WO2019114486A1 - 一种玻璃用组合物、铝硅酸盐玻璃及其制备方法和应用 - Google Patents

一种玻璃用组合物、铝硅酸盐玻璃及其制备方法和应用 Download PDF

Info

Publication number
WO2019114486A1
WO2019114486A1 PCT/CN2018/115460 CN2018115460W WO2019114486A1 WO 2019114486 A1 WO2019114486 A1 WO 2019114486A1 CN 2018115460 W CN2018115460 W CN 2018115460W WO 2019114486 A1 WO2019114486 A1 WO 2019114486A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
content
mol
mole percent
composition
Prior art date
Application number
PCT/CN2018/115460
Other languages
English (en)
French (fr)
Inventor
李青
张广涛
王俊峰
王肖义
闫冬成
王丽红
郑权
Original Assignee
东旭科技集团有限公司
东旭集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东旭科技集团有限公司, 东旭集团有限公司 filed Critical 东旭科技集团有限公司
Priority to JP2020552082A priority Critical patent/JP7087102B2/ja
Priority to KR1020207019357A priority patent/KR102578590B1/ko
Priority to US16/772,671 priority patent/US11795100B2/en
Publication of WO2019114486A1 publication Critical patent/WO2019114486A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/097Glass compositions containing silica with 40% to 90% silica, by weight containing phosphorus, niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • C03C3/093Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium containing zinc or zirconium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/095Glass compositions containing silica with 40% to 90% silica, by weight containing rare earths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03926Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate comprising a flexible substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133305Flexible substrates, e.g. plastics, organic film
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/311Flexible OLED
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • H10K77/10Substrates, e.g. flexible substrates
    • H10K77/111Flexible substrates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present disclosure relates to the field of glass manufacturing, and in particular to a glass composition, an aluminosilicate glass, and a method and application thereof.
  • the display panel is developing in the direction of light and thin, ultra-high-definition display, and the panel process technology is developing to higher processing temperature; at the same time, the single-piece glass is processed by the process, and the thickness reaches 0.25mm, 0.2mm, 0.1. Mm is even thinner.
  • the thickness of the glass substrate is greatly reduced, the mechanical strength of the display panel after the box is greatly reduced, and the drop impact resistance is seriously challenged, and the Bending test failure problem occurs in the panel process. Therefore, improving the fracture toughness of the substrate glass material and reducing the brittleness of the glass material is one of the important topics in the research process of the material.
  • the substrate substrate material of the flexible display device can be made of materials such as glass, organic polymer, metal, etc., and the properties of the existing materials are superior and inferior, and materials having high strength and high toughness have not yet been obtained.
  • the organic polymer flexible substrate has the advantages of low cost and easy manufacture, but has large disadvantages in heat resistance.
  • the optimized polyimide Polyimide, PI for short
  • LTPS low temperature polysilicon
  • ultra-thin glass with a thickness of ⁇ 0.1mm is a highly optimized glass material that has excellent resistance to moisture and oxygen, excellent chemical resistance and mechanical properties.
  • AMLCDs active matrix liquid crystal displays
  • AMOLEDs active matrix organic light emitting diode panels
  • TFTs thin film transistors
  • the related technologies, equipment and industrial chains are very mature and the compatibility is very satisfactory.
  • the production cost will be greatly reduced.
  • the flexible glass substrate may not be folded, not all application scenarios require folding devices. Non-folding flexible optoelectronic devices still have a large number of application requirements.
  • ultra-thin glass is a brittle material. Reducing its brittleness and expanding its advantages are still the problems that need to be broken at the material level.
  • providing flexible glass substrates with high heat resistance is beneficial to technologies such as LTPS.
  • Smooth implementation for example, strain points over 600 ° C, 640 ° C, or even 680 ° C.
  • the low-brittle ultra-thin flexible alkali-free glass cover is far superior to the polymer material in terms of strength and air tightness, but there is also a brittle problem that cannot be avoided by the glass material, so the brittleness is reduced at the material level. Improving flexibility is one of the important issues that need to be addressed.
  • a first aspect of the present disclosure provides a composition for glass, in terms of mole percent, of SiO 2 , B 2 O 3 , P 2 O 5 , GeO 2 and TeO 2 in the composition.
  • the total content is 60-85 mol%; the total content of Al 2 O 3 and Ga 2 O 3 is 3-20 mol%; the total content of ZnO and Y 2 O 3 is 0.1-5 mol%; the total content of alkaline earth metal oxide is 4 -30 mol%.
  • the alkaline earth metal oxide is selected from any one or more of MgO, CaO, SrO, and BaO.
  • the sum of the contents of B 2 O 3 and P 2 O 5 is greater than 0, and the sum of the contents of B 2 O 3 and P 2 O 5 is compared with B 2 O 3 , P 2 O 5 ,
  • the ratio of the sum of the contents of GeO 2 and TeO 2 is 0.6-1;
  • the ratio of the sum of the contents of MgO and BaO to the sum of the contents of MgO, CaO, SrO and BaO is more than 0.5 in terms of molar content.
  • the ratio of the sum of the contents of B 2 O 3 and P 2 O 5 to the sum of the contents of B 2 O 3 , P 2 O 5 , GeO 2 and TeO 2 in terms of the molar content is 0.68 to 0.92.
  • the content of SiO 2 is above 40 mol% in mole percent
  • the content of B 2 O 3 is 0-20 mol% in mole percent
  • the content of P 2 O 5 is 0-17 mol% in mole percent
  • the content of GeO 2 is 0-4 mol% in mole percent
  • the content of TeO 2 is from 0 to 5 mol% in terms of mole percent
  • the content of Al 2 O 3 is 3-18 mol% in mole percent
  • the content of Ga 2 O 3 is 0-4 mol% in terms of mole percentage
  • the content of ZnO is 0-2.5 mol% in mole percent
  • the content of Y 2 O 3 is from 0 to 3 mol%, based on the mole percent.
  • the total content of Al 2 O 3 and Ga 2 O 3 is 5-17 mol% in terms of mole percent.
  • the brittleness factor D obtained according to the formula (I) is from -5 to 40, in terms of mole percent,
  • P 1 has a value of -2 to 0
  • P 2 has a value of -5 to -2
  • P 3 has a value of -2 to -1
  • P 4 has a value of 0 to 1.5
  • P 5 has a value of 1.5 to 3
  • P 6 has a value of 0 to 0.5.
  • SiO 2 , B 2 O 3 , P 2 O 5 , GeO 2 , Te 2 O 3 , Al 2 O 3 , Ga 2 O 3 , ZnO, Y 2 O 3 , MgO, CaO, SrO, BaO all represent a combination The mole percentage of the component;
  • D has a value of -2.1 to 32; further preferably, D has a value of 2 to 19.
  • a second aspect of the present disclosure provides a method of producing an aluminosilicate glass, wherein the method comprises sequentially subjecting the glass composition of the first aspect of the present disclosure to melting, forming, annealing, and mechanical processing.
  • the method further comprises subjecting the product obtained by the mechanical processing to a secondary fusion thinning treatment, and the condition of the secondary fusion thinning treatment is such that the thickness of the prepared glass is less than 0.1 mm, preferably, at 900-1200 ° C.
  • the viscosity of the lower stretch forming zone is 10 5.5 - 10 7 poise.
  • a third aspect of the present disclosure provides an aluminosilicate glass prepared by the above method.
  • the aluminosilicate glass has a coefficient of thermal expansion of less than 40 ⁇ 10 -7 /° C. in the range of 50-350° C., a strain point temperature of higher than 700° C., and a corresponding melting temperature T m when the viscosity is 200 poise.
  • the temperature difference between the molding temperature T 4 and the liquidus temperature T l is greater than 90 ° C at 1550 ° C, and the Young's modulus is less than 80 GPa;
  • the aluminosilicate glass has a fracture toughness K IC greater than 1.0 MPa ⁇ m 1/2 ; further preferably, the K IC is greater than 2.8 MPa ⁇ m 1/2 .
  • the aluminosilicate glass has a thickness of 0.05 mm and a radius of curvature of less than 3.5 cm.
  • a fourth aspect of the present disclosure provides the use of the glass composition of the present disclosure or the aluminosilicate glass of the present disclosure in the preparation of a display device and/or a solar cell,
  • a substrate glass substrate material for preparing a flat panel display product and/or a glass film layer material for screen surface protection a substrate glass substrate material for a flexible display product, and/or a surface mount glass material and/or a glass film for screen surface protection.
  • the glass composition of the present disclosure is a glass frit having good fracture toughness and belongs to the aluminosilicate glass system, and is suitable for various conventional glass manufacturing methods such as a float method, an overflow method, a calendering method, and a down-draw method.
  • a float method for the production of flat glass with a thickness of >0.1mm or flexible glass with a thickness of ⁇ 0.1mm (ie a flexible glass with a thickness of ⁇ 0.1mm by one-shot method) or a method for secondary melting and thinning for the production of thickness ⁇ 0.1mm Flexible glass.
  • the glass prepared by the present disclosure has a high strain point, a low melting temperature, a high coefficient of thermal expansion, and at the same time has good toughness, and is suitable for large-scale industrial production.
  • the content of SiO 2 is 40 mol% or more in terms of a mole percentage
  • the glass composition contains a specific content of SiO 2 , B 2 O 3 , P 2 . O 5 , GeO 2 , TeO 2 , Al 2 O 3 , Ga 2 O 3 , ZnO, Y 2 O 3 and alkaline earth metal oxide
  • the glass prepared by using the glass composition has a fracture toughness K IC of more than 1.0 MPa ⁇ m 1/2
  • thermal expansion coefficient in the range of 50-350 ° C is lower than 40 ⁇ 10 -7 / ° C
  • strain point temperature is higher than 700 ° C
  • viscosity is 200 poise
  • the corresponding melting temperature T m is lower than 1550 ° C
  • molding temperature The difference between T 4 and the liquidus temperature T l is greater than 90 ° C
  • the Young's modulus is less than 80 GPa.
  • the product is low in brittleness and flexible.
  • the finished product may be
  • the glass composition or aluminosilicate glass of the present disclosure can be used for preparing display devices and/or solar cells, especially for preparing substrate glass substrate materials for flat panel display products and/or glass film layer materials for screen surface protection, flexibility Display substrate glass substrate material and/or surface mount glass material and/or screen surface protection glass film layer material, substrate glass substrate material of flexible solar cell, and other applications requiring low fragility and high flexibility glass material field.
  • a first aspect of the present disclosure provides a composition for glass in which the total content of SiO 2 , B 2 O 3 , P 2 O 5 , GeO 2 and TeO 2 is 60-% by weight. 85 mol%; total content of Al 2 O 3 and Ga 2 O 3 is 3 to 20 mol%; total content of ZnO and Y 2 O 3 is 0.1 to 5 mol%; and total content of alkaline earth metal oxide is 4 to 30 mol%.
  • SiO 2 is used as a matrix constituting a network structure, and its addition improves the heat resistance and chemical durability of the glass, and makes the glass less susceptible to devitrification, contributing to the vitrification process.
  • excessive SiO 2 causes the melting temperature to rise and the brittleness to increase, thereby placing excessive demands on the production process.
  • B 2 O 3 , P 2 O 5 , GeO 2 , and TeO 2 are used as a matrix constituting the aluminosilicate glass, and glass can be separately formed, which can reduce the brittleness of the glass while B 2 O 3 , P 2 O 5 , GeO 2 , TeO 2 are also good co-solvents, which can greatly reduce the melting temperature of the glass and contribute to the vitrification process.
  • B 2 O 3 , P 2 O 5 , GeO 2 , TeO 2 are also good co-solvents, which can greatly reduce the melting temperature of the glass and contribute to the vitrification process.
  • too much GeO 2 , TeO 2 will lower the viscosity of the glass at a low temperature, so, preferably, the sum of the contents of B 2 O 3 and P 2 O 5 is >0, and B 2 O 3 and P 2 are in terms of molar content.
  • the inventors of the present disclosure further found in the study that when the content of SiO 2 is 40 mol% or more in terms of mole percent, the mechanical properties and chemical corrosion resistance of the prepared glass can be further improved. Therefore, in order to further improve the overall performance of the prepared glass and to reduce the brittleness, it is preferable that the content of SiO 2 is 40 mol% or more, SiO 2 , B 2 O 3 , P 2 O 5 , GeO 2 and The total content of TeO 2 is from 65 to 80 mol%. Particularly preferably, the content of SiO 2 is 44 mol% or more and less than 72 mol%.
  • the addition of Al 2 O 3 can accelerate the progress and depth of ion exchange, but its ability to compete for free oxygen is strong, and the introduction of a large amount of Al 2 O 3 reduces the openness of the glass structure and makes the glass It tends to be rigid, increasing the brittleness of the glass, and at the same time causing the glass to be devitrified, the coefficient of thermal expansion is reduced, it is difficult to match with the surrounding materials, the high-temperature surface tension and the high-temperature viscosity are too large, and the difficulty of the glass production process is increased.
  • Ga 2 O 3 is similar to Al 2 O 3 in that it can greatly increase the ion exchange rate during chemical strengthening, can effectively increase the glass strain point and increase the melting temperature slowly, and can effectively improve the glass impact strength and toughness.
  • the addition content and addition ratio of Al 2 O 3 and Ga 2 O 3 are specifically limited.
  • the total content of Al 2 O 3 and Ga 2 O 3 is in the range of 3 to 20 mol%, preferably 5 to 17 mol%, more preferably, in mole percent, of Al 2 O 3 .
  • the ratio of the sum of the contents of Al 2 O 3 and Ga 2 O 3 is 0.7-1.
  • MgO, CaO, SrO, and BaO are all alkaline earth metal oxides, and their addition can effectively lower the high temperature viscosity of the glass, thereby improving the meltability and formability of the glass, and improving the strain point of the glass.
  • MgO and BaO have the characteristics of reducing the brittleness of the glass. If the content is too large, the density will increase, and the incidence of cracking, devitrification, and phase separation will increase. Therefore, it is considered that, based on the total number of moles of each component, 4 to 30 mol% of an alkaline earth metal oxide is selected, wherein the alkali metal oxide is selected from any one or more of MgO, CaO, SrO and BaO.
  • the ratio of the sum of the contents of MgO and BaO to the sum of the contents of MgO, CaO, SrO and BaO is more than 0.5 in terms of the molar content.
  • the rare earth oxide Y 2 O 3 has its unique ability to improve certain properties of the glass, for example, the flexural strength and strain point of the glass are greatly increased with the addition of the rare earth oxide.
  • the glass fragility is reduced, the fracture toughness is greatly increased, and the high temperature viscosity is lowered, which brings great convenience to large-scale industrial manufacturing of glass.
  • ZnO can effectively reduce the upper limit temperature of the crystallization of the glass; below the softening point, it has the functions of increasing the strength, hardness, increasing the chemical resistance of the glass, lowering the brittleness value, and lowering the coefficient of thermal expansion of the glass.
  • the sum of the contents of ZnO and Y 2 O 3 is in the range of 0.1 to 5 mol% based on the molar content of the composition.
  • the composition may further contain, as a clarifying agent when the glass is melted, depending on the glass preparation process, and the clarifying agent is preferably at least at least one of a sulfate, a nitrate, a tin oxide, and a stannous oxide.
  • the content of the clarifying agent is not more than 1 mol% based on the total moles of each component.
  • the specific choice of the clarifying agent is not particularly limited and may be variously selected in the art, for example, the sulfate may be barium sulfate, and the nitrate may be barium nitrate.
  • the content of barium sulfate and/or barium nitrate and/or barium nitrate is based on the content of barium oxide and the barium nitrate content is calculated based on barium oxide.
  • the content of the RO further includes cerium sulfate, cerium nitrate and cerium nitrate in terms of cerium oxide content and/or cerium oxide content in the clarifying agent.
  • the content of B 2 O 3 is 0-20 mol% in mole percent
  • the content of P 2 O 5 is 0-17 mol% in mole percent
  • the content of GeO 2 is 0-4 mol% in mole percent
  • the content of TeO 2 is from 0 to 5 mol% in terms of mole percent
  • the content of Al 2 O 3 is 3-18 mol% in mole percent
  • the content of Ga 2 O 3 is 0-4 mol% in terms of mole percentage
  • the content of ZnO is 0-2.5 mol% in mole percent
  • the content of Y 2 O 3 is from 0 to 3 mol%, based on the mole percent.
  • the content of B 2 O 3 is 2-20 mol% in mole percent
  • the content of P 2 O 5 is 0-14% by mole
  • the content of GeO 2 is 0.1 to 4 mol% in terms of mole percent
  • the content of TeO 2 is 0.1 to 1 mol% in terms of mole percent
  • the content of Al 2 O 3 is 3-14 mol% in mole percent
  • the content of Ga 2 O 3 is 0-3 mol% in terms of mole percentage
  • the content of ZnO is 0.5-1.4 mol% in terms of mole percentage
  • the content of Y 2 O 3 is from 0.4 to 3 mol%, based on the mole percent.
  • the D value obtained by calculation according to formula (I) is from 5 to 40, in terms of mole percent
  • D P1 ⁇ (B 2 O 3 + P 2 O 5 + 0.5 ⁇ GeO 2 + 0.5 ⁇ Te 2 O 3 ) + P2 ⁇ (1.5 ⁇ Y 2 O 3 + ZnO) + P3 ⁇ (MgO +BaO)+P4 ⁇ (1.5 ⁇ CaO+SrO)+P5 ⁇ (Al 2 O 3 +Ga 2 O 3 )+P6 ⁇ SiO 2 ;
  • the value of P1 is -2 to 0, the value of P2 is -5 to -2, the value of P3 is -2 to -1, and the value of P4 is 0 to 1.5. The value is 1.5 to 3, and the value of P6 is 0 to 0.5.
  • SiO 2 , B 2 O 3 , P 2 O 5 , GeO 2 , Te 2 O 3 , Al 2 O 3 , Ga 2 O 3 , ZnO, Y 2 O 3 , MgO, CaO, SrO, BaO all represent a combination The mole percentage of the component;
  • D has a value of -2.1 to 32; further preferably, D has a value of 2 to 19. Still more preferably, P 1 is -0.5, P 2 is -3, P 3 is -1.5, P 4 is 1, P 5 is 2, and P 6 is 0.25.
  • the glass composition of the present invention when the aluminosilicate glass is prepared by using the same, the glass can have the above-mentioned excellent comprehensive properties, mainly due to the mutual cooperation between the components in the composition, especially SiO 2 . , the combination of B 2 O 3 , P 2 O 5 , GeO 2 , TeO 2 , Al 2 O 3 , Ga 2 O 3 , ZnO, Y 2 O 3 , MgO, CaO, SrO, BaO, more especially The interaction between the components of a specific content.
  • a second aspect of the present disclosure provides a method of preparing an aluminosilicate glass, the method comprising sequentially subjecting the glass composition of the present disclosure to melting, forming, annealing, and mechanical processing.
  • the conditions of the melt treatment include a temperature lower than 1550 ° C and a time greater than 1 h.
  • One skilled in the art can determine the specific melting temperature and melting time based on actual conditions.
  • the conditions of the annealing treatment include: the temperature is higher than 750 ° C, and the time is greater than 0.1 h.
  • the conditions of the annealing treatment include: the temperature is higher than 750 ° C, and the time is greater than 0.1 h.
  • the manner of the mechanical processing is not particularly limited, and various mechanical processing methods which are common in the art may be used, for example, the product obtained by annealing treatment may be cut, ground, polished, or the like.
  • flat glass having a thickness of more than 0.1 mm or flexible glass having a thickness of less than 0.1 mm can be produced by various conventional glass manufacturing methods such as a float method, an overflow method, a down-draw method, and the like (that is, a thickness of ⁇ 0.1 mm is obtained by one molding method).
  • Flexible glass it is also possible to produce flexible glass having a thickness of less than 0.1 mm by secondary melting and thinning. Therefore, the method may further comprise subjecting the product obtained by the mechanical processing to a secondary melting and thinning treatment to obtain a flexible glass having a thickness of less than 0.1 mm.
  • the specific method of the secondary fusion thinning treatment is not particularly limited, and various methods commonly used in the art may be used.
  • the method of the secondary fusion thinning treatment may include: glass by a float method, an overflow method, a down-draw method, or the like.
  • the manufacturing method produces flat glass with a thickness of less than 1 mm, and conveys the flat glass to the feeding port of the secondary drawing forming device, and feeds it into the stretching forming furnace at an appropriate rate V 0 mm/min in the controlled stretch forming zone.
  • the rate V 1 is greater than V 0 .
  • a third aspect of the present disclosure provides an aluminosilicate glass prepared by the above method.
  • the aluminosilicate glass of the present invention has a fracture toughness K IC of more than 1.0 MPa ⁇ m 1/2 , a coefficient of thermal expansion of less than 40 ⁇ 10 -7 /° C. in the range of 50-350° C., and a strain point temperature higher than At 700 ° C, the corresponding melting temperature T m is less than 1550 ° C when the viscosity is 200 poise, the difference between the molding temperature T 4 and the liquidus temperature T l is greater than 90 ° C, and the Young's modulus is less than 80 GPa.
  • different processes can produce glass of different thicknesses, and can produce flat glass with a thickness of more than 0.1 mm or flexible glass with a thickness of less than 0.1 mm by various conventional glass manufacturing methods such as a float method, an overflow method, and a down-draw method. It is also possible to further produce a flexible glass having a thickness of less than 0.1 mm by a secondary melt drawing method.
  • the aluminosilicate glass having a thickness of 0.05 mm has a radius of curvature of less than 3.5 cm.
  • a fourth aspect of the present disclosure provides the use of the glass composition or aluminosilicate glass of the present invention in the preparation of a display device and/or a solar cell, preferably in the preparation of a substrate for a flat panel display product Glass substrate material and/or glass surface layer material for screen surface protection, substrate glass substrate material of flexible display product and/or surface-encapsulated glass material and/or glass film layer material for screen surface protection, substrate glass of flexible solar cell Applications in substrate materials and applications in other applications requiring low brittle, high heat resistant glass materials.
  • the coefficient of thermal expansion of the glass at 50-350 ° C was measured using a horizontal dilatometer in accordance with ASTM E-228, in units of 10 -7 /°C.
  • the Young's modulus of the glass was measured in accordance with ASTM C-623 in units of GPa.
  • the glass fracture toughness K IC was measured in accordance with ASTM E-1820 in units of MPa ⁇ m 1/2 .
  • the glass strain point was measured using an annealing point strain point tester in accordance with ASTM C-336 in °C.
  • the glass crystallization upper limit temperature is measured by a ladder furnace method in accordance with ASTM C-829, wherein the liquidus temperature T l is in ° C.
  • the components were weighed according to the amounts shown in Table 1, mixed, and the mixture was poured into a platinum crucible, and then heated in a resistance furnace at 1530 ° C for 4 hours, and stirred with a platinum rod to discharge air bubbles.
  • the molten glass liquid was poured into a stainless steel cast iron grinder, formed into a predetermined block glass product, and then the glass product was annealed in an annealing furnace at 760 ° C for 2 hours, and the power was turned off to cool to 25 ° C with the furnace.
  • the glass product is cut, ground, polished, and then cleaned and dried with deionized water to obtain a finished glass product having a thickness of 0.5 mm.
  • the various properties of each glass finished product were measured, and the results are shown in Table 1-3.
  • the glass product was prepared in the same manner as in Example 1-32 except that the composition of the mixture was as shown in Table 4 and the properties of the obtained product were measured in Table 5.
  • the glass composition or aluminosilicate glass of the invention can be used for preparing display devices and/or solar cells, in particular for preparing substrate glass substrate materials for flat panel display products and/or glass film layer materials for screen surface protection, flexibility
  • the substrate glass substrate material of the product and/or the surface-encapsulated glass material and/or the glass surface layer material for screen surface protection, the substrate glass substrate material of the flexible solar cell, and other fields of application requiring low-brittle glass materials are displayed.
  • the glass is prepared according to the method of the partial embodiment and the comparative example, and then subjected to a secondary melting and thinning treatment, wherein the method of the secondary melting and thinning treatment comprises: cutting, grinding and polishing to obtain a thickness of 0.7 mm and a width of 50 mm.
  • the flat glass is conveyed to the feed port of the secondary drawing forming device, and is fed into the stretch forming furnace at a rate of V 0 mm/min to control the viscosity P of the stretch forming zone, and the rate V 1 through the stretching machine and the drum.
  • Wind-wound winding was performed in mm/min to obtain a flexible glass having a thickness d1 and a width d2.
  • the minimum radius of curvature of each glass finished product was measured using a radius of curvature tester. The conditions of some embodiments and the corresponding minimum radius of curvature are shown in Table 5.
  • the method of the present invention can produce an aluminosilicate glass having a thickness of 0.05 mm and a radius of curvature of less than 3.5 cm.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Ceramic Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Glass Compositions (AREA)
  • Liquid Crystal (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)

Abstract

一种玻璃用组合物、铝硅酸盐玻璃及其制备方法和应用,以摩尔百分比计,该组合物中,SiO 2、B 2O 3、P 2O 5、GeO 2和TeO 2的总含量为60-85mol%;Al 2O 3和Ga 2O 3的总含量为3-20mol%;ZnO和Y 2O 3的总含量为0.1-5mol%;碱土金属氧化物的总含量为4-30mol%。该玻璃具有较高的应变点、较低的熔化温度、较高的热膨胀系数,并同时兼具良好的韧性,适合进行大规模工业生产。

Description

一种玻璃用组合物、铝硅酸盐玻璃及其制备方法和应用 技术领域
本公开涉及玻璃制造领域,具体地,涉及一种玻璃组合物、铝硅酸盐玻璃及其制备方法和应用。
背景技术
随着智能手机与平板电脑的普及,开启了移动智能时代。目前包括智能手机与平板电脑的智能设备的性能已与笔记本接近,让人们凭借无线通信的方便性无时无刻不在执行及享受较高层次的商务及娱乐活动。在这样的趋势下,对显示器性能的要求也在不断提高,尤其是对移动智能设备的画面质量、在户外的可视性能要求也正在提升,同时,为了减轻手持式设备的使用负担,使产品的重量变轻、厚度变薄成为大势所趋。在这种发展潮流的引导下,显示面板正在向轻薄化、超高清显示的方向发展,面板制程工艺向更高处理温度发展;同时单片玻璃经过工艺处理,厚度达到0.25mm、0.2mm、0.1mm甚至更薄。但是随着玻璃基板厚度大幅减小,显示面板成盒后的机械强度大幅降低,抗跌落冲击性能受到严重挑战,面板制程中Bending测试失效问题时有发生。因此,提高基板玻璃材料断裂韧性降低玻璃材料脆性是料方研究过程中的重要课题之一。
另一方面,柔性显示器件的基板衬底材料可由玻璃、有机聚合物、金属等材料制得,现有材料的性能各有优劣,目前还没有获得兼具高强度和高韧性的材料。有机聚合物柔性衬底具有成本低易制造等优点,但在耐热性方面存在较大不足,例如优化的聚酰亚胺(Polyimide,简称PI)具有超过 400℃的高温耐受性,但是仍无法满足低温多晶硅(LTPS)工艺中600℃高温制程的要求。与柔性材料如聚合物与金属箔相比,厚度<0.1mm的超薄玻璃是一种配方高度优化的玻璃材料,其阻隔水汽和氧气的性能优异,具有优良的耐化性和机械性能,还具有较低的热膨胀和较高的热稳定性。它最大的优势在于镀膜技术的成熟性和兼容性。目前主流有源矩阵液晶显示器(AMLCD)、有源矩阵有机发光二极体面板(AMOLED)均在玻璃基板上制作薄膜晶体管(TFT),相关技术、设备和产业链已非常成熟,兼容性非常理想,必将大大降低生产成本,虽然柔性玻璃基板存在无法折叠的问题,但并非所有应用场景均需要折叠器件。非折叠柔性光电器件仍有大量应用需求。
值得注意的是,超薄玻璃是一种脆性材料,降低其脆性、扩大其优势仍是在料方层面需要突破的问题;另一方面,提供耐热性高的柔性玻璃基板有利于LTPS等技术顺利实施,例如,应变点超过600℃、640℃,甚至680℃。在柔性封装盖板材料方面,低脆性超薄柔性无碱玻璃盖板在强度、气密性等方面远胜聚合物材料,但是同样存在玻璃材料无法避免的脆性问题,因此在料方层面降低脆性、提高柔韧性是需要解决的重要课题之一。
发明内容
本公开的目的是提供一种用于制备铝硅酸盐玻璃的组合物,一种铝硅酸盐玻璃及其制备方法和应用。
为了实现上述目的,本公开的第一个方面提供了一种玻璃用组合物,以摩尔百分比计,该组合物中,SiO 2、B 2O 3、P 2O 5、GeO 2和TeO 2的总含量为60-85mol%;Al 2O 3和Ga 2O 3的总含量为3-20mol%;ZnO和Y 2O 3的总含量为0.1-5mol%;碱土金属氧化物的总含量为4-30mol%。
可选地,所述碱土金属氧化物选自MgO、CaO、SrO和BaO中的任意 一种或多种。
可选地,以摩尔含量计,B 2O 3和P 2O 5的含量之和大于0,且B 2O 3和P 2O 5的含量之和与B 2O 3、P 2O 5、GeO 2和TeO 2的含量之和的比值为0.6-1;
以摩尔含量计,Al 2O 3的含量与Al 2O 3和Ga 2O 3的含量之和的比值为0.7-1;
以摩尔含量计,MgO和BaO的含量之和与MgO、CaO、SrO和BaO的含量之和的比值大于0.5。
可选地,以摩尔含量计,B 2O 3和P 2O 5的含量之和与B 2O 3、P 2O 5、GeO 2和TeO 2的含量之和的比值为0.68-0.92。
可选地,以摩尔百分比计,SiO 2的含量在40mol%以上;
优选地,以摩尔百分比计,B 2O 3的含量为0-20mol%;
优选地,以摩尔百分比计,P 2O 5的含量为0-17mol%;
优选地,以摩尔百分比计,GeO 2的含量为0-4mol%;
优选地,以摩尔百分比计,TeO 2的含量为0-5mol%;
优选地,以摩尔百分比计,Al 2O 3的含量为3-18mol%;
优选地,以摩尔百分比计,Ga 2O 3的含量为0-4mol%;
优选地,以摩尔百分比计,ZnO的含量为0-2.5mol%;
优选地,以摩尔百分比计,Y 2O 3的含量为0-3mol%。
可选地,以摩尔百分比计,Al 2O 3和Ga 2O 3的总含量为5-17mol%。
可选地,按照摩尔百分比计,根据式(I)计算获得的脆性因子D值为-5至40,
式(I):D=P 1×(B 2O 3+P 2O 5+0.5×GeO 2+0.5×Te 2O 3)+P 2×(1.5×Y 2O 3+ZnO)+P 3×(MgO+BaO)+P 4×(1.5×CaO+SrO)+P 5×(Al 2O 3+Ga 2O 3)+P 6×SiO 2
在式(I)中,P 1的取值为-2至0,P 2的取值为-5至-2,P 3的取值为-2至-1,P 4的取值为0至1.5,P 5的取值为1.5至3,P 6的取值为0至0.5。
其中,SiO 2、B 2O 3、P 2O 5、GeO 2、Te 2O 3、Al 2O 3、Ga 2O 3、ZnO、Y 2O 3、MgO、CaO、SrO、BaO均表示组合物中该组分的摩尔百分比;
优选地,D的取值为-2.1至32;进一步优选地,D的取值为2至19。
本公开的第二个方面提供一种制备铝硅酸盐玻璃的方法,其中,该方法包括将本公开第一个方面所述的玻璃用组合物依次进行熔融、成型、退火和机械加工处理。
可选地,所述方法还包括对机械加工处理得到的产物进行二次熔融拉薄处理,二次熔融拉薄处理的条件使得制备的玻璃的厚度小于0.1mm,优选的,在900-1200℃下拉伸成型区域粘度为10 5.5-10 7泊。
本公开的第三个方面提供一种利用上述方法制备得到的铝硅酸盐玻璃。
可选地,所述铝硅酸盐玻璃在50-350℃范围内的热膨胀系数小于40×10 -7/℃,应变点温度高于700℃,粘度为200泊时对应的熔化温度T m低于1550℃,成型温度T 4与液相线温度T l之间差值大于90℃,杨氏模量小于80GPa;
可选地,所述铝硅酸盐玻璃的断裂韧性K IC大于1.0MPa·m 1/2;进一步优选地,K IC大于2.8MPa·m 1/2
可选地,所述铝硅酸盐玻璃的厚度为0.05mm,曲率半径小于3.5cm。
本公开的第四个方面提供本公开所述的玻璃用组合物或本公开所述的铝硅酸盐玻璃在制备显示器件和/或太阳能电池中的应用,
优选为在制备平板显示产品的衬底玻璃基板材料和/或屏幕表面保护用玻璃膜层材料、柔性显示产品的衬底玻璃基板材料和/或表面封装玻璃材料和/或屏幕表面保护用玻璃膜层材料、柔性太阳能电池的衬底玻璃基板材料中的应用。
本公开的玻璃用组合物,为一种具有良好断裂韧性的玻璃料方,属于 铝硅酸盐玻璃体系,适用于浮法、溢流法、压延法、下拉法等各种常规玻璃制造方法用于生产厚度>0.1mm的平板玻璃或厚度<0.1mm的柔性玻璃(即一次成型法得到厚度<0.1mm的柔性玻璃),或者适用于二次熔融拉薄的方法用于生产厚度<0.1mm的柔性玻璃。本公开制备得到的玻璃,具有较高的应变点、较低的熔化温度、较高的热膨胀系数,并同时兼具良好的韧性,适合进行大规模工业生产。
根据本公开的一种优选的实施方式,玻璃用组合物中,以摩尔百分比计,SiO 2的含量在40mol%以上,玻璃用组合物中含有特定含量的SiO 2、B 2O 3、P 2O 5、GeO 2、TeO 2、Al 2O 3、Ga 2O 3、ZnO、Y 2O 3和碱土金属氧化物,利用此玻璃用组合物制备得到的玻璃,断裂韧性K IC大于1.0MPa·m 1/2,50-350℃范围内的热膨胀系数低于40×10 -7/℃,应变点温度高于700℃,粘度为200泊时对应的熔化温度T m低于1550℃,成型温度T 4与液相线温度T l之间差值大于90℃,杨氏模量小于80GPa。产品的脆性低,柔韧性强。制成的产品可以为厚度0.05mm的柔性玻璃,曲率半径小于3.5cm。
本公开的玻璃用组合物或铝硅酸盐玻璃可用于制备显示器件和/或太阳能电池,尤其用于制备平板显示产品的衬底玻璃基板材料和/或屏幕表面保护用玻璃膜层材料、柔性显示产品的衬底玻璃基板材料和/或表面封装玻璃材料和/或屏幕表面保护用玻璃膜层材料、柔性太阳能电池的衬底玻璃基板材料以及用于其他需要低脆性高柔韧性玻璃材料的应用领域。
本公开的其他特征和优点将在随后的具体实施方式部分予以详细说明。
具体实施方式
以下对本公开的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本公开,并不用于限制本公开。
本公开的第一个方面提供了一种玻璃用组合物,以摩尔百分比计,该组合物中,SiO 2、B 2O 3、P 2O 5、GeO 2和TeO 2的总含量为60-85mol%;Al 2O 3和Ga 2O 3的总含量为3-20mol%;ZnO和Y 2O 3的总含量为0.1-5mol%;碱土金属氧化物的总含量为4-30mol%。
本公开的玻璃用组合物中,SiO 2作为构成网络结构的基质,其加入可提高玻璃的耐热性与化学耐久性,并使玻璃不易失透,有助于玻璃化过程。然而过多的SiO 2会使得熔融温度升高,脆性增加,从而对生产工艺提出过高要求。
在本公开的玻璃用组合物中,B 2O 3、P 2O 5、GeO 2、TeO 2作为构成铝硅酸盐玻璃的基质,能单独生成玻璃,其加入可降低玻璃的脆性,同时B 2O 3、P 2O 5、GeO 2、TeO 2也是良好的助溶剂,能大幅降低玻璃的熔化温度,有助于玻璃化过程。然而过多的GeO 2、TeO 2会使得玻璃低温粘度降低,所以,优选的,以摩尔含量计,B 2O 3和P 2O 5的含量之和>0,且B 2O 3和P 2O 5的含量之和与B 2O 3、P 2O 5、GeO 2和TeO 2的含量之和的比值为0.6-1;特别优选的,比值为0.68-0.92。
本公开的发明人在研究中进一步发现,以摩尔百分比计,SiO 2的含量在40mol%以上时,能够进一步提高制备得到的玻璃的机械性能、耐化学腐蚀性能。因此,为了进一步提高制备得到的玻璃的综合性能并降低脆性,优选情况下,以摩尔百分比计,SiO 2的含量在40mol%以上,SiO 2、B 2O 3、P 2O 5、GeO 2和TeO 2的总含量为65-80mol%。特别优选的,SiO 2的含量在44mol%以上且小于72mol%。
本发明的玻璃用组合物中,Al 2O 3的加入可加速离子交换的进程及深度,但是其争夺游离氧的能力很强,大量引入Al 2O 3会降低玻璃结构的开放程度,使玻璃趋于刚性,增加玻璃的脆性,同时会导致玻璃易失透、热膨胀系数减小而难以与周边材料匹配、高温表面张力及高温粘度过大,加大 玻璃生产工艺难度等。Ga 2O 3与Al 2O 3的部分作用相似,能够大幅提高化学强化过程中离子交换速率,能够有效的提高玻璃应变点而使熔化温度较慢升高,同时可有效改善玻璃抗冲击强度和韧性。但由于半径比效应,过多的Ga 2O 3会导致其作为网络形成体的比例下降、作为网络外体的比例上升,减弱上述优点,同时会导致液相线温度过高提升。故Al 2O 3和Ga 2O 3的添加含量及添加比例受到了特殊的限定。综合考虑,以摩尔百分比计,Al 2O 3和Ga 2O 3的总含量在3-20mol%范围内,优选为5-17mol%,进一步优选地,以摩尔百分比计,Al 2O 3的含量与Al 2O 3和Ga 2O 3的含量之和的比值为0.7-1。
本发明的玻璃用组合物中,MgO、CaO、SrO、BaO均属于碱土金属氧化物,它们的加入可有效降低玻璃的高温粘度从而提高玻璃的熔融性及成形性,并可提高玻璃的应变点,且MgO、BaO具有降低玻璃脆性的特点。其含量过多会使密度增加,裂纹、失透、分相的发生率均提高。因此,综合考虑,以各组分的总摩尔数为基准,含有4-30mol%的碱土金属氧化物,其中所述碱金属氧化物选自MgO、CaO、SrO和BaO中的任意一种或多种。优选地,以摩尔含量计,MgO和BaO的含量之和与MgO、CaO、SrO和BaO的含量之和的比值大于0.5。
本发明的玻璃用组合物中,稀土氧化物Y 2O 3在提高玻璃的某些性能方面具有其独特的能力,例如玻璃的抗弯强度、应变点等性能随稀土氧化物的加入而大幅上升,促使玻璃脆性降低,断裂韧性大幅增加,且能降低高温粘度,为玻璃大型工业制造带来巨大便利。ZnO能够有效降低玻璃的析晶上限温度;在软化点以下有提升强度、硬度、增加玻璃的耐化学性、降低脆性值、降低玻璃热膨胀系数的作用。但是过多的Y 2O 3会促使非桥氧减少,减弱上述优势;过多的ZnO含量会使玻璃的应变点大幅度降低。因此,综合考虑多种因素,以组合物的摩尔含量为基准,ZnO和Y 2O 3的含量之和在0.1-5mol%范围内。
本发明的玻璃用组合物中,根据玻璃制备工艺的不同,组合物还可以含有作为玻璃熔融时的澄清剂,所述澄清剂优选为硫酸盐、硝酸盐、氧化锡、氧化亚锡中的至少一种;以各组分的总摩尔数为基准,澄清剂的含量不大于1mol%。对于澄清剂的具体选择没有特别的限定,可以为本领域常用的各种选择,例如硫酸盐可以为硫酸钡,硝酸盐可以为硝酸钡。
当所述玻璃组合物种含有硫酸钡和/或硝酸钡和/或硝酸锶作为澄清剂时,硫酸钡、硝酸钡的含量以氧化钡含量计、硝酸锶含量以氧化锶计。此时,所述RO的含量还包括澄清剂中按照氧化钡含量计和/或按氧化锶含量计的硫酸钡、硝酸钡和硝酸锶。
优选地,以摩尔百分比计,B 2O 3的含量为0-20mol%;
优选地,以摩尔百分比计,P 2O 5的含量为0-17mol%;
优选地,以摩尔百分比计,GeO 2的含量为0-4mol%;
优选地,以摩尔百分比计,TeO 2的含量为0-5mol%;
优选地,以摩尔百分比计,Al 2O 3的含量为3-18mol%;
优选地,以摩尔百分比计,Ga 2O 3的含量为0-4mol%;
优选地,以摩尔百分比计,ZnO的含量为0-2.5mol%;
优选地,以摩尔百分比计,Y 2O 3的含量为0-3mol%。
在本公开的进一步优选的实施方式中:
优选地,以摩尔百分比计,B 2O 3的含量为2-20mol%;
优选地,以摩尔百分比计,P 2O 5的含量为0-14mol%;
优选地,以摩尔百分比计,GeO 2的含量为0.1-4mol%;
优选地,以摩尔百分比计,TeO 2的含量为0.1-1mol%;
优选地,以摩尔百分比计,Al 2O 3的含量为3-14mol%;
优选地,以摩尔百分比计,Ga 2O 3的含量为0-3mol%;
优选地,以摩尔百分比计,ZnO的含量为0.5-1.4mol%;
优选地,以摩尔百分比计,Y 2O 3的含量为0.4-3mol%。
在本公开的一种优选的实施方式中,按照摩尔百分比计,按照摩尔百分比计,根据式(I)计算获得的D值为-5至40,
式(I):D=P1×(B 2O 3+P 2O 5+0.5×GeO 2+0.5×Te 2O 3)+P2×(1.5×Y 2O 3+ZnO)+P3×(MgO+BaO)+P4×(1.5×CaO+SrO)+P5×(Al 2O 3+Ga 2O 3)+P6×SiO 2
在式(I)中,P1的取值为-2至0,P2的取值为-5至-2,P3的取值为-2至-1,P4的取值为0至1.5,P5的取值为1.5至3,P6的取值为0至0.5;
其中,SiO 2、B 2O 3、P 2O 5、GeO 2、Te 2O 3、Al 2O 3、Ga 2O 3、ZnO、Y 2O 3、MgO、CaO、SrO、BaO均表示组合物中该组分的摩尔百分比;
优选地,D的取值为-2.1至32;进一步优选地,D的取值为2至19。更进一步优选地,P 1为-0.5,P 2为-3,P 3为-1.5,P 4为1,P 5为2,P 6为0.25。
本发明的玻璃用组合物中,利用其制备铝硅酸盐玻璃时,之所以能够使得玻璃具有前述优良的综合性能,主要归功于组合物中各组分之间的相互配合,尤其是SiO 2、B 2O 3、P 2O 5、GeO 2、TeO 2、Al 2O 3、Ga 2O 3、ZnO、Y 2O 3、MgO、CaO、SrO、BaO之间的配合作用,更尤其是特定含量的各组分之间的相互配合。
本公开的第二个方面提供了一种制备铝硅酸盐玻璃的方法,该方法包括将本公开所述的玻璃用组合物依次进行熔融、成型、退火和机械加工处理。
本公开的方法中,优选情况下,熔融处理的条件包括:温度低于1550℃,时间大于1h。本领域技术人员可以根据实际情况确定具体的熔融温度和熔融时间。
本公开所述的方法中,优选的情况下,退火处理的条件包括:温度高于750℃,时间大于0.1h。本领域技术人员可以根据实际情况确定具体的退 火温度和退火时间,此为本领域技术人员所熟知。
本公开的方法中,对于机械加工处理的方式没有特别的限定,可以为本领域常见的各种机械加工方式,例如可以为将退火处理得到的产物进行切割、研磨、抛光等。
本发明的方法中,可以通过浮法、溢流法、下拉法等各种常规玻璃制造方法生产厚度大于0.1mm的平板玻璃或厚度小于0.1mm的柔性玻璃(即一次成型法得到厚度<0.1mm的柔性玻璃),也可以通过二次熔融拉薄的方法生产厚度小于0.1mm的柔性玻璃。因此,该方法还可以包括对机械加工处理得到的产物进行二次熔融拉薄处理,制备得到厚度小于0.1mm的柔性玻璃。对于二次熔融拉薄处理的具体方法没有特别的限定,可以为本领域常用的各种方法,例如,二次熔融拉薄处理的方法可以包括:通过浮法、溢流法、下拉法等玻璃制造方法生产厚度小于1mm的平板玻璃,将平板玻璃输送到二次拉伸成型装置供料口,以恰当的速率V 0mm/min向内送入拉伸成型炉内,在控制拉伸成型区域粘度约为10 5.5-10 7泊范围内、通过拉伸机及滚筒以恰当的速率V 1mm/min进行卷对卷缠绕,从而得到厚度小于0.1mm的超薄柔性玻璃板材,所述拉引速率V 1大于V 0
本公开的第三方面提供了上述方法制备得到的铝硅酸盐玻璃。
优选情况下,本发明的铝硅酸盐玻璃,断裂韧性K IC大于1.0MPa·m 1/2,在50-350℃范围内的热膨胀系数小于40×10 -7/℃,应变点温度高于700℃,粘度为200泊时对应的熔化温度T m低于1550℃,成型温度T 4与液相线温度T l之间差值大于90℃,杨氏模量小于80GPa。
如前所述,不同的工艺可以制造不同厚度的玻璃,通过浮法、溢流法、下拉法等各种常规玻璃制造方法可以生产厚度大于0.1mm的平板玻璃或厚度小于0.1mm的柔性玻璃,也可以进一步通过二次熔融拉薄的方法可以生产厚度小于0.1mm的柔性玻璃。其中,厚度为0.05mm的铝硅酸盐玻 璃,曲率半径小于3.5cm。
本公开的第四个方面提供了本发明所述的玻璃用组合物或铝硅酸盐玻璃在制备显示器件和/或太阳能电池中的应用,所述应用优选为在制备平板显示产品的衬底玻璃基板材料和/或屏幕表面保护用玻璃膜层材料、柔性显示产品的衬底玻璃基板材料和/或表面封装玻璃材料和/或屏幕表面保护用玻璃膜层材料、柔性太阳能电池的衬底玻璃基板材料中的应用及用于其他需要低脆性、高耐热玻璃材料的应用领域。
实施例
以下将通过实施例对本发明进行详细描述。以下实施例中,如无特别说明,所用的各材料均可通过商购获得,如无特别说明,所用的方法为本领域的常规方法。
参照ASTM E-228使用卧式膨胀仪测定50-350℃的玻璃热膨胀系数,单位为10 -7/℃。
参照ASTM C-623测定玻璃杨氏模量,单位为GPa。
参照ASTM E-1820测定玻璃断裂韧性K IC,单位为MPa·m 1/2
参照ASTM C-336使用退火点应变点测试仪测定玻璃应变点,单位为℃。
参照ASTM C-829使用梯温炉法测定玻璃析晶上限温度,其中,液相线温度T l,单位为℃。
参照ASTM C-965使用旋转高温粘度计测定玻璃高温粘温曲线,其中,200P粘度对应的熔化温度T m,单位为℃;40000P粘度对应的成型温度T 4,单位为℃。
根据式(I)计算获得脆性因子D值时,取P 1为-0.5,P 2为-3,P 3为-1.5,P 4为1,P 5为2,P 6为0.25。
实施例1-32
按照表1所示的用量称量各组分,混匀,将混合料倒入铂金坩埚中,然后在1530℃电阻炉中加热4小时,并使用铂金棒搅拌以排出气泡。将熔制好的玻璃液浇注入不锈钢铸铁磨具内,成形为规定的块状玻璃制品,然后将玻璃制品在760℃退火炉中退火2小时,关闭电源随炉冷却到25℃。将玻璃制品进行切割、研磨、抛光,然后用去离子水清洗干净并烘干,制得厚度为0.5mm的玻璃成品。分别对各玻璃成品的各种性能进行测定,结果见表1-3。
表1
Figure PCTCN2018115460-appb-000001
表2
Figure PCTCN2018115460-appb-000002
表3
Figure PCTCN2018115460-appb-000003
对比例1-7
按照实施例1-32的方法制备玻璃产品,不同的是,混合料成分如表4所示和得到的产品的性能测定结果见表5。
表4
Figure PCTCN2018115460-appb-000004
将表1-3和表4中的数据比较可知,利用本公开所提供的方法制备得到的玻璃产品具有明显较低的脆性和明显较高的断裂韧性。本发明的玻璃用组合物或铝硅酸盐玻璃可用于制备显示器件和/或太阳能电池,尤其用于制备平板显示产品的衬底玻璃基板材料和/或屏幕表面保护用玻璃膜层材料、柔性显示产品的衬底玻璃基板材料和/或表面封装玻璃材料和/或屏幕表面保护用玻璃膜层材料、柔性太阳能电池的衬底玻璃基板材料以及用于其他需要低脆性玻璃材料的应用领域。
按照部分实施例及对比例的方法制备玻璃,然后进行二次熔融拉薄处理,其中,二次熔融拉薄处理的方法包括:将切割、研磨、抛光得到的厚度为0.7mm、宽度为50mm的平板玻璃输送到二次拉伸成型装置供料口,以V 0mm/min的速率向内送入拉伸成型炉内,控制拉伸成型区域粘度P、通过拉伸机及滚筒以速率V 1mm/min进行卷对卷缠绕,得到厚度为d1、宽度为d2的柔性玻璃。使用曲率半径测试仪对各玻璃成品的最小曲率半径进行测定,部分实施例的条件及对应的最小曲率半径见表5。
表5
Figure PCTCN2018115460-appb-000005
由表5结果可知,本发明的方法可以制备得到厚度为0.05mm的铝硅酸 盐玻璃,其曲率半径小于3.5cm。
以上详细描述了本公开的优选实施方式,但是,本公开并不限于上述实施方式中的具体细节,在本公开的技术构思范围内,可以对本公开的技术方案进行多种简单变型,这些简单变型均属于本公开的保护范围。
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合,为了避免不必要的重复,本公开对各种可能的组合方式不再另行说明。
此外,本公开的各种不同的实施方式之间也可以进行任意组合,只要其不违背本公开的思想,其同样应当视为本公开所公开的内容。

Claims (14)

  1. 一种玻璃用组合物,其特征在于,以摩尔百分比计,该组合物中,SiO 2、B 2O 3、P 2O 5、GeO 2和TeO 2的总含量为60-85mol%;Al 2O 3和Ga 2O 3的总含量为3-20mol%;ZnO和Y 2O 3的总含量为0.1-5mol%;碱土金属氧化物的总含量为4-30mol%。
  2. 根据权利要求1所述的玻璃用组合物,其中,所述碱土金属氧化物选自MgO、CaO、SrO和BaO中的任意一种或多种。
  3. 根据权利要求2所述的玻璃用组合物,其中,以摩尔含量计,B 2O 3和P 2O 5的含量之和大于0,且B 2O 3和P 2O 5的含量之和与B 2O 3、P 2O 5、GeO 2和TeO 2的含量之和的比值为0.6-1;
    以摩尔含量计,Al 2O 3的含量与Al 2O 3和Ga 2O 3的含量之和的比值为0.7-1;
    以摩尔含量计,MgO和BaO的含量之和与MgO、CaO、SrO和BaO的含量之和的比值大于0.5。
  4. 根据权利要求3所述的玻璃用组合物,其中,以摩尔含量计,B 2O 3和P 2O 5的含量之和与B 2O 3、P 2O 5、GeO 2和TeO 2的含量之和的比值为0.68-0.92。
  5. 根据权利要求1-4中任意一项所述的玻璃用组合物,其中,以摩尔百分比计,SiO 2的含量在40mol%以上;
    优选地,以摩尔百分比计,B 2O 3的含量为0-20mol%;
    优选地,以摩尔百分比计,P 2O 5的含量为0-17mol%;
    优选地,以摩尔百分比计,GeO 2的含量为0-4mol%;
    优选地,以摩尔百分比计,TeO 2的含量为0-5mol%;
    优选地,以摩尔百分比计,Al 2O 3的含量为3-18mol%;
    优选地,以摩尔百分比计,Ga 2O 3的含量为0-4mol%;
    优选地,以摩尔百分比计,ZnO的含量为0-2.5mol%;
    优选地,以摩尔百分比计,Y 2O 3的含量为0-3mol%。
  6. 根据权利要求5所述的玻璃用组合物,其中,以摩尔百分比计,SiO 2的含量在44mol%以上且小于72mol%;
    优选地,以摩尔百分比计,B 2O 3的含量为2-20mol%;
    优选地,以摩尔百分比计,P 2O 5的含量为0-14mol%;
    优选地,以摩尔百分比计,GeO 2的含量为0.1-4mol%;
    优选地,以摩尔百分比计,TeO 2的含量为0.1-1mol%;
    优选地,以摩尔百分比计,Al 2O 3的含量为3-14mol%;
    优选地,以摩尔百分比计,Ga 2O 3的含量为0-3mol%;
    优选地,以摩尔百分比计,ZnO的含量为0.5-1.4mol%;
    优选地,以摩尔百分比计,Y 2O 3的含量为0.4-3mol%。
  7. 根据权利要求1-4中任意一项所述的玻璃用组合物,其中,以摩尔百分比计,Al 2O 3和Ga 2O 3的总含量为5-17mol%。
  8. 根据权利要求1-4中任意一项所述的玻璃用组合物,其中,按照摩尔百分比计,根据式(I)计算获得的D值为-5至40,
    式(I):D=P 1×(B 2O 3+P 2O 5+0.5×GeO 2+0.5×Te 2O 3)+P 2×(1.5×Y 2O 3+ZnO)+P 3×(MgO+BaO)+P 4×(1.5×CaO+SrO)+P 5×(Al 2O 3+Ga 2O 3)+P 6×SiO 2
    在式(I)中,P 1的取值为-2至0,P 2的取值为-5至-2,P 3的取值为-2至-1,P 4的取值为0至1.5,P 5的取值为1.5至3,P 6的取值为0至0.5;
    其中,SiO 2、B 2O 3、P 2O 5、GeO 2、Te 2O 3、Al 2O 3、Ga 2O 3、ZnO、Y 2O 3、MgO、CaO、SrO、BaO均表示组合物中该组分的摩尔百分比;
    优选地,D的取值为-2.1至32;进一步优选地,D的取值为2至19。
  9. 一种制备铝硅酸盐玻璃的方法,其中,该方法包括将权利要求1-8中任意一项所述的玻璃用组合物依次进行熔融、成型、退火和机械加工处理。
  10. 根据权利要求9所述的方法,其中,所述方法还包括对机械加工处理得到的产物进行二次熔融拉薄处理,二次熔融拉薄处理的条件使得制备的玻璃的厚度小于0.1mm,优选的,在900-1200℃下拉伸成型区域粘度为10 5.5-10 7泊。
  11. 权利要求9或10所述方法制备得到的铝硅酸盐玻璃。
  12. 根据权利要求11所述的铝硅酸盐玻璃,其中,所述铝硅酸盐玻璃在50-350℃范围内的热膨胀系数小于40×10 -7/℃,应变点温度高于700℃,粘度为200泊时对应的熔化温度T m低于1550℃,成型温度T 4与液相线温度T l之间差值大于90℃,杨氏模量小于80GPa;
    优选地,所述铝硅酸盐玻璃的断裂韧性K IC大于1.0MPa·m 1/2;进一步优选地,K IC大于2.8MPa·m 1/2
  13. 根据权利要求11或12所述的铝硅酸盐玻璃,其中,所述铝硅酸盐玻璃的厚度为0.05mm,曲率半径小于3.5cm。
  14. 权利要求1-8中任意一项所述的玻璃用组合物或权利要求11-13中任意一项所述的铝硅酸盐玻璃在制备显示器件和/或太阳能电池中的应用,
    优选为在制备平板显示产品的衬底玻璃基板材料和/或屏幕表面保护用玻璃膜层材料、柔性显示产品的衬底玻璃基板材料和/或表面封装玻璃材料和/或屏幕表面保护用玻璃膜层材料、柔性太阳能电池的衬底玻璃基板材料中的应用。
PCT/CN2018/115460 2017-12-13 2018-11-14 一种玻璃用组合物、铝硅酸盐玻璃及其制备方法和应用 WO2019114486A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020552082A JP7087102B2 (ja) 2017-12-13 2018-11-14 アルミノ珪酸塩ガラス及びその調製方法
KR1020207019357A KR102578590B1 (ko) 2017-12-13 2018-11-14 유리 조성물, 알루미노실리케이트 유리 및 그 제조 방법, 적용
US16/772,671 US11795100B2 (en) 2017-12-13 2018-11-14 Composition for glass, and aluminosilicate glass, preparation method therefor, and use thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711330222.XA CN108129020B (zh) 2017-12-13 2017-12-13 一种玻璃用组合物、铝硅酸盐玻璃及其制备方法和应用
CN201711330222.X 2017-12-13

Publications (1)

Publication Number Publication Date
WO2019114486A1 true WO2019114486A1 (zh) 2019-06-20

Family

ID=62389496

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/115460 WO2019114486A1 (zh) 2017-12-13 2018-11-14 一种玻璃用组合物、铝硅酸盐玻璃及其制备方法和应用

Country Status (5)

Country Link
US (1) US11795100B2 (zh)
JP (1) JP7087102B2 (zh)
KR (1) KR102578590B1 (zh)
CN (1) CN108129020B (zh)
WO (1) WO2019114486A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022026348A1 (en) * 2020-07-30 2022-02-03 Corning Incorporated High boron oxide low alumina and alkali-free glasses for through glass via applications

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108129020B (zh) * 2017-12-13 2019-06-07 东旭科技集团有限公司 一种玻璃用组合物、铝硅酸盐玻璃及其制备方法和应用
CN109399922B (zh) * 2018-10-16 2022-03-04 东旭光电科技股份有限公司 玻璃用组合物、铝硅酸盐玻璃及其制备方法和应用
WO2024219379A1 (ja) * 2023-04-17 2024-10-24 Agc株式会社 ガラス

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006036626A (ja) * 2004-06-23 2006-02-09 Nippon Electric Glass Co Ltd 無アルカリガラス基板
CN101066836A (zh) * 2007-06-11 2007-11-07 中国洛阳浮法玻璃集团有限责任公司 Tft基板玻璃
CN101092280A (zh) * 2007-06-07 2007-12-26 河南安彩高科股份有限公司 铝硼硅酸盐玻璃组合物及其应用
CN105859128A (zh) * 2016-04-06 2016-08-17 芜湖东旭光电装备技术有限公司 一种玻璃用组合物、低表面张力无碱玻璃及其制备方法和应用
CN108129020A (zh) * 2017-12-13 2018-06-08 东旭科技集团有限公司 一种玻璃用组合物、铝硅酸盐玻璃及其制备方法和应用

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3150992B2 (ja) * 1991-03-20 2001-03-26 キヤノン株式会社 レンズの製造方法
WO2012102346A1 (ja) * 2011-01-28 2012-08-02 旭硝子株式会社 Cu-In-Ga-Se太陽電池用ガラス基板およびそれを用いた太陽電池
DE102012100233B4 (de) * 2012-01-12 2014-05-15 Schott Ag Hochtransmittive Gläser mit hoher Solarisationsbeständigkeit, ihre Verwendung und Verfahren zu ihrer Herstellung
DE102013208838B4 (de) * 2013-05-14 2015-03-05 Schott Ag Beleuchtungseinrichtung mit erweitertem Nutzspektrum und deren Verwendung
KR102279182B1 (ko) * 2014-05-15 2021-07-20 코닝 인코포레이티드 알루미노실리케이트 유리
CN109320098B (zh) * 2016-01-21 2021-09-24 Agc株式会社 化学强化玻璃以及化学强化用玻璃
CN109231819B (zh) * 2018-10-16 2021-04-09 东旭光电科技股份有限公司 无碱铝硅酸盐玻璃及其制备方法和应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006036626A (ja) * 2004-06-23 2006-02-09 Nippon Electric Glass Co Ltd 無アルカリガラス基板
CN101092280A (zh) * 2007-06-07 2007-12-26 河南安彩高科股份有限公司 铝硼硅酸盐玻璃组合物及其应用
CN101066836A (zh) * 2007-06-11 2007-11-07 中国洛阳浮法玻璃集团有限责任公司 Tft基板玻璃
CN105859128A (zh) * 2016-04-06 2016-08-17 芜湖东旭光电装备技术有限公司 一种玻璃用组合物、低表面张力无碱玻璃及其制备方法和应用
CN108129020A (zh) * 2017-12-13 2018-06-08 东旭科技集团有限公司 一种玻璃用组合物、铝硅酸盐玻璃及其制备方法和应用

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022026348A1 (en) * 2020-07-30 2022-02-03 Corning Incorporated High boron oxide low alumina and alkali-free glasses for through glass via applications

Also Published As

Publication number Publication date
US11795100B2 (en) 2023-10-24
JP7087102B2 (ja) 2022-06-20
JP2021508666A (ja) 2021-03-11
KR20200088906A (ko) 2020-07-23
CN108129020B (zh) 2019-06-07
KR102578590B1 (ko) 2023-09-15
US20200325062A1 (en) 2020-10-15
CN108129020A (zh) 2018-06-08

Similar Documents

Publication Publication Date Title
CN107216032B (zh) 一种玻璃用组合物和铝硅酸盐玻璃及其制备方法和应用
TWI651287B (zh) 鋁硼矽酸鹽玻璃及其製備方法和應用
JP5761025B2 (ja) 基板用ガラス板、その製造方法およびtftパネルの製造方法
US11407674B2 (en) Composition for glass, alkaline-earth aluminosilicate glass, and preparation method and application thereof
JP5510315B2 (ja) ディスプレイパネル用ガラス板、その製造方法およびtftパネルの製造方法
TWI667216B (zh) 無鹼玻璃基板及其製備方法
CN109678341B (zh) 无碱玻璃组合物和无碱玻璃及应用
WO2019114486A1 (zh) 一种玻璃用组合物、铝硅酸盐玻璃及其制备方法和应用
CN107382052B (zh) 一种无碱硅酸盐玻璃及其制备方法和应用
CN105601105B (zh) 一种玻璃用组合物、低脆性无碱玻璃及其制备方法和应用
TW201305083A (zh) 平面顯示器用玻璃基板及其製造方法
KR102628724B1 (ko) 알루미노실리케이트 유리 조성물, 알루미노실리케이트 유리 및 그 제조 방법과 응용
CN108349785B (zh) 低硼无钡碱土铝硅酸盐玻璃及其应用
WO2019233291A1 (zh) 一种适用于浮法成型的无磷无碱玻璃配合料及其制备的无磷无碱玻璃
CN109020195B (zh) 铝硅酸盐玻璃及其制备方法和应用
CN102584008B (zh) 一种用于lcd的轻质环保型无碱硼铝硅酸盐玻璃的配方
WO2014208521A1 (ja) 無アルカリガラス
CN114772928A (zh) 无碱铝硅酸盐基板玻璃及其制备方法和应用
TW201318999A (zh) 平板顯示器用玻璃基板
WO2014208524A1 (ja) 無アルカリガラス

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18889901

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020552082

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207019357

Country of ref document: KR

Kind code of ref document: A

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 16.09.2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18889901

Country of ref document: EP

Kind code of ref document: A1