WO2019082347A1 - 導光装置、光導波装置、マルチ波長光源モジュール、及び光導波装置の製造方法 - Google Patents

導光装置、光導波装置、マルチ波長光源モジュール、及び光導波装置の製造方法

Info

Publication number
WO2019082347A1
WO2019082347A1 PCT/JP2017/038762 JP2017038762W WO2019082347A1 WO 2019082347 A1 WO2019082347 A1 WO 2019082347A1 JP 2017038762 W JP2017038762 W JP 2017038762W WO 2019082347 A1 WO2019082347 A1 WO 2019082347A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical waveguide
light
cladding layer
film
entrance
Prior art date
Application number
PCT/JP2017/038762
Other languages
English (en)
French (fr)
Inventor
潤 成沢
湘 成沢
西村 靖
Original Assignee
フォトンリサーチ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by フォトンリサーチ株式会社 filed Critical フォトンリサーチ株式会社
Priority to CN201780095257.1A priority Critical patent/CN111465879A/zh
Priority to PCT/JP2017/038762 priority patent/WO2019082347A1/ja
Priority to JP2019549783A priority patent/JPWO2019082347A1/ja
Publication of WO2019082347A1 publication Critical patent/WO2019082347A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/125Bends, branchings or intersections
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/13Integrated optical circuits characterised by the manufacturing method
    • G02B6/136Integrated optical circuits characterised by the manufacturing method by etching

Definitions

  • the present invention relates to a light guide device for emitting incident light, an optical waveguide device, a multi-wavelength light source module using the light guide device or the optical waveguide device, and a method of manufacturing the optical waveguide device.
  • laser light of a plurality of wavelengths such as a projector that emits laser light of three primary colors RGB to display a color image, and a diagnostic device that performs sensing using visible light and infrared light (IR light)
  • a laser light source generating light of each wavelength
  • an optical multiplexer multiplexer
  • an optical waveguide is used to guide the incident light to a position where it is combined and to emit the combined light.
  • PLC Planar Lightwave Circuit
  • glass material silicon
  • a medium silicon
  • the PLC can be formed, for example, using a known semiconductor manufacturing process on a silicon substrate.
  • an optical waveguide there is known a technique in which a mirror member such as aluminum is provided in a deflection part in which the direction of the optical waveguide changes so that the incident laser light is totally reflected (Patent Document 1).
  • An object of the present invention is to provide a method of manufacturing a light guiding device, an optical waveguide device, and an optical waveguide device that can be suppressed.
  • the light guiding device is With a glass substrate, It is provided on the glass substrate, has an entrance and an exit for the light, is composed of a single material from the entrance to the exit, and is exposed to an external atmosphere surrounding the light guide, A fiber for guiding light from an entrance to the exit; An adhesive layer made of an adhesive interposed between a part of the fiber and the glass substrate is provided to fix the entrance and the exit of the fiber at a designated position of the glass substrate. .
  • the refractive index of the fiber, the refractive index of the adhesive, and the refractive index of the glass substrate are n1, n2 and n3, respectively, n1> n2 and n1> n3 are satisfied.
  • the outer diameter of the fiber is, for example, 10 ⁇ m or less, and preferably 3 to 5 ⁇ m.
  • the fiber has, in a cut surface of the fiber, two first regions in contact with the adhesive layer, and a second region in contact with the glass substrate and not in contact with the glass substrate. , It is preferable that parts other than the said 1st area
  • first and second fibers for guiding two lights are provided on the glass substrate,
  • the separation distance ⁇ between the center of the light outlet of the first fiber and the center of the light outlet of the second fiber is the center of the light entrance of the first fiber and the light of the second fiber
  • At least one of the first fiber and the second fiber is curved so as to approach each other as it goes to the exit so that the distance La between the center of the entrance and the center of the entrance is not more than 1/100
  • the separation distance between the entrance and exit of the first fiber or the separation between the entrance and exit of the second fiber is Lb
  • the distance between the separation La and the separation Lb is The ratio Lb / La is preferably 1.0 or less.
  • the separation distance ⁇ between the center of the light emission port of the first fiber and the center of the light emission port of the second fiber is 1 times the outer diameter of the first fiber and the second fiber. It is preferable to make the distance larger by 1.5 times or less.
  • the separation distance ⁇ can be 5 ⁇ m to 7.5 ⁇ m.
  • the light guiding device at least three of the fibers are provided on the glass substrate, and the three fibers are brought close to each other so that light beams emitted from the respective light emission ports overlap to form substantially one light beam. Is preferred.
  • the optical waveguide device is A substrate, An optical waveguide provided on the substrate, having an entrance and an exit for the light, and guiding the light from the entrance to the exit; A first cladding layer stacked between the optical waveguide and the substrate and in contact with the optical waveguide, the first cladding layer having a smaller refractive index than the refractive index of the optical waveguide; A second cladding layer in contact with the optical waveguide and having a smaller refractive index than the refractive index of the optical waveguide is provided on the side opposite to the first cladding layer with respect to the optical waveguide.
  • the optical waveguide extends continuously with the same material from the entrance to the exit, In at least a part of the optical waveguide, the surface of the optical waveguide on at least one side in the width direction of the optical waveguide parallel to the surface of the substrate and orthogonal to the extension direction of the optical waveguide uses air as a cladding element It is in contact with the air clad layer.
  • a third cladding layer in contact with the optical waveguide on one side in the width direction and having a smaller refractive index than the refractive index of the optical waveguide,
  • the portion is provided in a linear portion extending in a straight line of the optical waveguide.
  • the optical waveguide includes a corner portion that bends the traveling direction of light on the substrate, It is preferable that the optical waveguide is in contact with the third cladding layer inside the corner at the corner portion and is in contact with the air cladding layer outside the corner.
  • the side surface outside the corner of the light guide is a flat surface.
  • the optical waveguide device includes, as the optical waveguide, a first optical waveguide and a second optical waveguide for guiding two lights,
  • the first optical waveguide and the second optical waveguide have different entrances, respectively.
  • the optical waveguide device includes a junction where the first optical waveguide and the second optical waveguide merge with each other on the substrate, and a common exit of the first optical waveguide and the second optical waveguide. Is preferred.
  • an inclination angle between the first optical waveguide and the second optical waveguide at the junction is 5 degrees or less.
  • the inclination angle is more preferably 2 degrees or less, and particularly preferably 1 degree or less.
  • the optical waveguide device includes, as the optical waveguide, at least a first optical waveguide that guides at least three lights, a second optical waveguide, and a third optical waveguide.
  • the first optical waveguide, the second optical waveguide, and the third optical waveguide have different entrances, respectively.
  • the optical waveguide device includes a joining portion where the first optical waveguide, the second optical waveguide, and the third optical waveguide join together on the substrate, the first optical waveguide, the second optical waveguide, and the optical waveguide device. It is preferable to have a common exit of the third optical waveguide.
  • the entrances of the first optical waveguide, the second optical waveguide, and the third optical waveguide are respectively provided along the first side of the substrate,
  • the emission ports of the first optical waveguide, the second optical waveguide, and the third optical waveguide are provided along the second side facing the same direction as the incident port and facing the first side.
  • At least each of the second optical waveguide and the third optical waveguide among the first optical waveguide, the second optical waveguide, and the third optical waveguide has a corner portion that bends the traveling direction of the light on the substrate.
  • Two widthwise side walls provided at two places and provided with the corner part are in contact with the third cladding layer inside the corner in the corner part and in contact with the air clad layer outside the corner,
  • the side wall outside the corner is composed of a plane, It is preferable that the merging portion be located on the side of the exit with respect to the location of the corner portion of each of the second optical waveguide and the third optical waveguide.
  • a separation distance between the entrance of the first optical waveguide, the second optical waveguide, and the entrance of the third optical waveguide and the exit along the direction of the entrance is L
  • the first optical waveguide is
  • the ratio L / D is preferably 3.0 or less when the center-to-center distance D between adjacent entrances among the entrances of the second optical waveguide and the third optical waveguide is set to D.
  • the ratio L / D can be, for example, up to 1.0 or less.
  • the first optical waveguide linearly extends from the entrance of the first optical waveguide to the exit.
  • Each of the second optical waveguide and the third optical waveguide extends from the entrance of each of the second optical waveguide and the third optical waveguide and extends parallel to the first optical waveguide.
  • a straight portion; a first corner portion for deflecting light passing through the first straight portion toward the first optical waveguide; and light passing through the first corner portion approaching the first optical waveguide A second straight portion guiding light to be guided, a second corner portion deflecting light passing through the second straight portion toward the merging portion, and the merging portion light passing through the second corner portion And a third straight portion for guiding light to reach the distance.
  • the second optical waveguide and the third optical waveguide merge from a direction inclined with respect to the first optical waveguide, It is preferable that the inclination angles of the second optical waveguide and the third optical waveguide with respect to the first optical waveguide at the merging portion be 5 degrees or less.
  • the inclination angle is more preferably 2 degrees or less, and particularly preferably 1 degree or less.
  • Yet another aspect of the present invention is a method of manufacturing an optical waveguide device having a lower cladding layer, an optical waveguide, and an upper cladding layer.
  • the manufacturing method is A laminated structure in which a lower cladding film serving as the element of the lower cladding layer, a waveguide film serving as the element of the optical waveguide, and an upper cladding film serving as the element of the upper cladding layer are sequentially stacked from the surface side of the substrate.
  • Forming steps Forming the optical waveguide with the side surfaces on both sides exposed to the outside by etching so that the side surface of the waveguide film is exposed using the first resist mask in the outermost layer of the laminated structure .
  • Yet another aspect of the present invention is a method of manufacturing an optical waveguide device having a lower cladding layer, an optical waveguide, and an upper cladding layer.
  • the manufacturing method is Forming a laminated structure in which a lower cladding film serving as the element of at least the lower cladding layer from the surface side of the substrate and a waveguide film serving as the element of the optical waveguide are sequentially laminated; Forming the waveguide film in which a portion of the waveguide film is left over the lower cladding film by etching the waveguide film on the outermost layer of the laminated structure using a second resist mask; , Forming an upper cladding film serving as the element of the upper cladding layer on the outermost surface of the etched layered structure; Using the third resist mask having a pattern in which a portion of the remaining waveguide film does not overlap with a portion of the remaining waveguide film on the outermost layer of the stacked structure in which the upper cladding film is formed, the upper cladding film and the above Forming the
  • Yet another aspect of the present invention is a method of manufacturing an optical waveguide device having a lower cladding layer, an optical waveguide, and an upper cladding layer.
  • the manufacturing method is Forming a laminated structure in which a lower cladding film serving as the element of at least the lower cladding layer from the surface side of the substrate and a waveguide film serving as the element of the optical waveguide are sequentially laminated; A part of the waveguide film is left on the upper layer of the lower cladding film by etching the waveguide film using the second resist mask in the outermost layer of the laminated structure, and the remaining waveguide film Forming a shape of a waveguide film such that the shape comprises two straight portions and a corner portion sandwiched between the straight portions when the shape is viewed from above the substrate; Forming an upper cladding film serving as the element of the upper cladding layer on the outermost surface of the etched layered structure; Using the fourth resist mask having a pattern in which a part of the place outside the corner of the corner portion does not
  • the inclination angle of the inclined surface with respect to the linear portion is preferably in the range of 45 degrees ⁇ 3 degrees, and can be, for example, 41.5 degrees or more.
  • the multi-wavelength light source module is As the fibers, first to n-th fibers (where n is a natural number of 2 or more) for guiding a plurality of light beams having different wavelengths from the entrance to the exit are provided on the glass substrate.
  • the light guiding device wherein the n fibers have a configuration in which the light emitting ports approach each other so that the light combined from the light emitting port is emitted;
  • a plurality of laser light sources for emitting the plurality of lights fixed to the glass substrate such that each of the plurality of lights is incident on the entrance of each of the first fiber to the n-th fiber; Prepare.
  • the multi-wavelength light source module is The optical waveguide device; And a plurality of laser light sources for emitting the plurality of lights fixed to the substrate such that each of the plurality of lights having different wavelengths is incident on the entrance of each of the optical waveguides.
  • the laser light source in the multi-wavelength light source module emits visible light such as RGB three primary colors or non-visible light such as near-infrared light as the plurality of lights.
  • the optical waveguide device when emitting incident light, even if there is a deflecting unit in which the direction of the path changes in the light path, Leakage can be suppressed.
  • an optical waveguide device According to the above-described method of manufacturing an optical waveguide device, such an optical waveguide device can be easily manufactured.
  • (A) is a top view of the light guide device of one embodiment
  • (b) is an arrow sectional view of A-A 'of the light guide device shown in (a).
  • (A) is a figure which shows an example of the cross section of the optical waveguide apparatus in other one Embodiment
  • (b) is a figure which shows an example of the laminated structure in the middle of preparation of the optical waveguide apparatus shown to (a). is there. It is a top view which shows another example of the path
  • FIG. It is a top view explaining the arrangement
  • (A) to (e) are diagrams illustrating an example of the configuration of a laminated structure obtained by the process of the method of manufacturing an optical waveguide device according to an embodiment. It is a top view explaining the arrangement
  • the light guide device the optical waveguide device, the multi-wavelength light source module, and the method of manufacturing the optical waveguide device of the present invention will be described in detail with reference to the attached drawings.
  • FIG.1 (a) is a top view of the light guide device 10 of one Embodiment
  • FIG.1 (b) is arrow sectional drawing of AA 'of the light guide device 10 shown to Fig.1 (a). is there.
  • the light guide device 10 is a device that emits incident light.
  • the light guide device 10 includes a glass substrate 12, three fibers 14a, 14b and 14c, and adhesive layers 16a, 16b and 16c.
  • the light guiding device 10 shown in FIG. 1A is three fibers 14a, 14b and 14c, but in another embodiment, the number of fibers may be one, two, four or the like.
  • Each of the three fibers 14a, 14b, 14c is provided on the glass substrate 10, and has entrances 18a, 18b, 18c and exits 20a, 20b, 20c for light emitted from three laser light sources (laser diodes).
  • the entrances 18a, 18b, and 18c are provided on one side of the glass substrate 12, precisely aligned with the position of the light emission point of the laser light source (laser diode), and disposed at a constant interval. There is. That is, the entrances 18a, 18b, and 18c are fixed at predetermined positions of the glass substrate 12 in precise alignment with the arrangement positions of the respective laser light sources (laser diodes).
  • Laser light sources 22a, 22b and 22c for emitting light incident on the respective entrances 18a, 18b and 18c are provided near the respective entrances 18a, 18b and 18c.
  • Each of the three fibers 14a, 14b, and 14c is a fiber without cladding, for example, a fiber with an outer diameter of 3 ⁇ m to 5 ⁇ m from the entrances 18a, 18b, and 18c to the exit 20a, 20b, and 20c.
  • 18b, 18c lead to the exit 20a, 20b, 20c.
  • each of the fibers 14a, 14b and 14c is made of a single material from 18a, 18b and 18c to the exit ports 20a, 20b and 20c, and the external atmosphere (air, water, gas, It has a function of being exposed to the liquid and guiding light from the entrances 18a, 18b, 18c to the exits 20a, 20b, 20c.
  • the fibers 14a, 14b and 14c are also referred to as cores 14a, 14b and 14c.
  • the adhesive layers 16a, 16b and 16c are between the glass substrate 12 and a part of the fibers 14a, 14b and 14c so that the entrances of the fibers 14a, 14b and 14c can be accurately positioned on the glass substrate 12 with high accuracy. It consists of an intervening adhesive.
  • the adhesive layers 16a, 16b and 16c are used to fix the entrance and exit of the fibers 14a, 14b and 14c at the designated positions of the glass substrate 12, ie, the positions corresponding to the arrangement positions of the three laser light sources. Be
  • Such a light guiding device 10 has the refractive indices of the fibers 14a, 14b and 14c, the refractive index of the adhesive of the adhesive layers 16a, 16b and 16c, and the refractive index of the glass substrate 12 as n1, n2 and n3, respectively.
  • n1> n2 and n1> n3 are satisfied.
  • (n1 2- n2 2 ) (1/2) and (n1 2- n3 2 ) (1/2) satisfy the condition of more than 0.1 and less than 0.15.
  • the refractive index n1 of the fibers 14a, 14b, 14c is in the range of 1.5 to 1.9
  • the refractive index n2 of the adhesive is in the range of 1.3 to 1.5
  • a material capable of combining numerical values of n1, n2 and n3 be selected in this range, where the range of the refractive index n3 of is 1.4 to 1.9.
  • the values of n2 and n3 can be easily selected as appropriate.
  • the fibers 14a, 14b, 14c contact the adhesive layers 16a, 16b, 16c in the first cut of the fibers 14a, 14b, 14c, as shown in FIG. 1 (b). It is arranged to have a region 24 and a second region 26 in contact with the glass substrate 12 sandwiched by two first regions 24, and the portions other than the first region 24 and the second region 26 have an external atmosphere. For example, it is preferable to be in contact with air. In the second region 26, the fibers 14a, 14b, and 14c may not be in contact with the glass substrate 12.
  • the fibers 14a, 14b, 14c come into contact with the glass substrate 12 between the two first regions 24 in contact with the adhesive layers 16a, 16b, 16c, thereby stabilizing the circular fibers 14a, 14b, 14c into a glass. It can be fixed to the substrate 12. Further, since the portions other than the first region 24 and the second region 26 of the fibers 14a, 14b, 14c are in contact with the external atmosphere, for example air, there is a path along the glass surface of the fibers 14a, 14b, 14c in particular.
  • the side surfaces of the fibers 14a, 14b, 14c (surfaces parallel to the glass surfaces of the fibers 14a, 14b, 14c and orthogonal to the extending direction of the fibers 14a, 14b, 14c) contact air. Therefore, much of the light propagating in the fibers 14a, 14b and 14c is completely reflected. Therefore, there is almost no light leakage.
  • the length of the arc contacting the fibers 14a, 14b, 14c with air is preferably 75% to 95% of the entire circumference.
  • the fibers 14a, 14b, 14c are stably fixed to the glass substrate 12, the light leakage is suppressed in the deflection parts even if the fibers 14a, 14b, 14c have the deflection part in which the direction changes. be able to.
  • the fibers 14a, 14b, 14c have a form without the clad layer of the optical fiber cable, so the diameter of the fibers 14a, 14b, 14c is compared with the diameter of the fiber optic cable with clad layer. Very small.
  • the diameter of the fibers 14a, 14b, 14c can be, for example, 5 ⁇ m or less and 3 to 4 ⁇ m. For this reason, as shown in FIG.
  • the fibers 14a, 14b and 14c can be arranged close to each other at the exit ports 20a, 20b and 20c because there is no cladding like conventional optical fibers,
  • the center-to-center distance between adjacent light emission ports 20a, 20b, and 20c can be 3.5 ⁇ m.
  • collimating lenses or the like are disposed in front of the light emission ports 20a, 20, and 20c to make parallel light, one light is obtained.
  • the separation distance between the centers of the light emission ports of the adjacent optical waveguides of the fibers 14a, 14b and 14c is defined by the light entrance ports of the two optical waveguides.
  • the fibers 14a, 14b, 14c are bent in order to be very small compared to the distance between the centers of However, even if the fibers 14a, 14b, 14c are bent, the portions other than the first region 24 and the second region 26 of the fibers 14a, 14b, 14c are in contact with the external atmosphere, for example, air, so the fibers 14a, 14b , 14c leaks into the air in a small amount.
  • the light entrances 18a, 18b and 18c and the light exits 20a, 20b and 20c of the fibers 14a, 14b and 14c are all directed in the same direction, (See FIG. 1 (a)) between the centers of the light emission ports of the adjacent fibers of the fibers 14a, 14b, and 14c, and the incidence of the light of the two adjacent optical waveguides.
  • the fiber can be curved so as to be less than or equal to one-hundredth, preferably less than or equal to one-hundredth, of the separation La between the centers of the ports (see FIG. 1 (a)).
  • the ratio Lb / La is preferably 3.0 or less, and more preferably 1.0 or less.
  • the lower limit of the ratio Lb / La is not particularly limited, but is preferably 0.1. That is, even if the separation distance Lb is shortened, the fibers 14a, 14b, and 14c are curved in a state in which light leakage is suppressed, and the separation distance ⁇ is equal to or smaller than one hundredth or less of the separation distance La.
  • the size of the optical waveguide device 10 can be made compact.
  • the separation distance ⁇ can be, for example, greater than 1 time and 1.5 times or less of the outer diameter ⁇ of the fibers 14a, 14b, 14c (for example, the outer diameter is 10 ⁇ m or less, preferably ⁇ 3 ⁇ m to ⁇ 5 ⁇ m).
  • the separation distance ⁇ of 1 means that adjacent fibers are in contact with each other.
  • the fibers 14a, 14b, and 14c can cause the light emission ports to approach each other so that the lights emitted from the light emission ports are combined and emitted as substantially one light beam.
  • the emission ports are arranged closely spaced at intervals (for example, 1 ⁇ m or less) so as not to contact each other in a row at a designated location.
  • the fibers are fixed so as not to contact each other with an adhesive or the like interposed therebetween.
  • the number of fibers used for the optical waveguide device 10 is not limited to three, and may be three or more, for example, four or five.
  • the optical waveguide device 10 is suitably used for a multi-wavelength light source module as one embodiment.
  • first to nth fibers (n is a natural number of 2 or more) for guiding a plurality of light beams having different wavelengths from the entrance to the exit as the above-mentioned fibers are provided on the glass substrate 12.
  • the first to n-th fibers are provided with a light guide device configured to be close to each other at the exit so that the combined light from the exit may exit.
  • the multi-wavelength light source module emits a plurality of laser light sources fixed to the glass substrate 12 such that each of the plurality of light beams is incident on the entrance of each of the first to n-th fibers. (Not shown).
  • the laser light source emits, for example, visible light such as RGB three primary colors or non-visible light such as near-infrared light as a plurality of light.
  • Fig.2 (a) is a figure which shows an example of the cross section of the optical waveguide apparatus 100 which is one Embodiment.
  • the configuration of the optical waveguide device 100 shown in FIG. 2 (a) is different from the configuration shown in FIG. 1 (b), but the optical waveguide device 100 shown in FIG. 2 (a) is the fiber 14a shown in FIG. Similar to 14b and 14c, a plurality of optical waveguides are provided on the substrate.
  • the optical waveguide device 100 shown in FIG. 2A includes a silicon substrate 112, a core (optical waveguide) 114, a lower cladding layer 116D, and an upper cladding layer 116U.
  • the optical waveguide device 100 can be manufactured by sequentially laminating the lower cladding layer 116D, the core 114, and the upper cladding layer 116U on the silicon substrate 112 using a semiconductor manufacturing process.
  • the lower cladding layer 116D and the upper cladding layer 116U are SiO 2 (refractive index is, for example, 1.46).
  • the thickness of the lower cladding layer 116D and the upper cladding layer 116U is, for example, about 1 ⁇ m or less to several ⁇ m, which is determined by other factors.
  • the core 114 is also made of SiO 2 and has a refractive index of, for example, 1.51.
  • the core (optical waveguide) 114 extends continuously with the same material from the entrance to the exit, and is formed by connecting the members along the path, and is an interface such as a connection surface crossing the path. Do not have The core 114 is manufactured by adjusting the film forming conditions to have a high refractive index of 1.51.
  • the thickness of the core 114 is, for example, 3.5 ⁇ m to 5 ⁇ m.
  • Such an optical waveguide device 100 has the following features.
  • the core (optical waveguide) 114 extends continuously with the same material from the continuous medium, that is, from the entrance to the exit, and is formed by connecting the members along the path, and is a connection that crosses the path Since there is no interface such as a surface, there are no obstacles that cause light refraction or light leakage.
  • An upper clad layer 116U is provided on the core 114, and a lower clad layer 116 is provided on the lower side. The surfaces on both sides in the width direction are in contact with air.
  • the optical waveguide is not bent in the vertical direction, so for example, a core having a refractive index of 1.51 with respect to the refractive index 1.46 of the upper cladding layer 116U and the lower cladding layer 116D.
  • the light propagated in 114 is totally reflected when it strikes the interface between the upper cladding layer 116U and the lower cladding layer 116D.
  • the light reaches the exit while being incident from the entrance and is completely confined in the core 114 in the vertical direction.
  • the side surfaces of the core 114 on both sides have a difference in refractive index Is a large interface
  • the path of the core 114 along the surface of the silicon substrate 112 is largely curved as shown in FIG.
  • the optical waveguide for emitting the incident light is the direction of the optical waveguide Even in the case where the light source has a deflection part that greatly changes, it is possible to confine the light incident from the entrance of the core 114 which is an optical waveguide as it is within the core 114 to the exit.
  • the critical angle at which total reflection of light can be maintained in the optical waveguide is about 41.5 degrees because the refractive index of air is 1.0, for example, when the refractive index of the core 114 is 1.51. .
  • the critical angle means that the total reflection can be maintained even if the deflection part is bent at a large angle.
  • the upper cladding layer 116U is not provided, the light in the optical waveguide that has been incident in the vertical direction can be similarly confined, but the upper cladding layer 116U is provided for the following reasons. That is, in an optical waveguide formed in a planar shape on a silicon substrate 112, that is, a PLC (planar lightwave circuit), in order to smooth the incidence and the emission of light at the entrance and the exit of the light, Polishing may be necessary.
  • the upper cladding layer 116U is used to function as a protective film in this polishing.
  • FIG. 2B is a view showing an example of the laminated structure in the process of producing the optical waveguide device 100.
  • an elementary clad layer 116D * to be a component of the lower clad layer 116D is formed on the silicon substrate 112.
  • the elementary cladding layer 116D * is, for example, a SiO 2 oxide film having a refractive index of 1.46.
  • a waveguide film 114 * to be the element of the core 114 is formed on the upper surface of the element clad layer 116D * .
  • the waveguide film 114 * is, for example, a SiO 2 oxide film having a refractive index of 1.51.
  • an elementary clad layer 116U * to be a component of the upper clad layer 116U is formed on the waveguide film 114 * .
  • Containing clad layer 116U * of material is the same material as the element cladding layer 116D *.
  • a photoresist mask 130 of a predetermined pattern is formed at a position where the optical waveguide pattern of the core 114 is to be formed.
  • the laminated structure shown in FIG. 2 (b) is produced.
  • the laminated structure is subjected to etching using a photoresist mask 130, for example, dry etching, to produce an optical waveguide device 100 provided with an optical waveguide shown in FIG. 2A.
  • the optical waveguide device 100 can be manufactured by the following method.
  • the method of manufacturing the optical waveguide device 100 having the lower cladding layer 116D, the core 114 (optical waveguide), and the upper cladding layer 116U (1) An elementary clad layer 116D * (lower clad film) which becomes element of at least lower clad layer 116D from the surface side of substrate 212, waveguide film 114 * which becomes element of core 114 (optical waveguide), and upper clad layer 116U An upper clad layer 116U * (upper clad film), which becomes the element of the upper layer, is sequentially stacked to form a stacked structure.
  • FIG. 3 is a plan view showing another example of the optical waveguide path in the optical waveguide device 100. Since the optical waveguide device 100 shown in FIG. 2A can be manufactured using semiconductor process technology, as shown in FIG. 1A, a plurality of optical waveguides can be approached in the vicinity of the emission port. In addition, as shown in FIG. 3, the number of exit ports can be reduced to one by providing a junction 124 where a plurality of (three in FIG. 3) optical waveguides merge into one path. That is, the optical waveguide device 100 can be an optical multiplexing device. Thereby, the light emitted from the emission port can be completely emitted as one light.
  • the path for merging the plurality of optical waveguides can be manufactured by adjusting the mask pattern of the photoresist pattern 130.
  • the side surfaces on both sides of the core 114 are interface surfaces where the difference in refractive index (difference in refractive index between the core 114 and air) is large.
  • the refractive index of the core 114 is 1.51
  • the inclination angle between the two cores 114 (the first optical waveguide and the second optical waveguide) in the junction 124 is preferably 2 degrees or less, and more preferably 1 degree or less. Thereby, it is possible to suppress the transmission loss of light in the merging section 124.
  • FIG. 4A is a view showing an example of the cross section of the optical waveguide device 200 in another embodiment.
  • the configuration of the optical waveguide device 200 shown in FIG. 4 (a) is different from the configuration shown in FIG. 1 (b), but the optical waveguide device 200 shown in FIG. 4 (a) is also the optical waveguide 14a shown in FIG. , 14b and 14c, a plurality of optical waveguides are provided on the substrate.
  • the optical waveguide device 200 shown in FIG. 4A includes a silicon substrate 212, a core (optical waveguide) 214, a lower cladding layer 216D, and an upper cladding layer 216U. Silicon substrate 212, core 214, lower clad layer 216D, and upper clad layer 216U have the same configuration as silicon substrate 112, core 114, lower clad layer 116D, and upper clad layer 116U shown in FIG. 2A. , The description is omitted.
  • the optical waveguide device 200 differs from the optical waveguide device 100 shown in FIG. 2A in that the upper cladding layer 116U covers the side surface on one side of the core 114 (the left surface in FIG. 4A). The side surface of the other side (the right side surface in FIG. 4A) is not covered but is in contact with air.
  • the other side surface of the core 214 is a boundary surface where the difference in refractive index is large. Even if the portion where the path is curved to one side, that is, the optical waveguide for emitting the incident light has a deflecting portion in which the direction of the optical waveguide is bent and changed to one side, Total reflection can be maintained.
  • the core (optical waveguide) 214 continuously extends from the entrance to the exit with the same material, and is formed by connecting the members along the route, such as a connection surface crossing the route Since there is no interface, even if the light propagated in the light guide is refracted, there are no obstacles that cause light leakage.
  • FIGS. 4B and 4C are diagrams showing an example of the laminated structure in the process of producing the optical waveguide device 200.
  • FIG. 4B and 4C are diagrams showing an example of the laminated structure in the process of producing the optical waveguide device 200.
  • an elementary clad layer 216D * to be a component of the lower clad layer 216D is formed on the silicon substrate 212.
  • the elementary cladding layer 216D * is, for example, a SiO 2 oxide film having a refractive index of 1.46.
  • a waveguide film 214 ** serving as the element of the core 214 is formed on the upper surface of the uncoated layer 216D * .
  • the waveguide film 214 ** is, for example, a SiO 2 oxide film having a refractive index of 1.51.
  • a photoresist mask 230 of a predetermined pattern is formed at a position where the optical waveguide pattern of the core 214 is to be formed.
  • FIG. 4B shows an example of the laminated structure in which the photoresist pattern 230 is formed.
  • the first etching using the photoresist mask 230 of a predetermined pattern for example, dry etching is performed to expose the side surfaces on both sides of the waveguide film 214 ** , and further until the underlying bare cladding layer 216D * is exposed. Do the etching. After this, an elementary clad layer 216U * to be the element of the upper clad layer 216U is formed on the etched laminated structure. Thereafter, a photoresist mask 232 having a predetermined pattern is formed at a position where the core 214 shown in FIG. 4A is to be formed. At this time, the position on one side (left side in FIG.
  • FIG. 4B shows an example of the laminated structure in which the photoresist mask 232 is formed.
  • a part of the waveguide film 214 ** remaining by the first etching is referred to as a waveguide core 214 * .
  • a photoresist pattern 232 a second etching with a mask, for example, dry etching is performed, Shirubehamaku 214 ** shown in FIG. 4 (c) Under the other side of the waveguide core 214 * (right side in FIG. 4 (b)) and the other side of the waveguide core 214 * (right in FIG. 4 (b)) Etching is performed until the cladding layer 216D is exposed.
  • the uncoated layer 216U * on one side of the waveguide core 214 * (left side in FIG. 4B) may or may not be etched.
  • the optical waveguide device 200 provided with the optical waveguide shown in FIG. 4A can be manufactured.
  • the optical waveguide device 200 can be manufactured by the following method. (1) From the surface side of the substrate 212, an element clad layer 216D * (lower clad film) to be a element of at least the lower clad layer 216D and a waveguide film 214 ** to be a element of the core 214 (optical waveguide) were sequentially stacked Form a laminated structure. (2) By etching the waveguide film 214 ** using the photoresist mask 230 (second resist mask) as shown in FIG.
  • the elementary cladding layer 216 D * A waveguide core 214 * in which a part of the waveguide film 214 ** is left is formed on the upper layer of the (lower cladding film).
  • An elementary clad layer 216U * (upper clad film) to be the element of the upper clad layer 216U is formed on the outermost layer of the etched laminated structure.
  • the optical waveguide device 200 shown in FIG. 4A can be manufactured using semiconductor process technology, as shown in FIG. 1A, bringing a plurality of optical waveguides close to each other in the vicinity of the emission port
  • a plurality of optical waveguides can be merged into one path, and the exit can be one.
  • the path for merging the plurality of optical waveguides can be manufactured by adjusting the patterns of the photoresist masks 230 and 232.
  • FIG. 5 is a plan view of an optical waveguide device 300 of one embodiment using the optical waveguide of the laminated structure shown in FIG. 4A.
  • FIG. 5 omits illustration of the upper clad layer laminated on the core, and shows it intelligibly.
  • FIG. 5 is also a conceptual view showing the shape of the core.
  • the cores such as the cores 314a to 314c will be described in other words as an optical waveguide.
  • Each of the optical waveguides 314a and 314c in the optical waveguide device 300 shown in FIG. 5 has a configuration of an optical waveguide in which the side surface on one side of the core shown in FIG. 4A is exposed and in contact with air.
  • the optical waveguide 314 b has a configuration of an optical waveguide in which the side surfaces on both sides of the core shown in FIG. 2A are exposed and in contact with air.
  • the optical waveguides 314a and 314c include deflection portions (corner portions) 322a1, 322a2, 322c1, and 322c2 which are bent substantially at right angles.
  • the deflecting portions 322a1, 322a2, 322c1, and 322c2 are provided so as to be sandwiched between the linearly extending straight portions.
  • the side surfaces of the optical waveguides outside the corners of the deflecting portions 322a1, 322a2, 322c1, and 322c2 are boundary surfaces in contact with air. This side is an inclined surface.
  • the optical waveguides 314a, 314b, and 314c merge at the merging portion 324, and the lights having passed through the optical waveguides 314a, 314b, and 314c are combined.
  • the inclination angle with respect to the linear portion of the inclined surface in the deflection portions 322a1, 322a2, 322c1, and 322c2 can be, for example, in the range of 45 degrees ⁇ 3.
  • the deflecting portions 322a1, 322a2, 322c1, and 322c2 corner portions
  • the inclination angle of the optical waveguides 314a and 314c with respect to the merging portion 324 can be reduced. Transmission loss can be suppressed.
  • the side surfaces outside the corners of the optical waveguides 314a to 314c in the deflecting portions 322a1, 322a2, 322c1, and 322c2 are inclined at 45 degrees with respect to the straight portion. It is flat and sloped.
  • the side surface outside the corner is exposed and in contact with the air. Therefore, the side surfaces outside the corners in the deflecting portions 322a1, 322a2, 322c1, and 322c2 are boundary surfaces where the difference in refractive index is large. Therefore, the critical angle decreases, and incident light from the entrance satisfies the total reflection condition at this interface and is confined to the exit.
  • optical waveguides 314a to 314c continuously extend from the entrance to the exit with the same material, and are formed by connecting the members in the middle of the path, such as a connection surface crossing the path. Because it does not have a surface, there are no obstructions that cause light refraction or light leakage.
  • the optical waveguides 314a, 314b, and 314c are made of a SiO 2 oxide film having a refractive index of 1.46 and a substance (eg, GeO 2 ) that increases the refractive index.
  • the upper clad layer and the lower clad layer are formed by adding a substance (for example, fluorine F) whose refractive index decreases to a SiO 2 oxide film having a refractive index of 1.46.
  • the entrances of the optical waveguides 314a, 314b, 314c (the first optical waveguide, the second optical waveguide, and the third optical waveguide) of the optical waveguide device 300 are respectively the first side (the lower side in FIG. 5) of the substrate.
  • the outlet 320 of the optical waveguides 314a, 314b, 314c (the first optical waveguide, the second optical waveguide, and the third optical It is provided along the second side (upper side in FIG. 5) opposite to the first side.
  • optical waveguides 314a, 314b, 314c first optical waveguide, second optical waveguide, and third optical waveguide
  • the optical waveguides 314a, 314c second optical waveguide, third optical waveguide respectively
  • the side wall in the width direction of two places provided with two parts (corner parts) and deflection parts (corner parts) is the upper cladding layer 316 (FIG. 6C) inside the corners in the deflection parts (corner parts) In contact with the reference, and in contact with the air clad layer with air as the clad element outside the corner.
  • the side wall on the outer side (corner outer side) of the deflection portion (corner portion) is formed of a plane.
  • the merging portion 324 of the optical waveguides 314a, 314b, 314c (the first optical waveguide, the second optical waveguide, and the third optical waveguide) includes two of the optical waveguides 314a, 314c (the second optical waveguide and the third optical waveguide). It is located on the side of the exit 320 with respect to the location of one deflection part (corner part). As described above, since two deflection portions are provided for each of the optical waveguides 314a and 314c, the distance L can be shortened while maintaining the distance D constant. Thereby, a compact optical waveguide device 300 can be configured. According to one embodiment, the ratio L / D can be less than or equal to 3.0, preferably less than or equal to 1.0. The lower limit of the ratio L / D is not particularly limited, but is 0.1.
  • the optical waveguide 314 b linearly extends from the entrance of the optical waveguide 314 b (first optical waveguide) to the exit 320.
  • the optical waveguide 314a (second optical waveguide) and the optical waveguide 314c (third optical waveguide) extend from the respective entrances of the optical waveguides 314a and 314c as paths, to form the optical waveguide 314b ( A first linear portion extending in parallel to the first optical waveguide), and deflection portions 322a1 and 322c1 for deflecting light passing through the first linear portion toward the optical waveguide 314b (first optical waveguide) First corner portion), a second straight portion for guiding light passing through the deflecting portions 322a1 and 322c1 (first corner portion) to approach the optical waveguide 314b (first optical waveguide), and the second straight portion Light which has passed through the light source is deflected to be directed to the merging portion 324, and light which has passed
  • the deflecting portions 322a1 and 322c1 (first corner portion) and the deflecting portions 322a2 and 322c2 (second corner portion) are about 90 degrees (within the range of 90 degrees ⁇ 3 degrees). Since the reflection corner is formed, when the incident light is in the single transverse mode, the light in the single transverse mode is propagated from the first straight part to the second straight part and from the second straight part to the third straight part without breaking down. It can be done.
  • the deflecting portions 322a1 and 322c1 a direction in which the light is made to approach the optical waveguide 314b (first optical waveguide) , And the light is deflected so as to approach the optical waveguide 314b (first optical waveguide) in the deflecting portions 322a2 and 322c2 (second corner portion), so that the optical waveguide 314b (first optical waveguide)
  • the inclination angle of the optical waveguide 314a (second optical waveguide) or the optical waveguide 314c (third optical waveguide) can be reduced, and can be 2 degrees or less, 1 degree or less, or 0.5 degree or less. .
  • the number of light source devices is very large (for example, 5 to 10 or 64)
  • the optical waveguides 314a and 314c are made to the optical waveguide 314b by the deflectors 322a1 and 322c1 (first corner) and the deflectors 322a2 and 322c2 (second corner).
  • the light waveguides can be merged at an inclination angle as small as, for example, 2 degrees or less.
  • the paths of the optical waveguide 314a (second optical waveguide) and the optical waveguide 314c (third optical waveguide) are formed in line symmetry, but the paths may not necessarily be formed in line symmetry.
  • the path length of light is the same between the optical waveguide 314 a (second optical waveguide) and the optical waveguide 314 c (third optical waveguide)
  • the light incident on these two is emitted at the same emission intensity at the emission port 320 can do.
  • the optical waveguide 314a (second optical waveguide) and the optical waveguide 314c (third optical waveguide) at the junction are merged from the direction inclined with respect to the optical waveguide 314b (first optical waveguide)
  • the inclination angle of the optical waveguide 314a (second optical waveguide) and the optical waveguide 314c (third optical waveguide) with respect to the optical waveguide 314b (first optical waveguide) at the merging portion 324 at this time is 5 degrees, It may be as follows, may be 2 degrees or less, may be 1 degree or less, and may be 0.5 degree or less. Thereby, it is possible to suppress the transmission loss of light at the merging portion.
  • the optical waveguide device 300 having such a configuration is manufactured as follows. That is, of the laminated structure shown in FIG. 4C, the laminated structure 300 * at the stage before the photoresist mask 232 is formed is manufactured.
  • FIG. 6 is a view showing an example of the laminated structure 300 * .
  • an element clad layer (upper clad film) to be an element of the upper clad layer is formed on the upper layer of the shape (the shape in which the part outside the deflection section is an angle) of the optical waveguides 314a to 314c. ) Is formed.
  • FIG. 7A is an enlarged view of a region X to be the deflection portion (corner portion) shown in FIG.
  • FIG. 7 (a) to 7 (e) are diagrams for explaining an example of the configuration of a laminated structure 300 * obtained by the process described below.
  • 7 (b) is a cross-sectional view taken along the line AA 'shown in FIG. 7 (a)
  • FIG. 7 (c) is a cross-sectional view taken along the line BB' shown in FIG. 7 (a) is there.
  • the stacked structure 300 * is formed on the silicon substrate 350 and the element clad layer (lower clad film) 352 which is the element of the lower clad layer.
  • a waveguide core 354 * is formed, and an element clad layer (upper clad film) 356 to be a component of the upper clad layer is formed thereon (see FIG. 7B).
  • FIG. 7B shows that the stacked structure 300 * is formed on the silicon substrate 350 and the element clad layer (lower clad film) 352 which is the element of the lower clad layer.
  • a waveguide core 354 * is formed, and an element clad layer (upper clad film) 356 to be a component of the upper clad layer is formed thereon (see FIG. 7B).
  • the waveguide core 354 * areas in the laminated structure 300 * includes a horizontal line is attached portion, indicated by the portions assigned with the horizontal dashed line, the area of the unit cladding layer 356 Are indicated by the upper right hatched part and the upper right hatched and dashed part, but the part attached with a horizontal broken line and the upper right hatched part with a dashed line will be described later. It shows the part to be removed in the process.
  • a photomask 358 is stacked on the top of the uncoated layer 356 which is the uppermost layer of the stacked structure 300 * .
  • the photomask 358 is formed such that the region Ea shown in FIG. 7A is etched.
  • the photomask 358 (fourth resist mask) has a pattern in which a part of the location on the outer side (corner outer side) of the deflection part (corner part) does not overlap. Therefore, as shown in FIG. 7 (e), etching is performed using a photomask 358 to form an inclined surface which is inclined with respect to the straight portion on the outer side (corner outer side) of the deflection portion (corner portion). can do.
  • the reference numeral 354 in FIG. 7 (e) corresponds to the optical waveguides 314a to 314c.
  • the optical waveguide device 300 is manufactured by the following manufacturing method.
  • a laminated structure is formed by sequentially laminating an element clad layer (lower clad film) 352 which becomes element of the lower clad layer and a waveguide film which becomes element of the optical waveguide.
  • a waveguide core is formed in the upper layer of the lower cladding film 352 by etching the waveguide film on the outermost layer of the laminated structure using the second resist mask, thereby forming a waveguide core 354 * .
  • the shape of the waveguide core 354 * When the shape of the waveguide core 354 * is viewed from above the silicon substrate 350, the shape is two straight lines like the optical waveguide 314a (second optical waveguide) and the optical waveguide 314c (third optical waveguide).
  • the shape of the waveguide film is formed to include a portion and a deflection portion (corner portion) sandwiched by the straight portions.
  • An elementary clad layer (upper clad film) 356 to be a component of the upper clad layer is formed on the outermost layer of the etched laminated structure. Thereby, a laminated structure 300 * as shown in FIG. 6 is obtained. However, at this stage, as shown in FIG. 6, the corner outside of the deflection portion (corner portion) is a corner.
  • FIG. 8 is a plan view of an optical waveguide device 400 of another embodiment different from that of FIG. 5 using the optical waveguide of the laminated structure shown in FIG. 4 (a).
  • FIG. 8 illustrates the upper cladding layer stacked on the core in a simplified manner, with the illustration thereof omitted.
  • FIG. 8 is also a conceptual view showing the shape of the core.
  • the optical waveguide device 400 includes optical waveguides 414a to 414d which are four cores, and guides the light incident from the entrances 418a to 418d to one exit 420.
  • Each of the four optical waveguides 414a to 414d has the configuration of the optical waveguide shown in FIG. 4 (a).
  • Each of the optical waveguides 414a to 414d includes deflecting portions 422a to 422d (corner portions) bent substantially at right angles along the path.
  • the deflecting portions 422a to 422d (corner portions) are sandwiched between two linear portions extending linearly.
  • a junction 424 where the optical waveguides 414a to 414d merge is provided in the vicinity of the exit 420.
  • the portions of the optical waveguides 414a to 414d from the entrances 418a to 418d to the deflecting portions 422a to 422d and the portions from the deflecting portions 422a to 422d to the merging portion 424 extend linearly.
  • the deflection angle in the deflecting portion 422a closest to the merging portion 424 exceeds 90 degrees, and the deflection angle decreases with distance from the merging portion 424, and the deflection angle in the deflection portion 422d farthest from the merging portion 424 is It is 90 degrees.
  • the upper cladding layer corresponding to the upper cladding layer 216U shown in FIG. 4A which constitutes the four optical waveguides 414a to 414d, has a predetermined width with respect to the optical waveguides 414a to 414d in the width direction of the optical waveguides 414a to 414d. It has been extended to the end of the range.
  • Inclined surfaces are formed outside the corners of the deflecting portions 422a to 422d of the optical waveguide device 400 having such a configuration.
  • the formation of this inclined surface is formed by the method shown in FIGS. 7 (a) to 7 (e). That is, the optical waveguide device 400 is also manufactured by the method of manufacturing the optical waveguide device 300 described above.
  • the inclination angle of the side surfaces 426a to 426d (inclined surface) with respect to the straight portion can be, for example, in the range of 45 degrees ⁇ 3.
  • the deflecting portions 422a to 422d (corner portions) can be sharply bent, the inclination angle between the optical waveguides at the merging portion can be reduced, and the transmission loss of light at the merging portion can be suppressed.
  • the orientations of the entrances 418a-418d and the exit 420 are 90 degrees apart, and the silicon substrate has a rectangular shape, and the entrances 418a-418d and The exit 420 is provided on two mutually orthogonal sides SE1 and SE2 each having four rectangular vertices X.
  • the distance L1 between the center of the exit 420 and the apex X is the entrance 418d farthest from the apex X among the entrances. Or less than 10% of the distance L2 between the center of the and the vertex X. Since the distance L1 can be considerably shortened, a compact optical waveguide device 400 can be configured.
  • the optical waveguide devices 100 to 400 are suitably used in a multi-wavelength light source module as one embodiment.
  • each of a plurality of light beams having different wavelengths is incident on the entrance of each of the optical waveguides in any one of the optical waveguide devices 100 to 400 and any one of the optical waveguide devices 100 to 400
  • a plurality of laser light sources (not shown) for emitting a plurality of lights fixed to the substrate.
  • the laser light source emits, for example, visible light such as RGB three primary colors or non-visible light such as near-infrared light as a plurality of light.
  • the present invention is not limited to the above embodiments and does not deviate from the subject matter of the present invention
  • various improvements and modifications may be made within the scope.
  • a silicon substrate is used, it is not limited to a silicon substrate, and a glass substrate, a metal substrate or the like can also be used.
  • Light guide apparatus Glass substrates 14a, 14b, 14c Fibers 16a, 16b, 16c Bonding layers 18a, 18b, 18c, 418a, 418b, 418d Entrance ports 20a, 20b, 20c, 320, 420 Exit ports 22a, 22b, 22c laser light source 24 first region 26 second region 100, 200, 300, 400 light waveguide device 112, 212, 350 silicon substrate 114, 214, 314a, 314b, 314c, 414, 414a, 414b, 414c, 414d core Waveguide) 114 * , 214 ** Waveguide film 214 * Waveguide core 116D, 216D Lower cladding layer 116U, 216U Upper cladding layer 116D * , 116U * , 216D * , 352, 356 Elementary cladding layer 124, 324 Merged portions 130, 230, 232, 358 Photoresist patterns 322a, 322b, 3

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

光導波装置は、基板と、前記基板上に設けられ、前記光の入射口及び出射口を有し、前記入射口から光を前記出射口に導く光導波路と、前記光導波路と前記基板との間に設けられ、前記光導波路に接する、前記光導波路の屈折率よりも小さい屈折率の第1クラッド層と、前記光導波路に対して前記第1クラッド層と反対側には、前記光導波路と接する、前記光導波路の屈折率よりも小さい屈折率の第2クラッド層と、を備える。前記光導波路は、前記入射口から前記出射口まで、同じ材料で連続して延在しており、前記光導波路の少なくとも一部分において、前記光導波路の幅方向の少なくとも一方の側の面は、前記光導波路は空気と接している。

Description

導光装置、光導波装置、マルチ波長光源モジュール、及び光導波装置の製造方法
 本発明は、入射した光を出射させる導光装置、光導波装置、導光装置あるいは光導波装置を用いたマルチ波長光源モジュール、及び光導波装置の製造方法に関する。
 従来、3原色のRGB各色のレーザー光を出射してカラー画像を表示させるプロジェクタ装置や、可視光と赤外光(IR光)とを用いてセンシングを行う診断装置といった複数波長のレーザー光を用いる種々の装置がある。これらの装置では、通常、複数波長のレーザー光は、各々の波長の光を発生させるレーザー光源から別個に出射され、光合波装置(合波器)を用いて合波されて一本のビームとして出力される。このとき、入射した光を合波させる位置まで導き、合波した光を出射させるための光導波路が用いられる。
 例えば、光導波路としては、中空導光路や媒質としてガラス材(シリコン)が用いられたPLC(Planar Lightwave Circuit)などが挙げられる。PLCは、例えば、シリコン基板上に周知の半導体製造プロセスを用いて形成され得る。このような光導波路において、光導波路の向きが変化する偏向部に、入射されたレーザー光が全反射されるようにアルミニウム等の鏡面部材を設ける技術が知られている(特許文献1)。
特開2017-129744号公報
 上記構成では、屈曲部に鏡面部材を設ける必要があり、装置構成を複雑にする他、製造プロセスが煩雑になっていた。また、レーザー光が必ずしも全反射せず、一部が屈曲部から漏れる場合もあった。
 そこで、本発明は、上記構成とは異なる新たな構成により、入射した光を出射させる際、光の経路に、経路の向きが変化する偏向部が存在しても、偏向部において光の漏れを抑制することができる導光装置、光導波装置、及び光導波装置の製造方法を提供することを目的とする。
 本発明の一態様は、入射した光を出射させる導光装置である。当該導光装置は、
 ガラス基板と、
 前記ガラス基板上に設けられ、前記光の入射口及び出射口を有し、前記入射口から前記出射口まで単一材料で構成され、かつ、前記導光装置を取り巻く外部雰囲気に露出し、前記入射口から前記出射口に導光するファイバと、
 前記ファイバの前記入射口と前記出射口を、前記ガラス基板の指定された場所に固定する為に、前記ファイバの一部と前記ガラス基板の間に介在する接着剤からなる接着層と、を備える。
 前記ファイバの屈折率、前記接着剤の屈折率、及び前記ガラス基板の屈折率をそれぞれ、n1,n2,n3としたとき、n1>n2,n1>n3を満足する。
 前記ファイバーの外径は、例えば10μm以下であり、3~5μmであることが好ましい。
 前記ファイバは、前記ファイバの切断面において、前記接着層と接触する2つの第1領域と、前記2つの領域に挟まれた、前記ガラス基板と接触するあるいは接触しない第2領域と、を有し、
 前記第1領域及び前記第2領域以外の部分は、前記外部雰囲気と接している、ことが好ましい。
 前記ファイバとして、2つの光を導く第1ファイバ及び第2ファイバが前記ガラス基板に設けられ、
 前記第1ファイバの光の出射口の中心と前記第2ファイバの光の出射口の中心との間の離間距離Δは、前記第1ファイバの光の入射口の中心と前記第2ファイバの光の入射口の中心との間の離間距離Laの100分の1以下になるように、前記第1ファイバ及び第2ファイバの少なくとも1つは湾曲して前記出射口に向かうにつれて互いに接近し、
 前記第1ファイバの入射口と出射口との間の離間距離あるいは前記第2ファイバの入射口と出射口との間の離間距離をLbとしたとき、前記離間距離Laと前記離間距離Lbとの比Lb/Laは、1.0以下である、ことが好ましい。
 また、前記第1ファイバの光の出射口の中心と前記第2ファイバの光の出射口の中心との間の前記離間距離Δは、前記第1ファイバ及び前記第2ファイバの外径の1倍より大きく1.5倍以下に接近させることが好ましい。前記第1ファイバ及び前記第2ファイバの外径が例えば5μmの場合、前記離間距離Δを5μm~7.5μmにすることができる。
 前記導光装置において、前記ガラス基板に前記ファイバを少なくとも3本設け、それぞれの出射口から出射する光が重なって略1つの光ビームとなるように、3本のファイバを接近させる構成とすることが好ましい。
 本発明の他の一態様は、入射した光を出射させる光導波装置である。当該光導波装置は、
 基板と、
 前記基板上に設けられ、前記光の入射口及び出射口を有し、前記入射口から光を前記出射口に導く光導波路と、
 前記光導波路と前記基板との間に積層され、前記光導波路に接する、前記光導波路の屈折率よりも小さい屈折率の第1クラッド層と、
 前記光導波路に対して前記第1クラッド層と反対側には、前記光導波路と接する、前記光導波路の屈折率よりも小さい屈折率の第2クラッド層と、を備える。
 前記光導波路は、前記入射口から前記出射口まで、同じ材料で連続して延在しており、
 前記光導波路の少なくとも一部分において、前記基板の面に平行で前記光導波路の延在方向に直交する前記光導波路の幅方向の少なくとも一方の側の前記光導波路の面は、空気をクラッド要素とするエアークラッド層と接している。
 前記幅方向の一方の側において、前記光導波路と接し、前記光導波路の屈折率よりも小さい屈折率の第3クラッド層を備え、
 前記光導波路は、前記第1クラッド層、前記第2クラッド層、及び前記第3クラッド層と連続して接する部分を有する、請求項4に記載の光導波装置。
 前記部分は、前記光導波路の直線状に延びる直線部に設けられている、ことが好ましい。
 前記光導波路は、前記基板上で光の進行方向を曲げるコーナー部を備え、
 前記光導波路は、前記コーナー部におけるコーナー内側で前記第3クラッド層と接し、コーナー外側で前記エアークラッド層と接する、ことが好ましい。
 前記光導波路の前記コーナー外側の側面は、平面である、ことが好ましい。
 前記光導波装置は、前記光導波路として、2つの光を導く第1光導波路及び第2光導波路を含み、
 前記第1光導波路及び前記第2光導波路は、互いに異なる入射口を備え、
 前記光導波装置は、前記第1光導波路及び前記第2光導波路が前記基板上で互いに合流する合流部と、前記第1光導波路及び前記第2光導波路の共通した出射口と、を備える、ことが好ましい。
 前記合流部における前記第1光導波路と前記第2光導波路との傾斜角度は5度以下である、ことが好ましい。前記傾斜角度は、2度以下であることがより好ましく、例えば1度以下であることが特に好ましい。
 前記光導波装置は、前記光導波路として、少なくとも3つの光を導く第1光導波路、第2光導波路、及び第3光導波路を少なくとも含み、
 前記第1光導波路、第2光導波路、及び前記第3光導波路は、互いに異なる入射口を備え、
 前記光導波装置は、前記基板上で前記第1光導波路、前記第2光導波路、及び前記第3光導波路が互いに合流する合流部と、前記第1光導波路、前記第2光導波路、及び前記第3光導波路の共通した出射口と、を備える、ことが好ましい。
 前記第1光導波路、前記第2光導波路、及び前記第3光導波路の入射口はそれぞれ、前記基板の第1辺に沿って設けられ、
 前記第1光導波路、前記第2光導波路、及び前記第3光導波路の出射口は、前記入射口と同じ方向を向き、前記第1辺と対向する前記第2辺に沿って設けられ、
 前記第1光導波路、前記第2光導波路、及び前記第3光導波路のうち少なくとも前記第2光導波路及び前記第3光導波路のそれぞれには、前記基板上で光の進行方向を曲げるコーナー部が2箇所設けられ、前記コーナー部が設けられた2箇所の幅方向の側壁は、前記コーナー部におけるコーナー内側で前記第3クラッド層と接し、コーナー外側で前記エアークラッド層と接し、
 前記コーナー外側の側壁は平面で構成され、
 前記合流部は、前記第2光導波路及び前記第3光導波路それぞれの前記コーナー部の場所に対して前記出射口の側に位置する、ことが好ましい。
 前記第1光導波路、前記第2光導波路、及び前記第3光導波路の入射口と前記出射口との間の、前記入射口の向く方向に沿った離間距離をLとし、前記第1光導波路、前記第2光導波路、及び前記第3光導波路それぞれの前記入射口のうちの隣リ合う入射口の中心間距離Dとしてとき、比L/Dは、3.0以下である、ことが好ましい。比L/Dは、例えば、1.0以下にまですることができる。
 前記第1光導波路は、前記第1光導波路の入射口から前記出射口まで直線状に延び、
 前記第2光導波路及び前記第3光導波路のそれぞれは、経路として、前記第2光導波路及び前記第3光導波路それぞれの前記入射口から延びて前記第1光導波路に対して平行に延びる第1直線部と、前記第1直線部を通過した光を前記第1光導波路の側に向くように偏向する第1コーナー部と、前記第1コーナー部を通過した光を前記第1光導波路に接近させるように導光する第2直線部と、前記第2直線部を通過した光を前記合流部に向くように偏向する第2コーナー部と、前記第2コーナー部を通過した光を前記合流部に到達させるように導光する第3直線部と、を備える、ことが好ましい。
 前記合流部において、前記第2光導波路及び前記第3光導波路は、前記第1光導波路に対して傾斜した方向から合流し、
 前記合流部における、前記第2光導波路及び前記第3光導波路の、前記第1光導波路に対する傾斜角度はいすれも、5度以下である、ことが好ましい。前記傾斜角度は、2度以下であることがより好ましく、例えば1度以下であることが特に好ましい。
 本発明のさらに他の一態様は、下クラッド層、光導波路、及び上クラッド層を有する光導波装置の製造方法である。当該製造方法は、
 基板の表面側から少なくとも前記下クラッド層の素となる下クラッド膜、前記光導波路の素となる導波膜、及び前記上クラッド層の素となる上クラッド膜を順番に積層した積層構造体を形成するステップと、
 前記積層構造体の最表層に第1レジストマスクを用いて前記導波膜の側面が露出するようにエッチングすることにより、両側の側面が外部に露出した前記光導波路を形成するステップと、を備える。
 本発明のさらに他の一態様は、下クラッド層、光導波路、及び上クラッド層を有する光導波装置の製造方法である。当該製造方法は、
 基板の表面側から少なくとも前記下クラッド層の素となる下クラッド膜、前記光導波路の素となる導波膜を順番に積層した積層構造体を形成するステップと、
 前記積層構造体の最表層に第2レジストマスクを用いて前記導波膜をエッチングすることにより、前記下クラッド膜の上層に前記導波膜の一部が残存した導波膜を形成するステップと、
 エッチングした前記積層構造体の最表層に前記上クラッド層の素となる上クラッド膜を形成するステップと、
 前記上クラッド膜を形成した前記積層構造体の最表層に、前記残存した導波膜の前記基板上の場所と一部が重ならないパターンの第3レジストマスクを用いて、前記上クラッド膜と前記残存した導波膜の一部をエッチングすることにより、前記光導波路の一方の側面が外部に露出し、他方の側面が前記上クラッド層に接する構成の前記光導波路を形成するステップと、を備える。
 本発明のさらに他の一態様は、下クラッド層、光導波路、及び上クラッド層を有する光導波装置の製造方法である。当該製造方法は、
 基板の表面側から少なくとも前記下クラッド層の素となる下クラッド膜、前記光導波路の素となる導波膜を順番に積層した積層構造体を形成するステップと、
 前記積層構造体の最表層に第2レジストマスクを用いて前記導波膜をエッチングすることにより、前記下クラッド膜の上層に前記導波膜の一部が残存し、残存した前記導波膜の形状を前記基板の上方向から見たとき、該形状が、2つの直線部と、前記直線部に挟まれたコーナー部とを備えるような導波膜の形状を形成するステップと、
 エッチングした前記積層構造体の最表層に前記上クラッド層の素となる上クラッド膜を形成するステップと、
 前記上クラッド膜を形成した前記積層構造体の最表面に、前記コーナー部のコーナー外側の場所の一部が重ならないパターンの第4レジストマスクを用いて、前記導波膜の一部である前記コーナー外側の部分をエッチングすることにより、前記コーナー外側の側面に、前記直線部に対して傾斜した傾斜面を形成するステップと、を備える。
 前記傾斜面の、前記直線部に対する傾斜角度は、45度±3度の範囲内にあることが好ましく、例えば41.5度以上にすることができる。
 本発明のさらに他の一態様は、マルチ波長光源モジュールである。当該マルチ波長光源モジュールは、
 前記ファイバとして、波長の異なる複数の光を前記入射口から前記出射口まで導く第1ファイバ~第nファイバ(nは2以上の自然数)が前記ガラス基板に設けられ、前記第1ファイバ~前記第nファイバは、前記出射口から合波した光が出射するように、前記出射口で互いに接近した構成を備える、前記導光装置と、
 前記第1ファイバ~前記第nファイバそれぞれの前記入射口に前記複数の光のそれぞれが入射するように、前記ガラス基板に対して固定された前記複数の光を出射する複数のレーザー光源と、を備える。
 本発明のさらに他の一態様も、マルチ波長光源モジュールである。当該マルチ波長光源モジュールは、
 前記光導波装置と、
 前記光導波路それぞれの前記入射口に波長の異なる複数の光のそれぞれが入射するように、前記基板に対して固定された前記複数の光を出射する複数のレーザー光源と、を備える。
 前記マルチ波長光源モジュールにおけるレーザー光源は、前記複数の光として、例えば、RGB3原色等の可視光、あるいは、非可視光、例えば近赤外光を出射する。
 上述の光導波装置、光導波装置、及びマルチ波長光源モジュールによれば、入射した光を出射させる際、光の経路に、経路の向きが変化する偏向部が存在しても、偏向部において光の漏れを抑制することができる。上述の光導波装置の製造方法によれば、このような光導波装置を容易に作製することができる。
(a)は、一実施形態の導光装置の平面図であり、(b)は、(a)に示す導光装置のA-A’の矢視断面図である。 (a)は、他の一実施形態における光導波装置の断面の一例を示す図であり、(b)は、(a)に示す光導波装置の作製途中の積層構造体の一例を示す図である。 一実施形態の光導波装置における光導波路の経路の他の一例を示す平面図である。 (a)は、他の一実施形態における光導波装置の断面の一例を示す図であり、(b),(c)は、(a)に示す光導波装置の作製途中の積層構造体の一例を示す図である。 一実施形態の光導波装置における光導波路の配置を説明する平面図である。 一実施形態の光導波装置の作製途中で得られる積層構造体の一例を示す図である。 (a)~(e)は、一実施形態の光導波装置の製造方法のプロセスで得られる積層構造体の構成の例を説明する図である。 他の一実施形態の光導波装置における光導波路の配置を説明する平面図である。
 以下、本発明の導光装置、光導波装置、マルチ波長光源モジュール、及び光導波装置の製造方法について添付の図面を参照しながら詳細に説明する。
 図1(a)は、一実施形態の導光装置10の平面図であり、図1(b)は、図1(a)に示す導光装置10のA-A’の矢視断面図である。
 導光装置10は、入射した光を出射させる装置である。導光装置10は、ガラス基板12と、3つのファイバ14a,14b,14cと、接着層16a,16b,16cと、を備える。図1(a)に示す導光装置10は、3つのファイバ14a,14b,14cであるが、別の実施形態では、ファイバは、1つでも、2つ、4つ等であってもよい。
 3つのファイバ14a,14b,14cのそれぞれは、ガラス基板10上に設けられ、3つのレーザー光源(レーサダイオード)から出射した光の入射口18a,18b,18c及び出射口20a,20b,20cを有する。ここで、入射口18a,18b,18cは、ガラス基板12の一辺上に設けられ、レーザー光源(レーサダイオード)の発光点の位置に精密に位置合わせして、一定の間隔をあけて配置されている。すなわち、入射口18a,18b,18cは、各レーザー光源(レーサダイオード)の配置位置に精密に合わせしてガラス基板12の所定の場所に固定される。この入射口18a,18b,18cのそれぞれの近傍には、入射口18a,18b,18cのそれぞれに入射する光を出射するレーザー光源22a,22b,22cが設けられる。3つのファイバ14a,14b,14cのそれぞれは、入射口18a,18b,18cから出射口20a,20b,20cまで、クラッドが無いファイバ、例えば外径φ3μm~φ5μmのファイバであり、光を入射口18a,18b,18cから出射口20a,20b,20cに導く。すなわち、ファイバ14a,14b,14cのそれぞれは、18a,18b,18cから出射口20a,20b,20cまで単一材料で構成され、かつ、導光装置10を取り巻く外部雰囲気(空気、水、気体、液体)に露出し、入射口18a,18b,18cから出射口20a,20b,20cに導光する機能を有する。以降、ファイバ14a,14b,14cを、コア14a,14b,14cともいう。
 接着層16a,16b,16cは、ガラス基板12にファイバ14a,14b,14cの入射口を精度高く所定の位置に位置決めできるように、ファイバ14a,14b,14cの一部とガラス基板12の間に介在する接着剤からなる。接着層16a,16b,16cは、ファイバ14a,14b,14cの入射口と出射口を、ガラス基板12の指定された場所、すなわち3つのレーザー光源の配置位置に対応した場所に固定するために用いられる。
 このような導光装置10は、ファイバ14a,14b,14cの屈折率、接着層16a,16b,16cの接着剤の屈折率、及びガラス基板12の屈折率をそれぞれ、n1,n2,n3としたとき、n1>n2,n1>n3を満足する。一実施形態によれば、さらに、(n1-n2(1/2)及び(n1-n3(1/2)が0.1より大きく0.15未満を満足する。n1>n2,n1>n3とすることにより、ファイバ14a,14b,14cからファイバ14a,14b,14cと接する接着剤及びガラス基板12との境界面で全反射するように構成することができる。
 一実施形態によれば、ファイバ14a,14b,14cの屈折率n1を1.5~1.9の範囲とし、接着剤の屈折率n2を1.3~1.5の範囲とし、ガラス基板12の屈折率n3の範囲を1.4~1.9として、この範囲で、n1,n2,n3の数値の組み合わせが可能な材料が選択されるとよい。特に、n1を1.6以上にすることにより、n2,n3の値を適宜容易に選択することができる。
 一実施形態によれば、ファイバ14a,14b,14cは、図1(b)に示すように、ファイバ14a,14b,14cの切断面において、接着層16a,16b,16cと接触する2つの第1領域24と、2つの第1領域24に挟まれた、ガラス基板12と接触する第2領域26と、を有するように配置され、第1領域24及び第2領域26以外の部分は、外部雰囲気、例えば空気と接していることが好ましい。なお、第2領域26では、ファイバ14a,14b,14cは、ガラス基板12と接触しなくてもよい。接着層16a,16b,16cと接触する2つの第1領域24の間で、ファイバ14a,14b,14cがガラス基板12と接触することにより、円形状のファイバ14a,14b,14cを安定してガラス基板12に固定することができる。さらに、ファイバ14a,14b,14cの第1領域24及び第2領域26以外の部分は、外部雰囲気、例えば空気と接しているので、特にファイバ14a,14b,14cのガラス面に沿っている経路が大きな角度で湾曲しても、ファイバ14a,14b,14cの側面(ファイバ14a,14b,14cのガラス面に平行でファイバ14a,14b,14cの延在方向と直交する方向の面)は空気と接触するので、ファイバ14a,14b,14c内を伝播する光の多くが、完全反射する。このため光の漏れ量は殆どない。ファイバ14a,14b,14cの断面において、ファイバ14a,14b,14cが空気と接する円弧の長さは、円周全体の75%~95%であることが好ましい。これにより、ファイバ14a,14b,14cをガラス基板12に安定して固定しつつ、ファイバ14a,14b,14cの向きが変化する偏向部を有していても、偏向部において光の漏れを抑制することができる。
 図1(a)に示すように、ファイバ14a,14b,14cは、光ファイバーケーブルのクラッド層がない形態であるので、ファイバ14a,14b,14cの直径は、クラッド層のある光ファイバーケーブルの直径に比べて極めて小さい。ファイバ14a,14b,14cの直径は、例えば5μm以下、3~4μmとすることができる。このため、図1(a)に示すように、出射口20a,20b,20cにおいて、ファイバ14a,14b,14cを、従来の光ファイバのようなクラッドがないことから接近して配置することでき、例えば、隣り合う出射口20a,20b,20cの中心間距離を3.5μmにすることができる。このため、接近した出射口20a,20b,20cから出射する光は、実質1つの光として出射する。例えば、出射口20a,20,20cの前面にコリメートレンズ等を配置して平行光とした場合、1つの光となる。
 図1(a)に示すように、光導波装置10は、ファイバ14a,14b,14cの隣り合う光導波路の光の出射口の中心間の離間距離を、この2つの光導波路の光の入射口の中心間の離間距離に比べて極めて小さくするために、ファイバ14a,14b,14cを湾曲させる。しかし、ファイバ14a,14b,14cを湾曲させても、ファイバ14a,14b,14cの第1領域24及び第2領域26以外の部分は、外部雰囲気、例えば空気と接しているので、ファイバ14a,14b,14c内を伝播する光が空気に漏れる量は少ない。このような利点を生かすことにより、一実施形態によれば、ファイバ14a,14b,14cの光の入射口18a,18b,18c及び出射口20a,20b,20cは、いずれも同じ方向を向き、光の漏れを抑えた状態で、ファイバ14a,14b,14cの隣り合うファイバの光の出射口の中心間の離間距離Δ(図1(a)参照)を、隣り合う2つの光導波路の光の入射口の中心間の離間距離La(図1(a)参照)の100分の1以下になるように、好ましくは、200分の1以下になるように、ファイバを湾曲させることができる。この場合、入射口18a,18b,18c及び出射口20a,20b,20cにおける光の進行方向に沿った、入射口18a,18b,18cと出射口20a,20b,20cとの間の離間距離(最短距離)をLb(図1(a)参照)としたとき、比Lb/Laは、3.0以下であることが好ましく、1.0以下であることがより好ましい。比Lb/Laの下限は、特に限定されないが0.1であることが好ましい。すなわち、離間距離Lbを短くしても、光の漏れを抑えた状態でファイバ14a,14b,14cを湾曲させて離間距離Δを離間距離Laの100分の1以下、さらには200分の1以下、好ましくは500分の1以下、より好ましくは1000分の1以下にすることができる。したがって、光導波装置10のサイズをコンパクトにすることができる。
 なお、上記離間距離Δは、例えば、ファイバ14a,14b,14cの外径φ(例えば外径は10μm以下、好ましくはφ3μm~φ5μm)の1倍より大きく1.5倍以下にすることができる。離間距離Δが1倍とは、隣接するファイバ同士が接触することを意味する。このように、ファイバ14a,14b,14cは、各出射口から出射した光が合波して略1つの光ビームとして出射するように、出射口を互いに接近させることができる。例えば、出射口は、指定場所に一列にお互い接触しないように間隔を空けて(間隔は、例えば1μm以下)接近させて、緊密に並ぶように配置される。この場合、ファイバ14a,14b,14cの出射口の近傍では、接着剤等を挟んでファイバー同士が接触しないように固定される。光導波装置10に用いるファイバの本数は、3本に限定されず、3本以上、例えば、4本あるいは5本とすることもできる。
 光導波装置10は、一実施形態として、マルチ波長光源モジュールに好適に用いられる。
 マルチ波長光源モジュールでは、上述したファイバとして、波長の異なる複数の光を入射口から出射口まで導く第1ファイバ~第nファイバ(nは2以上の自然数)がガラス基板12に設けられる。第1ファイバ~第nファイバは、出射口から合波した光が出射するように、出射口で互いに接近した構成の導光装置を備える。さらに、マルチ波長光源モジュールは、第1ファイバ~第nファイバそれぞれの入射口に複数の光のそれぞれが入射するように、ガラス基板12に対して固定された複数の光を出射する複数のレーザー光源(図示されない)を備える。レーザー光源は、複数の光として、例えば、RGB3原色等の可視光、あるいは、非可視光、例えば近赤外光を出射する。
 図2(a)は、一実施形態である光導波装置100の断面の一例を示す図である。図2(a)に示す光導波装置100の構成は、図1(b)に示す構成と異なるが、図2(a)に示す光導波装置100は、図1(a)に示すファイバ14a,14b,14cと同じように複数の光導波路を基板上に備えている。
 図2(a)に示す光導波装置100は、シリコン基板112、コア(光導波路)114、下クラッド層116D、及び上クラッド層116Uを備える。
 シリコン基板112に、半導体製造プロセスを利用して、下クラッド層116D、コア114、及び上クラッド層116Uを順番に積層することにより光導波装置100を作製することができる。
 下クラッド層116D及び上クラッド層116Uは、SiO(屈折率は、例えば1.46)である。下クラッド層116D及び上クラッド層116Uの厚さは、例えば1μm以下から数μm程度であり、他の要因から定められる。
 コア114も、SiOで構成され、屈折率は例えば1.51である。コア(光導波路)114は、入射口から出射口まで、同じ材料で連続して延在しており、経路途中で部材同士が接続して形成された、経路を横断する接続面等の境界面を有さない。コア114は、高屈折率1.51となる成膜条件に調整して作製している。コア114の厚さは、例えば3.5μmから5μmである。下クラッド層116D及び上クラッド層116Uは、コア114と同じSiOの酸化膜であり、屈折率は例えば1.46である。この場合、コア(光導波路)114の開口数NAは、0.4039(=(1.51-1.46(1/2))となり、最大受光角度は23.8度になる。
 このような光導波装置100は、以下の特徴を有する。
 コア(光導波路)114は、連続媒質、つまり、入射口から出射口まで、同じ材料で連続して延在しており、経路途中で部材同士が接続して形成された、経路を横断する接続面等の境界面を有さないので、光が屈折したり、光の漏れを誘発させる障害物が存在しない。
 コア114の上に上クラッド層116U、下に下クラッド層116が設けられる一方、コア114の両脇の側面、すなわち、シリコン基板112の面に平行でコア114の延在方向に直交するコア114の幅方向の両側の面は、空気と接している。この様な構造の光導波路であるコア114に入射した光の伝播特性、すなわち、光導波路内部の上下方向と両脇の側面の左右方向の光の伝播特性に関していうと、上クラッド層116U及び下クラッド層116Dが設けられる上下方向の伝播特性では、光導波路が上下方向に曲ったりしないので、例えば、上クラッド層116U及び下クラッド層116Dの屈折率1.46に対し屈折率1.51のコア114の中で伝播される光は、上クラッド層116U及び下クラッド層116Dの境界面に当たる際に全反射する。このため、光は入射口から入射されたまま出射口まで至り、上下方向においてコア114内に完全に閉じ込められる。一方、光導波路内部の左右方向の光の伝播特性では、コア114両脇の側面(図2(a)中の左右の面)は、屈折率の差(コア114と空気の屈折率の差)が大きい境界面になっているので、コア114のシリコン基板112の面に沿う経路が後述する図3に示す様に大きく湾曲する部分、すなわち、入射した光を出射させる光導波路が光導波路の向きが大きく変化する偏向部を有していても、光導波路であるコア114の入射口から入射された光を出射口までそのままコア114内に閉じ込めることができる。例えば、光導波路において光の全反射を維持できる臨界角は、例えば、コア114の屈折率を1.51とする場合、空気の屈折率は1.0であるので、約41.5度となる。この臨界角は,偏向部が大きな角度で曲がっても全反射を維持することができることを意味する。なお、上クラッド層116Uが設けられなくても、上下方向に入射された光導波路内部の光は同じく閉じ込めることはできるが、上クラッド層116Uは以下の理由から設けられる。すなわち、シリコン基板112上に平面状に構成した光導波路、すなわちPLC(平面光波回路)では、光の入射口と出射口における光の入射と出射をスムースにするために、入射口及び出射口の研磨が必要な場合がある。上クラッド層116Uは、この研磨において保護膜として機能させるために用いられる。
 このような装置構成は、半導体プロセスによって作製することができる。図2(b)は、光導波装置100の作製途中の積層構造体の一例を示す図である。
 シリコン基板112上に下クラッド層116Dの素となる素クラッド層116Dを成膜する。素クラッド層116Dは、例えば、屈折率が1.46のSiO酸化膜である。
 この後、素クラッド層116Dの上面にコア114の素となる導波膜114を成膜する。導波膜114は、例えば、屈折率が1.51のSiO酸化膜である。
 さらに、導波膜114上に上クラッド層116Uの素となる素クラッド層116Uを成膜する。素クラッド層116Uの材料は、素クラッド層116Dと同じ材料である。
 この後、コア114の光導波路のパターンを形成しようとする位置に、所定のパターンのフォトレジストマスク130を形成する。
 こうして、図2(b)に示す積層構造体が作られる。この積層構造体に対して、フォトレジストマスク130を用いたエッチング、例えばドライエッチングを行い、図2(a)に示す光導波路を備えた光導波装置100が作られる。
 すなわち、一実施形態によれば、以下の方法で光導波装置100を製造することができる。
 下クラッド層116D、コア114(光導波路)、及び上クラッド層116Uを有する光導波装置100の製造方法では、
(1)基板212の表面側から少なくとも下クラッド層116Dの素となる素クラッド層116D(下クラッド膜)、コア114(光導波路)の素となる導波膜114、及び上クラッド層116Uの素となる上クラッド層116U(上クラッド膜)を順番に積層した積層構造体を形成する。
(2)次に、形成した積層構造体の最表層にフォトレジストマスク130を用いて導波膜114の側面が露出するようにエッチングすることにより、両側の側面が外部に露出したコア114(光導波路)を形成する。
 図3は、光導波装置100における光導波路の経路の他の一例を示す平面図である。図2(a)に示す光導波装置100は、半導体プロセス技術を用いて作製することができるので、図1(a)に示すように、複数の光導波路を出射口近傍で接近させることができるほか、図3に示すように、複数(図3では3つ)の光導波路が1つの経路に合流する合流部124を設けることで出射口を1つにすることもできる。すなわち、光導波装置100は光合波装置とすることができる。これにより、出射口から出射する光を完全に1つの光として出射させることができる。このように複数の光導波路を合流させる経路は、上記フォトレジストパターン130のマスクパターンを調整して作製することができる。この場合、コア114の両側の側面(図2(a)中の左右の面)は、屈折率の差(コア114と空気の屈折率の差)が大きい境界面になっているので、コア114における境界面における臨界角度を小さくすることができ、例えば、コア114の屈折率を1.51とした場合、入射の臨界角度を41.5度(=arcsin(1/1.51))にすることができる。このため、偏向の曲がりの程度を従来に比べて急にしてもコア114を伝播する光の漏れを抑えることができる。このため、光導波路の入射口の中心間の離間距離D(図3参照)を変更することなく入射口から出射口までの距離L(図3参照)を短くできるので光導波装置100をコンパクトにすることができる。
 この場合、合流部124における2つのコア114(第1光導波路と第2光導波路)との傾斜角度は2度以下であることが好ましく、さらに1度以下であることがより好ましい。これにより、合流部124における光の伝送損失を抑制することができる。
 図4(a)は、他の一実施形態における光導波装置200の断面の一例を示す図である。図4(a)に示す光導波装置200の構成は、図1(b)に示す構成と異なるが、図4(a)に示す光導波装置200も、図1(a)に示す光導波路14a,14b,14cと同じように複数の光導波路を基板上に備えている。
 図4(a)に示す光導波装置200は、シリコン基板212、コア(光導波路)214、下クラッド層216D、及び上クラッド層216Uを備える。シリコン基板212、コア214、下クラッド層216D、及び上クラッド層216Uは、図2(a)に示すシリコン基板112、コア114、下クラッド層116D、及び上クラッド層116Uと同様の構成を有するので、説明は省略する。光導波装置200が図2(a)に示す光導波装置100と異なる点は、上クラッド層116Uが、コア114の一方の側の側面(図4(a)中の左側の面)を覆っており、他方の側の側面(図4(a)中の右側の面)は覆っておらず、空気と接している点である。
 このような光導波装置200でも、図2(a)に示す光導波装置200と同様に、コア214の上記他方の側面は、屈折率の差が大きい境界面となっているので、コア214の経路が一方の側に湾曲する部分、すなわち、入射した光を出射させる光導波路が、光導波路の向きが一方の側に屈曲して変化する偏向部を有していても、偏向部において光の全反射を維持できる。しかも、コア(光導波路)214は、入射口から出射口まで、同じ材料で連続して延在しており、経路途中で部材同士が接続して形成された、経路を横断する接続面等の境界面を有さないので、光導波路中に伝搬される光が屈折されても、光の漏れを誘発させる障害物が存在しない。
 このような装置構成は、半導体プロセスによって作製することができる。図4(b),(c)は、光導波装置200の作製途中の積層構造体の一例を示す図である。
 シリコン基板212に、下クラッド層216Dの素となる素クラッド層216Dを成膜する。素クラッド層216Dは、例えば、屈折率が1.46のSiO酸化膜である。
 この後、素クラッド層216Dの上面にコア214の素となる導波膜214**を成膜する。導波膜214**は、例えば、屈折率が1.51のSiO酸化膜である。
 この後、コア214の光導波路のパターンを形成しようとする位置に、所定のパターンのフォトレジストマスク230を形成する。図4(b)は、フォトレジストパターン230を形成した積層構造体の一例を示している。
 この後、所定のパターンのフォトレジストマスク230を用いた1回目のエッチング、例えばドライエッチングにより導波膜214**の両側の側面を露出させ、さらに、下層の素クラッド層216Dが露出するまでエッチングを行う。
 この後、エッチングした積層構造体上に上クラッド層216Uの素となる素クラッド層216Uを形成する。この後、図4(a)に示すコア214を形成しようとする位置に、所定のパターンのフォトレジストマスク232を形成する。このとき、フォトレジストマスク232の一方の側(図4(b)中の左側)の位置が、先のエッチングにおいて導波膜214の一方の側(図4(b)中の左側)が露出した位置よりも導波膜214の外側に位置し、フォトレジストマスク232の他方の側(図4(b)中の右側)の位置が、先のエッチングにおいて導波膜214の他方の側(図4(b)中の左側)の側面が露出した位置よりも導波膜214の残存した部分(導波路コア)の側に位置するように、フォトレジストマスク232が形成される。図4(c)は、フォトレジストマスク232を形成した積層構造体の一例を示している。なお、1回目のエッチングにより残存した導波膜214**の一部を、導波路コア214という。
 この後、図4(c)に示す積層構造体に対して、フォトレジストパターン232をマスクとした2回目のエッチング、例えばドライエッチングが行われ、図4(c)に示す導波膜214**の残存した一部である導波路コア214の他方の側面(図4(b)中の右側の側面)及び導波路コア214の他方の側(図4(b)中の右側)の下クラッド層216Dが露出するまでエッチングが行われる。導波路コア214の一方の側(図4(b)中の左側)の素クラッド層216Uはエッチングされてもよいし、エッチングされなくてもよい。これにより、導波路コア214の一部がエッチングによって削れ、図4(a)に示すような層構成の光導波路を形成することができる。こうして、図4(a)に示す光導波路を備えた光導波装置200を作製することができる。
 すなわち、一実施形態によれば、以下の方法で光導波装置200を製造することができる。
(1)基板212の表面側から少なくとも下クラッド層216Dの素となる素クラッド層216D(下クラッド膜)、コア214(光導波路)の素となる導波膜214**を順番に積層した積層構造体を形成する。
(2)積層構造体の最表層に、図4(b)に示すようなフォトレジストマスク230(第2レジストマスク)を用いて導波膜214**をエッチングすることにより、素クラッド層216D(下クラッド膜)の上層に導波膜214**の一部が残存した導波路コア214を形成する。
(3)エッチングした積層構造体の最表層に上クラッド層216Uの素となる素クラッド層216U(上クラッド膜)を形成する。
(4)次に、素クラッド層216U(上クラッド膜)を形成した積層構造体の最表層に、図4(c)に示すように、残存した導波路コア214の基板212上の場所と一部が重ならないパターンのフォトレジストマスク232(第3レジストマスク)を用いて、素クラッド層216U(上クラッド膜)と導波路コア214の一部をエッチングすることにより、コア214(光導波路)の一方の側面が外部に露出し、他方の側面が上クラッド層216Uに接する構成のコア214(光導波路)を形成する。
 なお、図4(a)に示す光導波装置200は、半導体プロセス技術を用いて作製することができるので、図1(a)に示すように、複数の光導波路を出射口近傍で接近させることができるほか、図3に示すように複数の光導波路を1つの経路に合流させ、出射口を1つにすることもできる。このように複数の光導波路を合流させる経路は、上記フォトレジストマスク230,232のパターンを調整して作製することができる。
 図5は、図4(a)に示す積層構造の光導波路を用いた一実施形態の光導波装置300の平面図である。図5は、コアの上に積層される上クラッド層の図示を省略してわかり易く示している。図5は、コアの形状を示す概念図でもある。以下、コア314a~314c等のコアは、光導波路と言い換えて説明する。
 図5に示す光導波装置300における光導波路314a,314cそれぞれは、図4(a)に示すコアの一方の側の側面が露出して空気に接した光導波路の構成を有する。光導波路314bは、図2(a)に示すコアの両側の側面が露出して空気に接した光導波路の構成を有する。
 光導波路314a,314cは、略直角に屈曲する偏向部(コーナー部)322a1,322a2,322c1,322c2を備える。偏向部322a1,322a2,322c1,322c2は、直線状に延びる直線部の間に挟まれるように設けられる。偏向部322a1,322a2,322c1,322c2のそれぞれのコーナー外側の光導波路の側面は空気と接する境界面となっている。この側面は、傾斜面である。
 光導波路314a,314b,314cは、合流部324で合流し、光導波路314a,314b,314cを通過した光が合波する。
 ここで、偏向部322a1,322a2,322c1,322c2における傾斜面の直線部に対する傾斜角度は、例えば、45度±3の範囲にすることができる。これにより、偏向部322a1,322a2,322c1,322c2(コーナー部)を急激に曲げることができ、合流部324における光導波路314a,314cの314bに対する傾斜角度を小さくすることができ、合流部324における光の伝送損失を抑制することができる。
 図5(a)に示すように、偏向部322a1,322a2,322c1,322c2(コーナー部)における光導波路314a~314cのコーナー外側の側面は、直線部に対して傾斜した平面、例えば45度傾斜した平面であり、傾斜面となっている。しかも、後述の図7(a)に示すように、コーナー外側の側面は露出して空気と接している。このため、偏向部322a1,322a2,322c1,322c2におけるコーナー外側の側面は、屈折率の差が大きな境界面になっている。このため、臨界角度が小さくなり、入射口からの入射光は、この境界面に全反射条件を満たし、出射口まで閉じ込められる。しかも、光導波路314a~314cは、入射口から出射口まで、同じ材料で連続して延在しており、経路途中で部材同士が接続して形成された、経路を横断する接続面等の境界面を有さないので、光が屈折したり、光の漏れを誘発させる障害物が存在しない。
 一実施形態によれば、光導波路314a,314b,314cは、SiO酸化膜(屈折率=1.51)で構成され、上クラッド層と下クラッド層は、SiO酸化膜(屈折率=1.46)で構成される。
 また、他の一実施形態によれば、光導波路314a,314b,314cには、屈折率1.46のSiO酸化膜酸化膜に屈折率が増加する物質(例えばGeO)を添加したもので構成され、上クラッド層及び下クラッド層には、屈折率1.46のSiO酸化膜酸化膜に屈折率が減少する物質(例えばフッ素F)を添加したもので構成される。
 また、他の一実施形態では、光導波路314a,314b,314cは、SiO酸化膜(屈折率=1.46)で構成され、上クラッド層と下クラッド層は、SiO酸化膜(屈折率が1.46未満)で構成される。
 このように、光導波装置300の光導波路314a,314b,314c(第1光導波路、第2光導波路、及び第3光導波路)の入射口はそれぞれ、基板の第1辺(図5では、下方の辺)に沿って設けられ、光導波路314a,314b,314c(第1光導波路、第2光導波路、及び第3光導波路)の出射口320は、入射口と同じ方向に向き、基板の上記第1辺と対向する第2辺(図5では、上方の辺)に沿って設けられる。
 光導波路314a,314b,314c(第1光導波路、第2光導波路、及び第3光導波路)のうち、光導波路314a,314c(第2光導波路、及び第3光導波路)のそれぞれには、偏向部(コーナー部)が2箇所設けられ、偏向部(コーナー部)が設けられた2箇所の幅方向の側壁は、偏向部(コーナー部)におけるコーナー内側で上クラッド層316(図6(c)参照)と接し、コーナー外側で空気をクラッド要素とするエアークラッド層と接する。偏向部(コーナー部)の外側(コーナー外側)の側壁は平面で構成されている。光導波路314a,314b,314c(第1光導波路、第2光導波路、及び第3光導波路)の合流部324は、光導波路314a,314c(第2光導波路、及び第3光導波路)それぞれの2つの偏向部(コーナー部)の場所に対して出射口320の側に位置する。
 このように、光導波路314a,314cのそれぞれに、2つの偏向部を設けたので、距離Dを一定に維持したまま、距離Lを短くすることができる。これにより、コンパクトな光導波装置300を構成することができる。一実施形態によれば、比L/Dは、3.0以下にすることができ、好ましくは1.0以下にすることができる。比L/Dの下限は特に限定されないが、0.1である。
 また、図5に示すように、光導波路314b(第1光導波路)は、光導波路314b(第1光導波路)の入射口から出射口320まで直線状に延びる。このとき、一実施形態によれば、光導波路314a(第2光導波路)及び光導波路314c(第3光導波路)は、経路として、光導波路314a,314cそれぞれの入射口から延びて光導波路314b(第1光導波路)に対して平行に延びる第1直線部と、この第1直線部を通過した光を光導波路314b(第1光導波路)の側に向くように偏向する偏向部322a1,322c1(第1コーナー部)と、偏向部322a1,322c1(第1コーナー部)を通過した光を光導波路314b(第1光導波路)に接近させるように導光する第2直線部と、この第2直線部を通過した光を合流部324に向くように偏向する偏向部322a2,322c2(第2コーナー部)と、偏向部322a2,322c2(第2コーナー部)を通過した光を合流部324に到達させるように導光する第3直線部と、を備える。このような構成の経路を設けることにより、偏向部322a1,322c1(第1コーナー部)及び偏向部322a2,322c2(第2コーナー部)は、約90度(90度±3度の範囲内)の反射コーナーを形成するので、入射された光がシングル横モードの場合、シングル横モードの光が崩れないまま第1直線部から第2直線部へ、第2直線部から第3直線部へ、伝搬させることができる。また、この場合、約90度の反射コーナーを二つ設ける構成になるので、偏向部322a1,322c1(第1コーナー部)において、光導波路314b(第1光導波路)の側に向かって接近させる方向に光を偏向させ、偏向部322a2,322c2(第2コーナー部)において、光を光導波路314b(第1光導波路)に接近させるように偏向させるので、光導波路314b(第1光導波路)に対する、光導波路314a(第2光導波路)あるいは光導波路314c(第3光導波路)の傾斜角度を小さくすることができ、2度以下、1度以下、さらには、0.5度以下にすることができる。
 また、光導波路314a~314cの入射口に入射する光を出射する光源装置として、レーザー光源ではなく、大きな光源装置を用いる場合、あるいは、光源装置の数が非常に多く(例えば5~10、あるいは64)、入射口同士の距離を大きくする場合でも、偏向部322a1,322c1(第1コーナー部)及び偏向部322a2,322c2(第2コーナー部)により、光導波路314a,314cを光導波路314bに対して小さい傾斜角度で、例えば光導波路の上記傾斜角度を2度以下にして、合流させることができる。
 図5に示す実施形態では、光導波路314a(第2光導波路)と光導波路314c(第3光導波路)の経路は線対称に形成されているが、必ずしも線対称に形成されなくてもよい。光の経路長が光導波路314a(第2光導波路)と光導波路314c(第3光導波路)の間で同じになる場合、この2つに入射した光は、出射口320において同じ光強度で出射することができる。
 また、図5に示すように、合流部における光導波路314a(第2光導波路)と光導波路314c(第3光導波路)は、光導波路314b(第1光導波路)に対して傾斜した方向から合流するが、このときの合流部324における、光導波路314a(第2光導波路)と光導波路314c(第3光導波路)の、光導波路314b(第1光導波路)に対する傾斜角度はいすれも、5度以下にすることができ、2度以下にすることができ、さらには1度以下にすることができ、さらには、0.5度以下にすることができる。これにより、合流部における光の伝送損失を抑制することができる。
 このような構成の光導波装置300は、以下のようにして作製される。
 すなわち、図4(c)に示す積層構造体の、フォトレジストマスク232を形成する前の段階の積層構造体300を作製する。図6は、積層構造体300の一例を示す図である。この積層構造体300は、光導波路314a~314cの素となる形状(偏向部の外側の部分が角になった形状)の上層に、上クラッド層の素となる素クラッド層(上クラッド膜)が形成された積層体である。図7(a)は、図6に示す偏向部(コーナー部)となる領域Xを拡大して示す図である。図7(a)~(e)は、以下説明するプロセスで得られる積層構造体300の構成の例を説明する図である。図7(b)は、図7(a)に示すA-A’の矢視断面図であり、図7(c)は、図7(a)に示すB-B’の矢視断面図である。
 図7(b),(c)に示すように、積層構造体300は、シリコン基板350及び下クラッド層の素となる素クラッド層(下クラッド膜)352の上に、光導波路354の素となる導波路コア354が形成され、その上層に上クラッド層の素となる素クラッド層(上クラッド膜)356が形成されている(図7(b)参照)。
 図7(b)に示すように、積層構造体300における導波路コア354の領域は、横線が付された部分と、横破線で付された部分で示され、素クラッド層356の領域は、右上斜線が付された部分と、右上斜線でかつ破線が付された部分で示されているが、横破線で付された部分及び右上斜線でかつ破線が付された部分は、後述するプロセスで除去される部分を示している。
 このような積層構造体300の最上層である素クラッド層356の上層に、図7(d)に示すように、フォトマスク358が積層される。フォトマスク358は、図7(a)に示す領域Eaがエッチングされるように形成される。フォトマスク358(第4レジストマスク)は、偏向部(コーナー部)の外側(コーナー外側)の場所の一部が重ならないパターンを備える。
 したがって、フォトマスク358を用いてエッチングすることにより、図7(e)に示すように、偏向部(コーナー部)の外側(コーナー外側)の側面に、直線部に対して傾斜した傾斜面を形成することができる。図7(e)中の符号354が光導波路314a~314cに該当する。
 すなわち、光導波装置300は、以下の作製方法で作製される。
(1)シリコン基板350の表面側から少なくとも下クラッド層の素となる素クラッド層(下クラッド膜)352、光導波路の素となる導波膜を順番に積層した積層構造体を形成する。
(2)積層構造体の最表層に第2レジストマスクを用いて導波膜をエッチングすることにより、下クラッド膜352の上層に導波膜の一部が残存した導波路コア354を形成する。この導波路コア354の形状をシリコン基板350の上方向から見たとき、この形状が、光導波路314a(第2光導波路)と光導波路314c(第3光導波路)のように、2つの直線部と、直線部に挟まれた偏向部(コーナー部)を備えるような導波膜の形状を形成する。
(3)エッチングした積層構造体の最表層に上クラッド層の素となる素クラッド層(上クラッド膜)356を形成する。これにより、図6に示すような積層構造体300が得られる。しかし、この段階では、図6に示すように、偏向部(コーナー部)のコーナー外側は角となっている。
(4)素クラッド層356を形成した積層構造体300の最表面に、偏向部(コーナー部)のコーナー外側の場所の一部が重ならないパターンのフォトマスク358(第4レジストマスク)を用いて、導波路コア354のコーナー外側の部分をエッチングすることにより、コーナー外側の側面に、直線部に対して傾斜した傾斜面を形成する。これにより、図5に示すように、傾斜面を備える偏向部322a1,322a2,322c1,322c2が作製される。
 図8は、図4(a)に示す積層構造の光導波路を用いた、図5とは異なる他の一実施形態の光導波装置400の平面図である。図8は、コアの上に積層される上クラッド層の図示を省略してわかり易く示している。図8は、コアの形状を示す概念図でもある。
 光導波装置400は、4つのコアである光導波路414a~414dを備え、入射口418a~418dから入射した光を1つの出射口420に導く。4つの光導波路414a~414dのそれぞれは、図4(a)に示す光導波路の構成を有する。光導波路414a~414dのそれぞれは、経路途中で、略直角に屈曲する偏向部422a~422d(コーナー部)を備える。偏向部422a~422d(コーナー部)は、直線状に延びる2つの直線部に挟まれている。出射口420の近傍には、光導波路414a~414dが合流する合流部424が設けられている。光導波路414a~414dは、入射口418a~418dから偏向部422a~422dまでの部分、及び偏向部422a~422dから合流部424までの部分は、直線状に延びている。したがって、合流部424に最も近い偏向部422aにおける偏向角度は、90度を超えており、偏向角度は、合流部424から遠ざかるほど小さくなり、合流部424から最も遠い偏向部422dにおける偏向角度は、90度となっている。
 なお、4つの光導波路414a~414dを構成する図4(a)に示す上クラッド層216Uに対応する上クラッド層は、光導波路414a~414dの幅方向において、光導波路414a~414dに対して所定の範囲内まで延びて終了している。
 このような構成の光導波装置400の偏向部422a~422dのコーナー外側には傾斜面が形成されている。この傾斜面の形成は、図7(a)~(e)に示す方法で形成される。すなわち、光導波装置400も、上述した光導波装置300の作製方法で作製される。
 なお、側面426a~426d(傾斜面)の、直線部に対する傾斜角度は、例えば、45度±3の範囲にすることができる。これにより、偏向部422a~422d(コーナー部)を急激に曲げることができ、合流部における光導波路間の傾斜角度を小さくすることができ、合流部における光の伝送損失を抑制することができる。
 一実施形態によれば、図8に示すように、入射口418a~418dと出射口420の向きは、90度ずれており、シリコン基板は、長方形の形状を成し、入射口418a~418d及び出射口420は、長方形の頂点Xを共4有する互いに直交する二辺SE1,SE2上に設けられている。このとき、偏向部422a~422dによって急激に経路の向きを変えることができるので、出射口420の中心と頂点Xとの間の距離L1は、前記入射口のうち頂点Xから最も遠い入射口418dの中心と頂点Xとの間の距離L2の10%以下にすることができる。距離L1をかなり短くすることができるので、コンパクトな光導波装置400を構成することができる。
 光導波装置100~400は、一実施形態として、マルチ波長光源モジュールに好適に用いられる。マルチ波長光源モジュールでは、光導波装置100~400のいずれか1つと、光導波装置100~400のいずれか1つの装置における光導波路それぞれの入射口に波長の異なる複数の光のそれぞれが入射するように、基板に対して固定された複数の光を出射する複数のレーザー光源(図示されない)と、を備える。レーザー光源は、複数の光として、例えば、RGB3原色等の可視光、あるいは、非可視光、例えば近赤外光を出射する。
 以上、本発明の導光装置、光導波装置、マルチ波長光源モジュール、及び光導波装置の製造方法について詳細に説明したが、本発明は上記実施形態に限定されず、本発明の主旨を逸脱しない範囲において、種々の改良や変更をしてもよいのはもちろんである。
 例えば、光導波装置100~400では、シリコン基板を用いるが、シリコン基板に限定されず、ガラス基板や金属基板等を用いることもできる。
10 導光装置
12 ガラス基板
14a,14b,14c ファイバ
16a,16b,16c 接着層
18a,18b,18c,418a,418b,418c,418d 入射口
20a,20b,20c,320,420 出射口
22a,22b,22c レーザー光源
24 第1領域
26 第2領域
100,200,300,400 光導波装置
112,212,350 シリコン基板
114,214,314a,314b,314c,414,414a,414b,414c,414d コア(光導波路)
114,214** 導波膜
214* 導波路コア
116D,216D 下クラッド層
116U,216U 上クラッド層
116D,116U,216D,352,356 素クラッド層
124,324 合流部
130,230,232,358 フォトレジストパターン
322a,322b,322c,322d,422a1,422a2,422c1,422c2 偏向部
300 積層構造体
326a,326b,326c,326d 側面
354 導波膜

Claims (21)

  1.  入射した光を出射させる導光装置であって、
     ガラス基板と、
     前記ガラス基板上に設けられ、前記光の入射口及び出射口を有し、前記入射口から前記出射口まで単一材料で構成され、かつ、前記導光装置を取り巻く外部雰囲気に露出し、前記入射口から前記出射口に導光するファイバと、
     前記ファイバの前記入射口と前記出射口を、前記ガラス基板の指定された場所に固定する為に、前記ファイバの一部と前記ガラス基板の間に介在する接着剤からなる接着層と、を備え、
     前記ファイバの屈折率、前記接着剤の屈折率、及び前記ガラス基板の屈折率をそれぞれ、n1,n2,n3としたとき、n1>n2,n1>n3を満足する、ことを特徴とする導光装置。
  2.  前記ファイバは、前記ファイバの切断面において、前記接着層と接触する2つの第1領域と、前記2つの領域に挟まれた、前記ガラス基板と接触するあるいは接触しない第2領域と、を有し、
     前記第1領域及び前記第2領域以外の部分は、前記外部雰囲気と接している、請求項1に記載の導光装置。
  3.  前記ファイバとして、2つの光を導く第1ファイバ及び第2ファイバが前記ガラス基板に設けられ、
     前記第1ファイバの光の出射口の中心と前記第2ファイバの光の出射口の中心との間の離間距離Δは、前記第1ファイバの光の入射口の中心と前記第2ファイバの光の入射口の中心との間の離間距離Laの100分の1以下になるように、前記第1ファイバ及び第2ファイバの少なくとも1つは湾曲して前記出射口に向かうにつれて互いに接近し、
     前記第1ファイバの入射口と出射口との間の離間距離あるいは前記第2ファイバの入射口と出射口との間の離間距離をLbとしたとき、前記離間距離Laと前記離間距離Lbとの比Lb/Laは、1.0以下である、請求項1または2に記載の導光装置。
  4.  入射した光を出射させる光導波装置であって、
     基板と、
     前記基板上に設けられ、前記光の入射口及び出射口を有し、前記入射口から光を前記出射口に導く光導波路と、
     前記光導波路と前記基板との間に積層され、前記光導波路に接する、前記光導波路の屈折率よりも小さい屈折率の第1クラッド層と、
     前記光導波路に対して前記第1クラッド層と反対側には、前記光導波路と接する、前記光導波路の屈折率よりも小さい屈折率の第2クラッド層と、を備え、
     前記光導波路は、前記入射口から前記出射口まで、同じ材料で連続して延在しており、
     前記光導波路の少なくとも一部分において、前記基板の面に平行で前記光導波路の延在方向に直交する前記光導波路の幅方向の少なくとも一方の側の前記光導波路の面は、空気をクラッド要素とするエアークラッド層と接している、ことを特徴とする光導波装置。
  5.  前記幅方向の一方の側において、前記光導波路と接し、前記光導波路の屈折率よりも小さい屈折率の第3クラッド層を備え、
     前記光導波路は、前記第1クラッド層、前記第2クラッド層、及び前記第3クラッド層と連続して接する部分を有する、請求項4に記載の光導波装置。
  6.  前記部分は、前記光導波路の直線状に延びる直線部に設けられている、請求項5に記載の光導波装置。
  7.  前記光導波路は、前記基板上で光の進行方向を曲げるコーナー部を備え、
     前記光導波路は、前記コーナー部におけるコーナー内側で前記第3クラッド層と接し、コーナー外側で前記エアークラッド層と接する、請求項5に記載の光導波装置。
  8.  前記光導波路の前記コーナー外側の側面は、平面である、請求項7に記載の光導波装置。
  9.  前記光導波装置は、前記光導波路として、2つの光を導く第1光導波路及び第2光導波路を含み、
     前記第1光導波路及び前記第2光導波路は、互いに異なる入射口を備え、
     前記光導波装置は、前記第1光導波路及び前記第2光導波路が前記基板上で互いに合流する合流部と、前記第1光導波路及び前記第2光導波路の共通した出射口と、を備える、請求項4~8のいずれか1項に記載の光導波装置。
  10.  前記合流部における前記第1光導波路と前記第2光導波路との傾斜角度は2度以下である、請求項9に記載の光導波装置。
  11.  前記光導波装置は、前記光導波路として、少なくとも3つの光を導く第1光導波路、第2光導波路、及び第3光導波路を少なくとも含み、
     前記第1光導波路、第2光導波路、及び前記第3光導波路は、互いに異なる入射口を備え、
     前記光導波装置は、前記基板上で前記第1光導波路、前記第2光導波路、及び前記第3光導波路が互いに合流する合流部と、前記第1光導波路、前記第2光導波路、及び前記第3光導波路の共通した出射口と、を備える、請求項5~8のいずれか1項に記載の光導波装置。
  12.  前記第1光導波路、前記第2光導波路、及び前記第3光導波路の入射口はそれぞれ、前記基板の第1辺に沿って設けられ、
     前記第1光導波路、前記第2光導波路、及び前記第3光導波路の出射口は、前記入射口と同じ方向を向き、前記第1辺と対向する前記第2辺に沿って設けられ、
     前記第1光導波路、前記第2光導波路、及び前記第3光導波路のうち少なくとも前記第2光導波路及び前記第3光導波路のそれぞれには、前記基板上で光の進行方向を曲げるコーナー部が2箇所設けられ、前記コーナー部が設けられた2箇所の幅方向の側壁は、前記コーナー部におけるコーナー内側で前記第3クラッド層と接し、コーナー外側で前記エアークラッド層と接し、
     前記コーナー外側の側壁は平面で構成され、
     前記合流部は、前記第2光導波路及び前記第3光導波路それぞれの前記コーナー部の場所に対して前記出射口の側に位置する、請求項11に記載の光導波装置。
  13.  前記第1光導波路、前記第2光導波路、及び前記第3光導波路の入射口と前記出射口との間の、前記入射口の向く方向に沿った離間距離をLとし、前記第1光導波路、前記第2光導波路、及び前記第3光導波路それぞれの前記入射口のうちの隣リ合う入射口の中心間距離Dとしてとき、比L/Dは、3.0以下である、請求項12に記載の光導波装置。
  14.  前記第1光導波路は、前記第1光導波路の入射口から前記出射口まで直線状に延び、
     前記第2光導波路及び前記第3光導波路のそれぞれは、経路として、前記第2光導波路及び前記第3光導波路それぞれの前記入射口から延びて前記第1光導波路に対して平行に延びる第1直線部と、前記第1直線部を通過した光を前記第1光導波路の側に向くように偏向する第1コーナー部と、前記第1コーナー部を通過した光を前記第1光導波路に接近させるように導光する第2直線部と、前記第2直線部を通過した光を前記合流部に向くように偏向する第2コーナー部と、前記第2コーナー部を通過した光を前記合流部に到達させるように導光する第3直線部と、を備える、請求項12または13に記載の光導波装置。
  15.  前記合流部において、前記第2光導波路及び前記第3光導波路は、前記第1光導波路に対して傾斜した方向から合流し、
     前記合流部における、前記第2光導波路及び前記第3光導波路の、前記第1光導波路に対する傾斜角度はいすれも、2度以下である、請求項11~14のいずれか1項に記載の光導波装置。
  16.  下クラッド層、光導波路、及び上クラッド層を有する光導波装置の製造方法であって、
     基板の表面側から少なくとも前記下クラッド層の素となる下クラッド膜、前記光導波路の素となる導波膜、及び前記上クラッド層の素となる上クラッド膜を順番に積層した積層構造体を形成するステップと、
     前記積層構造体の最表層に第1レジストマスクを用いて前記導波膜の側面が露出するようにエッチングすることにより、両側の側面が外部に露出した前記光導波路を形成するステップと、を備えることを特徴とする光導波装置の製造方法。
  17.  下クラッド層、光導波路、及び上クラッド層を有する光導波装置の製造方法であって、
     基板の表面側から少なくとも前記下クラッド層の素となる下クラッド膜、前記光導波路の素となる導波膜を順番に積層した積層構造体を形成するステップと、
     前記積層構造体の最表層に第2レジストマスクを用いて前記導波膜をエッチングすることにより、前記下クラッド膜の上層に前記導波膜の一部が残存した導波膜を形成するステップと、
     エッチングした前記積層構造体の最表層に前記上クラッド層の素となる上クラッド膜を形成するステップと、
     前記上クラッド膜を形成した前記積層構造体の最表層に、前記残存した導波膜の前記基板上の場所と一部が重ならないパターンの第3レジストマスクを用いて、前記上クラッド膜と前記残存した導波膜の一部をエッチングすることにより、前記光導波路の一方の側面が外部に露出し、他方の側面が前記上クラッド層に接する構成の前記光導波路を形成するステップと、を備えることを特徴とする光導波装置の製造方法。
  18.  下クラッド層、光導波路、及び上クラッド層を有する光導波装置の製造方法であって、
     基板の表面側から少なくとも前記下クラッド層の素となる下クラッド膜、前記光導波路の素となる導波膜を順番に積層した積層構造体を形成するステップと、
     前記積層構造体の最表層に第2レジストマスクを用いて前記導波膜をエッチングすることにより、前記下クラッド膜の上層に前記導波膜の一部が残存し、残存した前記導波膜の形状を前記基板の上方向から見たとき、該形状が、2つの直線部と、前記直線部に挟まれたコーナー部とを備えるような導波膜の形状を形成するステップと、
     エッチングした前記積層構造体の最表層に前記上クラッド層の素となる上クラッド膜を形成するステップと、
     前記上クラッド膜を形成した前記積層構造体の最表面に、前記コーナー部のコーナー外側の場所の一部が重ならないパターンの第4レジストマスクを用いて、前記導波膜の一部である前記コーナー外側の部分をエッチングすることにより、前記コーナー外側の側面に、前記直線部に対して傾斜した傾斜面を形成するステップと、を備える、ことを特徴とする光導波装置の製造方法。
  19.  前記傾斜面の、前記直線部に対する傾斜角度は、45度±3度の範囲内にある、請求項18に記載の光導波装置の製造方法。
  20.  前記ファイバとして、波長の異なる複数の光を前記入射口から前記出射口まで導く第1ファイバ~第nファイバ(nは2以上の自然数)が前記ガラス基板に設けられ、前記第1ファイバ~前記第nファイバは、前記出射口から合波した光が出射するように、前記出射口で互いに接近した構成を備える、請求項1~3のいずれか1項に記載の導光装置と、
     前記第1ファイバ~前記第nファイバそれぞれの前記入射口に前記複数の光のそれぞれが入射するように、前記ガラス基板に対して固定された前記複数の光を出射する複数のレーザー光源と、を備えるマルチ波長光源モジュール。
  21.  請求項9~15のいずれか1項に記載の光導波装置と、
     前記光導波路それぞれの前記入射口に波長の異なる複数の光のそれぞれが入射するように、前記基板に対して固定された前記複数の光を出射する複数のレーザー光源と、を備えるマルチ波長光源モジュール。
PCT/JP2017/038762 2017-10-26 2017-10-26 導光装置、光導波装置、マルチ波長光源モジュール、及び光導波装置の製造方法 WO2019082347A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201780095257.1A CN111465879A (zh) 2017-10-26 2017-10-26 导光装置、光波导装置、多波长光源模块及光波导装置的制造方法
PCT/JP2017/038762 WO2019082347A1 (ja) 2017-10-26 2017-10-26 導光装置、光導波装置、マルチ波長光源モジュール、及び光導波装置の製造方法
JP2019549783A JPWO2019082347A1 (ja) 2017-10-26 2017-10-26 導光装置、光導波装置、及びマルチ波長光源モジュール

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/038762 WO2019082347A1 (ja) 2017-10-26 2017-10-26 導光装置、光導波装置、マルチ波長光源モジュール、及び光導波装置の製造方法

Publications (1)

Publication Number Publication Date
WO2019082347A1 true WO2019082347A1 (ja) 2019-05-02

Family

ID=66246302

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/038762 WO2019082347A1 (ja) 2017-10-26 2017-10-26 導光装置、光導波装置、マルチ波長光源モジュール、及び光導波装置の製造方法

Country Status (3)

Country Link
JP (1) JPWO2019082347A1 (ja)
CN (1) CN111465879A (ja)
WO (1) WO2019082347A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023037702A1 (ja) 2021-09-07 2023-03-16 セーレンKst株式会社 光導波路素子及び光源モジュール

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114690314B (zh) * 2020-12-28 2024-03-22 中芯国际集成电路制造(上海)有限公司 半导体结构及其形成方法
CN113193468B (zh) * 2021-05-27 2023-09-12 三序光学科技(苏州)有限公司 基于平面波导型合波器的半导体激光光源模块及制造方法
US12072642B2 (en) 2021-05-31 2024-08-27 Tdk Corporation Integrated light source module

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03504649A (ja) * 1988-10-07 1991-10-09 イーストマン・コダック・カンパニー 光ファイバーアレーを製造する方法
JP2004512551A (ja) * 2000-10-13 2004-04-22 マサチューセッツ インスティテュート オブ テクノロジー トレンチ構造体を有する光導波管
US6773615B1 (en) * 1999-05-21 2004-08-10 British Telecommunications Public Limited Company Making grooves in planar waveguides
JP2004287093A (ja) * 2003-03-20 2004-10-14 Fujitsu Ltd 光導波路、光デバイスおよび光導波路の製造方法
JP2007271676A (ja) * 2006-03-30 2007-10-18 Kyocera Corp ファイバ型光線路、ファイバ型部品及び光モジュール
JP2010164642A (ja) * 2009-01-13 2010-07-29 Fujitsu Ltd 光デバイスおよび光送信器
WO2010137661A1 (ja) * 2009-05-28 2010-12-02 シチズンホールディングス株式会社 光源装置
JP2011085816A (ja) * 2009-10-16 2011-04-28 Nippon Telegr & Teleph Corp <Ntt> 光半導体装置及びその作製方法
JP2011109001A (ja) * 2009-11-20 2011-06-02 Kyushu Univ 導波路型光フィルター及び半導体レーザー
US20150139587A1 (en) * 2012-06-08 2015-05-21 Trumpe Laser Gmbh + Co. Kg Fiber coupler
JP2016118750A (ja) * 2014-12-18 2016-06-30 潤 成沢 チップ型バンドルファイバ合波器及びチップ型マルチ波長光源

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04319905A (ja) * 1991-04-19 1992-11-10 Nippon Telegr & Teleph Corp <Ntt> 光合分岐器
JP2000147289A (ja) * 1998-11-13 2000-05-26 Nippon Telegr & Teleph Corp <Ntt> 光導波路およびその製造方法
JP4659422B2 (ja) * 2003-10-06 2011-03-30 三井化学株式会社 光導波路の製造方法
JP4269979B2 (ja) * 2004-03-04 2009-05-27 日立電線株式会社 波長多重光送信モジュール
JP2017129744A (ja) * 2016-01-20 2017-07-27 フォトンリサーチ株式会社 光合波装置

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03504649A (ja) * 1988-10-07 1991-10-09 イーストマン・コダック・カンパニー 光ファイバーアレーを製造する方法
US6773615B1 (en) * 1999-05-21 2004-08-10 British Telecommunications Public Limited Company Making grooves in planar waveguides
JP2004512551A (ja) * 2000-10-13 2004-04-22 マサチューセッツ インスティテュート オブ テクノロジー トレンチ構造体を有する光導波管
JP2004287093A (ja) * 2003-03-20 2004-10-14 Fujitsu Ltd 光導波路、光デバイスおよび光導波路の製造方法
JP2007271676A (ja) * 2006-03-30 2007-10-18 Kyocera Corp ファイバ型光線路、ファイバ型部品及び光モジュール
JP2010164642A (ja) * 2009-01-13 2010-07-29 Fujitsu Ltd 光デバイスおよび光送信器
WO2010137661A1 (ja) * 2009-05-28 2010-12-02 シチズンホールディングス株式会社 光源装置
JP2011085816A (ja) * 2009-10-16 2011-04-28 Nippon Telegr & Teleph Corp <Ntt> 光半導体装置及びその作製方法
JP2011109001A (ja) * 2009-11-20 2011-06-02 Kyushu Univ 導波路型光フィルター及び半導体レーザー
US20150139587A1 (en) * 2012-06-08 2015-05-21 Trumpe Laser Gmbh + Co. Kg Fiber coupler
JP2016118750A (ja) * 2014-12-18 2016-06-30 潤 成沢 チップ型バンドルファイバ合波器及びチップ型マルチ波長光源

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SPIEKMAN ET AL., ULTRASMALL WAVEGUIDE BENDS THE CORNER MIRRORS OF THE FUTURE?, vol. 142, no. 1, 1 February 1995 (1995-02-01), pages 61 - 65, XP006004289 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023037702A1 (ja) 2021-09-07 2023-03-16 セーレンKst株式会社 光導波路素子及び光源モジュール

Also Published As

Publication number Publication date
JPWO2019082347A1 (ja) 2020-05-28
CN111465879A (zh) 2020-07-28

Similar Documents

Publication Publication Date Title
US7068871B2 (en) Optical wiring substrate, method of manufacturing optical wiring substrate and multilayer optical wiring
JP6829446B2 (ja) 光回路及び光学装置
US10992104B2 (en) Dual layer grating coupler
WO2019082347A1 (ja) 導光装置、光導波装置、マルチ波長光源モジュール、及び光導波装置の製造方法
JP2000056146A (ja) 自己導波光回路
WO2017090333A1 (ja) 光導波路素子及び光源モジュール
JP5304209B2 (ja) スポットサイズ変換器
US20210149110A1 (en) Optical waveguide-type optical multiplexer, optical waveguide-type multiplexing light source optical device and image projecting device
US11662525B1 (en) Optical system
JP4200436B2 (ja) 高分子光導波路
JP5104568B2 (ja) 導光板および光モジュール
JP2010085564A (ja) 光導波路回路及び光回路装置
JP2008527399A (ja) 光学リサイジングのための装置および方法
WO2020079862A1 (ja) 光合波器、光源モジュール、2次元光走査装置及び画像投影装置
US7542642B2 (en) Multi-beam generating device and optical recording device using the same
JP7105498B2 (ja) 光導波路型合波器、光源モジュール、二次元光ビーム走査装置及び光ビーム走査型映像投影装置
JP7340661B2 (ja) 光源モジュール
JP5772436B2 (ja) 光結合器及び光デバイス
JP4806175B2 (ja) 発光デバイス、光書込み装置、および光通信装置
JP7409881B2 (ja) 光学式濃度測定装置および光導波路
JP2021085912A (ja) 光源装置及び光源装置の製造方法
WO2014156959A1 (ja) 端面光結合型シリコン光集積回路
JP2002169048A (ja) 自己導波光回路
JP2023041513A (ja) 光デバイス
JP2005172853A (ja) 反射方向可変ミラー装置及びその製造方法、並びに光路可変装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17930010

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019549783

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17930010

Country of ref document: EP

Kind code of ref document: A1