WO2022030471A1 - 太陽電池セル及び太陽電池セル製造方法 - Google Patents

太陽電池セル及び太陽電池セル製造方法 Download PDF

Info

Publication number
WO2022030471A1
WO2022030471A1 PCT/JP2021/028729 JP2021028729W WO2022030471A1 WO 2022030471 A1 WO2022030471 A1 WO 2022030471A1 JP 2021028729 W JP2021028729 W JP 2021028729W WO 2022030471 A1 WO2022030471 A1 WO 2022030471A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
semiconductor layer
electrode pattern
semiconductor
base end
Prior art date
Application number
PCT/JP2021/028729
Other languages
English (en)
French (fr)
Inventor
紳平 岡本
淳一 中村
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Priority to JP2022541553A priority Critical patent/JPWO2022030471A1/ja
Priority to CN202180048272.7A priority patent/CN115777149A/zh
Publication of WO2022030471A1 publication Critical patent/WO2022030471A1/ja
Priority to US18/163,134 priority patent/US20230178665A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022441Electrode arrangements specially adapted for back-contact solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022433Particular geometry of the grid contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • H01L31/0516Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module specially adapted for interconnection of back-contact solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a solar cell and a method for manufacturing a solar cell.
  • a back-contact type solar cell in which a pair of semiconductor layers having different conductive types are formed in a complementary region on the back surface side of a semiconductor substrate, and an electrode pattern is laminated on each semiconductor layer.
  • a back-contact type solar cell in order to reduce the moving distance of carriers, it is preferable to alternately arrange band-shaped semiconductor films having different polarities in a plan view and connect the band-shaped semiconductor films having the same polarity. .. Considering that a module is formed by connecting a plurality of solar cells, each band-shaped semiconductor film is arranged so as to extend in the solar cell connection direction, and one conductive type band-shaped semiconductor is arranged on one side in the solar cell connection direction.
  • Patent Document 1 a cell structure (semiconductor layer and electrode) of a pair of solar cell cells is formed on a semiconductor wafer in a mirror image (line symmetry) so that the connection portions of one of the semiconductor layers are adjacent to each other, and at the boundary of the cell structure.
  • a manufacturing method for obtaining two solar cells by cutting a semiconductor wafer is disclosed.
  • Patent Document 1 as a result of forming two solar cells by cutting an octagonal semiconductor wafer having chamfered portions at four corners in the center, the base end portion of one semiconductor layer is formed in each solar cell. The corners on the side to be chamfered have an asymmetrical shape.
  • Patent Document 1 a gap is formed between the solar cells, but as a configuration for improving the output per area of the module, a so-called single ring structure in which the ends of the solar cells are overlapped in a certain direction is adopted.
  • the electrode structure at the end of the solar cell on the front side comes into contact with the semiconductor substrate (light receiving surface) of the solar cell on the back side. If the polarity of the contact portion of the electrode structure of the solar cell on the front side is equal to the polarity of the semiconductor substrate on the back side, the solar cell may be short-circuited.
  • a minute semiconductor layer having an unintended polarity may be formed at the end of the solar cells due to an error in the cutting position. .. Therefore, if a plurality of solar cells are oriented and formed in the same direction on the semiconductor wafer, a short circuit may occur at the time of connecting the single ring. In view of such circumstances, it is an object of the present invention to provide a solar cell capable of preventing a short circuit at the time of connecting a single ring and a method for manufacturing the same.
  • the solar cell according to one aspect of the present invention includes a semiconductor substrate having a first conductive type, a first semiconductor layer formed on the back surface of the semiconductor substrate and having a conductive type different from that of the semiconductor substrate, and the semiconductor substrate.
  • the first semiconductor layer comprises a second semiconductor layer having the same conductive type as above, a first electrode pattern laminated on the first semiconductor layer, and a second electrode pattern laminated on the second semiconductor layer.
  • a first base end portion formed over the entire length of the second direction intersecting the first direction at one end of the semiconductor substrate on one side in the first direction, and the first direction from the first base end portion.
  • the second semiconductor layer is adjacent to one side of the first direction of the isolation portion, and has an isolation portion that is formed linearly over the above and the first electrode pattern is not laminated. It has a second base end portion extending from the second base end portion, and a plurality of second collecting portions extending from the second base end portion to one side in the first direction.
  • the average width of the isolated portion in the first direction is smaller than the average width of the first collecting portion in the second direction, and the average width of the first collecting portion in the second direction is the first. It may be smaller than the average width of one base end portion in the first direction.
  • the average width of the isolated portion in the first direction may be 2000 ⁇ m or less.
  • the method for manufacturing a solar cell according to one aspect of the present invention has a first semiconductor layer having a conductive type different from that of the semiconductor wafer and the same conductive type as the semiconductor wafer on the back surface of the semiconductor wafer having the first conductive type.
  • a step of cutting the semiconductor wafer at a boundary is provided, the plurality of cell structures are formed side by side in the first direction and oriented in the same direction, and the first semiconductor layer is the first of the cell structures.
  • a main functional portion having a plurality of second collecting portions and on which the first electrode patterns are laminated, and an end portion of the cell structure on the other side of the first direction are linearly formed over the entire length of the second direction.
  • FIG. 3 is a cross-sectional view taken along the line AA of the solar cell of FIG. It is a flowchart which shows the procedure of the manufacturing method of the solar cell of FIG. It is sectional drawing of the semiconductor wafer after the cell structure formation process of FIG. It is sectional drawing of the solar cell module which has the solar cell of FIG.
  • FIG. 1 is a back view showing a solar cell 1 according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view of the solar cell 1.
  • the solar cell 1 is formed on a semiconductor substrate 10 having a first conductive type and a first semiconductor layer 20 having a conductive type different from that of the semiconductor substrate 10 and formed on the back surface (the surface opposite to the light receiving surface) of the semiconductor substrate 10.
  • a second semiconductor layer 30 having the same conductive type as the semiconductor substrate 10 and a first electrode pattern 40 laminated on the first semiconductor layer 20 and a second electrode pattern 50 laminated on the second semiconductor layer 30 are provided. ..
  • the semiconductor substrate 10 can be formed of a crystalline silicon material such as single crystal silicon or polycrystalline silicon. Further, it may be formed from other semiconductor materials such as gallium arsenide (GaAs).
  • the semiconductor substrate 10 is, for example, an n-type semiconductor substrate in which a crystalline silicon material is doped with an n-type dopant. Examples of the n-type dopant include phosphorus (P).
  • the semiconductor substrate 10 functions as a photoelectric conversion substrate that absorbs incident light from the light receiving surface side to generate optical carriers (electrons and holes). By using crystalline silicon as the material of the semiconductor substrate 10, relatively high output (stable output regardless of illuminance) can be obtained even when the dark current is relatively small and the intensity of the incident light is low.
  • the first semiconductor layer 20 and the second semiconductor layer 30 collect charges having different polarities by attracting carriers having different polarities from the inside of the semiconductor substrate 10.
  • the semiconductor substrate 10 is n-type
  • the first semiconductor layer 20 is formed of a p-type semiconductor
  • the second semiconductor layer 30 is formed of an n-type semiconductor.
  • the first semiconductor layer 20 and the second semiconductor layer 30 can be formed of, for example, an amorphous silicon material containing a dopant that imparts a desired conductive type.
  • Examples of the p-type dopant include boron (B), and examples of the n-type dopant include phosphorus (P) described above.
  • the first semiconductor layer 20 and the second semiconductor layer 30 are formed on the back surface of the semiconductor substrate 10 in a substantially complementary shape. That is, substantially all the regions on the back surface of the semiconductor substrate 10 are covered with either the first semiconductor layer 20 or the second semiconductor layer 30.
  • the first semiconductor layer 20 has a main function portion 21 on which the first electrode pattern 40 is laminated, and an isolation portion 22 which is isolated from the main function portion 21 and on which the first electrode pattern 40 is not laminated.
  • the main function portion 21 is formed at an end portion on one side of the semiconductor substrate 10 in the first direction over a substantially total length in the second direction intersecting the first direction, and a first base end portion 23 and a first base end. It has a plurality of first collecting units 24 extending from the unit 23 to the other side in the first direction.
  • the isolation portion 22 is formed linearly over the entire length in the second direction at the end of the semiconductor substrate 10 on the other side in the first direction.
  • the second semiconductor layer 30 is adjacent to one side in the first direction of the isolation portion 22, and extends from the second base end portion 31 extending in the second direction and the second base end portion 31 to one side in the first direction.
  • the first collecting unit 24 and the second collecting unit 32 use the first electrode pattern 40 or the second electrode pattern 50, which will be described later, in order to reduce the moving distance of the carriers in the semiconductor substrate 10 and improve the photoelectric conversion efficiency. It is preferable that they are alternately formed with a constant width that is relatively small enough to be laminated. Since the electric charges taken out by the first collecting unit 24 and the second collecting unit 32 flow into the first base end portion 23 and the second base end portion 31, the first collecting unit 24 and the second collecting unit 24 and the second collecting unit 24 and the second unit to reduce the electric resistance. It is preferable to have a width larger than that of the collecting unit 32.
  • the average width of the isolation unit 22 in the second direction is preferably the minimum width that can be continuously formed in the first direction. Therefore, the average width of the isolation unit 22 in the first direction is smaller than the average width of the first collection unit 24 in the second direction, and the average width of the first collection unit 24 in the second direction is the first of the first base end portions 23. It is preferably smaller than the average width in one direction.
  • the lower limit of the average width of the isolated portion in the first direction is preferably 100 ⁇ m, more preferably 200 ⁇ m.
  • the upper limit of the average width of the isolated portion in the first direction is preferably 2000 ⁇ m, more preferably 1000 ⁇ m.
  • the first electrode pattern 40 and the second electrode pattern 50 are formed of a highly conductive material such as metal. Further, the first electrode pattern 40 and the second electrode pattern 50 are a transparent electrode layer made of, for example, ITO (Indium Tin Oxide), zinc oxide (ZnO), etc. laminated on the first semiconductor layer 20 and the second semiconductor layer 30. , It may be a laminated body with a metal electrode layer mainly composed of metal.
  • ITO Indium Tin Oxide
  • ZnO zinc oxide
  • the first electrode pattern 40 is provided for extracting electric charges from the first semiconductor layer 20, and the second electrode pattern 50 is provided for extracting electric charges from the second semiconductor layer 30.
  • the first electrode pattern 40 and the second electrode pattern 50 are laminated so as to leave a margin on the outer edge portions of the first semiconductor layer 20 (main function portion 21) and the second semiconductor layer 30 in order to prevent a short circuit.
  • the first electrode pattern 40 is laminated on the first base end portion 23, and extends from the first bus bar electrode 41 extending in the second direction to the other side in the first direction.
  • Each has a plurality of first finger electrodes 42 laminated on the first collecting unit 24.
  • the second electrode pattern 50 is laminated on the second base end portion 31, and extends from the second bus bar electrode 51 extending in the second direction to one side in the first direction from the second bus bar electrode 51, and each second collecting portion. It has a plurality of second finger electrodes 52 laminated on 32.
  • the solar cell 1 has a first semiconductor layer 20 (first base end portion 23 and isolation portion 22) having a conductive type different from that of the semiconductor substrate 10 over the entire length in the first direction at both ends in the first direction. ) Exists. Therefore, when a plurality of solar cell 1s are connected in a single ring in the first direction, the semiconductor substrate 10 may come into contact with the first semiconductor layer 20 of the adjacent solar cell 1, but the second semiconductor layer Does not come into contact with 30. Therefore, the solar cell 1 does not short-circuit when the single ring is connected.
  • the semiconductor substrate 10 of the solar cell 1 on the back side and the first semiconductor layer 20 and the second semiconductor layer 30 of the solar cell 1 on the front side are different depending on the thickness of the first electrode pattern 40 and the second electrode pattern 50.
  • the actual thickness of the first electrode pattern 40 and the second electrode pattern 50 is small, so that the semiconductor substrate 10 of the solar cell 1 on the back side can easily reach the isolation portion 22 due to slight inclination or deformation. Can come into contact with.
  • the solar cell 1 can be manufactured by the solar cell manufacturing method according to the embodiment of the present invention shown in FIG.
  • the solar cell manufacturing method of the present embodiment includes a step of forming a plurality of cell structures C on the back surface of the semiconductor wafer W (step S1: cell structure forming step) and a step of cutting the semiconductor wafer W at the boundary of the cell structure C.
  • Step S2 cutting step.
  • the semiconductor wafer W is a large plate-shaped semiconductor capable of cutting out a plurality of semiconductor substrates 10 by cutting.
  • the cell structure C is a concept in which components other than the semiconductor substrate 10 of each solar cell, that is, the first semiconductor layer 20, the second semiconductor layer 30, the first electrode pattern 40, and the second electrode pattern 50 are put together.
  • a plurality of cell structures C are formed on the semiconductor wafer W by arranging them in the first direction and orienting them in the same direction.
  • FIG. 4 shows a cross section at the same position as that of FIG. 2, that is, a cross section taken along the line AA of FIG.
  • the first semiconductor layer 20 is formed at one end of each cell structure C in the first direction over the entire length of the second direction intersecting the first direction.
  • a main functional unit 21 having a first base end portion 23 and a plurality of first collecting portions 24 extending from the first base end portion 23 to the other side in the first direction and on which the first electrode pattern 40 is laminated.
  • Each cell structure has an isolated portion 22 formed linearly over the entire length in the second direction at the other end in the first direction, and the first electrode pattern 40 is not laminated.
  • the main functional portion 21 of the cell structure C on the other side of the first direction and the isolation portion 22 of the cell structure C adjacent to one side of the first direction are continuously formed. That is, by forming the first semiconductor layer 20 so as to extend across the boundary of the cell structure C (shown by the alternate long and short dash line), the main functional portion 21 of the cell structure C on the other side in the first direction and one in the first direction.
  • the isolated portion 22 of the cell structure C on the side is integrally formed. That is, in FIG. 4, the first semiconductor layer 20 of the cell structure C on the right side extends slightly beyond the boundary of the cell structure C to the cell structure C on the left side, and the portion beyond the boundary of the cell structure C extends. It constitutes the isolation portion 22 of the cell structure C on the left side.
  • the first semiconductor layer 20 and the second semiconductor layer 30 can be formed by forming a resist pattern and selectively laminating semiconductor materials by, for example, a film forming technique such as CVD.
  • the first electrode pattern 40 and the second electrode pattern 50 are formed by, for example, etching of a metal layer formed by plating using a seed layer formed by sputtering or the like as an adherend, printing of a conductive paste, and firing. be able to.
  • the semiconductor wafer W is cut along the boundary of the cell structure C so that the main functional portion 21 of the cell structure C on the other side in the first direction and the cell structure C adjacent to one side in the first direction are adjacent to each other.
  • the solar cell 1 is cut out by separating it from the isolation portion 22 of the above.
  • the semiconductor wafer W can be cut by forming a scribe groove by, for example, laser irradiation, milling, etc., and bending the semiconductor wafer W.
  • FIG. 5 is a cross-sectional view of a solar cell module M having a plurality of solar cell 1s.
  • the solar cell module M includes a plurality of solar cell strings 100 formed by connecting a plurality of solar cell 1s side by side in a row, and a plate-shaped surface protective material 200 covering the front side of the plurality of solar cell strings 100.
  • a plate-shaped or sheet-shaped back surface protective material 300 that covers the back side of the plurality of solar cell strings 100, and a sealing material 400 that is filled between the front surface protective material 200 and the back surface protective material 300.
  • the solar cell string 100 has a plurality of solar cells 1 arranged in a row in the first direction, and an interconnector 2 for connecting adjacent solar cells.
  • the end portion of the solar cell 1 on one side in the first direction is arranged so as to be overlapped with the back side of the end portion of the adjacent solar cell 1 on the other side in the first direction.
  • the interconnector 2 is formed of a conductor such as a metal foil or a metal mesh wire, and has a first bus bar electrode 41 of the solar cell 1 stacked on the front side and a second bus bar electrode 51 of the solar cell 1 stacked on the back side. Connecting.
  • the interconnector 2 may abut on the isolation portion 22 of the first semiconductor layer 20, but the isolation portion 22 is isolated from the main function portion 21 that contributes to photoelectric conversion. , No inconvenience occurs even if the interconnector 2 comes into contact with the connector 2.
  • the surface protective material 200 protects the solar cell string 100 by covering the surface of the solar cell string 100 via the sealing material 400.
  • the surface protective material 200 is preferably made of a transparent and scratch-resistant material such as glass, polycarbonate, and acrylic resin, and is preferably excellent in weather resistance.
  • examples of the material of the surface protective material 200 include transparent resins such as acrylic resin and polycarbonate resin, and glass.
  • the surface of the surface protective material 200 may be processed into an uneven shape or coated with an antireflection coating layer in order to suppress the reflection of light.
  • the surface protective material 200 may have a light-shielding region on the outer peripheral portion.
  • the surface protective material 200 preferably has a sufficient thickness to have enough strength to hold the shape of the solar cell module M. Further, by using the surface protective material 200 previously molded into a desired shape, the solar cell module M having a desired shape can be obtained.
  • the solar cell string 100 may be formed to have a length substantially equal to the length in the first direction of the translucent region inside the light-shielding region of the surface protective material 200. As a result, it is possible to increase the effective area of light received by the solar cell string 100 and prevent a decrease in photoelectric conversion efficiency due to light not incident on a part of the solar cell 1 at the end of the solar cell string 100.
  • the plurality of solar cell strings 100 may be connected to each other by a wiring material (not shown).
  • the back surface protective material 300 is a layer that protects the back surface side of the solar cell string 100.
  • the material of the back surface protective material 300 is not particularly limited, but a material that prevents the ingress of water or the like (highly water-impervious) is preferable.
  • the back surface protective material 300 can be formed of, for example, a resin such as glass, polyethylene terephthalate (PET), acrylic resin, polyethylene (PE), olefin resin, fluororesin-containing resin, and silicone-containing resin.
  • the back surface protective material 300 may be a laminate of a resin layer and a metal layer such as an aluminum foil.
  • the color (light reflection characteristic) when viewed from the front side surface of the back surface protective material 300 makes the gap between the solar cell strings 100 inconspicuous and improves the aesthetic appearance of the solar cell module M. It is preferable that the color is close to the color of the front side surface of 1.
  • the sealing material 400 seals the solar cell string 100 in the space between the front surface protective material 200 and the back surface protective material 300, and suppresses deterioration of the solar cell string 100 due to moisture or the like.
  • the encapsulant 400 is made of a transparent material and has adhesion to the surface protective material 200 and the solar cell string 100.
  • the material forming the sealing material 400 is preferably thermoplastic so that the gap between the surface protective material 200 and the solar cell string 100 can be sealed by hot pressing.
  • examples of the material for forming the encapsulant 400 include ethylene / vinyl acetate copolymer (EVA), ethylene / ⁇ -olefin copolymer, ethylene / vinyl acetate / triallyl isocyanurate (EVAT), and the like.
  • EVA ethylene / vinyl acetate copolymer
  • EVAT ethylene / vinyl acetate copolymer
  • EVAT ethylene / vinyl acetate / triallyl isocyanurate
  • the solar cell according to the present invention may have components other than those described in the above-described embodiment.
  • the solar cell according to the present invention may have an intrinsic semiconductor layer that separates the first semiconductor layer and the second semiconductor layer. Further, the planar shape of the main functional portion of the first semiconductor layer and the planar shape of the second semiconductor layer, and thus the planar shapes of the first electrode pattern and the second electrode pattern can be appropriately changed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

シングリング接続時の短絡を防止できる太陽電池セル及びその製造方法を提供すること。本発明の一態様に係る太陽電池セル1において、半導体基板10と異なる導電型を有する第1半導体層20は、半導体基板10の第1方向一方側の端部に第2方向の全長に亘って形成される第1基端部23、及び第1基端部23から第1方向他方側に延出する複数の第1収集部24を有し、第1電極パターン40が積層される主機能部21と、半導体基板10の第1方向他方側の端部に第2方向の全長に亘って線状に形成され、第1電極パターン40が積層されない隔離部22と、を有し、半導体基板10と同じ導電型を有する第2半導体層30は、隔離部22の第1方向一方側に隣接し、第2方向に延びる第2基端部31、及び第2基端部31から第1方向一方側に延出する複数の第2収集部32と、を有する。

Description

太陽電池セル及び太陽電池セル製造方法
 本発明は、太陽電池セル及び太陽電池セル製造方法に関する。
 半導体基板の裏面側の相補的な領域に互いに導電型が異なる一対の半導体層を形成し、それぞれの半導体層に電極パターンを積層したバックコンタクト型の太陽電池セルが知られている。バックコンタクト型の太陽電池セルにおいて、キャリアの移動距離を小さくするためには、平面視で極性が異なる帯状半導体膜を交互に配置し、極性が同じ帯状半導体膜を接続する構成とすることが好ましい。複数の太陽電池セルを接続することによりモジュールを形成することを考慮すると、各帯状半導体膜を太陽電池セル接続方向に延びるよう配置し、太陽電池セル接続方向一方側に一方の導電型の帯状半導体の端部を接続する基端部を設け、太陽電池セル接続方向他方側で他方の導電型の帯状半導体の端部を接続する基端部を設ける構成、つまり、一対の半導体層をそれぞれ櫛型に形成し、互いの歯を噛み合わせるようにして配置することが想定される(例えば特許文献1参照)。
 特許文献1には、半導体ウエハに一対の太陽電池セルのセル構造(半導体層及び電極)を一方の半導体層の接続部が隣り合うよう鏡写し(線対称)に形成し、セル構造の境界で半導体ウエハを切断することで、2つの太陽電池セルを得る製造方法が開示されている。特許文献1では、四隅に面取り部を有する八角形状の半導体ウエハを中央で切断することで、2つの太陽電池セルを形成する結果、各太陽電池セルは、一方の半導体層の基端部が形成される側の角部が面取りされた非対称な形状を有する。
 複数の太陽電池セルを用いて太陽電池モジュールを形成する場合、それぞれ複数の太陽電池セルを一列に並べて形成される複数の太陽電池ストリングを並べて配置することが一般的である。特許文献1に記載の太陽電池モジュールは、太陽電池セルの形状が非対称であるため、太陽電池ストリングにおける太陽電池セルの向きが容易に確認できる。太陽電池ストリングの向きは、電気的接続に依存して定められるため、特許文献1の太陽電池モジュールでは、一列ごとに太陽電池セルの向きが逆転している。そこで半導体ウエハに複数の太陽電池セルを同じ向きに配向して形成すれば、半導体層の極性を反転した太陽電池セルを得ることができるため、太陽電池モジュールにおける面取り部を同じ側に統一することができる。
特開2018-163988号公報
 特許文献1では、太陽電池セルの間に隙間が形成されているが、モジュールの面積当たりの出力を向上する構成として、太陽電池セルの端部を一定方向に重ねるいわゆるシングリング構造が採用される場合がある。この場合、表側の太陽電池セルの端部の電極構造が、裏側の太陽電池セルの半導体基板(受光面)に当接する。表側の太陽電池セルの電極構造の当接部分の極性が裏側の半導体基板の極性と等しい場合、太陽電池セルが短絡する可能性がある。上述のように、半導体ウエハに複数の太陽電池セルを同じ方向に配向して形成する場合、切断位置の誤差により、太陽電池セルの端部に意図しない極性を有する微小な半導体層が形成され得る。このため、半導体ウエハに複数の太陽電池セルを同じ方向に配向して形成すると、シングリング接続時に短絡が生じるおそれがある。かかる事情に鑑みて、本発明は、シングリング接続時の短絡を防止できる太陽電池セル及びその製造方法を提供することを課題とする。
 本発明の一態様に係る太陽電池セルは、第1の導電型を有する半導体基板と、前記半導体基板の裏面に形成され、前記半導体基板と異なる導電型を有する第1半導体層、及び前記半導体基板と同じ導電型を有する第2半導体層と、前記第1半導体層に積層される第1電極パターン及び前記第2半導体層に積層される第2電極パターンと、を備え、前記第1半導体層は、前記半導体基板の第1方向一方側の端部に前記第1方向と交差する第2方向の全長に亘って形成される第1基端部、及び前記第1基端部から前記第1方向他方側に延出する複数の第1収集部を有し、前記第1電極パターンが積層される主機能部と、前記半導体基板の前記第1方向他方側の端部に前記第2方向の全長に亘って線状に形成され、前記第1電極パターンが積層されない隔離部と、を有し、前記第2半導体層は、前記隔離部の前記第1方向一方側に隣接し、前記第2方向に延びる第2基端部、及び前記第2基端部から前記第1方向一方側に延出する複数の第2収集部と、を有する。
 前記太陽電池セルにおいて、前記隔離部の前記第1方向の平均幅は前記第1収集部の前記第2方向の平均幅より小さく、前記第1収集部の前記第2方向の平均幅は前記第1基端部の前記第1方向の平均幅より小さくてもよい。
 前記太陽電池セルにおいて、前記隔離部の前記第1方向の平均幅は2000μm以下であってもよい。
 本発明の一態様に係る太陽電池セル製造方法は、第1の導電型を有する半導体ウエハの裏面に、前記半導体ウエハと異なる導電型を有する第1半導体層及び前記半導体ウエハと同じ導電型を有する第2半導体層、並びに前記第1半導体層に積層される第1電極パターン及び前記第2半導体層に積層される第2電極パターンをそれぞれ有する複数のセル構造を形成する工程と、前記セル構造の境界で前記半導体ウエハを切断する工程と、を備え、前記複数のセル構造は、第1方向に並んで、同一方向に配向して形成され、前記第1半導体層は、前記セル構造の前記第1方向一方側の端部に前記第1方向と交差する第2方向の全長に亘って形成される第1基端部、及び前記第1基端部から前記第1方向他方側に延出する複数の第2収集部を有し、前記第1電極パターンが積層される主機能部と、前記セル構造の前記第1方向他方側の端部に前記第2方向の全長に亘って線状に形成され、前記第1電極パターンが積層されない隔離部と、を有し、前記セル構造を形成する工程において、前記主機能部と、前記第1方向一方側に隣接する前記セル構造の前記隔離部とは連続して形成され、前記半導体ウエハを切断する工程において、前記主機能部と前記第1方向一方側に隣接する前記セル構造の前記隔離部とが分離される。
 本発明によれば、シングリング接続時の短絡を防止できる太陽電池セルを提供できる。
本発明の一実施形態の太陽電池セルの裏面図である。 図1の太陽電池セルのA-A線断面図である。 図1の太陽電池セルの製造方法の手順を示すフローチャートである。 図3のセル構造形成工程後の半導体ウエハの断面図である。 図1の太陽電池セルを有する太陽電池モジュールの断面図である。
 以下、添付の図面を参照して本発明の各実施形態について説明する。なお、各図面において同一又は相当の部分に対しては同一の符号を附すこととする。また、簡略化のために、部材の図示、符号等を省略する場合もあるが、かかる場合、他の図面を参照するものとする。また、図面における種々部材の形状及び寸法は、便宜上、見やすいように調整されている。
<太陽電池セル>
 図1は、本発明の一実施形態に係る太陽電池セル1を示す裏面図である。図2は、太陽電池セル1の断面図である。太陽電池セル1は、第1の導電型を有する半導体基板10と、半導体基板10の裏面(受光面と反対側の面)に形成され、半導体基板10と異なる導電型を有する第1半導体層20及び半導体基板10と同じ導電型を有する第2半導体層30と、第1半導体層20に積層される第1電極パターン40及び第2半導体層30に積層される第2電極パターン50と、を備える。
 半導体基板10は、単結晶シリコン又は多結晶シリコン等の結晶シリコン材料で形成することができる。また、ガリウムヒ素(GaAs)等の他の半導体材料から形成されてもよい。半導体基板10は、例えば結晶シリコン材料にn型ドーパントがドープされたn型の半導体基板である。n型ドーパントとしては、例えばリン(P)が挙げられる。半導体基板10は、受光面側からの入射光を吸収して光キャリア(電子及び正孔)を生成する光電変換基板として機能する。半導体基板10の材料として結晶シリコンが用いられることにより、暗電流が比較的に小さく、入射光の強度が低い場合であっても比較的高出力(照度によらず安定した出力)が得られる。
 第1半導体層20及び第2半導体層30は、半導体基板10の内部から、互いに極性が異なるキャリアを誘引することにより、異なる極性の電荷をして収集する。具体的には、半導体基板10がn型である場合、第1半導体層20はp型半導体から形成され、第2半導体層30はn型半導体から形成される。第1半導体層20及び第2半導体層30は、例えば所望の導電型を付与するドーパントを含有するアモルファスシリコン材料で形成することができる。p型ドーパントとしては、例えばホウ素(B)が挙げられ、n型ドーパントとしては、例えば上述したリン(P)が挙げられる。
第1半導体層20と第2半導体層30とは、半導体基板10の裏面に、略相補的な形状に形成される。つまり、半導体基板10の裏面の略全ての領域は、第1半導体層20及び第2半導体層30のいずれかに覆われる。
 第1半導体層20は、第1電極パターン40が積層される主機能部21と、主機能部21から隔離され、第1電極パターン40が積層されない隔離部22と、を有する。主機能部21は、半導体基板10の第1方向一方側の端部に、第1方向と交差する第2方向の略全長に亘って形成される第1基端部23、及び第1基端部23から第1方向他方側に延出する複数の第1収集部24を有する。隔離部22は、半導体基板10の第1方向他方側の端部に、第2方向の全長に亘って線状に形成される。
 第2半導体層30は、隔離部22の第1方向一方側に隣接し、第2方向に延びる第2基端部31、及び第2基端部31から第1方向一方側に延出する複数の第2収集部32と、を有する。
 第1収集部24及び第2収集部32は、半導体基板10内でのキャリアの移動距離を小さくして光電変換効率を向上するために、後述する第1電極パターン40又は第2電極パターン50を積層できる程度の比較的小さい一定の幅で交互に形成されることが好ましい。第1基端部23及び第2基端部31は、第1収集部24及び第2収集部32で取り出した電荷が流入するため、電気抵抗を小さくするために第1収集部24及び第2収集部32よりも大きい幅を有することが好ましい。隔離部22は、光電変換に寄与しないため、隔離部22の第2方向の平均幅は第1方向に連続して形成可能な最低限度の幅とすることが好ましい。このため、隔離部22の第1方向の平均幅は第1収集部24の第2方向の平均幅より小さく、第1収集部24の第2方向の平均幅は第1基端部23の第1方向の平均幅より小さいことが好ましい。具体的には、隔離部の第1方向の平均幅の下限としては100μmが好ましく、200μmがより好ましい。一方、隔離部の第1方向の平均幅の上限としては2000μmが好ましく、1000μmがより好ましい。
 第1電極パターン40及び第2電極パターン50は、例えば金属等の高い導電性を有する材料によって形成される。また、第1電極パターン40及び第2電極パターン50は、第1半導体層20及び第2半導体層30に積層される例えばITO(Indium Tin Oxide)、酸化亜鉛(ZnO)等からなる透明電極層と、金属を主体とする金属電極層との積層体であってもよい。
 第1電極パターン40は第1半導体層20から電荷を取り出すために設けられ、第2電極パターン50は第2半導体層30から電荷を取り出すために設けられる。第1電極パターン40及び第2電極パターン50は、短絡を防止するために、第1半導体層20(主機能部21)及び第2半導体層30の外縁部にマージンを残すよう積層される。
 具体的に説明すると、第1電極パターン40は、第1基端部23に積層され、第2方向に延びる第1バスバー電極41と、第1バスバー電極41から第1方向他方側に延出し、それぞれの第1収集部24に積層される複数の第1フィンガー電極42と、を有する。第2電極パターン50は、第2基端部31に積層され、第2方向に延びる第2バスバー電極51と、第2バスバー電極51から第1方向一方側に延出し、それぞれの第2収集部32に積層される複数の第2フィンガー電極52と、を有する。
 以上のように、太陽電池セル1は、第1方向の両端に第1方向の全長に亘って半導体基板10と異なる導電型を有する第1半導体層20(第1基端部23及び隔離部22)が存在する。このため、複数の太陽電池セル1を第1方向にシングリング接続した場合に、半導体基板10が隣接する太陽電池セル1の第1半導体層20と接触することはあっても、第2半導体層30と接触することがない。このため、シングリング接続時に太陽電池セル1が短絡することがない。なお、図では第1電極パターン40及び第2電極パターン50の厚さによって裏側の太陽電池セル1の半導体基板10と表側の太陽電池セル1の第1半導体層20及び第2半導体層30とは接触しないように見えるが、実際の第1電極パターン40及び第2電極パターン50の厚さは小さいため、裏側の太陽電池セル1の半導体基板10は、僅かな傾斜や変形によって隔離部22に容易に当接し得る。
<太陽電池セル製造方法>
 太陽電池セル1は、図3に示す、本発明の一実施形態に係る太陽電池セル製造方法によって製造することができる。
 本実施形態の太陽電池セル製造方法は、半導体ウエハWの裏面に複数のセル構造Cを形成する工程(ステップS1:セル構造形成工程)と、セル構造Cの境界で半導体ウエハWを切断する工程(ステップS2:切断工程)と、を備える。半導体ウエハWは、切断することによって複数の半導体基板10を切り出すことができる大きい板状の半導体である。セル構造Cは、各太陽電池セルの半導体基板10以外の構成要素、つまり第1半導体層20、第2半導体層30、第1電極パターン40及び第2電極パターン50をまとめた概念である。
 ステップS1のセル構造形成工程では、図4に示すように、半導体ウエハWに、複数のセル構造Cを、第1方向に並んで同一方向に配向して形成する。なお、図4は、図2と同じ位置での断面、つまり図1のA-A線での断面を示す。太陽電池セル1の説明から明らかなように、第1半導体層20は、各セル構造Cの第1方向一方側の端部に第1方向と交差する第2方向の全長に亘って形成される第1基端部23、及び第1基端部23から第1方向他方側に延出する複数の第1収集部24を有し、第1電極パターン40が積層される主機能部21と、各セル構造の第1方向他方側の端部に第2方向の全長に亘って線状に形成され、第1電極パターン40が積層されない隔離部22と、を有する。
 セル構造形成工程において、第1方向他方側のセル構造Cの主機能部21と、第1方向一方側に隣接するセル構造Cの隔離部22とは、連続して形成される。つまり、第1半導体層20をセル構造Cの境界(一点鎖線で図示)を跨いで延在するよう形成することで、第1方向他方側のセル構造Cの主機能部21と第1方向一方側のセル構造Cの隔離部22とを一体に形成する。つまり、図4において、右側のセル構造Cの第1半導体層20がセル構造Cの境界を僅かに越えて左側のセル構造Cまで延在しており、このセル構造Cの境界を超える部分が左側のセル構造Cの隔離部22を構成している。
 第1半導体層20及び第2半導体層30は、レジストパターンを形成して例えばCVD等の成膜技術によって半導体材料を選択的に積層することによって形成することができる。第1電極パターン40及び第2電極パターン50は、例えば、スパッタリング等で形成したシード層を被着体とするメッキにより形成した金属層のエッチング、導電性ペーストの印刷及び焼成などの方法によって形成することができる。
 ステップS2の切断工程では、セル構造Cの境界に沿って半導体ウエハWを切断することによって、第1方向他方側のセル構造Cの主機能部21と第1方向一方側に隣接するセル構造Cの隔離部22とを分離して、太陽電池セル1を切り出す。
 半導体ウエハWの切断は、例えばレーザの照射、ミリング等によってスクライブ溝を形成し、半導体ウエハWに曲げを作用させる割断によって行うことができる。
<太陽電池モジュール>
 図5は、複数の太陽電池セル1を有する太陽電池モジュールMの断面図である。太陽電池モジュールMは、それぞれ複数の太陽電池セル1を一列に並べて接続することにより形成される複数の太陽電池ストリング100と、複数の太陽電池ストリング100の表側を覆う板状の表面保護材200と、複数の太陽電池ストリング100の裏側を覆う板状又はシート状の裏面保護材300と、表面保護材200と裏面保護材300との間に充填される封止材400と、を備える。
 太陽電池ストリング100は、第1方向に一列に並ぶ複数の太陽電池セル1と、隣り合う太陽電池セル間を接続するインターコネクタ2とを有する。太陽電池ストリング100において、太陽電池セル1の第1方向一方側の端部は、隣接する太陽電池セル1の第1方向他方側の端部の裏側に重ねて配置される。インターコネクタ2は、金属箔、金属網線等の導電体から形成され、表側に重ねられる太陽電池セル1の第1バスバー電極41と裏側に重ねられる太陽電池セル1の第2バスバー電極51とを接続する。
 太陽電池ストリングにおいて、図示するように、インターコネクタ2が、第1半導体層20の隔離部22に当接し得るが、隔離部22は、光電変換に寄与する主機能部21から隔離されているため、インターコネクタ2が接触しても不都合は生じない。
 表面保護材200は、封止材400を介して、太陽電池ストリング100の表面を覆うことにより、太陽電池ストリング100を保護する。表面保護材200は、例えばガラス、ポリカーボネート、アクリル樹脂などの透明で耐傷性を有する材料から形成され、対候性に優れることが好ましい。具体的には、表面保護材200の材質としては、例えばアクリル樹脂若しくはポリカーボネート樹脂等の透明樹脂、ガラスなどを挙げることができる。また、表面保護材200の表面は、光の反射を抑制するために、凹凸状に加工されたり、反射防止コーティング層で被覆されてもよい。表面保護材200は、外周部に遮光領域を有してもよい。
 表面保護材200は、太陽電池モジュールMの形状を保持できる強度を備えるために十分な厚さを有することが好ましい。また、予め所望の形状に成形した表面保護材200を用いることによって、所望の形状の太陽電池モジュールMを得ることができる。
 太陽電池ストリング100は、表面保護材200の遮光領域の内側の透光領域の第1方向の長さと略等しい長さを有するよう形成され得る。これにより、太陽電池ストリング100が受光する有効面積を大きくしつつ、太陽電池ストリング100の端部の太陽電池セル1の一部に光が入射しないことによる光電変換効率の低下を防止できる。なお、複数の太陽電池ストリング100は、不図示の配線材によって互いに接続され得る。
 裏面保護材300は、太陽電池ストリング100の裏面側を保護する層である。裏面保護材300の材質としては、特に限定されるものではないが、水等の浸入を防止する(遮水性の高い)材質が好ましい。具体的には、裏面保護材300は、例えばガラス、ポリエチレンテレフタレート(PET)、アクリル樹脂、ポリエチレン(PE)、オレフィン系樹脂、含フッ素樹脂、含シリコーン樹脂等の樹脂等から形成できる。また、裏面保護材300は、樹脂の層と、例えばアルミニウム箔等の金属の層との積層体としてもよい。また、裏面保護材300の表側面から見た際の色(光の反射特性)は、太陽電池ストリング100間の隙間を目立ちにくくして太陽電池モジュールMの美観を向上するために、太陽電池セル1の表側面の色と近似していることが好ましい。
 封止材400は、表面保護材200と裏面保護材300との間の空間内で太陽電池ストリング100を封止し、水分等により太陽電池ストリング100が劣化することを抑制する。封止材400は、透明性を有し、表面保護材200及び太陽電池ストリング100に対する密着性を有する材料から形成される。封止材400を形成する材料は、熱プレスにより表面保護材200と太陽電池ストリング100との隙間を封止できるよう、熱可塑性を有することが好ましい。具体的には、封止材400を形成する材料としては、例えばエチレン/酢酸ビニル共重合体(EVA)、エチレン/α-オレフィン共重合体、エチレン/酢酸ビニル/トリアリルイソシアヌレート(EVAT)、ポリビニルブチラート(PVB)、アクリル樹脂、ウレタン樹脂、シリコーン樹脂等を主成分する樹脂組成物を用いることができる。
 以上、本発明の実施形態について説明したが、本発明は上述した実施形態に限定されることなく、種々の変更及び変形が可能である。また、本発明に係る太陽電池セルは、上述した実施形態において説明したもの以外の構成要素を有してもよい。例として、本発明に係る太陽電池セルは、第1半導体層と第2半導体層とを隔離する真性半導体層を有してもよい。また、第1半導体層の主機能部の平面形状及び第2半導体層の平面形状ひいては第1電極パターン及び第2電極パターンの平面形状は、適宜変更することができる。
 1 太陽電池セル
 2 インターコネクタ
 10 半導体基板
 20 第1半導体層
 21 主機能部
 22 隔離部
 23 第1基端部
 24 第1収集部
 30 第2半導体層
 31 第2基端部
 32 第2収集部
 40 第1電極パターン
 41 第1バスバー電極
 42 第1フィンガー電極
 50 第2電極パターン
 51 第2バスバー電極
 52 第2フィンガー電極
 100 太陽電池ストリング
 200 表面保護材
 300 裏面保護材
 400 封止材
 C セル構造
 M 太陽電池モジュール
 W 半導体ウエハ

Claims (4)

  1.  第1の導電型を有する半導体基板と、
     前記半導体基板の裏面に形成され、前記半導体基板と異なる導電型を有する第1半導体層、及び前記半導体基板と同じ導電型を有する第2半導体層と、
     前記第1半導体層に積層される第1電極パターン及び前記第2半導体層に積層される第2電極パターンと、
    を備え、
     前記第1半導体層は、
     前記半導体基板の第1方向一方側の端部に前記第1方向と交差する第2方向の全長に亘って形成される第1基端部、及び前記第1基端部から前記第1方向他方側に延出する複数の第1収集部を有し、前記第1電極パターンが積層される主機能部と、
     前記半導体基板の前記第1方向他方側の端部に前記第2方向の全長に亘って線状に形成され、前記第1電極パターンが積層されない隔離部と、
    を有し、
     前記第2半導体層は、前記隔離部の前記第1方向一方側に隣接し、前記第2方向に延びる第2基端部、及び前記第2基端部から前記第1方向一方側に延出する複数の第2収集部と、を有する、太陽電池セル。
  2.  前記隔離部の前記第1方向の平均幅は前記第1収集部の前記第2方向の平均幅より小さく、前記第1収集部の前記第2方向の平均幅は前記第1基端部の前記第1方向の平均幅より小さい、請求項1に記載の太陽電池セル。
  3.  前記隔離部の前記第1方向の平均幅は2000μm以下である、請求項1又は2に記載の太陽電池セル。
  4.  第1の導電型を有する半導体ウエハの裏面に、前記半導体ウエハと異なる導電型を有する第1半導体層及び前記半導体ウエハと同じ導電型を有する第2半導体層、並びに前記第1半導体層に積層される第1電極パターン及び前記第2半導体層に積層される第2電極パターンをそれぞれ有する複数のセル構造を形成する工程と、
     前記セル構造の境界で前記半導体ウエハを切断する工程と、
    を備え、
     前記複数のセル構造は、第1方向に並んで、同一方向に配向して形成され、
     前記第1半導体層は、
     前記セル構造の前記第1方向一方側の端部に前記第1方向と交差する第2方向の全長に亘って形成される第1基端部、及び前記第1基端部から前記第1方向他方側に延出する複数の第2収集部を有し、前記第1電極パターンが積層される主機能部と、
     前記セル構造の前記第1方向他方側の端部に前記第2方向の全長に亘って線状に形成され、前記第1電極パターンが積層されない隔離部と、
    を有し、
     前記セル構造を形成する工程において、前記主機能部と、前記第1方向一方側に隣接する前記セル構造の前記隔離部とは連続して形成され、
     前記半導体ウエハを切断する工程において、前記主機能部と前記第1方向一方側に隣接する前記セル構造の前記隔離部とが分離される、太陽電池セル製造方法。
PCT/JP2021/028729 2020-08-06 2021-08-03 太陽電池セル及び太陽電池セル製造方法 WO2022030471A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022541553A JPWO2022030471A1 (ja) 2020-08-06 2021-08-03
CN202180048272.7A CN115777149A (zh) 2020-08-06 2021-08-03 太阳能电池单元及太阳能电池单元制造方法
US18/163,134 US20230178665A1 (en) 2020-08-06 2023-02-01 Solar cell and manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020134104 2020-08-06
JP2020-134104 2020-08-06

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/163,134 Continuation US20230178665A1 (en) 2020-08-06 2023-02-01 Solar cell and manufacturing method

Publications (1)

Publication Number Publication Date
WO2022030471A1 true WO2022030471A1 (ja) 2022-02-10

Family

ID=80118060

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/028729 WO2022030471A1 (ja) 2020-08-06 2021-08-03 太陽電池セル及び太陽電池セル製造方法

Country Status (4)

Country Link
US (1) US20230178665A1 (ja)
JP (1) JPWO2022030471A1 (ja)
CN (1) CN115777149A (ja)
WO (1) WO2022030471A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010021204A1 (ja) * 2008-08-22 2010-02-25 三洋電機株式会社 太陽電池モジュール、太陽電池及び太陽電池モジュールの製造方法
US20180108796A1 (en) * 2016-10-18 2018-04-19 Solarcity Corporation Cascaded photovoltaic structures with interdigitated back contacts
JP2018186248A (ja) * 2017-04-27 2018-11-22 パナソニック株式会社 太陽電池モジュール
WO2019146366A1 (ja) * 2018-01-25 2019-08-01 株式会社カネカ 太陽電池モジュール
US20190296171A1 (en) * 2018-03-26 2019-09-26 Lg Electronics Inc. Solar cell, solar cell module and method of manufacturing therefor
JP2020013868A (ja) * 2018-07-18 2020-01-23 セイコーエプソン株式会社 裏面電極型光電変換素子、光電変換モジュールおよび電子機器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010021204A1 (ja) * 2008-08-22 2010-02-25 三洋電機株式会社 太陽電池モジュール、太陽電池及び太陽電池モジュールの製造方法
US20180108796A1 (en) * 2016-10-18 2018-04-19 Solarcity Corporation Cascaded photovoltaic structures with interdigitated back contacts
JP2018186248A (ja) * 2017-04-27 2018-11-22 パナソニック株式会社 太陽電池モジュール
WO2019146366A1 (ja) * 2018-01-25 2019-08-01 株式会社カネカ 太陽電池モジュール
US20190296171A1 (en) * 2018-03-26 2019-09-26 Lg Electronics Inc. Solar cell, solar cell module and method of manufacturing therefor
JP2020013868A (ja) * 2018-07-18 2020-01-23 セイコーエプソン株式会社 裏面電極型光電変換素子、光電変換モジュールおよび電子機器

Also Published As

Publication number Publication date
CN115777149A (zh) 2023-03-10
JPWO2022030471A1 (ja) 2022-02-10
US20230178665A1 (en) 2023-06-08

Similar Documents

Publication Publication Date Title
CN111615752B (zh) 太阳能电池模块
JP5934328B2 (ja) 太陽電池
CN108475706B (zh) 太阳能电池模块
KR20140003691A (ko) 태양 전지 모듈 및 이에 적용되는 리본 결합체
KR101161378B1 (ko) 백색 반사층을 구비한 박막형 태양전지 모듈 및 그 제조방법
JPWO2020054130A1 (ja) 太陽電池モジュール
KR20140095658A (ko) 태양 전지
KR20190041268A (ko) 태양 전지 및 이를 포함하는 태양 전지 패널
KR101192345B1 (ko) 태양전지의 전극 패턴 및 이를 포함하는 태양전지
KR20160116745A (ko) 정션 박스 및 이를 포함하는 태양 전지 모듈
WO2022030471A1 (ja) 太陽電池セル及び太陽電池セル製造方法
KR102531134B1 (ko) 태양전지 모듈
CN111630666B (zh) 用于太阳能电池单元的连接部件组、以及使用该连接部件组的太阳能电池串和太阳能电池模块
KR102000063B1 (ko) 태양 전지 모듈
JP7539253B2 (ja) 太陽電池セル、太陽電池モジュール及び太陽電池セル製造方法
KR20160041649A (ko) 태양 전지용 리본 및 이를 포함하는 태양 전지 모듈
WO2024157831A1 (ja) 太陽電池セルおよび太陽電池モジュール
KR102531133B1 (ko) 태양전지 모듈
US12148844B2 (en) Solar cell module
JP7483382B2 (ja) 太陽電池モジュール
WO2023127382A1 (ja) 太陽電池デバイスおよび太陽電池モジュール
US20230163222A1 (en) Solar cell module
WO2023037885A1 (ja) 太陽電池デバイスおよび太陽電池モジュール
JPH11298020A (ja) 薄膜太陽電池モジュール
JP7560479B2 (ja) 太陽電池、太陽電池モジュール及び太陽電池の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21852932

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022541553

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21852932

Country of ref document: EP

Kind code of ref document: A1