WO2020084933A1 - 電子燃料噴射式ディーゼルエンジン - Google Patents
電子燃料噴射式ディーゼルエンジン Download PDFInfo
- Publication number
- WO2020084933A1 WO2020084933A1 PCT/JP2019/035303 JP2019035303W WO2020084933A1 WO 2020084933 A1 WO2020084933 A1 WO 2020084933A1 JP 2019035303 W JP2019035303 W JP 2019035303W WO 2020084933 A1 WO2020084933 A1 WO 2020084933A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- fuel
- fuel injection
- diesel engine
- injection
- combustion chamber
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B19/00—Engines characterised by precombustion chambers
- F02B19/08—Engines characterised by precombustion chambers the chamber being of air-swirl type
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B19/00—Engines characterised by precombustion chambers
- F02B19/14—Engines characterised by precombustion chambers with compression ignition
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B19/00—Engines characterised by precombustion chambers
- F02B19/16—Chamber shapes or constructions not specific to sub-groups F02B19/02 - F02B19/10
- F02B19/18—Transfer passages between chamber and cylinder
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M51/00—Fuel-injection apparatus characterised by being operated electrically
- F02M51/06—Injectors peculiar thereto with means directly operating the valve needle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M61/00—Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
- F02M61/14—Arrangements of injectors with respect to engines; Mounting of injectors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M61/00—Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
- F02M61/16—Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
- F02M61/18—Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M61/00—Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
- F02M61/16—Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
- F02M61/18—Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
- F02M61/1806—Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for characterised by the arrangement of discharge orifices, e.g. orientation or size
- F02M61/1813—Discharge orifices having different orientations with respect to valve member direction of movement, e.g. orientations being such that fuel jets emerging from discharge orifices collide with each other
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M63/00—Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
- F02M63/02—Fuel-injection apparatus having several injectors fed by a common pumping element, or having several pumping elements feeding a common injector; Fuel-injection apparatus having provisions for cutting-out pumps, pumping elements, or injectors; Fuel-injection apparatus having provisions for variably interconnecting pumping elements and injectors alternatively
- F02M63/0225—Fuel-injection apparatus having a common rail feeding several injectors ; Means for varying pressure in common rails; Pumps feeding common rails
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M2200/00—Details of fuel-injection apparatus, not otherwise provided for
- F02M2200/40—Fuel-injection apparatus with fuel accumulators, e.g. a fuel injector having an integrated fuel accumulator
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M45/00—Fuel-injection apparatus characterised by having a cyclic delivery of specific time/pressure or time/quantity relationship
- F02M45/02—Fuel-injection apparatus characterised by having a cyclic delivery of specific time/pressure or time/quantity relationship with each cyclic delivery being separated into two or more parts
- F02M45/04—Fuel-injection apparatus characterised by having a cyclic delivery of specific time/pressure or time/quantity relationship with each cyclic delivery being separated into two or more parts with a small initial part, e.g. initial part for partial load and initial and main part for full load
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
Definitions
- the present invention relates to an electronic fuel injection type diesel engine, and more particularly to an electronic fuel injection type diesel engine capable of downsizing the engine.
- Patent Document 1 if the bore diameter of the cylinder is reduced, combustion deteriorates, and problems such as high noise, fuel consumption, and smoke concentration increase occur, so the engine cannot be downsized.
- An object of the present invention is to provide an electronic fuel injection type diesel engine capable of miniaturizing the engine.
- the main configuration of the present invention is as follows. As illustrated in FIG. 1, the liquid fuel (5) is injected into the combustion chamber (2) inside the cylinder (1), the fuel injection chamber (4) inside the cylinder head (3), and the fuel injection chamber (4). Fuel injector (6), a fuel pressure accumulator (7) for accumulating the liquid fuel (5) injected from the fuel injector (6), and an electronic control unit (6) for controlling the timing and amount of injection of the liquid fuel (5).
- the injection of the liquid fuel (5) in the fuel injection chamber (4) is electronically controlled, and by adjusting the premixing of the liquid fuel (5) and the compressed air (10) in the fuel injection chamber (4), Even if the combustion in the combustion chamber (2) is controlled and the bore diameter of the cylinder (1) is reduced, noise, fuel consumption, and smoke concentration can be kept low, and the engine can be downsized.
- FIG. 1 is a diagram illustrating an electronic fuel injection type diesel engine according to an embodiment of the present invention
- FIG. 1 (A) is a block diagram illustrating signals of the engine and a flow of liquid fuel
- FIG. 1 (B) is FIG. 1 (A).
- FIG. 7B is an explanatory diagram of an injection pattern of the auxiliary combustion chamber and the liquid fuel in a cross section taken along line BB of FIG. 1
- FIG. 3 is a side view in vertical section of the engine of FIG. 2. It is a front view of the engine of FIG.
- FIGS. 1 to 4 are diagrams illustrating an electronic fuel injection type diesel engine according to an embodiment of the present invention.
- a water-cooled in-line two-cylinder electronic fuel injection type diesel engine will be described.
- the installation direction of the crankshaft (15) shown in FIG. 3 will be described as the front-rear direction, and the horizontal direction orthogonal to the front-rear direction will be described as the left-right direction.
- the engine includes a cylinder block (16), a cylinder head (3) mounted on the cylinder block (16), and a cylinder mounted on the cylinder head (3).
- This engine includes an intake device, an exhaust device, a combustion device, an electronic control device, and an engine water cooling device.
- the intake device includes an intake manifold (24) shown in FIG. 2 and an air cleaner (not shown) connected to the intake upstream side of the intake manifold (24).
- the exhaust device includes an exhaust manifold (25) shown in FIG. 2 and an exhaust treatment device (not shown) connected to an exhaust downstream side of the exhaust manifold (25).
- the intake manifold (24) is arranged on one side of the cylinder head (3) on the left and right, and the exhaust manifold (25) is arranged on the other side of the cylinder head (3).
- the combustion device has a combustion chamber (2) in a cylinder (1), a fuel injection chamber (4) in a cylinder head (3), and a liquid injection chamber (4).
- the fuel injector (6) for injecting the fuel (5), the fuel pressure accumulator (7) for accumulating the liquid fuel (5) injected from the fuel injector (6), and the timing and amount of injection of the liquid fuel (5) are
- An electronic control unit (8) for controlling is provided. Therefore, the injection of the liquid fuel (5) is electronically controlled, and the combustion in the combustion chamber (2) is controlled by adjusting the premixing of the liquid fuel (5) and the compressed air (10) in the fuel injection chamber (4). Even if it is optimized and the bore diameter of the cylinder (1) is reduced, noise, fuel consumption, and smoke concentration can be kept low, and the engine can be downsized.
- An engine ECU (26) is used for the electronic control unit (8).
- ECU is an abbreviation for electronic control unit and is a microcomputer.
- an engine ECU (26) is electrically connected to an accelerator sensor (27), a crankshaft sensor (28), and a cylinder discrimination sensor (29).
- the accelerator sensor (27) sends an accelerator position detection signal to the engine ECU (26) based on the detection of the operation position of an accelerator lever (not shown).
- the crankshaft sensor (28) detects the actual rotation speed and crank angle of the crankshaft (15) and sends an actual rotation speed detection signal and a crank angle detection signal to the engine ECU (26).
- the cylinder discrimination sensor (29) detects the phase of the valve operating cam shaft (30) of FIG. 2 and sends a cam shaft phase detection signal to the engine ECU (26).
- This engine is a 4-cycle engine, and the valve operating cam shaft (30) is a cam shaft that drives the intake valve (not shown) and the exhaust valve (25a) to open and close.
- the engine ECU (26) has an electronic governor function, calculates the deviation between the target rotation speed and the actual rotation speed of the engine based on the accelerator position detection signal and the actual rotation speed detection signal, and based on the calculation, the engine load. Is calculated, and the timing and amount of injection of the liquid fuel (5) of the fuel injector (6) are set by the fuel control map stored in the memory based on the target engine speed and the engine load. An injector control signal is transmitted to the solenoid valve (6a) of (6). By this injector control signal, the electromagnetic valve (6a) of the fuel injector (6) is opened at a predetermined timing for a predetermined time, and a predetermined amount of liquid fuel (5) is injected from the fuel injector (6) at a predetermined timing.
- the liquid fuel (5) is light oil.
- a potentiometer is used for the accelerator sensor (27) shown in FIG.
- a pickup coil is used for the crankshaft sensor (28).
- the crankshaft sensor (28) is a proximity sensor that detects when a protrusion of a crankshaft detection disk (not shown) attached to the flywheel (22) passes in front of the sensor.
- the crankshaft detection disk is provided with one starting point projection on the periphery and a large number of phase projections provided at equal pitches.
- a pickup coil is also used for the cylinder discrimination sensor (29).
- the cylinder discrimination sensor (29) is a proximity sensor that detects when a protrusion of a camshaft phase detection disk (not shown) attached to the valve operating camshaft (30) shown in FIG. 2 passes in front of the sensor. .
- the camshaft phase detection disk has one protrusion on the peripheral edge.
- the crankshaft sensor (28) and the cylinder discrimination sensor (29) transmit an actual rotation speed detection signal, a crank angle detection signal, and a camshaft phase detection signal based on the pick-up signal of the protrusion to the engine ECU (26), and the engine ECU (26). ),
- the actual engine speed and crank angle are calculated from the actual engine speed detection signal and the crank angle detection signal, and the stroke of each combustion cycle of each cylinder is determined from the camshaft phase detection signal.
- a plurality of fuel injection holes (6b) (6c) of the fuel injector (6) are provided. For this reason, the liquid fuel (5) injected from the plurality of fuel injection holes (6b) (6c) of the fuel injector (6) spreads widely in the fuel injection chamber (4), and in the fuel injection chamber (4). The premixing of the liquid fuel (5) with the compressed air (10) is promoted.
- the injection direction of the liquid fuel (5) injected from the fuel injection hole (6c) of the fuel injector (6) is directed to the inner surface of the fuel injection chamber (4) as shown in FIG. 1 (B). . Therefore, the compressed air (10) pushed into the fuel injection chamber (4) from the combustion chamber (2) in the cylinder (1) shown in FIG. ), The liquid fuel (5) is injected from the fuel injection hole (6c), the liquid fuel (5) spreads widely in the compressed air (10), and the liquid fuel (5) in the fuel injection chamber (4) becomes Premixing of compressed air (10) is facilitated.
- the combustion chamber (2) in the cylinder (1) is the main combustion chamber (2a), and the fuel injection chamber (4) is the main combustion chamber (2a) and the injection port (9).
- the sub-combustion chamber (4a) communicates with each other. Therefore, a part of the liquid fuel (5) injected from the fuel injector (6) is premixed with the compressed air (10) in the auxiliary combustion chamber (4a), and the rest is combustion gas of the premixed combustion. , Is injected into the main combustion chamber (2a) from the injection port (9), the liquid fuel (5) is widely diffused in the main combustion chamber (2a), and combustion in the main combustion chamber (2a) is promoted.
- the main combustion chamber (2a) is formed in the cylinder (1) between the piston (1a) and the cylinder head (3).
- the auxiliary combustion chamber (4a) is formed between the recess (3a) on the bottom surface of the cylinder head (3) and the die (3b) fitted in the recess (3a), and the injection port (4a) is formed. 9) is formed on the base (3b).
- the auxiliary combustion chamber (4a) is a vortex chamber. Therefore, the liquid fuel (5) injected from the fuel injector (6) is caught in the vortex flow of the compressed air (10) pushed into the vortex chamber from the main combustion chamber (2a), and the auxiliary combustion chamber (4a) The premixing of the liquid fuel (5) and the compressed air (10) in the is accelerated.
- the auxiliary combustion chamber (4a) of the nozzle (9) is defined as a lateral direction that is orthogonal to the nozzle central axis (9a).
- the open end (9b) on the side is formed by a horizontally long slot.
- the width of the opening end (9c) of the injection port (9) on the side of the main combustion chamber (2a) is longer than the width of the opening end (9b) on the side of the auxiliary combustion chamber (4a).
- the combustion gas containing unburned fuel which is ejected from the injection port (9) to the main combustion chamber (2a)
- the air utilization rate in the room (2a) is increased.
- the injection port 9 has an expanded shape in which the cross-sectional area increases toward the main combustion chamber 2a.
- the combustion gas containing unburned fuel ejected from the injection port (9) to the main combustion chamber (2a) diffuses widely into the main combustion chamber (2a) through the expansion-shaped injection port (9), The air utilization rate in (2a) is increased.
- the plurality of fuel injection holes (6b) and (6c) include a single fuel injection hole (6b) at the center in the left-right direction and a pair of fuel injection holes (left and right) arranged on the left and right sides thereof. 6c) and (6c).
- the left and right fuel injection holes (6c) (6c) have a smaller diameter than the central fuel injection hole (6b), and the injection pattern of the liquid fuel (5) injected from the left and right fuel injection holes (6c) (6c) Is thinner than that from the fuel injection hole (6b) in the center, and the oil droplets are also small.
- the injection direction of the liquid fuel (5) from the left and right fuel injection holes (6c) (6c) is directed to the inner surface of the auxiliary combustion chamber (4a) located on the left and right of the injection port (9).
- the injection direction of the liquid fuel (5) from the fuel injection hole (6b) is directed to the main combustion chamber (2a) via the injection port (9).
- the injection direction of the liquid fuel (5) from the plurality of fuel injection holes (6b) (6c) may be all directed to the main combustion chamber (2a) via the injection port (9).
- the injection port (9) may be composed of an injection port (not shown) at the center in the left-right direction and a pair of injection ports arranged on the left and right sides thereof.
- the injection directions of the liquid fuel (5) from the plurality of fuel injection holes (6b) (6c) may be all directed to the main combustion chamber (2a) through different injection holes, Only the injection direction of the liquid fuel (5) from the central fuel injection hole (6b) is directed to the main combustion chamber (2a) via the central injection port, and the liquid from the left and right fuel injection holes (6c) (6c)
- the injection direction of the fuel (5) may be directed toward the inner surface of the auxiliary combustion chamber (4a) located on the left and right of the central injection port.
- the injection pressure of the liquid fuel (5) from the fuel injector (6) is set to 5 to 50 MPa (megapascal).
- the injection pressure of the liquid fuel (5) from the fuel injector (6) is generally set to 120 to 160 MPa for the existing common rail diesel engine that directly injects the fuel into the combustion chamber in the cylinder. However, it is set quite low.
- the injection pressure of the liquid fuel (5) from the fuel injector (6) is less than 5 MPa, the penetrating force of the liquid fuel (5) in the fuel injection chamber (4) is insufficient, and when it exceeds 50 MPa, the fuel injection chamber (4) ), The flight time of the liquid fuel (5) is insufficient, and in any case, premixing of the liquid fuel (5) and the compressed air (10) in the fuel injection chamber (4) may be delayed.
- the pressure is 5 to 50 MPa, the above problem is unlikely to occur and the premixing of the liquid fuel (5) and the compressed air (10) in the fuel injection chamber (4) is promoted.
- the injection pressure of the liquid fuel (5) from the fuel injector (6) is 5 to 50 MPa, and even though it is a diesel engine, the fuel injector (6) and the fuel pressure accumulator (7) such as a gasoline injection system of low pressure fuel injection are used. ) Parts can be diverted, and parts can be shared with other low-pressure fuel injection systems.
- the fuel pressure accumulator (7) includes an accumulator (11) and a fuel feed pump (12) for supplying the liquid fuel (5) to the accumulator (11).
- the injection pressure of the liquid fuel (5) from the fuel injector (6) is 5 to 50 MPa, and although it is a diesel engine, the accumulator (11) and the fuel feed pump (12) such as a low pressure fuel injection gasoline injection system are used. ) Can be diverted as it is, and the parts of the fuel pressure accumulator (7) can be shared with other low pressure fuel injection systems.
- the accumulator (11) is a delivery pipe (11a) that distributes the liquid fuel (5) to the plurality of fuel injectors (6).
- the fuel pressure in the delivery pipe (11a) becomes about 5 to 50 MPa, and the delivery pipe (11a) such as a gasoline injection system of low-pressure fuel injection can be diverted as it is, even though it is a diesel engine.
- the parts of the multi-cylinder low pressure fuel injection system and the fuel pressure accumulator (7) can be shared.
- the delivery pipe (11a) includes a fuel pressure sensor (11b), and the fuel pressure in the delivery pipe (11a) detected by the fuel pressure sensor (11b) is a fuel pressure detection signal.
- a pump control signal is sent from the engine ECU (26) to an electric actuator (not shown) of the fuel feed pump (12) to control the rotation speed of the fuel feed pump (12).
- the amount of liquid fuel (5) supplied to the delivery pipe (11a) is controlled, and the fuel pressure in the delivery pipe (11a) is adjusted.
- the fuel feed pump (12) is pumped by a pump drive cam driven by an electric actuator.
- Reference numeral (13) in FIG. 1 (A) is a safety valve, which is opened when the fuel pressure in the delivery pipe (11a) exceeds a predetermined upper limit value, and the fuel pressure in the delivery pipe (11a) is reduced. Lower.
- an electric spill valve (not shown) for leaking the liquid fuel in the delivery pipe (11a) to the fuel tank (35) side is provided, and a fuel pressure sensor (11b) is provided.
- the fuel pressure in the delivery pipe (11a) detected by is sent to the engine ECU (26) as a fuel pressure detection signal, and a valve control signal is sent from the engine ECU (26) to the actuator of the electric spill valve.
- the amount of leakage of the liquid fuel (5) from the delivery pipe (11a) may be controlled by controlling the opening degree of.
- the fuel feed pump (12), the delivery pipe (11a), and the fuel injector (6) of the existing gasoline injection system are diverted as they are even though they are diesel engines.
- the fuel is supplied from the fuel tank (35) to the fuel feed pump (12), and a part of the liquid fuel (5) of the fuel feed pump (12) and the fuel injector (6) is supplied. Overflows and returns to the fuel tank (35) through the fuel return passage (36), and the air accumulation in the fuel feed pump (12) and the fuel injector (6) is eliminated.
- the injection pressure of the liquid fuel (5) from the fuel injector (6) is Although it is set to 5 to 50 MPa, it is more preferable to set this injection pressure to 10 to 40 MPa. This is because the function of promoting premixing can be obtained more reliably.
- the injection of liquid fuel (5) from the fuel injector (6) comprises a main injection and a pre-injection prior to the main injection. Therefore, the pre-injected liquid fuel (5) is mixed with the compressed air (10) in the fuel injection chamber (4) and burned, and the main-injected liquid fuel (5) is ignited by the pre-injected combustion gas. The combustion of the liquid fuel (5) and the compressed air (10) in the fuel injection chamber (4) is promoted.
- the engine water cooling device includes a radiator (21) for radiating heat of the engine cooling water, and a water pump (18) for sucking the engine cooling water radiated by the radiator (21) and pumping it to the cylinder jacket. 2, the cylinder jacket (31), the cylinder head jacket (32) of FIG. 2 communicating with the cylinder jacket (31), and the circulation of engine cooling water from the cylinder head jacket (32) to the radiator (21) and its stopping.
- the whole amount of the engine cooling water is sucked into the water pump (18) from the return pipe by the closing of the thermostat valve (33) and the radiator (21 ) Is bypassed to circulate between the cylinder jacket (31) and the cylinder head jacket (32) to warm up the engine.
- the thermostat valve (33) opens to allow the engine cooling water to flow between the radiator (21), the water pump (18), the cylinder jacket (31) and the cylinder head jacket (32). Are circulated in that order to cool the engine. A part of the engine cooling water is sucked into the water pump (18) through the return pipe and bypasses the radiator (21).
- the present invention has been described above, but the present invention is not limited to the above embodiments.
- the fuel injection chamber (4) does not necessarily have to be a sub chamber type, and may be a chamber having no injection port (9), that is, a chamber in which the bottom surface of the cylinder head (3) is simply recessed.
- the fuel injection hole of the fuel injector (6) does not necessarily have to be plural, and may be single.
- the injection of the liquid fuel (5) injected from the fuel injection hole does not necessarily have to be directed to the inner surface of the fuel injection chamber (4), but to the main combustion chamber (2a) via the injection port (9). It may be directed. Further, when the injection port (9) is not provided, it may be directed to the main combustion chamber (2a) through the opening of the fuel injection chamber (4).
- the calculation of the actual engine speed and the crank angle and the determination of the stroke of each combustion cycle of each cylinder are performed by two sensors including the crankshaft sensor (28) and the cylinder determination sensor (29).
- one phase sensor (not shown) is used to detect the actual engine speed and crank angle, and to determine the combustion cycle of each cylinder. It is also possible to determine which process the process is.
- a pickup coil is used for this phase sensor.
- This phase sensor is a proximity sensor that detects when a protrusion of a phase detection disk (not shown) attached to the valve operating cam shaft (30) passes in front of the sensor.
- the phase detection sensor is provided with one starting point protrusion on the periphery and a large number of phase protrusions provided at equal pitches.
- This phase sensor transmits a pick-up signal of the protrusion to the engine ECU (26), and the engine ECU (26) determines, based on the cycle of the pulse wave of the pick-up signal and the ordinal number of the pulse wave of the protrusion passing in front of the sensor, The actual engine speed and crank angle are calculated, and the stroke of the combustion cycle of each cylinder is determined based on the phase of the pulse wave of the projection that has passed in front of the sensor.
- the injection pressure of the liquid fuel (5) from the fuel injector (6) is 5 to 50 MPa, it is an electronic fuel injection type diesel engine, but a sub-chamber combustion of a mechanical cam fuel injection type diesel engine.
- a low-pressure fuel injection pump for a room can be used as the fuel feed pump (12), and in this case, parts can be shared with a mechanical cam fuel injection diesel engine.
- the fuel feed pump (12) is driven by the existing fuel injection cam shaft (14).
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Fuel-Injection Apparatus (AREA)
Abstract
エンジンを小型化することができる電子燃料噴射式ディーゼルエンジンを提供する。 シリンダ1内の燃焼室2と、シリンダヘッド3内の燃料噴射室4と、燃料噴射室4に液体燃料5を噴射する燃料インジェクタ6と、燃料インジェクタ6から噴射する液体燃料5を蓄圧する燃料蓄圧装置7と、液体燃料5の噴射の時期と量を制御する電子制御装置8を備えている。燃料インジェクタ6の燃料噴射孔6b・6cは、複数個設けられ、燃料インジェクタ6の燃料噴射孔6b・6cから噴射される液体燃料5の噴射方向は、燃料噴射室4の内面に向けられ、シリンダ1内の燃焼室2が主燃焼室2aとされ、燃料噴射室4は、主燃焼室2aと噴口9で連通された副燃焼室4aとされていることが望ましい。
Description
本発明は、電子燃料噴射式ディーゼルエンジンに関し、詳しくは、エンジンを小型化することができる電子燃料噴射式ディーゼルエンジンに関する。
従来、電子燃料噴射式ディーゼルエンジンとして、コモンレールシステムを備えた直接噴射式ディーゼルエンジンがある(例えば、特許文献1参照)。
特許文献1のものでは、シリンダのボア径を小さくすると、燃焼が悪化し、高騒音、燃費、スモーク濃度が増加する等の問題が生じるため、エンジンを小型化することができない。
本発明の課題は、エンジンを小型化することができる電子燃料噴射式ディーゼルエンジンを提供することにある。
本発明の主要な構成は、次の通りである。
図1に例示するように、シリンダ(1)内の燃焼室(2)と、シリンダヘッド(3)内の燃料噴射室(4)と、燃料噴射室(4)に液体燃料(5)を噴射する燃料インジェクタ(6)と、燃料インジェクタ(6)から噴射する液体燃料(5)を蓄圧する燃料蓄圧装置(7)と、液体燃料(5)の噴射の時期と量を制御する電子制御装置(8)を備えている、ことを特徴とする電子燃料噴射式ディーゼルエンジン。
図1に例示するように、シリンダ(1)内の燃焼室(2)と、シリンダヘッド(3)内の燃料噴射室(4)と、燃料噴射室(4)に液体燃料(5)を噴射する燃料インジェクタ(6)と、燃料インジェクタ(6)から噴射する液体燃料(5)を蓄圧する燃料蓄圧装置(7)と、液体燃料(5)の噴射の時期と量を制御する電子制御装置(8)を備えている、ことを特徴とする電子燃料噴射式ディーゼルエンジン。
本発明では、燃料噴射室(4)での液体燃料(5)の噴射が電子制御され、燃料噴射室(4)での液体燃料(5)と圧縮空気(10)の予混合の調節により、燃焼室(2)での燃焼が制御され、シリンダ(1)のボア径を小さくしても、騒音、燃費、スモーク濃度を低く維持することができ、エンジンを小型化することができる。
図1~図4は、本発明の実施形態に係る電子燃料噴射式ディーゼルエンジンを説明する図で、この実施形態では、水冷直列2気筒の電子燃料噴射式ディーゼルエンジンについて説明する。
このエンジンでは、図3に示すクランク軸(15)の架設方向を前後方向、前後方向と直交する水平方向を左右方向として説明する。
図2~4に示すように、このエンジンは、シリンダブロック(16)と、シリンダブロック(16)の上部に組み付けられたシリンダヘッド(3)と、シリンダヘッド(3)の上部に組み付けられたシリンダヘッドカバー(17)と、図3に示すシリンダブロック(16)の前部に組み付けられた水ポンプ(18)及びオイルポンプ(19)と、水ポンプ(18)の前部に組み付けられたエンジン冷却ファン(20)と、エンジン冷却ファン(20)の前方に配置されたラジエータ(21)と、シリンダブロック(16)の後部に配置されたフライホイール(22)と、シリンダブロック(16)の下部に組み付けられたオイルパン(23)を備えている。
このエンジンは、吸気装置と、排気装置と、燃焼装置と、電子制御装置と、エンジン水冷装置を備えている。
図2~4に示すように、このエンジンは、シリンダブロック(16)と、シリンダブロック(16)の上部に組み付けられたシリンダヘッド(3)と、シリンダヘッド(3)の上部に組み付けられたシリンダヘッドカバー(17)と、図3に示すシリンダブロック(16)の前部に組み付けられた水ポンプ(18)及びオイルポンプ(19)と、水ポンプ(18)の前部に組み付けられたエンジン冷却ファン(20)と、エンジン冷却ファン(20)の前方に配置されたラジエータ(21)と、シリンダブロック(16)の後部に配置されたフライホイール(22)と、シリンダブロック(16)の下部に組み付けられたオイルパン(23)を備えている。
このエンジンは、吸気装置と、排気装置と、燃焼装置と、電子制御装置と、エンジン水冷装置を備えている。
吸気装置は、図2に示す吸気マニホルド(24)と、吸気マニホルド(24)の吸気上流側に接続されるエアクリーナ(図示せず)を備えている。
排気装置は、図2に示す排気マニホルド(25)と、排気マニホルド(25)の排気下流側に接続される排気処理装置(図示せず)を備えている。
吸気マニホルド(24)は、シリンダヘッド(3)の左右の一側に、排気マニホルド(25)はシリンダヘッド(3)の左右の他側に配置されている。
排気装置は、図2に示す排気マニホルド(25)と、排気マニホルド(25)の排気下流側に接続される排気処理装置(図示せず)を備えている。
吸気マニホルド(24)は、シリンダヘッド(3)の左右の一側に、排気マニホルド(25)はシリンダヘッド(3)の左右の他側に配置されている。
図1(A)に示すように、燃焼装置は、シリンダ(1)内の燃焼室(2)と、シリンダヘッド(3)内の燃料噴射室(4)と、燃料噴射室(4)に液体燃料(5)を噴射する燃料インジェクタ(6)と、燃料インジェクタ(6)から噴射する液体燃料(5)を蓄圧する燃料蓄圧装置(7)と、液体燃料(5)の噴射の時期と量を制御する電子制御装置(8)を備えている。
このため、液体燃料(5)の噴射が電子制御され、燃料噴射室(4)での液体燃料(5)と圧縮空気(10)の予混合の調節により、燃焼室(2)での燃焼が適正化され、シリンダ(1)のボア径を小さくしても、騒音、燃費、スモーク濃度を低く維持することができ、エンジンを小型化することができる。
このため、液体燃料(5)の噴射が電子制御され、燃料噴射室(4)での液体燃料(5)と圧縮空気(10)の予混合の調節により、燃焼室(2)での燃焼が適正化され、シリンダ(1)のボア径を小さくしても、騒音、燃費、スモーク濃度を低く維持することができ、エンジンを小型化することができる。
電子制御装置(8)には、エンジンECU(26)が用いられている。ECUは、電子制御ユニットの略称で、マイコンである。図1に示すように、エンジンECU(26)には、アクセルセンサ(27)と、クランク軸センサ(28)と、気筒判別センサ(29)が電気的に接続されている。アクセルセンサ(27)は、アクセルレバー(図示せず)の操作位置の検出に基づいて、アクセル位置検出信号をエンジンECU(26)に発信する。クランク軸センサ(28)は、クランク軸(15)の実回転数とクランク角度を検出し、実回転数検出信号とクランク角度検出信号をエンジンECU(26)に発信する。気筒判別センサ(29)は、図2の動弁カム軸(30)の位相を検出し、カム軸位相検出信号をエンジンECU(26)に発信する。このエンジンは4サイクルエンジンで、動弁カム軸(30)は吸気弁(図示せず)や排気弁(25a)を開閉駆動するカム軸である。
エンジンECU(26)は、電子ガバナ機能を備え、アクセル位置検出信号と実回転数検出信号とに基づいて、エンジンの目標回転数と実回転数の偏差が演算され、その演算に基づいてエンジン負荷が演算され、エンジンの目標回転数とエンジン負荷に基づいて、メモリに記憶されている燃料制御マップにより、燃料インジェクタ(6)の液体燃料(5)の噴射の時期と量が設定され、燃料インジェクタ(6)の電磁弁(6a)にインジェクタ制御信号が発信される。このインジェクタ制御信号により、燃料インジェクタ(6)の電磁弁(6a)が、所定タイミングで所定時間開弁され、燃料インジェクタ(6)から所定タイミングで所定量の液体燃料(5)が噴射される。液体燃料(5)は軽油である。
図1(A)に示すアクセルセンサ(27)にはポテンショメータが用いられている。
クランク軸センサ(28)にはピックアップコイルが用いられる。このクランク軸センサ(28)は、フライホイール(22)に取り付けられたクランク軸検出ディスク(図示せず)の突起がセンサ前を通過するのを検出する近接センサである。クランク軸検出ディスクは、周縁に1個の起点突起と、等ピッチで設けられた多数の位相突起を備えている。
気筒判別センサ(29)にもピックアップコイルが用いられる。この気筒判別センサ(29)は、図2に示す動弁カム軸(30)に取り付けられたカム軸位相検出ディスク(図示せず)の突起がセンサ前を通過するのを検出する近接センサである。カム軸位相検出ディスクは、周縁に1個の突起を備えている。
クランク軸センサ(28)と気筒判別センサ(29)は、突起のピックアップ信号による実回転数検出信号とクランク角度検出信号とカム軸位相検出信号をエンジンECU(26)に発信し、エンジンECU(26)では、この実回転数検出信号とクランク角度検出信号から、エンジンの実回転数とクランク角度を演算するとともに、カム軸位相検出信号から各気筒が燃焼サイクルのどの行程にあるかを判別する。
クランク軸センサ(28)にはピックアップコイルが用いられる。このクランク軸センサ(28)は、フライホイール(22)に取り付けられたクランク軸検出ディスク(図示せず)の突起がセンサ前を通過するのを検出する近接センサである。クランク軸検出ディスクは、周縁に1個の起点突起と、等ピッチで設けられた多数の位相突起を備えている。
気筒判別センサ(29)にもピックアップコイルが用いられる。この気筒判別センサ(29)は、図2に示す動弁カム軸(30)に取り付けられたカム軸位相検出ディスク(図示せず)の突起がセンサ前を通過するのを検出する近接センサである。カム軸位相検出ディスクは、周縁に1個の突起を備えている。
クランク軸センサ(28)と気筒判別センサ(29)は、突起のピックアップ信号による実回転数検出信号とクランク角度検出信号とカム軸位相検出信号をエンジンECU(26)に発信し、エンジンECU(26)では、この実回転数検出信号とクランク角度検出信号から、エンジンの実回転数とクランク角度を演算するとともに、カム軸位相検出信号から各気筒が燃焼サイクルのどの行程にあるかを判別する。
図1(B)に示すように、燃料インジェクタ(6)の燃料噴射孔(6b)(6c)は、複数個設けられている。
このため、燃料インジェクタ(6)の複数の燃料噴射孔(6b)(6c)から噴射された液体燃料(5)は、燃料噴射室(4)内に広く拡散し、燃料噴射室(4)での液体燃料(5)と圧縮空気(10)の予混合が促進される。
このため、燃料インジェクタ(6)の複数の燃料噴射孔(6b)(6c)から噴射された液体燃料(5)は、燃料噴射室(4)内に広く拡散し、燃料噴射室(4)での液体燃料(5)と圧縮空気(10)の予混合が促進される。
図1(B)に示すように0、燃料インジェクタ(6)の燃料噴射孔(6c)から噴射される液体燃料(5)の噴射方向は、燃料噴射室(4)の内面に向けられている。
このため、図1(A)に示すシリンダ(1)内の燃焼室(2)から燃料噴射室(4)内に押し込まれ、その内面に沿って流れる圧縮空気(10)に、図1(B)に示す燃料噴射孔(6c)から液体燃料(5)が噴射され、液体燃料(5)が圧縮空気(10)中に広く拡散し、燃料噴射室(4)での液体燃料(5)と圧縮空気(10)の予混合が促進される。
このため、図1(A)に示すシリンダ(1)内の燃焼室(2)から燃料噴射室(4)内に押し込まれ、その内面に沿って流れる圧縮空気(10)に、図1(B)に示す燃料噴射孔(6c)から液体燃料(5)が噴射され、液体燃料(5)が圧縮空気(10)中に広く拡散し、燃料噴射室(4)での液体燃料(5)と圧縮空気(10)の予混合が促進される。
図1(A)に示すように、シリンダ(1)内の燃焼室(2)が主燃焼室(2a)とされ、燃料噴射室(4)は、主燃焼室(2a)と噴口(9)で連通された副燃焼室(4a)とされている。
このため、燃料インジェクタ(6)から噴射された液体燃料(5)の一部は、副燃焼室(4a)で圧縮空気(10)と予混合燃焼され、残部は、予混合燃焼の燃焼ガスで、噴口(9)から主燃焼室(2a)に噴射され、主燃焼室(2a)で液体燃料(5)が広く拡散し、主燃焼室(2a)での燃焼が促進される。
このため、燃料インジェクタ(6)から噴射された液体燃料(5)の一部は、副燃焼室(4a)で圧縮空気(10)と予混合燃焼され、残部は、予混合燃焼の燃焼ガスで、噴口(9)から主燃焼室(2a)に噴射され、主燃焼室(2a)で液体燃料(5)が広く拡散し、主燃焼室(2a)での燃焼が促進される。
図1(A)に示すように、主燃焼室(2a)は、シリンダ(1)内でピストン(1a)とシリンダヘッド(3)との間に形成される。図2に示すように、副燃焼室(4a)は、シリンダヘッド(3)の底面の窪み(3a)と窪み(3a)に内嵌された口金(3b)との間に形成され、噴口(9)は口金(3b)に形成されている。
図1(A)に示すように副燃焼室(4a)はうず室とされている。
このため、燃料インジェクタ(6)から噴射された液体燃料(5)は、主燃焼室(2a)からうず室に押し込まれた圧縮空気(10)のうず流に巻き込まれ、副燃焼室(4a)での液体燃料(5)と圧縮空気(10)の予混合が促進される。
このため、燃料インジェクタ(6)から噴射された液体燃料(5)は、主燃焼室(2a)からうず室に押し込まれた圧縮空気(10)のうず流に巻き込まれ、副燃焼室(4a)での液体燃料(5)と圧縮空気(10)の予混合が促進される。
図1(B)に示すように、シリンダ中心軸線(1c)と平行な向きに見て、噴口中心軸線(9a)と直交する方向を横方向として、噴口(9)の副燃焼室(4a)側の開口端(9b)が横長の長孔で形成されている。
これにより、噴口(9)から副燃焼室(4a)に流入する圧縮空気(10)が横長の開口端(9b)を介して副燃焼室(4a)の横側空間にも流入しやすく、この横側空間内の空気の流動が促進され、副燃焼室(4a)での空気利用率が高まる。
これにより、噴口(9)から副燃焼室(4a)に流入する圧縮空気(10)が横長の開口端(9b)を介して副燃焼室(4a)の横側空間にも流入しやすく、この横側空間内の空気の流動が促進され、副燃焼室(4a)での空気利用率が高まる。
図1(B)に示すように、噴口(9)の主燃焼室(2a)側の開口端(9c)の横幅が、副燃焼室(4a)側の開口端(9b)の横幅よりも長く形成されている。
これにより、噴口(9)から主燃焼室(2a)に噴出する未燃燃料含有の燃焼ガスが横広の開口端(9c)を介して主燃焼室(2a)に横広く噴出し、主燃焼室(2a)での空気利用率が高まる。
これにより、噴口(9)から主燃焼室(2a)に噴出する未燃燃料含有の燃焼ガスが横広の開口端(9c)を介して主燃焼室(2a)に横広く噴出し、主燃焼室(2a)での空気利用率が高まる。
図1(A)(B)に示すように、噴口(9)は、主燃焼室(2a)に向かって断面積が広がる拡開形状となっている。
これにより、噴口(9)から主燃焼室(2a)に噴出する未燃燃料含有の燃焼ガスが拡開形状の噴口(9)を介して主燃焼室(2a)に広く拡散し、主燃焼室(2a)での空気利用率が高まる。
これにより、噴口(9)から主燃焼室(2a)に噴出する未燃燃料含有の燃焼ガスが拡開形状の噴口(9)を介して主燃焼室(2a)に広く拡散し、主燃焼室(2a)での空気利用率が高まる。
図1(B)に示すように、複数の燃料噴射孔(6b)(6c)は、左右方向中央の単一の燃料噴射孔(6b)と、その左右に配置された一対の燃料噴射孔(6c)(6c)からなる。
左右の燃料噴射孔(6c)(6c)は、中央の燃料噴射孔(6b)よりも孔径が小さく、左右の燃料噴射孔(6c)(6c)から噴射される液体燃料(5)の噴射パターンは、中央の燃料噴射孔(6b)からのそれよりも細く、油滴も小さい噴霧となっている。この左右の燃料噴射孔(6c)(6c)からの液体燃料(5)の噴射方向は、噴口(9)の左右に位置する副燃焼室(4a)の内面に向けられている。燃料噴射孔(6b)からの液体燃料(5)の噴射方向は、噴口(9)を介して主燃焼室(2a)に向けられている。
左右の燃料噴射孔(6c)(6c)は、中央の燃料噴射孔(6b)よりも孔径が小さく、左右の燃料噴射孔(6c)(6c)から噴射される液体燃料(5)の噴射パターンは、中央の燃料噴射孔(6b)からのそれよりも細く、油滴も小さい噴霧となっている。この左右の燃料噴射孔(6c)(6c)からの液体燃料(5)の噴射方向は、噴口(9)の左右に位置する副燃焼室(4a)の内面に向けられている。燃料噴射孔(6b)からの液体燃料(5)の噴射方向は、噴口(9)を介して主燃焼室(2a)に向けられている。
複数の燃料噴射孔(6b)(6c)からの液体燃料(5)の噴射方向は、全て噴口(9)を介して主燃焼室(2a)に向けられたものであってもよい。
また、噴口(9)は、左右方向中央の噴口(図示せず)、その左右に配置された一対の噴口からなるものであってもよい。
この場合、複数の燃料噴射孔(6b)(6c)からの液体燃料(5)の噴射方向は、全て異なる噴口を介して主燃焼室(2a)に向けられたものであってもよいし、中央の燃料噴射孔(6b)からの液体燃料(5)の噴射方向のみが中央の噴口を介して主燃焼室(2a)に向けられ、左右の燃料噴射孔(6c)(6c)からの液体燃料(5)の噴射方向は、中央の噴口の左右に位置する副燃焼室(4a)の内面に向けらたものであってもよい。
また、噴口(9)は、左右方向中央の噴口(図示せず)、その左右に配置された一対の噴口からなるものであってもよい。
この場合、複数の燃料噴射孔(6b)(6c)からの液体燃料(5)の噴射方向は、全て異なる噴口を介して主燃焼室(2a)に向けられたものであってもよいし、中央の燃料噴射孔(6b)からの液体燃料(5)の噴射方向のみが中央の噴口を介して主燃焼室(2a)に向けられ、左右の燃料噴射孔(6c)(6c)からの液体燃料(5)の噴射方向は、中央の噴口の左右に位置する副燃焼室(4a)の内面に向けらたものであってもよい。
燃料インジェクタ(6)からの液体燃料(5)の噴射圧力は、5~50MPa(メガパスカル)に設定されている。
この燃料インジェクタ(6)からの液体燃料(5)の噴射圧力は、シリンダ内の燃焼室に直接に燃料を噴射する既存のコモンレール式ディーゼルエンジンのそれが一般的に120~160MPaに設定されているのに対し、かなり低く設定されている。
燃料インジェクタ(6)からの液体燃料(5)の噴射圧力が5MPa未満では、燃料噴射室(4)での液体燃料(5)の貫通力が不足し、50MPaを越えると、燃料噴射室(4)での液体燃料(5)の飛行時間が不足し、いずれの場合にも燃料噴射室(4)での液体燃料(5)と圧縮空気(10)の予混合が停滞するおそれがある。これに対し、5~50MPaでは上記の問題が生じにくく、燃料噴射室(4)での液体燃料(5)と圧縮空気(10)の予混合が促進される。
更に、燃料インジェクタ(6)からの液体燃料(5)の噴射圧力が5~50MPaで済み、ディーゼルエンジンでありながら、低圧燃料噴射のガソリン噴射システム等の燃料インジェクタ(6)や燃料蓄圧装置(7)の部品を転用することができ、他の低圧燃料噴射システムと部品を共通化することができる。
この燃料インジェクタ(6)からの液体燃料(5)の噴射圧力は、シリンダ内の燃焼室に直接に燃料を噴射する既存のコモンレール式ディーゼルエンジンのそれが一般的に120~160MPaに設定されているのに対し、かなり低く設定されている。
燃料インジェクタ(6)からの液体燃料(5)の噴射圧力が5MPa未満では、燃料噴射室(4)での液体燃料(5)の貫通力が不足し、50MPaを越えると、燃料噴射室(4)での液体燃料(5)の飛行時間が不足し、いずれの場合にも燃料噴射室(4)での液体燃料(5)と圧縮空気(10)の予混合が停滞するおそれがある。これに対し、5~50MPaでは上記の問題が生じにくく、燃料噴射室(4)での液体燃料(5)と圧縮空気(10)の予混合が促進される。
更に、燃料インジェクタ(6)からの液体燃料(5)の噴射圧力が5~50MPaで済み、ディーゼルエンジンでありながら、低圧燃料噴射のガソリン噴射システム等の燃料インジェクタ(6)や燃料蓄圧装置(7)の部品を転用することができ、他の低圧燃料噴射システムと部品を共通化することができる。
図1(A)に示すように、燃料蓄圧装置(7)は、アキュムレータ(11)と、アキュムレータ(11)に液体燃料(5)を供給する燃料フィードポンプ(12)を備えている。
この場合、燃料インジェクタ(6)からの液体燃料(5)の噴射圧力が5~50MPaで済み、ディーゼルエンジンでありながら、低圧燃料噴射のガソリン噴射システム等のアキュムレータ(11)と燃料フィードポンプ(12)をそのまま転用することができ、他の低圧燃料噴射システムと燃料蓄圧装置(7)の部品を共通化することができる。
この場合、燃料インジェクタ(6)からの液体燃料(5)の噴射圧力が5~50MPaで済み、ディーゼルエンジンでありながら、低圧燃料噴射のガソリン噴射システム等のアキュムレータ(11)と燃料フィードポンプ(12)をそのまま転用することができ、他の低圧燃料噴射システムと燃料蓄圧装置(7)の部品を共通化することができる。
図1(A)に示すように、アキュムレータ(11)は、複数の燃料インジェクタ(6)に液体燃料(5)を分配するデリバリパイプ(11a)である。
この場合、デリバリパイプ(11a)内の燃料圧力が5~50MPa程度になり、ディーゼルエンジンでありながら、低圧燃料噴射のガソリン噴射システム等のデリバリパイプ(11a)をそのまま転用することができ、他の多気筒低圧燃料噴射システムと燃料蓄圧装置(7)の部品を共通化することができる。
この場合、デリバリパイプ(11a)内の燃料圧力が5~50MPa程度になり、ディーゼルエンジンでありながら、低圧燃料噴射のガソリン噴射システム等のデリバリパイプ(11a)をそのまま転用することができ、他の多気筒低圧燃料噴射システムと燃料蓄圧装置(7)の部品を共通化することができる。
図1(A)に示すように、デリバリパイプ(11a)は、燃料圧センサ(11b)を備え、燃料圧センサ(11b)で検出されたデリバリパイプ(11a)内の燃料圧が燃料圧検出信号としてエンジンECU(26)に送られ、エンジンECU(26)から燃料フィードポンプ(12)の電動アクチュエータ(図示せず)にポンプ制御信号が送られ、燃料フィードポンプ(12)の回転数制御により、デリバリパイプ(11a)への液体燃料(5)の供給量を制御し、デリバリパイプ(11a)内の燃料圧が調節される。図2に示すように、燃料フィードポンプ(12)は、電動アクチュエータで駆動されるポンプ駆動カムでポンピングされる。
なお、図1(A)中の符号(13)は安全弁であり、デリバリパイプ(11a)内の燃料圧が所定の上限値を越えると、開弁され、デリバリパイプ(11a)内の燃料圧を低下させる。
なお、図1(A)中の符号(13)は安全弁であり、デリバリパイプ(11a)内の燃料圧が所定の上限値を越えると、開弁され、デリバリパイプ(11a)内の燃料圧を低下させる。
デリバリパイプ(11a)内の燃料圧の調節方式としては、デリバリパイプ(11a)内の液体燃料を燃料タンク(35)側に漏らす電動スピル弁(図示せず)を設け、燃料圧センサ(11b)で検出されたデリバリパイプ(11a)内の燃料圧が燃料圧検出信号としてエンジンECU(26)に送られ、エンジンECU(26)から電動スピル弁のアクチュエータに弁制御信号が送られ、電動スピル弁の開度制御により、デリバリパイプ(11a)からの液体燃料(5)の漏れ量を制御するものであってもよい。
図2に示すように、この実施形態では、ディーゼルエンジンでありながら、既存のガソリン噴射システムの燃料フィードポンプ(12)とデリバリパイプ(11a)と燃料インジェクタ(6)がそのまま転用されている。
図1(A)に示すように、燃料フィードポンプ(12)には燃料タンク(35)から燃料が供給され、燃料フィードポンプ(12)や燃料インジェクタ(6)の液体燃料(5)の一部は、オーバーフローして、燃料戻り通路(36)を介して燃料タンク(35)に戻り、燃料フィードポンプ(12)や燃料インジェクタ(6)のエア溜まりが解消される。
上記実施形態では、燃料噴射室(4)での液体燃料(5)と圧縮空気(10)の予混合の促進の観点から、燃料インジェクタ(6)からの液体燃料(5)の噴射圧力は、5~50MPaに設定されているが、この噴射圧力は10~40MPaに設定するのがより望ましい。予混合の促進機能がより確実に得られるためである。
燃料インジェクタ(6)の液体燃料(5)の噴射は、メイン噴射と、メイン噴射に先立つプレ噴射を備えている。
このため、プレ噴射の液体燃料(5)は、燃料噴射室(4)で圧縮空気(10)と混合して燃焼され、メイン噴射の液体燃料(5)は、プレ噴射の燃焼ガスで着火され、燃料噴射室(4)での液体燃料(5)と圧縮空気(10)の燃焼が促進される。
このため、プレ噴射の液体燃料(5)は、燃料噴射室(4)で圧縮空気(10)と混合して燃焼され、メイン噴射の液体燃料(5)は、プレ噴射の燃焼ガスで着火され、燃料噴射室(4)での液体燃料(5)と圧縮空気(10)の燃焼が促進される。
図3に示すように、エンジン水冷装置は、エンジン冷却水の放熱を行うラジエータ(21)と、ラジエータ(21)で放熱されたエンジン冷却水を吸引してシリンダジャケットに圧送する水ポンプ(18)と、シリンダジャケット(31)と、シリンダジャケット(31)と連通する図2のシリンダヘッドジャケット(32)と、シリンダヘッドジャケット(32)からラジエータ(21)へのエンジン冷却水の還流とその停止を制御するサーモスタット弁(33)を内蔵したウォーターフランジ(34)と、シリンダヘッドジャケット(32)のエンジン冷却水をウォーターフランジ(34)から水ポンプ(18)に還流させる戻しパイプ(図示せず)を備えている。
エンジン水冷装置では、エンジン冷却水の温度が比較的低い間は、サーモスタット弁(33)の閉弁により、エンジン冷却水は、その全量が戻しパイプから水ポンプ(18)に吸い込まれ、ラジエータ(21)を迂回して、シリンダジャケット(31)とシリンダヘッドジャケット(32)の相互間で循環し、エンジンの暖機がなされる。
エンジン冷却水の温度が高まると、サーモスタット弁(33)の開弁により、エンジン冷却水は、ラジエータ(21)と水ポンプ(18)とシリンダジャケット(31)とシリンダヘッドジャケット(32)の相互間をその順番で循環し、エンジンの冷却がなされる。エンジン冷却水の一部は、戻しパイプから水ポンプ(18)に吸い込まれ、ラジエータ(21)を迂回する。
エンジン冷却水の温度が高まると、サーモスタット弁(33)の開弁により、エンジン冷却水は、ラジエータ(21)と水ポンプ(18)とシリンダジャケット(31)とシリンダヘッドジャケット(32)の相互間をその順番で循環し、エンジンの冷却がなされる。エンジン冷却水の一部は、戻しパイプから水ポンプ(18)に吸い込まれ、ラジエータ(21)を迂回する。
本発明の実施形態の説明は以上の通りであるが、本発明は上記実施形態に限定されるものではない。
上記実施形態では、2気筒エンジンについて説明したが、本発明は、単気筒や3気筒以上の多気筒エンジンにも適用できる。
また、燃料噴射室(4)は、必ずしも副室式でなくてもよく、噴口(9)を有しない室、すなわちシリンダヘッド(3)の底面を単に窪ませた室であってもよい。
また、燃料インジェクタ(6)の燃料噴射孔は、必ずしも複数でなくてもよく、単一であってもよい。この場合、燃料噴射孔から噴射される液体燃料(5)の噴射は、必ずしも燃料噴射室(4)の内面に向けられなくてもよく、噴口(9)を介して主燃焼室(2a)に向けられたものであってもよい。また、噴口(9)がない場合には、燃料噴射室(4)の開口を介して主燃焼室(2a)に向けられたものであってもよい。
上記実施形態では、2気筒エンジンについて説明したが、本発明は、単気筒や3気筒以上の多気筒エンジンにも適用できる。
また、燃料噴射室(4)は、必ずしも副室式でなくてもよく、噴口(9)を有しない室、すなわちシリンダヘッド(3)の底面を単に窪ませた室であってもよい。
また、燃料インジェクタ(6)の燃料噴射孔は、必ずしも複数でなくてもよく、単一であってもよい。この場合、燃料噴射孔から噴射される液体燃料(5)の噴射は、必ずしも燃料噴射室(4)の内面に向けられなくてもよく、噴口(9)を介して主燃焼室(2a)に向けられたものであってもよい。また、噴口(9)がない場合には、燃料噴射室(4)の開口を介して主燃焼室(2a)に向けられたものであってもよい。
上記実施形態では、エンジンの実回転数やクランク角度の演算や各気筒が燃焼サイクルのどの行程にあるかの判別は、クランク軸センサ(28)と気筒判別センサ(29)からなる2個のセンサの検出に基づいているが、この2個のセンサに代えて、1個の位相センサ(図示せず)の検出に基づいて、エンジンの実回転数やクランク角度の演算や各気筒が燃焼サイクルのどの行程にあるかの判別を行うこともできる。この位相センサには、ピックアップコイルが用いられる。この位相センサは、動弁カム軸(30)に取り付けられた位相検出ディスク(図示せず)の突起がセンサ前を通過するのを検出する近接センサである。位相検出センサは、周縁に一個の起点突起と、等ピッチで設けられた多数の位相突起を備えている。この位相センサは、突起のピックアップ信号をエンジンECU(26)に発信し、エンジンECU(26)では、ピックアップ信号のパルス波の周期や、センサ前を通過した突起のパルス波の序数に基づいて、エンジンの実回転数とクランク角度を演算すると共に、センサ前を通過した突起のパルス波の位相により各気筒の燃焼サイクルがどの行程にあるかを判別する。
この実施形態では、燃料インジェクタ(6)からの液体燃料(5)の噴射圧力が5~50MPaで済むため、電子燃料噴射式ディーゼルエンジンでありながら、機械カム燃料噴射式ディーゼルエンジンの副室式燃焼室用の低圧の燃料噴射ポンプを燃料フィードポンプ(12)として転用することができ、この場合には、機械カム燃料噴射式ディーゼルエンジンと部品を共通化することができる。この燃料フィードポンプ(12)は、既存の燃料噴射カム軸(14)で駆動される。
(1)…シリンダ、(1b)…シリンダ中心軸線、(2)…燃焼室、(2a)…主燃焼室、(3)…シリンダヘッド、(4)…燃料噴射室、(4a)…副燃焼室、(5)…液体燃料、(6)…燃料インジェクタ、(6b)(6c)…燃料噴射孔、(7)…燃料蓄圧装置、(8)…電子制御装置、(9)…噴口、(9a)…噴口中心軸線、(9b)(9c)…開口端、(10)…圧縮空気、(11)…アキュムレータ、(11a)…デリバリパイプ、(12)…燃料フィードポンプ。
Claims (12)
- シリンダ(1)内の燃焼室(2)と、シリンダヘッド(3)内の燃料噴射室(4)と、燃料噴射室(4)に液体燃料(5)を噴射する燃料インジェクタ(6)と、燃料インジェクタ(6)から噴射する液体燃料(5)を蓄圧する燃料蓄圧装置(7)と、液体燃料(5)の噴射の時期と量を制御する電子制御装置(8)を備えている、ことを特徴とする電子燃料噴射式ディーゼルエンジン。
- 請求項1に記載された電子燃料噴射式ディーゼルエンジンにおいて、
燃料インジェクタ(6)の燃料噴射孔(6b)(6c)は、複数個設けられている、ことを特徴とする電子燃料噴射式ディーゼルエンジン。 - 請求項1または請求項2に記載された電子燃料噴射式ディーゼルエンジンにおいて、
燃料インジェクタ(6)の燃料噴射孔(6c)から噴射される液体燃料(5)の噴射方向は、燃料噴射室(4)の内面に向けられている、ことを特徴とする電子燃料噴射式ディーゼルエンジン。 - 請求項1から請求項3のいずれかに記載された電子燃料噴射式ディーゼルエンジンにおいて、
シリンダ(1)内の燃焼室(2)が主燃焼室(2a)とされ、燃料噴射室(4)は、主燃焼室(2a)と噴口(9)で連通された副燃焼室(4a)とされている、ことを特徴とする電子燃料噴射式ディーゼルエンジン。 - 請求項4に記載された電子燃料噴射式ディーゼルエンジンにおいて、
副燃焼室(4a)はうず室とされている、ことを特徴とする電子燃料噴射式ディーゼルエンジン。 - 請求項4または請求項5に記載された電子燃料噴射式ディーゼルエンジンにおいて、
シリンダ中心軸線(1c)と平行な向きに見て、噴口中心軸線(9a)と直交する方向を横方向として、噴口(9)の副燃焼室(4a)側の開口端(9b)が横長の長孔で形成されている、ことを特徴とする電子燃料噴射式ディーゼルエンジン。 - 請求項6に記載された電子燃料噴射式ディーゼルエンジンにおいて、
噴口(9)の主燃焼室(2a)側の開口端(9c)の横幅が、副燃焼室(4a)側の開口端(9b)の横幅よりも長く形成されている、ことを特徴とする電子燃料噴射式ディーゼルエンジン。 - 請求項4から請求項7のいずれかに記載された電子燃料噴射式ディーゼルエンジンにおいて、
噴口(9)は、主燃焼室(2a)に向かって断面積が広がる拡開形状となっている、ことを特徴とする電子燃料噴射式ディーゼルエンジン。 - 請求項1から請求項8のいずれかに記載された電子燃料噴射式ディーゼルエンジンにおいて、
燃料インジェクタ(6)からの液体燃料(5)の噴射圧力は、5~50MPaに設定されている、ことを特徴とする電子燃料噴射式ディーゼルエンジン。 - 請求項9に記載された電子燃料噴射式ディーゼルエンジンにおいて、
燃料蓄圧装置(7)は、アキュムレータ(11)と、アキュムレータ(11)に液体燃料(5)を供給する燃料フィードポンプ(12)を備えている、ことを特徴とする電子燃料噴射式ディーゼルエンジン。 - 請求項10に記載された電子燃料噴射式ディーゼルエンジンにおいて、
アキュムレータ(11)は、複数の燃料インジェクタ(6)に液体燃料(5)を分配するデリバリパイプ(11a)である、ことを特徴とする電子燃料噴射式ディーゼルエンジン。 - 請求項1から請求項11のいずれかに記載された電子燃料噴射式ディーゼルエンジンにおいて、
燃料インジェクタ(6)の液体燃料(5)の噴射は、メイン噴射と、メイン噴射に先立つプレ噴射を備えている、ことを特徴とする電子燃料噴射式ディーゼルエンジン。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP19874807.1A EP3872332B1 (en) | 2018-10-26 | 2019-09-09 | Electronic fuel injection type diesel engine |
US17/282,904 US11378001B2 (en) | 2018-10-26 | 2019-09-09 | Electronic fuel injection type diesel engine |
CN201980065174.7A CN112789405B (zh) | 2018-10-26 | 2019-09-09 | 电子燃料喷射式柴油发动机 |
KR1020217007701A KR20210077666A (ko) | 2018-10-26 | 2019-09-09 | 전자 연료분사식 디젤 엔진 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018201842A JP7079182B2 (ja) | 2018-10-26 | 2018-10-26 | 電子燃料噴射式ディーゼルエンジン |
JP2018-201842 | 2018-10-26 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020084933A1 true WO2020084933A1 (ja) | 2020-04-30 |
Family
ID=70332207
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/035303 WO2020084933A1 (ja) | 2018-10-26 | 2019-09-09 | 電子燃料噴射式ディーゼルエンジン |
Country Status (6)
Country | Link |
---|---|
US (1) | US11378001B2 (ja) |
EP (1) | EP3872332B1 (ja) |
JP (1) | JP7079182B2 (ja) |
KR (1) | KR20210077666A (ja) |
CN (1) | CN112789405B (ja) |
WO (1) | WO2020084933A1 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7348891B2 (ja) | 2020-12-28 | 2023-09-21 | 株式会社クボタ | 電子燃料噴射式ディーゼルエンジン |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01104914A (ja) * | 1987-10-15 | 1989-04-21 | Kubota Ltd | 渦室式デイーゼルエンジンのピストン |
JPH0633816A (ja) * | 1992-07-10 | 1994-02-08 | Mazda Motor Corp | 副室式ディーゼルエンジンの燃料噴射装置 |
JPH0614440U (ja) * | 1992-07-29 | 1994-02-25 | いすゞ自動車株式会社 | 副室式エンジンにおける副燃焼室の構造 |
JPH11173233A (ja) * | 1997-12-15 | 1999-06-29 | Kubota Corp | ディーゼルエンジンの燃料噴射装置 |
JP2014020278A (ja) | 2012-07-18 | 2014-02-03 | Hino Motors Ltd | 内燃機関 |
Family Cites Families (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR1436612A (fr) * | 1965-02-08 | 1966-04-29 | Applic Tech | Perfectionnements aux moteurs à combustion interne du type à chambre thermiquement isolée |
DE2634470C3 (de) * | 1976-07-31 | 1979-06-28 | Motoren-Werke Mannheim Ag Vorm. Benz Abt. Stat. Motorenbau, 6800 Mannheim | Selbstzündende luftverdichtende Brennkraftmaschine |
US4294208A (en) * | 1980-03-31 | 1981-10-13 | Rockwell International Corporation | Atomizing shock wave precombustor |
JPS57183517A (en) * | 1981-05-06 | 1982-11-11 | Nissan Motor Co Ltd | Combustion chamber for diesel engine with swirl chamber |
JPS5851215A (ja) * | 1981-09-22 | 1983-03-25 | Mitsubishi Heavy Ind Ltd | 渦流室式デイ−ゼルエンジンの燃焼室 |
JPS59120533A (ja) | 1982-12-27 | 1984-07-12 | Mazda Motor Corp | 自動車の補助シ−ト |
JPS59221419A (ja) * | 1983-05-30 | 1984-12-13 | Isuzu Motors Ltd | 渦流燃焼室式デイ−ゼル機関 |
JPS6136125U (ja) * | 1984-08-03 | 1986-03-06 | マツダ株式会社 | 渦流室式デイ−ゼルエンジンの燃料噴射装置 |
JPH0643806B2 (ja) * | 1986-05-23 | 1994-06-08 | 株式会社クボタ | デイ−ゼルエンジンのうず室式燃焼室 |
FR2623854B1 (fr) * | 1987-11-27 | 1992-11-27 | Inst Francais Du Petrole | Dispositif d'injection pneumatique de carburant dans un cylindre d'un moteur a combustion interne |
US5307772A (en) * | 1992-12-16 | 1994-05-03 | Ford Motor Company | Redox catalysis of NOx in internal combustion engines |
JPH06193450A (ja) * | 1992-12-25 | 1994-07-12 | Yamaha Motor Co Ltd | 2サイクルエンジンの排気制御弁装置 |
JP3293217B2 (ja) * | 1993-01-25 | 2002-06-17 | いすゞ自動車株式会社 | 副室式エンジン |
JP3406119B2 (ja) * | 1995-06-05 | 2003-05-12 | ヤマハ発動機株式会社 | うず室式副燃焼室付き2サイクルディーゼルエンジン |
JPH114914A (ja) | 1997-06-13 | 1999-01-12 | Maguregaa Golf Japan Kk | ゴルフボール |
US7389752B2 (en) * | 2005-07-12 | 2008-06-24 | Southwest Research Institute | Use of engine lubricant as ignition fuel for micro-pilot ignition system of an internal combustion engine |
DK2239451T3 (da) * | 2009-03-30 | 2011-10-10 | Waertsilae Switzerland Ltd | Brændstofindsprøjtningsindretning til interne forbrændingsmotorer |
ES2387372B1 (es) * | 2010-02-01 | 2013-07-29 | Jesus Manuel Diaz Escaño | Motor de combustion interna que utiliza para su funcionamiento combustibles alternativos |
JP6136125B2 (ja) | 2012-06-21 | 2017-05-31 | 凸版印刷株式会社 | カップ型紙容器 |
JP6014440B2 (ja) | 2012-09-26 | 2016-10-25 | 日立オートモティブシステムズ株式会社 | 移動物体認識装置 |
CN202954878U (zh) * | 2012-11-07 | 2013-05-29 | 镇江恒驰科技有限公司 | 一种柴油-双燃料发动机预燃室点火装置 |
FI124730B (en) * | 2013-01-22 | 2014-12-31 | Wärtsilä Finland Oy | Method of operating a piston motor and piston motor |
US9429066B2 (en) * | 2013-07-30 | 2016-08-30 | Kubota Corporation | Subchamber type combustion chamber for diesel engine |
JP6384458B2 (ja) * | 2015-11-23 | 2018-09-05 | 株式会社デンソー | 燃焼システム制御装置 |
-
2018
- 2018-10-26 JP JP2018201842A patent/JP7079182B2/ja active Active
-
2019
- 2019-09-09 EP EP19874807.1A patent/EP3872332B1/en active Active
- 2019-09-09 CN CN201980065174.7A patent/CN112789405B/zh active Active
- 2019-09-09 US US17/282,904 patent/US11378001B2/en active Active
- 2019-09-09 WO PCT/JP2019/035303 patent/WO2020084933A1/ja unknown
- 2019-09-09 KR KR1020217007701A patent/KR20210077666A/ko not_active Application Discontinuation
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01104914A (ja) * | 1987-10-15 | 1989-04-21 | Kubota Ltd | 渦室式デイーゼルエンジンのピストン |
JPH0633816A (ja) * | 1992-07-10 | 1994-02-08 | Mazda Motor Corp | 副室式ディーゼルエンジンの燃料噴射装置 |
JPH0614440U (ja) * | 1992-07-29 | 1994-02-25 | いすゞ自動車株式会社 | 副室式エンジンにおける副燃焼室の構造 |
JPH11173233A (ja) * | 1997-12-15 | 1999-06-29 | Kubota Corp | ディーゼルエンジンの燃料噴射装置 |
JP2014020278A (ja) | 2012-07-18 | 2014-02-03 | Hino Motors Ltd | 内燃機関 |
Also Published As
Publication number | Publication date |
---|---|
US20210388754A1 (en) | 2021-12-16 |
EP3872332A1 (en) | 2021-09-01 |
CN112789405A (zh) | 2021-05-11 |
EP3872332A4 (en) | 2022-08-03 |
CN112789405B (zh) | 2023-02-28 |
US11378001B2 (en) | 2022-07-05 |
KR20210077666A (ko) | 2021-06-25 |
EP3872332B1 (en) | 2023-10-18 |
JP2020067065A (ja) | 2020-04-30 |
JP7079182B2 (ja) | 2022-06-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4544061B2 (ja) | 内燃機関の燃料系統の制御装置 | |
RU2706884C2 (ru) | Способ (варианты) и система распределенного впрыска топлива под высоким давлением | |
US20120298071A1 (en) | Combustion system for internal combustion engine | |
EP1770273B1 (en) | Multi-cylinder engine | |
JPH09324712A (ja) | 船外機の電子制御式燃料供給装置 | |
CN101194093A (zh) | 用于内燃机的控制设备 | |
KR19980018553A (ko) | 내연기관의 제어장치 및 제어방법 | |
CN104141542A (zh) | 用于操作直接喷射燃料泵的系统和方法 | |
JP7068157B2 (ja) | ディーゼルエンジン | |
JP7075336B2 (ja) | ディーゼルエンジン | |
WO2020084933A1 (ja) | 電子燃料噴射式ディーゼルエンジン | |
JP2013245635A (ja) | 燃料圧力制御装置 | |
JP4541257B2 (ja) | 火花点火式エンジン | |
JP7144359B2 (ja) | ディーゼルエンジン | |
JP6022986B2 (ja) | 燃料供給システム | |
JP7068158B2 (ja) | ディーゼルエンジン | |
JP7144360B2 (ja) | ディーゼルエンジン | |
JP7068159B2 (ja) | ディーゼルエンジン | |
US7263979B2 (en) | High-pressure pump with a device for regulating the flow rate for a fuel-injection system | |
EP1691057B1 (en) | Engine of spark ignition type | |
JP5018374B2 (ja) | 内燃機関の燃料噴射システム | |
JP4609189B2 (ja) | 内燃機関の燃料系統の制御装置 | |
JPH11351043A (ja) | 内燃機関の燃料噴射制御装置 | |
JP2797878B2 (ja) | エマルジョン燃料エンジン | |
KR20160139672A (ko) | 직접분사식 가솔린 엔진용 고압연료펌프 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19874807 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2019874807 Country of ref document: EP Effective date: 20210526 |