WO2022107660A1 - Water dispersion - Google Patents

Water dispersion Download PDF

Info

Publication number
WO2022107660A1
WO2022107660A1 PCT/JP2021/041343 JP2021041343W WO2022107660A1 WO 2022107660 A1 WO2022107660 A1 WO 2022107660A1 JP 2021041343 W JP2021041343 W JP 2021041343W WO 2022107660 A1 WO2022107660 A1 WO 2022107660A1
Authority
WO
WIPO (PCT)
Prior art keywords
aqueous dispersion
biodegradable resin
mass
dispersoid
carbodiimide compound
Prior art date
Application number
PCT/JP2021/041343
Other languages
French (fr)
Japanese (ja)
Inventor
弘 平松
裕貴 加藤
誠司 佐藤
▲よし▼之 安倍
尚吾 河村
Original Assignee
中京油脂株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中京油脂株式会社 filed Critical 中京油脂株式会社
Publication of WO2022107660A1 publication Critical patent/WO2022107660A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/29Compounds containing one or more carbon-to-nitrogen double bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/16Compositions of unspecified macromolecular compounds the macromolecular compounds being biodegradable
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L29/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical; Compositions of hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Compositions of derivatives of such polymers
    • C08L29/02Homopolymers or copolymers of unsaturated alcohols
    • C08L29/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/04Polyesters derived from hydroxycarboxylic acids, e.g. lactones

Definitions

  • the present invention relates to an aqueous dispersion, a coating liquid containing the same, a method for producing a film using this coating liquid, and a method for producing functional particles using the aqueous dispersion.
  • aqueous dispersion in which particles containing a biodegradable resin are used as a dispersoid and dispersed in an aqueous dispersion medium is known. Since the biodegradable resin dispersed in water is hydrolyzed by itself, in order to industrially utilize such an aqueous dispersion, the biodegradable resin is hydrolyzed in consideration of the time required for transportation and storage. It is necessary to suppress the decrease in molecular weight (increase in acid value) due to decomposition. Carbodiimide compounds are widely known as agents for suppressing the decrease in molecular weight of biodegradable resins (Patent Document 1).
  • the carbodiimide compound when the biodegradable resin is polylactic acid, the carbodiimide compound reacts with the terminal (carboxylic acid) of the polylactic acid after hydrolysis and acts as a cross-linking agent to reduce the molecular weight of the polylactic acid (increase the acid value). Can be suppressed. Furthermore, since the decomposition product (carboxylic acid) generated when polylactic acid is hydrolyzed functions as a catalyst for hydrolysis of polylactic acid, the carbodiimide compound reacts with the decomposition product (carboxylic acid) to promote hydrolysis. Can be suppressed.
  • the carbodiimide compound can suppress the decrease in molecular weight (increase in acid value) due to the hydrolysis of the biodegradable resin (polyester resin such as polylactic acid).
  • Patent Document 2 describes an example in which such a carbodiimide compound is applied to an aqueous dispersion.
  • Patent Document 3 also describes an example in which a carbodiimide compound is used for the purpose of suppressing a decrease in molecular weight (increase in acid value) associated with hydrolysis of an aqueous dispersion.
  • the pH of the aqueous dispersion medium is adjusted for the purpose of improving the stability over time of the aqueous dispersion and the adhesiveness of the obtained film.
  • the aqueous dispersion of the biodegradable resin is required to have further improvement in stability over time.
  • a carbodiimide compound is added to a biodegradable resin constituting the dispersoid of an aqueous dispersion and a pH adjuster is added to the dispersoid of an aqueous system. That is, it was unclear before the present invention what characteristics the aqueous dispersion obtained by adding the carbodiimide compound to the dispersoid made of biodegradable resin and adding the pH adjuster to the aqueous dispersion medium had. .. In other words, according to the aqueous dispersion, whether the action of the carbodiimide compound and the action of the pH regulator are both elicited, a synergistic effect is obtained, or these effects are offset. I could't predict.
  • the present inventors prepared an aqueous dispersion obtained by adding a carbodiimide compound to a biodegradable resin constituting the dispersoid and adding a pH adjuster to an aqueous dispersion medium, and investigated its characteristics. As a result, it was found that the water dispersion improves the stability over time. On the other hand, the present inventors have found that by selecting a specific carbodiimide compound, the stability of the aqueous dispersion over time can be maintained for up to 6 months even without a pH adjuster.
  • a polyvalent carbodiimide compound (a compound containing a plurality of carbodiimide groups in one molecule) is selected as the carbodiimide compound, and the carbodiimide compound is used as a dispersoid from 0.6 to 5. Add 5% by mass.
  • FIG. 1 shows various aqueous dispersions and their stability over time.
  • the biodegradable resin polylactic acid
  • an acid carboxylic acid
  • Comparative Example 2 in which the carbodiimide compound was not added to the dispersant and the pH adjuster was added to the aqueous dispersion medium, the increase in acid value due to hydrolysis was initially suppressed as compared with Comparative Example 1 described above. However, the effect of suppressing the increase in the acid value disappears in a short time, and after 8 months, the acid value becomes the same as that of Comparative Example 1.
  • Example 2 when a biodegradable resin containing a carbodiimide compound is used as the dispersoid and a pH adjuster is added to the aqueous dispersion medium, the acid value number increases due to hydrolysis even after 6 months have passed. It is not promoted, and it can be seen that the suppression of the increase in acid value is maintained even after 8 months (Example 2). Furthermore, it can be seen that in Example 2, the acid value number was suppressed from the beginning as compared with each Comparative Example.
  • the action and pH adjustment of the carbodiimide compound can be achieved by adding the carbodiimide compound to the biodegradable resin constituting the dispersoid of the aqueous dispersion and adding the pH adjuster to the aqueous dispersion medium.
  • the actions of the agents are elicited from each other without being offset.
  • the effect of the carbodiimide compound on the stability over time is reinforced by the pH adjuster. Therefore, the first aspect of the present invention is defined as follows. That is, An aqueous dispersion obtained by dispersing a dispersoid containing a biodegradable resin in an aqueous dispersion medium.
  • the dispersoid contains a carbodiimide compound and
  • the dispersion medium contains a pH adjuster. Water dispersion.
  • FIG. 1 is a graph showing the temporal stability of various aqueous dispersions.
  • the aqueous dispersion of the present invention is obtained by dispersing the dispersoid in an aqueous dispersion medium.
  • the dispersoids include biodegradable resins, carbodiimide compounds and other auxiliaries. Examples of the biodegradable resin include the following.
  • Polylactic acid polylactic acid such as a copolymer of lactic acid and another hydroxycarboxylic acid, polycaprolactone, polycaprolactone such as a polymer of caprolactone and hydroxycarboxylic acid, polybutylene succinate, polybutylene succinate adipate , Thermoplastic starch, polymerate, polybutylene adipate terephthalate, polyethylene terephthalate succinate, polybutylene terephthalate succinate, polyhydroxyalkanoic acids, polyhydroxybutyrate, polyhydroxyvalerate, polyhydroxyhexanoate, polyethylene furanoate, polyglycol Acids and the like can be mentioned, and one or more of these can be used in combination.
  • polylactic acid is mentioned as a suitable biodegradable resin.
  • Polylactic acid was selected because it has been industrially put into practical use, is cheaper than other biodegradable resins, and is preferable for food packaging.
  • the blending ratio of L-type and D-type polylactic acid is preferably 6:94 to 94: 6. Excellent heat sealability can be obtained in this range. On the other hand, if it is out of this range, the crystallinity and the melting point increase, so that it may be difficult to exhibit the heat sealability at a low temperature.
  • the biodegradable resin film formed on the substrate has excellent water resistance and oil resistance, and can be utilized as water resistant paper and oil resistant paper by laminating it on a paper substrate.
  • the carbodiimide compound it is desirable to use a multivalent carbodiimide compound (a compound containing a plurality of carbodiimide groups in one molecule). More preferably, a carbodiimide-modified isocyanate compound and a derivative of the carbodiimide-modified isocyanate compound can be mentioned.
  • the carbodiimide-modified isocyanate compound is a carbodiimided version of a part of the isocyanate compound, and as the carbodiimide-modified isocyanate compound used in the present invention, a polymer of the following isocyanates carbodiimided can be used.
  • the derivative of the carbodiimide-modified isocyanate compound is a reaction of the isocyanate group with an amino group, a hydroxyl group or a carboxylic acid group.
  • Amino groups are provided, for example, from cyclohexylamines, hydroxyl groups are provided, for example, from polyethylene glycol monomethyl ethers, and carboxylic acid groups are provided, for example, from cyclohexanecarboxylic acids.
  • the compound represented by the following formula 1 is preferable.
  • a derivative obtained by reacting the isocyanate group in the following formula 1 with an amino group, a hydroxyl group or a carboxylic acid group is preferable.
  • n is an integer of 2 to 20].
  • the degree of polymerization of the carbodiimide compound is 2 to 20, more preferably 2 to 15, from the viewpoint of softening temperature and viscosity.
  • n is less than 2
  • the compound may elute from the dispersoid into an aqueous medium, and the stability of the biodegradable resin over time may decrease.
  • storage stability may become a problem, such as gelation of the aqueous dispersion itself due to elution of the compound into an aqueous medium.
  • n exceeds 20 the viscosity becomes too high and it becomes difficult to disperse evenly in the dispersoid.
  • the carbodiimide equivalent of the carbodiimide compound is 200 to 450 Keq, more preferably 230 to 430 Keq, from the viewpoint of softening temperature and viscosity. If the carbodiimide equivalent is less than 200 Keq, the viscosity becomes too high and it becomes difficult to disperse evenly in the dispersant. On the other hand, if the carbodiimide equivalent exceeds 450 Keq, the compound may elute from the dispersoid into an aqueous medium, and the stability of the biodegradable resin over time may decrease. In addition, there is a possibility that storage stability may become a problem, such as gelation of the aqueous dispersion itself due to elution of the compound into an aqueous medium.
  • the carbodiimide equivalent means a chemical formula amount (theoretical value) per 1 mol of a carbodiimide group.
  • the compounding ratio of the biodegradable resin and the carbodiimide compound in the dispersoid is 0.6 to 5.5% by mass with respect to the former.
  • a more preferable compounding ratio is 0.6 to 2.6% by mass. If the compounding ratio is less than 0.6% by mass, the stability over time with respect to the biodegradable resin may not be sufficiently exhibited. On the other hand, even if it exceeds 5.5% by mass, the effect commensurate with the amount used cannot be obtained, which is not economical.
  • a plasticizer can be added to the dispersant as an auxiliary agent.
  • the plasticizer is an auxiliary agent that softens the biodegradable resin, and by softening the plasticizer, the heat sealability at a low temperature can be facilitated.
  • the plasticizer include the following.
  • Citrate derivatives such as triethyl citrate, tributyl citrate, acetyl citrate triethyl, acetyl citrate tributyl, ether ester derivatives such as diethylene glycol diacetate, triethylene glycol diacetate, triethylene glycol dipropionate, glycerin triacetate, glycerin tripro Glycerin derivatives such as pionate and glycerin tributyrate, phthalic acid derivatives such as ethylphthalyl ethyl glycolate, ethyl phthalyl butyl glycolate and butyl phthalyl butyl glycolate, adipate 2- (2-methoxyethoxy) ethanol and Examples include reaction products of benzyl alcohol, adipic acid derivatives such as condensates of adipic acid and 1,4-butanediol, polyhydroxycarboxylic acids such as polyethylene glycol, alkylsulfonic acid
  • An oil resistance improver can be added to the dispersoid as an auxiliary agent.
  • the oil resistance improving aid include styrene-acrylic copolymers, starches and waxes.
  • the styrene-based monomer of the styrene-acrylic copolymer is not particularly limited, and for example, styrene, ⁇ -methylstyrene, ⁇ -methylstyrene, 2,4-dimethylstyrene, ⁇ -ethylstyrene, ⁇ -butylstyrene, 4 -Methylstyrene, vinyltoluene and the like can be mentioned.
  • the acrylic monomer is not particularly limited, and for example, (meth) acrylic acid esters such as methyl (meth) acrylate, ethyl (meth) acrylate, isopropyl (meth) acrylate, and n-butyl (meth) acrylate, 3-.
  • (Meta) acrylic acid ester derivatives such as ethoxypropyl acrylate, 3-ethoxybutyl acrylate and hydroxyethyl methacrylate, acrylic acid aryl esters such as phenyl acrylate and benzyl acrylate and acrylic acid aralkyl esters, diethylene glycol, triethylene glycol and glycerin.
  • acrylic acid aryl esters such as phenyl acrylate and benzyl acrylate and acrylic acid aralkyl esters, diethylene glycol, triethylene glycol and glycerin.
  • monoacrylic acid esters of polyhydric alcohols such as.
  • starch examples include modified starches such as corn starch, potato starch, tapioca starch, oxidized starch, phosphate starch, etherified starch, dialdehyde starch, and esterified starch, and one or more of these may be used. It can be used in combination.
  • waxes such as natural wax and synthetic wax can be used. Natural waxes include plant-based natural waxes such as candelilla wax, carnauba wax, rice wax, wood wax, and jojoba solid wax, animal-based natural waxes such as honey wax, lanolin, and whale wax, and minerals such as montan wax, ozokelite, and ceresin.
  • Examples thereof include petroleum-based natural waxes such as natural waxes, paraffin waxes, microcrystallin waxes, and petrolatum waxes.
  • Examples of synthetic waxes include synthetic hydrocarbons such as Fisher Tropsch wax and polyethylene wax, modified waxes such as Montan wax derivatives, paraffin wax derivatives and microcrystallin wax derivatives, hydrogenated waxes such as hardened castor oil and hardened castor oil derivatives, 12 -Ester wax, stearic acid amide, anhydrous phthalic acid imide, etc. synthesized from higher fatty acids obtained from hydroxystearic acid, vegetable fats and oils and animal fats and oils and higher alcohols can be mentioned, and one or more of these may be used in combination. Can be used.
  • the blending amount of the oil resistance improving auxiliary agent is appropriately selected depending on the use and the like of the aqueous dispersion, and can be, for example, 0.1 to 15.0% by mass with respect to the dispersoid.
  • a water resistance improver can be added to the dispersoid as an auxiliary agent.
  • the water resistance improving agent include waxes such as natural wax and synthetic wax.
  • Natural waxes include plant-based natural waxes such as candelilla wax, carnauba wax, rice wax, wood wax, and jojoba solid wax, animal-based natural waxes such as honey wax, lanolin, and whale wax, and minerals such as montan wax, ozokelite, and ceresin.
  • Examples thereof include petroleum-based natural waxes such as natural waxes, paraffin waxes, microcrystallin waxes, and petrolatum waxes.
  • synthetic waxes include synthetic hydrocarbons such as Fisher Tropsch wax and polyethylene wax, modified waxes such as Montan wax derivatives, paraffin wax derivatives and microcrystallin wax derivatives, hydrogenated waxes such as hardened castor oil and hardened castor oil derivatives, 12 -Ester wax, stearic acid amide, anhydrous phthalic acid imide, etc. synthesized from higher fatty acids obtained from hydroxystearic acid, vegetable fats and oils and animal fats and oils and higher alcohols can be mentioned, and one or more of these may be used in combination. Can be used.
  • the blending amount of the water resistance improving auxiliary agent is appropriately selected depending on the use and the like of the aqueous dispersion, and can be, for example, 0.1 to 15.0% by mass with respect to the dispersoid.
  • An anti-blocking property improver can be added to the dispersoid as an auxiliary agent.
  • the anti-blocking property improving agent include the following. Examples include organic substances such as waxes, silicone resins and silicone oils, diatomaceous earth, synthetic silica, talc, ceramic spheres, mica, clay such as kaolin, and inorganic substances such as calcium carbonate.
  • waxes are preferable as anti-blocking agents, and plant-based natural waxes such as candelilla wax, carnauba wax, rice wax, wood wax, and jojoba solid wax, animal-based natural waxes such as honey wax, lanolin, and whale wax, and montan wax.
  • ком ⁇ онентs Obtained from mineral-based natural waxes such as ozokelite and selecin, modified waxes such as paraffin wax derivatives and microcrystallin wax derivatives, hydride waxes such as hardened bean oil and hardened bean oil derivatives, 12-hydroxystearic acid, vegetable fats and oils and animal fats and oils. Examples thereof include ester waxes synthesized from higher fatty acids and higher alcohols, stearate amides, and phthalate anhydride imides.
  • the blending amount of the anti-blocking property improving agent is appropriately selected depending on the intended use of the aqueous dispersion, and may be, for example, 0.1 to 15.0% by mass with respect to the dispersoid.
  • the aqueous dispersion medium is a dispersion medium mainly composed of water, and a pH adjuster is added to the dispersion medium.
  • the pH adjusting agent is not particularly limited as long as it is basic, and examples thereof include alkali metal hydroxides, alkaline earth metal hydroxides, other inorganic salts, and amines. Specifically, sodium hydroxide, potassium hydroxide, calcium hydroxide, calcium acetate, sodium lactate, calcium lactate, calcium oxalate, magnesium hydroxide, magnesium acetate, magnesium lactate, magnesium oxalate, basic aluminum lactate, base.
  • Examples thereof include aluminum chloride, ammonia, methylamine, dimethylamine, trimethylamine, triethylamine, monoethanolamine, diethanolamine and triethanolamine.
  • the pH adjuster one kind of basic compound may be used alone, or two or more kinds of basic compounds may be used in combination.
  • sodium hydroxide and potassium hydroxide are preferable, and sodium hydroxide is more preferable. It is preferable to once disperse the dispersoid (biodegradable resin + carbodiimide compound) in water as a dispersion medium together with the dispersant, and then add the pH adjuster together with water for adjusting the concentration, but it is preferable to add the pH adjuster together with the dispersant. Can also be added.
  • pH adjuster By using a pH adjuster, it is possible to neutralize the residual acid monomer in the biodegradable resin and the acidic decomposition product generated when the biodegradable resin is hydrolyzed. Since acidic substances act as catalysts for hydrolysis, pH regulators are useful for suppressing the hydrolysis of biodegradable resins.
  • the mixing ratio of the pH adjuster is preferably adjusted to 4.0 to 8.0 as a whole for the pH of the aqueous dispersion. At this blending ratio, improvement in stability over time was observed. A more preferable range is 5.0 to 7.0. When the pH of the aqueous dispersion is lower than 4.0, the neutralization of the acid associated with hydrolysis becomes insufficient. On the other hand, when the pH becomes alkaline exceeding 8.0, the base may promote the hydrolysis of the biodegradable resin, which is not preferable.
  • a dispersant can be dissolved in the dispersion medium. This dispersant prevents the dispersoid from aggregating in water.
  • examples of such dispersants include anionic surfactants, cationic surfactants, amphoteric surfactants, nonionic surfactants, polymer surfactants, cationic polymer compounds, and anionic polymer compounds. It can be used as a seed or a mixture of two or more kinds.
  • polyvinyl alcohol or one or a mixture of block copolymers of ethylene oxide and propylene oxide is used as a suitable dispersant. be able to. This is because food safety is well known.
  • the degree of saponification is preferably 90% or less.
  • the blending amount of the dispersant is appropriately selected depending on the method of use of the aqueous dispersion, the storage conditions, the use of the biodegradable resin film formed on the substrate, and the like. It can be 0 to 10.0% by mass. If it is less than 2.0% by mass, the dispersoids tend to aggregate, and if it exceeds 10.0% by mass, the heat-sealing property deteriorates, which is not preferable.
  • the following thickener can be added to the dispersion medium.
  • the thickener include cellulose derivatives such as methyl cellulose, carboxymethyl cellulose, hydroxyethyl cellulose, hydroxyethyl methyl cellulose, hydroxypropyl methyl cellulose and hydroxypropyl cellulose, starch derivatives such as cationized starch and etherified starch, Arabic gum, guar gum and xanthan gum. Examples thereof include animal polymers such as plant gum, casein, chitosan and chitin, and polyalkoxide-based polymers such as polyethylene glycol.
  • the blending amount of the thickener is appropriately selected depending on the intended use of the aqueous dispersion, and may be, for example, 0.1 to 1.0% by mass with respect to the biodegradable resin aqueous dispersion. can.
  • the mixing ratio of the dispersoid in the entire aqueous dispersion is 20 to 80% by mass in terms of mass ratio.
  • the viscosity is adjusted to be suitable for an industrial product by setting the blending ratio of the dispersoid in the entire aqueous dispersion within the above range. It becomes an aqueous dispersion.
  • the blending ratio is 20% by mass or less, the sedimentation stability of the dispersoid deteriorates, and when the mass ratio exceeds 80%, the viscosity increases, and the viscosity becomes unsuitable for industrial use, which is not preferable.
  • a more preferable blending ratio is 40 to 60% by mass in terms of mass ratio.
  • ⁇ Preparation of dispersion> After melting and stirring the biodegradable resin and the carbodiimide compound with a mixer, the composition was taken out and pulverized by a pulverizer.
  • ⁇ Preparation of aqueous dispersion medium> The dispersant was dissolved in water using a homodisper.
  • ⁇ Dispersion method of dispersoid for aqueous dispersion medium> As a method for obtaining fine particles of a mixture, a phase inversion emulsification method is preferable, and a large shearing force is required when obtaining fine particles by phase inversion emulsification. Examples include the use of various extruders, kneader luders, 3-axis planetary dispersers, and the like.
  • aqueous dispersion thus obtained is coated on the surface of a paper substrate as follows to form a biodegradable resin film there.
  • the aqueous dispersion is coated on a paper substrate (Nippon Paper Industries, Ltd .: NPI high quality) on one side using a bar coater so that the coating amount is 10 g / m 2 (dry mass), and dried at 130 ° C. for 180 seconds. By doing so, a heat seal layer was produced on the substrate sheet.
  • the laminate of the paper substrate and the biodegradable resin film thus obtained is pressed from the substrate side while facing each other, and the film is melted by applying heat to heat seal. can do.
  • the temperature and time required for heat sealing are appropriately selected according to the melting point of the biodegradable resin.
  • heating is performed at 70 to 300 ° C. and 0.1 to 1.0 MPa for 1 to 5 seconds.
  • a film of the above-mentioned aqueous dispersion is formed on the surface of functional particles such as pesticides and fertilizers, and then dried to remove water from the film to coat the surface of the functional particles with a biodegradable resin film. Can be done.
  • the method for forming the film of the aqueous dispersion on the surface of the functional particles is not particularly limited, but a well-known method such as spray coating can be adopted.
  • any method for removing water from the coating film of the aqueous dispersion any method can be adopted under conditions that do not affect the function of the functional particles.
  • the pulverized powder was mixed with an aqueous solution prepared by dissolving 3.0 parts by mass of polyvinyl alcohol (86% saponification degree, number average molecular weight 200,000 g / mol) in 42.0 parts by mass of water.
  • the former is made into a solid dispersoid by a general phase inversion emulsification method, and after being dispersed in the latter as an aqueous dispersion medium, 6.5 parts by mass of an aqueous sodium hydroxide solution (concentration: 1 wt%) and water for adjusting the solid content concentration are used. Add 0.5 part by weight to obtain the biodegradable resin aqueous dispersion of Example 1.
  • polyvinyl alcohol 86% saponification degree, number average molecular weight 200,000 g / mol
  • polyvinyl alcohol 86% saponification degree, number average molecular weight 200,000 g / mol
  • the former is made into a solid dispersoid by a general phase inversion emulsification method, and after being dispersed in the latter as an aqueous dispersion medium, 2.2 parts by mass of an aqueous sodium hydroxide solution (concentration: 1 wt%) and water for adjusting the solid content concentration are used. Add 4.8 parts by weight to obtain the biodegradable resin aqueous dispersion of Example 3.
  • Example 4 The biodegradable resin aqueous dispersion of Example 4 is obtained in the same manner as in Example 2 except that the sodium hydroxide aqueous solution (concentration: 1 wt%) is changed to the potassium hydroxide aqueous solution (concentration: 1 wt%).
  • Example 5 Same as Example 2 except that the polyvalent carbodiimide compound A (manufactured by Nisshinbo Chemical Co., Ltd .: HMV-15CA) was changed to the polyvalent carbodiimide compound B (manufactured by Nisshinbo Chemical Co., Ltd .: LA-1). To obtain the biodegradable resin aqueous dispersion of Example 5.
  • Example 6 Example 2 and Example 2 except that the polyvalent carbodiimide compound A (manufactured by Nisshinbo Chemical Co., Ltd .: HMV-15CA) was changed to the polyvalent carbodiimide compound C (manufactured by Nisshinbo Chemical Co., Ltd .: HMV-5CA-LC). Similarly, the biodegradable resin aqueous dispersion of Example 6 is obtained.
  • polyvalent carbodiimide compound A manufactured by Nisshinbo Chemical Co., Ltd .: HMV-15CA
  • mixed group dibasic acid ester manufactured by Daihachi Chemical Industry Co., Ltd .: DAIFATTY-101
  • Example 8 The same as in Example 7 except that the mixed group dibasic acid ester (manufactured by Daihachi Chemical Industries, Ltd .: DAIFATTY-101) was changed to polyethylene glycol (manufactured by Sanyo Chemical Industries, Ltd .: PEG1000). The biodegradable resin aqueous dispersion of Example 8 is obtained.
  • Example 9 Except for the change from 3.0 parts by mass of polyvinyl alcohol (86% saponification, number average molecular weight 200,000 g / mol) to 1.5 parts by mass and water from 42.0 parts by mass to 43.5 parts by mass. , The biodegradable resin water dispersion of Example 9 is obtained in the same manner as in Example 2.
  • Example 10 Except for the change from 3.0 parts by mass of polyvinyl alcohol (86% saponification, number average molecular weight 200,000 g / mol) to 4.0 parts by mass and water from 42.0 parts by mass to 41.0 parts by mass. , The biodegradable resin aqueous dispersion of Example 10 is obtained in the same manner as in Example 2.
  • Example 11 Examples except that 4.0 parts by mass of an aqueous sodium hydroxide solution (concentration: 1 wt%) was changed to 2.1 parts by mass, and 3.0 parts by mass of water for adjusting the solid content concentration was changed to 4.9 parts by mass.
  • the biodegradable resin aqueous dispersion of Example 11 is obtained in the same manner as in 2.
  • Example 12 Examples except that 4.0 parts by mass of an aqueous sodium hydroxide solution (concentration: 1 wt%) was changed to 4.3 parts by mass, and 3.0 parts by mass of water for adjusting the solid content concentration was changed to 2.7 parts by mass.
  • the biodegradable resin aqueous dispersion of Example 12 is obtained in the same manner as in 2.
  • Example 13 A biodegradable resin aqueous dispersion of Example 13 is obtained in the same manner as in Example 2 except that polyvinyl alcohol (consolidation degree 86%, number average molecular weight 200,000 g / mol) is changed to poloxamer 188.
  • the former is made into a solid dispersoid by a general phase inversion emulsification method, dispersed in the latter as an aqueous dispersion medium, and then 7.0 parts by mass of water for adjusting the solid content concentration is added to obtain biodegradability of Test Example 1. Obtain a resin water dispersion.
  • Test Example 2 Same as Test Example 1 except that the polyvalent carbodiimide compound A (manufactured by Nisshinbo Chemical Co., Ltd .: HMV-15CA) was changed to the polyvalent carbodiimide compound B (manufactured by Nisshinbo Chemical Co., Ltd .: LA-1). To obtain the biodegradable resin aqueous dispersion of Test Example 2.
  • Test Example 3 Test Example 1 except that the polyvalent carbodiimide compound A (manufactured by Nisshinbo Chemical Co., Ltd .: HMV-15CA) was changed to the polyvalent carbodiimide compound C (manufactured by Nisshinbo Chemical Co., Ltd .: HMV-5CA-LC). Similarly, the biodegradable resin aqueous dispersion of Test Example 3 is obtained.
  • each name indicates the following components.
  • Multivalent carbodiimide compound A HMV-15CA (manufactured by Nisshinbo Chemical Co., Ltd., carbodiimide equivalent: 262Keq (standard width: 260-264Keq))
  • Multivalent carbodiimide compound C HMV-5CA-LC (manufactured by Nisshinbo Chemical Co., Ltd., carbodiimide equivalent: 311Keq (standard
  • Table 1 summarizes the formulations of each of the Examples, Test Examples and Comparative Examples thus obtained and the pH of the biodegradable resin aqueous dispersion.
  • Tables 2 and 3 summarize the time-dependent stability and heat-sealing properties of each Example, Test Example, and Comparative Example.
  • ⁇ pH measurement of biodegradable resin water dispersion The pH of the biodegradable resin aqueous dispersion was measured with a pH meter (pH METER F-51) manufactured by HORIBA, Ltd. In addition, 9615S-JF15 was used as a pH electrode.
  • Heat sealability evaluation> The heat-sealing layers of the paper substrate were heat-sealed with a heat sealer at 110 ° C. to prepare a heat-sealing property evaluation sample.
  • the press pressure during heat sealing was 0.2 MPa, and the press time was 1 second.
  • the heat sealability was evaluated by a tensile tester, and the heat sealability was evaluated based on the following criteria. The evaluation results are shown in Table 3.
  • the tensile speed was 300 mm / min and the peeling condition was 180 degree peeling.
  • There is enough adhesion to break the woodfree paper.
  • High-quality paper does not break due to poor adhesion.
  • the amount of the carbodiimide compound added to the polylactic acid is preferably 0.6% by mass or more and 5.5% by mass or less. If the ratio is less than 0.6% by mass, the effect of improving the stability over time is poor, and if it exceeds 5.5% by mass, the effect of improving the stability over time can be sufficiently obtained, but the resin viscosity increases during manufacturing. , It becomes difficult to make the biodegradable resin (dispersible) into fine particles at the time of manufacture.
  • Example 1 From Examples 1 and Test Examples 1, 2 and 3, the increase in the acid value due to the hydrolysis of Example 1 is the same as that of Test Examples 1, 2 and 3, but the pH is adjusted to increase the acid value.
  • the amount of the carbodiimide compound used can be reduced. By reducing the amount of the polyvalent carbodiimide compound used, in addition to reducing the cost, it becomes easy to make the biodegradable resin (dispersible) into fine particles during production.
  • a pH value higher than 4.0 confirms preferable temporal stability (see Example 11 and Test Example 1).
  • the base in the dispersion medium acts in the direction of decomposing polylactic acid, which is not preferable. From Examples 9 and 10, it can be seen that the mixing ratio of polyvinyl alcohol as a dispersant to water is preferably 2.0 to 10.0% by mass ratio.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Biological Depolymerization Polymers (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

There is a demand for further improvement of stability over time and adhesiveness (heat sealing properties) in water dispersions of biodegradable resins. Proposed is an aqueous dispersion obtained by dispersing a biodegradable-resin-containing dispersoid in an aqueous dispersion medium, wherein the dispersoid includes a carbodiimide compound, and the dispersion medium includes a pH adjuster. The proportion of carbodiimide compound blended in the dispersoid is preferably 0.6-5.5% in terms of mass ratio to the biodegradable resin, and the pH of the dispersion medium is preferably adjusted to 4.0-8.0 by the pH adjuster.

Description

水分散体。Water dispersion.
 本発明は水分散体、これを含む塗液、この塗液を用いたフィルムの製造方法、及び水分散体を利用した機能性粒子の製造方法に関する。 The present invention relates to an aqueous dispersion, a coating liquid containing the same, a method for producing a film using this coating liquid, and a method for producing functional particles using the aqueous dispersion.
 生分解性樹脂を含んだ粒子を分散質として、これを水系の分散媒に分散させた水分散体(以下、単に「水分散体」ということがある)が知られている。
 水に分散された生分解性樹脂はそれ自体が加水分解されるので、かかる水分散体を工業的に利用するためには、運搬や保管に要する時間を考慮して、生分解性樹脂の加水分解に伴う分子量低下(酸価数の上昇)を抑制する必要がある。
 生分解性樹脂の分子量低下抑制剤としてカルボジイミド化合物が広く知られている(特許文献1)。例えば、生分解性樹脂がポリ乳酸の場合、カルボジイミド化合物は、加水分解後のポリ乳酸の末端(カルボン酸)と反応し架橋剤として働くことで、ポリ乳酸の分子量低下(酸価数の上昇)を抑制することができる。更に、ポリ乳酸が加水分解した際に生じる分解物(カルボン酸)はポリ乳酸に対する加水分解の触媒として機能するため、カルボジイミド化合物がその分解物(カルボン酸)と反応することで、加水分解の促進を抑制することができる。上記2点より、カルボジイミド化合物は、生分解性樹脂(ポリ乳酸などのポリエステル樹脂)の加水分解に伴う分子量低下(酸価数の上昇)を抑制することができる。また、特許文献2には、かかるカルボジイミド化合物を水分散体に適用した例が記載されている。
 特許文献3にも、水分散体の加水分解に伴う分子量低下(酸価数の上昇)の抑制を目的としてカルボジイミド化合物を用いる例が記載されている。また、この特許文献3には、水分散体の経時安定性や得られる被膜の接着性を高める目的で水系の分散媒のpH調整が行われている。
An aqueous dispersion (hereinafter, may be simply referred to as "aqueous dispersion") in which particles containing a biodegradable resin are used as a dispersoid and dispersed in an aqueous dispersion medium is known.
Since the biodegradable resin dispersed in water is hydrolyzed by itself, in order to industrially utilize such an aqueous dispersion, the biodegradable resin is hydrolyzed in consideration of the time required for transportation and storage. It is necessary to suppress the decrease in molecular weight (increase in acid value) due to decomposition.
Carbodiimide compounds are widely known as agents for suppressing the decrease in molecular weight of biodegradable resins (Patent Document 1). For example, when the biodegradable resin is polylactic acid, the carbodiimide compound reacts with the terminal (carboxylic acid) of the polylactic acid after hydrolysis and acts as a cross-linking agent to reduce the molecular weight of the polylactic acid (increase the acid value). Can be suppressed. Furthermore, since the decomposition product (carboxylic acid) generated when polylactic acid is hydrolyzed functions as a catalyst for hydrolysis of polylactic acid, the carbodiimide compound reacts with the decomposition product (carboxylic acid) to promote hydrolysis. Can be suppressed. From the above two points, the carbodiimide compound can suppress the decrease in molecular weight (increase in acid value) due to the hydrolysis of the biodegradable resin (polyester resin such as polylactic acid). Further, Patent Document 2 describes an example in which such a carbodiimide compound is applied to an aqueous dispersion.
Patent Document 3 also describes an example in which a carbodiimide compound is used for the purpose of suppressing a decrease in molecular weight (increase in acid value) associated with hydrolysis of an aqueous dispersion. Further, in Patent Document 3, the pH of the aqueous dispersion medium is adjusted for the purpose of improving the stability over time of the aqueous dispersion and the adhesiveness of the obtained film.
特許第3776578号公報Japanese Patent No. 3776578 特許第4077670号公報Japanese Patent No. 40767670 特開2004-331847号公報Japanese Unexamined Patent Publication No. 2004-331847
 かかる生分解性樹脂の水分散体には、経時安定性の更なる向上が求められている。
 ところで、水分散体の分散質を構成する生分解性樹脂にカルボジイミド化合物を添加し、かつ水系の分散質へpH調整剤を添加した例は、本発明者らの知る限りにおいて、存在しない。
 つまり、生分解性樹脂からなる分散質へカルボジイミド化合物を添加し、かつ水系分散媒にpH調整剤を添加してなる水分散体がいかなる特性を備えるものか、本願発明前には不明であった。
 換言すれば、かかる水分散体によれば、カルボジイミド化合物の奏する作用とpH調整剤が奏する作用が、ともに引き出されるのか、更には相乗的な効果が得られるのか、又はこれら効果が相殺されるのか、予断できなかった。
The aqueous dispersion of the biodegradable resin is required to have further improvement in stability over time.
By the way, as far as the present inventors know, there is no example in which a carbodiimide compound is added to a biodegradable resin constituting the dispersoid of an aqueous dispersion and a pH adjuster is added to the dispersoid of an aqueous system.
That is, it was unclear before the present invention what characteristics the aqueous dispersion obtained by adding the carbodiimide compound to the dispersoid made of biodegradable resin and adding the pH adjuster to the aqueous dispersion medium had. ..
In other words, according to the aqueous dispersion, whether the action of the carbodiimide compound and the action of the pH regulator are both elicited, a synergistic effect is obtained, or these effects are offset. I couldn't predict.
 本発明者らは、分散質を構成する生分解性樹脂にカルボジイミド化合物を添加し、かつ水系の分散媒へpH調整剤を添加してなる水分散体を調製し、その特性を調べた。
 その結果、当該水分散体によれば経時安定性が向上することを突き止めた。
 他方、本発明者らは特定のカルボジイミド化合物を選択することにより、pH調整剤が無くとも、水分散体の経時安定性を6ヶ月まで維持できることを見出した。より具体的には、カルボジイミド化合物として多価カルボジイミド化合物(1分子中に複数のカルボジイミド基を含んだ化合物)を選択し、分散質においてカルボジイミド化合物を生分解性樹脂に対して0.6~5.5質量%配合する。
The present inventors prepared an aqueous dispersion obtained by adding a carbodiimide compound to a biodegradable resin constituting the dispersoid and adding a pH adjuster to an aqueous dispersion medium, and investigated its characteristics.
As a result, it was found that the water dispersion improves the stability over time.
On the other hand, the present inventors have found that by selecting a specific carbodiimide compound, the stability of the aqueous dispersion over time can be maintained for up to 6 months even without a pH adjuster. More specifically, a polyvalent carbodiimide compound (a compound containing a plurality of carbodiimide groups in one molecule) is selected as the carbodiimide compound, and the carbodiimide compound is used as a dispersoid from 0.6 to 5. Add 5% by mass.
 かかる水分散体の水系分散媒へpH調整剤を添加して、分散媒のpHを4.0~8.0にすると、経時安定性が3/2倍となり、8カ月経過後まで生分解性樹脂の加水分解に伴う酸価数の上昇を抑制できた。
 図1に、各種水分散体とその経時安定性を示す。生分解性樹脂(ポリ乳酸)が加水分解されると酸(カルボン酸)が生成するので、加水分解が進むにつれて水分散体の酸価数が大きくなる。図1では、水分散体を作製した日からの経過時間を横軸に、水分散体の酸価数の変化を縦軸に示している。
 図1の結果から、カルボジイミド化合物を分散質に添加したが、pH調整剤を水系分散媒に添加しない試験例1は、カルボジイミド化合物を分散質に添加せずかつpH調整剤を水系分散媒に添加しない(比較例1)に比べ、当初より加水分解に伴う酸価数の上昇が抑制され、かつその抑制効果は6ヶ月を経過しても維持されていることがわかる。
 カルボジイミド化合物を分散質に添加せず、他方pH調整剤を水系分散媒に添加した比較例2は、既述の比較例1に比べ、当初は加水分解に伴う酸価数の上昇が抑制されているものの、短い時間で酸価数上昇の抑制効果が消失し、8カ月を経過した時点で比較例1と同等の酸価数となってしまう。
When a pH adjuster is added to the aqueous dispersion medium of the aqueous dispersion to adjust the pH of the dispersion medium to 4.0 to 8.0, the stability over time becomes 3/2 times, and the biodegradability is maintained until after 8 months. The increase in acid value due to the hydrolysis of the resin could be suppressed.
FIG. 1 shows various aqueous dispersions and their stability over time. When the biodegradable resin (polylactic acid) is hydrolyzed, an acid (carboxylic acid) is produced, so that the acid value of the aqueous dispersion increases as the hydrolysis progresses. In FIG. 1, the elapsed time from the day when the aqueous dispersion was prepared is shown on the horizontal axis, and the change in the acid value of the aqueous dispersion is shown on the vertical axis.
From the results shown in FIG. 1, in Test Example 1 in which the carbodiimide compound was added to the dispersoid but the pH adjuster was not added to the aqueous dispersion medium, the carbodiimide compound was not added to the dispersoid and the pH adjuster was added to the aqueous dispersion medium. It can be seen that the increase in the acid value due to hydrolysis was suppressed from the beginning, and the suppressing effect was maintained even after 6 months, as compared with the case of no (Comparative Example 1).
In Comparative Example 2 in which the carbodiimide compound was not added to the dispersant and the pH adjuster was added to the aqueous dispersion medium, the increase in acid value due to hydrolysis was initially suppressed as compared with Comparative Example 1 described above. However, the effect of suppressing the increase in the acid value disappears in a short time, and after 8 months, the acid value becomes the same as that of Comparative Example 1.
 このように、分散質として生分解性樹脂にカルボジイミド化合物を配合したものを用い、かつpH調整剤を水系分散媒に添加すると、6ヶ月を経過しても加水分解に伴う酸価数の上昇が促進されることはなく、酸価数上昇の抑制が8カ月を経過しても維持されていることがわかる(実施例2)。
 更には、実施例2では、各比較例に比べて、当初より酸価数が抑制されていることもわかる。
As described above, when a biodegradable resin containing a carbodiimide compound is used as the dispersoid and a pH adjuster is added to the aqueous dispersion medium, the acid value number increases due to hydrolysis even after 6 months have passed. It is not promoted, and it can be seen that the suppression of the increase in acid value is maintained even after 8 months (Example 2).
Furthermore, it can be seen that in Example 2, the acid value number was suppressed from the beginning as compared with each Comparative Example.
 以上のことを敷衍すれば、水分散体の分散質を構成する生分解性樹脂にカルボジイミド化合物を添加し、かつ水系の分散媒へpH調整剤を添加することで、カルボジイミド化合物の作用とpH調整剤の作用は、相殺されることなく、互いに引き出されることがわかる。換言すれば、専らカルボジイミド化合物による経時安定性の作用がpH調整剤により補強されると考えられる。
 そこで、この発明の第1の局面を次のように規定した。即ち、
 生分解性樹脂を含む分散質を水系の分散媒へ分散させてなる水系分散体であって、
 前記分散質にはカルボジイミド化合物が含まれ、かつ、
 前記分散媒にはpH調整剤が含まれる、
 水分散体。
Based on the above, the action and pH adjustment of the carbodiimide compound can be achieved by adding the carbodiimide compound to the biodegradable resin constituting the dispersoid of the aqueous dispersion and adding the pH adjuster to the aqueous dispersion medium. It can be seen that the actions of the agents are elicited from each other without being offset. In other words, it is considered that the effect of the carbodiimide compound on the stability over time is reinforced by the pH adjuster.
Therefore, the first aspect of the present invention is defined as follows. That is,
An aqueous dispersion obtained by dispersing a dispersoid containing a biodegradable resin in an aqueous dispersion medium.
The dispersoid contains a carbodiimide compound and
The dispersion medium contains a pH adjuster.
Water dispersion.
図1は各種水分散体の経時安定性を示すグラフである。FIG. 1 is a graph showing the temporal stability of various aqueous dispersions.
発明の実施の形態Embodiment of the invention
 以下、この発明の実施の形態について説明する。
 この発明の水分散体は分散質を水系の分散媒に分散させたものである。
<分散質>
 ここに、分散質には生分解性樹脂、カルボジイミド化合物及びその他の助剤が含まれる。
 生分解性樹脂としては、次のものが挙げられる。
 ポリ乳酸、乳酸と他のヒドロキシカルボン酸との共重合体等のポリ乳酸類、ポリカプロラクトン、カプロラクトンとヒドロキシカルボン酸との共重合体等のポリカプロラクトン類、ポリブチレンサクシネート、ポリブチレンサクシネートアジペート、熱可塑性デンプン、ポリマレート、ポリブチレンアジペートテレフタレート、ポリエチレンテレフタレートサクシネート、ポリブチレンテレフタレートサクシネート、ポリヒドロキシアルカン酸類、ポリヒドロキシブチレート、ポリヒドロキシバレレート、ポリヒドロキシヘキサノエート、ポリエチレンフラノエート、ポリグリコール酸等が挙げられ、これらの1種又は2種以上を併用して用いることができる。
Hereinafter, embodiments of the present invention will be described.
The aqueous dispersion of the present invention is obtained by dispersing the dispersoid in an aqueous dispersion medium.
<Dispersion>
Here, the dispersoids include biodegradable resins, carbodiimide compounds and other auxiliaries.
Examples of the biodegradable resin include the following.
Polylactic acid, polylactic acid such as a copolymer of lactic acid and another hydroxycarboxylic acid, polycaprolactone, polycaprolactone such as a polymer of caprolactone and hydroxycarboxylic acid, polybutylene succinate, polybutylene succinate adipate , Thermoplastic starch, polymerate, polybutylene adipate terephthalate, polyethylene terephthalate succinate, polybutylene terephthalate succinate, polyhydroxyalkanoic acids, polyhydroxybutyrate, polyhydroxyvalerate, polyhydroxyhexanoate, polyethylene furanoate, polyglycol Acids and the like can be mentioned, and one or more of these can be used in combination.
 水系分散体を用いて基体上に形成した生分解性樹脂フィルムが食品包装用に用いられるとき、好適な生分解性樹脂として、ポリ乳酸が挙げられる。
 ポリ乳酸を選択したのは、工業的に実用化が進んでおり、その他生分解性樹脂と比較し、安価で食品包装用として好ましいためである。
 紙製基体に積層された生分解性樹脂フィルムをヒートシール層として適用する場合、L型とD型のポリ乳酸の配合比は6:94~94:6とすることが好ましい。
 この範囲において優れたヒートシール性が得られる。他方、この範囲を外れると結晶化度と融点が上昇するため、低温でヒートシール性を発揮することが困難となるおそれがある。
 また、基体上に形成した生分解性樹脂フィルムは、優れた耐水性及び耐油性を有しており、紙製基体に積層することで、耐水紙及び耐油紙として活用することができる。
When a biodegradable resin film formed on a substrate using an aqueous dispersion is used for food packaging, polylactic acid is mentioned as a suitable biodegradable resin.
Polylactic acid was selected because it has been industrially put into practical use, is cheaper than other biodegradable resins, and is preferable for food packaging.
When a biodegradable resin film laminated on a paper substrate is applied as a heat seal layer, the blending ratio of L-type and D-type polylactic acid is preferably 6:94 to 94: 6.
Excellent heat sealability can be obtained in this range. On the other hand, if it is out of this range, the crystallinity and the melting point increase, so that it may be difficult to exhibit the heat sealability at a low temperature.
Further, the biodegradable resin film formed on the substrate has excellent water resistance and oil resistance, and can be utilized as water resistant paper and oil resistant paper by laminating it on a paper substrate.
 カルボジイミド化合物としては、多価カルボジイミド化合物(1分子中に複数のカルボジイミド基を含んだ化合物)を用いることが望ましい。更に好ましくは、カルボジイミド変性イソシアネート化合物、カルボジイミド変性イソシアネート化合物の誘導体が挙げられる。
 カルボジイミド変性イソシアネート化合物とは、イソシアネート化合物の一部をカルボジイミド化させたものであり、この発明で用いるカルボジイミド変性イソシアネート化合物としては、次に挙げるイソシアネートをカルボジイミド化したものの重合物を用いることができる。
フェニレンジイソシアネート、4,4’-ジフェニルメタンジイソシアネート、ジメチルビフェニレンジイソシアネート、ジメトキシビフェニレンジイソシアネート、テトラヒドロナフタレンジイソシアネート、トリレンジイソシアネート、テトラメチレンジイソシアネート、ヘキサメチレンジイソシアネート、ドデカメチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネート、シクロヘキシレンジイソシアネート、ポリメチレンポリフェニルポリイソシアネート、キシリレンジイソシアネート、水素化キシリレンジイソシアネート、リジンジイソシアネート、イソホロンジイソシアネート、ジシクロヘキシルメタンジイソシアネート、4,4’-ジメチルジシクロヘキシルメタンジイソシアネートなどが挙げられる。
 カルボジイミド変性イソシアネート化合物の誘導体とは、そのイソシアネート基とアミノ基、ヒドロキシル基若しくはカルボン酸基とを反応させたものである。
 アミノ基は例えばシクロヘキシルアミンから提供され、ヒドロキシル基は例えばポリエチレングリコールモノメチルエーテルから提供され、カルボン酸基は例えばシクロヘキサンカルボン酸から提供される。
As the carbodiimide compound, it is desirable to use a multivalent carbodiimide compound (a compound containing a plurality of carbodiimide groups in one molecule). More preferably, a carbodiimide-modified isocyanate compound and a derivative of the carbodiimide-modified isocyanate compound can be mentioned.
The carbodiimide-modified isocyanate compound is a carbodiimided version of a part of the isocyanate compound, and as the carbodiimide-modified isocyanate compound used in the present invention, a polymer of the following isocyanates carbodiimided can be used.
Phenylene diisocyanate, 4,4'-diphenylmethane diisocyanate, dimethyl biphenylenedi isocyanate, dimethoxybiphenylenedi isocyanate, tetrahydronaphthalenedi isocyanate, tolylene diisocyanate, tetramethylene diisocyanate, hexamethylene diisocyanate, dodecamethylene diisocyanate, trimethylhexamethylene diisocyanate, cyclohexylene diisocyanate, polymethylene Examples thereof include polyphenyl polyisocyanate, xylylene diisocyanate, hydride xylylene diisocyanate, lysine diisocyanate, isophorone diisocyanate, dicyclohexylmethane diisocyanate, and 4,4'-dimethyldicyclohexylmethane diisocyanate.
The derivative of the carbodiimide-modified isocyanate compound is a reaction of the isocyanate group with an amino group, a hydroxyl group or a carboxylic acid group.
Amino groups are provided, for example, from cyclohexylamines, hydroxyl groups are provided, for example, from polyethylene glycol monomethyl ethers, and carboxylic acid groups are provided, for example, from cyclohexanecarboxylic acids.
 かかるカルボジイミド変性イソシアネート化合物の中でも、下記式1に示される化合物が好ましい。また、かかるカルボジイミド変性イソシアネート化合物の誘導体の中でも、下記式1中のイソシアネート基とアミノ基、ヒドロキシル基若しくはカルボン酸基とを反応させた誘導体が好ましい。
Figure JPOXMLDOC01-appb-C000001
 [但し、nは2~20の整数]。
Among such carbodiimide-modified isocyanate compounds, the compound represented by the following formula 1 is preferable. Further, among the derivatives of the carbodiimide-modified isocyanate compound, a derivative obtained by reacting the isocyanate group in the following formula 1 with an amino group, a hydroxyl group or a carboxylic acid group is preferable.
Figure JPOXMLDOC01-appb-C000001
[However, n is an integer of 2 to 20].
 カルボジイミド化合物の重合度は、軟化温度及び粘度の観点から2~20、更に好ましくは2~15である。
 nが2未満になると、分散質から当該化合物が水媒体へ溶出し、生分解性樹脂の経時安定性が低下するおそれがある。加えて、当該化合物が水媒体へ溶出する事で水系分散体自身がゲル化するなど貯蔵安定性が問題となるおそれもある。他方、nが20を超えると粘度が高くなりすぎて、分散質内において均等に分散させることが困難になる。
The degree of polymerization of the carbodiimide compound is 2 to 20, more preferably 2 to 15, from the viewpoint of softening temperature and viscosity.
When n is less than 2, the compound may elute from the dispersoid into an aqueous medium, and the stability of the biodegradable resin over time may decrease. In addition, there is a possibility that storage stability may become a problem, such as gelation of the aqueous dispersion itself due to elution of the compound into an aqueous medium. On the other hand, when n exceeds 20, the viscosity becomes too high and it becomes difficult to disperse evenly in the dispersoid.
 カルボジイミド化合物のカルボジイミド当量は、軟化温度及び粘度の観点から200~450Keq、更に好ましくは230~430Keqである。
 カルボジイミド当量が200Keq未満になると、粘度が高くなりすぎて、分散質内において均等に分散させることが困難になる。他方、カルボジイミド当量が450Keqを超えると分散質から当該化合物が水媒体へ溶出し、生分解性樹脂の経時安定性が低下するおそれがある。加えて、当該化合物が水媒体へ溶出する事で水系分散体自身がゲル化するなど貯蔵安定性が問題となるおそれもある。
 ここにカルボジイミド当量とは、カルボジイミド基1mol当たりの化学式量(理論値)をいう。例えば上記の化1において、n=1の場合のカルボジイミド当量は480Keq、n=2の場合のカルボジイミド当量は349Keq、n=3の場合のカルボジイミド当量は305Keqとなる。
The carbodiimide equivalent of the carbodiimide compound is 200 to 450 Keq, more preferably 230 to 430 Keq, from the viewpoint of softening temperature and viscosity.
If the carbodiimide equivalent is less than 200 Keq, the viscosity becomes too high and it becomes difficult to disperse evenly in the dispersant. On the other hand, if the carbodiimide equivalent exceeds 450 Keq, the compound may elute from the dispersoid into an aqueous medium, and the stability of the biodegradable resin over time may decrease. In addition, there is a possibility that storage stability may become a problem, such as gelation of the aqueous dispersion itself due to elution of the compound into an aqueous medium.
Here, the carbodiimide equivalent means a chemical formula amount (theoretical value) per 1 mol of a carbodiimide group. For example, in the above-mentioned Chemical formula 1, the carbodiimide equivalent is 480 Keq when n = 1, the carbodiimide equivalent is 349 Keq when n = 2, and the carbodiimide equivalent is 305 Keq when n = 3.
 分散質における生分解性樹脂とカルボジイミド化合物との配合比は前者に対して、後者を0.6~5.5質量%とする。更に好ましい配合比は0.6~2.6質量%である。
 上記配合比が0.6質量%未満となると、生分解性樹脂に対する経時安定性が十分に発揮されないおそれがある。他方、5.5質量%を超えても使用量に見合う効果は得られず、経済的でない。
The compounding ratio of the biodegradable resin and the carbodiimide compound in the dispersoid is 0.6 to 5.5% by mass with respect to the former. A more preferable compounding ratio is 0.6 to 2.6% by mass.
If the compounding ratio is less than 0.6% by mass, the stability over time with respect to the biodegradable resin may not be sufficiently exhibited. On the other hand, even if it exceeds 5.5% by mass, the effect commensurate with the amount used cannot be obtained, which is not economical.
 分散質には、上記生分解性樹脂とカルボジイミド化合物の他に、助剤として可塑剤を配合することができる。
 可塑剤とは、生分解性樹脂を軟化させる助剤であり、軟化させることで、低温でのヒートシール性を容易にすることができる。
 可塑剤として次のものが挙げられる。
 クエン酸トリエチル、クエン酸トリブチル、アセチルクエン酸トリエチル、アセチルクエン酸トリブチル等のクエン酸誘導体、ジエチレングリコールジアセテート、トリエチレングリコールジアセテート、トリエチレングリコールジプロピオネート等のエーテルエステル誘導体、グリセリントリアセテート、グリセリントリプロピオネート、グリセリントリブチレート等のグリセリン誘導体、エチルフタリルエチルグリコレート、エチルフタリルブチルグリコレート、ブチルフタリルブチルグリコレート等のフタル酸誘導体、アジピン酸2-(2-メトキシエトキシ)エタノール及びベンジルアルコールの反応生成物、アジピン酸と1,4-ブタンジオールとの縮合体等のアジピン酸誘導体、ポリエチレングリコール、アルキルスルホン酸フェニルエステル、ポリカプロラクトン、ポリプロピオラクトン等のポリヒドロキシカルボン酸等が挙げられ、これらの1種又は2種以上を併用して用いることができる。
 可塑剤の配合量はこの水系分散体の用途等に応じて適宜選択されるものであるが、例えば、分散質に対して5.0~15.0質量%とすることができる。
In addition to the biodegradable resin and the carbodiimide compound, a plasticizer can be added to the dispersant as an auxiliary agent.
The plasticizer is an auxiliary agent that softens the biodegradable resin, and by softening the plasticizer, the heat sealability at a low temperature can be facilitated.
Examples of the plasticizer include the following.
Citrate derivatives such as triethyl citrate, tributyl citrate, acetyl citrate triethyl, acetyl citrate tributyl, ether ester derivatives such as diethylene glycol diacetate, triethylene glycol diacetate, triethylene glycol dipropionate, glycerin triacetate, glycerin tripro Glycerin derivatives such as pionate and glycerin tributyrate, phthalic acid derivatives such as ethylphthalyl ethyl glycolate, ethyl phthalyl butyl glycolate and butyl phthalyl butyl glycolate, adipate 2- (2-methoxyethoxy) ethanol and Examples include reaction products of benzyl alcohol, adipic acid derivatives such as condensates of adipic acid and 1,4-butanediol, polyhydroxycarboxylic acids such as polyethylene glycol, alkylsulfonic acid phenyl ester, polycaprolactone, and polypropiolactone. And one or more of these can be used in combination.
The blending amount of the plasticizer is appropriately selected depending on the intended use of the aqueous dispersion, and can be, for example, 5.0 to 15.0% by mass with respect to the dispersoid.
 助剤として耐油性向上剤を分散質に配合することができる。
 耐油性向上助剤として、スチレン-アクリル共重合体、デンプン、ワックスが挙げられる。
 スチレン-アクリル共重合体のスチレン系モノマーとしては、特に限定されず、例えば、スチレン、α-メチルスチレン、β-メチルスチレン、2,4-ジメチルスチレン、α-エチルスチレン、α-ブチルスチレン、4-メトキシスチレン、ビニルトルエン等を挙げることができる。アクリル系モノマーとしては、特に限定されず、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、イソプロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート等の(メタ)アクリル酸エステル類、3-エトキシプロピルアクリレート、3-エトキシブチルアクリレート、ヒドロキシエチルメタアクリレート等の(メタ)アクリル酸エステル誘導体、フェニルアクリレート、ベンジルアクリレート等のアクリル酸アリールエステル類及びアクリル酸アラルキルエステル類、ジエチレングリコール、トリエチレングリコール、グリセリンのような多価アルコールのモノアクリル酸エステル類等を挙げることができる。
デンプンとしては、トウモロコシデンプン、ポテトデンプン、タピオカデンプン、酸化デンプン、リン酸デンプン、エーテル化デンプン、 ジアルデヒド化デンプン、エステル化デンプン等の変性デンプン等が挙げられ、これらの1種又は2種以上を併用して用いることができる。
ワックスとしては、天然ワックス、合成ワックス等のワックス類を使用することができる。天然ワックスとしては、キャンデリラワックス、カルナバワックス、ライスワックス、木ろう、ホホバ固体ろう等の植物系天然ワックス、みつろう、ラノリン、鯨ろう等の動物系天然ワックス、モンタンワックス、オゾケライト、セレシン等の鉱物系天然ワックス、パラフィンワックス、マイクロクリスタリンワックス、ペトロラタムワックス等の石油系天然ワックス等が挙げられる。また合成ワックスとしては、フィッシャー・トロプシュワックス、ポリエチレンワックス等の合成炭化水素類、モンタンワックス誘導体、パラフィンワックス誘導体、マイクロクリスタリンワックス誘導体等の変性ワックス、硬化ひまし油、硬化ひまし油誘導体等の水素化ワックス、12-ヒドロキシステアリン酸、植物油脂及び動物性油脂から得られる高級脂肪酸と高級アルコールから合成されるエステルワックス、ステアリン酸アミド、無水フタル酸イミド等が挙げられ、これらの1種又は2種以上を併用して用いることができる。
 耐油性向上助剤の配合量はこの水系分散体の用途等に応じて適宜選択されるものであるが、例えば分散質に対して0.1~15.0質量%とすることができる。
An oil resistance improver can be added to the dispersoid as an auxiliary agent.
Examples of the oil resistance improving aid include styrene-acrylic copolymers, starches and waxes.
The styrene-based monomer of the styrene-acrylic copolymer is not particularly limited, and for example, styrene, α-methylstyrene, β-methylstyrene, 2,4-dimethylstyrene, α-ethylstyrene, α-butylstyrene, 4 -Methylstyrene, vinyltoluene and the like can be mentioned. The acrylic monomer is not particularly limited, and for example, (meth) acrylic acid esters such as methyl (meth) acrylate, ethyl (meth) acrylate, isopropyl (meth) acrylate, and n-butyl (meth) acrylate, 3-. (Meta) acrylic acid ester derivatives such as ethoxypropyl acrylate, 3-ethoxybutyl acrylate and hydroxyethyl methacrylate, acrylic acid aryl esters such as phenyl acrylate and benzyl acrylate and acrylic acid aralkyl esters, diethylene glycol, triethylene glycol and glycerin. Examples thereof include monoacrylic acid esters of polyhydric alcohols such as.
Examples of the starch include modified starches such as corn starch, potato starch, tapioca starch, oxidized starch, phosphate starch, etherified starch, dialdehyde starch, and esterified starch, and one or more of these may be used. It can be used in combination.
As the wax, waxes such as natural wax and synthetic wax can be used. Natural waxes include plant-based natural waxes such as candelilla wax, carnauba wax, rice wax, wood wax, and jojoba solid wax, animal-based natural waxes such as honey wax, lanolin, and whale wax, and minerals such as montan wax, ozokelite, and ceresin. Examples thereof include petroleum-based natural waxes such as natural waxes, paraffin waxes, microcrystallin waxes, and petrolatum waxes. Examples of synthetic waxes include synthetic hydrocarbons such as Fisher Tropsch wax and polyethylene wax, modified waxes such as Montan wax derivatives, paraffin wax derivatives and microcrystallin wax derivatives, hydrogenated waxes such as hardened castor oil and hardened castor oil derivatives, 12 -Ester wax, stearic acid amide, anhydrous phthalic acid imide, etc. synthesized from higher fatty acids obtained from hydroxystearic acid, vegetable fats and oils and animal fats and oils and higher alcohols can be mentioned, and one or more of these may be used in combination. Can be used.
The blending amount of the oil resistance improving auxiliary agent is appropriately selected depending on the use and the like of the aqueous dispersion, and can be, for example, 0.1 to 15.0% by mass with respect to the dispersoid.
 助剤として耐水性向上剤を分散質に配合することができる。
 耐水性向上剤として、天然ワックス、合成ワックス等のワックス類が挙げられる。
 天然ワックスとしては、キャンデリラワックス、カルナバワックス、ライスワックス、木ろう、ホホバ固体ろう等の植物系天然ワックス、みつろう、ラノリン、鯨ろう等の動物系天然ワックス、モンタンワックス、オゾケライト、セレシン等の鉱物系天然ワックス、パラフィンワックス、マイクロクリスタリンワックス、ペトロラタムワックス等の石油系天然ワックス等が挙げられる。また合成ワックスとしては、フィッシャー・トロプシュワックス、ポリエチレンワックス等の合成炭化水素類、モンタンワックス誘導体、パラフィンワックス誘導体、マイクロクリスタリンワックス誘導体等の変性ワックス、硬化ひまし油、硬化ひまし油誘導体等の水素化ワックス、12-ヒドロキシステアリン酸、植物油脂及び動物性油脂から得られる高級脂肪酸と高級アルコールから合成されるエステルワックス、ステアリン酸アミド、無水フタル酸イミド等が挙げられ、これらの1種又は2種以上を併用して用いることができる。
 耐水性向上助剤の配合量はこの水系分散体の用途等に応じて適宜選択されるものであるが、例えば分散質に対して0.1~15.0質量%とすることができる。
A water resistance improver can be added to the dispersoid as an auxiliary agent.
Examples of the water resistance improving agent include waxes such as natural wax and synthetic wax.
Natural waxes include plant-based natural waxes such as candelilla wax, carnauba wax, rice wax, wood wax, and jojoba solid wax, animal-based natural waxes such as honey wax, lanolin, and whale wax, and minerals such as montan wax, ozokelite, and ceresin. Examples thereof include petroleum-based natural waxes such as natural waxes, paraffin waxes, microcrystallin waxes, and petrolatum waxes. Examples of synthetic waxes include synthetic hydrocarbons such as Fisher Tropsch wax and polyethylene wax, modified waxes such as Montan wax derivatives, paraffin wax derivatives and microcrystallin wax derivatives, hydrogenated waxes such as hardened castor oil and hardened castor oil derivatives, 12 -Ester wax, stearic acid amide, anhydrous phthalic acid imide, etc. synthesized from higher fatty acids obtained from hydroxystearic acid, vegetable fats and oils and animal fats and oils and higher alcohols can be mentioned, and one or more of these may be used in combination. Can be used.
The blending amount of the water resistance improving auxiliary agent is appropriately selected depending on the use and the like of the aqueous dispersion, and can be, for example, 0.1 to 15.0% by mass with respect to the dispersoid.
 助剤としてアンチブロッキング性向上剤を分散質に配合することができる。
 アンチブロッキング性向上剤として、次のものが挙げられる。
 ワックス類、シリコーン樹脂、シリコーンオイル等の有機物、珪藻土、合成シリカ、タルク、セラミック球体 、雲母、カオリンなどの粘土、炭酸カルシウムなどの無機物が挙げられる。特に、アンチブロッキング剤としてワックス類が好ましく、キャンデリラワックス、カルナバワックス、ライスワックス、木ろう、ホホバ固体ろう等の植物系天然ワックス、みつろう、ラノリン、鯨ろう等の動物系天然ワックス、モンタンワックス、オゾケライト、セレシン等の鉱物系天然ワックス、パラフィンワックス誘導体、マイクロクリスタリンワックス誘導体等の変性ワックス、硬化ひまし油、硬化ひまし油誘導体等の水素化ワックス、12-ヒドロキシステアリン酸、植物油脂及び動物性油脂から得られる高級脂肪酸と高級アルコールから合成されるエステルワックス、ステアリン酸アミド、無水フタル酸イミド等が挙げられる。
 アンチブロッキング性向上剤の配合量はこの水系分散体の用途等に応じて適宜選択されるものであるが、例えば分散質に対して0.1~15.0質量%とすることができる。
An anti-blocking property improver can be added to the dispersoid as an auxiliary agent.
Examples of the anti-blocking property improving agent include the following.
Examples include organic substances such as waxes, silicone resins and silicone oils, diatomaceous earth, synthetic silica, talc, ceramic spheres, mica, clay such as kaolin, and inorganic substances such as calcium carbonate. In particular, waxes are preferable as anti-blocking agents, and plant-based natural waxes such as candelilla wax, carnauba wax, rice wax, wood wax, and jojoba solid wax, animal-based natural waxes such as honey wax, lanolin, and whale wax, and montan wax. Obtained from mineral-based natural waxes such as ozokelite and selecin, modified waxes such as paraffin wax derivatives and microcrystallin wax derivatives, hydride waxes such as hardened bean oil and hardened bean oil derivatives, 12-hydroxystearic acid, vegetable fats and oils and animal fats and oils. Examples thereof include ester waxes synthesized from higher fatty acids and higher alcohols, stearate amides, and phthalate anhydride imides.
The blending amount of the anti-blocking property improving agent is appropriately selected depending on the intended use of the aqueous dispersion, and may be, for example, 0.1 to 15.0% by mass with respect to the dispersoid.
<水系分散媒>
 水系分散媒とは、水を主体とした分散媒であり、この分散媒にpH調整剤が配合される。
 かかるpH調整剤は、塩基性のものであれば特に限定されないが、アルカリ金属水酸化物、アルカリ土類金属水酸化物、その他の無機塩、アミン類等が挙げられる。具体的には、水酸化ナトリウム、水酸化カリウム、水酸化カルシウム、酢酸カルシウム、乳酸ナトリウム、乳酸カルシウム、シュウ酸カルシウム、水酸化マグネシウム、酢酸マグネシウム、乳酸マグネシウム、シュウ酸マグネシウム、塩基性乳酸アルミニウム、塩基性塩化アルミニウム、アンモニア,メチルアミン、ジメチルアミン、トリメチルアミン、トリエチルアミン、モノエタノールアミン,ジエタノールアミン,トリエタノールアミンが挙げられる。なお、pH調整剤には、1種類の塩基性化合物を単独で用いてもよいし、2種類以上の塩基性化合物を併用してもよい。
 上記pH調整剤の中でも、水酸化ナトリウム及び水酸化カリウムが好適であり、更には水酸化ナトリウムが好ましい。
 分散媒としての水に分散剤と共に分散質(生分解性樹脂+カルボジイミド化合物)を一旦分散させた後、pH調整剤を濃度調整用の水と共に添加することが好ましいが、分散質と共にpH調整剤を添加することもできる。
<Aqueous dispersion medium>
The aqueous dispersion medium is a dispersion medium mainly composed of water, and a pH adjuster is added to the dispersion medium.
The pH adjusting agent is not particularly limited as long as it is basic, and examples thereof include alkali metal hydroxides, alkaline earth metal hydroxides, other inorganic salts, and amines. Specifically, sodium hydroxide, potassium hydroxide, calcium hydroxide, calcium acetate, sodium lactate, calcium lactate, calcium oxalate, magnesium hydroxide, magnesium acetate, magnesium lactate, magnesium oxalate, basic aluminum lactate, base. Examples thereof include aluminum chloride, ammonia, methylamine, dimethylamine, trimethylamine, triethylamine, monoethanolamine, diethanolamine and triethanolamine. As the pH adjuster, one kind of basic compound may be used alone, or two or more kinds of basic compounds may be used in combination.
Among the above pH adjusters, sodium hydroxide and potassium hydroxide are preferable, and sodium hydroxide is more preferable.
It is preferable to once disperse the dispersoid (biodegradable resin + carbodiimide compound) in water as a dispersion medium together with the dispersant, and then add the pH adjuster together with water for adjusting the concentration, but it is preferable to add the pH adjuster together with the dispersant. Can also be added.
 pH調整剤を使用することで、生分解性樹脂中の残留酸モノマー及び、生分解性樹脂が加水分解する際に発生する酸性分解物を中和することができる。酸性物質は加水分解の触媒として作用するため、pH調整剤は生分解性樹脂の加水分解抑制に有用である。 By using a pH adjuster, it is possible to neutralize the residual acid monomer in the biodegradable resin and the acidic decomposition product generated when the biodegradable resin is hydrolyzed. Since acidic substances act as catalysts for hydrolysis, pH regulators are useful for suppressing the hydrolysis of biodegradable resins.
 pH調整剤の配合割合は水分散体のpHを全体して4.0~8.0に調整することが好ましい。
 この配合割合において、経時安定性の向上がみられた。
 更に好ましい範囲は、5.0~7.0である。
 水分散体のpHが4.0を下回ると、加水分解にともなう酸の中和が不十分になる。他方、pHが8.0を超えるアルカリ性になるとその塩基が生分解性樹脂の加水分解を助長するおそれがあり、それぞれ好ましくない。
The mixing ratio of the pH adjuster is preferably adjusted to 4.0 to 8.0 as a whole for the pH of the aqueous dispersion.
At this blending ratio, improvement in stability over time was observed.
A more preferable range is 5.0 to 7.0.
When the pH of the aqueous dispersion is lower than 4.0, the neutralization of the acid associated with hydrolysis becomes insufficient. On the other hand, when the pH becomes alkaline exceeding 8.0, the base may promote the hydrolysis of the biodegradable resin, which is not preferable.
 分散媒には分散剤を溶解することができる。
 この分散剤は分散質が水中において凝集することを防止するものである。
 かかる分散剤としては、アニオン性界面活性剤、カチオン性界面活性剤、両性界面活性剤、非イオン性界面活性剤、高分子界面活性剤、カチオン性高分子化合物、アニオン性高分子化合物から、1種又は2種以上の混合物として用いることができる。
 水系分散体を用いて基体上に形成した生分解性樹脂フィルムが食品包装用に用いられるとき、好適な分散剤として、ポリビニルアルコールやエチレンオキサイドとプロピレンオキサイドのブロックコポリマーの1種又は混合体を用いることができる。食品安全性が周知されているからである。中でも部分ケン化型ポリビニルアルコールの採用が好ましく、ケン化度は90%以下とすることが好ましい。ケン化度をこの範囲とすることで、ポリビニルアルコールの生分解性を高めることができる。
 かかる分散剤の配合量は、水系分散体の使用方法、保管条件、基体上に形成した生分解性樹脂フィルムの用途等に応じて適宜選択されるものであるが、例えば水に対して2.0~10.0質量%とすることができる。
 2.0質量%未満であると、分散質が凝集しやすくなり、10.0質量%を超えるとヒートシール性が低下するため、それぞれ好ましくない。
A dispersant can be dissolved in the dispersion medium.
This dispersant prevents the dispersoid from aggregating in water.
Examples of such dispersants include anionic surfactants, cationic surfactants, amphoteric surfactants, nonionic surfactants, polymer surfactants, cationic polymer compounds, and anionic polymer compounds. It can be used as a seed or a mixture of two or more kinds.
When a biodegradable resin film formed on a substrate using an aqueous dispersion is used for food packaging, polyvinyl alcohol or one or a mixture of block copolymers of ethylene oxide and propylene oxide is used as a suitable dispersant. be able to. This is because food safety is well known. Above all, it is preferable to use partially saponified polyvinyl alcohol, and the degree of saponification is preferably 90% or less. By setting the degree of saponification within this range, the biodegradability of polyvinyl alcohol can be enhanced.
The blending amount of the dispersant is appropriately selected depending on the method of use of the aqueous dispersion, the storage conditions, the use of the biodegradable resin film formed on the substrate, and the like. It can be 0 to 10.0% by mass.
If it is less than 2.0% by mass, the dispersoids tend to aggregate, and if it exceeds 10.0% by mass, the heat-sealing property deteriorates, which is not preferable.
 分散媒には、上記分散剤に加えて、次の増粘剤を配合することができる。
 増粘剤としては、メチルセルロース、カルボキシメチルセルロース、ヒドロキシエチルセルロース、ヒドロキシエチルメチルセルロース、ヒドロキシプロピルメチルセルロース、ヒドロキシプロピルセルロース等のセルロース誘導体、カチオン化澱粉、エーテル化澱粉等の澱粉誘導体、アラビアガム、グアーガム、キサンタンガム等の植物ガム、カゼイン、キトサン、キチン等の動物性高分子等、ポリエチレングリコール等のポリアルコキシド系高分子、が挙げられる。
 増粘剤の配合量はこの水系分散体の用途等に応じて適宜選択されるものであるが、例えば生分解性樹脂水分散体に対して0.1~1.0質量%とすることができる。
In addition to the above-mentioned dispersant, the following thickener can be added to the dispersion medium.
Examples of the thickener include cellulose derivatives such as methyl cellulose, carboxymethyl cellulose, hydroxyethyl cellulose, hydroxyethyl methyl cellulose, hydroxypropyl methyl cellulose and hydroxypropyl cellulose, starch derivatives such as cationized starch and etherified starch, Arabic gum, guar gum and xanthan gum. Examples thereof include animal polymers such as plant gum, casein, chitosan and chitin, and polyalkoxide-based polymers such as polyethylene glycol.
The blending amount of the thickener is appropriately selected depending on the intended use of the aqueous dispersion, and may be, for example, 0.1 to 1.0% by mass with respect to the biodegradable resin aqueous dispersion. can.
 水分散体全体における分散質の配合割合は質量比で20~80質量%である。
 分散質にカルボジイミド化合物を配合し、かつ分散媒にpH調整剤を添加した系においては水分散体全体における分散質の配合割合を上記の範囲とすることで、工業製品として好適な粘度に調整された水分散体となる。
 この配合割合が20質量%以下となると分散質の沈降安定性が悪化し、同じく質量比が80%を超えると粘度が上昇し、工業的な利用に不向きな粘度となり、それぞれ好ましくない。
 より好ましい配合割合は質量比で40~60質量%である。
The mixing ratio of the dispersoid in the entire aqueous dispersion is 20 to 80% by mass in terms of mass ratio.
In a system in which a carbodiimide compound is blended in the dispersion and a pH adjuster is added to the dispersion medium, the viscosity is adjusted to be suitable for an industrial product by setting the blending ratio of the dispersoid in the entire aqueous dispersion within the above range. It becomes an aqueous dispersion.
When the blending ratio is 20% by mass or less, the sedimentation stability of the dispersoid deteriorates, and when the mass ratio exceeds 80%, the viscosity increases, and the viscosity becomes unsuitable for industrial use, which is not preferable.
A more preferable blending ratio is 40 to 60% by mass in terms of mass ratio.
<分散質の調製>
生分解性樹脂とカルボジイミド化合物をミキサーにて溶融撹拌後、組成物を取り出し、粉砕機により、粉末状態にした。
<水系分散媒の調製>
ホモディスパーを用いて、分散剤を水に溶解させた。
<水系分散媒に対する分散質の分散方法>
混合物の微粒子を得る方法としては、転相乳化法が好ましく、転相乳化で微粒子を得る場合、大きなせん断力が必要となるため、公知な機械乳化法である、コロイドミル、ホモミキサー、ホモジナイザー、各種押出機、ニーダールーダー、3軸遊星分散機等の使用が挙げられる。
<Preparation of dispersion>
After melting and stirring the biodegradable resin and the carbodiimide compound with a mixer, the composition was taken out and pulverized by a pulverizer.
<Preparation of aqueous dispersion medium>
The dispersant was dissolved in water using a homodisper.
<Dispersion method of dispersoid for aqueous dispersion medium>
As a method for obtaining fine particles of a mixture, a phase inversion emulsification method is preferable, and a large shearing force is required when obtaining fine particles by phase inversion emulsification. Examples include the use of various extruders, kneader luders, 3-axis planetary dispersers, and the like.
<水分散体の適用例>
 このようにして得られた水系分散体は次のようにして紙製基体の表面に塗工され、そこに生分解性樹脂フィルムを形成する。
 水系分散体を紙製基体(日本製紙(株)社製:NPI上質)に塗工量10g/m(乾燥質量)となるようバーコーターを用いて片面塗工し、130℃で180秒間乾燥することでヒートシール層を基体シート上に作製した。
<Application example of aqueous dispersion>
The aqueous dispersion thus obtained is coated on the surface of a paper substrate as follows to form a biodegradable resin film there.
The aqueous dispersion is coated on a paper substrate (Nippon Paper Industries, Ltd .: NPI high quality) on one side using a bar coater so that the coating amount is 10 g / m 2 (dry mass), and dried at 130 ° C. for 180 seconds. By doing so, a heat seal layer was produced on the substrate sheet.
 このようにして得られた紙製基体と生分解性樹脂フィルムとの積層体を、フィルム同士を対向させて、基体側からプレスをしつつ、熱を与えることでフィルムを融解し、ヒートシールをすることができる。
 ヒートシールに要する温度及び時間は、生分解性樹脂の融点に応じて適宜選択される。
 ポリ乳酸を選択した場合は、70~300℃、0.1~1.0MPaで1~5秒の加熱を行う。
The laminate of the paper substrate and the biodegradable resin film thus obtained is pressed from the substrate side while facing each other, and the film is melted by applying heat to heat seal. can do.
The temperature and time required for heat sealing are appropriately selected according to the melting point of the biodegradable resin.
When polylactic acid is selected, heating is performed at 70 to 300 ° C. and 0.1 to 1.0 MPa for 1 to 5 seconds.
 農薬や肥料等の機能性粒子の表面へ上記水分散体の被膜を形成し、その後、乾燥して被膜から水を除去することで、機能性粒子の表面を生分解性樹脂膜で被覆することができる。
 機能性粒子の表面へ水分散体の被膜を形成する方法は特に限定されないが、例えばスプレー塗布などの周知の方法を採用できる。
 水分散体の被膜から水分を除去する方法は、機能性粒子の機能に影響を与えない条件下、任意の方法を採用できる。
A film of the above-mentioned aqueous dispersion is formed on the surface of functional particles such as pesticides and fertilizers, and then dried to remove water from the film to coat the surface of the functional particles with a biodegradable resin film. Can be done.
The method for forming the film of the aqueous dispersion on the surface of the functional particles is not particularly limited, but a well-known method such as spray coating can be adopted.
As the method for removing water from the coating film of the aqueous dispersion, any method can be adopted under conditions that do not affect the function of the functional particles.
 以下、この発明の実施例の説明をする。
(実施例1)
 ポリ乳酸(トタルコービオン(株)社製 LX930 D型乳酸:L型乳酸=10:90)47.7質量部と多価カルボジイミド化合物A(日清紡ケミカル(株)社製:HMV-15CA)0.3質量部を溶融撹拌後、粉砕した粉末を、ポリビニルアルコール(ケン化度86%、数平均分子量200,000g/mol)3.0質量部を水42.0質量部に溶解させた水溶液に混合し、一般的な転相乳化法により前者を固体分散質とし、水系分散媒としての後者に分散させた後、水酸化ナトリウム水溶液(濃度:1wt%)6.5質量部と固形分濃度調整用の水0.5質量部を添加し、実施例1の生分解性樹脂水分散体を得る。
Hereinafter, examples of the present invention will be described.
(Example 1)
Polylactic acid (LX930 D-type lactic acid manufactured by Totalcorbion Co., Ltd .: L-type lactic acid = 10:90) 47.7 parts by mass and polyvalent carbodiimide compound A (manufactured by Nisshinbo Chemical Co., Ltd .: HMV-15CA) 0.3 mass mass After melting and stirring the parts, the pulverized powder was mixed with an aqueous solution prepared by dissolving 3.0 parts by mass of polyvinyl alcohol (86% saponification degree, number average molecular weight 200,000 g / mol) in 42.0 parts by mass of water. The former is made into a solid dispersoid by a general phase inversion emulsification method, and after being dispersed in the latter as an aqueous dispersion medium, 6.5 parts by mass of an aqueous sodium hydroxide solution (concentration: 1 wt%) and water for adjusting the solid content concentration are used. Add 0.5 part by weight to obtain the biodegradable resin aqueous dispersion of Example 1.
(実施例2)
ポリ乳酸(トタルコービオン(株)社製 LX930 D型乳酸:L型乳酸=10:90)46.8質量部と多価カルボジイミド化合物A(日清紡ケミカル(株)社製:HMV-15CA)1.2質量部を溶融撹拌後、粉砕した粉末を、ポリビニルアルコール(ケン化度86%、数平均分子量200,000g/mol)3.0質量部を水42.0質量部に溶解させた水溶液に混合し、一般的な転相乳化法により前者を固体分散質とし、水系分散媒としての後者に分散させた後、水酸化ナトリウム水溶液(濃度:1wt%)4.0質量部と固形分濃度調整用の水3.0質量部を添加し、実施例2の生分解性樹脂水分散体を得る。
(Example 2)
Polylactic acid (LX930 D-type lactic acid manufactured by Totalcorbion Co., Ltd .: L-type lactic acid = 10:90) 46.8 parts by mass and polyvalent carbodiimide compound A (manufactured by Nisshinbo Chemical Co., Ltd .: HMV-15CA) 1.2 mass After melting and stirring the parts, the pulverized powder was mixed with an aqueous solution prepared by dissolving 3.0 parts by mass of polyvinyl alcohol (86% saponification degree, number average molecular weight 200,000 g / mol) in 42.0 parts by mass of water. After making the former a solid dispersoid by a general phase inversion emulsification method and dispersing it in the latter as an aqueous dispersion medium, 4.0 parts by mass of an aqueous sodium hydroxide solution (concentration: 1 wt%) and water for adjusting the solid content concentration are used. Add 3.0 parts by mass to obtain the biodegradable resin aqueous dispersion of Example 2.
(実施例3)
ポリ乳酸(トタルコービオン(株)社製 LX930 D型乳酸:L型乳酸=10:90)45.5質量部と多価カルボジイミド化合物A(日清紡ケミカル(株)社製:HMV-15CA)2.5質量部を溶融撹拌後、粉砕した粉末を、ポリビニルアルコール(ケン化度86%、数平均分子量200,000g/mol)3.0質量部を水42.0質量部に溶解させた水溶液に混合し、一般的な転相乳化法により前者を固体分散質とし、水系分散媒としての後者に分散させた後、水酸化ナトリウム水溶液(濃度:1wt%)2.2質量部と固形分濃度調整用の水4.8質量部を添加し、実施例3の生分解性樹脂水分散体を得る。
(Example 3)
Polylactic acid (LX930 D-type lactic acid manufactured by Totalcorbion Co., Ltd .: L-type lactic acid = 10:90) 45.5 parts by mass and polyvalent carbodiimide compound A (manufactured by Nisshinbo Chemical Co., Ltd .: HMV-15CA) 2.5 mass After melting and stirring the parts, the pulverized powder was mixed with an aqueous solution prepared by dissolving 3.0 parts by mass of polyvinyl alcohol (86% saponification degree, number average molecular weight 200,000 g / mol) in 42.0 parts by mass of water. The former is made into a solid dispersoid by a general phase inversion emulsification method, and after being dispersed in the latter as an aqueous dispersion medium, 2.2 parts by mass of an aqueous sodium hydroxide solution (concentration: 1 wt%) and water for adjusting the solid content concentration are used. Add 4.8 parts by weight to obtain the biodegradable resin aqueous dispersion of Example 3.
(実施例4)
 水酸化ナトリウム水溶液(濃度:1wt%)を水酸化カリウム水溶液(濃度:1wt%)に変更した点以外は、実施例2と同様にして実施例4の生分解性樹脂水分散体を得る。
(Example 4)
The biodegradable resin aqueous dispersion of Example 4 is obtained in the same manner as in Example 2 except that the sodium hydroxide aqueous solution (concentration: 1 wt%) is changed to the potassium hydroxide aqueous solution (concentration: 1 wt%).
(実施例5)
 多価カルボジイミド化合物A(日清紡ケミカル(株)社製:HMV-15CA)を多価カルボジイミド化合物B(日清紡ケミカル(株)社製:LA-1)へ変更した点以外は、実施例2と同様にして実施例5の生分解性樹脂水分散体を得る。
(Example 5)
Same as Example 2 except that the polyvalent carbodiimide compound A (manufactured by Nisshinbo Chemical Co., Ltd .: HMV-15CA) was changed to the polyvalent carbodiimide compound B (manufactured by Nisshinbo Chemical Co., Ltd .: LA-1). To obtain the biodegradable resin aqueous dispersion of Example 5.
(実施例6)
 多価カルボジイミド化合物A(日清紡ケミカル(株)社製:HMV-15CA)を多価カルボジイミド化合物C(日清紡ケミカル(株)社製:HMV-5CA―LC)へ変更した点以外は、実施例2と同様にして実施例6の生分解性樹脂水分散体を得る。
(Example 6)
Example 2 and Example 2 except that the polyvalent carbodiimide compound A (manufactured by Nisshinbo Chemical Co., Ltd .: HMV-15CA) was changed to the polyvalent carbodiimide compound C (manufactured by Nisshinbo Chemical Co., Ltd .: HMV-5CA-LC). Similarly, the biodegradable resin aqueous dispersion of Example 6 is obtained.
(実施例7)
ポリ乳酸(トタルコービオン(株)社製 LX930 D型乳酸:L型乳酸=10:90)42.8質量部と多価カルボジイミド化合物A(日清紡ケミカル(株)社製:HMV-15CA)1.2質量部と混基二塩基酸エステル(大八化学工業(株)社製:DAIFATTY-101)4.0質量部を溶融撹拌後、粉砕した粉末を、ポリビニルアルコール(ケン化度86%、数平均分子量200,000g/mol)3.0質量部を水42.0質量部に溶解させた水溶液に混合し、一般的な転相乳化法により前者を固体分散質とし、水系分散媒としての後者に分散させた後、水酸化ナトリウム水溶液(濃度:1wt%)4.0質量部と固形分濃度調整用の水3.0質量部を添加し、実施例7の生分解性樹脂水分散体を得る。
(Example 7)
Polylactic acid (LX930 D-type lactic acid manufactured by Totalcorbion Co., Ltd .: L-type lactic acid = 10:90) 42.8 parts by mass and polyvalent carbodiimide compound A (manufactured by Nisshinbo Chemical Co., Ltd .: HMV-15CA) 1.2 mass Part and mixed group dibasic acid ester (manufactured by Daihachi Chemical Industry Co., Ltd .: DAIFATTY-101) 4.0 parts by mass was melt-stirred, and then the crushed powder was mixed with polyvinyl alcohol (kensification degree 86%, number average molecular weight). 200,000 g / mol) 3.0 parts by mass is mixed with an aqueous solution dissolved in 42.0 parts by mass of water, the former is made into a solid dispersoid by a general phase inversion emulsification method, and the former is dispersed in the latter as an aqueous dispersion medium. Then, 4.0 parts by mass of an aqueous sodium hydroxide solution (concentration: 1 wt%) and 3.0 parts by mass of water for adjusting the solid content concentration are added to obtain the biodegradable resin aqueous dispersion of Example 7.
(実施例8)
 混基二塩基酸エステル(大八化学工業(株)社製:DAIFATTY-101)をポリエチレングリコール(三洋化成工業(株)社製:PEG1000)へ変更した点以外は、実施例7と同様にして実施例8の生分解性樹脂水分散体を得る。
(Example 8)
The same as in Example 7 except that the mixed group dibasic acid ester (manufactured by Daihachi Chemical Industries, Ltd .: DAIFATTY-101) was changed to polyethylene glycol (manufactured by Sanyo Chemical Industries, Ltd .: PEG1000). The biodegradable resin aqueous dispersion of Example 8 is obtained.
(実施例9)
 ポリビニルアルコール(ケン化度86%、数平均分子量200,000g/mol)3.0質量部から1.5質量部へ、水を42.0質量部から43.5質量部へ変更した点以外は、実施例2と同様にして実施例9の生分解性樹脂水分散体を得る。
(Example 9)
Except for the change from 3.0 parts by mass of polyvinyl alcohol (86% saponification, number average molecular weight 200,000 g / mol) to 1.5 parts by mass and water from 42.0 parts by mass to 43.5 parts by mass. , The biodegradable resin water dispersion of Example 9 is obtained in the same manner as in Example 2.
(実施例10)
 ポリビニルアルコール(ケン化度86%、数平均分子量200,000g/mol)3.0質量部から4.0質量部へ、水を42.0質量部から41.0質量部へ変更した点以外は、実施例2と同様にして実施例10の生分解性樹脂水分散体を得る。
(Example 10)
Except for the change from 3.0 parts by mass of polyvinyl alcohol (86% saponification, number average molecular weight 200,000 g / mol) to 4.0 parts by mass and water from 42.0 parts by mass to 41.0 parts by mass. , The biodegradable resin aqueous dispersion of Example 10 is obtained in the same manner as in Example 2.
(実施例11)
 水酸化ナトリウム水溶液(濃度:1wt%)4.0質量部を2.1質量部へ、固形分濃度調整用の水3.0質量部を4.9質量部に変更した点以外は、実施例2と同様にして実施例11の生分解性樹脂水分散体を得る。
(Example 11)
Examples except that 4.0 parts by mass of an aqueous sodium hydroxide solution (concentration: 1 wt%) was changed to 2.1 parts by mass, and 3.0 parts by mass of water for adjusting the solid content concentration was changed to 4.9 parts by mass. The biodegradable resin aqueous dispersion of Example 11 is obtained in the same manner as in 2.
(実施例12)
 水酸化ナトリウム水溶液(濃度:1wt%)4.0質量部を4.3質量部へ、固形分濃度調整用の水3.0質量部を2.7質量部に変更した点以外は、実施例2と同様にして実施例12の生分解性樹脂水分散体を得る。
(Example 12)
Examples except that 4.0 parts by mass of an aqueous sodium hydroxide solution (concentration: 1 wt%) was changed to 4.3 parts by mass, and 3.0 parts by mass of water for adjusting the solid content concentration was changed to 2.7 parts by mass. The biodegradable resin aqueous dispersion of Example 12 is obtained in the same manner as in 2.
(実施例13)
 ポリビニルアルコール(ケン化度86%、数平均分子量200,000g/mol)をポロキサマー188へ変更した点以外は、実施例2と同様にして実施例13の生分解性樹脂水分散体を得る。
(Example 13)
A biodegradable resin aqueous dispersion of Example 13 is obtained in the same manner as in Example 2 except that polyvinyl alcohol (consolidation degree 86%, number average molecular weight 200,000 g / mol) is changed to poloxamer 188.
(試験例1)
ポリ乳酸(トタルコービオン(株)社製 LX930 D型乳酸:L型乳酸=10:90)46.8質量部と多価カルボジイミド化合物A(日清紡ケミカル(株)社製:HMV-15CA)1.2質量部を溶融撹拌後、粉砕した粉末を、ポリビニルアルコール(ケン化度86%、数平均分子量200,000g/mol)3.0質量部を水42.0質量部に溶解させた水溶液に混合し、一般的な転相乳化法により前者を固体分散質とし、水系分散媒としての後者に分散させた後、固形分濃度調整用の水7.0質量部を添加し、試験例1の生分解性樹脂水分散体を得る。
(Test Example 1)
Polylactic acid (LX930 D-type lactic acid manufactured by Totalcorbion Co., Ltd .: L-type lactic acid = 10:90) 46.8 parts by mass and polyvalent carbodiimide compound A (manufactured by Nisshinbo Chemical Co., Ltd .: HMV-15CA) 1.2 mass After melting and stirring the parts, the pulverized powder was mixed with an aqueous solution prepared by dissolving 3.0 parts by mass of polyvinyl alcohol (86% saponification degree, number average molecular weight 200,000 g / mol) in 42.0 parts by mass of water. The former is made into a solid dispersoid by a general phase inversion emulsification method, dispersed in the latter as an aqueous dispersion medium, and then 7.0 parts by mass of water for adjusting the solid content concentration is added to obtain biodegradability of Test Example 1. Obtain a resin water dispersion.
(試験例2)
 多価カルボジイミド化合物A(日清紡ケミカル(株)社製:HMV-15CA)を多価カルボジイミド化合物B(日清紡ケミカル(株)社製:LA-1)へ変更した点以外は、試験例1と同様にして試験例2の生分解性樹脂水分散体を得る。
(Test Example 2)
Same as Test Example 1 except that the polyvalent carbodiimide compound A (manufactured by Nisshinbo Chemical Co., Ltd .: HMV-15CA) was changed to the polyvalent carbodiimide compound B (manufactured by Nisshinbo Chemical Co., Ltd .: LA-1). To obtain the biodegradable resin aqueous dispersion of Test Example 2.
(試験例3)
 多価カルボジイミド化合物A(日清紡ケミカル(株)社製:HMV-15CA)を多価カルボジイミド化合物C(日清紡ケミカル(株)社製:HMV-5CA―LC)へ変更した点以外は、試験例1と同様にして試験例3の生分解性樹脂水分散体を得る。
(Test Example 3)
Test Example 1 except that the polyvalent carbodiimide compound A (manufactured by Nisshinbo Chemical Co., Ltd .: HMV-15CA) was changed to the polyvalent carbodiimide compound C (manufactured by Nisshinbo Chemical Co., Ltd .: HMV-5CA-LC). Similarly, the biodegradable resin aqueous dispersion of Test Example 3 is obtained.
(比較例1)
 ポリ乳酸(トタルコービオン(株)社製 LX930 D型乳酸:L型乳酸=10:90)48.0質量部を、ポリビニルアルコール(ケン化度86%、数平均分子量200,000g/mol)3.0質量部を水42.0質量部に溶解させた水溶液に混合し、一般的な撹拌機を用いて転相乳化させた後、固形分濃度調整用の水7.0質量部を添加し、比較例1の生分解性樹脂水分散体を得る。
(Comparative Example 1)
Polylactic acid (LX930 D type lactic acid manufactured by Totalcorbion Co., Ltd .: L type lactic acid = 10:90) 48.0 parts by mass of polyvinyl alcohol (kensification degree 86%, number average molecular weight 200,000 g / mol) 3.0 After mixing parts by mass with an aqueous solution dissolved in 42.0 parts by mass of water and inversion emulsifying using a general stirrer, 7.0 parts by mass of water for adjusting the solid content concentration was added and compared. Obtain the biodegradable resin aqueous dispersion of Example 1.
(比較例2)
 ポリ乳酸(トタルコービオン(株)社製 LX930 D型乳酸:L型乳酸=10:90)48.0質量部を、ポリビニルアルコール(ケン化度86%、数平均分子量200,000g/mol)3.0質量部を水42.0質量部に溶解させた水溶液に混合し、一般的な撹拌機を用いて転相乳化させた後、水酸化ナトリウム水溶液(濃度:1wt%)4.8質量部と固形分濃度調整用の水2.2質量部を添加し、比較例2の生分解性樹脂水分散体を得る。
(Comparative Example 2)
Polylactic acid (LX930 D type lactic acid manufactured by Totalcorbion Co., Ltd .: L type lactic acid = 10:90) 48.0 parts by mass of polyvinyl alcohol (kensification degree 86%, number average molecular weight 200,000 g / mol) 3.0 After mixing parts by mass with an aqueous solution dissolved in 42.0 parts by mass of water and inversion emulsifying using a general stirrer, the sodium hydroxide aqueous solution (concentration: 1 wt%) is 4.8 parts by mass and solid. 2.2 parts by mass of water for adjusting the molecular weight concentration is added to obtain a biodegradable resin aqueous dispersion of Comparative Example 2.
 このようにして得られた各実施例、試験例及び比較例の組成を表1に示す。なお、表1において、各名称は以下成分を示す。
ポリ乳酸:LX930 (トタルコービオン(株)社製、D型乳酸:L型乳酸=10:90)
多価カルボジイミド化合物A:HMV-15CA(日清紡ケミカル(株)社製、カルボジイミド当量:262Keq(規格幅:260~264Keq))
多価カルボジイミド化合物B:LA-1(カルボジイミド変性イソシアネート化合物)(日清紡ケミカル(株)社製、カルボジイミド当量:248Keq(規格幅:237~257Keq))
多価カルボジイミド化合物C:HMV-5CA―LC(日清紡ケミカル(株)社製、カルボジイミド当量:311Keq(規格幅:301~320Keq))
混基二塩基酸エステル:DAIFATTY-101
ポリエチレングリコール:PEG1000
分散剤A:ポリビニルアルコール
分散剤B:ポロキサマー188
The compositions of each Example, Test Example and Comparative Example thus obtained are shown in Table 1. In Table 1, each name indicates the following components.
Polylactic acid: LX930 (manufactured by Total Corbion Co., Ltd., D-type lactic acid: L-type lactic acid = 10:90)
Multivalent carbodiimide compound A: HMV-15CA (manufactured by Nisshinbo Chemical Co., Ltd., carbodiimide equivalent: 262Keq (standard width: 260-264Keq))
Multivalent carbodiimide compound B: LA-1 (carbodiimide-modified isocyanate compound) (manufactured by Nisshinbo Chemical Co., Ltd., carbodiimide equivalent: 248Keq (standard width: 237 to 257Keq))
Multivalent carbodiimide compound C: HMV-5CA-LC (manufactured by Nisshinbo Chemical Co., Ltd., carbodiimide equivalent: 311Keq (standard width: 301 to 320Keq))
Mixed dibasic acid ester: DAIFATTY-101
Polyethylene glycol: PEG1000
Dispersant A: Polyvinyl alcohol dispersant B: Poloxamer 188
 このようにして得られた各実施例、試験例及び比較例の配合と生分解性樹脂水分散体のpHを表1にまとめた。
Figure JPOXMLDOC01-appb-T000002
Table 1 summarizes the formulations of each of the Examples, Test Examples and Comparative Examples thus obtained and the pH of the biodegradable resin aqueous dispersion.
Figure JPOXMLDOC01-appb-T000002
 各実施例、試験例及び比較例の経時安定性及びヒートシール性を表2及び表3にまとめた。
Figure JPOXMLDOC01-appb-T000003































Figure JPOXMLDOC01-appb-T000004































Tables 2 and 3 summarize the time-dependent stability and heat-sealing properties of each Example, Test Example, and Comparative Example.
Figure JPOXMLDOC01-appb-T000003































Figure JPOXMLDOC01-appb-T000004































<生分解性樹脂水分散体のpH測定>
 生分解性樹脂水分散体のpHは、(株)堀場製作所製pHメーター(pH METER F-51)により測定した。なお、pH電極として、9615S-JF15を使用した。
<pH measurement of biodegradable resin water dispersion>
The pH of the biodegradable resin aqueous dispersion was measured with a pH meter (pH METER F-51) manufactured by HORIBA, Ltd. In addition, 9615S-JF15 was used as a pH electrode.
<酸価数測定による生分解性樹脂水分散体の経時安定性評価>
生分解性樹脂水分散体の経時安定性を評価するために、生分解性樹脂水分散体を30℃及び40℃に保管し、製造直後、3カ月後、6カ月後、8カ月後の酸価数を電位差自動滴定装置(京都電子工業(株)社製 AT-710)により測定した。なお、酸価数測定時は、生分解性樹脂水分散体1gを蒸留水で100倍希釈し、測定した。生分解性樹脂が分解した場合、酸性分解物が生じるため、酸価数が高いほど加水分解が進行していることを示しており、経時安定性が悪い。評価結果を表2に示す。
 例えば、酸価数が5.0以上になるとヒートシール性を維持確保することが困難になると考えらえる。
<Evaluation of stability over time of biodegradable resin water dispersion by measuring acid value>
In order to evaluate the stability of the biodegradable resin water dispersion over time, the biodegradable resin water dispersion was stored at 30 ° C. and 40 ° C., and the acid was immediately after production, 3 months, 6 months, and 8 months after production. The valence was measured by a potential difference automatic titrator (AT-710 manufactured by Kyoto Electronics Manufacturing Co., Ltd.). When measuring the acid value, 1 g of the biodegradable resin aqueous dispersion was diluted 100-fold with distilled water and measured. When the biodegradable resin is decomposed, an acidic decomposition product is generated. Therefore, the higher the acid value, the more the hydrolysis is progressing, and the stability over time is poor. The evaluation results are shown in Table 2.
For example, when the acid value number is 5.0 or more, it is considered difficult to maintain and secure the heat sealability.
<ヒートシール性評価>
紙製基体のヒートシール層同士を110℃のヒートシーラーによりヒートシールし、ヒートシール性評価サンプルを作製した。なお、ヒートシール時のプレス圧は0.2MPa、プレス時間は1秒とした。ヒートシール性評価は、引張試験機にて実施し、下記基準に基づき、ヒートシール性を評価した。評価結果を表3に示す。なお、引張速度は300mm/min、剥離条件は180度剥離とした。
 表3において、
〇:上質紙が材破する程度の密着力がある。
×:密着力が乏しいため、上質紙が材破せず。
<Heat sealability evaluation>
The heat-sealing layers of the paper substrate were heat-sealed with a heat sealer at 110 ° C. to prepare a heat-sealing property evaluation sample. The press pressure during heat sealing was 0.2 MPa, and the press time was 1 second. The heat sealability was evaluated by a tensile tester, and the heat sealability was evaluated based on the following criteria. The evaluation results are shown in Table 3. The tensile speed was 300 mm / min and the peeling condition was 180 degree peeling.
In Table 3,
〇: There is enough adhesion to break the woodfree paper.
×: High-quality paper does not break due to poor adhesion.
 表2及び表3の結果から次のことがわかる。
 実施例1、2、3、5、6及び比較例2より、ポリ乳酸に対するカルボジイミド化合物の添加量は0.6質量%以上、5.5質量%以下とすることが好ましいことがわかる。その比が0.6質量%未満の場合、経時安定性向上の効果が乏しく、5.5質量%を超える場合、経時安定性向上効果は十分に得られるものの、製造時に樹脂粘度が増加するため、製造時の生分解性樹脂(分散質)の微粒子化が困難となる。
 実施例1及び試験例1、2、3より、実施例1の加水分解に伴う酸価数の上昇は、試験例1、2、3と同等であるものの、pH調整をすることにより、多価カルボジイミド化合物の使用量を削減することができる。多価カルボジイミド化合物の使用量削減により、コスト低下に加え、製造時の生分解性樹脂(分散質)の微粒子化が容易となる。
 カルボジイミド化合物を添加したポリ乳酸粒子を分散質とした水分散体において、pHの値は4.0より高い値で好ましい経時安定性が確認できる(実施例11、試験例1参照)。他方、pHの値を8.0より高い値にすると、分散媒中の塩基がポリ乳酸を分解する方向に作用するので好ましくない。
 実施例9、10より、分散剤としてポリビニルアルコールの水に対する配合割合は質量比で2.0~10.0%とすることが好ましいことがわかる。
The following can be seen from the results in Tables 2 and 3.
From Examples 1, 2, 3, 5, 6 and Comparative Example 2, it can be seen that the amount of the carbodiimide compound added to the polylactic acid is preferably 0.6% by mass or more and 5.5% by mass or less. If the ratio is less than 0.6% by mass, the effect of improving the stability over time is poor, and if it exceeds 5.5% by mass, the effect of improving the stability over time can be sufficiently obtained, but the resin viscosity increases during manufacturing. , It becomes difficult to make the biodegradable resin (dispersible) into fine particles at the time of manufacture.
From Examples 1 and Test Examples 1, 2 and 3, the increase in the acid value due to the hydrolysis of Example 1 is the same as that of Test Examples 1, 2 and 3, but the pH is adjusted to increase the acid value. The amount of the carbodiimide compound used can be reduced. By reducing the amount of the polyvalent carbodiimide compound used, in addition to reducing the cost, it becomes easy to make the biodegradable resin (dispersible) into fine particles during production.
In an aqueous dispersion having polylactic acid particles to which a carbodiimide compound is added as a dispersoid, a pH value higher than 4.0 confirms preferable temporal stability (see Example 11 and Test Example 1). On the other hand, when the pH value is higher than 8.0, the base in the dispersion medium acts in the direction of decomposing polylactic acid, which is not preferable.
From Examples 9 and 10, it can be seen that the mixing ratio of polyvinyl alcohol as a dispersant to water is preferably 2.0 to 10.0% by mass ratio.
 この発明は、上記発明の実施形態の説明に何ら限定されるものではない。特許請求の範囲の記載を逸脱せず、当業者が容易に想到できる範囲で種々の変形態様もこの発明に含まれる。 The present invention is not limited to the description of the embodiment of the above invention. Various modifications are also included in the present invention to the extent that those skilled in the art can easily conceive without departing from the description of the scope of claims.

Claims (9)

  1.  生分解性樹脂を含む分散質を水系の分散媒へ分散させてなる水系分散体であって、
     前記分散質にはカルボジイミド化合物が含まれ、かつ、
     前記分散媒にはpH調整剤が含まれる、
     水分散体。
    An aqueous dispersion obtained by dispersing a dispersoid containing a biodegradable resin in an aqueous dispersion medium.
    The dispersoid contains a carbodiimide compound and
    The dispersion medium contains a pH adjuster.
    Water dispersion.
  2.  前記分散質における前記カルボジイミド化合物の配合割合は生分解性樹脂に対して質量比で0.6~5.5%であり、
     前記pH調整剤により前記分散媒のpHが4.0~8.0に調整される、請求項1に記載の水分散体。
    The compounding ratio of the carbodiimide compound in the dispersoid is 0.6 to 5.5% by mass ratio with respect to the biodegradable resin.
    The aqueous dispersion according to claim 1, wherein the pH of the dispersion medium is adjusted to 4.0 to 8.0 by the pH adjusting agent.
  3.  前記カルボジイミド化合物は多価カルボジイミド化合物であり、
     前記pH調整剤は水酸化ナトリウム及び/又は水酸化カリウムである、請求項2に記載の水分散体。
    The carbodiimide compound is a multivalent carbodiimide compound and is
    The aqueous dispersion according to claim 2, wherein the pH adjuster is sodium hydroxide and / or potassium hydroxide.
  4.  前記生分解性樹脂はポリ乳酸を含む、請求項1~3のいずれかに記載の水分散体。 The aqueous dispersion according to any one of claims 1 to 3, wherein the biodegradable resin contains polylactic acid.
  5.  前記分散媒に部分ケン化型ポリビニルアルコールが更に含まれ、該ポリビニルアルコールの水に対する配合割合は質量比で2.0~10.0%である、請求項1~4のいずれかに記載の水分散体。 The water according to any one of claims 1 to 4, wherein the dispersion medium further contains partially saponified polyvinyl alcohol, and the mixing ratio of the polyvinyl alcohol with respect to water is 2.0 to 10.0% by mass ratio. Dispersion.
  6.  前記分散質には可塑剤が更に含まれる、請求項1~5のいずれかに記載の水分散体。 The aqueous dispersion according to any one of claims 1 to 5, wherein the dispersoid further contains a plasticizer.
  7.  請求項1~6のいずれかに記載の水分散体を含む、塗液。 A coating liquid containing the aqueous dispersion according to any one of claims 1 to 6.
  8.  請求項7に記載の塗液を準備するステップと、
     該塗液を基体に塗工するステップと、
     該塗液を乾燥するステップと、を含む、生分解性樹脂フィルムの製造方法。
    The step of preparing the coating liquid according to claim 7 and
    The step of applying the coating liquid to the substrate and
    A method for producing a biodegradable resin film, comprising a step of drying the coating liquid.
  9.  請求項1~6のいずれかに記載の水分散体を準備するステップと、
     肥料、農薬その他の機能粒子の表面へ前記水分散体の膜を形成するステップと、
     前記水分散体から水を除去するステップと、
     を備える徐放性機能粒子の製造方法。
    The step of preparing the aqueous dispersion according to any one of claims 1 to 6 and
    The step of forming a film of the aqueous dispersion on the surface of fertilizers, pesticides and other functional particles,
    The step of removing water from the aqueous dispersion and
    A method for producing sustained release functional particles comprising.
PCT/JP2021/041343 2020-11-19 2021-11-10 Water dispersion WO2022107660A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020192871A JP2024026904A (en) 2020-11-19 2020-11-19 Water dispersion, coating liquid including the same, method for producing film using coating liquid, and method for producing functional particle using water dispersion
JP2020-192871 2020-11-19

Publications (1)

Publication Number Publication Date
WO2022107660A1 true WO2022107660A1 (en) 2022-05-27

Family

ID=81708888

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/041343 WO2022107660A1 (en) 2020-11-19 2021-11-10 Water dispersion

Country Status (2)

Country Link
JP (1) JP2024026904A (en)
WO (1) WO2022107660A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7474537B1 (en) 2023-08-23 2024-04-25 株式会社Tbm Biodegradable laminates and molded articles

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5066705A (en) * 1990-01-17 1991-11-19 The Glidden Company Ambient cure protective coatings for plastic substrates
JPH1180522A (en) * 1997-07-09 1999-03-26 Nisshinbo Ind Inc Biodegradable plastic composition and control of biodegradation rate of biodegradable plastic
JP2004035811A (en) * 2002-07-05 2004-02-05 Miyoshi Oil & Fat Co Ltd Aqueous biodegradable resin dispersion
JP2004331847A (en) * 2003-05-08 2004-11-25 Sumitomo Seika Chem Co Ltd Polylactic acid aqueous dispersion
JP2008239830A (en) * 2007-03-28 2008-10-09 Toppan Printing Co Ltd Aqueous coating composition, composite sheet, decorative sheet and decorative material
JP2011256303A (en) * 2010-06-10 2011-12-22 Teijin Ltd Polylactic acid composition
WO2012039259A1 (en) * 2010-09-22 2012-03-29 三井化学株式会社 Polyurethane resin composition, polyurethane dispersion, anchor coat film for vapor deposition, and anchor-coated vapor deposition film
WO2013122245A1 (en) * 2012-02-17 2013-08-22 東洋紡株式会社 Polylactic polyester resin, aqueous polylactic polyester resin dispersion, and production method for aqueous polylactic polyester resin dispersion
JP2014005369A (en) * 2012-06-25 2014-01-16 Toyobo Co Ltd Polylactic acid-based polyester resin, polylactic acid-based polyester resin water dispersion, and production method of polylactic acid-based polyester resin water dispersion
WO2014024939A1 (en) * 2012-08-09 2014-02-13 東洋紡株式会社 Polylactic acid-type polyester resin, aqueous polylactic acid-type polyester resin dispersion, and method for producing aqueous polylactic acid-type polyester resin dispersion
JP2014139264A (en) * 2013-01-21 2014-07-31 Toyobo Co Ltd Polyester resin, polyester resin water dispersion, and manufacturing method of polyester resin water dispersion
JP2014139265A (en) * 2013-01-21 2014-07-31 Toyobo Co Ltd Polylactic acid-based polyester resin, polylactic acid-based polyester resin water dispersion, and manufacturing method of polylactic acid-based polyester resin water dispersion
WO2014157507A1 (en) * 2013-03-28 2014-10-02 東洋紡株式会社 Polylactide polyester resin, polylactide polyester resin solution, aqueous polylactide polyester resin dispersion, and method for manufacturing aqueous polylactide polyester resin dispersion

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5066705A (en) * 1990-01-17 1991-11-19 The Glidden Company Ambient cure protective coatings for plastic substrates
JPH1180522A (en) * 1997-07-09 1999-03-26 Nisshinbo Ind Inc Biodegradable plastic composition and control of biodegradation rate of biodegradable plastic
JP2004035811A (en) * 2002-07-05 2004-02-05 Miyoshi Oil & Fat Co Ltd Aqueous biodegradable resin dispersion
JP2004331847A (en) * 2003-05-08 2004-11-25 Sumitomo Seika Chem Co Ltd Polylactic acid aqueous dispersion
JP2008239830A (en) * 2007-03-28 2008-10-09 Toppan Printing Co Ltd Aqueous coating composition, composite sheet, decorative sheet and decorative material
JP2011256303A (en) * 2010-06-10 2011-12-22 Teijin Ltd Polylactic acid composition
WO2012039259A1 (en) * 2010-09-22 2012-03-29 三井化学株式会社 Polyurethane resin composition, polyurethane dispersion, anchor coat film for vapor deposition, and anchor-coated vapor deposition film
WO2013122245A1 (en) * 2012-02-17 2013-08-22 東洋紡株式会社 Polylactic polyester resin, aqueous polylactic polyester resin dispersion, and production method for aqueous polylactic polyester resin dispersion
JP2014005369A (en) * 2012-06-25 2014-01-16 Toyobo Co Ltd Polylactic acid-based polyester resin, polylactic acid-based polyester resin water dispersion, and production method of polylactic acid-based polyester resin water dispersion
WO2014024939A1 (en) * 2012-08-09 2014-02-13 東洋紡株式会社 Polylactic acid-type polyester resin, aqueous polylactic acid-type polyester resin dispersion, and method for producing aqueous polylactic acid-type polyester resin dispersion
JP2014139264A (en) * 2013-01-21 2014-07-31 Toyobo Co Ltd Polyester resin, polyester resin water dispersion, and manufacturing method of polyester resin water dispersion
JP2014139265A (en) * 2013-01-21 2014-07-31 Toyobo Co Ltd Polylactic acid-based polyester resin, polylactic acid-based polyester resin water dispersion, and manufacturing method of polylactic acid-based polyester resin water dispersion
WO2014157507A1 (en) * 2013-03-28 2014-10-02 東洋紡株式会社 Polylactide polyester resin, polylactide polyester resin solution, aqueous polylactide polyester resin dispersion, and method for manufacturing aqueous polylactide polyester resin dispersion

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7474537B1 (en) 2023-08-23 2024-04-25 株式会社Tbm Biodegradable laminates and molded articles

Also Published As

Publication number Publication date
JP2024026904A (en) 2024-02-29

Similar Documents

Publication Publication Date Title
US6780903B2 (en) Process for the preparation of polymer dispersions
CN102046741B (en) Novel wax dispersion formulations, method of producing same, and uses
JP2020532622A (en) Latex composition containing polysaccharides
JP6944033B1 (en) Biodegradable resin aqueous dispersion and its manufacturing method, and food packaging paper using biodegradable resin aqueous dispersion
JP5031583B2 (en) Adhesive composition
WO2022107660A1 (en) Water dispersion
JP7228309B2 (en) Aqueous dispersion, coating liquid containing this aqueous dispersion, method for producing polylactic acid film using this coating liquid, and sheet material
JP2022055374A (en) Aqueous dispersion, coating liquid containing the aqueous dispersion, method for producing biodegradable resin film using the coating liquid, method for manufacturing laminated sheet for food packaging, method for manufacturing packaging bag, and dispersoid contained in the aqueous dispersion
JP2017043750A (en) Cellulose ester aqueous dispersion
JP4996896B2 (en) Polylactic acid emulsion adhesive for packaging film
WO2022225024A1 (en) Emulsion resin composition and coating agent
JP2002371259A (en) Biodegradable aqueous-dispersion-type adhesive composition
US7687477B2 (en) Polymer solution and dispersion and a process for the preparation thereof
EP0950074B1 (en) Process for the preparation of polymer dispersions
JP2004277679A (en) Modified polylactic acid resin emulsion and its manufacturing method
JP2022167851A (en) Resin composition for emulsion, and coating agent
WO2023048069A1 (en) Aqueous dispersion
JP2020517794A (en) Vinyl chloride resin latex composition and method for producing the same
JP2004035811A (en) Aqueous biodegradable resin dispersion
JP2022167850A (en) Resin composition for emulsion, and coating agent
JP5056521B2 (en) Film for decorative sheet
JP2024134869A (en) Emulsion composition and coating agent
JP2024139361A (en) Resin composition for emulsion, emulsion composition and coating agent
JP2024134867A (en) Resin composition for emulsion, emulsion composition and coating agent
JP2024134868A (en) Emulsion composition and coating agent

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21894534

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21894534

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP