WO2020203330A1 - 信号処理装置および方法、並びにプログラム - Google Patents
信号処理装置および方法、並びにプログラム Download PDFInfo
- Publication number
- WO2020203330A1 WO2020203330A1 PCT/JP2020/012198 JP2020012198W WO2020203330A1 WO 2020203330 A1 WO2020203330 A1 WO 2020203330A1 JP 2020012198 W JP2020012198 W JP 2020012198W WO 2020203330 A1 WO2020203330 A1 WO 2020203330A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- signal
- pwm
- unit
- pdm
- pwm conversion
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 45
- 238000006243 chemical reaction Methods 0.000 claims abstract description 150
- 230000003321 amplification Effects 0.000 claims description 46
- 238000003199 nucleic acid amplification method Methods 0.000 claims description 46
- 238000004458 analytical method Methods 0.000 claims description 43
- 238000005070 sampling Methods 0.000 claims description 31
- 238000001914 filtration Methods 0.000 claims description 4
- 238000003672 processing method Methods 0.000 claims description 3
- 238000005516 engineering process Methods 0.000 abstract description 16
- 230000006866 deterioration Effects 0.000 description 11
- 230000001934 delay Effects 0.000 description 4
- 238000013139 quantization Methods 0.000 description 4
- 238000004891 communication Methods 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000007493 shaping process Methods 0.000 description 2
- 230000005236 sound signal Effects 0.000 description 2
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04R—LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
- H04R5/00—Stereophonic arrangements
- H04R5/04—Circuit arrangements, e.g. for selective connection of amplifier inputs/outputs to loudspeakers, for loudspeaker detection, or for adaptation of settings to personal preferences or hearing impairments
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K7/00—Modulating pulses with a continuously-variable modulating signal
- H03K7/08—Duration or width modulation ; Duty cycle modulation
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M5/00—Conversion of the form of the representation of individual digits
- H03M5/02—Conversion to or from representation by pulses
- H03M5/04—Conversion to or from representation by pulses the pulses having two levels
- H03M5/06—Code representation, e.g. transition, for a given bit cell depending only on the information in that bit cell
- H03M5/08—Code representation by pulse width
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/38—Synchronous or start-stop systems, e.g. for Baudot code
- H04L25/40—Transmitting circuits; Receiving circuits
- H04L25/49—Transmitting circuits; Receiving circuits using code conversion at the transmitter; using predistortion; using insertion of idle bits for obtaining a desired frequency spectrum; using three or more amplitude levels ; Baseband coding techniques specific to data transmission systems
- H04L25/4902—Pulse width modulation; Pulse position modulation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04R—LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
- H04R3/00—Circuits for transducers, loudspeakers or microphones
- H04R3/04—Circuits for transducers, loudspeakers or microphones for correcting frequency response
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M5/00—Conversion of the form of the representation of individual digits
- H03M5/02—Conversion to or from representation by pulses
- H03M5/04—Conversion to or from representation by pulses the pulses having two levels
- H03M5/06—Code representation, e.g. transition, for a given bit cell depending only on the information in that bit cell
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04R—LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
- H04R3/00—Circuits for transducers, loudspeakers or microphones
- H04R3/12—Circuits for transducers, loudspeakers or microphones for distributing signals to two or more loudspeakers
Definitions
- the present technology relates to signal processing devices and methods, and programs, and particularly to signal processing devices, methods, and programs capable of suppressing deterioration of audio characteristics.
- DSD Direct Stream Digital
- voice is digitized by pulse density modulation (PDM (Pulse Density Modulation)), and the resulting PDM signal is treated as an audio signal of a DSD sound source.
- PDM Pulse Density Modulation
- PWM Pulse Width Modulation
- DSD data is PWM-converted to cancel switching distortion that occurs when the power amplification unit is driven with the original DSD data (for example, patent documents). 1).
- This technology was made in view of such a situation, and makes it possible to suppress the deterioration of audio characteristics.
- the signal processing device of one aspect of the present technology includes a low-pass filter that filters a PDM signal and a PWM conversion unit that PWM-converts a multi-bit signal obtained by the filtering and generates a PWM signal. Be prepared.
- the signal processing method or program of one aspect of the present technology includes a step of filtering a PDM signal by a low-pass filter, performing PWM conversion of the multi-bit signal obtained by the filter processing, and generating a PWM signal. ..
- the PDM signal is filtered by a low-pass filter, and the multi-bit signal obtained by the filter processing is PWM-converted to generate a PWM signal.
- the PDM signal is subjected to LPF (Low Pass Filter) processing (low pass filter processing) to make it a multi-bit PDM signal, that is, a multi-bit signal. Is generated, and PWM conversion is performed on the multi-bit PDM signal so that deterioration of audio characteristics can be suppressed.
- LPF Low Pass Filter
- the DSD sound source format that is, the DSD sound source signal is explained as a PDM signal in the [64Fs, 1bit] format.
- 64Fs indicates the sampling frequency of the PDM signal
- 1 bit indicates the number of quantization bits of the PDM signal, that is, one sample of the PDM signal is 1-bit information.
- the clock frequency of the master clock of the system required to generate the PWM signal has some values adopted within the practical range, but in the following, 1024Fs (45.1584MHz) and 2048Fs (90.3168MHz) are taken as examples. Give an explanation.
- a general audio reproduction system for reproducing audio is configured as shown in FIG. 1, for example.
- the audio reproduction system shown in FIG. 1 includes a PWM conversion unit 11, an amplification unit 12, and headphones 13.
- the PWM conversion unit 11 performs PWM conversion on the input PDM signal of the DSD sound source, and supplies the PWM signal obtained as a result to the amplification unit 12 which is a power amplification unit.
- the PDM signal is a signal that expresses the amplitude of the sound audio waveform (time waveform) by the density (density) of the pulse
- the PWM signal is the signal that expresses the amplitude of the sound audio waveform by the pulse width.
- the amplification unit 12 amplifies the PWM signal supplied from the PWM conversion unit 11 and performs DA (Digital to Analog) conversion. Then, the amplification unit 12 outputs (reproduces) sound from the speaker 21 of the headphones 13, that is, a driver by driving the speaker 21 based on the analog output signal obtained by the DA conversion.
- DA Digital to Analog
- a single-ended drive system and a balanced drive system as a drive system for the speaker 21 (driver) by the amplification unit 12, and here, a case where the speaker 21 is driven by the balanced drive system will be described as an example.
- the PWM conversion unit 11 When the speaker 21 is driven in a balanced manner, for example, the PWM conversion unit 11 performs the PWM conversion shown in FIGS. 2 and 3.
- FIGS. 2 and 3 the horizontal direction indicates time. Further, in FIGS. 2 and 3, PWM conversion for one side (plus side) of BTL (Balanced Transformer Less) is shown. Further, in FIGS. 2 and 3, the parts corresponding to each other are designated by the same reference numerals, and the description thereof will be omitted as appropriate.
- FIG. 2 shows the PWM conversion performed when the clock frequency of the master clock that operates the PWM conversion unit 11 is 1024 Fs.
- the period T11 indicates one sampling period of the PDM signal having a sampling frequency of 64 Fs, that is, the period of one sample, and the period T12 indicates the period of one clock of the master clock having a clock frequency of 1024 Fs. Shown.
- one of the 1-bit values "1" and “0” is output as the sample value of one sample of the PDM signal for each sampling period.
- the audio waveform of a sound based on a PDM signal is determined by the density of pulses corresponding to the sample values in the time direction.
- the PWM conversion will be described as a conversion method of the sample values "1" and "0" in one sample.
- the PWM conversion unit 11 when the sample value "0" of the PDM signal is supplied to the PWM conversion unit 11, the PWM conversion unit 11 outputs the PWM signal of the waveform shown in the polygonal line L11 (hereinafter, also referred to as the PWM waveform).
- the PWM signal indicated by the polygonal line L11 is a pulse signal having a pulse width of a period T12 minutes.
- the PWM conversion unit 11 when the sample value "1" of the PDM signal is supplied to the PWM conversion unit 11, the PWM conversion unit 11 outputs the PWM signal of the waveform shown in the polygonal line L12.
- the PWM signal indicated by the polygonal line L12 is a pulse signal having a pulse width obtained by subtracting the width of the period T12 minutes from the width of the period T11 minutes.
- the resolution at which the PWM waveform is determined will be referred to as the "slot". This resolution is uniquely determined by the clock frequency of the master clock and the carrier frequency of the PWM signal, that is, the sampling frequency of the PDM signal.
- the length of the period T12 which is the period of one clock of the master clock, is one slot.
- the PWM conversion unit 11 when the sample value "0" of the PDM signal is supplied to the PWM conversion unit 11, the PWM conversion unit 11 outputs the PWM signal of the waveform shown in the polygonal line L21.
- the PWM signal indicated by the polygonal line L21 is a pulse signal having a pulse width of a period T21 minutes.
- the PWM conversion unit 11 when the sample value "1" of the PDM signal is supplied to the PWM conversion unit 11, the PWM conversion unit 11 outputs the PWM signal of the waveform shown in the polygonal line L22.
- the PWM signal indicated by the polygonal line L22 is a pulse signal having a pulse width obtained by subtracting the width of the period T12 minutes from the width of the period T11 minutes.
- the length of the period T21 which is the period of one clock of the master clock, is one slot.
- the higher the clock frequency of the master clock the narrower the pulse width of the PWM signal corresponding to the PDM signal whose sample value is "0".
- the minimum pulse width of the PWM signal for driving the speaker 21 is a very narrow width such as 11 [nsec] or 22 [nsec].
- the PDM signal for reproducing the DSD sound source is a signal that generates an audio waveform with the pulse density, and the frequency of occurrence of narrow pulses in the PWM signal is high.
- the driving difficulty when the amplification unit 12 drives the speaker 21 becomes high, and as a result, the audio characteristics deteriorate (deteriorate). That is, noise is generated and the quality of the reproduced sound deteriorates.
- the sampling frequency of the DSD sound source to be reproduced that is, the PDM signal
- the clock frequency of the master clock of the system required for generating the PWM signal also tends to be high. Therefore, in such a case, since the minimum pulse width of the PWM signal becomes narrower, the difficulty of driving the speaker 21 by the amplification unit 12 is further increased.
- FIG. 4 is a diagram showing a configuration example of an embodiment of an audio playback system to which the present technology is applied.
- the audio reproduction system shown in FIG. 4 has a signal processing device 51 and headphones 52.
- the signal processing device 51 is composed of an acoustic reproduction control device such as a portable player or a smart phone, and drives the headphones 52 based on a PWM signal obtained from a PDM signal of a DSD sound source. That is, the signal processing device 51 outputs an analog output signal obtained from the PWM signal to the headphones 52.
- the headphones 52 are driven by the signal processing device 51 and output sound from the built-in speaker 71.
- the reproduction device to which the output signal obtained by the signal processing device 51 is output is not limited to the headphones 52, and may be a normal speaker or the like.
- the signal processing device 51 has a low-pass filter 61, a PWM conversion unit 62, and an amplification unit 63.
- a PDM signal which is an audio signal (digital audio source) for reproducing sound such as music, is input (supplied) to the low-pass filter 61 from a recording unit or the like (not shown).
- the low-pass filter 61 performs LPF processing, which is a filter processing for passing only the low-frequency component of the PDM signal, to the input PDM signal, and the resulting multi-bit signal, that is, the multi-bit PDM.
- LPF processing is a filter processing for passing only the low-frequency component of the PDM signal, to the input PDM signal, and the resulting multi-bit signal, that is, the multi-bit PDM.
- the signal is supplied to the PWM conversion unit 62.
- the PWM conversion unit 62 generates a PWM signal by performing PWM conversion on the multi-bit PDM signal from the low-pass filter 61, and supplies the obtained PWM signal to the amplification unit 63.
- the amplification unit 63 amplifies the PWM signal supplied from the PWM conversion unit 62 and performs DA conversion, and drives the speaker 71 of the headphones 52, that is, the driver based on the output signal obtained as a result, so that the speaker 71 can be used. Output (play) sound.
- the drive system when the amplification unit 63 drives the speaker 71 may be a single-ended drive system or a balanced drive system.
- the power amplification unit (power amplifier) is realized by the PWM conversion unit 62 and the amplification unit 63.
- the PWM conversion unit 62 and the amplification unit 63 may be provided on one chip, or the PWM conversion unit 62 and the amplification unit 63 may be provided on different chips. You may.
- a master clock for driving the blocks is supplied to the low-pass filter 61, the PWM conversion unit 62, and the amplification unit 63, and the blocks operate according to the master clock.
- the clock frequency of the master clock is 1024Fs or 2048Fs.
- the low-pass filter 61 shown in FIG. 4 is configured as shown in FIG. 5, for example.
- the low-pass filter 61 includes a delay device 101-1 to a delay device 101- (M-1), a multiplication unit 102-1 to a multiplication unit 102-M, and an addition unit 103-1 to an addition unit 103-. It has (M-1).
- the delay device 101-1 delays the PDM signal input from a recording unit or the like (not shown) for a period of one sample of the PDM signal, and then sends the delay device 101-2 and the multiplication unit 102-2 in the subsequent stage. Supply.
- the delay device 101-m (however, 2 ⁇ m ⁇ M-2) delays the PDM signal supplied from the delay device 101- (m-1) by the period of one sample of the PDM signal, and then performs the latter stage. It is supplied to the delay device 101- (m + 1) and the multiplication unit 102- (m + 1).
- the delay device 101- (M-1) delays the PDM signal supplied from the delay device 101- (M-2) for a period of one sample of the PDM signal, and then sends the PDM signal to the multiplication unit 102-M in the subsequent stage. Supply.
- the delay device 101 is also simply referred to as the delay device 101.
- x [n] indicates the sample value of the nth sample from the beginning of the PDM signal
- y [n] is the beginning of the multi-bit PDM signal which is the output of the low-pass filter 61.
- the sample value of the nth sample is shown.
- the multiplication unit 102-1 multiplies the PDM signal input from a recording unit or the like (not shown) by the coefficient of the LPF held (hereinafter, also referred to as a tap coefficient), and the PDM signal multiplied by the tap coefficient. Is supplied to the addition unit 103-1 in the subsequent stage.
- the multiplication unit 102-m (however, 2 ⁇ m ⁇ M) multiplies the PDM signal supplied from the delay device 101- (m-1) by the holding tap coefficient, and the tap coefficient is multiplied.
- the PDM signal is supplied to the addition unit 103- (m-1) in the subsequent stage.
- the multiplication unit 102 is also simply referred to as the multiplication unit 102.
- the addition unit 103-1 adds the PDM signal supplied from the multiplication unit 102-1 and the PDM signal supplied from the multiplication unit 102-2, and supplies the PDM signal to the subsequent addition unit 103-2.
- the addition unit 103-m (however, 2 ⁇ m ⁇ M-2) combines the PDM signal supplied from the addition unit 103- (m-1) and the PDM signal supplied from the multiplication unit 102- (m + 1). It is added and supplied to the addition unit 103- (m + 1) in the subsequent stage.
- the addition unit 103- (M-1) is obtained by adding the PDM signal supplied from the addition unit 103- (M-2) and the PDM signal supplied from the multiplication unit 102-M, as a result.
- the signal y [n] is supplied to the PWM conversion unit 62 as a multi-bit PDM signal.
- addition unit 103-1 to the addition unit 103- (M-1)
- addition unit 103- (M-1) it is also simply referred to as the addition unit 103.
- the number M of the multiplication units 102 is the low-pass filter 61, that is, the number of taps of the LPF.
- the tap coefficient and the number of taps M in each multiplication unit 102 are appropriately determined according to the combination of the sampling frequency of the PDM signal and the clock frequency of the master clock.
- the number of taps M (SL-1).
- the low-pass filter 61 is configured to include (SL-2) delayers 101 and addition units 103, and (SL-1) multiplication units 102.
- the multi-bit PDM signal that is the output of the low-pass filter 61 is [64Fs]. , 4bit] signal.
- a signal having a sampling frequency of 64 Fs and one sample of 4 bits is output from the low-pass filter 61.
- the PDM signal that is the input of the low-pass filter 61 is a [64Fs, 1bit] signal and the clock frequency of the master clock is 2048Fs
- the multi-bit PDM that is the output of the low-pass filter 61 The signal will be a [64Fs, 5bit] signal.
- a signal having a sampling frequency of 64 Fs and one sample of 5 bits is output from the low-pass filter 61.
- the sampling frequency of the multi-bit PDM signal obtained as a result of LPF processing is 64Fs, which is the same as the sampling frequency of the original PDM signal. Remains.
- the PWM conversion unit 62 can perform PWM conversion if one sample is a signal of up to 4 bits.
- one sample of the multi-bit PDM signal is a signal of 5 bits or more when the number of slots SL is 16, in order to reduce the number of bits of one sample of the signal input to the PWM conversion unit 62.
- the ⁇ modulator needs to be provided between the low-pass filter 61 and the PWM conversion unit 62.
- one sample of the multi-bit PDM signal that is the output of the low-pass filter 61 is 4 bits, so the output of the low-pass filter 61 can be PWM-converted as it is. It is possible.
- the PWM conversion unit 62 can perform PWM conversion if one sample is a signal of up to 5 bits. In this case, since one sample of the multi-bit PDM signal output from the low-pass filter 61 is 5 bits, the 5-bit signal can be PWM-converted as it is.
- the PDM signal can always be normalized to the maximum value within the specified bit by appropriately determining the number of taps M, so that the signal level of the multi-bit PDM signal is lowered. There is no such thing as doing it. Moreover, since quantization noise is not added to the multi-bit PDM signal, deterioration of audio characteristics can be suppressed.
- the signal processing device 51 Since the signal processing device 51 performs LPF processing on the PDM signal, the level fluctuates in the high frequency range of the PDM signal, but it does not affect the audible band of the PDM signal. Therefore, when the sound is reproduced by the headphones 52. The listener hardly feels the deterioration of the audio characteristics.
- the tap coefficient in each multiplication unit 102 by determining the tap coefficient in each multiplication unit 102 according to the combination of the sampling frequency of the PDM signal and the clock frequency of the master clock, a desired characteristic can be obtained as the frequency characteristic of the low-pass filter 61. Therefore, if the tap coefficient is appropriately determined, the PDM signal can be multi-bited without deteriorating the audio characteristics in the audible band.
- the low-pass filter 61 becomes a moving average filter.
- the low-pass filter 61 by performing LPF processing on the PDM signal, it is possible to reduce the shaping noise (high frequency noise) originally contained in the DSD sound source itself, that is, the PDM signal, and improve the audio characteristics. be able to.
- FIGS. 6 and 7 the horizontal direction indicates time. Further, in FIGS. 6 and 7, PWM conversion for one side (plus side) of the BTL is shown. Further, in FIGS. 6 and 7, the same reference numerals are given to the parts corresponding to the cases in FIGS. 2 or 3, and the description thereof will be omitted as appropriate.
- FIG. 6 shows the PWM conversion performed when the clock frequency of the master clock that operates the PWM conversion unit 62 is 1024 Fs.
- the multi-bit PDM signal input to the PWM conversion unit 62 is a 4-bit signal for one sample, for example, the sample value of one sample is any value from -7 to +7.
- the PWM conversion unit 62 when the sample value "-7" of the multi-bit PDM signal is supplied to the PWM conversion unit 62, the PWM conversion unit 62 outputs the PWM signal of the waveform shown in the polygonal line L31.
- the PWM signal indicated by the polygonal line L31 has a pulse width of a period T12 minutes, that is, a pulse signal having a width of one slot.
- the PWM conversion unit 62 when the sample value "-6" of the multi-bit PDM signal is supplied to the PWM conversion unit 62, the PWM conversion unit 62 outputs the PWM signal of the waveform shown in the polygonal line L32.
- the PWM signal indicated by the polygonal line L32 is a pulse signal having a pulse width of two slots.
- the PWM conversion unit 62 outputs the PWM signal of the waveform shown in the polygonal line L33.
- the PWM signal indicated by the polygonal line L33 is a pulse signal having a pulse width of 8 slots.
- the PWM conversion unit 62 when each of the sample values "+6" and “+7" of the multi-bit PDM signal is supplied to the PWM conversion unit 62, the PWM conversion unit 62 has the PWM of the waveform shown in each of the polygonal line L34 and the polygonal line L35. Output a signal.
- the PWM signal indicated by each of the polygonal line L34 and the polygonal line L35 is a pulse signal having a pulse width of 14 slots and 15 slots.
- the multi-bit PDM signal input to the PWM conversion unit 62 is a 5-bit signal for one sample, for example, the sample value of one sample is any value from -15 to +15.
- the PWM conversion unit 62 when the sample value "-15" of the multi-bit PDM signal is supplied to the PWM conversion unit 62, the PWM conversion unit 62 outputs the PWM signal of the waveform shown in the polygonal line L41.
- the PWM signal indicated by the polygonal line L41 has a pulse width of T21 minutes, that is, a pulse signal having a width of one slot.
- the PWM conversion unit 62 when the sample value "-14" of the multi-bit PDM signal is supplied to the PWM conversion unit 62, the PWM conversion unit 62 outputs the PWM signal of the waveform shown in the polygonal line L42.
- the PWM signal indicated by the polygonal line L42 is a pulse signal having a pulse width of two slots.
- the PWM conversion unit 62 outputs the PWM signal of the waveform shown in the polygonal line L43.
- the PWM signal indicated by the polygonal line L43 is a pulse signal having a pulse width of 16 slots.
- the PWM conversion unit 62 when each of the sample values "+14" and "+15" of the multi-bit PDM signal is supplied to the PWM conversion unit 62, the PWM conversion unit 62 has the PWM of the waveform shown in each of the polygonal line L44 and the polygonal line L45. Output a signal.
- the PWM signal indicated by each of the polygonal line L44 and the polygonal line L45 is a pulse signal having a pulse width of 30 slots and 31 slots.
- the multi-bit PDM signal is targeted at the time of PWM conversion, and the level information of the signal (audio waveform), that is, the amplitude is the time information of the pulse width, which is a feature of the PWM signal. Is converted to.
- the signal processing device 51 it is possible to reduce the difficulty of driving the speaker 71 by the amplification unit 63, and it is possible to suppress the deterioration of the audio characteristics of the output signal output from the amplification unit 63.
- deterioration of audio characteristics can be easily suppressed by adding a small number of circuits such as adding a low-pass filter 61.
- the sampling frequency of the PDM signal does not change before and after the input to the low-pass filter 61, that is, it is not necessary to lower the sampling frequency, the information of the original DSD sound source itself can be retained.
- the difficulty of driving the speaker 71 can be lowered and the deterioration of the audio characteristics can be suppressed. Therefore, not only the balanced drive system but also the single-ended drive system can be adopted as the drive system of the speaker 71. it can. That is, the degree of freedom in driving the speaker 71 can be improved.
- the signal processing device 51 by appropriately determining the number of taps and the tap coefficient of the low-pass filter 61, it is possible to prevent an increase in the circuit scale due to the addition of a ⁇ modulator or the like, and quantization noise is added to the PDM signal. It will not be done.
- the shaping noise contained in the PDM signal can be reduced, and the audio characteristics can be improved.
- the audio playback system When the audio playback system is instructed to play music or the like, the audio playback system performs a playback process to play the instructed music or the like.
- the reproduction process by the audio reproduction system will be described with reference to the flowchart of FIG.
- the designated PDM signal such as music is read out and input to the low-pass filter 61.
- step S11 the low-pass filter 61 performs LPF processing on the input PDM signal, and supplies the multi-bit PDM signal obtained as a result to the PWM conversion unit 62.
- each delay device 101 delays the supplied PDM signal for one sample and supplies it to the delay device 101 and the multiplication unit 102 in the subsequent stage.
- each multiplication unit 102 multiplies the PDM signal supplied from the delay device 101 or the like by the tap coefficient, and supplies the PDM signal to the addition unit 103 in the subsequent stage.
- each addition unit 103 adds the PDM signals supplied from the multiplication unit 102 and the addition unit 103 in the previous stage and outputs them to the subsequent stage.
- step S12 the PWM conversion unit 62 performs PWM conversion on the multi-bit PDM signal supplied from the low-pass filter 61, and supplies the PWM signal obtained as a result to the amplification unit 63.
- PWM conversion is performed as described with reference to FIGS. 6 and 7.
- step S13 the amplification unit 63 amplifies the PWM signal supplied from the PWM conversion unit 62, and DA-converts the amplified PWM signal.
- step S14 the amplification unit 63 drives the speaker 71 provided in the headphones 52 based on the analog output signal obtained by the DA conversion, and causes the speaker 71 to play music or the like.
- the playback process ends.
- the audio playback system performs LPF processing on the PDM signal and PWM-converts the multi-bit PDM signal to generate a PWM signal. By doing so, it is possible to reduce the frequency of occurrence of narrow pulses and suppress the deterioration of audio characteristics.
- the PDM signal may have sufficient audio characteristics without LPF processing. You may be able to get it.
- LPF processing When LPF processing is not performed, power consumption and processing amount can be suppressed to be smaller than when LPF processing is performed. Therefore, for example, it may be determined whether or not LPF processing is performed for each content such as music or for each playback section, and music or the like may be reproduced according to the determination result.
- the audio playback system is configured as shown in FIG. 9, for example.
- the parts corresponding to the case in FIG. 4 are designated by the same reference numerals, and the description thereof will be omitted as appropriate.
- the audio reproduction system shown in FIG. 9 has a signal processing device 151 and headphones 52.
- the signal processing device 151 corresponds to the signal processing device 51 shown in FIG.
- the signal processing device 151 includes a low-pass filter 61, a switch 161, a PWM conversion unit 62, an amplification unit 63, and an analysis unit 162.
- the switch 161 is controlled by the analysis unit 162, and switches the input source of the signal to the PWM conversion unit 62 by switching the connection destination of the node ND11 connected to the input end of the PWM conversion unit 62 to the node ND12 or the node ND13. ..
- the switch 161 supplies the non-multibit PDM signal to the PWM conversion unit 62 or supplies the multibit PDM signal to the PWM conversion unit 62 according to the control by the analysis unit 162. Functions as a switching unit for switching.
- the PDM signal read from a recording unit or the like is directly supplied to the PWM conversion unit 62 via the switch 161.
- the multi-bit PDM signal output from the low-pass filter 61 is supplied to the PWM conversion unit 62 via the switch 161.
- the analysis unit 162 uses the low-pass filter 61 and the switch 161 based on the sound source information supplied from the recording unit and the like (not shown), the analog output signal output from the amplification unit 63, and the driver information supplied from the headphones 52. It controls the operation of the PWM conversion unit 62.
- the sound source information is, for example, information indicating the PDM signal itself or the sampling frequency of the PDM signal.
- the driver information is information about the speaker 71 (driver), for example, an impedance value in the speaker 71, a drive system information indicating a drive system of the speaker 71, and the like.
- the analysis unit 162 can specify the drive system of the speaker 71. That is, the drive system information as the driver information can be obtained.
- the analysis unit 162 obtains the above-mentioned number of slots SL from the sampling frequency of the PDM signal indicated by the sound source information and the clock frequency of the known master clock, and taps the low-pass filter 61 based on the obtained number of slots SL.
- the number and tap coefficient can be determined.
- the analysis unit 162 supplies the determined number of taps and information indicating the tap coefficient to the low-pass filter 61, and causes the low-pass filter 61 to perform LPF processing with a filter configuration determined by the number of taps and the tap coefficient.
- the analysis unit 162 obtains the audio characteristics of the output signal based on the output value of the amplification unit 63, that is, the analog output signal that is the output from the amplification unit 63 to the speaker 71, and obtains the audio characteristics. Based on this, the switching of the node by the switch 161 may be controlled. In other words, the driving difficulty level of the speaker 71 may be specified based on the audio characteristics, and the switch 161 may be controlled according to the specific result.
- the analysis unit 162 obtains the noise level and distortion level of the output signal, that is, the magnitude of noise and distortion as audio characteristics based on the output signal output from the amplification unit 63. At this time, if there is a lot of noise or distortion, it should be preferable to perform PWM conversion of the multi-bit signal obtained by LPF processing in order to secure sufficient audio characteristics.
- the analysis unit 162 connects the node ND11 of the switch 161 to the node ND13 and sends the multi-bit PDM signal to the PWM conversion unit 62. Supply.
- the analysis unit 162 connects the node ND11 of the switch 161 to the node ND12 and PWMs the PDM signal that is not multi-bited. It is supplied to the conversion unit 62.
- the analysis unit 162 may control the switching of the node by the switch 161 based on the driver information supplied from the headphones 52.
- the driving difficulty level of the speaker 71 may be specified based on the driver information, and the switch 161 may be controlled according to the specific result.
- the analysis unit 162 connects the node ND11 of the switch 161 to the node ND13 to make it multi-bit.
- the generated PDM signal is supplied to the PWM conversion unit 62.
- the analysis unit 162 connects the node ND11 of the switch 161 to the node ND12 and supplies the non-multibit PDM signal to the PWM conversion unit 62. Let me.
- the analysis unit 162 connects the node ND 11 to the node ND 12 and PWM-converts the non-multibit PDM signal. Let me. As a result, it is possible to reduce the processing amount and power consumption of the entire signal processing device 151 while ensuring sufficient audio characteristics.
- Switch 161 may be controlled based on the information.
- the analysis unit 162 can control the PWM conversion in the PWM conversion unit 62 according to the drive system information as the driver information, the connection status of the switch 161, the sound source information, and the like.
- the analysis unit 162 generates setting information indicating the setting when the PWM conversion unit 62 performs PWM conversion according to the drive method or the like indicated by the drive method information as the driver information, and performs PWM conversion. It is supplied to the unit 62.
- the PWM conversion unit 62 performs PWM conversion according to the setting indicated by the setting information supplied from the analysis unit 162.
- the drive system indicated by the drive system information as driver information is the balance drive system, and the node ND 11 is connected to the node ND 13.
- the sampling frequency of the PDM signal specified from the sound source information is 64 Fs and the number of slots SL is 16. That is, it is assumed that a multi-bit PDM signal of [64Fs, 4bit] is input to the PWM conversion unit 62.
- the analysis unit 162 generates the setting information for performing the PWM conversion described with reference to FIG. 6 and supplies it to the PWM conversion unit 62.
- the PWM conversion unit 62 sets up a conversion table for performing PWM conversion defined for the combination of the number of slots SL and the drive system for each combination of the number of slots SL and the drive system indicated by the drive system information. Suppose you are holding it.
- the sample value of the input PDM signal and the waveform (pulse width) of the PWM signal to be output are associated with the sample value.
- the PWM waveform shown by the polygonal line L31 is associated with the sample value “-7”.
- the analysis unit 162 generates identification information indicating the conversion table as setting information, and supplies the setting information to the PWM conversion unit 62. Then, the PWM conversion unit 62 selects a conversion table based on the setting information supplied from the analysis unit 162, and performs PWM conversion using the selected conversion table.
- the analysis unit 162 controls the PWM conversion unit 62 so that appropriate PWM conversion is performed according to the headphones 52 connected to the signal processing device 151 and the DSD sound source to be reproduced. Can be done.
- step S41 the analysis unit 162 determines whether or not to perform the LPF process based on at least one of the analog output signal output from the amplification unit 63 and the driver information supplied from the headphones 52.
- step S41 when the impedance value as driver information is equal to or higher than a predetermined threshold value, it is determined that LPF processing is performed.
- step S41 If it is determined in step S41 that the LPF process is not performed, the analysis unit 162 controls the switch 161 to connect the node ND 11 to the node ND 12, and then the process proceeds to step S42.
- the analysis unit 162 generates setting information according to the drive system information and the like as the driver information supplied from the headphones 52, and supplies the setting information to the PWM conversion unit 62.
- step S42 the PWM conversion unit 62 performs PWM conversion on the non-multibit PWM signal supplied via the switch 161 according to the setting information supplied from the analysis unit 162, and obtains the result.
- the PWM signal is supplied to the amplification unit 63.
- PWM conversion is performed as described with reference to FIGS. 2 and 3.
- step S41 when it is determined in step S41 that the LPF process is performed, the analysis unit 162 controls the switch 161 to connect the node ND 11 to the node ND 13, and then the process proceeds to step S43.
- the analysis unit 162 generates setting information according to the drive system information and the like as the driver information supplied from the headphones 52, and supplies the setting information to the PWM conversion unit 62.
- step S43 the analysis unit 162 determines the number of taps and the tap coefficient of the low-pass filter 61 based on the supplied sound source information, and supplies the information indicating the determined number of taps and the tap coefficient to the low-pass filter 61.
- step S43 When the process of step S43 is performed, the processes of steps S44 and S45 are subsequently performed, but since these processes are the same as the processes of steps S11 and S12 of FIG. 8, the description thereof will be omitted.
- step S44 the low-pass filter 61 performs LPF processing on the supplied PDM signal with the number of taps and the tap coefficient indicated by the information supplied from the analysis unit 162, and the multi-bit signal obtained as a result. Is supplied to the PWM conversion unit 62 via the switch 161. Further, in step S45, the PWM conversion unit 62 performs PWM conversion according to the setting information supplied from the analysis unit 162.
- step S45 When the process of step S45 is performed or the process of step S42 is performed, the processes of step S46 and step S47 are performed thereafter, and the reproduction process ends. Since the processing of steps S46 and S47 is the same as the processing of steps S13 and S14 of FIG. 8, the description thereof will be omitted.
- the audio reproduction system controls the low-pass filter 61 and the PWM conversion unit 62 according to the sound source information and the driver information, and also controls the switch 161 according to the output value of the amplification unit 63 and the driver information to control the LPF. Switch whether to perform processing.
- the series of processes described above can be executed by hardware or software.
- the programs that make up the software are installed on the computer.
- the computer includes a computer embedded in dedicated hardware and, for example, a general-purpose personal computer capable of executing various functions by installing various programs.
- FIG. 11 is a block diagram showing a configuration example of computer hardware that executes the above-mentioned series of processes programmatically.
- a CPU Central Processing Unit
- ROM ReadOnly Memory
- RAM RandomAccessMemory
- An input / output interface 505 is further connected to the bus 504.
- An input unit 506, an output unit 507, a recording unit 508, a communication unit 509, and a drive 510 are connected to the input / output interface 505.
- the input unit 506 includes a keyboard, a mouse, a microphone, an image sensor, and the like.
- the output unit 507 includes a display, a speaker, and the like.
- the recording unit 508 includes a hard disk, a non-volatile memory, and the like.
- the communication unit 509 includes a network interface and the like.
- the drive 510 drives a removable recording medium 511 such as a magnetic disk, an optical disk, a magneto-optical disk, or a semiconductor memory.
- the CPU 501 loads the program recorded in the recording unit 508 into the RAM 503 via the input / output interface 505 and the bus 504 and executes the above-described series. Is processed.
- the program executed by the computer (CPU501) can be recorded and provided on a removable recording medium 511 as a package medium or the like, for example. Programs can also be provided via wired or wireless transmission media such as local area networks, the Internet, and digital satellite broadcasting.
- the program can be installed in the recording unit 508 via the input / output interface 505 by mounting the removable recording medium 511 in the drive 510. Further, the program can be received by the communication unit 509 and installed in the recording unit 508 via a wired or wireless transmission medium. In addition, the program can be pre-installed in the ROM 502 or the recording unit 508.
- the program executed by the computer may be a program in which processing is performed in chronological order in the order described in this specification, or in parallel or at a necessary timing such as when a call is made. It may be a program in which processing is performed.
- the embodiment of the present technology is not limited to the above-described embodiment, and various changes can be made without departing from the gist of the present technology.
- this technology can have a cloud computing configuration in which one function is shared by a plurality of devices via a network and processed jointly.
- each step described in the above flowchart can be executed by one device or shared by a plurality of devices.
- one step includes a plurality of processes
- the plurality of processes included in the one step can be executed by one device or shared by a plurality of devices.
- this technology can also have the following configurations.
- a low-pass filter that filters PDM signals and A signal processing device including a PWM conversion unit that PWM-converts a multi-bit signal obtained by the filter processing and generates a PWM signal.
- the signal processing device according to (1) further comprising an amplification unit that amplifies the PWM signal and drives a reproduction device based on the amplified PWM signal.
- the signal processing apparatus according to (2) further comprising an analysis unit that determines the number of taps of the low-pass filter based on the sampling frequency of the PDM signal and the clock frequency of the master clock for driving the PWM conversion unit.
- the analysis unit determines a tap coefficient of the low-pass filter based on the sampling frequency and the clock frequency.
- the signal processing device further comprising a switching unit for switching between supplying the PDM signal to the PWM conversion unit and supplying the multi-bit signal to the PWM conversion unit.
- the signal processing device wherein the analysis unit controls switching by the switching unit based on an output from the amplification unit to the reproduction device.
- the signal processing device according to (5) or (6), wherein the analysis unit controls switching by the switching unit based on information about the playback device.
- the signal processing device Filter the PDM signal with a low-pass filter A signal processing method for generating a PWM signal by PWM-converting a multi-bit signal obtained by the filter processing.
- Filter the PDM signal with a low-pass filter A program that causes a computer to perform processing including a step of PWM-converting a multi-bit signal obtained by the filtering process and generating a PWM signal.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Signal Processing (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Computer Networks & Wireless Communication (AREA)
- Acoustics & Sound (AREA)
- Theoretical Computer Science (AREA)
- Amplifiers (AREA)
Abstract
本技術は、オーディオ特性の低下を抑制することができるようにする信号処理装置および方法、並びにプログラムに関する。 信号処理装置は、PDM信号に対してフィルタ処理を行うローパスフィルタと、フィルタ処理により得られたマルチビットの信号をPWM変換し、PWM信号を生成するPWM変換部とを備える。本技術はオーディオ再生システムに適用することができる。
Description
本技術は、信号処理装置および方法、並びにプログラムに関し、特にオーディオ特性の低下を抑制することができるようにした信号処理装置および方法、並びにプログラムに関する。
近年、DSD(Direct Stream Digital)と呼ばれる超高音質フォーマットが提案されている。DSDでは、パルス密度変調(PDM(Pulse Density Modulation))により音声がデジタル化され、その結果得られたPDM信号がDSD音源のオーディオ信号として扱われる。
例えばDSD音源の再生時に、PDM信号のままでパワー増幅部によりスピーカを駆動する場合、PDM信号に対してPWM(Pulse Width Modulation)変換が行われ、その結果得られたPWM信号がパワー増幅部により増幅されてスピーカに入力される。
また、例えばPWM変換に関する技術として、DSDデータをPWM変換することで、もとのDSDデータのままパワー増幅部を駆動する際に生じるスイッチング歪みをキャンセルする技術が提案されている(例えば、特許文献1参照)。
ところで、上述したようにPDM信号に対してPWM変換を行い、得られたPWM信号を増幅してスピーカを駆動すると、十分なオーディオ特性が得られないことがあった。
すなわち、PDM信号に対してPWM変換を行った場合、PWM信号での狭パルスの発生頻度が高いため、後段のパワー増幅部によるスピーカの駆動難易度が上がり、オーディオ特性が悪化(低下)しやすくなってしまう。特に駆動難易度が上がることでノイズが生じやすくなる。
本技術は、このような状況に鑑みてなされたものであり、オーディオ特性の低下を抑制することができるようにするものである。
本技術の一側面の信号処理装置は、PDM信号に対してフィルタ処理を行うローパスフィルタと、前記フィルタ処理により得られたマルチビットの信号をPWM変換し、PWM信号を生成するPWM変換部とを備える。
本技術の一側面の信号処理方法またはプログラムは、PDM信号に対してローパスフィルタによるフィルタ処理を行い、前記フィルタ処理により得られたマルチビットの信号をPWM変換し、PWM信号を生成するステップを含む。
本技術の一側面においては、PDM信号に対してローパスフィルタによるフィルタ処理が行われ、前記フィルタ処理により得られたマルチビットの信号がPWM変換され、PWM信号が生成される。
以下、図面を参照して、本技術を適用した実施の形態について説明する。
〈第1の実施の形態〉
〈DSD音源の再生について〉
本技術は、パワー増幅部でDSD音源の信号を扱う場合に、PDM信号に対してLPF(Low Pass Filter)処理(ローパスフィルタ処理)を行ってマルチビット化されたPDM信号、すなわちマルチビットの信号を生成し、そのマルチビット化されたPDM信号に対してPWM変換を行うことで、オーディオ特性の低下を抑制することができるようにするものである。
〈DSD音源の再生について〉
本技術は、パワー増幅部でDSD音源の信号を扱う場合に、PDM信号に対してLPF(Low Pass Filter)処理(ローパスフィルタ処理)を行ってマルチビット化されたPDM信号、すなわちマルチビットの信号を生成し、そのマルチビット化されたPDM信号に対してPWM変換を行うことで、オーディオ特性の低下を抑制することができるようにするものである。
例えばDSD音源のフォーマットは、サンプリング周波数の違いによりいくつかの種類が存在するが、以下ではDSD音源のフォーマット、すなわちDSD音源の信号は[64Fs,1bit]の形式のPDM信号であるものとして説明を行う。
ここで、「64Fs」はPDM信号のサンプリング周波数を示しており、「1bit」はPDM信号の量子化ビット数、つまりPDM信号の1サンプルが1ビットの情報であることを示している。
特に、以下においては音楽等の音(オーディオ)を再生するためのPDM信号がDSD音源の信号であるため、サンプリング周波数は1×Fs=44.1kHzとする。また、PWM信号の生成に必要なシステムのマスタークロックのクロック周波数は、実用可能な範囲でいくつか採用されている値があるが、以下では1024Fs(45.1584MHz)や2048Fs(90.3168MHz)を例として説明を行う。
まず、DSD音源のPDM信号をマルチビット化せずにそのままPWM変換し、得られたPWM信号に基づいてパワー増幅部によりスピーカを駆動して音を再生する場合について説明する。
そのような場合、オーディオを再生するための一般的なオーディオ再生システムは、例えば図1に示すように構成される。
図1に示すオーディオ再生システムは、PWM変換部11、増幅部12、およびヘッドホン13からなる。
PWM変換部11は、入力されたDSD音源のPDM信号に対してPWM変換を行い、その結果得られたPWM信号を、パワー増幅部である増幅部12に供給する。
PDM信号は音のオーディオ波形(時間波形)の振幅をパルスの粗密(密度)で表現した信号であり、PWM信号は音のオーディオ波形の振幅をパルス幅で表現した信号である。
増幅部12は、PWM変換部11から供給されたPWM信号を増幅してDA(Digital to Analog)変換する。そして、増幅部12は、DA変換により得られたアナログの出力信号に基づいてヘッドホン13のスピーカ21、すなわちドライバを駆動することでスピーカ21から音を出力(再生)させる。
例えば増幅部12によるスピーカ21(ドライバ)の駆動方式として、シングルエンド駆動方式とバランス駆動方式とがあるが、ここでは具体的にバランス駆動方式によりスピーカ21を駆動する場合を例として説明する。
スピーカ21をバランス駆動する場合、例えばPWM変換部11において図2や図3に示すPWM変換が行われる。
なお、図2および図3において、横方向は時間を示している。また、図2や図3ではBTL(Balanced Transformer Less)の片側(プラス側)についてのPWM変換が示されている。さらに、図2および図3において、互いに対応する部分には同一の符号を付してあり、その説明は適宜省略する。
図2は、PWM変換部11を動作させるマスタークロックのクロック周波数が1024Fsである場合に行われるPWM変換が示されている。
この例においては、期間T11はサンプリング周波数が64FsであるPDM信号の1サンプリング期間、すなわち1サンプル分の期間を示しており、期間T12はクロック周波数が1024Fsであるマスタークロックの1クロック分の期間を示している。
サンプリング周波数が64FsであるPDM信号では、1サンプリング期間ごとに1ビットの値である「1」と「0」の何れかの値がPDM信号の1サンプルのサンプル値として出力される。PDM信号に基づく音のオーディオ波形は、時間方向におけるサンプル値に対応するパルスの密度により定まる。なお、ここでは説明を簡単にするために、PWM変換を1サンプル内でのサンプル値「1」と「0」の変換方法として説明することとする。
例えばPDM信号のサンプル値「0」がPWM変換部11に供給されると、PWM変換部11は折れ線L11に示す波形(以下、PWM波形とも称する)のPWM信号を出力する。折れ線L11により示されるPWM信号は、パルス幅が期間T12分の幅のパルス信号となっている。
これに対して、PDM信号のサンプル値「1」がPWM変換部11に供給されると、PWM変換部11は折れ線L12に示す波形のPWM信号を出力する。折れ線L12により示されるPWM信号は、パルス幅が、期間T11分の幅から期間T12分の幅を減算して得られる幅のパルス信号となっている。
以下では、PWM波形が決まる分解能を「スロット」と呼ぶこととする。この分解能は、マスタークロックのクロック周波数と、PWM信号のキャリア周波数、すなわちPDM信号のサンプリング周波数とにより一意に決まるものである。
図2の例では、マスタークロックの1クロック分の期間である期間T12の長さが1スロットとなる。また、PDM信号の1サンプリング期間におけるスロット数は、マスタークロックのクロック周波数が1024Fsであり、PDM信号のサンプリング周波数が64Fsであるので16(=1024Fs/64Fs)スロットとなる。
同様に、マスタークロックのクロック周波数が2048Fsである場合には、図3に示すようにPWM変換が行われる。
すなわち、例えばPDM信号のサンプル値「0」がPWM変換部11に供給されると、PWM変換部11は折れ線L21に示す波形のPWM信号を出力する。折れ線L21により示されるPWM信号は、パルス幅が期間T21分の幅のパルス信号となっている。
これに対して、PDM信号のサンプル値「1」がPWM変換部11に供給されると、PWM変換部11は折れ線L22に示す波形のPWM信号を出力する。折れ線L22により示されるPWM信号は、パルス幅が期間T11分の幅から期間T12分の幅を減算して得られる幅のパルス信号となっている。
図3の例では、マスタークロックの1クロック分の期間である期間T21の長さが1スロットとなる。また、PDM信号の1サンプリング期間におけるスロット数は、マスタークロックのクロック周波数が2048Fsであり、PDM信号のサンプリング周波数が64Fsであるので32(=2048Fs/64Fs)スロットとなる。
いま、図2に示した折れ線L11により示されるPWM信号のパルス幅に注目すると、このPWM信号のパルス幅は1スロット分の幅である。具体的には、折れ線L11により示されるPWM信号のパルス幅は22(=1/(1024Fs))[nsec]となる。
同様に、図3に示した折れ線L21により示されるPWM信号のパルス幅は11(=1/(2048Fs))[nsec]となる。
これらの例から分かるように、マスタークロックのクロック周波数が高いほど、サンプル値が「0」であるPDM信号に対応するPWM信号のパルス幅は狭くなる。
このように、図2や図3の例ではスピーカ21を駆動するためのPWM信号の最小パルス幅は11[nsec]や22[nsec]といった非常に狭い幅となる。また、DSD音源を再生するためのPDM信号は、パルスの密度でオーディオ波形を生成する信号であり、PWM信号における狭パルスの発生頻度は高い。
そのため、図1に示したオーディオ再生システムでは、増幅部12がスピーカ21を駆動する際の駆動難易度が高くなり、結果としてオーディオ特性が低下(悪化)してしまう。すなわち、ノイズが生じて再生される音の品質が劣化してしまう。
特に、この場合、シングルエンド駆動方式でスピーカ21を駆動させるとオーディオ特性の低下がより顕著であるため、シングルエンド駆動方式での駆動を採用することが現実的ではないことも多く、結果としてスピーカ21の駆動方式に制約が生じてしまう。
また、再生するDSD音源、つまりPDM信号のサンプリング周波数が高い場合、PWM信号の生成に必要なシステムのマスタークロックのクロック周波数も高くなる傾向がある。したがって、そのような場合には、PWM信号の最小パルス幅がより狭くなるため、増幅部12によるスピーカ21の駆動難易度がさらに上がることになる。
〈オーディオ再生システムの構成例〉
そこで、本技術ではLPF処理を行ってPDM信号をマルチビット化することで、PWM信号における狭パルスの発生頻度を低減させ、オーディオ特性の低下を抑制することができるようにした。
そこで、本技術ではLPF処理を行ってPDM信号をマルチビット化することで、PWM信号における狭パルスの発生頻度を低減させ、オーディオ特性の低下を抑制することができるようにした。
図4は、本技術を適用したオーディオ再生システムの一実施の形態の構成例を示す図である。
図4に示すオーディオ再生システムは、信号処理装置51およびヘッドホン52を有している。
信号処理装置51は、例えばポータブルプレーヤやスマートホンなどの音響再生制御機器からなり、DSD音源のPDM信号から得られたPWM信号に基づいて、ヘッドホン52を駆動する。すなわち、信号処理装置51はPWM信号から得られるアナログの出力信号をヘッドホン52に出力する。
ヘッドホン52は、信号処理装置51により駆動され、内蔵しているスピーカ71から音を出力する。
なお、信号処理装置51で得られた出力信号の出力先となる再生装置は、ヘッドホン52に限らず、通常のスピーカなどであってもよい。
また、信号処理装置51は、ローパスフィルタ61、PWM変換部62、および増幅部63を有している。
ローパスフィルタ61には、図示せぬ記録部等から、音楽等の音を再生するためのオーディオ信号(デジタルオーディオソース)であるPDM信号が入力(供給)される。
ローパスフィルタ61は、入力されたPDM信号に対して、PDM信号の低域成分のみを通過させるフィルタ処理であるLPF処理を行い、その結果得られたマルチビットの信号、すなわちマルチビット化されたPDM信号をPWM変換部62に供給する。
PWM変換部62は、ローパスフィルタ61からのマルチビット化されたPDM信号に対してPWM変換を行うことでPWM信号を生成し、得られたPWM信号を増幅部63に供給する。
増幅部63は、PWM変換部62から供給されたPWM信号を増幅してDA変換し、その結果得られた出力信号に基づいてヘッドホン52のスピーカ71、すなわちドライバを駆動することで、スピーカ71から音を出力(再生)させる。
なお、増幅部63がスピーカ71を駆動する際の駆動方式は、シングルエンド駆動方式であってもよいしバランス駆動方式であってもよい。
信号処理装置51では、PWM変換部62と増幅部63によって、パワー増幅部(パワー増幅器)が実現されている。信号処理装置51のハードウェア構成においては、PWM変換部62と増幅部63が1つのチップに設けられるようにしてもよいし、PWM変換部62と増幅部63が互いに異なるチップに設けられるようにしてもよい。
また、信号処理装置51では、ローパスフィルタ61やPWM変換部62、増幅部63には、それらのブロックの駆動用のマスタークロックが供給され、それらのブロックはマスタークロックに従って動作する。例えばマスタークロックのクロック周波数は1024Fsや2048Fsなどとされる。
〈ローパスフィルタの構成例〉
さらに、図4に示したローパスフィルタ61は、例えば図5に示すように構成される。
さらに、図4に示したローパスフィルタ61は、例えば図5に示すように構成される。
図5に示す例では、ローパスフィルタ61は遅延器101-1乃至遅延器101-(M-1)、乗算部102-1乃至乗算部102-M、および加算部103-1乃至加算部103-(M-1)を有している。
遅延器101-1は、図示せぬ記録部等から入力されたPDM信号を、そのPDM信号の1サンプル分の期間だけ遅延させた後、後段の遅延器101-2および乗算部102-2に供給する。
遅延器101-m(但し、2≦m≦M-2)は、遅延器101-(m-1)から供給されたPDM信号を、PDM信号の1サンプル分の期間だけ遅延させた後、後段の遅延器101-(m+1)および乗算部102-(m+1)に供給する。
遅延器101-(M-1)は、遅延器101-(M-2)から供給されたPDM信号を、PDM信号の1サンプル分の期間だけ遅延させた後、後段の乗算部102-Mに供給する。
なお、以下、遅延器101-1乃至遅延器101-(M-1)を特に区別する必要のない場合、単に遅延器101とも称することとする。
また、図5では、x[n]はPDM信号の先頭からn番目のサンプルのサンプル値を示しており、y[n]はローパスフィルタ61の出力となる、マルチビット化されたPDM信号の先頭からn番目のサンプルのサンプル値を示している。
乗算部102-1は、図示せぬ記録部等から入力されたPDM信号に対して、保持しているLPFの係数(以下、タップ係数とも称する)を乗算し、タップ係数が乗算されたPDM信号を後段の加算部103-1に供給する。
乗算部102-m(但し、2≦m≦M)は、遅延器101-(m-1)から供給されたPDM信号に対して、保持しているタップ係数を乗算し、タップ係数が乗算されたPDM信号を後段の加算部103-(m-1)に供給する。
なお、以下、乗算部102-1乃至乗算部102-Mを特に区別する必要のない場合、単に乗算部102とも称することとする。
加算部103-1は、乗算部102-1から供給されたPDM信号と、乗算部102-2から供給されたPDM信号とを加算して、後段の加算部103-2に供給する。
加算部103-m(但し、2≦m≦M-2)は、加算部103-(m-1)から供給されたPDM信号と、乗算部102-(m+1)から供給されたPDM信号とを加算して、後段の加算部103-(m+1)に供給する。
加算部103-(M-1)は、加算部103-(M-2)から供給されたPDM信号と、乗算部102-Mから供給されたPDM信号とを加算して、その結果得られた信号y[n]をマルチビット化されたPDM信号としてPWM変換部62に供給する。
なお、以下、加算部103-1乃至加算部103-(M-1)を特に区別する必要のない場合、単に加算部103とも称することとする。
このようなローパスフィルタ61では、乗算部102の個数Mがローパスフィルタ61、つまりLPFのタップ数となっている。
本技術においては、PDM信号のサンプリング周波数と、マスタークロックのクロック周波数との組み合わせに応じて、適切に各乗算部102におけるタップ係数やタップ数Mが定められる。
具体的には、PDM信号の1サンプリング期間におけるスロット数をSLとすると、例えばタップ数MはM=(SL-1)とされる。
すなわち、ローパスフィルタ61は、(SL-2)個の遅延器101および加算部103と、(SL-1)個の乗算部102とから構成されるようにされる。
例えば、ローパスフィルタ61の入力となるPDM信号が[64Fs,1bit]の信号であり、マスタークロックのクロック周波数が1024Fsである場合、ローパスフィルタ61の出力となるマルチビット化されたPDM信号は[64Fs,4bit]の信号となる。
すなわち、マルチビット化されたPDM信号として、サンプリング周波数が64Fsであり、1サンプルが4bitの信号がローパスフィルタ61から出力されることになる。
これに対して、例えばローパスフィルタ61の入力となるPDM信号が[64Fs,1bit]の信号であり、マスタークロックのクロック周波数が2048Fsである場合、ローパスフィルタ61の出力となるマルチビット化されたPDM信号は[64Fs,5bit]の信号となる。
すなわち、マルチビット化されたPDM信号として、サンプリング周波数が64Fsであり、1サンプルが5bitの信号がローパスフィルタ61から出力されることになる。
この場合、マスタークロックのクロック周波数が1024Fsであっても2048Fsであっても、LPF処理の結果として得られるマルチビット化されたPDM信号のサンプリング周波数は、もとのPDM信号のサンプリング周波数と同じ64Fsのままである。
例えばマスタークロックのクロック周波数が1024Fsである場合、スロット数SLはSL=16であるから、PWM変換部62では1サンプルが4bitまでの信号であればPWM変換が可能である。
仮に、スロット数SLが16である場合に、マルチビット化されたPDM信号の1サンプルが5bit以上の信号であるときには、PWM変換部62に入力する信号の1サンプルのビット数を低減させるために、ΔΣ変調器をローパスフィルタ61とPWM変換部62の間に設ける必要がある。
そうすると、ΔΣ変調器の分だけ回路規模が大きくなるだけでなく、ΔΣ変調器でのΔΣ変調によってPDM信号に量子化ノイズが付加されてしまい、オーディオ特性が低下してしまうことになる。
これに対して、信号処理装置51では、PDM信号のサンプリング周波数とマスタークロックのクロック周波数、つまりスロット数SLに基づいて、適切にタップ数Mが決定(選択)されている。具体的には、例えばタップ数M=(SL-1)とされる。
この場合、例えばマスタークロックのクロック周波数が1024Fsであるときには、ローパスフィルタ61の出力となるマルチビット化されたPDM信号の1サンプルは4bitとなるので、ローパスフィルタ61の出力をそのままPWM変換することが可能である。
同様に、例えばマスタークロックのクロック周波数が2048Fsである場合、スロット数SLはSL=32であるから、PWM変換部62では1サンプルが5bitまでの信号であればPWM変換が可能である。この場合、ローパスフィルタ61の出力となるマルチビット化されたPDM信号の1サンプルは5bitとなるので、その5bitの信号をそのままPWM変換することができる。
このようにすることで、信号処理装置51ではΔΣ変調器を設ける必要がなくなるので、回路規模を小さくすることができる。しかも、ローパスフィルタ61では、タップ数Mを適切に決定することにより、PDM信号を常に指定ビット内での最大値に正規化することができるので、マルチビット化されたPDM信号の信号レベルが低下してしまうようなこともない。また、マルチビット化されたPDM信号に量子化ノイズが付加されることもないので、オーディオ特性の低下を抑制することができる。
なお、信号処理装置51ではPDM信号に対してLPF処理が行われるので、PDM信号の高域でレベル変動が生じるが、PDM信号の可聴帯域には影響しないので、ヘッドホン52で音を再生したときにオーディオ特性の劣化を受聴者に感じさせることは殆どない。
特に、PDM信号のサンプリング周波数と、マスタークロックのクロック周波数との組み合わせに応じて、各乗算部102におけるタップ係数を定めることで、ローパスフィルタ61の周波数特性として所望の特性を得ることができる。したがって、適切にタップ係数を定めれば、可聴帯域のオーディオ特性を劣化させることなくPDM信号をマルチビット化することができる。
具体的には、例えば各乗算部102におけるタップ係数の値を「1」とすれば、ローパスフィルタ61は移動平均フィルタとなる。
さらにローパスフィルタ61において、PDM信号に対してLPF処理を行うことで、もともとDSD音源自体、つまりPDM信号に含まれているシェイピングノイズ(高域ノイズ)を低減させることができ、オーディオ特性を向上させることができる。
〈PWM変換について〉
次に、図6および図7を参照して、PWM変換部62において行われるPWM変換の具体的な例について説明する。
次に、図6および図7を参照して、PWM変換部62において行われるPWM変換の具体的な例について説明する。
なお、図6および図7において横方向は時間を示している。また、図6や図7ではBTLの片側(プラス側)についてのPWM変換が示されている。さらに、図6および図7において、図2または図3における場合と対応する部分には同一の符号を付してあり、その説明は適宜省略する。
図6は、PWM変換部62を動作させるマスタークロックのクロック周波数が1024Fsである場合に行われるPWM変換が示されている。
PWM変換部62に入力されるマルチビット化されたPDM信号は1サンプルが4bitの信号であり、例えば1サンプルのサンプル値が-7乃至+7までの何れかの値となる。
例えばマルチビット化されたPDM信号のサンプル値「-7」がPWM変換部62に供給されると、PWM変換部62は折れ線L31に示す波形のPWM信号を出力する。折れ線L31により示されるPWM信号は、パルス幅が期間T12分、つまり1スロット分の幅のパルス信号となっている。
また、例えばマルチビット化されたPDM信号のサンプル値「-6」がPWM変換部62に供給されると、PWM変換部62は折れ線L32に示す波形のPWM信号を出力する。折れ線L32により示されるPWM信号は、パルス幅が2スロット分の幅のパルス信号となっている。
同様にマルチビット化されたPDM信号のサンプル値「0」がPWM変換部62に供給されると、PWM変換部62は折れ線L33に示す波形のPWM信号を出力する。折れ線L33により示されるPWM信号は、パルス幅が8スロット分の幅のパルス信号となっている。
さらに、例えばマルチビット化されたPDM信号のサンプル値「+6」および「+7」のそれぞれがPWM変換部62に供給されると、PWM変換部62は折れ線L34および折れ線L35のそれぞれに示す波形のPWM信号を出力する。
折れ線L34および折れ線L35のそれぞれにより示されるPWM信号は、パルス幅が14スロット分および15スロット分の幅のパルス信号となっている。
同様に、マスタークロックのクロック周波数が2048Fsである場合には、図7に示すようにPWM変換が行われる。
この場合、PWM変換部62に入力されるマルチビット化されたPDM信号は1サンプルが5bitの信号であり、例えば1サンプルのサンプル値が-15乃至+15までの何れかの値となる。
例えばマルチビット化されたPDM信号のサンプル値「-15」がPWM変換部62に供給されると、PWM変換部62は折れ線L41に示す波形のPWM信号を出力する。折れ線L41により示されるPWM信号は、パルス幅が期間T21分、つまり1スロット分の幅のパルス信号となっている。
また、例えばマルチビット化されたPDM信号のサンプル値「-14」がPWM変換部62に供給されると、PWM変換部62は折れ線L42に示す波形のPWM信号を出力する。折れ線L42により示されるPWM信号は、パルス幅が2スロット分の幅のパルス信号となっている。
同様にマルチビット化されたPDM信号のサンプル値「0」がPWM変換部62に供給されると、PWM変換部62は折れ線L43に示す波形のPWM信号を出力する。折れ線L43により示されるPWM信号は、パルス幅が16スロット分の幅のパルス信号となっている。
さらに、例えばマルチビット化されたPDM信号のサンプル値「+14」および「+15」のそれぞれがPWM変換部62に供給されると、PWM変換部62は折れ線L44および折れ線L45のそれぞれに示す波形のPWM信号を出力する。
折れ線L44および折れ線L45のそれぞれにより示されるPWM信号は、パルス幅が30スロット分および31スロット分の幅のパルス信号となっている。
なお、図6や図7ではBTLのプラス側におけるPWM変換について説明したが、BTLのマイナス側におけるPWM変換や、スピーカ71をシングルエンド駆動する場合におけるPWM変換についてもBTLのプラス側における場合と同様にしてPWM信号を得ることができる。
以上のように信号処理装置51では、PWM変換時にはマルチビット化されたPDM信号が対象とされて、信号(オーディオ波形)のレベル情報、つまり振幅が、PWM信号の特徴であるパルス幅の時間情報に変換される。
そのため、例えば図6や図7に示したPWM変換では、狭パルスの発生頻度が図2や図3に示した例と比較して極端に少なくなっていることが分かる。
このことから、信号処理装置51では、増幅部63によるスピーカ71の駆動難易度を低くすることができ、増幅部63から出力される出力信号のオーディオ特性の低下を抑制することができる。
しかも、信号処理装置51では、ローパスフィルタ61を追加するという少ない回路追加で簡単にオーディオ特性の低下を抑制することができる。
また、ローパスフィルタ61への入力前後でPDM信号のサンプリング周波数が変化しないので、つまりサンプリング周波数を低くする必要がないので、もともとのDSD音源自体の情報を保持することができる。
さらに、信号処理装置51ではスピーカ71の駆動難易度を低くし、オーディオ特性の低下を抑制することができるので、スピーカ71の駆動方式としてバランス駆動方式だけでなくシングルエンド駆動方式も採用することができる。すなわち、スピーカ71の駆動についての自由度を向上させることができる。
その他、信号処理装置51では、ローパスフィルタ61のタップ数やタップ係数を適切に定めることで、ΔΣ変調器等の追加による回路規模の増加を防止することができ、PDM信号に量子化ノイズが付加されてしまうこともない。
さらに、ローパスフィルタ61でLPF処理を行うことで、PDM信号に含まれているシェイピングノイズを低減させることができ、オーディオ特性を向上させることができる。
〈再生処理の説明〉
続いて、図4に示したオーディオ再生システムの動作について説明する。
続いて、図4に示したオーディオ再生システムの動作について説明する。
オーディオ再生システムは、音楽等の再生が指示されると、再生処理を行って指示された音楽等を再生する。以下、図8のフローチャートを参照して、オーディオ再生システムによる再生処理について説明する。
再生処理が開始されると、指定された音楽等のPDM信号が読み出されてローパスフィルタ61へと入力される。
ステップS11においてローパスフィルタ61は、入力されたPDM信号に対してLPF処理を行い、その結果得られたマルチビット化されたPDM信号をPWM変換部62に供給する。
例えばローパスフィルタ61が図5に示した構成とされる場合、各遅延器101は、供給された1サンプル分のPDM信号を遅延させて後段の遅延器101や乗算部102に供給する。また、各乗算部102は、遅延器101等から供給されたPDM信号に対してタップ係数を乗算し、後段の加算部103に供給する。さらに各加算部103は、前段の乗算部102や加算部103から供給されたPDM信号を加算して後段に出力する。
これにより、スロット数に応じたマルチビットの信号がPWM変換部62へと供給される。
ステップS12においてPWM変換部62は、ローパスフィルタ61から供給されたマルチビット化されたPDM信号に対してPWM変換を行い、その結果得られたPWM信号を増幅部63に供給する。例えばステップS12では、図6や図7を参照して説明したようにPWM変換が行われる。
ステップS13において増幅部63は、PWM変換部62から供給されたPWM信号を増幅させるとともに、増幅後のPWM信号をDA変換する。
ステップS14において増幅部63は、DA変換により得られたアナログの出力信号に基づいてヘッドホン52に設けられたスピーカ71を駆動し、スピーカ71に音楽等を再生させる。音楽等が再生されると、再生処理は終了する。
以上のようにしてオーディオ再生システムは、PDM信号に対してLPF処理を行い、マルチビット化されたPDM信号をPWM変換してPWM信号を生成する。このようにすることで、狭パルスの発生頻度を低減させ、オーディオ特性の低下を抑制することができる。
〈第2の実施の形態〉
〈オーディオ再生システムの構成例〉
ところで、上述したPDM信号のサンプリング周波数やスロット数SL、実際のオーディオ特性の測定結果、スピーカ71(ドライバ)に関する情報などによっては、PDM信号に対してLPF処理を行わなくても十分なオーディオ特性を得ることができる場合がある。
〈オーディオ再生システムの構成例〉
ところで、上述したPDM信号のサンプリング周波数やスロット数SL、実際のオーディオ特性の測定結果、スピーカ71(ドライバ)に関する情報などによっては、PDM信号に対してLPF処理を行わなくても十分なオーディオ特性を得ることができる場合がある。
LPF処理を行わない場合、LPF処理を行う場合と比較して消費電力や処理量を少なく抑えることができる。そこで、例えば音楽等のコンテンツごとや、再生区間ごとにLPF処理を行うか否かを判定し、その判定結果に応じて音楽等の再生を行うようにしてもよい。
そのような場合、オーディオ再生システムは、例えば図9に示すように構成される。なお、図9において図4における場合と対応する部分には同一の符号を付してあり、その説明は適宜省略する。
図9に示すオーディオ再生システムは、信号処理装置151およびヘッドホン52を有している。信号処理装置151は、図4に示した信号処理装置51に対応する。
図9では、信号処理装置151はローパスフィルタ61、スイッチ161、PWM変換部62、増幅部63、および解析部162を有している。
スイッチ161は、解析部162により制御され、PWM変換部62の入力端に接続されたノードND11の接続先をノードND12またはノードND13に切り替えることで、PWM変換部62への信号の入力元を切り替える。
換言すれば、スイッチ161は、解析部162による制御に従って、マルチビット化されていないPDM信号をPWM変換部62に供給するか、またはマルチビット化されたPDM信号をPWM変換部62に供給するかを切り替える切り替え部として機能する。
例えばノードND11がノードND12に接続された状態では、図示せぬ記録部等から読み出されたPDM信号がそのままスイッチ161を介してPWM変換部62に供給される。
一方、ノードND11がノードND13に接続された状態では、ローパスフィルタ61から出力された、マルチビット化されたPDM信号がスイッチ161を介してPWM変換部62に供給される。
解析部162は、図示せぬ記録部等から供給された音源情報や、増幅部63から出力されたアナログの出力信号、ヘッドホン52から供給されたドライバ情報に基づいて、ローパスフィルタ61やスイッチ161、PWM変換部62の動作を制御する。
音源情報は、例えばPDM信号自体やPDM信号のサンプリング周波数を示す情報などとされる。また、ドライバ情報は、スピーカ71(ドライバ)に関する情報であり、例えばスピーカ71におけるインピーダンス値や、スピーカ71の駆動方式を示す駆動方式情報などである。一般的に、増幅部63とスピーカ71とが電気的に接続されると、解析部162では、スピーカ71の駆動方式を特定することができる。すなわち、ドライバ情報としての駆動方式情報を得ることができる。
ここで、解析部162によるローパスフィルタ61やスイッチ161、PWM変換部62の制御の具体的な例について説明する。
例えば解析部162は、音源情報により示されるPDM信号のサンプリング周波数と、既知であるマスタークロックのクロック周波数とから上述のスロット数SLを求め、得られたスロット数SLに基づいてローパスフィルタ61のタップ数やタップ係数を決定することができる。
この場合、解析部162は、決定したタップ数やタップ係数を示す情報をローパスフィルタ61に供給し、そのタップ数やタップ係数で定まるフィルタ構成でのLPF処理をローパスフィルタ61に実行させる。
また、例えば解析部162が、増幅部63の出力値、すなわち増幅部63からスピーカ71への出力であるアナログの出力信号に基づいて、その出力信号のオーディオ特性を求め、得られたオーディオ特性に基づいてスイッチ161によるノードの切り替えを制御してもよい。換言すれば、オーディオ特性に基づいてスピーカ71の駆動難易度が特定され、その特定結果に応じてスイッチ161が制御されてもよい。
具体的には、例えば解析部162は、増幅部63から出力された出力信号に基づいて、その出力信号のノイズレベルや歪みレベル、つまりノイズや歪みの大きさをオーディオ特性として求める。このとき、ノイズや歪みが多い場合には、十分なオーディオ特性を確保するためにLPF処理で得られたマルチビットの信号をPWM変換することが好ましいはずである。
そこで解析部162は、求めたノイズレベルや歪みレベルが予め定めた閾値以上である場合には、スイッチ161のノードND11をノードND13に接続させてマルチビット化されたPDM信号をPWM変換部62に供給させる。
これに対して解析部162は、求めたノイズレベルや歪みレベルが予め定めた閾値未満である場合には、スイッチ161のノードND11をノードND12に接続させてマルチビット化されていないPDM信号をPWM変換部62に供給させる。
また、例えば解析部162が、ヘッドホン52から供給されたドライバ情報に基づいてスイッチ161によるノードの切り替えを制御してもよい。換言すれば、ドライバ情報に基づいてスピーカ71の駆動難易度が特定され、その特定結果に応じてスイッチ161が制御されてもよい。
具体的には、例えば解析部162は、ヘッドホン52から供給されたドライバ情報としてのインピーダンス値が予め定めた閾値以上である場合には、スイッチ161のノードND11をノードND13に接続させてマルチビット化されたPDM信号をPWM変換部62に供給させる。
これは、スピーカ71のインピーダンス値が高い場合、そのスピーカ71から必要十分な音圧で音を出力するためには増幅部63のDA出力信号の電圧を上げることになり、スピーカ71の駆動難易度が高くなるためである。この場合、十分なオーディオ特性を確保するためには、LPF処理で得られたマルチビットの信号をPWM変換することが好ましい。
これに対して解析部162は、インピーダンス値が予め定めた閾値未満である場合には、スイッチ161のノードND11をノードND12に接続させてマルチビット化されていないPDM信号をPWM変換部62に供給させる。
以上のように、スピーカ71の駆動難易度が低く、十分なオーディオ特性が確保できる場合には、解析部162はノードND11をノードND12に接続させて、マルチビット化されていないPDM信号をPWM変換させる。これにより、十分なオーディオ特性を確保しつつ、信号処理装置151全体での処理量と消費電力を低減させることができる。
なお、ここでは増幅部63の出力値に基づいてスイッチ161を制御する例と、ドライバ情報に基づいてスイッチ161を制御する例とについて説明したが、これらを組み合わせて増幅部63の出力値とドライバ情報とに基づいてスイッチ161を制御してもよい。
その他、例えば解析部162がドライバ情報としての駆動方式情報や、スイッチ161の接続状況、音源情報などに応じて、PWM変換部62におけるPWM変換を制御することができる。
そのような場合、例えば解析部162は、ドライバ情報としての駆動方式情報により示される駆動方式等に応じて、PWM変換部62でPWM変換を行うときの設定を示す設定情報を生成し、PWM変換部62に供給する。PWM変換部62は、解析部162から供給された設定情報により示される設定に従ってPWM変換を行う。
具体的には、例えばドライバ情報としての駆動方式情報により示される駆動方式がバランス駆動方式であり、かつノードND11がノードND13に接続されているとする。
また、音源情報から特定されるPDM信号のサンプリング周波数が64Fsであり、スロット数SLが16であるとする。すなわち、PWM変換部62には、[64Fs,4bit]のマルチビット化されたPDM信号が入力されるとする。
そのような場合、解析部162は図6を参照して説明したPWM変換を行うための設定情報を生成し、PWM変換部62に供給する。
一例として、例えばPWM変換部62が、スロット数SLと駆動方式情報により示される駆動方式の組み合わせごとに、スロット数SLと駆動方式の組み合わせに対して定められたPWM変換を行うための変換テーブルを保持しているとする。
例えば変換テーブルでは、入力されたPDM信号のサンプル値と、そのサンプル値に対して出力すべきPWM信号の波形(パルス幅)とが対応付けられている。具体的には、例えば図6に示した例では、サンプル値「-7」に対して折れ線L31に示したPWM波形が対応付けられている。
この場合、解析部162は、変換テーブルを示す識別情報を設定情報として生成し、その設定情報をPWM変換部62に供給する。するとPWM変換部62は、解析部162から供給された設定情報に基づいて変換テーブルを選択し、選択した変換テーブルを用いてPWM変換を行う。
このようにすることで、解析部162は、信号処理装置151に接続されたヘッドホン52や再生しようとするDSD音源に応じて、適切なPWM変換が行われるようにPWM変換部62を制御することができる。
〈再生処理の説明〉
ここで、図9に示したオーディオ再生システムにより行われる再生処理について説明する。すなわち、以下、図10のフローチャートを参照して、オーディオ再生システムにより行われる再生処理について説明する。
ここで、図9に示したオーディオ再生システムにより行われる再生処理について説明する。すなわち、以下、図10のフローチャートを参照して、オーディオ再生システムにより行われる再生処理について説明する。
ステップS41において解析部162は、増幅部63から出力されたアナログの出力信号、およびヘッドホン52から供給されたドライバ情報の少なくとも何れか一方に基づいてLPF処理を行うか否かを判定する。
例えばステップS41では、ドライバ情報としてのインピーダンス値が予め定めた閾値以上である場合、LPF処理を行うと判定される。
ステップS41においてLPF処理を行わないと判定された場合、解析部162はスイッチ161を制御してノードND11をノードND12に接続させ、その後、処理はステップS42へと進む。
また、このとき解析部162は、ヘッドホン52から供給されたドライバ情報としての駆動方式情報等に応じて設定情報を生成し、PWM変換部62に供給する。
ステップS42において、PWM変換部62は、解析部162から供給された設定情報に従って、スイッチ161を介して供給された、マルチビット化されていないPWM信号に対してPWM変換を行い、その結果得られたPWM信号を増幅部63に供給する。例えばステップS42では、図2や図3を参照して説明したようにPWM変換が行われる。
PWM変換が行われると、その後、処理はステップS46へと進む。
これに対して、ステップS41においてLPF処理を行うと判定された場合、解析部162はスイッチ161を制御してノードND11をノードND13に接続させ、その後、処理はステップS43へと進む。
また、このとき解析部162は、ヘッドホン52から供給されたドライバ情報としての駆動方式情報等に応じて設定情報を生成し、PWM変換部62に供給する。
ステップS43において解析部162は、供給された音源情報に基づいてローパスフィルタ61のタップ数およびタップ係数を決定し、決定されたタップ数やタップ係数を示す情報をローパスフィルタ61に供給する。
ステップS43の処理が行われると、その後、ステップS44およびステップS45の処理が行われるが、これらの処理は図8のステップS11およびステップS12の処理と同様であるので、その説明は省略する。
但し、ステップS44ではローパスフィルタ61は、解析部162から供給された情報により示されるタップ数およびタップ係数で、供給されたPDM信号に対してLPF処理を行い、その結果得られたマルチビットの信号をスイッチ161を介してPWM変換部62に供給する。また、ステップS45では、PWM変換部62は解析部162から供給された設定情報に従ってPWM変換を行う。
ステップS45の処理が行われたか、またはステップS42の処理が行われると、その後、ステップS46およびステップS47の処理が行われて再生処理は終了する。なお、これらのステップS46およびステップS47の処理は図8のステップS13およびステップS14の処理と同様であるので、その説明は省略する。
以上のようにしてオーディオ再生システムは、音源情報やドライバ情報に応じてローパスフィルタ61やPWM変換部62を制御するとともに、増幅部63の出力値やドライバ情報に応じてスイッチ161を制御してLPF処理を行うか否かを切り替える。
このようにすることで音源情報やドライバ情報、増幅部63の出力値に応じて、LPF処理を行うかなど、すなわち適切なPWM変換方法を選択し、十分なオーディオ特性を確保しつつ、処理量や消費電力を低減させることができる。換言すれば、動的にオーディオ特性(オーディオ性能)を最適化しつつ、処理量や消費電力を低減することができる。
〈コンピュータの構成例〉
ところで、上述した一連の処理は、ハードウェアにより実行することもできるし、ソフトウェアにより実行することもできる。一連の処理をソフトウェアにより実行する場合には、そのソフトウェアを構成するプログラムが、コンピュータにインストールされる。ここで、コンピュータには、専用のハードウェアに組み込まれているコンピュータや、各種のプログラムをインストールすることで、各種の機能を実行することが可能な、例えば汎用のパーソナルコンピュータなどが含まれる。
ところで、上述した一連の処理は、ハードウェアにより実行することもできるし、ソフトウェアにより実行することもできる。一連の処理をソフトウェアにより実行する場合には、そのソフトウェアを構成するプログラムが、コンピュータにインストールされる。ここで、コンピュータには、専用のハードウェアに組み込まれているコンピュータや、各種のプログラムをインストールすることで、各種の機能を実行することが可能な、例えば汎用のパーソナルコンピュータなどが含まれる。
図11は、上述した一連の処理をプログラムにより実行するコンピュータのハードウェアの構成例を示すブロック図である。
コンピュータにおいて、CPU(Central Processing Unit)501,ROM(Read Only Memory)502,RAM(Random Access Memory)503は、バス504により相互に接続されている。
バス504には、さらに、入出力インターフェース505が接続されている。入出力インターフェース505には、入力部506、出力部507、記録部508、通信部509、及びドライブ510が接続されている。
入力部506は、キーボード、マウス、マイクロホン、撮像素子などよりなる。出力部507は、ディスプレイ、スピーカなどよりなる。記録部508は、ハードディスクや不揮発性のメモリなどよりなる。通信部509は、ネットワークインターフェースなどよりなる。ドライブ510は、磁気ディスク、光ディスク、光磁気ディスク、又は半導体メモリなどのリムーバブル記録媒体511を駆動する。
以上のように構成されるコンピュータでは、CPU501が、例えば、記録部508に記録されているプログラムを、入出力インターフェース505及びバス504を介して、RAM503にロードして実行することにより、上述した一連の処理が行われる。
コンピュータ(CPU501)が実行するプログラムは、例えば、パッケージメディア等としてのリムーバブル記録媒体511に記録して提供することができる。また、プログラムは、ローカルエリアネットワーク、インターネット、デジタル衛星放送といった、有線または無線の伝送媒体を介して提供することができる。
コンピュータでは、プログラムは、リムーバブル記録媒体511をドライブ510に装着することにより、入出力インターフェース505を介して、記録部508にインストールすることができる。また、プログラムは、有線または無線の伝送媒体を介して、通信部509で受信し、記録部508にインストールすることができる。その他、プログラムは、ROM502や記録部508に、あらかじめインストールしておくことができる。
なお、コンピュータが実行するプログラムは、本明細書で説明する順序に沿って時系列に処理が行われるプログラムであっても良いし、並列に、あるいは呼び出しが行われたとき等の必要なタイミングで処理が行われるプログラムであっても良い。
また、本技術の実施の形態は、上述した実施の形態に限定されるものではなく、本技術の要旨を逸脱しない範囲において種々の変更が可能である。
例えば、本技術は、1つの機能をネットワークを介して複数の装置で分担、共同して処理するクラウドコンピューティングの構成をとることができる。
また、上述のフローチャートで説明した各ステップは、1つの装置で実行する他、複数の装置で分担して実行することができる。
さらに、1つのステップに複数の処理が含まれる場合には、その1つのステップに含まれる複数の処理は、1つの装置で実行する他、複数の装置で分担して実行することができる。
さらに、本技術は、以下の構成とすることも可能である。
(1)
PDM信号に対してフィルタ処理を行うローパスフィルタと、
前記フィルタ処理により得られたマルチビットの信号をPWM変換し、PWM信号を生成するPWM変換部と
を備える信号処理装置。
(2)
前記PWM信号を増幅させるとともに、増幅後の前記PWM信号に基づいて再生装置を駆動する増幅部をさらに備える
(1)に記載の信号処理装置。
(3)
前記PDM信号のサンプリング周波数と、前記PWM変換部の駆動用のマスタークロックのクロック周波数とに基づいて、前記ローパスフィルタのタップ数を決定する解析部をさらに備える
(2)に記載の信号処理装置。
(4)
前記解析部は、前記サンプリング周波数と、前記クロック周波数とに基づいて、前記ローパスフィルタのタップ係数を決定する
(3)に記載の信号処理装置。
(5)
前記PDM信号を前記PWM変換部に供給するか、または前記マルチビットの信号を前記PWM変換部に供給するかを切り替える切り替え部をさらに備える
(3)または(4)に記載の信号処理装置。
(6)
前記解析部は、前記増幅部から前記再生装置への出力に基づいて、前記切り替え部による切り替えを制御する
(5)に記載の信号処理装置。
(7)
前記解析部は、前記再生装置に関する情報に基づいて、前記切り替え部による切り替えを制御する
(5)または(6)に記載の信号処理装置。
(8)
前記解析部は、前記再生装置の駆動方式に応じて、前記PWM変換部による前記PWM変換を制御する
(3)乃至(7)の何れか一項に記載の信号処理装置。
(9)
信号処理装置が、
PDM信号に対してローパスフィルタによるフィルタ処理を行い、
前記フィルタ処理により得られたマルチビットの信号をPWM変換し、PWM信号を生成する
信号処理方法。
(10)
PDM信号に対してローパスフィルタによるフィルタ処理を行い、
前記フィルタ処理により得られたマルチビットの信号をPWM変換し、PWM信号を生成する
ステップを含む処理をコンピュータに実行させるプログラム。
PDM信号に対してフィルタ処理を行うローパスフィルタと、
前記フィルタ処理により得られたマルチビットの信号をPWM変換し、PWM信号を生成するPWM変換部と
を備える信号処理装置。
(2)
前記PWM信号を増幅させるとともに、増幅後の前記PWM信号に基づいて再生装置を駆動する増幅部をさらに備える
(1)に記載の信号処理装置。
(3)
前記PDM信号のサンプリング周波数と、前記PWM変換部の駆動用のマスタークロックのクロック周波数とに基づいて、前記ローパスフィルタのタップ数を決定する解析部をさらに備える
(2)に記載の信号処理装置。
(4)
前記解析部は、前記サンプリング周波数と、前記クロック周波数とに基づいて、前記ローパスフィルタのタップ係数を決定する
(3)に記載の信号処理装置。
(5)
前記PDM信号を前記PWM変換部に供給するか、または前記マルチビットの信号を前記PWM変換部に供給するかを切り替える切り替え部をさらに備える
(3)または(4)に記載の信号処理装置。
(6)
前記解析部は、前記増幅部から前記再生装置への出力に基づいて、前記切り替え部による切り替えを制御する
(5)に記載の信号処理装置。
(7)
前記解析部は、前記再生装置に関する情報に基づいて、前記切り替え部による切り替えを制御する
(5)または(6)に記載の信号処理装置。
(8)
前記解析部は、前記再生装置の駆動方式に応じて、前記PWM変換部による前記PWM変換を制御する
(3)乃至(7)の何れか一項に記載の信号処理装置。
(9)
信号処理装置が、
PDM信号に対してローパスフィルタによるフィルタ処理を行い、
前記フィルタ処理により得られたマルチビットの信号をPWM変換し、PWM信号を生成する
信号処理方法。
(10)
PDM信号に対してローパスフィルタによるフィルタ処理を行い、
前記フィルタ処理により得られたマルチビットの信号をPWM変換し、PWM信号を生成する
ステップを含む処理をコンピュータに実行させるプログラム。
51 信号処理装置, 52 ヘッドホン, 61 ローパスフィルタ, 62 PWM変換部, 63 増幅部, 71 スピーカ, 161 スイッチ, 162 解析部
Claims (10)
- PDM信号に対してフィルタ処理を行うローパスフィルタと、
前記フィルタ処理により得られたマルチビットの信号をPWM変換し、PWM信号を生成するPWM変換部と
を備える信号処理装置。 - 前記PWM信号を増幅させるとともに、増幅後の前記PWM信号に基づいて再生装置を駆動する増幅部をさらに備える
請求項1に記載の信号処理装置。 - 前記PDM信号のサンプリング周波数と、前記PWM変換部の駆動用のマスタークロックのクロック周波数とに基づいて、前記ローパスフィルタのタップ数を決定する解析部をさらに備える
請求項2に記載の信号処理装置。 - 前記解析部は、前記サンプリング周波数と、前記クロック周波数とに基づいて、前記ローパスフィルタのタップ係数を決定する
請求項3に記載の信号処理装置。 - 前記PDM信号を前記PWM変換部に供給するか、または前記マルチビットの信号を前記PWM変換部に供給するかを切り替える切り替え部をさらに備える
請求項3に記載の信号処理装置。 - 前記解析部は、前記増幅部から前記再生装置への出力に基づいて、前記切り替え部による切り替えを制御する
請求項5に記載の信号処理装置。 - 前記解析部は、前記再生装置に関する情報に基づいて、前記切り替え部による切り替えを制御する
請求項5に記載の信号処理装置。 - 前記解析部は、前記再生装置の駆動方式に応じて、前記PWM変換部による前記PWM変換を制御する
請求項3に記載の信号処理装置。 - 信号処理装置が、
PDM信号に対してローパスフィルタによるフィルタ処理を行い、
前記フィルタ処理により得られたマルチビットの信号をPWM変換し、PWM信号を生成する
信号処理方法。 - PDM信号に対してローパスフィルタによるフィルタ処理を行い、
前記フィルタ処理により得られたマルチビットの信号をPWM変換し、PWM信号を生成する
ステップを含む処理をコンピュータに実行させるプログラム。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/442,977 US20220191074A1 (en) | 2019-04-05 | 2020-03-19 | Signal processing device, signal processing method, and program |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019072387 | 2019-04-05 | ||
JP2019-072387 | 2019-04-05 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020203330A1 true WO2020203330A1 (ja) | 2020-10-08 |
Family
ID=72668374
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/012198 WO2020203330A1 (ja) | 2019-04-05 | 2020-03-19 | 信号処理装置および方法、並びにプログラム |
Country Status (2)
Country | Link |
---|---|
US (1) | US20220191074A1 (ja) |
WO (1) | WO2020203330A1 (ja) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000068835A (ja) * | 1998-08-25 | 2000-03-03 | Sony Corp | デジタル−アナログ変換装置 |
JP2005515684A (ja) * | 2002-01-02 | 2005-05-26 | フリースケール セミコンダクター インコーポレイテッド | パルス幅変調信号を発生する方法および装置 |
US20160065177A1 (en) * | 2014-08-28 | 2016-03-03 | Cambridge Silicon Radio Limited | Devices and methods for converting digital signals |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2722585B2 (ja) * | 1988-12-28 | 1998-03-04 | 日本電気株式会社 | 誘導性負荷の駆動回路 |
US6459398B1 (en) * | 1999-07-20 | 2002-10-01 | D.S.P.C. Technologies Ltd. | Pulse modulated digital to analog converter (DAC) |
US8553909B2 (en) * | 2011-04-29 | 2013-10-08 | Smsc Holdings S.A.R.L. | Low-power class D amplifier using multistate analog feedback loops |
KR102321223B1 (ko) * | 2013-09-10 | 2021-11-04 | 인피니언 테크놀로지스 오스트리아 아게 | 클래스 d 오디오 증폭기들에 대한 다중위상 펄스폭 변조기 |
US10164650B2 (en) * | 2017-02-16 | 2018-12-25 | Qualcomm Incorporated | Delay-free poly-phase quantizer and quantization method for PWM mismatch shaping |
-
2020
- 2020-03-19 WO PCT/JP2020/012198 patent/WO2020203330A1/ja active Application Filing
- 2020-03-19 US US17/442,977 patent/US20220191074A1/en not_active Abandoned
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000068835A (ja) * | 1998-08-25 | 2000-03-03 | Sony Corp | デジタル−アナログ変換装置 |
JP2005515684A (ja) * | 2002-01-02 | 2005-05-26 | フリースケール セミコンダクター インコーポレイテッド | パルス幅変調信号を発生する方法および装置 |
US20160065177A1 (en) * | 2014-08-28 | 2016-03-03 | Cambridge Silicon Radio Limited | Devices and methods for converting digital signals |
Also Published As
Publication number | Publication date |
---|---|
US20220191074A1 (en) | 2022-06-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1110427B1 (en) | Low-frequency audio enhancement system | |
US6795004B2 (en) | Delta-sigma modulation apparatus and signal amplification apparatus | |
US8077882B2 (en) | Audio reproducing apparatus | |
JP2828543B2 (ja) | スピーカ駆動回路 | |
JP2018129848A (ja) | オーディオ再生のための電力消費を減少させるシステム及び方法 | |
EP1970901A2 (en) | Signal processing apparatus and signal processing method | |
EP2498400A1 (en) | A delta-sigma modulator approach to increased amplifier gain resolution | |
JP2004214843A (ja) | デジタルアンプ及びそのゲイン調整方法 | |
CN1929300A (zh) | 在d类放大器中控制音频音量的设备和方法 | |
US7528650B2 (en) | Multi-channel digital amplifier, signal processing method thereof, and audio reproducing system having the same | |
JP4859928B2 (ja) | 放送装置 | |
US20190131947A1 (en) | Audio circuit | |
WO2020203330A1 (ja) | 信号処理装置および方法、並びにプログラム | |
US10014840B2 (en) | Controlling a power amplification stage of an audio signal amplifier | |
GB2559224A (en) | Direct mapping | |
US10680640B2 (en) | Power-saving current-mode digital-to-analog converter (DAC) | |
US7443235B2 (en) | Audio system and processing method of storing and reproducing digital pulse width modulation signal | |
WO2020218027A1 (ja) | 信号処理装置および方法、並びにプログラム | |
JP2005020086A (ja) | ディジタルパワーアンプ装置 | |
JP2001237708A (ja) | データ処理方式 | |
JP4044451B2 (ja) | 情報再生装置 | |
JP3724910B2 (ja) | 音声録再装置並びに音声記録装置及び音声再生装置 | |
JP2001230672A (ja) | 1ビット信号再生装置 | |
JP4831129B2 (ja) | 再生装置および再生方法 | |
JP2005051289A (ja) | 多チャンネルデジタルアンプ装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20784181 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20784181 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |