | 2017-12-21 | 株式会社東芝 | 非水電解質二次電池用負極活物質、非水電解質二次電池、電池パック及び車 |
JP2020149829A (ja) | 2019-03-13 | 2020-09-17 | 株式会社東芝 | 活物質、電極、二次電池、電池パック及び車両 |
WO2021049665A1 (ja) | 2019-09-13 | 2021-03-18 | 三井金属鉱業株式会社 | 電極合材並びにそれを用いた電極層及び固体電池 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7353715B2 (ja) | 2019-10-25 | 2023-10-02 | 株式会社ディスコ | 被加工物の研削方法 |
-
2022
- 2022-06-17 KR KR1020237042665A patent/KR20240022482A/ko unknown
- 2022-06-17 US US18/571,465 patent/US20240290963A1/en active Pending
- 2022-06-17 WO PCT/JP2022/024428 patent/WO2022265116A1/ja active Application Filing
- 2022-06-17 EP EP22825103.9A patent/EP4357304A1/en active Pending
- 2022-06-17 JP JP2023530445A patent/JPWO2022265116A1/ja active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100216627A1 (en) * | 2003-11-06 | 2010-08-26 | Drexel University | Method of making mixed metal oxide ceramics |
JP2017224625A (ja) | 2013-07-08 | 2017-12-21 | 株式会社東芝 | 非水電解質二次電池用負極活物質、非水電解質二次電池、電池パック及び車 |
WO2017135323A1 (ja) * | 2016-02-01 | 2017-08-10 | 株式会社 東芝 | 二次電池、組電池、電池パック、及び車両 |
JP2020149829A (ja) | 2019-03-13 | 2020-09-17 | 株式会社東芝 | 活物質、電極、二次電池、電池パック及び車両 |
WO2021049665A1 (ja) | 2019-09-13 | 2021-03-18 | 三井金属鉱業株式会社 | 電極合材並びにそれを用いた電極層及び固体電池 |
Non-Patent Citations (2)
Title |
---|
JINJ YONG S, AUROUX ALINE, VEDRINE JACQUES C: "Spectroscopic Studies of Molybdate Species deposited on a Nb,O, Support", J. CHEM. SOC. FARADAY TRANS. I, vol. 85, no. 12, 1 January 1989 (1989-01-01), pages 4179 - 4191, XP093016114, DOI: 10.1039/F19898504179 * |
YANG PENG; ZUO SHUFENG; SHI ZHINAN; TAO FEI; ZHOU RENXIAN: "Elimination of 1,2-dichloroethane over (Ce,Cr)xO2/MOycatalysts (M=Ti, V, Nb, Mo, W and La)", APPLIED CATALYSIS B. ENVIRONMENTAL, ELSEVIER, AMSTERDAM, NL, vol. 191, 14 March 2016 (2016-03-14), AMSTERDAM, NL , pages 53 - 61, XP029500323, ISSN: 0926-3373, DOI: 10.1016/j.apcatb.2016.03.017 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117936878A (zh) * | 2024-01-24 | 2024-04-26 | 上海屹锂新能源科技有限公司 | 含Anderson型多金属氧酸盐的固态电解质的制备方法及其应用 |
Also Published As
Publication number | Publication date |
---|---|
US20240290963A1 (en) | 2024-08-29 |
KR20240022482A (ko) | 2024-02-20 |
JPWO2022265116A1 (ja) | 2022-12-22 |
EP4357304A1 (en) | 2024-04-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7323007B2 (ja) | 蓄電デバイスの電極用チタン酸リチウム粉末および活物質材料、並びにそれを用いた電極シートおよび蓄電デバイス | |
JP7099475B2 (ja) | 非水系電解質二次電池用正極活物質、非水系電解質二次電池用正極活物質の製造方法 | |
JP7237148B2 (ja) | 硫化物系無機固体電解質材料用の窒化リチウム組成物の製造方法および硫化物系無機固体電解質材料の製造方法 | |
JP7310155B2 (ja) | リチウムイオン二次電池用正極活物質とその製造方法、リチウムイオン二次電池用正極合剤ペーストおよびリチウムイオン二次電池 | |
JP2011249293A (ja) | リチウム遷移金属化合物及びその製造方法、並びにリチウムイオン電池 | |
JP7427821B2 (ja) | 硫化物系無機固体電解質材料、固体電解質、固体電解質膜およびリチウムイオン電池 | |
JP2023164486A (ja) | 硫化物系無機固体電解質材料用の五硫化二リン組成物 | |
KR20200138256A (ko) | 리튬 이온 이차 전지용 정극 활물질 및 그의 제조 방법 | |
JP5807730B1 (ja) | 蓄電デバイスの電極用チタン酸リチウム粉末および活物質材料、並びにそれを用いた電極シートおよび蓄電デバイス | |
WO2022265116A1 (ja) | ニオブ含有酸化物粉末、それを用いた電極、蓄電デバイス、負極活物質組成物、及び全固体二次電池 | |
JP7412883B2 (ja) | リチウムイオン二次電池用正極活物質およびその製造方法 | |
JP7188957B2 (ja) | 硫化物系無機固体電解質材料、固体電解質、固体電解質膜およびリチウムイオン電池 | |
KR20130099341A (ko) | 리튬 이차 전지용 전극 활물질, 그 제조방법, 이를 포함하는 리튬 이차 전지용 전극 및 이를 채용한 리튬 이차 전지 | |
JP2023126791A (ja) | 硫化物系無機固体電解質材料用の硫化リン組成物 | |
JP2023180901A (ja) | チタン酸リチウム粉末、それを用いた負極活物質組成物、及び全固体二次電池 | |
WO2024166953A1 (ja) | ニオブ含有酸化物粉末、それを用いた電極、及び蓄電デバイス | |
WO2022211106A1 (ja) | チタン含有酸化物粉末、それを用いた負極活物質組成物、及び全固体二次電池 | |
JP2023101247A (ja) | チタン酸リチウム粉末、それを用いた電極、及び蓄電デバイス | |
JP2024146389A (ja) | 電極用ニオブ-チタン複合酸化物粉末、それを用いた電極、及び蓄電デバイス | |
WO2024034405A1 (ja) | 硫化物系無機固体電解質材料用硫化リン組成物、硫化物系無機固体電解質材料の製造方法および硫化リン組成物の品質管理方法 | |
JP7238783B2 (ja) | 三酸化タングステン | |
JP2024085264A (ja) | ニオブ含有酸化物粉末、それを用いた電極、及び蓄電デバイス | |
WO2024101239A1 (ja) | 硫化物系無機固体電解質材料の製造方法、硫化リン組成物の製造方法、硫化リン組成物の評価方法および硫化リン組成物 | |
JP2023035188A (ja) | チタン酸リチウム粉末、それを用いた電極、及び、蓄電デバイス | |
JP7584841B2 (ja) | 正極活物質、その製造方法、及びそれを含むリチウム二次電池 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22825103 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2023530445 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 18571465 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2022825103 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2022825103 Country of ref document: EP Effective date: 20240118 |