WO2021172080A1 - 抵抗スポット溶接方法 - Google Patents
抵抗スポット溶接方法 Download PDFInfo
- Publication number
- WO2021172080A1 WO2021172080A1 PCT/JP2021/005575 JP2021005575W WO2021172080A1 WO 2021172080 A1 WO2021172080 A1 WO 2021172080A1 JP 2021005575 W JP2021005575 W JP 2021005575W WO 2021172080 A1 WO2021172080 A1 WO 2021172080A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- electrode
- spot welding
- resistance spot
- pair
- welding method
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K11/00—Resistance welding; Severing by resistance heating
- B23K11/10—Spot welding; Stitch welding
- B23K11/11—Spot welding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K11/00—Resistance welding; Severing by resistance heating
- B23K11/10—Spot welding; Stitch welding
- B23K11/11—Spot welding
- B23K11/115—Spot welding by means of two electrodes placed opposite one another on both sides of the welded parts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K11/00—Resistance welding; Severing by resistance heating
- B23K11/16—Resistance welding; Severing by resistance heating taking account of the properties of the material to be welded
- B23K11/163—Welding of coated materials
- B23K11/166—Welding of coated materials of galvanized or tinned materials
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K11/00—Resistance welding; Severing by resistance heating
- B23K11/30—Features relating to electrodes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K11/00—Resistance welding; Severing by resistance heating
- B23K11/30—Features relating to electrodes
- B23K11/3009—Pressure electrodes
- B23K11/3018—Cooled pressure electrodes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K11/00—Resistance welding; Severing by resistance heating
- B23K11/36—Auxiliary equipment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K2101/00—Articles made by soldering, welding or cutting
- B23K2101/006—Vehicles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K2101/00—Articles made by soldering, welding or cutting
- B23K2101/18—Sheet panels
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K2101/00—Articles made by soldering, welding or cutting
- B23K2101/34—Coated articles, e.g. plated or painted; Surface treated articles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K2103/00—Materials to be soldered, welded or cut
- B23K2103/02—Iron or ferrous alloys
- B23K2103/04—Steel or steel alloys
Definitions
- the present invention relates to a resistance spot welding method.
- HTSS high-strength steel sheets
- resistance spot welding is mainly used in the assembly of automobile bodies and the attachment of parts, and is also applied to the welding of high-strength steel plates.
- Patent Document 1 includes a welding step of energizing while pressurizing with a pressing force F1 by a welding electrode and a cooling step of holding the energizing with a pressing force F2 immediately after the end of energization, and satisfies the relationship of a pressing force of F2> F1 ⁇ 2.
- a resistance spot welding method capable of suppressing LME cracking is disclosed.
- Patent Document 2 discloses a resistance spot welding method capable of suppressing LME cracking by appropriately controlling the pressing force holding time after the end of energization.
- a flanged rod is inserted into a tubular socket screwed into a base member of one of the electrodes, and a convex spherical seat provided at the base end of the flanged rod is used as a receiving surface of the base member. It is in contact.
- the swing center of the convex spherical seat of the flanged rod is located near the center of the flanged rod, and the spot where the amount of shift from the original position of the electrode tip provided at the tip of the flanged rod can be suppressed. Welders are listed.
- the tensile stress is reduced and LME cracking is suppressed by making the electrode tip of one of the electrodes swingable, but further improvement is required. rice field.
- the spot welding methods described in Patent Documents 1 and 2 do not consider reducing tensile stress to suppress LME cracking.
- the electrode itself in order to prevent an excessive temperature rise, it is necessary to maintain a cooled state during welding by using cooling water or the like, but the angle (striking angle) formed by the steel plate and the electrode can be adjusted.
- the cooling mechanism is also required for the mechanism.
- the present invention has been made in view of the above-mentioned problems, and an object of the present invention is to suppress the occurrence of LME cracks in a pressure welded portion of a resistance spot welded joint in a resistance spot welding method using a high-strength galvanized steel sheet. It is to provide a resistance spot welding method.
- the above object of the present invention is achieved by the configuration of the following (1) according to one resistance spot welding method.
- the variable load of the pressing force generated at the time of energization is applied to the pressing force absorbing mechanism.
- a resistance spot welding method that welds while absorbing by. According to this configuration, welding is performed while absorbing the fluctuating load of the pressing force generated when joining a plurality of steel sheets by the pressing force absorbing mechanism, suppressing LME cracking, and performing resistance spot welding with excellent welding quality. Can be done.
- preferred embodiments of the present invention relating to the resistance spot welding method relate to the following (2) to (5).
- One of the pair of electrodes is a fixed electrode and the other is a movable electrode.
- the resistance spot welding method according to (3) wherein the elastic member is composed of a spring having a spring constant of 10 N / mm or more and 1500 N / mm or less. According to this configuration, it is possible to absorb the variable load of the pressing force while securing the pressing force required for welding.
- the pressure absorbing mechanism is a mechanism using pneumatic pressure. According to this configuration, a pressure absorbing mechanism can be configured by using an air cylinder or the like.
- the above object of the present invention is achieved by the configuration of the following (6) according to another resistance spot welding method.
- (6) For spot welding a plurality of steel sheets containing C: 0.08% by mass or more and Si: 0.50% by mass or more, having a tensile strength of 980 MPa or more, and having at least one galvanized steel sheet. It is a resistance spot welding method.
- a pair of electrodes including a pair of electrode chips that sandwich and pressurize the plurality of steel plates and a pair of angle correction mechanisms that can correct the angles of the pair of electrode chips with respect to the steel plates, respectively.
- a resistance spot welding method that welds by energizing with. According to this configuration, the tensile stress can be reduced and the occurrence of LME cracks can be suppressed by bringing the electrode tip into contact with the steel sheet substantially vertically and welding with the striking angle corrected.
- substantially vertical as used herein means an industrially achievable angle, and for example, an angle error of 90 ° ⁇ 5 ° is allowed.
- preferred embodiments of the present invention relating to the resistance spot welding method relate to the following (7) to (15).
- One of the pair of electrodes is a fixed electrode and the other is a movable electrode.
- the resistance spot welding method according to (7), wherein the mechanism using the universal joint is provided on the fixed electrode side.
- the striking angle on the fixed electrode side can be corrected, and the position of the steel plate sandwiched between the pair of electrodes in the plate thickness direction can be easily positioned.
- One of the pair of angle correction mechanisms is a mechanism using a universal joint provided on the fixed electrode side, and the other is a mechanism using an elastic member provided on the movable electrode side. , (8).
- the resistance spot welding method According to this configuration, it is possible to correct the striking angle of the pair of electrodes and absorb the fluctuating load of the pressing force generated at the time of energization to suppress the occurrence of LME cracking.
- the angle correction mechanism corrects the striking angle between the electrode tip and the steel plate to reduce the tensile stress and weld, thereby suppressing the occurrence of LME cracking. , Resistance spot welding with excellent welding quality can be performed.
- FIG. 1 is a side view of the resistance spot welding apparatus according to the first embodiment of the present invention.
- FIG. 2 is a perspective view of the movable side electrode shown in FIG.
- FIG. 3 is a side view of the movable side electrode shown in FIG.
- FIG. 4 is a sectional view taken along line IV-IV of the movable side electrode shown in FIG.
- FIG. 5A is a diagram showing a state in which the movable side electrode and the fixed side electrode are tilted with respect to the metal plate during spot welding.
- FIG. 5B is a diagram showing a state in which the movable side electrode contacts the metal plate substantially perpendicularly to the metal plate during spot welding and the striking angle is corrected.
- FIG. 5A is a diagram showing a state in which the movable side electrode and the fixed side electrode are tilted with respect to the metal plate during spot welding.
- FIG. 5B is a diagram showing a state in which the movable side electrode contacts the metal plate substantially perpendicularly
- FIG. 6 is a cross section showing a comparison between a conventional resistance spot welding device in which both the movable side electrode and the fixed side electrode are rigid electrodes, and a resistance spot welding device according to the first embodiment, and a joint resistance spot welded by the method. It is a figure.
- FIG. 7 is a graph showing a comparison of changes in the pressing force and the welding current when resistance spot welding is performed by the conventional resistance spot welding apparatus and the resistance spot welding apparatus according to the first embodiment.
- FIG. 8 is a side view of the resistance spot welding apparatus according to the second embodiment of the present invention.
- FIG. 9 is a perspective view of the fixed side electrode of the resistance spot welding apparatus shown in FIG.
- FIG. 10 is a side view of the fixed side electrode shown in FIG. FIG.
- FIG. 11 is a cross-sectional view taken along the line XI-XI of the fixed side electrode shown in FIG.
- FIG. 12 is a side view of the resistance spot welding apparatus according to the third embodiment of the present invention.
- FIG. 13 is a side view of the resistance spot welding apparatus according to the fourth embodiment of the present invention.
- FIG. 14 is a perspective view of the electrodes of the resistance spot welding apparatus shown in FIG.
- FIG. 15 is a cross-sectional perspective view of the electrode shown in FIG.
- FIG. 16 is an enlarged view of the S region of FIG.
- FIG. 17 is a vertical cross-sectional view of the electrode shown in FIG.
- FIG. 18A is a diagram showing a state in which the movable side electrode and the fixed side electrode are tilted with respect to the metal plate during spot welding.
- FIG. 18B is a diagram showing a state in which the movable side electrode and the fixed side electrode are in contact with the metal plate substantially perpendicularly during spot welding, and the striking angles
- the resistance spot welding apparatus of each embodiment is for spot welding a plurality of metal plates (steel plates), and in particular, at least one of the metal plates has C: 0.08% by mass or more, Si: It is preferably used when it is a high tension steel sheet (High Tensile Welding Steel: HTSS) containing 0.50% by mass or more and having a tensile strength of 980 MPa or more, and is a galvanized steel sheet whose surface is galvanized.
- the galvanized steel sheet include alloyed hot-dip galvanized steel sheets (GA), hot-dip galvanized steel sheets (GI), and electrogalvanized steel sheets (EG).
- the resistance spot welding apparatus 10 of the present embodiment includes a frame 11 having a substantially C shape in a plan view, a pressure cylinder 12 provided at one end of the frame 11, and the pressure cylinder.
- Two bases 13A and 13B provided at opposite ends of 12 and the frame 11, a first electrode 20A which is a movable side electrode provided on the movable base 13A, and a fixed base.
- a second electrode 20B which is a fixed side electrode, provided on the 13B is provided.
- the pressure cylinder 12, together with the base 13A drives the first electrode 20A downward toward the second electrode 20B. Further, the first electrode 20A and the second electrode 20B are arranged so as to face each other on the same axis.
- first electrode 20A is advanced by the pressure cylinder 12 in a state of being in contact with the electrode 20B of 2, and the metal plate M is sandwiched between the pair of electrodes 20A and 20B. In this state, energization is performed between the pair of electrodes 20A and 20B while pressurizing, and spot welding is performed.
- the first electrode 20A includes a pair of a first shank 21, a second shank 22, an electrode tip 23A, an elastic member 24 as a connecting member, and a conducting wire 25.
- the rings 26A and 26B are provided.
- the first shank 21 and the second shank 22 are made of a metal (alloy) such as brass and have conductivity.
- the first shank 21 and the second shank 22 are screwed and fixed to the pair of rings 26A and 26B.
- the electrode tip 23A is provided at one end of the first shank 21 which is the tip of the first electrode 20A, and is a member that directly contacts the metal plate M such as a steel plate.
- the elastic member 24 is arranged between a pair of upper and lower rings 26A and 26B via a pair of spring seats 27 and 27, and connects the first shank 21 and the second shank 22.
- the elastic member 24 is formed by a coil spring.
- the spring constant of the coil spring is preferably 10 N / mm or more and 1500 N / mm or less.
- the metal (for example, copper or the like) conducting wire 25 is connected to the metal (for example, copper or the like) rings 26A and 26B attached to the outer periphery of each of the first shank 21 and the second shank 22.
- the elastic member 24 is made of metal, since a large current is required for spot welding, a sufficient electrical connection should be secured between the first shank 21 and the second shank 22 via the elastic member 24. It is difficult. Therefore, the conducting wire 25 is provided so as to bypass the outside of the elastic member 24, and electrically connects the first shank 21 and the second shank 22.
- the current supplied from the main body of the spot welder 10 via the pressure cylinder 12 and the base 13A follows the arrow of the “energization path” in FIG.
- the current flows in the order of the first shank 21 ⁇ the electrode tip 23A and reaches the metal plate M.
- the current for spot welding is not particularly limited, but an alternating current that is easy to use can be used.
- the first electrode 20A has a structure for flowing not only an electric current but also cooling water for cooling the electrode tip 23A at the tip. That is, as shown in FIG. 4, a flow path T for flowing cooling water is provided so as to penetrate the inside of each of the first shank 21, the elastic member 24, and the second shank 22.
- the flow path T has an outward path T1 for flowing the cooling water supplied from the main body of the spot welder 10 to the electrode tip 23A and a return path T2 for returning the cooling water cooling the electrode tip 23A to the main body of the spot welder 10.
- the return path T2 is formed by an internal space H penetrating the inside of each of the cylindrical first shank 21, the elastic member 24, and the cylindrical second shank 22.
- the hose 28 is connected to the hose joints 21a and 22a formed at the upper end of the first shank 21 and the lower end of the second shank 22, respectively, and the hose 28 is arranged inside the elastic member 24. Has been done. Therefore, in reality, the insides of the hose joints 21a and 22a and the hose 28 form the internal space H.
- the outward path T1 is arranged in the internal space H, and is formed by a first shank 21, an elastic member 24, and an integral pipe 29 penetrating the second shank 22.
- the pipe 29 is a long cylindrical member arranged on the central axis of the internal space H, for example, made of resin or the like.
- the cooling water supplied from the main body of the spot welder 10 passes through the elastic member 24 and the first shank 21 from the second shank 22 and the pipe 29. It flows through the inside and reaches the electrode tip 23A.
- the cooling water that has reached the electrode tip 23A and whose temperature has risen is outside the pipe 29 so as to pass through the first shank 21, the elastic member 24, and the second shank 22, as indicated by the “cooling water OUT” arrow. It flows through the internal space H of the above, returns to the main body of the spot welder 10, and is cooled again.
- the cooling water circulates between the main body of the spot welder 10 and the electrode tip 23A, and the cooling water always cooled to a certain temperature or lower is supplied to the electrode tip 23A, so that the first electrode 20A, particularly The temperature rise of the electrode tip 23A can be suppressed, and the joining efficiency of spot welding can be improved.
- the electrode tip 23B is fixed to one end of the fixed-side shank 30 provided on the fixed-side base 13B.
- the electrode tip 23B is a member made of a conductive metal (alloy) and in direct contact with the metal plate M.
- the second electrode 20B is a rigid electrode having high rigidity without the elastic member 24 included in the first electrode 20A.
- the electrode tips 23A and 23B have an outer diameter ⁇ of ⁇ ⁇ 16 mm, and the radius of curvature R of the tip surfaces 23a and 23b in contact with the metal plate M is R ⁇ 100 mm. As a result, the electrode tips 23A and 23B suppress one-sided contact with the metal plate M and ensure contact with each other.
- the shape of the tip surfaces 23a and 23b of the electrode tips 23A and 23B may be at least a part of the flat surface.
- the flat surfaces of the electrode tips 23A and 23B come into surface contact with the metal plate M. As a result, slippage does not easily occur between the metal plate M and the flat surface, and stable spot welding can be performed.
- FIG. 5A is a diagram showing a state in which the first electrode 20A and the second electrode 20B are in contact with the metal plate M in an actual spot welding scene.
- a load F is applied to the electrodes 20A and 20B.
- the metal plate M is arranged parallel to the plane X which is the direction in which the two electrodes approach each other and is perpendicular to the axes Y1 and Y2 along the longitudinal direction of the two electrodes.
- FIG. 5B is a diagram for explaining the operation of the resistance spot welding apparatus 10 of the present embodiment.
- the elastic member 24 described above is provided in the first electrode 20A of the present embodiment. Therefore, the elastic member 24 of the first electrode 20A is elastically deformed by the action of the load F generated from the electrode tips 23A and 23B, which are the tips of the two electrodes, and is centered on the contact point P1 (see FIG. 5A).
- the electrode tip 23A of the first electrode 20A rotates in the direction of arrow R1.
- the electrode tip 23A of the first electrode 20A is in a state of intersecting the metal plate M substantially perpendicularly to the surface X by reducing the inclination of the metal plate M with respect to the surface X.
- the electrode tip 23A of the electrode 20A of 1 can maintain a state of being in contact with the metal plate M from the vertical direction. That is, the elastic member 24 acts as an angle correction mechanism for correcting the angle (striking angle) of the first electrode 20A with respect to the metal plate M, and the electrode tip 23A of the first electrode 20A is substantially relative to the metal plate M. Contact from the vertical direction.
- the elastic member 24 receives the force from the electrode tip 23A provided at the tip. It is elastically deformed to realize a relationship in which the axis along the longitudinal direction of the electrode tip 23A and the metal plate M are substantially vertical, and this relationship can be easily maintained.
- the resistance spot welding apparatus 10 of the present embodiment When the first electrode 20A and the metal plate M are pressurized in an inclined state, a large tensile stress is generated, which tends to promote LME cracking.
- the tensile stress is reduced at the contact portion between the electrode tip and the metal plate M, and the LME cracking caused by the tensile stress due to the striking angle is significantly suppressed and the spot is spot-welded. Deterioration of welding quality can be suppressed.
- the molten metal of the metal plate M expands when an electric current is applied at the time of joining. Therefore, in the case of the conventional type in which the rigid electrode without the elastic member 24 is used as the movable side electrode, the pressing force may suddenly increase and the impact may cause LME cracking.
- the stress fluctuation on the metal plate M due to the expansion of the molten metal can be absorbed by the elastic member 24, it is possible to suppress an increase in the pressing force on the metal plate M, and the LME. Cracking can be prevented.
- the electrode can be efficiently cooled at the time of welding, and the bonding efficiency can be improved.
- the flow path T includes a return path T2 formed by the internal space H of the first electrode 20A and an outward path T1 formed by the pipe 29 arranged in the internal space H. Therefore, the circulation of cooling water is realized by a simple and compact configuration.
- the flow path T of the cooling water is not limited to such a configuration, and may be cooled by other means.
- FIG. 6 shows resistance spot welding by a conventional resistance spot welding apparatus in which both the movable side electrode and the fixed side electrode are rigid electrodes (electrodes not provided with the elastic member 24) and the resistance spot welding apparatus according to the first embodiment. It is sectional drawing which compares and shows the welded joint.
- Welding conditions are as follows: two GA980DP steel plates with a plate thickness of 1.4 mm are stacked, a pressing force: 3.5 kN, an energization time: 300 ms, a hold time: 0.01 sec or more, a plate gap (Sheet gap): 2 mm, Spot welding was performed on a plurality of sets of metal plates M under the condition of inclination angle (striking angle: Tilt angle): 5 °. The welding current was performed under the conditions of 6 kA, 7 kA, and 8 kA. Spot welding with a welding current of 8 kA is a condition in which dust is generated.
- LME cracks occur in all sets of metal plates M as shown by arrows in the figure at any welding current (6 kA, 7 kA, 8 kA). Occurred.
- LME cracking did not occur under any of the conditions. It is considered that this is due to the striking angle correction by the angle correction mechanism of the first electrode 20A provided with the elastic member 24 and the stress fluctuation relaxation of the steel sheet by the pressing force absorbing mechanism.
- FIG. 7 is a graph showing a comparison of changes in the pressing force and the welding current when resistance spot welding is performed with a welding current of 8 kA by the conventional resistance spot welding device and the resistance spot welding device according to the present embodiment.
- the first electrode 20A is lowered by the pressure cylinder 12
- a plurality of metal plates M are sandwiched between the pair of electrode tips 23A and 23B, and the pair of electrodes are further formed by the pressure cylinder 12.
- a predetermined pressing force is applied to the chips 23A and 23B.
- the elastic member 24 is elastically deformed, the pressing force gradually increases to a predetermined pressing force.
- the pair of electrode tips 23A and 23B are energized for a predetermined time (about 0.3 sec) with the pressing force applied, and the pressing force is removed at the timing when the predetermined holding time elapses after the energization.
- the conventional resistance spot welding device has a pressing force of about 700 N larger than that of the resistance spot welding device 10 of the present embodiment.
- the resistance spot welding apparatus 10 of the form an increase in the pressing force is not observed and it is stable. It is considered that this is because the stress fluctuation to the metal plate M due to the expansion of the molten metal is absorbed by the elastic deformation of the elastic member 24 acting as the pressurizing absorption mechanism, and as a result, the LME cracking is suppressed. ..
- the coil spring which is the elastic member 24, acts as a pressing force absorbing mechanism that absorbs the load fluctuation of the pressing force generated when the metal plate M is energized, and resistance spot welding is performed while absorbing the load fluctuation of the pressing force. It is presumed to be.
- the thermal shrinkage of the nugget due to the cooling of the metal plate M after energization may generate tensile stress in the plate width direction and cause LME cracking at the pressure contact portion.
- the hold time for holding the pressing force after energization and securing the cooling time after welding can reduce the tensile stress in the plate width direction due to the thermal shrinkage of the nugget, and suppress the occurrence of LME cracks. It is effective for.
- both electrode tips of the movable side electrode and the fixed side electrode are brought into contact with each other substantially vertically to further suppress the occurrence of LME cracking due to the striking angle, and the molten metal at the time of energization.
- the impact force generated by the expansion of the LME is absorbed by the movable electrode to suppress the occurrence of LME cracking.
- the resistance spot welding apparatus 10A of the present embodiment includes a frame 11 having a substantially C shape in a plan view, a pressure cylinder 12 provided at one end of the frame 11, and the pressure cylinder.
- Two bases 13A and 13B provided at opposite ends of 12 and the frame 11, a first electrode 20A which is a movable side electrode provided on the movable base 13A, and a fixed base.
- a third electrode 20C which is a fixed side electrode, provided in 13B is provided.
- the first electrode 20A and the third electrode 20C are arranged so as to face each other on the same axis.
- the first electrode 20A includes an elastic member 24 that can be elastically deformed and has the same structure as the first electrode 20A of the first embodiment, detailed description of the structure, action, and the like will be omitted.
- the third electrode 20C the first shank 31 and the second shank 32 are connected by a universal joint 33.
- the third electrode 20C corrects the striking angle so that the electrode tip 23C and the metal plate M are in a substantially vertical state by the action of the angle correction mechanism by the universal joint 33.
- the third electrode 20C can flexibly connect the first shank 31, the second shank 32, the electrode tip 23C, and the first shank 31 and the second shank 32.
- a joint 33 and a conducting wire 25 are provided.
- the first shank 31 and the second shank 32 are made of a metal (alloy) such as brass and have conductivity.
- the electrode tip 23C is provided at one end of the first shank 31, which is the tip of the third electrode 20C, and is a member that directly contacts the metal plate M.
- the universal joint 33 includes a male joint 34 fixed to the first shank 31 and a female joint 35 fixed to the second shank 32.
- the male joint 34 has a tip portion 36 formed in a substantially spherical shape, and the tip portion 36 flexibly fits into the spherical hole 37 of the female joint 35.
- a water supply pipe 38 and a drainage pipe 39 are connected to the shaft hole 40 formed at the center of the shaft of the first shank 31 from an oblique direction.
- the cooling water supplied from the main body of the spot welder 10A flows through the water supply pipe 38 and reaches the electrode chip 23C.
- the cooling water that has reached the electrode chip 23C and whose temperature has risen returns to the main body from the drain pipe 39 to the spot welder 10A and is cooled again, as indicated by the arrow of “cooling water OUT”.
- the universal joint 33 in which the spherical tip portion 36 flexibly fits into the spherical hole 37 has a third electrode 20C when a metal plate M such as a steel plate is inclined with respect to the axis of the third electrode 20C.
- a metal plate M such as a steel plate is inclined with respect to the axis of the third electrode 20C.
- the male joint 34 bends with respect to the female joint 35 and the electrode tip 23C becomes substantially perpendicular to the metal plate M. That is, the universal joint 33 acts as an angle correction mechanism capable of correcting the angle of the electrode tip 23C with respect to the metal plate M to correct the striking angle of the electrode tip 23C, thereby reducing the tensile stress and suppressing LME cracking. Will be done.
- the universal joint 33 is configured so as not to bend beyond a predetermined angle.
- the metal plate M is added to the third electrode 20C. Even if pressure is applied, the axial position can be maintained at a constant position, and stable resistance spot welding can be performed.
- the striking angle of the first electrode 20A is corrected by the angle correction mechanism of the elastic member 24, and the electrode tip 23A contacts the metal plate M from a substantially vertical direction.
- the LME cracking caused by the striking angle is suppressed.
- the pressure absorbing mechanism of the elastic member 24 included in the first electrode 20A alleviates the stress fluctuation of the metal plate M due to the thermal expansion of the metal plate M generated at the time of energization, and suppresses LME cracking.
- the electrode tips 23A and 23C come into contact with the metal plate M from substantially perpendicular directions, so that not only the movable side electrode but also the fixed side electrode Since the striking angle is also corrected, LME cracking due to tensile stress due to the striking angle can be further suppressed as compared with the resistance spot welding apparatus 10 of the first embodiment.
- the object of the resistance spot welding apparatus of the present embodiment is to bring both electrode tips of the movable side electrode and the fixed side electrode into contact with each other substantially vertically to suppress the occurrence of LME cracking due to the striking angle.
- FIG. 12 is a side view of the resistance spot welding apparatus according to the third embodiment of the present invention.
- the resistance spot welding apparatus 10B of the present embodiment is composed of a third electrode 20C in which both the movable side electrode and the fixed side electrode have the universal joint 33 described in the second embodiment.
- the third electrode 20C does not have the elastic member 24, and therefore the stress fluctuation of the metal plate M by the pressure absorbing mechanism is not absorbed.
- the striking angle is corrected by the action of the angle correction mechanism by the universal joint 33 on both the movable side and the fixed side, it is possible to suppress the occurrence of LME cracking due to the striking angle.
- the universal joint 33 of the third electrode 20C has the same rigidity as the second electrode 20B (see FIG. 1) in the axial direction, a predetermined pressing force is applied from the start of pressurization shown in FIG.
- the pressurization time required to reach the above and the residual pressurization time after the end of pressurization can be shortened as compared with the first electrode 20A, and the bonding can be performed in a short time as a whole.
- both electrode tips of the pair of movable side electrodes and the steel plate are brought into contact with each other substantially vertically to suppress the occurrence of LME cracking due to the striking angle, and the expansion of the molten metal during energization causes the molten metal to expand.
- the purpose is to absorb the generated impact force with a pair of movable side electrodes to further suppress the occurrence of LME cracking.
- FIG. 13 is a side view of the resistance spot welding apparatus according to the fourth embodiment of the present invention.
- the resistance spot welding device 10C includes a frame 11 having a substantially C shape in a plan view, pressure cylinders 12 provided at both ends of the frame 11, and two bases 13A provided on the pressure cylinder 12. It includes 13B and a pair of fourth electrodes 20D which are a pair of movable side electrodes provided on each of the two bases 13A and 13B.
- the pair of fourth electrodes 20D are arranged so as to face each other on the same axis.
- a plurality of (two in the figure) metal plates M such as steel plates to be joined are inserted between the pair of fourth electrodes 20D, and the pair of first electrodes are formed by the pressure cylinder 12.
- the electrodes 20D of 4 are brought close to each other, and the metal plate M is sandwiched between the pair of fourth electrodes 20D.
- the elastic member 43 can be contracted, thereby stabilizing the position of the metal plate M in the plate thickness direction.
- energization is performed between the pair of electrodes while pressurizing, and spot welding is performed.
- the pair of fourth electrodes 20D uses exactly the same type.
- FIG. 14 is a perspective view of the fourth electrode 20D
- FIG. 15 shows a cross-sectional view of FIG.
- the fourth electrode 20D includes a first shank (first electrode shank) 41, a second shank (second electrode shank) 42, an electrode tip 23D, an elastic member 43, a conducting wire 45, and a ring. 46 and.
- the first shank 41 and the second shank 42 are made of a metal (alloy) such as brass and have conductivity.
- the first shank 41 and the second shank 42 have exactly the same type.
- the electrode tip 23D is the tip of the fourth electrode 20D, is provided at the first end of the first shank 41, and is a member that directly contacts the metal plate M.
- the elastic member 43 is a member that connects the second end opposite to the first end of the first shank 41 provided with the electrode tip 23D and the second shank 42.
- the elastic member 43 has a rigidity sufficient to avoid fracture even when a predetermined load is applied to the fourth electrode 20D, and has a property of being elastically deformable by the action of the load.
- the elastic member 43 is formed of a cylindrical block made of metal such as steel, and the block is provided with a notch 43a for promoting elastic deformation.
- the metal (for example, copper or the like) conducting wire 45 is connected to a metal (for example, copper or the like) ring 46 attached to the outer periphery of each of the first shank 41 and the second shank 42. Even if the elastic member 43 is made of metal, if its conductivity is not sufficient (a large current is required for spot welding), a sufficient electrical connection is secured between the first shank 41 and the second shank 42. That is difficult. Therefore, the conducting wire 45 is provided so as to bypass the outside of the elastic member 43, and electrically connects the first shank 41 and the second shank 42.
- the current supplied from the main body of the resistance spot welding device 10C via the pressure cylinder 12 and the base 13A is in the order of the second shank 42 ⁇ the ring 46 ⁇ the conducting wire 45 ⁇ the ring 46 ⁇ the first shank 41 ⁇ the electrode tip 23D. It flows and reaches the metal plate M.
- FIG. 16 shows an enlarged view of the S region of FIG.
- FIG. 17 shows a cross-sectional view of the fourth electrode.
- the fourth electrode 20D has a structure for flowing not only an electric current but also cooling water for cooling the fourth electrode 20D itself, particularly the electrode tip 23D at the tip. That is, as shown in FIG. 17, the flow path T for flowing the cooling water is provided so as to penetrate the inside of each of the first shank 41, the elastic member 43, and the second shank 42.
- the flow path T is an outward path T1 for flowing the cooling water supplied from the main body of the resistance spot welding device 10C to the electrode chip 23D, and a flow path T1 for returning the cooling water cooling the electrode tip 23D to the main body of the resistance spot welding device 10C.
- the return path T2 is formed by the first shank 41, the elastic member 43, and the internal space H penetrating the inside of each of the second shank 42.
- the first shank 41 and the second shank 42 are hollowed out so that their central portions are hollow along the longitudinal direction, and the hollowed out portions form an internal space H.
- the elastic member 43 is hollowed out so that its central portion is hollow along the longitudinal direction. However, as shown in FIG.
- the hose joint 47 screwed with each of the first shank 41 and the second shank 42 and the hose 48 connected to the hose joint 47 are hollowed out.
- the hose joint 47 and the inside of the hose 48 form an internal space H.
- the outward path T1 is arranged in the internal space H, and is formed by a first shank 41, an elastic member 43, and an integral pipe 49 penetrating the second shank 42.
- the pipe 49 is omitted in FIG. 15, as shown in the alternate long and short dash line in FIG. 16 or FIG. 17, the pipe 49 is arranged on the central axis of the internal space H and has a long cylindrical shape formed of, for example, resin. It is a member of.
- the cooling water supplied from the main body of the resistance spot welding apparatus 10C is piped from the second shank 42 via the elastic member 43 and the first shank 41. It flows through 49 and reaches the electrode chip 23D.
- the cooling water that has reached the electrode tip 23D and whose temperature has risen is outside the pipe 49 so as to pass through the first shank 41, the elastic member 43, and the second shank 42, as indicated by the “cooling water OUT” arrow. It flows through the internal space H of the above, returns to the main body of the resistance spot welding apparatus 10C, and is cooled again.
- the cooling water circulates between the main body of the resistance spot welding apparatus 10C and the electrodes, and the cooling water always cooled to a certain temperature or lower is supplied to the electrode tip 23D, so that the fourth electrode 20D, particularly the electrode tip, is supplied.
- the temperature rise of 23D can be suppressed, and the joining efficiency of spot welding can be improved.
- the current for spot welding is supplied from the main body of the resistance spot welding device 10C via the pressure cylinder 12 and the base 13A according to the arrow of the “energization path” in FIG. 17, and the second shank 42 ⁇ the conducting wire 45. ⁇
- the flow flows in the order of the first shank 41 ⁇ the electrode tip 23D, and reaches the metal plate M.
- the electrode tip 23D has a flat flat surface 23d that directly contacts the metal plate M.
- the flat surface 23d of the electrode tip 23D of each electrode comes into surface contact with the metal plate M.
- slippage does not easily occur between the metal plate M and the flat surface 23d, and stable spot welding can be performed.
- the flat flat surface 23d may be present at least in a part of the tip of the electrode tip 23D, and all the surfaces of the electrode tip 23D facing the metal plate M are flat as shown in FIG. Of course, it may have a surface, and only the tip portion of the electrode tip 23D may have a flat surface and the peripheral portion thereof may have a curved shape.
- FIG. 18A is a diagram showing a state in which the fourth electrode 20D and the metal plate M can be taken in an actual spot welding scene.
- a load F is applied to each electrode as the pair of fourth electrodes 20D approach each other and each abuts on the metal plate M at the contact points P1 and P2.
- the metal plate M is arranged parallel to the plane X which is the direction in which the two electrodes approach each other and is perpendicular to the axes Y1 and Y2 along the longitudinal direction of the two electrodes.
- the metal plate M may be arranged at an inclination ⁇ (for example, about 5 °) from the surface X. Can occur. That is, the pair of fourth electrodes 20D are tilted from the direction perpendicular to the metal plate M.
- FIG. 18B is a diagram for explaining the operation of the pair of fourth electrodes 20D of the present embodiment.
- the elastic member 43 described above is provided in the fourth electrode 20D of the present embodiment. Therefore, due to the action of the load F generated from the electrode tips 23D, which are the tips of the two electrodes, each elastic member 43 is elastically deformed, and both electrode tips 23D are centered on the contact points P1 and P2 in the direction of arrow R1. Rotate. As a result, even if the metal plate M does not move, the axes Y1 and Y2 along the longitudinal direction of the two electrodes intersect with each other substantially perpendicular to the metal plate M, and the pair of fourth electrodes 20D are made of metal.
- the elastic member 43 receives the force from the electrode tip 23D provided at the tip. It is elastically deformed to realize a relationship in which the axis along the longitudinal direction of the electrode and the metal plate M are substantially vertical, and this relationship can be easily maintained. Therefore, it is possible to suppress the deterioration of the quality of spot welding due to the striking angle.
- the surface of the electrode tip 23D in contact with the metal plate M is formed by a curved surface, it is considered that slippage easily occurs between the curved surface and the metal plate M, and welding may become unstable.
- the surface in contact with the metal plate M is formed by the flat flat surface 23d, so that slippage does not easily occur between the metal plate M and the flat surface 23d, and the load generated from the electrode tip 23D is surely secured. Can be transmitted to the elastic member 43. As a result, the elastic member 43 is promoted to be deformed, and as shown in FIG. 18B, a state in which the striking angle is corrected can be easily realized, and this state can be stably maintained.
- the elastic members 43 provided on the pair of fourth electrodes 20D are elastically deformed to absorb an increase in the pressing force due to the expansion of the molten metal when energized. As a result, it is possible to suppress the occurrence of LME cracking due to the impact of expansion of the molten metal during energization.
- the electrode can be efficiently cooled at the time of welding, and the joining efficiency can be improved.
- the flow path T includes a return path T2 formed by the internal space H of the electrode and an outward path T1 formed by the pipe 49 arranged in the internal space H. Therefore, the circulation of cooling water is realized by a simple and compact configuration.
- the flow path T of the cooling water is not limited to such a configuration, and may be cooled by other means.
- the elastic member 43 is formed of a cylindrical block made of metal such as steel, and this block is provided with a notch 43a that promotes elastic deformation.
- the specific shape, structure, material, etc. of the elastic member 43 are not particularly limited.
- the elastic member 43 may be formed of a material having both sufficient rigidity and conductivity. In such a case, the wire diameter of the conductor 45 may be reduced or the conductor 45 itself may be omitted. ..
- the notch 43a of the present embodiment is formed, for example, in a spiral shape so as to extend in the circumferential direction and the longitudinal direction of the elastic member 43.
- the specific mode thereof is not particularly limited as long as the elastic deformation of the elastic member 43 can be promoted.
- a member such as a spring may be provided to realize elastic deformation.
- the elastic member 43 may be melted and the notch 43a may be filled.
- the notch 43a is made of resin.
- a non-conductive material such as rubber may be embedded.
- the present invention is not limited to the above-described embodiments, and can be appropriately modified, improved, and the like.
- the material, shape, size, numerical value, form, number, arrangement location, etc. of each component in each of the above-described embodiments are arbitrary and are not limited as long as the present invention can be achieved.
- the pressure absorbing mechanism of the present invention is not limited to the forms of the elastic member 24 of the first and second embodiments and the elastic member 43 of the fourth embodiment, and is not limited to, for example, pneumatic pressure of an air cylinder (not shown).
- the elastic force of the device can also be used.
- the resistance spot welding apparatus of the present invention is a simple type or a portable type in which a pair of substantially L-shaped long electrodes extend forward from the welding apparatus main body, and the tips thereof can be opened and closed so as to approach and separate from each other. It can also be applied to welding equipment (not shown) such as. Specifically, one electrode is fixed to the main body of the welding device, the other electrode is made swingable around a shaft provided in the main body of the welding device, and the other electrode is placed between the other electrode and the main body of the welding device.
- a structure may be provided in which a spring is provided to urge the tip of the electrode toward the tip of one of the electrodes.
- the spring provided between the other electrode and the main body of the welding device acts as a pressing force absorbing mechanism to absorb the increase in pressing force due to the expansion of the molten metal during energization and prevent LME cracking due to the impact. ..
- a resistance spot welding method that welds while absorbing by.
- One of the pair of electrodes is a fixed electrode and the other is a movable electrode.
- a pair of electrodes including a pair of electrode chips that sandwich and pressurize the plurality of steel plates and a pair of angle correction mechanisms that can correct the angles of the pair of electrode chips with respect to the steel plates, respectively.
- a resistance spot welding method that welds by energizing with.
- One of the pair of electrodes is a fixed electrode and the other is a movable electrode.
- the resistance spot welding method according to (7), wherein the mechanism using the universal joint is provided on the fixed electrode side.
- One of the pair of angle correction mechanisms is a mechanism using a universal joint provided on the fixed electrode side, and the other is a mechanism using an elastic member provided on the movable electrode side. , (8).
- the resistance spot welding method is a mechanism using a universal joint provided on the fixed electrode side, and the other is a mechanism using an elastic member provided on the movable electrode side.
- An electrode for a spot welding gun wherein a flow path for flowing cooling water is provided so as to penetrate the inside of each of the first electrode shank, the connecting member, and the second electrode shank.
- a conducting wire for electrically connecting the first electrode shank and the second electrode shank is provided on the outside of the connecting member.
- the flow path includes an outward path for flowing cooling water from the second electrode shank toward the electrode tip and a return path for flowing cooling water from the electrode tip toward the second electrode shank.
- the return path is formed by an internal space penetrating the inside of each of the first electrode shank, the connecting member, and the second electrode shank.
- the outbound route is arranged in the internal space and is formed by the first electrode shank, the connecting member, and an integral pipe penetrating the second electrode shank, (16) to (18).
- the electrode for a spot welding gun according to any one of. (20) A spot welding gun having the electrode for the spot welding gun according to any one of (16) to (19).
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Resistance Welding (AREA)
Abstract
高強度亜鉛系めっき鋼板を用いた抵抗スポット溶接方法において、抵抗スポット溶接継手の圧接部におけるLME割れの発生を抑制する。C:0.08質量%以上、Si:0.50質量%以上を含み、引張強度が980MPa以上で、かつ亜鉛めっきされた鋼板Mを少なくとも1枚有する複数の鋼板Mをスポット溶接するための抵抗スポット溶接方法であって、複数の鋼板Mを挟み込んで加圧する一対の電極チップ(23A,23B)と、少なくとも一方の電極チップ(23A又は23B)の鋼板Mに対する角度θを補正可能な角度補正機構を構成する弾性部材(24)と、を備える一対の電極(20A,20B)を用いて、一対の電極チップ(23A,23B)に複数の鋼板Mを挟み込み、かつ、一対の電極チップ(23A,23B)を、鋼板Mに対して略垂直に接触させながら、一対の電極チップ(23A,23B)に加圧力を付与した状態で通電することで抵抗スポット溶接する。
Description
本発明は、抵抗スポット溶接方法に関する。
近年、CO2排出量の削減を目的とした車体軽量化や衝突安全性強化を実現するため、自動車のボディ骨格等に高強度鋼板(High Tensile Strength Steel;HTSS)が広く採用されている。また、自動車の車体の組立や部品の取付けなどでは、主として、抵抗スポット溶接が使用されており、高張力鋼板の溶接にも適用されている。
自動車用鋼板には、防錆化の観点から、耐食性に優れた亜鉛系めっきが施された高張力鋼板も多用されている。しかし、高強度亜鉛系めっき鋼板を用いて抵抗スポット溶接を行うと、該溶接箇所の鋼板表面で溶融した亜鉛や、亜鉛と電極の銅との合金が、鋼板の結晶粒界に侵入して粒界強度を低下させる、LME(Liquid Metal Embrittlement)と呼ばれる粒界脆化割れが起きやすいことが知られている。このような割れが生じると、溶接部の強度が低下するため、抵抗スポット溶接継手の信頼性が低下してしまうことから、施工面での対策が求められている。
特許文献1には、溶接電極により加圧力F1で加圧しながら通電する溶接工程と、通電の終了直後から加圧力F2で保持する冷却工程を備え、加圧力がF2>F1×2の関係を満足することで、LME割れを抑制可能とした抵抗スポット溶接方法が開示されている。また、特許文献2には、通電終了後の加圧力保持時間を適宜制御することにより、LME割れを抑制可能とした抵抗スポット溶接方法が開示されている。さらに特許文献3には、一方の電極の基部材に螺合した筒状ソケット内部に鍔付きロッドを挿入し、この鍔付きロッドの基端に設けた凸球面座を、基部材の受面に当接させている。鍔付きロッドの凸球面座の揺動中心が、鍔付きロッドの略中央近くに位置しており、鍔付きロッドの先端部に設けた電極チップの原位置からのシフト量を抑えることができるスポット溶接機が記載されている。
ところで、特許文献3に記載のスポット溶接機では、一方の電極の電極チップを揺動可能とすることで、引張応力を低減させ、LME割れの抑制を図っているが、さらなる改善が求められていた。特許文献1及び2に記載のスポット溶接方法は、引張応力を低減させて、LME割れの抑制を図ることについて考慮されていない。
また、電極そのものについては、過剰な温度上昇を防止するため、冷却水等を用いて溶接中に冷却状態を維持する必要があるが、鋼板と電極とのなす角度(打角)を調整可能な機構においても、上記冷却機構が求められる。
また、電極そのものについては、過剰な温度上昇を防止するため、冷却水等を用いて溶接中に冷却状態を維持する必要があるが、鋼板と電極とのなす角度(打角)を調整可能な機構においても、上記冷却機構が求められる。
本発明は、前述した課題に鑑みてなされたものであり、その目的は、高強度亜鉛系めっき鋼板を用いた抵抗スポット溶接方法において、抵抗スポット溶接継手の圧接部におけるLME割れの発生を抑制する抵抗スポット溶接方法を提供することである。
したがって、本発明の上記目的は、一の抵抗スポット溶接方法に係る下記(1)の構成により達成される。
(1) C:0.08質量%以上、Si:0.50質量%以上を含み、引張強度が980MPa以上で、かつ亜鉛めっきされた鋼板を少なくとも1枚有する複数の鋼板をスポット溶接するための抵抗スポット溶接方法であって、
前記複数の鋼板を挟み込んで加圧する一対の電極チップと、前記一対の電極チップのうち少なくとも一方に設けられ、前記電極チップの軸方向の加圧力を吸収可能な加圧力吸収機構と、を備える一対の電極を用いて、
前記一対の電極チップに前記複数の鋼板を挟み込み、かつ、前記一対の電極チップに加圧力を付与した状態で通電することで、前記通電時に発生する前記加圧力の変動荷重を前記加圧力吸収機構により吸収しながら溶接する、抵抗スポット溶接方法。
この構成によれば、複数の鋼板を接合する際に発生する加圧力の変動荷重を加圧力吸収機構により吸収しながら溶接し、LME割れを抑制して溶接品質に優れた抵抗スポット溶接を行うことができる。
(1) C:0.08質量%以上、Si:0.50質量%以上を含み、引張強度が980MPa以上で、かつ亜鉛めっきされた鋼板を少なくとも1枚有する複数の鋼板をスポット溶接するための抵抗スポット溶接方法であって、
前記複数の鋼板を挟み込んで加圧する一対の電極チップと、前記一対の電極チップのうち少なくとも一方に設けられ、前記電極チップの軸方向の加圧力を吸収可能な加圧力吸収機構と、を備える一対の電極を用いて、
前記一対の電極チップに前記複数の鋼板を挟み込み、かつ、前記一対の電極チップに加圧力を付与した状態で通電することで、前記通電時に発生する前記加圧力の変動荷重を前記加圧力吸収機構により吸収しながら溶接する、抵抗スポット溶接方法。
この構成によれば、複数の鋼板を接合する際に発生する加圧力の変動荷重を加圧力吸収機構により吸収しながら溶接し、LME割れを抑制して溶接品質に優れた抵抗スポット溶接を行うことができる。
また、抵抗スポット溶接方法に係る本発明の好ましい実施形態は、以下の(2)~(5)に関する。
(2) 前記一対の電極のうち一方は固定式電極であり、他方は可動式電極であって、
前記加圧力吸収機構は、前記可動式電極側に設けられる、(1)に記載の抵抗スポット溶接方法。
この構成によれば、複数の鋼板を接合する際に発生する加圧力の変動荷重を可動式電極側に設けられた加圧力吸収機構により吸収して、LME割れの発生を抑制することができる。
(3) 前記加圧力吸収機構は、弾性部材を用いた機構である、(1)又は(2)に記載の抵抗スポット溶接方法。
この構成によれば、コンパクトな機構で効率よく加圧力の変動荷重を吸収できる。
(4) 前記弾性部材は、バネ定数が10N/mm以上1500N/mm以下であるバネによって構成される、(3)に記載の抵抗スポット溶接方法。
この構成によれば、溶接に必要な加圧力を確保しつつ、加圧力の変動荷重を吸収できる。
(5) 前記加圧力吸収機構は、空圧を用いた機構である、(1)又は(2)に記載の抵抗スポット溶接方法。
この構成によれば、エアシリンダなどを用いて加圧力吸収機構を構成できる。
(2) 前記一対の電極のうち一方は固定式電極であり、他方は可動式電極であって、
前記加圧力吸収機構は、前記可動式電極側に設けられる、(1)に記載の抵抗スポット溶接方法。
この構成によれば、複数の鋼板を接合する際に発生する加圧力の変動荷重を可動式電極側に設けられた加圧力吸収機構により吸収して、LME割れの発生を抑制することができる。
(3) 前記加圧力吸収機構は、弾性部材を用いた機構である、(1)又は(2)に記載の抵抗スポット溶接方法。
この構成によれば、コンパクトな機構で効率よく加圧力の変動荷重を吸収できる。
(4) 前記弾性部材は、バネ定数が10N/mm以上1500N/mm以下であるバネによって構成される、(3)に記載の抵抗スポット溶接方法。
この構成によれば、溶接に必要な加圧力を確保しつつ、加圧力の変動荷重を吸収できる。
(5) 前記加圧力吸収機構は、空圧を用いた機構である、(1)又は(2)に記載の抵抗スポット溶接方法。
この構成によれば、エアシリンダなどを用いて加圧力吸収機構を構成できる。
また、本発明の上記目的は、他の抵抗スポット溶接方法に係る下記(6)の構成により達成される。
(6) C:0.08質量%以上、Si:0.50質量%以上を含み、引張強度が980MPa以上で、かつ亜鉛めっきされた鋼板を少なくとも1枚有する複数の鋼板をスポット溶接するための抵抗スポット溶接方法であって、
前記複数の鋼板を挟み込んで加圧する一対の電極チップと、前記鋼板に対する前記一対の電極チップの角度をそれぞれ補正可能な一対の角度補正機構と、を備える一対の電極を用いて、
前記一対の電極チップに前記複数の鋼板を挟み込み、かつ、前記一対の電極チップの軸が前記鋼板に対して略垂直となるように接触させながら、前記一対の電極チップに加圧力を付与した状態で通電することで溶接する、抵抗スポット溶接方法。
この構成によれば、鋼板に対して電極チップを略垂直に接触させ、打角が補正された状態で溶接することで、引張応力を低減させてLME割れの発生を抑制できる。なお、ここで言う「略垂直」とは、工業的に達成可能な角度を意味し、例えば、90°±5°の角度誤差を許容する。
(6) C:0.08質量%以上、Si:0.50質量%以上を含み、引張強度が980MPa以上で、かつ亜鉛めっきされた鋼板を少なくとも1枚有する複数の鋼板をスポット溶接するための抵抗スポット溶接方法であって、
前記複数の鋼板を挟み込んで加圧する一対の電極チップと、前記鋼板に対する前記一対の電極チップの角度をそれぞれ補正可能な一対の角度補正機構と、を備える一対の電極を用いて、
前記一対の電極チップに前記複数の鋼板を挟み込み、かつ、前記一対の電極チップの軸が前記鋼板に対して略垂直となるように接触させながら、前記一対の電極チップに加圧力を付与した状態で通電することで溶接する、抵抗スポット溶接方法。
この構成によれば、鋼板に対して電極チップを略垂直に接触させ、打角が補正された状態で溶接することで、引張応力を低減させてLME割れの発生を抑制できる。なお、ここで言う「略垂直」とは、工業的に達成可能な角度を意味し、例えば、90°±5°の角度誤差を許容する。
また、抵抗スポット溶接方法に係る本発明の好ましい実施形態は、以下の(7)~(15)に関する。
(7) 前記一対の角度補正機構のうち少なくとも一方は自在継手を用いた機構である、(6)に記載の抵抗スポット溶接方法。
この構成によれば、打角を補正する共に、一対の電極チップで挟持された鋼板の板厚方向位置を容易に位置決めできる。
(8) 前記一対の電極のうち一方は固定式電極であり、他方は可動式電極であって、
前記自在継手を用いた機構は、前記固定式電極側に設けられる、(7)に記載の抵抗スポット溶接方法。
この構成によれば、固定式電極側の打角を補正する共に、一対の電極で挟持された鋼板の板厚方向位置を容易に位置決めできる。
(9) 前記一対の角度補正機構のうち一方が前記固定式電極側に設けられた自在継手を用いた機構であり、他方が前記可動式電極側に設けられた弾性部材を用いた機構である、(8)に記載の抵抗スポット溶接方法。
この構成によれば、一対の電極の打角を補正すると共に、通電時に発生する加圧力の変動荷重を吸収して、LME割れの発生を抑制できる。
(10) 前記弾性部材は、バネ定数が10N/mm以上1500N/mm以下であるバネによって構成される、(9)に記載の抵抗スポット溶接方法。
この構成によれば、溶接に必要な加圧力を確保しつつ、加圧力の変動荷重を吸収できる。
(11) 前記一対の角度補正機構の両方が自在継手を用いた機構である、(7)に記載の抵抗スポット溶接方法。
この構成によれば、少なくともいずれか一方の電極が弾性部材を有する場合と比較して、抵抗スポット溶接の作業時間を短縮することができる。
(12) 前記電極チップは、先端面の曲率半径RがR≦100mmを満たし、かつ、外径φがφ≦16mmを満たす、(1)~(11)のいずれかに記載の抵抗スポット溶接方法。
この構成によれば、電極チップの先端面を鋼板に確実に接触することができる。
(13) 前記電極チップは、その先端部の少なくとも一部が前記鋼板に当接するフラット面を有する、(1)~(11)のいずれかに記載の抵抗スポット溶接方法。
この構成によれば、電極チップのフラット面が鋼板に面接触し、鋼板とフラット面との間で滑りが生じにくく、安定的なスポット溶接を行うことができる。
(14) 通電終了後、0.01sec以上加圧保持したのち、前記電極の加圧から圧力開放に転じる制御を行う、(1)~(13)のいずれかに記載の抵抗スポット溶接方法。
この構成によれば、溶接後の冷却時間を確保して、LME割れの発生を抑制できる。
(15) 溶接電流が交流電流である、(1)~(14)のいずれかに記載の抵抗スポット溶接方法。
この構成によれば、商用電源を用いて抵抗スポット溶接できる。
(7) 前記一対の角度補正機構のうち少なくとも一方は自在継手を用いた機構である、(6)に記載の抵抗スポット溶接方法。
この構成によれば、打角を補正する共に、一対の電極チップで挟持された鋼板の板厚方向位置を容易に位置決めできる。
(8) 前記一対の電極のうち一方は固定式電極であり、他方は可動式電極であって、
前記自在継手を用いた機構は、前記固定式電極側に設けられる、(7)に記載の抵抗スポット溶接方法。
この構成によれば、固定式電極側の打角を補正する共に、一対の電極で挟持された鋼板の板厚方向位置を容易に位置決めできる。
(9) 前記一対の角度補正機構のうち一方が前記固定式電極側に設けられた自在継手を用いた機構であり、他方が前記可動式電極側に設けられた弾性部材を用いた機構である、(8)に記載の抵抗スポット溶接方法。
この構成によれば、一対の電極の打角を補正すると共に、通電時に発生する加圧力の変動荷重を吸収して、LME割れの発生を抑制できる。
(10) 前記弾性部材は、バネ定数が10N/mm以上1500N/mm以下であるバネによって構成される、(9)に記載の抵抗スポット溶接方法。
この構成によれば、溶接に必要な加圧力を確保しつつ、加圧力の変動荷重を吸収できる。
(11) 前記一対の角度補正機構の両方が自在継手を用いた機構である、(7)に記載の抵抗スポット溶接方法。
この構成によれば、少なくともいずれか一方の電極が弾性部材を有する場合と比較して、抵抗スポット溶接の作業時間を短縮することができる。
(12) 前記電極チップは、先端面の曲率半径RがR≦100mmを満たし、かつ、外径φがφ≦16mmを満たす、(1)~(11)のいずれかに記載の抵抗スポット溶接方法。
この構成によれば、電極チップの先端面を鋼板に確実に接触することができる。
(13) 前記電極チップは、その先端部の少なくとも一部が前記鋼板に当接するフラット面を有する、(1)~(11)のいずれかに記載の抵抗スポット溶接方法。
この構成によれば、電極チップのフラット面が鋼板に面接触し、鋼板とフラット面との間で滑りが生じにくく、安定的なスポット溶接を行うことができる。
(14) 通電終了後、0.01sec以上加圧保持したのち、前記電極の加圧から圧力開放に転じる制御を行う、(1)~(13)のいずれかに記載の抵抗スポット溶接方法。
この構成によれば、溶接後の冷却時間を確保して、LME割れの発生を抑制できる。
(15) 溶接電流が交流電流である、(1)~(14)のいずれかに記載の抵抗スポット溶接方法。
この構成によれば、商用電源を用いて抵抗スポット溶接できる。
本発明の一の抵抗スポット溶接方法によれば、加圧力吸収機構により、通電時に発生する加圧力の変動荷重を吸収しながら溶接することで、鋼板への応力変動が緩和され、LME割れの発生を抑制し、溶接品質に優れた抵抗スポット溶接を行うことができる。
また、本発明の他の抵抗スポット溶接方法によれば、角度補正機構により電極チップと鋼板との打角を補正して、引張応力を低減させて溶接することで、LME割れの発生を抑制し、溶接品質に優れた抵抗スポット溶接を行うことができる。
また、本発明の他の抵抗スポット溶接方法によれば、角度補正機構により電極チップと鋼板との打角を補正して、引張応力を低減させて溶接することで、LME割れの発生を抑制し、溶接品質に優れた抵抗スポット溶接を行うことができる。
以下、本発明に係る抵抗スポット溶接方法を適用するのに好適な抵抗スポット溶接装置の各実施形態を図面に基づいて詳細に説明する。
なお、各実施形態の抵抗スポット溶接装置は、複数の金属板(鋼板)をスポット溶接するためのものであるが、特に、金属板の少なくとも一方が、C:0.08質量%以上、Si:0.50質量%以上を含み、引張強度が980MPa以上の高張力鋼板(High Tensile Strength Steel:HTSS)であり、その表面に亜鉛めっきされた亜鉛系めっき鋼板である場合に好適に用いられる。なお、亜鉛系めっき鋼板としては、例えば、合金化溶融亜鉛めっき鋼板(GA)、溶融亜鉛めっき鋼板(GI)、電気亜鉛めっき鋼板(EG)などが挙げられる。
なお、各実施形態の抵抗スポット溶接装置は、複数の金属板(鋼板)をスポット溶接するためのものであるが、特に、金属板の少なくとも一方が、C:0.08質量%以上、Si:0.50質量%以上を含み、引張強度が980MPa以上の高張力鋼板(High Tensile Strength Steel:HTSS)であり、その表面に亜鉛めっきされた亜鉛系めっき鋼板である場合に好適に用いられる。なお、亜鉛系めっき鋼板としては、例えば、合金化溶融亜鉛めっき鋼板(GA)、溶融亜鉛めっき鋼板(GI)、電気亜鉛めっき鋼板(EG)などが挙げられる。
(第1実施形態)
図1に示すように、本実施形態の抵抗スポット溶接装置10は、平面視で略C型の形状を呈するフレーム11と、フレーム11の一端に設けられた加圧シリンダ12と、当該加圧シリンダ12及びフレーム11の対向する端部に設けられた2つの基台13A,13Bと、可動側の基台13Aに設けられた、可動側電極である第1の電極20Aと、固定側の基台13Bに設けられた、固定側電極である第2の電極20Bと、を備える。加圧シリンダ12は、基台13Aと共に、第1の電極20Aを第2の電極20Bに向けて下方に駆動する。また、第1の電極20Aと第2の電極20Bは、同軸上において対向するように配置されている。
図1に示すように、本実施形態の抵抗スポット溶接装置10は、平面視で略C型の形状を呈するフレーム11と、フレーム11の一端に設けられた加圧シリンダ12と、当該加圧シリンダ12及びフレーム11の対向する端部に設けられた2つの基台13A,13Bと、可動側の基台13Aに設けられた、可動側電極である第1の電極20Aと、固定側の基台13Bに設けられた、固定側電極である第2の電極20Bと、を備える。加圧シリンダ12は、基台13Aと共に、第1の電極20Aを第2の電極20Bに向けて下方に駆動する。また、第1の電極20Aと第2の電極20Bは、同軸上において対向するように配置されている。
そして、スポット溶接を行う場合、重ね合わせた複数(図では2枚)の被接合体である金属板Mを第1の電極20Aと第2の電極20Bの間に挿入し、金属板Mを第2の電極20Bに当接させた状態で、加圧シリンダ12により第1の電極20Aを進出させ、金属板Mを一対の電極20A,20Bの間に挟み込む。この状態で、加圧しながら一対の電極20A,20B間に通電を行い、スポット溶接を行う。
図2~図4にも示すように、第1の電極20Aは、第1シャンク21と、第2シャンク22と、電極チップ23Aと、接続部材である弾性部材24と、導線25と、一対のリング26A,26Bと、を備える。
第1シャンク21及び第2シャンク22は、例えば真鍮のような金属(合金)により構成されており、導電性を有する。第1シャンク21及び第2シャンク22は、一対のリング26A,26Bと螺合して固定されている。電極チップ23Aは、第1の電極20Aの先端である第1シャンク21の一端に設けられており、鋼板などの金属板Mに直接当接する部材である。
弾性部材24は、一対のばね座27,27を介して上下一対のリング26A,26B間に配設されており、第1シャンク21と第2シャンク22を接続している。具体的に、本実施形態では、弾性部材24はコイルバネにより形成されている。
コイルバネのバネ定数は、10N/mm以上、1500N/mm以下が好ましい。これにより、スポット溶接の際に、電極チップ23Aが金属板Mの傾きに合わせて傾き、金属板Mに対して略垂直になると共に、スポット溶接に必要な加圧力を金属板Mに付与できる剛性が確保される。すなわち、弾性部材24は、電極チップ23Aの金属板Mに対する角度を補正可能な角度補正機構として作用して打角を補正する。併せて、弾性部材24は、複数の金属板Mを挟み込んで一対の電極チップ23A,23Bに加圧力を付与した状態で通電することで、金属板Mの溶融金属が膨張した際に、さらに弾性変形することで、加圧力の上昇を抑制する。すなわち、弾性部材24は、電極チップの軸方向の加圧力を吸収可能な加圧力吸収機構として作用する。
金属製(例えば銅等)の導線25は、第1シャンク21及び第2シャンク22のそれぞれの外周に取り付けられた金属製(例えば銅等)のリング26A,26Bに接続されている。弾性部材24は金属製であるが、スポット溶接には大電流が必要であるため、弾性部材24を介して第1シャンク21と第2シャンク22との間に十分な電気的接続を確保することは困難である。このため、導線25が弾性部材24の外側を迂回するように設けられ、第1シャンク21と第2シャンク22とを電気的に接続する。スポット溶接機10の本体から加圧シリンダ12及び基台13Aを経由して供給された電流は、図4の「通電経路」の矢印に従って、第2シャンク22→リング26A→導線25→リング26B→第1シャンク21→電極チップ23Aの順に流れ、金属板Mまで到達する。なお、スポット溶接用の電流は、特に限定されないが、利用が容易な交流電流を用いることができる。
第1の電極20Aは、電流のみならず、先端の電極チップ23Aを冷却する冷却水を流すための構造を有している。すなわち、図4に示すように、冷却水を流すための流路Tが、第1シャンク21と、弾性部材24と、第2シャンク22それぞれの内部を貫通するように設けられている。
流路Tは、スポット溶接機10の本体から供給された冷却水を電極チップ23Aに流すための往路T1と、電極チップ23Aを冷却した冷却水をスポット溶接機10の本体に戻すための復路T2を含む。復路T2は、円筒状の第1シャンク21と、弾性部材24と、円筒状の第2シャンク22それぞれの内部を貫通する内部空間Hにより形成される。ただし、図4に示すように、第1シャンク21の上端及び第2シャンク22の下端それぞれに形成されたホース継手21a,22aにホース28が接続され、該ホース28が弾性部材24の内部に配置されている。したがって、実際には、ホース継手21a,22a及びホース28の内部が、内部空間Hを形成する。
往路T1は、内部空間Hに配置され、第1シャンク21と、弾性部材24と、第2シャンク22を貫通する一体のパイプ29により形成される。なお、パイプ29は、図4に示すように、内部空間Hの中心軸上に配置された、例えば樹脂等によって形成された円筒長尺状の部材である。
図4の「冷却水IN」の矢印で示すように、スポット溶接機10の本体から供給された冷却水は、第2シャンク22から、弾性部材24、第1シャンク21を経由するようにパイプ29の中を流れ、電極チップ23Aに到達する。電極チップ23Aに到達し、温度が上昇した冷却水は、「冷却水OUT」の矢印で示すように、第1シャンク21、弾性部材24、第2シャンク22を経由するように、パイプ29の外側の内部空間Hの中を流れ、スポット溶接機10に本体に戻り、再び冷却される。
このようにして、冷却水はスポット溶接機10の本体と電極チップ23A間を循環し、常に一定温度以下に冷却された冷却水が電極チップ23Aに供給されるため、第1の電極20A、特に電極チップ23Aの温度上昇を抑制することができ、スポット溶接の接合効率を向上させることができる。
図1に戻り、固定側電極である第2の電極20Bは、固定側の基台13Bに設けられた固定側シャンク30の一端に電極チップ23Bが固定されている。電極チップ23Bは、導電性を有する金属(合金)により構成され、金属板Mに直接当接する部材である。第2の電極20Bは、第1の電極20Aが有する弾性部材24を備えておらず、高い剛性を有する剛体電極である。
図5A及び図5Bに示すように、電極チップ23A,23Bは、外径φがφ≦16mmであり、金属板Mに当接する先端面23a,23bの曲率半径RはR≦100mmである。これにより、電極チップ23A,23Bが金属板Mに対して片当たりを抑制し、確実に接触する。
なお、電極チップ23A,23Bの先端面23a,23bの形状は、少なくともその一部がフラット面であってもよい。電極チップ23A,23Bが、金属板Mに対して略垂直である場合、電極チップ23A,23Bのフラット面が金属板Mに面接触する。この結果、金属板Mとフラット面との間で滑りが生じにくく、安定的なスポット溶接を行うことができる。
図5Aは、実際のスポット溶接の場面において、第1の電極20A及び第2の電極20Bと金属板Mが当接する状態を示す図である。第1の電極20Aが第2の電極20Bに接近し、それぞれが当接点P1,P2において金属板Mに当接することに伴い、各電極20A,20Bには荷重Fが印加される。理想状態においては、2つの電極が接近する方向であって、2つの電極の長手方向に沿った軸Y1,Y2に対して垂直な面Xに対し、金属板Mが平行に配置される。しかしながら、常に金属板Mの配置の精度を正確に保つことは困難であり、図示のように、例えば金属板Mが、面Xから所定の角度θ(例えば5°程度)傾いて配置される場合が生じ得る。すなわち、第1の電極20A及び第2の電極20Bが金属板Mに対し、垂直方向から傾いた状態をとっている。
そして、従来タイプ、すなわち上述した弾性部材24が設けられていない剛体電極を可動側電極に用いた場合、このような状態のままスポット溶接を行うと、電極チップの先端面が金属板Mに適切に接触していないため、大きな引張応力が発生し、一定品質のスポット溶接を得ることが難しくなる。品質劣化の一例として、例えばLME割れのような欠陥を生じるおそれがある。
続いて図5Bは、本実施形態の抵抗スポット溶接装置10の作用を説明するための図である。本実施形態の第1の電極20Aにおいては、上述した弾性部材24が設けられている。このため、2つの電極の先端である電極チップ23A,23Bから発生する荷重Fの作用により、第1の電極20Aの弾性部材24が弾性変形し、当接点P1(図5A参照)を中心として、第1の電極20Aの電極チップ23Aが矢印R1方向に回転する。この結果、金属板Mが移動しなくても、第1の電極20Aの電極チップ23Aは、金属板Mの面Xに対する傾きを小さくして、金属板Mに対し略垂直に交わる状態となり、第1の電極20Aの電極チップ23Aは、金属板Mに対し垂直方向から接する状態を維持することができる。すなわち、弾性部材24が、第1の電極20Aの金属板Mに対する角度(打角)を補正する角度補正機構として作用して、第1の電極20Aの電極チップ23Aが金属板Mに対して略垂直方向から接する。
なお、図5Bに示した通り、上記変形に伴い、第1の電極20A及び第2の電極20Bのそれぞれの長手方向に沿った軸Y1,Y2の間には、少しのずれが生じ得る。しかしながら、このようなずれはわずかなものであり、図5Aに示す状態に比べて、良好なスポット溶接を実現することができる。
上述した通り、第1の電極20Aが被接合体である鋼板等の金属板Mに傾斜した状態で当接しても、弾性部材24が、先端に設けられた電極チップ23Aからの力を受けて弾性変形し、電極チップ23Aの長手方向に沿った軸と金属板Mが略垂直となる関係を実現し、さらにこの関係を容易に維持することができる。
第1の電極20Aと金属板Mが傾いた状態で加圧されると、大きな引張応力が発生するため、これに起因してLME割れが助長される傾向がある。しかし、本実施形態の抵抗スポット溶接装置10によれば、電極チップと金属板Mとの接触部分において引張応力が低減され、打角に伴う引張応力に起因するLME割れを大幅に抑制してスポット溶接の品質の低下を抑制することができる。
また、抵抗スポット溶接方法では、接合時に電流を印加した際、金属板Mの溶融金属が膨張する。このため、弾性部材24が設けられていない剛体電極を可動側電極に用いた従来タイプの場合、加圧力が急上昇して、その衝撃によってLME割れが発生する可能性がある。しかしながら、本実施形態では、溶融金属の膨張による金属板Mへの応力変動を弾性部材24によって吸収することができるため、金属板Mに対して加圧力が上昇するのを抑えることができ、LME割れを防止することができる。
また、冷却水が流路Tを通じて第1の電極20Aの先端近傍、すなわち電極チップ23Aまで流れるため、溶接時に電極を効率的に冷却することができ、接合効率を向上させることができる。
本実施形態において、流路Tは、第1の電極20Aの内部空間Hにより形成される復路T2と、内部空間Hに配置されたパイプ29により形成される往路T1を含む。よって、簡易かつコンパクトな構成により、冷却水の循環を実現している。しかしながら、冷却水の流路Tはこのような構成に限定されるものではなく、他の手段によって冷却してもよい。
また、第1シャンク21と第2シャンク22を電気的に接続する導線25を、弾性部材24の外側に設けることにより、たとえ弾性部材24が弾性変形しても、電極への通電を円滑に行うことが可能となる。
図6は、可動側電極及び固定側電極が共に剛体電極(弾性部材24を備えない電極)である従来の抵抗スポット溶接装置と、第1実施形態に係る抵抗スポット溶接装置と、により抵抗スポット溶接された継手を比較して示す断面図である。
溶接条件は、いずれも板厚1.4mmのGA980DPの鋼板を2枚重ねとして、加圧力:3.5kN、通電時間:300ms、ホールド時間:0.01sec以上、板隙間(Sheet gap):2mm、傾斜角度(打角:Tilt angle):5°の条件で複数組の金属板Mに対してスポット溶接した。溶接電流(Current)は、6kA,7kA,8kAの各条件で行った。なお、溶接電流8kAでのスポット溶接は、チリ(Splash)が発生する条件である。
図6に示すように、従来の抵抗スポット溶接装置よるスポット溶接では、いずれの溶接電流(6kA,7kA,8kA)でも、図中矢印で示すように、すべての組の金属板MにLME割れが発生した。
一方、本実施形態に係る抵抗スポット溶接装置10よるスポット溶接では、いずれの条件でもLME割れは発生しなかった。これは、弾性部材24を備える第1の電極20Aの角度補正機構による打角補正、及び加圧力吸収機構による鋼板の応力変動緩和によると考えられる。
図7は、従来の抵抗スポット溶接装置と、本実施形態に係る抵抗スポット溶接装置とにより、溶接電流8kAで抵抗スポット溶接した際の加圧力及び溶接電流の変化を比較して示すグラフである。いずれの抵抗スポット溶接方法においても、加圧シリンダ12によって、第1の電極20Aを下降させ、一対の電極チップ23A,23Bに複数の金属板Mを挟み込み、更に加圧シリンダ12によって、一対の電極チップ23A,23Bに所定の加圧力を付与する。なお、本実施形態では、弾性部材24が弾性変形するため、加圧力は所定の加圧力まで徐々に増加する。その後、加圧力が付与された状態で、一対の電極チップ23A,23Bに所定時間(約0.3sec)通電を行い、通電後、所定のホールド時間が経過したタイミングで、加圧力を除去する。
図7に示すように、溶接電流通電時に、従来の抵抗スポット溶接装置では、本実施形態の抵抗スポット溶接装置10と比較して加圧力が略700N程度大きくなっているのに対して、本実施形態の抵抗スポット溶接装置10では、加圧力の上昇は見られず、安定している。これは、溶融金属の膨張による金属板Mへの応力変動が、加圧力吸収機構として作用する弾性部材24の弾性変形によって吸収されたためであり、その結果、LME割れが抑制されたものと考えられる。すなわち、弾性部材24であるコイルバネが、金属板Mの通電時に生じる加圧力の荷重変動を吸収する加圧力吸収機構として作用して、該加圧力の荷重変動を吸収しながら抵抗スポット溶接したことによるものと推定される。
なお、通電後の金属板Mの冷却に伴うナゲットの熱収縮によって、板幅方向に引張応力が発生して圧接部でのLME割れが生じる場合がある。このことから、通電後に加圧力を保持し、溶接後の冷却時間を確保するためのホールド時間は、ナゲットの熱収縮に伴う板幅方向の引張応力を低減することができ、LME割れ発生の抑制に有効である。LME割れの発生を効果的に抑制するためには、上記ホールド時間として、通電終了後、0.01sec以上加圧保持したのち、電極の加圧から圧力開放に転じる制御を行うことが好ましい。
(第2実施形態)
次に、本発明の第2実施形態に係る抵抗スポット溶接装置を図8~図11を参照して説明する。本実施形態の抵抗スポット溶接装置は、可動側電極及び固定側電極の両電極チップと鋼板とを略垂直に接触させて、打角によるLME割れの発生をさらに抑制すると共に、通電時の溶融金属の膨張によって生じる衝撃力を可動側電極で吸収して、LME割れの発生を抑制する。
次に、本発明の第2実施形態に係る抵抗スポット溶接装置を図8~図11を参照して説明する。本実施形態の抵抗スポット溶接装置は、可動側電極及び固定側電極の両電極チップと鋼板とを略垂直に接触させて、打角によるLME割れの発生をさらに抑制すると共に、通電時の溶融金属の膨張によって生じる衝撃力を可動側電極で吸収して、LME割れの発生を抑制する。
図8に示すように、本実施形態の抵抗スポット溶接装置10Aは、平面視で略C型の形状を呈するフレーム11と、フレーム11の一端に設けられた加圧シリンダ12と、当該加圧シリンダ12及びフレーム11の対向する端部に設けられた2つの基台13A,13Bと、可動側の基台13Aに設けられた、可動側電極である第1の電極20Aと、固定側の基台13Bに設けられた、固定側電極である第3の電極20Cを備える。第1の電極20Aと第3の電極20Cは、同軸上において対向するように配置されている。
第1の電極20Aは、弾性変形可能な弾性部材24を備え、第1実施形態の第1の電極20Aと同一構造を有するため、その構造、作用などの詳細な説明は省略する。
第3の電極20Cは、第1シャンク31と第2シャンク32が自在継手33により接続されている。第3の電極20Cは、自在継手33による角度補正機構の作用により、電極チップ23Cと金属板Mとが略垂直状態になるように打角を補正する。
第3の電極20Cは、第1シャンク31と第2シャンク32が自在継手33により接続されている。第3の電極20Cは、自在継手33による角度補正機構の作用により、電極チップ23Cと金属板Mとが略垂直状態になるように打角を補正する。
図9~図11に示すように、第3の電極20Cは、第1シャンク31と、第2シャンク32と、電極チップ23Cと、第1シャンク31及び第2シャンク32を屈曲自在に接続する自在継手33と、導線25と、を備える。
第1シャンク31及び第2シャンク32は、例えば真鍮のような金属(合金)により構成されており、導電性を有する。電極チップ23Cは、第3の電極20Cの先端である第1シャンク31の一端に設けられており、金属板Mに直接当接する部材である。
自在継手33は、第1シャンク31に固定された雄継手34と、第2シャンク32に固定された雌継手35とからなる。雄継手34は、略球形に形成された先端部36を有し、該先端部36が雌継手35の球形孔37に屈曲自在に嵌合する。第1シャンク31の軸中心に形成された軸孔40には、斜め方向から給水パイプ38及び排水パイプ39が接続されている。
図10の「冷却水IN」の矢印で示すように、スポット溶接機10Aの本体から供給された冷却水は、給水パイプ38の中を流れ、電極チップ23Cに到達する。電極チップ23Cに到達し、温度が上昇した冷却水は、「冷却水OUT」の矢印で示すように、排水パイプ39からスポット溶接機10Aに本体に戻り、再び冷却される。
球形の先端部36が球形孔37に屈曲自在に嵌合する自在継手33は、第3の電極20Cの軸心に対して鋼板等の金属板Mが傾斜している場合、第3の電極20Cが金属板Mに接触すると、雄継手34が雌継手35に対して屈曲して電極チップ23Cが金属板Mに対して略垂直となる。すなわち、自在継手33は、電極チップ23Cの金属板Mに対する角度を補正可能な角度補正機構として作用して、電極チップ23Cの打角を補正し、これにより引張応力を低減させてLME割れが抑制される。なお、自在継手33は、所定の角度を越えて屈曲しないように構成されている。
また、第1シャンク31及び第2シャンク32が、自在継手33により接続されている第3の電極20Cは、軸方向に対して高い剛性を有するため、金属板Mから第3の電極20Cに加圧力が作用しても軸方向位置を一定位置に維持することができ、安定した抵抗スポット溶接が行える。
一方、可動側電極である第1の電極20Aでは、弾性部材24の角度補正機構によって第1の電極20Aの打角が補正されて、電極チップ23Aが金属板Mに対して略垂直方向から接触し、打角に起因するLME割れを抑制する。さらに、第1の電極20Aが備える弾性部材24の加圧力吸収機構により、通電時に発生する金属板Mの熱膨張による金属板Mの応力変動が緩和されてLME割れを抑制する。
このように、第1の電極20A及び第3の電極20Cの両電極において、電極チップ23A,23Cが金属板Mに対して略垂直方向から接触するため、可動側電極だけでなく、固定側電極においても打角が補正されるため、第1実施形態の抵抗スポット溶接装置10と比較して、更に打角による引張応力に起因するLME割れを抑制することができる。
その他の部分については、本発明の第1実施形態に係る抵抗スポット溶接装置10と同様であるため、同一部分には同一符号又は相当符号を付して説明を簡略化又は省略する。
(第3実施形態)
次に、本発明の第3実施形態に係る抵抗スポット溶接装置について、図12を参照して説明する。本実施形態の抵抗スポット溶接装置は、可動側電極及び固定側電極の両電極チップと鋼板とを略垂直に接触させて打角によるLME割れの発生を抑制することを目的とする。
次に、本発明の第3実施形態に係る抵抗スポット溶接装置について、図12を参照して説明する。本実施形態の抵抗スポット溶接装置は、可動側電極及び固定側電極の両電極チップと鋼板とを略垂直に接触させて打角によるLME割れの発生を抑制することを目的とする。
図12は、本発明の第3実施形態である抵抗スポット溶接装置の側面図である。本実施形態の抵抗スポット溶接装置10Bは、可動側電極及び固定側電極が共に、第2実施形態で説明した自在継手33を有する第3の電極20Cから構成されている。
第3の電極20Cは、弾性部材24を有しておらず、したがって、加圧力吸収機構による金属板Mの応力変動は吸収されない。しかし、可動側及び固定側のいずれにおいても自在継手33による角度補正機構の作用により打角が補正されるため、打角に起因するLME割れの発生を抑制することができる。
また、第3の電極20Cの自在継手33は、軸方向に対して、第2の電極20B(図1参照)と同程度の剛性を有するため、図7に示す加圧開始から所定の加圧力に達するまでに要する加圧時間及び加圧終了後の残加圧時間が、第1の電極20Aと比較して短縮することができ、全体として短時間での接合が可能となる。
その他の部分については、本発明の第2実施形態に係る抵抗スポット溶接装置10Aと同様であるため、同一部分には同一符号又は相当符号を付して説明を簡略化又は省略する。
(第4実施形態)
次に、本発明の第4実施形態に係る抵抗スポット溶接装置について図13~図18を参照して説明する。本実施形態の抵抗スポット溶接装置は、一対の可動側電極の両電極チップと鋼板とを略垂直に接触させて、打角によるLME割れの発生を抑制すると共に、通電時の溶融金属の膨張によって生じる衝撃力を一対の可動側電極で吸収して、LME割れの発生をさらに抑制することを目的とする。
次に、本発明の第4実施形態に係る抵抗スポット溶接装置について図13~図18を参照して説明する。本実施形態の抵抗スポット溶接装置は、一対の可動側電極の両電極チップと鋼板とを略垂直に接触させて、打角によるLME割れの発生を抑制すると共に、通電時の溶融金属の膨張によって生じる衝撃力を一対の可動側電極で吸収して、LME割れの発生をさらに抑制することを目的とする。
図13は、本発明の第4実施形態に係る抵抗スポット溶接装置の側面図である。抵抗スポット溶接装置10Cは、平面視で略C型の形状を呈するフレーム11と、フレーム11の両端に設けられた加圧シリンダ12と、当該加圧シリンダ12に設けられた2つの基台13A,13Bと、2つの基台13A,13Bのそれぞれに設けられた一対の可動側電極である一対の第4の電極20Dを備える。一対の第4の電極20Dは、同軸上において対向するように配置されている。
スポット溶接を行う場合、重ね合わせた複数(図では2枚)の被接合体である鋼板等の金属板Mを一対の第4の電極20Dの間に挿入し、加圧シリンダ12により一対の第4の電極20Dを互いに接近させ、金属板Mを一対の第4の電極20Dの間に挟み込む。これにより、弾性部材43の収縮することができ、これにより金属板Mの板厚方向の位置が安定する。この状態で、加圧しながら一対の電極間に通電を行い、スポット溶接を行う。本実施形態では、一対の第4の電極20Dは、全く同じ形式のものを用いている。
図14は、第4の電極20Dの斜視図であり、図15は、図14の断面図を示す。第4の電極20Dは、第1シャンク(第1の電極用シャンク)41と、第2シャンク(第2の電極用シャンク)42と、電極チップ23Dと、弾性部材43と、導線45と、リング46と、を備える。
第1シャンク41及び第2シャンク42は、例えば真鍮のような金属(合金)により構成されており、導電性を有する。本実施形態では、第1シャンク41と第2シャンク42は、全く同じ形式のものを用いている。また、電極チップ23Dは、第4の電極20Dの先端であって、第1シャンク41の第1端に設けられており、金属板Mに直接当接する部材である。
弾性部材43は、電極チップ23Dが設けられた第1シャンク41の第1端と逆側の第2端と、第2シャンク42を接続する部材である。弾性部材43は、第4の電極20Dに所定の荷重が加わった際においても、破壊を免れる程度の剛性を有する一方で、荷重の作用により弾性変形可能な性質を有している。本実施形態では、弾性部材43は鋼鉄のような金属製の円筒形ブロックにより形成され、このブロックには弾性変形を促すための切り欠き43aが設けられている。
金属製(例えば銅等)の導線45は、第1シャンク41及び第2シャンク42のそれぞれの外周に取り付けられた金属製(例えば銅等)のリング46に接続されている。弾性部材43が金属製であっても、その導電性が十分でない場合(スポット溶接には大電流が必要)、第1シャンク41と第2シャンク42との間に十分な電気的接続を確保することは困難である。このため、導線45が弾性部材43の外側を迂回するように設けられ、第1シャンク41と第2シャンク42とを電気的に接続する。抵抗スポット溶接装置10Cの本体から加圧シリンダ12、基台13Aを経由して供給された電流は、第2シャンク42→リング46→導線45→リング46→第1シャンク41→電極チップ23Dの順に流れ、金属板Mまで到達する。
図16は、図15のS領域の拡大図を示す。図17は、第4の電極の断面図を示す。第4の電極20Dは電流のみならず、第4の電極20D自体、特に先端の電極チップ23Dを冷却する冷却水を流すための構造を有している。すなわち、図17に示すように、冷却水を流すための流路Tが、第1シャンク41と、弾性部材43と、第2シャンク42それぞれの内部を貫通するように設けられている。
流路Tは、抵抗スポット溶接装置10Cの本体から供給された冷却水を電極チップ23Dに流すための往路T1と、電極チップ23Dを冷却した冷却水を抵抗スポット溶接装置10Cの本体に戻すための復路T2を含む。復路T2は、第1シャンク41と、弾性部材43と、第2シャンク42それぞれの内部を貫通する内部空間Hにより形成される。第1シャンク41及び第2シャンク42は、その中心部分が長手方向に沿って中空になるようにくり抜かれており、くり抜かれた部分が内部空間Hを形成する。弾性部材43も同様に、その中心部分が長手方向に沿って中空になるようにくり抜かれている。ただし、図17に示すように、くり抜かれた部分の上下端では、第1シャンク41及び第2シャンク42のそれぞれと螺合するホース継手47、及びホース継手47に接続されたホース48がくり抜かれた部分に配置されており、ホース継手47及びホース48の内部が、内部空間Hを形成する。
往路T1は、内部空間Hに配置され、第1シャンク41と、弾性部材43と、第2シャンク42を貫通する一体のパイプ49により形成される。なお、パイプ49は、図15において省略されているが、図16の一点鎖線又は図17に示すように、内部空間Hの中心軸上に配置され、例えば樹脂等によって形成された円筒長尺状の部材である。
図17の「冷却水IN」の矢印で示すように、抵抗スポット溶接装置10Cの本体から供給された冷却水は、第2シャンク42から、弾性部材43及び第1シャンク41を経由するようにパイプ49の中を流れ、電極チップ23Dに到達する。電極チップ23Dに到達し、温度が上昇した冷却水は、「冷却水OUT」の矢印で示すように、第1シャンク41、弾性部材43、第2シャンク42を経由するように、パイプ49の外側の内部空間Hの中を流れ、抵抗スポット溶接装置10Cの本体に戻り、再び冷却される。このようにして、冷却水は抵抗スポット溶接装置10Cの本体と電極を循環し、常に一定温度以下に冷却された冷却水が電極チップ23Dに供給されるため、第4の電極20D、特に電極チップ23Dの温度上昇を抑制することができ、スポット溶接の接合効率を向上させることができる。なお、スポット溶接用の電流は、図17の「通電経路」の矢印に従って、抵抗スポット溶接装置10Cの本体から加圧シリンダ12及び基台13Aを経由して供給され、第2シャンク42→導線45→第1シャンク41→電極チップ23Dの順に流れ、金属板Mまで到達する。
電極チップ23Dは、金属板Mに直接当接する平坦なフラット面23dを有する。第4の電極20Dが、金属板Mに対し略垂直の関係を維持することができる場合、各電極の電極チップ23Dのフラット面23dが金属板Mに面接触する。この結果、金属板Mとフラット面23dとの間で滑りが生じにくく、安定的なスポット溶接を行うことが可能となる。なお、平坦なフラット面23dは、電極チップ23Dの先端部における少なくとも一部に存在していればよく、図17に示すような、電極チップ23Dにおける金属板Mに対向する面のすべてがフラットな面を有するのはもちろんのこと、電極チップ23Dの先端部のみがフラットな面を有し、その周囲の部分が曲率を有する形状であっても構わない。
図18Aは、実際のスポット溶接の場面において、第4の電極20Dと金属板Mが取り得る状態を示す図である。一対の第4の電極20Dが互いに接近し、それぞれが当接点P1,P2において金属板Mに当接することに伴い、各電極には荷重Fが印加される。理想状態においては、2つの電極が接近する方向であって、2つの電極の長手方向に沿った軸Y1,Y2に対して垂直な面Xに対し、金属板Mが平行に配置される。しかしながら、常に金属板Mの配置の精度を正確に保つことは困難であり、図示のように、例えば金属板Mが面Xから所定の角度θ(例えば5°程度)傾いて配置される場合が生じ得る。すなわち、一対の第4の電極20Dが金属板Mに対し、垂直方向から傾いた状態をとっている。
そして、本実施形態の第4の電極20Dではない従来タイプ、すなわち上述した弾性変形可能な弾性部材43が設けられていない剛体電極を用い、このような状態のままスポット溶接を行うと、電極チップ23Dのフラット面23dが金属板Mに適切に接触していないため、一定品質のスポット溶接を得ることが難しくなる。品質劣化の一例として、例えばLME(Liquid Metal Embrittlemet;液体金属脆化)割れのような欠陥を生じるおそれがある。
続いて図18Bは、本実施形態の一対の第4の電極20Dの作用を説明するための図である。本実施形態の第4の電極20Dにおいては、上述した弾性部材43が設けられている。このため、2つの電極の先端である電極チップ23Dから発生する荷重Fの作用により、それぞれの弾性部材43が弾性変形し、当接点P1,P2を中心として、両電極チップ23Dが矢印R1方向に回転する。この結果、金属板Mが移動しなくても、二つの電極の長手方向に沿った軸Y1,Y2は、金属板Mに対し略垂直に交わる状態となり、一対の第4の電極20Dは、金属板Mに対し略垂直方向から接触する状態を維持することができる。この結果、一対の第4の電極20Dのそれぞれのフラット面23dが、金属板Mに対し適切に面接触することになり、LME割れの発生を抑制して安定的なスポット溶接を行うことが可能となる。
なお、図18Bの破線で示した通り、上記変形に伴い、一対の第4の電極20Dのそれぞれの長手方向に沿った軸Y1,Y2の間には、少しのずれが生じ得る。しかしながら、このようなずれはわずかなものであり、図18Aの状態に比べて、良好なスポット溶接を実現することができる。
上述した通り、第4の電極20Dが被接合体である鋼板等の金属板Mに傾斜した状態で当接しても、弾性部材43が、先端に設けられた電極チップ23Dからの力を受けて弾性変形し、電極の長手方向に沿った軸と金属板Mが略垂直となる関係を実現し、さらにこの関係を容易に維持することができる。したがって、打角によるスポット溶接の品質の低下を抑制することができる。
また、もし電極チップ23Dの金属板Mに接する面が湾曲面により形成されている場合、この湾曲面と金属板Mの間で滑りが生じやすく、溶接が不安定になり得ると考えられる。しかしながら本実施形態では、金属板Mに接する面が平坦なフラット面23dにより形成されており、金属板Mとフラット面23dとの間で滑りが生じにくく、電極チップ23Dから発生する荷重を、確実に弾性部材43に伝達することが可能となる。この結果、弾性部材43の変形を促し、図18Bに示したように、打角が補正された状態を容易に実現するとともに、この状態を安定的に維持することができる。
また、一対の第4の電極20Dに設けられた弾性部材43は、弾性変形することで通電時に溶融金属の膨張による加圧力の上昇を吸収する。これにより、通電時の溶融金属の膨張の衝撃によるLME割れの発生を抑制することができる。
また、冷却水が流路Tを通じて電極の先端近傍、すなわち電極チップ23Dまで流れるため、溶接時に電極を効率的に冷却することができ、接合効率を向上させることができる。
本実施形態において流路Tは、電極の内部空間Hにより形成される復路T2と、内部空間Hに配置されたパイプ49により形成される往路T1を含む。よって、簡易かつコンパクトな構成により、冷却水の循環を実現している。しかしながら、冷却水の流路Tはこのような構成に限定されるものではなく、他の手段によって冷却してもよい。
また、第1シャンク41と第2シャンク42を電気的に接続する導線45を、弾性部材43の外側に設けることにより、たとえ弾性部材43が弾性変形しても、電極への通電を円滑に行うことが可能となる。
本実施形態では、弾性部材43は鋼鉄のような金属製の円筒形ブロックにより形成され、このブロックには弾性変形を促す切り欠き43aが設けられている。しかしながら、弾性部材43の具体的な形状、構造、材料等は特に限定されない。例えば、弾性部材43を十分な剛性と導電性を両立させた材料で形成してもよく、このような場合は、導線45の線径を細くしたり、又は導線45自体を省略することができる。
本実施形態の切り欠き43aは、弾性部材43の周方向かつ長手方向に伸びるように、例えば螺旋状に形成されている。ただし、弾性部材43の弾性変形を促すことができるのであれば、その具体的な態様は特に限定されない。また、バネ等の部材を設け、弾性変形を実現してもよい。なお、弾性部材43に少量の電流が流れることにより、弾性部材43が溶解し、切り欠き43aが埋められてしまう事態が生じ得るが、このような事態を防止するため、切り欠き43aに樹脂、ゴム等の非導電性材料を埋め込んでもよい。
なお、本発明は、前述した各実施形態に限定されるものではなく、適宜、変形、改良、等が可能である。その他、上述した各実施形態における各構成要素の材質、形状、寸法、数値、形態、数、配置箇所、等は本発明を達成できるものであれば任意であり、限定されない。
例えば、本発明の加圧力吸収機構は、第1及び第2実施形態の弾性部材24や第4実施形態の弾性部材43の形態に限定されることなく、例えば、図示しないエアシリンダなどの空圧装置の弾性力を利用することもできる。
また、本発明の抵抗スポット溶接装置は、略L字形の一対の長尺電極が溶接装置本体から前方に延び、その先端同士が互いに接近及び離間可能に開閉自在とされた、簡易型あるいは携帯型などの図示しない溶接装置にも適用できる。具体的には、一方の電極を溶接装置本体に固定し、他方の電極を溶接装置本体に設けた軸を中心として揺動自在とすると共に、他方の電極と溶接装置本体の間に、他方の電極の先端を一方の電極の先端方向に付勢するばねを設けた構造であってもよい。この場合、他方の電極と溶接装置本体の間に設けたばねが、加圧力吸収機構として作用して、通電時の溶融金属の膨張による加圧力の上昇を吸収し、その衝撃によるLME割れを防止する。
以上の通り、本明細書には次の事項が開示されている。
(1) C:0.08質量%以上、Si:0.50質量%以上を含み、引張強度が980MPa以上で、かつ亜鉛めっきされた鋼板を少なくとも1枚有する複数の鋼板をスポット溶接するための抵抗スポット溶接方法であって、
前記複数の鋼板を挟み込んで加圧する一対の電極チップと、前記一対の電極チップのうち少なくとも一方に設けられ、前記電極チップの軸方向への加圧力を吸収可能な加圧力吸収機構と、を備える一対の電極を用いて、
前記一対の電極チップに前記複数の鋼板を挟み込み、かつ、前記一対の電極チップに加圧力を付与した状態で通電することで、前記通電時に発生する前記加圧力の変動荷重を前記加圧力吸収機構により吸収しながら溶接する、抵抗スポット溶接方法。
(2) 前記一対の電極のうち一方は固定式電極であり、他方は可動式電極であって、
前記加圧力吸収機構は、前記可動式電極側に設けられる、(1)に記載の抵抗スポット溶接方法。
(3) 前記加圧力吸収機構は、弾性部材を用いた機構である、(1)又は(2)に記載の抵抗スポット溶接方法。
(4) 前記弾性部材は、バネ定数が10N/mm以上1500N/mm以下であるバネによって構成される、(3)に記載の抵抗スポット溶接方法。
(5) 前記加圧力吸収機構は、空圧を用いた機構である、(1)又は(2)に記載の抵抗スポット溶接方法。
(1) C:0.08質量%以上、Si:0.50質量%以上を含み、引張強度が980MPa以上で、かつ亜鉛めっきされた鋼板を少なくとも1枚有する複数の鋼板をスポット溶接するための抵抗スポット溶接方法であって、
前記複数の鋼板を挟み込んで加圧する一対の電極チップと、前記一対の電極チップのうち少なくとも一方に設けられ、前記電極チップの軸方向への加圧力を吸収可能な加圧力吸収機構と、を備える一対の電極を用いて、
前記一対の電極チップに前記複数の鋼板を挟み込み、かつ、前記一対の電極チップに加圧力を付与した状態で通電することで、前記通電時に発生する前記加圧力の変動荷重を前記加圧力吸収機構により吸収しながら溶接する、抵抗スポット溶接方法。
(2) 前記一対の電極のうち一方は固定式電極であり、他方は可動式電極であって、
前記加圧力吸収機構は、前記可動式電極側に設けられる、(1)に記載の抵抗スポット溶接方法。
(3) 前記加圧力吸収機構は、弾性部材を用いた機構である、(1)又は(2)に記載の抵抗スポット溶接方法。
(4) 前記弾性部材は、バネ定数が10N/mm以上1500N/mm以下であるバネによって構成される、(3)に記載の抵抗スポット溶接方法。
(5) 前記加圧力吸収機構は、空圧を用いた機構である、(1)又は(2)に記載の抵抗スポット溶接方法。
(6) C:0.08質量%以上、Si:0.50質量%以上を含み、引張強度が980MPa以上で、かつ亜鉛めっきされた鋼板を少なくとも1枚有する複数の鋼板をスポット溶接するための抵抗スポット溶接方法であって、
前記複数の鋼板を挟み込んで加圧する一対の電極チップと、前記鋼板に対する前記一対の電極チップの角度をそれぞれ補正可能な一対の角度補正機構と、を備える一対の電極を用いて、
前記一対の電極チップに前記複数の鋼板を挟み込み、かつ、前記一対の電極チップの軸が前記鋼板に対して略垂直となるように接触させながら、前記一対の電極チップに加圧力を付与した状態で通電することで溶接する、抵抗スポット溶接方法。
(7) 前記一対の角度補正機構のうち少なくとも一方は自在継手を用いた機構である、(6)に記載の抵抗スポット溶接方法。
(8) 前記一対の電極のうち一方は固定式電極であり、他方は可動式電極であって、
前記自在継手を用いた機構は、前記固定式電極側に設けられる、(7)に記載の抵抗スポット溶接方法。
(9) 前記一対の角度補正機構のうち一方が前記固定式電極側に設けられた自在継手を用いた機構であり、他方が前記可動式電極側に設けられた弾性部材を用いた機構である、(8)に記載の抵抗スポット溶接方法。
(10) 前記弾性部材は、バネ定数が10N/mm以上1500N/mm以下であるバネによって構成される、(9)に記載の抵抗スポット溶接方法。
(11) 前記一対の角度補正機構の両方が自在継手を用いた機構である、(7)に記載の抵抗スポット溶接方法。
(12) 前記電極チップは、先端面の曲率半径RがR≦100mmを満たし、かつ、外径φがφ≦16mmを満たす、(1)~(11)のいずれかに記載の抵抗スポット溶接方法。
(13) 前記電極チップは、その先端部の少なくとも一部が前記鋼板に当接するフラット面を有する、(1)~(11)のいずれかに記載の抵抗スポット溶接方法。
(14) 通電終了後、0.01sec以上加圧保持したのち、前記電極の加圧から圧力開放に転じる制御を行う、(1)~(13)のいずれかに記載の抵抗スポット溶接方法。
(15) 溶接電流が交流電流である、(1)~(14)のいずれかに記載の抵抗スポット溶接方法。
前記複数の鋼板を挟み込んで加圧する一対の電極チップと、前記鋼板に対する前記一対の電極チップの角度をそれぞれ補正可能な一対の角度補正機構と、を備える一対の電極を用いて、
前記一対の電極チップに前記複数の鋼板を挟み込み、かつ、前記一対の電極チップの軸が前記鋼板に対して略垂直となるように接触させながら、前記一対の電極チップに加圧力を付与した状態で通電することで溶接する、抵抗スポット溶接方法。
(7) 前記一対の角度補正機構のうち少なくとも一方は自在継手を用いた機構である、(6)に記載の抵抗スポット溶接方法。
(8) 前記一対の電極のうち一方は固定式電極であり、他方は可動式電極であって、
前記自在継手を用いた機構は、前記固定式電極側に設けられる、(7)に記載の抵抗スポット溶接方法。
(9) 前記一対の角度補正機構のうち一方が前記固定式電極側に設けられた自在継手を用いた機構であり、他方が前記可動式電極側に設けられた弾性部材を用いた機構である、(8)に記載の抵抗スポット溶接方法。
(10) 前記弾性部材は、バネ定数が10N/mm以上1500N/mm以下であるバネによって構成される、(9)に記載の抵抗スポット溶接方法。
(11) 前記一対の角度補正機構の両方が自在継手を用いた機構である、(7)に記載の抵抗スポット溶接方法。
(12) 前記電極チップは、先端面の曲率半径RがR≦100mmを満たし、かつ、外径φがφ≦16mmを満たす、(1)~(11)のいずれかに記載の抵抗スポット溶接方法。
(13) 前記電極チップは、その先端部の少なくとも一部が前記鋼板に当接するフラット面を有する、(1)~(11)のいずれかに記載の抵抗スポット溶接方法。
(14) 通電終了後、0.01sec以上加圧保持したのち、前記電極の加圧から圧力開放に転じる制御を行う、(1)~(13)のいずれかに記載の抵抗スポット溶接方法。
(15) 溶接電流が交流電流である、(1)~(14)のいずれかに記載の抵抗スポット溶接方法。
(16) 第1の電極用シャンクと、
第2の電極用シャンクと、
前記第1の電極用シャンクの第1端に設けられ、フラット面を有する電極チップと、
前記第1の電極用シャンクの第2端と前記第2の電極用シャンクを接続し、弾性変形可能な接続部材と、を備え、
冷却水を流すための流路が、前記第1の電極用シャンクと、前記接続部材と、前記第2の電極用シャンクそれぞれの内部を貫通するように設けられている、スポット溶接ガン用電極。
(17) 前記第1の電極用シャンクと前記第2の電極用シャンクを電気的に接続する導線が、前記接続部材の外側に設けられている、(16)に記載のスポット溶接ガン用電極。
(18) 前記接続部材は金属製のブロックにより形成され、当該金属製のブロックには、弾性変形を促す切り欠きが設けられている、(16)又は(17)に記載のスポット溶接ガン用電極。
(19) 前記流路は、前記第2の電極用シャンクから前記電極チップに向けて冷却水を流す往路と、前記電極チップから前記第2の電極用シャンクに向けて冷却水を流す復路を含み、
前記復路は、前記第1の電極用シャンクと、前記接続部材と、前記第2の電極用シャンクそれぞれの内部を貫通する内部空間により形成され、
前記往路は、前記内部空間に配置され、前記第1の電極用シャンクと、前記接続部材と、前記第2の電極用シャンクを貫通する一体のパイプにより形成される、(16)~(18)のいずれかに記載のスポット溶接ガン用電極。
(20) (16)~(19)のいずれかに記載のスポット溶接ガン用電極を有するスポット溶接ガン。
第2の電極用シャンクと、
前記第1の電極用シャンクの第1端に設けられ、フラット面を有する電極チップと、
前記第1の電極用シャンクの第2端と前記第2の電極用シャンクを接続し、弾性変形可能な接続部材と、を備え、
冷却水を流すための流路が、前記第1の電極用シャンクと、前記接続部材と、前記第2の電極用シャンクそれぞれの内部を貫通するように設けられている、スポット溶接ガン用電極。
(17) 前記第1の電極用シャンクと前記第2の電極用シャンクを電気的に接続する導線が、前記接続部材の外側に設けられている、(16)に記載のスポット溶接ガン用電極。
(18) 前記接続部材は金属製のブロックにより形成され、当該金属製のブロックには、弾性変形を促す切り欠きが設けられている、(16)又は(17)に記載のスポット溶接ガン用電極。
(19) 前記流路は、前記第2の電極用シャンクから前記電極チップに向けて冷却水を流す往路と、前記電極チップから前記第2の電極用シャンクに向けて冷却水を流す復路を含み、
前記復路は、前記第1の電極用シャンクと、前記接続部材と、前記第2の電極用シャンクそれぞれの内部を貫通する内部空間により形成され、
前記往路は、前記内部空間に配置され、前記第1の電極用シャンクと、前記接続部材と、前記第2の電極用シャンクを貫通する一体のパイプにより形成される、(16)~(18)のいずれかに記載のスポット溶接ガン用電極。
(20) (16)~(19)のいずれかに記載のスポット溶接ガン用電極を有するスポット溶接ガン。
以上、図面を参照しながら各種の実施の形態について説明したが、本発明はかかる例に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例又は修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。また、発明の趣旨を逸脱しない範囲において、上記実施の形態における各構成要素を任意に組み合わせてもよい。
なお、本出願は、2020年2月25日出願の日本実用新案登録出願(実願2020-000622)及び2020年7月22日出願の日本特許出願(特願2020-125561)に基づくものであり、その内容は本出願の中に参照として援用される。
10,10A,10B,10C 抵抗スポット溶接装置(スポット溶接機)
20A 第1の電極(電極)
20B 第2の電極(電極)
20C 第3の電極(電極)
20D 第4の電極(電極)
23A,23B,23C,23D 電極チップ
23d フラット面
24 弾性部材(接続部材、加圧力吸収機構、角度補正機構)
43 弾性部材(接続部材、加圧力吸収機構、角度補正機構)
33 自在継手
M 金属板(鋼板)
R 先端面の曲率半径
φ 外径
20A 第1の電極(電極)
20B 第2の電極(電極)
20C 第3の電極(電極)
20D 第4の電極(電極)
23A,23B,23C,23D 電極チップ
23d フラット面
24 弾性部材(接続部材、加圧力吸収機構、角度補正機構)
43 弾性部材(接続部材、加圧力吸収機構、角度補正機構)
33 自在継手
M 金属板(鋼板)
R 先端面の曲率半径
φ 外径
Claims (15)
- C:0.08質量%以上、Si:0.50質量%以上を含み、引張強度が980MPa以上で、かつ亜鉛めっきされた鋼板を少なくとも1枚有する複数の鋼板をスポット溶接するための抵抗スポット溶接方法であって、
前記複数の鋼板を挟み込んで加圧する一対の電極チップと、前記一対の電極チップのうち少なくとも一方に設けられ、前記電極チップの軸方向への加圧力を吸収可能な加圧力吸収機構と、を備える一対の電極を用いて、
前記一対の電極チップに前記複数の鋼板を挟み込み、かつ、前記一対の電極チップに加圧力を付与した状態で通電することで、前記通電時に発生する前記加圧力の変動荷重を前記加圧力吸収機構により吸収しながら溶接する、抵抗スポット溶接方法。 - 前記一対の電極のうち一方は固定式電極であり、他方は可動式電極であって、
前記加圧力吸収機構は、前記可動式電極側に設けられる、請求項1に記載の抵抗スポット溶接方法。 - 前記加圧力吸収機構は、弾性部材を用いた機構である、請求項1又は2に記載の抵抗スポット溶接方法。
- 前記弾性部材は、バネ定数が10N/mm以上1500N/mm以下であるバネによって構成される、請求項3に記載の抵抗スポット溶接方法。
- 前記加圧力吸収機構は、空圧を用いた機構である、請求項1又は2に記載の抵抗スポット溶接方法。
- C:0.08質量%以上、Si:0.50質量%以上を含み、引張強度が980MPa以上で、かつ亜鉛めっきされた鋼板を少なくとも1枚有する複数の鋼板をスポット溶接するための抵抗スポット溶接方法であって、
前記複数の鋼板を挟み込んで加圧する一対の電極チップと、前記鋼板に対する前記一対の電極チップの角度をそれぞれ補正可能な一対の角度補正機構と、を備える一対の電極を用いて、
前記一対の電極チップに前記複数の鋼板を挟み込み、かつ、前記一対の電極チップの軸が前記鋼板に対して略垂直となるように接触させながら、前記一対の電極チップに加圧力を付与した状態で通電することで溶接する、抵抗スポット溶接方法。 - 前記一対の角度補正機構のうち少なくとも一方は自在継手を用いた機構である、請求項6に記載の抵抗スポット溶接方法。
- 前記一対の電極のうち一方は固定式電極であり、他方は可動式電極であって、
前記自在継手を用いた機構は、前記固定式電極側に設けられる、請求項7に記載の抵抗スポット溶接方法。 - 前記一対の角度補正機構のうち一方が前記固定式電極側に設けられた自在継手を用いた機構であり、他方が前記可動式電極側に設けられた弾性部材を用いた機構である、請求項8に記載の抵抗スポット溶接方法。
- 前記弾性部材は、バネ定数が10N/mm以上1500N/mm以下であるバネによって構成される、請求項9に記載の抵抗スポット溶接方法。
- 前記一対の角度補正機構の両方が自在継手を用いた機構である、請求項7に記載の抵抗スポット溶接方法。
- 前記電極チップは、先端面の曲率半径RがR≦100mmを満たし、かつ、外径φがφ≦16mmを満たす、請求項1又は6に記載の抵抗スポット溶接方法。
- 前記電極チップは、その先端部の少なくとも一部が前記鋼板に当接するフラット面を有する、請求項1又は6に記載の抵抗スポット溶接方法。
- 通電終了後、0.01sec以上加圧保持したのち、前記電極の加圧から圧力開放に転じる制御を行う、請求項1又は6に記載の抵抗スポット溶接方法。
- 溶接電流が交流電流である、請求項1又は6に記載の抵抗スポット溶接方法。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/904,494 US20230106542A1 (en) | 2020-02-25 | 2021-02-15 | Resistance spot welding method |
KR1020227027335A KR20220121883A (ko) | 2020-02-25 | 2021-02-15 | 저항 스폿 용접 방법 |
MX2022010400A MX2022010400A (es) | 2020-02-25 | 2021-02-15 | Metodo de soldadura a resistencia por puntos. |
CN202180016309.8A CN115151368A (zh) | 2020-02-25 | 2021-02-15 | 电阻点焊方法 |
EP21761923.8A EP4091756A4 (en) | 2020-02-25 | 2021-02-15 | ELECTRIC SPOT WELDING PROCESS |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020-000622U | 2020-02-25 | ||
JP2020000622U JP3226182U (ja) | 2020-02-25 | 2020-02-25 | スポット溶接ガン用電極及びスポット溶接ガン |
JP2020125561A JP7424932B2 (ja) | 2020-07-22 | 2020-07-22 | 抵抗スポット溶接方法 |
JP2020-125561 | 2020-07-22 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021172080A1 true WO2021172080A1 (ja) | 2021-09-02 |
Family
ID=77492156
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/005575 WO2021172080A1 (ja) | 2020-02-25 | 2021-02-15 | 抵抗スポット溶接方法 |
Country Status (6)
Country | Link |
---|---|
US (1) | US20230106542A1 (ja) |
EP (1) | EP4091756A4 (ja) |
KR (1) | KR20220121883A (ja) |
CN (1) | CN115151368A (ja) |
MX (1) | MX2022010400A (ja) |
WO (1) | WO2021172080A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023063430A1 (ja) * | 2021-10-15 | 2023-04-20 | 株式会社神戸製鋼所 | 抵抗スポット溶接装置及び抵抗スポット溶接方法 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117718559A (zh) * | 2023-12-26 | 2024-03-19 | 浙江颐顿机电有限公司 | 一种电阻电焊机 |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6074871U (ja) * | 1983-10-28 | 1985-05-25 | マツダ株式会社 | スポツト溶接ガン用電極 |
US4623775A (en) * | 1985-11-15 | 1986-11-18 | General Motors Corp. | Articulated resistance welding electrode with universal movement |
JP2003001434A (ja) * | 2001-06-19 | 2003-01-08 | Dengensha Mfg Co Ltd | 原位置復帰機構付き電極装置 |
WO2015083835A1 (ja) * | 2013-12-06 | 2015-06-11 | 新日鐵住金株式会社 | スポット溶接用電極およびこれを用いた溶接装置ならびに溶接方法 |
WO2015170687A1 (ja) * | 2014-05-07 | 2015-11-12 | 新日鐵住金株式会社 | スポット溶接方法 |
WO2017033455A1 (ja) | 2015-08-27 | 2017-03-02 | Jfeスチール株式会社 | 抵抗スポット溶接方法および溶接部材の製造方法 |
WO2018234938A1 (en) * | 2017-06-20 | 2018-12-27 | Arcelormittal | ZINC COATED STEEL SHEET HAVING HIGH STRENGTH POINTS WELDABILITY |
JP2019171450A (ja) | 2018-03-29 | 2019-10-10 | 日本製鉄株式会社 | 抵抗スポット溶接方法 |
JP2020000622A (ja) | 2018-06-29 | 2020-01-09 | アキレス株式会社 | ネットスポンジ |
JP2020125561A (ja) | 2019-02-05 | 2020-08-20 | 株式会社デサント | 衣料 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58168076A (ja) | 1982-03-30 | 1983-10-04 | Fujitsu Ltd | 位相型ホログラムの作成方法 |
MY160054A (en) * | 2009-08-31 | 2017-02-15 | Nippon Steel Corp | Spot welded joint and spot welding method |
WO2012045746A1 (de) * | 2010-10-06 | 2012-04-12 | Siemens Aktiengesellschaft | Schweisskopf mit einem eine vorspannung variabel einstellbaren elastischen element |
WO2016159169A1 (ja) * | 2015-03-30 | 2016-10-06 | 新日鐵住金株式会社 | めっき鋼板のスポット溶接方法 |
-
2021
- 2021-02-15 WO PCT/JP2021/005575 patent/WO2021172080A1/ja unknown
- 2021-02-15 KR KR1020227027335A patent/KR20220121883A/ko not_active Application Discontinuation
- 2021-02-15 EP EP21761923.8A patent/EP4091756A4/en not_active Withdrawn
- 2021-02-15 US US17/904,494 patent/US20230106542A1/en active Pending
- 2021-02-15 MX MX2022010400A patent/MX2022010400A/es unknown
- 2021-02-15 CN CN202180016309.8A patent/CN115151368A/zh active Pending
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6074871U (ja) * | 1983-10-28 | 1985-05-25 | マツダ株式会社 | スポツト溶接ガン用電極 |
US4623775A (en) * | 1985-11-15 | 1986-11-18 | General Motors Corp. | Articulated resistance welding electrode with universal movement |
JP2003001434A (ja) * | 2001-06-19 | 2003-01-08 | Dengensha Mfg Co Ltd | 原位置復帰機構付き電極装置 |
WO2015083835A1 (ja) * | 2013-12-06 | 2015-06-11 | 新日鐵住金株式会社 | スポット溶接用電極およびこれを用いた溶接装置ならびに溶接方法 |
WO2015170687A1 (ja) * | 2014-05-07 | 2015-11-12 | 新日鐵住金株式会社 | スポット溶接方法 |
WO2017033455A1 (ja) | 2015-08-27 | 2017-03-02 | Jfeスチール株式会社 | 抵抗スポット溶接方法および溶接部材の製造方法 |
WO2018234938A1 (en) * | 2017-06-20 | 2018-12-27 | Arcelormittal | ZINC COATED STEEL SHEET HAVING HIGH STRENGTH POINTS WELDABILITY |
JP2019171450A (ja) | 2018-03-29 | 2019-10-10 | 日本製鉄株式会社 | 抵抗スポット溶接方法 |
JP2020000622A (ja) | 2018-06-29 | 2020-01-09 | アキレス株式会社 | ネットスポンジ |
JP2020125561A (ja) | 2019-02-05 | 2020-08-20 | 株式会社デサント | 衣料 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023063430A1 (ja) * | 2021-10-15 | 2023-04-20 | 株式会社神戸製鋼所 | 抵抗スポット溶接装置及び抵抗スポット溶接方法 |
Also Published As
Publication number | Publication date |
---|---|
KR20220121883A (ko) | 2022-09-01 |
MX2022010400A (es) | 2022-09-07 |
EP4091756A1 (en) | 2022-11-23 |
US20230106542A1 (en) | 2023-04-06 |
CN115151368A (zh) | 2022-10-04 |
EP4091756A4 (en) | 2023-08-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021172080A1 (ja) | 抵抗スポット溶接方法 | |
WO2017104647A1 (ja) | 抵抗スポット溶接方法および溶接部材の製造方法 | |
JP5599553B2 (ja) | 抵抗スポット溶接方法 | |
JP6168246B1 (ja) | 抵抗スポット溶接方法および溶接部材の製造方法 | |
EP2985108A1 (en) | Indirect spot welding method | |
JP5261984B2 (ja) | 抵抗スポット溶接方法 | |
CN109420834A (zh) | 用于接合由不同的材料形成的结构的系统及方法 | |
WO2023063430A1 (ja) | 抵抗スポット溶接装置及び抵抗スポット溶接方法 | |
JP7424932B2 (ja) | 抵抗スポット溶接方法 | |
KR20190126099A (ko) | 저항 스폿 용접 조인트의 제조 방법 | |
JP2011031271A (ja) | 抵抗溶接方法 | |
JP6060579B2 (ja) | 抵抗スポット溶接方法 | |
JP3226182U (ja) | スポット溶接ガン用電極及びスポット溶接ガン | |
JP2009190046A (ja) | 高張力鋼板のスポット溶接方法と高張力鋼板の溶接継手 | |
CN110948098B (zh) | 间接点焊装置及焊接方法 | |
JP6786314B2 (ja) | 金属接合体 | |
WO2022071022A1 (ja) | アルミニウム材の抵抗スポット溶接方法、及びアルミニウム材の接合体 | |
JP7479757B2 (ja) | スポット溶接方法 | |
CN111618410B (zh) | 一种汽车用大厚度热成型钣金材料及点焊焊接方法 | |
WO2024171943A1 (ja) | 抵抗スポット溶接装置及び抵抗スポット溶接方法 | |
JP5873402B2 (ja) | スポット溶接用電極チップ | |
JP2006281278A (ja) | 抵抗溶接法 | |
JP2022148636A (ja) | スポット溶接部材の製造方法、及びスポット溶接部材 | |
JP2024110656A (ja) | スポット溶接方法及びスポット溶接装置 | |
US20210078096A1 (en) | Resistance welding method and resistance welding apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21761923 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20227027335 Country of ref document: KR Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2021761923 Country of ref document: EP Effective date: 20220818 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |