WO2020203629A1 - コークス乾式消火設備を用いた生石灰の製造方法および製造装置 - Google Patents

コークス乾式消火設備を用いた生石灰の製造方法および製造装置 Download PDF

Info

Publication number
WO2020203629A1
WO2020203629A1 PCT/JP2020/013614 JP2020013614W WO2020203629A1 WO 2020203629 A1 WO2020203629 A1 WO 2020203629A1 JP 2020013614 W JP2020013614 W JP 2020013614W WO 2020203629 A1 WO2020203629 A1 WO 2020203629A1
Authority
WO
WIPO (PCT)
Prior art keywords
coke
fire extinguishing
circulating gas
dry fire
lime
Prior art date
Application number
PCT/JP2020/013614
Other languages
English (en)
French (fr)
Inventor
諒 嘉村
宏隆 岡本
賢司 松村
久夫 楠本
好司 岩田
貴大 菅野
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to CN202080021755.3A priority Critical patent/CN113614049A/zh
Priority to EP20783876.4A priority patent/EP3950633A4/en
Priority to JP2021511908A priority patent/JPWO2020203629A1/ja
Priority to KR1020217030001A priority patent/KR20210126117A/ko
Publication of WO2020203629A1 publication Critical patent/WO2020203629A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2/00Lime, magnesia or dolomite
    • C04B2/10Preheating, burning calcining or cooling
    • C04B2/12Preheating, burning calcining or cooling in shaft or vertical furnaces
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2/00Lime, magnesia or dolomite
    • C04B2/10Preheating, burning calcining or cooling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2/00Lime, magnesia or dolomite
    • C04B2/10Preheating, burning calcining or cooling
    • C04B2/108Treatment or selection of the fuel therefor
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B39/00Cooling or quenching coke
    • C10B39/02Dry cooling outside the oven

Definitions

  • the present invention relates to a method for producing quicklime, and more particularly to a method for producing quicklime and a production apparatus using the exhaust gas of a coke dry fire extinguishing system.
  • quick lime is produced by thermally decomposing limestone (CaCO 3 ) (CaCO 3 ⁇ CaO + CO 2 ) using a vertical furnace such as a Meltz furnace or a Beckenbach furnace or a rotary kiln furnace.
  • the method is general (see Non-Patent Document 1).
  • thermal energy of theoretical calorific value: 766 kcal / kg-CaO is required for thermal decomposition. Therefore, in the conventional quicklime production method, as shown in Table 1 below, the thermal energy required for each furnace is supplied from the outside using heavy oil, coal, LNG, coke, etc. as fuel. Therefore, in the above-mentioned conventional method for producing quicklime, it is necessary to supply thermal energy for thermal decomposition of limestone from the outside in order to produce quicklime, and there is a problem that the thermal efficiency is not good.
  • a coke dry fire extinguishing system that cools the red hot coke emitted from the coke oven and recovers the thermal energy from the sensible heat of the red hot coke is generally used.
  • a method for producing quicklime in consideration of thermal efficiency a method is known in which limestone is put into a prechamber of a dry fire extinguishing facility for coke together with red hot coke to be cooled, and quicklime is produced using sensible heat of coke. (See Patent Document 1).
  • the method of charging limestone together with red-hot coke into the prechamber as in Patent Document 1 has a problem that the sensible heat of coke that can be used is small. That is, since the decomposition reaction from limestone to quicklime (CaCO 3 ⁇ CaO + CO 2 ) occurs at 800 ° C or higher, only coke sensible heat of 800 ° C or higher can be used. Furthermore, since limestone is mixed with red-hot coke and thermally decomposed, it is difficult to separate coke and quicklime. In addition, there is also a problem that quicklime generates heat by absorbing moisture in the gas that cools the coke and moisture in the atmosphere after being discharged from the CDQ, and the coke is not sufficiently cooled. Furthermore, since limestone is put into the cooling tower of the coke dry fire extinguishing system, there is a problem that the amount of coke that can be cooled is affected.
  • An object of the present invention is a method for producing quicklime using a coke dry fire extinguishing facility, which can produce quicklime with good thermal efficiency and a simple configuration by effectively utilizing the apparent heat of red hot coke. It is an object of the present invention to provide a method and an apparatus for producing quicklime using fire extinguishing equipment.
  • red hot coke is cooled by a coke dry fire extinguishing facility, heated circulating gas is supplied to a lime firing furnace, and lime stone is thermally decomposed by the heated circulating gas supplied in the lime firing furnace to obtain fresh lime.
  • the cooling circulation gas cooled by thermal decomposition of limestone and heat exchange with limestone in a lime firing furnace is supplied to coke dry fire extinguishing equipment and used as cooling circulation gas for cooling red hot coke. This is a method for producing fresh lime using a coke dry fire extinguishing facility.
  • the present invention provides a coke dry fire extinguishing system that cools red hot coke and discharges heated circulating gas, and thermally decomposes limestone into fresh lime by the discharged heated circulating gas, and also thermally decomposes limestone and discharges it. It has a lime firing furnace that discharges cooling circulation gas cooled by heat exchange with limestone, and the cooling circulation gas discharged from the lime firing furnace is again cooled and circulated for cooling red hot coke in a coke dry fire extinguishing facility. It is a lime production device using a coke dry fire extinguishing facility, which is characterized by being used as a gas.
  • the gas discharged from the coke dry fire extinguishing system is heated by a heating burner and supplied to the lime firing furnace.
  • the lime firing furnace is a vertical furnace or a rotary kiln furnace. Is considered to be a more preferable solution.
  • quicklime is produced from limestone using the circulating gas manifestation heat of the coke dry fire extinguishing equipment.
  • the available coke sensible heat is 800 ° C. to 1000 ° C.
  • the sensible heat of 200 ° C. to 800 ° C. can be further utilized.
  • coke cooling and quicklime production are performed independently, there is also an effect that it is not necessary to separate coke and quicklime.
  • the sensible heat of red hot coke can be effectively used.
  • FIG. 1 is a diagram showing a configuration of an example of a manufacturing apparatus that implements a method for manufacturing quicklime using the coke dry fire extinguishing system of the present invention.
  • the quicklime production apparatus of the present invention includes a coke-dry fire extinguishing system 1 and a vertical furnace 21 as a lime firing furnace.
  • 2 is a cooling tower
  • 3 is a red hot coke transported from a coke oven (not shown)
  • 4 is a red hot coke 3 transported to the tower 2 of the cooling tower 2 into the cooling tower 2.
  • the coke bucket 5 for supplying is the first circulating gas supply pipe for supplying the cooling circulating gas 6 for cooling the red hot coke 3 from the lower part of the cooling tower 2, and 7 is the cooling tower from the circulating gas supply pipe 5.
  • 8 is a coke discharge unit for taking out the cooled coke provided at the bottom of the cooling tower 2 from the cooling tower 2
  • 9 is a coke discharging unit of the cooling tower 2.
  • the heating circulation gas 10 obtained by heating the cooling circulation gas 6 by the actual heat of the red hot coke 3 provided at the upper portion is a circulation gas discharge unit 11 for discharging the heating circulation gas 9 from the cooling tower 2 to the outside.
  • a blower for supplying air 12 to the circulating gas discharge unit 10 and 13 is a circulating gas discharge port for discharging the circulating gas provided in the first circulating gas supply pipe to the outside as needed.
  • 22 is a second circulating gas supply pipe for supplying the heated circulating gas 9 from the circulating gas discharging portion 10 of the coke dry fire extinguishing equipment 1 to the bottom of the vertical furnace 21, 23.
  • 27 is a third circulating gas supply pipe that supplies cooling circulating gas 26 from the circulating gas discharging section 25 to the outside, and 28 is a limestone 24 provided at the bottom of the vertical furnace 21.
  • the second circulating gas supply pipe 22 is provided with a heating burner 71 for heating the circulating gas.
  • the vertical furnace 21 is lined with a refractory material, and the furnace body itself is made of steel, so that the size can be increased. Vertical furnaces include the Beckenbach furnace and the Meltz furnace.
  • thermometer and an exhaust gas concentration meter 81 (which can measure O 2 , CO, CO 2 , and H 2 ) are installed above the vertical furnace.
  • an exhaust gas concentration meter 81 which can measure O 2 , CO, CO 2 , and H 2 .
  • the CO 2 concentration in the upper part of the lime firing furnace (the space above the limestone filling layer) is measured, and the gas flow rate at that position (for example, the gas flow rate in the standard state per hour Nm 3 / h). And the CO 2 concentration, the CO 2 flow rate (Nm 3 / h) can be calculated. Since CO 2 is generated when quick lime is produced from limestone, there is a correlation between the amount of quick lime produced per unit time and the amount of CO 2 discharged from the lime firing furnace. If the amount of quicklime produced can be estimated, the decomposition rate of limestone can be estimated. Therefore, if the decomposition rate is lower than the target value, the amount of combustion of the heating burner so as to raise the temperature of the gas introduced into the lime firing furnace.
  • the present invention utilizes the exhaust heat obtained from the coke dry fire extinguishing equipment, the amount of heat obtained may vary depending on the operation of the coke dry fire extinguishing equipment. Therefore, it is preferable to control the combustion of the heating burner based on the CO 2 flow rate in the upper part of the lime firing furnace.
  • the combustion of the heating burner can be controlled based on the temperature at the upper part of the lime firing furnace. This is based on the correlation between the temperature of the upper part of the lime firing furnace and the decomposition rate of limestone. For example, if the temperature of the upper part of the lime firing furnace is lower than the target value, the amount of combustion of the heating burner should be increased. Can be controlled.
  • a blower 30 for supplying circulating gas is provided between the first circulating gas supply pipe 5 and the third circulating gas supply pipe 27.
  • the cooling circulation gas 6, the heating circulation gas 9, and the cooling circulation gas 26 are circulated between the coke dry fire extinguishing system 1 and the vertical furnace 21.
  • FIG. 2 is a diagram showing the configuration of another example of a manufacturing apparatus that implements a method for manufacturing quicklime using the coke dry fire extinguishing system of the present invention.
  • the quicklime production apparatus of the present invention includes a coke dry fire extinguishing facility 1 and a rotary kiln furnace 41 as a lime firing furnace.
  • a second circulating gas supply pipe for supplying the heated circulating gas 9 from the circulating gas discharging portion 10 of the coke dry fire extinguishing equipment 1 to the lower end portion of the rotary kiln furnace 41.
  • a lime supply unit for supplying limestone 44 (CaCO 3 ) into the furnace, 45 discharges the cooling circulation gas 46 after thermally decomposing the limestone 44 with the heating circulation gas 9.
  • a circulating gas discharge unit 47 is a third circulating gas supply pipe that supplies the cooling circulating gas 46 from the circulating gas discharge unit 45 to the outside, and 48 is a thermal decomposition of the limestone 44 provided at the lower end of the rotary kiln furnace 41.
  • This is a quick lime discharge unit for taking out the quick lime 49 (CaO) produced in the above process to the outside.
  • the second circulating gas supply pipe 42 is provided with a heating burner 72 for heating the circulating gas.
  • the rotary kiln furnace 41 has a cylindrical iron skin and is lined with a refractory material, and during operation, it rotates around a shaft at a constant speed to perform firing.
  • thermometer and an exhaust gas concentration meter 82 are installed in the rotary kiln furnace 41.
  • the thermometer and the exhaust gas concentration meter are preferably provided in a space close to the limestone input portion in the rotary kiln furnace 41, and are provided within 50 cm from the end of the rotary kiln furnace 41 near the limestone input portion. preferable. Further, it may be provided in the circulating gas discharge unit 45 from the rotary kiln furnace 41.
  • the control method using the exhaust gas concentration meter and the thermometer is the same as the example of FIG.
  • a blower 30 for supplying circulating gas is provided between the first circulating gas supply pipe 5 and the third circulating gas supply pipe 47.
  • the cooling circulation gas 6, the heating circulation gas 9, and the cooling circulation gas 46 are circulated between the coke dry fire extinguishing system 1 and the rotary kiln furnace 41.
  • the incandescent coke 3 at about 1000 ° C. dry-distilled in the coke oven is charged into the prechamber above the cooling tower 2 of the coke dry fire extinguishing system 1.
  • the red hot coke 3 that has entered the cooling tower 2 is cooled to about 200 ° C. by the cooling circulation gas 6.
  • the temperature of the cooling circulation gas 6 rises to about 800 to 900 ° C. due to the sensible heat of the red hot coke 3, and becomes the heating circulation gas 9. Further, the temperature can be further raised by blowing air with the blower 11 to burn the combustible gas component in the heated circulating gas 9.
  • the actual heat of the heating circulation gas 9 exiting the cooling tower 2 is generated by a lime firing furnace, specifically, a vertical furnace 21 in FIG. 1 and a rotary kiln furnace 41 in FIG. 2 to thermally decompose limestone to produce quicklime. It is used to do. As a result, quicklime can be produced by making maximum use of the sensible heat of the red hot coke 3.
  • the sensible heat of circulating gas after coke cooling is 228 kcal / Nm 3 (180 ° C to 850 ° C) for the calorific value of 766 kcal / kg-CaO required for the thermal decomposition reaction of CaCO 3 in limestone (CaCO 3 ⁇ CaO + CO 2 ).
  • the method and apparatus for producing quicklime using the coke dry fire extinguishing equipment according to the present invention can operate excellently in terms of thermal efficiency as compared with the production of conventionally known quicklime, and can produce quicklime by various arrangements of equipment. It is also applicable to methods and manufacturing equipment.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Structural Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Coke Industry (AREA)

Abstract

良好な熱効率かつ簡単な構成で生石灰を製造することができる、コークス乾式消火設備を用いた生石灰の製造方法および製造装置を提供する。コークス乾式消火設備で赤熱コークスを冷却して加熱された加熱循環ガスを石灰焼成炉に供給し、石灰焼成炉で供給された加熱循環ガスにより石灰石を熱分解して生石灰とするとともに、石灰焼成炉で石灰石の熱分解および石灰石との熱交換により冷却された冷却循環ガスをコークス乾式消火設備に供給して、赤熱コークスを冷却するための冷却循環ガスとして用いる。

Description

コークス乾式消火設備を用いた生石灰の製造方法および製造装置
 本発明は、生石灰の製造方法に関し、特に、コークス乾式消火設備の排ガスを利用する生石灰の製造方法および製造装置に関する。
 従来、生石灰の製造方法として、メルツ炉やベッケンバッハ炉などの竪型炉やロータリーキルン炉を用いて、石灰石(CaCO)を熱分解(CaCO→CaO+CO)して生石灰(CaO)を製造する方法が一般的である(非特許文献1参照)。この方法の場合、熱分解のために理論熱量:766kcal/kg-CaOの熱エネルギーが必要である。そのため、従来の生石灰の製造方法では、以下の表1に示すように、炉ごとに必要な熱エネルギーを、重油、石炭、LNG、コークスなどを燃料として外部から供給している。そのため、上述した従来の生石灰の製造方法では、生石灰を製造するために、外部から石灰石の熱分解のための熱エネルギーを供給する必要があり、熱効率が良くない問題があった。
Figure JPOXMLDOC01-appb-T000001
 一方、コークス炉から出た赤熱コークスを冷却して、赤熱コークスの顕熱から熱エネルギーを回収するコークス乾式消火設備(CDQ)が一般に用いられている。そして、熱効率を考慮して生石灰を製造する方法として、コークスの乾式消火設備のプレチャンバーに冷却すべき赤熱コークスとともに石灰石を投入し、コークス顕熱を用いて生石灰を製造する方法が知られている(特許文献1参照)。
特開2004-262724号公報
石膏石炭ハンドブック(1972年、石膏石灰学会編)、478頁~505頁
 しかしながら、特許文献1のような石灰石を赤熱コークスとともにプレチャンバーに投入する方法では、使用できるコークス顕熱が少ないという問題があった。すなわち、石灰石から生石灰への分解反応(CaCO→CaO+CO)は800℃以上で起こるため、800℃以上のコークス顕熱しか利用することができなかった。さらに、石灰石を赤熱コークスとともに混合して石灰石の熱分解を行っているため、コークスと生石灰の分離が困難であった。また、生石灰がコークスを冷却するガス中の水分や、CDQから排出された後に大気中の水分を吸湿することにより発熱し、コークスが十分に冷却されないという問題もあった。さらにまた、コークス乾式消火設備の冷却塔内に石灰石を投入するため、冷却できるコークスの量に影響を及ぼすという問題もあった。
 本発明の目的は、コークス乾式消火設備を用いた生石灰の製造方法であって、赤熱コークスの顕熱を有効に利用し、良好な熱効率かつ簡単な構成で生石灰を製造することができる、コークス乾式消火設備を用いた生石灰の製造方法および製造装置を提供することにある。
 従来技術が抱えている前述の課題を解決し、前記の目的を実現するために鋭意研究した結果、発明者らは、以下に述べる新規なコークス乾式消火設備を用いた生石灰の製造方法を開発するに到った。
 即ち、本発明は、コークス乾式消火設備で赤熱コークスを冷却して加熱された加熱循環ガスを石灰焼成炉に供給し、石灰焼成炉で供給された加熱循環ガスにより石灰石を熱分解して生石灰とするとともに、石灰焼成炉で石灰石の熱分解および石灰石との熱交換により冷却された冷却循環ガスをコークス乾式消火設備に供給して、赤熱コークスを冷却するための冷却循環ガスとして用いることを特徴とする、コークス乾式消火設備を用いた生石灰の製造方法である。
 なお、前記のように構成される本発明に係るコークス乾式消火設備を用いた生石灰の製造方法においては、
(1)前記赤熱コークス冷却後の加熱循環ガスを加熱バーナで加熱すること、
(2)前記赤熱コークス冷却後の加熱循環ガスを、石灰焼成炉に設置された排ガス中のO濃度、CO濃度、CO濃度、H濃度の比率に基づいて、前記加熱バーナで加熱すること、
(3)前記赤熱コークス冷却後の加熱循環ガスを、石灰焼成炉に設置された排ガス中の温度に基づいて、前記加熱バーナで加熱すること、
(4)前記赤熱コークス冷却後の加熱循環ガスを除塵機に通過させること、
(5)前記石灰焼成炉が、竪型炉またはロータリーキルン炉であること、
がより好ましい解決手段となるものと考えられる。
 また、本発明は、赤熱コークスを冷却して加熱された加熱循環ガスを排出するコークス乾式消火設備と、排出された加熱循環ガスにより石灰石を熱分解して生石灰とするとともに、石灰石の熱分解および石灰石との熱交換により冷却された冷却循環ガスを排出する石灰焼成炉と、を有し、石灰焼成炉から排出された冷却循環ガスを、再度、コークス乾式消火設備において赤熱コークス冷却用の冷却循環ガスとして用いることを特徴とする、コークス乾式消火設備を用いた生石灰の製造装置である。
 なお、前記のように構成される本発明に係るコークス乾式消火設備を用いた生石灰の製造装置においては、
(1)前記コークス乾式消火設備から排出されたガスを加熱バーナで加熱して前記石灰焼成炉に供給すること、
(2)前記赤熱コークス冷却後の加熱循環ガスを除塵機に通過させること、
(3)前記石灰焼成炉が、竪型炉またはロータリーキルン炉であること、
がより好ましい解決手段となるものと考えられる。
 本発明のコークス乾式消火設備を用いた生石灰の製造方法および製造装置によれば、コークス乾式消火設備の循環ガス顕熱を使用して石灰石から生石灰を製造するようにしたので、特許文献1のようにプレチャンバー投入に比べて、多くの顕熱を利用することができるようになった。プレチャンバー投入では、利用できるコークス顕熱は800℃~1000℃であるのに対して、循環ガス顕熱を利用する場合には200℃~800℃の顕熱をさらに利用することができる。また、コークス冷却と生石灰製造を独立して行うので、コークスと生石灰の分離を行う必要がないという効果もある。さらに、生石灰製造時の循環ガスを再びコークス乾式消火設備の冷却用の循環ガスとして使用することで、赤熱コークスの顕熱を有効に利用できる。
本発明のコークス乾式消火設備を用いた生石灰の製造方法を実施する製造装置の一例の構成を示す図である。 本発明のコークス乾式消火設備を用いた生石灰の製造方法を実施する製造装置の他の例の構成を示す図である。
以下、本発明のコークス乾式消火設備を用いた生石灰の製造方法および製造装置について説明する。
 図1は、本発明のコークス乾式消火設備を用いた生石灰の製造方法を実施する製造装置の一例の構成を示す図である。図1に示す例において、本発明の生石灰の製造装置は、コークス乾式消火設備1と石灰焼成炉としての竪型炉21とから構成されている。
 図1に示すコークス乾式消火設備1において、2は冷却塔、3は図示しないコークス炉から搬送される赤熱コークス、4は赤熱コークス3を冷却塔2の搭部に搬送して冷却搭2内に供給するためのコークバケット、5は冷却塔2の下部から赤熱コークス3を冷却するための冷却循環ガス6を供給するための第1の循環ガス供給管、7は循環ガス供給管5から冷却搭2内に冷却循環ガス6を供給するための循環ガス供給配管、8は冷却塔2の底部に設けられた冷却後のコークスを冷却塔2から取り出すためのコークス排出部、9は冷却塔2の上部に設けられた赤熱コークス3の顕熱により冷却循環ガス6を加熱して得られた加熱循環ガス、10は加熱循環ガス9を冷却塔2から外部へ排出するための循環ガス排出部、11は循環ガス排出部10に空気12を供給するブロワ、13は第1の循環ガス供給管に設けられた循環ガスを必要に応じて外部に排出するための循環ガス排出口である。
 図1に示す竪型炉21において、22は竪型炉21の底部にコークス乾式消火設備1の循環ガス排出部10からの加熱循環ガス9を供給するための第2の循環ガス供給管、23は竪型炉21の炉頂で石灰石24(CaCO)を炉内に供給するための石灰供給部、25は石灰石24を加熱循環ガス9で熱分解させた後の冷却循環ガス26を炉外に排出するための循環ガス排出部、27は循環ガス排出部25から冷却循環ガス26を外部へ供給する第3の循環ガス供給管、28は竪型炉21の底部に設けられた石灰石24を熱分解して製造した生石灰29(CaO)を外部へ取り出すための生石灰排出部である。第2の循環ガス供給管22には、循環ガスを加熱するための加熱バーナ71が設けられている。竪型炉21には、耐火物がライニングされており、炉体自体は鋼鉄製で作られており、大型化が可能である。竪型炉には、ベッケンバッハ炉やメルツ炉がある。
 また、図1に示す例において、竪型炉の上部に温度計、排ガス濃度計81(O、CO、CO、Hの測定可能)が設置されている。加熱バーナの燃焼量を温度や排ガス濃度に応じて制御することで、加熱バーナでの温度制御性が向上する。
 具体的には、石灰焼成炉上部(石灰石充填層の上部の空間部)でのCO濃度を測定し、その位置でのガス流量(例えば、時間あたりの標準状態のガス流量Nm/h)とCO濃度とからCO流量(Nm/h)を計算することができる。石灰石から生石灰が生成する際にはCOが発生するため、生石灰の単位時間あたり生成量と石灰焼成炉から排出されるCOの量には相関がある。生石灰の生成量が推定できれば、石灰石の分解率が推定できるので、分解率が目標値よりも低い場合には、石灰焼成炉に導入されるガスの温度を上昇させるように、加熱バーナの燃焼量を上げるよう制御することができる。本発明ではコークス乾式消火設備から得られる排熱を利用しているため、得られる熱量がコークス乾式消火設備の操業によって変動することがある。そのため、石灰焼成炉上部におけるCO流量に基づいて加熱バーナの燃焼を制御することが好ましい。
 また、同様に、石灰焼成炉上部での温度に基づいて加熱バーナの燃焼を制御することもできる。これは、石灰焼成炉上部の温度と、石灰石の分解率に相関があることに基づいており、例えば、石灰焼成炉上部の温度が目標値よりも低い場合には加熱バーナの燃焼量を増やすように制御を行うことができる。
 さらに、図1に示す例において、第1の循環ガス供給管5と第3の循環ガス供給管27との間には、循環ガスを送給するためのブロワ30が設けられている。このブロワ30の働きにより、冷却循環ガス6、加熱循環ガス9および冷却循環ガス26を、コークス乾式消火設備1と竪型炉21との間で循環させている。なお、赤熱コークス3を冷却した後の加熱循環ガス9を除塵機に通過させることで、加熱循環ガス9中のコークスを分離除去することが好ましい。除塵機は、循環ガスがCDQから排出された後の竪型炉の循環ガス入口までの間に設けると、竪型炉へのコークスの混入を防ぐ上で好ましい。また、循環ガスが竪型炉から排出された後、CDQ入口までの間に設けると、CDQへの生石灰の混入を防ぐ上で好ましい。
 図2は、本発明のコークス乾式消火設備を用いた生石灰の製造方法を実施する製造装置の他の例の構成を示す図である。図2に示す例において、本発明の生石灰の製造装置は、コークス乾式消火設備1と石灰焼成炉としてのロータリーキルン炉41とから構成されている。
 図2に示すコークス乾式消火設備1の構成は、上述した図1において説明したコークス乾式消火設備1と同じ構成であるため、ここでは図1に示した例と同じ符号を付しその説明を省略する。また、その他の構成部材においても、図2において説明した部材と同じ部材については、図1に示した例と同じ符号を付しその説明を省略する。
 図2に示すロータリーキルン炉41において、42はロータリーキルン炉41の下端部にコークス乾式消火設備1の循環ガス排出部10からの加熱循環ガス9を供給するための第2の循環ガス供給管、43はロータリーキルン炉41の入口部で石灰石44(CaCO)を炉内に供給するための石灰供給部、45は石灰石44を加熱循環ガス9で熱分解させた後の冷却循環ガス46を炉外に排出するための循環ガス排出部、47は循環ガス排出部45から冷却循環ガス46を外部へ供給する第3の循環ガス供給管、48はロータリーキルン炉41の下端部に設けられた石灰石44を熱分解して製造した生石灰49(CaO)を外部へ取り出すための生石灰排出部である。第2の循環ガス供給管42には、循環ガスを加熱するための加熱バーナ72が設けられている。ロータリーキルン炉41は、円筒形の鉄皮を有し、耐火物がライニングされており、操業時は一定速度で軸の周りに回転して焼成を行っている。
 また、図2に示す例において、ロータリーキルン炉41に温度計、排ガス濃度計82(O、CO、CO、Hの測定可能)が設置されている。加熱バーナの燃焼量を温度や排ガス濃度に応じて制御することで、加熱バーナでの温度制御性は向上する。温度計、排ガス濃度計を設ける位置は、ロータリーキルン炉41内の石灰石投入部に近い位置の空間部が好ましく、例えば、ロータリーキルン炉41の回転体の石灰石投入部に近い端から50cm以内に設けることが好ましい。また、ロータリーキルン炉41からの循環ガス排出部45に設けてもよい。排ガス濃度計、温度計を用いた制御の方法は図1の例と同様である。
 また、図2に示す例において、第1の循環ガス供給管5と第3の循環ガス供給管47との間には、循環ガスを送給するためのブロワ30が設けられている。このブロワ30の働きにより、冷却循環ガス6、加熱循環ガス9および冷却循環ガス46を、コークス乾式消火設備1とロータリーキルン炉41との間で循環させている。
 図1および図2に示した例において、コークス炉で乾留された約1000℃の赤熱コークス3は、コークス乾式消火設備1の冷却塔2上部のプレチャンバーに投入される。冷却塔2に入った赤熱コークス3は、冷却循環ガス6によって200℃程度まで冷却される。一方で、冷却循環ガス6の温度は、赤熱コークス3の顕熱によって800~900℃程度まで上昇して加熱循環ガス9となる。さらにブロワ11で空気を吹込んで加熱循環ガス9中の可燃ガス成分を燃焼させることで、さらに温度を上昇させることができる。冷却塔2を出た加熱循環ガス9の顕熱は、石灰焼成炉で、具体的には、図1では竪型炉21および図2ではロータリーキルン炉41で、石灰石を熱分解して生石灰を製造することに利用される。これによって、赤熱コークス3の顕熱を最大限利用して生石灰を製造することができる。
 図1および図2に示す例において、コークス乾式消火設備の循環ガス顕熱を使用して石灰石から生石灰を製造するようにしたので、特許文献1のようにプレチャンバー投入に比べて、多くの顕熱を利用することができるようになった。また、コークス冷却と生石灰製造を独立して行うので、コークスと生石灰の分離を行う必要がないという効果もある。さらに、生石灰製造時の循環ガスを再びコークス乾式消火設備の冷却用の循環ガスとして使用することで、赤熱コークスの顕熱を有効に利用できる。
 図1に示す構成の製造装置を用い、本発明のコークス乾式消火設備を用いた生石灰の製造方法に従って、以下の発明例1、発明例2、発明例3、発明例4および比較例1の条件で操業し、生石灰を製造した。まず、石灰石を熱分解して生石灰とする場合の熱エネルギーの収支は以下の通りである。
 石灰石中のCaCOの熱分解反応(CaCO→CaO+CO)に必要な熱量766kcal/kg‐CaOに対して、コークス冷却後の循環ガス顕熱228kcal/Nm(180℃~850℃)を利用する場合を考える。循環ガス1Nmあたりに製造可能な生石灰は、228/766=最大0.297kg-CaO/Nmである。
<発明例1>
 本発明のコークス乾式消火設備を用いた生石灰の製造方法に従って、図1の設備を用いて加熱バーナを用いずに、コークス処理量68t/hr、循環ガス流量84000Nm/hrのコークス乾式消火設備で生石灰を製造した結果、生石灰製造量は15t/hrであった。
<発明例2>
 本発明のコークス乾式消火設備を用いた生石灰の製造方法に従って、図1の設備を用いて加熱バーナを用いずに、コークス処理量86t/hr、循環ガス流量106000Nm/hrのコークス乾式消火設備で生石灰を製造した結果、生石灰製造量は20t/hrであった。
<発明例3>
 本発明のコークス乾式消火設備を用いた生石灰の製造方法に従って、図2の設備を用いて加熱バーナを用いずに、コークス処理量68t/hr、循環ガス流量84000Nm/hrのコークス乾式消火設備で生石灰を製造した結果、生石灰製造量は14t/hrであった。
<発明例4>
 本発明のコークス乾式消火設備を用いた生石灰の製造方法に従って、図1の設備を用い、さらに加熱バーナで石灰焼成炉に導入されるガスの温度を900℃まで昇温して、コークス処理量68t/hr、循環ガス流量84000Nm/hrのコークス乾式消火設備で生石灰を製造した結果、生石灰製造量は16t/hrであった。
<比較例1>
 特許文献1に従ってプレチャンバーに赤熱コークスとともに石灰石を投入してコークスと生石灰とを製造した場合、コークス100t/hrに対して生石灰製造量は4.7t/hrであった。
 以上の結果から、発明例の場合はいずれも、比較例1に比べコークス1tあたりの生石灰製造量を増加させることができることがわかる。
 本発明に係るコークス乾式消火設備を用いた生石灰の製造方法および製造装置は、従来公知の生石灰の製造に比べて、熱効率の点で優れた操業が可能であり、種々の装置配列による生石灰の製造方法および製造装置にも適用可能である。
 1 コークス乾式消火設備
 2 冷却搭
 3 赤熱コークス
 4 コークバケット
 5 第1の循環ガス供給管
 6、26、46 冷却循環ガス
 7 循環ガス供給配管
 8 コークス排出部
 9 加熱循環ガス
 10、25、45 循環ガス排出部
 11、30 ブロワ
 12 空気
 13 循環ガス排出口
 21 竪型炉
 22、42 第2の循環ガス供給管
 23、43 石灰供給部
 24、44 石灰石
 27、47 第3の循環ガス供給管
 28、48 生石灰排出部
 29、49 生石灰
 41 ロータリーキルン炉
 71、72 加熱バーナ
 81、82 温度計および排ガス濃度計

Claims (10)

  1.  コークス乾式消火設備で赤熱コークスを冷却して加熱された加熱循環ガスを石灰焼成炉に供給し、石灰焼成炉で供給された加熱循環ガスにより石灰石を熱分解して生石灰とするとともに、石灰焼成炉で石灰石の熱分解および石灰石との熱交換により冷却された冷却循環ガスをコークス乾式消火設備に供給して、赤熱コークスを冷却するための冷却循環ガスとして用いることを特徴とする、コークス乾式消火設備を用いた生石灰の製造方法。
  2.  前記赤熱コークス冷却後の加熱循環ガスを加熱バーナで加熱することを特徴とする、請求項1に記載のコークス乾式消火設備を用いた生石灰の製造方法。
  3.  前記赤熱コークス冷却後の加熱循環ガスを、石灰焼成炉に設置された排ガス中のO濃度、CO濃度、CO濃度、H濃度の比率に基づいて、前記加熱バーナで加熱することを特徴とする、請求項2に記載のコークス乾式消火設備を用いた生石灰の製造方法。
  4.  前記赤熱コークス冷却後の加熱循環ガスを、石灰焼成炉に設置された排ガス中の温度に基づいて、前記加熱バーナで加熱することを特徴とする、請求項2に記載のコークス乾式消火設備を用いた生石灰の製造方法。
  5.  前記赤熱コークス冷却後の加熱循環ガスを除塵機に通過させることを特徴とする、請求項1から4のいずれかに記載のコークス乾式消火設備を用いた生石灰の製造方法。
  6.  前記石灰焼成炉が、竪型炉またはロータリーキルン炉であることを特徴とする、請求項1から5のいずれかに記載のコークス乾式消火設備を用いた生石灰の製造方法。
  7.  赤熱コークスを冷却して加熱された加熱循環ガスを排出するコークス乾式消火設備と、
     排出された加熱循環ガスにより石灰石を熱分解して生石灰とするとともに、石灰石の熱分解および石灰石との熱交換により冷却された冷却循環ガスを排出する石灰焼成炉と、を有し、
     石灰焼成炉から排出された冷却循環ガスを、再度、コークス乾式消火設備において赤熱コークス冷却用の冷却循環ガスとして用いることを特徴とする、コークス乾式消火設備を用いた生石灰の製造装置。
  8.  前記コークス乾式消火設備から排出されたガスを加熱バーナで加熱して前記石灰焼成炉に供給することを特徴とする、請求項7に記載のコークス乾式消火設備を用いた生石灰の製造装置。
  9.  前記赤熱コークス冷却後の加熱循環ガスを除塵機に通過させることを特徴とする、請求項7または8に記載のコークス乾式消火設備を用いた生石灰の製造装置。
  10.  前記石灰焼成炉が、竪型炉またはロータリーキルン炉であることを特徴とする、請求項7から9のいずれかに記載のコークス乾式消火設備を用いた生石灰の製造装置。
PCT/JP2020/013614 2019-03-29 2020-03-26 コークス乾式消火設備を用いた生石灰の製造方法および製造装置 WO2020203629A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202080021755.3A CN113614049A (zh) 2019-03-29 2020-03-26 利用焦炭干式灭火设备的生石灰的制造方法及制造装置
EP20783876.4A EP3950633A4 (en) 2019-03-29 2020-03-26 METHOD AND APPARATUS FOR PRODUCTION OF QUICKLIME USING A DRY COKE EXTINGUISHING PLANT
JP2021511908A JPWO2020203629A1 (ja) 2019-03-29 2020-03-26
KR1020217030001A KR20210126117A (ko) 2019-03-29 2020-03-26 코크스 건식 소화 설비를 이용한 생석회의 제조 방법 및 제조 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019067806 2019-03-29
JP2019-067806 2019-03-29

Publications (1)

Publication Number Publication Date
WO2020203629A1 true WO2020203629A1 (ja) 2020-10-08

Family

ID=72667774

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/013614 WO2020203629A1 (ja) 2019-03-29 2020-03-26 コークス乾式消火設備を用いた生石灰の製造方法および製造装置

Country Status (5)

Country Link
EP (1) EP3950633A4 (ja)
JP (1) JPWO2020203629A1 (ja)
KR (1) KR20210126117A (ja)
CN (1) CN113614049A (ja)
WO (1) WO2020203629A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113834349A (zh) * 2021-11-09 2021-12-24 河南中誉鼎力智能装备有限公司 一种物料立式风冷冷却塔

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114790396B (zh) * 2022-04-29 2024-01-23 知同(上海)新能源科技有限公司 一种高效减排的干熄焦方法及生产一氧化碳的系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0234543A (ja) * 1988-07-22 1990-02-05 Nakayama Sekkai Kogyo Kk 生石灰の製造制御方法
JPH02151687A (ja) * 1988-12-05 1990-06-11 Nippon Steel Corp コークス乾式消火設備立上げ時の内張耐火物の昇温方法
JPH0386788A (ja) * 1989-08-30 1991-04-11 Kawasaki Steel Corp コークス乾式消火方法
JP2004262724A (ja) 2003-03-03 2004-09-24 Nippon Steel Corp コークス乾式消火設備での生石灰製造方法及び焼結鉱製造方法
JP2006518695A (ja) * 2003-02-24 2006-08-17 ポスコ 回転式焼成炉の微粉炭吹き込み方法およびバーナー装置、これを利用した生石灰製造方法および装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB407665A (en) * 1932-06-17 1934-03-22 Pierre Eugene Henri Forsans Improvements in or relating to the treatment of coal and like materials
GB863583A (en) * 1956-07-14 1961-03-22 Roechlingsche Eisen & Stahl Process for the heating of solid material, particularly for the calcination of limestone
JP3899020B2 (ja) * 2002-12-26 2007-03-28 新日本製鐵株式会社 コークス乾式消火設備内のガス中の硫黄化合物低減方法
KR100957933B1 (ko) * 2003-02-24 2010-05-13 주식회사 포스코 회전식 소성로의 미분탄 취입방법및 이를 이용한 생석회제조방법및 장치
US8574404B1 (en) * 2010-04-14 2013-11-05 Douglas Stewart Sinclair Fast pyrolysis processor which produces low oxygen content, liquid bio-oil

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0234543A (ja) * 1988-07-22 1990-02-05 Nakayama Sekkai Kogyo Kk 生石灰の製造制御方法
JPH02151687A (ja) * 1988-12-05 1990-06-11 Nippon Steel Corp コークス乾式消火設備立上げ時の内張耐火物の昇温方法
JPH0386788A (ja) * 1989-08-30 1991-04-11 Kawasaki Steel Corp コークス乾式消火方法
JP2006518695A (ja) * 2003-02-24 2006-08-17 ポスコ 回転式焼成炉の微粉炭吹き込み方法およびバーナー装置、これを利用した生石灰製造方法および装置
JP2004262724A (ja) 2003-03-03 2004-09-24 Nippon Steel Corp コークス乾式消火設備での生石灰製造方法及び焼結鉱製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP3950633A4
SOCIETY OF GYPSUM AND LIME: "Handbook of Gypsum and Coal", 1972, pages: 478 - 505

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113834349A (zh) * 2021-11-09 2021-12-24 河南中誉鼎力智能装备有限公司 一种物料立式风冷冷却塔

Also Published As

Publication number Publication date
KR20210126117A (ko) 2021-10-19
CN113614049A (zh) 2021-11-05
EP3950633A4 (en) 2022-06-08
JPWO2020203629A1 (ja) 2020-10-08
EP3950633A1 (en) 2022-02-09

Similar Documents

Publication Publication Date Title
US20200048146A1 (en) Lime kiln apparatus fully recycling co2
RU2466950C2 (ru) Способ производства цемента
RU2477300C2 (ru) Способ и устройство для коксования углей с высоким содержанием летучих веществ
RU2498182C2 (ru) Способ получения цементного клинкера и установка для производства цементного клинкера
RU2498181C2 (ru) Способ получения цементного клинкера и установка для производства цементного клинкера
WO2015146872A1 (ja) 酸素高炉の操業方法
RU2459878C2 (ru) Способ производства железорудных окатышей
JP2879657B2 (ja) 焼成バルク材の製造装置
CN108675655A (zh) 一种采用热风的石灰窑装置
WO2020203629A1 (ja) コークス乾式消火設備を用いた生石灰の製造方法および製造装置
CN105352314A (zh) 一种用于冶炼的隧道窑
JP2002060254A (ja) シャフト式石灰焼成炉および生石灰の製造方法
Filkoski et al. Energy optimisation of vertical shaft kiln operation in the process of dolomite calcination
RU2377273C1 (ru) Установка и способ сухого тушения кокса
US9005570B2 (en) Method for treating a carbon dioxide-containing waste gas from an electrofusion process
WO2020203630A1 (ja) コークス乾式消火設備及び熱交換器を用いた生石灰の製造方法および製造装置
KR101149371B1 (ko) 코크스 오븐 배기 가스 순환장치
Zublev et al. Optimal Oven Heating of Coke Cake. 2. Selection of the Inert Gas
JP2003003172A (ja) コークスの改質方法
Ryazanov et al. Improving the heating system and structure of shaft furnaces for roasting limestone
Reshetnyak et al. Improvement of Shaft Furnace Construction for Roasting Limestone.
WO2009072998A1 (fr) Installation et procédé de refroidissement à sec du coke
CN207143275U (zh) 一种均热式煤基竖炉
US798175A (en) Process for the manufacture of cement-clinker.
US1169726A (en) Process for recovering elemental sulfur from sulfur gases.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20783876

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021511908

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20217030001

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020783876

Country of ref document: EP

Effective date: 20211029