WO2019124217A1 - Work vehicle, travel path selection system for work vehicle, and travel path calculation system - Google Patents

Work vehicle, travel path selection system for work vehicle, and travel path calculation system Download PDF

Info

Publication number
WO2019124217A1
WO2019124217A1 PCT/JP2018/045907 JP2018045907W WO2019124217A1 WO 2019124217 A1 WO2019124217 A1 WO 2019124217A1 JP 2018045907 W JP2018045907 W JP 2018045907W WO 2019124217 A1 WO2019124217 A1 WO 2019124217A1
Authority
WO
WIPO (PCT)
Prior art keywords
traveling
travel
route
work
unit
Prior art date
Application number
PCT/JP2018/045907
Other languages
French (fr)
Japanese (ja)
Inventor
阪口和央
佐野友彦
吉田脩
中林隆志
Original Assignee
株式会社クボタ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017244232A external-priority patent/JP6745784B2/en
Priority claimed from JP2017244440A external-priority patent/JP6884092B2/en
Priority claimed from JP2017245309A external-priority patent/JP6910285B2/en
Application filed by 株式会社クボタ filed Critical 株式会社クボタ
Priority to CN201880073472.6A priority Critical patent/CN111343854B/en
Priority to KR1020207012324A priority patent/KR20200096489A/en
Publication of WO2019124217A1 publication Critical patent/WO2019124217A1/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • G05D1/0219Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory ensuring the processing of the whole working surface
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01BSOIL WORKING IN AGRICULTURE OR FORESTRY; PARTS, DETAILS, OR ACCESSORIES OF AGRICULTURAL MACHINES OR IMPLEMENTS, IN GENERAL
    • A01B69/00Steering of agricultural machines or implements; Guiding agricultural machines or implements on a desired track
    • A01B69/007Steering or guiding of agricultural vehicles, e.g. steering of the tractor to keep the plough in the furrow
    • A01B69/008Steering or guiding of agricultural vehicles, e.g. steering of the tractor to keep the plough in the furrow automatic
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01BSOIL WORKING IN AGRICULTURE OR FORESTRY; PARTS, DETAILS, OR ACCESSORIES OF AGRICULTURAL MACHINES OR IMPLEMENTS, IN GENERAL
    • A01B69/00Steering of agricultural machines or implements; Guiding agricultural machines or implements on a desired track
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D41/00Combines, i.e. harvesters or mowers combined with threshing devices
    • A01D41/12Details of combines
    • A01D41/127Control or measuring arrangements specially adapted for combines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/20Off-Road Vehicles
    • B60Y2200/22Agricultural vehicles
    • B60Y2200/222Harvesters

Definitions

  • the present invention relates to a work vehicle, a travel route selection system for a work vehicle, and a travel route calculation system.
  • Patent Document 1 discloses a work vehicle that automatically travels along a plurality of travel routes set to cover an unworked area.
  • the travel paths are parallel to one another, and the distance between them is determined by the working width and the overlap value set at both ends of the working width.
  • Direction change traveling is performed from the traveling route after the traveling to the next traveling route.
  • the overlap value is determined in consideration of the running error of the work vehicle (displacement in the transverse direction of the traveling route: lateral shift), in actual driving, lateral shift occurs that exceeds the set overlap value. In this case, a new travel route is set to avoid leaving work.
  • Patent Document 2 discloses a work vehicle that automatically travels along a travel path including a plurality of straight paths generated based on the size of the unworked area, the work width, and the overlapping setting width (overlap).
  • a travel route if there is an unworked area with a width less than the work width, set the overlap setting width to a wider overlap width and generate an unworked area with a width less than the work width.
  • a driving route generation algorithm to avoid is provided.
  • Patent Document 3 discloses a field work vehicle equipped with an operation support device that displays a travel route with high efficiency and accuracy of work to be recommended on the display unit of the display device according to the current position of the vehicle.
  • the recommended travel route is a route where the exit position of the work is in the vicinity of the work start position, assuming that there is only one entrance to the field, and furthermore, the portion where the work area is stepped on is as small as possible.
  • Path that In this operation support device, the work width center of the work device is located on the vehicle body center line, and as a result, the vehicle body is located between the work width center and the turning reference point (which is substantially located on the tread width center line). It is assumed that there is no offset in the transverse direction.
  • a reaping device for reaping the field cropping grain in a field a threshing device for threshing the reaping grain remnant harvested by the reaping device, and a grain for storing grains obtained by threshing processing by the threshing device BACKGROUND
  • a travel route calculation system that calculates a travel route of a combine having a tank and a storage amount sensor that detects a grain storage amount in a grain tank.
  • Patent Document 4 describes an idea of an automatic travel combine. In the harvesting operation using the combine, the operator manually operates the combine at the beginning of the harvesting operation and performs the mowing travel so as to go around the outer peripheral portion in the field.
  • the traveling direction of the harvester is recorded. Then, the automatic traveling based on the recorded direction performs the reaping travel in the uncut area in the field.
  • a collecting tank is disposed at an outer peripheral portion in the field.
  • the collection tank is configured to be able to receive and store grains discharged from the discharge cylinder of the combine.
  • the combine of patent document 4 is comprised so that it may carry out the reaping driving
  • the overlap value is set to exceed the assumed positional deviation of the work vehicle. Therefore, in the case of driving under normal conditions, lateral deviation does not occur so as to exceed the overlap value, and in normal driving, only positional deviation occurs in a range considerably smaller than the width of the overlap value. Therefore, in work travel along each travel path, waste occurs due to the difference between the actual positional deviation and the overlap value.
  • the traveling on the current traveling route is finished, and when selecting the next traveling route from a plurality of parallel traveling routes, the current is considered as current as possible considering the minimum turning radius.
  • the untraveled travel route near the travel route is the first candidate.
  • the distances of the turning paths to the left and right travel paths are treated as the same. This is because it is assumed that the work width center of the work vehicle is located on the vehicle body center line.
  • the working width center is set between left turning and right turning. Since the locus is asymmetrical, the conventional method can not select an appropriate next traveling route.
  • the combine travels automatically so as to pass in the vicinity of the collection tank even when it is not necessary to discharge the grain. At this time, the combine travels in the existing area.
  • the combine travels along the reaping travel path, and the need for grain discharge etc. occurs.
  • a configuration may be considered in which the combine is controlled so as to temporarily leave the reaping travel path.
  • the combine grain tank may be full at a position midway along the traveling line. In this case it is necessary to interrupt the harvesting run at that location and to leave the running line for grain removal. As a result, a part of the travel line is left uncut.
  • the predicted value of the grain storage amount is calculated when the combine travels along the entire traveling line scheduled to travel next and the calculated predicted value is equal to or more than the storage limit amount, and the next traveling is performed. It is conceivable that the grain discharging operation is performed before starting the mowing travel along the line. With this configuration, it is possible to avoid that the combine grain tank becomes full in the middle of the traveling line.
  • the object of the present invention is to travel as it is easy to prevent a drop in working efficiency by storing as many grains as possible in the grain tank while avoiding that the grain tank of the combine is full in the middle of the traveling line It is providing a route calculation system.
  • the work vehicle is a work vehicle that divides a work site into an existing work area and an unworked area by automatically traveling along a travel route, and includes a work device that defines a work width, and the work width And a travel route setting unit for setting a plurality of travel routes extending in parallel with a route interval determined based on an overlap value preset on both sides of the work width, and a host vehicle for computing a host vehicle position A position calculation unit, a position shift value calculation unit for calculating a position shift value when the vehicle position is shifted toward the work area from the travel route as the travel target, and the overlap value And a correction value calculation unit that obtains a difference value between the position deviation value and the difference value, and uses a value that does not exceed the difference value as a correction value, and the travel route set in the unworked area based on the correction value. Travel path to be displaced to the unworked area side And a displacement portion.
  • a lateral deviation from the traveling path that is, a positional deviation occurs to some extent.
  • the overlap value is usually set to be larger than the maximum possible misalignment.
  • the value obtained by subtracting the maximum positional deviation value from the traveling route toward the existing work area from the overlap value is an increase in overlap during traveling of the next adjacent traveling route, that is, an excessive overlap length It will be Since such an excessive length is essentially unnecessary, in the present invention, a correction value for displacing the traveling path toward the non-working area is taken as the excessive length or some percentage of the excessive length. Do. As a result, it is possible to suppress a decrease in work efficiency due to the setting of overlap more than necessary.
  • the idea of the invention described above is that after the first traveling route is generated, the next traveling route is generated in consideration of the work width and the overlap during or immediately after the traveling of the traveling route.
  • a work vehicle is also a work vehicle that divides a work site into an existing work area and an unworked area by automatically traveling along a travel route, and a work device that defines a work width, and the above-mentioned traveling vehicle.
  • a target for the next travel target is the travel route extending parallel to the travel route with a route interval determined based on the work width and an overlap value preset on both sides of the work width.
  • a travel route setting unit set as a travel route, an own vehicle position calculation unit calculating an own vehicle position, and a position shift of the own vehicle position from the traveling route which is a traveling target toward the work area
  • a correction value calculation unit for obtaining a difference value between the overlap value and the position shift value, and setting a value not exceeding the difference value as a correction value
  • the target travel route is based on the correction value Wherein and a travel route displacing unit for displacing the non-working area side Te.
  • the correction value is the difference value
  • the travel path displacement unit is configured to displace the travel path by the value of the correction value.
  • the vehicle position calculation unit calculates the vehicle position based on signals output from a satellite positioning module and / or an inertial measurement module.
  • the lateral deviation can be determined from the travel locus calculated from the vehicle position using the satellite positioning module.
  • lateral deviation at short travel distances can also be determined by means of an inertial measurement module.
  • detection of sudden lateral deviation is also possible with high accuracy. By combining these two modules, more accurate lateral deviation detection is possible.
  • the work vehicle according to the present invention travels the work site along a traveling path including a plurality of parallel traveling paths extending parallel to one another and a direction change traveling path connecting the parallel traveling paths.
  • a traveling device a work device, left turn locus information on a turn locus at the work width center of the work apparatus at the time of left turn, right turn locus information on a turn locus at the work width center at the right turn, Based on the turning information management unit that manages the minimum turning radius of the traveling device, the left turning locus information, the right turning locus information, and the minimum turning radius, the current traveling route which is the parallel traveling route during traveling And a next traveling route selection unit which determines the selection of the next traveling route which is the parallel traveling route to travel next to the vehicle.
  • the next traveling route selection unit is configured to select a short traveling distance of a change of direction from the current traveling route to the next traveling route as a selection condition. .
  • the next traveling route in which the traveling distance of the direction change becomes shorter is selected in consideration of the turning locus at the center of the working width at the time of each turning on the left and right, the traveling distance based on the traveling locus of the traveling device is short. Even if the work width center can not reach the work width center according to the next traveling route, a turning change is excluded. As a result, even if the work device is installed such that lateral displacement occurs between the work width center and the turning reference point, it is possible to select an appropriate next travel route.
  • a satellite positioning module that outputs positioning data based on satellite signals from satellites, a vehicle position calculation unit that calculates a vehicle position based on the positioning data, and A steering amount calculation unit is provided which calculates a steering amount based on a deviation between a traveling route and the vehicle position.
  • the reference point of the vehicle body following the top of the turning reference path defined by the turning circle set during turning that is, the turning reference point is substantially located on the tread center line.
  • the satellite antenna is a positioning reference point, and the position is a coordinate position included in the positioning data of the satellite positioning module. Therefore, if the satellite antenna is installed on the tread center line, the position of the turning reference point can be accurately calculated, and the accuracy of turning travel is improved.
  • a travel route selection system is for a work vehicle traveling along a work site along a travel route including a plurality of parallel travel routes extending parallel to one another and a direction change travel route connecting the parallel travel routes.
  • a traveling route selection system comprising: left turning trajectory information on a turning trajectory of a working width center of the work vehicle at the time of left turning; right turning trajectory information on a turning trajectory of the working width center at the time of right turning; It is the parallel traveling route during traveling based on the turning information management unit that manages the minimum turning radius of the traveling device of the work vehicle, the left turning locus information, the right turning locus information, and the minimum turning radius And a next traveling route selection unit which determines selection of a next traveling route which is the parallel traveling route to be run next to the current traveling route.
  • This travel route selection system provides the same effects as the above-described work vehicle of the present invention. Also, the above-described embodiment of the present invention can be applied to this travel route selection system, and the same function and effect can be obtained.
  • the features of the present invention are a reaping device for reaping the field crop of the field, a threshing device for threshing the reaping crop remnant harvested by the reaping device, and storing the grain obtained by the threshing treatment by the threshing device
  • a travel route calculation system for calculating a travel route of a combine having a grain tank to be stored and a storage amount sensor for detecting a grain storage amount in the grain tank, wherein the travel path for reaping a crop in a field
  • a storage prediction unit that predicts whether or not the grain storage amount reaches a predetermined threshold in the middle of the next travel line, which is a travel line, is provided, and the reaping travel route calculation unit When it is predicted that the grain storage amount will reach the threshold in the middle of the next traveling line, the
  • the travel line correction processing when it is predicted by the storage prediction unit that the grain storage amount reaches a predetermined threshold on the way of the next travel line which is a travel line scheduled to travel next, the travel line correction processing is performed. It will be.
  • the traveling line correction process corrects the next traveling line so that the grain storage amount does not reach the threshold in the middle of the next traveling line. Then, if the combine travels based on the corrected next traveling line, the grain storage amount does not reach the threshold in the middle of the next traveling line.
  • the grain storage amount reaches a predetermined threshold in the middle of the traveling line. Then, if the predetermined threshold value is set to be equal to or less than the grain amount corresponding to the full amount of the grain tank, it can be avoided that the grain tank becomes full in the middle of the traveling line.
  • the present invention it is easy to store as many grains as possible in the grain tank by performing combine cutting along the corrected next traveling line. This makes it easy to prevent a drop in work efficiency.
  • the present invention it is possible to store as many grains as possible in the grain tank while preventing the grain tank of the combine from becoming full in the middle of the traveling line, thereby preventing a drop in work efficiency. Cheap.
  • the travel control unit is configured to control the combine so that the reaping travel is performed by the automatic travel along the reaping travel path, and the reaping travel path calculating unit further includes the travel line correction process. It is preferable to correct the next traveling line so that the reaper width by the reaper decreases.
  • the storage prediction unit predicts that the grain storage amount will reach the predetermined threshold in the middle of the next traveling line
  • the next traveling line is corrected so that the reaping width by the reaper decreases. Ru.
  • the combine travels automatically along the corrected next traveling line.
  • the storage prediction unit predicts that the grain storage amount will reach the predetermined threshold in the middle of the next traveling line
  • the cutting width in traveling along the next traveling line will be reduced.
  • the amount of grain obtained when the entire traveling line is cut is reduced. Thereby, it becomes difficult for the grain storage amount to reach a predetermined threshold in the middle of the next traveling line.
  • a unit harvest amount calculation unit that calculates a unit harvest amount that is an amount of grain harvested per unit cutting traveling distance, the threshold value, a detection result by the storage amount sensor, and the unit harvest
  • a position prediction unit that predicts a position of the combine at a time when the grain storage amount reaches the threshold value based on the unit harvest amount calculated by the amount calculation unit;
  • the position of the combine is predicted when the grain storage amount reaches a predetermined threshold. Then, if the predicted combine position is in the middle of the next travel line, it is predicted that the grain storage amount will reach a predetermined threshold in the middle of the next travel line.
  • FIG. 7 It is a figure which shows 1st Embodiment (following, it is the same to FIG. 7), and is a side view of the combine as an example of a working vehicle. It is a figure showing an outline of automatic travel of a combine. It is a figure showing the run course in automatic run. It is a functional block diagram which shows the structure of the control system of a combine. It is a schematic diagram explaining the correction
  • FIG. 14 It is a figure which shows 2nd Embodiment (following, it is the same to FIG. 14), and is a side view of the combine as an example of a working vehicle. It is a figure showing an outline of automatic travel of a combine. It is a figure showing the run course in automatic run. It is a top view which shows typically the relationship between a working width center and a turning reference point. It is a top view which shows typically the difference in the turning locus
  • front means front in the vehicle longitudinal direction (traveling direction) unless otherwise noted
  • rear arrow B shown in FIG. 1
  • Direction means the rear in the longitudinal direction of the vehicle body (traveling direction).
  • the lateral direction or the lateral direction means a transverse direction of the vehicle (vehicle width direction) orthogonal to the longitudinal direction of the vehicle.
  • Up (direction of arrow U shown in FIG. 1) and “down” (direction of arrow D shown in FIG. 1) are positional relationships in the vertical direction (vertical direction) of the vehicle body, Show.
  • the combine has a car body 10, a traveling device 11 of a crawler type, an operation unit 12, a threshing device 13, a grain tank 14, a harvesting part H as a working device, a conveying device 16, a grain discharging device 18.
  • the vehicle position detection module 80 is provided.
  • the traveling device 11 is provided at the lower part of the vehicle body 10.
  • the combine is configured to be able to self-propelled by the traveling device 11 in a field which is a work site.
  • the driving unit 12, the threshing device 13, and the grain tank 14 are provided on the upper side of the traveling device 11 and constitute an upper portion of the vehicle body 10.
  • a driver who operates the combine and a supervisor who monitors the combine operation can ride on the driving unit 12. Usually, the driver and the supervisor are combined. When the driver and the monitor are different persons, the monitor may monitor the combine operation from the outside of the combine.
  • the grain discharging device 18 is connected to the rear lower portion of the grain tank 14.
  • the vehicle position detection module 80 (the satellite positioning module 81 and the inertia measurement module 82) is attached to the front upper portion of the driving unit 12.
  • the harvesting unit H is a working device in the present invention. Since the harvester H defines the working width, the cutting width is the working width in the present invention.
  • the harvester H is provided at the front of the combine. Then, the transport device 16 is connected to the rear side of the harvesting unit H.
  • the harvester H also has a cutting mechanism 15 and a reel 17.
  • the cutting mechanism 15 reaps the crop of the field in the field.
  • the reel 17 scrapes the cropped cereals to be harvested while being rotationally driven. According to this configuration, the harvesting unit H harvests cereal grains (a kind of crop) in the field.
  • a combine traveling can carry out work traveling which travels with run device 11 while harvesting the grain of a field by harvesting part H.
  • the cropped rice straw which has been cut by the cutting mechanism 15 is transported by the transport device 16 to the threshing device 13.
  • the reaping grain is threshed.
  • the grains obtained by the threshing process are stored in a grain tank 14.
  • the grains stored in the grain tank 14 are discharged to the outside by the grain discharging device 18.
  • the communication terminal 4 is disposed in the operation unit 12.
  • the communication terminal 4 is fixed to the operation unit 12.
  • this invention is not limited to this, The communication terminal 4 may be comprised so that attachment or detachment is possible with respect to the operation part 12, and you may carry it out of the vehicle of a combine.
  • the vehicle position detection module 80 includes a satellite positioning module 81 and an inertial measurement module 82.
  • the satellite positioning module 81 receives GNSS (global navigation satellite system) signals (including GPS signals) transmitted from the artificial satellite GS, and outputs positioning data for calculating the position of the vehicle.
  • GNSS global navigation satellite system
  • the inertial measurement module 82 incorporates a gyro acceleration sensor and a magnetic direction sensor, and outputs a position vector indicating an instantaneous traveling direction.
  • the inertia measurement module 82 is used to supplement the vehicle position calculation by the satellite positioning module 81.
  • the inertial measurement module 82 can be omitted.
  • the driver / watcher In the harvest operation by the combine, the driver / watcher first operates the combine manually, and performs harvest traveling on the perimeter of the field so as to go around along the border of the field. As a result, as shown in FIG. 2, the area which has become the existing area (existing area) is set as the outer peripheral area SA. Then, the area left as the uncut ground (unworked place) inside the outer peripheral area SA is set as the work target area CA.
  • FIG. 2 shows an example of the outer peripheral area SA and the work target area CA.
  • the outer peripheral area SA is used as a space for the combine to turn when the harvest traveling is performed in the work target area CA. Further, the outer peripheral area SA is also used as a space for movement, such as when moving to a discharge place of grain or after moving to a fuel supply place after the harvest traveling is once finished. Therefore, in order to secure the width of the outer peripheral area SA to a certain extent, the driver travels the combine three to four turns. This circular traveling may also be performed by automatic traveling.
  • the transport vehicle CV shown in FIG. 2 can collect and transport the grain discharged
  • the traveling route includes a plurality of parallel traveling straight traveling routes and a direction change traveling route connecting the straight traveling routes.
  • the straight traveling route is not limited to a straight line, and may be a curved line or a combination of a curved line and a straight line.
  • the distance between the parallel travel paths is determined based on the work width which is the cutting width of the harvester H and the overlap for absorbing the travel error.
  • the calculated traveling route is sequentially set based on the work traveling pattern, and the combine is automatically controlled to travel along the set traveling route.
  • FIG. 3 shows an operation mode in which the direction is changed while repeating forward and backward movement at corner portions while cutting around the work target area CA.
  • the notification device 62 is a device for notifying a driver or the like of a work traveling state and various warnings, and is a buzzer, a lamp, a speaker, a display or the like.
  • the communication unit 66 is used to exchange data between the control computer of the combine and the management computer and the external communication terminal installed at a remote place.
  • This external communication terminal may be a tablet computer operated by an observer standing in a field or an observer (including a driver) who is riding in a combine, a computer installed at home or at a management office, or even outside a car Includes the communication terminal 4 brought out.
  • the control unit 5 is a core element of this control system, and is shown as a collection of a plurality of ECUs. A signal from the own vehicle position detection module 80 is input to the control unit 5 through the in-vehicle LAN.
  • the control unit 5 includes an output processing unit 503 and an input processing unit 502 as an input / output interface.
  • the output processing unit 503 is connected to various operation devices 70 via the device driver 65.
  • the operating devices 70 include a traveling device group 71 which is a driving-related device and a working device group 72 which is a working-related device.
  • the traveling device group 71 includes, for example, an engine control device, a transmission control device, a braking control device, a steering control device, and the like.
  • the working device group 72 includes a power control device and the like in the harvesting unit H, the threshing device 13, the transport device 16, and the grain discharging device 18.
  • a traveling state sensor group 63, a working state sensor group 64, a traveling operation unit 90, and the like are connected to the input processing unit 502.
  • the traveling state sensor group 63 includes a vehicle speed sensor, an engine rotational speed sensor, an overheat detection sensor, a brake pedal position detection sensor, a parking brake detection sensor, a shift position detection sensor, a steering position detection sensor, and the like.
  • the work state sensor group 64 includes a sensor for detecting the driving state of the harvest work device (the harvester H, the threshing device 13, the transport device 16, and the grain discharging device 18), and a sensor for detecting the state of the grain or grain. It is included.
  • the travel operation unit 90 is a general term for an operation tool which is manually operated by the driver and whose operation signal is input to the control unit 5.
  • the travel operation unit 90 includes a main shift operation tool, a steering operation tool, a mode operation tool, an automatic start operation tool, and the like.
  • the mode operation tool has a function of transmitting a command for switching between the automatic operation and the manual operation to the control unit 5.
  • the automatic start operating tool has a function of sending a final automatic start command for starting automatic traveling to the control unit 5.
  • the control unit 5 includes an own vehicle position calculation unit 50, a travel control unit 51, a work control unit 52, a travel mode management unit 53, a work area determination unit 54, a travel route setting unit 55, a positional deviation value calculation unit 56, and a correction value.
  • a calculation unit 57 and a travel route displacement unit 58 are provided.
  • the vehicle position calculation unit 50 calculates the vehicle position in the form of map coordinates (or field coordinates) based on the positioning data sequentially sent from the vehicle position detection module 80. At that time, the position of a reference point of the vehicle body 10 (for example, the center of the vehicle body, the center of the harvesting section H, etc.) can be set as the vehicle position.
  • the notification unit 501 generates notification data based on an instruction or the like from each functional unit of the control unit 5 and gives the notification data to the notification device 62.
  • the traveling control unit 51 has an engine control function, a steering control function, a vehicle speed control function, and the like, and supplies a traveling control signal to the traveling device group 71.
  • the work control unit 52 supplies work control signals to the work equipment group 72 to control their movement.
  • the traveling control unit 51 includes a manual traveling control unit 511 and an automatic traveling control unit 512.
  • the automatic travel mode is set to perform automatic driving
  • the manual travel mode is set to perform manual driving.
  • Such a travel mode is managed by the travel mode management unit 53.
  • the automatic travel control unit 512 controls the traveling device group 71 by generating a control signal for changing the vehicle speed including automatic steering and stop.
  • the control signal related to the automatic steering is generated such that the azimuth deviation and the positional deviation between the own vehicle position calculated by the own vehicle position calculation unit 50 and the traveling route serving as the traveling target are eliminated.
  • the manual travel control unit 511 When the manual travel mode is selected, the manual travel control unit 511 generates a control signal based on the operation by the driver and controls the traveling device group 71 to realize the manual driving.
  • the travel route serving as the travel target can be used for guidance for the combine to travel along the travel route, even in manual driving.
  • the work area determination unit 54 determines, from the harvest work performed with a predetermined work width, an already-cleaved area (peripheral area SA), an uncut area (work target area CA), and the like.
  • the travel route setting unit 55 calculates the travel route in the work target area CA using a predetermined route calculation algorithm, sequentially sets it as a target travel route, and gives it to the travel control unit 51.
  • the traveling route setting unit 55 can also generate traveling route groups by the route calculation algorithm by itself, but can also download and use those generated by the management computer and the external communication terminal.
  • the positional deviation value calculation unit 56, the correction value calculation unit 57, and the travel route displacement unit 58 function to perform travel route correction control for suppressing the reduction in work efficiency due to the setting of the overlap more than necessary.
  • FIG. 5 is an explanatory view under an ideal condition that the vehicle body 10 does not shift in position (lateral shift) with respect to the traveling route during work traveling along the traveling route.
  • FIG. 6 is an explanatory view under the general condition that the vehicle body 10 is displaced (laterally shifted) with respect to the traveling route during work traveling along the traveling route.
  • the current traveling route RL1 is a target route during traveling
  • the next traveling route RL2 is a target route traveling after a direction change traveling after the current traveling route is completed, where each straight line However, it may be a curve.
  • the working width is indicated by W
  • the overlap value set at both ends of the working width is indicated by L.
  • D W-2L.
  • the boundary line BL between the already-worked area and the non-worked area formed by the traveling of the current traveling route RL1 is a straight line, and is indicated by the one-dot chain line in FIG.
  • the distance from the current traveling route RL1 to the boundary line BL is W / 2.
  • the position of the next traveling route RL2 is a position away from the boundary line BL by L (overlap value) toward the current traveling route RL1 (the side of the work area) From the above, it is sufficient that the distance W / 2 which is a half of the working width W is at a position away from the next traveling route RL2 (unworked area side).
  • the next traveling route RL2 is from the current traveling route RL1.
  • the position is located on the unworked area side by L compared to the next traveling route RL2 calculated by the conventional method, and it is possible to reduce the overlap waste by the distance L . That is, the correction amount d of the next traveling route RL2 can be set within the range of L.
  • the boundary line BL between the already-worked region and the unworked region formed by the traveling of the current traveling route RL1 becomes a curve, and in FIG. It is shown.
  • the positional deviation maximum value toward the work area is indicated by ⁇ . If this positional deviation maximum value: ⁇ is smaller than the overlap value: L, the next traveling route RL2 can be made to enter the unworked area, as described in FIG.
  • the position is located in the unworked area by L ⁇ compared to the next traveling route RL2 calculated by the conventional method, and waste of overlap can be reduced by the distance L ⁇ . It is possible. That is, the correction amount d of the next traveling route can be set within the range of L ⁇ .
  • the positional deviation value calculation unit 56 calculates a positional deviation value by calculating the distance from the traveling route of the own vehicle position obtained from the own vehicle position calculation unit 50. By sequentially rewriting the maximum value of the positional deviation value on the side of the existing work area, the positional deviation maximum value on the side of the existing work area in the traveling route currently being traveled can be finally obtained.
  • the correction value calculation unit 57 obtains the difference value between the overlap value and the positional deviation maximum value, and sets a value that does not exceed the obtained difference value as the correction value.
  • the difference value is used as the correction value as it is.
  • the difference value may be multiplied by a coefficient determined based on the positional deviation maximum value, the dispersion value of the positional deviation value, or the like to be a correction value.
  • the travel route displacement unit 58 displaces all the travel routes set in the unworked region set in the travel route setting unit 55 to the unworked region side (center side of the unworked region) based on the correction value. .
  • a work path is set for the work target area CA (# 01).
  • a traveling route to be a traveling target is selected (# 02), and traveling along the traveling route is started (# 03).
  • the positional deviation value is calculated by the positional deviation value calculation unit 56 (# 04), and the maximum positional deviation value is recorded (# 05). It is checked whether the vehicle body 10 has reached the end of the travel path (# 06). If it has not reached the end of the travel route (No branch of # 06), the process returns to step # 03, and travel along the travel route is continued. If the end of the travel route has been reached (# 06 Yes branch), it is further checked whether there is a travel route to be traveled next (# 07). If there is no travel route to be traveled (No branch of # 07), the vehicle stops (# 08). If there is a travel route to travel (# 07 Yes branch), the travel route to be traveled next is set as a target travel route (# 09). Next, turning is made to turn to the set target travel route (# 10). This direction change traveling may be automatic traveling or manual traveling.
  • the positional deviation maximum value in the travel path of the already traveled adjacent to the set target travel path is read (# 21). It is checked whether the positional deviation maximum value is within the dead zone, that is, whether the correction of the travel route described above is necessary (# 22). If it is necessary to correct the target travel route (# 22 branch required), the correction value calculation unit 57 calculates the correction amount (# 23), and the displacement of the target travel route to the unworked area side based on the calculated correction amount Is performed by the travel path displacement unit 58 (# 24). When the displacement of the target travel route is completed, it is checked whether the direction change travel is completed (# 25), and the process waits until the direction change travel is completed (# 25 No branch).
  • step # 25 If the direction change traveling has been completed (# 25 Yes branch), the process returns to step # 03, and work traveling is performed along the target traveling route. If it is determined in step # 22 that correction of the travel route is not necessary (# 22 no branch), the process jumps to step # 25 and waits until direction change travel is completed.
  • the correction amount obtained from the positional deviation maximum value to the adjacent traveling route and the overlap value Calculation and setting of the target travel route are performed based on the and the work width.
  • the traveling route correction control according to the present invention is performed Can.
  • a combine that is different from the combine that forms the boundary between the unworked site and the existing site may travel along the travel route corrected based on the positional deviation at the time of forming the boundary.
  • the running accuracy of each combine is substantially the same, but if the running accuracy is considerably different, it is preferable to adjust the correction amount according to the difference in the running accuracy.
  • Each functional unit shown in FIG. 4 is divided mainly for the purpose of explanation. In practice, each functional unit may be integrated with other functional units or may be divided into a plurality of functional units. Further, among the functional units constructed in the control unit 5, the travel mode management unit 53, the work area determination unit 54, the travel route setting unit 55, the misregistration value calculation unit 56, the correction value calculation unit 57, the travel route displacement unit One of the 58 is built on a portable, portable communication terminal 4 (tablet computer etc.), brought into a combine, and adopted a configuration to exchange data with the control unit 5 via wireless or in-vehicle LAN. May be
  • the present invention can be used not only for ordinary type combine but also for self-eliminating type combine. Moreover, it can utilize also for various harvest machines, such as a corn harvester, a potato harvester, a carrot harvester, and a sugarcane harvester.
  • the cropped rice straw which has been cut by the cutting mechanism 215 is transported by the transport device 216 to the threshing device 213.
  • the reaping grain is threshed.
  • the grains obtained by the threshing process are stored in a grain tank 214.
  • the grains stored in the grain tank 214 are discharged to the outside by the grain discharging device 218.
  • the vehicle position detection module 280 includes a satellite positioning module 281 and an inertial positioning module 282.
  • the satellite positioning module 281 receives GNSS (global navigation satellite system) signals (including GPS signals) from the artificial satellite GS and outputs positioning data for calculating the position of the vehicle.
  • the inertial positioning module 282 incorporates a gyro acceleration sensor and a magnetic direction sensor, and outputs a position vector indicating an instantaneous traveling direction.
  • the inertial positioning module 282 is used to supplement the vehicle position calculation by the satellite positioning module 281.
  • the inertial positioning module 282 may be located at a different location from the satellite positioning module 281.
  • the driver travels the combine three to four turns.
  • the width of the outer peripheral area SA is expanded by the work width of the combine each time the combine makes one revolution.
  • the width of the outer peripheral area SA becomes about three to four times the working width of the combine.
  • This circular traveling may be performed by automatic traveling based on field external shape data given in advance.
  • the combine in the direction change traveling by turning left from the current traveling route, the combine is allowed to reverse during turning with respect to the left second traveling route candidate L12 from the current traveling route. You can move without it.
  • the direction change traveling by turning right from the current traveling route it is not possible to move to the second right traveling route candidate L22 unless reverse is included during the turning. That is, in order to move from the current traveling route to the next traveling route on the right side without including reverse travel, it is necessary to select a traveling route on the right of the third right traveling route candidate L23 on the right. That is, when it is intended to make a turn at the shortest distance, in the above example, the second left traveling route candidate L12 may be selected.
  • the minimum turning radius R used here is not the minimum turning radius on the hardware of the traveling device 211 that is physically determined, but is set on the software according to the field condition, the working condition, etc. It means the minimum turning radius. Therefore, the change of the minimum turning radius R in the middle of work is possible.
  • the next right traveling route candidate indicated by L23 is selected.
  • FIG. 13 shows a control system of a combine utilizing the automatic steering system according to the present invention.
  • the control system of the combine is from a control unit 205 consisting of an electronic control unit called multiple ECUs, and various input / output devices performing signal communication (data communication) with the control unit 205 through a wiring network such as a car LAN. It is configured.
  • the notification device 262 is a device for notifying a driver or the like of a work traveling state and various warnings, and is a buzzer, a lamp, a speaker, a display or the like.
  • the communication unit 266 is used to exchange data with the communication terminal 202 or with a management computer installed at a remote location.
  • the communication terminal 202 also includes a monitor who stands in a field or a tablet computer operated by a driver / supervisor who is in the combine, a computer installed at home or a management office, and the like.
  • the control unit 205 is a core element of this control system, and is shown as a collection of a plurality of ECUs.
  • a signal from the vehicle position detection module 280 is input to the control unit 205 through the in-vehicle LAN.
  • a traveling state sensor group 263, a working state sensor group 264, a traveling operation unit 290, and the like are connected to the input processing unit 2502.
  • the traveling state sensor group 263 includes an engine speed sensor, an overheat detection sensor, a brake pedal position detection sensor, a shift position detection sensor, a steering position detection sensor, and the like.
  • the work state sensor group 264 includes a sensor that detects the driving state of the harvest work device (the harvester H, the threshing device 213, the transport device 216, and the grain discharging device 218), a sensor that detects the state of the grain gravel and grain, It is included.
  • the travel operation unit 290 is a general term for an operation tool which is manually operated by the driver and whose operation signal is input to the control unit 205.
  • the travel operation unit 290 includes a main shift operation tool 291, a steering operation tool 292, a mode operation tool 293, an automatic start operation tool 294, and the like.
  • the crawler operation speed of the left crawler mechanism and the crawler speed of the right crawler mechanism are adjusted by swinging the steering operation tool 292 left and right from the neutral position, and the direction of the vehicle body 210 is changed.
  • the mode operation tool 293 has a function of giving the control unit 5 a command for switching between an automatic travel mode in which automatic driving is performed and a manual travel mode in which manual driving is performed.
  • the control unit 205 includes a turn information management unit 241, a next travel route selection unit 242, a notification unit 2501, a travel control unit 251, a work control unit 252, a travel mode management unit 253, a travel route setting unit 254, and a vehicle position calculation unit.
  • a vehicle orientation calculation unit 256, a positional deviation calculation unit 257, and an azimuthal deviation calculation unit 258 are provided.
  • the notification unit 2501 generates notification data based on an instruction or the like from each functional unit of the control unit 205, and gives the notification data to the notification device 262.
  • the own vehicle position calculation unit 255 is based on the positioning data sequentially sent from the own vehicle position detection module 280, the vehicle reference point of the vehicle body 210 set in advance, map coordinates of the working width center WP in this embodiment Or calculate field coordinates).
  • the vehicle orientation calculation unit 256 obtains the traveling locus in a minute time from the position of the vehicle reference point (working width center WP) sequentially calculated by the vehicle position calculation unit 255, and indicates the direction of the vehicle body 210 in the traveling direction. Determine the body direction.
  • the vehicle body direction calculation unit 256 can also determine the vehicle body direction based on the direction data included in the output data from the inertial positioning module 282.
  • the communication terminal 304 is disposed in the operation unit 312.
  • the communication terminal 304 is configured to be able to display various information.
  • the communication terminal 304 is fixed to the operation unit 312.
  • the communication terminal 304 may be configured to be attachable to and detachable from the operation unit 312, and the communication terminal 304 may be located outside the combine 301. .
  • region calculation part 324 calculates the area
  • the area calculation unit 324 calculates the inside of the calculated outer peripheral area SA as the work target area CA.
  • the reaper traveling route LI calculated by the reaper traveling route calculating unit 322 is sent to the traveling control unit 323.
  • the travel distance detection unit 333 detects the travel distance of the combine 301 with time. The traveling distance detected by the traveling distance detection unit 333 is sent to the reaper traveling distance calculation unit 325.
  • the position prediction unit 328 is based on the storage limit amount acquired from the storage limit amount storage unit 327, the detection result by the storage amount sensor 314S, and the unit yield calculated by the unit yield calculation unit 326. To calculate the travelable distance.
  • the travelable distance is a limit distance at which the combine 301 can travel by reaping until the grain storage amount in the grain tank 314 reaches the storage limit amount.
  • the position prediction unit 328 calculates the travelable distance by dividing the difference between the storage limit amount and the grain storage amount at the present time by the unit harvest amount.
  • the position prediction unit 328 combines the combine 301 at the time when the grain storage amount reaches the storage limit amount. Predict the position of
  • the position prediction result by the position prediction unit 328 is sent to the storage prediction unit 329.
  • the reaper traveling route calculation unit 322 corrects the next traveling line LNb so that the reaper width by the reaper 315 decreases.
  • the region calculation unit 324 calculates the traveling locus of the combine 301 in the round trip shown in FIG. 17 based on the temporal position coordinate of the combine 301 received from the host vehicle position calculation unit 321. Then, as shown in FIG. 18, the area calculation unit 324 calculates an area on the outer circumference side of the field where the combine 301 travels while harvesting the cereals on the basis of the calculated travel locus of the combine 301. Calculated as In addition, the area calculation unit 324 calculates the inside of the calculated outer peripheral area SA as the work target area CA.
  • the reaper traveling path calculation unit 322 calculates a reaper traveling route LI in the work target area CA.
  • the reaper traveling route LI is configured of a plurality of traveling lines LN parallel to each other.
  • the transport vehicle CV is parked outside the field. Then, in the outer peripheral area SA, the stop position PP is set at a position near the transport vehicle CV.
  • the combine 301 When the grain discharging operation is started, the combine 301 automatically travels to the stopping position PP. Then, the combine 301 stops at the stopping position PP, and discharges the grains to the transporter CV by the grain discharging device 318. When the grain discharging operation is completed, the combine 301 returns to the automatic traveling along the reaper traveling route LI.
  • the storage prediction unit 329 determines that the grain storage amount is the storage limit on the middle of the next traveling line LNb. Forecast to reach. Therefore, in this case, the traveling line correction process described above is performed.
  • the already-cropped area CA2 is an area where the reaping work has already been completed. Then, the combine 301 reaps the built-in grain weirs of the uncut area CA1 in the work target area CA.
  • the combine 301 performs reaping travel along a travel line LN (current travel line LNa) located at an end of the uncrop area CA1.
  • the mowing width by the mowing device 315 of the combine 301 is the width W1.
  • the width W1 is the maximum width that can be trimmed by the reaper 315.
  • next traveling line LNb is adjacent to the current traveling line LNa.
  • the position of the combine 301 predicted by the position prediction unit 328 is the position P1.
  • the position P1 is a position in the middle of the next traveling line LNb.
  • the storage prediction unit 329 sets the grain storage amount to the storage limit amount in the middle of the next travel line LNb. Predict to reach. As a result, traveling line correction processing by the reaper traveling route calculation unit 322 is performed.
  • the cutting width by the cutting device 315 when the combine 301 travels along the next traveling line LNb is reduced from the width W1 to the width W2. This is because, as shown in FIG. 21, when the combine 301 travels along the corrected next travel line LNb, a part of the reaper 315 passes through the cut area CA2.
  • a traveling line correction process is performed.
  • the next traveling line LNb is corrected so that the grain storage amount does not reach the storage limit amount in the middle of the next traveling line LNb.
  • the combine 301 travels based on the corrected next traveling line LNb, the grain storage amount does not reach the storage limit in the middle of the next traveling line LNb.
  • the storage limit amount is set to be equal to or less than the grain amount corresponding to the full amount of grain tank 314, it can be avoided that grain tank 314 becomes full in the middle of traveling line LN.
  • the storage prediction unit 329 sets the grain storage amount to the storage limit amount in the middle of the next travel line LNb. Predict to reach. As a result, traveling line correction processing by the reaper traveling route calculation unit 322 is performed.
  • the next traveling line LNb is corrected so as to be short.
  • the storage prediction unit 329 predicts that the grain storage amount will reach the storage limit in the middle of the next traveling line LNb
  • the next traveling line LNb is corrected so as to be short. Then, by shortening the next traveling line LNb, the grain amount obtained when the whole of the next traveling line LNb is cut and traveled is reduced. Thereby, it becomes difficult for the grain storage amount to reach the storage limit amount in the middle of the next traveling line LNb.
  • the combine 301 is a common type.
  • the present invention is not limited to this.
  • a second alternative embodiment according to the present invention will be described focusing on differences from the above embodiment.
  • the configuration other than the parts described below is the same as that of the above embodiment.
  • FIG. 23 is a view showing the combine 302 in the second another embodiment according to the present invention.
  • the combine 302 is a self-lifting type, and is a specification of six-row cutting.
  • the next traveling line LNb is corrected such that the number of cutting lines by the combine 302 decreases.
  • the next travel line LNb is corrected such that the combine 302 travels in a state of straddling the row of unharvested land and the row of already harvested land.
  • the number of cutting strips by the combine 302 is reduced. That is, the cutting width by the combine 302 is reduced.
  • the next traveling line LNb may be corrected so that the number of reaping streaks decreases from six to five, or may be reduced to four or less. LNb may be modified.
  • the reaper traveling route calculation unit 322 in the combine 302 is configured to receive the line information transmitted from the rice transplanter or the management server.
  • the article information includes the position information of the article in the field. Then, the reaper traveling route calculation unit 322 performs traveling line correction processing based on the received line information.
  • the traveling device 311 may be a wheel type or a semi crawler type.
  • the operator manually operates the combine 301, and as shown in FIG. 17, in the outer peripheral portion in the field, the mowing travel is performed so as to go around along the boundary line of the field.
  • the present invention is not limited to this, and the combine 301 may travel automatically, and the crop traveling may be performed so as to go around along the boundary of the field in the outer peripheral portion in the field.
  • the vehicle travels automatically so that the position of the satellite positioning module 380 matches the travel line LN.
  • the state may be changed to a state of traveling automatically so that a position different from the satellite positioning module 380 in the airframe of the combine 301 and the traveling line LN are aligned.
  • Such a change is also substantially equivalent to the "travel line correction process" according to the present invention.
  • the storage prediction unit 329 may be configured to calculate a predicted value of the grain storage amount when the combine 301 travels along the entire following travel line LNb. In addition, the storage prediction unit 329 is configured to predict that the grain storage amount reaches the storage limit amount in the middle of the next traveling line LNb when the calculated predicted value of the grain storage amount is equal to or larger than the storage limit amount. It may be configured.
  • the reaping travel distance calculation unit 325 may not be provided.
  • the unit harvest amount calculation unit 326 may not be provided.
  • the position prediction unit 328 may not be provided.
  • the traveling control unit 323 may not be provided.
  • the communication terminal 304 may not be provided.
  • the present invention can be used not only for ordinary type combine but also for self-eliminating type combine.
  • control unit 10 vehicle body 50: vehicle position calculation unit 51: traveling control unit 52: work control unit 53: traveling mode management unit 54: work area determination unit 55: traveling route setting unit 56: positional deviation value calculation unit 57 : Correction value calculation unit 58: Traveling route displacement unit 80: Vehicle position detection module 81: Satellite positioning module 82: Inertial measurement module H: Harvesting unit (work equipment) 210: Traveling vehicle body (vehicle body) 211: traveling device 241: turning information management unit 242: next traveling route selection unit 205: control unit 251: traveling control unit 2511: manual traveling control unit 2512: automatic traveling control unit 2513: steering amount calculating unit 252: work control unit 253 A traveling mode management unit 254: a travel route setting unit 255: a vehicle position calculation unit 280: a vehicle position detection module 281: a satellite positioning module 282: an inertial positioning module CA: a work area SA: an outer peripheral area 301: combine 313: threshing Device 314: grain tank 314S: storage amount sensor

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Soil Sciences (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Guiding Agricultural Machines (AREA)

Abstract

A work vehicle is provided with which it is possible to suppress unnecessary work travel due to excessive overlap. A work vehicle comprises: a work device that specifies a work width W; a travel-path-setting unit that sets a plurality of travel paths RL1, RL2 extending parallel with a determined path interval therebetween, on the basis of the work width W and an overlap value L set in advance on both sides of the work width W; a position displacement value calculation unit that calculates a position displacement value δ when a calculated host vehicle position is displaced from the travel path RL1 that is the travel target toward a previous work region; a modification value calculation unit that derives the difference value between the overlap value and the position displacement value, and sets a value that does not exceeds the difference value as a modification value d; and a travel path displacement unit that displaces the travel path RL2, set in a region that has not been worked yet, toward the unworked region on the basis of the modification value d.

Description

作業車、作業車のための走行経路選択システム、及び、走行経路算出システムWork vehicle, travel route selection system for work vehicle, and travel route calculation system
 本発明は、作業車、作業車のための走行経路選択システム、及び、走行経路算出システムに関する。 The present invention relates to a work vehicle, a travel route selection system for a work vehicle, and a travel route calculation system.
 (1)従来、走行経路に沿って自動走行することで作業地を既作業領域と未作業領域とに区分けていく作業車がある。 (1) Conventionally, there is a work vehicle that divides a work site into an existing work area and an unworked area by automatically traveling along a travel route.
 特許文献1では、未作業領域を網羅するように設定された複数の走行経路に沿って自動走行する作業車が開示されている。この走行経路は、互いに平行に並んでおり、その間隔は、作業幅と作業幅の両端に設定されるオーバーラップ値とによって決められている。走行を終えた走行経路から次の走行経路までは、方向転換走行が行われる。作業車の走行誤差(走行経路の横断方向での位置ずれ:横ずれ)を考慮してオーバーラップ値が決められているが、実際の走行において、設定されたオーバーラップ値を超えるような横ずれが生じた場合には、作業の残しを避けるために、新たな走行経路が設定される。 Patent Document 1 discloses a work vehicle that automatically travels along a plurality of travel routes set to cover an unworked area. The travel paths are parallel to one another, and the distance between them is determined by the working width and the overlap value set at both ends of the working width. Direction change traveling is performed from the traveling route after the traveling to the next traveling route. Although the overlap value is determined in consideration of the running error of the work vehicle (displacement in the transverse direction of the traveling route: lateral shift), in actual driving, lateral shift occurs that exceeds the set overlap value. In this case, a new travel route is set to avoid leaving work.
 特許文献2では、未作業領域の大きさと作業幅と重複設定幅(オーバーラップ)とに基づいて生成された複数の直線路を含む走行経路を自動走行する作業車が開示されている。走行経路を生成する際に、作業幅に満たない幅の未作業領域が発生する場合には、重複設定幅をより広い重複幅に設定して作業幅に満たない幅の未作業領域の発生を回避する走行経路生成アルゴリズムが備えられている。 Patent Document 2 discloses a work vehicle that automatically travels along a travel path including a plurality of straight paths generated based on the size of the unworked area, the work width, and the overlapping setting width (overlap). When generating a travel route, if there is an unworked area with a width less than the work width, set the overlap setting width to a wider overlap width and generate an unworked area with a width less than the work width. A driving route generation algorithm to avoid is provided.
 (2)従来、互いに平行に延びた複数の平行走行経路と、前記平行走行経路同士をつなぐ方向転換走行経路とを含む走行経路に沿って作業地を走行する作業車がある。 (2) Conventionally, there is a working vehicle traveling along the work site along a traveling path including a plurality of parallel traveling paths extending parallel to one another and a direction changing traveling path connecting the parallel traveling paths.
 特許文献3には、車両の現在位置に応じて、推奨されるべき作業の能率や精度が高い走行経路を表示装置の表示部に表示する運行支援装置を装備した圃場作業車両が開示されている。ここで、推奨されている走行経路は、圃場の出入口が1つだけとみなして作業の終了位置が作業の開始位置付近となる経路であり、さらには、既作業域を踏み付ける部分が極力少なくなる経路である。この運行支援装置では、作業装置の作業幅中心が車体中心線上に位置しており、その結果、作業幅中心と旋回基準点(実質的にはトレッド幅中心線上に位置する)との間に車体横断方向でのずれがないと仮定されている。 Patent Document 3 discloses a field work vehicle equipped with an operation support device that displays a travel route with high efficiency and accuracy of work to be recommended on the display unit of the display device according to the current position of the vehicle. . Here, the recommended travel route is a route where the exit position of the work is in the vicinity of the work start position, assuming that there is only one entrance to the field, and furthermore, the portion where the work area is stepped on is as small as possible. Path that In this operation support device, the work width center of the work device is located on the vehicle body center line, and as a result, the vehicle body is located between the work width center and the turning reference point (which is substantially located on the tread width center line). It is assumed that there is no offset in the transverse direction.
 (3)従来、圃場の植立穀稈を刈り取る刈取装置と、刈取装置により刈り取られた刈取穀稈を脱穀処理する脱穀装置と、脱穀装置による脱穀処理により得られた穀粒を貯留する穀粒タンクと、穀粒タンク内の穀粒貯留量を検知する貯留量センサと、を有するコンバインの走行経路を算出する走行経路算出システムがある。 (3) Conventionally, a reaping device for reaping the field cropping grain in a field, a threshing device for threshing the reaping grain remnant harvested by the reaping device, and a grain for storing grains obtained by threshing processing by the threshing device BACKGROUND There is a travel route calculation system that calculates a travel route of a combine having a tank and a storage amount sensor that detects a grain storage amount in a grain tank.
 特許文献4には、自動走行するコンバインの考案が記載されている。このコンバインを利用した収穫作業において、作業者は、収穫作業の最初にコンバインを手動で操作し、圃場内の外周部分を一周するように刈取走行を行う。 Patent Document 4 describes an idea of an automatic travel combine. In the harvesting operation using the combine, the operator manually operates the combine at the beginning of the harvesting operation and performs the mowing travel so as to go around the outer peripheral portion in the field.
 この外周部分での走行において、収穫機の走行すべき方位が記録される。そして、記録された方位に基づく自動走行によって、圃場における未刈領域での刈取走行が行われる。 During traveling on the outer circumference, the traveling direction of the harvester is recorded. Then, the automatic traveling based on the recorded direction performs the reaping travel in the uncut area in the field.
 ここで、特許文献4に記載の考案においては、圃場内の外周部分に、収集タンクが配置される。この収集タンクは、コンバインの有する排出筒から排出された穀粒を受け、貯留することができるように構成されている。 Here, in the device described in Patent Document 4, a collecting tank is disposed at an outer peripheral portion in the field. The collection tank is configured to be able to receive and store grains discharged from the discharge cylinder of the combine.
 そして、特許文献4に記載のコンバインは、収集タンクの近傍を通過する周回走行を繰り返すことにより、未刈領域での刈取走行を行うように構成されている。この周回走行においては、コンバインが収集タンクに近接した際、穀粒を排出する必要があれば、コンバインは収集タンクの近傍に停止する。そして、コンバインの排出筒から収集タンクへ穀粒が排出される。 And the combine of patent document 4 is comprised so that it may carry out the reaping driving | running | working in a non-cutting area | region by repeating the lap | rotation driving | running | working which passes the vicinity of a collection tank. In this round trip, when the combine comes close to the collection tank, the combine stops near the collection tank if it is necessary to discharge the grain. Then, the grains are discharged from the discharge cylinder of the combine into the collection tank.
特開2017-055673号公報JP, 2017-055,673 特開2017-134527号公報JP, 2017-134527, A 特開2000-014208号公報Japanese Patent Application Publication No. 2000-014208 実開平2-107911号公報Japanese Utility Model Application Publication No. 2-107911
 (1)背景技術(1)に対応する課題は、以下の通りである。 (1) Background Art The problems corresponding to (1) are as follows.
 特許文献1及び特許文献2による作業車では、オーバーラップ値は、想定される作業車の位置ずれを上回るように設定されている。そのため、正常な状況下での走行では、オーバーラップ値を超えるような横ずれが生じることはなく、通常の走行では、オーバーラップ値の幅よりかなり小さな範囲での位置ずれが生じるだけである。したがって、毎回の走行経路に沿った作業走行において、実際の位置ずれとオーバーラップ値との差の分だけ無駄が生じていることになる。 In the work vehicles according to Patent Document 1 and Patent Document 2, the overlap value is set to exceed the assumed positional deviation of the work vehicle. Therefore, in the case of driving under normal conditions, lateral deviation does not occur so as to exceed the overlap value, and in normal driving, only positional deviation occurs in a range considerably smaller than the width of the overlap value. Therefore, in work travel along each travel path, waste occurs due to the difference between the actual positional deviation and the overlap value.
 このような実情に鑑み、オーバーラップの取り過ぎによる無駄な作業走行を抑制できる作業車が所望されている。 In view of such actual circumstances, there is a demand for a work vehicle that can suppress unnecessary work travel due to excessive overlap.
 (2)背景技術(2)に対応する課題は、以下の通りである。 (2) Background Art The problems corresponding to (2) are as follows.
 互いに平行に延びた複数の平行走行経路を走行する際、現走行経路の走行が終了して、次走行経路を複数の平行走行経路から選択する際に、最小旋回半径を考慮して、できるだけ現走行経路の近くの未走行の走行経路が第1候補となる。その際、現走行経路の両側に多数の未走行の走行経路が残っている場合は、左右の走行経路への方向転換経路の距離は同じとして取り扱われている。これは、作業車の作業幅中心が車体中心線上に位置していると仮定しているからである。しかしながら、作業幅中心と旋回基準点との間に横ずれ(車体横断方向でのずれ)が生じるような作業装置を装備した作業車の場合、左旋回時と右旋回時とで作業幅中心の軌跡が非対称となるので、従来の方法では、適正な次走行経路の選択ができなくなる。 When traveling on a plurality of parallel traveling routes extending parallel to one another, the traveling on the current traveling route is finished, and when selecting the next traveling route from a plurality of parallel traveling routes, the current is considered as current as possible considering the minimum turning radius. The untraveled travel route near the travel route is the first candidate. At this time, when a large number of untraveled travel paths remain on both sides of the current travel path, the distances of the turning paths to the left and right travel paths are treated as the same. This is because it is assumed that the work width center of the work vehicle is located on the vehicle body center line. However, in the case of a work vehicle equipped with a working device that causes lateral displacement (displacement in the vehicle transverse direction) between the working width center and the turning reference point, the working width center is set between left turning and right turning. Since the locus is asymmetrical, the conventional method can not select an appropriate next traveling route.
 このような実情から、作業幅中心と旋回基準点との間に横ずれが生じるような作業装置を装備しても、適正な次走行経路の選択できる作業車が要望される。 From such a situation, a work vehicle capable of selecting an appropriate next travel route is required even if the work device is equipped with a lateral shift between the work width center and the turning reference point.
 (3)背景技術(3)に対応する課題は、以下の通りである。 (3) Background Art The problems corresponding to (3) are as follows.
 特許文献4に記載のコンバインにおいては、穀粒を排出する必要がない場合にも、コンバインは、収集タンクの近傍を通過するように自動走行する。このとき、コンバインは既刈領域を走行することとなる。 In the combine described in Patent Document 4, the combine travels automatically so as to pass in the vicinity of the collection tank even when it is not necessary to discharge the grain. At this time, the combine travels in the existing area.
 即ち、特許文献4に記載のコンバインの自動走行においては、既刈領域での走行の割合が比較的大きくなる。これにより、作業効率が低くなりがちである。 That is, in the automatic travel of the combine described in Patent Document 4, the ratio of travel in the already-cut region becomes relatively large. This tends to lower the work efficiency.
 ここで、作業効率を向上させるべく、複数の走行ラインにより構成された刈取走行経路を未刈領域に設定した上で、刈取走行経路に沿ってコンバインを走行させ、穀粒排出等の必要が生じた場合には、その刈取走行経路から一時的に離脱させるようにコンバインを制御する構成が考えられる。 Here, in order to improve the working efficiency, after setting the reaping travel path formed of a plurality of travel lines as an uncrop area, the combine travels along the reaping travel path, and the need for grain discharge etc. occurs. In such a case, a configuration may be considered in which the combine is controlled so as to temporarily leave the reaping travel path.
 この構成においては、走行ラインの途中の位置で、コンバインの穀粒タンクが満杯となることがある。この場合、その位置で刈取走行を中断し、穀粒排出のためにその走行ラインから離脱する必要がある。これにより、その走行ラインの一部は未刈状態のまま残されることとなる。 In this configuration, the combine grain tank may be full at a position midway along the traveling line. In this case it is necessary to interrupt the harvesting run at that location and to leave the running line for grain removal. As a result, a part of the travel line is left uncut.
 そして、穀粒排出の後、コンバインが、この走行ラインの未刈状態の部分を刈取走行する場合は、この走行ラインの既刈状態の部分も走行する必要が生じがちである。これにより、コンバインの刈取走行の効率が低下しやすい。 And, after the grain is discharged, when the combine travels on the uncut part of the traveling line, it is necessary to travel the already cut part of the traveling line. Thereby, the efficiency of mowing travel of the combine tends to be reduced.
 即ち、走行ラインの途中でコンバインの穀粒タンクが満杯となると、コンバインの刈取走行の効率が低下しやすい。 That is, when the grain tank of the combine is full in the middle of the traveling line, the efficiency of the combine traveling by the harvest tends to decrease.
 ここで、コンバインが次に走行する予定の走行ラインの全体を刈取走行した場合の穀粒貯留量の予測値を算出し、算出された予測値が貯留限界量以上である場合には次の走行ラインに沿った刈取走行を開始する前に穀粒排出作業が行われる構成とすることが考えられる。この構成であれば、走行ラインの途中でコンバインの穀粒タンクが満杯となることを回避できる。 Here, the predicted value of the grain storage amount is calculated when the combine travels along the entire traveling line scheduled to travel next and the calculated predicted value is equal to or more than the storage limit amount, and the next traveling is performed. It is conceivable that the grain discharging operation is performed before starting the mowing travel along the line. With this configuration, it is possible to avoid that the combine grain tank becomes full in the middle of the traveling line.
 しかしながら、この構成では、穀粒タンク内に比較的多くの余裕があるにもかかわらず穀粒排出作業が行われる事態が想定される。これにより、作業効率が低下しやすい。 However, in this configuration, it is assumed that the grain discharging operation is performed despite the relatively large allowance in the grain tank. As a result, work efficiency tends to be reduced.
 本発明の目的は、走行ラインの途中でコンバインの穀粒タンクが満杯となることを回避しつつ、穀粒タンク内に可能な限り多くの穀粒を貯留させて作業効率の低下を防ぎやすい走行経路算出システムを提供することである。 The object of the present invention is to travel as it is easy to prevent a drop in working efficiency by storing as many grains as possible in the grain tank while avoiding that the grain tank of the combine is full in the middle of the traveling line It is providing a route calculation system.
 (1)課題(1)に対応する解決手段は、以下の通りである。 (1) The solution means corresponding to the problem (1) is as follows.
 本発明による作業車は、走行経路に沿って自動走行することで作業地を既作業領域と未作業領域とに区分けていく作業車であって、作業幅を規定する作業装置と、前記作業幅と前記作業幅の両側に予め設定されたオーバーラップ値とに基づいて決定される経路間隔をあけて平行に延びる複数の走行経路を設定する走行経路設定部と、自車位置を算出する自車位置算出部と、前記自車位置が走行目標となっている前記走行経路から前記既作業領域側に位置ずれしている際の位置ずれ値を算出する位置ずれ値算出部と、前記オーバーラップ値と前記位置ずれ値との差分値を求め、前記差分値を超えない値を修正値とする修正値算出部と、前記未作業領域に設定された前記走行経路を、前記修正値に基づいて前記未作業領域側に変位させる走行経路変位部とを備えている。 The work vehicle according to the present invention is a work vehicle that divides a work site into an existing work area and an unworked area by automatically traveling along a travel route, and includes a work device that defines a work width, and the work width And a travel route setting unit for setting a plurality of travel routes extending in parallel with a route interval determined based on an overlap value preset on both sides of the work width, and a host vehicle for computing a host vehicle position A position calculation unit, a position shift value calculation unit for calculating a position shift value when the vehicle position is shifted toward the work area from the travel route as the travel target, and the overlap value And a correction value calculation unit that obtains a difference value between the position deviation value and the difference value, and uses a value that does not exceed the difference value as a correction value, and the travel route set in the unworked area based on the correction value. Travel path to be displaced to the unworked area side And a displacement portion.
 未作業領域に設定された、互いに平行な複数の走行経路の1つの走行経路に沿って、作業車が作業走行すると、走行経路から横方向へのずれ、つまり位置ずれがある程度生じる。オーバーラップ値は、通常で考えうる最大の位置ずれより大きくなるように設定されている。ここで、走行経路からの既作業領域側への最大の位置ずれ値を、オーバーラップ値から引いた値が、次の隣接する走行経路の走行時には、オーバーラップの増加、つまりオーバーラップの過剰長さとなる。このような過剰長さは、本来不要であるので、本発明では、この過剰長さ分だけ、あるいは過剰長さの何割かの長さを、走行経路を未作業領域側に変位させる修正値とする。これにより、必要以上のオーバーラップの設定による作業効率の低下を抑制することができる。 When the work vehicle travels along one traveling path of a plurality of parallel traveling paths set in the unworked area, a lateral deviation from the traveling path, that is, a positional deviation occurs to some extent. The overlap value is usually set to be larger than the maximum possible misalignment. Here, the value obtained by subtracting the maximum positional deviation value from the traveling route toward the existing work area from the overlap value is an increase in overlap during traveling of the next adjacent traveling route, that is, an excessive overlap length It will be Since such an excessive length is essentially unnecessary, in the present invention, a correction value for displacing the traveling path toward the non-working area is taken as the excessive length or some percentage of the excessive length. Do. As a result, it is possible to suppress a decrease in work efficiency due to the setting of overlap more than necessary.
 上述した発明の考え方は、最初の1本の走行経路を生成した後、当該走行経路の走行中または走行終了直後に、作業幅とオーバーラップとを考慮して次の走行経路を生成するようなタイプの作業車にも、同様に、適用することができ、同様の効果が得られる。そのような作業車も、走行経路に沿って自動走行することで作業地を既作業領域と未作業領域とに区分けていく作業車であり、作業幅を規定する作業装置と、走行中の前記走行経路に対して、前記作業幅と前記作業幅の両側に予め設定されたオーバーラップ値とに基づいて決定される経路間隔をあけて平行に延びる前記走行経路を、次の走行目標となる目標走行経路として設定する走行経路設定部と、自車位置を算出する自車位置算出部と、前記自車位置が走行目標となっている前記走行経路から前記既作業領域側に位置ずれしている際の位置ずれ値を算出する位置ずれ値算出部と、前記オーバーラップ値と前記位置ずれ値との差分値を求め、前記差分値を超えない値を修正値とする修正値算出部と、前記目標走行経路を、前記修正値に基づいて前記未作業領域側に変位させる走行経路変位部とを備えている。つまり、この作業車では、現在走行している走行経路の走行中または走行終了直後に、予め用意されているオーバーラップ値と当該走行経路における位置ずれ値との差分値(次のオーバーラップの過剰長さ)に基づいて修正値を求める。この修正値を用いることで、過剰長さを取り除いたオーバーラップと作業幅に基づく適正な次走行経路の生成が可能となる。 The idea of the invention described above is that after the first traveling route is generated, the next traveling route is generated in consideration of the work width and the overlap during or immediately after the traveling of the traveling route. The same applies to work vehicles of the same type, with the same effect. Such a work vehicle is also a work vehicle that divides a work site into an existing work area and an unworked area by automatically traveling along a travel route, and a work device that defines a work width, and the above-mentioned traveling vehicle. A target for the next travel target is the travel route extending parallel to the travel route with a route interval determined based on the work width and an overlap value preset on both sides of the work width. A travel route setting unit set as a travel route, an own vehicle position calculation unit calculating an own vehicle position, and a position shift of the own vehicle position from the traveling route which is a traveling target toward the work area And a correction value calculation unit for obtaining a difference value between the overlap value and the position shift value, and setting a value not exceeding the difference value as a correction value, and The target travel route is based on the correction value Wherein and a travel route displacing unit for displacing the non-working area side Te. In other words, with this work vehicle, the difference value between the overlap value prepared in advance and the positional deviation value in the traveling route during the traveling of the traveling route currently traveling or immediately after the traveling ends (the excess of the next overlap Determine the correction value based on the length). By using this correction value, it is possible to generate an appropriate next traveling route based on the overlap from which the excess length has been removed and the work width.
 差分値をそのまま修正値とし、その修正値で走行経路を変位させると、本来のオーバーラップを維持しながらも、作業車(作業装置)を未作業領域側に寄せることができ、より多くの未作業領域の作業が可能となる。このため、本発明の好適な実施形態の1つでは、前記修正値が前記差分値であり、前記走行経路変位部は、前記走行経路を前記修正値の値だけ変位させるように構成されている。もちろん、位置ずれが大きくなるような傾向が検知される場合には、差分値をそのまま修正値とせずに、差分値の何割かを修正値とすることで、余裕をもったオーバーラップを提供することも好適である。 If the difference value is used as the correction value as it is and the travel route is displaced by the correction value, the work vehicle (work device) can be moved to the unworked area side while maintaining the original overlap, and more unfinished Work in the work area is possible. Therefore, in one of the preferred embodiments of the present invention, the correction value is the difference value, and the travel path displacement unit is configured to displace the travel path by the value of the correction value. . Of course, when a tendency that the positional deviation becomes large is detected, the overlap with a margin is provided by using some percentage of the difference value as the correction value without using the difference value as the correction value as it is. Is also preferred.
 本発明の好適な実施形態の1つでは、前記自車位置算出部は、衛星測位モジュールまたは慣性計測モジュールあるいはその両方から出力される信号に基づいて、前記自車位置を算出する。横ずれは、衛星測位モジュールを用いた自車位置から算出される走行軌跡から求めることができる。また、短い走行距離での横ずれは、慣性計測モジュールによって求めることもできる。特に慣性計測モジュールでは、突発的な横ずれの検出も高い精度で可能である。これらの2つのモジュールを組み合わせることでさらに精度のよい横ずれ検出が可能となる。 In one preferred embodiment of the present invention, the vehicle position calculation unit calculates the vehicle position based on signals output from a satellite positioning module and / or an inertial measurement module. The lateral deviation can be determined from the travel locus calculated from the vehicle position using the satellite positioning module. In addition, lateral deviation at short travel distances can also be determined by means of an inertial measurement module. In particular, in the inertial measurement module, detection of sudden lateral deviation is also possible with high accuracy. By combining these two modules, more accurate lateral deviation detection is possible.
 (2)課題(2)に対応する解決手段は、以下の通りである。 (2) The solution means corresponding to the problem (2) is as follows.
 本発明による作業車は、互いに平行に延びた複数の平行走行経路と、前記平行走行経路同士をつなぐ方向転換走行経路とを含む走行経路に沿って作業地を走行するものであり、操舵可能な走行装置と、作業装置と、左旋回時の前記作業装置の作業幅中心の旋回軌跡に関する左旋回軌跡情報と、右旋回時の前記作業幅中心の旋回軌跡に関する右旋回軌跡情報と、前記走行装置の最小旋回半径とを管理する旋回情報管理部と、前記左旋回軌跡情報と前記右旋回軌跡情報と前記最小旋回半径とに基づいて、走行中の前記平行走行経路である現走行経路の次に走行する前記平行走行経路である次走行経路の選択を決定する次走行経路選択部とを備える。 The work vehicle according to the present invention travels the work site along a traveling path including a plurality of parallel traveling paths extending parallel to one another and a direction change traveling path connecting the parallel traveling paths. A traveling device, a work device, left turn locus information on a turn locus at the work width center of the work apparatus at the time of left turn, right turn locus information on a turn locus at the work width center at the right turn, Based on the turning information management unit that manages the minimum turning radius of the traveling device, the left turning locus information, the right turning locus information, and the minimum turning radius, the current traveling route which is the parallel traveling route during traveling And a next traveling route selection unit which determines the selection of the next traveling route which is the parallel traveling route to travel next to the vehicle.
 この構成によれば、作業幅中心と旋回基準点との間に横ずれが生じるような作業装置を装備しても、左旋回時の前記作業装置の作業幅中心の旋回軌跡に関する左旋回軌跡情報及び右旋回時の前記作業幅中心の旋回軌跡に関する右旋回軌跡情報が管理されているので、これらの情報と走行装置の最小旋回半径とから、適正な次走行経路の選択が可能となる。 According to this configuration, even if the work device is installed such that a lateral shift occurs between the work width center and the turning reference point, left turn locus information regarding the turning locus of the work width center of the work unit at the time of left turn and Since right turn locus information on a turn locus at the center of the work width at the time of right turn is managed, it is possible to select an appropriate next traveling route from the information and the minimum turning radius of the traveling device.
 本発明の好適な実施形態の1つでは、前記次走行経路選択部は、前記現走行経路から前記次走行経路への方向転換の走行距離が短いことを選択条件とするように構成されている。この構成では、左右のそれぞれの旋回時における作業幅中心の旋回軌跡を考慮したうえで、方向転換の走行距離が短くなる次走行経路を選択するので、走行装置の走行軌跡に基づく走行距離が短くても、作業幅中心が次走行経路による作業幅中心に達することができないような方向転換走行は除外される。これにより、作業幅中心と旋回基準点との間に横ずれが生じるような作業装置を装備しても、適正な次走行経路の選択が可能となる。 In one of the preferred embodiments of the present invention, the next traveling route selection unit is configured to select a short traveling distance of a change of direction from the current traveling route to the next traveling route as a selection condition. . In this configuration, since the next traveling route in which the traveling distance of the direction change becomes shorter is selected in consideration of the turning locus at the center of the working width at the time of each turning on the left and right, the traveling distance based on the traveling locus of the traveling device is short. Even if the work width center can not reach the work width center according to the next traveling route, a turning change is excluded. As a result, even if the work device is installed such that lateral displacement occurs between the work width center and the turning reference point, it is possible to select an appropriate next travel route.
 本発明の好適な実施形態の1つでは、衛星からの衛星信号に基づいて測位データを出力する衛星測位モジュールと、前記測位データに基づいて自車位置を算出する自車位置算出部と、前記走行経路と前記自車位置との偏差に基づいて操舵量を算出する操舵量算出部とが備えられている。この構成を採用することで、作業車は、適正な次走行経路を選択しながら、複数の平行走行経路を自動操舵で走行することができる。 In one of the preferred embodiments of the present invention, a satellite positioning module that outputs positioning data based on satellite signals from satellites, a vehicle position calculation unit that calculates a vehicle position based on the positioning data, and A steering amount calculation unit is provided which calculates a steering amount based on a deviation between a traveling route and the vehicle position. By adopting this configuration, the work vehicle can travel on a plurality of parallel traveling routes by automatic steering while selecting an appropriate next traveling route.
 旋回時に設定される旋回円によって定まる旋回基準経路の上を追従する車体の基準点、つまり旋回基準点は、実質的にはトレッド中心線上に位置する。また、衛星アンテナが測位基準点であり、その位置は衛星測位モジュールの測位データに含まれている座標位置である。したがって、トレッド中心線上に衛星アンテナを設置すると、旋回基準点の位置が正確に算出することができ、旋回走行の精度が向上する。 The reference point of the vehicle body following the top of the turning reference path defined by the turning circle set during turning, that is, the turning reference point is substantially located on the tread center line. The satellite antenna is a positioning reference point, and the position is a coordinate position included in the positioning data of the satellite positioning module. Therefore, if the satellite antenna is installed on the tread center line, the position of the turning reference point can be accurately calculated, and the accuracy of turning travel is improved.
 上述した本発明による作業車における次走行経路選択機能は、走行経路選択システムとしてパッケージ化することができる。そのような走行経路選択システムも本発明の対象である。本発明による走行経路選択システムは、互いに平行に延びた複数の平行走行経路と、前記平行走行経路同士をつなぐ方向転換走行経路とを含む走行経路に沿って作業地を走行する作業車のための走行経路選択システムであって、左旋回時における前記作業車の作業幅中心の旋回軌跡に関する左旋回軌跡情報と、右旋回時における前記作業幅中心の旋回軌跡に関する右旋回軌跡情報と、前記作業車の走行装置の最小旋回半径とを管理する旋回情報管理部と、前記左旋回軌跡情報と前記右旋回軌跡情報と前記最小旋回半径とに基づいて、走行中の前記平行走行経路である現走行経路の次に走行する前記平行走行経路である次走行経路の選択を決定する次走行経路選択部とを備える。この走行経路選択システムは、上述した本発明の作業車と同様な作用効果が得られる。また、この走行経路選択システムに対しても、上述した本発明の実施形態を適用することができ、同様な作用効果が得られる。 The next traveling route selection function in the work vehicle according to the present invention described above can be packaged as a traveling route selection system. Such a travel route selection system is also an object of the present invention. A travel route selection system according to the present invention is for a work vehicle traveling along a work site along a travel route including a plurality of parallel travel routes extending parallel to one another and a direction change travel route connecting the parallel travel routes. A traveling route selection system, comprising: left turning trajectory information on a turning trajectory of a working width center of the work vehicle at the time of left turning; right turning trajectory information on a turning trajectory of the working width center at the time of right turning; It is the parallel traveling route during traveling based on the turning information management unit that manages the minimum turning radius of the traveling device of the work vehicle, the left turning locus information, the right turning locus information, and the minimum turning radius And a next traveling route selection unit which determines selection of a next traveling route which is the parallel traveling route to be run next to the current traveling route. This travel route selection system provides the same effects as the above-described work vehicle of the present invention. Also, the above-described embodiment of the present invention can be applied to this travel route selection system, and the same function and effect can be obtained.
 (3)課題(3)に対応する解決手段は、以下の通りである。 (3) The solution means corresponding to the problem (3) is as follows.
 本発明の特徴は、圃場の植立穀稈を刈り取る刈取装置と、前記刈取装置により刈り取られた刈取穀稈を脱穀処理する脱穀装置と、前記脱穀装置による脱穀処理により得られた穀粒を貯留する穀粒タンクと、前記穀粒タンク内の穀粒貯留量を検知する貯留量センサと、を有するコンバインの走行経路を算出する走行経路算出システムであって、圃場における刈取走行のための走行経路である刈取走行経路を算出する刈取走行経路算出部を備え、前記刈取走行経路は、複数の走行ラインにより構成されており、前記貯留量センサによる検知結果に基づいて、次に走行する予定の前記走行ラインである次走行ラインの途中で前記穀粒貯留量が所定の閾値に達するか否かを予測する貯留予測部を備え、前記刈取走行経路算出部は、前記貯留予測部により前記次走行ラインの途中で前記穀粒貯留量が前記閾値に達すると予測された場合に、前記次走行ラインの途中で前記穀粒貯留量が前記閾値に達しないように、前記次走行ラインを修正する走行ライン修正処理を行うことにある。 The features of the present invention are a reaping device for reaping the field crop of the field, a threshing device for threshing the reaping crop remnant harvested by the reaping device, and storing the grain obtained by the threshing treatment by the threshing device A travel route calculation system for calculating a travel route of a combine having a grain tank to be stored and a storage amount sensor for detecting a grain storage amount in the grain tank, wherein the travel path for reaping a crop in a field A reaper traveling route calculating unit for calculating a reaper traveling route, the reaper traveling route being constituted by a plurality of traveling lines, and the traveling planned to travel next based on a detection result by the storage amount sensor A storage prediction unit that predicts whether or not the grain storage amount reaches a predetermined threshold in the middle of the next travel line, which is a travel line, is provided, and the reaping travel route calculation unit When it is predicted that the grain storage amount will reach the threshold in the middle of the next traveling line, the next traveling line so that the grain storage amount does not reach the threshold in the middle of the next traveling line To correct the traveling line correction process.
 本発明であれば、貯留予測部により次に走行する予定の走行ラインである次走行ラインの途中で穀粒貯留量が所定の閾値に達すると予測された場合には、走行ライン修正処理が行われる。この走行ライン修正処理によって、次走行ラインの途中で穀粒貯留量が閾値に達しないように次走行ラインが修正される。そして、コンバインが、修正後の次走行ラインに基づいて走行すれば、次走行ラインの途中で穀粒貯留量が閾値に達することはない。 In the case of the present invention, when it is predicted by the storage prediction unit that the grain storage amount reaches a predetermined threshold on the way of the next travel line which is a travel line scheduled to travel next, the travel line correction processing is performed. It will be. The traveling line correction process corrects the next traveling line so that the grain storage amount does not reach the threshold in the middle of the next traveling line. Then, if the combine travels based on the corrected next traveling line, the grain storage amount does not reach the threshold in the middle of the next traveling line.
 従って、本発明であれば、走行ラインの途中で穀粒貯留量が所定の閾値に達することを回避できる。そして、所定の閾値を、穀粒タンクの満杯量に相当する穀粒量以下に設定すれば、走行ラインの途中で穀粒タンクが満杯となることを回避できる。 Therefore, according to the present invention, it is possible to avoid that the grain storage amount reaches a predetermined threshold in the middle of the traveling line. Then, if the predetermined threshold value is set to be equal to or less than the grain amount corresponding to the full amount of the grain tank, it can be avoided that the grain tank becomes full in the middle of the traveling line.
 しかも、本発明であれば、コンバインが修正後の次走行ラインに沿った刈取走行を行うことにより、穀粒タンク内に可能な限り多くの穀粒を貯留させやすい。これにより、作業効率の低下を防ぎやすい。 Moreover, according to the present invention, it is easy to store as many grains as possible in the grain tank by performing combine cutting along the corrected next traveling line. This makes it easy to prevent a drop in work efficiency.
 即ち、本発明であれば、走行ラインの途中でコンバインの穀粒タンクが満杯となることを回避しつつ、穀粒タンク内に可能な限り多くの穀粒を貯留させて作業効率の低下を防ぎやすい。 That is, according to the present invention, it is possible to store as many grains as possible in the grain tank while preventing the grain tank of the combine from becoming full in the middle of the traveling line, thereby preventing a drop in work efficiency. Cheap.
 さらに、本発明において、前記刈取走行経路に沿った自動走行によって刈取走行が行われるように前記コンバインを制御する走行制御部を備え、前記刈取走行経路算出部は、前記走行ライン修正処理において、前記刈取装置による刈取幅が減少するように前記次走行ラインを修正すると好適である。 Furthermore, in the present invention, the travel control unit is configured to control the combine so that the reaping travel is performed by the automatic travel along the reaping travel path, and the reaping travel path calculating unit further includes the travel line correction process. It is preferable to correct the next traveling line so that the reaper width by the reaper decreases.
 この構成によれば、貯留予測部により次走行ラインの途中で穀粒貯留量が所定の閾値に達すると予測された場合には、刈取装置による刈取幅が減少するように次走行ラインが修正される。そして、走行制御部による制御によって、コンバインは、修正後の次走行ラインに沿って自動走行する。 According to this configuration, when the storage prediction unit predicts that the grain storage amount will reach the predetermined threshold in the middle of the next traveling line, the next traveling line is corrected so that the reaping width by the reaper decreases. Ru. Then, under the control of the traveling control unit, the combine travels automatically along the corrected next traveling line.
 従って、この構成によれば、貯留予測部により次走行ラインの途中で穀粒貯留量が所定の閾値に達すると予測された場合、次走行ラインに沿った走行における刈取幅が減少することとなる。そして、刈取幅が減少することにより、次走行ラインの全体を刈取走行した場合に得られる穀粒量が減少する。これにより、次走行ラインの途中で穀粒貯留量が所定の閾値に達しにくくなる。 Therefore, according to this configuration, when the storage prediction unit predicts that the grain storage amount will reach the predetermined threshold in the middle of the next traveling line, the cutting width in traveling along the next traveling line will be reduced. . And, by reducing the cutting width, the amount of grain obtained when the entire traveling line is cut is reduced. Thereby, it becomes difficult for the grain storage amount to reach a predetermined threshold in the middle of the next traveling line.
 即ち、この構成によれば、走行ライン修正処理において、次走行ラインの途中で穀粒貯留量が所定の閾値に達しないような修正を確実に行うことが可能となる。 That is, according to this configuration, in the traveling line correction process, it is possible to reliably perform correction so that the grain storage amount does not reach the predetermined threshold in the middle of the next traveling line.
 さらに、本発明において、単位刈取走行距離当たりに収穫される穀粒の量である単位収穫量を算出する単位収穫量算出部と、前記閾値と、前記貯留量センサによる検知結果と、前記単位収穫量算出部により算出された前記単位収穫量と、に基づいて、前記穀粒貯留量が前記閾値に達する時点における前記コンバインの位置を予測する位置予測部と、を備え、前記貯留予測部は、前記位置予測部により予測された前記コンバインの位置が前記次走行ラインの途中の位置である場合、前記次走行ラインの途中で前記穀粒貯留量が前記閾値に達すると予測すると好適である。 Furthermore, in the present invention, a unit harvest amount calculation unit that calculates a unit harvest amount that is an amount of grain harvested per unit cutting traveling distance, the threshold value, a detection result by the storage amount sensor, and the unit harvest A position prediction unit that predicts a position of the combine at a time when the grain storage amount reaches the threshold value based on the unit harvest amount calculated by the amount calculation unit; When the position of the combine predicted by the position prediction unit is a position on the way of the next travel line, it is preferable to predict that the grain storage amount reaches the threshold in the middle of the next travel line.
 この構成によれば、穀粒貯留量が所定の閾値に達する時点におけるコンバインの位置が予測される。そして、予測されたコンバインの位置が次走行ラインの途中の位置であれば、次走行ラインの途中で穀粒貯留量が所定の閾値に達すると予測される。 According to this configuration, the position of the combine is predicted when the grain storage amount reaches a predetermined threshold. Then, if the predicted combine position is in the middle of the next travel line, it is predicted that the grain storage amount will reach a predetermined threshold in the middle of the next travel line.
 これにより、次走行ラインの途中で穀粒貯留量が所定の閾値に達することを確実に予測することが可能となる。 This makes it possible to reliably predict that the grain storage amount will reach the predetermined threshold in the middle of the next traveling line.
第1実施形態を示す図であって(以下、図7まで同じ)、作業車の一例としてのコンバインの側面図である。It is a figure which shows 1st Embodiment (following, it is the same to FIG. 7), and is a side view of the combine as an example of a working vehicle. コンバインの自動走行の概要を示す図である。It is a figure showing an outline of automatic travel of a combine. 自動走行における走行経路を示す図である。It is a figure showing the run course in automatic run. コンバインの制御系の構成を示す機能ブロック図である。It is a functional block diagram which shows the structure of the control system of a combine. 横ずれが生じていない作業走行における、余分なオーバーラップの解消する走行経路の修正を説明する模式図である。It is a schematic diagram explaining the correction | amendment of the driving | running route which eliminates the excess overlap in the work driving | running | working which the side gap has not produced. 横ずれが生じた作業走行における、余分なオーバーラップの解消する走行経路の修正を説明する模式図である。It is a schematic diagram explaining the correction | amendment of the driving | running route which eliminates the excess overlap in the work driving | running | working which a lateral shift produced. 余分なオーバーラップの解消する走行経路修正制御のフローチャートである。It is a flowchart of traveling path correction control which eliminates an excess overlap. 第2実施形態を示す図であって(以下、図14まで同じ)、作業車の一例としてのコンバインの側面図である。It is a figure which shows 2nd Embodiment (following, it is the same to FIG. 14), and is a side view of the combine as an example of a working vehicle. コンバインの自動走行の概要を示す図である。It is a figure showing an outline of automatic travel of a combine. 自動走行における走行経路を示す図である。It is a figure showing the run course in automatic run. 作業幅中心と旋回基準点との関係を模式的に示す平面図である。It is a top view which shows typically the relationship between a working width center and a turning reference point. 左旋回と右旋回での作業幅中心の旋回軌跡の違いを模式的に示す平面図である。It is a top view which shows typically the difference in the turning locus | trajectory of the working width center in left turning and right turning. コンバインの制御系の構成を示す機能ブロック図である。It is a functional block diagram which shows the structure of the control system of a combine. 走行経路選択の流れを示すフローチャートである。It is a flowchart which shows the flow of travel route selection. 第3実施形態を示す図であって(以下、図23まで同じ)、コンバインの左側面図である。It is a figure which shows 3rd Embodiment (following, it is the same to FIG. 23), and is a left view of a combine. 走行経路算出システムの構成を示すブロック図である。It is a block diagram showing composition of a travel route calculation system. 圃場における周回走行を示す図である。It is a figure which shows the round trip in a field. 刈取走行経路を示す図である。It is a figure which shows a reaping travel path. 刈取走行経路に沿った刈取走行を示す図である。It is a figure which shows mowing travel along a mowing travel path. 走行ライン修正処理が行われる場合の例を示す図である。It is a figure which shows the example in case a traveling line correction process is performed. 走行ライン修正処理後の次走行ラインを示す図である。It is a figure which shows the following traveling line after a traveling line correction process. 第1別実施形態において走行ライン修正処理が行われる場合の例を示す図である。It is a figure which shows the example in case a traveling line correction process is performed in 1st other embodiment. 第2別実施形態におけるコンバインを示す図である。It is a figure which shows the combine in 2nd another embodiment.
(第1実施形態)
 次に、本発明による作業車の一例である収穫機として、普通型のコンバインを取り上げて説明する。なお、本明細書では、特に断りがない限り、「前」(図1に示す矢印Fの方向)は車体前後方向(走行方向)における前方を意味し、「後」(図1に示す矢印Bの方向)は車体前後方向(走行方向)における後方を意味する。また、左右方向または横方向は、車体前後方向に直交する車体横断方向(車体幅方向)を意味する。「上」(図1に示す矢印Uの方向)及び「下」(図1に示す矢印Dの方向)は、車体の鉛直方向(垂直方向)での位置関係であり、地上高さにおける関係を示す。
First Embodiment
Next, as a harvester which is an example of a work vehicle according to the present invention, a conventional combine will be described. In the present specification, “front” (direction of arrow F shown in FIG. 1) means front in the vehicle longitudinal direction (traveling direction) unless otherwise noted, “rear” (arrow B shown in FIG. 1) Direction) means the rear in the longitudinal direction of the vehicle body (traveling direction). Further, the lateral direction or the lateral direction means a transverse direction of the vehicle (vehicle width direction) orthogonal to the longitudinal direction of the vehicle. “Up” (direction of arrow U shown in FIG. 1) and “down” (direction of arrow D shown in FIG. 1) are positional relationships in the vertical direction (vertical direction) of the vehicle body, Show.
 図1に示すように、このコンバインは、車体10、クローラ式の走行装置11、運転部12、脱穀装置13、穀粒タンク14、作業装置としての収穫部H、搬送装置16、穀粒排出装置18、自車位置検出モジュール80を備えている。 As shown in FIG. 1, the combine has a car body 10, a traveling device 11 of a crawler type, an operation unit 12, a threshing device 13, a grain tank 14, a harvesting part H as a working device, a conveying device 16, a grain discharging device 18. The vehicle position detection module 80 is provided.
 走行装置11は、車体10の下部に備えられている。コンバインは、走行装置11によって、作業地である圃場を自走可能に構成されている。運転部12、脱穀装置13、穀粒タンク14は、走行装置11の上側に備えられ、車体10の上部を構成している。運転部12には、コンバインを運転する運転者やコンバインの作業を監視する監視者が搭乗可能である。通常、運転者と監視者とは兼務される。なお、運転者と監視者とが別人の場合、監視者は、コンバインの機外からコンバインの作業を監視していても良い。 The traveling device 11 is provided at the lower part of the vehicle body 10. The combine is configured to be able to self-propelled by the traveling device 11 in a field which is a work site. The driving unit 12, the threshing device 13, and the grain tank 14 are provided on the upper side of the traveling device 11 and constitute an upper portion of the vehicle body 10. A driver who operates the combine and a supervisor who monitors the combine operation can ride on the driving unit 12. Usually, the driver and the supervisor are combined. When the driver and the monitor are different persons, the monitor may monitor the combine operation from the outside of the combine.
 穀粒排出装置18は、穀粒タンク14の後下部に連結されている。また、自車位置検出モジュール80(衛星測位モジュール81および慣性計測モジュール82)は、運転部12の前上部に取り付けられている。 The grain discharging device 18 is connected to the rear lower portion of the grain tank 14. In addition, the vehicle position detection module 80 (the satellite positioning module 81 and the inertia measurement module 82) is attached to the front upper portion of the driving unit 12.
 収穫部Hは、本発明における作業装置である。収穫部Hは、作業幅を規定するので、その刈取幅が本発明における作業幅となる。収穫部Hは、コンバインにおける前部に備えられている。そして、搬送装置16は、収穫部Hの後側に接続されている。また、収穫部Hは、切断機構15及びリール17を有している。切断機構15は、圃場の植立穀稈を刈り取る。また、リール17は、回転駆動しながら収穫対象の植立穀稈を掻き込む。この構成により、収穫部Hは、圃場の穀物(農作物の一種)を収穫する。そして、コンバインは、収穫部Hによって圃場の穀物を収穫しながら走行装置11によって走行する作業走行が可能である。 The harvesting unit H is a working device in the present invention. Since the harvester H defines the working width, the cutting width is the working width in the present invention. The harvester H is provided at the front of the combine. Then, the transport device 16 is connected to the rear side of the harvesting unit H. The harvester H also has a cutting mechanism 15 and a reel 17. The cutting mechanism 15 reaps the crop of the field in the field. In addition, the reel 17 scrapes the cropped cereals to be harvested while being rotationally driven. According to this configuration, the harvesting unit H harvests cereal grains (a kind of crop) in the field. And a combine traveling can carry out work traveling which travels with run device 11 while harvesting the grain of a field by harvesting part H.
 切断機構15により刈り取られた刈取穀稈は、搬送装置16によって脱穀装置13へ搬送される。脱穀装置13において、刈取穀稈は脱穀処理される。脱穀処理により得られた穀粒は、穀粒タンク14に貯留される。穀粒タンク14に貯留された穀粒は、穀粒排出装置18によって機外に排出される。 The cropped rice straw which has been cut by the cutting mechanism 15 is transported by the transport device 16 to the threshing device 13. In the threshing device 13, the reaping grain is threshed. The grains obtained by the threshing process are stored in a grain tank 14. The grains stored in the grain tank 14 are discharged to the outside by the grain discharging device 18.
 また、運転部12には、通信端末4が配置されている。本実施形態において、通信端末4は、運転部12に固定されている。しかしながら、本発明はこれに限定されず、通信端末4は、運転部12に対して着脱可能に構成されていても良いし、コンバインの車外に持ち出しても良い。 In addition, the communication terminal 4 is disposed in the operation unit 12. In the present embodiment, the communication terminal 4 is fixed to the operation unit 12. However, this invention is not limited to this, The communication terminal 4 may be comprised so that attachment or detachment is possible with respect to the operation part 12, and you may carry it out of the vehicle of a combine.
 図2に示すように、このコンバインは、圃場において設定された走行経路に沿って自動走行する。このためには、自車位置が必要である。自車位置検出モジュール80には、衛星測位モジュール81と慣性計測モジュール82とが含まれている。衛星測位モジュール81は、人工衛星GSから送信されるGNSS(global navigation satellite system)信号(GPS信号を含む)を受信して、自車位置を算出するための測位データを出力する。衛星測位モジュール81には、種々の方式があるが、リアルタイム・キネマティック方式を採用する場合には、図示されていない基地局が圃場の周辺に設置される。慣性計測モジュール82は、ジャイロ加速度センサ及び磁気方位センサを組み込んでおり、瞬時の走行方位を示す位置ベクトルを出力する。慣性計測モジュール82は、衛星測位モジュール81による自車位置算出を補完するために用いられる。慣性計測モジュール82は、省略することも可能である。 As shown in FIG. 2, this combine travels automatically along the travel route set in the field. For this purpose, the vehicle position is required. The vehicle position detection module 80 includes a satellite positioning module 81 and an inertial measurement module 82. The satellite positioning module 81 receives GNSS (global navigation satellite system) signals (including GPS signals) transmitted from the artificial satellite GS, and outputs positioning data for calculating the position of the vehicle. There are various methods for the satellite positioning module 81. However, when the real-time kinematic method is adopted, a base station not shown is installed around the farmland. The inertial measurement module 82 incorporates a gyro acceleration sensor and a magnetic direction sensor, and outputs a position vector indicating an instantaneous traveling direction. The inertia measurement module 82 is used to supplement the vehicle position calculation by the satellite positioning module 81. The inertial measurement module 82 can be omitted.
 コンバインによる収穫作業では、最初に、運転者兼監視者は、コンバインを手動で操作し、圃場内の外周部分において、圃場の境界線に沿って周回するように収穫走行を行う。
これにより既刈地(既作業地)となった領域は、図2に示すように、外周領域SAとして設定される。そして、外周領域SAの内側に未刈地(未作業地)のまま残された領域は、作業対象領域CAとして設定される。図2は、外周領域SAと作業対象領域CAの一例を示している。
In the harvest operation by the combine, the driver / watcher first operates the combine manually, and performs harvest traveling on the perimeter of the field so as to go around along the border of the field.
As a result, as shown in FIG. 2, the area which has become the existing area (existing area) is set as the outer peripheral area SA. Then, the area left as the uncut ground (unworked place) inside the outer peripheral area SA is set as the work target area CA. FIG. 2 shows an example of the outer peripheral area SA and the work target area CA.
 外周領域SAは、作業対象領域CAにおいて収穫走行を行うときに、コンバインが方向転換するためのスペースとして利用される。また、外周領域SAは、収穫走行を一旦終えて、穀粒の排出場所へ移動する際や、燃料の補給場所へ移動する際等の移動用のスペースとしても利用される。そのために、外周領域SAの幅をある程度広く確保するために、運転者は、コンバインを3~4周走行させる。この周回走行も、自動走行によって行われても良い。 The outer peripheral area SA is used as a space for the combine to turn when the harvest traveling is performed in the work target area CA. Further, the outer peripheral area SA is also used as a space for movement, such as when moving to a discharge place of grain or after moving to a fuel supply place after the harvest traveling is once finished. Therefore, in order to secure the width of the outer peripheral area SA to a certain extent, the driver travels the combine three to four turns. This circular traveling may also be performed by automatic traveling.
 なお、図2に示す運搬車CVは、コンバインから排出された穀粒を収集し、運搬することができる。穀粒排出の際、コンバインは運搬車CVの近傍へ移動した後、穀粒排出装置18によって穀粒を運搬車CVへ排出する。 In addition, the transport vehicle CV shown in FIG. 2 can collect and transport the grain discharged | emitted from the combine. At the time of grain discharge, the combine moves to the vicinity of the transport vehicle CV and then discharges the grains to the transport vehicle CV by the grain discharge device 18.
 外周領域SA及び作業対象領域CAが設定されると、図3に示すように、作業対象領域CAにおける走行経路が算定される。この例では、走行経路は、複数の互いに平行に延びた直進走行経路と、直進走行経路をつなぐ方向転換走行経路とからなる。なお、直進走行経路は、直線に限定されるわけではなく、曲線であってもよいし、曲線と直線との組み合わせであってもよい。平行に並んだ走行経路の間隔は、収穫部Hの刈取幅である作業幅と、走行誤差を吸収するためのオーバーラップとに基づいて決定される。算定された走行経路は、作業走行のパターンに基づいて順次設定され、設定された走行経路に沿って走行するように、コンバインが自動走行制御される。図3には、作業対象領域CAの周囲を回り刈りをしながら、角部にて前後進を繰り返しながら方向転換する作業形態が示されている。 When the outer peripheral area SA and the work target area CA are set, as shown in FIG. 3, a travel route in the work target area CA is calculated. In this example, the traveling route includes a plurality of parallel traveling straight traveling routes and a direction change traveling route connecting the straight traveling routes. The straight traveling route is not limited to a straight line, and may be a curved line or a combination of a curved line and a straight line. The distance between the parallel travel paths is determined based on the work width which is the cutting width of the harvester H and the overlap for absorbing the travel error. The calculated traveling route is sequentially set based on the work traveling pattern, and the combine is automatically controlled to travel along the set traveling route. FIG. 3 shows an operation mode in which the direction is changed while repeating forward and backward movement at corner portions while cutting around the work target area CA.
 図4に、コンバインの制御系が示されている。コンバインの制御系は、多数のECUと呼ばれる電子制御ユニットからなる制御ユニット5、及びこの制御ユニット5との間で車載LANなどの配線網を通じて信号通信(データ通信)を行う各種入出力機器から構成されている。 The control system of the combine is shown in FIG. The control system of the combine comprises a control unit 5 consisting of electronic control units called multiple ECUs, and various input / output devices that perform signal communication (data communication) with the control unit 5 through a wiring network such as an in-vehicle LAN. It is done.
 報知デバイス62は、運転者等に作業走行状態や種々の警告を報知するためのデバイスであり、ブザー、ランプ、スピーカ、ディスプレイなどである。通信部66は、このコンバインの制御系が、遠隔地に設置されている管理コンピュータ及び外部通信端末との間でデータ交換するために用いられる。この外部通信端末には、圃場に立っている監視者、またはコンバインに乗り込んでいる監視者(運転者も含む)が操作するタブレットコンピュータ、自宅や管理事務所に設置されているコンピュータ、さらには車外に持ち出された通信端末4が含まれる。制御ユニット5は、この制御系の中核要素であり、複数のECUの集合体として示されている。自車位置検出モジュール80からの信号は、車載LANを通じて制御ユニット5に入力される。 The notification device 62 is a device for notifying a driver or the like of a work traveling state and various warnings, and is a buzzer, a lamp, a speaker, a display or the like. The communication unit 66 is used to exchange data between the control computer of the combine and the management computer and the external communication terminal installed at a remote place. This external communication terminal may be a tablet computer operated by an observer standing in a field or an observer (including a driver) who is riding in a combine, a computer installed at home or at a management office, or even outside a car Includes the communication terminal 4 brought out. The control unit 5 is a core element of this control system, and is shown as a collection of a plurality of ECUs. A signal from the own vehicle position detection module 80 is input to the control unit 5 through the in-vehicle LAN.
 制御ユニット5は、入出力インタフェースとして、出力処理部503と入力処理部502とを備えている。出力処理部503は、機器ドライバ65を介して種々の動作機器70と接続している。動作機器70として、走行関係の機器である走行機器群71と作業関係の機器である作業機器群72とがある。走行機器群71には、例えば、エンジン制御機器、変速制御機器、制動制御機器、操舵制御機器などが含まれている。作業機器群72には、収穫部H、脱穀装置13、搬送装置16、穀粒排出装置18における動力制御機器などが含まれている。 The control unit 5 includes an output processing unit 503 and an input processing unit 502 as an input / output interface. The output processing unit 503 is connected to various operation devices 70 via the device driver 65. The operating devices 70 include a traveling device group 71 which is a driving-related device and a working device group 72 which is a working-related device. The traveling device group 71 includes, for example, an engine control device, a transmission control device, a braking control device, a steering control device, and the like. The working device group 72 includes a power control device and the like in the harvesting unit H, the threshing device 13, the transport device 16, and the grain discharging device 18.
 入力処理部502には、走行状態センサ群63、作業状態センサ群64、走行操作ユニット90、などが接続されている。走行状態センサ群63には、車速センサ、エンジン回転数センサ、オーバーヒート検出センサ、ブレーキペダル位置検出センサ、駐車ブレーキ検出センサ、変速位置検出センサ、操舵位置検出センサ、などが含まれている。作業状態センサ群64には、収穫作業装置(収穫部H、脱穀装置13、搬送装置16、穀粒排出装置18)の駆動状態を検出するセンサ、及び穀稈や穀粒の状態を検出するセンサが含まれている。 A traveling state sensor group 63, a working state sensor group 64, a traveling operation unit 90, and the like are connected to the input processing unit 502. The traveling state sensor group 63 includes a vehicle speed sensor, an engine rotational speed sensor, an overheat detection sensor, a brake pedal position detection sensor, a parking brake detection sensor, a shift position detection sensor, a steering position detection sensor, and the like. The work state sensor group 64 includes a sensor for detecting the driving state of the harvest work device (the harvester H, the threshing device 13, the transport device 16, and the grain discharging device 18), and a sensor for detecting the state of the grain or grain. It is included.
 走行操作ユニット90は、運転者によって手動操作され、その操作信号が制御ユニット5に入力される操作具の総称である。走行操作ユニット90には、主変速操作具、操舵操作具、モード操作具、自動開始操作具などが含まれている。モード操作具は、自動運転と手動運転とを切り替えるための指令を制御ユニット5に送り出す機能を有する。自動開始操作具は、自動走行を開始するための最終的な自動開始指令を制御ユニット5に送る機能を有する。 The travel operation unit 90 is a general term for an operation tool which is manually operated by the driver and whose operation signal is input to the control unit 5. The travel operation unit 90 includes a main shift operation tool, a steering operation tool, a mode operation tool, an automatic start operation tool, and the like. The mode operation tool has a function of transmitting a command for switching between the automatic operation and the manual operation to the control unit 5. The automatic start operating tool has a function of sending a final automatic start command for starting automatic traveling to the control unit 5.
 制御ユニット5には、自車位置算出部50、走行制御部51、作業制御部52、走行モード管理部53、作業領域決定部54、走行経路設定部55、位置ずれ値算出部56、修正値算出部57、走行経路変位部58が備えられている。自車位置算出部50は、自車位置検出モジュール80から逐次送られてくる測位データに基づいて、自車位置を地図座標(または圃場座標)の形式で算出する。その際、自車位置として、車体10の基準点(例えば車体中心、収穫部Hの中心など)の位置を設定することができる。報知部501は、制御ユニット5の各機能部からの指令等に基づいて報知データを生成し、報知デバイス62に与える。 The control unit 5 includes an own vehicle position calculation unit 50, a travel control unit 51, a work control unit 52, a travel mode management unit 53, a work area determination unit 54, a travel route setting unit 55, a positional deviation value calculation unit 56, and a correction value. A calculation unit 57 and a travel route displacement unit 58 are provided. The vehicle position calculation unit 50 calculates the vehicle position in the form of map coordinates (or field coordinates) based on the positioning data sequentially sent from the vehicle position detection module 80. At that time, the position of a reference point of the vehicle body 10 (for example, the center of the vehicle body, the center of the harvesting section H, etc.) can be set as the vehicle position. The notification unit 501 generates notification data based on an instruction or the like from each functional unit of the control unit 5 and gives the notification data to the notification device 62.
 走行制御部51は、エンジン制御機能、操舵制御機能、車速制御機能などを有し、走行機器群71に走行制御信号を与える。作業制御部52は、作業機器群72に作業制御信号を与え、これらの動きを制御する。 The traveling control unit 51 has an engine control function, a steering control function, a vehicle speed control function, and the like, and supplies a traveling control signal to the traveling device group 71. The work control unit 52 supplies work control signals to the work equipment group 72 to control their movement.
 このコンバインは、自動走行で収穫作業を行う自動運転と、手動走行で収穫作業を行う手動運転との両方で走行可能である。このため、走行制御部51には、手動走行制御部511と自動走行制御部512とが含まれている。なお、自動運転を行うために自動走行モードが設定され、手動運転を行うために手動走行モードが設定される。このような走行モードは、走行モード管理部53によって管理される。 The combine can travel in both automatic operation in which harvesting operation is performed automatically and manual operation in which harvesting operation is performed manually. For this reason, the traveling control unit 51 includes a manual traveling control unit 511 and an automatic traveling control unit 512. Note that the automatic travel mode is set to perform automatic driving, and the manual travel mode is set to perform manual driving. Such a travel mode is managed by the travel mode management unit 53.
 自動走行モードが設定されている場合、自動走行制御部512は、自動操舵及び停止を含む車速変更の制御信号を生成して、走行機器群71を制御する。自動操舵に関する制御信号は、自車位置算出部50によって算出される自車位置と走行目標となる走行経路との間の方位ずれ及び位置ずれが解消されるように生成される。 When the automatic travel mode is set, the automatic travel control unit 512 controls the traveling device group 71 by generating a control signal for changing the vehicle speed including automatic steering and stop. The control signal related to the automatic steering is generated such that the azimuth deviation and the positional deviation between the own vehicle position calculated by the own vehicle position calculation unit 50 and the traveling route serving as the traveling target are eliminated.
 手動走行モードが選択されている場合、運転者による操作に基づいて、手動走行制御部511が制御信号を生成し、走行機器群71を制御することで、手動運転が実現する。走行目標となる走行経路は、手動運転であっても、コンバインが当該走行経路に沿って走行するためのガイダンスのために利用することができる。 When the manual travel mode is selected, the manual travel control unit 511 generates a control signal based on the operation by the driver and controls the traveling device group 71 to realize the manual driving. The travel route serving as the travel target can be used for guidance for the combine to travel along the travel route, even in manual driving.
 作業領域決定部54は、所定の作業幅で行われた収穫作業から、既刈領域(外周領域SA)、未刈領域(作業対象領域CA)などを決定する。走行経路設定部55は、作業対象領域CAにおける走行経路を、所定の経路算出アルゴリズムを用いて算出し、順次、目標走行経路として設定し、走行制御部51に与える。走行経路設定部55は、走行経路群を経路算出アルゴリズムによって自ら生成することもできるが、管理コンピュータ及び外部通信端末で生成されたものをダウンロードして、利用することも可能である。 The work area determination unit 54 determines, from the harvest work performed with a predetermined work width, an already-cleaved area (peripheral area SA), an uncut area (work target area CA), and the like. The travel route setting unit 55 calculates the travel route in the work target area CA using a predetermined route calculation algorithm, sequentially sets it as a target travel route, and gives it to the travel control unit 51. The traveling route setting unit 55 can also generate traveling route groups by the route calculation algorithm by itself, but can also download and use those generated by the management computer and the external communication terminal.
 位置ずれ値算出部56、修正値算出部57、走行経路変位部58は、必要以上のオーバーラップの設定による作業効率の低下を抑制するための走行経路修正制御を行うために機能する。 The positional deviation value calculation unit 56, the correction value calculation unit 57, and the travel route displacement unit 58 function to perform travel route correction control for suppressing the reduction in work efficiency due to the setting of the overlap more than necessary.
 この走行経路修正制御を図5と図6とを用いて説明する。上述した回り刈りを行う場合、一周ごとに作業対象領域CAの同じ辺の側にて、コンバインは同じ方向を向いて隣り合う走行経路を走行することになる。これらの図においては、理解のし易さのために、異なる周回時における収穫部Hを記載してある。図5は、走行経路に沿っての作業走行において、車体10が走行経路に対して位置ずれ(横ずれ)しないという理想的な条件での説明図である。図6は、走行経路に沿っての作業走行において、車体10が走行経路に対して位置ずれ(横ずれ)が発生するという一般的な条件での説明図である。図5と図6とにおいて、現走行経路RL1は走行中の目標経路であり、次走行経路RL2は、現走行経路を終えて、方向転換走行の後に走行する目標経路であり、ここではそれぞれ直線としているが、曲線であってもよい。作業幅はWで示され、作業幅の両端に設定されるオーバ―ラップ値はLで示されている。その結果、前もって設定される経路間隔はDで示されており、D=W-2Lとなっている。 The travel route correction control will be described with reference to FIGS. 5 and 6. When the above-described rounding is performed, the combine travels in the same direction and travels on adjacent travel routes on the same side of the work area CA for each round. In these figures, for easy understanding, the harvest parts H at different circulation times are described. FIG. 5 is an explanatory view under an ideal condition that the vehicle body 10 does not shift in position (lateral shift) with respect to the traveling route during work traveling along the traveling route. FIG. 6 is an explanatory view under the general condition that the vehicle body 10 is displaced (laterally shifted) with respect to the traveling route during work traveling along the traveling route. In FIGS. 5 and 6, the current traveling route RL1 is a target route during traveling, and the next traveling route RL2 is a target route traveling after a direction change traveling after the current traveling route is completed, where each straight line However, it may be a curve. The working width is indicated by W, and the overlap value set at both ends of the working width is indicated by L. As a result, the previously set path interval is indicated by D, and D = W-2L.
 位置ずれがない場合、現走行経路RL1の走行によって形成される既作業領域と未作業領域との間の境界線BLは、直線となり、図5においては一点鎖線で示されている。現走行経路RL1から境界線BLまでの距離はW/2となる。このことから、オーバーラップの本来の意味を考慮すれば、次走行経路RL2の位置は、境界線BLからL(オーバーラップ値)だけ現走行経路RL1の方(既作業領域側)に離れた位置から、作業幅Wの半分の距離W/2だけ、次走行経路RL2の方(未作業領域側)に離れた位置で十分である。
 つまり、次走行経路RL2は、現走行経路RL1から、
 W/2-L+W/2=W-L、の位置とすることができる。その位置は、従来通りの手法で算定される次走行経路RL2に比べて、Lだけ未作業領域側に位置しており、その距離Lの分だけオーバーラップの無駄を低減することが可能である。つまり、このLの範囲内で、次走行経路RL2の修正量:dを設定可能である。
When there is no positional deviation, the boundary line BL between the already-worked area and the non-worked area formed by the traveling of the current traveling route RL1 is a straight line, and is indicated by the one-dot chain line in FIG. The distance from the current traveling route RL1 to the boundary line BL is W / 2. From this, in consideration of the original meaning of the overlap, the position of the next traveling route RL2 is a position away from the boundary line BL by L (overlap value) toward the current traveling route RL1 (the side of the work area) From the above, it is sufficient that the distance W / 2 which is a half of the working width W is at a position away from the next traveling route RL2 (unworked area side).
That is, the next traveling route RL2 is from the current traveling route RL1.
The position of W / 2−L + W / 2 = W−L can be set. The position is located on the unworked area side by L compared to the next traveling route RL2 calculated by the conventional method, and it is possible to reduce the overlap waste by the distance L . That is, the correction amount d of the next traveling route RL2 can be set within the range of L.
 現走行経路RL1の走行中に位置ずれが発生する場合、現走行経路RL1の走行によって形成される既作業領域と未作業領域との間の境界線BLは、曲線となり、図6において一点鎖線で示されている。特に、既作業領域側への位置ずれ最大値は、δで示されている。この位置ずれ最大値:δがオーバーラップ値:Lより小さければ、ここでも、図5での説明と同様に、次走行経路RL2を未作業領域に入り込ませることができる。オーバーラップの本来の意味を考慮すれば、次走行経路RL2の位置は、最大の位置ずれが生じている位置からLだけ現走行経路RL1の方(既作業領域側)に離れた位置から、つまり境界線BLからL+δだけ現走行経路RL1の方(既作業領域側)に離れた位置から、作業幅Wの半分の距離W/2だけ次走行経路RL2の方(未作業領域側)に離れた位置で十分である。したがって、次走行経路RL2は、現走行経路RL1から、W/2-L-δ+W/2=W-L-δ、の値だけ離れることができる。その位置は、従来通りの手法で算定される次走行経路RL2に比べて、L-δだけ未作業領域に位置しており、その距離L-δの分だけオーバーラップの無駄を低減することが可能である。つまり、このL-δの範囲内で、次走行経路の修正量:dを設定可能である。 When a positional deviation occurs during traveling of the current traveling route RL1, the boundary line BL between the already-worked region and the unworked region formed by the traveling of the current traveling route RL1 becomes a curve, and in FIG. It is shown. In particular, the positional deviation maximum value toward the work area is indicated by δ. If this positional deviation maximum value: δ is smaller than the overlap value: L, the next traveling route RL2 can be made to enter the unworked area, as described in FIG. In consideration of the original meaning of the overlap, the position of the next traveling route RL2 is from the position away from the position where the largest positional deviation occurs by L toward the current traveling route RL1 (the existing work area side), that is, A position away from the boundary line BL by L + δ toward the current traveling route RL1 (the existing work area side) is separated by a distance W / 2 which is half the working width W toward the next traveling route RL2 (the unworked area side) Location is enough. Therefore, the next traveling route RL2 can be separated from the current traveling route RL1 by a value of W / 2−L−δ + W / 2 = WL−δ. The position is located in the unworked area by L−δ compared to the next traveling route RL2 calculated by the conventional method, and waste of overlap can be reduced by the distance L−δ. It is possible. That is, the correction amount d of the next traveling route can be set within the range of L−δ.
 位置ずれ値算出部56は、自車位置算出部50から得られる自車位置の走行経路からの距離を算出することで位置ずれ値を求める。既作業領域側の位置ずれ値の最大値を順次書き換えていくことで、最終的に現在走行している走行経路における既作業領域側の位置ずれ最大値が得られる。 The positional deviation value calculation unit 56 calculates a positional deviation value by calculating the distance from the traveling route of the own vehicle position obtained from the own vehicle position calculation unit 50. By sequentially rewriting the maximum value of the positional deviation value on the side of the existing work area, the positional deviation maximum value on the side of the existing work area in the traveling route currently being traveled can be finally obtained.
 修正値算出部57は、図6を用いて説明したように、オーバーラップ値と位置ずれ最大値との差分値を求め、得られた差分値を超えない値を修正値とする。この実施形態では、差分値をそのまま修正値とする。これに代えて、位置ずれ最大値や位置ずれ値の分散値などに基づいて決定される係数を差分値に掛けて、修正値としてもよい。 As described with reference to FIG. 6, the correction value calculation unit 57 obtains the difference value between the overlap value and the positional deviation maximum value, and sets a value that does not exceed the obtained difference value as the correction value. In this embodiment, the difference value is used as the correction value as it is. Instead of this, the difference value may be multiplied by a coefficient determined based on the positional deviation maximum value, the dispersion value of the positional deviation value, or the like to be a correction value.
 走行経路変位部58は、走行経路設定部55に設定される未作業領域に設定されている走行経路の全てを、修正値に基づいて未作業領域側(未作業領域の中央側)に変位させる。 The travel route displacement unit 58 displaces all the travel routes set in the unworked region set in the travel route setting unit 55 to the unworked region side (center side of the unworked region) based on the correction value. .
 以上のように構成された走行経路修正制御における制御の流れの一例を図7のフローチャートを用いて説明する。 An example of the flow of control in the travel route correction control configured as described above will be described using the flowchart of FIG. 7.
 まず、作業領域決定部54によって、作業対象領域CAが決定されると、作業経路が作業対象領域CAに対して設定される(#01)。次いで、走行目標となる走行経路が選択され(#02)、当該走行経路に沿った走行が開始される(#03)。 First, when the work target area CA is determined by the work area determination unit 54, a work path is set for the work target area CA (# 01). Next, a traveling route to be a traveling target is selected (# 02), and traveling along the traveling route is started (# 03).
 走行中は、位置ずれ値算出部56によって位置ずれ値が算出され(#04)、位置ずれ最大値が記録されていく(#05)。車体10が走行経路の終端に達したかどうかチェックされる(#06)。走行経路の終端に達してなければ(#06No分岐)、ステップ#03に戻り、走行経路に沿った走行を続行する。走行経路の終端に達していれば(#06Yes分岐)、さらに、次に走行すべき走行経路があるかどうかチェックされる(#07)。走行すべき走行経路がなければ(#07No分岐)、停車する(#08)。走行すべき走行経路があれば(#07Yes分岐)、次に走行すべき走行経路が目標走行経路として設定される(#09)。次いで、設定された目標走行経路に向かうために方向転換走行が行われる(#10)。この方向転換走行は、自動走行でもよいし、手動走行でもよい。 During traveling, the positional deviation value is calculated by the positional deviation value calculation unit 56 (# 04), and the maximum positional deviation value is recorded (# 05). It is checked whether the vehicle body 10 has reached the end of the travel path (# 06). If it has not reached the end of the travel route (No branch of # 06), the process returns to step # 03, and travel along the travel route is continued. If the end of the travel route has been reached (# 06 Yes branch), it is further checked whether there is a travel route to be traveled next (# 07). If there is no travel route to be traveled (No branch of # 07), the vehicle stops (# 08). If there is a travel route to travel (# 07 Yes branch), the travel route to be traveled next is set as a target travel route (# 09). Next, turning is made to turn to the set target travel route (# 10). This direction change traveling may be automatic traveling or manual traveling.
 方向転換走行と同時に、あるいは、方向転換走行の間で、設定された目標走行経路に隣接する既走行の走行経路における位置ずれ最大値が読み込まれる(#21)。位置ずれ最大値が不感帯領域に入っているかどうか、つまり、上述した走行経路の修正が必要かどうかチェックされる(#22)。目標走行経路の修正が必要なら(#22要分岐)、修正値算出部57によって修正量が算出され(#23)、算出された修正量に基づいて目標走行経路の未作業領域側への変位が走行経路変位部58によって行われる(#24)。目標走行経路の変位が完了すれば、方向転換走行が完了しているかどうかチェックし(#25)、方向転換走行が完了するまで待つ(#25No分岐)。方向転換走行が完了していれば(#25Yes分岐)、ステップ#03に戻り、目標走行経路に沿った、作業走行が行われる。ステップ#22のチェックで、走行経路の修正が不要なら(#22否分岐)、ステップ#25にジャンプして、方向転換走行が完了するまで待つ。 At the same time as the direction change travel or during the direction change travel, the positional deviation maximum value in the travel path of the already traveled adjacent to the set target travel path is read (# 21). It is checked whether the positional deviation maximum value is within the dead zone, that is, whether the correction of the travel route described above is necessary (# 22). If it is necessary to correct the target travel route (# 22 branch required), the correction value calculation unit 57 calculates the correction amount (# 23), and the displacement of the target travel route to the unworked area side based on the calculated correction amount Is performed by the travel path displacement unit 58 (# 24). When the displacement of the target travel route is completed, it is checked whether the direction change travel is completed (# 25), and the process waits until the direction change travel is completed (# 25 No branch). If the direction change traveling has been completed (# 25 Yes branch), the process returns to step # 03, and work traveling is performed along the target traveling route. If it is determined in step # 22 that correction of the travel route is not necessary (# 22 no branch), the process jumps to step # 25 and waits until direction change travel is completed.
〔第1実施形態の別実施の形態〕
(1)上述した実施形態では、図3で示されている作業走行パターン、つまり回り刈りでの作業走行が取り上げられたが、これ以外の作業走行パターンでも、上述した走行経路の変位を行うことができる。例えば、図2に示された作業対象領域CAに対して、オーバーラップ値と作業幅とに規定された間隔でもって平行に延びる複数の走行経路を設定し、外周領域SAでのUターンによって順次走行経路を走行する作業走行パターン、つまり往復刈りにおいても、上述した走行経路の変位を行うことができる。
Another Embodiment of the First Embodiment
(1) In the embodiment described above, the work travel pattern shown in FIG. 3, that is, the work travel in the reaping was taken up, but the displacement of the travel path described above is also performed with other work travel patterns. Can. For example, a plurality of travel routes extending in parallel are set at the intervals defined by the overlap value and the work width with respect to the work target area CA shown in FIG. The above-described displacement of the traveling route can be performed also in the work traveling pattern of traveling the traveling route, that is, in the reciprocation cutting.
(2)図7のフローチャートで示した実施形態では、目標走行経路が選択された際、隣接する既走行の走行経路における位置ずれ最大値に基づく変位が必要であれば、その位置ずれ最大値から求めた修正量で目標走行経路の変位が行われた。これに代えて、1本の走行経路が変位された段階で、当該走行経路に順次隣接している全ての走行経路も同様に変位させてもよい。また、作業を開始する前に作業対象領域CA全体に複数の走行経路を設定するのではなく、一本の走行経路を走行する毎に、次の目標走行経路を算定して、設定してもよい。その場合には、目標走行経路の算定時に、当該目標走行経路に既走行の隣接走行経路が存在していれば、当該隣接走行経路への位置ずれ最大値から求めた修正量と、オーバーラップ値と作業幅とに基づいて当該目標走行経路の算定及び設定が行われる。 (2) In the embodiment shown in the flow chart of FIG. 7, when a target travel route is selected, if a displacement based on the positional displacement maximum value in the adjacent traveled travel route is required, from the positional displacement maximum value, The displacement of the target travel route was performed by the calculated correction amount. Instead of this, when one traveling path is displaced, all traveling paths sequentially adjacent to the traveling path may be similarly displaced. Also, instead of setting a plurality of travel routes in the entire work target area CA before starting work, the next target travel route may be calculated and set every time one travel route is traveled. Good. In that case, if there is an existing adjacent traveling route in the target traveling route at the time of calculation of the target traveling route, the correction amount obtained from the positional deviation maximum value to the adjacent traveling route and the overlap value Calculation and setting of the target travel route are performed based on the and the work width.
(3)上述した実施形態では、圃場を一台のコンバインで収穫作業を行う例を示したが、複数のコンバインが協調しながら収穫作業を行う場合でも、本発明による走行経路修正制御を行うことができる。その際、未作業地と既作業地との境界線を形成したコンバインと異なるコンバインが、当該境界線の形成時の位置ずれに基づいて修正された走行経路を走行することもある。このような場合、それぞれのコンバインの走行精度が実質的に同じであれば問題ないが、走行精度がかなり異なる場合には、その走行精度の違いに応じて、修正量を調整することが好ましい。 (3) In the embodiment described above, an example is shown in which the harvest operation is carried out with one combine in the field, but even when the harvest operation is carried out while a plurality of combine members cooperate, the traveling route correction control according to the present invention is performed Can. At this time, a combine that is different from the combine that forms the boundary between the unworked site and the existing site may travel along the travel route corrected based on the positional deviation at the time of forming the boundary. In such a case, there is no problem if the running accuracy of each combine is substantially the same, but if the running accuracy is considerably different, it is preferable to adjust the correction amount according to the difference in the running accuracy.
(4)図4で示された各機能部は、主に説明目的で区分けされている。実際には、各機能部は他の機能部と統合してもよいし、または複数の機能部に分けてもよい。さらに、制御ユニット5に構築されている機能部のうち、走行モード管理部53、作業領域決定部54、走行経路設定部55、位置ずれ値算出部56、修正値算出部57、走行経路変位部58のいずれかは、持ち運び可能な携帯型の通信端末4(タブレットコンピュータなど)に構築し、コンバインに持ち込んで、無線や車載LANを経由して制御ユニット5とデータ交換するような構成を採用してもよい。 (4) Each functional unit shown in FIG. 4 is divided mainly for the purpose of explanation. In practice, each functional unit may be integrated with other functional units or may be divided into a plurality of functional units. Further, among the functional units constructed in the control unit 5, the travel mode management unit 53, the work area determination unit 54, the travel route setting unit 55, the misregistration value calculation unit 56, the correction value calculation unit 57, the travel route displacement unit One of the 58 is built on a portable, portable communication terminal 4 (tablet computer etc.), brought into a combine, and adopted a configuration to exchange data with the control unit 5 via wireless or in-vehicle LAN. May be
(5)本発明は、普通型のコンバインだけでなく、自脱型のコンバインにも利用可能である。また、トウモロコシ収穫機、ジャガイモ収穫機、ニンジン収穫機、サトウキビ収穫機等の種々の収穫機にも利用できる。 (5) The present invention can be used not only for ordinary type combine but also for self-eliminating type combine. Moreover, it can utilize also for various harvest machines, such as a corn harvester, a potato harvester, a carrot harvester, and a sugarcane harvester.
(第2実施形態)
 次に、走行経路に沿って作業地を自動走行する本発明の作業車の一例として、普通型のコンバインを取り上げて説明する。なお、本明細書では、特に断りがない限り、「前」(図8に示す矢印Fの方向)は車体前後方向(走行方向)における前方を意味し、「後」(図8に示す矢印Bの方向)は車体前後方向(走行方向)における後方を意味する。また、左右方向または横方向は、車体前後方向に直交する車体横断方向(車体幅方向)を意味する。「上」(図8に示す矢印Uの方向)及び「下」(図8に示す矢印Dの方向)は、車体の鉛直方向(垂直方向)での位置関係であり、地上高さにおける関係を示す。
Second Embodiment
Next, a general-purpose combine will be described as an example of the work vehicle of the present invention for automatically traveling a work site along a travel route. In the present specification, “front” (direction of arrow F shown in FIG. 8) means front in the front-rear direction (traveling direction) of the vehicle unless otherwise noted, “rear” (arrow B shown in FIG. 8) Direction) means the rear in the longitudinal direction of the vehicle body (traveling direction). Further, the lateral direction or the lateral direction means a transverse direction of the vehicle (vehicle width direction) orthogonal to the longitudinal direction of the vehicle. “Up” (direction of arrow U shown in FIG. 8) and “down” (direction of arrow D shown in FIG. 8) are positional relationships in the vertical direction (vertical direction) of the vehicle body, Show.
 図8に示すように、このコンバインは、走行車体210、クローラ式の走行装置211、運転部212、脱穀装置213、穀粒タンク214、収穫部H、搬送装置216、穀粒排出装置218、自車位置検出モジュール280を備えている。 As shown in FIG. 8, this combine has a traveling vehicle body 210, a traveling device 211 of crawler type, an operating unit 212, a threshing device 213, a grain tank 214, a harvesting part H, a conveying device 216, a grain discharging device 218, A car position detection module 280 is provided.
 走行装置211は、走行車体210(以下単に車体210と称する)の下部に備えられている。コンバインは、走行装置211によって自走可能に構成されている。この走行装置211は、左右一対のクローラ機構(走行ユニット)から構成された操舵走行装置である。左のクローラ機構(左走行ユニット)のクローラ速度と右のクローラ機構(右走行ユニット)のクローラ速度とは独立して調整可能であり、この速度差の調整により車体210の走行方向での向きが変更される。運転部212、脱穀装置213、穀粒タンク214は、走行装置211の上側に備えられ、車体210の上部を構成している。運転部212は、コンバインを運転する運転者やコンバインの作業を監視する監視者が搭乗可能である。通常、運転者と監視者とは兼務される。なお、運転者と監視者とが別人の場合、監視者は、コンバインの機外からコンバインの作業を監視していても良い。 The traveling device 211 is provided below the traveling vehicle body 210 (hereinafter simply referred to as the vehicle body 210). The combine is configured to be self-propelled by the traveling device 211. The traveling device 211 is a steering traveling device configured by a pair of left and right crawler mechanisms (traveling units). The crawler speed of the left crawler mechanism (left traveling unit) and the crawler speed of the right crawler mechanism (right traveling unit) can be adjusted independently, and by adjusting this speed difference, the direction of the vehicle body 210 in the traveling direction becomes Be changed. The driving unit 212, the threshing device 213, and the grain tank 214 are provided on the upper side of the traveling device 211 and constitute an upper portion of the vehicle body 210. The driving unit 212 can be used by a driver driving a combine and a supervisor monitoring a combine operation. Usually, the driver and the supervisor are combined. When the driver and the monitor are different persons, the monitor may monitor the combine operation from the outside of the combine.
 穀粒排出装置218は、穀粒タンク214の後下部に連結されている。また、自車位置検出モジュール280は、運転部212の前上部に取り付けられている。 The grain discharging device 218 is connected to the rear lower portion of the grain tank 214. In addition, the vehicle position detection module 280 is attached to the front upper portion of the driver 212.
 収穫部Hは、コンバインにおける前部に備えられている。そして、搬送装置216は、収穫部Hの後側に接続されている。また、収穫部Hは、切断機構215及びリール217を有している。切断機構215は、圃場の植立穀稈を刈り取る。また、リール217は、回転駆動しながら収穫対象の植立穀稈を掻き込む。この構成により、収穫部Hは、圃場の穀物(農作物の一種)を収穫する。そして、コンバインは、収穫部Hによって圃場の穀物を収穫しながら走行装置211によって走行する作業走行が可能である。 The harvester H is provided at the front of the combine. Then, the transport device 216 is connected to the rear side of the harvesting unit H. The harvester H also has a cutting mechanism 215 and a reel 217. The cutting mechanism 215 reaps the field crop of the field. In addition, the reel 217 scrapes the cropping object of harvest while being rotationally driven. According to this configuration, the harvesting unit H harvests cereal grains (a kind of crop) in the field. And a combine traveling can carry out work traveling which travels by traveling device 211, while harvesting the grain of a field by harvesting part H.
 切断機構215により刈り取られた刈取穀稈は、搬送装置216によって脱穀装置213へ搬送される。脱穀装置213において、刈取穀稈は脱穀処理される。脱穀処理により得られた穀粒は、穀粒タンク214に貯留される。穀粒タンク214に貯留された穀粒は、穀粒排出装置218によって機外に排出される。 The cropped rice straw which has been cut by the cutting mechanism 215 is transported by the transport device 216 to the threshing device 213. In the threshing device 213, the reaping grain is threshed. The grains obtained by the threshing process are stored in a grain tank 214. The grains stored in the grain tank 214 are discharged to the outside by the grain discharging device 218.
 運転部212には、通信端末202が配置されている。本実施形態において、通信端末202は、運転部212に固定されている。しかしながら、本発明はこれに限定されず、通信端末202は、運転部212に対して着脱可能に構成されていても良い。また、コンバインの機外に持ち出されても良い。 A communication terminal 202 is disposed in the operation unit 212. In the present embodiment, the communication terminal 202 is fixed to the driver 212. However, the present invention is not limited to this, and the communication terminal 202 may be configured to be attachable to and detachable from the operation unit 212. Also, it may be taken out of the combine machine.
 図9に示すように、このコンバインは、圃場において設定された走行経路に沿って自動走行する。このためには、自車位置が必要である。自車位置検出モジュール280には、衛星測位モジュール281と慣性測位モジュール282とが含まれている。衛星測位モジュール281は、人工衛星GSからのGNSS(global navigation satellite system)信号(GPS信号を含む)を受信して、自車位置を算出するための測位データを出力する。慣性測位モジュール282は、ジャイロ加速度センサ及び磁気方位センサを組み込んでおり、瞬時の走行方向を示す位置ベクトルを出力する。慣性測位モジュール282は、衛星測位モジュール281による自車位置算出を補完するために用いられる。慣性測位モジュール282は、衛星測位モジュール281とは別の場所に配置してもよい。 As shown in FIG. 9, this combine travels automatically along the travel route set in the field. For this purpose, the vehicle position is required. The vehicle position detection module 280 includes a satellite positioning module 281 and an inertial positioning module 282. The satellite positioning module 281 receives GNSS (global navigation satellite system) signals (including GPS signals) from the artificial satellite GS and outputs positioning data for calculating the position of the vehicle. The inertial positioning module 282 incorporates a gyro acceleration sensor and a magnetic direction sensor, and outputs a position vector indicating an instantaneous traveling direction. The inertial positioning module 282 is used to supplement the vehicle position calculation by the satellite positioning module 281. The inertial positioning module 282 may be located at a different location from the satellite positioning module 281.
 このコンバインによって圃場での収穫作業を行う場合の手順は、以下に説明する通りである。 The procedure in the case of performing harvest work in the field by this combine is as described below.
 まず、運転者兼監視者は、コンバインを手動で操作し、図9に示すように、圃場内の外周部分において、圃場の境界線に沿って周回するように収穫走行を行う。これにより既刈地(既作業地)となった領域は、外周領域SAとして設定される。そして、外周領域SAの内側に未刈地(未作業地)のまま残された領域は、作業対象領域CAとして設定される。図9は、外周領域SAと作業対象領域CAの一例を示している。 First, the driver / watcher manually operates the combine, and as shown in FIG. 9, harvests and travels along the border of the field in the outer peripheral part in the field. The area | region which became an existing cutting ground (existing working place) by this is set as outer periphery area | region SA. Then, the area left as the uncut ground (unworked place) inside the outer peripheral area SA is set as the work target area CA. FIG. 9 shows an example of the outer peripheral area SA and the work target area CA.
 また、このとき、外周領域SAの幅をある程度広く確保するために、運転者は、コンバインを3~4周走行させる。この走行においては、コンバインが1周する毎に、コンバインの作業幅分だけ外周領域SAの幅が拡大する。最初の、3~4周の走行が終わると、外周領域SAの幅は、コンバインの作業幅の3~4倍程度の幅となる。この周回走行は、予め与えられた圃場外形状データに基づいて自動走行によって行われても良い。 At this time, in order to secure the width of the outer peripheral area SA to a certain extent, the driver travels the combine three to four turns. In this traveling, the width of the outer peripheral area SA is expanded by the work width of the combine each time the combine makes one revolution. After the first three to four rounds of traveling, the width of the outer peripheral area SA becomes about three to four times the working width of the combine. This circular traveling may be performed by automatic traveling based on field external shape data given in advance.
 外周領域SAは、作業対象領域CAにおいて収穫走行を行うときに、コンバインが方向転換するためのスペースとして利用される。また、外周領域SAは、収穫走行を一旦終えて、穀粒の排出場所へ移動する際や、燃料の補給場所へ移動する際等の移動用のスペースとしても利用される。 The outer peripheral area SA is used as a space for the combine to turn when the harvest traveling is performed in the work target area CA. Further, the outer peripheral area SA is also used as a space for movement, such as when moving to a discharge place of grain or after moving to a fuel supply place after the harvest traveling is once finished.
 なお、図9に示す運搬車CVは、コンバインから排出された穀粒を収集し、運搬することができる。穀粒排出の際、コンバインは運搬車CVの近傍へ移動した後、穀粒排出装置218によって穀粒を運搬車CVへ排出する。 The transport vehicle CV shown in FIG. 9 can collect and transport grains discharged from the combine. At the time of grain discharge, the combine moves to the vicinity of the transport vehicle CV and then discharges the grains to the transport vehicle CV by the grain discharge device 218.
 外周領域SA及び作業対象領域CAが設定されると、図10に示すように、作業対象領域CAにおける走行経路が算定される。本発明において、走行経路として、複数の平行走行経路と、この平行走行経路同士をつなぐ方向転換走行経路とが取り扱われる。平行走行経路は、図10ではL1が付与されているとともに、太い実線で示されおり、互いに間隔をあけて平行に延びている。隣り合う平行走行経路L1の間隔は、コンバインの作業幅とオーバーラップ値とによって決定される。方向転換走行経路は、走行中の走行経路(現走行経路)から次に走行する走行経路(次走行経路)へ左旋回走行または右旋回走行を用いて移行するためのUターン状の経路であり、図10ではL2が付与されているとともに、太い曲線で示されている。なお、以後の説明で、特に識別する必要がない場合には、平行走行経路は、単に「走行経路」とも称される。 When the outer peripheral area SA and the work target area CA are set, as shown in FIG. 10, a travel route in the work target area CA is calculated. In the present invention, a plurality of parallel travel routes and a direction change travel route connecting the parallel travel routes are handled as the travel route. The parallel travel paths are given L1 in FIG. 10 and are indicated by thick solid lines and extend parallel to each other at intervals. The distance between adjacent parallel traveling paths L1 is determined by the combination work width and the overlap value. The direction change traveling route is a U-turn-like route for transitioning from the traveling route (the current traveling route) during traveling to the traveling route (the next traveling route) to travel next using the left turn traveling or the right turn traveling. In FIG. 10, L2 is given and indicated by a thick curve. In the following description, the parallel travel route is also simply referred to as a “travel route” unless it is necessary to identify the same.
 次に、図11及び図12を用いて、次走行経路選択の基本原理を説明する。図11は、模式的に描かれたコンバインの平面図である。収穫部Hの作業幅中心がWPで示され、衛星測位モジュール281の衛星電波を受信する衛星アンテナの設置位置である測位基準点がGPで示され、走行装置211による旋回走行における旋回基準点がVPで示されている。旋回基準点VPは、実質的には左右の走行装置211の中心点である。CLは、車体中心線であり、この実施形態では、測位基準点GP及び旋回基準点VPが、トレッド中心線でもある車体中心線CL上に位置している。図11で示されているコンバインでは、収穫部Hが車体210の前方に向かって左側にオフセットしている。その結果、収穫部Hの作業幅中心WPが車体中心線CLから左側にオフセットしている。 Next, the basic principle of the next traveling route selection will be described using FIGS. 11 and 12. FIG. 11 is a plan view of the combine schematically drawn. The working width center of the harvesting unit H is indicated by WP, and the positioning reference point which is the installation position of the satellite antenna for receiving the satellite radio wave of the satellite positioning module 281 is indicated by GP, and the turning reference point in turning by the traveling device 211 is It is shown by VP. The turning reference point VP is substantially the center point of the left and right traveling devices 211. CL is a vehicle body center line, and in this embodiment, the positioning reference point GP and the turning reference point VP are located on the vehicle body center line CL which is also a tread center line. In the combine shown in FIG. 11, the harvester H is offset to the left toward the front of the vehicle body 210. As a result, the working width center WP of the harvesting unit H is offset to the left from the vehicle body center line CL.
 図12は、図11に示されたコンバインにおける最小旋回半径(図12においてRで示されている)の旋回円での左旋回と右旋回との様子を示している。この旋回円の中心である旋回中心には符号Pが付与されている。図12では、現走行経路には、L0が付与され、作業幅中心WPが現走行経路を追従するように操舵制御がおこなわれている。現走行経路の左側に位置する左次走行経路候補には、それぞれL11、L12が付与されている。現走行経路の右側に位置する右次走行経路候補には、それぞれL21、L22、L23が付与されている。図12から明らかなように、旋回基準点VPの左旋回での旋回軌跡と右旋回での旋回軌跡とは対称となっている。これに対して、作業幅中心WPの左旋回での旋回軌跡と右旋回での旋回軌跡とは非対称となっている。例えば、180°の左旋回を行った場合、作業幅中心WPは、左次走行経路候補L11と左次走行経路候補L12との間に移動し、現走行経路との距離はD1となっている。これに対して、180°の右旋回を行った場合、コンバインは、180°の右旋回を終えるまえに右側2本目の右次走行経路候補L22を超えてしまい、作業幅中心WPは、右次走行経路候補L22と右次走行経路候補L23との間に移動し、現走行経路との距離はD2なっている。図から明らかなように、距離D2>距離D1である。 FIG. 12 shows a left turn and a right turn in a turning circle of the minimum turning radius (indicated by R in FIG. 12) in the combine shown in FIG. The code | symbol P is provided to the turning center which is the center of this turning circle. In FIG. 12, L0 is given to the current travel route, and steering control is performed so that the work width center WP follows the current travel route. L11 and L12 are given to the left next traveling route candidate located on the left side of the current traveling route, respectively. L <b> 21, L <b> 22 and L <b> 23 are given to the right next traveling route candidate located on the right side of the current traveling route. As apparent from FIG. 12, the turning locus of the turning reference point VP in the left turn and the turning locus in the right turn are symmetrical. On the other hand, the turning locus in the left turn of the working width center WP and the turning locus in the right turn are asymmetric. For example, when turning left by 180 °, the work width center WP moves between the left next traveling route candidate L11 and the left next traveling route candidate L12, and the distance to the current traveling route is D1. . On the other hand, when the right turn of 180 ° is performed, the combine exceeds the second right traveling route candidate L22 on the right before finishing the right turn of 180 °, and the working width center WP is The vehicle travels between the right next traveling route candidate L22 and the right next traveling route candidate L23, and the distance to the current traveling route is D2. As apparent from the figure, the distance D2> the distance D1.
 これらのことから、現走行経路からの左旋回による方向転換走行では、コンバインは、現走行経路から、左側2本目の左次走行経路候補L12以左の経路に対して、旋回中に後進をせずに移動することができる。しかし、現走行経路からの右旋回による方向転換走行では、旋回中に後進を含めなければ、2本目の右次走行経路候補L22に移動することができない。つまり、現走行経路から、後進を含めずに右側の次の走行経路に移動するには、右側3本目の右次走行経路候補L23以右の走行経路を選択しなければならない。つまり、最短距離で旋回をしようとした場合、上記例では、左側2本目の左次走行経路候補L12を選択すれば良いことになる。 From these facts, in the direction change traveling by turning left from the current traveling route, the combine is allowed to reverse during turning with respect to the left second traveling route candidate L12 from the current traveling route. You can move without it. However, in the direction change traveling by turning right from the current traveling route, it is not possible to move to the second right traveling route candidate L22 unless reverse is included during the turning. That is, in order to move from the current traveling route to the next traveling route on the right side without including reverse travel, it is necessary to select a traveling route on the right of the third right traveling route candidate L23 on the right. That is, when it is intended to make a turn at the shortest distance, in the above example, the second left traveling route candidate L12 may be selected.
 なお、ここで用いられている最小旋回半径Rは、走行装置211の物理的に決定されるハードウエア上の最小旋回半径ではなく、圃場状態や作業状態などに応じて設定されるソフトウエア上の最小旋回半径を意味している。したがって、作業の途中での最小旋回半径Rの変更は可能である。 The minimum turning radius R used here is not the minimum turning radius on the hardware of the traveling device 211 that is physically determined, but is set on the software according to the field condition, the working condition, etc. It means the minimum turning radius. Therefore, the change of the minimum turning radius R in the middle of work is possible.
 設定されている走行装置211の最小旋回半径R、左旋回時の作業幅中心WPの旋回軌跡に関する左旋回軌跡情報と、右旋回時の作業幅中心WPの旋回軌跡に関する右旋回軌跡情報とは、コンバインに管理されている。現走行経路からの移動先である次走行経路の選択は、左旋回軌跡情報と、右旋回軌跡情報と、設定されている最小旋回半径Rと、に基づいて決定される。その際、効率の良い走行を実現するため、現走行経路から次走行経路へ移動するための方向転換の走行距離が短いことを選択条件とすると、図12の例では、上述したように、左次走行経路候補L12が選択される。仮に、左旋回よりも右旋回の方が優先される事態(例えば、協調作業しているような場合に他車が存在しているとか、後の作業を考慮すると右側に回った方が効率が良いとか)が発生している場合は、L23で示される右次走行経路候補が選択される。 Left turning locus information on the turning locus of the minimum turning radius R of the traveling device 211 and the turning width of the working width center WP when turning left, and right turning locus information regarding the turning locus of the working width center WP when turning right Is managed by the combine. The selection of the next traveling route which is the movement destination from the current traveling route is determined based on the left turning locus information, the right turning locus information, and the set minimum turning radius R. At that time, in order to realize efficient traveling, assuming that the traveling distance of the direction change for moving from the current traveling route to the next traveling route is short as the selection condition, as described above, in the example of FIG. The next traveling route candidate L12 is selected. Temporarily, the situation where the right turn is given priority over the left turn (for example, there is another car when working in cooperation, etc., it is more efficient to turn to the right considering the later work If it is determined that the following condition is generated, the next right traveling route candidate indicated by L23 is selected.
 図13に、本発明による自動操舵システムを利用するコンバインの制御系が示されている。コンバインの制御系は、多数のECUと呼ばれる電子制御ユニットからなる制御ユニット205、及び、この制御ユニット205との間で車載LANなどの配線網を通じて信号通信(データ通信)を行う各種入出力機器から構成されている。 FIG. 13 shows a control system of a combine utilizing the automatic steering system according to the present invention. The control system of the combine is from a control unit 205 consisting of an electronic control unit called multiple ECUs, and various input / output devices performing signal communication (data communication) with the control unit 205 through a wiring network such as a car LAN. It is configured.
 報知デバイス262は、運転者等に作業走行状態や種々の警告を報知するためのデバイスであり、ブザー、ランプ、スピーカ、ディスプレイなどである。通信部266は、このコンバインの制御系が、通信端末202との間で、あるいは、遠隔地に設置されている管理コンピュータとの間でデータ交換するために用いられる。通信端末202には、圃場に立っている監視者、またはコンバインに乗り込んでいる運転者兼監視者が操作するタブレットコンピュータ、自宅や管理事務所に設置されているコンピュータなども含まれる。制御ユニット205は、この制御系の中核要素であり、複数のECUの集合体として示されている。自車位置検出モジュール280からの信号は、車載LANを通じて制御ユニット205に入力される。 The notification device 262 is a device for notifying a driver or the like of a work traveling state and various warnings, and is a buzzer, a lamp, a speaker, a display or the like. The communication unit 266 is used to exchange data with the communication terminal 202 or with a management computer installed at a remote location. The communication terminal 202 also includes a monitor who stands in a field or a tablet computer operated by a driver / supervisor who is in the combine, a computer installed at home or a management office, and the like. The control unit 205 is a core element of this control system, and is shown as a collection of a plurality of ECUs. A signal from the vehicle position detection module 280 is input to the control unit 205 through the in-vehicle LAN.
 制御ユニット205は、入出力インタフェースとして、出力処理部2503と入力処理部2502とを備えている。出力処理部2503は、機器ドライバ265を介して種々の動作機器270と接続している。動作機器270として、走行関係の機器である走行機器群271と作業関係の機器である作業機器群272とがある。走行機器群271には、例えば、操舵機器2710、エンジン機器、変速機器、制動機器などが含まれている。作業機器群272には、収穫部H、脱穀装置213、搬送装置216、穀粒排出装置218における動力制御機器などが含まれている。 The control unit 205 includes an output processing unit 2503 and an input processing unit 2502 as an input / output interface. The output processing unit 2503 is connected to various operation devices 270 via the device driver 265. The operating devices 270 include a traveling device group 271 which is a traveling-related device and a working device group 272 which is a working-related device. The traveling device group 271 includes, for example, a steering device 2710, an engine device, a transmission, a braking device, and the like. The working device group 272 includes a power control device and the like in the harvesting unit H, the threshing device 213, the transport device 216, and the grain discharging device 218.
 入力処理部2502には、走行状態センサ群263、作業状態センサ群264、走行操作ユニット290、などが接続されている。走行状態センサ群263には、エンジン回転数センサ、オーバーヒート検出センサ、ブレーキペダル位置検出センサ、変速位置検出センサ、操舵位置検出センサなどが含まれている。作業状態センサ群264には、収穫作業装置(収穫部H、脱穀装置213、搬送装置216、穀粒排出装置218)の駆動状態を検出するセンサ、穀稈や穀粒の状態を検出するセンサなどが含まれている。 A traveling state sensor group 263, a working state sensor group 264, a traveling operation unit 290, and the like are connected to the input processing unit 2502. The traveling state sensor group 263 includes an engine speed sensor, an overheat detection sensor, a brake pedal position detection sensor, a shift position detection sensor, a steering position detection sensor, and the like. The work state sensor group 264 includes a sensor that detects the driving state of the harvest work device (the harvester H, the threshing device 213, the transport device 216, and the grain discharging device 218), a sensor that detects the state of the grain gravel and grain, It is included.
 走行操作ユニット290は、運転者によって手動操作され、その操作信号が制御ユニット205に入力される操作具の総称である。走行操作ユニット290には、主変速操作具291、操舵操作具292、モード操作具293、自動開始操作具294、などが含まれている。手動走行モードでは、操舵操作具292を中立位置から左右に揺動操作することにより、左のクローラ機構のクローラ速度と右のクローラ機構のクローラ速度とが調整され、車体210の向きが変更される。モード操作具293は、自動運転が行われる自動走行モードと手動運転が行われる手動走行モードとを切り替えるための指令を制御ユニット5に与える機能を有する。自動開始操作具294は、自動走行を開始するための最終的な自動開始指令を制御ユニット205に与える機能を有する。なお、モード操作具293による操作とは無関係に、自動走行モードから手動走行モードへの移行が、ソフトウエアによって自動的に行われる場合もある。例えば、自動運転が不可能な状況が発生すると、制御ユニット205は、強制的に自動走行モードから手動走行モードへの移行を実行する。 The travel operation unit 290 is a general term for an operation tool which is manually operated by the driver and whose operation signal is input to the control unit 205. The travel operation unit 290 includes a main shift operation tool 291, a steering operation tool 292, a mode operation tool 293, an automatic start operation tool 294, and the like. In the manual travel mode, the crawler operation speed of the left crawler mechanism and the crawler speed of the right crawler mechanism are adjusted by swinging the steering operation tool 292 left and right from the neutral position, and the direction of the vehicle body 210 is changed. . The mode operation tool 293 has a function of giving the control unit 5 a command for switching between an automatic travel mode in which automatic driving is performed and a manual travel mode in which manual driving is performed. The automatic start operating tool 294 has a function of giving the control unit 205 a final automatic start command to start automatic traveling. In some cases, the transition from the automatic travel mode to the manual travel mode may be automatically performed by software regardless of the operation by the mode operation tool 293. For example, when a situation in which automatic driving is not possible occurs, the control unit 205 forces the transition from the automatic driving mode to the manual driving mode.
 制御ユニット205には、旋回情報管理部241、次走行経路選択部242、報知部2501、走行制御部251、作業制御部252、走行モード管理部253、走行経路設定部254、自車位置算出部255、車体方位算出部256、位置ずれ算出部257、方位ずれ算出部258が備えられている。報知部2501は、制御ユニット205の各機能部からの指令等に基づいて報知データを生成し、報知デバイス262に与える。自車位置算出部255は、自車位置検出モジュール280から逐次送られてくる測位データに基づいて、予め設定されている車体210の車体基準点、この実施形態では作業幅中心WPの地図座標(または圃場座標)を算出する。車体方位算出部256は、自車位置算出部255で逐次算出される車体基準点(作業幅中心WP)の位置から、微小時間での走行軌跡を求めて車体210の走行方向での向きを示す車体方位を決定する。また、車体方位算出部256は、慣性測位モジュール282からの出力データに含まれている方位データに基づいて車体方位を決定することも可能である。 The control unit 205 includes a turn information management unit 241, a next travel route selection unit 242, a notification unit 2501, a travel control unit 251, a work control unit 252, a travel mode management unit 253, a travel route setting unit 254, and a vehicle position calculation unit. A vehicle orientation calculation unit 256, a positional deviation calculation unit 257, and an azimuthal deviation calculation unit 258 are provided. The notification unit 2501 generates notification data based on an instruction or the like from each functional unit of the control unit 205, and gives the notification data to the notification device 262. The own vehicle position calculation unit 255 is based on the positioning data sequentially sent from the own vehicle position detection module 280, the vehicle reference point of the vehicle body 210 set in advance, map coordinates of the working width center WP in this embodiment Or calculate field coordinates). The vehicle orientation calculation unit 256 obtains the traveling locus in a minute time from the position of the vehicle reference point (working width center WP) sequentially calculated by the vehicle position calculation unit 255, and indicates the direction of the vehicle body 210 in the traveling direction. Determine the body direction. In addition, the vehicle body direction calculation unit 256 can also determine the vehicle body direction based on the direction data included in the output data from the inertial positioning module 282.
 旋回情報管理部241は、図12を用いて説明したような、左旋回時の作業幅中心WPの旋回軌跡に関する左旋回軌跡情報と、右旋回時の前記作業幅中心WPの旋回軌跡に関する右旋回軌跡情報と、前記走行装置の最小旋回半径Rとを管理している。 The turning information management unit 241 is, as described with reference to FIG. 12, left turning locus information regarding turning locus of the working width center WP at the time of turning left and right regarding the turning locus of the working width center WP when making the right turning. It manages the turning locus information and the minimum turning radius R of the traveling device.
 次走行経路選択部242は、旋回情報管理部241から読み出された、左旋回軌跡情報と右旋回軌跡情報と最小旋回半径Rとに基づいて、現走行経路の次に走行する次走行経路の選択を決定する。特に、それらの情報に含まれている、最小旋回半径Rでの左旋回における作業幅中心WPの移動点と現走行経路との距離(図12ではD1で示されている)、及び最小旋回半径での右旋回における作業幅中心WPの移動点と現走行経路との距離(図12ではD2で示されている)が次走行経路の選択に用いられる。まず、現走行経路の左側の未走行の走行経路のうちD1で示される長さより離れており、方向転換の走行距離が最も短い走行経路が左次走行経路最終候補として選ばれ、現走行経路の右側の未走行の走行経路のうちD2で示される長さより離れており、かつ方向転換の走行距離が最も短い走行経路が右次走行経路最終候補として選ばれる。次いで、左次走行経路最終候補と右次走行経路最終候補の内で、現走行経路からの方向転換の走行距離が短い方が最終的な次走行経路として選択される。なお、作業対象領域CAに設定された全ての平行走行経路から最初に次走行経路を選択する場合には、例えば、その時点でのコンバインの位置に最も近い平行走行経路が選択される。 The next traveling route selection unit 242 follows the current traveling route based on the left turning trajectory information, the right turning trajectory information, and the minimum turning radius R read from the turning information management unit 241. Determine your choice of In particular, the distance between the movement point of the working width center WP in the left turn at the minimum turning radius R and the current traveling path (indicated by D1 in FIG. 12) included in the information and the minimum turning radius The distance between the moving point of the working width center WP and the current traveling route (shown as D2 in FIG. 12) in the right turn at the step is used to select the next traveling route. First, among the untraveled travel routes on the left side of the current travel route, the travel route having the shortest travel distance for turning is selected as the left next travel route final candidate and is farther than the length indicated by D1. Of the untraveled travel paths on the right side, a travel path that is farther than the length indicated by D2 and has the shortest travel distance for change of direction is selected as the right next travel path final candidate. Next, of the left next traveling route final candidate and the right next traveling route final candidate, the one with the shorter traveling distance of the direction change from the current traveling route is selected as the final next traveling route. When the next traveling route is selected first from all the parallel traveling routes set in the work target area CA, for example, the parallel traveling route closest to the position of the combine at that time is selected.
 走行制御部251は、エンジン制御機能、操舵制御機能、車速制御機能などを有し、走行機器群271に制御信号を与える。作業制御部252は、収穫作業装置(収穫部H、脱穀装置213、搬送装置216、穀粒排出装置218など)の動きを制御するために、作業機器群272に制御信号を与える。 The traveling control unit 251 has an engine control function, a steering control function, a vehicle speed control function, and the like, and gives a control signal to the traveling device group 271. The work control unit 252 provides a control signal to the work equipment group 272 in order to control the movement of the harvesting work apparatus (the harvesting unit H, the threshing apparatus 213, the transport apparatus 216, the grain discharging apparatus 218, etc.).
 このコンバインは自動走行で収穫作業を行う自動運転と手動走行で収穫作業を行う手動運転との両方で走行可能である。このため、走行制御部251には、手動走行制御部2511と自動走行制御部2512と操舵量算出部2513とが含まれている。なお、自動運転を行う際には、自動走行モードが設定され、手動運転を行うためには手動走行モードが設定される。走行モードの切り替えは、走行モード管理部253によって管理される。 The combine can travel in both an automatic operation in which harvesting operation is performed automatically and a manual operation in which harvesting operation is performed manually. For this reason, the travel control unit 251 includes a manual travel control unit 2511, an automatic travel control unit 2512, and a steering amount calculation unit 2513. In addition, when performing an automatic driving | running | working, an automatic travel mode is set, and in order to perform a manual driving | operation, a manual traveling mode is set. The switching of the traveling mode is managed by the traveling mode management unit 253.
 走行経路設定部254は、収穫部Hの作業幅中心WPが追従することにより、作業対象領域CAの全域が作業される平行走行経路を経路算出アルゴリズムによって作成して、作業対象領域CAに設定すべく、メモリに展開する。しかしながら、経路算出アルゴリズムが通信端末202や遠隔地の管理コンピュータ等に備えられ、そこで作成される場合は、作成された平行走行経路をダウンロードして、メモリに展開する。メモリに展開された平行走行経路は、次走行経路選択部242によって走行目標として順次選択される。 The travel route setting unit 254 creates a parallel travel route in which the entire area of the work target area CA is to be worked by the route calculation algorithm and sets the work target area CA as the work width center WP of the harvesting unit H follows. To expand into memory. However, if the route calculation algorithm is provided in the communication terminal 202, a management computer at a remote location, or the like, and is created there, the created parallel travel route is downloaded and expanded in the memory. The parallel travel route developed in the memory is sequentially selected as a travel target by the next travel route selection unit 242.
 位置ずれ算出部257は、次走行経路選択部242によって設定された走行目標となった走行経路と自車位置算出部255によって算出された車体基準位置との間の位置ずれ(偏差)を算出する。方位ずれ算出部258は、走行経路設定部254によって設定された走行目標となる次走行経路の延び方向と、車体方位算出部256によって算出された車体方位との間の角度差を方位ずれとして算出する。 The positional deviation calculation unit 257 calculates a positional deviation (deviation) between the traveling route set as the traveling target set by the next traveling route selection unit 242 and the vehicle reference position calculated by the own vehicle position calculation unit 255. . The azimuth deviation calculation unit 258 calculates the angular difference between the extension direction of the next traveling route as the traveling target set by the traveling route setting unit 254 and the vehicle orientation calculated by the vehicle orientation calculation unit 256 as the orientation deviation. Do.
 自動走行モードが設定されている場合、自動走行制御部2512は、停止を含む車速変更の制御信号を生成して、走行機器群271を制御する。車速変更に関する制御信号は、前もって設定された車速値に基づいて生成される。操舵量算出部2513は、操舵に関する制御信号を生成して走行機器群271を制御する。操舵に関する制御信号である操舵量は、走行目標となった走行経路と車体基準位置との間の位置ずれ(偏差)を解消するように生成される。操舵量の算出においては、方位ずれも考慮される。 When the automatic travel mode is set, the automatic travel control unit 2512 generates a control signal for changing the vehicle speed including stop and controls the traveling device group 271. The control signal related to the vehicle speed change is generated based on the preset vehicle speed value. The steering amount calculation unit 2513 generates a control signal related to steering to control the traveling device group 271. The steering amount, which is a control signal related to steering, is generated so as to eliminate the positional deviation (deviation) between the travel route which has become the travel target and the vehicle body reference position. In calculating the steering amount, the azimuth deviation is also taken into consideration.
 手動走行モードが選択されている場合、運転者による操作に基づいて、手動走行制御部2511が制御信号を生成し、走行機器群271を制御することで、手動運転が実現する。なお、次走行経路選択部242によって選択された走行経路は、手動運転であっても、コンバインが当該走行経路に沿って走行するためのガイダンス目的で利用することができる。 When the manual travel mode is selected, the manual travel control unit 2511 generates a control signal based on the operation by the driver and controls the traveling device group 271 to realize the manual driving. The travel route selected by the next travel route selection unit 242 can be used as a guidance for the combine to travel along the travel route, even in a manual operation.
 次に、図14のフローチャートを用いて、走行経路選択システムによる次走行経路選択処理の流れを説明する。
・設定されている最小旋回半径を読み込む(#01)。
・左旋回軌跡情報と右旋回軌跡情報とを読み込む(#02)。
・左旋回軌跡情報に基づいて最小旋回半径での左旋回における作業幅中心の移動点と現走行経路との距離:D1を算出する(#03)。
・右旋回軌跡情報に基づいて最小旋回半径での右旋回における作業幅中心の移動点と現走行経路との距離:D2を算出する(#04)。
・現走行経路の左側に位置する未走行の走行経路を左次走行経路候補として読み込む(#05)。
・現走行経路の右側に位置する未走行の走行経路を右次走行経路候補として読み込む(#06)。
・左次走行経路候補から現走行経路との間隔がD1未満の走行経路を削除する(#07)。
・右次走行経路候補から現走行経路との間隔がD2未満の走行経路を削除する(#08)。
・左次走行経路候補から現走行経路からの方向転換の走行距離が最も短い走行経路を左次走行経路最終候補として選択する(#09)。
・右次走行経路候補から現走行経路からの方向転換の走行距離が最も短い走行経路を右次走行経路最終候補として選択する(#10)。
・左次走行経路最終候補への方向転換の走行距離と右次走行経路最終候補への方向転換の走行距離とを比較して、短い方を、最終的な次走行経路として選択する(#11)。
Next, the flow of the next traveling route selection processing by the traveling route selection system will be described using the flowchart of FIG.
Read the set minimum turning radius (# 01).
・ Read left turn locus information and right turn locus information (# 02).
Based on the left turn locus information, the distance D1 between the moving point at the center of the working width and the current travel path in the left turn at the minimum turning radius is calculated (# 03).
Based on the right turn locus information, the distance D2 between the moving point at the center of the working width and the current travel path in the right turn at the minimum turning radius is calculated (# 04).
The untraveled travel route located on the left side of the current travel route is read as a left next travel route candidate (# 05).
The untraveled travel route located on the right side of the current travel route is read as a right next travel route candidate (# 06).
From the left next traveling route candidate, the traveling route whose distance from the current traveling route is less than D1 is deleted (# 07).
-Delete a traveling route having a distance of less than D2 from the right next traveling route candidate to the current traveling route (# 08).
From the left next traveling route candidate, the traveling route having the shortest traveling distance of the direction change from the current traveling route is selected as the left next traveling route final candidate (# 09).
From the right next traveling route candidate, the traveling route having the shortest traveling distance of the direction change from the current traveling route is selected as the right next traveling route final candidate (# 10).
· Compare the travel distance of the turn to the left next travel route final candidate with the travel distance of the turn to the right next travel route final candidate, and select the shorter one as the final next travel path (# 11 ).
 〔第2実施形態の別実施の形態〕
(1)走行経路設定部254によって作業対象領域CAの全域に設定された平行走行経路の全てが自動走行される場合には、作業走行の開始前に、次走行経路選択部242による次走行経路の選択を行い、自動走行される平行走行経路の順番を決定することができる。しかしながら、何らかの理由で、自動走行を中断して、予め決定した順番と異なる平行走行経路を走行した場合には、その時点から、次走行経路選択部242による次走行経路の選択が行われる。
Another Embodiment of the Second Embodiment
(1) When all the parallel travel routes set in the entire work target area CA by the travel route setting unit 254 are automatically traveled, the next travel route by the next travel route selection unit 242 is started before the start of the work travel. To determine the order of parallel travel routes to be automatically traveled. However, if the automatic traveling is interrupted for some reason and the parallel traveling route different from the predetermined order is traveled, the selection of the next traveling route by the next traveling route selection unit 242 is performed from that time.
(2)図13で示された各機能部は、主に説明目的で区分けされている。実際には、各機能部は他の機能部と統合してもよいし、または複数の機能部に分けてもよい。さらに、制御ユニット205に構築されている機能部のうち、旋回情報管理部241、次走行経路選択部242、走行モード管理部253、走行経路設定部254、位置ずれ算出部257、方位ずれ算出部258のうちの全て、または一部が、制御ユニット205に接続可能な携帯型の通信端末202(タブレットコンピュータなど)に構築され、無線や車載LANを経由して制御ユニット205とデータ交換するような構成を採用してもよい。 (2) Each functional unit shown in FIG. 13 is divided mainly for the purpose of explanation. In practice, each functional unit may be integrated with other functional units or may be divided into a plurality of functional units. Further, among the functional units constructed in the control unit 205, the turn information management unit 241, the next travel route selection unit 242, the travel mode management unit 253, the travel route setting unit 254, the positional deviation calculation unit 257, and the azimuth deviation calculation unit All or a part of 258 is constructed in a portable communication terminal 202 (tablet computer etc.) connectable to the control unit 205, and exchanges data with the control unit 205 via wireless or in-vehicle LAN. A configuration may be adopted.
(3)本発明は、普通型のコンバインだけでなく、自脱型のコンバインにも適用可能である。また、トウモロコシ収穫機、ジャガイモ収穫機、ニンジン収穫機、サトウキビ収穫機等の種々の収穫機、田植機、トラクタなどの圃場作業車にも適用できる。さらには、芝刈機や建機などの作業車にも適用可能である。 (3) The present invention is applicable not only to ordinary-type combine but also to self-release-type combine. In addition, it can be applied to various harvesters such as corn harvester, potato harvester, carrot harvester and sugarcane harvester, and field work vehicles such as rice transplanter and tractor. Furthermore, it can be applied to working vehicles such as lawn mowers and construction machines.
(第3実施形態)
 本発明を実施するための形態について、図面に基づき説明する。尚、以下の説明においては、図15に示す矢印Fの方向を「前」、矢印Bの方向を「後」とする。また、図15に示す矢印Uの方向を「上」、矢印Dの方向を「下」とする。
Third Embodiment
An embodiment for carrying out the present invention will be described based on the drawings. In the following description, the direction of arrow F shown in FIG. 15 is "front", and the direction of arrow B is "rear". Further, the direction of the arrow U shown in FIG. 15 is “up”, and the direction of the arrow D is “down”.
 〔コンバインの全体構成〕
 図15に示すように、普通型のコンバイン301は、クローラ式の走行装置311、運転部312、脱穀装置313、穀粒タンク314、収穫装置H、搬送装置316、穀粒排出装置318、衛星測位モジュール380を備えている。
[Overall configuration of combine]
As shown in FIG. 15, the ordinary type combine 301 is a crawler type traveling device 311, a driving unit 312, a threshing device 313, a grain tank 314, a harvesting device H, a conveying device 316, a grain discharging device 318, satellite positioning A module 380 is provided.
 走行装置311は、コンバイン301における下部に備えられている。コンバイン301は、走行装置311によって自走可能である。 The traveling device 311 is provided at the lower part of the combine 301. The combine 301 can be self-propelled by the traveling device 311.
 また、運転部312、脱穀装置313、穀粒タンク314は、走行装置311の上側に備えられている。運転部312には、コンバイン301の作業を監視する作業者が搭乗可能である。尚、作業者は、コンバイン301の機外からコンバイン301の作業を監視していても良い。 In addition, the operation unit 312, the threshing device 313, and the grain tank 314 are provided above the traveling device 311. An operator who monitors the work of the combine 301 can get on the operation unit 312. The worker may monitor the work of the combine 301 from the outside of the combine 301.
 穀粒排出装置318は、穀粒タンク314の上側に設けられている。また、衛星測位モジュール380は、運転部312の上面に取り付けられている。 The grain discharging device 318 is provided above the grain tank 314. In addition, the satellite positioning module 380 is attached to the top surface of the driver 312.
 収穫装置Hは、コンバイン301における前部に備えられている。そして、搬送装置316は、収穫装置Hの後側に設けられている。また、収穫装置Hは、刈取装置315及びリール317を有している。 The harvesting device H is provided at the front of the combine 301. The transport device 316 is provided on the rear side of the harvesting device H. In addition, the harvesting apparatus H has a reaper 315 and a reel 317.
 刈取装置315は、圃場の植立穀稈を刈り取る。また、リール317は、回転駆動しながら収穫対象の植立穀稈を掻き込む。この構成により、収穫装置Hは、圃場の穀物を収穫する。そして、コンバイン301は、刈取装置315によって圃場の植立穀稈を刈り取りながら走行装置311によって走行する刈取走行が可能である。 The reaper 315 reaps the crop in the field. In addition, the reel 317 scrapes the cropped cereals to be harvested while being rotationally driven. With this configuration, the harvester H harvests the grain in the field. And combine harvester traveling is possible with which traveling device 311 travels while harvesting combine harvester of a rice field of a field with harvesting device 315.
 刈取装置315により刈り取られた刈取穀稈は、搬送装置316によって脱穀装置313へ搬送される。脱穀装置313において、刈取穀稈は脱穀処理される。脱穀処理により得られた穀粒は、穀粒タンク314に貯留される。穀粒タンク314に貯留された穀粒は、必要に応じて、穀粒排出装置318によって機外に排出される。 The cropped rice bran that has been harvested by the harvesting device 315 is transported by the transport device 316 to the threshing device 313. In the threshing device 313, the reaping grain is threshed. The grains obtained by the threshing process are stored in a grain tank 314. The grains stored in the grain tank 314 are discharged out of the machine by the grain discharging device 318 as needed.
 また、図15に示すように、運転部312には、通信端末304が配置されている。通信端末304は、種々の情報を表示可能に構成されている。本実施形態において、通信端末304は、運転部312に固定されている。しかしながら、本発明はこれに限定されず、通信端末304は、運転部312に対して着脱可能に構成されていても良いし、通信端末304は、コンバイン301の機外に位置していても良い。 Further, as shown in FIG. 15, the communication terminal 304 is disposed in the operation unit 312. The communication terminal 304 is configured to be able to display various information. In the present embodiment, the communication terminal 304 is fixed to the operation unit 312. However, the present invention is not limited to this. The communication terminal 304 may be configured to be attachable to and detachable from the operation unit 312, and the communication terminal 304 may be located outside the combine 301. .
 また、図16に示すように、コンバイン301は、貯留量センサ314Sを備えている。貯留量センサ314Sは、穀粒タンク314内の穀粒貯留量を検知するように構成されている。尚、本発明に係る「穀粒貯留量」は、貯留された穀粒の体積であっても良いし、貯留された穀粒の重量であっても良いし、貯留された穀粒の堆積高さであっても良い。 Moreover, as shown in FIG. 16, the combine 301 is provided with the storage amount sensor 314S. The storage amount sensor 314S is configured to detect a grain storage amount in the grain tank 314. The “grain storage amount” according to the present invention may be the volume of the stored grain, or may be the weight of the stored grain, or the accumulated height of the stored grain It may be
 即ち、貯留量センサ314Sは、穀粒タンク314内の穀粒貯留量として、穀粒タンク314内の穀粒の体積を検知するように構成されていても良いし、穀粒タンク314内の穀粒の重量を検知するように構成されていても良いし、穀粒タンク314内の穀粒の堆積高さを検知するように構成されていても良い。 That is, the storage amount sensor 314S may be configured to detect the volume of grains in the grain tank 314 as the grain storage amount in the grain tank 314, or the grain in the grain tank 314. It may be configured to detect the weight of the grain, or may be configured to detect the accumulation height of the grain in the grain tank 314.
 このように、コンバイン301は、圃場の植立穀稈を刈り取る刈取装置315と、刈取装置315により刈り取られた刈取穀稈を脱穀処理する脱穀装置313と、脱穀装置313による脱穀処理により得られた穀粒を貯留する穀粒タンク314と、穀粒タンク314内の穀粒貯留量を検知する貯留量センサ314Sと、を有する。 As described above, the combine 301 is obtained by the harvesting device 315 for harvesting the field crop of the field, the threshing device 313 for threshing the cropped grain harvested by the harvesting device 315, and the threshing processing with the threshing device 313 A grain tank 314 for storing grains and a storage amount sensor 314S for detecting the grain storage amount in the grain tank 314 are provided.
 ここで、コンバイン301は、図17に示すように圃場における外周側の領域で穀物を収穫しながら周回走行を行った後、図19に示すように圃場における内側の領域で刈取走行を行うことにより、圃場の穀物を収穫するように構成されている。 Here, combine harvester 301 travels while harvesting the grain in the area on the outer periphery side of the field as shown in FIG. 17, and then performs the mowing travel in the inner area of the field as shown in FIG. , Are configured to harvest the grain of the field.
 そして、この収穫作業において、コンバイン301の走行経路は、走行経路算出システムAによって算出される。以下では、走行経路算出システムAの構成について説明する。 Then, in this harvesting operation, the travel route of the combine 301 is calculated by the travel route calculation system A. The configuration of the travel route calculation system A will be described below.
 〔走行経路算出システムの構成〕
 図16に示すように、走行経路算出システムAは、衛星測位モジュール380、制御部320、走行距離検知部333、作業状態検知部334、貯留量センサ314S、通信端末304を備えている。尚、制御部320、走行距離検知部333、作業状態検知部334は、コンバイン301に備えられている。また、上述の通り、衛星測位モジュール380、貯留量センサ314S、通信端末304も、コンバイン301に備えられている。
[Configuration of travel route calculation system]
As shown in FIG. 16, the travel route calculation system A includes a satellite positioning module 380, a control unit 320, a travel distance detection unit 333, a work state detection unit 334, a storage amount sensor 314S, and a communication terminal 304. The control unit 320, the travel distance detection unit 333, and the work state detection unit 334 are provided in the combine 301. Further, as described above, the satellite positioning module 380, the storage amount sensor 314S, and the communication terminal 304 are also provided in the combine 301.
 制御部320は、自車位置算出部321、刈取走行経路算出部322、走行制御部323、領域算出部324、刈取走行距離算出部325、単位収穫量算出部326、貯留限界量記憶部327、位置予測部328、貯留予測部329を有している。 The control unit 320 is a vehicle position calculation unit 321, a cutting traveling route calculating unit 322, a traveling control unit 323, an area calculating unit 324, a cutting traveling distance calculation unit 325, a unit harvest amount calculation unit 326, a storage limit amount storage unit 327, The position prediction unit 328 and the storage prediction unit 329 are included.
 図15に示すように、衛星測位モジュール380は、GPS(グローバル・ポジショニング・システム)で用いられる人工衛星GSからのGPS信号を受信する。そして、図16に示すように、衛星測位モジュール380は、受信したGPS信号に基づいて、コンバイン301の自車位置を示す測位データを自車位置算出部321へ送る。 As shown in FIG. 15, the satellite positioning module 380 receives GPS signals from the artificial satellite GS used in GPS (Global Positioning System). Then, as shown in FIG. 16, the satellite positioning module 380 sends positioning data indicating the vehicle position of the combine 301 to the vehicle position calculation unit 321 based on the received GPS signal.
 自車位置算出部321は、衛星測位モジュール380により出力された測位データに基づいて、コンバイン301の位置座標を経時的に算出する。算出されたコンバイン301の経時的な位置座標は、走行制御部323及び領域算出部324へ送られる。 The vehicle position calculation unit 321 calculates position coordinates of the combine 301 over time based on the positioning data output by the satellite positioning module 380. The calculated position coordinates of the combine 301 over time are sent to the traveling control unit 323 and the area calculation unit 324.
 領域算出部324は、自車位置算出部321から受け取ったコンバイン301の経時的な位置座標に基づいて、図18に示すように、外周領域SA及び作業対象領域CAを算出する。 The area calculation unit 324 calculates the outer peripheral area SA and the work target area CA as shown in FIG. 18 based on the temporal position coordinates of the combine 301 received from the host vehicle position calculation unit 321.
 より具体的には、領域算出部324は、自車位置算出部321から受け取ったコンバイン301の経時的な位置座標に基づいて、圃場の外周側における周回走行でのコンバイン301の走行軌跡を算出する。そして、領域算出部324は、算出されたコンバイン301の走行軌跡に基づいて、コンバイン301が穀物を収穫しながら周回走行した圃場の外周側の領域を外周領域SAとして算出する。また、領域算出部324は、算出された外周領域SAの内側を、作業対象領域CAとして算出する。 More specifically, the area calculation unit 324 calculates the traveling locus of the combine 301 in the circumferential traveling on the outer circumference side of the field based on the temporal position coordinate of the combine 301 received from the vehicle position calculation unit 321. . And the area | region calculation part 324 calculates the area | region by the side of the outer periphery of the farmland which combined traveled while harvesting a grain based on the calculated driving | running | working locus | trajectory of the combine 301 as outer periphery area SA. In addition, the area calculation unit 324 calculates the inside of the calculated outer peripheral area SA as the work target area CA.
 例えば、図17においては、圃場の外周側における周回走行のためのコンバイン301の走行経路が矢印で示されている。図17に示す例では、コンバイン301は、3周の周回走行を行う。そして、この走行経路に沿った刈取走行が完了すると、圃場は、図18に示す状態となる。 For example, in FIG. 17, the traveling route of the combine 301 for the circumferential traveling on the outer circumference side of the field is indicated by an arrow. In the example shown in FIG. 17, the combine 301 performs three rounds. When the mowing travel along the traveling path is completed, the field is in the state shown in FIG.
 そして、上述の通り、図18に示すように、領域算出部324は、コンバイン301が穀物を収穫しながら周回走行した圃場の外周側の領域を外周領域SAとして算出する。また、領域算出部324は、算出された外周領域SAの内側を、作業対象領域CAとして算出する。 And as above-mentioned, as shown in FIG. 18, the area | region calculation part 324 calculates the area | region by the side of the outer periphery of the field which the combine 301 circularly traveled, harvesting a grain as outer periphery area SA. In addition, the area calculation unit 324 calculates the inside of the calculated outer peripheral area SA as the work target area CA.
 そして、図16に示すように、領域算出部324による算出結果は、刈取走行経路算出部322へ送られる。 Then, as shown in FIG. 16, the calculation result by the area calculation unit 324 is sent to the reaper traveling route calculation unit 322.
 刈取走行経路算出部322は、領域算出部324から受け取った算出結果に基づいて、図18に示すように、作業対象領域CAにおける刈取走行のための走行経路である刈取走行経路LIを算出する。図18に示すように、刈取走行経路LIは、互いに平行な複数の走行ラインLNにより構成されている。 As shown in FIG. 18, the reaper traveling route calculation unit 322 calculates a reaper traveling route LI, which is a traveling route for reaper traveling in the work target area CA, based on the calculation result received from the area calculation unit 324. As shown in FIG. 18, the reaper traveling route LI is configured by a plurality of traveling lines LN parallel to each other.
 このように、走行経路算出システムAは、圃場における刈取走行のための走行経路である刈取走行経路LIを算出する刈取走行経路算出部322を備えている。また、刈取走行経路LIは、複数の走行ラインLNにより構成されている。 As described above, the travel route calculation system A includes the reaper travel route calculation unit 322 that calculates a reaper travel route LI, which is a travel route for reaper travel in a field. In addition, the reaper traveling route LI is configured by a plurality of traveling lines LN.
 図16に示すように、刈取走行経路算出部322により算出された刈取走行経路LIは、走行制御部323へ送られる。 As shown in FIG. 16, the reaper traveling route LI calculated by the reaper traveling route calculating unit 322 is sent to the traveling control unit 323.
 走行制御部323は、自車位置算出部321から受け取ったコンバイン301の位置座標と、刈取走行経路算出部322から受け取った刈取走行経路LIと、に基づいて、コンバイン301の自動走行を制御する。より具体的には、走行制御部323は、図19に示すように、刈取走行経路LIに沿った自動走行によって刈取走行が行われるように、コンバイン301の走行を制御する。 The traveling control unit 323 controls the automatic traveling of the combine 301 based on the position coordinates of the combine 301 received from the host vehicle position calculation unit 321 and the reaper traveling route LI received from the reaper traveling route calculation unit 322. More specifically, as shown in FIG. 19, the traveling control unit 323 controls the traveling of the combine 301 so that the reaper traveling is performed by the automatic traveling along the reaper traveling route LI.
 このように、走行経路算出システムAは、刈取走行経路LIに沿った自動走行によって刈取走行が行われるようにコンバイン301を制御する走行制御部323を備えている。 As described above, the travel route calculation system A includes the travel control unit 323 that controls the combine 301 such that the reap travel is performed by the automatic travel along the reap travel path LI.
 また、図16に示すように、貯留量センサ314Sによる検知結果は、通信端末304へ送られる。通信端末304は、貯留量センサ314Sから受け取った検知結果に基づいて、穀粒タンク314内の穀粒貯留量を、通信端末304のディスプレイに表示する。 Further, as shown in FIG. 16, the detection result by the storage amount sensor 314S is sent to the communication terminal 304. The communication terminal 304 displays the grain storage amount in the grain tank 314 on the display of the communication terminal 304 based on the detection result received from the storage amount sensor 314S.
 作業者は、通信端末304のディスプレイに表示された穀粒貯留量を見ることができる。そして、作業者が穀粒排出ボタン(図示せず)を押すことにより、コンバイン301による穀粒排出作業が開始される。 The worker can view the grain storage amount displayed on the display of the communication terminal 304. Then, when the worker presses a grain discharging button (not shown), the grain discharging operation by the combine 301 is started.
 また、走行距離検知部333は、コンバイン301の走行距離を経時的に検知する。そして、走行距離検知部333により検知された走行距離は、刈取走行距離算出部325へ送られる。 Further, the travel distance detection unit 333 detects the travel distance of the combine 301 with time. The traveling distance detected by the traveling distance detection unit 333 is sent to the reaper traveling distance calculation unit 325.
 作業状態検知部334は、コンバイン301が刈取装置315によって圃場の植立穀稈を刈り取っている状態であるか否かを経時的に検知する。そして、作業状態検知部334による検知結果は、刈取走行距離算出部325へ送られる。 The work state detection unit 334 temporally detects whether or not the combine 301 is in a state where the reaper 315 harvests the crop of the field. Then, the detection result by the work state detection unit 334 is sent to the reaper travel distance calculation unit 325.
 刈取走行距離算出部325は、走行距離検知部333により検知された走行距離と、作業状態検知部334による検知結果と、に基づいて、刈取走行距離を経時的に算出する。刈取走行距離とは、刈取走行での走行距離である。 The reaper traveling distance calculation unit 325 temporally calculates a reaper traveling distance based on the traveling distance detected by the traveling distance detection unit 333 and the detection result by the work state detection unit 334. The reaping travel distance is the travel distance in reaping travel.
 より具体的には、刈取走行距離算出部325は、コンバイン301の走行距離から、コンバイン301が刈取装置315によって圃場の植立穀稈を刈り取っている状態での走行距離のみを抽出することにより、刈取走行距離を算出する。 More specifically, the reaper traveling distance calculation unit 325 extracts only the traveling distance in a state where the combine 301 reaps the crop of the field by the reaper 315 from the travel distance of the combine 301, Calculate the traveling distance of reaper.
 そして、刈取走行距離算出部325により算出された刈取走行距離は、単位収穫量算出部326へ送られる。また、貯留量センサ314Sによる検知結果も、単位収穫量算出部326へ送られる。 Then, the reaping travel distance calculated by the reaping travel distance calculation unit 325 is sent to the unit harvest amount calculation unit 326. In addition, the detection result by the storage amount sensor 314S is also sent to the unit harvest amount calculation unit 326.
 単位収穫量算出部326は、貯留量センサ314Sによる検知結果と、刈取走行距離算出部325により算出された刈取走行距離と、に基づいて、単位収穫量を算出する。単位収穫量とは、単位刈取走行距離当たりに収穫される穀粒の量である。 The unit harvest amount calculation unit 326 calculates a unit yield based on the detection result of the storage amount sensor 314S and the reaping travel distance calculated by the reaper travel distance calculating portion 325. The unit yield is the amount of grain harvested per unit cutting distance.
 そして、単位収穫量算出部326により算出された単位収穫量は、位置予測部328へ送られる。 Then, the unit yield calculated by the unit yield calculation unit 326 is sent to the position prediction unit 328.
 このように、走行経路算出システムAは、単位刈取走行距離当たりに収穫される穀粒の量である単位収穫量を算出する単位収穫量算出部326を備えている。 As described above, the travel route calculation system A includes the unit harvest amount calculation unit 326 that calculates the unit yield which is the amount of grain harvested per unit cutting travel distance.
 図16に示すように、位置予測部328は、自車位置算出部321からコンバイン301の位置座標を取得する。また、位置予測部328は、刈取走行経路算出部322から刈取走行経路LIを取得する。また、位置予測部328は、貯留量センサ314Sから検知結果を取得する。また、位置予測部328は、貯留限界量記憶部327に記憶されている所定の貯留限界量(本発明に係る「閾値」に相当)を取得する。 As shown in FIG. 16, the position prediction unit 328 acquires position coordinates of the combine 301 from the host vehicle position calculation unit 321. In addition, the position prediction unit 328 obtains the reaping traveling route LI from the reaping traveling route calculation unit 322. Further, the position prediction unit 328 acquires the detection result from the storage amount sensor 314S. In addition, the position prediction unit 328 acquires a predetermined storage limit amount (corresponding to the “threshold” according to the present invention) stored in the storage limit amount storage unit 327.
 尚、この貯留限界量は、例えば、穀粒タンク314における貯留空間のうちの100%に相当する穀粒量であっても良いし、それ以外の穀粒量であっても良い。 The storage limit amount may be, for example, a grain amount corresponding to 100% of the storage space in the grain tank 314, or may be a grain amount other than that.
 そして、位置予測部328は、貯留限界量記憶部327から取得した貯留限界量と、貯留量センサ314Sによる検知結果と、単位収穫量算出部326により算出された単位収穫量と、に基づいて、穀粒貯留量が貯留限界量に達する時点におけるコンバイン301の位置を予測する。 Then, based on the storage limit amount acquired from the storage limit amount storage unit 327, the detection result by the storage amount sensor 314S, and the unit harvest amount calculated by the unit harvest amount calculation unit 326, the position prediction unit 328 The position of the combine 301 at the time when the grain storage amount reaches the storage limit amount is predicted.
 詳述すると、位置予測部328は、貯留限界量記憶部327から取得した貯留限界量と、貯留量センサ314Sによる検知結果と、単位収穫量算出部326により算出された単位収穫量と、に基づいて、走行可能距離を算出する。走行可能距離とは、穀粒タンク314内の穀粒貯留量が貯留限界量に達するまでにコンバイン301が刈取走行により走行可能な限界の距離である。 More specifically, the position prediction unit 328 is based on the storage limit amount acquired from the storage limit amount storage unit 327, the detection result by the storage amount sensor 314S, and the unit yield calculated by the unit yield calculation unit 326. To calculate the travelable distance. The travelable distance is a limit distance at which the combine 301 can travel by reaping until the grain storage amount in the grain tank 314 reaches the storage limit amount.
 より具体的には、位置予測部328は、貯留限界量と現時点での穀粒貯留量との差を、単位収穫量で除することによって、走行可能距離を算出する。 More specifically, the position prediction unit 328 calculates the travelable distance by dividing the difference between the storage limit amount and the grain storage amount at the present time by the unit harvest amount.
 そして、位置予測部328は、算出された走行可能距離と、コンバイン301の現時点での位置座標と、刈取走行経路LIと、に基づいて、穀粒貯留量が貯留限界量に達する時点におけるコンバイン301の位置を予測する。 Then, based on the calculated travelable distance, the position coordinates of the combine 301 at the present time, and the reaping travel route LI, the position prediction unit 328 combines the combine 301 at the time when the grain storage amount reaches the storage limit amount. Predict the position of
 位置予測部328による位置予測結果は、貯留予測部329へ送られる。 The position prediction result by the position prediction unit 328 is sent to the storage prediction unit 329.
 このように、走行経路算出システムAは、貯留限界量と、貯留量センサ314Sによる検知結果と、単位収穫量算出部326により算出された単位収穫量と、に基づいて、穀粒貯留量が貯留限界量に達する時点におけるコンバイン301の位置を予測する位置予測部328を備えている。 As described above, the travel route calculation system A stores the grain storage amount based on the storage limit amount, the detection result by the storage amount sensor 314S, and the unit harvest amount calculated by the unit yield calculation unit 326. A position prediction unit 328 is provided which predicts the position of the combine 301 at the time when the limit amount is reached.
 貯留予測部329は、位置予測部328から受け取った位置予測結果に基づいて、コンバイン301が次走行ラインLNbを走行している途中で穀粒貯留量が貯留限界量に達するか否かを予測する。 The storage prediction unit 329 predicts, based on the position prediction result received from the position prediction unit 328, whether or not the grain storage amount reaches the storage limit amount while the combine 301 is traveling on the next traveling line LNb. .
 尚、次走行ラインLNbとは、複数の走行ラインLNのうち、コンバイン301が現走行ラインLNaの次に走行する予定の走行ラインLNである。また、現走行ラインLNaとは、複数の走行ラインLNのうち、コンバイン301が現時点で走行している走行ラインLNである。 The next travel line LNb is a travel line LN where the combine 301 is to travel next to the current travel line LNa among the plurality of travel lines LN. Further, the current travel line LNa is a travel line LN on which the combine 301 is currently traveling among the plurality of travel lines LN.
 貯留予測部329による予測について詳述すると、貯留予測部329は、位置予測部328により予測されたコンバイン301の位置が次走行ラインLNbの途中の位置である場合、次走行ラインLNbの途中で穀粒貯留量が貯留限界量に達すると予測する。 Describing the prediction by the storage prediction unit 329 in detail, if the position of the combine 301 predicted by the position prediction unit 328 is a position on the way of the next traveling line LNb, the storage prediction unit 329 sets the grain in the middle of the next traveling line LNb. It is predicted that the grain storage amount will reach the storage limit amount.
 尚、上述の通り、位置予測部328による位置予測結果は、貯留量センサ314Sによる検知結果に基づいている。そして、貯留予測部329による予測は、位置予測部328による位置予測結果に基づいている。即ち、貯留予測部329による予測は、貯留量センサ314Sによる検知結果に基づいている。 As described above, the position prediction result by the position prediction unit 328 is based on the detection result by the storage amount sensor 314S. The prediction by the storage prediction unit 329 is based on the position prediction result by the position prediction unit 328. That is, the prediction by the storage prediction unit 329 is based on the detection result by the storage amount sensor 314S.
 このように、走行経路算出システムAは、貯留量センサ314Sによる検知結果に基づいて、次に走行する予定の走行ラインLNである次走行ラインLNbの途中で穀粒貯留量が貯留限界量に達するか否かを予測する貯留予測部329を備えている。 As described above, the travel route calculation system A, based on the detection result by the storage amount sensor 314S, the grain storage amount reaches the storage limit amount in the middle of the next travel line LNb which is the travel line LN scheduled to travel next. It has a storage prediction unit 329 that predicts whether or not.
 そして、貯留予測部329による予測結果は、刈取走行経路算出部322へ送られる。 Then, the prediction result by the storage prediction unit 329 is sent to the reaper traveling route calculation unit 322.
 刈取走行経路算出部322は、貯留予測部329により次走行ラインLNbの途中で穀粒貯留量が貯留限界量に達すると予測された場合に、走行ライン修正処理を行うように構成されている。尚、走行ライン修正処理とは、次走行ラインLNbの途中で穀粒貯留量が貯留限界量に達しないように、次走行ラインLNbを修正する処理である。 The reaper traveling route calculation unit 322 is configured to perform traveling line correction processing when the storage prediction unit 329 predicts that the grain storage amount reaches the storage limit amount in the middle of the next travel line LNb. The traveling line correction process is a process of correcting the next traveling line LNb so that the grain storage amount does not reach the storage limit in the middle of the next traveling line LNb.
 そして、本実施形態において、刈取走行経路算出部322は、走行ライン修正処理において、刈取装置315による刈取幅が減少するように次走行ラインLNbを修正する。 Then, in the present embodiment, in the traveling line correction process, the reaper traveling route calculation unit 322 corrects the next traveling line LNb so that the reaper width by the reaper 315 decreases.
 このように、刈取走行経路算出部322は、貯留予測部329により次走行ラインLNbの途中で穀粒貯留量が貯留限界量に達すると予測された場合に、次走行ラインLNbの途中で穀粒貯留量が貯留限界量に達しないように、次走行ラインLNbを修正する走行ライン修正処理を行う。 As described above, when the storage prediction unit 329 predicts that the grain storage amount will reach the storage limit in the middle of the next traveling line LNb, the reaper traveling route calculation unit 322 makes grains in the middle of the next traveling line LNb. A traveling line correction process is performed to correct the next traveling line LNb so that the storage amount does not reach the storage limit amount.
 〔走行経路算出システムを利用した収穫作業の流れ〕
 以下では、走行経路算出システムAを利用した収穫作業の例として、コンバイン301が、図17に示す圃場で収穫作業を行う場合の流れについて説明する。
[Flow of harvest work using travel route calculation system]
Hereinafter, as an example of a harvesting operation using the travel route calculation system A, a flow in a case where the combine 301 performs the harvesting operation in the field shown in FIG. 17 will be described.
 最初に、作業者は、コンバイン301を手動で操作し、図17に示すように、圃場内の外周部分において、圃場の境界線に沿って周回するように刈取走行を行う。図17に示す例では、コンバイン301は、3周の周回走行を行う。この周回走行が完了すると、圃場は、図18に示す状態となる。 First, the operator manually operates the combine 301, and as shown in FIG. 17, the mowing travel is performed so as to go around along the boundary of the field on the outer peripheral portion in the field. In the example shown in FIG. 17, the combine 301 performs three rounds. When this round trip is completed, the field is in the state shown in FIG.
 領域算出部324は、自車位置算出部321から受け取ったコンバイン301の経時的な位置座標に基づいて、図17に示す周回走行でのコンバイン301の走行軌跡を算出する。そして、図18に示すように、領域算出部324は、算出されたコンバイン301の走行軌跡に基づいて、コンバイン301が植立穀稈を刈り取りながら周回走行した圃場の外周側の領域を外周領域SAとして算出する。また、領域算出部324は、算出された外周領域SAの内側を、作業対象領域CAとして算出する。 The region calculation unit 324 calculates the traveling locus of the combine 301 in the round trip shown in FIG. 17 based on the temporal position coordinate of the combine 301 received from the host vehicle position calculation unit 321. Then, as shown in FIG. 18, the area calculation unit 324 calculates an area on the outer circumference side of the field where the combine 301 travels while harvesting the cereals on the basis of the calculated travel locus of the combine 301. Calculated as In addition, the area calculation unit 324 calculates the inside of the calculated outer peripheral area SA as the work target area CA.
 次に、刈取走行経路算出部322は、領域算出部324から受け取った算出結果に基づいて、図18に示すように、作業対象領域CAにおける刈取走行経路LIを算出する。刈取走行経路LIは、互いに平行な複数の走行ラインLNにより構成されている。 Next, based on the calculation result received from the area calculation unit 324, as shown in FIG. 18, the reaper traveling path calculation unit 322 calculates a reaper traveling route LI in the work target area CA. The reaper traveling route LI is configured of a plurality of traveling lines LN parallel to each other.
 そして、作業者が自動走行開始ボタン(図示せず)を押すことにより、図19に示すように、刈取走行経路LIに沿った自動走行が開始される。このとき、走行制御部323は、刈取走行経路LIに沿った自動走行によって刈取走行が行われるように、コンバイン301の走行を制御する。 Then, when the worker presses an automatic travel start button (not shown), as shown in FIG. 19, automatic travel along the reaper travel path LI is started. At this time, the traveling control unit 323 controls the traveling of the combine 301 so that the reaper traveling is performed by the automatic traveling along the reaper traveling route LI.
 尚、本実施形態においては、図17から図19に示すように、圃場外に運搬車CVが駐車している。そして、外周領域SAにおいて、運搬車CVの近傍位置には、停車位置PPが設定されている。 In the present embodiment, as shown in FIG. 17 to FIG. 19, the transport vehicle CV is parked outside the field. Then, in the outer peripheral area SA, the stop position PP is set at a position near the transport vehicle CV.
 運搬車CVは、コンバイン301が穀粒排出装置318から排出した穀粒を収集し、運搬することができる。穀粒排出の際、コンバイン301は停車位置PPに停車し、穀粒排出装置318によって穀粒を運搬車CVへ排出する。 The transport vehicle CV can collect and transport the grains discharged from the grain discharge device 318 by the combine 301. When the grain is discharged, the combine 301 stops at the stopping position PP and discharges the grain to the transporter CV by the grain discharging device 318.
 コンバイン301が圃場での収穫作業を行っているとき、上述の通り、作業者は、通信端末304のディスプレイに表示された穀粒貯留量を見ることができる。そして、作業者が穀粒排出ボタン(図示せず)を押すことにより、コンバイン301による穀粒排出作業が開始される。 When the combine 301 is performing a field harvesting operation, the worker can view the grain storage amount displayed on the display of the communication terminal 304 as described above. Then, when the worker presses a grain discharging button (not shown), the grain discharging operation by the combine 301 is started.
 穀粒排出作業が開始されると、コンバイン301は停車位置PPへ自動的に走行する。そして、コンバイン301は停車位置PPに停車し、穀粒排出装置318によって穀粒を運搬車CVへ排出する。穀粒排出作業が完了すると、コンバイン301は、刈取走行経路LIに沿った自動走行に復帰する。 When the grain discharging operation is started, the combine 301 automatically travels to the stopping position PP. Then, the combine 301 stops at the stopping position PP, and discharges the grains to the transporter CV by the grain discharging device 318. When the grain discharging operation is completed, the combine 301 returns to the automatic traveling along the reaper traveling route LI.
 そして、作業対象領域CAにおける全ての走行ラインLNに沿った刈取走行が完了すると、圃場の全体が収穫済みとなる。 Then, when the mowing travel along all the travel lines LN in the work target area CA is completed, the entire field becomes harvested.
 〔走行ライン修正処理について〕
 図19に示すようにコンバイン301が走行ラインLNに沿った刈取走行を行っている間は、常に、位置予測部328によって、穀粒貯留量が貯留限界量に達する時点におけるコンバイン301の位置が予測されている。
[About traveling line correction processing]
As shown in FIG. 19, while the combine 301 is performing mowing travel along the traveling line LN, the position prediction unit 328 always predicts the position of the combine 301 at the time when the grain storage amount reaches the storage limit amount. It is done.
 位置予測部328により予測されたコンバイン301の位置が次走行ラインLNbの途中の位置でない場合、貯留予測部329は、次走行ラインLNbの途中で穀粒貯留量が貯留限界量に達しないと予測する。従って、この場合、上述の走行ライン修正処理は行われない。 If the position of the combine 301 predicted by the position prediction unit 328 is not in the middle of the next traveling line LNb, the storage prediction unit 329 predicts that the grain storage amount does not reach the storage limit in the middle of the next traveling line LNb. Do. Therefore, in this case, the traveling line correction process described above is not performed.
 これに対し、位置予測部328により予測されたコンバイン301の位置が次走行ラインLNbの途中の位置である場合、貯留予測部329は、次走行ラインLNbの途中で穀粒貯留量が貯留限界量に達すると予測する。従って、この場合、上述の走行ライン修正処理が行われる。 On the other hand, when the position of the combine 301 predicted by the position prediction unit 328 is a position on the next traveling line LNb, the storage prediction unit 329 determines that the grain storage amount is the storage limit on the middle of the next traveling line LNb. Forecast to reach. Therefore, in this case, the traveling line correction process described above is performed.
 以下では、走行ライン修正処理が行われる場合の例として図20及び図21を参照しながら、走行ライン修正処理について説明する。 Hereinafter, the traveling line correction process will be described with reference to FIGS. 20 and 21 as an example in which the traveling line correction process is performed.
 図20に示す例において、コンバイン301は、圃場の作業対象領域CAにおいて、走行ラインLNに沿って刈取走行を行っている。 In the example shown in FIG. 20, the combine 301 is performing the mowing travel along the travel line LN in the work target area CA of the field.
 図20に示す作業対象領域CAのうち、既刈領域CA2は、既に刈取作業が完了している領域である。そして、コンバイン301は、作業対象領域CAにおける未刈領域CA1の植立穀稈を刈り取る。 Of the work target area CA shown in FIG. 20, the already-cropped area CA2 is an area where the reaping work has already been completed. Then, the combine 301 reaps the built-in grain weirs of the uncut area CA1 in the work target area CA.
 図20に示すように、コンバイン301は、未刈領域CA1の端部に位置する走行ラインLN(現走行ラインLNa)に沿って刈取走行を行っている。このとき、コンバイン301の刈取装置315による刈取幅は、幅W1である。尚、幅W1は、刈取装置315により刈り取ることができる最大の幅である。 As shown in FIG. 20, the combine 301 performs reaping travel along a travel line LN (current travel line LNa) located at an end of the uncrop area CA1. At this time, the mowing width by the mowing device 315 of the combine 301 is the width W1. The width W1 is the maximum width that can be trimmed by the reaper 315.
 また、図20に示すように、次走行ラインLNbは、現走行ラインLNaに隣接している。そして、このとき、位置予測部328により予測されたコンバイン301の位置が、位置P1であるとする。図20に示すように、位置P1は、次走行ラインLNbの途中の位置である。 Further, as shown in FIG. 20, the next traveling line LNb is adjacent to the current traveling line LNa. At this time, it is assumed that the position of the combine 301 predicted by the position prediction unit 328 is the position P1. As shown in FIG. 20, the position P1 is a position in the middle of the next traveling line LNb.
 このとき、位置予測部328により予測されたコンバイン301の位置が次走行ラインLNbの途中の位置であるため、貯留予測部329は、次走行ラインLNbの途中で穀粒貯留量が貯留限界量に達すると予測する。その結果、刈取走行経路算出部322による走行ライン修正処理が行われることとなる。 At this time, since the position of the combine 301 predicted by the position prediction unit 328 is the position on the way of the next travel line LNb, the storage prediction unit 329 sets the grain storage amount to the storage limit amount in the middle of the next travel line LNb. Predict to reach. As a result, traveling line correction processing by the reaper traveling route calculation unit 322 is performed.
 図21に示すように、この走行ライン修正処理においては、次走行ラインLNbが、現走行ラインLNaに近づく方向へ位置変更するように修正される。 As shown in FIG. 21, in this traveling line correction process, the next traveling line LNb is corrected so as to change its position in the direction approaching the current traveling line LNa.
 図20に示すように、修正前の次走行ラインLNbに沿ってコンバイン301が刈取走行した場合、コンバイン301の刈取装置315による刈取幅は、幅W1となる。これに対し、図21に示すように、修正後の次走行ラインLNbに沿ってコンバイン301が刈取走行した場合、コンバイン301の刈取装置315による刈取幅は、幅W2となる。そして、幅W2は、幅W1よりも小さい。 As shown in FIG. 20, when the combine 301 travels along the next traveling line LNb before the correction, the reaping width of the combine 301 by the reaper 315 is the width W1. On the other hand, as shown in FIG. 21, when the combine 301 travels along the corrected next traveling line LNb, the cutting width by the cutting device 315 of the combine 301 is the width W2. The width W2 is smaller than the width W1.
 即ち、次走行ラインLNbが修正されたことにより、次走行ラインLNbに沿ってコンバイン301が刈取走行する際の刈取装置315による刈取幅は、幅W1から幅W2に減少する。これは、図21に示すように、修正後の次走行ラインLNbに沿ってコンバイン301が刈取走行した場合、刈取装置315の一部が、既刈領域CA2を通過するためである。 That is, since the next traveling line LNb is corrected, the cutting width by the cutting device 315 when the combine 301 travels along the next traveling line LNb is reduced from the width W1 to the width W2. This is because, as shown in FIG. 21, when the combine 301 travels along the corrected next travel line LNb, a part of the reaper 315 passes through the cut area CA2.
 以上で説明したように、本実施形態における走行ライン修正処理では、刈取装置315による刈取幅が減少するように、次走行ラインLNbが修正される。そして、走行制御部323による制御によって、コンバイン301は、修正後の次走行ラインLNbに沿って自動走行する。 As described above, in the traveling line correction process in the present embodiment, the next traveling line LNb is corrected such that the cutting width by the cutting device 315 is reduced. Then, under the control of the traveling control unit 323, the combine 301 travels automatically along the corrected next traveling line LNb.
 以上で説明した構成であれば、貯留予測部329により次に走行する予定の走行ラインLNである次走行ラインLNbの途中で穀粒貯留量が貯留限界量に達すると予測された場合には、走行ライン修正処理が行われる。この走行ライン修正処理によって、次走行ラインLNbの途中で穀粒貯留量が貯留限界量に達しないように次走行ラインLNbが修正される。そして、コンバイン301が、修正後の次走行ラインLNbに基づいて走行すれば、次走行ラインLNbの途中で穀粒貯留量が貯留限界量に達することはない。 If it is predicted that the grain storage amount will reach the storage limit in the middle of the next travel line LNb which is the travel line LN scheduled to travel next by the storage prediction unit 329, with the configuration described above, A traveling line correction process is performed. By this traveling line correction processing, the next traveling line LNb is corrected so that the grain storage amount does not reach the storage limit amount in the middle of the next traveling line LNb. Then, if the combine 301 travels based on the corrected next traveling line LNb, the grain storage amount does not reach the storage limit in the middle of the next traveling line LNb.
 従って、以上で説明した構成であれば、走行ラインLNの途中で穀粒貯留量が貯留限界量に達することを回避できる。そして、貯留限界量を、穀粒タンク314の満杯量に相当する穀粒量以下に設定すれば、走行ラインLNの途中で穀粒タンク314が満杯となることを回避できる。 Therefore, with the configuration described above, it is possible to avoid that the grain storage amount reaches the storage limit amount in the middle of the traveling line LN. Then, if the storage limit amount is set to be equal to or less than the grain amount corresponding to the full amount of grain tank 314, it can be avoided that grain tank 314 becomes full in the middle of traveling line LN.
 しかも、以上で説明した構成であれば、コンバイン301が修正後の次走行ラインLNbに沿った刈取走行を行うことにより、穀粒タンク314内に可能な限り多くの穀粒を貯留させやすい。これにより、作業効率の低下を防ぎやすい。 Moreover, with the configuration described above, it is easy to store as many grains as possible in the grain tank 314 by the combine 301 performing the reaping travel along the corrected next traveling line LNb. This makes it easy to prevent a drop in work efficiency.
 即ち、以上で説明した構成であれば、走行ラインLNの途中でコンバイン301の穀粒タンク314が満杯となることを回避しつつ、穀粒タンク314内に可能な限り多くの穀粒を貯留させて作業効率の低下を防ぎやすい。 That is, with the configuration described above, as much grain as possible is stored in the grain tank 314 while avoiding that the grain tank 314 of the combine 301 becomes full in the middle of the traveling line LN. It is easy to prevent the decline of work efficiency.
 〔第3実施形態の第1別実施形態〕
 上記実施形態における走行ライン修正処理では、刈取装置315による刈取幅が減少するように、次走行ラインLNbが修正される。
First Alternative Embodiment of Third Embodiment
In the traveling line correction process in the above-described embodiment, the next traveling line LNb is corrected such that the mowing width by the mowing device 315 is reduced.
 しかしながら、本発明はこれに限定されない。以下では、本発明に係る第1別実施形態について、上記実施形態とは異なる点を中心に説明する。以下で説明している部分以外の構成は、上記実施形態と同様である。また、上記実施形態と同様の構成については、同じ符号を付している。 However, the present invention is not limited to this. Hereinafter, a first alternative embodiment according to the present invention will be described focusing on differences from the above embodiment. The configuration other than the parts described below is the same as that of the above embodiment. The same reference numerals are given to the same components as those in the above embodiment.
 図22は、本発明に係る第1別実施形態における走行ライン修正処理を示す図である。図22に示すように、コンバイン301は、未刈領域CA1の端部に位置する走行ラインLN(現走行ラインLNa)に沿って刈取走行を行っている。 FIG. 22 is a diagram showing a traveling line correction process in the first embodiment according to the present invention. As shown in FIG. 22, the combine 301 performs reaping travel along a travel line LN (current travel line LNa) located at the end of the uncrop area CA1.
 そして、このとき、位置予測部328により予測されたコンバイン301の位置が、位置P2であるとする。図22に示すように、位置P2は、次走行ラインLNbの途中の位置である。 At this time, it is assumed that the position of the combine 301 predicted by the position prediction unit 328 is the position P2. As shown in FIG. 22, the position P2 is a position on the way of the next traveling line LNb.
 このとき、位置予測部328により予測されたコンバイン301の位置が次走行ラインLNbの途中の位置であるため、貯留予測部329は、次走行ラインLNbの途中で穀粒貯留量が貯留限界量に達すると予測する。その結果、刈取走行経路算出部322による走行ライン修正処理が行われることとなる。 At this time, since the position of the combine 301 predicted by the position prediction unit 328 is the position on the way of the next travel line LNb, the storage prediction unit 329 sets the grain storage amount to the storage limit amount in the middle of the next travel line LNb. Predict to reach. As a result, traveling line correction processing by the reaper traveling route calculation unit 322 is performed.
 図22に示すように、この第1別実施形態における走行ライン修正処理では、次走行ラインLNbが短くなるように修正される。 As shown in FIG. 22, in the traveling line correction process in the first alternative embodiment, the next traveling line LNb is corrected so as to be short.
 詳述すると、図22に示すように、走行ライン修正処理前において、走行ラインLNは、長方形状の作業対象領域CAにおける長手方向に沿って延びている。そして、走行ライン修正処理により、次走行ラインLNbは、作業対象領域CAにおける短手方向に沿って延びるように修正される。これにより、次走行ラインLNbは短くなる。 More specifically, as shown in FIG. 22, before the travel line correction process, the travel line LN extends along the longitudinal direction in the rectangular work target area CA. Then, the traveling line correction process corrects the next traveling line LNb so as to extend along the short direction in the work target area CA. As a result, the next traveling line LNb becomes short.
 この構成によれば、貯留予測部329により次走行ラインLNbの途中で穀粒貯留量が貯留限界量に達すると予測された場合には、次走行ラインLNbが短くなるように修正される。そして、次走行ラインLNbが短くなることにより、次走行ラインLNbの全体を刈取走行した場合に得られる穀粒量が減少する。これにより、次走行ラインLNbの途中で穀粒貯留量が貯留限界量に達しにくくなる。 According to this configuration, when the storage prediction unit 329 predicts that the grain storage amount will reach the storage limit in the middle of the next traveling line LNb, the next traveling line LNb is corrected so as to be short. Then, by shortening the next traveling line LNb, the grain amount obtained when the whole of the next traveling line LNb is cut and traveled is reduced. Thereby, it becomes difficult for the grain storage amount to reach the storage limit amount in the middle of the next traveling line LNb.
 即ち、この構成によれば、走行ライン修正処理において、次走行ラインLNbの途中で穀粒貯留量が貯留限界量に達しないような修正を確実に行うことが可能となる。 That is, according to this configuration, in the traveling line correction process, it is possible to reliably perform correction such that the grain storage amount does not reach the storage limit amount in the middle of the next traveling line LNb.
 〔第3実施形態の第2別実施形態〕
 上記実施形態において、コンバイン301は普通型である。
Second Another Embodiment of the Third Embodiment
In the above embodiment, the combine 301 is a common type.
 しかしながら、本発明はこれに限定されない。以下では、本発明に係る第2別実施形態について、上記実施形態とは異なる点を中心に説明する。以下で説明している部分以外の構成は、上記実施形態と同様である。 However, the present invention is not limited to this. Hereinafter, a second alternative embodiment according to the present invention will be described focusing on differences from the above embodiment. The configuration other than the parts described below is the same as that of the above embodiment.
 図23は、本発明に係る第2別実施形態におけるコンバイン302を示す図である。図23に示すように、コンバイン302は自脱型であり、6条刈の仕様である。 FIG. 23 is a view showing the combine 302 in the second another embodiment according to the present invention. As shown in FIG. 23, the combine 302 is a self-lifting type, and is a specification of six-row cutting.
 この第2別実施形態における走行ライン修正処理では、コンバイン302による刈取条数が減少するように、次走行ラインLNbが修正される。このとき、例えば、コンバイン302が未刈地の条列と既刈地の条列とにまたがる状態で走行するように次走行ラインLNbが修正される。これにより、コンバイン302による刈取条数が減少する。即ち、コンバイン302による刈取幅が減少する。 In the traveling line correction process in the second alternative embodiment, the next traveling line LNb is corrected such that the number of cutting lines by the combine 302 decreases. At this time, for example, the next travel line LNb is corrected such that the combine 302 travels in a state of straddling the row of unharvested land and the row of already harvested land. As a result, the number of cutting strips by the combine 302 is reduced. That is, the cutting width by the combine 302 is reduced.
 尚、例えば、走行ライン修正処理では、刈取条数が6条から5条に減少するように次走行ラインLNbが修正されても良いし、4条以下の条数に減少するように次走行ラインLNbが修正されても良い。 For example, in the traveling line correction process, the next traveling line LNb may be corrected so that the number of reaping streaks decreases from six to five, or may be reduced to four or less. LNb may be modified.
 また、コンバイン302における刈取走行経路算出部322は、田植機または管理サーバから送信される条情報を受け取るように構成されている。尚、この条情報には、圃場における条の位置情報が含まれている。そして、刈取走行経路算出部322は、受け取った条情報に基づいて、走行ライン修正処理を行う。 In addition, the reaper traveling route calculation unit 322 in the combine 302 is configured to receive the line information transmitted from the rice transplanter or the management server. The article information includes the position information of the article in the field. Then, the reaper traveling route calculation unit 322 performs traveling line correction processing based on the received line information.
 図23に示すように、圃場の穀物が条植えであれば、刈取条数に対応する穀粒の収穫量を正確に把握しやすい。そのため、条植えの圃場において、刈取条数を基準に走行ライン修正処理を行うことにより、穀粒の収穫量の調節を高精度に行うことができる。これにより、穀粒タンク314内に可能な限り多くの穀粒を貯留させやすい。 As shown in FIG. 23, if the cereal grains in the field are row-planted, it is easy to accurately grasp the grain harvest amount corresponding to the number of cutting lines. Therefore, in the field of row planting, by performing the traveling line correction processing on the basis of the number of cutting strips, it is possible to adjust the harvest amount of grain with high accuracy. Thereby, it is easy to store as many grains as possible in the grain tank 314.
 尚、以上に記載した各実施形態は一例に過ぎないのであり、本発明はこれに限定されるものではなく、適宜変更が可能である。 In addition, each embodiment described above is only an example, and this invention is not limited to this, A change is suitably possible.
 〔第3実施形態のその他の実施形態〕
 (1)走行装置311は、ホイール式であっても良いし、セミクローラ式であっても良い。
Other Embodiments of the Third Embodiment
(1) The traveling device 311 may be a wheel type or a semi crawler type.
 (2)上記実施形態においては、刈取走行経路LIは、互いに平行な複数の走行ラインLNにより構成されているが、本発明はこれに限定されない。例えば、刈取走行経路LIは、メッシュ状に配置された複数の走行ラインLNにより構成されていても良い。 (2) In the above-mentioned embodiment, although mowing travel path LI is constituted by a plurality of traveling lines LN parallel to each other, the present invention is not limited to this. For example, the reaper traveling route LI may be configured by a plurality of traveling lines LN arranged in a mesh shape.
 (3)上記実施形態においては、作業者は、コンバイン301を手動で操作し、図17に示すように、圃場内の外周部分において、圃場の境界線に沿って周回するように刈取走行を行う。しかしながら、本発明はこれに限定されず、コンバイン301が自動で走行し、圃場内の外周部分において、圃場の境界線に沿って周回するように刈取走行を行うように構成されていても良い。 (3) In the above embodiment, the operator manually operates the combine 301, and as shown in FIG. 17, in the outer peripheral portion in the field, the mowing travel is performed so as to go around along the boundary line of the field. . However, the present invention is not limited to this, and the combine 301 may travel automatically, and the crop traveling may be performed so as to go around along the boundary of the field in the outer peripheral portion in the field.
 (4)上記実施形態においては、刈取走行経路LIに沿ったコンバイン301の走行は、走行制御部323の制御による自動走行によって行われる。しかしながら、本発明はこれに限定されず、刈取走行経路LIに沿ったコンバイン301の走行は、手動操作によって行われても良い。この場合、走行ラインLN及びコンバイン301の現在位置が通信端末304に表示される構成であっても良い。また、走行ライン修正処理による修正後の次走行ラインLNbが、作業者へのガイダンスとして、通信端末304に表示される構成であっても良い。 (4) In the above embodiment, traveling of the combine 301 along the reaper traveling route LI is performed by automatic traveling under the control of the traveling control unit 323. However, the present invention is not limited to this, and traveling of the combine 301 along the reaper traveling route LI may be performed by manual operation. In this case, the current position of the traveling line LN and the combine 301 may be displayed on the communication terminal 304. Further, the next traveling line LNb after the correction by the traveling line correction process may be displayed on the communication terminal 304 as a guidance for the operator.
 (5)貯留予測部329により次走行ラインLNbの途中で穀粒貯留量が貯留限界量に達すると予測された場合に、衛星測位モジュール380の位置と走行ラインLNとを合わせるように自動走行する状態から、コンバイン301の機体における衛星測位モジュール380とは別の位置と走行ラインLNとを合わせるように自動走行する状態へと変更する構成であっても良い。このような変更も、実質的には本発明に係る「走行ライン修正処理」に相当する。 (5) When the storage prediction unit 329 predicts that the grain storage amount will reach the storage limit in the middle of the next travel line LNb, the vehicle travels automatically so that the position of the satellite positioning module 380 matches the travel line LN. The state may be changed to a state of traveling automatically so that a position different from the satellite positioning module 380 in the airframe of the combine 301 and the traveling line LN are aligned. Such a change is also substantially equivalent to the "travel line correction process" according to the present invention.
 (6)自車位置算出部321、刈取走行経路算出部322、走行制御部323、領域算出部324、刈取走行距離算出部325、単位収穫量算出部326、貯留限界量記憶部327、位置予測部328、貯留予測部329のうち、一部または全てがコンバイン301の外部に備えられていても良いのであって、例えば、コンバイン301の外部に設けられた管理サーバに備えられていても良い。 (6) Vehicle position calculation unit 321, reaper travel route calculation unit 322, travel control unit 323, area calculation unit 324, reaper travel distance calculation unit 325, unit yield calculation unit 326, storage limit amount storage unit 327, position prediction Part or all of the unit 328 and the storage prediction unit 329 may be provided outside the combine 301, and may be provided, for example, in a management server provided outside the combine 301.
 (7)貯留予測部329は、コンバイン301が次走行ラインLNbの全体を刈取走行した場合の穀粒貯留量の予測値を算出するように構成されていても良い。また、貯留予測部329は、算出された穀粒貯留量の予測値が貯留限界量以上である場合に、次走行ラインLNbの途中で穀粒貯留量が貯留限界量に達すると予測するように構成されていても良い。 (7) The storage prediction unit 329 may be configured to calculate a predicted value of the grain storage amount when the combine 301 travels along the entire following travel line LNb. In addition, the storage prediction unit 329 is configured to predict that the grain storage amount reaches the storage limit amount in the middle of the next traveling line LNb when the calculated predicted value of the grain storage amount is equal to or larger than the storage limit amount. It may be configured.
 (8)走行距離検知部333は設けられていなくても良い。 (8) The travel distance detection unit 333 may not be provided.
 (9)作業状態検知部334は設けられていなくても良い。 (9) The work state detection unit 334 may not be provided.
 (10)刈取走行距離算出部325は設けられていなくても良い。 (10) The reaping travel distance calculation unit 325 may not be provided.
 (11)単位収穫量算出部326は設けられていなくても良い。 (11) The unit harvest amount calculation unit 326 may not be provided.
 (12)位置予測部328は設けられていなくても良い。 (12) The position prediction unit 328 may not be provided.
 (13)走行制御部323は設けられていなくても良い。 (13) The traveling control unit 323 may not be provided.
 (14)通信端末304は設けられていなくても良い。 (14) The communication terminal 304 may not be provided.
 (15)本発明は、普通型のコンバインだけでなく、自脱型のコンバインにも利用可能である。 (15) The present invention can be used not only for ordinary type combine but also for self-eliminating type combine.
 なお、上述の第1実施形態~第3実施形態(別実施形態を含む、以下同じ)で開示される構成は、矛盾が生じない限り、他の実施形態で開示される構成と組み合わせて適用することが可能であり、また、本明細書において開示された各実施形態は例示であって、本発明の実施形態はこれに限定されず、本発明の目的を逸脱しない範囲内で適宜改変することが可能である。 The configurations disclosed in the first to third embodiments described above (including the other embodiments, hereinafter the same) are applied in combination with the configurations disclosed in the other embodiments as long as no contradiction arises. In addition, each embodiment disclosed in the present specification is an exemplification, and the embodiment of the present invention is not limited thereto, and can be appropriately modified within the scope of the object of the present invention. Is possible.
 5   :制御ユニット
 10  :車体
 50  :自車位置算出部
 51  :走行制御部
 52  :作業制御部
 53  :走行モード管理部
 54  :作業領域決定部
 55  :走行経路設定部
 56  :位置ずれ値算出部
 57  :修正値算出部
 58  :走行経路変位部
 80  :自車位置検出モジュール
 81  :衛星測位モジュール
 82  :慣性計測モジュール
 H   :収穫部(作業装置)
 210 :走行車体(車体)
 211 :走行装置
 241 :旋回情報管理部
 242 :次走行経路選択部
 205 :制御ユニット
 251 :走行制御部
 2511:手動走行制御部
 2512:自動走行制御部
 2513:操舵量算出部
 252 :作業制御部
 253 :走行モード管理部
 254 :走行経路設定部
 255 :自車位置算出部
 280 :自車位置検出モジュール
 281 :衛星測位モジュール
 282 :慣性測位モジュール
 CA :作業対象領域
 SA :外周領域
 301 :コンバイン
 313 :脱穀装置
 314 :穀粒タンク
 314S:貯留量センサ
 315 :刈取装置
 322 :刈取走行経路算出部
 323 :走行制御部
 326 :単位収穫量算出部
 328 :位置予測部
 329 :貯留予測部
 A  :走行経路算出システム
 LI :刈取走行経路
 LN :走行ライン
 LNb:次走行ライン
 
5: control unit 10: vehicle body 50: vehicle position calculation unit 51: traveling control unit 52: work control unit 53: traveling mode management unit 54: work area determination unit 55: traveling route setting unit 56: positional deviation value calculation unit 57 : Correction value calculation unit 58: Traveling route displacement unit 80: Vehicle position detection module 81: Satellite positioning module 82: Inertial measurement module H: Harvesting unit (work equipment)
210: Traveling vehicle body (vehicle body)
211: traveling device 241: turning information management unit 242: next traveling route selection unit 205: control unit 251: traveling control unit 2511: manual traveling control unit 2512: automatic traveling control unit 2513: steering amount calculating unit 252: work control unit 253 A traveling mode management unit 254: a travel route setting unit 255: a vehicle position calculation unit 280: a vehicle position detection module 281: a satellite positioning module 282: an inertial positioning module CA: a work area SA: an outer peripheral area 301: combine 313: threshing Device 314: grain tank 314S: storage amount sensor 315: reaper 322: reaper travel route calculation unit 323: travel control unit 326: unit yield calculation unit 328: position prediction unit 329: storage prediction unit A: travel route calculation system LI: Reaping travel path LN: Driving line LNb Next running line

Claims (12)

  1.  走行経路に沿って自動走行することで作業地を既作業領域と未作業領域とに区分けていく作業車であって、
     作業幅を規定する作業装置と、
     前記作業幅と前記作業幅の両側に予め設定されたオーバーラップ値とに基づいて決定される経路間隔をあけて平行に延びる複数の走行経路を設定する走行経路設定部と、
     自車位置を算出する自車位置算出部と、
     前記自車位置が走行目標となっている前記走行経路から前記既作業領域側に位置ずれしている際の位置ずれ値を算出する位置ずれ値算出部と、
     前記オーバーラップ値と前記位置ずれ値との差分値を求め、前記差分値を超えない値を修正値とする修正値算出部と、
     前記未作業領域に設定された前記走行経路を、前記修正値に基づいて前記未作業領域側に変位させる走行経路変位部と、を備えている作業車。
    A working vehicle that divides a work site into an existing work area and an unworked area by automatically traveling along a travel route,
    A work device that defines a work width;
    A travel route setting unit configured to set a plurality of travel routes extending in parallel with a route interval determined based on the work width and an overlap value preset on both sides of the work width;
    A vehicle position calculation unit that calculates a vehicle position;
    A position shift value calculation unit that calculates a position shift value when the position of the vehicle is shifted toward the work area from the travel route, which is the travel target;
    A correction value calculation unit that obtains a difference value between the overlap value and the positional deviation value, and uses a value that does not exceed the difference value as a correction value;
    A work vehicle comprising: a travel route displacement unit configured to displace the travel route set in the unworked region toward the unworked region based on the correction value.
  2.  走行経路に沿って自動走行することで作業地を既作業領域と未作業領域とに区分けていく作業車であって、
     作業幅を規定する作業装置と、
     走行中の前記走行経路に対して、前記作業幅と前記作業幅の両側に予め設定されたオーバーラップ値とに基づいて決定される経路間隔をあけて平行に延びる前記走行経路を、次の走行目標となる目標走行経路として設定する走行経路設定部と、
     自車位置を算出する自車位置算出部と、
     前記自車位置が走行目標となっている前記走行経路から前記既作業領域側に位置ずれしている際の位置ずれ値を算出する位置ずれ値算出部と、
     前記オーバーラップ値と前記位置ずれ値との差分値を求め、前記差分値を超えない値を修正値とする修正値算出部と、
     前記目標走行経路を、前記修正値に基づいて前記未作業領域側に変位させる走行経路変位部と、を備えている作業車。
    A working vehicle that divides a work site into an existing work area and an unworked area by automatically traveling along a travel route,
    A work device that defines a work width;
    With respect to the traveling route during traveling, the next traveling route extends parallel to the above-mentioned traveling width with a path interval determined based on the working width and an overlap value preset on both sides of the working width. A travel route setting unit configured to set a target travel route as a target;
    A vehicle position calculation unit that calculates a vehicle position;
    A position shift value calculation unit that calculates a position shift value when the position of the vehicle is shifted toward the work area from the travel route, which is the travel target;
    A correction value calculation unit that obtains a difference value between the overlap value and the positional deviation value, and uses a value that does not exceed the difference value as a correction value;
    A work vehicle, comprising: a travel route displacement unit configured to displace the target travel route toward the unworked area based on the correction value.
  3.  前記修正値が前記差分値であり、前記走行経路変位部は、前記走行経路を前記修正値の値だけ変位させる請求項1または2に記載の作業車。 The work vehicle according to claim 1, wherein the correction value is the difference value, and the travel route displacement unit displaces the travel route by the value of the correction value.
  4.  前記自車位置算出部は、衛星測位モジュールまたは慣性計測モジュールあるいはその両方から出力される信号に基づいて、前記自車位置を算出する請求項1から3のいずれか一項に記載の作業車。 The work vehicle according to any one of claims 1 to 3, wherein the vehicle position calculation unit calculates the vehicle position based on a signal output from a satellite positioning module or an inertial measurement module or both of them.
  5.  互いに平行に延びた複数の平行走行経路と、前記平行走行経路同士をつなぐ方向転換走行経路とを含む走行経路に沿って作業地を走行する作業車であって、
     操舵可能な走行装置と、
     作業装置と、
     左旋回時の前記作業装置の作業幅中心の旋回軌跡に関する左旋回軌跡情報と、右旋回時の前記作業幅中心の旋回軌跡に関する右旋回軌跡情報と、前記走行装置の最小旋回半径とを管理する旋回情報管理部と、
     前記左旋回軌跡情報と前記右旋回軌跡情報と前記最小旋回半径とに基づいて、走行中の前記平行走行経路である現走行経路の次に走行する前記平行走行経路である次走行経路の選択を決定する次走行経路選択部と、を備えた作業車。
    A work vehicle traveling along a work site along travel paths including a plurality of parallel travel paths extending parallel to one another and a direction change travel path connecting the parallel travel paths.
    A steerable traveling device,
    Work equipment,
    Left turn locus information on the turn locus of the work width center of the work device at the time of left turn, right turn locus information on the turn locus of the work width center at the right turn, and the minimum turning radius of the traveling device The turn information management unit to manage,
    Selection of the next traveling route which is the parallel traveling route to be run next to the current traveling route which is the parallel traveling route during traveling based on the left turning trajectory information, the right turning trajectory information and the minimum turning radius And a next traveling route selection unit that determines the work vehicle.
  6.  前記次走行経路選択部は、前記現走行経路から前記次走行経路への方向転換の走行距離が短いことを選択条件とする請求項5に記載の作業車。 The work vehicle according to claim 5, wherein the next traveling route selection unit makes a selection condition that a traveling distance of a direction change from the current traveling route to the next traveling route is short.
  7.  衛星からの衛星信号に基づいて測位データを出力する衛星測位モジュールと、前記測位データに基づいて自車位置を算出する自車位置算出部と、前記走行経路と前記自車位置との偏差に基づいて操舵量を算出する操舵量算出部とが備えられている請求項5または6に記載の作業車。 A satellite positioning module that outputs positioning data based on satellite signals from a satellite, a vehicle position calculation unit that calculates a vehicle position based on the positioning data, and a deviation between the traveling route and the vehicle position The work vehicle according to claim 5 or 6, further comprising: a steering amount calculation unit that calculates a steering amount.
  8.  前記衛星測位モジュールの測位基準点となる衛星アンテナが、前記走行装置のトレッド中心線上に配置されている請求項7に記載の作業車。 The work vehicle according to claim 7, wherein a satellite antenna which is a positioning reference point of the satellite positioning module is disposed on a tread center line of the traveling device.
  9.  互いに平行に延びた複数の平行走行経路と、前記平行走行経路同士をつなぐ方向転換走行経路とを含む走行経路に沿って作業地を走行する作業車のための走行経路選択システムであって、
     左旋回時における前記作業車の作業幅中心の旋回軌跡に関する左旋回軌跡情報と、右旋回時における前記作業幅中心の旋回軌跡に関する右旋回軌跡情報と、前記作業車の走行装置の最小旋回半径とを管理する旋回情報管理部と、
     前記左旋回軌跡情報と前記右旋回軌跡情報と前記最小旋回半径とに基づいて、走行中の前記平行走行経路である現走行経路の次に走行する前記平行走行経路である次走行経路の選択を決定する次走行経路選択部と、を備えた走行経路選択システム。
    A travel route selection system for a work vehicle traveling on a work site along a travel path including a plurality of parallel travel paths extending parallel to one another and a direction change travel path connecting the parallel travel paths,
    Left turning locus information on the turning locus of the working width center of the work vehicle at the time of left turning, right turning locus information on the turning locus of the working width center at the right turning, and minimum turning of the traveling device of the working vehicle A turning information management unit that manages the radius and
    Selection of the next traveling route which is the parallel traveling route to be run next to the current traveling route which is the parallel traveling route during traveling based on the left turning trajectory information, the right turning trajectory information and the minimum turning radius And a next travel route selection unit that determines the travel route selection system.
  10.  圃場の植立穀稈を刈り取る刈取装置と、前記刈取装置により刈り取られた刈取穀稈を脱穀処理する脱穀装置と、前記脱穀装置による脱穀処理により得られた穀粒を貯留する穀粒タンクと、前記穀粒タンク内の穀粒貯留量を検知する貯留量センサと、を有するコンバインの走行経路を算出する走行経路算出システムであって、
     圃場における刈取走行のための走行経路である刈取走行経路を算出する刈取走行経路算出部を備え、
     前記刈取走行経路は、複数の走行ラインにより構成されており、
     前記貯留量センサによる検知結果に基づいて、次に走行する予定の前記走行ラインである次走行ラインの途中で前記穀粒貯留量が所定の閾値に達するか否かを予測する貯留予測部を備え、
     前記刈取走行経路算出部は、前記貯留予測部により前記次走行ラインの途中で前記穀粒貯留量が前記閾値に達すると予測された場合に、前記次走行ラインの途中で前記穀粒貯留量が前記閾値に達しないように、前記次走行ラインを修正する走行ライン修正処理を行う走行経路算出システム。
    A reaping device for reaping a field crop yard, a threshing device for threshing a reaping crop remnant harvested by the reaping device, and a grain tank for storing grains obtained by the threshing treatment by the threshing device; A travel route calculation system for calculating a travel route of a combine having a storage amount sensor for detecting a grain storage amount in the grain tank,
    It has a reaper travel route calculation unit that calculates a reaper travel route that is a travel route for reaper travel in a field.
    The reaper traveling route is constituted by a plurality of traveling lines,
    According to the detection result by the storage amount sensor, there is provided a storage prediction unit that predicts whether or not the grain storage amount reaches a predetermined threshold in the middle of the next travel line which is the travel line scheduled to travel next based on the detection result by the storage amount sensor ,
    When the grain storage amount is predicted to reach the threshold in the middle of the next travel line by the storage prediction unit, the harvest travel route calculation unit calculates the grain storage amount in the middle of the next travel line. A travel route calculation system that performs travel line correction processing that corrects the next travel line so as not to reach the threshold.
  11.  前記刈取走行経路に沿った自動走行によって刈取走行が行われるように前記コンバインを制御する走行制御部を備え、
     前記刈取走行経路算出部は、前記走行ライン修正処理において、前記刈取装置による刈取幅が減少するように前記次走行ラインを修正する請求項10に記載の走行経路算出システム。
    The traveling control unit is configured to control the combine so that the reaper traveling is performed by the automatic traveling along the reaper traveling path.
    The traveling route calculation system according to claim 10, wherein the reaper traveling route calculation unit corrects the next traveling line so that a reaper width by the reaper decreases in the traveling line correction process.
  12.  単位刈取走行距離当たりに収穫される穀粒の量である単位収穫量を算出する単位収穫量算出部と、
     前記閾値と、前記貯留量センサによる検知結果と、前記単位収穫量算出部により算出された前記単位収穫量と、に基づいて、前記穀粒貯留量が前記閾値に達する時点における前記コンバインの位置を予測する位置予測部と、を備え、
     前記貯留予測部は、前記位置予測部により予測された前記コンバインの位置が前記次走行ラインの途中の位置である場合、前記次走行ラインの途中で前記穀粒貯留量が前記閾値に達すると予測する請求項10または11に記載の走行経路算出システム。
     
    A unit yield calculation unit that calculates a unit yield, which is the amount of grain harvested per unit cutting distance;
    Based on the threshold value, the detection result by the storage amount sensor, and the unit harvest amount calculated by the unit yield calculation unit, the position of the combine at the time when the grain storage amount reaches the threshold is determined. And a position prediction unit for predicting
    The storage prediction unit predicts that the grain storage amount reaches the threshold in the middle of the next traveling line when the position of the combine predicted by the position prediction unit is in the middle of the next traveling line. The travel route calculation system according to claim 10 or 11.
PCT/JP2018/045907 2017-12-20 2018-12-13 Work vehicle, travel path selection system for work vehicle, and travel path calculation system WO2019124217A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880073472.6A CN111343854B (en) 2017-12-20 2018-12-13 Work vehicle, travel route selection system for work vehicle, and travel route calculation system
KR1020207012324A KR20200096489A (en) 2017-12-20 2018-12-13 Work vehicle, travel path selection system for work vehicle, and travel path calculation system

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2017-244440 2017-12-20
JP2017244232A JP6745784B2 (en) 2017-12-20 2017-12-20 Work vehicle
JP2017244440A JP6884092B2 (en) 2017-12-20 2017-12-20 Travel route selection system for work vehicles and work vehicles
JP2017-244232 2017-12-20
JP2017245309A JP6910285B2 (en) 2017-12-21 2017-12-21 Travel route calculation system
JP2017-245309 2017-12-21

Publications (1)

Publication Number Publication Date
WO2019124217A1 true WO2019124217A1 (en) 2019-06-27

Family

ID=66994073

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/045907 WO2019124217A1 (en) 2017-12-20 2018-12-13 Work vehicle, travel path selection system for work vehicle, and travel path calculation system

Country Status (3)

Country Link
KR (1) KR20200096489A (en)
CN (1) CN111343854B (en)
WO (1) WO2019124217A1 (en)

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112665506A (en) * 2020-12-31 2021-04-16 广州极飞科技有限公司 Method, device, equipment and storage medium for detecting installation deviation of positioning device
US20220110251A1 (en) 2020-10-09 2022-04-14 Deere & Company Crop moisture map generation and control system
US11467605B2 (en) 2019-04-10 2022-10-11 Deere & Company Zonal machine control
US11474523B2 (en) 2020-10-09 2022-10-18 Deere & Company Machine control using a predictive speed map
JP2022160538A (en) * 2021-09-02 2022-10-19 ベイジン バイドゥ ネットコム サイエンス テクノロジー カンパニー リミテッド Collision detection method, device, electronic apparatus, storage medium, automatic driving vehicle, and computer program
US11477940B2 (en) 2020-03-26 2022-10-25 Deere & Company Mobile work machine control based on zone parameter modification
US11592822B2 (en) 2020-10-09 2023-02-28 Deere & Company Machine control using a predictive map
US11589509B2 (en) 2018-10-26 2023-02-28 Deere & Company Predictive machine characteristic map generation and control system
US11635765B2 (en) 2020-10-09 2023-04-25 Deere & Company Crop state map generation and control system
US11641800B2 (en) 2020-02-06 2023-05-09 Deere & Company Agricultural harvesting machine with pre-emergence weed detection and mitigation system
US11650587B2 (en) 2020-10-09 2023-05-16 Deere & Company Predictive power map generation and control system
US11650553B2 (en) 2019-04-10 2023-05-16 Deere & Company Machine control using real-time model
US11653588B2 (en) 2018-10-26 2023-05-23 Deere & Company Yield map generation and control system
US11672203B2 (en) 2018-10-26 2023-06-13 Deere & Company Predictive map generation and control
US11675354B2 (en) 2020-10-09 2023-06-13 Deere & Company Machine control using a predictive map
US11711995B2 (en) 2020-10-09 2023-08-01 Deere & Company Machine control using a predictive map
US11727680B2 (en) 2020-10-09 2023-08-15 Deere & Company Predictive map generation based on seeding characteristics and control
US11778945B2 (en) 2019-04-10 2023-10-10 Deere & Company Machine control using real-time model
US11825768B2 (en) 2020-10-09 2023-11-28 Deere & Company Machine control using a predictive map
US11845449B2 (en) 2020-10-09 2023-12-19 Deere & Company Map generation and control system
US11844311B2 (en) 2020-10-09 2023-12-19 Deere & Company Machine control using a predictive map
US11849671B2 (en) 2020-10-09 2023-12-26 Deere & Company Crop state map generation and control system
US11849672B2 (en) 2020-10-09 2023-12-26 Deere & Company Machine control using a predictive map
US11864483B2 (en) 2020-10-09 2024-01-09 Deere & Company Predictive map generation and control system
US11874669B2 (en) 2020-10-09 2024-01-16 Deere & Company Map generation and control system
US11889787B2 (en) 2020-10-09 2024-02-06 Deere & Company Predictive speed map generation and control system
US11889788B2 (en) 2020-10-09 2024-02-06 Deere & Company Predictive biomass map generation and control
US11895948B2 (en) 2020-10-09 2024-02-13 Deere & Company Predictive map generation and control based on soil properties
US11927459B2 (en) 2020-10-09 2024-03-12 Deere & Company Machine control using a predictive map
US11946747B2 (en) 2020-10-09 2024-04-02 Deere & Company Crop constituent map generation and control system
EP4345563A1 (en) * 2022-09-29 2024-04-03 Yanmar Holdings Co., Ltd. Automatic traveling method, automatic traveling system, and automatic traveling program
US11957072B2 (en) 2020-02-06 2024-04-16 Deere & Company Pre-emergence weed detection and mitigation system
US11983009B2 (en) 2020-10-09 2024-05-14 Deere & Company Map generation and control system
US12013245B2 (en) 2020-10-09 2024-06-18 Deere & Company Predictive map generation and control system
US12035648B2 (en) 2020-02-06 2024-07-16 Deere & Company Predictive weed map generation and control system
US12058951B2 (en) 2022-04-08 2024-08-13 Deere & Company Predictive nutrient map and control
US12069978B2 (en) 2018-10-26 2024-08-27 Deere & Company Predictive environmental characteristic map generation and control system
US12069986B2 (en) 2020-10-09 2024-08-27 Deere & Company Map generation and control system
US12082531B2 (en) 2022-01-26 2024-09-10 Deere & Company Systems and methods for predicting material dynamics
US12127500B2 (en) 2021-01-27 2024-10-29 Deere & Company Machine control using a map with regime zones
EP4256923A4 (en) * 2020-12-02 2024-11-06 Yanmar Holdings Co Ltd Combine and self-driving method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6908510B2 (en) * 2017-12-07 2021-07-28 ヤンマーパワーテクノロジー株式会社 Travel route setting device
CN111998852B (en) * 2020-07-17 2021-03-16 无锡卡尔曼导航技术有限公司 Method for automatically adjusting cross-over of agricultural machinery
CN112975983B (en) * 2021-03-16 2022-04-01 上海三一重机股份有限公司 Method and device for correcting boom of working machine

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6143716B2 (en) * 1978-04-14 1986-09-29 Suwa Seikosha Kk
JPH09154316A (en) * 1995-12-12 1997-06-17 Kubota Corp Apparatus for controlling working state of working vehicle
JP2001344017A (en) * 2001-03-28 2001-12-14 Hitachi Ltd Automatic traveling machine
JP2012120481A (en) * 2010-12-08 2012-06-28 Iseki & Co Ltd Control work machine
WO2015119266A1 (en) * 2014-02-06 2015-08-13 ヤンマー株式会社 Parallel travel work system
JP2017041280A (en) * 2016-11-16 2017-02-23 株式会社クボタ Work vehicle cooperation system
JP2017055673A (en) * 2015-09-14 2017-03-23 株式会社クボタ Work vehicle supporting system
JP2017127291A (en) * 2016-01-22 2017-07-27 ヤンマー株式会社 Agricultural working vehicle
WO2017154772A1 (en) * 2016-03-07 2017-09-14 ヤンマー株式会社 Route generating device
JP2017167838A (en) * 2016-03-16 2017-09-21 ヤンマー株式会社 Path generation device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2706676B2 (en) 1988-10-15 1998-01-28 株式会社フジクラ Tilt monitoring system
JP3572318B2 (en) * 1996-08-26 2004-09-29 独立行政法人農業・生物系特定産業技術研究機構 Operation support device for field work vehicles
JP2000014208A (en) * 1998-07-03 2000-01-18 Bio Oriented Technol Res Advancement Inst Operation support device of field work vehicle
US10126754B2 (en) * 2014-02-06 2018-11-13 Yanmar Co., Ltd. Method for setting travel path of work vehicle
JP6143716B2 (en) * 2014-06-26 2017-06-07 株式会社クボタ Work vehicle
JP6571017B2 (en) 2016-01-26 2019-09-04 ヤンマー株式会社 Agricultural work vehicle

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6143716B2 (en) * 1978-04-14 1986-09-29 Suwa Seikosha Kk
JPH09154316A (en) * 1995-12-12 1997-06-17 Kubota Corp Apparatus for controlling working state of working vehicle
JP2001344017A (en) * 2001-03-28 2001-12-14 Hitachi Ltd Automatic traveling machine
JP2012120481A (en) * 2010-12-08 2012-06-28 Iseki & Co Ltd Control work machine
WO2015119266A1 (en) * 2014-02-06 2015-08-13 ヤンマー株式会社 Parallel travel work system
JP2017055673A (en) * 2015-09-14 2017-03-23 株式会社クボタ Work vehicle supporting system
JP2017127291A (en) * 2016-01-22 2017-07-27 ヤンマー株式会社 Agricultural working vehicle
WO2017154772A1 (en) * 2016-03-07 2017-09-14 ヤンマー株式会社 Route generating device
JP2017167838A (en) * 2016-03-16 2017-09-21 ヤンマー株式会社 Path generation device
JP2017041280A (en) * 2016-11-16 2017-02-23 株式会社クボタ Work vehicle cooperation system

Cited By (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11589509B2 (en) 2018-10-26 2023-02-28 Deere & Company Predictive machine characteristic map generation and control system
US12069978B2 (en) 2018-10-26 2024-08-27 Deere & Company Predictive environmental characteristic map generation and control system
US12010947B2 (en) 2018-10-26 2024-06-18 Deere & Company Predictive machine characteristic map generation and control system
US11672203B2 (en) 2018-10-26 2023-06-13 Deere & Company Predictive map generation and control
US11653588B2 (en) 2018-10-26 2023-05-23 Deere & Company Yield map generation and control system
US11650553B2 (en) 2019-04-10 2023-05-16 Deere & Company Machine control using real-time model
US11467605B2 (en) 2019-04-10 2022-10-11 Deere & Company Zonal machine control
US11829112B2 (en) 2019-04-10 2023-11-28 Deere & Company Machine control using real-time model
US11778945B2 (en) 2019-04-10 2023-10-10 Deere & Company Machine control using real-time model
US12035648B2 (en) 2020-02-06 2024-07-16 Deere & Company Predictive weed map generation and control system
US11957072B2 (en) 2020-02-06 2024-04-16 Deere & Company Pre-emergence weed detection and mitigation system
US11641800B2 (en) 2020-02-06 2023-05-09 Deere & Company Agricultural harvesting machine with pre-emergence weed detection and mitigation system
US11477940B2 (en) 2020-03-26 2022-10-25 Deere & Company Mobile work machine control based on zone parameter modification
US11844311B2 (en) 2020-10-09 2023-12-19 Deere & Company Machine control using a predictive map
US12080062B2 (en) 2020-10-09 2024-09-03 Deere & Company Predictive map generation based on seeding characteristics and control
US11675354B2 (en) 2020-10-09 2023-06-13 Deere & Company Machine control using a predictive map
US11711995B2 (en) 2020-10-09 2023-08-01 Deere & Company Machine control using a predictive map
US11727680B2 (en) 2020-10-09 2023-08-15 Deere & Company Predictive map generation based on seeding characteristics and control
US12048271B2 (en) 2020-10-09 2024-07-30 Deere &Company Crop moisture map generation and control system
US11650587B2 (en) 2020-10-09 2023-05-16 Deere & Company Predictive power map generation and control system
US11871697B2 (en) 2020-10-09 2024-01-16 Deere & Company Crop moisture map generation and control system
US11845449B2 (en) 2020-10-09 2023-12-19 Deere & Company Map generation and control system
US20220110251A1 (en) 2020-10-09 2022-04-14 Deere & Company Crop moisture map generation and control system
US11849671B2 (en) 2020-10-09 2023-12-26 Deere & Company Crop state map generation and control system
US11849672B2 (en) 2020-10-09 2023-12-26 Deere & Company Machine control using a predictive map
US11864483B2 (en) 2020-10-09 2024-01-09 Deere & Company Predictive map generation and control system
US11474523B2 (en) 2020-10-09 2022-10-18 Deere & Company Machine control using a predictive speed map
US11825768B2 (en) 2020-10-09 2023-11-28 Deere & Company Machine control using a predictive map
US11889787B2 (en) 2020-10-09 2024-02-06 Deere & Company Predictive speed map generation and control system
US11889788B2 (en) 2020-10-09 2024-02-06 Deere & Company Predictive biomass map generation and control
US11895948B2 (en) 2020-10-09 2024-02-13 Deere & Company Predictive map generation and control based on soil properties
US11927459B2 (en) 2020-10-09 2024-03-12 Deere & Company Machine control using a predictive map
US11946747B2 (en) 2020-10-09 2024-04-02 Deere & Company Crop constituent map generation and control system
US12069986B2 (en) 2020-10-09 2024-08-27 Deere & Company Map generation and control system
US11635765B2 (en) 2020-10-09 2023-04-25 Deere & Company Crop state map generation and control system
US11983009B2 (en) 2020-10-09 2024-05-14 Deere & Company Map generation and control system
US11874669B2 (en) 2020-10-09 2024-01-16 Deere & Company Map generation and control system
US12013698B2 (en) 2020-10-09 2024-06-18 Deere & Company Machine control using a predictive map
US12013245B2 (en) 2020-10-09 2024-06-18 Deere & Company Predictive map generation and control system
US11592822B2 (en) 2020-10-09 2023-02-28 Deere & Company Machine control using a predictive map
EP4256923A4 (en) * 2020-12-02 2024-11-06 Yanmar Holdings Co Ltd Combine and self-driving method
CN112665506B (en) * 2020-12-31 2022-09-13 广州极飞科技股份有限公司 Method, device, equipment and storage medium for detecting installation deviation of positioning device
CN112665506A (en) * 2020-12-31 2021-04-16 广州极飞科技有限公司 Method, device, equipment and storage medium for detecting installation deviation of positioning device
US12127500B2 (en) 2021-01-27 2024-10-29 Deere & Company Machine control using a map with regime zones
JP2022160538A (en) * 2021-09-02 2022-10-19 ベイジン バイドゥ ネットコム サイエンス テクノロジー カンパニー リミテッド Collision detection method, device, electronic apparatus, storage medium, automatic driving vehicle, and computer program
US12082531B2 (en) 2022-01-26 2024-09-10 Deere & Company Systems and methods for predicting material dynamics
US12058951B2 (en) 2022-04-08 2024-08-13 Deere & Company Predictive nutrient map and control
EP4345563A1 (en) * 2022-09-29 2024-04-03 Yanmar Holdings Co., Ltd. Automatic traveling method, automatic traveling system, and automatic traveling program

Also Published As

Publication number Publication date
KR20200096489A (en) 2020-08-12
CN111343854B (en) 2022-08-12
CN111343854A (en) 2020-06-26

Similar Documents

Publication Publication Date Title
WO2019124217A1 (en) Work vehicle, travel path selection system for work vehicle, and travel path calculation system
WO2020031473A1 (en) External shape calculation system, external shape calculation method, external shape calculation program, storage medium having external shape calculation program stored therein, farm field map generation system, farm field map generation program, storage medium having farm field map generation program stored therein, and farm field map generation method
WO2020100810A1 (en) Harvester and route setting system
EP3351075B1 (en) Work vehicle support system
WO2020026578A1 (en) Travel route generation system, travel route generation method, travel route generation program, storage medium storing travel route generation program, operation management system, operation management method, operation management program, storage medium storing operation management program, harvester, travel pattern generation system, travel pattern generation program, storage medium storing travel pattern generation program, and travel pattern generation method
WO2020044726A1 (en) Automated steering system, harvesting machine, automated steering method, automated steering program, and recording medium
JP6745784B2 (en) Work vehicle
CN109964189B (en) Travel route management system
CN109936975B (en) Travel route management system and travel route determination device
JP7174484B2 (en) agricultural vehicle
JP6749448B2 (en) Work vehicle support system
JP6884092B2 (en) Travel route selection system for work vehicles and work vehicles
CN109964190B (en) Automatic traveling system of working vehicle
JP7345534B2 (en) automatic driving system
JP6842907B2 (en) Work vehicle automatic driving system
JP6891097B2 (en) Travel route determination device
WO2020111102A1 (en) Automatic travel control system, automatic travel control program, recording medium having automatic travel control program recorded thereon, automatic travel control method, control device, control program, recording medium having control program recorded thereon, and control method
JP7068961B2 (en) External shape calculation system and external shape calculation method
JP2022016479A5 (en)
KR20190096955A (en) Driving route determining device
JP2018099112A5 (en)
JP2020031568A (en) Harvesting machine
JP7039444B2 (en) Harvester
JP2019110782A (en) Travel route calculation system
JP2020028224A (en) Field map creation system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18890132

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18890132

Country of ref document: EP

Kind code of ref document: A1