WO2019208424A1 - Vehicle display device - Google Patents

Vehicle display device Download PDF

Info

Publication number
WO2019208424A1
WO2019208424A1 PCT/JP2019/016781 JP2019016781W WO2019208424A1 WO 2019208424 A1 WO2019208424 A1 WO 2019208424A1 JP 2019016781 W JP2019016781 W JP 2019016781W WO 2019208424 A1 WO2019208424 A1 WO 2019208424A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
incident
display device
vehicle
light guide
Prior art date
Application number
PCT/JP2019/016781
Other languages
French (fr)
Japanese (ja)
Inventor
尚 山添
俊 関谷
彩子 藤田
Original Assignee
日本精機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本精機株式会社 filed Critical 日本精機株式会社
Publication of WO2019208424A1 publication Critical patent/WO2019208424A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K35/00Instruments specially adapted for vehicles; Arrangement of instruments in or on vehicles
    • B60K35/20Output arrangements, i.e. from vehicle to user, associated with vehicle functions or specially adapted therefor
    • B60K35/21Output arrangements, i.e. from vehicle to user, associated with vehicle functions or specially adapted therefor using visual output, e.g. blinking lights or matrix displays
    • B60K35/22Display screens

Definitions

  • the present invention relates to a vehicle display device that projects light onto a projection target disposed at the front of a vehicle body.
  • Some vehicles are equipped with a vehicle display device (head-up display device) that projects light onto a projection target such as a windshield and provides necessary information to a driver (viewer).
  • a vehicle display device head-up display device
  • the vehicle display device is provided on a dashboard of the vehicle and projects light toward a windshield.
  • a display device for a vehicle as disclosed in Patent Document 1 includes a display unit that can emit light, a collimating optical system that allows light emitted from the display unit to pass through in parallel light, and the collimating optical system.
  • a reflection mirror that reflects toward the screen.
  • the light guide is formed so as to emit incident light in an oblique direction from the first surface.
  • the reflection mirror is disposed in front of the light guide, and reflects light transmitted through the light guide toward the windshield.
  • the driver recognizes that an image is projected in front of the windshield by projecting the light emitted from the vehicle display device onto the windshield.
  • the vehicle display device is attached to the dashboard space of the vehicle.
  • other parts may be attached to the space where the vehicle display device is attached. Therefore, the space in which the vehicle display device can be attached is limited.
  • FIG. 7 shows a vehicle display device 100 according to Patent Document 1.
  • the first and second surfaces 141b and 142b of the light guide 140 are disposed obliquely with respect to the vehicle width direction of the vehicle body.
  • the light guide body 140 By arranging the light guide body 140 at an angle, the light emitted from the first surface 141b is vertically incident on the reflection mirror 113 provided in front.
  • An object of the present invention is to provide a compact vehicle display device.
  • the vehicle display device that projects light onto the projection portion provided in the front portion of the vehicle body and causes the viewer to recognize the light projected onto the projection portion as a virtual image.
  • Display means capable of emitting light, collimating optical system for allowing the light emitted from the display means to pass in parallel light, and light that has passed through the collimating optical system are incident and the incident light is parallel to each other
  • a light guide that reflects and travels by reflecting the first surface and the second surface provided; and an incident light correction member that corrects the light emitted from the first surface in a predetermined direction.
  • the light guide is arranged such that the first surface and the second surface are both along the vehicle width direction of the vehicle body, and diffracts or reflects light passing through the first light guide.
  • a vehicular display device is provided that includes a deflecting unit that emits light from a surface.
  • the incident angle of the light that passes through the collimating optical system and is incident on the light guide is a critical angle that is the minimum angle at which the light incident on the light guide is totally reflected. In this case, the angle is larger than this critical angle.
  • the collimating optical system includes a collimating lens that transmits light so that light is incident on the first surface
  • the collimating lens is a liquid crystal polymer lens or a lenticular lens in which a light incident surface and a light output surface are formed substantially parallel to each other.
  • the incident light correction member is a liquid crystal polymer lens or a lenticular lens in which a light incident surface and a light output surface are formed substantially parallel to each other.
  • the light guide is disposed such that the first surface and the second surface are both along the vehicle width direction of the vehicle body. Furthermore, the light guide includes a deflecting unit that diffracts or reflects light passing through the inside and emits the light from the first surface. First, by arranging the first and second surfaces along the vehicle width direction of the vehicle body, the light guide is arranged substantially parallel to the vehicle width direction. As a result, the vehicle display device can shorten the width in the front-rear direction, and becomes smaller. Further, the light guide includes a deflecting portion that diffracts or reflects light passing through the inside and emits light from the first surface, so that the light guide is disposed substantially parallel to the vehicle width direction. However, light can be emitted forward. That is, a compact vehicle display device can be provided.
  • the incident angle of the light which passes through a collimating optical system and injects into the 1st surface and 2nd surface of a light guide is the light which injected into the 1st surface and 2nd surface If the minimum angle for total reflection is the critical angle, the angle is larger than this critical angle.
  • the incident angle of light on the first surface is first totally reflected by the first surface. A part of the light reflected by the first surface is diffracted by the deflecting unit, and the rest is incident on the second surface. Thereafter, the light incident on the second surface is incident on the second surface at an angle larger than the critical angle, and thus is totally reflected on the second surface.
  • the collimating optical system has a collimating lens that transmits light so that the light is incident on the first surface.
  • the collimating lens is a liquid crystal polymer lens or a lenticular lens in which a light incident surface and a light output surface are formed substantially parallel to each other. Since the light incident surface and the light output surface are substantially parallel to each other, the lens becomes thin. That is, a thinner lens is assembled to the vehicle display device. As a result, a more compact vehicle display device can be provided.
  • the incident light correction member is a liquid crystal polymer lens or a lenticular lens in which a light incident surface and a light output surface are formed substantially parallel to each other. Since the light incident surface and the light output surface are substantially parallel to each other, the lens becomes thin. That is, a thinner lens is assembled to the vehicle display device. As a result, a more compact vehicle display device can be provided.
  • FIG. 2 is a 2-2 cross-sectional view of the vehicle display device shown in FIG. 1.
  • FIG. 3 is a 3-3 cross-sectional view of the vehicle display device shown in FIG. 2. It is a figure which shows the effect
  • FIG. It is a figure which shows the example of a change of the collimating lens by Example 1, and a light guide.
  • FIG. It is sectional drawing of the display apparatus for vehicles by Example 2.
  • FIG. It is a figure explaining the problem at the time of mounting the conventional vehicle display apparatus in a vehicle.
  • front and rear refer to front and rear based on the traveling direction of the vehicle, and left and right refer to right and left based on the passenger.
  • Fr indicates the front
  • Rr indicates the rear
  • Le indicates the left
  • Ri indicates the right
  • Up indicates the top
  • Dn indicates the bottom.
  • FIG. 1 shows a cross-sectional view in the vehicle longitudinal direction of a vehicle Ve on which the vehicle display device 10 is mounted.
  • the vehicle display device 10 is attached to, for example, a dashboard space of the vehicle Ve, and projects light onto the vehicle windshield Ws (projected portion Ws).
  • the driver Mn viewer Mn
  • the driver Mn recognizes that the image I (virtual image I) is projected in front of the windshield Ws.
  • the driver Mn can obtain information necessary for traveling through the windshield Ws.
  • FIG. 2 is a cross-sectional view of the vehicle display device 10 in the vehicle width direction (left-right direction) of the vehicle body.
  • the vehicle display device 10 includes a case 20, display means 11 fixed inside the case 20, a collimating optical system 30 that allows light emitted from the display means 11 to pass through and is made into parallel light, and the collimator
  • the light guide 40 in which the light that has passed through the optical system 30 enters, the incident light correction member 13 that corrects the light emitted from the light guide 40 in a predetermined direction, and the display unit 11 are controlled.
  • a control unit 14 controls the display unit 11 in a predetermined direction.
  • the case 20 is configured by covering the lower case 21 with the upper case 22.
  • the case 20 has a box shape and is made of a synthetic resin that can block light from the outside.
  • the lower case 21 includes a lower case bottom surface portion 21a and a lower case wall portion 21b raised upward from a side edge of the lower case bottom surface portion 21a.
  • the upper case 22 has an upper case ceiling portion 22a and an upper case wall portion 22b that is lowered from a side edge of the upper case ceiling portion 22a.
  • the display means 11 includes a light source 11a capable of emitting light and a display panel 11b through which the light emitted from the light source 11a is transmitted.
  • the light source 11a has an LED lamp mounted on a substrate.
  • the light source 11a is not limited to one using an LED lamp as long as it can irradiate the display panel 11b.
  • a transmissive display element such as a TFT (Thin Film Transistor) liquid crystal panel is employed.
  • the collimating optical system 30 includes a first mirror 31 that reflects the light emitted from the display unit 11, a second mirror 32 that receives the light reflected by the first mirror 31, and the second mirror.
  • a collimating lens 33 that transmits the reflected light and converts the transmitted light into parallel light.
  • the first mirror 31 includes a first base 31a that is a flat inorganic glass, and a first reflecting portion in which a metal capable of reflecting light is formed in a thin film on the surface of the first base 31a. And 31b.
  • the first reflecting portion 31b is formed in a thin film shape from a metal such as aluminum.
  • the second mirror 32 is a second reflecting portion in which a second base material 32a made of flat inorganic glass and a metal capable of reflecting light are formed in a thin film shape on the surface of the second base material 32a. 32b.
  • the second reflecting portion 32b is formed in a thin film shape from a metal such as aluminum, for example.
  • the collimating lens 33 has a light incident surface and a light output surface formed substantially parallel to each other.
  • a liquid crystal polymer lens can be employed as the collimating lens 33.
  • the liquid crystal polymer lens transmits incident light and converts it into parallel light.
  • the collimating lens 33 may be any lens that can change the transmitted light into parallel light, and a lenticular lens can be adopted in addition to the liquid crystal polymer lens.
  • the lenticular lens is, for example, inorganic glass.
  • Each of the first and second mirrors 31 and 32 and the collimating lens 33 is arranged such that light that has passed through the collimating optical system 30 and entered the light guide 40 is totally reflected inside the light guide 40. . That is, when the critical angle is the minimum angle at which the light incident on the light guide 40 is totally reflected, each of the first and second mirrors 31 and 32 and the collimating lens 33 has a boundary inside the light guide 40. Light is arranged so that the incident angle with respect to the surface is greater than the critical angle.
  • FIG. 3 is a cross-sectional view of the vehicle display device 10 in the vehicle body vertical direction.
  • the light guide 40 is disposed along the vehicle width direction of the vehicle, and emits light toward the windshield Ws (see FIG. 1) located above.
  • the light guide 40 is configured so that the light guide body 41 in which the light that has passed through the collimator lens 33 enters and a part of the light that enters the light guide body 41 are emitted to the outside of the light guide 40. And a light guide diffractive portion 42 that diffracts and reflects the remaining light toward the light guide main body 41.
  • the light guide body 41 has an incident surface 41a for allowing the light transmitted through the collimator lens 33 to enter the light guide 40, and the light incident from the incident surface 41a is reflected toward the light guide diffraction unit 42. 1 surface 41b and an opposing surface portion 41c which is a surface formed to oppose the first surface 41b.
  • the light guide body 41 is, for example, inorganic glass.
  • the incident surface portion 41 a is formed at one end portion on the side where the collimating lens 33 is disposed, and makes light transmitted through the collimating lens 33 enter the light guide 40.
  • the incident surface portion 41a is a surface formed obliquely with respect to the first surface 41b and the opposed surface portion 41c when the end portion of the light guide 40 has an acute angle so that light can easily enter the inside.
  • the first surface 41b is arranged along the vehicle width direction of the vehicle body.
  • the first surface 41b is a boundary surface on which light that has passed through the incident surface portion 41a first reaches.
  • the light that has passed through the collimating optical system 30 and transmitted through the incident surface portion 41a is incident on the first surface 41b at an angle larger than the critical angle. That is, the light passing through the collimating optical system 30 and the incident surface portion 41a is first totally reflected by the first surface 41b.
  • the opposing surface portion 41c is formed in parallel to the first surface 41b.
  • the light reflected by the first surface 41 b passes through the opposing surface portion 41 c and enters the light guide diffraction portion 42.
  • the light guide diffracting section 42 is formed integrally with the facing surface section 41c and diffracts a part of incident light, and a second surface 42b that reflects the remaining light incident on the deflecting section 42a. ,have.
  • the deflecting portion 42a is provided below the facing surface portion 41c, and is incident on the light reflected by the first surface 41b located above the facing surface portion 41c.
  • the deflecting unit 42a diffracts the light in a direction perpendicular to the first surface 41b so that the light incident on the deflecting unit 42a is emitted from the first surface 41b.
  • the deflecting unit 42a is made of, for example, a holographic optical element, and a thin film capable of diffracting light in a predetermined wavelength band is stacked.
  • the deflecting unit 42a diffracts the light incident on the deflecting unit 42a according to the wavelength band and transmits the remaining light.
  • the deflecting unit 42a is not limited to a holographic optical element as long as it can diffract the incident part of light so that it can pass through the first surface 41b.
  • a holographic optical element for example, a black diffraction grating, a liquid crystal polymer diffraction grating, and a blazed diffractive optical element can be employed for the deflecting unit 42a.
  • the second surface 42b is a surface formed at the lower part of the deflecting portion 42a, and totally reflects the light incident on the second surface 42b toward the first surface 41b. That is, the light incident on the second surface 42b is incident so that the incident angle is larger than the critical angle.
  • the second surface 42b is formed to be parallel to the first surface 41b.
  • the first and second surfaces 41b and 42b are provided parallel to each other along the vehicle width direction of the vehicle body, and reflect the light incident from the incident surface portion 41a to the other end of the light guide 40. .
  • the incident light correction member 13 is formed such that light is transmitted therethrough and the light incident surface and the light exit surface are substantially parallel to each other.
  • the incident light correction member 13 is made of, for example, a liquid crystal polymer lens.
  • the incident light correction member 13 is disposed above the first surface 41b and transmits light emitted from the first surface 41b of the light guide 40 toward the upper windshield Ws. Further, the incident light correction member 13 refracts the light transmitted through the incident light correction member 13 so that the light projected onto the windshield Ws and reflected by the windshield Ws becomes parallel light.
  • the incident light correction member 13 only needs to be able to refract light so that the light reflected by the windshield Ws becomes parallel light.
  • a lenticular lens can also be adopted.
  • the lenticular lens is, for example, inorganic glass.
  • Control unit 14 controls blinking of light source 11a. Further, the control unit 14 can project an arbitrary image I (see FIG. 1) in front of the windshield Ws by controlling the voltage of the display panel 11b.
  • the vehicle display device 10 is attached to a dashboard space of the vehicle Ve and emits light toward the windshield Ws.
  • the driver Mn recognizes the projected light as an image I.
  • FIG. 4 shows the optical path of the light emitted from the vehicle display device 10 and the display means 11 and reaching the windshield Ws.
  • the light emitted from the display means 11 passes through the collimating optical system 30 and becomes parallel light, and enters the light guide 40 from the incident surface portion 41a. Thereafter, the light incident on the light guide 40 reaches the first surface 41b and is totally reflected by the first surface 41b.
  • the incident angle of light on the first surface 41b is ⁇ and the critical angle that is the minimum angle at which light is totally reflected is ⁇
  • the light is reflected on the first surface so that ⁇ > ⁇ . 41b.
  • the light totally reflected by the first surface 41b goes to the second surface 42b.
  • the light traveling toward the second surface 42b eventually enters the deflecting unit 42a.
  • the deflecting unit 42a diffracts a part of the incident light in a direction perpendicular to the first surface 41b. For this reason, a part of the light incident on the deflecting unit 42a is incident on the first surface 41b perpendicularly and is transmitted through the first surface 41b.
  • the remaining light is totally reflected by the second surface 42b formed below the deflecting portion 42a.
  • the remaining light incident on the deflecting unit 42a is light so that ⁇ > ⁇ , where ⁇ is the angle of incidence on the second surface 42b and ⁇ is the minimum angle at which the light is totally reflected. Is incident on the second surface 42b.
  • the light that has passed through the first surface 41b passes through the incident light correction member 13 provided above the first surface 41b and is projected onto the upper windshield Ws.
  • the light totally reflected by the second surface 42b reaches the first surface 41b, and is totally reflected by the first surface 41b toward the second surface 42b.
  • the light directed toward the second surface 42b eventually enters the deflecting unit 42a, is deflected so that part of the light is perpendicular to the first surface 41b, and the remaining light is the second surface 42b. And is totally reflected by the second surface 42b.
  • the light that has entered the light guide 40 from the incident surface portion 41 a is reflected by the first and second surfaces 41 b and 42 b and travels inside the light guide 40. While traveling inside the light guide 40, light is diffracted in the vertical direction by the deflecting portion 42a and transmitted through the first surface 41b. The light transmitted through the first surface 41b passes through the incident light correction member 13 disposed above and reaches the windshield Ws disposed further upward.
  • the light guide 40 is arranged such that the first surface 41b and the second surface 42b are both along the vehicle width direction of the vehicle body. Further, the light guide 40 includes a deflecting unit 42a that diffracts light passing through the inside and emits the light from the first surface 41b. First, the first and second surfaces 41b and 42b are arranged along the vehicle width direction of the vehicle body, so that the light guide 40 is arranged substantially parallel to the vehicle width direction. As a result, the display device 10 for a vehicle can shorten the width in the front-rear direction and becomes smaller.
  • the light guide 40 since the light guide 40 includes a deflecting portion 42a that diffracts light passing through the inside and emits light from the first surface 41b, the light guide 40 is substantially parallel to the vehicle width direction. Even if it arrange
  • the vehicular display device 10 is incident in the front-rear direction of the light guide 40 by disposing the transmissive incident light correction member 13 above the first surface 41b with the first surface 41b facing upward. It is not necessary to arrange the light correction member. As a result, the width of the vehicle display device 10 can be made shorter in the front-rear direction of the vehicle body. That is, the vehicle display device 10 can be made more compact.
  • the incident angle of light passing through the collimating optical system 30 and entering the first surface 41b and the second surface 42b of the light guide 40 is such that the light incident on the first surface 41b and the second surface 42b is totally reflected. If the minimum angle is the critical angle, the angle is larger than this critical angle.
  • the incident angle of the light on the first surface 41b is first totally reflected by the first surface 41b. A part of the light reflected by the first surface 41b is diffracted by the deflecting unit 42a, and the rest is incident on the second surface 42b.
  • the light incident on the second surface 42b is incident on the second surface 42b at an angle larger than the critical angle, and thus is totally reflected by the second surface 42b. That is, by making the incident angle to the first surface 41b and the second surface 42b larger than the critical angle, the light is reflected by the first and second surfaces 41b and 42b without losing light energy. Can be made. As a result, it is not necessary to provide a reflective film that reflects light on the first surface 41b or the second surface 42b. Thereby, the cheap display apparatus 10 for vehicles can be provided.
  • the collimating optical system 30 includes a collimating lens 33 that transmits light so that the light is incident on the first surface 41b.
  • the collimating lens 33 is a liquid crystal polymer lens or lenticular lens in which a light incident surface and a light output surface are formed substantially parallel to each other. Since the light incident surface and the light output surface are substantially parallel to each other, the lens becomes thin. That is, a thinner lens is assembled to the vehicle display device 10. As a result, a more compact vehicle display device 10 can be provided.
  • the incident light correcting member 13 is a liquid crystal polymer lens or a lenticular lens in which a light incident surface and a light output surface are formed substantially parallel to each other. Since the light incident surface and the light output surface are substantially parallel to each other, the lens becomes thin. That is, a thinner lens is assembled to the vehicle display device 10. As a result, a more compact vehicle display device 10 can be provided.
  • FIG. 5 shows a light guide 40A mounted on a vehicle display device 10A according to a modification.
  • the light guide 40A integrally includes a collimating lens portion 33A that serves to change the transmitted light into parallel light. That is, the collimating lens 33 shown in FIG.
  • the predetermined effect of the present invention can be obtained. Furthermore, the number of parts can be reduced by using the light guide 40A in which the collimating lens portion 33A is integrally formed.
  • FIG. 6 is a cross-sectional view of the second embodiment of the vehicle display device 10B, corresponding to FIG.
  • the position where the deflection unit 42a according to the first embodiment is arranged is changed.
  • Other basic structures are common to the vehicle display device 10 according to the first embodiment.
  • symbol is diverted and detailed description is abbreviate
  • the light guide 40B is a light guide body 41B that makes the light that has passed through the collimator lens 33 incident, and a deflection that reflects the light that has entered the light guide body 41B so as to be emitted from the light guide body 41B. Part 42Ba.
  • the light guide body 41B includes an incident surface 41Ba that allows the light transmitted through the collimator lens 33 to enter the light guide 40B, a first surface 41Bb that reflects the light incident from the incident surface 41Ba, and the first surface 41Bb. And the second surface 41Bc on which the light reflected by the surface 41Bb is incident.
  • the first surface 41Bb and the second surface 41Bc totally reflect the incident light.
  • the first surface 41Bb is a boundary surface where light that has passed through the incident surface portion 41Ba reaches first, and totally reflects the incident light toward the second surface 41Bc.
  • the first surface 41Bb receives the light reflected by the second surface 41Bc and totally reflects the incident light toward the second surface 41Bc.
  • the second surface 41Bc is provided to face the first surface 41Bb.
  • the second surface 41Bc receives a part of the light reflected by the first surface 41Bb and totally reflects the incident light toward the first surface 41Bb.
  • the deflecting unit 42Ba is provided between the first surface 41Bb and the second surface 41Bc, reflects a part of the incident light in a direction substantially perpendicular to the first surface 41Bb, and the remaining part of the second surface 41Bc. Permeate to the side. In other words, the light reflected by the deflecting unit 42Ba is transmitted through the first surface 41Bb and partly emitted from the first surface 41Bb in the vertical direction. In other words, the deflecting unit 42Ba has a characteristic capable of emitting light in the vertical direction to the light guide 40B.
  • the deflection unit 42Ba is, for example, a half mirror, and a plurality of the deflection units 42Ba are arranged inside the light guide body 41B.
  • the half mirror is disposed so as to be inclined so that the light reflected by the first surface 41Bb is perpendicularly incident on the first surface 41Bb.
  • the half mirror here refers to a mirror capable of reflecting a part of light. That is, the half mirror does not necessarily have a light reflectance and transmittance of 1: 1.
  • the reflectance and transmittance may be 1: 9, or 2: 8. good.
  • positioned inside the light guide main-body part 41B may differ.
  • the light guide 40B can be arranged in the vehicle width direction of the vehicle body because the light can be emitted vertically also in the light guide 40B in which the deflection unit 42Ba is arranged in the light guide body 41B.
  • the first and second surfaces 41Bb and 41Bc can be arranged along the vehicle width direction of the vehicle body. Therefore, also in the vehicle display device 10B according to the second embodiment, the present invention can obtain a predetermined effect.
  • the vehicle Ve on which the vehicle display devices 10, 10A and 10B according to the present invention are mounted may be a two-wheeled vehicle or a three-wheeled vehicle other than a four-wheeled vehicle.
  • first and second mirrors 31 and 32 shown in the embodiment are not essential components. That is, you may abolish these as needed. Conversely, the number of mirrors can be increased as necessary. By increasing the number of mirrors, it is possible to increase the degree of freedom of the optical path until light enters the light guides 40, 40A, and 40B.
  • first and second base materials 31a and 32a are described with an example of a flat inorganic glass in the embodiments.
  • the first and second base materials 31a and 32a are not limited to a flat inorganic glass as long as a metal film capable of reflecting light can be deposited. That is, the first and second base materials 31a and 32a may be, for example, an acrylic resin or a cycloolefin polymer resin.
  • first and second reflecting portions 31b and 32b are described with an example of a metal film such as aluminum deposited on the first and second base materials 31a and 32a in the embodiment.
  • the first and second reflecting portions 31b and 32b may be multilayer films that can reflect only light in a predetermined wavelength band (visible light). That is, the first mirror 31 and the second mirror 32 having the first and second reflecting portions 31b and 32b may be cold mirrors.
  • the light guides 40, 40A, and 40B are described with examples that are inorganic glass in the embodiments.
  • the light guides 40, 40 ⁇ / b> A, and 40 ⁇ / b> B are not limited to inorganic glass as long as the light can be incident on the inside. That is, the light guides 40, 40A, and 40B may be, for example, an acrylic resin or a cycloolefin polymer resin that is a transparent resin.
  • the projection target part Ws is described as the windshield Ws in the embodiment.
  • the projected part Ws is not limited to the windshield Ws as long as it can project the light emitted from the vehicle display devices 10, 10 ⁇ / b> A, and 10 ⁇ / b> B. That is, the present invention can also be applied to the vehicle display devices 10, 10 ⁇ / b> A, and 10 ⁇ / b> B that use a so-called combiner as the projection target portion Ws.
  • the present invention is not limited to the examples as long as the operations and effects of the present invention are exhibited.
  • the vehicle display devices 10, 10A, and 10B of the present invention are suitable for being mounted on the vehicle Ve.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Instrument Panels (AREA)

Abstract

Provided is a compact vehicle image display device. The vehicle display device (10) has a display means (11) capable of emitting light and a light guide (40) into which the light emitted from the display means (11) enters and in which the entered light travels while being reflected by a first surface (41b) and a second surface (42b) arranged parallel to each other. The light guide (40) has the first surface (41b) and the second surface (42b) arranged along the vehicle width direction, and includes a deflecting unit (42a) that diffracts or reflects the internally passing light and causes the light to be emitted via the first surface (41b).

Description

車両用表示装置Vehicle display device
 本発明は、車体の前部に配置された被投影部に光を投射させる車両用表示装置に関する。 The present invention relates to a vehicle display device that projects light onto a projection target disposed at the front of a vehicle body.
 一部の車両には、フロントガラス等の被投影部に光を投射させ運転者(視認者)に必要な情報を提供する車両用表示装置(ヘッドアップディスプレイ装置)が搭載されている。例えば、車両用表示装置は、車両のダッシュボードに設けられ、フロントガラスに向かって光を投射する。このような車両用表示装置の従来技術として特許文献1に開示される技術がある。 Some vehicles are equipped with a vehicle display device (head-up display device) that projects light onto a projection target such as a windshield and provides necessary information to a driver (viewer). For example, the vehicle display device is provided on a dashboard of the vehicle and projects light toward a windshield. As a conventional technique of such a vehicle display device, there is a technique disclosed in Patent Document 1.
 特許文献1に示されるような、車両用表示装置は、光を出射可能な表示手段と、この表示手段から出射された光を平行光となるように通過させるコリメート光学系と、このコリメート光学系を通過した光が入射すると共に入射した光が互いに平行に設けられた第1の面及び第2の面を反射して進む導光体と、この導光体から出射された光をフロントガラスに向かって反射する反射ミラーと、からなる。 A display device for a vehicle as disclosed in Patent Document 1 includes a display unit that can emit light, a collimating optical system that allows light emitted from the display unit to pass through in parallel light, and the collimating optical system. A light guide that is incident on the first surface and the second surface that are provided in parallel with each other, and the light emitted from the light guide is incident on the windshield. And a reflection mirror that reflects toward the screen.
 導光体は、入射した光を第1の面から斜めの方向に向かって出射するよう形成されている。 The light guide is formed so as to emit incident light in an oblique direction from the first surface.
 反射ミラーは、導光体の前方に配置され、導光体を透過した光をフロントガラスに向かって反射させている。 The reflection mirror is disposed in front of the light guide, and reflects light transmitted through the light guide toward the windshield.
 車両用表示装置から出射された光がフロントガラスに投射されることで、運転者は、フロントガラス前方に像が投影されているように認識する。 The driver recognizes that an image is projected in front of the windshield by projecting the light emitted from the vehicle display device onto the windshield.
特開2014-191143号公報JP 2014-191143 A
 例えば、車両用表示装置は、車両のダッシュボードのスペースに取り付けられる。ここで、車両用表示装置が取り付けられるスペースには他の部品が取り付けられることもある。従って、車両用表示装置が取り付け可能なスペースは限られている。 For example, the vehicle display device is attached to the dashboard space of the vehicle. Here, other parts may be attached to the space where the vehicle display device is attached. Therefore, the space in which the vehicle display device can be attached is limited.
 図7を参照する。図7には、特許文献1による車両用表示装置100が示されている。特許文献1の車両用表示装置100では、車体の車幅方向を基準として、導光体140の第1~第2の面141b、142bが斜めに傾いて配置されている。導光体140を傾いて配置させることで、第1の面141bから出射された光を、前方に設けられた反射ミラー113に対して垂直に入射させている。 Refer to FIG. FIG. 7 shows a vehicle display device 100 according to Patent Document 1. In the vehicle display device 100 of Patent Document 1, the first and second surfaces 141b and 142b of the light guide 140 are disposed obliquely with respect to the vehicle width direction of the vehicle body. By arranging the light guide body 140 at an angle, the light emitted from the first surface 141b is vertically incident on the reflection mirror 113 provided in front.
 このような車両用表示装置では、導光体が傾いていることにより、車両用表示装置を取り付け可能なスペースを車体の前後方向において広く確保しなければならない。 In such a vehicle display device, since the light guide body is inclined, a space in which the vehicle display device can be mounted has to be secured widely in the front-rear direction of the vehicle body.
 本発明は、コンパクトな車両用表示装置を提供することを課題とする。 An object of the present invention is to provide a compact vehicle display device.
 請求項1による発明によれば、車体の前部に設けられた被投影部に光を投射させ、前記被投影部に投射された光を虚像として視認者に認識させる車両用表示装置において、
 光を出射可能な表示手段と、この表示手段から出射された光を平行光となるように通過させるコリメート光学系と、このコリメート光学系を通過した光が入射すると共に入射した光が互いに平行に設けられた第1の面及び第2の面を反射して進む導光体と、前記第1の面から出射された光が所定の方向に向かうよう補正する入射光補正部材と、を備え、
 前記導光体は、前記第1の面及び前記第2の面が、共に前記車体の車幅方向に沿うように配置されていると共に、内部を通過する光を回折又は反射し前記第1の面から出射させる偏向部を備えていることを特徴とする車両用表示装置が提供される。
According to the first aspect of the present invention, in the vehicle display device that projects light onto the projection portion provided in the front portion of the vehicle body and causes the viewer to recognize the light projected onto the projection portion as a virtual image.
Display means capable of emitting light, collimating optical system for allowing the light emitted from the display means to pass in parallel light, and light that has passed through the collimating optical system are incident and the incident light is parallel to each other A light guide that reflects and travels by reflecting the first surface and the second surface provided; and an incident light correction member that corrects the light emitted from the first surface in a predetermined direction.
The light guide is arranged such that the first surface and the second surface are both along the vehicle width direction of the vehicle body, and diffracts or reflects light passing through the first light guide. A vehicular display device is provided that includes a deflecting unit that emits light from a surface.
 請求項2に記載のごとく、好ましくは、前記コリメート光学系を通過し前記導光体へ入射する光の入射角は、前記導光体に入射した光が全反射する最小の角度を臨界角とした場合に、この臨界角よりも大きい角度である。 As described in claim 2, preferably, the incident angle of the light that passes through the collimating optical system and is incident on the light guide is a critical angle that is the minimum angle at which the light incident on the light guide is totally reflected. In this case, the angle is larger than this critical angle.
 請求項3に記載のごとく、好ましくは、前記コリメート光学系は、前記第1の面に光を入射させるように光を透過させるコリメートレンズを有し、
 前記コリメートレンズは、光の入射する面及び光の出射する面が互いに略平行に形成された液晶ポリマーレンズ又はレンチキュラーレンズである。
As described in claim 3, preferably, the collimating optical system includes a collimating lens that transmits light so that light is incident on the first surface,
The collimating lens is a liquid crystal polymer lens or a lenticular lens in which a light incident surface and a light output surface are formed substantially parallel to each other.
 請求項4に記載のごとく、好ましくは、前記入射光補正部材は、光の入射する面及び光の出射する面が互いに略平行に形成された液晶ポリマーレンズ又はレンチキュラーレンズである。 Preferably, the incident light correction member is a liquid crystal polymer lens or a lenticular lens in which a light incident surface and a light output surface are formed substantially parallel to each other.
 請求項1に係る発明では、導光体は、第1の面及び第2の面が、共に車体の車幅方向に沿うように配置されている。更に、導光体は、内部を通過する光を回折又は反射し第1の面から出射させる偏向部を含んでいる。まず、第1~第2の面が車体の車幅方向に沿うように配置されることで、導光体が車幅方向に対して略平行に配置される。結果、車両用表示装置は、前後方向における幅を短くすることができ、小さくなる。更に、内部を通過する光を回折又は反射し、第1の面から光を出射させる偏向部を導光体が含んでいることで、導光体を車幅方向に対して略平行に配置しても、前方に向かって光を出射することができる。即ち、コンパクトな車両用表示装置を提供することができる。 In the invention according to claim 1, the light guide is disposed such that the first surface and the second surface are both along the vehicle width direction of the vehicle body. Furthermore, the light guide includes a deflecting unit that diffracts or reflects light passing through the inside and emits the light from the first surface. First, by arranging the first and second surfaces along the vehicle width direction of the vehicle body, the light guide is arranged substantially parallel to the vehicle width direction. As a result, the vehicle display device can shorten the width in the front-rear direction, and becomes smaller. Further, the light guide includes a deflecting portion that diffracts or reflects light passing through the inside and emits light from the first surface, so that the light guide is disposed substantially parallel to the vehicle width direction. However, light can be emitted forward. That is, a compact vehicle display device can be provided.
 請求項2に係る発明では、コリメート光学系を通過し導光体の第1の面と第2の面へ入射する光の入射角は、第1の面と第2の面に入射した光が全反射する最小の角度を臨界角とした場合に、この臨界角よりも大きい角度である。第1の面への光の入射角を臨界角よりも大きい角度とすることで、第1の面に入射した光は、まず、第1の面で全反射される。そして、第1の面で反射された光は、一部が偏向部により回折され残りが第2の面に入射する。その後、第2の面に入射した光は、臨界角よりも大きな角度をもって第2の面に入射するため、第2の面で全反射される。即ち、第1の面及び第2の面への入射角を臨界角よりも大きい角度とすることで、光エネルギーを損失させずに第1~第2の面で光を反射させることができる。結果、光を反射させる反射膜を第1の面又は第2の面に施すことが不要になる。これにより、安価な車両用表示装置を提供することができる。 In the invention which concerns on Claim 2, the incident angle of the light which passes through a collimating optical system and injects into the 1st surface and 2nd surface of a light guide is the light which injected into the 1st surface and 2nd surface If the minimum angle for total reflection is the critical angle, the angle is larger than this critical angle. By setting the incident angle of light on the first surface to an angle larger than the critical angle, the light incident on the first surface is first totally reflected by the first surface. A part of the light reflected by the first surface is diffracted by the deflecting unit, and the rest is incident on the second surface. Thereafter, the light incident on the second surface is incident on the second surface at an angle larger than the critical angle, and thus is totally reflected on the second surface. That is, by making the incident angles to the first surface and the second surface larger than the critical angle, it is possible to reflect light on the first and second surfaces without losing light energy. As a result, it is not necessary to provide a reflective film that reflects light on the first surface or the second surface. Thereby, an inexpensive vehicle display device can be provided.
 請求項3に係る発明では、コリメート光学系は、第1の面に光を入射させるように光を透過させるコリメートレンズを有している。コリメートレンズは、光の入射する面及び光の出射する面が互いに略平行に形成された液晶ポリマーレンズ又はレンチキュラーレンズである。光を入射する面及び光を出射する面が互いに略平行であることにより、レンズが薄くなる。即ち、車両用表示装置には、より薄いレンズが組み付けられることとなる。この結果、よりコンパクトな車両用表示装置を提供することができる。 In the invention according to claim 3, the collimating optical system has a collimating lens that transmits light so that the light is incident on the first surface. The collimating lens is a liquid crystal polymer lens or a lenticular lens in which a light incident surface and a light output surface are formed substantially parallel to each other. Since the light incident surface and the light output surface are substantially parallel to each other, the lens becomes thin. That is, a thinner lens is assembled to the vehicle display device. As a result, a more compact vehicle display device can be provided.
 請求項4に係る発明では、入射光補正部材は、光の入射する面及び光の出射する面が互いに略平行に形成された液晶ポリマーレンズ又はレンチキュラーレンズである。光の入射する面及び光の出射する面が互いに略平行であることにより、レンズが薄くなる。即ち、車両用表示装置には、より薄いレンズが組み付けられることとなる。この結果、よりコンパクトな車両用表示装置を提供することができる。 In the invention according to claim 4, the incident light correction member is a liquid crystal polymer lens or a lenticular lens in which a light incident surface and a light output surface are formed substantially parallel to each other. Since the light incident surface and the light output surface are substantially parallel to each other, the lens becomes thin. That is, a thinner lens is assembled to the vehicle display device. As a result, a more compact vehicle display device can be provided.
本発明の実施例1による車両用表示装置の車体前後方向の断面図である。It is sectional drawing of the vehicle body front-back direction of the display apparatus for vehicles by Example 1 of this invention. 図1に示された車両用表示装置の2ー2断面図である。FIG. 2 is a 2-2 cross-sectional view of the vehicle display device shown in FIG. 1. 図2に示される車両用表示装置の3ー3断面図である。FIG. 3 is a 3-3 cross-sectional view of the vehicle display device shown in FIG. 2. 実施例1による車両用表示装置の作用を示す図である。It is a figure which shows the effect | action of the display apparatus for vehicles by Example 1. FIG. 実施例1によるコリメートレンズ及び導光体の変更例を示す図である。It is a figure which shows the example of a change of the collimating lens by Example 1, and a light guide. 実施例2による車両用表示装置の断面図である。It is sectional drawing of the display apparatus for vehicles by Example 2. FIG. 従来の車両用表示装置を車両に搭載した際の問題点を説明する図である。It is a figure explaining the problem at the time of mounting the conventional vehicle display apparatus in a vehicle.
 本発明の実施の形態を添付図に基づいて以下に説明する。なお、説明中、前後とは車両の進行方向を基準として前後をいい、左右とは乗員を基準に左右をいう。また、図中Frは前、Rrは後、Leは左、Riは右、Upは上、Dnは下、を示している。
<実施例1>
Embodiments of the present invention will be described below with reference to the accompanying drawings. In the description, front and rear refer to front and rear based on the traveling direction of the vehicle, and left and right refer to right and left based on the passenger. In the figure, Fr indicates the front, Rr indicates the rear, Le indicates the left, Ri indicates the right, Up indicates the top, and Dn indicates the bottom.
<Example 1>
 図1を参照する。図1には、車両用表示装置10が搭載された車両Veの車体前後方向の断面図が示されている。車両用表示装置10は、例えば、車両Veのダッシュボードのスペースに取り付けられ、光を車両のフロントガラスWs(被投影部Ws)に投射する。フロントガラスWsに光が投射されることで、運転者Mn(視認者Mn)は、フロントガラスWs前方に像I(虚像I)が投影されているように認識する。投影された像Iに車速やナビゲーション情報等の情報を表示することで、運転者Mnは、走行時に必要な情報をフロントガラスWsを介して得ることができる。 Refer to FIG. FIG. 1 shows a cross-sectional view in the vehicle longitudinal direction of a vehicle Ve on which the vehicle display device 10 is mounted. The vehicle display device 10 is attached to, for example, a dashboard space of the vehicle Ve, and projects light onto the vehicle windshield Ws (projected portion Ws). By projecting light onto the windshield Ws, the driver Mn (viewer Mn) recognizes that the image I (virtual image I) is projected in front of the windshield Ws. By displaying information such as vehicle speed and navigation information on the projected image I, the driver Mn can obtain information necessary for traveling through the windshield Ws.
 図2を参照する。図2には、車体の車幅方向(左右方向)における車両用表示装置10の断面図が示されている。車両用表示装置10は、ケース20と、このケース20の内部に固定された表示手段11と、この表示手段11から出射された光を通過させると共に平行光とするコリメート光学系30と、このコリメート光学系30を通過した光が入射する導光体40と、この導光体40から出射された光が所定の方向に向かうよう補正する入射光補正部材13と、表示手段11を制御している制御部14と、を有している。 Refer to FIG. FIG. 2 is a cross-sectional view of the vehicle display device 10 in the vehicle width direction (left-right direction) of the vehicle body. The vehicle display device 10 includes a case 20, display means 11 fixed inside the case 20, a collimating optical system 30 that allows light emitted from the display means 11 to pass through and is made into parallel light, and the collimator The light guide 40 in which the light that has passed through the optical system 30 enters, the incident light correction member 13 that corrects the light emitted from the light guide 40 in a predetermined direction, and the display unit 11 are controlled. And a control unit 14.
 ケース20は、下ケース21に上ケース22が被せられることによって構成されている。ケース20は、箱形状を呈し、外部からの光を遮ることができる合成樹脂により形成されている。 The case 20 is configured by covering the lower case 21 with the upper case 22. The case 20 has a box shape and is made of a synthetic resin that can block light from the outside.
 下ケース21は、下ケース底面部21aと、この下ケース底面部21aの側縁から上方に立ち上げられた下ケース壁部21bと、を有している。 The lower case 21 includes a lower case bottom surface portion 21a and a lower case wall portion 21b raised upward from a side edge of the lower case bottom surface portion 21a.
 上ケース22は、上ケース天井部22aと、この上ケース天井部22aの側縁から下げられた上ケース壁部22bと、を有している。 The upper case 22 has an upper case ceiling portion 22a and an upper case wall portion 22b that is lowered from a side edge of the upper case ceiling portion 22a.
 表示手段11は、光を出射可能な光源11aと、この光源11aから出射された光が透過する 表示パネル11bと、を有する。 The display means 11 includes a light source 11a capable of emitting light and a display panel 11b through which the light emitted from the light source 11a is transmitted.
 光源11aは、基板にLED製のランプが実装されてなる。なお、光源11aは、表示パネル11bを照射することができれば、LED製のランプを用いたものに限られない。 The light source 11a has an LED lamp mounted on a substrate. The light source 11a is not limited to one using an LED lamp as long as it can irradiate the display panel 11b.
 表示パネル11bには、例えば、TFT(Thin Film Transistor)液晶パネル等の透過型表示素子が採用される。 For the display panel 11b, for example, a transmissive display element such as a TFT (Thin Film Transistor) liquid crystal panel is employed.
 コリメート光学系30は、表示手段11から出射された光を反射する第1のミラー31と、この第1のミラー31が反射した光が入射する第2のミラー32と、この第2のミラーが反射した光が透過すると共に透過した光を平行光とするコリメートレンズ33と、を有する。 The collimating optical system 30 includes a first mirror 31 that reflects the light emitted from the display unit 11, a second mirror 32 that receives the light reflected by the first mirror 31, and the second mirror. A collimating lens 33 that transmits the reflected light and converts the transmitted light into parallel light.
 第1のミラー31は、平板状の無機ガラスである第1の基材31aと、この第1の基材31aの表面に光を反射可能な金属を薄膜状に形成させた第1の反射部31bと、からなるフルミラーである。 The first mirror 31 includes a first base 31a that is a flat inorganic glass, and a first reflecting portion in which a metal capable of reflecting light is formed in a thin film on the surface of the first base 31a. And 31b.
 第1の反射部31bは、例えば、アルミニウム等の金属により薄膜状に形成されている。 The first reflecting portion 31b is formed in a thin film shape from a metal such as aluminum.
 第2のミラー32は、平板状の無機ガラスである第2の基材32aと、この第2の基材32aの表面に光を反射可能な金属を薄膜状に形成させた第2の反射部32bと、からなるフルミラーである。 The second mirror 32 is a second reflecting portion in which a second base material 32a made of flat inorganic glass and a metal capable of reflecting light are formed in a thin film shape on the surface of the second base material 32a. 32b.
 第2の反射部32bは、例えば、アルミニウム等の金属により薄膜状に形成されている。 The second reflecting portion 32b is formed in a thin film shape from a metal such as aluminum, for example.
 コリメートレンズ33は、光の入射する面及び光の出射する面が互いに略平行に形成されている。コリメートレンズ33には、例えば、液晶ポリマーレンズを採用することができる。液晶ポリマーレンズは、入射した光を透過させると共に平行光に変える。また、コリメートレンズ33は、透過する光を平行光に変えことができるレンズであれば良く、液晶ポリマーレンズの他にレンチキュラーレンズを採用することもできる。レンチキュラーレンズは、例えば、無機ガラスである。 The collimating lens 33 has a light incident surface and a light output surface formed substantially parallel to each other. As the collimating lens 33, for example, a liquid crystal polymer lens can be employed. The liquid crystal polymer lens transmits incident light and converts it into parallel light. Further, the collimating lens 33 may be any lens that can change the transmitted light into parallel light, and a lenticular lens can be adopted in addition to the liquid crystal polymer lens. The lenticular lens is, for example, inorganic glass.
 第1~第2のミラー31、32及びコリメートレンズ33のそれぞれは、コリメート光学系30を通過し導光体40へ入射した光が導光体40内部で全反射されるように配置されている。即ち、導光体40に入射した光が全反射する最小の角度を臨界角とした場合に、第1~第2のミラー31、32及びコリメートレンズ33のそれぞれは、導光体40内部の境界面に対して光が入射角が臨界角よりも大きい角度で入射するように配置されている。 Each of the first and second mirrors 31 and 32 and the collimating lens 33 is arranged such that light that has passed through the collimating optical system 30 and entered the light guide 40 is totally reflected inside the light guide 40. . That is, when the critical angle is the minimum angle at which the light incident on the light guide 40 is totally reflected, each of the first and second mirrors 31 and 32 and the collimating lens 33 has a boundary inside the light guide 40. Light is arranged so that the incident angle with respect to the surface is greater than the critical angle.
 図3を参照する。図3には、車体上下方向の車両用表示装置10の断面図が示されている。導光体40は、車両の車幅方向に沿って配置されており、上方にあるフロントガラスWs(図1参照)に向かって光を出射する。 Refer to FIG. FIG. 3 is a cross-sectional view of the vehicle display device 10 in the vehicle body vertical direction. The light guide 40 is disposed along the vehicle width direction of the vehicle, and emits light toward the windshield Ws (see FIG. 1) located above.
 図2を参照する。導光体40は、コリメートレンズ33を通過した光が入射する導光体本体部41と、この導光体本体部41内部に入射した光の一部を導光体40外部に出射させるように回折すると共に残りの光を導光体本体部41に向かって反射する導光体回折部42と、を有している。 Refer to FIG. The light guide 40 is configured so that the light guide body 41 in which the light that has passed through the collimator lens 33 enters and a part of the light that enters the light guide body 41 are emitted to the outside of the light guide 40. And a light guide diffractive portion 42 that diffracts and reflects the remaining light toward the light guide main body 41.
 導光体本体部41は、導光体40内部にコリメートレンズ33を透過した光を入射させる入射面部41aと、この入射面部41aから入射した光を導光体回折部42に向かって反射する第1の面41bと、この第1の面41bと対向して形成された面である対向面部41cと、を有している。導光体本体部41は、例えば、無機ガラスである。 The light guide body 41 has an incident surface 41a for allowing the light transmitted through the collimator lens 33 to enter the light guide 40, and the light incident from the incident surface 41a is reflected toward the light guide diffraction unit 42. 1 surface 41b and an opposing surface portion 41c which is a surface formed to oppose the first surface 41b. The light guide body 41 is, for example, inorganic glass.
 入射面部41aは、コリメートレンズ33が配置されている側の一端部に形成され、コリメートレンズ33を透過した光を導光体40の内部に入射させる。入射面部41aは、内部に光を入射し易いよう、導光体40の端部が鋭角とされた際の第1の面41b及び対向面部41cに対して斜めに形成された面である。 The incident surface portion 41 a is formed at one end portion on the side where the collimating lens 33 is disposed, and makes light transmitted through the collimating lens 33 enter the light guide 40. The incident surface portion 41a is a surface formed obliquely with respect to the first surface 41b and the opposed surface portion 41c when the end portion of the light guide 40 has an acute angle so that light can easily enter the inside.
 第1の面41bは、車体の車幅方向に沿うように配置されている。第1の面41bは、入射面部41aを通過した光が最初に到達する境界面である。コリメート光学系30を通過し入射面部41aを透過した光は、第1の面41bに対して臨界角よりも大きい角度で入射する。即ち、コリメート光学系30及び入射面部41aを通過した光は、まず最初に第1の面41bにより全反射される。 The first surface 41b is arranged along the vehicle width direction of the vehicle body. The first surface 41b is a boundary surface on which light that has passed through the incident surface portion 41a first reaches. The light that has passed through the collimating optical system 30 and transmitted through the incident surface portion 41a is incident on the first surface 41b at an angle larger than the critical angle. That is, the light passing through the collimating optical system 30 and the incident surface portion 41a is first totally reflected by the first surface 41b.
 対向面部41cは、第1の面41bに対して平行に形成されている。第1の面41bで反射された光は、対向面部41cを通過し、導光体回折部42に入射する。 The opposing surface portion 41c is formed in parallel to the first surface 41b. The light reflected by the first surface 41 b passes through the opposing surface portion 41 c and enters the light guide diffraction portion 42.
 導光体回折部42は、対向面部41cと一体的に形成され入射した光の一部を回折する偏向部42aと、この偏向部42aに入射した残りの光を反射する第2の面42bと、を有している。 The light guide diffracting section 42 is formed integrally with the facing surface section 41c and diffracts a part of incident light, and a second surface 42b that reflects the remaining light incident on the deflecting section 42a. ,have.
 偏向部42aは、対向面部41cの下方に設けられており、対向面部41cの上方に位置する第1の面41bが反射した光に入射される。偏向部42aは、偏向部42aに入射した光が第1の面41bから出射されるように、第1の面41bに対して垂直な方向に光を回折する。偏向部42aは、例えば、ホログラフィック光学素子(Holographic Optical Element)からなり、所定の波長帯域の光を回折可能な薄膜が積層されている。偏向部42aは、偏向部42aに入射した光を波長帯域に応じて回折し、残りの光を透過させる。 The deflecting portion 42a is provided below the facing surface portion 41c, and is incident on the light reflected by the first surface 41b located above the facing surface portion 41c. The deflecting unit 42a diffracts the light in a direction perpendicular to the first surface 41b so that the light incident on the deflecting unit 42a is emitted from the first surface 41b. The deflecting unit 42a is made of, for example, a holographic optical element, and a thin film capable of diffracting light in a predetermined wavelength band is stacked. The deflecting unit 42a diffracts the light incident on the deflecting unit 42a according to the wavelength band and transmits the remaining light.
 偏向部42aは、入射した一部の光が第1の面41bを透過可能となるように回折することができれば何でも良く、ホログラフィック光学素子に限られるものではない。偏向部42aには、ホログラフィック光学素子の他、例えば、ブラック回折格子、液晶ポリマー回折格子、ブレーズド回折光学素子を採用することができる。 The deflecting unit 42a is not limited to a holographic optical element as long as it can diffract the incident part of light so that it can pass through the first surface 41b. In addition to the holographic optical element, for example, a black diffraction grating, a liquid crystal polymer diffraction grating, and a blazed diffractive optical element can be employed for the deflecting unit 42a.
 第2の面42bは、偏向部42aの下部に形成された面であり、第2の面42bに入射した光を第1の面41bに向かって全反射する。即ち、第2の面42bに入射する光は、入射角が臨界角よりも大きくなるように入射する。第2の面42bは、第1の面41bと平行になるよう形成されている。 The second surface 42b is a surface formed at the lower part of the deflecting portion 42a, and totally reflects the light incident on the second surface 42b toward the first surface 41b. That is, the light incident on the second surface 42b is incident so that the incident angle is larger than the critical angle. The second surface 42b is formed to be parallel to the first surface 41b.
 第1~第2の面41b、42bは、車体の車幅方向に沿うように互いが平行に設けられており、入射面部41aから入射した光を互いに反射させ導光体40の他端に導く。 The first and second surfaces 41b and 42b are provided parallel to each other along the vehicle width direction of the vehicle body, and reflect the light incident from the incident surface portion 41a to the other end of the light guide 40. .
 入射光補正部材13は、光を透過させると共に、光の入射する面及び光の出射する面が互いに略平行となるように形成されている。入射光補正部材13は、例えば、液晶ポリマーレンズからなる。入射光補正部材13は、第1の面41bの上方に配置されると共に、導光体40の第1の面41bから出射された光を上方のフロントガラスWsへ向けて透過させる。更に、入射光補正部材13は、フロントガラスWsに投射されフロントガラスWsで反射する光が平行光となるように、入射光補正部材13を透過する光を屈折させる。また、入射光補正部材13は、フロントガラスWsで反射した光が平行光となるよう光を屈折させることができれば良く、液晶ポリマーレンズの他、レンチキュラーレンズを採用することもできる。レンチキュラーレンズは、例えば、無機ガラスである。 The incident light correction member 13 is formed such that light is transmitted therethrough and the light incident surface and the light exit surface are substantially parallel to each other. The incident light correction member 13 is made of, for example, a liquid crystal polymer lens. The incident light correction member 13 is disposed above the first surface 41b and transmits light emitted from the first surface 41b of the light guide 40 toward the upper windshield Ws. Further, the incident light correction member 13 refracts the light transmitted through the incident light correction member 13 so that the light projected onto the windshield Ws and reflected by the windshield Ws becomes parallel light. The incident light correction member 13 only needs to be able to refract light so that the light reflected by the windshield Ws becomes parallel light. In addition to the liquid crystal polymer lens, a lenticular lens can also be adopted. The lenticular lens is, for example, inorganic glass.
 制御部14は、光源11aの点滅を制御する。更に、制御部14は、表示パネル11bを電圧制御することで、フロントガラスWsの前方に任意の像I(図1参照)を投影することができる。 Control unit 14 controls blinking of light source 11a. Further, the control unit 14 can project an arbitrary image I (see FIG. 1) in front of the windshield Ws by controlling the voltage of the display panel 11b.
 次に、実施例1による車両用表示装置10の作用を説明する。 Next, the operation of the vehicle display device 10 according to the first embodiment will be described.
 図1を参照する。車両用表示装置10は、例えば、車両Veのダッシュボートのスペースに取り付けられ、フロントガラスWsに向かって光を出射する。車両用表示装置10から出射された光がフロントガラスWsに投射されると、運転者Mnは、投影された光を像Iとして認識する。 Refer to FIG. For example, the vehicle display device 10 is attached to a dashboard space of the vehicle Ve and emits light toward the windshield Ws. When the light emitted from the vehicle display device 10 is projected onto the windshield Ws, the driver Mn recognizes the projected light as an image I.
 図4を参照する。図4には、車両用表示装置10、及び、表示手段11から出射されフロントガラスWsに到達するまでの光の光路が示されている。表示手段11から出射された光は、コリメート光学系30を通過し平行光となり、入射面部41aから導光体40内部に入射する。その後、導光体40内部に入射した光は、第1の面41bに到達し第1の面41bで全反射される。この時、第1の面41bへの光の入射角をθとし、光が全反射される最小の角度である臨界角をγとした場合、θ>γとなるように光が第1の面41bへ入射している。 Refer to FIG. FIG. 4 shows the optical path of the light emitted from the vehicle display device 10 and the display means 11 and reaching the windshield Ws. The light emitted from the display means 11 passes through the collimating optical system 30 and becomes parallel light, and enters the light guide 40 from the incident surface portion 41a. Thereafter, the light incident on the light guide 40 reaches the first surface 41b and is totally reflected by the first surface 41b. At this time, when the incident angle of light on the first surface 41b is θ and the critical angle that is the minimum angle at which light is totally reflected is γ, the light is reflected on the first surface so that θ> γ. 41b.
 第1の面41bで全反射された光は、第2の面42bに向かう。第2の面42bに向かった光は、やがて偏向部42aに入射する。偏向部42aは、入射した一部の光を第1の面41bに対して垂直方向に回折する。このため、偏向部42aに入射した光のうち、一部の光は第1の面41bに対して垂直に入射し第1の面41bを透過する。一方、残りの光は偏向部42aの下部に形成された第2の面42bで全反射される。この時、偏向部42aに入射した残りの光は、第2の面42bに入射する角度をδとし、光が全反射される最小の角度をγとした場合、δ>γとなるように光が第2の面42bへ入射している。 The light totally reflected by the first surface 41b goes to the second surface 42b. The light traveling toward the second surface 42b eventually enters the deflecting unit 42a. The deflecting unit 42a diffracts a part of the incident light in a direction perpendicular to the first surface 41b. For this reason, a part of the light incident on the deflecting unit 42a is incident on the first surface 41b perpendicularly and is transmitted through the first surface 41b. On the other hand, the remaining light is totally reflected by the second surface 42b formed below the deflecting portion 42a. At this time, the remaining light incident on the deflecting unit 42a is light so that δ> γ, where δ is the angle of incidence on the second surface 42b and γ is the minimum angle at which the light is totally reflected. Is incident on the second surface 42b.
 第1の面41bを通過した光は、第1の面41bの上方に設けられている入射光補正部材13を透過し、上方のフロントガラスWsに投射される。一方、第2の面42bで全反射された光は、第1の面41bに到達し、第1の面41bにより第2の面42bに向かって全反射される。 The light that has passed through the first surface 41b passes through the incident light correction member 13 provided above the first surface 41b and is projected onto the upper windshield Ws. On the other hand, the light totally reflected by the second surface 42b reaches the first surface 41b, and is totally reflected by the first surface 41b toward the second surface 42b.
 その後、第2の面42bに向かった光は、やがて偏向部42aに入射し、一部の光が第1の面41bに対して垂直となるよう偏向され、残りの光が第2の面42bに到達し第2の面42bで全反射される。 Thereafter, the light directed toward the second surface 42b eventually enters the deflecting unit 42a, is deflected so that part of the light is perpendicular to the first surface 41b, and the remaining light is the second surface 42b. And is totally reflected by the second surface 42b.
 つまり、入射面部41aから導光体40内部へ入射した光は、第1~第2の面41b、42bを反射して導光体40内部を進む。導光体40の内部を進む間、偏向部42aにより垂直方向に光が回折され第1の面41bを透過する。第1の面41bを透過した光は、上方に配置された入射光補正部材13を透過し、更に上方に配置されたフロントガラスWsに到達する。 That is, the light that has entered the light guide 40 from the incident surface portion 41 a is reflected by the first and second surfaces 41 b and 42 b and travels inside the light guide 40. While traveling inside the light guide 40, light is diffracted in the vertical direction by the deflecting portion 42a and transmitted through the first surface 41b. The light transmitted through the first surface 41b passes through the incident light correction member 13 disposed above and reaches the windshield Ws disposed further upward.
 次に、実施例1による車両用表示装置10の効果を説明する。 Next, effects of the vehicle display device 10 according to the first embodiment will be described.
 図2を参照する。導光体40は、第1の面41b及び第2の面42bが、共に車体の車幅方向に沿うように配置されている。更に、導光体40は、内部を通過する光を回折し第1の面41bから出射させる偏向部42aを含んでいる。まず、第1~第2の面41b、42bが車体の車幅方向に沿うように配置されることで、導光体40が車幅方向に対して略平行に配置される。結果、車両用表示装置10は、前後方向における幅を短くすることができ、小さくなる。更に、内部を通過する光を回折し、第1の面41bから光を出射させる偏向部42aを導光体40が含んでいることで、導光体40を車幅方向に対して略平行に配置しても、前方に向かって光を出射することができる。即ち、コンパクトな車両用表示装置10を提供することができる。 Refer to FIG. The light guide 40 is arranged such that the first surface 41b and the second surface 42b are both along the vehicle width direction of the vehicle body. Further, the light guide 40 includes a deflecting unit 42a that diffracts light passing through the inside and emits the light from the first surface 41b. First, the first and second surfaces 41b and 42b are arranged along the vehicle width direction of the vehicle body, so that the light guide 40 is arranged substantially parallel to the vehicle width direction. As a result, the display device 10 for a vehicle can shorten the width in the front-rear direction and becomes smaller. Further, since the light guide 40 includes a deflecting portion 42a that diffracts light passing through the inside and emits light from the first surface 41b, the light guide 40 is substantially parallel to the vehicle width direction. Even if it arrange | positions, light can be radiate | emitted toward the front. That is, the compact vehicle display device 10 can be provided.
 更に、車両用表示装置10は、第1の面41bを上方に向けると共に第1の面41bの上方に透過型の入射光補正部材13を配置することで、導光体40の前後方向に入射光補正部材を配置することが不要になる。この結果、車両用表示装置10を、車体の前後方向において幅をより短くすることができる。即ち、車両用表示装置10をよりコンパクトにすることもできる。 Further, the vehicular display device 10 is incident in the front-rear direction of the light guide 40 by disposing the transmissive incident light correction member 13 above the first surface 41b with the first surface 41b facing upward. It is not necessary to arrange the light correction member. As a result, the width of the vehicle display device 10 can be made shorter in the front-rear direction of the vehicle body. That is, the vehicle display device 10 can be made more compact.
 コリメート光学系30を通過し導光体40の第1の面41bと第2の面42bへ入射する光の入射角は、第1の面41bと第2の面42bに入射した光が全反射する最小の角度を臨界角とした場合に、この臨界角よりも大きい角度である。第1の面41bへの光の入射角を臨界角よりも大きい角度とすることで、第1の面41bに入射した光は、まず、第1の面41bで全反射される。そして、第1の面41bで反射された光は、一部が偏向部42aにより回折され残りが第2の面42bに入射する。その後、第2の面42bに入射した光は、臨界角よりも大きな角度をもって第2の面42bに入射するため、第2の面42bで全反射される。即ち、第1の面41b及び第2の面42bへの入射角を臨界角よりも大きい角度とすることで、光エネルギーを損失させずに第1~第2の面41b、42bで光を反射させることができる。結果、光を反射させる反射膜を第1の面41b又は第2の面42bに施すことが不要になる。これにより、安価な車両用表示装置10を提供することができる。 The incident angle of light passing through the collimating optical system 30 and entering the first surface 41b and the second surface 42b of the light guide 40 is such that the light incident on the first surface 41b and the second surface 42b is totally reflected. If the minimum angle is the critical angle, the angle is larger than this critical angle. By making the incident angle of the light on the first surface 41b larger than the critical angle, the light incident on the first surface 41b is first totally reflected by the first surface 41b. A part of the light reflected by the first surface 41b is diffracted by the deflecting unit 42a, and the rest is incident on the second surface 42b. Thereafter, the light incident on the second surface 42b is incident on the second surface 42b at an angle larger than the critical angle, and thus is totally reflected by the second surface 42b. That is, by making the incident angle to the first surface 41b and the second surface 42b larger than the critical angle, the light is reflected by the first and second surfaces 41b and 42b without losing light energy. Can be made. As a result, it is not necessary to provide a reflective film that reflects light on the first surface 41b or the second surface 42b. Thereby, the cheap display apparatus 10 for vehicles can be provided.
 コリメート光学系30は、第1の面41bに光を入射させるように光を透過させるコリメートレンズ33を有している。コリメートレンズ33は、光の入射する面及び光の出射する面が互いに略平行に形成された液晶ポリマーレンズ又はレンチキュラーレンズである。光を入射する面及び光を出射する面が互いに略平行であることにより、レンズが薄くなる。即ち、車両用表示装置10には、より薄いレンズが組み付けられることとなる。この結果、よりコンパクトな車両用表示装置10を提供することができる。 The collimating optical system 30 includes a collimating lens 33 that transmits light so that the light is incident on the first surface 41b. The collimating lens 33 is a liquid crystal polymer lens or lenticular lens in which a light incident surface and a light output surface are formed substantially parallel to each other. Since the light incident surface and the light output surface are substantially parallel to each other, the lens becomes thin. That is, a thinner lens is assembled to the vehicle display device 10. As a result, a more compact vehicle display device 10 can be provided.
 入射光補正部材13は、光の入射する面及び光の出射する面が互いに略平行に形成された液晶ポリマーレンズ又はレンチキュラーレンズである。光の入射する面及び光の出射する面が互いに略平行であることにより、レンズが薄くなる。即ち、車両用表示装置10には、より薄いレンズが組み付けられることとなる。この結果、よりコンパクトな車両用表示装置10を提供することができる。 The incident light correcting member 13 is a liquid crystal polymer lens or a lenticular lens in which a light incident surface and a light output surface are formed substantially parallel to each other. Since the light incident surface and the light output surface are substantially parallel to each other, the lens becomes thin. That is, a thinner lens is assembled to the vehicle display device 10. As a result, a more compact vehicle display device 10 can be provided.
 次に、実施例1による車両用表示装置10の変更例を説明する。 Next, a modified example of the vehicle display device 10 according to the first embodiment will be described.
 図5を参照する。図5には、変更例による車両用表示装置10Aに搭載された導光体40Aが示されている。導光体40Aは、透過した光を平行光に変える役割を果たすコリメートレンズ部33Aを一体的に有している。即ち、図2に示されたコリメートレンズ33を、導光体40に一体的に設けた。 Refer to FIG. FIG. 5 shows a light guide 40A mounted on a vehicle display device 10A according to a modification. The light guide 40A integrally includes a collimating lens portion 33A that serves to change the transmitted light into parallel light. That is, the collimating lens 33 shown in FIG.
 このように構成した導光体40Aを用いた場合にも、本発明所定の効果を得ることができる。さらには、コリメートレンズ部33Aが一体的に形成された導光体40Aを用いることにより、部品点数の削減を図ることができる。 Even when the light guide body 40A configured as described above is used, the predetermined effect of the present invention can be obtained. Furthermore, the number of parts can be reduced by using the light guide 40A in which the collimating lens portion 33A is integrally formed.
<実施例2>
 次に、本発明の実施例2を図面に基づいて説明する。
<Example 2>
Next, a second embodiment of the present invention will be described with reference to the drawings.
 図6を参照する。図6は、車両用表示装置10Bにおける実施例2の断面図であり、上記図2に対応させて表している。実施例2による車両用表示装置10Bにおいては、実施例1による偏向部42aの配置される位置が変わっている。その他の基本的な構造については、実施例1による車両用表示装置10と共通する。実施例1と共通する部分については、符号を流用すると共に詳細な説明を省略する。 Refer to FIG. FIG. 6 is a cross-sectional view of the second embodiment of the vehicle display device 10B, corresponding to FIG. In the vehicle display device 10B according to the second embodiment, the position where the deflection unit 42a according to the first embodiment is arranged is changed. Other basic structures are common to the vehicle display device 10 according to the first embodiment. About the part which is common in Example 1, a code | symbol is diverted and detailed description is abbreviate | omitted.
 導光体40Bは、コリメートレンズ33を通過した光を入射させる導光体本体部41Bと、この導光体本体部41Bに入射した光を導光体本体部41Bから出射するように反射する偏向部42Baと、を有している。 The light guide 40B is a light guide body 41B that makes the light that has passed through the collimator lens 33 incident, and a deflection that reflects the light that has entered the light guide body 41B so as to be emitted from the light guide body 41B. Part 42Ba.
 導光体本体部41Bは、導光体40B内部にコリメートレンズ33を透過した光を入射させる入射面部41Baと、この入射面部41Baから入射した光を反射する第1の面41Bbと、この第1の面41Bbが反射した光が入射する第2の面41Bcと、を有している。 The light guide body 41B includes an incident surface 41Ba that allows the light transmitted through the collimator lens 33 to enter the light guide 40B, a first surface 41Bb that reflects the light incident from the incident surface 41Ba, and the first surface 41Bb. And the second surface 41Bc on which the light reflected by the surface 41Bb is incident.
 第1の面41Bb及び第2の面41Bcは入射した光を全反射する。 The first surface 41Bb and the second surface 41Bc totally reflect the incident light.
 第1の面41Bbは、入射面部41Baを通過した光が最初に到達する境界面であり、入射した光を第2の面41Bcに向かって全反射する。また、第1の面41Bbは、第2の面41Bcが反射した光が入射すると共に、入射した光を第2の面41Bcに向かって全反射する。 The first surface 41Bb is a boundary surface where light that has passed through the incident surface portion 41Ba reaches first, and totally reflects the incident light toward the second surface 41Bc. The first surface 41Bb receives the light reflected by the second surface 41Bc and totally reflects the incident light toward the second surface 41Bc.
 第2の面41Bcは、第1の面41Bbに対向して設けられている。第2の面41Bcは、第1の面41Bbが反射した光の一部が入射すると共に、入射した光を第1の面41Bbに向かって全反射する。 The second surface 41Bc is provided to face the first surface 41Bb. The second surface 41Bc receives a part of the light reflected by the first surface 41Bb and totally reflects the incident light toward the first surface 41Bb.
 偏向部42Baは、第1の面41Bb及び第2の面41Bcの間に設けられ、入射した光の一部を第1の面41Bbに対して略垂直方向に反射し残部を第2の面41Bc側に透過する。即ち、偏向部42Baが反射した光は、入射した光の一部が第1の面41Bbを透過し第1の面41Bbから垂直方向に出射されることとなる。言い換えると、偏向部42Baは、導光体40Bに垂直方向に光を出射可能な特性を持たせている。 The deflecting unit 42Ba is provided between the first surface 41Bb and the second surface 41Bc, reflects a part of the incident light in a direction substantially perpendicular to the first surface 41Bb, and the remaining part of the second surface 41Bc. Permeate to the side. In other words, the light reflected by the deflecting unit 42Ba is transmitted through the first surface 41Bb and partly emitted from the first surface 41Bb in the vertical direction. In other words, the deflecting unit 42Ba has a characteristic capable of emitting light in the vertical direction to the light guide 40B.
 偏向部42Baは、例えば、ハーフミラーであり、導光体本体部41Bの内部に複数配置されている。ハーフミラーは、第1の面41Bbが反射した光が、第1の面41Bbに対して垂直に入射するように傾けられて配置されている。ここで云うハーフミラーとは、光の一部を反射可能なミラーのことを意味している。即ち、ハーフミラーは、光の反射率と透過率とが必ずしも1:1となる必要はなく、例えば反射率及び透過率が1:9であっても良いし、2:8となっていても良い。また、導光体本体部41B内部に複数配置されるハーフミラーそれぞれの反射率及び透過率が異なっていても良い。 The deflection unit 42Ba is, for example, a half mirror, and a plurality of the deflection units 42Ba are arranged inside the light guide body 41B. The half mirror is disposed so as to be inclined so that the light reflected by the first surface 41Bb is perpendicularly incident on the first surface 41Bb. The half mirror here refers to a mirror capable of reflecting a part of light. That is, the half mirror does not necessarily have a light reflectance and transmittance of 1: 1. For example, the reflectance and transmittance may be 1: 9, or 2: 8. good. Moreover, the reflectance and the transmittance | permeability of each half mirror arrange | positioned inside the light guide main-body part 41B may differ.
 偏向部42Baが導光体本体部41B内部に配置された上記導光体40Bにおいても光を垂直に出射可能となるため、導光体40Bを車体の車幅方向に配置することができる。言い換えると、第1~第2の面41Bb、41Bcを車体の車幅方向に沿うように配置することができる。従って、実施例2による車両用表示装置10Bにおいても、本発明は、所定の効果を得ることができる。 The light guide 40B can be arranged in the vehicle width direction of the vehicle body because the light can be emitted vertically also in the light guide 40B in which the deflection unit 42Ba is arranged in the light guide body 41B. In other words, the first and second surfaces 41Bb and 41Bc can be arranged along the vehicle width direction of the vehicle body. Therefore, also in the vehicle display device 10B according to the second embodiment, the present invention can obtain a predetermined effect.
 尚、本発明による車両用表示装置10、10A、10Bが搭載される車両Veは、四輪車の他、二輪車や三輪車であっても良い。 The vehicle Ve on which the vehicle display devices 10, 10A and 10B according to the present invention are mounted may be a two-wheeled vehicle or a three-wheeled vehicle other than a four-wheeled vehicle.
 また、実施例において示している第1~第2のミラー31、32は必須の構成要素ではない。つまり、これらを必要に応じて廃しても良い。また逆に、ミラーの枚数を必要に応じて増やすこともできる。ミラーの枚数を増やすことで、導光体40、40A、40Bに光が入射するまでにおける光路の自由度を高めることができる。 Also, the first and second mirrors 31 and 32 shown in the embodiment are not essential components. That is, you may abolish these as needed. Conversely, the number of mirrors can be increased as necessary. By increasing the number of mirrors, it is possible to increase the degree of freedom of the optical path until light enters the light guides 40, 40A, and 40B.
 更に、第1~第2の基材31a、32aは、実施例において平板状の無機ガラスである例をもって説明されている。しかしながら、第1~第2の基材31a、32aは、光を反射可能な金属膜を蒸着することができれば平板状の無機ガラスに限られない。即ち、第1~第2の基材31a、32aは、例えば、アクリル樹脂やシクロオレフィンポリマー樹脂等であっても良い。 Furthermore, the first and second base materials 31a and 32a are described with an example of a flat inorganic glass in the embodiments. However, the first and second base materials 31a and 32a are not limited to a flat inorganic glass as long as a metal film capable of reflecting light can be deposited. That is, the first and second base materials 31a and 32a may be, for example, an acrylic resin or a cycloolefin polymer resin.
 また、第1~第2の反射部31b、32bは、実施例において第1~第2の基材31a、32aに蒸着されたアルミニウム等の金属膜である例をもって説明されている。しかしながら、第1~第2の反射部31b、32bは、所定の波長帯域の光(可視光)のみを反射可能な多層膜であっても良い。即ち、第1~第2の反射部31b、32bを有している第1のミラー31及び第2のミラー32が、コールドミラーであっても良い。 Further, the first and second reflecting portions 31b and 32b are described with an example of a metal film such as aluminum deposited on the first and second base materials 31a and 32a in the embodiment. However, the first and second reflecting portions 31b and 32b may be multilayer films that can reflect only light in a predetermined wavelength band (visible light). That is, the first mirror 31 and the second mirror 32 having the first and second reflecting portions 31b and 32b may be cold mirrors.
 更に、導光体40、40A、40Bは、実施例において無機ガラスである例をもって説明されている。しかしながら、導光体40、40A、40Bは、内部に光を入射可能な部材であれば無機ガラスに限られない。即ち、導光体40、40A、40Bは、例えば、透明な樹脂である、アクリル樹脂又はシクロオレフィンポリマー樹脂等であっても良い。 Furthermore, the light guides 40, 40A, and 40B are described with examples that are inorganic glass in the embodiments. However, the light guides 40, 40 </ b> A, and 40 </ b> B are not limited to inorganic glass as long as the light can be incident on the inside. That is, the light guides 40, 40A, and 40B may be, for example, an acrylic resin or a cycloolefin polymer resin that is a transparent resin.
 また、被投影部Wsは、実施例においてフロントガラスWsとして説明されている。しかしながら、被投影部Wsは、車両用表示装置10、10A、10Bから出射された光を投射することができるものであれば良く、フロントガラスWsに限られない。即ち、本発明は、いわゆるコンバイナを被投影部Wsとした車両用表示装置10、10A、10Bにも適用することができる。 Further, the projection target part Ws is described as the windshield Ws in the embodiment. However, the projected part Ws is not limited to the windshield Ws as long as it can project the light emitted from the vehicle display devices 10, 10 </ b> A, and 10 </ b> B. That is, the present invention can also be applied to the vehicle display devices 10, 10 </ b> A, and 10 </ b> B that use a so-called combiner as the projection target portion Ws.
 即ち、本発明の作用及び効果を奏する限りにおいて、本発明は、実施例に限定されるものではない。 That is, the present invention is not limited to the examples as long as the operations and effects of the present invention are exhibited.
 本発明の車両用表示装置10、10A、10Bは、車両Veに搭載するのに好適である。 The vehicle display devices 10, 10A, and 10B of the present invention are suitable for being mounted on the vehicle Ve.
 10、10A、10B…車両用表示装置
 11…表示手段
 13…入射光補正部材
 20…ケース
 30…コリメート光学系
 33、33A…コリメートレンズ(コリメートレンズ部)
 40、40A、40B…導光体
 40b、40Bb…第1の面
 41Bc、42b…第2の面
 42a、42Ba…偏向部
 I…虚像(像)
 Mn…視認者(運転者)
 Ve…車両
 Ws…被投影部(フロントガラス)
DESCRIPTION OF SYMBOLS 10, 10A, 10B ... Display apparatus for vehicles 11 ... Display means 13 ... Incident light correction member 20 ... Case 30 ... Collimating optical system 33, 33A ... Collimating lens (collimating lens part)
40, 40A, 40B ... light guides 40b, 40Bb ... first surface 41Bc, 42b ... second surface 42a, 42Ba ... deflection part I ... virtual image (image)
Mn ... Viewer (driver)
Ve ... Vehicle Ws ... Projected part (windshield)

Claims (4)

  1.  車体の前部に設けられた被投影部に光を投射させ、前記被投影部に投射された光を虚像として視認者に認識させる車両用表示装置において、
     光を出射可能な表示手段と、この表示手段から出射された光を平行光となるように通過させるコリメート光学系と、このコリメート光学系を通過した光が入射すると共に入射した光が互いに平行に設けられた第1の面及び第2の面を反射して進む導光体と、前記第1の面から出射された光が所定の方向に向かうよう補正する入射光補正部材と、を備え、
     前記導光体は、前記第1の面及び前記第2の面が、共に前記車体の車幅方向に沿うように配置されていると共に、内部を通過する光を回折又は反射し前記第1の面から出射させる偏向部を含むことを特徴とする車両用表示装置。
    In a vehicle display device that projects light onto a projection unit provided at a front portion of a vehicle body and causes a viewer to recognize the light projected on the projection unit as a virtual image,
    Display means capable of emitting light, collimating optical system for allowing the light emitted from the display means to pass in parallel light, and light that has passed through the collimating optical system are incident and the incident light is parallel to each other A light guide that reflects and travels by reflecting the first surface and the second surface provided; and an incident light correction member that corrects the light emitted from the first surface in a predetermined direction.
    The light guide is arranged such that the first surface and the second surface are both along the vehicle width direction of the vehicle body, and diffracts or reflects light passing through the first light guide. A vehicular display device comprising a deflecting portion for emitting light from a surface.
  2.  前記コリメート光学系を通過し前記導光体の前記第1の面と前記第2の面へ入射する光の入射角は、前記第1の面及び前記第2の面に入射した光が全反射する最小の角度を臨界角とした場合に、この臨界角よりも大きい角度であることを特徴とする請求項1記載の車両用表示装置。 The incident angle of the light that passes through the collimating optical system and is incident on the first surface and the second surface of the light guide is totally reflected by the light incident on the first surface and the second surface. 2. The display device for a vehicle according to claim 1, wherein when the minimum angle is a critical angle, the angle is larger than the critical angle.
  3.  前記コリメート光学系は、前記第1の面に光を入射させるように光を透過させるコリメートレンズを有し、
     前記コリメートレンズは、光の入射する面及び光の出射する面が互いに略平行に形成された液晶ポリマーレンズ又はレンチキュラーレンズであることを特徴とする請求項1又は請求項2記載の車両用表示装置。
    The collimating optical system has a collimating lens that transmits light so that the light is incident on the first surface;
    3. The vehicle display device according to claim 1, wherein the collimating lens is a liquid crystal polymer lens or a lenticular lens in which a light incident surface and a light emitting surface are formed substantially parallel to each other. .
  4.  前記入射光補正部材は、光の入射する面及び光の出射する面が互いに略平行に形成された液晶ポリマーレンズ又はレンチキュラーレンズであることを特徴とする請求項1~3のいずれか1項記載の車両用表示装置。 4. The incident light correction member is a liquid crystal polymer lens or a lenticular lens in which a light incident surface and a light output surface are formed substantially parallel to each other. Vehicle display device.
PCT/JP2019/016781 2018-04-25 2019-04-19 Vehicle display device WO2019208424A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-084386 2018-04-25
JP2018084386 2018-04-25

Publications (1)

Publication Number Publication Date
WO2019208424A1 true WO2019208424A1 (en) 2019-10-31

Family

ID=68293908

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/016781 WO2019208424A1 (en) 2018-04-25 2019-04-19 Vehicle display device

Country Status (1)

Country Link
WO (1) WO2019208424A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0672185A (en) * 1992-06-26 1994-03-15 Yazaki Corp Display device for vehicle
US20100271698A1 (en) * 2009-04-24 2010-10-28 David Kessler Pupil-expanded volumetric display
JP2013045087A (en) * 2011-08-26 2013-03-04 Toshiba Corp Three-dimensional image display apparatus
JP2014215481A (en) * 2013-04-26 2014-11-17 日本精機株式会社 Head-up display device
JP2015001614A (en) * 2013-06-14 2015-01-05 株式会社ジャパンディスプレイ Display device
JP2015045808A (en) * 2013-08-29 2015-03-12 日本精機株式会社 Head-up display device
JP2015172713A (en) * 2014-03-12 2015-10-01 オリンパス株式会社 display device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0672185A (en) * 1992-06-26 1994-03-15 Yazaki Corp Display device for vehicle
US20100271698A1 (en) * 2009-04-24 2010-10-28 David Kessler Pupil-expanded volumetric display
JP2013045087A (en) * 2011-08-26 2013-03-04 Toshiba Corp Three-dimensional image display apparatus
JP2014215481A (en) * 2013-04-26 2014-11-17 日本精機株式会社 Head-up display device
JP2015001614A (en) * 2013-06-14 2015-01-05 株式会社ジャパンディスプレイ Display device
JP2015045808A (en) * 2013-08-29 2015-03-12 日本精機株式会社 Head-up display device
JP2015172713A (en) * 2014-03-12 2015-10-01 オリンパス株式会社 display device

Similar Documents

Publication Publication Date Title
US11571952B2 (en) Head up display device and image display apparatus therefor
US7652825B2 (en) Cover for head-up display
CN104345458B (en) Head-up display device
US10473928B2 (en) Backlight unit and head-up display device
US20140204465A1 (en) Head-up display device
CN114290898A (en) Vehicle with a steering wheel
JP7355013B2 (en) Display device and head-up display device
EP3451045B1 (en) Display device
WO2020059619A1 (en) Display device
EP3789229B1 (en) Vehicular display device
US11448880B2 (en) Virtual image display device shifting light of an image to create a virtual image
JP7155700B2 (en) Display device
WO2019208424A1 (en) Vehicle display device
US11061228B2 (en) Head-up display for automobile
JP7147373B2 (en) vehicle display
JP2018163260A (en) Image display device, virtual image display device, and movable body
EP3789227B1 (en) Vehicle display device
WO2024162164A1 (en) Image projection device
WO2024111398A1 (en) Image projection device
WO2024195752A1 (en) Optical member and image projection device
CN112673297B (en) Projection device for a head-up display system for a driver of a motor vehicle and corresponding system
WO2024190458A1 (en) Image projection device
WO2022176348A1 (en) Optical system
WO2024135587A1 (en) Image projection device
JP7163804B2 (en) Lighting unit for head-up display

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19792715

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19792715

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP