WO2022121642A1 - 测量装置 - Google Patents

测量装置 Download PDF

Info

Publication number
WO2022121642A1
WO2022121642A1 PCT/CN2021/131170 CN2021131170W WO2022121642A1 WO 2022121642 A1 WO2022121642 A1 WO 2022121642A1 CN 2021131170 W CN2021131170 W CN 2021131170W WO 2022121642 A1 WO2022121642 A1 WO 2022121642A1
Authority
WO
WIPO (PCT)
Prior art keywords
catheter
guide wire
length
measuring device
distal end
Prior art date
Application number
PCT/CN2021/131170
Other languages
English (en)
French (fr)
Inventor
陈泉
李安宁
Original Assignee
深圳市先健呼吸科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市先健呼吸科技有限公司 filed Critical 深圳市先健呼吸科技有限公司
Priority to US18/251,725 priority Critical patent/US20240016410A1/en
Priority to EP21902349.6A priority patent/EP4257041A4/en
Publication of WO2022121642A1 publication Critical patent/WO2022121642A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/107Measuring physical dimensions, e.g. size of the entire body or parts thereof
    • A61B5/1072Measuring physical dimensions, e.g. size of the entire body or parts thereof measuring distances on the body, e.g. measuring length, height or thickness
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/08Detecting, measuring or recording devices for evaluating the respiratory organs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/107Measuring physical dimensions, e.g. size of the entire body or parts thereof
    • A61B5/1076Measuring physical dimensions, e.g. size of the entire body or parts thereof for measuring dimensions inside body cavities, e.g. using catheters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6846Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive
    • A61B5/6847Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive mounted on an invasive device
    • A61B5/6851Guide wires
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6846Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive
    • A61B5/6847Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive mounted on an invasive device
    • A61B5/6852Catheters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2560/00Constructional details of operational features of apparatus; Accessories for medical measuring apparatus
    • A61B2560/06Accessories for medical measuring apparatus
    • A61B2560/063Devices specially adapted for delivering implantable medical measuring apparatus
    • A61B2560/066Devices specially adapted for delivering implantable medical measuring apparatus catheters therefor

Definitions

  • the present application belongs to the field of medical devices, and in particular relates to a measuring device.
  • an elastic coil such as a lung volume-reducing elastic coil
  • the lung volume reduction elastic coil is designed and made of nickel-titanium memory alloy wire, which is in a curved shape in the natural state, and the lung volume reduction elastic coil can elastically deform under the action of external force.
  • the lung volume reduction elastic coil can be in a straight shape to facilitate implantation into the lungs through the working channel of the bronchoscope.
  • the lung volume reduction elastic coil After the lung volume reduction elastic coil is delivered to the bronchi in the emphysema area, The lung volume-reducing elastic coil loses the restraint of the loading system, and restores the deformed shape to its natural shape (ie, the shape without external force). The air inside is discharged, and the volume of lung tissue in the emphysema area is reduced, so that the surrounding relatively healthy lung tissue can better perform physiological functions.
  • a measuring guide wire should be used to measure the length of the bronchus in the emphysema region to determine the size of the elastic coil for lung volume reduction.
  • the purpose of the present application is to provide a measuring device, which aims to solve the problem in the prior art that a measuring device needs to be provided for determining the specifications of the implant.
  • the present application is achieved by providing a measuring device for measuring the length of the diseased tissue to determine the specifications of the implant, the measuring device includes a catheter and a guide wire, the catheter is a hollow tube structure, and the catheter is provided with a catheter
  • the developing structure, the length between the catheter developing structure and the distal end of the catheter does not exceed the axial length corresponding to the minimum specification of the implant; the guide wire can be passed through the catheter, and the distal end of the guide wire is provided with a
  • the guide wire development structure has a scale mark area on the guide wire, and the proximal end of the catheter can fall into the scale mark area.
  • the scale mark area is used to directly or indirectly measure the difference between the catheter development structure and the guide wire development structure.
  • the length of the gap in turn determines the size of the implant.
  • the length of the catheter is a
  • the scale marking area is used to measure the length between the catheter developing structural member and the guide wire developing structural member, and there are multiple scales in the scale marking area.
  • the farthest one in the marking area is the fiducial marking point
  • the scale farthest from the fiducial marking point among the multiple scales is the final marking point
  • the length between the fiducial marking point and the guide wire developing structure is b
  • the fiducial marking point The length between it and the last marker point is f, a ⁇ b+f.
  • the axial length corresponding to the smallest size of the implant is c, a ⁇ b-c.
  • the length between the fiducial mark and its nearest graduation is equal to the axial length corresponding to the smallest size implant.
  • the length between any one of the plurality of scales except the fiducial marking point and the fiducial marking point is equal to the axial length of an implant of one size.
  • the plurality of scales are arranged at equal intervals.
  • the catheter visualization structure is located at the distal end of the catheter.
  • the length from the proximal end of the catheter to the catheter imaging structure is a, and the size of a ranges from 900 mm to 950 mm.
  • the measuring device measures the diseased tissue, the guide wire imaging structure is aligned with the distal end of the diseased tissue, and when the catheter imaging structure is aligned with the proximal end of the diseased tissue, the proximal end of the catheter can fall down into the tick mark area.
  • the guide wire is passed through the catheter and then implanted into the lumen channel of the diseased tissue as a whole, and the guide wire is pushed so that the developing structure of the guide wire is aligned with the distal end of the diseased tissue, Push the catheter so that the catheter visualization structure is aligned with the proximal end of the diseased tissue.
  • the length between the guide wire visualization structure and the catheter visualization structure is directly or indirectly converted through the scale mark to determine the length of the diseased tissue.
  • FIG. 1 is a schematic perspective view of a measuring device provided by an embodiment of the present application.
  • FIG. 2 is a schematic perspective view of a catheter of a measuring device provided in an embodiment of the present application.
  • FIG. 3 is a schematic perspective view of a first embodiment of a guide wire of a measuring device provided in an embodiment of the present application
  • Fig. 4 is the enlarged schematic diagram of S part of Fig. 3;
  • FIG. 5 is a schematic structural diagram of a guide wire of a measuring device provided in an embodiment of the present application.
  • FIG. 6 is a schematic perspective view of another embodiment of the guide wire of the measuring device provided in the embodiment of the present application.
  • Fig. 7 is the enlarged schematic diagram of G part of Fig. 5;
  • FIG. 8 is a schematic diagram of when the guide wire reaches the distal end of the bronchus when the measurement device provided in the embodiment of the present application performs measurement;
  • Fig. 9 is the enlarged schematic diagram of the A part of Fig. 8.
  • Figure 10 is an enlarged schematic view of part B of Figure 8.
  • 11 is a schematic diagram of the catheter reaching the distal end of the working channel of the bronchoscope when the measurement device provided in the embodiment of the present application performs measurement;
  • Fig. 12 is the enlarged schematic diagram of the C part of Fig. 11;
  • Fig. 13 is the enlarged schematic diagram of D part of Fig. 11;
  • FIG. 14 is a schematic diagram when the end cap of the catheter of the measuring device provided by the embodiment of the present application is located in the corresponding scale marking area of the guide wire;
  • FIG. 15 is a measurement principle diagram of the measurement device provided by the embodiment of the present application.
  • Fig. 16 is a schematic diagram of when the distal end of the catheter reaches the distal end of the guide wire and is flush with the distal end of the guide wire when the measurement device provided in the embodiment of the present application performs measurement;
  • Figure 17 is an enlarged schematic view of part E of Figure 16;
  • FIG. 18 is an enlarged schematic view of part F of FIG. 16 .
  • azimuth terms such as left, right, upper and lower in this embodiment are only relative concepts or refer to the normal use state of the product, and should not be regarded as limiting.
  • the measuring device provided in the embodiment of the present application and the related schematic diagrams of using the measuring device to measure the length of the diseased tissue.
  • the measurement device 100 is used to measure the length of the diseased tissue to determine the specifications of the implant.
  • the measuring device 100 is connected to a medical tube endoscope 3 (the medical tube endoscope 3 is shown in FIG. 8 , the medical tube endoscope 3 may be a bronchoscope) and an X-ray imaging device (the X-ray imaging device is not shown in the figure, and the X-ray imaging device is not shown in the figure).
  • the device which may be used in conjunction with a DSA device, measures the length of diseased tissue in a luminal passage (eg, a bronchus) to determine the size of the implant.
  • the measuring device 100 includes a catheter 1 and a guide wire 2 that can be passed through the catheter 1 , wherein the guide wire 2 is used to guide the catheter 1 to be pushed in the body.
  • the catheter 1 is a hollow tube structure.
  • the catheter 1 includes a catheter body 12 at the distal end and an end cap 13 at the proximal end of the catheter body 12 .
  • the catheter body 12 is fixedly connected to the end cap 13 .
  • the catheter body 12 is a hollow pipe body with a single-layer or multi-layer structure, which is fastened to the end cap 13 by gluing or other means.
  • the catheter 1 has good softness, self-lubricating performance and bending resistance. .
  • the maximum outer diameter of the catheter body 12 needs to be smaller than the inner diameter of the working channel of the bronchoscope.
  • the catheter 1 is provided with a catheter imaging structure 11, so that the position of the catheter 1 in the human tissue can be easily observed by an X-ray imaging device.
  • the catheter imaging structure 11 is provided at the distal end of the catheter body 12 (ie, the distal end of the catheter 1 ).
  • the catheter imaging structure 11 is provided at the distal end of the catheter body 12 (ie, the distal end of the catheter 1 ).
  • the catheter imaging structure 11 can be observed at the same time, so that the position of the catheter imaging structure 11 in the human tissue can be easily checked and the length of the diseased tissue can be easily measured.
  • the catheter visualization structure 11 is aligned with the proximal end of the diseased tissue.
  • the catheter visualization structure 11 can also be arranged at a position away from the distal end of the catheter 1 by a certain length, as long as the length of the catheter visualization structure 11 and the distal end of the catheter 1 does not exceed the length of the implant
  • the axial direction corresponding to the smallest size of the incoming object is sufficient, so that the distal end of the catheter 1 can be prevented from colliding with the inner wall of the human tissue when the catheter imaging structure 11 has not reached the target position to be measured.
  • the implant in this embodiment is a lung volume reduction elastic coil, which has a natural curled shape and a straight delivery shape.
  • the axial length corresponding to the smallest size referred to in this embodiment refers to the lung volume reduction of the smallest size.
  • the length a between the proximal end face of the end cap 13 of the catheter 1 and the catheter imaging structure 11 is defined as a, that is, the length of the catheter 1 is a, which is known data after manufacturing.
  • the size of a may range from 900mm to 950mm.
  • the guide wire 2 includes a guide wire body 20 at the distal end and a handle 21 at the proximal end of the guide wire body 20 .
  • the guide wire body 20 is fixedly connected to the handle 21 .
  • the handle 21 has the properties of being convenient to push and hold, and is usually made of stainless steel or medical plastic.
  • the distal end of the guide wire body 20 is provided with a guide wire visualization structural member 201 to facilitate the observation of the position of the guide wire 2 in the human tissue through an X-ray imaging device.
  • the guide wire visualization structural member 201 and the distal end of the diseased tissue Align the ends.
  • machining errors may occur.
  • the guide wire developing structural member 201 is not at the distal end of the guide wire body 20. Therefore, if the guide wire developing member 201 and When the length between the distal ends of the guide wire body 20 does not exceed 3 mm, it should be considered that the guide wire developing member 201 is provided at the distal end of the guide wire body 20 .
  • the proximal end side of the guide wire body 20 is provided with a scale mark area S, which is used to directly or indirectly measure the length between the catheter development knot 11 and the end of the guide wire development structure 201 .
  • the guide wire imaging structure 201 and the catheter imaging structure 11 can be made of metal materials that are opaque to X-rays, such as gold, platinum, tantalum and the like.
  • the guide wire visualization structure 201 is aligned with one end (ie, the distal end) of the diseased tissue, and the catheter visualization knot 11 is aligned with the other end (ie, the proximal end) of the diseased tissue.
  • the proximal end of the catheter 1 can fall into the scale mark area S, and the scale mark area S is located outside the patient during measurement.
  • the catheter visualization structural member 11 in this embodiment is provided at the distal end of the catheter 1 , the measuring device of this embodiment only needs to develop the structural member from the proximal end of the catheter 1 to the guide wire during measurement.
  • the length between the two imaging structures can be calculated by subtracting the length of the catheter 1 from the length between the two imaging structures.
  • the length between the two imaging structures is equal to the length of the diseased tissue. From this, the appropriate implant size is selected for treatment, such as the treatment of emphysema.
  • the length between the position of the scale marking area S and the guide wire developing structure 201 is known data, therefore, according to the reading of the scale marking area S, the length of the catheter 1 can be known. The length from the proximal end to the guide wire developing structure 201 .
  • the catheter visualization structure 11 is provided at a position having a certain length with the distal end of the catheter 1, the distance L between the proximal end of the catheter and the catheter visualization structure 11 is known after the catheter 1 is manufactured. (Not shown in the figure, the distance L is known data when the factory is finished manufacturing), so when measuring, it is only necessary to subtract the distance L from the distance from the proximal end of the catheter 1 to the guide wire imaging structure 201 to calculate The distance between the two developing structures (the guide wire developing structure 201 and the catheter developing structure 11) is calculated.
  • the use of the measurement device will be described by taking the measurement device 100 for measuring the length of the lesioned tissue of the bronchus as an example.
  • the medical tube scope 3 is pushed along the trachea to the proximal end of the bronchial diseased tissue.
  • the distal end of the bronchoscope 3 is delivered to the sub-segmental bronchial opening flush (ie, the proximal end of the lesion), and the guide wire is placed in vitro. 2 is passed through the catheter 1 to form an assembly.
  • the distal end of the diseased tissue is flush), and then keep the position of the guide wire 2 still, and push the catheter 1 to the distal end along the guide wire 2, so that the catheter imaging knot 11 on the catheter 1 is flush with the proximal end of the diseased tissue (due to The distal end of the bronchoscope 3 is flush with the proximal end of the diseased tissue, so it is only necessary to align the catheter developing knot 11 with the distal end of the bronchoscope 3), at this time, the proximal end of the catheter 1 falls into the scale marking area S , and then calculate the distance between the two developing structures according to the above-mentioned known length data.
  • the measuring device 100 provided by the present application does not provide more developing structures at equal intervals at the distal end of the guide wire body 20 of the guide wire 2, it can avoid measurement caused by the interference of multiple developing structures when the guide wire is bent Problems with failure or inaccurate measurements. And because it has relatively few developing structural parts compared with the prior art, the risk of metal developing structural parts falling off in the organ can be greatly reduced, and the operability and safety of the operation are improved.
  • the scale marking area S is used to directly or indirectly measure the distance between the catheter imaging structure 11 and the guide wire imaging structure 201 , and the distance is the length of the diseased tissue.
  • a plurality of scales are arranged in the scale marking area S.
  • the farthest one in the scale marking area S is the reference mark point 22, and the scale that is farthest from the reference mark point 22 in the plurality of scales.
  • the guide wire imaging structure 201 is provided at the distal end of the main body segment 202, so as to observe the position of the guide wire imaging structure 201 and measure the length of the diseased tissue.
  • the main body segment 202 can be made of metal wire with good elasticity and flexibility, and also has good pushability. At this time, the guide wire 2 can be pushed along the hollow channel of the catheter 1, and the main body section 202 will not be too soft to cause excessive bending during the pushing process, resulting in bending in the tube or human tissue, and it cannot be pushed further.
  • the distal end of the main body segment 202 is made of a biocompatible polymer material, such as silica gel, polytetrafluoroethylene, PEBA material or other polymer materials, and the manufacturing process can be adjusted to make the main body segment 202 from the distal end to the proximal end getting harder.
  • a biocompatible polymer material such as silica gel, polytetrafluoroethylene, PEBA material or other polymer materials
  • the guide wire visualization structural member 201 can be embedded at the distal end of the main body segment 202.
  • the guide wire 2 extends into the bronchus and other tissues in the human body, the When the distal end touches the inner wall of human tissue such as the bronchial wall, since the distal end is relatively soft, it will bend first, while the proximal end bends to a lesser degree.
  • the operator can more intuitively observe the distal end of the main body segment 202 according to the X-ray imaging equipment.
  • the bending degree of the guide wire 2 can be determined to determine whether the guide wire 2 reaches the predetermined position.
  • the catheter imaging structure 11 can also be arranged in this way.
  • the length dimension between the guide wire developing structure 201 and the reference mark point 22 is b.
  • the length b is a known length, and the dimension of b ranges from 850 mm to 1050 mm.
  • the length between the fiducial marker point 22 and the distal end of the guide wire visualization structure 201 is less than or equal to the length of the catheter 1 (that is, b ⁇ a), and the end marker point 24 and the distal end of the guide wire visualization structure 201
  • the length in between is greater than the length of the catheter 1 .
  • the catheter 1 and the guide wire 2 in the body may be in a curved state due to the need to adapt to the shape of the lumen channel of the human body.
  • the “length” referred to herein That is, the straight line distance, if the catheter 1 and the guide wire 2 are in a curved arc state, the “length” referred to herein refers to the arc length, and in this application, the guide wire 1 is passed through the catheter 2, and the two can be seen. to have the same shape.
  • the plurality of scales are arranged at equal intervals, so that the numerical value on the scale marking area S can be read quickly and subsequent measurement can be performed quickly.
  • the fiducial marking point 22 and a plurality of scales are all arranged on the side of the guide wire body 20 close to the proximal end, and the scale marking area S Located outside the patient's body, more specifically, during measurement, the scale mark area S is exposed outside the working channel of the medical tube endoscope, which is convenient for visual observation.
  • the distance from the reference mark point 22 to the first measurement mark point 23 is equal to the axial length c corresponding to the smallest size of the implant, according to the prior art implant (such as a lung volume reducing elastic coil) size and anatomy and physiology of the lung, the size of c may be the smallest size of the lung implant, c is the data determined according to the type of implant (ie known data).
  • the size of an existing group of lung volume reduction elastic coils is 90mm, 110mm, 130mm, and 150mm, and the size of c can be set to 90mm. In one embodiment, the size of c can range from 90mm to 110mm.
  • the measurement mark point closest to the reference mark point 22 in the plurality of scales is the first measurement mark point 23, and the distance between the first mark point 23 and the reference mark point 22 is the smallest, and the distance is equal to the minimum size of the implant, and the minimum specification
  • the dimension may refer to the smallest axial length dimension of the lung volume reducing elastic coil in a straight state.
  • the size of d is also the length difference value between implants of various specifications, and d is the data determined according to the type of implant (that is, the size of the data).
  • the distance between any one of the multiple scales except the fiducial marking point 22 and the fiducial marking point 22 is equal to the axial length of the implanted instrument of one specification, so that the measuring device 100 can assist the selection more quickly.
  • the size and model of the implanted device For example, the size of an existing group of lung implants is 90mm, 110mm, 130mm, and 150mm, and the value of d is 20mm.
  • the size of d may range from 10mm to 20mm.
  • the scale can be set to five, that is, there are four equidistant measurement units between the five scales, and the length between each unit is 10mm to 20mm.
  • the corresponding size readings are marked next to it to facilitate reading the size. For example, from the first measurement marking point 23 to the last marking point 24, it can be marked as 0, 1, 2, 3, and 4 in sequence.
  • the dimensions between a, b, c, and f satisfy a ⁇ b-c, and a ⁇ b+f, so that the specifications of the implant can be quickly determined.
  • the reference marks 22 and each scale on the guide wire body 20 can be set by laser marking and engraving directly on the guide wire body 20 , or as shown in FIG. 6 .
  • FIG. 7 by marking the reference mark point 22 at the distal end of the heat shrinkable sleeve W, marking the end mark point 24 at the proximal end of the heat shrinkable sleeve W, and marking the corresponding each After the middle scale, the heat shrinkable sleeve W is then sleeved on the guide wire body 20 .
  • an embodiment of the present application further provides a method for measuring diseased tissue in a lumen channel, providing a medical tube endoscope 3 , an X-ray imaging device (not shown) and the above-mentioned measuring device, which includes the following step:
  • the guide wire 2 is inserted into the hollow lumen of the catheter 1 in vitro and assembled together, the guide wire 2 of the assembled measuring device is delivered through the working channel 31 of the medical endoscope 3, and is inserted into the intended implantation
  • the guide wire body 20 extends into the human body tissue such as the bronchus 4 in the human body
  • the guide wire developing structure 201 at the distal end of the guide wire 2 is observed by the X-ray imaging device.
  • the delivery of the guide wire 2 can be stopped at this time;
  • the length between the catheter visualization structural member 11 and the guide wire visualization structural member 201 is defined as x, and the x value is the required value of the target bronchus 4 diseased tissue.
  • the measured length is also the basis for selecting the size of the implant. Referring to FIGS.
  • the distance from the fiducial mark 22 to the proximal end of the catheter 1 is defined as e, according to the proximal end of the catheter 1 (ie the proximal end of the end cap 13 )
  • the corresponding scale mark area S of the end) estimate the value of e, and then measure the value of x, the value of x can be equivalently measured by the following formula:
  • Fig. 15 is used to illustrate the relative axial positional relationship between the catheter 1 and the guide wire 2 in the patient's body.
  • the catheter 2 is decomposed and moved in parallel along the radial direction.
  • the section corresponding to X in FIG. 15 is the length of the diseased tissue. In this embodiment, for the convenience of description, the section is illustrated by a straight line.
  • the corresponding dimension c in this application is 90mm, and d is 20mm.
  • the end cap 13 of the catheter 1 is between the mark 1 and the mark 2, then the size e is 110mm to 130mm, that is, the length of the target bronchus 4 (that is, x) is 110mm to 130mm.
  • an implant with a length of 110mm is selected. Implant it. According to this method, if the position of the end cap 13 is between the mark 0 and the mark 1, the implant with a length of 90mm is selected; if the position of the end cap 13 is between the mark 2 and the mark 3, the implant with a length of 130mm is selected. Implant; if the position of the end cap 13 is between mark 3 and mark 4, select an implant with a length of 150 mm.
  • the measurement method for measuring the length of a diseased tissue using the above-mentioned measuring device provided by the present application through the method of equivalent length measurement, since the scale marking area S is set at the proximal end, the measurement can be performed more conveniently and intuitively, which is conducive to rapid selection.
  • Implants of suitable size, and because they use relatively few imaging structures can avoid the problem of inaccurate measurement caused by mutual interference when the guide wire is bent due to too many imaging structures, and can also greatly reduce the metal
  • the risk of the imaging structure falling off in the organ improves the operability and safety of the operation.
  • the beneficial effect of the measuring device and the measuring method provided by the present application is also that: referring to Fig. 16 to Fig. 18 , after selecting an implant of a suitable specification according to the x value, the catheter 1 is continuously pushed to the distal end to serve as the implant of the implant.
  • the proximal end of the catheter 1 ie the end cap 13
  • the guide wire can be observed through in vitro observation without the aid of X-ray imaging equipment.
  • catheter 1 When the fiducial marker 22 of 2 is flush, stop delivering catheter 1 (at this time, catheter 1 reaches the farthest end of diseased bronchus 4), withdraw guide wire 2, and pass the implant selected in step d through the hollow of catheter 1.
  • the lumen is advanced to the distal end of the catheter 1, ie the implantation of the implant is completed. That is, in the subsequent pushing stage of the catheter 1, the catheter 1 can be observed and pushed through in vitro observation without the aid of X-ray imaging equipment, which can effectively shorten the radiation time for the radiation staff and subjects to be irradiated by X-rays. , so as to better protect the health of staff and subjects.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Veterinary Medicine (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Public Health (AREA)
  • Physics & Mathematics (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Dentistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Physiology (AREA)
  • Pulmonology (AREA)
  • Media Introduction/Drainage Providing Device (AREA)
  • Endoscopes (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

一种测量装置(100),包括中空的导管(1)及可穿设于中空的导管(1)中的导丝(2),导管(1)上设置有导管显影结构件(11),导管显影结构件(11)距离导管(1)的远端的距离小于病变组织(4)的长度,导丝(2)的远端上设置有导丝显影结构件(201),导丝(2)上设有刻度标记区(S),导管的近端可落入刻度标记区(S)内,刻度标记区(S)用于直接或间接地测算导管(1)的近端与导丝(2)的端部的距离,再测量出病变组织(4)的长度。

Description

测量装置 技术领域
本申请属于医疗器械领域,尤其涉及一种测量装置。
背景技术
目前对肺气肿采用一种更新的治疗方式,即将弹性线圈(例如肺减容弹性线圈)作为植入体植入人体肺部病变位置。肺减容弹性线圈由镍钛记忆合金金属丝设计制成,其在自然状态时呈弯曲形态,肺减容弹性线圈在外力作用下可发生弹性形变。例如,肺减容弹性线圈在装载系统的约束下,可呈直条形态,以便于通过支气管镜工作通道植入肺部,当肺减容弹性线圈被输送到肺气肿区的支气管内后,肺减容弹性线圈失去装载系统的约束,恢复形变变成自然形状(即不受外力时的形状)的弯曲形态,同时气肿区在肺减容弹性线圈的牵拉作用下被挤压,支气管内的气体排出,肺气肿区的肺组织体积减小,从而使周边相对健康的肺组织更好地发挥生理功能。
在植入前,需采用测量导丝进行测量肺气肿区的支气管长度,从而确定肺减容弹性线圈的规格。
申请内容
本申请的目的在于提供一种测量装置,旨在解决现有技术的需要提供一种测量装置用于确定植入物的规格的问题。
本申请是这样实现的:提供一种测量装置,用于对病变组织的长度进行测量从而确定植入物的规格,测量装置包括导管和导丝,导管为中空的管结构,导管上设置有导管显影结构件,导管显影结构件与导管的远端端部之间的长度 不超过植入物最小规格所对应的轴向长度;导丝可穿设于导管中,导丝的远端上设置有导丝显影结构件,导丝上设有刻度标记区,导管的近端端部可落入刻度标记区内,刻度标记区用于直接或间接地测算导管显影结构件与导丝显影结构件之间的长度进而确定植入物的规格。
在其中一实施例中,导管的长度为a,刻度标记区用于测算导管显影结构件与导丝显影结构件之间的长度,刻度标记区内设有多个刻度,多个刻度中位于刻度标记区内最远端的一个为基准标记点,多个刻度中距离基准标记点最远的刻度为末位标记点,基准标记点与导丝显影结构件之间的长度为b,基准标记点与末位标记点之间的长度为f,a≤b+f。
在其中一实施例中,导管显影结构位于导管的远端端部,且b=a。
在其中一实施例中,植入物的最小规格对应的轴向长度为c,a≥b-c。
在其中一实施例中,基准标记点与其最近的刻度之间的长度与最小规格的植入物对应的轴向长度相等。
在其中一实施例中,多个刻度中除基准标记点之外的任一刻度与基准标记点之间的长度均与一种规格的植入物的轴向长度相等。
在其中一实施例中,多个刻度等间距设置。
在其中一实施例中,导管显影结构件位于导管的远端端部。
在其中一实施例中,导管的近端端部至导管显影结构件之间的长度为a,a的尺寸范围为900mm~950mm。
在其中一实施例中,测量装置对病变组织进行测量,导丝显影结构件与病变组织的远端对齐,且导管显影结构件与病变组织的近端对齐时,导管的近端端部可落入刻度标记区内。
本申请提供的采用上述测量装置进行测量时,将导丝穿设于导管内后整体植入病变组织的管腔通道中,推动导丝使得导丝显影结构与病变组织的远端端部对齐,推动导管使得导管显影结构件与病变组织的近端端部对齐,如此,通过刻度标记去直接或间接换算出导丝显影结构与导管显影结构件之间的长度即 为病变组织的长度,从而确定植入物的规格。
附图说明
图1是本申请实施例提供的测量装置的立体示意图;
图2是本申请实施例提供的测量装置的导管的立体示意图;
图3是本申请实施例提供的测量装置的导丝的第一实施例的立体示意图;
图4是图3的S部分放大示意图;
图5是本申请实施例提供的测量装置的导丝的结构示意图;
图6是本申请实施例提供的测量装置的导丝的另一实施例的立体示意图;
图7是图5的G部分的放大示意图;
图8是本申请实施例提供的测量装置进行测量时导丝到达支气管远端时的示意图;
图9是图8的A部分的放大示意图;
图10是图8的B部分的放大示意图;
图11本申请实施例提供的测量装置进行测量时导管到达支气管镜的工作通道的远端时的示意图;
图12是图11的C部分的放大示意图;
图13是图11的D部分的放大示意图;
图14是本申请实施例提供的测量装置的导管的端盖位于导丝的相对应的刻度标记区时的示意图;
图15是本申请实施例提供的测量装置的测量原理图;
图16本申请实施例提供的测量装置进行测量时导管的远端到达导丝的远端并与之平齐时的示意图;
图17是图16的E部分的放大示意图;
图18是图16的F部分的放大示意图。
具体实施例
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
需要说明的是,当元件被称为“固定于”或“设置于”另一个元件,它可以直接在另一个元件上或者可能同时存在居中元件。当一个元件被称为“连接于”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。
还需要说明的是,本实施例中的左、右、上、下等方位用语,仅是互为相对概念或是以产品的正常使用状态为参考的,而不应该认为是具有限制性的。
如图1至图16所示,为本申请实施例提供的测量装置及使用该测量装置进行病变组织长度测量的各相关示意图。
具体地,如图1所示,为本申请实施例提供的测量装置100的相关示意图,测量装置100,用于对病变组织的长度进行测量从而确定植入物的规格。例如测量装置100与医用管镜3(医用管镜3在图8中示出,医用管镜3可以是支气管镜)及X射线显影设备(X射线显影设备在图中未示出,X射线显影设备可以为DSA设备)配合使用,可对管腔通道(例如支气管)中病变组织的长度进行测量,从而确定植入物的规格。
测量装置100包括导管1及可穿设于该导管1中的导丝2,其中,导丝2用于引导导管1在体内进行推送。
如图2所示,导管1为中空的管结构,导管1包括位于其远端侧的导管本体12、设于导管本体12近端侧的端盖13,导管本体12与端盖13固定相连。导管本体12为具有单层或多层结构的中空管体,通过胶水粘结或其他方式将其紧固连接在端盖13上,导管1具备良好的柔软度、自润滑性能和抗折性能。为保证导管1能够在支气管镜内自由地推送,导管本体12的最大外径处需小于支气管镜的工作通道的内径尺寸。
导管1上设有导管显影结构件11,以方便通过X射线显影设备观察导管1在人体组织内的位置。在本实施例中,导管显影结构件11设于导管本体12的远端端部(即导管1的远端端部),当导管显影结构件11设于导管本体12的远端端部时,在观察导管本体12的端部时便可同时观察到导管显影结构件11的位置,从而可较方便地查看导管显影结件11在人体组织内的位置并较方便地进行病变组织长度的测算。测量时,导管显影结构件11与病变组织的近端端部对齐。
当然,在其他实施例中,导管显影结构件11也可设置在与导管1的远端端部相距一定长度的位置,只要导管显影结构件11与导管1的远端端部的长度不超过植入物最小规格所对应的轴向即可,这样,可避免在导管显影结构件11还未到达拟测量的目标位置时导管1的远端端部就与人体组织内壁发生抵触。本实施例中的植入物为肺减容弹力线圈,其具有卷曲的自然形态以及直线的输送形态,本实施例中所称的最小规格对应的轴向长度是指,最小规格的肺减容弹力线圈处于直线的输送形态时所具有的轴向长度。
参见图2,定义导管1的端盖13的近端端面至导管显影结构件11之间的长度为a,即导管1的长度为a,该长度a在完成制造后即为已知的数据。作为优选实施例,a的尺寸范围可为900mm~950mm。
如图3和图4所示,导丝2包括位于其远端侧的导丝本体20及设于导丝本体20近端侧的手柄21,导丝本体20与手柄21固定相连。
具体地,手柄21具有方便推送和握持的性能,通常可由不锈钢或医用塑料制成。
导丝本体20的远端端部设有导丝显影结构件201以方便通过X射线显影设备观察导丝2在人体组织内的位置,测量时,导丝显影结构件201与病变组织的远端端部对齐。需要注意地是,由于现有的加工精度不够,有可能会造成加工误差,比如出现导丝显影结构件201不在导丝本体20的远端端部的情况,因此,若导丝显影件201与导丝本体20的远端端部之间的长度不超过3毫米时, 都应视为导丝显影件201设于导丝本体20的远端端部。
导丝本体20的近端侧设有刻度标记区S,刻度标记区S用于直接或间接地测算导管显影结件11与导丝显影结构件201的端部之间的长度。
导丝显影结构件201和导管显影结构件11可采用不透X射线的金属材料制成,例如金、铂、钽等类似金属材料。
参考图3至图5,测量装置100使用时,导丝显影结构件201与病变组织的一端(即远端)对齐,且导管显影结件11与病变组织的另一端(即近端)对齐时,导管1的近端端部可落入刻度标记区S内,且刻度标记区S在测量时,位于患者体外。
具体地,由于本实施例中的导管显影结构件11设于导管1的远端端部,本实施例的测量装置在测量时,只需根据导管1的近端端部至导丝显影结构件201之间的长度减去导管1的长度即可计算出两显影结构(导丝显影结构件201和导管显影结构件11)之间的长度,两显影结构之间的长度等于病变组织的长度,以此选定合适的植入物规格,从而进行治疗,例如治疗肺气肿。需要说明的是,由于在导丝完成制作时,刻度标记区S的位置到导丝显影结构件201之间的长度即为已知数据,因此,可根据刻度标记区S的读数获知导管1的近端端部至导丝显影结构件201之间的长度。
当然,若导管显影结构件11设在与导管1的远端端部具有一定长度的位置,由于导管1在制造完成后就已获知导管近端端部与导管显影结构件11之间的距离L(图未示,该距离L在出厂完成制造时即为已知数据),因此在测量时,只需根据导管1的近端至导丝显影结构件201的距离减去该距离L即可计算出两显影结构(导丝显影结构件201和导管显影结构件11)的距离。
在此以测量装置100对支气管的病变组织长度进行测量为例,对测量装置的使用时进行说明。先将医用管镜3沿气管推送至支气管病变组织的近端端部,具体地,支气管镜3远端递送至亚段支气管开口处平齐(即病变部位的近端),在体外将导丝2穿设于导管1后形成组件。将该组件置入支气管镜3的工作通 道中,保持导管1的位置不动,且向远端推动导丝2并使得导丝显影结构件201与支气管壁接触(即导丝显影结构件201与病变组织的远端平齐),再保持导丝2的位置不动,沿导丝2向远端推送导管1,使得导管1上的导管显影结件11与病变组织的近端平齐(由于支气管镜3远端与病变组织的近端平齐,故只需将导管显影结件11与支气管镜3远端平齐即可),此时导管1的近端端部落入刻度标记区S内,然后根据上述的已知长度数据,计算出两显影结构之间的距离。
由于本申请提供的测量装置100并不是通过在导丝2的导丝本体20的远端等间距设置较多的显影结构件,因而可避免因导丝弯曲时多个显影结构件干涉而导致测量失败或测量不准确的问题。且由于其相对现有技术设置的显影结构件相对较少,因而可大大降低金属显影结构件脱落在器官内的风险,提高了手术的可操作性及安全性。
本实施例中,刻度标记区S用于直接或间接地测算导管显影结构件11与导丝显影结构件201的距离,该距离即为病变组织的长度。刻度标记区S内设有多个刻度,本实施例中的多个刻度中位于刻度标记区S内最远端的一个为基准标记点22,多个刻度中距离基准标记点22最远的刻度为末位标记点24,基准标记点22与末位标记点24之间的长度为f,导丝本体20中从导丝本体20的远端端部至基准标记点22之间的部分为主体段202,导丝显影结构件201设于该主体段202的远端端部,以便于观察导丝显影结构件201的位置并进行病变组织长度的测算。
主体段202可由具有良好的弹性及柔韧度的金属丝加工而成,同时还有较好的推送性,这里的推送性是指:主体段202具有一定的刚度,在导丝2经由导管1推送时,导丝2能够沿导管1的中空通道进行推送,不会因自身主体段202过于柔软而导致推送过程中产生过度弯曲,导致在管内或人体组织中弯折,无法继续推送。
主体段202远端由具有生物相容性的高分子材料制成,例如:硅胶,聚四 氟乙烯、PEBA材料或者其他高分子材料,可通过调整制作工艺使得主体段202从远端到近端越来越硬。
在一实施例中,导丝显影结构件201可通过嵌入的方式设置在主体段202远端端部,当导丝2伸入至人体内的支气管等组织时,导丝2的主体段202的远端触碰支气管壁等人体组织的内壁时,由于远端较为柔软,会首先弯曲,而近端弯曲变化程度较小,操作者根据X射线显影设备能够更加直观的观察到主体段202远端的弯曲程度,进而判断导丝2是否到达预定位置。同样地,导管显影结构件11亦可采用此种方式而设置。
本实施例中,导丝显影结构件201至基准标记点22之间的长度尺寸为b,在制造完成后,该长度b为已知的长度,b的尺寸范围为850mm~1050mm。基准标记点22与导丝显影结构件201的远端之间的长度小于或等于导管1的长度(即b≤a),且末位标记点24与导丝显影结构件201的远端端部之间的长度大于导管1的长度。需要说明的是,位于体内的导管1和导丝2由于需要适应人体管腔通道的形状,可能处于弯曲状态,若导管1和导丝2处于直线状态时,则本文中所称的“长度”即直线距离,若导管1和导丝2处于弯曲的弧形状态,则该本文所称的“长度”是指弧长,并且本申请中导丝1穿设于导管2中,二者可视为具有相同的形状。
在另一实施例,多个刻度之间为以等间距的方式间隔设置,这样,可便于迅速的读取刻度标记区S上的数值,也便于快速的进行后续的测算。进一步地,为了方便在人体外部即可对刻度标记区S的数据进行读取,将基准标记点22和多个刻度均设置于导丝本体20上靠近近端的一侧,且刻度标记区S位于患者体外,更具体地,在测量时,刻度标记区S暴露于医用管镜的工作通道之外,便于操作肉眼观察。
参见图4,基准标记点22至首位测量标记点23之间的距离与植入物的最小规格对应的轴向长度c相等,按照现有技术中植入物(例如肺减容弹力线圈)的规格及肺的解剖和生理技术,c的尺寸可为肺部植入物的最小规格尺寸,c 是根据植入物的类型确定的数据(即为已知数据)。例如现有一组肺减容弹力线圈的规格尺寸为90mm、110mm、130mm、150mm,则c的尺寸可设置为90mm,一实施例中,c的尺寸范围可为90mm~110mm。多个刻度中距离基准标记点22最近的测量标记点为首位测量标记点23,首位标记点23与基准标记点22的间距最小,且该间距与植入物的最小规格尺寸相等,该最小规格尺寸可以是指肺减容弹性线圈在直线状态时的最小轴向长度尺寸。
定义多个刻度中相邻的两刻度之间的间距为d,d的尺寸也即是各规格植入物之间的长度差异值,d是根据植入物的类型确定的数据(即为已知数据)。使得多个刻度中除基准标记点22之外的任一刻度与基准标记点22之间的距离均与一种规格的植入器械的轴向长度相等,这样测量装置100可更加快速地辅助选择植入器械的规格型号。例如现有一组肺部植入物的规格尺寸为90mm、110mm、130mm、150mm,则d的值为20mm。作为优选实施例,d的尺寸范围可为10mm~20mm。作为一具体实施例,参见图3和图4,刻度可设置为五个,即五个刻度之间具有四个等距测量单位,每个单位之间的长度为10mm~20mm,可于各刻度旁边标记相应的尺寸读数,以便于读取尺寸,例如从首位测量标记点23至末位标记点24之间可依次标记为0、1、2、3、4。
作为一具体实施例,a、b、c、f之间的尺寸满足a≥b-c,且a≤b+f,这样,可快速地确定植入物的规格。
在一实施例中,导管显影结构件11位于导管1的远端端部,且b=a。
作为一具体实施例,如图5和图6所示,导丝本体20上的基准标记点22和各刻度可通过直接在导丝本体20上激光打标雕刻的方式而设置,或者如图6和图7所示,通过在热缩套管W的远端端部标记基准标记点22,在热缩套管W的近端端部标记末位标记点24,并在其中部标记相应的各中间刻度,然后再将该热缩套管W套设于导丝本体20上。
参见图8至图18,本申请一实施例还提供了一种管腔通道中病变组织的测量方法,提供医用管镜3、X射线显影设备(图未示)和上述测量装置,其包括 以下步骤:
A、如图8至图10所示,将支气管镜3部署至人体组织的目标管腔通道处,将医用管镜3的远端端部32与病变组织4的近端对齐;
B、在体外将导丝2穿置于导管1的中空内腔中组装在一起,将组装后的测量装置的导丝2经医用管镜3的工作通道31进行递送,伸入拟进行植入的支气管4的气道中,当导丝本体20伸入至人体内的支气管4等人体组织内时,通过X射线显影设备观察导丝2远端的导丝显影结构件201,当通过X射线显影设备观测到导丝显影结构件201的远端已到达病变组织4最远端位置时,此时可停止导丝2的递送;
C、参见图11至图15,保持导丝2的位置不变,往远端开始推送导管1,通过X射线显影设备观测导管显影结构件11的位置,如图11和图12所示,当导管显影结构件11到达亚段支气管开口处并与之平齐时(即到达医用管镜3的远端端部32处,亦即到达病变组织4的最近端),停止导管1的递送,此时导管1的近端端部对应位于导丝本体20的刻度标记区S,定义导管显影结构件11到导丝显影结构件201之间的长度为x,此x值为目标支气管4病变组织需要测量的长度,同时也是选取植入物规格尺寸的依据。参见图12和图13,定义基准标记点22到导管1的近端端部(也即端盖13的近端)的端面距离为e,根据导管1的近端端部(即端盖13的端部)对应的刻度标记区S,估读出e的值,然后进行x值的测算,x的值具体可采用如下公式进行等效测算:
x=e+b-a;
根据测算出的x值选取对应的植入体规格。需要说明的是,图15用于示意导管1和导丝2在患者体内的轴向相对位置关系,为了便于展示刻度标记区S,将导管2沿径向平行分解移动,此外还需要说明的是,图15中X所对应的区间为病变组织的长度,本实施例中为了便于说明,将该部分用直线形态进行示意。
举例进行说明,假定肺部植入物的长度规格有90mm、110mm、130mm、150mm,则对应本申请中尺寸c为90mm,d为20mm。当尺寸a=b时,按公式可得,目标 支气管4的长度x等于e的值,如图14和图15所示,导管1的端盖13处在标记1和标记2之间,则尺寸e为110mm~130mm,即目标支气管4(也即x)的长度为110mm~130mm,为保证植入后植入物不会长期处于肺部边缘(易造成气胸),选取110mm长度的植入物进行植入即可。按此方法,如端盖13所处位置在标记0和标记1之间,则选取90mm长度的植入物;如端盖13所处位置在标记2和标记3之间,则选取130mm长度的植入物;如端盖13所处位置在标记3和标记4之间,则选取150mm长度的植入物。
本申请提供的采用上述测量装置进行病变组织长度测量的测量方法,通过等效测量长度的方式,由于其刻度标记区S设置在近端,可更加方便、直观的进行测算,有利于迅速地选择合适规格的植入物,且由于其使用相对较少的显影结构件,因而可避免因显影结构件过多而在导丝弯曲时发生相互干涉以导致测量不准确的问题,也可大大降低金属显影结构件脱落在器官内的风险,提高了手术的可操作性及安全性。
本申请提供的测量装置及测量方法的有益效果还在于:参见图16至图18,根据x值选定合适规格的植入物后,在后续往远端继续推送导管1以作为植入物的植入通道时(此时保持导丝2的位置不变),此时可无需借助X射线显影设备,通过体外观察就可观察到导管1的近端端部(即端盖13)与导丝2的基准标记点22平齐时,停止递送导管1(此时导管1到达病变支气管4的最远端),退出导丝2,将d步骤中选定的植入物通过导管1的中空内腔推送至导管1的远端端部,即完成植入物的植入。即在后续导管1的推送阶段,可无需借助X射线显影设备,通过体外观察即可观测导管1并完成导管1的推送,这样可有效缩短放射工作人员和受检者被X射线辐射的辐射时间,从而可更好地保护工作人员和受检者的身体健康。
以上仅为本申请的较佳实施例而已,并不用以限制本申请,凡在本申请的精神和原则之内所作的任何修改、等同替换或改进等,均应包含在本申请的保护范围之内。

Claims (10)

  1. 一种测量装置,用于对病变组织的长度进行测量从而确定植入物的规格,其特征在于:所述测量装置包括:
    导管,所述导管为中空的管结构,所述导管上设置有导管显影结构件,所述导管显影结构件与所述导管的远端端部之间的长度不超过所述植入物最小规格所对应的轴向长度;
    导丝,所述导丝可穿设于所述导管中,所述导丝的远端上设置有导丝显影结构件,所述导丝上设有刻度标记区,所述导管的近端端部可落入所述刻度标记区内,所述刻度标记区用于直接或间接地测算所述导管显影结构件与所述导丝显影结构件之间的长度进而确定所述植入物的规格。
  2. 如权利要求1所述的测量装置,其特征在于:所述导管的长度为a,所述刻度标记区用于测算所述导管显影结构件与所述导丝显影结构件之间的长度,所述刻度标记区内设有多个刻度,所述多个刻度中位于所述刻度标记区内最远端的一个为基准标记点,所述多个刻度中距离所述基准标记点最远的刻度为末位标记点,所述基准标记点与所述导丝显影结构件之间的长度为b,所述基准标记点与所述末位标记点之间的长度为f,a≤b+f。
  3. 如权利要求2所述的测量装置,其特征在于:所述导管显影结构位于所述导管的远端端部,且b=a。
  4. 如权利要求2所述的测量装置,其特征在于:所述植入物的最小规格对应的轴向长度为c,a≥b-c。
  5. 如权利要求4所述的测量装置,其特征在于:所述基准标记点与其最近的所述刻度之间的长度与最小规格的所述植入物对应的轴向长度相等。
  6. 如权利要求5所述的测量装置,其特征在于:所述多个刻度中除所述基准标记点之外的任一刻度与所述基准标记点之间的长度均与一种规格的所述植入物的轴向长度相等。
  7. 如权利要求2至4中任意一项所述的测量装置,其特征在于:所述多个 刻度等间距设置。
  8. 如权利要求1至6中任意一项所述的测量装置,其特征在于:所述导管显影结构件位于所述导管的远端端部。
  9. 如权利要求1至6中任意一项所述的测量装置,其特征在于:所述导管的近端端部至所述导管显影结构件之间的长度为a,所述a的尺寸范围为900mm~950mm。
  10. 如权利要求1所述的测量装置,其特征在于:所述测量装置对所述病变组织进行测量,所述导丝显影结构件与所述病变组织的远端对齐,且所述导管显影结构件与所述病变组织的近端对齐时,所述导管的近端端部可落入所述刻度标记区内。
PCT/CN2021/131170 2020-12-07 2021-11-17 测量装置 WO2022121642A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US18/251,725 US20240016410A1 (en) 2020-12-07 2021-11-17 Measuring device
EP21902349.6A EP4257041A4 (en) 2020-12-07 2021-11-17 MEASURING DEVICE

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202011427775 2020-12-07
CN202011427775.9 2020-12-07
CN202110143261.9 2021-02-02
CN202110143261.9A CN114601449A (zh) 2020-12-07 2021-02-02 测量装置

Publications (1)

Publication Number Publication Date
WO2022121642A1 true WO2022121642A1 (zh) 2022-06-16

Family

ID=81857910

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/131170 WO2022121642A1 (zh) 2020-12-07 2021-11-17 测量装置

Country Status (4)

Country Link
US (1) US20240016410A1 (zh)
EP (1) EP4257041A4 (zh)
CN (1) CN114601449A (zh)
WO (1) WO2022121642A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116269335A (zh) * 2023-05-10 2023-06-23 深圳市爱博医疗机器人有限公司 病灶长度测量方法、装置、设备及存储介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007020885A (ja) * 2005-07-15 2007-02-01 Asahi Intecc Co Ltd 医療用処置具
CN201076667Y (zh) * 2007-09-14 2008-06-25 吴建华 J型医用导管套件
CN102209570A (zh) * 2008-09-12 2011-10-05 纽姆克斯股份有限公司 改进的和/或较长的创伤程度最小肺减容装置及其输送
CN204708809U (zh) * 2015-06-04 2015-10-21 张丽平 带测量功能的内窥镜导管
CN106456938A (zh) * 2014-03-31 2017-02-22 明讯科技有限公司 用于在血管内处理过程中减少荧光检查使用的导管结构
US20190000405A1 (en) * 2017-06-30 2019-01-03 Surgentec Llc Device and method for determining proper screw or implant size during orthopedic surgery
CN208990005U (zh) * 2018-05-04 2019-06-18 翎秀生物科技(上海)有限公司 鼻窦球囊导管系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2451150C (en) * 2001-06-22 2011-10-25 Abbeymoor Medical, Inc. Urethral profiling device & methodology
US20170049596A1 (en) * 2014-04-30 2017-02-23 Stryker Corporation Implant delivery system and method of use
CN203954435U (zh) * 2014-06-11 2014-11-26 常州市久虹医疗器械有限公司 可测量的球囊扩张导管
CN108261598B (zh) * 2016-12-30 2021-05-25 深圳市先健呼吸科技有限公司 测量导丝

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007020885A (ja) * 2005-07-15 2007-02-01 Asahi Intecc Co Ltd 医療用処置具
CN201076667Y (zh) * 2007-09-14 2008-06-25 吴建华 J型医用导管套件
CN102209570A (zh) * 2008-09-12 2011-10-05 纽姆克斯股份有限公司 改进的和/或较长的创伤程度最小肺减容装置及其输送
CN106456938A (zh) * 2014-03-31 2017-02-22 明讯科技有限公司 用于在血管内处理过程中减少荧光检查使用的导管结构
CN204708809U (zh) * 2015-06-04 2015-10-21 张丽平 带测量功能的内窥镜导管
US20190000405A1 (en) * 2017-06-30 2019-01-03 Surgentec Llc Device and method for determining proper screw or implant size during orthopedic surgery
CN208990005U (zh) * 2018-05-04 2019-06-18 翎秀生物科技(上海)有限公司 鼻窦球囊导管系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116269335A (zh) * 2023-05-10 2023-06-23 深圳市爱博医疗机器人有限公司 病灶长度测量方法、装置、设备及存储介质
CN116269335B (zh) * 2023-05-10 2023-07-25 深圳市爱博医疗机器人有限公司 病灶长度测量装置、设备及存储介质

Also Published As

Publication number Publication date
EP4257041A4 (en) 2024-11-06
EP4257041A1 (en) 2023-10-11
CN114601449A (zh) 2022-06-10
US20240016410A1 (en) 2024-01-18

Similar Documents

Publication Publication Date Title
US11950965B2 (en) Device, system, and method utilizing a radiopaque element for anatomical lesion length estimation
US10226203B2 (en) Device for anatomical lesion length estimation
US20060184016A1 (en) Method and apparatus for guiding an instrument to a target in the lung
JP6732663B2 (ja) 肺容積減少弾性インプラント及び器械
US20040133129A1 (en) Measurements in a body lumen using guidewire with spaced markers
JP2003501127A (ja) 内視鏡医療装置用の表示
EA002415B1 (ru) Измерительный катетер для определения размеров дефектов перегородки
WO2022121642A1 (zh) 测量装置
KR20180007858A (ko) 협착병변부위 길이측정장치 및 길이측정방법
US20220047854A1 (en) Balloon dilation device
WO2016141631A1 (zh) 一种介入器械输送系统
US10695539B2 (en) Device for measuring length of tubular body structure
CN204581597U (zh) 一种介入器械输送系统
CN204274463U (zh) 一种放射显影标记测量导管
KR101761325B1 (ko) 사이즈 조절이 가능한 기관 삽입용 튜브
JP2024533097A (ja) マイクロカテーテルキャリパ
US11266415B2 (en) Lung volume reduction elastic implant and lung volume reduction instrument
US20210378528A1 (en) Pluse wave velocity measurement system
CN112869919B (zh) 医用测量装置及肺减容系统
CN216495873U (zh) 便于精确控制的心脏瓣膜输送系统
CN205359480U (zh) 一种体外读数的人体管腔测量装置
US11471071B2 (en) Method and apparatus for measuring the length of a vascular anatomic lesion
EP3714780A1 (en) Pulse wave velocity measurement system
CN117999040A (zh) 用于基于实时图像的装置定位的系统和方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21902349

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18251725

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202317035955

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021902349

Country of ref document: EP

Effective date: 20230707