WO2019119934A1 - 一种连续制备2-甲基烯丙醇的方法 - Google Patents

一种连续制备2-甲基烯丙醇的方法 Download PDF

Info

Publication number
WO2019119934A1
WO2019119934A1 PCT/CN2018/109595 CN2018109595W WO2019119934A1 WO 2019119934 A1 WO2019119934 A1 WO 2019119934A1 CN 2018109595 W CN2018109595 W CN 2018109595W WO 2019119934 A1 WO2019119934 A1 WO 2019119934A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction
sodium acetate
reactor
sodium
water
Prior art date
Application number
PCT/CN2018/109595
Other languages
English (en)
French (fr)
Inventor
尹红
陈志荣
王伟松
王新荣
王胜利
金一丰
董楠
高洪军
马定连
Original Assignee
浙江大学
浙江皇马科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江大学, 浙江皇马科技股份有限公司 filed Critical 浙江大学
Priority to JP2020554344A priority Critical patent/JP7029740B2/ja
Priority to RU2020112924A priority patent/RU2734548C1/ru
Priority to KR1020207010732A priority patent/KR102364274B1/ko
Publication of WO2019119934A1 publication Critical patent/WO2019119934A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/09Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by hydrolysis
    • C07C29/12Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by hydrolysis of esters of mineral acids
    • C07C29/124Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by hydrolysis of esters of mineral acids of halides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/74Separation; Purification; Use of additives, e.g. for stabilisation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/74Separation; Purification; Use of additives, e.g. for stabilisation
    • C07C29/76Separation; Purification; Use of additives, e.g. for stabilisation by physical treatment
    • C07C29/80Separation; Purification; Use of additives, e.g. for stabilisation by physical treatment by distillation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C33/00Unsaturated compounds having hydroxy or O-metal groups bound to acyclic carbon atoms
    • C07C33/02Acyclic alcohols with carbon-to-carbon double bonds
    • C07C33/025Acyclic alcohols with carbon-to-carbon double bonds with only one double bond
    • C07C33/03Acyclic alcohols with carbon-to-carbon double bonds with only one double bond in beta-position, e.g. allyl alcohol, methallyl alcohol

Definitions

  • the invention relates to a continuous preparation method of 2-methylallyl alcohol, belonging to the technical field of organic chemicals.
  • Methylallyl alcohol is an important organic intermediate that can be used as a polymer monomer, resin and perfume. Its most important use is the synthesis of methallyl polyoxyethylene ether. Methylallyl polyoxyethylene ether is an important monomer for the synthesis of the fourth generation polycarboxylate concrete water reducer. It has high performance for low content, high water reduction and low slump of polycarboxylate water reducer. Decide on the role. The use of methallyl polyoxyethylene ether can improve the fluidity and flow retention of the concrete mixture, reduce the slump and shrinkage, and make the polycarboxylate superplasticizer more widely used and more adaptable. Strong, can be applied to important areas such as water conservancy and nuclear power engineering.
  • CN107032952 uses 2-Methylacrolein and an ⁇ -H-free aldehyde to cross-Cannizzaro reaction to form an ester, and then alkali saponification to obtain 2-methylallyl alcohol and a carboxylate.
  • CN106984356 reacts 2-methylacrolein with ethanol using a supported tin compound as a catalyst to obtain 2-methylallyl alcohol and acetal.
  • the above method for synthesizing 2-methylallyl alcohol requires first obtaining a poorly stable raw material 2-methylacrolein, and the yield of 2-methylacrolein by catalytic oxidation of isobutylene is not high, and therefore, it is produced separately by the method.
  • 2-Methylacrolein has no advantage.
  • US2072015 proposes to carry out hydrolysis reaction under the condition of 100-150 ° C, alkali metal sodium hydroxide or sodium carbonate, alkaline earth metal hydroxide or carbonate under strong stirring to obtain 2-methylallyl alcohol, the yield is 94-96. %.
  • US2313767 proposes to add an alkali solution in a vertical reactor in the presence of a surfactant pull-off powder, and 2-methylallyl chloride is introduced into the bottom of the reactor in the form of steam, and is condensed by the top to carry out cyclic hydrolysis to obtain 2- Methyl allyl alcohol.
  • 2-methylallyl chloride is introduced into the bottom of the reactor in the form of steam, and is condensed by the top to carry out cyclic hydrolysis to obtain 2- Methyl allyl alcohol.
  • US2323781 uses electrolytic copper to catalyze the reaction of 2-methylallyl chloride with potassium hydroxide or potassium carbonate to prepare 2-methylallyl alcohol.
  • the yield was 88%; when potassium carbonate was reacted with 2-methylallyl chloride, the yield was close to the theoretical value.
  • the reaction process produces copper-containing wastewater that is difficult to handle.
  • CN101759528 uses water, solid base, 2-methylallyl chloride and polyethylene glycol to be sequentially added to a reaction vessel, and then intermittently hydrolyzed by adding 1-50% alkali solution under reflux conditions, and the reaction is statically set.
  • the layer, the oil layer is dehydrated and decolorized to obtain 2-methylallyl alcohol, the content is less than 98.5%, and the content of the by-product 2-methylallyl alcohol ether is 1.3 to 1.6%; the aqueous layer is filtered to remove the salt and applied.
  • CN104447206 uses a low concentration sodium hydroxide solution (3 to 8%) to react at 80 to 120 ° C for 0.3 to 5 hours, and separates the oil layer.
  • the water layer is distilled by azeotropic distillation to separate 2-methylallyl alcohol from water.
  • the boilate was extracted by cyclohexane and distilled to remove the solvent to obtain a high content of 2-methylallyl alcohol in a yield of 97.2 to 98.5%. Due to the low concentration of alkali, the amount of salty wastewater is large.
  • CN104341255 uses a non-polar solvent as a diluent, puts the halogenated olefin, catalyst and water into the reaction kettle, and drops the alkali solution at 20-150 ° C to control the pH value of 5-7, the yield is 92%, 2- The methyl allyl alcohol content was 97.2%.
  • CN103588622 Synthesis of 2-methylallyl alcohol by continuous hydrolysis. The process is to prepare a catalyst and a base into an aqueous solution, and then continuously pass into the bottom of the column reactor, while introducing 2-methylallyl chloride into the bottom of the column, vaporized 2-methylallyl chloride and recycled alkali. The liquid is reacted on the filler at a reaction temperature of 90 to 100 ° C, a residence time of about 18 hours, a 2-methyl allyl alcohol conversion of 88.0 to 97.6%, and a selectivity of 92.1 to 97.5%.
  • the main disadvantage of the above one-step direct hydrolysis method is that the etherification side reaction is easy to occur, so the yield is not high, and the separation and purification of the crude product is difficult.
  • JP2009107949 proposes to use DMF as solvent, 2-methylallyl chloride to react with sodium acetate to form 2-methylallyl alcohol acetate, remove sodium chloride by filtration, add alkali to saponification reaction, and remove sodium acetate by filtration. Rectification gives 2-methylallyl alcohol with a yield of up to 97.5% and a content of 99%.
  • the reaction process requires DMF as a solvent, and the boiling point of 2-methylallyl alcohol is close to that of DMF, and the separation is difficult; in addition, the sodium chloride obtained by filtration needs to be removed from the solvent process, and the process is complicated.
  • CN103242139A discloses a process for esterification and hydrolysis in a two-step process in which 2-methylallyl alcohol carboxylate is first synthesized, followed by hydrolysis by adding a low concentration of a strong base to obtain 2-methylallyl alcohol.
  • the reaction yield of the method can reach above 98%, and the content can reach 99%.
  • the method requires a phase transfer catalyst, which leads to difficulty in stratification of the reaction system, and the reaction produces a large amount of waste salt and waste water containing sodium acetate.
  • the present invention proposes a method for continuously preparing 2-methylallyl alcohol, which adopts a two-step method in which no waste liquid is discharged during continuous production.
  • the invention has the advantages of high yield and good product quality, but the process is relatively complicated, the operation cost is high, and the equipment investment cost is high.
  • a method for continuously preparing 2-methylallyl alcohol comprising the following steps:
  • the sodium acetate solution and 2-methylallyl chloride are introduced into the first stage of a multi-stage series continuous stirred reactor, and the sodium hydroxide complex solution is introduced into each agitating stage.
  • Each of the agitation stages is equipped with an in-line pH meter to control the amount of sodium hydroxide solution added.
  • the residence time of the continuous reaction is from 1 to 4 hours.
  • the recovered water in the step (3) is used to prepare the sodium hydroxide solution for reuse to the step (1), and the sodium acetate solution can be directly reused to the step (1) or used to prepare the sodium hydroxide solution and reused. Go to step (1).
  • the separation in the step (2) comprises the steps of: (A) the reaction mixture entering the stratifier, the upper oil layer of the delaminator entering the continuous rectification column, the lower layer of the stratifier entering the flasher; (B) the condensation at the top of the rectification column
  • the liquid is separated into the lower water layer by the water separator, and the upper layer is refluxed to the top of the distillation column, and the product is produced by the vapor phase discharge method to extract the product 2-methylallyl alcohol, and the water layer separated by the water separator is recovered.
  • Water, the distillation column is a sodium acetate solution;
  • the upper part of the flasher is condensed to obtain a mixture of 2-methylallyl alcohol and water to recover water; the lower brine phase is separated by filtration and washed with water to obtain sodium chloride. Crystallization and mother liquor, the mother liquor is sodium acetate solution.
  • the inventors of the present invention have found through extensive research that by dispersing the raw material 2-methylallyl chloride (MAC) in a high molar ratio sodium acetate aqueous solution by multistage stirring, the MAC and sodium hydroxide can be greatly improved.
  • the reaction rate can be carried out at a satisfactory rate without adding a phase transfer catalyst, and the by-product sodium chloride formed by the reaction has a small solubility in a high concentration of sodium acetate, which is only 7 to 8%, so that only the sodium acetate solution is circulated.
  • the by-product sodium chloride is precipitated in the form of crystals, which can be separated by filtration; and the product 2-methylallyl alcohol has a low solubility in a high concentration sodium acetate solution of only 1-2%.
  • the esterification reaction and the saponification reaction occur simultaneously. Due to the different boiling points, the upper part of the reactor is a mixture of 2-methylallyl alcohol and water, and the bottom is the reaction raw material 2-methylallyl. Chlorine and sodium acetate.
  • the product will be in the form of an oil layer, and the crude product of 2-methylallyl alcohol can be obtained by layering, and the crude product is removed by azeotropic distillation to remove the water content and remove a small amount of dissolved sodium acetate.
  • the product 2-methylallyl alcohol is available.
  • Sodium acetate participates in the esterification reaction, and after the saponification reaction occurs, sodium acetate, a by-product, is obtained. Therefore, during the continuous reaction, the amount of sodium acetate to be recycled does not change much, and only sodium hydroxide (solution) needs to be continuously replenished. ) to maintain the pH required for the reaction.
  • the inventors of the present invention found by reaction heat measurement that the reaction of 2-methylallyl chloride with sodium hydroxide is a strongly exothermic reaction, and the reaction heat reaches 370 Kcal based on 1 kg of 2-methylallyl alcohol.
  • the heat of the reaction can be used to gradually increase the temperature of the material, and the step of gradually increasing the temperature is very advantageous for increasing the selectivity of the reaction.
  • the material leaving the reactor is separated into an aqueous layer and an oil layer by an automatic layering device, and the oil layer is rectified to obtain 2-methylallyl alcohol; the aqueous layer is flashed under reduced pressure to obtain a cooled brine layer, and the brine layer is filtered to obtain sodium chloride crystals.
  • sodium acetate solution sodium acetate solution can be directly recycled to the reaction process; the steam obtained by flashing can be used to prepare sodium hydroxide solution after condensation.
  • the invention uses MAC and sodium hydroxide as raw materials, and after continuous reaction and separation in a high molar ratio sodium acetate solution, there are only two products: 2-methylallyl alcohol and sodium chloride crystal, and the reaction heat is used for the stepwise material.
  • the heating process does not require additional energy. Therefore, the energy consumption of the process is low, and the water in the reaction process can be used to recycle the sodium hydroxide solution to be added to the reaction.
  • reaction process can be carried out continuously, with low energy consumption and high yield.
  • reaction process does not require a phase transfer catalyst, the reaction liquid is easy to be layered, the by-product sodium chloride content is high, and the organic residue is small.
  • Figure 1 is a process flow diagram of the present invention.
  • a sodium acetate solution (including sodium acetate 36.0%, sodium chloride 7.5%, and temperature of about 75 ° C) was continuously fed at 136 Kg / hour. ), simultaneously enter the MAC at 9.05Kg / hour; in a total of 6 stirring sections, a total of 9.8Kg / hour of sodium hydroxide solution (containing 41% sodium hydroxide), the amount of each step into the pH
  • the control was carried out (pH control at 11), at which time the residence time was approximately 4 hours.
  • the temperature of the reaction product is about 100 ° C, stratified by the continuous stratifier 2, and the oil layer enters the middle of the continuous azeotropic rectification column 7, and the water layer enters the flasher 3.
  • the azeotrope is condensed by the condenser 8 and then enters the water separator 9.
  • the upper oil layer of the water separator 9 serves as the top reflux of the rectification column 7 and the lower portion.
  • the aqueous layer is supplied with alkali kettle 5 at about 0.4 Kg/hr; 2-methyl allyl alcohol vapor is taken from the lower side of the column of the rectification column 7 and condensed by the condenser 10 at about 7.2 kg/hr (GC detection content is 99.76%) A 2-methylallyl alcohol product was obtained; in the rectification column 7, a kettle liquid containing a small amount of sodium acetate was also supplied to the alkali kettle at about 0.2 kg/hr.
  • the steam distilled from the flash layer 3 in the water layer of the stratifier 2 is condensed by the condenser 6 and then sent to the alkali kettle 5 at a flow rate of about 5.1 Kg/hour; the temperature of the flashed water layer is lowered to about 77 ° C, and the filter is passed through the filter. 4 Continuous centrifugal filtration, the filter cake is washed with 0.3Kg / hr of water to obtain about 6.1Kg / hr of sodium chloride crystal (about 5% water); the filtrate and washing solution is sodium acetate solution, containing a small amount of sodium chloride, combined directly after application To the reaction process.
  • a sodium acetate solution (including sodium acetate 38.5%, sodium chloride 7.3%, and temperature of about 89 ° C) was continuously fed at 315 Kg / hour.
  • the MAC was introduced at 18.1 Kg/hr; in a total of 10 stirring sections, a total of 20.0 kg/hr of sodium hydroxide solution (40% sodium hydroxide) was introduced, and the amount of each step was pH. Control was carried out (pH control at 10), at which time the residence time was approximately 2 hours.
  • the temperature of the reaction product is about 110 ° C, stratified by the continuous stratifier 2, and the oil layer enters the middle of the continuous azeotropic rectification column 7, and the water layer enters the flasher 3.
  • the azeotrope is condensed by the condenser 8 and then enters the water separator 9.
  • the upper oil layer of the water separator 9 serves as the top reflux of the rectification column 7 and the lower portion.
  • the aqueous layer is supplied with alkali kettle 5 at about 0.8 Kg/hr; 2-methylallyl alcohol vapor is taken from the lower side of the column of the rectification column 7 and condensed by the condenser 10 at about 14.4 kg/hr (GC detection content is 99.83%)
  • the 2-methyl allyl alcohol product was obtained; in the rectification column 7, the kettle liquid containing a small amount of sodium acetate was also used to dispose the alkali kettle at about 0.4 Kg/hr.
  • the steam distilled from the flash layer 3 in the water layer of the layerer 2 is condensed by the condenser 6 and then sent to the alkali kettle 5 at a flow rate of about 10.6 Kg/hour; the temperature of the flashed water layer is lowered to about 91 ° C, and the filter is passed through the filter. 4 Continuous centrifugal filtration, the filter cake is washed with 0.6Kg / hr of water to obtain about 12.2Kg / hr of sodium chloride crystal (about 5% water); the filtrate and washing solution is sodium acetate solution, containing a small amount of sodium chloride, combined directly after application To the reaction process.
  • a sodium acetate solution (including sodium acetate 41.2%, sodium chloride 7.0%, and temperature of about 101 ° C) was continuously fed at 597 Kg / hour. ), simultaneously enter the MAC at 27.15Kg / hour; in a total of 15 stirring sections, a total of 30.9Kg / hour of sodium hydroxide solution (containing 39% sodium hydroxide), the amount of each step into the pH
  • the meter was controlled (pH control at 9), at which time the residence time was approximately 1 hour.
  • the temperature of the reaction product is about 120 ° C, and the layers are separated by a continuous layerer 2, and the oil layer enters the middle of the continuous azeotropic distillation column 7, and the water layer enters the flasher 3.
  • the azeotrope is condensed by the condenser 8 and then enters the water separator 9.
  • the upper oil layer of the water separator 9 serves as the top reflux of the rectification column 7 and the lower portion.
  • the aqueous layer is supplied with alkali kettle 5 at about 1.2 Kg/hr; 2-methyl allyl alcohol vapor is produced at the lower side of the column of the rectification column 7 and is condensed by the condenser 10 at about 21.6 Kg/hr (GC detection content is 99.91%) A 2-methylallyl alcohol product was obtained; in the rectification column 7, a kettle liquid containing a small amount of sodium acetate was also supplied to the alkali kettle at about 0.6 Kg/hr.
  • the steam distilled from the flash layer 3 in the water layer of the layerer 2 is condensed by the condenser 6 and then sent to the alkali kettle 5 at a flow rate of about 17.1 kg/hour; the temperature of the flashed water layer is lowered to about 101 ° C.
  • the filter 4 is continuously centrifugally filtered, and the filter cake is washed with 0.9 Kg/hr of hot water to obtain about 18.3 Kg/hr of sodium chloride crystal (about 5% water); the filtrate and the washing liquid are sodium acetate solution, and a small amount of sodium chloride is combined. Apply directly to the reaction process.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明涉及一种连续制备2-甲基烯丙醇的方法,采用多级串联连续搅拌反应器,使醋酸钠溶液、2-甲基烯丙基氯与氢氧化钠发生反应,直接得到2-甲基烯丙醇,产物从反应器上部采出后分离。反应器上部采出物中除产物外,其余水分和醋酸钠溶液可以回用到反应器中;同时本发明通过控制高含量的醋酸钠以及反应的pH值,使得反应过程中产生的氯化钠能自动析出,醋酸钠母液可回用到反应器中。本发明以MAC和氢氧化钠为原料,在高摩尔比醋酸钠溶液中经过连续反应、分离后,只有二种产物:2-甲基烯丙醇和氯化钠结晶,反应热用于物料的逐步升温过程,无需外加能源,因此,过程的能耗低,反应过程中的水可用于循环配制氢氧化钠溶液加入到反应中。

Description

一种连续制备2-甲基烯丙醇的方法 技术领域
本发明涉及一种2-甲基烯丙醇的连续制备方法,属于有机化工技术领域。
背景技术
2-甲基烯丙醇(简称MAOH)是一种重要的有机中间体,可用作聚合物单体、树脂和香料,其最重要的用途是合成甲基烯丙基聚氧乙烯醚。甲基烯丙基聚氧乙烯醚是合成第四代聚羧酸系混凝土减水剂的重要单体,它对聚羧酸减水剂低掺量、高减水、低塌落等高效性能具有决定作用。甲基烯丙基聚氧乙烯醚的应用能够提高混凝土拌合物的流动性和流动保持性,降低塌落度和收缩率,从而使聚羧酸减水剂的用途更为广泛、适应性更强,可应用于水利、核电工程等重要领域。
合成2-甲基烯丙醇主要有二条工艺路线:其一是2-甲基丙烯醛还原路线,其二是2-甲基烯丙基氯碱性水解路线。下面分别予以介绍。
以2-甲基烯丙醛为起始原料,采用还原反应合成2-甲基烯丙醇的方法有以下二类。
US2779801、US4731488、CN107365245、CN105061139、CN106278814公开了在醇铝等催化剂存在下,通过二级醇选择性还原醛基来制备相应的不饱和醇的方法,该方法会副产等摩尔其它羰基化合物。
CN107032952采用2-甲基丙烯醛与无α-H的醛进行交叉Cannizzaro反应生成酯,再经过加碱皂化反应得到2-甲基烯丙醇和羧酸盐。
CN106984356以载体锡化合物为催化剂,将2-甲基丙烯醛与乙醇反应得到2-甲基烯丙醇和乙缩醛。
US2767221、CN102167657、CN103755523、CN106824221等选用不同催化剂来选择性加氢还原不饱和醛制备不饱和醇。该法需在C=O上选择性加氢而不破坏C=C键较难,加氢过程往往会生成饱和醛或饱和醇,对不饱和醇的选择性一般都比较差。
上述合成2-甲基烯丙醇的方法需要先得到稳定性差的原料2-甲基丙烯醛,而由异丁烯催化氧化制备2-甲基丙烯醛的收率不高,因此,用该法单独生产2-甲基丙烯醛并没有优势。
以2-甲基烯丙基氯为起始原料,采用碱性水解法合成2-甲基烯丙醇是最早开发的工业化方法。
US2072015提出在强力搅拌下,于100~150℃,碱金属氢氧化钠或碳酸钠、碱土金属氢氧化物或碳酸盐存在下进行水解反应得到2-甲基烯丙醇,收率94~96%。
US2313767提出在表面活性剂拉开粉存在下,以立式反应器中加入碱溶液,2-甲基烯丙基氯以蒸汽形式通入反应器底部,并通过顶部冷凝后进行循环水解得到2-甲基烯丙醇。当以氢氧化钠溶液反应3小时,转化率为84%;如果以碳酸钠溶液反应5.5小时,转化率为83%,醚含量为0.2%。
US2323781采用电解铜催化2-甲基烯丙基氯与氢氧化钾或碳酸钾反应制备2-甲基烯丙醇。当以氢氧化钾溶液与2-甲基烯丙基氯反应时,收率为88%;当以碳酸钾与2-甲基烯丙基氯反应时,收率接近理论值。但反应过程会产生难以处理的含铜废水。
Schale等(ChemischeBerichte.,Vol.70(1937);p.116,121)提出用氢氧化钾与2-甲基烯丙基氯反应合成2-甲基烯丙醇,该方法醚化副反应严重,导致目标产物收率较低、产物分离难度变大。
CN101759528采用将水、固体碱、2-甲基烯丙基氯和聚乙二醇依次加入反应容器中,然后在回流条件下,滴加1~50%碱液进行间歇水解,反应毕静置分层,油层脱水、脱色得到2-甲基烯丙醇,含量低于98.5%,副产物2-甲基烯丙醇醚的含量为1.3~1.6%;水层过滤除去盐后套用。
CN104447206采用低浓度氢氧化钠溶液(3~8%)在80~120℃条件下反应0.3~5小时,分出油层,水层通过共沸蒸馏蒸出2-甲基烯丙醇与水的共沸物,再经环己烷萃取、蒸馏脱除溶剂,得到高含量的2-甲基烯丙醇,收率为97.2~98.5%。由于采用低浓度的碱,因此含盐废水量大。
CN104341255采用非极性溶剂为稀释剂,将卤代烯烃、催化剂、水投入反应釜,在20~150℃条件下滴加碱溶液,控制pH值在5~7,收率为92%,2-甲基烯丙醇含量为97.2%。
CN103588622采用连续水解法合成2-甲基烯丙醇。其过程是将催化剂、碱配成水溶液,然后连续通入塔式反应器底部,同时将2-甲基烯丙基氯通入塔底,汽化的2-甲基烯丙基氯与循环的碱液在填料上进行反应,反应温度为90~100℃,停留时间约18小时,2-甲基烯丙醇转化率为88.0~97.6%,选择性为92.1~97.5%。
上述一步直接水解法的主要缺点是容易发生醚化副反应,因而收率不高,粗产品分离纯化难度大。
为解决一步法易发生醚化副反应的问题,有文献提出了以2-甲基烯丙基氯为起始原料,采用酯化水解两步法生产2-甲基烯丙醇的工艺。
JP2009107949提出了以DMF为溶剂,2-甲基烯丙基氯先与醋酸钠反应形成2-甲基烯丙醇乙酸酯,过滤除去氯化钠,再加入碱进行皂化反应,过滤除去醋酸钠,精馏得到2-甲基烯 丙醇,收率最高为97.5%,含量为99%。该反应过程需要DMF做溶剂,2-甲基烯丙醇沸点与DMF比较接近,分离难度较大;此外,过滤得到的氯化钠需要脱除溶剂过程,工艺比较复杂。
CN103242139A公开了酯化、水解两步法的工艺,即先合成2-甲基烯丙醇羧酸酯,然后再加入低浓度的强碱进行水解得到2-甲基烯丙醇。该方法反应收率可达到98%以上,含量可达到99%,但是该方法需要相转移催化剂,导致反应体系分层困难,反应产生大量含醋酸钠的废盐、废水。
CN105037097A中提出在过量相转移催化剂和2-甲基烯丙基氯存在下,通过固体醋酸钠与2-甲基烯丙基氯反应,使醋酸钠充分反应,反应物简单蒸馏得到2-甲基烯丙醇乙酸酯与未反应原料的混合物,混合物精馏得到未反应原料和2-甲基烯丙醇乙酸酯,未反应原料套用,2-甲基烯丙醇乙酸酯经碱液皂化反应得到2-甲基烯丙醇,水相脱除水分得到醋酸钠,可直接套用于反应。但该工艺的酯化反应中涉及到相转移催化剂,而且酯化反应为间歇式的,其产物的经处理后再进行皂化反应,两步反应完全分离,操作上比较麻烦。
发明内容
针对已有技术所存在的问题,本发明提出了一种连续制备2-甲基烯丙醇的方法,采用二步法方式,在连续生产的过程中无废液排放。本发明的优点是收率高,产品质量好,但工艺比较复杂,操作成本高,设备投资费用高。
一种连续制备2-甲基烯丙醇的方法,包括如下步骤:
(1)在多级串联连续搅拌反应器中加入醋酸钠溶液、2-甲基烯丙基氯与氢氧化钠发生反应,直接得到2-甲基烯丙醇,所述所述多级串联搅拌反应器的级数是6~15级,所述醋酸钠的量以1mol2-甲基烯丙基氯为基准是6~10mol,所述氢氧化钠的通入量为使反应液pH值为9~11,多级串联连续搅拌反应器中反应温度优选为100~120℃;
(2)连续反应一段时间后,反应器上部出口流出的反应混合物分离得到产物2-甲基烯丙醇、氯化钠结晶、回收水分和醋酸钠溶液;
(3)所述回收水分与醋酸钠溶液回用。
所述醋酸钠溶液和2-甲基烯丙基氯通入多级串联连续搅拌反应器的第一级中,氢氧化钠配成溶液分别通入到各搅拌级中。
所述各搅拌级安装有在线pH计以控制氢氧化钠溶液的加入量。
所述连续反应的停留时间为1~4小时。
所述步骤(3)中的回收水分用于配制氢氧化钠溶液回用到步骤(1),醋酸钠溶液可以直接回用到步骤(1)或用于配制氢氧化钠溶液再回用到步骤(1)。
所述步骤(2)中的分离包括如下步骤:(A)反应混合物进入分层器,分层器上部油层进入连续精馏塔,分层器下层进入闪蒸器;(B)精馏塔顶部冷凝液通过分水器分出下层水层,上层回流到精馏塔塔顶,精馏塔下部通过气相出料方式采出产物2-甲基烯丙醇,分水器分出的水层为回收水分,精馏塔釜液为醋酸钠溶液;(C)闪蒸器上部气相经过冷凝得到2-甲基烯丙醇与水的混合液为回收水分;下部盐水相经过滤分离、水洗得到氯化钠结晶和母液,母液为醋酸钠溶液。
本发明的发明人经过大量的研究发现,通过多级搅拌将原料2-甲基烯丙基氯(简称MAC)分散在高摩尔比的醋酸钠水溶液中,可以大幅度提高MAC与氢氧化钠的反应速度,无需添加相转移催化剂即可以令人满意的速度进行反应,反应形成的副产物氯化钠在高浓度醋酸钠中溶解度小,仅为7~8%,因此,只要将醋酸钠溶液循环套用2次以上就会以结晶的形式析出副产物氯化钠,通过过滤就可分离;而产物2-甲基烯丙醇在高浓度醋酸钠溶液中溶解度较低,仅为1~2%。在多级搅拌反应器中,同时发生着酯化反应和皂化反应,由于沸点不同,反应器的上部为2-甲基烯丙醇与水的混合物,底部为反应原料2-甲基烯丙基氯和醋酸钠。因此,大部分产物将会以油层的形式存在,通过分层即可得到2-甲基烯丙醇粗产物,粗产物通过共沸精馏除去所含水分并脱除溶解的少量醋酸钠后即可得到产品2-甲基烯丙醇。醋酸钠参与酯化反应,而在皂化反应发生后又得到副产物醋酸钠,因此在连续反应过程中,投入的醋酸钠量循环使用不会发生太大变化,只需要不断补充氢氧化钠(溶液)以维持反应所需pH值。
此外,本发明的发明人通过反应热测量发现,2-甲基烯丙基氯与氢氧化钠的反应为强放热反应,以1Kg 2-甲基烯丙醇计,反应热达到370Kcal,如果采用多釜串联反应器进行连续反应,则可利用反应热将物料逐步升温,而逐步升温的反应过程对该反应提高选择性非常有利。离开反应器的物料经过自动分层装置分出水层和油层,油层精馏得到2-甲基烯丙醇;水层经减压闪蒸得到降温后的盐水层,盐水层过滤得到氯化钠结晶和醋酸钠溶液,醋酸钠溶液可直接循环套用到反应过程;闪蒸得到的蒸汽冷凝后可用于配制氢氧化钠溶液。
本发明以MAC和氢氧化钠为原料,在高摩尔比醋酸钠溶液中经过连续反应、分离后,只有二种产物:2-甲基烯丙醇和氯化钠结晶,反应热用于物料的逐步升温过程,无需外加能源,因此,过程的能耗低,反应过程中的水可用于循环配制氢氧化钠溶液加入到反应中。
本发明的优点是:
1)反应过程可连续进行,能耗低,收率高。
2)多级搅拌反应器内自然形成的逐步升温过程符合反应动力学要求,反应选择性高,副产物少。
3)过程只得到2-甲基烯丙醇产品和氯化钠结晶副产品,无其它三废排放。
4)反应过程无需相转移催化剂,反应液易分层,副产物氯化钠含量高,有机物残留少。
附图说明
图1本发明的工艺流程图。
其中:
具体实施方式
以下结合实施例对本发明予以详细说明,但本发明不限于这些实施例。
实施例1
在图1所示总容积为500L的6级搅拌串联反应器1底部以136Kg/小时通入经连续套用达到平衡的醋酸钠溶液(含醋酸钠36.0%、氯化钠7.5%,温度约75℃),同时以9.05Kg/小时通入MAC;在6个搅拌段内分别通入总量为9.8Kg/小时的氢氧化钠溶液(含氢氧化钠41%),每段的通入量以pH计进行控制(pH值控制在11),此时,停留时间约为4小时。在反应器1上部出口,反应产物的温度约为100℃,通过连续分层器2分层,油层进入连续共沸精馏塔7的中部,水层进入闪蒸器3。
在再沸器11提供热源的条件下,在精馏塔7塔顶,共沸物经冷凝器8冷凝后进入分水器9,分水器9上部油层作为精馏塔7塔顶回流,下部水层以约0.4Kg/小时去配碱釜5;在精馏塔7塔下部侧线采出2-甲基烯丙醇蒸汽,经冷凝器10冷凝后以约7.2Kg/小时(GC检测含量为99.76%)得到2-甲基烯丙醇产品;在精馏塔7为含有少量醋酸钠的釜液以约0.2Kg/小时也去配碱釜。
分层器2的水层经闪蒸器3蒸馏出来的蒸汽经冷凝器6冷凝后以约5.1Kg/小时的流量去配碱釜5;闪蒸后的水层温度降到77℃左右,经过滤器4连续离心过滤,滤饼以0.3Kg/小时水洗,得到约6.1Kg/小时氯化钠结晶(含水约5%);滤液及洗液为醋酸钠溶液,含有少量氯化钠,合并后直接套用到反应过程。
实施例2
在图1所示总容积为500L的10级搅拌串联反应器1底部以315Kg/小时通入经连续套用达到平衡的醋酸钠溶液(含醋酸钠38.5%、氯化钠7.3%,温度约89℃),同时以18.1Kg/小时通入MAC;在10个搅拌段在分别通入总量为20.0Kg/小时的氢氧化钠溶液(含氢氧化钠40%),每段的通入量以pH计进行控制(pH值控制在10),此时,停留时间约为2小时。在反应器1出口,反应产物的温度约为110℃,通过连续分层器2分层,油层进入连续共沸精馏塔7的中部,水层进入闪蒸器3。
在再沸器11提供热源的条件下,在精馏塔7塔顶,共沸物经冷凝器8冷凝后进入分水器9,分水器9上部油层作为精馏塔7塔顶回流,下部水层以约0.8Kg/小时去配碱釜5;在精馏塔7塔下部侧线采出2-甲基烯丙醇蒸汽,经冷凝器10冷凝后以约14.4Kg/小时(GC检测含量为99.83%)得到2-甲基烯丙醇产品;在精馏塔7为含有少量醋酸钠的釜液,以约0.4Kg/小时也去配碱釜。
分层器2水层经闪蒸器3蒸馏出来的蒸汽,经冷凝器6冷凝后以约10.6Kg/小时的流量去配碱釜5;闪蒸后的水层温度降到91℃左右,经过滤器4连续离心过滤,滤饼以0.6Kg/小时水洗,得到约12.2Kg/小时氯化钠结晶(含水约5%);滤液及洗液为醋酸钠溶液,含有少量氯化钠,合并后直接套用到反应过程。
实施例3
在图1所示总容积为500L的15级搅拌串联反应器1底部以597Kg/小时通入经连续套用达到平衡的醋酸钠溶液(含醋酸钠41.2%、氯化钠7.0%,温度约101℃),同时以27.15Kg/小时通入MAC;在15个搅拌段在分别通入总量为30.9Kg/小时的氢氧化钠溶液(含氢氧化钠39%),每段的通入量以pH计进行控制(pH值控制在9),此时,停留时间约为1小时。在反应器出口,反应产物的温度约为120℃,通过连续分层器2分层,油层进入连续共沸精馏塔7的中部,水层进入闪蒸器3。
在再沸器11提供热源的条件下,在精馏塔7塔顶,共沸物经冷凝器8冷凝后进入分水器9,分水器9上部油层作为精馏塔7塔顶回流,下部水层以约1.2Kg/小时去配碱釜5;在精馏塔7塔下部侧线采出2-甲基烯丙醇蒸汽,经冷凝器10冷凝后以约21.6Kg/小时(GC检测含量为99.91%)得到2-甲基烯丙醇产品;在精馏塔7为含有少量醋酸钠的釜液以约0.6Kg/小时也去配碱釜。
分层器2的水层经闪蒸器3蒸馏出来的蒸汽,经冷凝器6冷凝后以约17.1Kg/小时的流量去配碱釜5;闪蒸后的水层温度降到101℃左右,经过滤器4连续离心过滤,滤饼以0.9Kg/小时热水洗,得到约18.3Kg/小时氯化钠结晶(含水约5%);滤液及洗液为醋酸钠溶液,含有少量氯化钠,合并后直接套用到反应过程。

Claims (7)

  1. 一种连续制备2-甲基烯丙醇的方法,包括如下步骤:
    (1)在多级串联连续搅拌反应器中加入醋酸钠溶液、2-甲基烯丙基氯与氢氧化钠发生反应,直接得到2-甲基烯丙醇,所述所述多级串联搅拌反应器的级数是6~15级,所述醋酸钠的量以1mol 2-甲基烯丙基氯为基准是6~10mol,所述氢氧化钠的通入量为使反应液pH值为9~11,多级串联连续搅拌反应器中反应温度优选为100~120℃;
    (2)连续反应一段时间后,反应器上部出口流出的反应混合物分离得到产物2-甲基烯丙醇、氯化钠结晶、回收水分和醋酸钠溶液;
    (3)所述回收水分与醋酸钠溶液回用。
  2. 根据权利要求1所述的方法,所述醋酸钠溶液和2-甲基烯丙基氯通入多级串联连续搅拌反应器的第一级连续搅拌反应器中,氢氧化钠配成溶液分别通入到各级搅拌反应器中。
  3. 根据权利要求2所述的方法,所述各级搅拌反应器安装有在线pH计以控制氢氧化钠溶液的加入量。
  4. 根据权利要求1所述的方法,所述连续反应的停留时间为1~4小时。
  5. 根据权利要求1所述的方法,所述步骤(3)中的回收水分用于配制氢氧化钠溶液回用到步骤(1),醋酸钠溶液可以直接回用到步骤(1)或用于配制氢氧化钠溶液再回用到步骤(1)。
  6. 根据权利要求1所述的方法,所述步骤(2)中的分离包括如下步骤:(A)反应混合物进入分层器,分层器上部油层进入连续精馏塔,分层器下层进入闪蒸器;(B)精馏塔顶部冷凝液通过分水器分出下层水层,上层回流到精馏塔塔顶,精馏塔下部通过气相出料方式采出产物2-甲基烯丙醇,分水器分出的水层为回收水分,精馏塔釜液为醋酸钠溶液;(C)闪蒸器上部气相经过冷凝得到2-甲基烯丙醇与水的混合液为回收水分;下部盐水相经过滤分离、水洗得到氯化钠结晶和母液,母液为醋酸钠溶液。
  7. 根据权利要求1所述的方法,所述步骤(2)还包括反应器下部反应液的处理,所述反应液冷却过滤,析出氯化钠结晶和醋酸钠溶液,所述醋酸钠溶液回用步骤(1)中。
PCT/CN2018/109595 2017-12-22 2018-10-10 一种连续制备2-甲基烯丙醇的方法 WO2019119934A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020554344A JP7029740B2 (ja) 2017-12-22 2018-10-10 2-メチルアリルアルコールを連続的に製造する方法
RU2020112924A RU2734548C1 (ru) 2017-12-22 2018-10-10 Способ непрерывного получения 2-метилаллилового спирта
KR1020207010732A KR102364274B1 (ko) 2017-12-22 2018-10-10 2-메틸알릴 알코올의 연속 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711400139.5 2017-12-22
CN201711400139.5A CN108191604B (zh) 2017-12-22 2017-12-22 一种连续制备2-甲基烯丙醇的方法

Publications (1)

Publication Number Publication Date
WO2019119934A1 true WO2019119934A1 (zh) 2019-06-27

Family

ID=62583439

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/109595 WO2019119934A1 (zh) 2017-12-22 2018-10-10 一种连续制备2-甲基烯丙醇的方法

Country Status (5)

Country Link
JP (1) JP7029740B2 (zh)
KR (1) KR102364274B1 (zh)
CN (1) CN108191604B (zh)
RU (1) RU2734548C1 (zh)
WO (1) WO2019119934A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111099990A (zh) * 2019-12-31 2020-05-05 淄博广通化工有限责任公司 长碳链二元羧酸精制结晶母液的回收利用方法
CN111499515A (zh) * 2020-04-28 2020-08-07 南京简迪环境工程有限公司 硝基氯苯连续水解合成硝基酚钠工艺
CN112546658A (zh) * 2020-11-13 2021-03-26 南通百川新材料有限公司 一种新型的2-甲氧基-1-丙醇乙酸酯脱酯精馏提纯方法
CN114015034A (zh) * 2021-12-08 2022-02-08 江苏奥克化学有限公司 用于合成减水剂聚醚的醇钠催化剂的制备方法与应用

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108191604B (zh) * 2017-12-22 2020-03-27 浙江大学 一种连续制备2-甲基烯丙醇的方法
CN111170828B (zh) * 2020-01-17 2023-01-03 浙江大学宁波理工学院 利用原位生成Cu(I)催化剂制备甲基烯丙醇的方法
CN114560752A (zh) * 2022-02-24 2022-05-31 浙江皇马科技股份有限公司 一种2-甲基烯丙醇的合成方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009107949A (ja) * 2007-10-29 2009-05-21 Nippon Shokubai Co Ltd アリルアルコール化合物の製造方法
CN103242139A (zh) * 2013-05-22 2013-08-14 南京工业大学 酯化水解两步法制备2-甲基烯丙基醇的方法
CN105037097A (zh) * 2015-06-23 2015-11-11 浙江绿科安化学有限公司 一种2-甲基烯丙醇的合成方法
CN108191604A (zh) * 2017-12-22 2018-06-22 浙江大学 一种连续制备2-甲基烯丙醇的方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4810765B1 (zh) * 1969-08-14 1973-04-07
JPS5210296A (en) * 1975-07-15 1977-01-26 Kohjin Co Ltd A process for preparing 6,2'-cyclo-5- substituted isocytidines
KR100676304B1 (ko) * 2004-12-24 2007-01-30 주식회사 엘지화학 네오펜틸글리콜의 제조방법
CN104341255B (zh) * 2014-09-19 2016-08-24 江苏苏博特新材料股份有限公司 一种不饱和醇的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009107949A (ja) * 2007-10-29 2009-05-21 Nippon Shokubai Co Ltd アリルアルコール化合物の製造方法
CN103242139A (zh) * 2013-05-22 2013-08-14 南京工业大学 酯化水解两步法制备2-甲基烯丙基醇的方法
CN105037097A (zh) * 2015-06-23 2015-11-11 浙江绿科安化学有限公司 一种2-甲基烯丙醇的合成方法
CN108191604A (zh) * 2017-12-22 2018-06-22 浙江大学 一种连续制备2-甲基烯丙醇的方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111099990A (zh) * 2019-12-31 2020-05-05 淄博广通化工有限责任公司 长碳链二元羧酸精制结晶母液的回收利用方法
CN111099990B (zh) * 2019-12-31 2023-12-26 山东广通新材料有限公司 长碳链二元羧酸精制结晶母液的回收利用方法
CN111499515A (zh) * 2020-04-28 2020-08-07 南京简迪环境工程有限公司 硝基氯苯连续水解合成硝基酚钠工艺
CN112546658A (zh) * 2020-11-13 2021-03-26 南通百川新材料有限公司 一种新型的2-甲氧基-1-丙醇乙酸酯脱酯精馏提纯方法
CN114015034A (zh) * 2021-12-08 2022-02-08 江苏奥克化学有限公司 用于合成减水剂聚醚的醇钠催化剂的制备方法与应用

Also Published As

Publication number Publication date
CN108191604B (zh) 2020-03-27
KR102364274B1 (ko) 2022-02-17
JP2021506981A (ja) 2021-02-22
KR20200047716A (ko) 2020-05-07
RU2734548C1 (ru) 2020-10-20
JP7029740B2 (ja) 2022-03-04
CN108191604A (zh) 2018-06-22

Similar Documents

Publication Publication Date Title
WO2019119934A1 (zh) 一种连续制备2-甲基烯丙醇的方法
CN107848999A (zh) 用于制备纯化的酸组合物的方法
CN102417498A (zh) 3-(α-甲氧基)甲烯基苯并呋喃-2(3H)-酮的合成方法
CN110467519B (zh) 一种乙炔化方法
US4824997A (en) Method for preparation of alkyl glycolates
CN115894229B (zh) 一种己二酸单乙酯选择性合成工艺
CN107032956B (zh) 一种丙炔醇的合成方法
CN108623497B (zh) 一种2-氰基-4’-甲基联苯的制备方法
CN103664923B (zh) 硝呋太尔的制备方法
JPH0239496B2 (zh)
CN101508678B (zh) 2-甲基-4-氨基-5-乙酰氨甲基嘧啶的制备工艺方法
US2385546A (en) Continuous process for the preparation of acetylenic alcohols
CN115557928A (zh) 一种2-氯噻吩-5-甲酸的合成方法
CN107032952B (zh) 一种2-甲基烯丙醇的制备工艺
CA2548262A1 (en) Method for the production of tetrahydrogeranylacetone
CN108203385B (zh) 一种制备3-(4-氟-2-硝基苯基)丙酮的方法
CN115536546B (zh) 一种二苯甲酮腙的合成方法
CN111056997A (zh) 一种苯甲酰胺化合物的合成方法
CN108191705A (zh) 一种制备乙酰肼的方法
JP4561939B2 (ja) 多価アルコールの製造法
CN108250100A (zh) 一种乙酰肼的合成方法
CN117510327A (zh) 一种制备己二酸单乙酯的方法
JP3175334B2 (ja) N−(α−アルコキシエチル)−カルボン酸アミドの製造法
CN111423319B (zh) 一种洛索洛芬的制备方法
JPH0273033A (ja) 4,4―ジメチル―1―(p―クロロフエニル)ペンタン―3―オンの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18891127

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20207010732

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020554344

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18891127

Country of ref document: EP

Kind code of ref document: A1