WO2019044051A1 - Printed circuit board production method, printed circuit board, multi-layered printed circuit board production method, and multi-layered printed circuit board - Google Patents

Printed circuit board production method, printed circuit board, multi-layered printed circuit board production method, and multi-layered printed circuit board Download PDF

Info

Publication number
WO2019044051A1
WO2019044051A1 PCT/JP2018/018706 JP2018018706W WO2019044051A1 WO 2019044051 A1 WO2019044051 A1 WO 2019044051A1 JP 2018018706 W JP2018018706 W JP 2018018706W WO 2019044051 A1 WO2019044051 A1 WO 2019044051A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
wiring board
printed wiring
polymerization initiator
cured
Prior art date
Application number
PCT/JP2018/018706
Other languages
French (fr)
Japanese (ja)
Inventor
治之 芦ヶ原
梅田 裕明
Original Assignee
タツタ電線株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by タツタ電線株式会社 filed Critical タツタ電線株式会社
Publication of WO2019044051A1 publication Critical patent/WO2019044051A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/26Layered products comprising a layer of synthetic resin characterised by the use of special additives using curing agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits

Definitions

  • the present invention relates to a method of manufacturing a printed wiring board, a printed wiring board, a method of manufacturing a multilayer printed wiring board, and a multilayer printed wiring board.
  • Printed wiring boards are widely used in electronic devices such as mobile phones, video cameras, notebook computers, etc., to incorporate circuits into complex mechanisms. In recent years, miniaturization of electronic devices has been rapidly promoted. As one of the means for miniaturizing electronic devices, semiconductor components used in electronic devices have been mounted on printed wiring boards with high density. As described above, in order to mount semiconductor components at high density, wiring patterns have been formed at high density also in a printed wiring board. In addition, in order to miniaturize electronic devices, thinning of printed wiring boards has also been performed.
  • Patent Document 1 discloses a method of manufacturing a circuit board (flexible printed wiring board) for coping with the high density mounting of the semiconductor component. That is, in Patent Document 1, a first step of forming an insulating layer on a substrate, a first conductive portion on the surface of the insulating layer, and a second conductive portion adjacent to the first conductive portion Forming the first conductive portion and the second conductive portion in a forward tapered shape, and insulating the first conductive portion and the second conductive portion. A third step of press-fitting into a layer, wherein in the third step, a gap is generated between the side surface of the first conductive portion and the second conductive portion and the insulating layer. A method of manufacturing the characterized circuit board is disclosed.
  • a printed wiring board When an electronic device (semiconductor component) incorporated in a printed wiring board exhibits a function, heat is also generated at the same time.
  • a printed wiring board In order to dissipate the heat, a printed wiring board has been provided with a base material serving as a heat dissipation material on the back side of the position where the electronic device (semiconductor component) is mounted.
  • a wiring pattern will be formed on the surface of resin, resin will be hardened after bonding resin and a base material. That is, another process is performed after the wiring pattern is formed on the surface of the resin until the resin is cured. Therefore, there is also a problem that the wiring pattern is shifted before curing the resin.
  • the present invention has been made in view of the above problems, and an object of the present invention is to improve the adhesion between a printed wiring board and a substrate such as a heat sink and the adhesion between printed wiring boards.
  • a resin laminating step of laminating a first resin in a semi-cured state and a second resin in a semi-cured state A wiring pattern forming step of forming a wiring pattern on the first resin; A first resin curing step of curing the first resin while maintaining the semi-cured state of the second resin; A substrate bonding step of bonding the second resin and the substrate together; And a second resin curing step of curing the second resin and bonding the second resin and the base material,
  • the first resin contains a first polymerization initiator
  • the second resin is characterized by containing a second polymerization initiator.
  • the first resin in the semi-cured state is laminated on the second resin in the semi-cured state.
  • a wiring pattern is formed on the first resin, and the second resin and the base are bonded.
  • a resin in a semi-cured state means a solid resin having plasticity.
  • the first resin in the semi-cured state and the second resin in the semi-cured state are laminated. Therefore, the adhesion between the first resin and the second resin also becomes good.
  • the first resin is cured while maintaining the semi-cured state of the second resin. That is, in the method of manufacturing a printed wiring board of the present invention, the first resin is cured before the second resin.
  • the wiring pattern formed on the first resin can be sufficiently fixed to the first resin, and the adhesion between the wiring pattern and the first resin can be improved.
  • adhesion between the second resin and the substrate is improved. Can. Furthermore, since it is not necessary to use an adhesive separately to bond the substrate, the manufacturing efficiency is improved.
  • the base material is a heat dissipation member, the heat generated from the electronic component can be dissipated without an adhesive.
  • the wiring pattern in the step of forming a wiring pattern, may be embedded in the first resin after the wiring pattern is formed on the first resin.
  • the position of the wiring pattern can be easily fixed, so that the wiring pattern can be prevented from being displaced.
  • the substrate bonding step it is desirable to dispose a reinforcing material which can be impregnated with the second resin between the second resin and the substrate.
  • a reinforcing material which can be impregnated with the second resin between the second resin and the substrate.
  • the strength of the printed wiring board to be manufactured can be strengthened.
  • the reinforcing material can be impregnated with the second resin, the second resin and the base material are in direct contact with each other. Therefore, the adhesion between the second resin and the base is unlikely to be inhibited.
  • a reinforcing material capable of being impregnated with the first resin and / or the second resin is disposed between the first resin and the second resin. It is desirable to do. By arranging the reinforcing material between the first resin and the second resin, the strength of the printed wiring board to be manufactured can be strengthened. In addition, since the reinforcing material can be impregnated with the first resin and / or the second resin, the first resin and the second resin are in direct contact with each other. Therefore, the adhesion between the first resin and the second resin is not easily inhibited.
  • the first polymerization initiator is a photopolymerization initiator
  • the second polymerization initiator is a thermal polymerization initiator.
  • the first resin may be cured by irradiating the first resin with light
  • the second resin may be cured by applying heat to the second resin in the second resin curing step.
  • the photopolymerization initiator and the thermal polymerization initiator as the first polymerization initiator and the second polymerization initiator, the first resin is easily cured prior to the curing of the second resin. be able to.
  • the first polymerization initiator is a photopolymerization initiator and a thermal polymerization initiator
  • the second polymerization initiator is a thermal polymerization initiator
  • the first polymerization initiator is used.
  • the resin curing step the first resin is cured by irradiating the first resin with light
  • the second resin curing step the second resin is cured by applying heat to the second resin.
  • heat may be applied to the first resin to cure the first resin.
  • the first resin includes the first polymerization initiator including the photopolymerization initiator and the thermal polymerization initiator
  • the degree of curing of the first resin can be easily controlled in the first resin curing step.
  • heat is also applied to the first resin to cure the second resin, and at the same time, if an uncured portion exists in the first resin, the uncured portion of the first resin The part can be fully cured.
  • the first polymerization initiator is a thermal polymerization initiator
  • the second polymerization initiator is a photopolymerization initiator
  • the first resin may be cured by applying heat to the first resin
  • the second resin may be cured by irradiating the second resin with light in the second resin curing step.
  • the first polymerization initiator is a thermal polymerization initiator and a photopolymerization initiator
  • the second polymerization initiator is a photopolymerization initiator
  • the first polymerization initiator is
  • the resin curing step the first resin is cured by applying heat to the first resin
  • the second resin curing step the second resin is cured by irradiating the second resin with light.
  • the first resin may be cured by irradiating the first resin with light.
  • the degree of curing of the first resin can be easily controlled in the first resin curing step.
  • the first resin is also irradiated with light to cure the second resin, and at the same time, when an uncured portion exists in the first resin, the first resin The uncured portion of the resin can be sufficiently cured.
  • the base material is translucent.
  • the second resin curing step it is desirable that the second resin be cured by irradiating the second resin with light from at least the substrate side.
  • the substrate has translucency, light emitted from the substrate side can also reach the second resin. Therefore, the second resin can be cured efficiently.
  • the first polymerization initiator is a thermal polymerization initiator
  • the second polymerization initiator is a thermal polymerization initiator
  • the temperature at which the second resin remains in a semi-cured state, and heat at a temperature at which the first resin cures is applied to cure the first resin
  • Heat of a temperature at which the second resin cures may be added to cure the second resin. That is, by adjusting the composition of the first resin and the second resin so that the curing temperature of the first resin is lower than the curing temperature of the second resin, the curing time of the first resin and the curing of the second resin You may stagger the time.
  • the first resin can be cured without completely curing the second resin.
  • the position of the wiring pattern formed in the first resin can be easily fixed, so that the wiring pattern can be prevented from being displaced.
  • the second resin is not completely cured in the first resin curing step, the adhesion to the substrate is improved.
  • the 10-hour half-life temperature of the first polymerization initiator is lower than the 10-hour half-life temperature of the second polymerization initiator, and in the first resin curing step, The first resin is cured by applying heat to the first resin at a temperature lower than the 10-hour half-life temperature of the second polymerization initiator, and in the second resin curing step, the second polymerization initiation
  • the second resin may be cured by applying heat to the second resin at a temperature above the 10 hour half-life temperature of the agent.
  • the second heat treatment can be easily performed by controlling the temperature of heat in the first resin curing step and the second resin curing step.
  • the curing of the first resin can be performed prior to the curing of the resin.
  • the first polymerization initiator is a photopolymerization initiator
  • the second polymerization initiator is a photopolymerization initiator
  • the substrate has a light transmitting property.
  • the first resin and the second resin are laminated with the light impermeable layer interposed between the first resin and the second resin, and the first resin is laminated.
  • the first resin is cured by irradiating the first resin with light from the first resin side
  • the second resin curing step light is applied to the second resin from the substrate side.
  • the second resin may be cured by irradiation.
  • the first resin when the light impermeable layer is interposed between the first resin and the second resin, when the light is irradiated from the first resin side, the light does not reach the second resin. Therefore, by adjusting the light irradiation direction, the first resin can be easily cured prior to the curing of the second resin.
  • the first polymerization initiator functions as a photopolymerization initiator by being irradiated with light of the first wavelength
  • the second polymerization initiator has the second wavelength.
  • the first wavelength and the second wavelength are different wavelengths
  • the semi-cured state of the second resin is While maintaining, the first resin is irradiated with the light of the first wavelength to cure the first resin
  • the second resin is irradiated with the light of the second wavelength.
  • the second resin may be cured.
  • the base material has translucency
  • the second resin curing step the second resin is irradiated with light of the second wavelength from at least the base side. It is desirable to cure the said 2nd resin by carrying out.
  • the substrate has translucency
  • the light of the second wavelength irradiated from the substrate side can also reach the second resin. Therefore, the second resin can be cured efficiently.
  • the above-mentioned resin laminating step, the above-mentioned wiring pattern forming step, the above first resin curing step, the above substrate bonding step and the above second resin curing step It is desirable to do it continuously. By continuously performing these steps with a roll press, a printed wiring board can be efficiently manufactured.
  • the printed wiring board of the present invention is A first cured resin layer having a wiring pattern formed on one side thereof, A second cured resin layer laminated on the surface of the first cured resin layer opposite to the surface on which the wiring pattern is formed; A printed wiring board comprising: a base material adhered to the surface of the second cured resin layer opposite to the surface in contact with the first cured resin layer;
  • the first cured resin layer is a cured resin in which a first resin is cured by a first polymerization initiator,
  • the second cured resin layer is a cured resin obtained by curing a second resin with a second polymerization initiator,
  • the first curing means for curing the first resin with the first polymerization initiator is different from the second means for curing the second resin with the second polymerization initiator.
  • the printed wiring board having such a configuration is a printed wiring board manufactured by the method for manufacturing a printed wiring board of the present invention. Therefore, in the printed wiring board of such a configuration, the adhesion between the second
  • the wiring pattern is preferably embedded in the first cured resin layer.
  • the wiring pattern is unlikely to be deviated.
  • the method for producing a multilayer printed wiring board of the present invention is A method for producing a multilayer printed wiring board, comprising: laminating an upper layer printed wiring board and a lower layer printed wiring board to produce a multilayer printed wiring board, A resin laminating step for the upper layer printed wiring board, wherein the first resin in the semi-cured state and the second resin in the semi-cured state are laminated; A first wiring pattern forming step of forming a first wiring pattern in the first resin; A first resin curing step of curing an upper printed wiring board by curing the first resin while maintaining a semi-cured state of the second resin; A lower layer printed wiring board preparing step of preparing a lower layer printed wiring board in which a second wiring pattern is formed in a third resin; A printed wiring board laminating step of laminating the lower layer printed wiring board under the upper layer printed wiring board; And a second resin curing step of curing the second resin and bonding the upper layer printed wiring board and the lower layer printed wiring board.
  • the first resin contains a first polymerization initi
  • the first resin in the semi-cured state is laminated on the second resin in the semi-cured state.
  • a step after the method for manufacturing a multilayer printed wiring board of the present invention a first wiring pattern is formed on the first resin, and the second resin and the lower layer printed wiring board are bonded.
  • Manufactured by using a resin of a type that improves the transmission characteristics of the first wiring pattern as the first resin, and using a type of resin that improves the adhesion with the lower layer printed wiring board as the second resin In a multilayer printed wiring board, transmission characteristics and adhesion between the printed wiring boards can be compatible.
  • the first resin in the semi-cured state and the second resin in the semi-cured state are laminated. Therefore, the adhesion between the first resin and the second resin also becomes good.
  • the first resin is cured while maintaining the semi-cured state of the second resin. That is, in the method for manufacturing a multilayer printed wiring board of the present invention, the first resin is cured before the second resin.
  • the first resin is cured before the second resin.
  • the second resin in a semi-cured state and the third resin of the lower layer printed wiring board are adhered after curing of the first resin, the second resin and the lower layer printed wiring The adhesion of the plate to the third resin can be improved.
  • the second resin is cured in a state in which the adhesion between the second resin and the third resin is high, so the upper layer printed wiring board and the lower layer printed wiring board are strong. It will be glued to
  • the upper layer printed wiring is electrically connected such that the first wiring pattern and the second wiring pattern are electrically connected via the conductive member. It is desirable to laminate a board and a lower layer printed wiring board. As described above, by manufacturing a multilayer printed wiring board, the wiring pattern can be made high in density.
  • the first polymerization initiator is a photopolymerization initiator
  • the second polymerization initiator is a thermal polymerization initiator
  • the first resin may be cured by irradiating the first resin with light
  • the second resin may be cured by applying heat to the second resin.
  • the first polymerization initiator is a photopolymerization initiator and a thermal polymerization initiator
  • the second polymerization initiator is a thermal polymerization initiator
  • the first polymerization initiator is a heat polymerization initiator.
  • the first resin is cured by irradiating the first resin with light
  • the second resin is cured by applying heat to the second resin.
  • the first resin may be cured by applying heat to the first resin.
  • the degree of curing of the first resin can be easily controlled in the first resin curing step.
  • heat is also applied to the first resin to cure the second resin, and at the same time, if an uncured portion exists in the first resin, the uncured portion of the first resin The part can be fully cured.
  • the first polymerization initiator is a thermal polymerization initiator
  • the second polymerization initiator is a photopolymerization initiator
  • the first resin may be cured by applying heat to the first resin
  • the second resin may be cured by irradiating the second resin with light in the second resin curing step.
  • the first polymerization initiator is a thermal polymerization initiator and a photopolymerization initiator
  • the second polymerization initiator is a photopolymerization initiator
  • the first polymerization initiator is a photopolymerization initiator.
  • the first resin curing step the first resin is cured by applying heat to the first resin
  • the second resin curing step the second resin is irradiated by irradiating the second resin with light.
  • the first resin may be cured by irradiating the first resin with light.
  • the degree of curing of the first resin can be easily controlled in the first resin curing step.
  • the first resin is also irradiated with light to cure the second resin, and at the same time, when an uncured portion exists in the first resin, the first resin The uncured portion of the resin can be sufficiently cured.
  • the first polymerization initiator is a thermal polymerization initiator
  • the second polymerization initiator is a thermal polymerization initiator
  • the heat of the temperature at which the second resin cures may be applied to cure the second resin. That is, by adjusting the composition of the first resin and the second resin so that the curing temperature of the first resin is lower than the curing temperature of the second resin, the curing time of the first resin and the curing of the second resin You may stagger the time.
  • the first resin can be cured without completely curing the second resin in this case.
  • the position of the wiring pattern formed in the first resin can be easily fixed, so that the wiring pattern can be prevented from being displaced.
  • the second resin is not completely cured in the first resin curing step, the adhesion to the substrate is improved.
  • the 10-hour half-life temperature of the first polymerization initiator is lower than the 10-hour half-life temperature of the second polymerization initiator, and in the first resin curing step Heat is applied to the first resin at a temperature lower than a 10-hour half-life temperature of the second polymerization initiator to cure the first resin, and in the second resin curing step, the second polymerization is performed
  • the second resin may be cured by applying heat to the second resin at a temperature above the 10 hour half-life temperature of the initiator.
  • the second heat treatment can be easily performed by controlling the temperature of heat in the first resin curing step and the second resin curing step.
  • the curing of the first resin can be performed prior to the curing of the resin.
  • the first polymerization initiator functions as a photopolymerization initiator by being irradiated with light of a first wavelength
  • the second polymerization initiator has a second wavelength.
  • the first wavelength and the second wavelength are different wavelengths by being irradiated with the light of the second wavelength, and in the first resin curing step, the semi-cured state of the second resin While maintaining the above, the first resin is irradiated with the light of the first wavelength to cure the first resin, and in the second resin curing step, the second resin is irradiated with the light of the second wavelength.
  • the second resin may be cured by carrying out.
  • the second wiring pattern is formed on the third resin in a semi-cured state containing a third polymerization initiator, and then the second wiring pattern is formed.
  • the third resin is cured so that the resin is not completely cured to produce the lower layer printed wiring board, and in the second resin curing step, the second resin is cured and the third resin is simultaneously cured. It is desirable that the upper layer printed wiring board and the lower layer printed wiring board be adhered after completely curing.
  • the second wiring pattern is formed on the third resin in the semi-cured state, and then the third resin is cured to prevent the third resin from being completely cured, thereby forming the third resin.
  • the second wiring pattern can be sufficiently fixed to the third resin, and the adhesion between the second wiring pattern and the third resin can be improved. Moreover, in the method of manufacturing such a multilayer printed wiring board, since the second resin in the semi-cured state and the third resin in the semi-cured state are laminated, the upper layer printed wiring board and the lower layer printed wiring board The adhesion of the above can be improved.
  • the third resin in a semi-cured state containing a third polymerization initiator, and the third in a semi-cured state containing a fourth polymerization initiator (4)
  • the resin is laminated, the second wiring pattern is formed on the third resin, and then the third resin is cured while maintaining the semi-cured state of the fourth resin to produce a lower layer printed wiring board
  • the fourth resin may also be cured.
  • the third polymerization initiator may be a thermal polymerization initiator or a photopolymerization initiator.
  • the multilayer printed wiring board of the present invention is A multilayer printed wiring board in which an upper layer printed wiring board on which a first wiring pattern is formed and a lower layer printed wiring board on which a second wiring pattern is formed on a third resin are laminated,
  • the upper layer printed wiring board has a first cured resin layer having the first wiring pattern formed on one surface thereof; And a second cured resin layer laminated on the surface of the first cured resin layer opposite to the surface on which the first wiring pattern is formed,
  • the first cured resin layer is a cured resin in which a first resin is cured by a first polymerization initiator,
  • the second cured resin layer is a cured resin obtained by curing a second resin with a second polymerization initiator,
  • the first curing means for curing the first resin with the first polymerization initiator is different from the second means for curing the second resin with the second polymerization initiator.
  • the multilayer printed wiring board of such a configuration is a printed wiring board manufactured by the method for manufacturing a multilayer printed wiring board of the present invention. Therefore, in the multilayer printed wiring board of such a configuration, the adhesion between the upper layer printed wiring board and the lower layer printed wiring board is sufficiently high.
  • FIG. 1 is a schematic diagram which shows typically an example of the lamination process in the manufacturing method of the printed wiring board which concerns on 1st Embodiment of this invention.
  • FIG. 2 is a schematic diagram which shows typically an example of the wiring pattern formation process in the manufacturing method of the printed wiring board which concerns on 1st Embodiment of this invention.
  • FIG. 3 is a schematic diagram which shows typically an example of the 1st resin hardening process in the manufacturing method of the printed wiring board which concerns on 1st Embodiment of this invention.
  • FIG. 4 is a schematic diagram which shows typically an example of the base-material bonding process in the manufacturing method of the printed wiring board which concerns on 1st Embodiment of this invention.
  • FIG. 1 is a schematic diagram which shows typically an example of the lamination process in the manufacturing method of the printed wiring board which concerns on 1st Embodiment of this invention.
  • FIG. 2 is a schematic diagram which shows typically an example of the wiring pattern formation process in the manufacturing method of the printed wiring board which concerns
  • FIG. 5 is a schematic diagram which shows typically an example of the 2nd resin hardening process in the manufacturing method of the printed wiring board which concerns on 1st Embodiment of this invention.
  • FIG. 6 is a schematic diagram which shows typically an example of the lamination process in the manufacturing method of the printed wiring board which concerns on 2nd Embodiment of this invention.
  • FIG. 7 is a schematic diagram which shows typically an example of the wiring pattern formation process in the manufacturing method of the printed wiring board which concerns on 2nd Embodiment of this invention.
  • FIG. 8 is a schematic diagram which shows typically an example of the 1st resin hardening process in the manufacturing method of the printed wiring board which concerns on 2nd Embodiment of this invention.
  • FIG. 6 is a schematic diagram which shows typically an example of the lamination process in the manufacturing method of the printed wiring board which concerns on 2nd Embodiment of this invention.
  • FIG. 7 is a schematic diagram which shows typically an example of the wiring pattern formation process in the manufacturing method of the printed wiring board which concerns on 2nd
  • FIG. 9 is a schematic diagram which shows typically an example of the base-material bonding process in the manufacturing method of the printed wiring board which concerns on 2nd Embodiment of this invention.
  • FIG. 10 is a schematic view schematically showing an example of a second resin curing step in the method for manufacturing a printed wiring board according to the second embodiment of the present invention.
  • FIG. 11 is a schematic diagram which shows typically an example of the lamination process in the manufacturing method of the printed wiring board which concerns on 3rd Embodiment of this invention.
  • FIG. 12 is a schematic diagram which shows typically an example of the wiring pattern formation process in the manufacturing method of the printed wiring board which concerns on 3rd Embodiment of this invention.
  • FIG. 13 is a schematic diagram which shows typically an example of the 1st resin hardening process in the manufacturing method of the printed wiring board which concerns on 3rd Embodiment of this invention.
  • FIG. 14 is a schematic diagram which shows typically an example of the base-material bonding process in the manufacturing method of the printed wiring board which concerns on 3rd Embodiment of this invention.
  • FIG. 15 is a schematic diagram which shows typically an example of the 2nd resin hardening process in the manufacturing method of the printed wiring board which concerns on 3rd Embodiment of this invention.
  • FIG. 16 is a schematic diagram which shows typically an example of the lamination process in the manufacturing method of the printed wiring board which concerns on 4th Embodiment of this invention.
  • FIG. 17 is a schematic diagram which shows typically an example of the wiring pattern formation process in the manufacturing method of the printed wiring board which concerns on 4th Embodiment of this invention.
  • FIG. 18 is a schematic view schematically showing an example of a first resin curing step in the method for manufacturing a printed wiring board according to the fourth embodiment of the present invention.
  • FIG. 19 is a schematic diagram which shows typically an example of the base-material bonding process in the manufacturing method of the printed wiring board which concerns on 4th Embodiment of this invention.
  • FIG. 20 is a schematic view schematically showing an example of a second resin curing step in the method for manufacturing a printed wiring board according to the fourth embodiment of the present invention.
  • FIG. 21 is a schematic diagram which shows typically an example of the lamination process in the manufacturing method of the printed wiring board which concerns on 5th Embodiment of this invention.
  • FIG. 22 is a schematic diagram which shows typically an example of the wiring pattern formation process in the manufacturing method of the printed wiring board which concerns on 5th Embodiment of this invention.
  • FIG. 23 is a schematic diagram which shows typically an example of the 1st resin hardening process in the manufacturing method of the printed wiring board which concerns on 5th Embodiment of this invention.
  • FIG. 24 is a schematic diagram which shows typically an example of the base-material bonding process in the manufacturing method of the printed wiring board which concerns on 5th Embodiment of this invention.
  • FIG. 25 is a schematic diagram which shows typically an example of the 2nd resin hardening process in the manufacturing method of the printed wiring board which concerns on 5th Embodiment of this invention.
  • 26 (a) to 26 (e) are schematic views schematically showing an example of a method of manufacturing a printed wiring board according to a sixth embodiment of the present invention in the order of steps.
  • FIG. 27 is a schematic view schematically showing an example of the printed wiring board of the present invention.
  • FIG. 28: is process drawing which shows typically an example of the resin lamination process for upper layer printed wiring boards in the manufacturing method of the multilayer printed wiring board which concerns on 8th Embodiment of this invention.
  • FIG. 29 is a process chart schematically showing an example of a first wiring pattern forming step in the method for manufacturing a multilayer printed wiring board according to the eighth embodiment of the present invention.
  • FIG. 30 is process drawing which shows typically an example of the 1st resin hardening process in the manufacturing method of the multilayer printed wiring board which concerns on 8th Embodiment of this invention.
  • FIG. 31 is a process chart schematically showing an example of a lower layer printed wiring board preparing step in the method for manufacturing a multilayer printed wiring board according to the eighth embodiment of the present invention.
  • FIG. 32: is process drawing which shows typically an example of the printed wiring board lamination
  • FIG. 33 is process drawing which shows typically an example of the 2nd resin hardening process in the manufacturing method of the multilayer printed wiring board which concerns on 8th Embodiment of this invention.
  • 34 (a) and 34 (b) are schematic views schematically showing an example of a printed wiring board laminating step in the method for manufacturing a multilayer printed wiring board according to the ninth embodiment of the present invention.
  • FIG. 35 is process drawing which shows typically an example of the resin lamination process for printed wiring boards in the manufacturing method of the multilayer printed wiring board which concerns on 11th Embodiment of this invention.
  • FIG. 36 is a process diagram schematically showing an example of a wiring pattern forming step in the method for manufacturing a multilayer printed wiring board according to the eleventh embodiment of the present invention.
  • FIG. 37 is a process diagram schematically showing an example of a first resin curing step in the method for manufacturing a multilayer printed wiring board according to the eleventh embodiment of the present invention.
  • FIG. 38 is a process chart schematically showing one example of a printed wiring board laminating step in the method for manufacturing a multilayer printed wiring board according to the eleventh embodiment of the present invention.
  • FIG. 39 is a process diagram schematically showing an example of a second resin curing step in the method for manufacturing a multilayer printed wiring board according to the eleventh embodiment of the present invention.
  • the first resin in the semi-cured state and the second resin in the semi-cured state are laminated (1) a resin laminating step, and a wiring pattern is formed on the first resin (2 )
  • the first resin is cured while maintaining the wiring pattern formation step and the semi-cured state of the second resin (3)
  • the first resin curing step, and the second resin and the base material are bonded together (4)
  • a material bonding step, and (5) a second resin curing step of curing the second resin and bonding the second resin and the base material are included.
  • the first resin contains a first polymerization initiator
  • the second resin contains a second polymerization initiator.
  • the first resin in the semi-cured state and the second resin in the semi-cured state are laminated.
  • a wiring pattern is formed on the first resin, and the second resin and the base are bonded.
  • the first resin in the semi-cured state is laminated on the second resin in the semi-cured state. Therefore, when the first resin and the second resin are in direct contact with each other, the adhesion between the first resin and the second resin becomes good. In addition, when another layer is sandwiched between the first resin and the second resin, the adhesion between the other layer and the first resin and the second resin is improved.
  • the first resin is cured while maintaining the semi-cured state of the second resin. That is, in the method of manufacturing a printed wiring board of the present invention, the first resin is cured before the second resin.
  • the wiring pattern formed on the first resin can be sufficiently fixed to the first resin, and the adhesion between the wiring pattern and the first resin can be improved.
  • adhesion between the second resin and the substrate is improved. Can. Furthermore, since it is not necessary to use an adhesive separately to bond the substrate, the manufacturing efficiency is improved.
  • the method for producing a printed wiring board according to the first embodiment of the present invention includes (1) resin laminating step to (5) second resin curing step, and the first polymerization initiator is a photopolymerization initiator.
  • the second polymerization initiator is a thermal polymerization initiator.
  • the first resin is cured by irradiating the first resin with light
  • (5) in the second resin curing step heat is applied to the second resin.
  • the second resin is cured.
  • FIG. 1 is a schematic diagram which shows typically an example of the lamination process in the manufacturing method of the printed wiring board which concerns on 1st Embodiment of this invention.
  • FIG. 2 is a schematic diagram which shows typically an example of the wiring pattern formation process in the manufacturing method of the printed wiring board which concerns on 1st Embodiment of this invention.
  • FIG. 3 is a schematic diagram which shows typically an example of the 1st resin hardening process in the manufacturing method of the printed wiring board which concerns on 1st Embodiment of this invention.
  • FIG. 1 is a schematic diagram which shows typically an example of the lamination process in the manufacturing method of the printed wiring board which concerns on 1st Embodiment of this invention.
  • FIG. 2 is a schematic diagram which shows typically an example of the wiring pattern formation process in the manufacturing method of the printed wiring board which concerns on 1st Embodiment of this invention.
  • FIG. 3 is a schematic diagram which shows typically an example of the 1st resin hardening process in the manufacturing method of the printed wiring board
  • FIG. 4 is a schematic diagram which shows typically an example of the base-material bonding process in the manufacturing method of the printed wiring board which concerns on 1st Embodiment of this invention.
  • FIG. 5 is a schematic diagram which shows typically an example of the 2nd resin hardening process in the manufacturing method of the printed wiring board which concerns on 1st Embodiment of this invention.
  • the material of the first resin 10 is not particularly limited, it is desirable that the material is a photocurable resin or a thermosetting resin.
  • examples of such resin include phenol resin, polyester resin, polyimide resin, polysulfonic acid resin, polyetherimide resin, polyether ketone resin, polycarbonate resin, polyurethane resin, polysiloxane resin, polyamide resin and the like.
  • polyimide resins are preferable.
  • the polyimide resin is preferably a curable resin composition containing (A) a bismaleimide compound represented by the following general formula (1).
  • X is an aliphatic, alicyclic or aromatic hydrocarbon group and is a hydrocarbon group having 10 to 30 carbon atoms in its main chain, and these groups are hetero compounds It may have an atom, a substituent or a siloxane skeleton.
  • X is preferably an aliphatic or alicyclic hydrocarbon or an aliphatic hydrocarbon group modified by an alicyclic hydrocarbon group, and more preferably an aliphatic hydrocarbon group having 10 to 55 carbon atoms. And 10 to 40 carbon atoms are more preferable.
  • Y represents an aliphatic, alicyclic or aromatic hydrocarbon group, and these groups have a hetero atom, a substituent, a phenyl ether skeleton, a sulfonyl skeleton or a siloxane skeleton It is also good.
  • Y is preferably an aromatic hydrocarbon group.
  • n is the number of repeating units and represents a number in the range of 1 to 20.
  • a wiring pattern is formed on the first resin 10.
  • the material of the first resin 10 is the above-described resin, the transmission characteristics of the signal transmitted in the wiring pattern are improved.
  • the thickness of the first resin 10 is not particularly limited, but is preferably 5 to 100 ⁇ m, and more preferably 10 to 100 ⁇ m. If the thickness of the first resin 10 is less than 5 ⁇ m, the strength of the printed wiring board tends to be weak. When the thickness of the first resin 10 exceeds 100 ⁇ m, the printed wiring board becomes thick, which makes it difficult to miniaturize the electronic device.
  • the relative dielectric constant of the first resin 10 is desirably 2 to 3 at a frequency of 1 GHz.
  • the dielectric loss tangent of the first resin 10 is preferably 0.0001 to 0.002 at a frequency of 1 GHz.
  • the first resin 10 contains a first polymerization initiator which is a photopolymerization initiator.
  • the first polymerization initiator is not particularly limited as long as it is a photopolymerization initiator, and for example, an alkylphenone photopolymerization initiator, an acylphosphine photopolymerization initiator, an oxime ester photopolymerization initiator, a thioxanthone type Photopolymerization initiators can be mentioned.
  • acetophenone 2,2-dimethoxyacetophenone, p-dimethylaminoacetophenone, Michler's ketone, benzyl, benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin n-propyl ether, benzoin isopropyl ether, benzoin n -Butyl ether, benzyl dimethyl ketal, thioxaton, 2-chlorothioxasone, 2-methylthioxaton, 2,2-dimethoxy-1,2-diphenylethan-1-one, 1-hydroxy-cyclohexyl-phenyl-ketone, 2 -Hydroxy-2-methyl-1-phenyl-propan-1-one, 1- [4- (2-hydroxyethoxy) -phenyl] -2-hydroxy-2-methyl-1-propane-1 One, 2-hydroxy-1- ⁇ 4- [4- (2-hydroxye
  • a photopolymerization initiator that efficiently generates radicals at an exposure wavelength of 310 to 436 nm, more preferably at an exposure wavelength of 310 to 365 nm, is desirable.
  • 1,2-octanedione having an oxime structure 1- [4- (phenylthio) -2- (O-benzoyloxime)] (manufactured by BASF Japan Ltd., “IRGACURE OXE” -01 "), Ethanone, 1- [9-ethyl-6- (2-methylbenzoyl) -9H-carbazol-3-yl] -1- (O-acetyloxime) (manufactured by BASF Japan Ltd.,“ IRGACURE OXE- 02 ′ ′), 2,4-dimethylthioxanthone having a thioxanthone structure (manufactured by Nippon Kayaku Co.,
  • the first polymerization initiator may be composed of one kind of the above-mentioned photopolymerization initiator, or may be composed of two or more kinds.
  • the material of the second resin 20 is not particularly limited, for example, it is desirable that the material is a photocurable resin or a thermosetting resin.
  • examples of such resin include phenol resin, polyester resin, polyimide resin, polysulfonic acid resin, polyetherimide resin, polyether ketone resin, polycarbonate resin, polyurethane resin, polysiloxane resin, polyamide resin and the like.
  • polyimide resins are preferable.
  • the polyimide resin is preferably a curable resin composition containing (A) a bismaleimide compound represented by the following general formula (1).
  • X is an aliphatic, alicyclic or aromatic hydrocarbon group and is a hydrocarbon group having 10 to 30 carbon atoms in its main chain, and these groups are hetero compounds It may have an atom, a substituent or a siloxane skeleton.
  • X is preferably an aliphatic or alicyclic hydrocarbon or an aliphatic hydrocarbon group modified by an alicyclic hydrocarbon group, and more preferably an aliphatic hydrocarbon group having 10 to 55 carbon atoms. And 10 to 40 carbon atoms are more preferable.
  • Y represents an aliphatic, alicyclic or aromatic hydrocarbon group, and these groups have a hetero atom, a substituent, a phenyl ether skeleton, a sulfonyl skeleton or a siloxane skeleton It is also good.
  • Y is preferably an aromatic hydrocarbon group.
  • n is the number of repeating units and represents a number in the range of 1 to 20.
  • the second resin 20 is adhered to the base material.
  • the adhesiveness with a base material improves that the material of 2nd resin 20 is the said resin.
  • the thickness of the second resin 20 is not particularly limited, but is preferably 5 to 100 ⁇ m, and more preferably 10 to 100 ⁇ m. If the thickness of the second resin 20 is less than 5 ⁇ m, the strength of the printed wiring board tends to be weak. When the thickness of the second resin 20 exceeds 100 ⁇ m, the printed wiring board becomes thick, which makes it difficult to miniaturize the electronic device.
  • the second resin 20 may contain a functional material such as a thermally conductive filler or a flame retardant.
  • a heat conductive filler copper particles, copper coating resin particles, boron nitride, aluminum nitride, alumina, alumina hydrate, silicon oxide, silicon nitride, silicon carbide, diamond, hydroxyapatite, barium titanate, aluminum, silica, Examples include magnesia, titania, silicon nitride, silicon carbide and the like.
  • the flame retardant include bromine flame retardants, phosphorus flame retardants, nitrogen flame retardants, silicone flame retardants, inorganic flame retardants, organic metal salt flame retardants and the like.
  • brominated flame retardants include polybrominated diphenyl oxide, decabromodiphenyl oxide, tris [3-bromo-2,2-bis (bromomethyl) propyl] phosphate, tris (2,3-dibromopropyl) phosphate, tetrabromo Phthalic acid, bis (2,3-dibromopropyl ether) of tetrabromobisphenol A, brominated epoxy resin, ethylene-bis (tetrabromophthalimide), octabromodiphenyl ether, 1,2-bis (tribromophenoxy) ethane, tetrabromo And -bisphenol A, ethylene bis- (dibromo-norbornane dicarboximide), tris- (2,3-dibromopropyl) -isocyanurate, ethylene-bis-tetrabromophthalimide and the like.
  • inorganic phosphorus flame retardant As a phosphorus flame retardant, both an inorganic phosphorus flame retardant and an organic phosphorus flame retardant can be used.
  • inorganic phosphorus-based flame retardant compounds include inorganic phosphorus-containing phosphorus such as red phosphorus, monoammonium phosphate, diammonium phosphate, ammonium triphosphate, ammonium polyphosphate such as ammonium polyphosphate, and phosphoric acid amide. Compounds are mentioned.
  • Red phosphorus is preferably surface-treated for the purpose of preventing hydrolysis etc.
  • the surface treatment method is (i) magnesium hydroxide, aluminum hydroxide, zinc hydroxide, titanium hydroxide, bismuth oxide, water Method of coating with an inorganic compound such as bismuth oxide, bismuth nitrate or a mixture thereof, (ii) inorganic compound such as magnesium hydroxide, aluminum hydroxide, zinc hydroxide or titanium hydroxide, and thermosetting resin such as phenol resin (Iii) coating on a film of an inorganic compound such as magnesium hydroxide, aluminum hydroxide, zinc hydroxide or titanium hydroxide in a double coating process with a thermosetting resin such as phenol resin Methods etc.
  • organic phosphorus-based flame retardant examples include general-purpose organic phosphorus-based compounds such as phosphoric acid ester compounds, phosphonic acid compounds, phosphinic acid compounds, phosphine oxide compounds, phospholane compounds, organic nitrogen-containing phosphorus compounds, and 9,10- Dihydro-9-oxa-10-phosphaphenanthrene-10-oxide, 10- (2,5-dihydroxyphenyl) -10H-9-oxa-10-phosphaphenanthrene-10-oxide, 10- (2,7 And cyclic organophosphorus compounds such as -dihydroxynaphthyl) -10H-9-oxa-10-phosphaphenanthrene-10-oxide and derivatives obtained by reacting them with compounds such as epoxy resin and phenol resin.
  • general-purpose organic phosphorus-based compounds such as phosphoric acid ester compounds, phosphonic acid compounds, phosphinic acid compounds, phosphine oxide compounds, phospholane compounds, organic nitrogen-containing phosphorus compounds, and
  • hydrotalcite magnesium hydroxide, a boro compound, zirconium oxide, a black dye, calcium carbonate, zeolite, zinc molybdate, activated carbon or the like may be used in combination with the phosphorus-based flame retardant .
  • nitrogen flame retardants examples include triazine compounds, cyanuric acid compounds, isocyanuric acid compounds, phenothiazine and the like. Among these, triazine compounds, cyanuric acid compounds and isocyanuric acid compounds are desirable.
  • triazine compound for example, melamine, acetoguanamine, benzoguanamine, melon, melam, succinoguanamine, ethylenedimelamine, melamine polyphosphate, triguanamine etc.
  • guanylmelamine sulfate, melem sulfate, melam sulfate Sulfated aminotriazine compounds such as: (ii) co-condensates of phenol compounds such as phenol, cresol, xylenol, butylphenol and nonylphenol with melamines such as melamine, benzoguanamine, acetoguanamine, formguanamine and formaldehyde, and (iii) Mixtures of co-condensates described in (ii) and phenolic resins such as phenol-formaldehyde condensates, (iv) compounds described in (ii) and (iii) above, etc. Those modified with an oil such
  • cyanuric acid compounds include cyanuric acid and melamine cyanurate.
  • silicone type flame retardant silicone oil, silicone rubber, silicone resin etc. are mentioned, for example.
  • silicone type flame retardant you may use a molybdenum compound, an alumina, etc. together.
  • inorganic flame retardants include metal hydroxides such as aluminum hydroxide, magnesium hydroxide, dolomite, hydrotalcite, calcium hydroxide, barium hydroxide, zirconium hydroxide and composite metal hydroxides; molybdic acid Zinc, molybdenum trioxide, zinc stannate, tin oxide, aluminum oxide, iron oxide, titanium oxide, manganese oxide, zirconium oxide, zinc oxide, molybdenum oxide, molybdenum oxide, cobalt oxide, bismuth oxide, chromium oxide, nickel oxide, copper oxide, oxide Metal oxides such as tungsten; zinc carbonate, magnesium carbonate, calcium carbonate, barium carbonate, basic magnesium carbonate, aluminum carbonate, iron carbonate, cobalt carbonate, metal carbonate compounds such as titanium carbonate; aluminum, iron, titanium, manganese, Zinc, molybdenum, cobalt, bismuth , Chromium, nickel, copper, tungsten, metal powder such as tin; zinc borate, zinc
  • the second resin 20 contains a second polymerization initiator which is a thermal polymerization initiator.
  • the second polymerization initiator is not particularly limited as long as it is a thermal polymerization initiator, but may be an organic peroxide thermal polymerization initiator, an azo thermal polymerization initiator, or the like.
  • the organic peroxide-based thermal polymerization initiators include methyl ethyl ketone peroxide, cyclohexanone peroxide, methyl cyclohexanone peroxide, methyl acetoacetate peroxide, acetyl acetate peroxide, 1,1-bis (t-hexylperoxy) -3 , 3,5-trimethylcyclohexane, 1,1-bis (t-hexylperoxy) -cyclohexane, 1,1-bis (t-butylperoxy) -3,3,5-trimethylcyclohexane, 1,1-bis (T-butylperoxy) -2-methylcyclohexane, 1,1-bis (t-butylperoxy) -cyclohexane, 1,1-bis (t-butylperoxy) cyclododecane, 1,1-bis (t -Butylperoxy) butane, 2,2-bis (4,4-di-t- Chi
  • 2-phenylazo-4-methoxy-2,4-dimethylvaleronitrile 1-[(1-cyano-1-methylethyl) azo] formamide, 1,1′-azobis (cyclohexane -1-carbonitrile), 2,2'-azobis (2-methylbutyronitrile), 2,2'-azobisisobutyronitrile, 2,2'-azobis (2,4-dimethyl valeronitrile), 2,2'-azobis (2-methylpropionamidine) dihydrochloride, 2,2'-azobis (2-methyl-N-phenylpropionamidine) dihydrochloride, 2,2'-azobis [N- (4-chlorophenyl) -2-Methylpropionamidine] dihydridochloride, 2,2'-azobis [N- (4-hydrophenyl) -2-methylpropiona Gin] dihydrochloride, 2,2'-azobis [2-methyl-N- (phenylmethyl)
  • the second polymerization initiator may consist of one of the above-mentioned thermal polymerization initiators, or may consist of two or more.
  • the wiring pattern 30 is formed on the first resin 10.
  • the method of forming the wiring pattern 30 is not particularly limited.
  • the first resin 10 may be covered with a metal film, and the wiring pattern 30 may be formed by etching the metal film.
  • the wiring pattern 30 may be formed by printing a conductive paste.
  • the first resin 10 is covered with a metal film.
  • the method of covering the first resin 10 with a metal film is not particularly limited, and a method of attaching a metal foil or a method of forming a metal film on the first resin 10 by plating may be mentioned.
  • metal which comprises a metal film For example, copper, silver, etc. are mentioned. Among these, copper is desirable.
  • the metal film covering the first resin 10 is masked and etched so as to form a predetermined wiring pattern.
  • the etching can be performed by a conventional method in accordance with the type of metal constituting the metal film and the thickness of the metal film.
  • the metal forming the metal film is copper, it is desirable to perform etching using a sulfuric acid / hydrogen peroxide type etching solution or the like as the etching solution.
  • the conductive paste is not particularly limited, but, for example, a blend of a conductive filler, a thermosetting resin, and a thermoplastic resin can be used.
  • a conductive filler metal particles, carbon nanotubes, carbon fibers, metal fibers and the like can be used.
  • the first resin 10 is irradiated with light 50 to cure the first resin 10, thereby fixing the wiring pattern 30 to the first resin 10. Do. Since the first resin 10 contains the first polymerization initiator which is a photopolymerization initiator, the first resin 10 is cured by being irradiated with the light 50.
  • the conditions such as the wavelength of the light 50 and the irradiation time are not particularly limited as long as the first resin 10 can be cured while maintaining the semi-cured state of the second resin 20, the type of the first resin 10 and It is desirable to set appropriately according to the type of first polymerization initiator.
  • a polyimide resin is used as the first resin 10
  • 1,2-octanedione, 1- [4- (phenylthio) -2- (O-benzoyloxime)] manufactured by BASF Japan Ltd.
  • IRGACURE OXE-01 Ethanone, 1- [9-ethyl-6- (2-methylbenzoyl) -9H-carbazol-3-yl] -1- (O-acetyloxime) (manufactured by BASF Japan Ltd.),
  • a photopolymerization initiator such as IRGACURE OXE-02 "
  • 2,4-dimethylthioxanthone having a thioxanthone structure Nippon Kayaku Co., Ltd.
  • DETX-S the light 50 has a wavelength of 310 to 436 nm Is desirable.
  • the wiring pattern 30 formed on the first resin 10 is fixed, so the adhesion between the wiring pattern 30 and the first resin 10 can be improved.
  • the base 40 may have not only a function as a heat dissipating material but also a function as a reinforcing material.
  • the base 40 is not particularly limited, and may be made of aluminum, iron, SUS, copper, tin, ceramics, glass, a carbon-based compound such as graphene, or the like.
  • a reflective material or the like may be applied to the surface of the base 40 opposite to the side to be bonded to the second resin 20.
  • the substrate 40 when the substrate 40 is made of aluminum, the substrate 40 functions as a heat dissipating material as well as a reinforcing material.
  • the thickness of the substrate 40 is desirably 5 to 100 ⁇ m, and more desirably 10 to 50 ⁇ m.
  • Second Resin Curing Step As shown in FIG. 5, heat 60 is applied to the second resin 20. Since the second resin 20 contains the second polymerization initiator which is a thermal polymerization initiator, the heat 60 is applied to harden the second resin 20. By curing the second resin 20, the second resin 20 and the base 40 are bonded.
  • the second resin 20 contains the second polymerization initiator which is a thermal polymerization initiator
  • the conditions under which the heat 60 is applied are not particularly limited, and it is desirable to set appropriately according to the type of the second resin 20 and the type of the second polymerization initiator.
  • the temperature of the heat 60 is 50 to 200 ° C. It is desirable to have.
  • a printed wiring board can be manufactured through the above steps.
  • the first polymerization initiator is a photopolymerization initiator and a thermal polymerization initiator
  • the second polymerization initiator is a thermal polymerization initiator. It may be In this case, (3) in the first resin curing step, the first resin 10 is cured by irradiating the first resin 10 with light, and (5) in the second resin curing step, the second Heat is applied to the resin 20 to cure the second resin 20, and at the same time, heat is applied to the first resin 10 to cure the first resin 10.
  • the degree of curing of the first resin 10 can be easily controlled in the first resin curing step.
  • heat is also applied to the first resin 10 to cure the second resin 20 and at the same time, if an uncured portion exists in the first resin 10, the first resin Ten uncured portions can be sufficiently cured.
  • the first resin 10 may be cured so that the first resin 10 is not completely cured.
  • the desired type of the thermal polymerization initiator contained in the first polymerization initiator is the same as the desired type of the thermal polymerization initiator contained in the second polymerization initiator.
  • the wiring pattern is embedded in the first resin as needed. May be.
  • the position of the wiring pattern can be easily fixed, so that the wiring pattern can be prevented from being displaced.
  • the wiring pattern may be embedded so that the wiring pattern and the first resin are substantially flush, or only a part of the wiring pattern may be embedded in the first resin.
  • the first resin and / or the second resin is impregnated between the first resin and the second resin. It is desirable to place possible reinforcements.
  • the reinforcing material By arranging the reinforcing material between the first resin and the second resin, the strength of the printed wiring board to be manufactured can be strengthened.
  • the reinforcing material can be impregnated with the first resin and / or the second resin, the first resin and the second resin are in direct contact with each other. Therefore, the adhesion between the first resin and the second resin is not easily inhibited.
  • a reinforcing material in which the second resin can be impregnated is disposed between the second resin and the base material. It is desirable to do. By arranging the reinforcing material between the second resin and the base material, the strength of the printed wiring board to be manufactured can be strengthened. In addition, since the reinforcing material can be impregnated with the second resin, the second resin and the base material are in direct contact with each other. Therefore, the adhesion between the second resin and the base is unlikely to be inhibited.
  • the reinforcing material is not particularly limited, but may be, for example, a porous body of a fluorine-based resin sheet such as PTFE, or a fibrous body such as glass cloth, cellulose fiber cloth, or paper.
  • the method for producing a printed wiring board according to the second embodiment of the present invention includes (1) resin laminating step to (5) second resin curing step, and the first polymerization initiator is a thermal polymerization initiator.
  • the second polymerization initiator is a photopolymerization initiator.
  • (3) in the first resin curing step the first resin is cured by applying heat to the first resin, and (5) in the second resin curing step, the second resin is irradiated with light. The second resin is cured.
  • FIG. 6 is a schematic diagram which shows typically an example of the lamination process in the manufacturing method of the printed wiring board which concerns on 2nd Embodiment of this invention.
  • FIG. 7 is a schematic diagram which shows typically an example of the wiring pattern formation process in the manufacturing method of the printed wiring board which concerns on 2nd Embodiment of this invention.
  • FIG. 8 is a schematic diagram which shows typically an example of the 1st resin hardening process in the manufacturing method of the printed wiring board which concerns on 2nd Embodiment of this invention.
  • FIG. 6 is a schematic diagram which shows typically an example of the lamination process in the manufacturing method of the printed wiring board which concerns on 2nd Embodiment of this invention.
  • FIG. 7 is a schematic diagram which shows typically an example of the wiring pattern formation process in the manufacturing method of the printed wiring board which concerns on 2nd Embodiment of this invention.
  • FIG. 8 is a schematic diagram which shows typically an example of the 1st resin hardening process in the manufacturing method of the printed wiring board which concerns on 2nd
  • FIG. 9 is a schematic diagram which shows typically an example of the base-material bonding process in the manufacturing method of the printed wiring board which concerns on 2nd Embodiment of this invention.
  • FIG. 10 is a schematic view schematically showing an example of a second resin curing step in the method for manufacturing a printed wiring board according to the second embodiment of the present invention.
  • the desirable material, thickness, relative dielectric constant, dielectric tangent and the like of the first resin 110 are the desirable materials of the first resin 10 described in the description of the method for producing a printed wiring board according to the first embodiment of the present invention, Same as thickness, dielectric constant, and dielectric loss tangent.
  • the first resin 110 contains a first polymerization initiator which is a thermal polymerization initiator.
  • the first polymerization initiator is not particularly limited as long as it is a thermal polymerization initiator, and may be, for example, an organic peroxide thermal polymerization initiator, an azo thermal polymerization initiator, or the like.
  • the desirable material and thickness of the second resin 120 are the same as the desirable material and thickness of the second resin 20 described in the method of manufacturing a printed wiring board according to the first embodiment of the present invention. Also, the second resin 120 may contain a functional material, as in the case of the second resin 20.
  • the second resin 120 contains a second polymerization initiator which is a photopolymerization initiator.
  • the second polymerization initiator is not particularly limited as long as it is a photopolymerization initiator, and may be, for example, an alkylphenone type, an acyl phosphine type, an oxime ester type, a thioxanthone type, and the like.
  • the wiring pattern 130 is formed on the first resin 110.
  • the method and material for forming the wiring pattern 130 are the same as the method and material for forming the wiring pattern 30 described in the method for manufacturing a printed wiring board according to the first embodiment of the present invention.
  • heat 160 is applied to the first resin 110. Since the first resin 110 contains the first polymerization initiator which is a thermal polymerization initiator, the heat 160 is applied to harden the first resin 110.
  • the conditions for applying the heat 160 are not particularly limited as long as the first resin 110 can be cured while maintaining the semi-cured state of the second resin 120, and the type of the first resin 110 and the first polymerization initiator are not particularly limited. It is desirable to set appropriately according to the type. For example, when a polyimide resin is used as the first resin 110 and t-butylperoxypivalate is used as the first polymerization initiator, the temperature of the heat 160 is desirably 60 to 90 ° C.
  • the wiring pattern 130 formed in the first resin 110 is fixed, so that the adhesion between the wiring pattern 130 and the first resin 110 can be improved.
  • the desired material and the like of the substrate 140 may be the same as the desired material and the like of the substrate 40 described in the description of the method for manufacturing a printed wiring board according to the first embodiment of the present invention.
  • the base material 140 may have translucency.
  • the substrate 140 has translucency
  • light from the substrate 140 side can also reach the second resin 120 in the (5) second resin curing step described later. Therefore, the second resin 120 can be cured efficiently.
  • examples of the material of the base material 140 include translucent inorganic materials such as glass and quartz, and translucent organic materials such as acrylic resin, polycarbonate resin and cycloolefin resin.
  • translucent means that the base material transmits light so that the curing of the second resin proceeds when irradiated with light for curing the second resin from the base material side.
  • the second resin 120 is irradiated with light 150. Since the second resin 120 contains a second polymerization initiator which is a photopolymerization initiator, the second resin 120 is cured by being irradiated with the light 150. By curing the second resin 120, the second resin 120 and the base 140 are bonded.
  • a second polymerization initiator which is a photopolymerization initiator
  • the conditions for irradiating the light 150 are not particularly limited, and it is desirable to appropriately set the conditions according to the type of the second resin 120 and the type of the second polymerization initiator.
  • a polyimide resin is used as the second resin 120, and 1,2-octanedione, 1- [4- (phenylthio) -2- (O-benzoyloxime)] (manufactured by BASF Japan Ltd.) as the second polymerization initiator.
  • UVGACURE OXE-01 Ethanone, 1- [9-ethyl-6- (2-methylbenzoyl) -9H-carbazol-3-yl] -1- (O-acetyloxime) (manufactured by BASF Japan Ltd.),
  • a photopolymerization initiator such as IRGACURE OXE-02 "
  • 2,4-dimethylthioxanthone having a thioxanthone structure Nippon Kayaku Co., Ltd.
  • DETX-S the wavelength of light 150 is 310 to 436 nm Is desirable.
  • the base material 140 has translucency
  • the substrate 140 has translucency
  • the light 150 irradiated from the substrate 140 side can also reach the second resin 120. Therefore, the second resin 120 can be cured efficiently.
  • a printed wiring board can be manufactured through the above steps.
  • the first polymerization initiator is a thermal polymerization initiator and a photopolymerization initiator
  • the second polymerization initiator is a photopolymerization initiator It may be In this case, (3) in the first resin curing step, the first resin 110 is cured by applying heat to the first resin 110, and (5) in the second resin curing step, the second resin is cured. The second resin 120 is cured by irradiating 120 with light, and at the same time, the first resin 110 is cured by irradiating the first resin 110 with light.
  • the first resin 110 includes the first polymerization initiator including the thermal polymerization initiator and the photopolymerization initiator, it is easy to control the degree of curing of the first resin 110 in the first resin curing step. Become. In the second resin curing step, the first resin 110 is also irradiated with light to cure the second resin 120 and at the same time, if there is an uncured portion in the first resin 110, the first resin 110 is cured. The uncured portion of the resin 110 can be sufficiently cured. In the (3) first resin curing step, the first resin 110 may be cured so that the first resin 110 is not completely cured.
  • (1) after forming the wiring pattern in the first resin in the wiring pattern forming step, embedding the wiring pattern in the first resin as necessary May be.
  • the position of the wiring pattern can be easily fixed, so that the wiring pattern can be prevented from being displaced.
  • the wiring pattern may be embedded so that the wiring pattern and the first resin are substantially flush, or only a part of the wiring pattern may be embedded in the first resin.
  • the first resin and / or the second resin is impregnated between the first resin and the second resin. It is desirable to place possible reinforcements.
  • the reinforcing material By arranging the reinforcing material between the first resin and the second resin, the strength of the printed wiring board to be manufactured can be strengthened.
  • the reinforcing material can be impregnated with the first resin and / or the second resin, the first resin and the second resin are in direct contact with each other. Therefore, the adhesion between the first resin and the second resin is not easily inhibited.
  • a reinforcing material in which the second resin can be impregnated is disposed between the second resin and the base material. It is desirable to do. By arranging the reinforcing material between the second resin and the base material, the strength of the printed wiring board to be manufactured can be strengthened. In addition, since the reinforcing material can be impregnated with the second resin, the second resin and the base material are in direct contact with each other. Therefore, the adhesion between the second resin and the base is unlikely to be inhibited.
  • the reinforcing material is not particularly limited, but is preferably made of a material having a low dielectric constant and a dielectric loss tangent. If the reinforcing material is made of a material having a low dielectric constant and a dielectric loss tangent, the transmission characteristics of the printed wiring board to be produced will be good.
  • a reinforcing material may be, for example, a porous body of a fluorine-based resin sheet such as PTFE, or may be a fibrous body such as glass cloth, cellulose fiber cloth, or paper.
  • the method for producing a printed wiring board according to the third embodiment of the present invention includes (1) resin laminating step to (5) second resin curing step, and the first polymerization initiator is a thermal polymerization initiator.
  • the second polymerization initiator is a thermal polymerization initiator.
  • the first resin curing step heat is applied at a temperature at which the second resin remains in a semi-cured state and at which the first resin cures, and the first resin is cured.
  • the resin may be cured, and in the second resin curing step, heat at a temperature at which the second resin cures may be added to cure the second resin. That is, by adjusting the composition of the first resin and the second resin so that the curing temperature of the first resin is lower than the curing temperature of the second resin, the curing time of the first resin and the curing of the second resin You may stagger the time.
  • the first resin can be cured without completely curing the second resin.
  • the position of the wiring pattern formed in the first resin can be easily fixed, so that the wiring pattern can be prevented from being displaced.
  • the adhesion to the substrate is improved.
  • the method of setting the curing temperature of the first resin lower than the curing temperature of the second resin is not particularly limited, and may be adjusted by selecting the type of resin and the type of thermal polymerization initiator, and additives may be added. May be adjusted.
  • the 10 hour half-life temperature of the first polymerization initiator is higher than the 10 hour half-life temperature of the second polymerization initiator There is a way to lower it.
  • the first resin is cured by applying heat to the first resin at a temperature lower than the 10 hour half-life temperature of the second polymerization initiator
  • the second resin may be cured by applying heat to the second resin at a temperature higher than the 10-hour half-life temperature of the second polymerization initiator.
  • the second heat treatment can be easily performed by controlling the temperature of heat in the first resin curing step and the second resin curing step.
  • the curing of the first resin can be performed prior to the curing of the resin.
  • FIG. 11 is a schematic diagram which shows typically an example of the lamination process in the manufacturing method of the printed wiring board which concerns on 3rd Embodiment of this invention.
  • FIG. 12 is a schematic diagram which shows typically an example of the wiring pattern formation process in the manufacturing method of the printed wiring board which concerns on 3rd Embodiment of this invention.
  • FIG. 13 is a schematic diagram which shows typically an example of the 1st resin hardening process in the manufacturing method of the printed wiring board which concerns on 3rd Embodiment of this invention.
  • FIG. 11 is a schematic diagram which shows typically an example of the lamination process in the manufacturing method of the printed wiring board which concerns on 3rd Embodiment of this invention.
  • FIG. 12 is a schematic diagram which shows typically an example of the wiring pattern formation process in the manufacturing method of the printed wiring board which concerns on 3rd Embodiment of this invention.
  • FIG. 13 is a schematic diagram which shows typically an example of the 1st resin hardening process in the manufacturing method of the printed wiring board
  • FIG. 14 is a schematic diagram which shows typically an example of the base-material bonding process in the manufacturing method of the printed wiring board which concerns on 3rd Embodiment of this invention.
  • FIG. 15 is a schematic diagram which shows typically an example of the 2nd resin hardening process in the manufacturing method of the printed wiring board which concerns on 3rd Embodiment of this invention.
  • the desirable material, thickness, relative dielectric constant, dielectric tangent and the like of the first resin 210 are the desirable materials of the first resin 10 described in the description of the method for producing a printed wiring board according to the first embodiment of the present invention, Same as thickness, dielectric constant, and dielectric loss tangent.
  • the desirable material and thickness of the second resin 220 are the same as the desirable material and thickness of the second resin 20 described in the method of manufacturing a printed wiring board according to the first embodiment of the present invention. Also, the second resin 220 may contain a functional material, as in the case of the second resin 20.
  • the first resin 210 and the second resin 220 each contain a first polymerization initiator which is a thermal polymerization initiator and a second polymerization initiator which is a thermal polymerization initiator.
  • the 10-hour half-life temperature of the first polymerization initiator is desirably lower than the 10-hour half-life temperature of the second polymerization initiator.
  • the 10-hour half-life temperature of the first polymerization initiator is preferably 30 to 150 ° C., and more preferably 50 to 90 ° C.
  • the first polymerization initiator is not particularly limited.
  • t-butylperoxypivalate t-hexylperoxypivalate, 1,1,3,3-tetramethylbutylperoxy-2-ethylhexano It may be ethe.
  • the second polymerization initiator is not particularly limited, and may be, for example, t-hexylperoxyisopropyl monocarbonate, t-butylperoxy laurate or the like.
  • the wiring pattern 230 is formed on the first resin 210.
  • the method and material for forming the wiring pattern 230 are the same as the method and material for forming the wiring pattern 30 described in the method for manufacturing a printed wiring board according to the first embodiment of the present invention.
  • the conditions for applying the heat 261 are not particularly limited as long as the temperature of the heat 261 is a temperature at which the second resin remains in a semi-cured state and the temperature at which the first resin cures. It is desirable to set appropriately according to the type of the resin 210 and the first polymerization initiator.
  • the temperature of heat 261 is preferably 10 to 100 ° C. lower than the 10-hour half-life temperature of the second polymerization initiator, and more preferably 10 to 80 ° C. lower.
  • the temperature of the heat 261 is desirably 60 to 90 ° C.
  • the wiring pattern 230 embedded in the first resin 210 is fixed, so that the adhesion between the wiring pattern 230 and the first resin 210 can be improved.
  • the desirable material and the like of the substrate 240 may be the same as the desirable material and the like of the substrate 40 described in the description of the method of manufacturing a printed wiring board according to the first embodiment of the present invention.
  • the conditions to which the heat 262 is applied are not particularly limited as long as the temperature of the heat 262 is a temperature at which the second resin cures, and it is desirable to appropriately set according to the types of the second resin 220 and the second polymerization initiator .
  • the temperature of heat 262 is preferably 10 to 100 ° C. higher than the 10-hour half-life temperature of the second polymerization initiator, and more preferably 10 to 50 ° C. higher.
  • the temperature of the heat 262 is desirably 120 to 200 ° C.
  • a printed wiring board can be manufactured through the above steps.
  • the wiring pattern is embedded in the first resin as needed. May be.
  • the position of the wiring pattern can be easily fixed, so that the wiring pattern can be prevented from being displaced.
  • the wiring pattern may be embedded so that the wiring pattern and the first resin are substantially flush, or only a part of the wiring pattern may be embedded in the first resin.
  • the first resin and / or the second resin is impregnated between the first resin and the second resin. It is desirable to place possible reinforcements.
  • the reinforcing material By arranging the reinforcing material between the first resin and the second resin, the strength of the printed wiring board to be manufactured can be strengthened.
  • the reinforcing material can be impregnated with the first resin and / or the second resin, the first resin and the second resin are in direct contact with each other. Therefore, the adhesion between the first resin and the second resin is not easily inhibited.
  • a reinforcing material in which the second resin can be impregnated is arranged between the second resin and the base material. It is desirable to do. By arranging the reinforcing material between the second resin and the base material, the strength of the printed wiring board to be manufactured can be strengthened. In addition, since the reinforcing material can be impregnated with the second resin, the second resin and the base material are in direct contact with each other. Therefore, the adhesion between the second resin and the base is unlikely to be inhibited.
  • the reinforcing material is not particularly limited, but may be, for example, a porous body of a fluorine-based resin sheet such as PTFE, or a fibrous body such as glass cloth, cellulose fiber cloth, or paper.
  • the method for producing a printed wiring board according to the fourth embodiment of the present invention includes (1) resin laminating step to (5) second resin curing step, and the first polymerization initiator is a photopolymerization initiator.
  • the second polymerization initiator is a photopolymerization initiator.
  • the base material has translucency.
  • the first resin and the second resin are laminated with the light impermeable layer interposed between the first resin and the second resin.
  • the first resin is cured by irradiating the first resin with light from the first resin side
  • the second resin curing step from the base material side
  • the second resin is cured by irradiating the second resin with light.
  • FIG. 16 is a schematic diagram which shows typically an example of the lamination process in the manufacturing method of the printed wiring board which concerns on 4th Embodiment of this invention.
  • FIG. 17 is a schematic diagram which shows typically an example of the wiring pattern formation process in the manufacturing method of the printed wiring board which concerns on 4th Embodiment of this invention.
  • FIG. 18 is a schematic view schematically showing an example of a first resin curing step in the method for manufacturing a printed wiring board according to the fourth embodiment of the present invention.
  • FIG. 16 is a schematic diagram which shows typically an example of the lamination process in the manufacturing method of the printed wiring board which concerns on 4th Embodiment of this invention.
  • FIG. 17 is a schematic diagram which shows typically an example of the wiring pattern formation process in the manufacturing method of the printed wiring board which concerns on 4th Embodiment of this invention.
  • FIG. 18 is a schematic view schematically showing an example of a first resin curing step in the method for manufacturing a printed wiring board according to the fourth embodiment of the present invention.
  • FIG. 19 is a schematic diagram which shows typically an example of the base-material bonding process in the manufacturing method of the printed wiring board which concerns on 4th Embodiment of this invention.
  • FIG. 20 is a schematic view schematically showing an example of a second resin curing step in the method for manufacturing a printed wiring board according to the fourth embodiment of the present invention.
  • the desirable material, thickness, relative dielectric constant, dielectric tangent and the like of the first resin 310 are the desirable materials of the first resin 10 described in the description of the method for producing a printed wiring board according to the first embodiment of the present invention, Same as thickness, dielectric constant, and dielectric loss tangent.
  • the first resin 310 contains a first polymerization initiator which is a photopolymerization initiator.
  • the first polymerization initiator is not particularly limited as long as it is a photopolymerization initiator, and for example, an alkylphenone photopolymerization initiator, an acylphosphine photopolymerization initiator, an oxime ester photopolymerization initiator, a thioxanthone type Photopolymerization initiators can be mentioned.
  • the desirable material and thickness of the second resin 320 are the same as the desirable material and thickness of the second resin 20 described in the method of manufacturing a printed wiring board according to the first embodiment of the present invention.
  • the second resin 320 may contain a functional material, as in the case of the second resin 20.
  • the second resin 320 contains a second polymerization initiator which is a photopolymerization initiator.
  • the second polymerization initiator is not particularly limited as long as it is a photopolymerization initiator, and, for example, an alkylphenone photopolymerization initiator, an acylphosphine photopolymerization initiator, an oxime ester photopolymerization initiator, Thioxanthone photopolymerization initiators can be mentioned.
  • the material of the light impermeable layer 370 is not particularly limited, and examples thereof include metals such as copper and aluminum, resin films containing a pigment, and ceramic sheets.
  • the thickness of the light impermeable layer 370 is not particularly limited, but is preferably 0.1 to 500 ⁇ m, and more preferably 0.5 to 300 ⁇ m.
  • the wiring pattern 330 is formed on the first resin 310.
  • the method and material for forming the wiring pattern 330 are the same as the method and material for forming the wiring pattern 30 described in the method for manufacturing a printed wiring board according to the first embodiment of the present invention.
  • the first resin 310 is irradiated with the light 351 from the first resin 310 side. Since the first resin 310 contains the first polymerization initiator which is a photopolymerization initiator, the first resin 310 is cured by being irradiated with the light 351. In addition, since the light 351 is blocked by the light impermeable layer 370 and does not reach the second resin 320, the semi-cured state of the second resin is maintained.
  • the first polymerization initiator which is a photopolymerization initiator
  • the conditions such as the wavelength of the light 351 and the irradiation time are not particularly limited, and it is desirable to set appropriately according to the type of the first resin 310 and the type of the first polymerization initiator.
  • a polyimide resin is used as the first resin 310, and 1,2-octanedione, 1- [4- (phenylthio) -2- (O-benzoyloxime)] (BASF Japan Ltd.) is used as the first polymerization initiator.
  • UVGACURE OXE-01 Ethanone, 1- [9-ethyl-6- (2-methylbenzoyl) -9H-carbazol-3-yl] -1- (O-acetyloxime) (manufactured by BASF Japan Ltd.),
  • a photopolymerization initiator such as IRGACURE OXE-02 "
  • 2,4-dimethylthioxanthone having a thioxanthone structure Nippon Kayaku Co., Ltd.
  • DETX-S the wavelength of light 351 is 310 to 436 nm Is desirable.
  • the wiring pattern 330 embedded in the first resin 310 is fixed, so that the adhesion between the wiring pattern 330 and the first resin 310 can be improved.
  • the base material 340 may be made of any material as long as it has a light transmitting property, for example, a light transmitting inorganic material such as glass or quartz, or a light transmitting such as an acrylic resin, a polycarbonate resin, or a cycloolefin resin It may be made of organic material or the like.
  • the second resin 320 is irradiated with light 352 from the base material 340 side. Since the substrate 340 has translucency, the light 352 passes through the substrate 340 and reaches the second resin 320. Further, since the second resin 320 contains the second polymerization initiator which is a photopolymerization initiator, the second resin 320 is cured by the light 352. Then, the second resin 320 and the base 340 are bonded by curing of the second resin 320.
  • the conditions for irradiating the light 352 are not particularly limited, and it is desirable to appropriately set the conditions according to the type of the second resin 320 and the type of the second polymerization initiator.
  • a polyimide resin is used as the second resin 320, and 1,2-octanedione, 1- [4- (phenylthio) -2- (O-benzoyloxime)] (manufactured by BASF Japan Ltd.) as the second polymerization initiator.
  • UVGACURE OXE-01 Ethanone, 1- [9-ethyl-6- (2-methylbenzoyl) -9H-carbazol-3-yl] -1- (O-acetyloxime) (manufactured by BASF Japan Ltd.),
  • a photopolymerization initiator such as IRGACURE OXE-02
  • 2,4-dimethylthioxanthone having a thioxanthone structure Nippon Kayaku Co., Ltd.
  • DETX-S the wavelength of light 352 is 310 to 436 nm Is desirable.
  • a printed wiring board can be manufactured through the above steps.
  • (1) after forming the wiring pattern in the first resin in the wiring pattern forming step, embedding the wiring pattern in the first resin as necessary May be.
  • the position of the wiring pattern can be easily fixed, so that the wiring pattern can be prevented from being displaced.
  • the wiring pattern may be embedded so that the wiring pattern and the first resin are substantially flush, or only a part of the wiring pattern may be embedded in the first resin.
  • a reinforcing material in which the second resin can be impregnated is disposed between the second resin and the base material. It is desirable to do. By arranging the reinforcing material between the second resin and the base material, the strength of the printed wiring board to be manufactured can be strengthened. In addition, since the reinforcing material can be impregnated with the second resin, the second resin and the base material are in direct contact with each other. Therefore, the adhesion between the second resin and the base is unlikely to be inhibited.
  • the reinforcing material is not particularly limited, but may be, for example, a porous body of a fluorine-based resin sheet such as PTFE, or a fibrous body such as glass cloth, cellulose fiber cloth, or paper.
  • the method of manufacturing a printed wiring board according to the fifth embodiment of the present invention includes (1) resin laminating step to (5) second resin curing step.
  • the first polymerization initiator functions as a photopolymerization initiator by being irradiated with light of a first wavelength
  • the second polymerization initiator is a photopolymerization initiator by being irradiated with light of a second wavelength Act as.
  • the first wavelength and the second wavelength are different wavelengths.
  • the first resin is irradiated with light of the first wavelength while the semi-cured state of the second resin is maintained, and the first resin is cured;
  • the second resin curing step the second resin is cured by irradiating the second resin with light of the second wavelength.
  • FIG. 21 is a schematic diagram which shows typically an example of the lamination process in the manufacturing method of the printed wiring board which concerns on 5th Embodiment of this invention.
  • FIG. 22 is a schematic diagram which shows typically an example of the wiring pattern formation process in the manufacturing method of the printed wiring board which concerns on 5th Embodiment of this invention.
  • FIG. 23 is a schematic diagram which shows typically an example of the 1st resin hardening process in the manufacturing method of the printed wiring board which concerns on 5th Embodiment of this invention.
  • FIG. 21 is a schematic diagram which shows typically an example of the lamination process in the manufacturing method of the printed wiring board which concerns on 5th Embodiment of this invention.
  • FIG. 22 is a schematic diagram which shows typically an example of the wiring pattern formation process in the manufacturing method of the printed wiring board which concerns on 5th Embodiment of this invention.
  • FIG. 23 is a schematic diagram which shows typically an example of the 1st resin hardening process in the manufacturing method of the printed wiring board which concerns on 5th
  • FIG. 24 is a schematic diagram which shows typically an example of the base-material bonding process in the manufacturing method of the printed wiring board which concerns on 5th Embodiment of this invention.
  • FIG. 25 is a schematic diagram which shows typically an example of the 2nd resin hardening process in the manufacturing method of the printed wiring board which concerns on 5th Embodiment of this invention.
  • the desirable material, thickness, relative dielectric constant, dielectric tangent and the like of the first resin 410 are the desirable materials of the first resin 10 described in the description of the method for producing a printed wiring board according to the first embodiment of the present invention, Same as thickness, dielectric constant, and dielectric loss tangent.
  • the desirable material and thickness of the second resin 420 are the same as the desirable material and thickness of the second resin 20 described in the method of manufacturing a printed wiring board according to the first embodiment of the present invention. Further, the second resin 420 may contain a functional material, as in the case of the second resin 20.
  • the first resin 410 and the second resin 420 are each irradiated with light of a first wavelength, and are thus irradiated with light of a first polymerization initiator that functions as a photopolymerization initiator and light of a second wavelength. It contains a second polymerization initiator that functions as an initiator. Also, the first wavelength and the second wavelength are different wavelengths. The first wavelength and the second wavelength preferably differ by 50 nm or more, and more preferably by 100 nm or more.
  • the first resin containing the first polymerization initiator by irradiating the light of the first wavelength in the (4) first resin curing step described later to be a wavelength that the first wavelength and the second wavelength differ by 50 nm or more Even when light of the first wavelength reaches the second resin containing the second polymerization initiator when curing the second resin, the second resin can easily maintain the semi-cured state.
  • the wiring pattern 430 is formed on the first resin 410.
  • the method and material for forming the wiring pattern 430 are the same as the method and material for forming the wiring pattern 30 described in the method for manufacturing a printed wiring board according to the first embodiment of the present invention.
  • Conditions such as the first wavelength at the time of irradiation with the light 451 and the irradiation time are not particularly limited, and it is desirable to set appropriately according to the type of the first resin 410 and the type of the first polymerization initiator.
  • a polyimide resin is used as the first resin 410, and 1,2-octanedione, 1- [4- (phenylthio) -2- (O-benzoyloxime)] (manufactured by BASF Japan Ltd.) as the first polymerization initiator.
  • IRGACURE OXE-01 Ethanone, 1- [9-ethyl-6- (2-methylbenzoyl) -9H-carbazol-3-yl] -1- (O-acetyloxime) (manufactured by BASF Japan Ltd.),
  • a photopolymerization initiator such as IRGACURE OXE-02 "
  • 2,4-dimethylthioxanthone having a thioxanthone structure DETX-S "manufactured by Nippon Kayaku Co., Ltd.
  • the first wavelength of the light 451 is 200 It is desirable that the thickness be about 400 nm.
  • the desirable material and the like of the substrate 440 may be the same as the desirable material and the like of the substrate 40 described in the description of the method for manufacturing a printed wiring board according to the first embodiment of the present invention.
  • the base 440 may have a light transmitting property.
  • the base 440 has translucency, light of the second wavelength can also reach the second resin 420 from the base 440 side in the (5) second resin curing step described later. Therefore, the second resin 420 can be efficiently cured.
  • the substrate 440 has translucency, examples of the material of the substrate 440 include translucent inorganic materials such as glass and quartz, and translucent organic materials such as acrylic resin, polycarbonate resin and cycloolefin resin.
  • the second resin 420 is irradiated with the light 452 of the second wavelength to cause the second polymerization initiator to function as a photopolymerization initiator, the second The resin 420 is cured. By curing the second resin 420, the second resin 420 and the base 440 are bonded.
  • Conditions such as the second wavelength at the time of irradiation of the light 452 and the irradiation time are not particularly limited, and it is desirable to set appropriately according to the type of the second resin 420 and the type of the second polymerization initiator.
  • the first wavelength of the light 452 be 480 to 600 nm.
  • the base material 440 has translucency
  • the substrate 440 has translucency
  • the light 452 of the second wavelength emitted from the substrate 440 side can also reach the second resin 420. Therefore, the second resin 420 can be efficiently cured.
  • a printed wiring board can be manufactured through the above steps.
  • (1) after forming the wiring pattern in the first resin in the wiring pattern forming step, embedding the wiring pattern in the first resin as necessary May be.
  • the position of the wiring pattern can be easily fixed, so that the wiring pattern can be prevented from being displaced.
  • the wiring pattern may be embedded so that the wiring pattern and the first resin are substantially flush, or only a part of the wiring pattern may be embedded in the first resin.
  • the first resin and / or the second resin is impregnated between the first resin and the second resin. It is desirable to place possible reinforcements.
  • the reinforcing material By arranging the reinforcing material between the first resin and the second resin, the strength of the printed wiring board to be manufactured can be strengthened.
  • the reinforcing material can be impregnated with the first resin and / or the second resin, the first resin and the second resin are in direct contact with each other. Therefore, the adhesion between the first resin and the second resin is not easily inhibited.
  • a reinforcing material in which the second resin can be impregnated is disposed between the second resin and the base material. It is desirable to do. By arranging the reinforcing material between the second resin and the base material, the strength of the printed wiring board to be manufactured can be strengthened. In addition, since the reinforcing material can be impregnated with the second resin, the second resin and the base material are in direct contact with each other. Therefore, the adhesion between the second resin and the base is unlikely to be inhibited.
  • the reinforcing material is not particularly limited, but may be, for example, a porous body of a fluorine-based resin sheet such as PTFE, or a fibrous body such as glass cloth, cellulose fiber cloth, or paper.
  • 26 (a) to 26 (e) are schematic views schematically showing an example of a method of manufacturing a printed wiring board according to a sixth embodiment of the present invention in the order of steps.
  • the first resin 510 in a semi-cured state and the second resin 520 in a semi-cured state are laminated by a first roll press 581. That is, (1) a resin laminating step is performed.
  • the first resin 510 contains a first polymerization initiator
  • the second resin 520 contains a second polymerization initiator.
  • the materials of the first resin 510, the second resin 520, the first polymerization initiator, and the second polymerization initiator are the first resin and the second resin described in the first to fifth embodiments of the present invention. Materials of resin, first polymerization initiator, and second polymerization initiator can be used.
  • the wiring pattern 530 is formed on the first resin 510. That is, (2) a wiring pattern formation step is performed.
  • the method of forming the wiring pattern 530 on the first resin 510 is not particularly limited.
  • a copper foil is attached to the first resin 510, the copper foil is masked with an etching resist, and the copper foil is etched using an etching solution.
  • a wiring pattern having an arbitrary shape may be formed, and the wiring pattern 530 may be formed by removing the etching solution and the etching resist.
  • a method of printing the wiring pattern 530 on the first resin 510 by a wiring pattern printing machine can also be mentioned. At this time, the wiring pattern 530 may be embedded in the first resin 510.
  • the first resin 510 is cured by the first curing means 555. That is, (3) a first resin curing step is performed.
  • the first curing means 555 for curing the first resin 510 it is desirable to appropriately select according to the type of the first resin 510 and the type of the first polymerization initiator.
  • Examples of the first curing means 555 include light and heat, as described in the first to fifth embodiments of the present invention.
  • the laminated first resin 510 and second resin 520 may be placed in a heating furnace and heated.
  • the base material 540 is attached to the second resin 520. That is, (4) base material bonding process is performed.
  • the material of the substrate 540 the materials of the substrates described in the first to fifth embodiments of the present invention can be used.
  • the second resin 520 is cured by the second curing means 556. That is, (5) A second resin curing step is performed. Thereby, the second resin 520 and the base material 540 can be adhered, and a printed wiring board can be manufactured.
  • the second curing unit 556 for curing the second resin 520 is desirably selected appropriately in accordance with the type of the second resin 520 and the type of the second polymerization initiator.
  • Examples of the second curing means 556 include light and heat as described in the first to fifth embodiments of the present invention.
  • the printed wiring board may be manufactured by continuously performing the above-described steps in a roll press.
  • a thermal polymerization initiator is used as the first polymerization initiator and the second polymerization initiator, and the first curing means 555 and the second curing means 556 are used.
  • the printed wiring board may be manufactured as follows. In this case, the 10-hour half-life temperature of the first polymerization initiator is lower than the 10-hour half-life temperature of the second polymerization initiator.
  • the steps up to (1) resin lamination step and (2) wiring pattern formation step are performed.
  • the (3) first resin curing step heat is applied at a temperature at which the second resin 520 remains in a semi-cured state and at which the first resin 510 cures. , And the first resin 510 is cured. At this time, if the wiring pattern 530 can be in close contact with the first resin 510, the first resin 510 may not be completely cured.
  • (4) base material pasting process is performed as mentioned above.
  • the heat of the temperature at which the second resin 520 is cured is applied to cure the second resin 520.
  • the substrate 540 is brought into close contact with the second resin 520.
  • the second resin 520 may not be completely cured.
  • the laminate of the wiring pattern 530, the first resin 510, the second resin 520, and the base material 540 is put in a heating furnace in a long state or a state of being wound in a roll shape.
  • a third resin heating step of heating the first resin 510 and the second resin 520 so that the second resin 520 is completely cured is performed. By completely curing the first resin 510 and the second resin 520 finally in a heating furnace, a printed wiring board can be efficiently manufactured.
  • first resin curing step it is desirable to cure the first resin 510 by applying heat to the first resin 510 at a temperature lower than the 10-hour half-life temperature of the second polymerization initiator.
  • second resin curing step it is desirable to cure the second resin by applying heat to the second resin 520 at a temperature higher than the 10-hour half-life temperature of the second polymerization initiator.
  • FIG. 27 is a schematic view schematically showing an example of the printed wiring board of the present invention.
  • the printed wiring board 601 which is an example of the printed wiring board of the present invention, has a surface opposite to the surface 611 of the wiring pattern 630, the first cured resin layer 615, and the first cured resin layer 615.
  • the printed wiring board is composed of the second cured resin layer 625 laminated on 612 and the base material 640 bonded to the surface 622 opposite to the surface 621 of the second cured resin layer 625 in contact with the first cured resin layer 615 is there.
  • the first cured resin layer 615 is a cured resin in which the first resin is cured by the first polymerization initiator
  • the second cured resin layer 625 is a cured resin in which the second resin is cured by the second polymerization initiator. is there.
  • the first curing means for curing the first resin with the first polymerization initiator and the second means for curing the second resin with the second polymerization initiator are different.
  • the materials of the first resin, the second resin, the first polymerization initiator, the second polymerization initiator, the wiring pattern 630, and the base material 640 are the same as those described in the first to sixth embodiments of the present invention. It is desirable that the material is a resin, a second resin, a first polymerization initiator, a second polymerization initiator, a wiring pattern, and a base material.
  • the first curing means and the second curing means are means for curing the first resin and the second resin described in the first to sixth embodiments of the present invention.
  • the printed wiring board 601 having such a configuration is a printed wiring board manufactured by the method for manufacturing a printed wiring board described in the first to sixth embodiments of the present invention. Therefore, in the printed wiring board 601, the adhesion between the second cured resin layer 625 and the base material 640 is sufficiently high. Furthermore, the wiring pattern 630 also has less deviation from the predetermined position.
  • the printed wiring board 601 can also function as a flexible printed wiring board.
  • the method for producing a multilayer printed wiring board according to the eighth embodiment of the present invention is a method for producing a multilayer printed wiring board, wherein an upper layer printed wiring board and a lower layer printed wiring board are laminated to produce a multilayer printed wiring board.
  • Laminating a first resin in a semi-hardened state and a second resin in a semi-hardened state (1) forming an upper layer printed wiring board resin laminating step, and forming a first wiring pattern on the first resin (2) first A wiring pattern forming step, and curing the first resin while maintaining the semi-cured state of the second resin to produce an upper layer printed wiring board (3) a first resin curing step, and a second wiring for the third resin
  • the lower layer printed wiring board on which the pattern is formed is prepared (4)
  • the lower layer printed wiring board preparing step, and the lower layer printed wiring board is laminated under the upper layer printed wiring board (5) printed wiring board laminating step, Cure the resin, on top Adhering the printed circuit board and the lower printed wiring board (6) and a second resin curing step.
  • the first resin contains a first polymerization initiator
  • the second resin contains a second polymerization initiator.
  • FIG. 28 is process drawing which shows typically an example of the resin lamination process for upper layer printed wiring boards in the manufacturing method of the multilayer printed wiring board which concerns on 8th Embodiment of this invention.
  • FIG. 29 is a process chart schematically showing an example of a first wiring pattern forming step in the method for manufacturing a multilayer printed wiring board according to the eighth embodiment of the present invention.
  • FIG. 30 is process drawing which shows typically an example of the 1st resin hardening process in the manufacturing method of the multilayer printed wiring board which concerns on 8th Embodiment of this invention.
  • FIG. 28 is process drawing which shows typically an example of the resin lamination process for upper layer printed wiring boards in the manufacturing method of the multilayer printed wiring board which concerns on 8th Embodiment of this invention.
  • FIG. 29 is a process chart schematically showing an example of a first wiring pattern forming step in the method for manufacturing a multilayer printed wiring board according to the eighth embodiment of the present invention.
  • FIG. 30 is process drawing which shows typically an example of the 1st resin
  • FIG. 31 is a process chart schematically showing an example of a lower layer printed wiring board preparing step in the method for manufacturing a multilayer printed wiring board according to the eighth embodiment of the present invention.
  • FIG. 32 is process drawing which shows typically an example of the printed wiring board lamination
  • FIG. 33 is process drawing which shows typically an example of the 2nd resin hardening process in the manufacturing method of the multilayer printed wiring board which concerns on 8th Embodiment of this invention.
  • (1) Resin Laminating Process for Upper Layer Printed Wiring Board In the method for manufacturing a multilayer printed wiring board according to the eighth embodiment of the present invention, first, as shown in FIG. The second resin 1020 in the state is laminated. In a step after the method for manufacturing a multilayer printed wiring board of the present invention, a first wiring pattern is formed on the first resin, and the second resin and the lower layer printed wiring board are bonded. Manufactured by using a resin of a type that improves the transmission characteristics of the first wiring pattern as the first resin, and using a type of resin that improves the adhesion with the lower layer printed wiring board as the second resin In a multilayer printed wiring board, transmission characteristics and adhesion between the printed wiring boards can be compatible.
  • the material of the first resin 1010 is not particularly limited, it is desirable that the material is a photocurable resin or a thermosetting resin.
  • examples of such resin include phenol resin, polyester resin, polyimide resin, polysulfonic acid resin, polyetherimide resin, polyether ketone resin, polycarbonate resin, polyurethane resin, polysiloxane resin, polyamide resin and the like.
  • polyimide resins are preferable.
  • the polyimide resin is preferably a curable resin composition containing a (A) bismaleimide compound represented by the following general formula (1).
  • X is an aliphatic, alicyclic or aromatic hydrocarbon group and is a hydrocarbon group having 10 to 30 carbon atoms in its main chain, and these groups are hetero compounds It may have an atom, a substituent or a siloxane skeleton.
  • X is preferably an aliphatic or alicyclic hydrocarbon or an aliphatic hydrocarbon group modified by an alicyclic hydrocarbon group, and more preferably an aliphatic hydrocarbon group having 10 to 55 carbon atoms. And 10 to 40 carbon atoms are more preferable.
  • Y represents an aliphatic, alicyclic or aromatic hydrocarbon group, and these groups have a hetero atom, a substituent, a phenyl ether skeleton, a sulfonyl skeleton or a siloxane skeleton It is also good.
  • Y is preferably an aromatic hydrocarbon group.
  • n is the number of repeating units and represents a number in the range of 1 to 20.
  • a first wiring pattern is formed on the first resin 1010.
  • the material of the first resin 1010 is the above-described resin, the transmission characteristics of the signal transmitted in the first wiring pattern are improved.
  • the thickness of the first resin 1010 is not particularly limited, but is preferably 5 to 100 ⁇ m, and more preferably 10 to 100 ⁇ m. When the thickness of the first resin 10 is less than 5 ⁇ m, the strength of the upper layer printed wiring board tends to be weak. When the thickness of the first resin 1010 exceeds 100 ⁇ m, the multilayer printed wiring board to be manufactured becomes thick, and it becomes difficult to miniaturize the electronic device.
  • the relative dielectric constant of the first resin 1010 is desirably 2 to 3 at a frequency of 1 GHz.
  • the dielectric loss tangent of the first resin 1010 is preferably 0.0001 to 0.002 at a frequency of 1 GHz.
  • the first resin 1010 contains a first polymerization initiator.
  • the first polymerization initiator is a thermal polymerization initiator or a photopolymerization initiator.
  • the type of the first polymerization initiator is the type of the second polymerization initiator, (3) the first curing means in the first resin curing step, and (6) the second curing means in the second resin curing step. It is desirable to select according to. These desirable examples will be described later.
  • the material of the second resin 1020 is not particularly limited, for example, it is desirable to be a photocurable resin or a thermosetting resin.
  • a photocurable resin or a thermosetting resin examples include phenol resin, polyester resin, polyimide resin, polysulfonic acid resin, polyetherimide resin, polyether ketone resin, polycarbonate resin, polyurethane resin, polysiloxane resin, polyamide resin and the like.
  • polyimide resins are preferable.
  • the polyimide resin is preferably a curable resin composition containing (A) a bismaleimide compound represented by the following general formula (1).
  • X is an aliphatic, alicyclic or aromatic hydrocarbon group and is a hydrocarbon group having 10 to 30 carbon atoms in its main chain, and these groups are hetero compounds It may have an atom, a substituent or a siloxane skeleton.
  • X is preferably an aliphatic or alicyclic hydrocarbon or an aliphatic hydrocarbon group modified by an alicyclic hydrocarbon group, and more preferably an aliphatic hydrocarbon group having 10 to 55 carbon atoms. And 10 to 40 carbon atoms are more preferable.
  • Y represents an aliphatic, alicyclic or aromatic hydrocarbon group, and these groups have a hetero atom, a substituent, a phenyl ether skeleton, a sulfonyl skeleton or a siloxane skeleton It is also good.
  • Y is preferably an aromatic hydrocarbon group.
  • n is the number of repeating units and represents a number in the range of 1 to 20.
  • the second resin 1020 is bonded to the third resin of the lower layer printed wiring board.
  • the material of the second resin 1020 is the above-described resin, the adhesiveness of the lower layer printed wiring board to the third resin is improved.
  • the thickness of the second resin 1020 is not particularly limited, but is preferably 5 to 100 ⁇ m, and more preferably 10 to 100 ⁇ m. When the thickness of the second resin 1020 is less than 5 ⁇ m, the strength of the upper layer printed wiring board tends to be weak. When the thickness of the second resin 1020 exceeds 100 ⁇ m, the multilayer printed wiring board to be manufactured becomes thick, which makes it difficult to miniaturize the electronic device.
  • the relative dielectric constant of the second resin 1020 is desirably 2 to 3 at a frequency of 1 GHz.
  • the dielectric loss tangent of the second resin 1020 is desirably 0.0001 to 0.002 at a frequency of 1 GHz.
  • the second resin 1020 contains a second polymerization initiator.
  • the second polymerization initiator is a thermal polymerization initiator or a photopolymerization initiator.
  • the type of the second polymerization initiator is the type of the first polymerization initiator, (3) the first curing means in the first resin curing step, and (6) the second curing means in the second resin curing step. It is desirable to select according to. These desirable examples will be described later.
  • a first wiring pattern 1031 is formed on the first resin 1010.
  • the method of forming the first wiring pattern 1031 is not particularly limited, and for example, the first wiring pattern 1031 may be formed by covering the first resin 1010 with a metal film and etching the metal film.
  • the first wiring pattern 1031 may be formed by printing a conductive paste on the first resin 1010.
  • the first resin 1010 is covered with a metal film.
  • the method of covering the first resin 1010 with a metal film is not particularly limited, and a method of attaching a metal foil or a method of forming a metal film on the first resin 1010 by plating may be mentioned.
  • metal which comprises a metal film For example, copper, silver, etc. are mentioned. Among these, copper is desirable.
  • the metal film covering the first resin 1010 is masked and etched so as to form a predetermined wiring pattern.
  • the etching can be performed by a conventional method in accordance with the type of metal constituting the metal film and the thickness of the metal film.
  • the metal forming the metal film is copper, it is desirable to perform etching using a sulfuric acid / hydrogen peroxide type etching solution or the like as the etching solution.
  • the conductive paste is not particularly limited, but, for example, a blend of a conductive filler, a thermosetting resin, and a thermoplastic resin can be used.
  • the conductive filler metal particles, carbon nanotubes, carbon fibers, metal fibers and the like can be used.
  • the first resin 1010 is cured by the first curing means 1055 and the upper layer printed wiring board 1091 is made. That is, (3) in the first resin curing step, the first resin 1010 is cured earlier than the second resin 1020.
  • the first wiring pattern 1031 formed on the first resin 1010 can be sufficiently fixed to the first resin 1010, and the first wiring pattern 1031 and the first resin 1010 The adhesion of the above can be improved.
  • the first curing means is selected according to the type of the second polymerization initiator, the type of the first polymerization initiator, and (6) the second curing means in the second resin curing step. These desirable examples will be described later.
  • the lower layer printed wiring board 1092 having the second wiring pattern 1032 formed in the third resin 1040 is prepared.
  • the material, thickness, and the like of the third resin 1040 are not particularly limited, but the same material, thickness, and the like as the first resin 1010 may be used.
  • the second wiring pattern 1032 is not particularly limited, but may be formed by the same method as the first wiring pattern.
  • the lower layer printed wiring board 1092 is stacked under the upper layer printed wiring board 1091. At this time, since the second resin 1020 in a semi-cured state and the third resin 1040 of the lower layer printed wiring board 1092 are adhered, the adhesion between the second resin 1020 and the third resin 1040 of the lower layer printed wiring board 1092 is improved. be able to.
  • the second resin 1020 is cured to bond the upper layer printed wiring board 1091 and the lower layer printed wiring board 1092.
  • the adhesion between the second resin 1020 and the third resin 1040 is sufficiently high. Since the second resin is cured in this state, the upper layer printed wiring board 1091 and the lower layer printed wiring board 1092 are firmly bonded.
  • the multilayer printed wiring board 1001 can be manufactured through the above steps. Such a multilayer printed wiring board 1001 is also a multilayer printed wiring board of the present invention.
  • FIG. 33 is a schematic view schematically showing an example of the multilayer printed wiring board of the present invention.
  • a multilayer printed wiring board 1001 includes an upper printed wiring board 1091 having a first wiring pattern 1031 formed thereon, and a lower printed wiring board 1092 having a second wiring pattern 1032 formed on a third resin 1040. Is a multilayer printed wiring board laminated.
  • the upper layer printed wiring board 1091 has a first cured resin layer 1015 having the first wiring pattern 1031 formed on one surface, and a surface of the first cured resin layer 1015 opposite to the surface on which the first wiring pattern 1031 is formed. And a second cured resin layer 1025 laminated thereon.
  • the first cured resin layer 1015 is a cured resin in which the first resin is cured by the first polymerization initiator
  • the second cured resin layer 1025 is a cured resin in which the second resin is cured by the second polymerization initiator. is there.
  • the first curing means for curing the first resin with the first polymerization initiator is different from the second means for curing the second resin with the second polymerization initiator.
  • the first polymerization initiator may be a photopolymerization initiator
  • the second polymerization initiator may be a thermal polymerization initiator.
  • the first curing means in the first resin curing step is light
  • the second curing means in the second resin curing step is heat.
  • the first polymerization initiator is not particularly limited as long as it is a photopolymerization initiator, and for example, an alkylphenone photopolymerization initiator, an acylphosphine photopolymerization initiator, an oxime ester photopolymerization initiator, a thioxanthone type Photopolymerization initiators can be mentioned.
  • acetophenone 2,2-dimethoxyacetophenone, p-dimethylaminoacetophenone, Michler's ketone, benzyl, benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin n-propyl ether, benzoin isopropyl ether, benzoin n -Butyl ether, benzyl dimethyl ketal, thioxaton, 2-chlorothioxasone, 2-methylthioxaton, 2,2-dimethoxy-1,2-diphenylethan-1-one, 1-hydroxy-cyclohexyl-phenyl-ketone, 2 -Hydroxy-2-methyl-1-phenyl-propan-1-one, 1- [4- (2-hydroxyethoxy) -phenyl] -2-hydroxy-2-methyl-1-propane-1 One, 2-hydroxy-1- ⁇ 4- [4- (2-hydroxye
  • a photopolymerization initiator that efficiently generates radicals at an exposure wavelength of 310 to 436 nm, more preferably at an exposure wavelength of 310 to 365 nm, is desirable.
  • 1,2-octanedione having an oxime structure 1- [4- (phenylthio) -2- (O-benzoyloxime)] (manufactured by BASF Japan Ltd., “IRGACURE OXE” -01 "), Ethanone, 1- [9-ethyl-6- (2-methylbenzoyl) -9H-carbazol-3-yl] -1- (O-acetyloxime) (manufactured by BASF Japan Ltd.,“ IRGACURE OXE- 02 ′ ′), 2,4-dimethylthioxanthone having a thioxanthone structure (manufactured by Nippon Kayaku Co.,
  • the first polymerization initiator may be composed of one kind of the above-mentioned photopolymerization initiator, or may be composed of two or more kinds.
  • the second polymerization initiator is not particularly limited as long as it is a thermal polymerization initiator, but may be an organic peroxide thermal polymerization initiator, an azo thermal polymerization initiator, or the like.
  • the organic peroxide-based thermal polymerization initiators include methyl ethyl ketone peroxide, cyclohexanone peroxide, methyl cyclohexanone peroxide, methyl acetoacetate peroxide, acetyl acetate peroxide, 1,1-bis (t-hexylperoxy) -3 , 3,5-trimethylcyclohexane, 1,1-bis (t-hexylperoxy) -cyclohexane, 1,1-bis (t-butylperoxy) -3,3,5-trimethylcyclohexane, 1,1-bis (T-butylperoxy) -2-methylcyclohexane, 1,1-bis (t-butylperoxy) -cyclohexane, 1,1-bis (t-butylperoxy) cyclododecane, 1,1-bis (t -Butylperoxy) butane, 2,2-bis (4,4-di-t- Chi
  • 2-phenylazo-4-methoxy-2,4-dimethylvaleronitrile 1-[(1-cyano-1-methylethyl) azo] formamide, 1,1′-azobis (cyclohexane -1-carbonitrile), 2,2'-azobis (2-methylbutyronitrile), 2,2'-azobisisobutyronitrile, 2,2'-azobis (2,4-dimethyl valeronitrile), 2,2'-azobis (2-methylpropionamidine) dihydrochloride, 2,2'-azobis (2-methyl-N-phenylpropionamidine) dihydrochloride, 2,2'-azobis [N- (4-chlorophenyl) -2-Methylpropionamidine] dihydridochloride, 2,2'-azobis [N- (4-hydrophenyl) -2-methylpropiona Gin] dihydrochloride, 2,2'-azobis [2-methyl-N- (phenylmethyl)
  • the second polymerization initiator may consist of one of the above-mentioned thermal polymerization initiators, or may consist of two or more.
  • the first resin curing step the first resin is irradiated with light when the first polymerization initiator, the second polymerization initiator, the first curing means, and the second curing means are the combination described above.
  • the second resin curing step the second resin is cured by applying heat to the second resin.
  • the first polymerization initiator may further contain a thermal polymerization initiator. That is, the first polymerization initiator is a photopolymerization initiator and a thermal polymerization initiator, the second polymerization initiator is a thermal polymerization initiator, and the first curing means in the first resin curing step is light. The second curing means in the second resin curing step is heat.
  • the desired type of the thermal polymerization initiator contained in the first polymerization initiator is the same as the desired type of the thermal polymerization initiator contained in the second polymerization initiator.
  • the first resin curing step the first resin is cured by irradiating the first resin with light, and in the second resin curing step, the second resin is applied with heat. By curing the resin and simultaneously applying heat to the first resin, the first resin is cured.
  • the first resin is a photopolymerization initiator and a thermal polymerization initiator
  • the first polymerization initiator may be a thermal polymerization initiator
  • the second polymerization initiator may be a photopolymerization initiator.
  • the first curing means in the first resin curing step is heat
  • the second curing means in the second resin curing step is light.
  • the first polymerization initiator is not particularly limited as long as it is a thermal polymerization initiator, and may be, for example, an organic peroxide thermal polymerization initiator, an azo thermal polymerization initiator, or the like.
  • the first polymerization initiator may be composed of one type of thermal polymerization initiator or may be composed of two or more types.
  • the second polymerization initiator is not particularly limited as long as it is a photopolymerization initiator, and may be, for example, an alkylphenone type, an acyl phosphine type, an oxime ester type, a thioxanthone type, and the like.
  • the second polymerization initiator may be composed of one type of photopolymerization initiator, or may be composed of two or more types.
  • the first resin is cured by applying heat to the first resin, if the first polymerization initiator, the second polymerization initiator, the first curing means and the second curing means are the combination described above.
  • the second resin curing step the second resin is cured by irradiating the second resin with light.
  • the first polymerization initiator may further contain a photopolymerization initiator. That is, the first polymerization initiator is a thermal polymerization initiator and a photopolymerization initiator, the second polymerization initiator is a photopolymerization initiator, and the first curing means in the first resin curing step is heat. The second curing means in the second resin curing step is light.
  • the desired type of the photopolymerization initiator contained in the first polymerization initiator is the same as the desired type of the photopolymerization initiator contained in the second polymerization initiator.
  • the first resin is cured by applying heat to the first resin
  • the second resin is irradiated by irradiating the second resin with light.
  • the first resin is cured by irradiating the first resin with light.
  • the degree of curing of the first resin can be easily controlled in the first resin curing step.
  • the first resin is also irradiated with light to cure the second resin, and at the same time, when an uncured portion exists in the first resin, the first resin Uncured parts can be sufficiently cured.
  • the first polymerization initiator may be a thermal polymerization initiator
  • the second polymerization initiator may be a thermal polymerization initiator.
  • the first curing means in the first resin curing step and the second curing means in the second resin curing step are both heat.
  • the composition of the first resin and the second resin so that the curing temperature of the first resin is lower than the curing temperature of the second resin, the curing time of the first resin and the curing of the second resin You can shift it from the time.
  • the semi-cured state of the second resin is The first resin can be cured while being maintained.
  • the second resin can be cured by setting the temperature of the heat, which is the second curing means, to a temperature at which the second resin cures.
  • the first resin may be cured without completely curing the second resin in the first resin curing step. It can be cured. As a result, the position of the wiring pattern formed in the first resin can be easily fixed, so that the wiring pattern can be prevented from being displaced. Furthermore, since the second resin is not completely cured in the first resin curing step, the adhesion to the substrate is improved.
  • the 10-hour half-life temperature of the first polymerization initiator may be lower than the 10-hour half-life temperature of the second polymerization initiator.
  • the first resin curing step the first resin is cured by applying heat to the first resin at a temperature lower than the 10 hour half-life temperature of the second polymerization initiator, and the second resin curing step
  • the second resin may be cured by applying heat to the second resin at a temperature higher than the 10-hour half-life temperature of the second polymerization initiator.
  • the first resin can be easily cured prior to the curing of the second resin by using two types of thermal polymerization initiators having different 10-hour half-life temperatures.
  • the first polymerization initiator is a photopolymerization initiator
  • the second polymerization initiator is a photopolymerization initiator
  • the polymerization initiator functions as a photopolymerization initiator by being irradiated with light of a first wavelength
  • the second polymerization initiator is irradiated with light of a second wavelength different from the light of the first wavelength.
  • the first curing means in the first resin curing step is light of the first wavelength
  • the second curing means in the second resin curing step is light of the second wavelength.
  • the first polymerization initiator, the second polymerization initiator, the first curing means and the second curing means are the combination described above, in the first resin curing step, the semi-cured state of the second resin is maintained, The first resin is irradiated with the light of the first wavelength to cure the first resin, and in the second resin curing step, the second resin is irradiated with the light of the second wavelength to cure the second resin.
  • the resin may be cured.
  • the first resin can be cured first.
  • the ninth embodiment Next, a method of manufacturing a multilayer printed wiring board according to a ninth embodiment of the present invention will be described.
  • the method for manufacturing a multilayer printed wiring board according to the ninth embodiment of the present invention in the (5) printed wiring board laminating step, the first wiring pattern and the second wiring pattern are electrically connected via the conductive member.
  • the manufacturing method of the printed wiring board according to the eighth embodiment of the present invention is the same except that the upper layer printed wiring board and the lower layer printed wiring board are laminated.
  • Such a printed wiring board lamination step will be described below with reference to the drawings.
  • 34 (a) and 34 (b) are schematic views schematically showing an example of a printed wiring board laminating step in the method for manufacturing a multilayer printed wiring board according to the ninth embodiment of the present invention.
  • the printed wiring board laminating step in the method for manufacturing a multilayer printed wiring board according to the ninth embodiment of the present invention as shown in FIG. 34A, on the second wiring pattern 1032 formed in the third resin 1040. And forming a conductive pin 1033 which is a conductive member.
  • FIG. 34 (b) the upper layer printed wiring board 1091 and the lower layer printed wiring board so that the conductive pins 1033 penetrate the second resin 1020 and the first resin 1010 and contact the first wiring pattern 1031. And 1092 are stacked.
  • the upper layer printed wiring board 1091 and the lower layer printed wiring board 1092 are laminated so that the first wiring pattern 1031 and the second wiring pattern 1032 are electrically connected via the conductive pins 1033 which are conductive members.
  • the wiring pattern can be made high density.
  • the material of the conductive pin 1033 is not particularly limited, but copper, gold, silver, nickel and alloys thereof are preferable.
  • the conductive member can use a conductive filler instead of the conductive pin.
  • a conductive paste is filled in the via holes provided in the first resin and / or the second resin, and the first wiring pattern is formed by the conductive paste.
  • the second wiring pattern may be connected.
  • the method is the same as the method for producing a printed wiring board according to the eighth embodiment of the present invention except that the third resin is completely cured to bond the upper layer printed wiring board and the lower layer printed wiring board. is there.
  • the second wiring formed in the third resin is formed by forming the second wiring pattern in the third resin in the semi-cured state, and then curing the third resin so that the third resin is not completely cured.
  • the pattern can be sufficiently fixed to the third resin, and the adhesion between the second wiring pattern and the third resin can be improved.
  • the upper layer printed wiring board and the lower layer printed wiring board The adhesion of the above can be improved.
  • the third resin be a photocurable resin or a thermosetting resin.
  • examples of such resin include phenol resin, polyester resin, polyimide resin, polysulfonic acid resin, polyetherimide resin, polyether ketone resin, polycarbonate resin, polyurethane resin, polysiloxane resin, polyamide resin and the like.
  • polyimide resins are preferable.
  • the type of the third resin may be the same as or different from the type of the second resin.
  • the third polymerization initiator may be a thermal polymerization initiator or a photopolymerization initiator, but it is preferable that the third polymerization initiator be the same type of polymerization initiator as the second polymerization initiator. That is, it is desirable that the method of curing the third resin and the method of curing the second resin be the same.
  • the types of the third resin and the second resin are the same, and the types of the third polymerization initiator and the second polymerization initiator are the same. If the type of the third resin and the type of the second resin are the same and the type of the third polymerization initiator and the type of the second polymerization initiator are the same, in the second resin curing step, the first resin curing unit The third resin and the second resin can be simultaneously cured.
  • a fourth resin in a semi-cured state containing an initiator is laminated, and the second wiring pattern is formed on the third resin. Thereafter, the third resin is cured while maintaining the semi-cured state of the fourth resin. A lower layer printed wiring board is produced, and the fourth resin is also cured in the (6) second resin curing step.
  • the third resin is manufactured by using a resin of a type that improves the transmission characteristics of the second wiring pattern and the fourth resin that uses a resin of a type that improves adhesion to another base material.
  • the multilayer printed wiring board it is possible to achieve both transmission characteristics and adhesion.
  • the material of the third resin is not particularly limited, but it is desirable that the material be a photocurable resin or a thermosetting resin.
  • examples of such resin include phenol resin, polyester resin, polyimide resin, polysulfonic acid resin, polyetherimide resin, polyether ketone resin, polycarbonate resin, polyurethane resin, polysiloxane resin, polyamide resin and the like.
  • polyimide resins are preferable.
  • the third polymerization initiator may be a thermal polymerization initiator or a photopolymerization initiator.
  • the material of the fourth resin is not particularly limited, for example, it is desirable that it is a photocurable resin or a thermosetting resin.
  • a photocurable resin or a thermosetting resin examples include phenol resin, polyester resin, polyimide resin, polysulfonic acid resin, polyetherimide resin, polyether ketone resin, polycarbonate resin, polyurethane resin, polysiloxane resin, polyamide resin and the like.
  • polyimide resins are preferable.
  • the fourth polymerization initiator may be a thermal polymerization initiator or a photopolymerization initiator.
  • the first resin and the third resin are the same type of resin
  • the second resin and the fourth resin are the same type of resin Is desirable.
  • the first polymerization initiator and the third polymerization initiator be the same type of polymerization initiator
  • the second polymerization initiator and the fourth polymerization initiator be the same type of polymerization initiator.
  • the linear expansion coefficient can be made uniform, so that the multilayer printed wiring board to be manufactured can be manufactured. It is possible to prevent the occurrence of warpage.
  • step of laminating the first resin and the second resin and the step of laminating the third resin and the fourth resin can be performed in the same line, manufacturing efficiency is improved.
  • the lower layer printed wiring board is made of the first resin and the second resin
  • the method for manufacturing a multilayer printed wiring board according to the eleventh embodiment of the present invention can be described as follows.
  • the method for manufacturing a multilayer printed wiring board according to the eleventh embodiment of the present invention is a method for manufacturing a multilayer printed wiring board by laminating a plurality of printed wiring boards, and the first resin in a semi-cured state, (A) forming a plurality of laminates by laminating the cured second resin and forming a plurality of laminates (A) forming a first wiring pattern on a first resin of a laminate and forming another laminate Forming the second wiring pattern on the first resin (B), forming the wiring pattern, and maintaining the semi-cured state of the second resin of each laminate, and preventing the first resin from completely curing.
  • Curing the first resin to produce an upper layer printed wiring board and a lower layer printed wiring board (C) a first resin curing step, laminating the upper layer printed wiring board and the lower layer printed wiring board (D) a printed wiring board laminating step ,
  • the second of each printed wiring board The fat is cured to bond the respective printed circuit boards with each other (E) may contain a second resin curing step.
  • the first resin contains a first polymerization initiator
  • the second resin contains a second polymerization initiator.
  • FIG. 35 is process drawing which shows typically an example of the resin lamination process for printed wiring boards in the manufacturing method of the multilayer printed wiring board which concerns on 11th Embodiment of this invention.
  • FIG. 36 is a process diagram schematically showing an example of a wiring pattern forming step in the method for manufacturing a multilayer printed wiring board according to the eleventh embodiment of the present invention.
  • FIG. 37 is a process diagram schematically showing an example of a first resin curing step in the method for manufacturing a multilayer printed wiring board according to the eleventh embodiment of the present invention.
  • FIG. 38 is a process chart schematically showing one example of a printed wiring board laminating step in the method for manufacturing a multilayer printed wiring board according to the eleventh embodiment of the present invention.
  • FIG. 39 is a process diagram schematically showing an example of a second resin curing step in the method for manufacturing a multilayer printed wiring board according to the eleventh embodiment of the present invention.
  • (A) Resin Laminating Step for Printed Wiring Board In the method for manufacturing a multilayer printed wiring board according to the eleventh embodiment of the present invention, first, as shown in FIG. 35, the first resin 1110a in a semi-cured state and the semi-cured state The second resin 1120a is laminated to form a laminate 1190a to be an upper layer printed wiring board.
  • the first resin 1110a contains a first polymerization initiator
  • the second resin 1120a contains a second polymerization initiator.
  • the third resin 1110b in a semi-cured state and the fourth resin 1120b in a semi-cured state are laminated to produce a laminate 1190b to be a lower layer printed wiring board.
  • the third resin 1110 b contains a third polymerization initiator
  • the fourth resin 1120 b contains a fourth polymerization initiator.
  • Desirable types and combinations of the first resin 1110a, the second resin 1120a, the first polymerization initiator, and the second polymerization initiator are the first resin 1010 in the method for manufacturing a multilayer printed wiring board according to the eighth embodiment of the present invention. And the desired types and combinations of the second resin 1020, the first polymerization initiator and the second polymerization initiator, respectively. Desirable types and combinations of the third resin 1110b, the fourth resin 1120b, the third polymerization initiator and the fourth polymerization initiator are the first resin 1010 in the method for manufacturing a multilayer printed wiring board according to the eighth embodiment of the present invention. And the desired types and combinations of the second resin 1020, the first polymerization initiator and the second polymerization initiator, respectively.
  • Types and combinations of the first resin 1110a, the second resin 1120a, the first polymerization initiator and the second polymerization initiator are the types of the third resin 1110b, the fourth resin 1120b, the third polymerization initiator and the fourth polymerization initiator And may be the same as the combination.
  • the first wiring pattern 1131 is formed on the first resin 1110a of the laminate 1190a.
  • the second wiring pattern 1132 is formed on the third resin 1110 b of the laminate 1190 b.
  • a desirable method of forming the first wiring pattern 1131 and the second wiring pattern 1132 is desirable to form the first wiring pattern 1031 and the second wiring pattern 1032 in the method of manufacturing a multilayer printed wiring board according to the eighth embodiment of the present invention. It is the same as the method.
  • the curing means for curing the first resin 1110a and the third resin 1110b is not particularly limited, and the first resin 1110a, the second resin 1120a, the third resin 1110b, the fourth resin 1120b, the first polymerization initiator, and the second polymerization are used. It is desirable to select according to the type and combination of the initiator, the third polymerization initiator and the fourth polymerization initiator.
  • the second resin 1120a of the upper layer printed wiring board 1191 and the third resin 1110b of the lower layer printed wiring board 1192 are in close contact with each other, in the multilayer printed wiring board 1101, the upper layer printed wiring board 1191 and the lower layer printed wiring board 1192 Adheres firmly.
  • the curing means for curing the first resin 1110a, the second resin 1120a, the third resin 1110b and the fourth resin 1120b in the second resin curing step is not particularly limited, and the first resin 1110a, the second resin 1120a, the third resin It is desirable to select according to the type and combination of the resin 1110b, the fourth resin 1120b, the first polymerization initiator, the second polymerization initiator, the third polymerization initiator and the fourth polymerization initiator.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Laminated Bodies (AREA)
  • Structure Of Printed Boards (AREA)

Abstract

Provided are a printed circuit board production method and a multi-layered printed circuit board production method, which can improve the contact tightness between a printed circuit board and a base material such as a thermal radiation plate, or the contact tightness between printed circuit boards. This printed circuit board production method is characterized by comprising a resin layering step of layering a first resin in a half-cured state over a second resin in a half-cured state, a wiring pattern forming step of forming a wiring pattern on the first resin, a first resin curing step of curing the first resin while maintaining the half-cured state of the second resin, a base material pasting step of pasting together the second resin and the base material, and a second resin curing step of curing the second resin and adhering the second resin to the base material, wherein the first resin contains a first polymerization initiator, and the second resin contains a second polymerization initiator.

Description

プリント配線板の製造方法、プリント配線板、多層プリント配線板の製造方法、及び、多層プリント配線板Method of manufacturing printed wiring board, printed wiring board, method of manufacturing multilayer printed wiring board, and multilayer printed wiring board
本発明は、プリント配線板の製造方法、プリント配線板、多層プリント配線板の製造方法、及び、多層プリント配線板に関する。 The present invention relates to a method of manufacturing a printed wiring board, a printed wiring board, a method of manufacturing a multilayer printed wiring board, and a multilayer printed wiring board.
プリント配線板は、携帯電話、ビデオカメラ、ノートパソコンなどの電子機器において、複雑な機構の中に回路を組み込むために多用されている。
近年、電子機器の小型化が急速に進められている。電子機器を小型化する手段の一つとして、電子機器に使用される半導体部品を高密度にプリント配線板に実装することが行われてきた。このように半導体部品を高密度に実装するために、プリント配線板においても、配線パターンを高密度に形成することが行われてきた。
また、電子機器を小型化するために、プリント配線板を薄くすることも行われてきた。
Printed wiring boards are widely used in electronic devices such as mobile phones, video cameras, notebook computers, etc., to incorporate circuits into complex mechanisms.
In recent years, miniaturization of electronic devices has been rapidly promoted. As one of the means for miniaturizing electronic devices, semiconductor components used in electronic devices have been mounted on printed wiring boards with high density. As described above, in order to mount semiconductor components at high density, wiring patterns have been formed at high density also in a printed wiring board.
In addition, in order to miniaturize electronic devices, thinning of printed wiring boards has also been performed.
特許文献1には、上記半導体部品の高密度実装に対応するための回路基板(フレキシブルプリント配線板)の製造方法が開示されている。
すなわち、特許文献1には、基板の上に絶縁層を形成する第1の工程と、前記絶縁層の表面上に第1の導電部およびこの第1の導電部に隣接する第2の導電部を形成し、前記第1の導電部および前記第2の導電部の少なくとも側面上部を順テーパ形状に加工する第2の工程と、前記第1の導電部および前記第2の導電部を前記絶縁層内に圧入する第3の工程と、を備え、前記第3の工程では、前記第1の導電部および前記第2の導電部の側面と前記絶縁層との間に間隙を生じさせることを特徴とした回路基板の製造方法が開示されている。
Patent Document 1 discloses a method of manufacturing a circuit board (flexible printed wiring board) for coping with the high density mounting of the semiconductor component.
That is, in Patent Document 1, a first step of forming an insulating layer on a substrate, a first conductive portion on the surface of the insulating layer, and a second conductive portion adjacent to the first conductive portion Forming the first conductive portion and the second conductive portion in a forward tapered shape, and insulating the first conductive portion and the second conductive portion. A third step of press-fitting into a layer, wherein in the third step, a gap is generated between the side surface of the first conductive portion and the second conductive portion and the insulating layer. A method of manufacturing the characterized circuit board is disclosed.
特開2008-34722号公報JP 2008-34722 A
プリント配線板に組み込まれた電子機器(半導体部品)が機能を発揮する場合、同時に熱も発生する。
この熱を放熱するために、プリント配線板において、電子機器(半導体部品)が実装される位置の裏側に放熱材となる基材を設けることが行われていた。
When an electronic device (semiconductor component) incorporated in a printed wiring board exhibits a function, heat is also generated at the same time.
In order to dissipate the heat, a printed wiring board has been provided with a base material serving as a heat dissipation material on the back side of the position where the electronic device (semiconductor component) is mounted.
プリント配線板の基体となる樹脂には配線パターンが形成されることになるが、配線パターンにおける伝送特性を良好にするため、使用できる樹脂の種類は限定される。その一方で、上記伝送特性を良好にするための樹脂は、放熱材等の基材との密着性が充分といえなかった。
すなわち、プリント配線板を製造する際に、配線パターンにおける伝送特性が良好になる樹脂をプリント配線板の基体として用いると、放熱材等の基材がプリント配線板から剥離しやすくなるという問題があった。つまり、1種類の樹脂を使用して、伝送特性と樹脂及び基材の密着性とを両立させたプリント配線板を製造することは難しかった。
Although a wiring pattern will be formed in resin used as a substrate of a printed wiring board, in order to make the transmission characteristic in a wiring pattern good, the kind of resin which can be used is limited. On the other hand, it was not possible to say that the resin for improving the transmission characteristics had sufficient adhesion to a substrate such as a heat dissipation material.
That is, there is a problem that the base material such as the heat dissipating material is easily peeled off from the printed wiring board if a resin that improves the transmission characteristics in the wiring pattern is used as the base of the printed wiring board when manufacturing the printed wiring board. The That is, it has been difficult to manufacture a printed wiring board in which the transmission characteristics and the adhesion of the resin and the base material are compatible using one type of resin.
また、上記のように1種類の樹脂を使用してプリント配線板を製造する場合、樹脂の表面に配線パターンを形成し、樹脂と基材とを貼り合わせてから樹脂を硬化させることになる。すなわち、樹脂の表面に配線パターンを形成してから樹脂を硬化させるまでに、他の工程を行うことになる。そのため、樹脂を硬化させる前に、配線パターンがずれてしまうという問題もあった。 Moreover, when manufacturing a printed wiring board using one type of resin as mentioned above, a wiring pattern will be formed on the surface of resin, resin will be hardened after bonding resin and a base material. That is, another process is performed after the wiring pattern is formed on the surface of the resin until the resin is cured. Therefore, there is also a problem that the wiring pattern is shifted before curing the resin.
さらに、1種類の樹脂を使用してプリント配線板を製造する場合、樹脂に配線パターンを形成し、樹脂を硬化させてから接着剤を用いて樹脂と基材とを接着する方法もある。しかし、この方法では、接着剤を適用する工程が別途必要になり製造効率が悪くなるという問題があった。
加えて、接着剤自身が、熱の移動を阻害する物質として作用し、その結果、充分に放熱できなくなるという問題があった。
Furthermore, when manufacturing a printed wiring board using one type of resin, there is also a method of forming a wiring pattern on the resin, curing the resin, and bonding the resin and the base using an adhesive. However, in this method, there is a problem that the step of applying the adhesive is required separately and the manufacturing efficiency is deteriorated.
In addition, the adhesive itself acts as a substance that inhibits heat transfer, and as a result, there is a problem that heat can not be sufficiently dissipated.
また、配線パターンを高密度にするために、プリント配線板を積層することも従来から行われてきたが、プリント配線板同士の密着性の向上には改良の余地があった。 Moreover, although laminating | stacking a printed wiring board was also conventionally performed in order to make a wiring pattern high density, there existed room for improvement in the adhesive improvement of printed wiring boards.
本発明は、上記問題を鑑みてなされたものであり、本発明の目的は、プリント配線板と放熱板等の基材との密着性や、プリント配線板同士の密着性を向上させることができるプリント配線板の製造方法及び多層プリント配線板の製造方法を提供することである。 The present invention has been made in view of the above problems, and an object of the present invention is to improve the adhesion between a printed wiring board and a substrate such as a heat sink and the adhesion between printed wiring boards. A method of manufacturing a printed wiring board and a method of manufacturing a multilayer printed wiring board.
すなわち、本発明のプリント配線板の製造方法は、半硬化状態の第1樹脂と、半硬化状態の第2樹脂とを積層する樹脂積層工程と、
上記第1樹脂に配線パターンを形成する配線パターン形成工程と、
上記第2樹脂の半硬化状態を維持させたまま、上記第1樹脂を硬化させる第1の樹脂硬化工程と、
上記第2樹脂及び基材を貼り合わせる基材貼り合わせ工程と、
上記第2樹脂を硬化させ、上記第2樹脂と上記基材とを接着する第2の樹脂硬化工程とを含み、
上記第1樹脂は、第1重合開始剤を含有し、
上記第2樹脂は、第2重合開始剤を含有することを特徴とする。
That is, in the method of manufacturing a printed wiring board according to the present invention, a resin laminating step of laminating a first resin in a semi-cured state and a second resin in a semi-cured state;
A wiring pattern forming step of forming a wiring pattern on the first resin;
A first resin curing step of curing the first resin while maintaining the semi-cured state of the second resin;
A substrate bonding step of bonding the second resin and the substrate together;
And a second resin curing step of curing the second resin and bonding the second resin and the base material,
The first resin contains a first polymerization initiator,
The second resin is characterized by containing a second polymerization initiator.
本発明のプリント配線板の製造方法では、半硬化状態の第1樹脂を、半硬化状態の第2樹脂の上に積層している。
本発明のプリント配線板の製造方法の後の工程において、第1樹脂には配線パターンが形成され、第2樹脂と基材とは接着されることになる。
第1樹脂として配線パターンの伝送特性が良好になる種類の樹脂を使用し、第2樹脂として基材との密着性が良好になる種類の樹脂を使用することにより、製造されたプリント配線板において、伝送特性と、樹脂及び基材の密着性とを両立させることができる。
なお、本明細書において「半硬化状態の樹脂」とは、塑性を有する固形の樹脂のことを意味する。
In the method for manufacturing a printed wiring board of the present invention, the first resin in the semi-cured state is laminated on the second resin in the semi-cured state.
In the subsequent steps of the method for producing a printed wiring board of the present invention, a wiring pattern is formed on the first resin, and the second resin and the base are bonded.
In a printed wiring board manufactured by using a resin of a type in which the transmission characteristics of the wiring pattern are improved as the first resin and using a resin of the type in which the adhesion with the substrate is improved as the second resin. And transmission characteristics and adhesion between the resin and the base material.
In the present specification, "a resin in a semi-cured state" means a solid resin having plasticity.
本発明のプリント配線板の製造方法では、半硬化状態の第1樹脂と、半硬化状態の第2樹脂とを積層している。
そのため、第1樹脂と第2樹脂との密着性も良好となる。
In the method of manufacturing a printed wiring board of the present invention, the first resin in the semi-cured state and the second resin in the semi-cured state are laminated.
Therefore, the adhesion between the first resin and the second resin also becomes good.
本発明のプリント配線板の製造方法では、第2樹脂の半硬化状態を維持させたまま、第1樹脂を硬化させている。すなわち、本発明のプリント配線板の製造方法では、第1樹脂を、第2樹脂よりも先に硬化させている。
第1樹脂を先に硬化させることにより、第1樹脂に形成された配線パターンを充分に第1樹脂に固定することができ、配線パターンと第1樹脂との密着性を向上させることができる。
また、本発明のプリント配線板の製造方法では、第1樹脂の硬化後、半硬化状態の第2樹脂と基材とを貼り合わせるので、第2樹脂と基材との密着性を向上させることができる。さらに、基材を接着するために接着剤を別途使用しなくてもよいので、製造効率が向上する。また、基材が放熱部材である場合には、電子部品から発生した熱を、接着剤を介さずに放熱することができる。
In the method of manufacturing a printed wiring board of the present invention, the first resin is cured while maintaining the semi-cured state of the second resin. That is, in the method of manufacturing a printed wiring board of the present invention, the first resin is cured before the second resin.
By curing the first resin first, the wiring pattern formed on the first resin can be sufficiently fixed to the first resin, and the adhesion between the wiring pattern and the first resin can be improved.
Further, in the method for producing a printed wiring board according to the present invention, since the second resin in a semi-cured state and the substrate are bonded to each other after curing of the first resin, adhesion between the second resin and the substrate is improved. Can. Furthermore, since it is not necessary to use an adhesive separately to bond the substrate, the manufacturing efficiency is improved. In addition, when the base material is a heat dissipation member, the heat generated from the electronic component can be dissipated without an adhesive.
本発明のプリント配線板の製造方法では、上記配線パターン形成工程では、上記第1樹脂に上記配線パターンを形成した後、上記配線パターンを上記第1樹脂に埋め込んでもよい。
配線パターンを第1樹脂に埋め込むことで、配線パターンの位置を固定しやすくなるので、配線パターンにずれが生じることを防ぐことができる。
In the method for manufacturing a printed wiring board of the present invention, in the step of forming a wiring pattern, the wiring pattern may be embedded in the first resin after the wiring pattern is formed on the first resin.
By embedding the wiring pattern in the first resin, the position of the wiring pattern can be easily fixed, so that the wiring pattern can be prevented from being displaced.
本発明のプリント配線板の製造方法では、上記基材貼り合わせ工程では、上記第2樹脂と上記基材との間に上記第2樹脂が含浸可能な補強資材を配置することが望ましい。
補強資材を第2樹脂と基材との間に配置することにより、製造するプリント配線板の強度を強くすることができる。
また、補強資材は、第2樹脂が含浸可能なので、第2樹脂と基材とは直接接触することになる。そのため、第2樹脂と基材との密着性は阻害されにくい。
In the method of manufacturing a printed wiring board according to the present invention, in the substrate bonding step, it is desirable to dispose a reinforcing material which can be impregnated with the second resin between the second resin and the substrate.
By arranging the reinforcing material between the second resin and the base material, the strength of the printed wiring board to be manufactured can be strengthened.
In addition, since the reinforcing material can be impregnated with the second resin, the second resin and the base material are in direct contact with each other. Therefore, the adhesion between the second resin and the base is unlikely to be inhibited.
本発明のプリント配線板の製造方法では、上記樹脂積層工程では、上記第1樹脂と上記第2樹脂との間に、上記第1樹脂及び/又は上記第2樹脂が含浸可能な補強資材を配置することが望ましい。
補強資材を第1樹脂と第2樹脂との間に配置することにより、製造するプリント配線板の強度を強くすることができる。
また、補強資材は、第1樹脂及び/又は第2樹脂が含浸可能なので、第1樹脂と第2樹脂とは直接接触することになる。そのため、第1樹脂と第2樹脂との密着性は阻害されにくい。
In the method for manufacturing a printed wiring board of the present invention, in the resin laminating step, a reinforcing material capable of being impregnated with the first resin and / or the second resin is disposed between the first resin and the second resin. It is desirable to do.
By arranging the reinforcing material between the first resin and the second resin, the strength of the printed wiring board to be manufactured can be strengthened.
In addition, since the reinforcing material can be impregnated with the first resin and / or the second resin, the first resin and the second resin are in direct contact with each other. Therefore, the adhesion between the first resin and the second resin is not easily inhibited.
本発明のプリント配線板の製造方法では、上記第1重合開始剤は、光重合開始剤であり、上記第2重合開始剤は、熱重合開始剤であり、上記第1の樹脂硬化工程では、上記第1樹脂に光を照射することにより上記第1樹脂を硬化させ、上記第2の樹脂硬化工程では、上記第2樹脂に熱を加えることにより上記第2樹脂を硬化させてもよい。
このように、第1重合開始剤及び第2重合開始剤として光重合開始剤及び熱重合開始剤を使用することにより、容易に、第2樹脂の硬化よりも先に第1樹脂の硬化を行うことができる。
In the method for producing a printed wiring board of the present invention, the first polymerization initiator is a photopolymerization initiator, and the second polymerization initiator is a thermal polymerization initiator. In the first resin curing step, The first resin may be cured by irradiating the first resin with light, and the second resin may be cured by applying heat to the second resin in the second resin curing step.
Thus, by using the photopolymerization initiator and the thermal polymerization initiator as the first polymerization initiator and the second polymerization initiator, the first resin is easily cured prior to the curing of the second resin. be able to.
本発明のプリント配線板の製造方法では、上記第1重合開始剤は、光重合開始剤及び熱重合開始剤であり、上記第2重合開始剤は、熱重合開始剤であり、上記第1の樹脂硬化工程では、上記第1樹脂に光を照射することにより、上記第1樹脂を硬化させ、上記第2の樹脂硬化工程では、上記第2樹脂に熱を加えることにより上記第2樹脂を硬化させ、同時に、上記第1樹脂に熱を加えることにより上記第1樹脂を硬化させてもよい。
このように、第1樹脂が、光重合開始剤及び熱重合開始剤からなる第1重合開始剤を含むと、第1の樹脂硬化工程において、第1樹脂の硬化の程度を調節しやすくなる。
また、第2の樹脂硬化工程において、第1樹脂にも熱が加わることで、第2樹脂を硬化させると同時に、第1樹脂に未硬化部分が存在する場合には、第1樹脂の未硬化部分を充分に硬化させることができる。
In the method for producing a printed wiring board of the present invention, the first polymerization initiator is a photopolymerization initiator and a thermal polymerization initiator, the second polymerization initiator is a thermal polymerization initiator, and the first polymerization initiator is used. In the resin curing step, the first resin is cured by irradiating the first resin with light, and in the second resin curing step, the second resin is cured by applying heat to the second resin. At the same time, heat may be applied to the first resin to cure the first resin.
As described above, when the first resin includes the first polymerization initiator including the photopolymerization initiator and the thermal polymerization initiator, the degree of curing of the first resin can be easily controlled in the first resin curing step.
In the second resin curing step, heat is also applied to the first resin to cure the second resin, and at the same time, if an uncured portion exists in the first resin, the uncured portion of the first resin The part can be fully cured.
本発明のプリント配線板の製造方法では、上記第1重合開始剤は、熱重合開始剤であり、上記第2重合開始剤は、光重合開始剤であり、上記第1の樹脂硬化工程では、上記第1樹脂に熱を加えることにより上記第1樹脂を硬化させ、上記第2の樹脂硬化工程では、上記第2樹脂に光を照射することにより上記第2樹脂を硬化させてもよい。
このように、第1重合開始剤及び第2重合開始剤として熱重合開始剤及び光重合開始剤を使用することにより、容易に、第2樹脂の硬化よりも先に第1樹脂の硬化を行うことができる。
In the method for producing a printed wiring board of the present invention, the first polymerization initiator is a thermal polymerization initiator, the second polymerization initiator is a photopolymerization initiator, and in the first resin curing step, The first resin may be cured by applying heat to the first resin, and the second resin may be cured by irradiating the second resin with light in the second resin curing step.
Thus, by using the thermal polymerization initiator and the photopolymerization initiator as the first polymerization initiator and the second polymerization initiator, the first resin is easily cured prior to the curing of the second resin. be able to.
本発明のプリント配線板の製造方法では、上記第1重合開始剤は、熱重合開始剤及び光重合開始剤であり、上記第2重合開始剤は、光重合開始剤であり、上記第1の樹脂硬化工程では、上記第1樹脂に熱を加えることにより、上記第1樹脂を硬化させ、上記第2の樹脂硬化工程では、上記第2樹脂に光を照射することにより上記第2樹脂を硬化させ、同時に、上記第1樹脂に光を照射することにより上記第1樹脂を硬化させてもよい。
このように、第1樹脂が、熱重合開始剤及び光重合開始剤からなる第1重合開始剤を含むと、第1の樹脂硬化工程において、第1樹脂の硬化の程度を調節しやすくなる。
また、第2の樹脂硬化工程において、上記第1樹脂にも光が照射されることで、第2樹脂を硬化させると同時に、第1樹脂に未硬化部分が存在する場合に は、第1樹脂の未硬化部分を充分に硬化させることができる。
In the method for producing a printed wiring board of the present invention, the first polymerization initiator is a thermal polymerization initiator and a photopolymerization initiator, and the second polymerization initiator is a photopolymerization initiator, and the first polymerization initiator is In the resin curing step, the first resin is cured by applying heat to the first resin, and in the second resin curing step, the second resin is cured by irradiating the second resin with light. At the same time, the first resin may be cured by irradiating the first resin with light.
As described above, when the first resin includes the first polymerization initiator including the thermal polymerization initiator and the photopolymerization initiator, the degree of curing of the first resin can be easily controlled in the first resin curing step.
In the second resin curing step, the first resin is also irradiated with light to cure the second resin, and at the same time, when an uncured portion exists in the first resin, the first resin The uncured portion of the resin can be sufficiently cured.
本発明のプリント配線板の製造方法では、上記基材は透光性を有しており、
上記第2の樹脂硬化工程では、少なくとも基材側から上記第2樹脂に光を照射することにより上記第2樹脂を硬化させることが望ましい。
基材が透光性を有している場合、基材側から照射した光も第2樹脂に到達することができる。従って、効率よく第2樹脂を硬化させることができる。
In the method for producing a printed wiring board of the present invention, the base material is translucent.
In the second resin curing step, it is desirable that the second resin be cured by irradiating the second resin with light from at least the substrate side.
When the substrate has translucency, light emitted from the substrate side can also reach the second resin. Therefore, the second resin can be cured efficiently.
本発明のプリント配線板の製造方法では、上記第1重合開始剤は、熱重合開始剤であり、上記第2重合開始剤は、熱重合開始剤であり、上記第1の樹脂硬化工程では、上記第2樹脂が半硬化状態を維持したままとなる温度であり、かつ、上記第1樹脂が硬化する温度の熱を加え、上記第1樹脂を硬化させ、上記第2の樹脂硬化工程では、上記第2樹脂が硬化する温度の熱を加え上記第2樹脂を硬化させてもよい。
すなわち、第1樹脂の硬化温度が、第2樹脂の硬化温度よりも低くなるように第1樹脂及び第2樹脂の組成を調整することにより、第1樹脂の硬化時期と、第2樹脂の硬化時期とをずらしてもよい。
この場合、第2樹脂を完全に硬化させることなく第1樹脂を硬化させることができる。これにより、第1樹脂に形成された配線パターンの位置を固定しやすくなるので、配線パターンにずれが生じることを防ぐことができる。さらに、第1の樹脂硬化工程において第2樹脂が完全に硬化していないため、基材との密着性が良好となる。
In the method for producing a printed wiring board of the present invention, the first polymerization initiator is a thermal polymerization initiator, and the second polymerization initiator is a thermal polymerization initiator, and in the first resin curing step, The temperature at which the second resin remains in a semi-cured state, and heat at a temperature at which the first resin cures is applied to cure the first resin, and in the second resin curing step, Heat of a temperature at which the second resin cures may be added to cure the second resin.
That is, by adjusting the composition of the first resin and the second resin so that the curing temperature of the first resin is lower than the curing temperature of the second resin, the curing time of the first resin and the curing of the second resin You may stagger the time.
In this case, the first resin can be cured without completely curing the second resin. As a result, the position of the wiring pattern formed in the first resin can be easily fixed, so that the wiring pattern can be prevented from being displaced. Furthermore, since the second resin is not completely cured in the first resin curing step, the adhesion to the substrate is improved.
本発明のプリント配線板の製造方法では、上記第1重合開始剤の10時間半減期温度は、上記第2重合開始剤の10時間半減期温度よりも低く、上記第1の樹脂硬化工程では、上記第2重合開始剤の10時間半減期温度よりも低い温度で、上記第1樹脂に熱を加えることにより上記第1樹脂を硬化させ、上記第2の樹脂硬化工程では、上記第2重合開始剤の10時間半減期温度よりも高い温度で、上記第2樹脂に熱を加えることにより上記第2樹脂を硬化させてもよい。
このように、10時間半減期温度が異なる2種類の熱重合開始剤を使用し、第1の樹脂硬化工程及び第2の樹脂硬化工程における熱の温度を調節することにより、容易に、第2樹脂の硬化よりも先に第1樹脂の硬化を行うことができる。
In the method for producing a printed wiring board of the present invention, the 10-hour half-life temperature of the first polymerization initiator is lower than the 10-hour half-life temperature of the second polymerization initiator, and in the first resin curing step, The first resin is cured by applying heat to the first resin at a temperature lower than the 10-hour half-life temperature of the second polymerization initiator, and in the second resin curing step, the second polymerization initiation The second resin may be cured by applying heat to the second resin at a temperature above the 10 hour half-life temperature of the agent.
Thus, by using two types of thermal polymerization initiators having different 10-hour half-life temperatures, the second heat treatment can be easily performed by controlling the temperature of heat in the first resin curing step and the second resin curing step. The curing of the first resin can be performed prior to the curing of the resin.
本発明のプリント配線板の製造方法では、上記第1重合開始剤は、光重合開始剤であり、上記第2重合開始剤は、光重合開始剤であり、上記基材は、透光性を有し、上記樹脂積層工程では、上記第1樹脂と、上記第2樹脂との間に光不透過層を挟んで上記第1樹脂と、上記第2樹脂とを積層し、上記第1の樹脂硬化工程では、上記第1樹脂側から上記第1樹脂に光を照射することにより上記第1樹脂を硬化させ、上記第2の樹脂硬化工程では、上記基材側から上記第2樹脂に光を照射することにより上記第2樹脂を硬化させてもよい。
このように、第1樹脂と第2樹脂との間に光不透過層を挟むと、第1樹脂側から光を照射した場合、その光は、第2樹脂に到達しない。従って、光の照射方向を調節することにより、容易に、第2樹脂の硬化よりも先に第1樹脂の硬化を行うことができる。
In the method for producing a printed wiring board according to the present invention, the first polymerization initiator is a photopolymerization initiator, the second polymerization initiator is a photopolymerization initiator, and the substrate has a light transmitting property. And in the resin laminating step, the first resin and the second resin are laminated with the light impermeable layer interposed between the first resin and the second resin, and the first resin is laminated. In the curing step, the first resin is cured by irradiating the first resin with light from the first resin side, and in the second resin curing step, light is applied to the second resin from the substrate side. The second resin may be cured by irradiation.
As described above, when the light impermeable layer is interposed between the first resin and the second resin, when the light is irradiated from the first resin side, the light does not reach the second resin. Therefore, by adjusting the light irradiation direction, the first resin can be easily cured prior to the curing of the second resin.
本発明のプリント配線板の製造方法では、上記第1重合開始剤は、第1波長の光を照射されることにより光重合開始剤として機能し、上記第2重合開始剤は、第2波長の光を照射されることにより光重合開始剤として機能し、上記第1波長と、上記第2波長とは異なる波長であり、上記第1の樹脂硬化工程では、上記第2樹脂の半硬化状態を維持させたまま、上記第1樹脂に上記第1波長の光を照射し、上記第1樹脂を硬化させ、上記第2の樹脂硬化工程では、上記第2樹脂に第2波長の光を照射することにより上記第2樹脂を硬化させてもよい。
このような第1重合開始剤及び第2重合開始剤を使用し、波長が異なる第1波長の光と、第2波長の光とを照射することにより、容易に、第2樹脂の硬化よりも先に第1樹脂の硬化を行うことができる。
In the method for producing a printed wiring board of the present invention, the first polymerization initiator functions as a photopolymerization initiator by being irradiated with light of the first wavelength, and the second polymerization initiator has the second wavelength. By being irradiated with light, it functions as a photopolymerization initiator, and the first wavelength and the second wavelength are different wavelengths, and in the first resin curing step, the semi-cured state of the second resin is While maintaining, the first resin is irradiated with the light of the first wavelength to cure the first resin, and in the second resin curing step, the second resin is irradiated with the light of the second wavelength. Thus, the second resin may be cured.
By using such a first polymerization initiator and a second polymerization initiator and irradiating light of a first wavelength different in wavelength and light of a second wavelength, it is easier than curing of the second resin. The first resin can be cured first.
本発明のプリント配線板の製造方法では、上記基材は透光性を有しており、上記第2の樹脂硬化工程では、少なくとも基材側から上記第2樹脂に第2波長の光を照射することにより上記第2樹脂を硬化させることが望ましい。
基材が透光性を有している場合、基材側から照射した第2波長の光も第2樹脂に到達することができる。従って、効率よく第2樹脂を硬化させることができる。
In the method for producing a printed wiring board according to the present invention, the base material has translucency, and in the second resin curing step, the second resin is irradiated with light of the second wavelength from at least the base side. It is desirable to cure the said 2nd resin by carrying out.
When the substrate has translucency, the light of the second wavelength irradiated from the substrate side can also reach the second resin. Therefore, the second resin can be cured efficiently.
本発明のプリント配線板の製造方法では、上記樹脂積層工程、上記配線パターン形成工程、上記第1の樹脂硬化工程、上記基材貼り合わせ工程及び上記第2の樹脂硬化工程を、ロールプレス機において連続的に行うことが望ましい。
これら工程をロールプレス機で連続的に行うことにより、効率的にプリント配線板を製造することができる。
In the method for manufacturing a printed wiring board according to the present invention, the above-mentioned resin laminating step, the above-mentioned wiring pattern forming step, the above first resin curing step, the above substrate bonding step and the above second resin curing step It is desirable to do it continuously.
By continuously performing these steps with a roll press, a printed wiring board can be efficiently manufactured.
本発明のプリント配線板は、
一方の面に配線パターンが形成された第1硬化樹脂層と、
上記配線パターンが形成された面と反対側の上記第1硬化樹脂層の面に積層された第2硬化樹脂層と、
上記第1硬化樹脂層と接する面と反対側の上記第2硬化樹脂層の面に接着された基材とからなるプリント配線板であって、
上記第1硬化樹脂層は、第1樹脂が第1重合開始剤により硬化した硬化樹脂であり、
上記第2硬化樹脂層は、第2樹脂が第2重合開始剤により硬化した硬化樹脂であり、
上記第1樹脂を上記第1重合開始剤により硬化させる第1硬化手段と、上記第2樹脂を上記第2重合開始剤により硬化させる第2手段とは異なることを特徴とする。
このような構成のプリント配線板は、上記本発明のプリント配線板の製造方法により製造されたプリント配線板である。
そのため、このような構成のプリント配線板では、第2硬化樹脂層と基材との密着性が充分に高くなっている。
The printed wiring board of the present invention is
A first cured resin layer having a wiring pattern formed on one side thereof,
A second cured resin layer laminated on the surface of the first cured resin layer opposite to the surface on which the wiring pattern is formed;
A printed wiring board comprising: a base material adhered to the surface of the second cured resin layer opposite to the surface in contact with the first cured resin layer;
The first cured resin layer is a cured resin in which a first resin is cured by a first polymerization initiator,
The second cured resin layer is a cured resin obtained by curing a second resin with a second polymerization initiator,
The first curing means for curing the first resin with the first polymerization initiator is different from the second means for curing the second resin with the second polymerization initiator.
The printed wiring board having such a configuration is a printed wiring board manufactured by the method for manufacturing a printed wiring board of the present invention.
Therefore, in the printed wiring board of such a configuration, the adhesion between the second cured resin layer and the substrate is sufficiently high.
プリント配線板では、上記配線パターンは、上記第1硬化樹脂層に埋め込まれていることが望ましい。
配線パターンが第1硬化樹脂層に埋め込まれていると、配線パターンにずれが生じにくい。
In the printed wiring board, the wiring pattern is preferably embedded in the first cured resin layer.
When the wiring pattern is embedded in the first cured resin layer, the wiring pattern is unlikely to be deviated.
本発明の多層プリント配線板の製造方法は、
上層プリント配線板と、下層プリント配線板とを積層して多層プリント配線板を製造する多層プリント配線板の製造方法であって、
半硬化状態の第1樹脂と、半硬化状態の第2樹脂とを積層する上層プリント配線板用樹脂積層工程と、
上記第1樹脂に第1配線パターンを形成する第1配線パターン形成工程と、
上記第2樹脂の半硬化状態を維持させたまま、上記第1樹脂を硬化させ上層プリント配線板を作製する第1の樹脂硬化工程と、
第3樹脂に第2配線パターンが形成された下層プリント配線板を準備する下層プリント配線板準備工程と、
上記上層プリント配線板の下に、上記下層プリント配線板を積層するプリント配線板積層工程と、
上記第2樹脂を硬化させ、上記上層プリント配線板と上記下層プリント配線板とを接着する第2の樹脂硬化工程とを含み、
上記第1樹脂は、第1重合開始剤を含有し、
上記第2樹脂は、第2重合開始剤を含有することを特徴とする。
The method for producing a multilayer printed wiring board of the present invention is
A method for producing a multilayer printed wiring board, comprising: laminating an upper layer printed wiring board and a lower layer printed wiring board to produce a multilayer printed wiring board,
A resin laminating step for the upper layer printed wiring board, wherein the first resin in the semi-cured state and the second resin in the semi-cured state are laminated;
A first wiring pattern forming step of forming a first wiring pattern in the first resin;
A first resin curing step of curing an upper printed wiring board by curing the first resin while maintaining a semi-cured state of the second resin;
A lower layer printed wiring board preparing step of preparing a lower layer printed wiring board in which a second wiring pattern is formed in a third resin;
A printed wiring board laminating step of laminating the lower layer printed wiring board under the upper layer printed wiring board;
And a second resin curing step of curing the second resin and bonding the upper layer printed wiring board and the lower layer printed wiring board.
The first resin contains a first polymerization initiator,
The second resin is characterized by containing a second polymerization initiator.
本発明の多層プリント配線板の製造方法では、半硬化状態の第1樹脂を、半硬化状態の第2樹脂の上に積層している。
本発明の多層プリント配線板の製造方法の後の工程において、第1樹脂には第1配線パターンが形成され、第2樹脂と下層プリント配線板とは接着されることになる。
第1樹脂として第1配線パターンの伝送特性が良好になる種類の樹脂を使用し、第2樹脂として下層プリント配線板との密着性が良好になる種類の樹脂を使用することにより、製造された多層プリント配線板において、伝送特性と、プリント配線板同士の密着性とを両立させることができる。
In the method for manufacturing a multilayer printed wiring board of the present invention, the first resin in the semi-cured state is laminated on the second resin in the semi-cured state.
In a step after the method for manufacturing a multilayer printed wiring board of the present invention, a first wiring pattern is formed on the first resin, and the second resin and the lower layer printed wiring board are bonded.
Manufactured by using a resin of a type that improves the transmission characteristics of the first wiring pattern as the first resin, and using a type of resin that improves the adhesion with the lower layer printed wiring board as the second resin In a multilayer printed wiring board, transmission characteristics and adhesion between the printed wiring boards can be compatible.
本発明の多層プリント配線板の製造方法では、半硬化状態の第1樹脂と、半硬化状態の第2樹脂とを積層している。
そのため、第1樹脂と第2樹脂との密着性も良好となる。
In the method for manufacturing a multilayer printed wiring board of the present invention, the first resin in the semi-cured state and the second resin in the semi-cured state are laminated.
Therefore, the adhesion between the first resin and the second resin also becomes good.
本発明の多層プリント配線板の製造方法では、第2樹脂の半硬化状態を維持させたまま、第1樹脂を硬化させている。すなわち、本発明の多層プリント配線板の製造方法では、第1樹脂を、第2樹脂よりも先に硬化させている。
第1樹脂を先に硬化させることにより、第1樹脂に形成された第1配線パターンを充分に第1樹脂に固定することができ、第1配線パターンと第1樹脂との密着性を向上させることができる。
In the method of manufacturing a multilayer printed wiring board of the present invention, the first resin is cured while maintaining the semi-cured state of the second resin. That is, in the method for manufacturing a multilayer printed wiring board of the present invention, the first resin is cured before the second resin.
By curing the first resin first, the first wiring pattern formed on the first resin can be sufficiently fixed to the first resin, and the adhesion between the first wiring pattern and the first resin is improved. be able to.
また、本発明の多層プリント配線板の製造方法では、第1樹脂の硬化後、半硬化状態の第2樹脂と下層プリント配線板の第3樹脂とを接着させるので、第2樹脂と下層プリント配線板の第3樹脂との密着性を向上させることができる。 Further, in the method for manufacturing a multilayer printed wiring board according to the present invention, since the second resin in a semi-cured state and the third resin of the lower layer printed wiring board are adhered after curing of the first resin, the second resin and the lower layer printed wiring The adhesion of the plate to the third resin can be improved.
さらに、本発明の多層プリント配線板の製造方法では、第2樹脂と第3樹脂との密着性が高い状態で、第2樹脂を硬化させるので、上層プリント配線板と下層プリント配線板とが強固に接着されることになる。 Furthermore, in the method for manufacturing a multilayer printed wiring board of the present invention, the second resin is cured in a state in which the adhesion between the second resin and the third resin is high, so the upper layer printed wiring board and the lower layer printed wiring board are strong. It will be glued to
本発明の多層プリント配線板の製造方法では、上記プリント配線板積層工程では、上記第1配線パターンと、上記第2配線パターンとが導電部材を介して電気的に接続するように、上層プリント配線板と下層プリント配線板とを積層することが望ましい。
このように、多層プリント配線板を製造することにより、配線パターンを高密度にすることができる。
In the method for manufacturing a multilayer printed wiring board according to the present invention, in the printed wiring board laminating step, the upper layer printed wiring is electrically connected such that the first wiring pattern and the second wiring pattern are electrically connected via the conductive member. It is desirable to laminate a board and a lower layer printed wiring board.
As described above, by manufacturing a multilayer printed wiring board, the wiring pattern can be made high in density.
本発明の多層プリント配線板の製造方法では、上記第1重合開始剤は、光重合開始剤であり、上記第2重合開始剤は、熱重合開始剤であり、上記第1の樹脂硬化工程では、上記第1樹脂に光を照射することにより上記第1樹脂を硬化させ、上記第2の樹脂硬化工程では、上記第2樹脂に熱を加えることにより上記第2樹脂を硬化させてもよい。
このように、第1重合開始剤及び第2重合開始剤として光重合開始剤及び熱重合開始剤を使用することにより、容易に、第2樹脂の硬化よりも先に第1樹脂の硬化を行うことができる。
In the method for producing a multilayer printed wiring board of the present invention, the first polymerization initiator is a photopolymerization initiator, and the second polymerization initiator is a thermal polymerization initiator, and in the first resin curing step The first resin may be cured by irradiating the first resin with light, and in the second resin curing step, the second resin may be cured by applying heat to the second resin.
Thus, by using the photopolymerization initiator and the thermal polymerization initiator as the first polymerization initiator and the second polymerization initiator, the first resin is easily cured prior to the curing of the second resin. be able to.
本発明の多層プリント配線板の製造方法では、上記第1重合開始剤は、光重合開始剤及び熱重合開始剤であり、上記第2重合開始剤は、熱重合開始剤であり、上記第1の樹脂硬化工程では、上記第1樹脂に光を照射することにより、上記第1樹脂を硬化させ、上記第2の樹脂硬化工程では、上記第2樹脂に熱を加えることにより上記第2樹脂を硬化させ、同時に、上記第1樹脂に熱を加えることにより上記第1樹脂を硬化させてもよい。
このように、第1樹脂が、光重合開始剤及び熱重合開始剤からなる第1重合開始剤を含むと、第1の樹脂硬化工程において、第1樹脂の硬化の程度を調節しやすくなる。
また、第2の樹脂硬化工程において、第1樹脂にも熱が加わることで、第2樹脂を硬化させると同時に、第1樹脂に未硬化部分が存在する場合には、第1樹脂の未硬化部分を充分に硬化させることができる。
In the method for producing a multilayer printed wiring board of the present invention, the first polymerization initiator is a photopolymerization initiator and a thermal polymerization initiator, and the second polymerization initiator is a thermal polymerization initiator, and the first polymerization initiator is a heat polymerization initiator. In the resin curing step, the first resin is cured by irradiating the first resin with light, and in the second resin curing step, the second resin is cured by applying heat to the second resin. At the same time, the first resin may be cured by applying heat to the first resin.
As described above, when the first resin includes the first polymerization initiator including the photopolymerization initiator and the thermal polymerization initiator, the degree of curing of the first resin can be easily controlled in the first resin curing step.
In the second resin curing step, heat is also applied to the first resin to cure the second resin, and at the same time, if an uncured portion exists in the first resin, the uncured portion of the first resin The part can be fully cured.
本発明の多層プリント配線板の製造方法では、上記第1重合開始剤は、熱重合開始剤であり、上記第2重合開始剤は、光重合開始剤であり、上記第1の樹脂硬化工程では、上記第1樹脂に熱を加えることにより上記第1樹脂を硬化させ、上記第2の樹脂硬化工程では、上記第2樹脂に光を照射することにより上記第2樹脂を硬化させてもよい。
このように、第1重合開始剤及び第2重合開始剤として熱重合開始剤及び光重合開始剤を使用することにより、容易に、第2樹脂の硬化よりも先に第1樹脂の硬化を行うことができる。
In the method for producing a multilayer printed wiring board of the present invention, the first polymerization initiator is a thermal polymerization initiator, and the second polymerization initiator is a photopolymerization initiator, and in the first resin curing step The first resin may be cured by applying heat to the first resin, and the second resin may be cured by irradiating the second resin with light in the second resin curing step.
Thus, by using the thermal polymerization initiator and the photopolymerization initiator as the first polymerization initiator and the second polymerization initiator, the first resin is easily cured prior to the curing of the second resin. be able to.
本発明の多層プリント配線板の製造方法では、上記第1重合開始剤は、熱重合開始剤及び光重合開始剤であり、上記第2重合開始剤は、光重合開始剤であり、上記第1の樹脂硬化工程では、上記第1樹脂に熱を加えることにより、上記第1樹脂を硬化させ、上記第2の樹脂硬化工程では、上記第2樹脂に光を照射することにより上記第2樹脂を硬化させ、同時に、上記第1樹脂に光を照射することにより上記第1樹脂を硬化させてもよい。
このように、第1樹脂が、熱重合開始剤及び光重合開始剤からなる第1重合開始剤を含むと、第1の樹脂硬化工程において、第1樹脂の硬化の程度を調節しやすくなる。
また、第2の樹脂硬化工程において、上記第1樹脂にも光が照射されることで、第2樹脂を硬化させると同時に、第1樹脂に未硬化部分が存在する場合に は、第1樹脂の未硬化部分を充分に硬化させることができる。
In the method for producing a multilayer printed wiring board of the present invention, the first polymerization initiator is a thermal polymerization initiator and a photopolymerization initiator, and the second polymerization initiator is a photopolymerization initiator, and the first polymerization initiator is a photopolymerization initiator. In the first resin curing step, the first resin is cured by applying heat to the first resin, and in the second resin curing step, the second resin is irradiated by irradiating the second resin with light. At the same time, the first resin may be cured by irradiating the first resin with light.
As described above, when the first resin includes the first polymerization initiator including the thermal polymerization initiator and the photopolymerization initiator, the degree of curing of the first resin can be easily controlled in the first resin curing step.
In the second resin curing step, the first resin is also irradiated with light to cure the second resin, and at the same time, when an uncured portion exists in the first resin, the first resin The uncured portion of the resin can be sufficiently cured.
本発明の多層プリント配線板の製造方法では、上記第1重合開始剤は、熱重合開始剤であり、上記第2重合開始剤は、熱重合開始剤であり、上記第1の樹脂硬化工程では、上記第2樹脂が半硬化状態を維持したままとなる温度であり、かつ、上記第1樹脂が硬化する温度の熱を加え、上記第1樹脂を硬化させ、上記第2の樹脂硬化工程では、上記第2樹脂が硬化する温度の熱を加え上記第2樹脂を硬化させてもよい。
すなわち、第1樹脂の硬化温度が、第2樹脂の硬化温度よりも低くなるように第1樹脂及び第2樹脂の組成を調整することにより、第1樹脂の硬化時期と、第2樹脂の硬化時期とをずらしてもよい。
この場合の第2樹脂を完全に硬化させることなく第1樹脂を硬化させることができる。これにより、第1樹脂に形成された配線パターンの位置を固定しやすくなるので、配線パターンにずれが生じることを防ぐことができる。さらに、第1の樹脂硬化工程において第2樹脂が完全に硬化していないため、基材との密着性が良好となる。
In the method for producing a multilayer printed wiring board of the present invention, the first polymerization initiator is a thermal polymerization initiator, and the second polymerization initiator is a thermal polymerization initiator, and in the first resin curing step A temperature at which the second resin remains in a semi-cured state, and heat at a temperature at which the first resin cures to cure the first resin, and in the second resin curing step The heat of the temperature at which the second resin cures may be applied to cure the second resin.
That is, by adjusting the composition of the first resin and the second resin so that the curing temperature of the first resin is lower than the curing temperature of the second resin, the curing time of the first resin and the curing of the second resin You may stagger the time.
The first resin can be cured without completely curing the second resin in this case. As a result, the position of the wiring pattern formed in the first resin can be easily fixed, so that the wiring pattern can be prevented from being displaced. Furthermore, since the second resin is not completely cured in the first resin curing step, the adhesion to the substrate is improved.
本発明の多層プリント配線板の製造方法では、上記第1重合開始剤の10時間半減期温度は、上記第2重合開始剤の10時間半減期温度よりも低く、上記第1の樹脂硬化工程では、上記第2重合開始剤の10時間半減期温度よりも低い温度で、上記第1樹脂に熱を加えることにより上記第1樹脂を硬化させ、上記第2の樹脂硬化工程では、上記第2重合開始剤の10時間半減期温度よりも高い温度で、上記第2樹脂に熱を加えることにより上記第2樹脂を硬化させてもよい。
このように、10時間半減期温度が異なる2種類の熱重合開始剤を使用し、第1の樹脂硬化工程及び第2の樹脂硬化工程における熱の温度を調節することにより、容易に、第2樹脂の硬化よりも先に第1樹脂の硬化を行うことができる。
In the method for producing a multilayer printed wiring board of the present invention, the 10-hour half-life temperature of the first polymerization initiator is lower than the 10-hour half-life temperature of the second polymerization initiator, and in the first resin curing step Heat is applied to the first resin at a temperature lower than a 10-hour half-life temperature of the second polymerization initiator to cure the first resin, and in the second resin curing step, the second polymerization is performed The second resin may be cured by applying heat to the second resin at a temperature above the 10 hour half-life temperature of the initiator.
Thus, by using two types of thermal polymerization initiators having different 10-hour half-life temperatures, the second heat treatment can be easily performed by controlling the temperature of heat in the first resin curing step and the second resin curing step. The curing of the first resin can be performed prior to the curing of the resin.
本発明の多層プリント配線板の製造方法では、上記第1重合開始剤は、第1波長の光を照射されることにより光重合開始剤として機能し、上記第2重合開始剤は、第2波長の光を照射されることにより光重合開始剤として機能し、上記第1波長と、上記第2波長とは異なる波長であり、上記第1の樹脂硬化工程では、上記第2樹脂の半硬化状態を維持させたまま、上記第1樹脂に上記第1波長の光を照射し、上記第1樹脂を硬化させ、上記第2の樹脂硬化工程では、上記第2樹脂に第2波長の光を照射することにより上記第2樹脂を硬化させてもよい。
このような第1重合開始剤及び第2重合開始剤を使用し、波長が異なる第1波長の光と、第2波長の光とを照射することにより、容易に、第2樹脂の硬化よりも先に第1樹脂の硬化を行うことができる。
In the method for producing a multilayer printed wiring board of the present invention, the first polymerization initiator functions as a photopolymerization initiator by being irradiated with light of a first wavelength, and the second polymerization initiator has a second wavelength. The first wavelength and the second wavelength are different wavelengths by being irradiated with the light of the second wavelength, and in the first resin curing step, the semi-cured state of the second resin While maintaining the above, the first resin is irradiated with the light of the first wavelength to cure the first resin, and in the second resin curing step, the second resin is irradiated with the light of the second wavelength. The second resin may be cured by carrying out.
By using such a first polymerization initiator and a second polymerization initiator and irradiating light of a first wavelength different in wavelength and light of a second wavelength, it is easier than curing of the second resin. The first resin can be cured first.
本発明の多層プリント配線板の製造方法では、上記下層プリント配線板準備工程では、第3重合開始剤を含む半硬化状態の上記第3樹脂に上記第2配線パターンを形成し、その後、上記第3樹脂が完全に硬化しないように上記第3樹脂を硬化させて上記下層プリント配線板を作製し、上記第2の樹脂硬化工程では、上記第2樹脂を硬化させ、同時に、上記第3樹脂を完全に硬化させて上記上層プリント配線板と上記下層プリント配線板とを接着することが望ましい。
このように半硬化状態の第3樹脂に第2配線パターンを形成し、その後、上記第3樹脂が完全に硬化しないように上記第3樹脂を硬化させることにより、第3樹脂に形成された第2配線パターンを充分に第3樹脂に固定することができ、第2配線パターンと第3樹脂との密着性を向上させることができる。
また、このような多層プリント配線板の製造方法では、半硬化状態の第2樹脂と、半硬化状態の第3樹脂とが積層されることになるので、上層プリント配線板と下層プリント配線板との密着性を向上させることができる。
In the method for manufacturing a multilayer printed wiring board of the present invention, in the lower layer printed wiring board preparation step, the second wiring pattern is formed on the third resin in a semi-cured state containing a third polymerization initiator, and then the second wiring pattern is formed. (3) The third resin is cured so that the resin is not completely cured to produce the lower layer printed wiring board, and in the second resin curing step, the second resin is cured and the third resin is simultaneously cured. It is desirable that the upper layer printed wiring board and the lower layer printed wiring board be adhered after completely curing.
Thus, the second wiring pattern is formed on the third resin in the semi-cured state, and then the third resin is cured to prevent the third resin from being completely cured, thereby forming the third resin. The second wiring pattern can be sufficiently fixed to the third resin, and the adhesion between the second wiring pattern and the third resin can be improved.
Moreover, in the method of manufacturing such a multilayer printed wiring board, since the second resin in the semi-cured state and the third resin in the semi-cured state are laminated, the upper layer printed wiring board and the lower layer printed wiring board The adhesion of the above can be improved.
本発明の多層プリント配線板の製造方法では、上記下層プリント配線板準備工程では、第3重合開始剤を含む半硬化状態の上記第3樹脂と、第4重合開始剤を含む半硬化状態の第4樹脂とを積層し、上記第3樹脂に上記第2配線パターンを形成し、その後、上記第4樹脂の半硬化状態を維持させたまま、上記第3樹脂を硬化させ下層プリント配線板を作製し、第2の樹脂硬化工程では、上記第4樹脂も硬化させてもよい。
このように下層プリント配線板を、第3樹脂と第4樹脂とを積層することにより作製すると、第4樹脂の下に基材等を接着しやすくなる。
例えば、第3樹脂として第2配線パターンの伝送特性が良好になる種類の樹脂を使用し、第4樹脂として基材との密着性が良好になる種類の樹脂を使用することができる。これにより、第3樹脂と第4樹脂が積層された多層プリント配線板において、伝送特性と、基材との密着性とを両立させることができる。
なお、上記第3重合開始剤は、熱重合開始剤であってもよく、光重合開始剤であってもよい。
In the method for producing a multilayer printed wiring board according to the present invention, in the lower layer printed wiring board preparing step, the third resin in a semi-cured state containing a third polymerization initiator, and the third in a semi-cured state containing a fourth polymerization initiator (4) The resin is laminated, the second wiring pattern is formed on the third resin, and then the third resin is cured while maintaining the semi-cured state of the fourth resin to produce a lower layer printed wiring board In the second resin curing step, the fourth resin may also be cured.
When the lower layer printed wiring board is manufactured by laminating the third resin and the fourth resin in this manner, the base material or the like can be easily adhered below the fourth resin.
For example, a resin of a type in which the transmission characteristics of the second wiring pattern are favorable can be used as the third resin, and a resin of a type in which the adhesion to the substrate can be excellent can be used as the fourth resin. Thereby, in the multilayer printed wiring board in which the third resin and the fourth resin are laminated, it is possible to achieve both the transmission characteristics and the adhesion with the base material.
The third polymerization initiator may be a thermal polymerization initiator or a photopolymerization initiator.
本発明の多層プリント配線板は、
第1配線パターンが形成された上層プリント配線板と、第3樹脂に第2配線パターンが形成された下層プリント配線板とが積層された多層プリント配線板であって、
上記上層プリント配線板は、一方の面に上記第1配線パターンが形成された第1硬化樹脂層と、
上記第1配線パターンが形成された面と反対側の上記第1硬化樹脂層の面に積層された第2硬化樹脂層とからなり、
上記第1硬化樹脂層は、第1樹脂が第1重合開始剤により硬化した硬化樹脂であり、
上記第2硬化樹脂層は、第2樹脂が第2重合開始剤により硬化した硬化樹脂であり、
上記第1樹脂を上記第1重合開始剤により硬化させる第1硬化手段と、上記第2樹脂を上記第2重合開始剤により硬化させる第2手段とは異なることを特徴とする。
このような構成の多層プリント配線板は、上記本発明の多層プリント配線板の製造方法により製造されたプリント配線板である。
そのため、このような構成の多層プリント配線板では、上層プリント配線板と下層プリント配線板との密着性が充分に高くなっている。
The multilayer printed wiring board of the present invention is
A multilayer printed wiring board in which an upper layer printed wiring board on which a first wiring pattern is formed and a lower layer printed wiring board on which a second wiring pattern is formed on a third resin are laminated,
The upper layer printed wiring board has a first cured resin layer having the first wiring pattern formed on one surface thereof;
And a second cured resin layer laminated on the surface of the first cured resin layer opposite to the surface on which the first wiring pattern is formed,
The first cured resin layer is a cured resin in which a first resin is cured by a first polymerization initiator,
The second cured resin layer is a cured resin obtained by curing a second resin with a second polymerization initiator,
The first curing means for curing the first resin with the first polymerization initiator is different from the second means for curing the second resin with the second polymerization initiator.
The multilayer printed wiring board of such a configuration is a printed wiring board manufactured by the method for manufacturing a multilayer printed wiring board of the present invention.
Therefore, in the multilayer printed wiring board of such a configuration, the adhesion between the upper layer printed wiring board and the lower layer printed wiring board is sufficiently high.
図1は、本発明の第1実施形態に係るプリント配線板の製造方法における積層工程の一例を模式的に示す模式図である。FIG. 1: is a schematic diagram which shows typically an example of the lamination process in the manufacturing method of the printed wiring board which concerns on 1st Embodiment of this invention. 図2は、本発明の第1実施形態に係るプリント配線板の製造方法における配線パターン形成工程の一例を模式的に示す模式図である。FIG. 2: is a schematic diagram which shows typically an example of the wiring pattern formation process in the manufacturing method of the printed wiring board which concerns on 1st Embodiment of this invention. 図3は、本発明の第1実施形態に係るプリント配線板の製造方法における第1の樹脂硬化工程の一例を模式的に示す模式図である。FIG. 3: is a schematic diagram which shows typically an example of the 1st resin hardening process in the manufacturing method of the printed wiring board which concerns on 1st Embodiment of this invention. 図4は、本発明の第1実施形態に係るプリント配線板の製造方法における基材貼り合わせ工程の一例を模式的に示す模式図である。FIG. 4: is a schematic diagram which shows typically an example of the base-material bonding process in the manufacturing method of the printed wiring board which concerns on 1st Embodiment of this invention. 図5は、本発明の第1実施形態に係るプリント配線板の製造方法における第2の樹脂硬化工程の一例を模式的に示す模式図である。FIG. 5: is a schematic diagram which shows typically an example of the 2nd resin hardening process in the manufacturing method of the printed wiring board which concerns on 1st Embodiment of this invention. 図6は、本発明の第2実施形態に係るプリント配線板の製造方法における積層工程の一例を模式的に示す模式図である。FIG. 6: is a schematic diagram which shows typically an example of the lamination process in the manufacturing method of the printed wiring board which concerns on 2nd Embodiment of this invention. 図7は、本発明の第2実施形態に係るプリント配線板の製造方法における配線パターン形成工程の一例を模式的に示す模式図である。FIG. 7: is a schematic diagram which shows typically an example of the wiring pattern formation process in the manufacturing method of the printed wiring board which concerns on 2nd Embodiment of this invention. 図8は、本発明の第2実施形態に係るプリント配線板の製造方法における第1の樹脂硬化工程の一例を模式的に示す模式図である。FIG. 8: is a schematic diagram which shows typically an example of the 1st resin hardening process in the manufacturing method of the printed wiring board which concerns on 2nd Embodiment of this invention. 図9は、本発明の第2実施形態に係るプリント配線板の製造方法における基材貼り合わせ工程の一例を模式的に示す模式図である。FIG. 9: is a schematic diagram which shows typically an example of the base-material bonding process in the manufacturing method of the printed wiring board which concerns on 2nd Embodiment of this invention. 図10は、本発明の第2実施形態に係るプリント配線板の製造方法における第2の樹脂硬化工程の一例を模式的に示す模式図である。FIG. 10 is a schematic view schematically showing an example of a second resin curing step in the method for manufacturing a printed wiring board according to the second embodiment of the present invention. 図11は、本発明の第3実施形態に係るプリント配線板の製造方法における積層工程の一例を模式的に示す模式図である。FIG. 11: is a schematic diagram which shows typically an example of the lamination process in the manufacturing method of the printed wiring board which concerns on 3rd Embodiment of this invention. 図12は、本発明の第3実施形態に係るプリント配線板の製造方法における配線パターン形成工程の一例を模式的に示す模式図である。FIG. 12: is a schematic diagram which shows typically an example of the wiring pattern formation process in the manufacturing method of the printed wiring board which concerns on 3rd Embodiment of this invention. 図13は、本発明の第3実施形態に係るプリント配線板の製造方法における第1の樹脂硬化工程の一例を模式的に示す模式図である。FIG. 13: is a schematic diagram which shows typically an example of the 1st resin hardening process in the manufacturing method of the printed wiring board which concerns on 3rd Embodiment of this invention. 図14は、本発明の第3実施形態に係るプリント配線板の製造方法における基材貼り合わせ工程の一例を模式的に示す模式図である。FIG. 14: is a schematic diagram which shows typically an example of the base-material bonding process in the manufacturing method of the printed wiring board which concerns on 3rd Embodiment of this invention. 図15は、本発明の第3実施形態に係るプリント配線板の製造方法における第2の樹脂硬化工程の一例を模式的に示す模式図である。FIG. 15: is a schematic diagram which shows typically an example of the 2nd resin hardening process in the manufacturing method of the printed wiring board which concerns on 3rd Embodiment of this invention. 図16は、本発明の第4実施形態に係るプリント配線板の製造方法における積層工程の一例を模式的に示す模式図である。FIG. 16: is a schematic diagram which shows typically an example of the lamination process in the manufacturing method of the printed wiring board which concerns on 4th Embodiment of this invention. 図17は、本発明の第4実施形態に係るプリント配線板の製造方法における配線パターン形成工程の一例を模式的に示す模式図である。FIG. 17: is a schematic diagram which shows typically an example of the wiring pattern formation process in the manufacturing method of the printed wiring board which concerns on 4th Embodiment of this invention. 図18は、本発明の第4実施形態に係るプリント配線板の製造方法における第1の樹脂硬化工程の一例を模式的に示す模式図である。FIG. 18 is a schematic view schematically showing an example of a first resin curing step in the method for manufacturing a printed wiring board according to the fourth embodiment of the present invention. 図19は、本発明の第4実施形態に係るプリント配線板の製造方法における基材貼り合わせ工程の一例を模式的に示す模式図である。FIG. 19: is a schematic diagram which shows typically an example of the base-material bonding process in the manufacturing method of the printed wiring board which concerns on 4th Embodiment of this invention. 図20は、本発明の第4実施形態に係るプリント配線板の製造方法における第2の樹脂硬化工程の一例を模式的に示す模式図である。FIG. 20 is a schematic view schematically showing an example of a second resin curing step in the method for manufacturing a printed wiring board according to the fourth embodiment of the present invention. 図21は、本発明の第5実施形態に係るプリント配線板の製造方法における積層工程の一例を模式的に示す模式図である。FIG. 21: is a schematic diagram which shows typically an example of the lamination process in the manufacturing method of the printed wiring board which concerns on 5th Embodiment of this invention. 図22は、本発明の第5実施形態に係るプリント配線板の製造方法における配線パターン形成工程の一例を模式的に示す模式図である。FIG. 22: is a schematic diagram which shows typically an example of the wiring pattern formation process in the manufacturing method of the printed wiring board which concerns on 5th Embodiment of this invention. 図23は、本発明の第5実施形態に係るプリント配線板の製造方法における第1の樹脂硬化工程の一例を模式的に示す模式図である。FIG. 23: is a schematic diagram which shows typically an example of the 1st resin hardening process in the manufacturing method of the printed wiring board which concerns on 5th Embodiment of this invention. 図24は、本発明の第5実施形態に係るプリント配線板の製造方法における基材貼り合わせ工程の一例を模式的に示す模式図である。FIG. 24: is a schematic diagram which shows typically an example of the base-material bonding process in the manufacturing method of the printed wiring board which concerns on 5th Embodiment of this invention. 図25は、本発明の第5実施形態に係るプリント配線板の製造方法における第2の樹脂硬化工程の一例を模式的に示す模式図である。FIG. 25: is a schematic diagram which shows typically an example of the 2nd resin hardening process in the manufacturing method of the printed wiring board which concerns on 5th Embodiment of this invention. 図26(a)~(e)は、本発明の第6実施形態に係るプリント配線板の製造方法の一例を工程順に模式的に示す模式図である。26 (a) to 26 (e) are schematic views schematically showing an example of a method of manufacturing a printed wiring board according to a sixth embodiment of the present invention in the order of steps. 図27は、本発明のプリント配線板の一例を模式的に示す模式図である。FIG. 27 is a schematic view schematically showing an example of the printed wiring board of the present invention. 図28は、本発明の第8実施形態に係る多層プリント配線板の製造方法における上層プリント配線板用樹脂積層工程の一例を模式的に示す工程図である。FIG. 28: is process drawing which shows typically an example of the resin lamination process for upper layer printed wiring boards in the manufacturing method of the multilayer printed wiring board which concerns on 8th Embodiment of this invention. 図29は、本発明の第8実施形態に係る多層プリント配線板の製造方法における第1配線パターン形成工程の一例を模式的に示す工程図である。FIG. 29 is a process chart schematically showing an example of a first wiring pattern forming step in the method for manufacturing a multilayer printed wiring board according to the eighth embodiment of the present invention. 図30は、本発明の第8実施形態に係る多層プリント配線板の製造方法における第1の樹脂硬化工程の一例を模式的に示す工程図である。FIG. 30: is process drawing which shows typically an example of the 1st resin hardening process in the manufacturing method of the multilayer printed wiring board which concerns on 8th Embodiment of this invention. 図31は、本発明の第8実施形態に係る多層プリント配線板の製造方法における下層プリント配線板準備工程の一例を模式的に示す工程図である。FIG. 31 is a process chart schematically showing an example of a lower layer printed wiring board preparing step in the method for manufacturing a multilayer printed wiring board according to the eighth embodiment of the present invention. 図32は、本発明の第8実施形態に係る多層プリント配線板の製造方法におけるプリント配線板積層工程の一例を模式的に示す工程図である。FIG. 32: is process drawing which shows typically an example of the printed wiring board lamination | stacking process in the manufacturing method of the multilayer printed wiring board which concerns on 8th Embodiment of this invention. 図33は、本発明の第8実施形態に係る多層プリント配線板の製造方法における第2の樹脂硬化工程の一例を模式的に示す工程図である。FIG. 33: is process drawing which shows typically an example of the 2nd resin hardening process in the manufacturing method of the multilayer printed wiring board which concerns on 8th Embodiment of this invention. 図34(a)及び(b)は、本発明の第9実施形態に係る多層プリント配線板の製造方法におけるプリント配線板積層工程の一例を模式的に示す模式図である。34 (a) and 34 (b) are schematic views schematically showing an example of a printed wiring board laminating step in the method for manufacturing a multilayer printed wiring board according to the ninth embodiment of the present invention. 図35は、本発明の第11実施形態に係る多層プリント配線板の製造方法におけるプリント配線板用樹脂積層工程の一例を模式的に示す工程図である。FIG. 35: is process drawing which shows typically an example of the resin lamination process for printed wiring boards in the manufacturing method of the multilayer printed wiring board which concerns on 11th Embodiment of this invention. 図36は、本発明の第11実施形態に係る多層プリント配線板の製造方法における配線パターン形成工程の一例を模式的に示す工程図である。FIG. 36 is a process diagram schematically showing an example of a wiring pattern forming step in the method for manufacturing a multilayer printed wiring board according to the eleventh embodiment of the present invention. 図37は、本発明の第11実施形態に係る多層プリント配線板の製造方法における第1の樹脂硬化工程の一例を模式的に示す工程図である。FIG. 37 is a process diagram schematically showing an example of a first resin curing step in the method for manufacturing a multilayer printed wiring board according to the eleventh embodiment of the present invention. 図38は、本発明の第11実施形態に係る多層プリント配線板の製造方法におけるプリント配線板積層工程の一例を模式的に示す工程図である。FIG. 38 is a process chart schematically showing one example of a printed wiring board laminating step in the method for manufacturing a multilayer printed wiring board according to the eleventh embodiment of the present invention. 図39は、本発明の第11実施形態に係る多層プリント配線板の製造方法における第2の樹脂硬化工程の一例を模式的に示す工程図である。FIG. 39 is a process diagram schematically showing an example of a second resin curing step in the method for manufacturing a multilayer printed wiring board according to the eleventh embodiment of the present invention.
以下、本発明のプリント配線板の製造方法について具体的に説明する。しかしながら、本発明は、以下の実施形態に限定されるものではなく、本発明の要旨を変更しない範囲において適宜変更して適用することができる。 Hereinafter, the manufacturing method of the printed wiring board of this invention is demonstrated concretely. However, the present invention is not limited to the following embodiments, and can be appropriately modified and applied without departing from the scope of the present invention.
本発明のプリント配線板の製造方法は、半硬化状態の第1樹脂と、半硬化状態の第2樹脂とを積層する(1)樹脂積層工程と、第1樹脂に配線パターンを形成する(2)配線パターン形成工程と、第2樹脂の半硬化状態を維持させたまま、第1樹脂を硬化させる(3)第1の樹脂硬化工程と、第2樹脂及び基材を貼り合わせる(4)基材貼り合わせ工程と、第2樹脂を硬化させ、第2樹脂と上記基材とを接着する(5)第2の樹脂硬化工程とを含む。
また、第1樹脂は、第1重合開始剤を含有し、第2樹脂は、第2重合開始剤を含有している。
According to the method for manufacturing a printed wiring board of the present invention, the first resin in the semi-cured state and the second resin in the semi-cured state are laminated (1) a resin laminating step, and a wiring pattern is formed on the first resin (2 ) The first resin is cured while maintaining the wiring pattern formation step and the semi-cured state of the second resin (3) The first resin curing step, and the second resin and the base material are bonded together (4) A material bonding step, and (5) a second resin curing step of curing the second resin and bonding the second resin and the base material are included.
The first resin contains a first polymerization initiator, and the second resin contains a second polymerization initiator.
本発明のプリント配線板の製造方法では、(1)樹脂積層工程において、半硬化状態の第1樹脂と、半硬化状態の第2樹脂とを積層している。
本発明のプリント配線板の製造方法の後の工程において、第1樹脂には配線パターンが形成され、第2樹脂と基材とは接着されることになる。
第1樹脂として配線パターンの伝送特性が良好になる種類の樹脂を使用し、第2樹脂として基材との密着性が良好になる種類の樹脂を使用することにより、製造されたプリント配線板において、伝送特性と、樹脂及び基材の密着性とを両立させることができる。
In the method for manufacturing a printed wiring board of the present invention, (1) in the resin laminating step, the first resin in the semi-cured state and the second resin in the semi-cured state are laminated.
In the subsequent steps of the method for producing a printed wiring board of the present invention, a wiring pattern is formed on the first resin, and the second resin and the base are bonded.
In a printed wiring board manufactured by using a resin of a type in which the transmission characteristics of the wiring pattern are improved as the first resin and using a resin of the type in which the adhesion with the substrate is improved as the second resin. And transmission characteristics and adhesion between the resin and the base material.
本発明のプリント配線板の製造方法では、半硬化状態の第1樹脂を、半硬化状態の第2樹脂の上に積層している。
そのため、第1樹脂及び第2樹脂が直接接する場合は、第1樹脂と第2樹脂との密着性が良好となる。
また、第1樹脂と第2樹脂との間に別の層を挟む場合には、その別の層と第1樹脂及び第2樹脂との密着性が良好となる。
In the method for manufacturing a printed wiring board of the present invention, the first resin in the semi-cured state is laminated on the second resin in the semi-cured state.
Therefore, when the first resin and the second resin are in direct contact with each other, the adhesion between the first resin and the second resin becomes good.
In addition, when another layer is sandwiched between the first resin and the second resin, the adhesion between the other layer and the first resin and the second resin is improved.
本発明のプリント配線板の製造方法では、第2樹脂の半硬化状態を維持させたまま、第1樹脂を硬化させている。すなわち、本発明のプリント配線板の製造方法では、第1樹脂を、第2樹脂よりも先に硬化させている。
第1樹脂を先に硬化させることにより、第1樹脂に形成された配線パターンを充分に第1樹脂に固定することができ、配線パターンと第1樹脂との密着性を向上させることができる。
また、本発明のプリント配線板の製造方法では、第1樹脂の硬化後、半硬化状態の第2樹脂と基材とを貼り合わせるので、第2樹脂と基材との密着性を向上させることができる。さらに、基材を接着するために接着剤を別途使用しなくてもよいので、製造効率が向上する。
In the method of manufacturing a printed wiring board of the present invention, the first resin is cured while maintaining the semi-cured state of the second resin. That is, in the method of manufacturing a printed wiring board of the present invention, the first resin is cured before the second resin.
By curing the first resin first, the wiring pattern formed on the first resin can be sufficiently fixed to the first resin, and the adhesion between the wiring pattern and the first resin can be improved.
Further, in the method for producing a printed wiring board according to the present invention, since the second resin in a semi-cured state and the substrate are bonded to each other after curing of the first resin, adhesion between the second resin and the substrate is improved. Can. Furthermore, since it is not necessary to use an adhesive separately to bond the substrate, the manufacturing efficiency is improved.
本発明のプリント配線板の製造方法をより具体的に説明する実施形態を以下に説明する。 An embodiment will be described below which more specifically describes the method for producing a printed wiring board of the present invention.
(第1実施形態)
本発明の第1実施形態に係るプリント配線板の製造方法について説明する。本発明の第1実施形態に係るプリント配線板の製造方法は、(1)樹脂積層工程~(5)第2の樹脂硬化工程を含んでおり、第1重合開始剤は、光重合開始剤であり、第2重合開始剤は、熱重合開始剤である。
また、(3)第1の樹脂硬化工程では、第1樹脂に光を照射することにより第1樹脂を硬化させ、(5)第2の樹脂硬化工程では、第2樹脂に熱を加えることにより第2樹脂を硬化させる。
First Embodiment
A method of manufacturing a printed wiring board according to the first embodiment of the present invention will be described. The method for producing a printed wiring board according to the first embodiment of the present invention includes (1) resin laminating step to (5) second resin curing step, and the first polymerization initiator is a photopolymerization initiator. The second polymerization initiator is a thermal polymerization initiator.
In the (3) first resin curing step, the first resin is cured by irradiating the first resin with light, and (5) in the second resin curing step, heat is applied to the second resin. The second resin is cured.
以下、本発明の第1実施形態に係るプリント配線板の製造方法の各工程について、図面を用いながら詳述する。
図1は、本発明の第1実施形態に係るプリント配線板の製造方法における積層工程の一例を模式的に示す模式図である。
図2は、本発明の第1実施形態に係るプリント配線板の製造方法における配線パターン形成工程の一例を模式的に示す模式図である。
図3は、本発明の第1実施形態に係るプリント配線板の製造方法における第1の樹脂硬化工程の一例を模式的に示す模式図である。
図4は、本発明の第1実施形態に係るプリント配線板の製造方法における基材貼り合わせ工程の一例を模式的に示す模式図である。
図5は、本発明の第1実施形態に係るプリント配線板の製造方法における第2の樹脂硬化工程の一例を模式的に示す模式図である。
Hereafter, each process of the manufacturing method of the printed wiring board which concerns on 1st Embodiment of this invention is explained in full detail using drawing.
FIG. 1: is a schematic diagram which shows typically an example of the lamination process in the manufacturing method of the printed wiring board which concerns on 1st Embodiment of this invention.
FIG. 2: is a schematic diagram which shows typically an example of the wiring pattern formation process in the manufacturing method of the printed wiring board which concerns on 1st Embodiment of this invention.
FIG. 3: is a schematic diagram which shows typically an example of the 1st resin hardening process in the manufacturing method of the printed wiring board which concerns on 1st Embodiment of this invention.
FIG. 4: is a schematic diagram which shows typically an example of the base-material bonding process in the manufacturing method of the printed wiring board which concerns on 1st Embodiment of this invention.
FIG. 5: is a schematic diagram which shows typically an example of the 2nd resin hardening process in the manufacturing method of the printed wiring board which concerns on 1st Embodiment of this invention.
(1)樹脂積層工程
まず、図1に示すように、半硬化状態の第1樹脂10と、半硬化状態の第2樹脂20とを積層する。
(1) Resin Laminating Step First, as shown in FIG. 1, the semi-cured first resin 10 and the semi-cured second resin 20 are laminated.
第1樹脂10の材料は、特に限定されないが、光硬化性樹脂や熱硬化性樹脂であることが望ましい。このような樹脂は、例えば、フェノール樹脂、ポリエステル樹脂、ポリイミド樹脂、ポリスルフォン酸樹脂、ポリエーテルイミド樹脂、ポリエーテルケトン樹脂、ポリカーボネート樹脂、ポリウレタン樹脂、ポリシロキサン樹脂、ポリアミド樹脂等が挙げられる。これらの中では、ポリイミド樹脂であることが望ましい。
第1樹脂10がポリイミド樹脂である場合には、ポリイミド樹脂は、下記一般式(1)で表される(A)ビスマレイミド化合物を含有する硬化性樹脂組成物であることが望ましい。
Although the material of the first resin 10 is not particularly limited, it is desirable that the material is a photocurable resin or a thermosetting resin. Examples of such resin include phenol resin, polyester resin, polyimide resin, polysulfonic acid resin, polyetherimide resin, polyether ketone resin, polycarbonate resin, polyurethane resin, polysiloxane resin, polyamide resin and the like. Among these, polyimide resins are preferable.
When the first resin 10 is a polyimide resin, the polyimide resin is preferably a curable resin composition containing (A) a bismaleimide compound represented by the following general formula (1).
Figure JPOXMLDOC01-appb-C000001
一般式(1)中、Xは、脂肪族、脂環式又は芳香族の炭化水素基であって、主鎖の炭素数が10~30である炭化水素基を示し、これらの基は、ヘテロ原子、置換基又はシロキサン骨格を有していてもよい。Xは、脂肪族又は脂環式炭化水素若しくは脂環式炭化水素基により修飾された脂肪族炭化水素基であることが望ましく、炭素数10~55の脂肪族炭化水素基であることがより望ましく、炭素数10~40であることがさらに望ましい。
一般式(1)中、Yは、脂肪族、脂環式又は芳香族の炭化水素基を示し、これらの基はヘテロ原子、置換基、フェニルエーテル骨格、スルフォニル骨格又はシロキサン骨格を有していてもよい。Yは、芳香族炭化水素基であることが望ましい。
一般式(1)中、nは繰り返し単位数であり、1~20の範囲の数を示す。
Figure JPOXMLDOC01-appb-C000001
In the general formula (1), X is an aliphatic, alicyclic or aromatic hydrocarbon group and is a hydrocarbon group having 10 to 30 carbon atoms in its main chain, and these groups are hetero compounds It may have an atom, a substituent or a siloxane skeleton. X is preferably an aliphatic or alicyclic hydrocarbon or an aliphatic hydrocarbon group modified by an alicyclic hydrocarbon group, and more preferably an aliphatic hydrocarbon group having 10 to 55 carbon atoms. And 10 to 40 carbon atoms are more preferable.
In the general formula (1), Y represents an aliphatic, alicyclic or aromatic hydrocarbon group, and these groups have a hetero atom, a substituent, a phenyl ether skeleton, a sulfonyl skeleton or a siloxane skeleton It is also good. Y is preferably an aromatic hydrocarbon group.
In the general formula (1), n is the number of repeating units and represents a number in the range of 1 to 20.
後述するように、第1樹脂10には、配線パターンが形成されることになる。
第1樹脂10の材料が上記樹脂であると、配線パターンで伝送される信号の伝送特性が良好になる。
As described later, a wiring pattern is formed on the first resin 10.
When the material of the first resin 10 is the above-described resin, the transmission characteristics of the signal transmitted in the wiring pattern are improved.
第1樹脂10の厚さは、特に限定されないが、5~100μmであることが望ましく、10~100μmであることがより望ましい。
第1樹脂10の厚さが、5μm未満であると、プリント配線板の強度が弱くなりやすくなる。
第1樹脂10の厚さが、100μmを超えると、プリント配線板が厚くなり、電子機器を小型化しにくくなる。
The thickness of the first resin 10 is not particularly limited, but is preferably 5 to 100 μm, and more preferably 10 to 100 μm.
If the thickness of the first resin 10 is less than 5 μm, the strength of the printed wiring board tends to be weak.
When the thickness of the first resin 10 exceeds 100 μm, the printed wiring board becomes thick, which makes it difficult to miniaturize the electronic device.
第1樹脂10の比誘電率は、周波数1GHzにおいて、2~3であることが望ましい。
また、第1樹脂10の誘電正接は、周波数1GHzにおいて、0.0001~0.002であることが望ましい。
第1樹脂10の比誘電率及び誘電正接が、上記範囲であると、配線パターンにおける伝送特性が良好になる。
The relative dielectric constant of the first resin 10 is desirably 2 to 3 at a frequency of 1 GHz.
The dielectric loss tangent of the first resin 10 is preferably 0.0001 to 0.002 at a frequency of 1 GHz.
When the relative dielectric constant and dielectric loss tangent of the first resin 10 are in the above ranges, the transmission characteristics in the wiring pattern are improved.
また、第1樹脂10は、光重合開始剤である第1重合開始剤を含有している。
第1重合開始剤としては、光重合開始剤であれば、特に限定されないが、例えば、アルキルフェノン系光重合開始剤、アシルフォスフィン系光重合開始剤、オキシムエステル系光重合開始剤、チオキサントン系光重合開始剤が挙げられる。
具体例としては、アセトフェノン、2,2-ジメトキシアセトフェノン、p-ジメチルアミノアセトフェノン、ミヒラーケトン、ベンジル、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾインn-プロピルエーテル、ベンゾインイソプロピルエーテル、ベンゾインn-ブチルエーテル、ベンジルジメチルケタール、チオキサトン、2-クロロチオキサソン、2-メチルチオキサトン、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン、1-ヒドロキシ-シクロヘキシル-フェニル-ケトン、2-ヒドロキシ-2-メチル-1-フェニル-プロパン-1-オン、1-[4-(2-ヒドロキシエトキシ)-フェニル]-2-ヒドロキシ-2-メチル-1-プロパン-1-オン、2-ヒドロキシ-1-{4-[4-(2-ヒドロキシ-2-メチル-プロピオニル)-ベンジル]フェニル}-2-メチル-プロパン-1-オン、2-メチル-1-(4-メチルチオフェニル)-2-モルフォリノプロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-1-ブタノン、2,4,6-トリメチルベンゾイル-ジフェニル-フォスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド、1,2-オクタンジオン、1-[4-(フェニルチオ)-2-(O-ベンゾイルオキシム)]、エタノン、1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-1-(O-アセチルオキシム)、2,4-ジメチルチオキサントン、2-イソプロピルチオキサントン等の光重合開始剤が挙げられる。
Further, the first resin 10 contains a first polymerization initiator which is a photopolymerization initiator.
The first polymerization initiator is not particularly limited as long as it is a photopolymerization initiator, and for example, an alkylphenone photopolymerization initiator, an acylphosphine photopolymerization initiator, an oxime ester photopolymerization initiator, a thioxanthone type Photopolymerization initiators can be mentioned.
Specific examples include acetophenone, 2,2-dimethoxyacetophenone, p-dimethylaminoacetophenone, Michler's ketone, benzyl, benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin n-propyl ether, benzoin isopropyl ether, benzoin n -Butyl ether, benzyl dimethyl ketal, thioxaton, 2-chlorothioxasone, 2-methylthioxaton, 2,2-dimethoxy-1,2-diphenylethan-1-one, 1-hydroxy-cyclohexyl-phenyl-ketone, 2 -Hydroxy-2-methyl-1-phenyl-propan-1-one, 1- [4- (2-hydroxyethoxy) -phenyl] -2-hydroxy-2-methyl-1-propane-1 One, 2-hydroxy-1- {4- [4- (2-hydroxy-2-methyl-propionyl) -benzyl] phenyl} -2-methyl-propan-1-one, 2-methyl-1- (4-) Methylthiophenyl) -2-morpholinopropan-1-one, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -1-butanone, 2,4,6-trimethylbenzoyl-diphenyl-phosphine Oxide, bis (2,4,6-trimethylbenzoyl) -phenyl phosphine oxide, 1,2-octanedione, 1- [4- (phenylthio) -2- (O-benzoyloxime)], ethanone, 1- [1 9-Ethyl-6- (2-methylbenzoyl) -9H-carbazol-3-yl] -1- (O-acetyloxime), 2,4-dimethyone Thioxanthone photopolymerization initiators such as 2-isopropylthioxanthone and the like.
これらの中でも、微細なパターン形成ができるという観点から、露光波長310~436nm、より望ましくは露光波長310~365nmにおいて効率よくラジカルを発生する光重合開始剤が望ましい。
このような光重合開始剤の例としては、オキシム構造を有する1,2-オクタンジオン,1-[4-(フェニルチオ)-2-(O-ベンゾイルオキシム)](BASFジャパン社製、「IRGACURE OXE-01」)、エタノン,1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-1-(O-アセチルオキシム)(BASFジャパン社製、「IRGACURE OXE-02」)、チオキサントン構造を有する2,4-ジメチルチオキサントン(日本化薬株式会社製、「DETX-S」)が挙げられる。
Among these, from the viewpoint of fine pattern formation, a photopolymerization initiator that efficiently generates radicals at an exposure wavelength of 310 to 436 nm, more preferably at an exposure wavelength of 310 to 365 nm, is desirable.
As an example of such a photopolymerization initiator, 1,2-octanedione having an oxime structure, 1- [4- (phenylthio) -2- (O-benzoyloxime)] (manufactured by BASF Japan Ltd., “IRGACURE OXE” -01 "), Ethanone, 1- [9-ethyl-6- (2-methylbenzoyl) -9H-carbazol-3-yl] -1- (O-acetyloxime) (manufactured by BASF Japan Ltd.,“ IRGACURE OXE- 02 ′ ′), 2,4-dimethylthioxanthone having a thioxanthone structure (manufactured by Nippon Kayaku Co., Ltd., “DETX-S”).
第1重合開始剤は、上記光重合開始剤1種からなっていてもよく、2種以上からなっていてもよい。 The first polymerization initiator may be composed of one kind of the above-mentioned photopolymerization initiator, or may be composed of two or more kinds.
第2樹脂20の材料は、特に限定されないが、例えば、光硬化性樹脂や熱硬化性樹脂であることが望ましい。このような樹脂は、例えば、フェノール樹脂、ポリエステル樹脂、ポリイミド樹脂、ポリスルフォン酸樹脂、ポリエーテルイミド樹脂、ポリエーテルケトン樹脂、ポリカーボネート樹脂、ポリウレタン樹脂、ポリシロキサン樹脂、ポリアミド樹脂等が挙げられる。これらの中では、ポリイミド樹脂であることが望ましい。
第2樹脂がポリイミド樹脂である場合には、ポリイミド樹脂は、下記一般式(1)で表される(A)ビスマレイミド化合物を含有する硬化性樹脂組成物であることが望ましい。
Although the material of the second resin 20 is not particularly limited, for example, it is desirable that the material is a photocurable resin or a thermosetting resin. Examples of such resin include phenol resin, polyester resin, polyimide resin, polysulfonic acid resin, polyetherimide resin, polyether ketone resin, polycarbonate resin, polyurethane resin, polysiloxane resin, polyamide resin and the like. Among these, polyimide resins are preferable.
When the second resin is a polyimide resin, the polyimide resin is preferably a curable resin composition containing (A) a bismaleimide compound represented by the following general formula (1).
Figure JPOXMLDOC01-appb-C000002
一般式(1)中、Xは、脂肪族、脂環式又は芳香族の炭化水素基であって、主鎖の炭素数が10~30である炭化水素基を示し、これらの基は、ヘテロ原子、置換基又はシロキサン骨格を有していてもよい。Xは、脂肪族又は脂環式炭化水素若しくは脂環式炭化水素基により修飾された脂肪族炭化水素基であることが望ましく、炭素数10~55の脂肪族炭化水素基であることがより望ましく、炭素数10~40であることがさらに望ましい。
一般式(1)中、Yは、脂肪族、脂環式又は芳香族の炭化水素基を示し、これらの基はヘテロ原子、置換基、フェニルエーテル骨格、スルフォニル骨格又はシロキサン骨格を有していてもよい。Yは、芳香族炭化水素基であることが望ましい。
一般式(1)中、nは繰り返し単位数であり、1~20の範囲の数を示す。
Figure JPOXMLDOC01-appb-C000002
In the general formula (1), X is an aliphatic, alicyclic or aromatic hydrocarbon group and is a hydrocarbon group having 10 to 30 carbon atoms in its main chain, and these groups are hetero compounds It may have an atom, a substituent or a siloxane skeleton. X is preferably an aliphatic or alicyclic hydrocarbon or an aliphatic hydrocarbon group modified by an alicyclic hydrocarbon group, and more preferably an aliphatic hydrocarbon group having 10 to 55 carbon atoms. And 10 to 40 carbon atoms are more preferable.
In the general formula (1), Y represents an aliphatic, alicyclic or aromatic hydrocarbon group, and these groups have a hetero atom, a substituent, a phenyl ether skeleton, a sulfonyl skeleton or a siloxane skeleton It is also good. Y is preferably an aromatic hydrocarbon group.
In the general formula (1), n is the number of repeating units and represents a number in the range of 1 to 20.
後述するように、第2樹脂20は、基材と接着されることになる。
第2樹脂20の材料が上記樹脂であると、基材との接着性が向上する。
As described later, the second resin 20 is adhered to the base material.
The adhesiveness with a base material improves that the material of 2nd resin 20 is the said resin.
第2樹脂20の厚さは、特に限定されないが、5~100μmであることが望ましく、10~100μmであることがより望ましい。
第2樹脂20の厚さが、5μm未満であると、プリント配線板の強度が弱くなりやすくなる。
第2樹脂20の厚さが、100μmを超えると、プリント配線板が厚くなり、電子機器を小型化しにくくなる。
The thickness of the second resin 20 is not particularly limited, but is preferably 5 to 100 μm, and more preferably 10 to 100 μm.
If the thickness of the second resin 20 is less than 5 μm, the strength of the printed wiring board tends to be weak.
When the thickness of the second resin 20 exceeds 100 μm, the printed wiring board becomes thick, which makes it difficult to miniaturize the electronic device.
また、第2樹脂20は、熱伝導性フィラーや、難燃剤等の機能性材料を含んでいてもよい。
熱伝導性フィラーとしては、銅粒子、銅被覆樹脂粒子、窒化ホウ素、窒化アルミニウム、アルミナ、アルミナ水和物、酸化ケイ素、窒化ケイ素、シリコンカーバイド、ダイヤモンド、ハイドロキシアパタイト、チタン酸バリウム、アルミニウム、シリカ、マグネシア、チタニア、窒化ケイ素、炭化ケイ素等が挙げられる。
難燃剤としては、臭素系難燃剤、リン系難燃剤、窒素系難燃剤、シリコーン系難燃剤、無機系難燃剤、有機金属塩系難燃剤等が挙げられる。
The second resin 20 may contain a functional material such as a thermally conductive filler or a flame retardant.
As a heat conductive filler, copper particles, copper coating resin particles, boron nitride, aluminum nitride, alumina, alumina hydrate, silicon oxide, silicon nitride, silicon carbide, diamond, hydroxyapatite, barium titanate, aluminum, silica, Examples include magnesia, titania, silicon nitride, silicon carbide and the like.
Examples of the flame retardant include bromine flame retardants, phosphorus flame retardants, nitrogen flame retardants, silicone flame retardants, inorganic flame retardants, organic metal salt flame retardants and the like.
臭素系難燃剤としては、例えばポリ臭素化ジフェニルオキシド、デカブロモジフェニルオキシド、トリス[3-ブロモ-2,2-ビス(ブロモメチル)プロピル]ホスフェート、トリス(2,3-ジブロモプロピル)ホスフェート、テトラブロモフタル酸、テトラブロモビスフェノールAのビス(2,3-ジブロモプロピルエーテル)、臭素化エポキシ樹脂、エチレン-ビス(テトラブロモフタルイミド)、オクタブロモジフェニルエーテル、1,2-ビス(トリブロモフェノキシ)エタン、テトラブロモ-ビスフェノールA、エチレンビス-(ジブロモ-ノルボルナンジカルボキシミド)、トリス-(2,3-ジブロモプロピル)-イソシアヌレート、エチレン-ビス-テトラブロモフタルイミド等が挙げられる。 Examples of brominated flame retardants include polybrominated diphenyl oxide, decabromodiphenyl oxide, tris [3-bromo-2,2-bis (bromomethyl) propyl] phosphate, tris (2,3-dibromopropyl) phosphate, tetrabromo Phthalic acid, bis (2,3-dibromopropyl ether) of tetrabromobisphenol A, brominated epoxy resin, ethylene-bis (tetrabromophthalimide), octabromodiphenyl ether, 1,2-bis (tribromophenoxy) ethane, tetrabromo And -bisphenol A, ethylene bis- (dibromo-norbornane dicarboximide), tris- (2,3-dibromopropyl) -isocyanurate, ethylene-bis-tetrabromophthalimide and the like.
リン系難燃剤としては、無機リン系難燃剤、有機リン系難燃剤のいずれも使用することができる。無機リン系難燃剤の化合物としては、例えば、赤リン、リン酸一アンモニウム、リン酸二アンモニウム、リン酸三アンモニウム、ポリリン酸アンモニウム等のリン酸アンモニウム類、リン酸アミド等の無機系含窒素リン化合物が挙げられる。 As a phosphorus flame retardant, both an inorganic phosphorus flame retardant and an organic phosphorus flame retardant can be used. Examples of inorganic phosphorus-based flame retardant compounds include inorganic phosphorus-containing phosphorus such as red phosphorus, monoammonium phosphate, diammonium phosphate, ammonium triphosphate, ammonium polyphosphate such as ammonium polyphosphate, and phosphoric acid amide. Compounds are mentioned.
赤リンは、加水分解等の防止を目的として表面処理が施されていることが望ましく、表面処理方法は(i)水酸化マグネシウム、水酸化アルミニウム、水酸化亜鉛、水酸化チタン、酸化ビスマス、水酸化ビスマス、硝酸ビスマス又はこれらの混合物等の無機化合物で被覆処理する方法、(ii)水酸化マグネシウム、水酸化アルミニウム、水酸化亜鉛、水酸化チタン等の無機化合物及びフェノール樹脂等の熱硬化性樹脂の混合物で被覆処理する方法、(iii)水酸化マグネシウム、水酸化アルミニウム、水酸化亜鉛、水酸化チタン等の無機化合物の被膜の上にフェノール樹脂等の熱硬化性樹脂で二重に被覆処理する方法等が挙げられる。 Red phosphorus is preferably surface-treated for the purpose of preventing hydrolysis etc. The surface treatment method is (i) magnesium hydroxide, aluminum hydroxide, zinc hydroxide, titanium hydroxide, bismuth oxide, water Method of coating with an inorganic compound such as bismuth oxide, bismuth nitrate or a mixture thereof, (ii) inorganic compound such as magnesium hydroxide, aluminum hydroxide, zinc hydroxide or titanium hydroxide, and thermosetting resin such as phenol resin (Iii) coating on a film of an inorganic compound such as magnesium hydroxide, aluminum hydroxide, zinc hydroxide or titanium hydroxide in a double coating process with a thermosetting resin such as phenol resin Methods etc.
有機リン系難燃剤としては、例えば、リン酸エステル化合物、ホスホン酸化合物、ホスフィン酸化合物、ホスフィンオキシド化合物、ホスホラン化合物、有機系含窒素リン化合物等の汎用有機リン系化合物の他、9,10-ジヒドロ-9-オキサ-10-ホスファフェナントレン-10-オキシド、10-(2,5―ジヒドロオキシフェニル)-10H-9-オキサ-10-ホスファフェナントレン-10-オキシド、10-(2,7-ジヒドロオキシナフチル)-10H-9-オキサ-10-ホスファフェナントレン-10-オキシド等の環状有機リン化合物及びそれをエポキシ樹脂やフェノール樹脂等の化合物と反応させた誘導体等が挙げられる。 Examples of the organic phosphorus-based flame retardant include general-purpose organic phosphorus-based compounds such as phosphoric acid ester compounds, phosphonic acid compounds, phosphinic acid compounds, phosphine oxide compounds, phospholane compounds, organic nitrogen-containing phosphorus compounds, and 9,10- Dihydro-9-oxa-10-phosphaphenanthrene-10-oxide, 10- (2,5-dihydroxyphenyl) -10H-9-oxa-10-phosphaphenanthrene-10-oxide, 10- (2,7 And cyclic organophosphorus compounds such as -dihydroxynaphthyl) -10H-9-oxa-10-phosphaphenanthrene-10-oxide and derivatives obtained by reacting them with compounds such as epoxy resin and phenol resin.
またリン系難燃剤を使用する場合、該リン系難燃剤にハイドロタルサイト、水酸化マグネシウム、ホウ化合物、酸化ジルコニウム、黒色染料、炭酸カルシウム、ゼオライト、モリブデン酸亜鉛、活性炭等を併用してもよい。 When a phosphorus-based flame retardant is used, hydrotalcite, magnesium hydroxide, a boro compound, zirconium oxide, a black dye, calcium carbonate, zeolite, zinc molybdate, activated carbon or the like may be used in combination with the phosphorus-based flame retardant .
窒素系難燃剤としては、例えば、トリアジン化合物、シアヌル酸化合物、イソシアヌル酸化合物、フェノチアジン等が挙げられる。これらの中では、トリアジン化合物、シアヌル酸化合物、イソシアヌル酸化合物が望ましい。 Examples of nitrogen flame retardants include triazine compounds, cyanuric acid compounds, isocyanuric acid compounds, phenothiazine and the like. Among these, triazine compounds, cyanuric acid compounds and isocyanuric acid compounds are desirable.
トリアジン化合物としては、例えば、メラミン、アセトグアナミン、ベンゾグアナミン、メロン、メラム、サクシノグアナミン、エチレンジメラミン、ポリリン酸メラミン、トリグアナミン等の他、例えば、(i)硫酸グアニルメラミン、硫酸メレム、硫酸メラムなどの硫酸アミノトリアジン化合物、(ii)フェノール、クレゾール、キシレノール、ブチルフェノール、ノニルフェノール等のフェノール系化合物と、メラミン、ベンゾグアナミン、アセトグアナミン、ホルムグアナミン等のメラミン類及びホルムアルデヒドとの共縮合物、(iii)上記(ii)に記載した共縮合物とフェノールホルムアルデヒド縮合物等のフェノール樹脂類との混合物、(iv)上記(ii)及び(iii)に記載した化合物等を更に桐油、異性化アマニ油等で変性したもの等が挙げられる。 As the triazine compound, for example, melamine, acetoguanamine, benzoguanamine, melon, melam, succinoguanamine, ethylenedimelamine, melamine polyphosphate, triguanamine etc., for example, (i) guanylmelamine sulfate, melem sulfate, melam sulfate Sulfated aminotriazine compounds such as: (ii) co-condensates of phenol compounds such as phenol, cresol, xylenol, butylphenol and nonylphenol with melamines such as melamine, benzoguanamine, acetoguanamine, formguanamine and formaldehyde, and (iii) Mixtures of co-condensates described in (ii) and phenolic resins such as phenol-formaldehyde condensates, (iv) compounds described in (ii) and (iii) above, etc. Those modified with an oil such as and the like.
シアヌル酸化合物としては、例えば、シアヌル酸、シアヌル酸メラミン等が挙げられる。 Examples of cyanuric acid compounds include cyanuric acid and melamine cyanurate.
シリコーン系難燃剤としては、例えば、シリコーンオイル、シリコーンゴム、シリコーン樹脂等が挙げられる。また、シリコーン系難燃剤を使用する際、モリブデン化合物、アルミナ等を併用してもよい。 As a silicone type flame retardant, silicone oil, silicone rubber, silicone resin etc. are mentioned, for example. Moreover, when using a silicone type flame retardant, you may use a molybdenum compound, an alumina, etc. together.
無機系難燃剤としては、例えば、水酸化アルミニウム、水酸化マグネシウム、ドロマイト、ハイドロタルサイト、水酸化カルシウム、水酸化バリウム、水酸化ジルコニウム、及び複合金属水酸化物等の金属水酸化物;モリブデン酸亜鉛、三酸化モリブデン、スズ酸亜鉛、酸化スズ、酸化アルミニウム、酸化鉄、酸化チタン、酸化マンガン、酸化ジルコニウム、酸化亜鉛、酸化モリブデン、酸化コバルト、酸化ビスマス、酸化クロム、酸化ニッケル、酸化銅、酸化タングステン等の金属酸化物;炭酸亜鉛、炭酸マグネシウム、炭酸カルシウム、炭酸バリウム、塩基性炭酸マグネシウム、炭酸アルミニウム、炭酸鉄、炭酸コバルト、炭酸チタン等の金属炭酸塩化合物;アルミニウム、鉄、チタン、マンガン、亜鉛、モリブデン、コバルト、ビスマス、クロム、ニッケル、銅、タングステン、スズ等の金属粉;ホウ酸亜鉛、メタホウ酸亜鉛、メタホウ酸バリウム、ホウ酸、ホウ砂等のホウ素化合物等が挙げられる。 Examples of inorganic flame retardants include metal hydroxides such as aluminum hydroxide, magnesium hydroxide, dolomite, hydrotalcite, calcium hydroxide, barium hydroxide, zirconium hydroxide and composite metal hydroxides; molybdic acid Zinc, molybdenum trioxide, zinc stannate, tin oxide, aluminum oxide, iron oxide, titanium oxide, manganese oxide, zirconium oxide, zinc oxide, molybdenum oxide, molybdenum oxide, cobalt oxide, bismuth oxide, chromium oxide, nickel oxide, copper oxide, oxide Metal oxides such as tungsten; zinc carbonate, magnesium carbonate, calcium carbonate, barium carbonate, basic magnesium carbonate, aluminum carbonate, iron carbonate, cobalt carbonate, metal carbonate compounds such as titanium carbonate; aluminum, iron, titanium, manganese, Zinc, molybdenum, cobalt, bismuth , Chromium, nickel, copper, tungsten, metal powder such as tin; zinc borate, zinc metaborate, barium metaborate, boric acid, boron compounds such as borax.
また、第2樹脂20は、熱重合開始剤である第2重合開始剤を含有している。
第2重合開始剤としては、熱重合開始剤であれば、特に限定されないが、有機過酸化物系熱重合開始剤やアゾ系熱重合開始剤等であってもよい。
In addition, the second resin 20 contains a second polymerization initiator which is a thermal polymerization initiator.
The second polymerization initiator is not particularly limited as long as it is a thermal polymerization initiator, but may be an organic peroxide thermal polymerization initiator, an azo thermal polymerization initiator, or the like.
有機過酸化物系熱重合開始剤としては、メチルエチルケトンパーオキサイド、シクロヘキサノンパーオキサイド、メチルシクロヘキサノンパーオキサイド、メチルアセトアセテートパーオキサイド、アセチルアセテートパーオキサイド、1,1-ビス(t-ヘキシルパーオキシ)-3,3,5-トリメチルシクロヘキサン、1,1-ビス(t-ヘキシルパーオキシ)-シクロヘキサン、1,1-ビス(t-ブチルパーオキシ)-3,3,5-トリメチルシクロヘキサン、1,1-ビス(t-ブチルパーオキシ)-2-メチルシクロヘキサン、1,1-ビス(t-ブチルパーオキシ)-シクロヘキサン、1,1-ビス(t-ブチルパーオキシ)シクロドデカン、1,1-ビス(t-ブチルパーオキシ)ブタン、2,2-ビス(4,4-ジ-t-ブチルパーオキシシクロヘキシル)プロパン、p-メンタンハイドロパーオキサイド、ジイソプロピルベンゼンハイドロパーオキサイド、1,1,3,3-テトラメチルブチルハイドロパーオキサイド、クメンハイドロパーオキサイド、t-ヘキシルハイドロパーオキサイド、t-ブチルハイドロパーオキサイド、α,α’-ビス(t-ブチルパーオキシ)ジイソプロピルベンゼン、ジクミルパーオキサイド、2,5-ジメチル-2,5-ビス(t-ブチルパーオキシ)ヘキサン、t-ブチルクミルパーオキサイド、ジ-t-ブチルパーオキサイド、2,5-ジメチル-2,5-ビス(t-ブチルパーオキシ)ヘキシン-3、イソブチリルパーオキサイド、3,5,5-トリメチルヘキサノイルパーオキサイド、オクタノイルパーオキサイド、ラウロイルパーオキサイド、ステアロイルパーオキサイド、スクシン酸パーオキサイド、m-トルオイルベンゾイルパーオキサイド、ベンゾイルパーオキサイド、ジ-n-プロピルパーオキシジカーボネート、ジイソプロピルパーオキシジカーボネート、ビス(4-t-ブチルシクロヘキシル)パーオキシジカーボネート、ジ-2-エトキシエチルパーオキシジカーボネート、ジ-2-エトキシヘキシルパーオキシジカーボネート、ジ-3-メトキシブチルパーオキシジカーボネート、ジ-s-ブチルパーオキシジカーボネート、ジ(3-メチル-3-メトキシブチル)パーオキシジカーボネート、α,α’-ビス(ネオデカノイルパーオキシ)ジイソプロピルベンゼン、クミルパーオキシネオデカノエート、1,1,3,3-テトラメチルブチルパーオキシネオデカノエート、1-シクロヘキシル-1-メチルエチルパーオキシネオデカノエート、t-ヘキシルパーオキシネオデカノエート、t-ブチルパーオキシネオデカノエート、t-ヘキシルパーオキシピバレート、t-ブチルパーオキシピバレート、1,1,3,3-テトラメチルブチルパーオキシ-2-エチルヘキサノオエート、2,5-ジメチル-2,5-ビス(2-エチルヘキサノイルパーオキシ)ヘキサノエート、1-シクロヘキシル-1-メチルエチルパーオキシ-2-エチルヘキサノエート、t-ヘキシルパーオキシ-2-エチルヘキサノエート、t-ブチルパーオキシ-2-エチルヘキサノエート、t-ヘキシルパーオキシイソプロピルモノカーボネート、t-ブチルパーオキシイソブチレート、t-ブチルパーオキシマレート、t-ブチルパーオキシ-3,5,5-トリメトルヘキサノエート、t-ブチルパーオキシラウレート、t-ブチルパーオキシイソプロピルモノカーボネート、t-ブチルパーオキシ-2-エチルヘキシルモノカーボネート、t-ブチルパーオキシアセテート、t-ブチルパーオキシ-m-トルイルベンゾエート、t-ブチルパーオキシベンゾエート、ビス(t-ブチルパーオキシ)イソフタレート、2,5-ジメチル-2,5-ビス(m-トルイルパーオキシ)ヘキサン、t-ヘキシルパーオキシベンゾエート、2,5-ジメチル-2,5-ビス(ベンゾイルパーオキシ)ヘキサン、t-ブチルパーオキシアリルモノカーボネート、t-ブチルトリメチルシリルパーオキサイド、3,3’,4,4’-テトラ(t-ブチルパーオキシカルボニル)ベンゾフェノン、2,3-ジメチル-2,3-ジフェニルブタン等が挙げられる。 The organic peroxide-based thermal polymerization initiators include methyl ethyl ketone peroxide, cyclohexanone peroxide, methyl cyclohexanone peroxide, methyl acetoacetate peroxide, acetyl acetate peroxide, 1,1-bis (t-hexylperoxy) -3 , 3,5-trimethylcyclohexane, 1,1-bis (t-hexylperoxy) -cyclohexane, 1,1-bis (t-butylperoxy) -3,3,5-trimethylcyclohexane, 1,1-bis (T-butylperoxy) -2-methylcyclohexane, 1,1-bis (t-butylperoxy) -cyclohexane, 1,1-bis (t-butylperoxy) cyclododecane, 1,1-bis (t -Butylperoxy) butane, 2,2-bis (4,4-di-t- Chilperoxycyclohexyl) propane, p-menthane hydroperoxide, diisopropylbenzene hydroperoxide, 1,1,3,3-tetramethylbutyl hydroperoxide, cumene hydroperoxide, t-hexyl hydroperoxide, t-butyl Hydroperoxide, α, α'-bis (t-butylperoxy) diisopropylbenzene, dicumyl peroxide, 2,5-dimethyl-2,5-bis (t-butylperoxy) hexane, t-butylcumylpere Oxide, di-t-butyl peroxide, 2,5-dimethyl-2,5-bis (t-butylperoxy) hexyne-3, isobutyryl peroxide, 3,5,5-trimethylhexanoyl peroxide, octa Noyl peroxide, Uroyl peroxide, stearoyl peroxide, succinic acid peroxide, m-toluoyl benzoyl peroxide, benzoyl peroxide, di-n-propylperoxydicarbonate, diisopropyl peroxydicarbonate, bis (4-t-butylcyclohexyl ) Peroxydicarbonate, di-2-ethoxyethylperoxydicarbonate, di-2-ethoxyhexylperoxydicarbonate, di-3-methoxybutylperoxydicarbonate, di-s-butylperoxydicarbonate, di) (3-Methyl-3-methoxybutyl) peroxydicarbonate, α, α′-bis (neodecanoylperoxy) diisopropylbenzene, cumylperoxyneodecanoate, 1,1,3,3-tetramethylbu Ruperoxyneodecanoate, 1-cyclohexyl-1-methylethylperoxyneodecanoate, t-hexylperoxyneodecanoate, t-butylperoxyneodecanoate, t-hexylperoxypivalate, t-Butylperoxypivalate, 1,1,3,3-tetramethylbutylperoxy-2-ethylhexanoate, 2,5-dimethyl-2,5-bis (2-ethylhexanoylperoxy) hexanoate 1-Cyclohexyl-1-methylethylperoxy-2-ethylhexanoate, t-hexylperoxy-2-ethylhexanoate, t-butylperoxy-2-ethylhexanoate, t-hexylperoxy Isopropyl monocarbonate, t-butyl peroxyisobutyrate, t-butyl -Oxymalate, t-butylperoxy-3,5,5-trimethorhexanoate, t-butylperoxylaurate, t-butylperoxyisopropyl monocarbonate, t-butylperoxy-2-ethylhexyl monocarbonate, t -Butyl peroxy acetate, t-butyl peroxy-m-toluyl benzoate, t-butyl peroxy benzoate, bis (t-butyl peroxy) isophthalate, 2,5-dimethyl-2,5-bis (m-toluyl) Peroxy) hexane, t-hexylperoxybenzoate, 2,5-dimethyl-2,5-bis (benzoylperoxy) hexane, t-butylperoxyallyl monocarbonate, t-butyltrimethylsilyl peroxide, 3,3 ' , 4,4'-Tetra (t-butyl) Peroxy carbonyl) benzophenone, 2,3-dimethyl- 2, 3- diphenyl butane etc. are mentioned.
アゾ系熱重合開始剤としては、2-フェニルアゾ-4-メトキシ-2,4-ジメチルバレロニトリル、1-[(1-シアノ-1-メチルエチル)アゾ]ホルムアミド、1,1’-アゾビス(シクロヘキサン-1-カルボニトリル)、2,2’-アゾビス(2-メチルブチロニトリル)、2,2’-アゾビスイソブチロニトリル、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、2,2’-アゾビス(2-メチルプロピオンアミジン)ジヒドロクロリド、2,2’-アゾビス(2-メチル-N-フェニルプロピオンアミジン)ジヒドロクロリド、2,2’-アゾビス[N-(4-クロロフェニル)-2-メチルプロピオンアミジン]ジヒドリドクロリド、2,2’-アゾビス[N-(4-ヒドロフェニル)-2-メチルプロピオンアミジン]ジヒドロクロリド、2,2’-アゾビス[2-メチル-N-(フェニルメチル)プロピオンアミジン]ジヒドロクロリド、2,2’-アゾビス[2-メチル-N-(2-プロペニル)プロピオンアミジン]ジヒドロクロリド、2,2’-アゾビス[N-(2-ヒドロキシエチル)-2-メチルプロピオンアミジン]ジヒドロクロリド、2,2’-アゾビス[2-(5-メチル-2-イミダゾリン-2-イル)プロパン]ジヒドロクロリド、2,2’-アゾビス[2-(2-イミダゾリン-2-イル)プロパン]ジヒドロクロリド、2,2’-アゾビス[2-(4,5,6,7-テトラヒドロ-1H-1,3-ジアゼピン-2-イル)プロパン]ジヒドロクロリド、2,2’-アゾビス[2-(3,4,5,6-テトラヒドロピリミジン-2-イル)プロパン]ジヒドロクロリド、2,2’-アゾビス[2-(5-ヒドロキシ-3,4,5,6-テトラヒドロピリミジン-2-イル)プロパン]ジヒドロクロリド、2,2’-アゾビス[2-[1-(2-ヒドロキシエチル)-2-イミダゾリン-2-イル]プロパン]ジヒドロクロリド、2,2’-アゾビス[2-(2-イミダゾリン-2-イル)プロパン]、2,2’-アゾビス[2-メチル-N-[1,1-ビス(ヒドロキシメチル)-2-ヒドロキシエチル]プロピオンアミド]、2,2’-アゾビス[2-メチル-N-[1,1-ビス(ヒドロキシメチル)エチル]プロピオンアミド]、2,2’-アゾビス[2-メチル-N-(2-ヒドロキシエチル)プロピオンアミド]、2,2’-アゾビス(2-メチルプロピオンアミド)、2,2’-アゾビス(2,4,4-トリメチルペンタン)、2,2’-アゾビス(2-メチルプロパン)、ジメチル-2,2-アゾビス(2-メチルプロピオネート)、4,4’-アゾビス(4-シアノペンタン酸)、2,2’-アゾビス[2-(ヒドロキシメチル)プロピオニトリル]等が挙げられる。 As an azo thermal polymerization initiator, 2-phenylazo-4-methoxy-2,4-dimethylvaleronitrile, 1-[(1-cyano-1-methylethyl) azo] formamide, 1,1′-azobis (cyclohexane -1-carbonitrile), 2,2'-azobis (2-methylbutyronitrile), 2,2'-azobisisobutyronitrile, 2,2'-azobis (2,4-dimethyl valeronitrile), 2,2'-azobis (2-methylpropionamidine) dihydrochloride, 2,2'-azobis (2-methyl-N-phenylpropionamidine) dihydrochloride, 2,2'-azobis [N- (4-chlorophenyl) -2-Methylpropionamidine] dihydridochloride, 2,2'-azobis [N- (4-hydrophenyl) -2-methylpropiona Gin] dihydrochloride, 2,2'-azobis [2-methyl-N- (phenylmethyl) propionamidine] dihydrochloride, 2,2'-azobis [2-methyl-N- (2-propenyl) propionamidine] dihydro Chloride, 2,2′-azobis [N- (2-hydroxyethyl) -2-methylpropionamidine] dihydrochloride, 2,2′-azobis [2- (5-methyl-2-imidazolin-2-yl) propane Dihydrochloride, 2,2′-azobis [2- (2-imidazolin-2-yl) propane] dihydrochloride, 2,2′-azobis [2- (4,5,6,7-tetrahydro-1H-1) , 3-Diazepin-2-yl) propane] dihydrochloride, 2,2'-azobis [2- (3,4,5,6-tetrahydropyrimidi -2-yl) propane] dihydrochloride, 2,2'-azobis [2- (5-hydroxy-3,4,5,6-tetrahydropyrimidin-2-yl) propane] dihydrochloride, 2,2'-azobis [2- [1- (2-Hydroxyethyl) -2-imidazolin-2-yl] propane] dihydrochloride, 2,2′-azobis [2- (2-imidazolin-2-yl) propane], 2,2 '-Azobis [2-methyl-N- [1,1-bis (hydroxymethyl) -2-hydroxyethyl] propionamide], 2,2'-azobis [2-methyl-N- [1,1-bis ( Hydroxymethyl) ethyl] propionamide], 2,2'-azobis [2-methyl-N- (2-hydroxyethyl) propionamide], 2,2'-azobis (2-methylpropiamide) Onamide), 2,2′-azobis (2,4,4-trimethylpentane), 2,2′-azobis (2-methylpropane), dimethyl-2,2-azobis (2-methylpropionate), 4 And 4′-azobis (4-cyanopentanoic acid), 2,2′-azobis [2- (hydroxymethyl) propionitrile], and the like.
第2重合開始剤は、上記熱重合開始剤1種からなっていてもよく、2種以上からなっていてもよい。 The second polymerization initiator may consist of one of the above-mentioned thermal polymerization initiators, or may consist of two or more.
(2)配線パターン形成工程
次に、図2に示すように、第1樹脂10に配線パターン30を形成する。
配線パターン30を形成する方法としては、特に限定されず、例えば、第1樹脂10を金属膜で覆い、該金属膜をエッチングすることにより配線パターン30を形成してもよく、第1樹脂10に導体ペーストを印刷することにより配線パターン30を形成してもよい。
(2) Wiring Pattern Forming Step Next, as shown in FIG. 2, the wiring pattern 30 is formed on the first resin 10.
The method of forming the wiring pattern 30 is not particularly limited. For example, the first resin 10 may be covered with a metal film, and the wiring pattern 30 may be formed by etching the metal film. The wiring pattern 30 may be formed by printing a conductive paste.
金属膜をエッチングすることにより配線パターン30を形成する場合について説明する。 The case of forming the wiring pattern 30 by etching the metal film will be described.
この方法では、まず、第1樹脂10を金属膜で覆うことになる。
第1樹脂10を金属膜で覆う方法は、特に限定されず、金属箔を貼付する方法や、めっきにより第1樹脂10に金属膜を形成する方法が挙げられる。
In this method, first, the first resin 10 is covered with a metal film.
The method of covering the first resin 10 with a metal film is not particularly limited, and a method of attaching a metal foil or a method of forming a metal film on the first resin 10 by plating may be mentioned.
金属膜を構成する金属としては、特に限定されないが、例えば、銅や銀等が挙げられる。これらの中では銅であることが望ましい。 Although it does not specifically limit as a metal which comprises a metal film, For example, copper, silver, etc. are mentioned. Among these, copper is desirable.
次に、第1樹脂10を覆う金属膜を、所定の配線パターンが形成されるようにマスクしエッチングを行う。
エッチングは、金属膜を構成する金属の種類や、金属膜の厚さに合わせ、従来の方法により行うことができる。
例えば、金属膜を構成する金属が銅である場合、硫酸・過酸化水素系のエッチング液等をエッチング液として用いてエッチングすることが望ましい。
Next, the metal film covering the first resin 10 is masked and etched so as to form a predetermined wiring pattern.
The etching can be performed by a conventional method in accordance with the type of metal constituting the metal film and the thickness of the metal film.
For example, in the case where the metal forming the metal film is copper, it is desirable to perform etching using a sulfuric acid / hydrogen peroxide type etching solution or the like as the etching solution.
導体ペーストを印刷することにより配線パターン30を形成する場合、配線パターン30が形成されるまでの間、第1樹脂及び第2樹脂が半硬化状態を維持できれば、どのような条件で導体ペーストを配線パターン30としてもよい。
また、導体ペーストとしては、特に限定されないが、例えば、導電性フィラーと熱硬化性樹脂、熱可塑性樹脂との配合物を用いることができる。導電性フィラーとしては、金属微粒子、カーボンナノチューブ、炭素繊維、金属繊維等を用いることができる。
In the case of forming the wiring pattern 30 by printing the conductive paste, wiring the conductive paste under any conditions as long as the first resin and the second resin can maintain the semi-cured state until the wiring pattern 30 is formed. It may be a pattern 30.
In addition, the conductive paste is not particularly limited, but, for example, a blend of a conductive filler, a thermosetting resin, and a thermoplastic resin can be used. As the conductive filler, metal particles, carbon nanotubes, carbon fibers, metal fibers and the like can be used.
(3)第1の樹脂硬化工程
次に、図3に示すように、第1樹脂10に光50を照射し、第1樹脂10を硬化することにより、配線パターン30を第1樹脂10に固定する。第1樹脂10には、光重合開始剤である第1重合開始剤が含有されているので、光50が照射されることにより第1樹脂10は硬化する。
(3) First Resin Curing Step Next, as shown in FIG. 3, the first resin 10 is irradiated with light 50 to cure the first resin 10, thereby fixing the wiring pattern 30 to the first resin 10. Do. Since the first resin 10 contains the first polymerization initiator which is a photopolymerization initiator, the first resin 10 is cured by being irradiated with the light 50.
光50の波長や、照射時間等の条件は、第2樹脂20の半硬化状態を維持させたまま、第1樹脂10を硬化させることができれば、特に限定されず、第1樹脂10の種類及び第1重合開始剤の種類に応じて適宜設定することが望ましい。
例えば、第1樹脂10としてポリイミド樹脂を使用し、第1重合開始剤として1,2-オクタンジオン,1-[4-(フェニルチオ)-2-(O-ベンゾイルオキシム)](BASFジャパン社製、「IRGACURE OXE-01」)、エタノン,1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-1-(O-アセチルオキシム)(BASFジャパン社製、「IRGACURE OXE-02」)、チオキサントン構造を有する2,4-ジメチルチオキサントン(日本化薬株式会社製、「DETX-S」)等の光重合開始剤を使用する場合、光50の波長は310~436nmであることが望ましい。
The conditions such as the wavelength of the light 50 and the irradiation time are not particularly limited as long as the first resin 10 can be cured while maintaining the semi-cured state of the second resin 20, the type of the first resin 10 and It is desirable to set appropriately according to the type of first polymerization initiator.
For example, a polyimide resin is used as the first resin 10, and 1,2-octanedione, 1- [4- (phenylthio) -2- (O-benzoyloxime)] (manufactured by BASF Japan Ltd.) as the first polymerization initiator. “IRGACURE OXE-01”), Ethanone, 1- [9-ethyl-6- (2-methylbenzoyl) -9H-carbazol-3-yl] -1- (O-acetyloxime) (manufactured by BASF Japan Ltd.), When using a photopolymerization initiator such as IRGACURE OXE-02 "), 2,4-dimethylthioxanthone having a thioxanthone structure (Nippon Kayaku Co., Ltd.," DETX-S "), the light 50 has a wavelength of 310 to 436 nm Is desirable.
第1樹脂10が硬化することにより、第1樹脂10に形成された配線パターン30は固定されるので、配線パターン30と第1樹脂10との密着性を向上させることができる。 By curing the first resin 10, the wiring pattern 30 formed on the first resin 10 is fixed, so the adhesion between the wiring pattern 30 and the first resin 10 can be improved.
(4)基材貼り合わせ工程
次に、図4に示すように、第2樹脂20及び基材40を貼り合わせる。基材40と第2樹脂20とは、接着剤を用いることなく、直接貼り合わされることが望ましい。接着剤を用いないことにより、電子部品から発生した熱が効率良く基材から排出することができる。また、製造効率も向上する。
(4) Base Material Bonding Step Next, as shown in FIG. 4, the second resin 20 and the base material 40 are bonded. It is desirable that the base 40 and the second resin 20 be directly bonded to each other without using an adhesive. By not using the adhesive, the heat generated from the electronic component can be efficiently discharged from the substrate. In addition, manufacturing efficiency is also improved.
基材40は、放熱材としての機能だけでなく、補強材としての機能を有していてもよい。 The base 40 may have not only a function as a heat dissipating material but also a function as a reinforcing material.
また、基材40は、特に限定されず、アルミニウム、鉄、SUS、銅、スズ、セラミックス、ガラス、グラフェン等の炭素系化合物等からなっていてもよい。また、第2樹脂20に接着される側と反対側の基材40の表面には反射材等が塗布されていてもよい。
特に、基材40がアルミニウムからなると、基材40は放熱材としても、補強材としても機能する。
The base 40 is not particularly limited, and may be made of aluminum, iron, SUS, copper, tin, ceramics, glass, a carbon-based compound such as graphene, or the like. In addition, a reflective material or the like may be applied to the surface of the base 40 opposite to the side to be bonded to the second resin 20.
In particular, when the substrate 40 is made of aluminum, the substrate 40 functions as a heat dissipating material as well as a reinforcing material.
基材40の厚さとしては、5~100μmであることが望ましく、10~50μmであることがより望ましい。 The thickness of the substrate 40 is desirably 5 to 100 μm, and more desirably 10 to 50 μm.
(5)第2の樹脂硬化工程
次に、図5に示すように、第2樹脂20に熱60を加える。第2樹脂20には、熱重合開始剤である第2重合開始剤が含有されているので、熱60が加えられることにより第2樹脂20は硬化する。
第2樹脂20が硬化することにより、第2樹脂20と基材40とは接着される。
(5) Second Resin Curing Step Next, as shown in FIG. 5, heat 60 is applied to the second resin 20. Since the second resin 20 contains the second polymerization initiator which is a thermal polymerization initiator, the heat 60 is applied to harden the second resin 20.
By curing the second resin 20, the second resin 20 and the base 40 are bonded.
熱60を加える条件は、特に限定されず、第2樹脂20の種類及び第2重合開始剤の種類に応じて適宜設定することが望ましい。
例えば、第2樹脂20としてポリイミド樹脂を使用し、第2重合開始剤として有機過酸化物系熱重合開始剤やアゾ系熱重合開始剤を使用する場合、熱60の温度は50~200℃であることが望ましい。
The conditions under which the heat 60 is applied are not particularly limited, and it is desirable to set appropriately according to the type of the second resin 20 and the type of the second polymerization initiator.
For example, when using a polyimide resin as the second resin 20 and using an organic peroxide thermal polymerization initiator or an azo thermal polymerization initiator as the second polymerization initiator, the temperature of the heat 60 is 50 to 200 ° C. It is desirable to have.
以上の工程を経て、プリント配線板を製造することができる。 A printed wiring board can be manufactured through the above steps.
また、本発明の第1実施形態に係るプリント配線板の製造方法では、第1重合開始剤は、光重合開始剤及び熱重合開始剤であり、上記第2重合開始剤は、熱重合開始剤であってもよい。
この場合、(3)第1の樹脂硬化工程では、第1樹脂10に光を照射することにより第1樹脂10を硬化させることになり、また(5)第2の樹脂硬化工程では、第2樹脂20に熱を加えることにより第2樹脂20を硬化させ、同時に、第1樹脂10に熱を加えることにより第1樹脂10を硬化させることになる。
このように、第1樹脂10が、光重合開始剤及び熱重合開始剤からなる第1重合開始剤を含むと、第1の樹脂硬化工程において、第1樹脂10の硬化の程度を調節しやすくなる。
また、第2の樹脂硬化工程において、第1樹脂10にも熱が加わることで、第2樹脂20を硬化させると同時に、第1樹脂10に未硬化部分が存在する場合には、第1樹脂10の未硬化部分を充分に硬化させることができる。
なお、(3)第1の樹脂硬化工程では、第1樹脂10が完全に硬化しないように、第1樹脂10を硬化させてもよい。
Further, in the method for producing a printed wiring board according to the first embodiment of the present invention, the first polymerization initiator is a photopolymerization initiator and a thermal polymerization initiator, and the second polymerization initiator is a thermal polymerization initiator. It may be
In this case, (3) in the first resin curing step, the first resin 10 is cured by irradiating the first resin 10 with light, and (5) in the second resin curing step, the second Heat is applied to the resin 20 to cure the second resin 20, and at the same time, heat is applied to the first resin 10 to cure the first resin 10.
As described above, when the first resin 10 includes the first polymerization initiator including the photopolymerization initiator and the thermal polymerization initiator, the degree of curing of the first resin 10 can be easily controlled in the first resin curing step. Become.
In the second resin curing step, heat is also applied to the first resin 10 to cure the second resin 20 and at the same time, if an uncured portion exists in the first resin 10, the first resin Ten uncured portions can be sufficiently cured.
In the (3) first resin curing step, the first resin 10 may be cured so that the first resin 10 is not completely cured.
なお、この場合の第1重合開始剤に含まれる熱重合開始剤の望ましい種類は、上記第2重合開始剤に含まれる熱重合開始剤の望ましい種類と同じである。 In this case, the desired type of the thermal polymerization initiator contained in the first polymerization initiator is the same as the desired type of the thermal polymerization initiator contained in the second polymerization initiator.
また、本発明の第1実施形態に係るプリント配線板の製造方法では、(1)配線パターン形成工程において、第1樹脂に配線パターンを形成した後、必要に応じ配線パターンを第1樹脂に埋め込んでもよい。
配線パターンを第1樹脂に埋め込むことで、配線パターンの位置を固定しやすくなるので、配線パターンにずれが生じることを防ぐことができる。
なお、配線パターンを第1樹脂に埋め込む場合、配線パターンと第1樹脂とが略一面状になるように配線パターンを埋め込んでもよく、配線パターンの一部のみを第1樹脂に埋め込んでもよい。
Moreover, in the method for manufacturing a printed wiring board according to the first embodiment of the present invention, (1) after forming the wiring pattern in the first resin in the wiring pattern forming step, the wiring pattern is embedded in the first resin as needed. May be.
By embedding the wiring pattern in the first resin, the position of the wiring pattern can be easily fixed, so that the wiring pattern can be prevented from being displaced.
When the wiring pattern is embedded in the first resin, the wiring pattern may be embedded so that the wiring pattern and the first resin are substantially flush, or only a part of the wiring pattern may be embedded in the first resin.
配線パターンを第1樹脂に埋め込む方法としては、特に限定されず、例えば、プレス機を使用することにより、配線パターンを第1樹脂に埋め込む方法が挙げられる。 It does not specifically limit as a method to embed a wiring pattern in 1st resin, For example, the method of embedding a wiring pattern in 1st resin is mentioned by using a press.
また、本発明の第1実施形態に係るプリント配線板の製造方法では、(1)樹脂積層工程では、第1樹脂と第2樹脂との間に、第1樹脂及び/又は第2樹脂が含浸可能な補強資材を配置することが望ましい。
補強資材を第1樹脂と第2樹脂との間に配置することにより、製造するプリント配線板の強度を強くすることができる。
また、補強資材は、第1樹脂及び/又は第2樹脂が含浸可能なので、第1樹脂と第2樹脂とは直接接触することになる。そのため、第1樹脂と第2樹脂との密着性は阻害されにくい。
Moreover, in the method for manufacturing a printed wiring board according to the first embodiment of the present invention, (1) in the resin laminating step, the first resin and / or the second resin is impregnated between the first resin and the second resin. It is desirable to place possible reinforcements.
By arranging the reinforcing material between the first resin and the second resin, the strength of the printed wiring board to be manufactured can be strengthened.
In addition, since the reinforcing material can be impregnated with the first resin and / or the second resin, the first resin and the second resin are in direct contact with each other. Therefore, the adhesion between the first resin and the second resin is not easily inhibited.
さらに、本発明の第1実施形態に係るプリント配線板の製造方法では、(4)基材貼り合わせ工程において、第2樹脂と基材との間に第2樹脂が含浸可能な補強資材を配置することが望ましい。
補強資材を第2樹脂と基材との間に配置することにより、製造するプリント配線板の強度を強くすることができる。
また、補強資材は、第2樹脂が含浸可能なので、第2樹脂と基材とは直接接触することになる。そのため、第2樹脂と基材との密着性は阻害されにくい。
Furthermore, in the method for manufacturing a printed wiring board according to the first embodiment of the present invention, in the (4) base material bonding step, a reinforcing material in which the second resin can be impregnated is disposed between the second resin and the base material. It is desirable to do.
By arranging the reinforcing material between the second resin and the base material, the strength of the printed wiring board to be manufactured can be strengthened.
In addition, since the reinforcing material can be impregnated with the second resin, the second resin and the base material are in direct contact with each other. Therefore, the adhesion between the second resin and the base is unlikely to be inhibited.
補強資材としては、特に限定されないが、例えば、PTFE等のフッ素系樹脂シートの多孔質体であってもよく、ガラスクロスや、セルロースファイバークロス、紙等の繊維質体であってもよい。 The reinforcing material is not particularly limited, but may be, for example, a porous body of a fluorine-based resin sheet such as PTFE, or a fibrous body such as glass cloth, cellulose fiber cloth, or paper.
(第2実施形態)
次に、本発明の第2実施形態に係るプリント配線板の製造方法について説明する。本発明の第2実施形態に係るプリント配線板の製造方法は、(1)樹脂積層工程~(5)第2の樹脂硬化工程を含んでおり、第1重合開始剤は、熱重合開始剤であり、第2重合開始剤は、光重合開始剤である。
また、(3)第1の樹脂硬化工程では、第1樹脂に熱を加えることにより第1樹脂を硬化させ、(5)第2の樹脂硬化工程では、第2樹脂に光を照射することにより第2樹脂を硬化させる。
Second Embodiment
Next, a method of manufacturing a printed wiring board according to the second embodiment of the present invention will be described. The method for producing a printed wiring board according to the second embodiment of the present invention includes (1) resin laminating step to (5) second resin curing step, and the first polymerization initiator is a thermal polymerization initiator. The second polymerization initiator is a photopolymerization initiator.
In addition, (3) in the first resin curing step, the first resin is cured by applying heat to the first resin, and (5) in the second resin curing step, the second resin is irradiated with light. The second resin is cured.
以下、本発明の第2実施形態に係るプリント配線板の製造方法の各工程について、図面を用いながら詳述する。
図6は、本発明の第2実施形態に係るプリント配線板の製造方法における積層工程の一例を模式的に示す模式図である。
図7は、本発明の第2実施形態に係るプリント配線板の製造方法における配線パターン形成工程の一例を模式的に示す模式図である。
図8は、本発明の第2実施形態に係るプリント配線板の製造方法における第1の樹脂硬化工程の一例を模式的に示す模式図である。
図9は、本発明の第2実施形態に係るプリント配線板の製造方法における基材貼り合わせ工程の一例を模式的に示す模式図である。
図10は、本発明の第2実施形態に係るプリント配線板の製造方法における第2の樹脂硬化工程の一例を模式的に示す模式図である。
Hereinafter, each process of the manufacturing method of the printed wiring board concerning a 2nd embodiment of the present invention is explained in full detail using a drawing.
FIG. 6: is a schematic diagram which shows typically an example of the lamination process in the manufacturing method of the printed wiring board which concerns on 2nd Embodiment of this invention.
FIG. 7: is a schematic diagram which shows typically an example of the wiring pattern formation process in the manufacturing method of the printed wiring board which concerns on 2nd Embodiment of this invention.
FIG. 8: is a schematic diagram which shows typically an example of the 1st resin hardening process in the manufacturing method of the printed wiring board which concerns on 2nd Embodiment of this invention.
FIG. 9: is a schematic diagram which shows typically an example of the base-material bonding process in the manufacturing method of the printed wiring board which concerns on 2nd Embodiment of this invention.
FIG. 10 is a schematic view schematically showing an example of a second resin curing step in the method for manufacturing a printed wiring board according to the second embodiment of the present invention.
(1)樹脂積層工程
まず、図6に示すように、半硬化状態の第1樹脂110と、半硬化状態の第2樹脂120とを積層する。
(1) Resin Laminating Step First, as shown in FIG. 6, the semi-cured first resin 110 and the semi-cured second resin 120 are laminated.
第1樹脂110の望ましい材料、厚さ、比誘電率、及び、誘電正接等は、本発明の第1実施形態に係るプリント配線板の製造方法の説明で記載した第1樹脂10の望ましい材料、厚さ、比誘電率、及び、誘電正接と同じである。 The desirable material, thickness, relative dielectric constant, dielectric tangent and the like of the first resin 110 are the desirable materials of the first resin 10 described in the description of the method for producing a printed wiring board according to the first embodiment of the present invention, Same as thickness, dielectric constant, and dielectric loss tangent.
また、第1樹脂110は、熱重合開始剤である第1重合開始剤を含有している。
第1重合開始剤としては、熱重合開始剤であれば、特に限定されないが、例えば、有機過酸化物系熱重合開始剤やアゾ系熱重合開始剤等であってもよい。
Further, the first resin 110 contains a first polymerization initiator which is a thermal polymerization initiator.
The first polymerization initiator is not particularly limited as long as it is a thermal polymerization initiator, and may be, for example, an organic peroxide thermal polymerization initiator, an azo thermal polymerization initiator, or the like.
第2樹脂120の望ましい材料及び厚さは、本発明の第1実施形態に係るプリント配線板の製造方法で記載した第2樹脂20の望ましい材料及び厚さと同じである。
また、第2樹脂120は、第2樹脂20と同様に、機能性材料を含んでいてもよい。
The desirable material and thickness of the second resin 120 are the same as the desirable material and thickness of the second resin 20 described in the method of manufacturing a printed wiring board according to the first embodiment of the present invention.
Also, the second resin 120 may contain a functional material, as in the case of the second resin 20.
また、第2樹脂120は、光重合開始剤である第2重合開始剤を含有している。
第2重合開始剤としては、光重合開始剤であれば、特に限定されないが、例えば、アルキルフェノン系、アシルフォスフィン系、オキシムエステル系、チオキサントン系等であってもよい。
Further, the second resin 120 contains a second polymerization initiator which is a photopolymerization initiator.
The second polymerization initiator is not particularly limited as long as it is a photopolymerization initiator, and may be, for example, an alkylphenone type, an acyl phosphine type, an oxime ester type, a thioxanthone type, and the like.
(2)配線パターン形成工程
次に、図7に示すように、第1樹脂110に配線パターン130を形成する。
配線パターン130の形成方法及び材料は、本発明の第1実施形態に係るプリント配線板の製造方法で記載した配線パターン30の形成方法及び材料と同じである。
(2) Wiring Pattern Forming Step Next, as shown in FIG. 7, the wiring pattern 130 is formed on the first resin 110.
The method and material for forming the wiring pattern 130 are the same as the method and material for forming the wiring pattern 30 described in the method for manufacturing a printed wiring board according to the first embodiment of the present invention.
(3)第1の樹脂硬化工程
次に、図8に示すように、第1樹脂110に熱160を加える。第1樹脂110には、熱重合開始剤である第1重合開始剤が含有されているので、熱160が加えられることにより第1樹脂110は硬化する。
(3) First Resin Curing Step Next, as shown in FIG. 8, heat 160 is applied to the first resin 110. Since the first resin 110 contains the first polymerization initiator which is a thermal polymerization initiator, the heat 160 is applied to harden the first resin 110.
熱160を加える条件は、第2樹脂120の半硬化状態を維持させたまま、第1樹脂110を硬化させることができれば、特に限定されず、第1樹脂110の種類及び第1重合開始剤の種類に応じて適宜設定することが望ましい。
例えば、第1樹脂110としてポリイミド樹脂を使用し、第1重合開始剤としてt-ブチルパーオキシピバレートを使用する場合、熱160の温度は60~90℃であることが望ましい。
The conditions for applying the heat 160 are not particularly limited as long as the first resin 110 can be cured while maintaining the semi-cured state of the second resin 120, and the type of the first resin 110 and the first polymerization initiator are not particularly limited. It is desirable to set appropriately according to the type.
For example, when a polyimide resin is used as the first resin 110 and t-butylperoxypivalate is used as the first polymerization initiator, the temperature of the heat 160 is desirably 60 to 90 ° C.
第1樹脂110が硬化することにより、第1樹脂110に形成された配線パターン130は固定されるので、配線パターン130と第1樹脂110との密着性を向上させることができる。 By curing the first resin 110, the wiring pattern 130 formed in the first resin 110 is fixed, so that the adhesion between the wiring pattern 130 and the first resin 110 can be improved.
(4)基材貼り合わせ工程
次に、図9に示すように、第2樹脂120及び基材140を貼り合わせる。
(4) Base Material Bonding Step Next, as shown in FIG. 9, the second resin 120 and the base material 140 are bonded.
基材140の望ましい材料等は、本発明の第1実施形態に係るプリント配線板の製造方法の説明で記載した基材40の望ましい材料等と同じであってもよい。 The desired material and the like of the substrate 140 may be the same as the desired material and the like of the substrate 40 described in the description of the method for manufacturing a printed wiring board according to the first embodiment of the present invention.
また、基材140は透光性を有していてもよい。基材140が透光性を有すると、後述する(5)第2の樹脂硬化工程において、基材140側からの光も第2樹脂120に到達することができる。従って、効率よく第2樹脂120を硬化させることができる。
基材140が透光性を有する場合、基材140の材料としては、ガラス、水晶等の透光性無機材料や、アクリル樹脂、ポリカーボネート樹脂、シクロオレフィン樹脂等の透光性有機材料が挙げられる。
なお、本明細書において透光性とは、基材側から第2樹脂を硬化させるための光を照射した際に、第2樹脂の硬化が進むように基材が光を透過させる性質のことを意味する。
Moreover, the base material 140 may have translucency. When the substrate 140 has translucency, light from the substrate 140 side can also reach the second resin 120 in the (5) second resin curing step described later. Therefore, the second resin 120 can be cured efficiently.
When the base material 140 has translucency, examples of the material of the base material 140 include translucent inorganic materials such as glass and quartz, and translucent organic materials such as acrylic resin, polycarbonate resin and cycloolefin resin. .
In the present specification, translucent means that the base material transmits light so that the curing of the second resin proceeds when irradiated with light for curing the second resin from the base material side. Means
(5)第2の樹脂硬化工程
次に、図10に示すように、第2樹脂120に光150を照射する。第2樹脂120には、光重合開始剤である第2重合開始剤が含有されているので、光150が照射されることにより第2樹脂120は硬化する。
第2樹脂120が硬化することにより、第2樹脂120と基材140とは接着される。
(5) Second Resin Curing Step Next, as shown in FIG. 10, the second resin 120 is irradiated with light 150. Since the second resin 120 contains a second polymerization initiator which is a photopolymerization initiator, the second resin 120 is cured by being irradiated with the light 150.
By curing the second resin 120, the second resin 120 and the base 140 are bonded.
光150を照射する条件は、特に限定されず、第2樹脂120の種類及び第2重合開始剤の種類に応じて適宜設定することが望ましい。
例えば、第2樹脂120としてポリイミド樹脂を使用し、第2重合開始剤として1,2-オクタンジオン,1-[4-(フェニルチオ)-2-(O-ベンゾイルオキシム)](BASFジャパン社製、「IRGACURE OXE-01」)、エタノン,1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-1-(O-アセチルオキシム)(BASFジャパン社製、「IRGACURE OXE-02」)、チオキサントン構造を有する2,4-ジメチルチオキサントン(日本化薬株式会社製、「DETX-S」)等の光重合開始剤を使用する場合、光150の波長は310~436nmであることが望ましい。
The conditions for irradiating the light 150 are not particularly limited, and it is desirable to appropriately set the conditions according to the type of the second resin 120 and the type of the second polymerization initiator.
For example, a polyimide resin is used as the second resin 120, and 1,2-octanedione, 1- [4- (phenylthio) -2- (O-benzoyloxime)] (manufactured by BASF Japan Ltd.) as the second polymerization initiator. “IRGACURE OXE-01”), Ethanone, 1- [9-ethyl-6- (2-methylbenzoyl) -9H-carbazol-3-yl] -1- (O-acetyloxime) (manufactured by BASF Japan Ltd.), When using a photopolymerization initiator such as IRGACURE OXE-02 "), 2,4-dimethylthioxanthone having a thioxanthone structure (Nippon Kayaku Co., Ltd.," DETX-S "), the wavelength of light 150 is 310 to 436 nm Is desirable.
なお、基材140が透光性を有する場合、光150は、基材140側からも第2樹脂120に照射することが望ましい。基材140が透光性を有する場合、基材140側から照射した光150も第2樹脂120に到達することができる。従って、効率よく第2樹脂120を硬化させることができる。 In addition, when the base material 140 has translucency, it is desirable to irradiate the light 150 to the second resin 120 also from the base material 140 side. When the substrate 140 has translucency, the light 150 irradiated from the substrate 140 side can also reach the second resin 120. Therefore, the second resin 120 can be cured efficiently.
以上の工程を経て、プリント配線板を製造することができる。 A printed wiring board can be manufactured through the above steps.
また、本発明の第2実施形態に係るプリント配線板の製造方法では、第1重合開始剤は、熱重合開始剤及び光重合開始剤であり、上記第2重合開始剤は、光重合開始剤であってもよい。
この場合、(3)第1の樹脂硬化工程では、第1樹脂110に熱を加えることにより第1樹脂110を硬化させることになり、また(5)第2の樹脂硬化工程では、第2樹脂120に光を照射することにより第2樹脂120を硬化させ、同時に、第1樹脂110に光を照射することにより第1樹脂110を硬化させることになる。
このように、第1樹脂110が、熱重合開始剤及び光重合開始剤からなる第1重合開始剤を含むと、第1の樹脂硬化工程において、第1樹脂110の硬化の程度を調節しやすくなる。
また、第2の樹脂硬化工程において、第1樹脂110にも光を照射することで、第2樹脂120を硬化させると同時に、第1樹脂110に未硬化部分が存在する場合には、第1樹脂110の未硬化部分を充分に硬化させることができる。
なお、(3)第1の樹脂硬化工程では、第1樹脂110が完全に硬化しないように、第1樹脂110を硬化させてもよい。
Moreover, in the method for producing a printed wiring board according to the second embodiment of the present invention, the first polymerization initiator is a thermal polymerization initiator and a photopolymerization initiator, and the second polymerization initiator is a photopolymerization initiator It may be
In this case, (3) in the first resin curing step, the first resin 110 is cured by applying heat to the first resin 110, and (5) in the second resin curing step, the second resin is cured. The second resin 120 is cured by irradiating 120 with light, and at the same time, the first resin 110 is cured by irradiating the first resin 110 with light.
As described above, when the first resin 110 includes the first polymerization initiator including the thermal polymerization initiator and the photopolymerization initiator, it is easy to control the degree of curing of the first resin 110 in the first resin curing step. Become.
In the second resin curing step, the first resin 110 is also irradiated with light to cure the second resin 120 and at the same time, if there is an uncured portion in the first resin 110, the first resin 110 is cured. The uncured portion of the resin 110 can be sufficiently cured.
In the (3) first resin curing step, the first resin 110 may be cured so that the first resin 110 is not completely cured.
また、本発明の第2実施形態に係るプリント配線板の製造方法では、(1)配線パターン形成工程において、第1樹脂に配線パターンを形成した後、必要に応じ配線パターンを第1樹脂に埋め込んでもよい。
配線パターンを第1樹脂に埋め込むことで、配線パターンの位置を固定しやすくなるので、配線パターンにずれが生じることを防ぐことができる。
なお、配線パターンを第1樹脂に埋め込む場合、配線パターンと第1樹脂とが略一面状になるように配線パターンを埋め込んでもよく、配線パターンの一部のみを第1樹脂に埋め込んでもよい。
Moreover, in the method for manufacturing a printed wiring board according to the second embodiment of the present invention, (1) after forming the wiring pattern in the first resin in the wiring pattern forming step, embedding the wiring pattern in the first resin as necessary May be.
By embedding the wiring pattern in the first resin, the position of the wiring pattern can be easily fixed, so that the wiring pattern can be prevented from being displaced.
When the wiring pattern is embedded in the first resin, the wiring pattern may be embedded so that the wiring pattern and the first resin are substantially flush, or only a part of the wiring pattern may be embedded in the first resin.
配線パターンを第1樹脂に埋め込む方法としては、特に限定されず、例えば、プレス機を使用することにより、配線パターンを第1樹脂に埋め込む方法が挙げられる。 It does not specifically limit as a method to embed a wiring pattern in 1st resin, For example, the method of embedding a wiring pattern in 1st resin is mentioned by using a press.
また、本発明の第2実施形態に係るプリント配線板の製造方法では、(1)樹脂積層工程では、第1樹脂と第2樹脂との間に、第1樹脂及び/又は第2樹脂が含浸可能な補強資材を配置することが望ましい。
補強資材を第1樹脂と第2樹脂との間に配置することにより、製造するプリント配線板の強度を強くすることができる。
また、補強資材は、第1樹脂及び/又は第2樹脂が含浸可能なので、第1樹脂と第2樹脂とは直接接触することになる。そのため、第1樹脂と第2樹脂との密着性は阻害されにくい。
Moreover, in the method for manufacturing a printed wiring board according to the second embodiment of the present invention, (1) in the resin laminating step, the first resin and / or the second resin is impregnated between the first resin and the second resin. It is desirable to place possible reinforcements.
By arranging the reinforcing material between the first resin and the second resin, the strength of the printed wiring board to be manufactured can be strengthened.
In addition, since the reinforcing material can be impregnated with the first resin and / or the second resin, the first resin and the second resin are in direct contact with each other. Therefore, the adhesion between the first resin and the second resin is not easily inhibited.
さらに、本発明の第2実施形態に係るプリント配線板の製造方法では、(4)基材貼り合わせ工程において、第2樹脂と基材との間に第2樹脂が含浸可能な補強資材を配置することが望ましい。
補強資材を第2樹脂と基材との間に配置することにより、製造するプリント配線板の強度を強くすることができる。
また、補強資材は、第2樹脂が含浸可能なので、第2樹脂と基材とは直接接触することになる。そのため、第2樹脂と基材との密着性は阻害されにくい。
Furthermore, in the method for manufacturing a printed wiring board according to the second embodiment of the present invention, in the (4) base material bonding step, a reinforcing material in which the second resin can be impregnated is disposed between the second resin and the base material. It is desirable to do.
By arranging the reinforcing material between the second resin and the base material, the strength of the printed wiring board to be manufactured can be strengthened.
In addition, since the reinforcing material can be impregnated with the second resin, the second resin and the base material are in direct contact with each other. Therefore, the adhesion between the second resin and the base is unlikely to be inhibited.
補強資材としては、特に限定されないが、比誘電率及び誘電正接が低い材料から構成されることが望ましい。補強資材が比誘電率及び誘電正接が低い材料から構成されると、製造されるプリント配線板における伝送特性が良好になる。
このような補強資材としては、例えば、PTFE等のフッ素系樹脂シートの多孔質体であってもよく、ガラスクロスや、セルロースファイバークロス、紙等の繊維質体であってもよい。
The reinforcing material is not particularly limited, but is preferably made of a material having a low dielectric constant and a dielectric loss tangent. If the reinforcing material is made of a material having a low dielectric constant and a dielectric loss tangent, the transmission characteristics of the printed wiring board to be produced will be good.
Such a reinforcing material may be, for example, a porous body of a fluorine-based resin sheet such as PTFE, or may be a fibrous body such as glass cloth, cellulose fiber cloth, or paper.
(第3実施形態)
次に、本発明の第3実施形態に係るプリント配線板の製造方法について説明する。本発明の第3実施形態に係るプリント配線板の製造方法は、(1)樹脂積層工程~(5)第2の樹脂硬化工程を含んでおり、第1重合開始剤は、熱重合開始剤であり、第2重合開始剤は、熱重合開始剤である。
Third Embodiment
Next, a method of manufacturing a printed wiring board according to the third embodiment of the present invention will be described. The method for producing a printed wiring board according to the third embodiment of the present invention includes (1) resin laminating step to (5) second resin curing step, and the first polymerization initiator is a thermal polymerization initiator. The second polymerization initiator is a thermal polymerization initiator.
この場合、(3)第1の樹脂硬化工程では、上記第2樹脂が半硬化状態を維持したままとなる温度であり、かつ、上記第1樹脂が硬化する温度の熱を加え、上記第1樹脂を硬化させ、上記第2の樹脂硬化工程では、上記第2樹脂が硬化する温度の熱を加え上記第2樹脂を硬化させてもよい。
すなわち、第1樹脂の硬化温度が、第2樹脂の硬化温度よりも低くなるように第1樹脂及び第2樹脂の組成を調整することにより、第1樹脂の硬化時期と、第2樹脂の硬化時期とをずらしてもよい。
この場合、第2樹脂を完全に硬化させることなく第1樹脂を硬化させることができる。これにより、第1樹脂に形成された配線パターンの位置を固定しやすくなるので、配線パターンにずれが生じることを防ぐことができる。さらに、第1の樹脂硬化工程において第2樹脂が完全に硬化していないため、基材との密着性が良好となる。
In this case, (3) in the first resin curing step, heat is applied at a temperature at which the second resin remains in a semi-cured state and at which the first resin cures, and the first resin is cured. The resin may be cured, and in the second resin curing step, heat at a temperature at which the second resin cures may be added to cure the second resin.
That is, by adjusting the composition of the first resin and the second resin so that the curing temperature of the first resin is lower than the curing temperature of the second resin, the curing time of the first resin and the curing of the second resin You may stagger the time.
In this case, the first resin can be cured without completely curing the second resin. As a result, the position of the wiring pattern formed in the first resin can be easily fixed, so that the wiring pattern can be prevented from being displaced. Furthermore, since the second resin is not completely cured in the first resin curing step, the adhesion to the substrate is improved.
第1樹脂の硬化温度を、第2樹脂の硬化温度より低くする方法は特に限定されず、樹脂の種類や、熱重合開始剤の種類を選択することにより調整してもよく、添加物を加えて調整してもよい。 The method of setting the curing temperature of the first resin lower than the curing temperature of the second resin is not particularly limited, and may be adjusted by selecting the type of resin and the type of thermal polymerization initiator, and additives may be added. May be adjusted.
第1樹脂の硬化温度と、第2樹脂の硬化温度を調製する手段の一つとして、第1重合開始剤の10時間半減期温度を、上記第2重合開始剤の10時間半減期温度よりも低くする方法がある。
この場合、(3)第1の樹脂硬化工程では、第2重合開始剤の10時間半減期温度よりも低い温度で、第1樹脂に熱を加えることにより第1樹脂を硬化させ、(5)第2の樹脂硬化工程では、第2重合開始剤の10時間半減期温度よりも高い温度で、第2樹脂に熱を加えることにより第2樹脂を硬化させてもよい。
このように、10時間半減期温度が異なる2種類の熱重合開始剤を使用し、第1の樹脂硬化工程及び第2の樹脂硬化工程における熱の温度を調節することにより、容易に、第2樹脂の硬化よりも先に第1樹脂の硬化を行うことができる。
As one of means for adjusting the curing temperature of the first resin and the curing temperature of the second resin, the 10 hour half-life temperature of the first polymerization initiator is higher than the 10 hour half-life temperature of the second polymerization initiator There is a way to lower it.
In this case, (3) in the first resin curing step, the first resin is cured by applying heat to the first resin at a temperature lower than the 10 hour half-life temperature of the second polymerization initiator, (5) In the second resin curing step, the second resin may be cured by applying heat to the second resin at a temperature higher than the 10-hour half-life temperature of the second polymerization initiator.
Thus, by using two types of thermal polymerization initiators having different 10-hour half-life temperatures, the second heat treatment can be easily performed by controlling the temperature of heat in the first resin curing step and the second resin curing step. The curing of the first resin can be performed prior to the curing of the resin.
以下、本発明の第3実施形態に係るプリント配線板の製造方法の各工程について、図面を用いながら詳述する。
図11は、本発明の第3実施形態に係るプリント配線板の製造方法における積層工程の一例を模式的に示す模式図である。
図12は、本発明の第3実施形態に係るプリント配線板の製造方法における配線パターン形成工程の一例を模式的に示す模式図である。
図13は、本発明の第3実施形態に係るプリント配線板の製造方法における第1の樹脂硬化工程の一例を模式的に示す模式図である。
図14は、本発明の第3実施形態に係るプリント配線板の製造方法における基材貼り合わせ工程の一例を模式的に示す模式図である。
図15は、本発明の第3実施形態に係るプリント配線板の製造方法における第2の樹脂硬化工程の一例を模式的に示す模式図である。
Hereinafter, each process of the manufacturing method of the printed wiring board concerning a 3rd embodiment of the present invention is explained in full detail using a drawing.
FIG. 11: is a schematic diagram which shows typically an example of the lamination process in the manufacturing method of the printed wiring board which concerns on 3rd Embodiment of this invention.
FIG. 12: is a schematic diagram which shows typically an example of the wiring pattern formation process in the manufacturing method of the printed wiring board which concerns on 3rd Embodiment of this invention.
FIG. 13: is a schematic diagram which shows typically an example of the 1st resin hardening process in the manufacturing method of the printed wiring board which concerns on 3rd Embodiment of this invention.
FIG. 14: is a schematic diagram which shows typically an example of the base-material bonding process in the manufacturing method of the printed wiring board which concerns on 3rd Embodiment of this invention.
FIG. 15: is a schematic diagram which shows typically an example of the 2nd resin hardening process in the manufacturing method of the printed wiring board which concerns on 3rd Embodiment of this invention.
(1)樹脂積層工程
まず、図11に示すように、半硬化状態の第1樹脂210と、半硬化状態の第2樹脂220とを積層する。
(1) Resin Laminating Step First, as shown in FIG. 11, the semi-cured first resin 210 and the semi-cured second resin 220 are laminated.
第1樹脂210の望ましい材料、厚さ、比誘電率、及び、誘電正接等は、本発明の第1実施形態に係るプリント配線板の製造方法の説明で記載した第1樹脂10の望ましい材料、厚さ、比誘電率、及び、誘電正接と同じである。 The desirable material, thickness, relative dielectric constant, dielectric tangent and the like of the first resin 210 are the desirable materials of the first resin 10 described in the description of the method for producing a printed wiring board according to the first embodiment of the present invention, Same as thickness, dielectric constant, and dielectric loss tangent.
第2樹脂220の望ましい材料及び厚さは、本発明の第1実施形態に係るプリント配線板の製造方法で記載した第2樹脂20の望ましい材料及び厚さと同じである。
また、第2樹脂220は、第2樹脂20と同様に、機能性材料を含んでいてもよい。
The desirable material and thickness of the second resin 220 are the same as the desirable material and thickness of the second resin 20 described in the method of manufacturing a printed wiring board according to the first embodiment of the present invention.
Also, the second resin 220 may contain a functional material, as in the case of the second resin 20.
また、第1樹脂210及び第2樹脂220は、それぞれ、熱重合開始剤である第1重合開始剤及び熱重合開始剤である第2重合開始剤を含有している。
本発明の第3実施形態に係るプリント配線板の製造方法において、第1重合開始剤の10時間半減期温度は、第2重合開始剤の10時間半減期温度よりも低いことが望ましい。
第1重合開始剤の10時間半減期温度は、30~150℃であることが望ましく、50~90℃であることがより望ましい。
The first resin 210 and the second resin 220 each contain a first polymerization initiator which is a thermal polymerization initiator and a second polymerization initiator which is a thermal polymerization initiator.
In the method for manufacturing a printed wiring board according to the third embodiment of the present invention, the 10-hour half-life temperature of the first polymerization initiator is desirably lower than the 10-hour half-life temperature of the second polymerization initiator.
The 10-hour half-life temperature of the first polymerization initiator is preferably 30 to 150 ° C., and more preferably 50 to 90 ° C.
第1重合開始剤は、特に限定されず、例えば、t-ブチルパーオキシピバレート、t-ヘキシルパーオキシピバレート、1,1,3,3,-テトラメチルブチルパーオキシ-2-エチルヘキサノエート等であってもよい。 The first polymerization initiator is not particularly limited. For example, t-butylperoxypivalate, t-hexylperoxypivalate, 1,1,3,3-tetramethylbutylperoxy-2-ethylhexano It may be ethe.
また、第2重合開始剤は、特に限定されず、例えば、t-ヘキシルパーオキシイソプロピルモノカーボネート、t-ブチルパーオキシラウレート等であってもよい。 In addition, the second polymerization initiator is not particularly limited, and may be, for example, t-hexylperoxyisopropyl monocarbonate, t-butylperoxy laurate or the like.
(2)配線パターン形成工程
次に、図12に示すように、第1樹脂210に配線パターン230を形成する。
配線パターン230の形成方法及び材料は、本発明の第1実施形態に係るプリント配線板の製造方法で記載した配線パターン30の形成方法及び材料と同じである。
(2) Wiring Pattern Forming Step Next, as shown in FIG. 12, the wiring pattern 230 is formed on the first resin 210.
The method and material for forming the wiring pattern 230 are the same as the method and material for forming the wiring pattern 30 described in the method for manufacturing a printed wiring board according to the first embodiment of the present invention.
(3)第1の樹脂硬化工程
次に、図13に示すように、第1樹脂210に熱261を加える。これにより、第1樹脂210は硬化する。
(3) First Resin Curing Step Next, as shown in FIG. 13, heat 261 is added to the first resin 210. Thereby, the first resin 210 is cured.
熱261を加える条件は、熱261の温度が、第2樹脂が半硬化状態を維持したままとなる温度であり、かつ、第1樹脂が硬化する温度であれば、特に限定されず、第1樹脂210及び第1重合開始剤の種類に応じて適宜設定することが望ましい。
また、熱261の温度は、上記第2重合開始剤の10時間半減期温度より10~100℃低い温度であることが望ましく、10~80℃低い温度であることがより望ましい。
例えば、第1樹脂210としてポリイミド樹脂を使用し、第1重合開始剤としてt-ブチルパーオキシピバレートを使用する場合、熱261の温度は60~90℃であることが望ましい。
The conditions for applying the heat 261 are not particularly limited as long as the temperature of the heat 261 is a temperature at which the second resin remains in a semi-cured state and the temperature at which the first resin cures. It is desirable to set appropriately according to the type of the resin 210 and the first polymerization initiator.
The temperature of heat 261 is preferably 10 to 100 ° C. lower than the 10-hour half-life temperature of the second polymerization initiator, and more preferably 10 to 80 ° C. lower.
For example, when a polyimide resin is used as the first resin 210 and t-butylperoxypivalate is used as the first polymerization initiator, the temperature of the heat 261 is desirably 60 to 90 ° C.
第1樹脂210が硬化することにより、第1樹脂210に埋め込まれた配線パターン230は固定されるので、配線パターン230と第1樹脂210との密着性を向上させることができる。 By curing the first resin 210, the wiring pattern 230 embedded in the first resin 210 is fixed, so that the adhesion between the wiring pattern 230 and the first resin 210 can be improved.
(4)基材貼り合わせ工程
次に、図14に示すように、第2樹脂220及び基材240を貼り合わせる。
(4) Base Material Bonding Step Next, as shown in FIG. 14, the second resin 220 and the base material 240 are bonded.
基材240の望ましい材料等は、本発明の第1実施形態に係るプリント配線板の製造方法の説明で記載した基材40の望ましい材料等と同じであってもよい。 The desirable material and the like of the substrate 240 may be the same as the desirable material and the like of the substrate 40 described in the description of the method of manufacturing a printed wiring board according to the first embodiment of the present invention.
(5)第2の樹脂硬化工程
次に、図15に示すように、第2樹脂220に熱262を加える。これにより、第2樹脂220は硬化する。
(5) Second Resin Curing Step Next, as shown in FIG. 15, heat 262 is applied to the second resin 220. Thereby, the second resin 220 is cured.
熱262を加える条件は、熱262の温度が、第2樹脂が硬化する温度であれば、特に限定されず、第2樹脂220及び第2重合開始剤の種類に応じて適宜設定することが望ましい。
また、熱262の温度は、上記第2重合開始剤の10時間半減期温度より10~100℃高い温度であることが望ましく、10~50℃高い温度であることがより望ましい。
例えば、第2樹脂220としてポリイミド樹脂を使用し、第2重合開始剤としてt-ヘキシルパーオキシイソプロピルモノカーボネートを使用する場合、熱262の温度は120~200℃であることが望ましい。
The conditions to which the heat 262 is applied are not particularly limited as long as the temperature of the heat 262 is a temperature at which the second resin cures, and it is desirable to appropriately set according to the types of the second resin 220 and the second polymerization initiator .
The temperature of heat 262 is preferably 10 to 100 ° C. higher than the 10-hour half-life temperature of the second polymerization initiator, and more preferably 10 to 50 ° C. higher.
For example, when a polyimide resin is used as the second resin 220 and t-hexylperoxyisopropyl monocarbonate is used as the second polymerization initiator, the temperature of the heat 262 is desirably 120 to 200 ° C.
以上の工程を経て、プリント配線板を製造することができる。 A printed wiring board can be manufactured through the above steps.
また、本発明の第3実施形態に係るプリント配線板の製造方法では、(1)配線パターン形成工程において、第1樹脂に配線パターンを形成した後、必要に応じ配線パターンを第1樹脂に埋め込んでもよい。
配線パターンを第1樹脂に埋め込むことで、配線パターンの位置を固定しやすくなるので、配線パターンにずれが生じることを防ぐことができる。
なお、配線パターンを第1樹脂に埋め込む場合、配線パターンと第1樹脂とが略一面状になるように配線パターンを埋め込んでもよく、配線パターンの一部のみを第1樹脂に埋め込んでもよい。
Moreover, in the method for manufacturing a printed wiring board according to the third embodiment of the present invention, (1) in the wiring pattern forming step, after forming the wiring pattern in the first resin, the wiring pattern is embedded in the first resin as needed. May be.
By embedding the wiring pattern in the first resin, the position of the wiring pattern can be easily fixed, so that the wiring pattern can be prevented from being displaced.
When the wiring pattern is embedded in the first resin, the wiring pattern may be embedded so that the wiring pattern and the first resin are substantially flush, or only a part of the wiring pattern may be embedded in the first resin.
配線パターンを第1樹脂に埋め込む方法としては、特に限定されず、例えば、プレス機を使用することにより、配線パターンを第1樹脂に埋め込む方法が挙げられる。 It does not specifically limit as a method to embed a wiring pattern in 1st resin, For example, the method of embedding a wiring pattern in 1st resin is mentioned by using a press.
また、本発明の第3実施形態に係るプリント配線板の製造方法では、(1)樹脂積層工程では、第1樹脂と第2樹脂との間に、第1樹脂及び/又は第2樹脂が含浸可能な補強資材を配置することが望ましい。
補強資材を第1樹脂と第2樹脂との間に配置することにより、製造するプリント配線板の強度を強くすることができる。
また、補強資材は、第1樹脂及び/又は第2樹脂が含浸可能なので、第1樹脂と第2樹脂とは直接接触することになる。そのため、第1樹脂と第2樹脂との密着性は阻害されにくい。
Moreover, in the method for manufacturing a printed wiring board according to the third embodiment of the present invention, (1) in the resin laminating step, the first resin and / or the second resin is impregnated between the first resin and the second resin. It is desirable to place possible reinforcements.
By arranging the reinforcing material between the first resin and the second resin, the strength of the printed wiring board to be manufactured can be strengthened.
In addition, since the reinforcing material can be impregnated with the first resin and / or the second resin, the first resin and the second resin are in direct contact with each other. Therefore, the adhesion between the first resin and the second resin is not easily inhibited.
さらに、本発明の第3実施形態に係るプリント配線板の製造方法では、(4)基材貼り合わせ工程において、第2樹脂と基材との間に第2樹脂が含浸可能な補強資材を配置することが望ましい。
補強資材を第2樹脂と基材との間に配置することにより、製造するプリント配線板の強度を強くすることができる。
また、補強資材は、第2樹脂が含浸可能なので、第2樹脂と基材とは直接接触することになる。そのため、第2樹脂と基材との密着性は阻害されにくい。
Furthermore, in the method for manufacturing a printed wiring board according to the third embodiment of the present invention, in the (4) base material bonding step, a reinforcing material in which the second resin can be impregnated is arranged between the second resin and the base material. It is desirable to do.
By arranging the reinforcing material between the second resin and the base material, the strength of the printed wiring board to be manufactured can be strengthened.
In addition, since the reinforcing material can be impregnated with the second resin, the second resin and the base material are in direct contact with each other. Therefore, the adhesion between the second resin and the base is unlikely to be inhibited.
補強資材としては、特に限定されないが、例えば、PTFE等のフッ素系樹脂シートの多孔質体であってもよく、ガラスクロスや、セルロースファイバークロス、紙等の繊維質体であってもよい。 The reinforcing material is not particularly limited, but may be, for example, a porous body of a fluorine-based resin sheet such as PTFE, or a fibrous body such as glass cloth, cellulose fiber cloth, or paper.
(第4実施形態)
次に、本発明の第4実施形態に係るプリント配線板の製造方法について説明する。本発明の第4実施形態に係るプリント配線板の製造方法は、(1)樹脂積層工程~(5)第2の樹脂硬化工程を含んでおり、第1重合開始剤は、光重合開始剤であり、第2重合開始剤は、光重合開始剤である。また、基材は透光性を有している。
さらに、(1)樹脂積層工程では、第1樹脂と、第2樹脂との間に光不透過層を挟んで第1樹脂と、第2樹脂とを積層する。
そして、(3)第1の樹脂硬化工程では、第1樹脂側から第1樹脂に光を照射することにより第1樹脂を硬化させ、(5)第2の樹脂硬化工程では、基材側から第2樹脂に光を照射することにより第2樹脂を硬化させる。
Fourth Embodiment
Next, a method of manufacturing a printed wiring board according to the fourth embodiment of the present invention will be described. The method for producing a printed wiring board according to the fourth embodiment of the present invention includes (1) resin laminating step to (5) second resin curing step, and the first polymerization initiator is a photopolymerization initiator. The second polymerization initiator is a photopolymerization initiator. Moreover, the base material has translucency.
Furthermore, in the (1) resin laminating step, the first resin and the second resin are laminated with the light impermeable layer interposed between the first resin and the second resin.
And (3) in the first resin curing step, the first resin is cured by irradiating the first resin with light from the first resin side, and (5) in the second resin curing step, from the base material side The second resin is cured by irradiating the second resin with light.
以下、本発明の第4実施形態に係るプリント配線板の製造方法の各工程について、図面を用いながら詳述する。
図16は、本発明の第4実施形態に係るプリント配線板の製造方法における積層工程の一例を模式的に示す模式図である。
図17は、本発明の第4実施形態に係るプリント配線板の製造方法における配線パターン形成工程の一例を模式的に示す模式図である。
図18は、本発明の第4実施形態に係るプリント配線板の製造方法における第1の樹脂硬化工程の一例を模式的に示す模式図である。
図19は、本発明の第4実施形態に係るプリント配線板の製造方法における基材貼り合わせ工程の一例を模式的に示す模式図である。
図20は、本発明の第4実施形態に係るプリント配線板の製造方法における第2の樹脂硬化工程の一例を模式的に示す模式図である。
Hereinafter, each process of the manufacturing method of the printed wiring board concerning a 4th embodiment of the present invention is explained in full detail, using a drawing.
FIG. 16: is a schematic diagram which shows typically an example of the lamination process in the manufacturing method of the printed wiring board which concerns on 4th Embodiment of this invention.
FIG. 17: is a schematic diagram which shows typically an example of the wiring pattern formation process in the manufacturing method of the printed wiring board which concerns on 4th Embodiment of this invention.
FIG. 18 is a schematic view schematically showing an example of a first resin curing step in the method for manufacturing a printed wiring board according to the fourth embodiment of the present invention.
FIG. 19: is a schematic diagram which shows typically an example of the base-material bonding process in the manufacturing method of the printed wiring board which concerns on 4th Embodiment of this invention.
FIG. 20 is a schematic view schematically showing an example of a second resin curing step in the method for manufacturing a printed wiring board according to the fourth embodiment of the present invention.
(1)樹脂積層工程
まず、図16に示すように、半硬化状態の第1樹脂310と、半硬化状態の第2樹脂320との間に光不透過層370を挟んで第1樹脂310と、第2樹脂320とを積層する。
(1) Resin Laminating Step First, as shown in FIG. 16, the light impermeable layer 370 is sandwiched between the first resin 310 in the semi-cured state and the second resin 320 in the semi-cured state, and , And the second resin 320.
第1樹脂310の望ましい材料、厚さ、比誘電率、及び、誘電正接等は、本発明の第1実施形態に係るプリント配線板の製造方法の説明で記載した第1樹脂10の望ましい材料、厚さ、比誘電率、及び、誘電正接と同じである。 The desirable material, thickness, relative dielectric constant, dielectric tangent and the like of the first resin 310 are the desirable materials of the first resin 10 described in the description of the method for producing a printed wiring board according to the first embodiment of the present invention, Same as thickness, dielectric constant, and dielectric loss tangent.
また、第1樹脂310は、光重合開始剤である第1重合開始剤を含有している。
第1重合開始剤としては、光重合開始剤であれば、特に限定されないが、例えば、アルキルフェノン系光重合開始剤、アシルフォスフィン系光重合開始剤、オキシムエステル系光重合開始剤、チオキサントン系光重合開始剤が挙げられる。
Further, the first resin 310 contains a first polymerization initiator which is a photopolymerization initiator.
The first polymerization initiator is not particularly limited as long as it is a photopolymerization initiator, and for example, an alkylphenone photopolymerization initiator, an acylphosphine photopolymerization initiator, an oxime ester photopolymerization initiator, a thioxanthone type Photopolymerization initiators can be mentioned.
第2樹脂320の望ましい材料及び厚さは、本発明の第1実施形態に係るプリント配線板の製造方法で記載した第2樹脂20の望ましい材料及び厚さと同じである。
また、第2樹脂320は、第2樹脂20と同様に、機能性材料を含んでいてもよい。
The desirable material and thickness of the second resin 320 are the same as the desirable material and thickness of the second resin 20 described in the method of manufacturing a printed wiring board according to the first embodiment of the present invention.
In addition, the second resin 320 may contain a functional material, as in the case of the second resin 20.
また、第2樹脂320は、光重合開始剤である第2重合開始剤を含有している。
第2重合開始剤としては、光重合開始剤であれば、特に限定されないが、例えば、例えば、アルキルフェノン系光重合開始剤、アシルフォスフィン系光重合開始剤、オキシムエステル系光重合開始剤、チオキサントン系光重合開始剤が挙げられる。
Further, the second resin 320 contains a second polymerization initiator which is a photopolymerization initiator.
The second polymerization initiator is not particularly limited as long as it is a photopolymerization initiator, and, for example, an alkylphenone photopolymerization initiator, an acylphosphine photopolymerization initiator, an oxime ester photopolymerization initiator, Thioxanthone photopolymerization initiators can be mentioned.
光不透過層370の材料は、特に限定されないが、銅やアルミ等の金属、顔料を配合した樹脂フィルム、セラミックスシート等が挙げられる。
光不透過層370の厚さは、特に限定されないが、0.1~500μmであることが望ましく、0.5~300μmであることがより望ましい。
The material of the light impermeable layer 370 is not particularly limited, and examples thereof include metals such as copper and aluminum, resin films containing a pigment, and ceramic sheets.
The thickness of the light impermeable layer 370 is not particularly limited, but is preferably 0.1 to 500 μm, and more preferably 0.5 to 300 μm.
(2)配線パターン形成工程
次に、図17に示すように、第1樹脂310に配線パターン330を形成する。
配線パターン330の形成方法及び材料は、本発明の第1実施形態に係るプリント配線板の製造方法で記載した配線パターン30の形成方法及び材料と同じである。
(2) Wiring Pattern Forming Step Next, as shown in FIG. 17, the wiring pattern 330 is formed on the first resin 310.
The method and material for forming the wiring pattern 330 are the same as the method and material for forming the wiring pattern 30 described in the method for manufacturing a printed wiring board according to the first embodiment of the present invention.
(3)第1の樹脂硬化工程
次に、図18に示すように、第1樹脂310側から第1樹脂310に光351を照射する。第1樹脂310には、光重合開始剤である第1重合開始剤が含有されているので、光351が照射されることにより第1樹脂310は硬化する。
また、光351は、光不透過層370により遮られ第2樹脂320に到達しないので、第2樹脂の半硬化状態は維持されることになる。
(3) First Resin Curing Step Next, as shown in FIG. 18, the first resin 310 is irradiated with the light 351 from the first resin 310 side. Since the first resin 310 contains the first polymerization initiator which is a photopolymerization initiator, the first resin 310 is cured by being irradiated with the light 351.
In addition, since the light 351 is blocked by the light impermeable layer 370 and does not reach the second resin 320, the semi-cured state of the second resin is maintained.
光351の波長や、照射時間等の条件は、特に限定されず、第1樹脂310の種類及び第1重合開始剤の種類に応じて適宜設定することが望ましい。
例えば、第1樹脂310としてポリイミド樹脂を使用し、第1重合開始剤として1,2-オクタンジオン,1-[4-(フェニルチオ)-2-(O-ベンゾイルオキシム)](BASFジャパン社製、「IRGACURE OXE-01」)、エタノン,1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-1-(O-アセチルオキシム)(BASFジャパン社製、「IRGACURE OXE-02」)、チオキサントン構造を有する2,4-ジメチルチオキサントン(日本化薬株式会社製、「DETX-S」)等の光重合開始剤を使用する場合、光351の波長は310~436nmであることが望ましい。
The conditions such as the wavelength of the light 351 and the irradiation time are not particularly limited, and it is desirable to set appropriately according to the type of the first resin 310 and the type of the first polymerization initiator.
For example, a polyimide resin is used as the first resin 310, and 1,2-octanedione, 1- [4- (phenylthio) -2- (O-benzoyloxime)] (BASF Japan Ltd.) is used as the first polymerization initiator. “IRGACURE OXE-01”), Ethanone, 1- [9-ethyl-6- (2-methylbenzoyl) -9H-carbazol-3-yl] -1- (O-acetyloxime) (manufactured by BASF Japan Ltd.), When using a photopolymerization initiator such as IRGACURE OXE-02 "), 2,4-dimethylthioxanthone having a thioxanthone structure (Nippon Kayaku Co., Ltd.," DETX-S "), the wavelength of light 351 is 310 to 436 nm Is desirable.
第1樹脂310が硬化することにより、第1樹脂310に埋め込まれた配線パターン330は固定されるので、配線パターン330と第1樹脂310との密着性を向上させることができる。 By curing the first resin 310, the wiring pattern 330 embedded in the first resin 310 is fixed, so that the adhesion between the wiring pattern 330 and the first resin 310 can be improved.
(4)基材貼り合わせ工程
次に、図19に示すように、第2樹脂320及び基材340を貼り合わせる。
(4) Base Material Bonding Step Next, as shown in FIG. 19, the second resin 320 and the base material 340 are bonded.
基材340は透光性を有すれば、どのような材料からなっていてもよく、例えば、ガラス、水晶等の透光性無機材料や、アクリル樹脂、ポリカーボネート樹脂、シクロオレフィン樹脂等の透光性有機材料等からなっていてもよい。 The base material 340 may be made of any material as long as it has a light transmitting property, for example, a light transmitting inorganic material such as glass or quartz, or a light transmitting such as an acrylic resin, a polycarbonate resin, or a cycloolefin resin It may be made of organic material or the like.
(5)第2の樹脂硬化工程
次に、図20に示すように、基材340側から第2樹脂320に光352を照射する。
基材340は透光性を有するので、光352は基材340を透過し、第2樹脂320に到達する。また、第2樹脂320には、光重合開始剤である第2重合開始剤が含有されているので、光352により第2樹脂320は硬化する。
そして、第2樹脂320が硬化することにより、第2樹脂320と基材340とは接着される。
(5) Second Resin Curing Step Next, as shown in FIG. 20, the second resin 320 is irradiated with light 352 from the base material 340 side.
Since the substrate 340 has translucency, the light 352 passes through the substrate 340 and reaches the second resin 320. Further, since the second resin 320 contains the second polymerization initiator which is a photopolymerization initiator, the second resin 320 is cured by the light 352.
Then, the second resin 320 and the base 340 are bonded by curing of the second resin 320.
光352を照射する条件は、特に限定されず、第2樹脂320の種類及び第2重合開始剤の種類に応じて適宜設定することが望ましい。
例えば、第2樹脂320としてポリイミド樹脂を使用し、第2重合開始剤として1,2-オクタンジオン,1-[4-(フェニルチオ)-2-(O-ベンゾイルオキシム)](BASFジャパン社製、「IRGACURE OXE-01」)、エタノン,1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-1-(O-アセチルオキシム)(BASFジャパン社製、「IRGACURE OXE-02」)、チオキサントン構造を有する2,4-ジメチルチオキサントン(日本化薬株式会社製、「DETX-S」)等の光重合開始剤を使用する場合、光352の波長は310~436nmであることが望ましい。
The conditions for irradiating the light 352 are not particularly limited, and it is desirable to appropriately set the conditions according to the type of the second resin 320 and the type of the second polymerization initiator.
For example, a polyimide resin is used as the second resin 320, and 1,2-octanedione, 1- [4- (phenylthio) -2- (O-benzoyloxime)] (manufactured by BASF Japan Ltd.) as the second polymerization initiator. “IRGACURE OXE-01”), Ethanone, 1- [9-ethyl-6- (2-methylbenzoyl) -9H-carbazol-3-yl] -1- (O-acetyloxime) (manufactured by BASF Japan Ltd.), When using a photopolymerization initiator such as IRGACURE OXE-02 ") or 2,4-dimethylthioxanthone having a thioxanthone structure (Nippon Kayaku Co., Ltd.," DETX-S "), the wavelength of light 352 is 310 to 436 nm Is desirable.
以上の工程を経て、プリント配線板を製造することができる。 A printed wiring board can be manufactured through the above steps.
また、本発明の第4実施形態に係るプリント配線板の製造方法では、(1)配線パターン形成工程において、第1樹脂に配線パターンを形成した後、必要に応じ配線パターンを第1樹脂に埋め込んでもよい。
配線パターンを第1樹脂に埋め込むことで、配線パターンの位置を固定しやすくなるので、配線パターンにずれが生じることを防ぐことができる。
なお、配線パターンを第1樹脂に埋め込む場合、配線パターンと第1樹脂とが略一面状になるように配線パターンを埋め込んでもよく、配線パターンの一部のみを第1樹脂に埋め込んでもよい。
Moreover, in the method for manufacturing a printed wiring board according to the fourth embodiment of the present invention, (1) after forming the wiring pattern in the first resin in the wiring pattern forming step, embedding the wiring pattern in the first resin as necessary May be.
By embedding the wiring pattern in the first resin, the position of the wiring pattern can be easily fixed, so that the wiring pattern can be prevented from being displaced.
When the wiring pattern is embedded in the first resin, the wiring pattern may be embedded so that the wiring pattern and the first resin are substantially flush, or only a part of the wiring pattern may be embedded in the first resin.
配線パターンを第1樹脂に埋め込む方法としては、特に限定されず、例えば、プレス機を使用することにより、配線パターンを第1樹脂に埋め込む方法が挙げられる。 It does not specifically limit as a method to embed a wiring pattern in 1st resin, For example, the method of embedding a wiring pattern in 1st resin is mentioned by using a press.
また、本発明の第4実施形態に係るプリント配線板の製造方法では、(4)基材貼り合わせ工程において、第2樹脂と基材との間に第2樹脂が含浸可能な補強資材を配置することが望ましい。
補強資材を第2樹脂と基材との間に配置することにより、製造するプリント配線板の強度を強くすることができる。
また、補強資材は、第2樹脂が含浸可能なので、第2樹脂と基材とは直接接触することになる。そのため、第2樹脂と基材との密着性は阻害されにくい。
Moreover, in the method for manufacturing a printed wiring board according to the fourth embodiment of the present invention, in the (4) base material bonding step, a reinforcing material in which the second resin can be impregnated is disposed between the second resin and the base material. It is desirable to do.
By arranging the reinforcing material between the second resin and the base material, the strength of the printed wiring board to be manufactured can be strengthened.
In addition, since the reinforcing material can be impregnated with the second resin, the second resin and the base material are in direct contact with each other. Therefore, the adhesion between the second resin and the base is unlikely to be inhibited.
補強資材としては、特に限定されないが、例えば、PTFE等のフッ素系樹脂シートの多孔質体であってもよく、ガラスクロスや、セルロースファイバークロス、紙等の繊維質体であってもよい。 The reinforcing material is not particularly limited, but may be, for example, a porous body of a fluorine-based resin sheet such as PTFE, or a fibrous body such as glass cloth, cellulose fiber cloth, or paper.
(第5実施形態)
次に、本発明の第5実施形態に係るプリント配線板の製造方法について説明する。本発明の第5実施形態に係るプリント配線板の製造方法は、(1)樹脂積層工程~(5)第2の樹脂硬化工程を含んでいる。
また、第1重合開始剤は、第1波長の光を照射されることにより光重合開始剤として機能し、第2重合開始剤は、第2波長の光を照射されることにより光重合開始剤として機能する。そして、第1波長と、第2波長とは異なる波長である。
さらに、(3)第1の樹脂硬化工程では、第2樹脂の半硬化状態を維持させたまま、第1樹脂に第1波長の光を照射し、第1樹脂を硬化させ、(5)第2の樹脂硬化工程では、第2樹脂に第2波長の光を照射することにより第2樹脂を硬化させる。
Fifth Embodiment
Next, a method of manufacturing a printed wiring board according to the fifth embodiment of the present invention will be described. The method of manufacturing a printed wiring board according to the fifth embodiment of the present invention includes (1) resin laminating step to (5) second resin curing step.
The first polymerization initiator functions as a photopolymerization initiator by being irradiated with light of a first wavelength, and the second polymerization initiator is a photopolymerization initiator by being irradiated with light of a second wavelength Act as. The first wavelength and the second wavelength are different wavelengths.
Further, (3) in the first resin curing step, the first resin is irradiated with light of the first wavelength while the semi-cured state of the second resin is maintained, and the first resin is cured; In the second resin curing step, the second resin is cured by irradiating the second resin with light of the second wavelength.
以下、本発明の第5実施形態に係るプリント配線板の製造方法の各工程について、図面を用いながら詳述する。
図21は、本発明の第5実施形態に係るプリント配線板の製造方法における積層工程の一例を模式的に示す模式図である。
図22は、本発明の第5実施形態に係るプリント配線板の製造方法における配線パターン形成工程の一例を模式的に示す模式図である。
図23は、本発明の第5実施形態に係るプリント配線板の製造方法における第1の樹脂硬化工程の一例を模式的に示す模式図である。
図24は、本発明の第5実施形態に係るプリント配線板の製造方法における基材貼り合わせ工程の一例を模式的に示す模式図である。
図25は、本発明の第5実施形態に係るプリント配線板の製造方法における第2の樹脂硬化工程の一例を模式的に示す模式図である。
Hereinafter, each process of the manufacturing method of the printed wiring board concerning a 5th embodiment of the present invention is explained in full detail, using a drawing.
FIG. 21: is a schematic diagram which shows typically an example of the lamination process in the manufacturing method of the printed wiring board which concerns on 5th Embodiment of this invention.
FIG. 22: is a schematic diagram which shows typically an example of the wiring pattern formation process in the manufacturing method of the printed wiring board which concerns on 5th Embodiment of this invention.
FIG. 23: is a schematic diagram which shows typically an example of the 1st resin hardening process in the manufacturing method of the printed wiring board which concerns on 5th Embodiment of this invention.
FIG. 24: is a schematic diagram which shows typically an example of the base-material bonding process in the manufacturing method of the printed wiring board which concerns on 5th Embodiment of this invention.
FIG. 25: is a schematic diagram which shows typically an example of the 2nd resin hardening process in the manufacturing method of the printed wiring board which concerns on 5th Embodiment of this invention.
(1)樹脂積層工程
まず、図21に示すように、半硬化状態の第1樹脂410と、半硬化状態の第2樹脂420とを積層する。
(1) Resin Laminating Step First, as shown in FIG. 21, the semi-cured first resin 410 and the semi-cured second resin 420 are laminated.
第1樹脂410の望ましい材料、厚さ、比誘電率、及び、誘電正接等は、本発明の第1実施形態に係るプリント配線板の製造方法の説明で記載した第1樹脂10の望ましい材料、厚さ、比誘電率、及び、誘電正接と同じである。 The desirable material, thickness, relative dielectric constant, dielectric tangent and the like of the first resin 410 are the desirable materials of the first resin 10 described in the description of the method for producing a printed wiring board according to the first embodiment of the present invention, Same as thickness, dielectric constant, and dielectric loss tangent.
第2樹脂420の望ましい材料及び厚さは、本発明の第1実施形態に係るプリント配線板の製造方法で記載した第2樹脂20の望ましい材料及び厚さと同じである。
また、第2樹脂420は、第2樹脂20と同様に、機能性材料を含んでいてもよい。
The desirable material and thickness of the second resin 420 are the same as the desirable material and thickness of the second resin 20 described in the method of manufacturing a printed wiring board according to the first embodiment of the present invention.
Further, the second resin 420 may contain a functional material, as in the case of the second resin 20.
第1樹脂410及び第2樹脂420は、それぞれ、第1波長の光を照射されることにより光重合開始剤として機能する第1重合開始剤及び第2波長の光を照射されることにより光重合開始剤として機能する第2重合開始剤を含有している。
また、第1波長と、第2波長とは異なる波長である。第1波長と、第2波長とは、50nm以上異なる波長であることが望ましく、100nm以上異なる波長であることがより望ましい。
第1波長と第2波長とが50nm以上異なる波長であると、後述する(4)第1の樹脂硬化工程において、第1波長の光を照射することにより第1重合開始剤を含む第1樹脂を硬化する際に、第1波長の光が、第2重合開始剤を含む第2樹脂に到達したとしても、第2樹脂は半硬化状態を維持しやすくなる。
The first resin 410 and the second resin 420 are each irradiated with light of a first wavelength, and are thus irradiated with light of a first polymerization initiator that functions as a photopolymerization initiator and light of a second wavelength. It contains a second polymerization initiator that functions as an initiator.
Also, the first wavelength and the second wavelength are different wavelengths. The first wavelength and the second wavelength preferably differ by 50 nm or more, and more preferably by 100 nm or more.
The first resin containing the first polymerization initiator by irradiating the light of the first wavelength in the (4) first resin curing step described later to be a wavelength that the first wavelength and the second wavelength differ by 50 nm or more Even when light of the first wavelength reaches the second resin containing the second polymerization initiator when curing the second resin, the second resin can easily maintain the semi-cured state.
(2)配線パターン形成工程
次に、図22に示すように、第1樹脂410に配線パターン430を形成する。
配線パターン430の形成方法及び材料は、本発明の第1実施形態に係るプリント配線板の製造方法で記載した配線パターン30の形成方法及び材料と同じである。
(2) Wiring Pattern Forming Step Next, as shown in FIG. 22, the wiring pattern 430 is formed on the first resin 410.
The method and material for forming the wiring pattern 430 are the same as the method and material for forming the wiring pattern 30 described in the method for manufacturing a printed wiring board according to the first embodiment of the present invention.
(3)第1の樹脂硬化工程
次に、図23に示すように、第2樹脂420の半硬化状態を維持させたまま、第1樹脂410に第1波長の光451を照射し、第1重合開始剤を光重合開始剤として機能させ、第1樹脂410を硬化する。
(3) First Resin Curing Step Next, as shown in FIG. 23, while the semi-cured state of the second resin 420 is maintained, the first resin 410 is irradiated with the light 451 of the first wavelength, The polymerization initiator functions as a photopolymerization initiator to cure the first resin 410.
光451を照射する際の第1波長や、照射時間等の条件は、特に限定されず、第1樹脂410の種類及び第1重合開始剤の種類に応じて適宜設定することが望ましい。
例えば、第1樹脂410としてポリイミド樹脂を使用し、第1重合開始剤として
1,2-オクタンジオン,1-[4-(フェニルチオ)-2-(O-ベンゾイルオキシム)](BASFジャパン社製、「IRGACURE OXE-01」)、エタノン,1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-1-(O-アセチルオキシム)(BASFジャパン社製、「IRGACURE OXE-02」)、チオキサントン構造を有する2,4-ジメチルチオキサントン(日本化薬株式会社製、「DETX-S」)等の光重合開始剤を使用する場合、光451の第1波長は200~400nmであることが望ましい。
Conditions such as the first wavelength at the time of irradiation with the light 451 and the irradiation time are not particularly limited, and it is desirable to set appropriately according to the type of the first resin 410 and the type of the first polymerization initiator.
For example, a polyimide resin is used as the first resin 410, and 1,2-octanedione, 1- [4- (phenylthio) -2- (O-benzoyloxime)] (manufactured by BASF Japan Ltd.) as the first polymerization initiator. “IRGACURE OXE-01”), Ethanone, 1- [9-ethyl-6- (2-methylbenzoyl) -9H-carbazol-3-yl] -1- (O-acetyloxime) (manufactured by BASF Japan Ltd.), When using a photopolymerization initiator such as IRGACURE OXE-02 "), 2,4-dimethylthioxanthone having a thioxanthone structure (" DETX-S "manufactured by Nippon Kayaku Co., Ltd.), the first wavelength of the light 451 is 200 It is desirable that the thickness be about 400 nm.
(4)基材貼り合わせ工程
次に、図24に示すように、第2樹脂420及び基材440を貼り合わせる。
(4) Base Material Bonding Step Next, as shown in FIG. 24, the second resin 420 and the base material 440 are bonded.
基材440の望ましい材料等は、本発明の第1実施形態に係るプリント配線板の製造方法の説明で記載した基材40の望ましい材料等と同じであってもよい。 The desirable material and the like of the substrate 440 may be the same as the desirable material and the like of the substrate 40 described in the description of the method for manufacturing a printed wiring board according to the first embodiment of the present invention.
また、基材440は透光性を有していてもよい。基材440が透光性を有すると、後述する(5)第2の樹脂硬化工程において、基材440側からも第2波長の光を第2樹脂420に到達することができる。従って、効率よく第2樹脂420を硬化させることができる。
基材440が透光性を有する場合、基材440の材料としては、ガラス、水晶等の透光性無機材料や、アクリル樹脂、ポリカーボネート樹脂、シクロオレフィン樹脂等の透光性有機材料等が挙げられる。
In addition, the base 440 may have a light transmitting property. When the base 440 has translucency, light of the second wavelength can also reach the second resin 420 from the base 440 side in the (5) second resin curing step described later. Therefore, the second resin 420 can be efficiently cured.
When the substrate 440 has translucency, examples of the material of the substrate 440 include translucent inorganic materials such as glass and quartz, and translucent organic materials such as acrylic resin, polycarbonate resin and cycloolefin resin. Be
(5)第2の樹脂硬化工程
次に、図25に示すように、第2樹脂420に第2波長の光452を照射し、第2重合開始剤を光重合開始剤として機能させ、第2樹脂420を硬化する。
第2樹脂420が硬化することにより、第2樹脂420と基材440とは接着される。
(5) Second Resin Curing Step Next, as shown in FIG. 25, the second resin 420 is irradiated with the light 452 of the second wavelength to cause the second polymerization initiator to function as a photopolymerization initiator, the second The resin 420 is cured.
By curing the second resin 420, the second resin 420 and the base 440 are bonded.
光452を照射する際の第2波長や、照射時間等の条件は、特に限定されず、第2樹脂420の種類及び第2重合開始剤の種類に応じて適宜設定することが望ましい。
例えば、第2樹脂420としてポリイミド樹脂を使用し、第2重合開始剤として2,4-ジメチルチオキサントンを使用する場合、光452の第1波長は480~600nmであることが望ましい。
Conditions such as the second wavelength at the time of irradiation of the light 452 and the irradiation time are not particularly limited, and it is desirable to set appropriately according to the type of the second resin 420 and the type of the second polymerization initiator.
For example, when a polyimide resin is used as the second resin 420 and 2,4-dimethylthioxanthone is used as the second polymerization initiator, it is desirable that the first wavelength of the light 452 be 480 to 600 nm.
なお、基材440が透光性を有する場合、第2波長の光452は、基材440側からも第2樹脂420に照射することが望ましい。基材440が透光性を有する場合、基材440側から照射した第2波長の光452も第2樹脂420に到達することができる。従って、効率よく第2樹脂420を硬化させることができる。 In addition, when the base material 440 has translucency, it is desirable to irradiate the light 452 of a 2nd wavelength to the 2nd resin 420 also from the base material 440 side. When the substrate 440 has translucency, the light 452 of the second wavelength emitted from the substrate 440 side can also reach the second resin 420. Therefore, the second resin 420 can be efficiently cured.
以上の工程を経て、プリント配線板を製造することができる。 A printed wiring board can be manufactured through the above steps.
また、本発明の第5実施形態に係るプリント配線板の製造方法では、(1)配線パターン形成工程において、第1樹脂に配線パターンを形成した後、必要に応じ配線パターンを第1樹脂に埋め込んでもよい。
配線パターンを第1樹脂に埋め込むことで、配線パターンの位置を固定しやすくなるので、配線パターンにずれが生じることを防ぐことができる。
なお、配線パターンを第1樹脂に埋め込む場合、配線パターンと第1樹脂とが略一面状になるように配線パターンを埋め込んでもよく、配線パターンの一部のみを第1樹脂に埋め込んでもよい。
Moreover, in the method for manufacturing a printed wiring board according to the fifth embodiment of the present invention, (1) after forming the wiring pattern in the first resin in the wiring pattern forming step, embedding the wiring pattern in the first resin as necessary May be.
By embedding the wiring pattern in the first resin, the position of the wiring pattern can be easily fixed, so that the wiring pattern can be prevented from being displaced.
When the wiring pattern is embedded in the first resin, the wiring pattern may be embedded so that the wiring pattern and the first resin are substantially flush, or only a part of the wiring pattern may be embedded in the first resin.
配線パターンを第1樹脂に埋め込む方法としては、特に限定されず、例えば、プレス機を使用することにより、配線パターンを第1樹脂に埋め込む方法が挙げられる。 It does not specifically limit as a method to embed a wiring pattern in 1st resin, For example, the method of embedding a wiring pattern in 1st resin is mentioned by using a press.
また、本発明の第5実施形態に係るプリント配線板の製造方法では、(1)樹脂積層工程では、第1樹脂と第2樹脂との間に、第1樹脂及び/又は第2樹脂が含浸可能な補強資材を配置することが望ましい。
補強資材を第1樹脂と第2樹脂との間に配置することにより、製造するプリント配線板の強度を強くすることができる。
また、補強資材は、第1樹脂及び/又は第2樹脂が含浸可能なので、第1樹脂と第2樹脂とは直接接触することになる。そのため、第1樹脂と第2樹脂との密着性は阻害されにくい。
Moreover, in the method for manufacturing a printed wiring board according to the fifth embodiment of the present invention, (1) in the resin laminating step, the first resin and / or the second resin is impregnated between the first resin and the second resin. It is desirable to place possible reinforcements.
By arranging the reinforcing material between the first resin and the second resin, the strength of the printed wiring board to be manufactured can be strengthened.
In addition, since the reinforcing material can be impregnated with the first resin and / or the second resin, the first resin and the second resin are in direct contact with each other. Therefore, the adhesion between the first resin and the second resin is not easily inhibited.
さらに、本発明の第5実施形態に係るプリント配線板の製造方法では、(4)基材貼り合わせ工程において、第2樹脂と基材との間に第2樹脂が含浸可能な補強資材を配置することが望ましい。
補強資材を第2樹脂と基材との間に配置することにより、製造するプリント配線板の強度を強くすることができる。
また、補強資材は、第2樹脂が含浸可能なので、第2樹脂と基材とは直接接触することになる。そのため、第2樹脂と基材との密着性は阻害されにくい。
Furthermore, in the method for manufacturing a printed wiring board according to the fifth embodiment of the present invention, in the (4) base material bonding step, a reinforcing material in which the second resin can be impregnated is disposed between the second resin and the base material. It is desirable to do.
By arranging the reinforcing material between the second resin and the base material, the strength of the printed wiring board to be manufactured can be strengthened.
In addition, since the reinforcing material can be impregnated with the second resin, the second resin and the base material are in direct contact with each other. Therefore, the adhesion between the second resin and the base is unlikely to be inhibited.
補強資材としては、特に限定されないが、例えば、PTFE等のフッ素系樹脂シートの多孔質体であってもよく、ガラスクロスや、セルロースファイバークロス、紙等の繊維質体であってもよい。 The reinforcing material is not particularly limited, but may be, for example, a porous body of a fluorine-based resin sheet such as PTFE, or a fibrous body such as glass cloth, cellulose fiber cloth, or paper.
(第6実施形態)
本発明のプリント配線板の製造方法では、(1)樹脂積層工程、(2)配線パターン形成工程、(3)第1の樹脂硬化工程、(4)基材貼り合わせ工程及び(5)第2の樹脂硬化工程を、ロールプレス機において連続的に行うことが望ましい。
これら工程をロールプレス機で連続的に行うことにより、効率的にプリント配線板を製造することができる。
Sixth Embodiment
In the method for producing a printed wiring board of the present invention, (1) resin laminating step, (2) wiring pattern forming step, (3) first resin curing step, (4) substrate bonding step, and (5) second It is desirable to continuously carry out the resin curing step in a roll press.
By continuously performing these steps with a roll press, a printed wiring board can be efficiently manufactured.
ロールプレス機において上記工程を連続的に行う本発明のプリント配線板の製造方法について、以下に図面を用いながら詳述する。
図26(a)~(e)は、本発明の第6実施形態に係るプリント配線板の製造方法の一例を工程順に模式的に示す模式図である。
The manufacturing method of the printed wiring board of this invention which performs the said process continuously in a roll press machine is explained in full detail, using a drawing below.
26 (a) to 26 (e) are schematic views schematically showing an example of a method of manufacturing a printed wiring board according to a sixth embodiment of the present invention in the order of steps.
まず、図26(a)に示すように、第1ロールプレス機581により半硬化状態の第1樹脂510と、半硬化状態の第2樹脂520とを積層する。すなわち、(1)樹脂積層工程を行う。
なお、第1樹脂510は、第1重合開始剤を含有し、第2樹脂520は、第2重合開始剤を含有している。
第1樹脂510、第2樹脂520、第1重合開始剤、及び、第2重合開始剤の材料については、上記本発明の第1実施形態~第5実施形態で説明した第1樹脂、第2樹脂、第1重合開始剤、及び、第2重合開始剤の材料を使用することができる。
First, as shown in FIG. 26A, the first resin 510 in a semi-cured state and the second resin 520 in a semi-cured state are laminated by a first roll press 581. That is, (1) a resin laminating step is performed.
The first resin 510 contains a first polymerization initiator, and the second resin 520 contains a second polymerization initiator.
The materials of the first resin 510, the second resin 520, the first polymerization initiator, and the second polymerization initiator are the first resin and the second resin described in the first to fifth embodiments of the present invention. Materials of resin, first polymerization initiator, and second polymerization initiator can be used.
次に、図26(b)に示すように、第1樹脂510に配線パターン530を形成する。すなわち、(2)配線パターン形成工程を行う。
第1樹脂510に配線パターン530を形成する方法としては、特に限定されないが、例えば、第1樹脂510に銅箔を貼り、銅箔をエッチングレジストによりマスクし、エッチング液を使用し銅箔をエッチングすることにより任意の形状の配線パターンを形成し、エッチング液及びエッチングレジストを除去することにより配線パターン530を形成してもよい。
また、別の方法としては、配線パターン印刷機により第1樹脂510に配線パターン530を印刷する方法も挙げられる。
なお、この際、配線パターン530を第1樹脂510に埋め込んでもよい。
Next, as shown in FIG. 26B, the wiring pattern 530 is formed on the first resin 510. That is, (2) a wiring pattern formation step is performed.
The method of forming the wiring pattern 530 on the first resin 510 is not particularly limited. For example, a copper foil is attached to the first resin 510, the copper foil is masked with an etching resist, and the copper foil is etched using an etching solution. Thus, a wiring pattern having an arbitrary shape may be formed, and the wiring pattern 530 may be formed by removing the etching solution and the etching resist.
As another method, a method of printing the wiring pattern 530 on the first resin 510 by a wiring pattern printing machine can also be mentioned.
At this time, the wiring pattern 530 may be embedded in the first resin 510.
次に、図26(c)に示すように、第2樹脂520の半硬化状態を維持させたまま、第1硬化手段555により第1樹脂510を硬化させる。すなわち、(3)第1の樹脂硬化工程を行う。 Next, as shown in FIG. 26C, while the semi-cured state of the second resin 520 is maintained, the first resin 510 is cured by the first curing means 555. That is, (3) a first resin curing step is performed.
第1樹脂510を硬化させる第1硬化手段555としては、第1樹脂510の種類及び第1重合開始剤の種類に応じて適宜選択することが望ましい。
第1硬化手段555としては、上記本発明の第1実施形態~第5実施形態で説明したように、光や熱が挙げられる。
As the first curing means 555 for curing the first resin 510, it is desirable to appropriately select according to the type of the first resin 510 and the type of the first polymerization initiator.
Examples of the first curing means 555 include light and heat, as described in the first to fifth embodiments of the present invention.
第1硬化手段555として熱を使用する場合、積層された第1樹脂510及び第2樹脂520を加熱炉に入れて加熱してもよい。 When heat is used as the first curing means 555, the laminated first resin 510 and second resin 520 may be placed in a heating furnace and heated.
次に図26(d)に示すように、第2樹脂520に基材540を貼り合わせる。すなわち、(4)基材貼り合わせ工程を行う。
基材540の材料については、上記本発明の第1実施形態~第5実施形態で説明した基材の材料を使用することができる。
Next, as shown in FIG. 26D, the base material 540 is attached to the second resin 520. That is, (4) base material bonding process is performed.
As the material of the substrate 540, the materials of the substrates described in the first to fifth embodiments of the present invention can be used.
次に、図26(e)に示すように、第2樹脂520を第2硬化手段556により硬化させる。すなわち、(5)第2の樹脂硬化工程を行う。
これにより、第2樹脂520と基材540とを接着することができ、プリント配線板を製造することができる。
Next, as shown in FIG. 26E, the second resin 520 is cured by the second curing means 556. That is, (5) A second resin curing step is performed.
Thereby, the second resin 520 and the base material 540 can be adhered, and a printed wiring board can be manufactured.
第2樹脂520を硬化させる第2硬化手段556としては、第2樹脂520の種類及び第2重合開始剤の種類に応じて適宜選択することが望ましい。
第2硬化手段556としては、上記本発明の第1実施形態~第5実施形態で説明したように、光や熱が挙げられる。
The second curing unit 556 for curing the second resin 520 is desirably selected appropriately in accordance with the type of the second resin 520 and the type of the second polymerization initiator.
Examples of the second curing means 556 include light and heat as described in the first to fifth embodiments of the present invention.
このように、本発明のプリント配線板の製造方法では、上記各工程をロールプレス機において連続的に行うことによって、プリント配線板を製造してもよい。 As described above, in the method of manufacturing a printed wiring board of the present invention, the printed wiring board may be manufactured by continuously performing the above-described steps in a roll press.
なお、本発明の第6実施形態に係るプリント配線板の製造方法では、第1重合開始剤及び第2重合開始剤として熱重合開始剤を使用し、第1硬化手段555及び第2硬化手段556として熱を使用する場合、以下のようにプリント配線板を製造してもよい。なお、この場合、第1重合開始剤の10時間半減期温度は、第2重合開始剤の10時間半減期温度よりも低い。 In the method for producing a printed wiring board according to the sixth embodiment of the present invention, a thermal polymerization initiator is used as the first polymerization initiator and the second polymerization initiator, and the first curing means 555 and the second curing means 556 are used. When heat is used as the substrate, the printed wiring board may be manufactured as follows. In this case, the 10-hour half-life temperature of the first polymerization initiator is lower than the 10-hour half-life temperature of the second polymerization initiator.
まず、上記のように(1)樹脂積層工程及び(2)配線パターン形成工程までを行う。
次に、上記のように(3)第1の樹脂硬化工程において、第2樹脂520が半硬化状態を維持したままとなる温度であり、かつ、第1樹脂510が硬化する温度の熱を加え、第1樹脂510を硬化させる。この際、配線パターン530が第1樹脂510と充分に密着できれば、第1樹脂510を完全に硬化させなくてもよい。
次に、上記のように(4)基材貼り合わせ工程を行う。
次に、上記のように(5)第2の樹脂硬化工程において、第2樹脂520が硬化する温度の熱を加え第2樹脂520を硬化させる。これにより、基材540を第2樹脂520に密着させる。この際、基材540が第2樹脂520と充分に密着できれば、第2樹脂520を完全に硬化させなくてもよい。
次に、配線パターン530、第1樹脂510、第2樹脂520及び基材540の積層体を、長尺の状態、又は、ロール状に巻いた状態で、加熱炉に入れ、第1樹脂510及び第2樹脂520が完全に硬化するように、第1樹脂510及び第2樹脂520を加熱する(7)第3の樹脂加熱工程を行う。
加熱炉により第1樹脂510及び第2樹脂520の完全な硬化を最後にまとめて行うことにより、効率よくプリント配線板を製造することができる。
First, as described above, the steps up to (1) resin lamination step and (2) wiring pattern formation step are performed.
Next, as described above, in the (3) first resin curing step, heat is applied at a temperature at which the second resin 520 remains in a semi-cured state and at which the first resin 510 cures. , And the first resin 510 is cured. At this time, if the wiring pattern 530 can be in close contact with the first resin 510, the first resin 510 may not be completely cured.
Next, (4) base material pasting process is performed as mentioned above.
Next, as described above, in the (5) second resin curing step, the heat of the temperature at which the second resin 520 is cured is applied to cure the second resin 520. Thereby, the substrate 540 is brought into close contact with the second resin 520. At this time, if the base material 540 can be in close contact with the second resin 520, the second resin 520 may not be completely cured.
Next, the laminate of the wiring pattern 530, the first resin 510, the second resin 520, and the base material 540 is put in a heating furnace in a long state or a state of being wound in a roll shape. (7) A third resin heating step of heating the first resin 510 and the second resin 520 so that the second resin 520 is completely cured is performed.
By completely curing the first resin 510 and the second resin 520 finally in a heating furnace, a printed wiring board can be efficiently manufactured.
なお、第1の樹脂硬化工程では、第2重合開始剤の10時間半減期温度よりも低い温度で、第1樹脂510に熱を加えることにより第1樹脂510を硬化させることが望ましい。
また、第2の樹脂硬化工程では、第2重合開始剤の10時間半減期温度よりも高い温度で、第2樹脂520に熱を加えることにより上記第2樹脂を硬化させることが望ましい。
In the first resin curing step, it is desirable to cure the first resin 510 by applying heat to the first resin 510 at a temperature lower than the 10-hour half-life temperature of the second polymerization initiator.
In the second resin curing step, it is desirable to cure the second resin by applying heat to the second resin 520 at a temperature higher than the 10-hour half-life temperature of the second polymerization initiator.
(第7実施形態)
上記本発明のプリント配線板の製造方法で製造されたプリント配線板は、本発明のプリント配線板でもある。
以下、本発明のプリント配線板を、図面を用いながら詳述する。
図27は、本発明のプリント配線板の一例を模式的に示す模式図である。
Seventh Embodiment
The printed wiring board manufactured by the method for manufacturing a printed wiring board of the present invention is also the printed wiring board of the present invention.
Hereinafter, the printed wiring board of the present invention will be described in detail using the drawings.
FIG. 27 is a schematic view schematically showing an example of the printed wiring board of the present invention.
図27に示すように、本発明のプリント配線板の一例であるプリント配線板601は、配線パターン630と、第1硬化樹脂層615と、第1硬化樹脂層615の面611と反対側の面612に積層された第2硬化樹脂層625と、第1硬化樹脂層615と接する第2硬化樹脂層625の面621と反対側の面622に接着された基材640とからなるプリント配線板である。 As shown in FIG. 27, the printed wiring board 601, which is an example of the printed wiring board of the present invention, has a surface opposite to the surface 611 of the wiring pattern 630, the first cured resin layer 615, and the first cured resin layer 615. The printed wiring board is composed of the second cured resin layer 625 laminated on 612 and the base material 640 bonded to the surface 622 opposite to the surface 621 of the second cured resin layer 625 in contact with the first cured resin layer 615 is there.
また、第1硬化樹脂層615は、第1樹脂が第1重合開始剤により硬化した硬化樹脂であり、第2硬化樹脂層625は、第2樹脂が第2重合開始剤により硬化した硬化樹脂である。
さらに、第1樹脂を第1重合開始剤により硬化させる第1硬化手段と、第2樹脂を第2重合開始剤により硬化させる第2手段とは異なる。
The first cured resin layer 615 is a cured resin in which the first resin is cured by the first polymerization initiator, and the second cured resin layer 625 is a cured resin in which the second resin is cured by the second polymerization initiator. is there.
Furthermore, the first curing means for curing the first resin with the first polymerization initiator and the second means for curing the second resin with the second polymerization initiator are different.
第1樹脂、第2樹脂、第1重合開始剤、第2重合開始剤、配線パターン630及び基材640の材料については、上記本発明の第1実施形態~第6実施形態で説明した第1樹脂、第2樹脂、第1重合開始剤、第2重合開始剤、配線パターン、及び、基材の材料であることが望ましい。 The materials of the first resin, the second resin, the first polymerization initiator, the second polymerization initiator, the wiring pattern 630, and the base material 640 are the same as those described in the first to sixth embodiments of the present invention. It is desirable that the material is a resin, a second resin, a first polymerization initiator, a second polymerization initiator, a wiring pattern, and a base material.
また、第1硬化手段及び第2硬化手段は、上記本発明の第1実施形態~第6実施形態で説明した第1樹脂及び第2樹脂を硬化させる手段であることが望ましい。 Preferably, the first curing means and the second curing means are means for curing the first resin and the second resin described in the first to sixth embodiments of the present invention.
このような構成のプリント配線板601は、本発明の第1実施形態~第6実施形態で説明したプリント配線板の製造方法により製造されたプリント配線板である。
そのため、プリント配線板601では、第2硬化樹脂層625と基材640との密着性が充分に高くなっている。さらに、配線パターン630も所定の位置からのずれが少なくなっている。
The printed wiring board 601 having such a configuration is a printed wiring board manufactured by the method for manufacturing a printed wiring board described in the first to sixth embodiments of the present invention.
Therefore, in the printed wiring board 601, the adhesion between the second cured resin layer 625 and the base material 640 is sufficiently high. Furthermore, the wiring pattern 630 also has less deviation from the predetermined position.
また、プリント配線板601は、フレキシブルプリント配線板としても機能することができる。 The printed wiring board 601 can also function as a flexible printed wiring board.
次に、本発明の多層プリント配線板の製造方法について具体的に説明する。しかしながら、本発明は、以下の実施形態に限定されるものではなく、本発明の要旨を変更しない範囲において適宜変更して適用することができる。 Next, the method for manufacturing a multilayer printed wiring board of the present invention will be specifically described. However, the present invention is not limited to the following embodiments, and can be appropriately modified and applied without departing from the scope of the present invention.
(第8実施形態)
本発明の第8実施形態に係る多層プリント配線板の製造方法について説明する。
本発明の第8実施形態に係る多層プリント配線板の製造方法は、上層プリント配線板と、下層プリント配線板とを積層して多層プリント配線板を製造する多層プリント配線板の製造方法であって、半硬化状態の第1樹脂と、半硬化状態の第2樹脂とを積層する(1)上層プリント配線板用樹脂積層工程と、第1樹脂に第1配線パターンを形成する(2)第1配線パターン形成工程と、第2樹脂の半硬化状態を維持させたまま、第1樹脂を硬化させ上層プリント配線板を作製する(3)第1の樹脂硬化工程と、第3樹脂に第2配線パターンが形成された下層プリント配線板を準備する(4)下層プリント配線板準備工程と、上層プリント配線板の下に、下層プリント配線板を積層する(5)プリント配線板積層工程と、第2樹脂を硬化させ、上層プリント配線板と下層プリント配線板とを接着する(6)第2の樹脂硬化工程とを含む。
また、第1樹脂は、第1重合開始剤を含有し、第2樹脂は、第2重合開始剤を含有する。
Eighth Embodiment
A method of manufacturing a multilayer printed wiring board according to the eighth embodiment of the present invention will be described.
The method for producing a multilayer printed wiring board according to the eighth embodiment of the present invention is a method for producing a multilayer printed wiring board, wherein an upper layer printed wiring board and a lower layer printed wiring board are laminated to produce a multilayer printed wiring board. Laminating a first resin in a semi-hardened state and a second resin in a semi-hardened state (1) forming an upper layer printed wiring board resin laminating step, and forming a first wiring pattern on the first resin (2) first A wiring pattern forming step, and curing the first resin while maintaining the semi-cured state of the second resin to produce an upper layer printed wiring board (3) a first resin curing step, and a second wiring for the third resin The lower layer printed wiring board on which the pattern is formed is prepared (4) The lower layer printed wiring board preparing step, and the lower layer printed wiring board is laminated under the upper layer printed wiring board (5) printed wiring board laminating step, Cure the resin, on top Adhering the printed circuit board and the lower printed wiring board (6) and a second resin curing step.
The first resin contains a first polymerization initiator, and the second resin contains a second polymerization initiator.
以下、各工程について図面を用いて詳述する。
図28は、本発明の第8実施形態に係る多層プリント配線板の製造方法における上層プリント配線板用樹脂積層工程の一例を模式的に示す工程図である。
図29は、本発明の第8実施形態に係る多層プリント配線板の製造方法における第1配線パターン形成工程の一例を模式的に示す工程図である。
図30は、本発明の第8実施形態に係る多層プリント配線板の製造方法における第1の樹脂硬化工程の一例を模式的に示す工程図である。
図31は、本発明の第8実施形態に係る多層プリント配線板の製造方法における下層プリント配線板準備工程の一例を模式的に示す工程図である。
図32は、本発明の第8実施形態に係る多層プリント配線板の製造方法におけるプリント配線板積層工程の一例を模式的に示す工程図である。
図33は、本発明の第8実施形態に係る多層プリント配線板の製造方法における第2の樹脂硬化工程の一例を模式的に示す工程図である。
Hereinafter, each process will be described in detail using the drawings.
FIG. 28: is process drawing which shows typically an example of the resin lamination process for upper layer printed wiring boards in the manufacturing method of the multilayer printed wiring board which concerns on 8th Embodiment of this invention.
FIG. 29 is a process chart schematically showing an example of a first wiring pattern forming step in the method for manufacturing a multilayer printed wiring board according to the eighth embodiment of the present invention.
FIG. 30: is process drawing which shows typically an example of the 1st resin hardening process in the manufacturing method of the multilayer printed wiring board which concerns on 8th Embodiment of this invention.
FIG. 31 is a process chart schematically showing an example of a lower layer printed wiring board preparing step in the method for manufacturing a multilayer printed wiring board according to the eighth embodiment of the present invention.
FIG. 32: is process drawing which shows typically an example of the printed wiring board lamination | stacking process in the manufacturing method of the multilayer printed wiring board which concerns on 8th Embodiment of this invention.
FIG. 33: is process drawing which shows typically an example of the 2nd resin hardening process in the manufacturing method of the multilayer printed wiring board which concerns on 8th Embodiment of this invention.
(1)上層プリント配線板用樹脂積層工程
本発明の第8実施形態に係る多層プリント配線板の製造方法では、まず、図28に示すように、半硬化状態の第1樹脂1010と、半硬化状態の第2樹脂1020とを積層する。
本発明の多層プリント配線板の製造方法の後の工程において、第1樹脂には第1配線パターンが形成され、第2樹脂と下層プリント配線板とは接着されることになる。
第1樹脂として第1配線パターンの伝送特性が良好になる種類の樹脂を使用し、第2樹脂として下層プリント配線板との密着性が良好になる種類の樹脂を使用することにより、製造された多層プリント配線板において、伝送特性と、プリント配線板同士の密着性とを両立させることができる。
(1) Resin Laminating Process for Upper Layer Printed Wiring Board In the method for manufacturing a multilayer printed wiring board according to the eighth embodiment of the present invention, first, as shown in FIG. The second resin 1020 in the state is laminated.
In a step after the method for manufacturing a multilayer printed wiring board of the present invention, a first wiring pattern is formed on the first resin, and the second resin and the lower layer printed wiring board are bonded.
Manufactured by using a resin of a type that improves the transmission characteristics of the first wiring pattern as the first resin, and using a type of resin that improves the adhesion with the lower layer printed wiring board as the second resin In a multilayer printed wiring board, transmission characteristics and adhesion between the printed wiring boards can be compatible.
第1樹脂1010の材料は、特に限定されないが、光硬化性樹脂や熱硬化性樹脂であることが望ましい。このような樹脂は、例えば、フェノール樹脂、ポリエステル樹脂、ポリイミド樹脂、ポリスルフォン酸樹脂、ポリエーテルイミド樹脂、ポリエーテルケトン樹脂、ポリカーボネート樹脂、ポリウレタン樹脂、ポリシロキサン樹脂、ポリアミド樹脂等が挙げられる。これらの中では、ポリイミド樹脂であることが望ましい。
第1樹脂1010がポリイミド樹脂である場合には、ポリイミド樹脂は、下記一般式(1)で表される(A)ビスマレイミド化合物を含有する硬化性樹脂組成物であることが望ましい。
Although the material of the first resin 1010 is not particularly limited, it is desirable that the material is a photocurable resin or a thermosetting resin. Examples of such resin include phenol resin, polyester resin, polyimide resin, polysulfonic acid resin, polyetherimide resin, polyether ketone resin, polycarbonate resin, polyurethane resin, polysiloxane resin, polyamide resin and the like. Among these, polyimide resins are preferable.
When the first resin 1010 is a polyimide resin, the polyimide resin is preferably a curable resin composition containing a (A) bismaleimide compound represented by the following general formula (1).
Figure JPOXMLDOC01-appb-C000003
一般式(1)中、Xは、脂肪族、脂環式又は芳香族の炭化水素基であって、主鎖の炭素数が10~30である炭化水素基を示し、これらの基は、ヘテロ原子、置換基又はシロキサン骨格を有していてもよい。Xは、脂肪族又は脂環式炭化水素若しくは脂環式炭化水素基により修飾された脂肪族炭化水素基であることが望ましく、炭素数10~55の脂肪族炭化水素基であることがより望ましく、炭素数10~40であることがさらに望ましい。
一般式(1)中、Yは、脂肪族、脂環式又は芳香族の炭化水素基を示し、これらの基はヘテロ原子、置換基、フェニルエーテル骨格、スルフォニル骨格又はシロキサン骨格を有していてもよい。Yは、芳香族炭化水素基であることが望ましい。
一般式(1)中、nは繰り返し単位数であり、1~20の範囲の数を示す。
Figure JPOXMLDOC01-appb-C000003
In the general formula (1), X is an aliphatic, alicyclic or aromatic hydrocarbon group and is a hydrocarbon group having 10 to 30 carbon atoms in its main chain, and these groups are hetero compounds It may have an atom, a substituent or a siloxane skeleton. X is preferably an aliphatic or alicyclic hydrocarbon or an aliphatic hydrocarbon group modified by an alicyclic hydrocarbon group, and more preferably an aliphatic hydrocarbon group having 10 to 55 carbon atoms. And 10 to 40 carbon atoms are more preferable.
In the general formula (1), Y represents an aliphatic, alicyclic or aromatic hydrocarbon group, and these groups have a hetero atom, a substituent, a phenyl ether skeleton, a sulfonyl skeleton or a siloxane skeleton It is also good. Y is preferably an aromatic hydrocarbon group.
In the general formula (1), n is the number of repeating units and represents a number in the range of 1 to 20.
後述するように、第1樹脂1010には、第1配線パターンが形成されることになる。
第1樹脂1010の材料が上記樹脂であると、第1配線パターンで伝送される信号の伝送特性が良好になる。
As described later, a first wiring pattern is formed on the first resin 1010.
When the material of the first resin 1010 is the above-described resin, the transmission characteristics of the signal transmitted in the first wiring pattern are improved.
第1樹脂1010の厚さは、特に限定されないが、5~100μmであることが望ましく、10~100μmであることがより望ましい。
第1樹脂10の厚さが、5μm未満であると、上層プリント配線板の強度が弱くなりやすくなる。
第1樹脂1010の厚さが、100μmを超えると、製造される多層プリント配線板が厚くなり、電子機器を小型化しにくくなる。
The thickness of the first resin 1010 is not particularly limited, but is preferably 5 to 100 μm, and more preferably 10 to 100 μm.
When the thickness of the first resin 10 is less than 5 μm, the strength of the upper layer printed wiring board tends to be weak.
When the thickness of the first resin 1010 exceeds 100 μm, the multilayer printed wiring board to be manufactured becomes thick, and it becomes difficult to miniaturize the electronic device.
第1樹脂1010の比誘電率は、周波数1GHzにおいて、2~3であることが望ましい。
また、第1樹脂1010の誘電正接は、周波数1GHzにおいて、0.0001~0.002であることが望ましい。
第1樹脂1010の比誘電率及び誘電正接が、上記範囲であると、第1配線パターンにおける伝送特性が良好になる。
The relative dielectric constant of the first resin 1010 is desirably 2 to 3 at a frequency of 1 GHz.
The dielectric loss tangent of the first resin 1010 is preferably 0.0001 to 0.002 at a frequency of 1 GHz.
When the relative dielectric constant and dielectric loss tangent of the first resin 1010 are in the above ranges, the transmission characteristics of the first wiring pattern are improved.
また、第1樹脂1010は、第1重合開始剤を含有している。第1重合開始剤は、熱重合開始剤や、光重合開始剤である。
また、第1重合開始剤の種類は、第2重合開始剤の種類、(3)第1の樹脂硬化工程における第1硬化手段、及び、(6)第2の樹脂硬化工程における第2硬化手段に応じて選択することが望ましい。これらの望ましい例は後述する。
In addition, the first resin 1010 contains a first polymerization initiator. The first polymerization initiator is a thermal polymerization initiator or a photopolymerization initiator.
Further, the type of the first polymerization initiator is the type of the second polymerization initiator, (3) the first curing means in the first resin curing step, and (6) the second curing means in the second resin curing step. It is desirable to select according to. These desirable examples will be described later.
第2樹脂1020の材料は、特に限定されないが、例えば、光硬化性樹脂や熱硬化性樹脂であることが望ましい。このような樹脂は、例えば、フェノール樹脂、ポリエステル樹脂、ポリイミド樹脂、ポリスルフォン酸樹脂、ポリエーテルイミド樹脂、ポリエーテルケトン樹脂、ポリカーボネート樹脂、ポリウレタン樹脂、ポリシロキサン樹脂、ポリアミド樹脂等が挙げられる。これらの中では、ポリイミド樹脂であることが望ましい。
第1樹脂がポリイミド樹脂である場合には、ポリイミド樹脂は、下記一般式(1)で表される(A)ビスマレイミド化合物を含有する硬化性樹脂組成物であることが望ましい。
Although the material of the second resin 1020 is not particularly limited, for example, it is desirable to be a photocurable resin or a thermosetting resin. Examples of such resin include phenol resin, polyester resin, polyimide resin, polysulfonic acid resin, polyetherimide resin, polyether ketone resin, polycarbonate resin, polyurethane resin, polysiloxane resin, polyamide resin and the like. Among these, polyimide resins are preferable.
When the first resin is a polyimide resin, the polyimide resin is preferably a curable resin composition containing (A) a bismaleimide compound represented by the following general formula (1).
Figure JPOXMLDOC01-appb-C000004
一般式(1)中、Xは、脂肪族、脂環式又は芳香族の炭化水素基であって、主鎖の炭素数が10~30である炭化水素基を示し、これらの基は、ヘテロ原子、置換基又はシロキサン骨格を有していてもよい。Xは、脂肪族又は脂環式炭化水素若しくは脂環式炭化水素基により修飾された脂肪族炭化水素基であることが望ましく、炭素数10~55の脂肪族炭化水素基であることがより望ましく、炭素数10~40であることがさらに望ましい。
一般式(1)中、Yは、脂肪族、脂環式又は芳香族の炭化水素基を示し、これらの基はヘテロ原子、置換基、フェニルエーテル骨格、スルフォニル骨格又はシロキサン骨格を有していてもよい。Yは、芳香族炭化水素基であることが望ましい。
一般式(1)中、nは繰り返し単位数であり、1~20の範囲の数を示す。
Figure JPOXMLDOC01-appb-C000004
In the general formula (1), X is an aliphatic, alicyclic or aromatic hydrocarbon group and is a hydrocarbon group having 10 to 30 carbon atoms in its main chain, and these groups are hetero compounds It may have an atom, a substituent or a siloxane skeleton. X is preferably an aliphatic or alicyclic hydrocarbon or an aliphatic hydrocarbon group modified by an alicyclic hydrocarbon group, and more preferably an aliphatic hydrocarbon group having 10 to 55 carbon atoms. And 10 to 40 carbon atoms are more preferable.
In the general formula (1), Y represents an aliphatic, alicyclic or aromatic hydrocarbon group, and these groups have a hetero atom, a substituent, a phenyl ether skeleton, a sulfonyl skeleton or a siloxane skeleton It is also good. Y is preferably an aromatic hydrocarbon group.
In the general formula (1), n is the number of repeating units and represents a number in the range of 1 to 20.
後述するように、第2樹脂1020は、下層プリント配線板の第3樹脂と接着されることになる。
第2樹脂1020の材料が上記樹脂であると、下層プリント配線板の第3樹脂との接着性が向上する。
As described later, the second resin 1020 is bonded to the third resin of the lower layer printed wiring board.
When the material of the second resin 1020 is the above-described resin, the adhesiveness of the lower layer printed wiring board to the third resin is improved.
第2樹脂1020の厚さは、特に限定されないが、5~100μmであることが望ましく、10~100μmであることがより望ましい。
第2樹脂1020の厚さが、5μm未満であると、上層プリント配線板の強度が弱くなりやすくなる。
第2樹脂1020の厚さが、100μmを超えると、製造される多層プリント配線板が厚くなり、電子機器を小型化しにくくなる。
The thickness of the second resin 1020 is not particularly limited, but is preferably 5 to 100 μm, and more preferably 10 to 100 μm.
When the thickness of the second resin 1020 is less than 5 μm, the strength of the upper layer printed wiring board tends to be weak.
When the thickness of the second resin 1020 exceeds 100 μm, the multilayer printed wiring board to be manufactured becomes thick, which makes it difficult to miniaturize the electronic device.
第2樹脂1020の比誘電率は、周波数1GHzにおいて、2~3であることが望ましい。
また、第2樹脂1020の誘電正接は、周波数1GHzにおいて、0.0001~0.002であることが望ましい。
The relative dielectric constant of the second resin 1020 is desirably 2 to 3 at a frequency of 1 GHz.
The dielectric loss tangent of the second resin 1020 is desirably 0.0001 to 0.002 at a frequency of 1 GHz.
また、第2樹脂1020は、第2重合開始剤を含有している。第2重合開始剤は、熱重合開始剤や、光重合開始剤である。
また、第2重合開始剤の種類は、第1重合開始剤の種類、(3)第1の樹脂硬化工程における第1硬化手段、及び、(6)第2の樹脂硬化工程における第2硬化手段に応じて選択することが望ましい。これらの望ましい例は後述する。
The second resin 1020 contains a second polymerization initiator. The second polymerization initiator is a thermal polymerization initiator or a photopolymerization initiator.
Further, the type of the second polymerization initiator is the type of the first polymerization initiator, (3) the first curing means in the first resin curing step, and (6) the second curing means in the second resin curing step. It is desirable to select according to. These desirable examples will be described later.
(2)第1配線パターン形成工程
次に、図29に示すように、第1樹脂1010に第1配線パターン1031を形成する。
第1配線パターン1031を形成する方法としては、特に限定されず、例えば、第1樹脂1010を金属膜で覆い、該金属膜をエッチングすることにより第1配線パターン1031を形成してもよく、第1樹脂1010に導体ペーストを印刷することにより第1配線パターン1031を形成してもよい。
(2) Step of Forming First Wiring Pattern Next, as shown in FIG. 29, a first wiring pattern 1031 is formed on the first resin 1010.
The method of forming the first wiring pattern 1031 is not particularly limited, and for example, the first wiring pattern 1031 may be formed by covering the first resin 1010 with a metal film and etching the metal film. The first wiring pattern 1031 may be formed by printing a conductive paste on the first resin 1010.
金属膜をエッチングすることにより第1配線パターン1031を形成する場合について説明する。 The case where the first wiring pattern 1031 is formed by etching the metal film will be described.
この方法では、まず、第1樹脂1010を金属膜で覆うことになる。
第1樹脂1010を金属膜で覆う方法は、特に限定されず、金属箔を貼付する方法や、めっきにより第1樹脂1010に金属膜を形成する方法が挙げられる。
In this method, first, the first resin 1010 is covered with a metal film.
The method of covering the first resin 1010 with a metal film is not particularly limited, and a method of attaching a metal foil or a method of forming a metal film on the first resin 1010 by plating may be mentioned.
金属膜を構成する金属としては、特に限定されないが、例えば、銅や銀等が挙げられる。これらの中では銅であることが望ましい。 Although it does not specifically limit as a metal which comprises a metal film, For example, copper, silver, etc. are mentioned. Among these, copper is desirable.
次に、第1樹脂1010を覆う金属膜を、所定の配線パターンが形成されるようにマスクしエッチングを行う。
エッチングは、金属膜を構成する金属の種類や、金属膜の厚さに合わせ、従来の方法により行うことができる。
例えば、金属膜を構成する金属が銅である場合、硫酸・過酸化水素系のエッチング液等をエッチング液として用いてエッチングすることが望ましい。
Next, the metal film covering the first resin 1010 is masked and etched so as to form a predetermined wiring pattern.
The etching can be performed by a conventional method in accordance with the type of metal constituting the metal film and the thickness of the metal film.
For example, in the case where the metal forming the metal film is copper, it is desirable to perform etching using a sulfuric acid / hydrogen peroxide type etching solution or the like as the etching solution.
導体ペーストを印刷することにより第1配線パターン1031を形成する場合、第1配線パターン1031が形成されるまでの間、第1樹脂及び第2樹脂が半硬化状態を維持できれば、どのような条件で導体ペーストを第1配線パターン1031としてもよい。
また、導体ペーストとしては、特に限定されないが、例えば、導電性フィラーと熱硬化性樹脂、熱可塑性樹脂との配合物を用いることができる。導電性フィラーとしては、金属微粒子、カーボンナノチューブ、炭素繊維、金属繊維等を用いることができる。
In the case of forming the first wiring pattern 1031 by printing the conductive paste, under any conditions as long as the first resin and the second resin can maintain the semi-cured state until the first wiring pattern 1031 is formed. A conductor paste may be used as the first wiring pattern 1031.
In addition, the conductive paste is not particularly limited, but, for example, a blend of a conductive filler, a thermosetting resin, and a thermoplastic resin can be used. As the conductive filler, metal particles, carbon nanotubes, carbon fibers, metal fibers and the like can be used.
(3)第1の樹脂硬化工程
次に、図30に示すように、第2樹脂1020の半硬化状態を維持させたまま、第1樹脂1010を第1硬化手段1055により硬化させ上層プリント配線板1091を作製する。
すなわち、(3)第1の樹脂硬化工程では、第1樹脂1010を、第2樹脂1020よりも先に硬化させている。
第1樹脂1010を先に硬化させることにより、第1樹脂1010に形成された第1配線パターン1031を充分に第1樹脂1010に固定することができ、第1配線パターン1031と第1樹脂1010との密着性を向上させることができる。
(3) First Resin Curing Step Next, as shown in FIG. 30, with the semi-cured state of the second resin 1020 maintained, the first resin 1010 is cured by the first curing means 1055 and the upper layer printed wiring board 1091 is made.
That is, (3) in the first resin curing step, the first resin 1010 is cured earlier than the second resin 1020.
By curing the first resin 1010 first, the first wiring pattern 1031 formed on the first resin 1010 can be sufficiently fixed to the first resin 1010, and the first wiring pattern 1031 and the first resin 1010 The adhesion of the above can be improved.
なお、第1硬化手段は、第2重合開始剤の種類、第1重合開始剤の種類、及び、(6)第2の樹脂硬化工程における第2硬化手段に応じて選択することが望ましい。これらの望ましい例は後述する。 Preferably, the first curing means is selected according to the type of the second polymerization initiator, the type of the first polymerization initiator, and (6) the second curing means in the second resin curing step. These desirable examples will be described later.
(4)下層プリント配線板準備工程
次に、図31に示すように、第3樹脂1040に第2配線パターン1032が形成された下層プリント配線板1092を準備する。
第3樹脂1040の材料や、厚さ等は、特に限定されないが、上記第1樹脂1010と同じ材料、厚さ等であってもよい。
第2配線パターン1032は、特に限定されないが、上記第1配線パターンと同様の方法で形成されていてもよい。
(4) Lower Layer Printed Wiring Board Preparation Step Next, as shown in FIG. 31, the lower layer printed wiring board 1092 having the second wiring pattern 1032 formed in the third resin 1040 is prepared.
The material, thickness, and the like of the third resin 1040 are not particularly limited, but the same material, thickness, and the like as the first resin 1010 may be used.
The second wiring pattern 1032 is not particularly limited, but may be formed by the same method as the first wiring pattern.
(5)プリント配線板積層工程
次に、図32に示すように、上層プリント配線板1091の下に、下層プリント配線板1092を積層する。
この際、半硬化状態の第2樹脂1020と下層プリント配線板1092の第3樹脂1040とを接着させるので、第2樹脂1020と下層プリント配線板1092の第3樹脂1040との密着性を向上させることができる。
(5) Printed Wiring Board Laminating Step Next, as shown in FIG. 32, the lower layer printed wiring board 1092 is stacked under the upper layer printed wiring board 1091.
At this time, since the second resin 1020 in a semi-cured state and the third resin 1040 of the lower layer printed wiring board 1092 are adhered, the adhesion between the second resin 1020 and the third resin 1040 of the lower layer printed wiring board 1092 is improved. be able to.
(6)第2の樹脂硬化工程
次に、図33に示すように、第2樹脂1020を硬化させ、上層プリント配線板1091と下層プリント配線板1092とを接着する。
上記の通り、本発明の多層プリント配線板の製造方法では、第2樹脂1020と第3樹脂1040との密着性が充分に高い。この状態で第2樹脂を硬化させるので、上層プリント配線板1091と下層プリント配線板1092とが強固に接着されることになる。
(6) Second Resin Curing Step Next, as shown in FIG. 33, the second resin 1020 is cured to bond the upper layer printed wiring board 1091 and the lower layer printed wiring board 1092.
As described above, in the method for manufacturing a multilayer printed wiring board of the present invention, the adhesion between the second resin 1020 and the third resin 1040 is sufficiently high. Since the second resin is cured in this state, the upper layer printed wiring board 1091 and the lower layer printed wiring board 1092 are firmly bonded.
以上の工程を経て、多層プリント配線板1001を製造することができる。
このような多層プリント配線板1001は本発明の多層プリント配線板でもある。
図33は、本発明の多層プリント配線板の一例を模式的に示す模式図である。
The multilayer printed wiring board 1001 can be manufactured through the above steps.
Such a multilayer printed wiring board 1001 is also a multilayer printed wiring board of the present invention.
FIG. 33 is a schematic view schematically showing an example of the multilayer printed wiring board of the present invention.
図33に示すように、多層プリント配線板1001は、第1配線パターン1031が形成された上層プリント配線板1091と、第3樹脂1040に第2配線パターン1032が形成された下層プリント配線板1092とが積層された多層プリント配線板である。
上層プリント配線板1091は、一方の面に第1配線パターン1031が形成された第1硬化樹脂層1015と、第1配線パターン1031が形成された面と反対側の第1硬化樹脂層1015の面に積層された第2硬化樹脂層1025とからなる。
また、第1硬化樹脂層1015は、第1樹脂が第1重合開始剤により硬化した硬化樹脂であり、第2硬化樹脂層1025は、第2樹脂が第2重合開始剤により硬化した硬化樹脂である。
そして第1樹脂を第1重合開始剤により硬化させる第1硬化手段と、第2樹脂を第2重合開始剤により硬化させる第2手段とは異なることを特徴とする。
As shown in FIG. 33, a multilayer printed wiring board 1001 includes an upper printed wiring board 1091 having a first wiring pattern 1031 formed thereon, and a lower printed wiring board 1092 having a second wiring pattern 1032 formed on a third resin 1040. Is a multilayer printed wiring board laminated.
The upper layer printed wiring board 1091 has a first cured resin layer 1015 having the first wiring pattern 1031 formed on one surface, and a surface of the first cured resin layer 1015 opposite to the surface on which the first wiring pattern 1031 is formed. And a second cured resin layer 1025 laminated thereon.
The first cured resin layer 1015 is a cured resin in which the first resin is cured by the first polymerization initiator, and the second cured resin layer 1025 is a cured resin in which the second resin is cured by the second polymerization initiator. is there.
The first curing means for curing the first resin with the first polymerization initiator is different from the second means for curing the second resin with the second polymerization initiator.
ここで、上述した第1重合開始剤、第2重合開始剤、第1硬化手段及び第2硬化手段の望ましい種類及び組み合わせを説明する。 Here, desirable types and combinations of the first polymerization initiator, the second polymerization initiator, the first curing means and the second curing means described above will be described.
本発明の第8実施形態に係る多層プリント配線板の製造方法では、第1重合開始剤は光重合開始剤であり、第2重合開始剤は熱重合開始剤であってもよい。
この場合、第1の樹脂硬化工程における第1硬化手段は光であり、第2の樹脂硬化工程における第2硬化手段は熱である。
In the method of manufacturing a multilayer printed wiring board according to the eighth embodiment of the present invention, the first polymerization initiator may be a photopolymerization initiator, and the second polymerization initiator may be a thermal polymerization initiator.
In this case, the first curing means in the first resin curing step is light, and the second curing means in the second resin curing step is heat.
第1重合開始剤としては、光重合開始剤であれば、特に限定されないが、例えば、アルキルフェノン系光重合開始剤、アシルフォスフィン系光重合開始剤、オキシムエステル系光重合開始剤、チオキサントン系光重合開始剤が挙げられる。
具体例としては、アセトフェノン、2,2-ジメトキシアセトフェノン、p-ジメチルアミノアセトフェノン、ミヒラーケトン、ベンジル、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾインn-プロピルエーテル、ベンゾインイソプロピルエーテル、ベンゾインn-ブチルエーテル、ベンジルジメチルケタール、チオキサトン、2-クロロチオキサソン、2-メチルチオキサトン、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン、1-ヒドロキシ-シクロヘキシル-フェニル-ケトン、2-ヒドロキシ-2-メチル-1-フェニル-プロパン-1-オン、1-[4-(2-ヒドロキシエトキシ)-フェニル]-2-ヒドロキシ-2-メチル-1-プロパン-1-オン、2-ヒドロキシ-1-{4-[4-(2-ヒドロキシ-2-メチル-プロピオニル)-ベンジル]フェニル}-2-メチル-プロパン-1-オン、2-メチル-1-(4-メチルチオフェニル)-2-モルフォリノプロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-1-ブタノン、2,4,6-トリメチルベンゾイル-ジフェニル-フォスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド、1,2-オクタンジオン、1-[4-(フェニルチオ)-2-(O-ベンゾイルオキシム)]、エタノン、1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-1-(O-アセチルオキシム)、2,4-ジメチルチオキサントン、2-イソプロピルチオキサントン等の光重合開始剤が挙げられる。
The first polymerization initiator is not particularly limited as long as it is a photopolymerization initiator, and for example, an alkylphenone photopolymerization initiator, an acylphosphine photopolymerization initiator, an oxime ester photopolymerization initiator, a thioxanthone type Photopolymerization initiators can be mentioned.
Specific examples include acetophenone, 2,2-dimethoxyacetophenone, p-dimethylaminoacetophenone, Michler's ketone, benzyl, benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin n-propyl ether, benzoin isopropyl ether, benzoin n -Butyl ether, benzyl dimethyl ketal, thioxaton, 2-chlorothioxasone, 2-methylthioxaton, 2,2-dimethoxy-1,2-diphenylethan-1-one, 1-hydroxy-cyclohexyl-phenyl-ketone, 2 -Hydroxy-2-methyl-1-phenyl-propan-1-one, 1- [4- (2-hydroxyethoxy) -phenyl] -2-hydroxy-2-methyl-1-propane-1 One, 2-hydroxy-1- {4- [4- (2-hydroxy-2-methyl-propionyl) -benzyl] phenyl} -2-methyl-propan-1-one, 2-methyl-1- (4-) Methylthiophenyl) -2-morpholinopropan-1-one, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -1-butanone, 2,4,6-trimethylbenzoyl-diphenyl-phosphine Oxide, bis (2,4,6-trimethylbenzoyl) -phenyl phosphine oxide, 1,2-octanedione, 1- [4- (phenylthio) -2- (O-benzoyloxime)], ethanone, 1- [1 9-Ethyl-6- (2-methylbenzoyl) -9H-carbazol-3-yl] -1- (O-acetyloxime), 2,4-dimethyone Thioxanthone photopolymerization initiators such as 2-isopropylthioxanthone and the like.
これらの中でも、微細なパターン形成ができるという観点から、露光波長310~436nm、より望ましくは露光波長310~365nmにおいて効率よくラジカルを発生する光重合開始剤が望ましい。
このような光重合開始剤の例としては、オキシム構造を有する1,2-オクタンジオン,1-[4-(フェニルチオ)-2-(O-ベンゾイルオキシム)](BASFジャパン社製、「IRGACURE OXE-01」)、エタノン,1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-1-(O-アセチルオキシム)(BASFジャパン社製、「IRGACURE OXE-02」)、チオキサントン構造を有する2,4-ジメチルチオキサントン(日本化薬株式会社製、「DETX-S」)が挙げられる。
Among these, from the viewpoint of fine pattern formation, a photopolymerization initiator that efficiently generates radicals at an exposure wavelength of 310 to 436 nm, more preferably at an exposure wavelength of 310 to 365 nm, is desirable.
As an example of such a photopolymerization initiator, 1,2-octanedione having an oxime structure, 1- [4- (phenylthio) -2- (O-benzoyloxime)] (manufactured by BASF Japan Ltd., “IRGACURE OXE” -01 "), Ethanone, 1- [9-ethyl-6- (2-methylbenzoyl) -9H-carbazol-3-yl] -1- (O-acetyloxime) (manufactured by BASF Japan Ltd.,“ IRGACURE OXE- 02 ′ ′), 2,4-dimethylthioxanthone having a thioxanthone structure (manufactured by Nippon Kayaku Co., Ltd., “DETX-S”).
第1重合開始剤は、上記光重合開始剤1種からなっていてもよく、2種以上からなっていてもよい。 The first polymerization initiator may be composed of one kind of the above-mentioned photopolymerization initiator, or may be composed of two or more kinds.
第2重合開始剤としては、熱重合開始剤であれば、特に限定されないが、有機過酸化物系熱重合開始剤やアゾ系熱重合開始剤等であってもよい。 The second polymerization initiator is not particularly limited as long as it is a thermal polymerization initiator, but may be an organic peroxide thermal polymerization initiator, an azo thermal polymerization initiator, or the like.
有機過酸化物系熱重合開始剤としては、メチルエチルケトンパーオキサイド、シクロヘキサノンパーオキサイド、メチルシクロヘキサノンパーオキサイド、メチルアセトアセテートパーオキサイド、アセチルアセテートパーオキサイド、1,1-ビス(t-ヘキシルパーオキシ)-3,3,5-トリメチルシクロヘキサン、1,1-ビス(t-ヘキシルパーオキシ)-シクロヘキサン、1,1-ビス(t-ブチルパーオキシ)-3,3,5-トリメチルシクロヘキサン、1,1-ビス(t-ブチルパーオキシ)-2-メチルシクロヘキサン、1,1-ビス(t-ブチルパーオキシ)-シクロヘキサン、1,1-ビス(t-ブチルパーオキシ)シクロドデカン、1,1-ビス(t-ブチルパーオキシ)ブタン、2,2-ビス(4,4-ジ-t-ブチルパーオキシシクロヘキシル)プロパン、p-メンタンハイドロパーオキサイド、ジイソプロピルベンゼンハイドロパーオキサイド、1,1,3,3-テトラメチルブチルハイドロパーオキサイド、クメンハイドロパーオキサイド、t-ヘキシルハイドロパーオキサイド、t-ブチルハイドロパーオキサイド、α,α’-ビス(t-ブチルパーオキシ)ジイソプロピルベンゼン、ジクミルパーオキサイド、2,5-ジメチル-2,5-ビス(t-ブチルパーオキシ)ヘキサン、t-ブチルクミルパーオキサイド、ジ-t-ブチルパーオキサイド、2,5-ジメチル-2,5-ビス(t-ブチルパーオキシ)ヘキシン-3、イソブチリルパーオキサイド、3,5,5-トリメチルヘキサノイルパーオキサイド、オクタノイルパーオキサイド、ラウロイルパーオキサイド、ステアロイルパーオキサイド、スクシン酸パーオキサイド、m-トルオイルベンゾイルパーオキサイド、ベンゾイルパーオキサイド、ジ-n-プロピルパーオキシジカーボネート、ジイソプロピルパーオキシジカーボネート、ビス(4-t-ブチルシクロヘキシル)パーオキシジカーボネート、ジ-2-エトキシエチルパーオキシジカーボネート、ジ-2-エトキシヘキシルパーオキシジカーボネート、ジ-3-メトキシブチルパーオキシジカーボネート、ジ-s-ブチルパーオキシジカーボネート、ジ(3-メチル-3-メトキシブチル)パーオキシジカーボネート、α,α’-ビス(ネオデカノイルパーオキシ)ジイソプロピルベンゼン、クミルパーオキシネオデカノエート、1,1,3,3-テトラメチルブチルパーオキシネオデカノエート、1-シクロヘキシル-1-メチルエチルパーオキシネオデカノエート、t-ヘキシルパーオキシネオデカノエート、t-ブチルパーオキシネオデカノエート、t-ヘキシルパーオキシピバレート、t-ブチルパーオキシピバレート、1,1,3,3-テトラメチルブチルパーオキシ-2-エチルヘキサノオエート、2,5-ジメチル-2,5-ビス(2-エチルヘキサノイルパーオキシ)ヘキサノエート、1-シクロヘキシル-1-メチルエチルパーオキシ-2-エチルヘキサノエート、t-ヘキシルパーオキシ-2-エチルヘキサノエート、t-ブチルパーオキシ-2-エチルヘキサノエート、t-ヘキシルパーオキシイソプロピルモノカーボネート、t-ブチルパーオキシイソブチレート、t-ブチルパーオキシマレート、t-ブチルパーオキシ-3,5,5-トリメトルヘキサノエート、t-ブチルパーオキシラウレート、t-ブチルパーオキシイソプロピルモノカーボネート、t-ブチルパーオキシ-2-エチルヘキシルモノカーボネート、t-ブチルパーオキシアセテート、t-ブチルパーオキシ-m-トルイルベンゾエート、t-ブチルパーオキシベンゾエート、ビス(t-ブチルパーオキシ)イソフタレート、2,5-ジメチル-2,5-ビス(m-トルイルパーオキシ)ヘキサン、t-ヘキシルパーオキシベンゾエート、2,5-ジメチル-2,5-ビス(ベンゾイルパーオキシ)ヘキサン、t-ブチルパーオキシアリルモノカーボネート、t-ブチルトリメチルシリルパーオキサイド、3,3’,4,4’-テトラ(t-ブチルパーオキシカルボニル)ベンゾフェノン、2,3-ジメチル-2,3-ジフェニルブタン等が挙げられる。 The organic peroxide-based thermal polymerization initiators include methyl ethyl ketone peroxide, cyclohexanone peroxide, methyl cyclohexanone peroxide, methyl acetoacetate peroxide, acetyl acetate peroxide, 1,1-bis (t-hexylperoxy) -3 , 3,5-trimethylcyclohexane, 1,1-bis (t-hexylperoxy) -cyclohexane, 1,1-bis (t-butylperoxy) -3,3,5-trimethylcyclohexane, 1,1-bis (T-butylperoxy) -2-methylcyclohexane, 1,1-bis (t-butylperoxy) -cyclohexane, 1,1-bis (t-butylperoxy) cyclododecane, 1,1-bis (t -Butylperoxy) butane, 2,2-bis (4,4-di-t- Chilperoxycyclohexyl) propane, p-menthane hydroperoxide, diisopropylbenzene hydroperoxide, 1,1,3,3-tetramethylbutyl hydroperoxide, cumene hydroperoxide, t-hexyl hydroperoxide, t-butyl Hydroperoxide, α, α'-bis (t-butylperoxy) diisopropylbenzene, dicumyl peroxide, 2,5-dimethyl-2,5-bis (t-butylperoxy) hexane, t-butylcumylpere Oxide, di-t-butyl peroxide, 2,5-dimethyl-2,5-bis (t-butylperoxy) hexyne-3, isobutyryl peroxide, 3,5,5-trimethylhexanoyl peroxide, octa Noyl peroxide, Uroyl peroxide, stearoyl peroxide, succinic acid peroxide, m-toluoyl benzoyl peroxide, benzoyl peroxide, di-n-propylperoxydicarbonate, diisopropyl peroxydicarbonate, bis (4-t-butylcyclohexyl ) Peroxydicarbonate, di-2-ethoxyethylperoxydicarbonate, di-2-ethoxyhexylperoxydicarbonate, di-3-methoxybutylperoxydicarbonate, di-s-butylperoxydicarbonate, di) (3-Methyl-3-methoxybutyl) peroxydicarbonate, α, α′-bis (neodecanoylperoxy) diisopropylbenzene, cumylperoxyneodecanoate, 1,1,3,3-tetramethylbu Ruperoxyneodecanoate, 1-cyclohexyl-1-methylethylperoxyneodecanoate, t-hexylperoxyneodecanoate, t-butylperoxyneodecanoate, t-hexylperoxypivalate, t-Butylperoxypivalate, 1,1,3,3-tetramethylbutylperoxy-2-ethylhexanoate, 2,5-dimethyl-2,5-bis (2-ethylhexanoylperoxy) hexanoate 1-Cyclohexyl-1-methylethylperoxy-2-ethylhexanoate, t-hexylperoxy-2-ethylhexanoate, t-butylperoxy-2-ethylhexanoate, t-hexylperoxy Isopropyl monocarbonate, t-butyl peroxyisobutyrate, t-butyl -Oxymalate, t-butylperoxy-3,5,5-trimethorhexanoate, t-butylperoxylaurate, t-butylperoxyisopropyl monocarbonate, t-butylperoxy-2-ethylhexyl monocarbonate, t -Butyl peroxy acetate, t-butyl peroxy-m-toluyl benzoate, t-butyl peroxy benzoate, bis (t-butyl peroxy) isophthalate, 2,5-dimethyl-2,5-bis (m-toluyl) Peroxy) hexane, t-hexylperoxybenzoate, 2,5-dimethyl-2,5-bis (benzoylperoxy) hexane, t-butylperoxyallyl monocarbonate, t-butyltrimethylsilyl peroxide, 3,3 ' , 4,4'-Tetra (t-butyl) Peroxy carbonyl) benzophenone, 2,3-dimethyl- 2, 3- diphenyl butane etc. are mentioned.
アゾ系熱重合開始剤としては、2-フェニルアゾ-4-メトキシ-2,4-ジメチルバレロニトリル、1-[(1-シアノ-1-メチルエチル)アゾ]ホルムアミド、1,1’-アゾビス(シクロヘキサン-1-カルボニトリル)、2,2’-アゾビス(2-メチルブチロニトリル)、2,2’-アゾビスイソブチロニトリル、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、2,2’-アゾビス(2-メチルプロピオンアミジン)ジヒドロクロリド、2,2’-アゾビス(2-メチル-N-フェニルプロピオンアミジン)ジヒドロクロリド、2,2’-アゾビス[N-(4-クロロフェニル)-2-メチルプロピオンアミジン]ジヒドリドクロリド、2,2’-アゾビス[N-(4-ヒドロフェニル)-2-メチルプロピオンアミジン]ジヒドロクロリド、2,2’-アゾビス[2-メチル-N-(フェニルメチル)プロピオンアミジン]ジヒドロクロリド、2,2’-アゾビス[2-メチル-N-(2-プロペニル)プロピオンアミジン]ジヒドロクロリド、2,2’-アゾビス[N-(2-ヒドロキシエチル)-2-メチルプロピオンアミジン]ジヒドロクロリド、2,2’-アゾビス[2-(5-メチル-2-イミダゾリン-2-イル)プロパン]ジヒドロクロリド、2,2’-アゾビス[2-(2-イミダゾリン-2-イル)プロパン]ジヒドロクロリド、2,2’-アゾビス[2-(4,5,6,7-テトラヒドロ-1H-1,3-ジアゼピン-2-イル)プロパン]ジヒドロクロリド、2,2’-アゾビス[2-(3,4,5,6-テトラヒドロピリミジン-2-イル)プロパン]ジヒドロクロリド、2,2’-アゾビス[2-(5-ヒドロキシ-3,4,5,6-テトラヒドロピリミジン-2-イル)プロパン]ジヒドロクロリド、2,2’-アゾビス[2-[1-(2-ヒドロキシエチル)-2-イミダゾリン-2-イル]プロパン]ジヒドロクロリド、2,2’-アゾビス[2-(2-イミダゾリン-2-イル)プロパン]、2,2’-アゾビス[2-メチル-N-[1,1-ビス(ヒドロキシメチル)-2-ヒドロキシエチル]プロピオンアミド]、2,2’-アゾビス[2-メチル-N-[1,1-ビス(ヒドロキシメチル)エチル]プロピオンアミド]、2,2’-アゾビス[2-メチル-N-(2-ヒドロキシエチル)プロピオンアミド]、2,2’-アゾビス(2-メチルプロピオンアミド)、2,2’-アゾビス(2,4,4-トリメチルペンタン)、2,2’-アゾビス(2-メチルプロパン)、ジメチル-2,2-アゾビス(2-メチルプロピオネート)、4,4’-アゾビス(4-シアノペンタン酸)、2,2’-アゾビス[2-(ヒドロキシメチル)プロピオニトリル]等が挙げられる。 As an azo thermal polymerization initiator, 2-phenylazo-4-methoxy-2,4-dimethylvaleronitrile, 1-[(1-cyano-1-methylethyl) azo] formamide, 1,1′-azobis (cyclohexane -1-carbonitrile), 2,2'-azobis (2-methylbutyronitrile), 2,2'-azobisisobutyronitrile, 2,2'-azobis (2,4-dimethyl valeronitrile), 2,2'-azobis (2-methylpropionamidine) dihydrochloride, 2,2'-azobis (2-methyl-N-phenylpropionamidine) dihydrochloride, 2,2'-azobis [N- (4-chlorophenyl) -2-Methylpropionamidine] dihydridochloride, 2,2'-azobis [N- (4-hydrophenyl) -2-methylpropiona Gin] dihydrochloride, 2,2'-azobis [2-methyl-N- (phenylmethyl) propionamidine] dihydrochloride, 2,2'-azobis [2-methyl-N- (2-propenyl) propionamidine] dihydro Chloride, 2,2′-azobis [N- (2-hydroxyethyl) -2-methylpropionamidine] dihydrochloride, 2,2′-azobis [2- (5-methyl-2-imidazolin-2-yl) propane Dihydrochloride, 2,2′-azobis [2- (2-imidazolin-2-yl) propane] dihydrochloride, 2,2′-azobis [2- (4,5,6,7-tetrahydro-1H-1) , 3-Diazepin-2-yl) propane] dihydrochloride, 2,2'-azobis [2- (3,4,5,6-tetrahydropyrimidi -2-yl) propane] dihydrochloride, 2,2'-azobis [2- (5-hydroxy-3,4,5,6-tetrahydropyrimidin-2-yl) propane] dihydrochloride, 2,2'-azobis [2- [1- (2-Hydroxyethyl) -2-imidazolin-2-yl] propane] dihydrochloride, 2,2′-azobis [2- (2-imidazolin-2-yl) propane], 2,2 '-Azobis [2-methyl-N- [1,1-bis (hydroxymethyl) -2-hydroxyethyl] propionamide], 2,2'-azobis [2-methyl-N- [1,1-bis ( Hydroxymethyl) ethyl] propionamide], 2,2'-azobis [2-methyl-N- (2-hydroxyethyl) propionamide], 2,2'-azobis (2-methylpropiamide) Onamide), 2,2′-azobis (2,4,4-trimethylpentane), 2,2′-azobis (2-methylpropane), dimethyl-2,2-azobis (2-methylpropionate), 4 And 4′-azobis (4-cyanopentanoic acid), 2,2′-azobis [2- (hydroxymethyl) propionitrile], and the like.
第2重合開始剤は、上記熱重合開始剤1種からなっていてもよく、2種以上からなっていてもよい。 The second polymerization initiator may consist of one of the above-mentioned thermal polymerization initiators, or may consist of two or more.
第1重合開始剤、第2重合開始剤、第1硬化手段及び第2硬化手段が上記組み合わせであると、第1の樹脂硬化工程では、第1樹脂に光を照射することにより第1樹脂を硬化させ、第2の樹脂硬化工程では、第2樹脂に熱を加えることにより第2樹脂を硬化させることになる。
このように、第1重合開始剤及び第2重合開始剤として光重合開始剤及び熱重合開始剤を使用することにより、容易に、第2樹脂の硬化よりも先に第1樹脂の硬化を行うことができる。
In the first resin curing step, the first resin is irradiated with light when the first polymerization initiator, the second polymerization initiator, the first curing means, and the second curing means are the combination described above. In the second resin curing step, the second resin is cured by applying heat to the second resin.
Thus, by using the photopolymerization initiator and the thermal polymerization initiator as the first polymerization initiator and the second polymerization initiator, the first resin is easily cured prior to the curing of the second resin. be able to.
また、この第1重合開始剤、第2重合開始剤、第1硬化手段及び第2硬化手段の組み合わせにおいて、第1重合開始剤は、さらに熱重合開始剤を含んでいてもよい。
すなわち、第1重合開始剤は光重合開始剤及び熱重合開始剤であり、第2重合開始剤は熱重合開始剤であり、第1の樹脂硬化工程における第1硬化手段は光であり、第2の樹脂硬化工程における第2硬化手段は熱である。
なお、第1重合開始剤に含まれる熱重合開始剤の望ましい種類は、上記第2重合開始剤に含まれる熱重合開始剤の望ましい種類と同じである。
In addition, in the combination of the first polymerization initiator, the second polymerization initiator, the first curing means and the second curing means, the first polymerization initiator may further contain a thermal polymerization initiator.
That is, the first polymerization initiator is a photopolymerization initiator and a thermal polymerization initiator, the second polymerization initiator is a thermal polymerization initiator, and the first curing means in the first resin curing step is light. The second curing means in the second resin curing step is heat.
The desired type of the thermal polymerization initiator contained in the first polymerization initiator is the same as the desired type of the thermal polymerization initiator contained in the second polymerization initiator.
この場合、第1の樹脂硬化工程では、上記第1樹脂に光を照射することにより、第1樹脂を硬化させ、第2の樹脂硬化工程では、第2樹脂に熱を加えることにより上記第2樹脂を硬化させ、同時に、第1樹脂に熱を加えることにより第1樹脂を硬化させることになる。 In this case, in the first resin curing step, the first resin is cured by irradiating the first resin with light, and in the second resin curing step, the second resin is applied with heat. By curing the resin and simultaneously applying heat to the first resin, the first resin is cured.
このように、第1樹脂が、光重合開始剤及び熱重合開始剤であると、第1の樹脂硬化工程において、第1樹脂の硬化の程度を調節しやすくなる。
また、第2の樹脂硬化工程において、第1樹脂にも熱が加わることで、第2樹脂を硬化させると同時に、第1樹脂に未硬化部分が存在する場合には、第1樹脂の未硬化部分を充分に硬化させることができる。
Thus, when the first resin is a photopolymerization initiator and a thermal polymerization initiator, it becomes easy to control the degree of curing of the first resin in the first resin curing step.
In the second resin curing step, heat is also applied to the first resin to cure the second resin, and at the same time, if an uncured portion exists in the first resin, the uncured portion of the first resin The part can be fully cured.
また、本発明の第8実施形態に係る多層プリント配線板の製造方法では、第1重合開始剤は熱重合開始剤であり、第2重合開始剤は光重合開始剤であってもよい。
この場合、第1の樹脂硬化工程における第1硬化手段は熱であり、第2の樹脂硬化工程における第2硬化手段は光である。
In the method for manufacturing a multilayer printed wiring board according to the eighth embodiment of the present invention, the first polymerization initiator may be a thermal polymerization initiator, and the second polymerization initiator may be a photopolymerization initiator.
In this case, the first curing means in the first resin curing step is heat, and the second curing means in the second resin curing step is light.
第1重合開始剤としては、熱重合開始剤であれば、特に限定されないが、例えば、有機過酸化物系熱重合開始剤やアゾ系熱重合開始剤等であってもよい。
第1重合開始剤は、熱重合開始剤1種からなっていてもよく、2種以上からなっていてもよい。
The first polymerization initiator is not particularly limited as long as it is a thermal polymerization initiator, and may be, for example, an organic peroxide thermal polymerization initiator, an azo thermal polymerization initiator, or the like.
The first polymerization initiator may be composed of one type of thermal polymerization initiator or may be composed of two or more types.
第2重合開始剤としては、光重合開始剤であれば、特に限定されないが、例えば、アルキルフェノン系、アシルフォスフィン系、オキシムエステル系、チオキサントン系等であってもよい。
第2重合開始剤は、光重合開始剤1種からなっていてもよく、2種以上からなっていてもよい。
The second polymerization initiator is not particularly limited as long as it is a photopolymerization initiator, and may be, for example, an alkylphenone type, an acyl phosphine type, an oxime ester type, a thioxanthone type, and the like.
The second polymerization initiator may be composed of one type of photopolymerization initiator, or may be composed of two or more types.
第1重合開始剤、第2重合開始剤、第1硬化手段及び第2硬化手段が上記組み合わせであると、第1の樹脂硬化工程では、第1樹脂に熱を加えることにより第1樹脂を硬化させ、第2の樹脂硬化工程では、第2樹脂に光を照射することにより第2樹脂を硬化させることになる。
このように、第1重合開始剤及び第2重合開始剤として熱重合開始剤及び光重合開始剤を使用することにより、容易に、第2樹脂の硬化よりも先に第1樹脂の硬化を行うことができる。
In the first resin curing step, the first resin is cured by applying heat to the first resin, if the first polymerization initiator, the second polymerization initiator, the first curing means and the second curing means are the combination described above. In the second resin curing step, the second resin is cured by irradiating the second resin with light.
Thus, by using the thermal polymerization initiator and the photopolymerization initiator as the first polymerization initiator and the second polymerization initiator, the first resin is easily cured prior to the curing of the second resin. be able to.
また、この第1重合開始剤、第2重合開始剤、第1硬化手段及び第2硬化手段の組み合わせにおいて、第1重合開始剤は、さらに光重合開始剤を含んでいてもよい。
すなわち、第1重合開始剤は熱重合開始剤及び光重合開始剤であり、第2重合開始剤は光重合開始剤であり、第1の樹脂硬化工程における第1硬化手段は熱であり、第2の樹脂硬化工程における第2硬化手段は光である。
なお、第1重合開始剤に含まれる光重合開始剤の望ましい種類は、上記第2重合開始剤に含まれる光重合開始剤の望ましい種類と同じである。
Further, in the combination of the first polymerization initiator, the second polymerization initiator, the first curing means and the second curing means, the first polymerization initiator may further contain a photopolymerization initiator.
That is, the first polymerization initiator is a thermal polymerization initiator and a photopolymerization initiator, the second polymerization initiator is a photopolymerization initiator, and the first curing means in the first resin curing step is heat. The second curing means in the second resin curing step is light.
The desired type of the photopolymerization initiator contained in the first polymerization initiator is the same as the desired type of the photopolymerization initiator contained in the second polymerization initiator.
この場合、第1の樹脂硬化工程では、第1樹脂に熱を加えることにより、第1樹脂を硬化させ、第2の樹脂硬化工程では、第2樹脂に光を照射することにより第2樹脂を硬化させ、同時に、第1樹脂に光を照射することにより第1樹脂を硬化させることになる。 In this case, in the first resin curing step, the first resin is cured by applying heat to the first resin, and in the second resin curing step, the second resin is irradiated by irradiating the second resin with light. At the same time, the first resin is cured by irradiating the first resin with light.
このように、第1樹脂が、熱重合開始剤及び光重合開始剤からなる第1重合開始剤を含むと、第1の樹脂硬化工程において、第1樹脂の硬化の程度を調節しやすくなる。
また、第2の樹脂硬化工程において、第1樹脂にも光が照射されることで、第2樹脂を硬化させると同時に、第1樹脂に未硬化部分が存在する場合に は、第1樹脂の未硬化部分を充分に硬化させることができる。
As described above, when the first resin includes the first polymerization initiator including the thermal polymerization initiator and the photopolymerization initiator, the degree of curing of the first resin can be easily controlled in the first resin curing step.
In the second resin curing step, the first resin is also irradiated with light to cure the second resin, and at the same time, when an uncured portion exists in the first resin, the first resin Uncured parts can be sufficiently cured.
また、本発明の第8実施形態に係る多層プリント配線板の製造方法では、第1重合開始剤は、熱重合開始剤であり、第2重合開始剤は、熱重合開始剤であってもよい。
この場合、第1の樹脂硬化工程における第1硬化手段、及び、第2の樹脂硬化工程における第2硬化手段は共に熱である。
また、第1樹脂の硬化温度が、第2樹脂の硬化温度よりも低くなるように第1樹脂及び第2樹脂の組成を調整することにより、第1樹脂の硬化時期と、第2樹脂の硬化時期とをずらすことができる。
また、第1硬化手段である熱の温度を、第2樹脂が半硬化状態を維持したままとなる温度であり、かつ、第1樹脂が硬化する温度とすると、第2樹脂の半硬化状態を維持させたまま、第1樹脂を硬化させることができる。
第2硬化手段である熱の温度を、第2樹脂が硬化する温度とすることで、第2樹脂を硬化させることができる。
In the method for manufacturing a multilayer printed wiring board according to the eighth embodiment of the present invention, the first polymerization initiator may be a thermal polymerization initiator, and the second polymerization initiator may be a thermal polymerization initiator. .
In this case, the first curing means in the first resin curing step and the second curing means in the second resin curing step are both heat.
In addition, by adjusting the composition of the first resin and the second resin so that the curing temperature of the first resin is lower than the curing temperature of the second resin, the curing time of the first resin and the curing of the second resin You can shift it from the time.
Further, assuming that the temperature of the heat which is the first curing means is a temperature at which the second resin remains in the semi-cured state and the temperature at which the first resin cures, the semi-cured state of the second resin is The first resin can be cured while being maintained.
The second resin can be cured by setting the temperature of the heat, which is the second curing means, to a temperature at which the second resin cures.
第1重合開始剤、第2重合開始剤、第1硬化手段及び第2硬化手段が上記組み合わせであると、第1の樹脂硬化工程において、第2樹脂を完全に硬化させることなく第1樹脂を硬化させることができる。これにより、第1樹脂に形成された配線パターンの位置を固定しやすくなるので、配線パターンにずれが生じることを防ぐことができる。さらに、第1の樹脂硬化工程において、第2樹脂を完全に硬化しないので、基材との密着性が良好となる。 If the first polymerization initiator, the second polymerization initiator, the first curing means and the second curing means are the combination described above, the first resin may be cured without completely curing the second resin in the first resin curing step. It can be cured. As a result, the position of the wiring pattern formed in the first resin can be easily fixed, so that the wiring pattern can be prevented from being displaced. Furthermore, since the second resin is not completely cured in the first resin curing step, the adhesion to the substrate is improved.
また、第1重合開始剤の10時間半減期温度を、第2重合開始剤の10時間半減期温度よりも低くしてもよい。
この場合、第1の樹脂硬化工程では、第2重合開始剤の10時間半減期温度よりも低い温度で、第1樹脂に熱を加えることにより第1樹脂を硬化させ、第2の樹脂硬化工程では、第2重合開始剤の10時間半減期温度よりも高い温度で、第2樹脂に熱を加えることにより第2樹脂を硬化させてもよい。
このように、10時間半減期温度が異なる2種類の熱重合開始剤を使用することにより、容易に、第2樹脂の硬化よりも先に第1樹脂の硬化を行うことができる。
The 10-hour half-life temperature of the first polymerization initiator may be lower than the 10-hour half-life temperature of the second polymerization initiator.
In this case, in the first resin curing step, the first resin is cured by applying heat to the first resin at a temperature lower than the 10 hour half-life temperature of the second polymerization initiator, and the second resin curing step Alternatively, the second resin may be cured by applying heat to the second resin at a temperature higher than the 10-hour half-life temperature of the second polymerization initiator.
Thus, the first resin can be easily cured prior to the curing of the second resin by using two types of thermal polymerization initiators having different 10-hour half-life temperatures.
また、本発明の第8実施形態に係る多層プリント配線板の製造方法では、第1重合開始剤は、光重合開始剤であり、第2重合開始剤は、光重合開始剤であり、第1重合開始剤は第1波長の光を照射されることにより光重合開始剤として機能し、第2重合開始剤は、第1波長の光とは波長が異なる第2波長の光を照射されることにより光重合開始剤として機能してもよい。
この場合、第1の樹脂硬化工程における第1硬化手段は第1波長の光であり、第2の樹脂硬化工程における第2硬化手段は第2波長の光である。
In the method for manufacturing a multilayer printed wiring board according to the eighth embodiment of the present invention, the first polymerization initiator is a photopolymerization initiator, and the second polymerization initiator is a photopolymerization initiator, The polymerization initiator functions as a photopolymerization initiator by being irradiated with light of a first wavelength, and the second polymerization initiator is irradiated with light of a second wavelength different from the light of the first wavelength. May function as a photopolymerization initiator.
In this case, the first curing means in the first resin curing step is light of the first wavelength, and the second curing means in the second resin curing step is light of the second wavelength.
第1重合開始剤、第2重合開始剤、第1硬化手段及び第2硬化手段が上記組み合わせであると、第1の樹脂硬化工程では、上記第2樹脂の半硬化状態を維持させたまま、上記第1樹脂に上記第1波長の光を照射し、上記第1樹脂を硬化させ、上記第2の樹脂硬化工程では、上記第2樹脂に第2波長の光を照射することにより上記第2樹脂を硬化させてもよい。 If the first polymerization initiator, the second polymerization initiator, the first curing means and the second curing means are the combination described above, in the first resin curing step, the semi-cured state of the second resin is maintained, The first resin is irradiated with the light of the first wavelength to cure the first resin, and in the second resin curing step, the second resin is irradiated with the light of the second wavelength to cure the second resin. The resin may be cured.
このような第1重合開始剤及び第2重合開始剤を使用し、波長が異なる第1波長の光と、第2波長の光とを照射することにより、容易に、第2樹脂の硬化よりも先に第1樹脂の硬化を行うことができる。 By using such a first polymerization initiator and a second polymerization initiator and irradiating light of a first wavelength different in wavelength and light of a second wavelength, it is easier than curing of the second resin. The first resin can be cured first.
(第9実施形態)
次に、本発明の第9実施形態に係る多層プリント配線板の製造方法について説明する。
本発明の第9実施形態に係る多層プリント配線板の製造方法は、上記(5)プリント配線板積層工程において、第1配線パターンと、第2配線パターンとが導電部材を介して電気的に接続するように、上層プリント配線板と下層プリント配線板とを積層する以外は、上記本発明の第8実施形態に係るプリント配線板の製造方法と同じである。
このようなプリント配線板積層工程について以下に図面を用いて説明する。
The ninth embodiment
Next, a method of manufacturing a multilayer printed wiring board according to a ninth embodiment of the present invention will be described.
In the method for manufacturing a multilayer printed wiring board according to the ninth embodiment of the present invention, in the (5) printed wiring board laminating step, the first wiring pattern and the second wiring pattern are electrically connected via the conductive member. As in the above, the manufacturing method of the printed wiring board according to the eighth embodiment of the present invention is the same except that the upper layer printed wiring board and the lower layer printed wiring board are laminated.
Such a printed wiring board lamination step will be described below with reference to the drawings.
図34(a)及び(b)は、本発明の第9実施形態に係る多層プリント配線板の製造方法におけるプリント配線板積層工程の一例を模式的に示す模式図である。
本発明の第9実施形態に係る多層プリント配線板の製造方法におけるプリント配線板積層工程では、図34(a)に示すように、第3樹脂1040に形成された第2配線パターン1032の上に、導電部材である導電ピン1033を形成する。
次に、図34(b)に示すように、導電ピン1033が、第2樹脂1020及び第1樹脂1010を貫き、第1配線パターン1031に接触するように上層プリント配線板1091と下層プリント配線板1092とを積層する。
34 (a) and 34 (b) are schematic views schematically showing an example of a printed wiring board laminating step in the method for manufacturing a multilayer printed wiring board according to the ninth embodiment of the present invention.
In the printed wiring board laminating step in the method for manufacturing a multilayer printed wiring board according to the ninth embodiment of the present invention, as shown in FIG. 34A, on the second wiring pattern 1032 formed in the third resin 1040. And forming a conductive pin 1033 which is a conductive member.
Next, as shown in FIG. 34 (b), the upper layer printed wiring board 1091 and the lower layer printed wiring board so that the conductive pins 1033 penetrate the second resin 1020 and the first resin 1010 and contact the first wiring pattern 1031. And 1092 are stacked.
このように、第1配線パターン1031と、第2配線パターン1032とが導電部材である導電ピン1033を介して電気的に接続するように、上層プリント配線板1091と下層プリント配線板1092とを積層して多層プリント配線板を製造することにより、配線パターンを高密度にすることができる。 Thus, the upper layer printed wiring board 1091 and the lower layer printed wiring board 1092 are laminated so that the first wiring pattern 1031 and the second wiring pattern 1032 are electrically connected via the conductive pins 1033 which are conductive members. By manufacturing a multilayer printed wiring board, the wiring pattern can be made high density.
導電ピン1033の材料としては、特に限定されないが、銅、金、銀、ニッケルおよびこれらの合金等であることが望ましい。 The material of the conductive pin 1033 is not particularly limited, but copper, gold, silver, nickel and alloys thereof are preferable.
なお、本発明の第9実施形態に係る多層プリント配線板の製造方法において、導電部材は、導電ピンの代わりに導電性フィラーを使用することができる。
また、第1配線パターンと第2配線パターンを接続する方法としては、第1樹脂及び/又は第2樹脂に設けられたビアホールに導電性ペーストを充填し、当該導電性ペーストにより第1配線パターンと第2配線パターンとを接続させてもよい。
In the method of manufacturing a multilayer printed wiring board according to the ninth embodiment of the present invention, the conductive member can use a conductive filler instead of the conductive pin.
Further, as a method of connecting the first wiring pattern and the second wiring pattern, a conductive paste is filled in the via holes provided in the first resin and / or the second resin, and the first wiring pattern is formed by the conductive paste. The second wiring pattern may be connected.
(第10実施形態)
次に、本発明の第10実施形態に係る多層プリント配線板の製造方法について説明する。
本発明の第10実施形態に係る多層プリント配線板の製造方法は、(4)下層プリント配線板準備工程において、第3重合開始剤を含む半硬化状態の第3樹脂に上記第2配線パターンを形成し、その後、第3樹脂が完全に硬化しないように第3樹脂を硬化させて上記下層プリント配線板を作製すること、(6)第2の樹脂硬化工程において、第2樹脂を硬化させ、同時に、上記第3樹脂を完全に硬化させて上記上層プリント配線板と上記下層プリント配線板とを接着すること以外は、上記本発明の第8実施形態に係るプリント配線板の製造方法と同じである。
Tenth Embodiment
Next, a method of manufacturing a multilayer printed wiring board according to the tenth embodiment of the present invention will be described.
In the method for manufacturing a multilayer printed wiring board according to the tenth embodiment of the present invention, (4) in the lower layer printed wiring board preparing step, the second wiring pattern is applied to the third resin in a semi-cured state containing a third polymerization initiator. Forming the lower layer printed wiring board by curing the third resin so that the third resin is not completely cured, and (6) curing the second resin in the second resin curing step, At the same time, the method is the same as the method for producing a printed wiring board according to the eighth embodiment of the present invention except that the third resin is completely cured to bond the upper layer printed wiring board and the lower layer printed wiring board. is there.
このように半硬化状態の第3樹脂に第2配線パターンを形成し、その後、第3樹脂が完全に硬化しないように第3樹脂を硬化させることにより、第3樹脂に形成された第2配線パターンを充分に第3樹脂に固定することができ、第2配線パターンと第3樹脂との密着性を向上させることができる。
また、このような多層プリント配線板の製造方法では、半硬化状態の第2樹脂と、半硬化状態の第3樹脂とが積層されることになるので、上層プリント配線板と下層プリント配線板との密着性を向上させることができる。
Thus, the second wiring formed in the third resin is formed by forming the second wiring pattern in the third resin in the semi-cured state, and then curing the third resin so that the third resin is not completely cured. The pattern can be sufficiently fixed to the third resin, and the adhesion between the second wiring pattern and the third resin can be improved.
Moreover, in the method of manufacturing such a multilayer printed wiring board, since the second resin in the semi-cured state and the third resin in the semi-cured state are laminated, the upper layer printed wiring board and the lower layer printed wiring board The adhesion of the above can be improved.
本発明の第10実施形態に係る多層プリント配線板の製造方法において、第3樹脂としては、光硬化性樹脂や熱硬化性樹脂であることが望ましい。このような樹脂は、例えば、フェノール樹脂、ポリエステル樹脂、ポリイミド樹脂、ポリスルフォン酸樹脂、ポリエーテルイミド樹脂、ポリエーテルケトン樹脂、ポリカーボネート樹脂、ポリウレタン樹脂、ポリシロキサン樹脂、ポリアミド樹脂等が挙げられる。これらの中では、ポリイミド樹脂であることが望ましい。
さらに、第3樹脂の種類は、第2樹脂の種類と同じであってもよく、異なっていてもよい。
In the method for manufacturing a multilayer printed wiring board according to the tenth embodiment of the present invention, it is desirable that the third resin be a photocurable resin or a thermosetting resin. Examples of such resin include phenol resin, polyester resin, polyimide resin, polysulfonic acid resin, polyetherimide resin, polyether ketone resin, polycarbonate resin, polyurethane resin, polysiloxane resin, polyamide resin and the like. Among these, polyimide resins are preferable.
Furthermore, the type of the third resin may be the same as or different from the type of the second resin.
また、第3重合開始剤は、熱重合開始剤であってもよく、光重合開始剤であってもよいが、第2重合開始剤と同じ種類の重合開始剤であることが望ましい。
つまり、第3樹脂の硬化方法と、第2樹脂の硬化方法は同じであることが望ましい。
The third polymerization initiator may be a thermal polymerization initiator or a photopolymerization initiator, but it is preferable that the third polymerization initiator be the same type of polymerization initiator as the second polymerization initiator.
That is, it is desirable that the method of curing the third resin and the method of curing the second resin be the same.
さらに、第3樹脂と第2樹脂の種類が同じであり、かつ、第3重合開始剤と第2重合開始剤の種類が同じであることがより望ましい。
第3樹脂と第2樹脂の種類が同じであり、かつ、第3重合開始剤と第2重合開始剤の種類が同じであると、第2の樹脂硬化工程において、一つの樹脂硬化手段により第3樹脂と第2樹脂とを同時に硬化させることができる。
Furthermore, it is more preferable that the types of the third resin and the second resin are the same, and the types of the third polymerization initiator and the second polymerization initiator are the same.
If the type of the third resin and the type of the second resin are the same and the type of the third polymerization initiator and the type of the second polymerization initiator are the same, in the second resin curing step, the first resin curing unit The third resin and the second resin can be simultaneously cured.
(第11実施形態)
次に、本発明の第11実施形態に係る多層プリント配線板の製造方法について説明する。
本発明の第11実施形態に係るプリント配線板の製造方法は、上記本発明の第8実施形態に係るプリント配線板の製造方法において、(4)下層プリント配線板準備工程及び(6)第2の樹脂硬化工程を以下のように変形させたプリント配線板の製造方法である。
すなわち、本発明の第11実施形態に係るプリント配線板の製造方法は、上記(4)下層プリント配線板準備工程において、第3重合開始剤を含む半硬化状態の第3樹脂と、第4重合開始剤を含む半硬化状態の第4樹脂とを積層し、第3樹脂に上記第2配線パターンを形成し、その後、第4樹脂の半硬化状態を維持させたまま、第3樹脂を硬化させ下層プリント配線板を作製し、上記(6)第2の樹脂硬化工程において、第4樹脂も硬化させる。
Eleventh Embodiment
Next, a method of manufacturing a multilayer printed wiring board according to an eleventh embodiment of the present invention will be described.
In the method of manufacturing a printed wiring board according to the eleventh embodiment of the present invention, in the method of manufacturing the printed wiring board according to the eighth embodiment of the present invention, (4) lower layer printed wiring board preparing step and (6) second It is the manufacturing method of the printed wiring board which changed the resin hardening process of (4) as follows.
That is, in the method for manufacturing a printed wiring board according to the eleventh embodiment of the present invention, the third resin in a semi-cured state containing the third polymerization initiator and the fourth polymerization in the (4) lower layer printed wiring board preparation step. A fourth resin in a semi-cured state containing an initiator is laminated, and the second wiring pattern is formed on the third resin. Thereafter, the third resin is cured while maintaining the semi-cured state of the fourth resin. A lower layer printed wiring board is produced, and the fourth resin is also cured in the (6) second resin curing step.
このように下層プリント配線板を、第3樹脂と第4樹脂とを積層することにより作製すると、第4樹脂の下に別の基材等を接着しやすくなる。
例えば、第3樹脂として第2配線パターンの伝送特性が良好になる種類の樹脂を使用し、第4樹脂として別の基材との密着性が良好になる種類の樹脂を使用することにより、製造された多層プリント配線板において、伝送特性と、密着性とを両立させることができる。
When the lower layer printed wiring board is manufactured by laminating the third resin and the fourth resin in this manner, another base material or the like can be easily adhered below the fourth resin.
For example, the third resin is manufactured by using a resin of a type that improves the transmission characteristics of the second wiring pattern and the fourth resin that uses a resin of a type that improves adhesion to another base material. In the multilayer printed wiring board, it is possible to achieve both transmission characteristics and adhesion.
第3樹脂の材料は、特に限定されないが、光硬化性樹脂や熱硬化性樹脂であることが望ましい。このような樹脂は、例えば、フェノール樹脂、ポリエステル樹脂、ポリイミド樹脂、ポリスルフォン酸樹脂、ポリエーテルイミド樹脂、ポリエーテルケトン樹脂、ポリカーボネート樹脂、ポリウレタン樹脂、ポリシロキサン樹脂、ポリアミド樹脂等が挙げられる。これらの中では、ポリイミド樹脂であることが望ましい。 The material of the third resin is not particularly limited, but it is desirable that the material be a photocurable resin or a thermosetting resin. Examples of such resin include phenol resin, polyester resin, polyimide resin, polysulfonic acid resin, polyetherimide resin, polyether ketone resin, polycarbonate resin, polyurethane resin, polysiloxane resin, polyamide resin and the like. Among these, polyimide resins are preferable.
また、第3重合開始剤は、熱重合開始剤であってもよく、光重合開始剤であってもよい。 The third polymerization initiator may be a thermal polymerization initiator or a photopolymerization initiator.
第4樹脂の材料は、特に限定されないが、例えば、光硬化性樹脂や熱硬化性樹脂であることが望ましい。このような樹脂は、例えば、フェノール樹脂、ポリエステル樹脂、ポリイミド樹脂、ポリスルフォン酸樹脂、ポリエーテルイミド樹脂、ポリエーテルケトン樹脂、ポリカーボネート樹脂、ポリウレタン樹脂、ポリシロキサン樹脂、ポリアミド樹脂等が挙げられる。これらの中では、ポリイミド樹脂であることが望ましい。 Although the material of the fourth resin is not particularly limited, for example, it is desirable that it is a photocurable resin or a thermosetting resin. Examples of such resin include phenol resin, polyester resin, polyimide resin, polysulfonic acid resin, polyetherimide resin, polyether ketone resin, polycarbonate resin, polyurethane resin, polysiloxane resin, polyamide resin and the like. Among these, polyimide resins are preferable.
また、第4重合開始剤は、熱重合開始剤であってもよく、光重合開始剤であってもよい。 The fourth polymerization initiator may be a thermal polymerization initiator or a photopolymerization initiator.
本発明の第11実施形態に係る多層プリント配線板の製造方法では、第1樹脂と第3樹脂とが同じ種類の樹脂であり、第2樹脂と第4樹脂とが同じ種類の樹脂であることが望ましい。また、第1重合開始剤と第3重合開始剤とが同じ種類の重合開始剤であり、第2重合開始剤と第4重合開始剤とが同じ種類の重合開始剤であることが望ましい。
この場合、上層プリント配線板を構成する樹脂の種類と、下層プリント配線板を構成する樹脂の種類とが同じになるので、線膨張係数を揃えることができるので、製造される多層プリント配線板に反りが生じることを防ぐことができる。
In the method for manufacturing a multilayer printed wiring board according to the eleventh embodiment of the present invention, the first resin and the third resin are the same type of resin, and the second resin and the fourth resin are the same type of resin Is desirable. Further, it is desirable that the first polymerization initiator and the third polymerization initiator be the same type of polymerization initiator, and the second polymerization initiator and the fourth polymerization initiator be the same type of polymerization initiator.
In this case, since the type of resin constituting the upper layer printed wiring board and the type of resin constituting the lower layer printed wiring board are the same, the linear expansion coefficient can be made uniform, so that the multilayer printed wiring board to be manufactured can be manufactured. It is possible to prevent the occurrence of warpage.
また、第1樹脂及び第2樹脂を積層する工程と、第3樹脂及び第4樹脂を積層する工程とを同じラインで行うことができるので、製造効率が向上する。 In addition, since the step of laminating the first resin and the second resin and the step of laminating the third resin and the fourth resin can be performed in the same line, manufacturing efficiency is improved.
第1樹脂と第3樹脂とが同じ種類の樹脂であり、第2樹脂と第4樹脂とが同じ種類の樹脂である場合、つまり、下層プリント配線板が第1樹脂と第2樹脂とからなる場合、本発明の第11実施形態に係る多層プリント配線板の製造方法は以下のように記載することができる。
すなわち、本発明の第11実施形態に係る多層プリント配線板の製造方法は、複数のプリント配線板を積層して多層プリント配線板を製造する方法であり、半硬化状態の第1樹脂と、半硬化状態の第2樹脂とを積層し、複数の積層体を作製する(A)プリント配線板用樹脂積層工程と、ある積層体の第1樹脂に第1配線パターンを形成し、別の積層体の第1樹脂に第2配線パターンを形成する(B)配線パターン形成工程と、各積層体の第2樹脂の半硬化状態を維持させたまま、かつ、第1樹脂が完全に硬化しないように第1樹脂を硬化させ上層プリント配線板及び下層プリント配線板を作製する(C)第1の樹脂硬化工程と、上層プリント配線板と下層プリント配線板を積層する(D)プリント配線板積層工程と、各プリント配線板の第2樹脂を硬化させ、各プリント配線板同士を接着する(E)第2の樹脂硬化工程とを含んでいてもよい。
また、第1樹脂は、第1重合開始剤を含有し、第2樹脂は、第2重合開始剤を含有する。
When the first resin and the third resin are the same type of resin and the second resin and the fourth resin are the same type of resin, that is, the lower layer printed wiring board is made of the first resin and the second resin In the case, the method for manufacturing a multilayer printed wiring board according to the eleventh embodiment of the present invention can be described as follows.
That is, the method for manufacturing a multilayer printed wiring board according to the eleventh embodiment of the present invention is a method for manufacturing a multilayer printed wiring board by laminating a plurality of printed wiring boards, and the first resin in a semi-cured state, (A) forming a plurality of laminates by laminating the cured second resin and forming a plurality of laminates (A) forming a first wiring pattern on a first resin of a laminate and forming another laminate Forming the second wiring pattern on the first resin (B), forming the wiring pattern, and maintaining the semi-cured state of the second resin of each laminate, and preventing the first resin from completely curing. Curing the first resin to produce an upper layer printed wiring board and a lower layer printed wiring board (C) a first resin curing step, laminating the upper layer printed wiring board and the lower layer printed wiring board (D) a printed wiring board laminating step , The second of each printed wiring board The fat is cured to bond the respective printed circuit boards with each other (E) may contain a second resin curing step.
The first resin contains a first polymerization initiator, and the second resin contains a second polymerization initiator.
以下、各工程について図面を用いて説明する。
図35は、本発明の第11実施形態に係る多層プリント配線板の製造方法におけるプリント配線板用樹脂積層工程の一例を模式的に示す工程図である。
図36は、本発明の第11実施形態に係る多層プリント配線板の製造方法における配線パターン形成工程の一例を模式的に示す工程図である。
図37は、本発明の第11実施形態に係る多層プリント配線板の製造方法における第1の樹脂硬化工程の一例を模式的に示す工程図である。
図38は、本発明の第11実施形態に係る多層プリント配線板の製造方法におけるプリント配線板積層工程の一例を模式的に示す工程図である。
図39は、本発明の第11実施形態に係る多層プリント配線板の製造方法における第2の樹脂硬化工程の一例を模式的に示す工程図である。
Each step will be described below with reference to the drawings.
FIG. 35: is process drawing which shows typically an example of the resin lamination process for printed wiring boards in the manufacturing method of the multilayer printed wiring board which concerns on 11th Embodiment of this invention.
FIG. 36 is a process diagram schematically showing an example of a wiring pattern forming step in the method for manufacturing a multilayer printed wiring board according to the eleventh embodiment of the present invention.
FIG. 37 is a process diagram schematically showing an example of a first resin curing step in the method for manufacturing a multilayer printed wiring board according to the eleventh embodiment of the present invention.
FIG. 38 is a process chart schematically showing one example of a printed wiring board laminating step in the method for manufacturing a multilayer printed wiring board according to the eleventh embodiment of the present invention.
FIG. 39 is a process diagram schematically showing an example of a second resin curing step in the method for manufacturing a multilayer printed wiring board according to the eleventh embodiment of the present invention.
(A)プリント配線板用樹脂積層工程
本発明の第11実施形態に係る多層プリント配線板の製造方法では、まず、図35に示すように、半硬化状態の第1樹脂1110aと、半硬化状態の第2樹脂1120aとを積層し、上層プリント配線板となる積層体1190aを作製する。
第1樹脂1110aは第1重合開始剤を含有し、第2樹脂1120aは、第2重合開始剤を含有している。
また、半硬化状態の第3樹脂1110bと、半硬化状態の第4樹脂1120bとを積層し、下層プリント配線板となる積層体1190bを作製する。
第3樹脂1110bは第3重合開始剤を含有し、第4樹脂1120bは、第4重合開始剤を含有している。
(A) Resin Laminating Step for Printed Wiring Board In the method for manufacturing a multilayer printed wiring board according to the eleventh embodiment of the present invention, first, as shown in FIG. 35, the first resin 1110a in a semi-cured state and the semi-cured state The second resin 1120a is laminated to form a laminate 1190a to be an upper layer printed wiring board.
The first resin 1110a contains a first polymerization initiator, and the second resin 1120a contains a second polymerization initiator.
In addition, the third resin 1110b in a semi-cured state and the fourth resin 1120b in a semi-cured state are laminated to produce a laminate 1190b to be a lower layer printed wiring board.
The third resin 1110 b contains a third polymerization initiator, and the fourth resin 1120 b contains a fourth polymerization initiator.
第1樹脂1110a、第2樹脂1120a、第1重合開始剤及び第2重合開始剤の望ましい種類並びに組み合わせは、上記本発明の第8実施形態に係る多層プリント配線板の製造方法における第1樹脂1010、第2樹脂1020、第1重合開始剤及び第2重合開始剤の望ましい種類並びに組み合わせと、それぞれ、同じである。
第3樹脂1110b、第4樹脂1120b、第3重合開始剤及び第4重合開始剤の望ましい種類並びに組み合わせは、上記本発明の第8実施形態に係る多層プリント配線板の製造方法における第1樹脂1010、第2樹脂1020、第1重合開始剤及び第2重合開始剤の望ましい種類並びに組み合わせと、それぞれ、同じである。
Desirable types and combinations of the first resin 1110a, the second resin 1120a, the first polymerization initiator, and the second polymerization initiator are the first resin 1010 in the method for manufacturing a multilayer printed wiring board according to the eighth embodiment of the present invention. And the desired types and combinations of the second resin 1020, the first polymerization initiator and the second polymerization initiator, respectively.
Desirable types and combinations of the third resin 1110b, the fourth resin 1120b, the third polymerization initiator and the fourth polymerization initiator are the first resin 1010 in the method for manufacturing a multilayer printed wiring board according to the eighth embodiment of the present invention. And the desired types and combinations of the second resin 1020, the first polymerization initiator and the second polymerization initiator, respectively.
第1樹脂1110a、第2樹脂1120a、第1重合開始剤及び第2重合開始剤の種類並びに組み合わせは、第3樹脂1110b、第4樹脂1120b、第3重合開始剤及び第4重合開始剤の種類並びに組み合わせと同じであってもよい。 Types and combinations of the first resin 1110a, the second resin 1120a, the first polymerization initiator and the second polymerization initiator are the types of the third resin 1110b, the fourth resin 1120b, the third polymerization initiator and the fourth polymerization initiator And may be the same as the combination.
(B)配線パターン形成工程
次に、図36に示すように、積層体1190aの第1樹脂1110aに第1配線パターン1131を形成する。また、積層体1190bの第3樹脂1110bに第2配線パターン1132を形成する。
第1配線パターン1131及び第2配線パターン1132の望ましい形成方法は、上記本発明の第8実施形態に係る多層プリント配線板の製造方法における第1配線パターン1031及び第2配線パターン1032を形成する望ましい方法と同じである。
(B) Wiring Pattern Forming Step Next, as shown in FIG. 36, the first wiring pattern 1131 is formed on the first resin 1110a of the laminate 1190a. In addition, the second wiring pattern 1132 is formed on the third resin 1110 b of the laminate 1190 b.
A desirable method of forming the first wiring pattern 1131 and the second wiring pattern 1132 is desirable to form the first wiring pattern 1031 and the second wiring pattern 1032 in the method of manufacturing a multilayer printed wiring board according to the eighth embodiment of the present invention. It is the same as the method.
(C)第1の樹脂硬化工程
次に、図37に示すように、積層体1190aの第2樹脂1120aの半硬化状態を維持させたまま、第1硬化手段1155aにより第1樹脂1110aを硬化させ上層プリント配線板1191を作製する。
また、積層体1190bの第4樹脂1120bの半硬化状態を維持させたまま、第1硬化手段1155bにより第3樹脂1110bを硬化させ下層プリント配線板1192を作製する。
本工程において、第1樹脂1110a及び第3樹脂1110bを硬化させることで、第1配線パターン1131及び第2配線パターン1132を充分に固定することができる。
(C) First Resin Curing Step Next, as shown in FIG. 37, while the semi-cured state of the second resin 1120a of the laminate 1190a is maintained, the first resin 1110a is cured by the first curing means 1155a. The upper layer printed wiring board 1191 is manufactured.
Further, while the semi-cured state of the fourth resin 1120 b of the laminate 1190 b is maintained, the third resin 1110 b is cured by the first curing means 1155 b to produce the lower layer printed wiring board 1192.
In this process, the first wiring pattern 1131 and the second wiring pattern 1132 can be sufficiently fixed by curing the first resin 1110a and the third resin 1110b.
第1樹脂1110a及び第3樹脂1110bを硬化させる硬化手段は、特に限定されず、第1樹脂1110a、第2樹脂1120a、第3樹脂1110b、第4樹脂1120b、第1重合開始剤、第2重合開始剤、第3重合開始剤及び第4重合開始剤の種類並びに組み合わせに応じ選択することが望ましい。 The curing means for curing the first resin 1110a and the third resin 1110b is not particularly limited, and the first resin 1110a, the second resin 1120a, the third resin 1110b, the fourth resin 1120b, the first polymerization initiator, and the second polymerization are used. It is desirable to select according to the type and combination of the initiator, the third polymerization initiator and the fourth polymerization initiator.
(D)プリント配線板積層工程
次に、図38に示すように、上層プリント配線板1191及び下層プリント配線板1192を積層する。
上層プリント配線板1191の第2樹脂1120aは半硬化状態であるので、下層プリント配線板1192の第3樹脂1110b及び第2配線パターン1132に密着することになる。
(D) Printed Wiring Board Stacking Step Next, as shown in FIG. 38, the upper layer printed wiring board 1191 and the lower layer printed wiring board 1192 are stacked.
Since the second resin 1120 a of the upper layer printed wiring board 1191 is in a semi-cured state, it adheres closely to the third resin 1110 b and the second wiring pattern 1132 of the lower layer printed wiring board 1192.
(E)第2の樹脂硬化工程
次に、図39に示すように、上層プリント配線板1191の第2樹脂1120aを第2硬化手段1156aにより硬化させ、下層プリント配線板1192の第4樹脂1120bを第2硬化手段1156bにより硬化させる。
このようにして、上層プリント配線板1191及び下層プリント配線板1192を接着させることにより、多層プリント配線板1101を製造することができる。
上記通り、上層プリント配線板1191の第2樹脂1120aと下層プリント配線板1192の第3樹脂1110bとは密着しているので、多層プリント配線板1101では、上層プリント配線板1191及び下層プリント配線板1192が強固に接着する。
(E) Second Resin Curing Step Next, as shown in FIG. 39, the second resin 1120a of the upper layer printed wiring board 1191 is cured by the second curing means 1156a, and the fourth resin 1120b of the lower layer printed wiring board 1192 is cured. It is cured by the second curing means 1156 b.
By bonding the upper layer printed wiring board 1191 and the lower layer printed wiring board 1192 in this manner, a multilayer printed wiring board 1101 can be manufactured.
As described above, since the second resin 1120a of the upper layer printed wiring board 1191 and the third resin 1110b of the lower layer printed wiring board 1192 are in close contact with each other, in the multilayer printed wiring board 1101, the upper layer printed wiring board 1191 and the lower layer printed wiring board 1192 Adheres firmly.
第2の樹脂硬化工程において、第1樹脂1110a、第2樹脂1120a、第3樹脂1110b及び第4樹脂1120bを硬化する硬化手段は特に限定されず、第1樹脂1110a、第2樹脂1120a、第3樹脂1110b、第4樹脂1120b、第1重合開始剤、第2重合開始剤、第3重合開始剤及び第4重合開始剤の種類並びに組み合わせに応じ選択することが望ましい。 The curing means for curing the first resin 1110a, the second resin 1120a, the third resin 1110b and the fourth resin 1120b in the second resin curing step is not particularly limited, and the first resin 1110a, the second resin 1120a, the third resin It is desirable to select according to the type and combination of the resin 1110b, the fourth resin 1120b, the first polymerization initiator, the second polymerization initiator, the third polymerization initiator and the fourth polymerization initiator.
10、110、210、310、410、510 第1樹脂
20、120、220、320、420、520 第2樹脂
30、130、230、330、430、530、630 配線パターン
40、140、240、340、440、540、640 基材
50、150、351、352、451、452 光
60、160、261、262 熱
370 光不透過層
555 第1硬化手段
556 第2硬化手段
581 第1ロールプレス機
601 プリント配線板
615 第1硬化樹脂層
625 第2硬化樹脂層
1001、1101 多層プリント配線板
1010、1110a 第1樹脂
1015 第1硬化樹脂層
1020、1120a 第2樹脂
1025 第2硬化樹脂層
1031、1131 第1配線パターン
1032、1132 第2配線パターン
1033 導電ピン
1040、1110b 第3樹脂
1055、1155a、1155b 第1硬化手段
1156a、1156b 第2硬化手段
1091、1191 上層プリント配線板
1092、1192 下層プリント配線板
1120b 第4樹脂
1190a 上層プリント配線板となる積層体
1190b 下層プリント配線板となる積層体
10, 110, 210, 310, 410, 510 First resin 20, 120, 220, 320, 420, 520 Second resin 30, 130, 230, 330, 430, 530, 630 Wiring pattern 40, 140, 240, 340 , 440, 540, 640 Substrates 50, 150, 351, 352, 451, 452 Light 60, 160, 261, 262 Heat 370 Light-impermeable layer 555 First curing means 556 Second curing means 581 First roll press machine 601 Printed wiring board 615 first cured resin layer 625 second cured resin layer 1001, 1101 multilayer printed wiring board 1010, 1110a first resin 1015 first cured resin layer 1020, 1120a second resin 1025 second cured resin layer 1031, 1131 1 wiring pattern 1032, 1132 second wiring pattern 1033 conductive 1040, 1110b third resin 1055, 1155a, 1155b first curing means 1156a, 1156b second curing means 1091, 1191 upper layer printed wiring board 1092, 1192 lower layer printed wiring board 1120b fourth resin 1190a upper layer printed wiring board laminate Laminated body to be a lower layer printed wiring board

Claims (29)

  1. 半硬化状態の第1樹脂と、半硬化状態の第2樹脂とを積層する樹脂積層工程と、
    前記第1樹脂に配線パターンを形成する配線パターン形成工程と、
    前記第2樹脂の半硬化状態を維持させたまま、前記第1樹脂を硬化させる第1の樹脂硬化工程と、
    前記第2樹脂及び基材を貼り合わせる基材貼り合わせ工程と、
    前記第2樹脂を硬化させ、前記第2樹脂と前記基材とを接着する第2の樹脂硬化工程とを含み、
    前記第1樹脂は、第1重合開始剤を含有し、
    前記第2樹脂は、第2重合開始剤を含有することを特徴とするプリント配線板の製造方法。
    A resin laminating step of laminating a semi-cured first resin and a semi-cured second resin;
    A wiring pattern forming step of forming a wiring pattern on the first resin;
    A first resin curing step of curing the first resin while maintaining the semi-cured state of the second resin;
    A substrate bonding step of bonding the second resin and the substrate together;
    Curing the second resin, and bonding the second resin and the base, and a second resin curing step,
    The first resin contains a first polymerization initiator,
    The method for manufacturing a printed wiring board, wherein the second resin contains a second polymerization initiator.
  2. 前記配線パターン形成工程では、前記第1樹脂に前記配線パターンを形成した後、前記配線パターンを前記第1樹脂に埋め込む請求項1に記載のプリント配線板の製造方法。 The method for manufacturing a printed wiring board according to claim 1, wherein the wiring pattern is embedded in the first resin after the wiring pattern is formed in the first resin in the wiring pattern forming step.
  3. 前記基材貼り合わせ工程では、前記第2樹脂と前記基材との間に前記第2樹脂が含浸可能な補強資材を配置する請求項1又は2に記載のプリント配線板の製造方法。 The manufacturing method of the printed wiring board according to claim 1 or 2 which arranges reinforcement material which can impregnate said 2nd resin between said 2nd resin and said substrate at said substrate pasting process.
  4. 前記樹脂積層工程では、前記第1樹脂と前記第2樹脂との間に、前記第1樹脂及び/又は前記第2樹脂が含浸可能な補強資材を配置する請求項1~3のいずれかに記載のプリント配線板の製造方法。 The reinforcing material which can impregnate said 1st resin and / or said 2nd resin is arrange | positioned between said 1st resin and said 2nd resin in the said resin lamination process, It is described in any one of Claim 1 to 3 Manufacturing method of printed wiring board.
  5. 前記第1重合開始剤は、光重合開始剤であり、
    前記第2重合開始剤は、熱重合開始剤であり、
    前記第1の樹脂硬化工程では、前記第1樹脂に光を照射することにより前記第1樹脂を硬化させ、
    前記第2の樹脂硬化工程では、前記第2樹脂に熱を加えることにより前記第2樹脂を硬化させる請求項1~4のいずれかに記載のプリント配線板の製造方法。
    The first polymerization initiator is a photopolymerization initiator,
    The second polymerization initiator is a thermal polymerization initiator,
    In the first resin curing step, the first resin is cured by irradiating the first resin with light.
    The method for manufacturing a printed wiring board according to any one of claims 1 to 4, wherein in the second resin curing step, the second resin is cured by applying heat to the second resin.
  6. 前記第1重合開始剤は、光重合開始剤及び熱重合開始剤であり、
    前記第2重合開始剤は、熱重合開始剤であり、
    前記第1の樹脂硬化工程では、前記第1樹脂に光を照射することにより、前記第1樹脂を硬化させ、
    前記第2の樹脂硬化工程では、前記第2樹脂に熱を加えることにより前記第2樹脂を硬化させ、同時に、前記第1樹脂に熱を加えることにより前記第1樹脂を硬化させる請求項1~4のいずれかに記載のプリント配線板の製造方法。
    The first polymerization initiator is a photopolymerization initiator and a thermal polymerization initiator,
    The second polymerization initiator is a thermal polymerization initiator,
    In the first resin curing step, the first resin is cured by irradiating the first resin with light.
    In the second resin curing step, the second resin is cured by applying heat to the second resin, and at the same time, the first resin is cured by applying heat to the first resin. The manufacturing method of the printed wiring board in any one of 4.
  7. 前記第1重合開始剤は、熱重合開始剤であり、
    前記第2重合開始剤は、光重合開始剤であり、
    前記第1の樹脂硬化工程では、前記第1樹脂に熱を加えることにより前記第1樹脂を硬化させ、
    前記第2の樹脂硬化工程では、前記第2樹脂に光を照射することにより前記第2樹脂を硬化させる請求項1~4のいずれかに記載のプリント配線板の製造方法。
    The first polymerization initiator is a thermal polymerization initiator,
    The second polymerization initiator is a photopolymerization initiator,
    In the first resin curing step, the first resin is cured by applying heat to the first resin,
    The method for manufacturing a printed wiring board according to any one of claims 1 to 4, wherein in the second resin curing step, the second resin is cured by irradiating the second resin with light.
  8. 前記第1重合開始剤は、熱重合開始剤及び光重合開始剤であり、
    前記第2重合開始剤は、光重合開始剤であり、
    前記第1の樹脂硬化工程では、前記第1樹脂に熱を加えることにより、前記第1樹脂を硬化させ、
    前記第2の樹脂硬化工程では、前記第2樹脂に光を照射することにより前記第2樹脂を硬化させ、同時に、前記第1樹脂に光を照射することにより前記第1樹脂を硬化させる請求項1~4のいずれかに記載のプリント配線板の製造方法。
    The first polymerization initiator is a thermal polymerization initiator and a photopolymerization initiator,
    The second polymerization initiator is a photopolymerization initiator,
    In the first resin curing step, the first resin is cured by applying heat to the first resin,
    In the second resin curing step, the second resin is cured by irradiating the second resin with light, and at the same time, the first resin is cured by irradiating the first resin with light. The method for producing a printed wiring board according to any one of 1 to 4.
  9. 前記基材は透光性を有しており、
    前記第2の樹脂硬化工程では、少なくとも基材側から前記第2樹脂に光を照射することにより前記第2樹脂を硬化させる請求項7又は8に記載のプリント配線板の製造方法。
    The above-mentioned base material has translucency,
    9. The method for manufacturing a printed wiring board according to claim 7, wherein in the second resin curing step, the second resin is cured by irradiating the second resin with light from at least the substrate side.
  10. 前記第1重合開始剤は、熱重合開始剤であり、
    前記第2重合開始剤は、熱重合開始剤であり、
    前記第1の樹脂硬化工程では、前記第2樹脂が半硬化状態を維持したままとなる温度であり、かつ、前記第1樹脂が硬化する温度の熱を加え、前記第1樹脂を硬化させ、
    前記第2の樹脂硬化工程では、前記第2樹脂が硬化する温度の熱を加え前記第2樹脂を硬化させる請求項1~4のいずれかに記載のプリント配線板の製造方法。
    The first polymerization initiator is a thermal polymerization initiator,
    The second polymerization initiator is a thermal polymerization initiator,
    In the first resin curing step, heat is applied at a temperature at which the second resin remains in a semi-cured state and at a temperature at which the first resin cures, thereby curing the first resin.
    The method for manufacturing a printed wiring board according to any one of claims 1 to 4, wherein in the second resin curing step, heat of a temperature at which the second resin cures is applied to cure the second resin.
  11. 前記第1重合開始剤の10時間半減期温度は、前記第2重合開始剤の10時間半減期温度よりも低く、
    前記第1の樹脂硬化工程では、前記第2重合開始剤の10時間半減期温度よりも低い温度で、前記第1樹脂に熱を加えることにより前記第1樹脂を硬化させ、
    前記第2の樹脂硬化工程では、前記第2重合開始剤の10時間半減期温度よりも高い温度で、前記第2樹脂に熱を加えることにより前記第2樹脂を硬化させる請求項10に記載のプリント配線板の製造方法。
    The 10-hour half-life temperature of the first polymerization initiator is lower than the 10-hour half-life temperature of the second polymerization initiator,
    In the first resin curing step, the first resin is cured by applying heat to the first resin at a temperature lower than the 10-hour half-life temperature of the second polymerization initiator,
    The second resin curing step according to claim 10, wherein the second resin is cured by applying heat to the second resin at a temperature higher than the 10-hour half-life temperature of the second polymerization initiator. Method of manufacturing a printed wiring board.
  12. 前記第1重合開始剤は、光重合開始剤であり、
    前記第2重合開始剤は、光重合開始剤であり、
    前記基材は、透光性を有し、
    前記樹脂積層工程では、前記第1樹脂と、前記第2樹脂との間に光不透過層を挟んで前記第1樹脂と、前記第2樹脂とを積層し、
    前記第1の樹脂硬化工程では、前記第1樹脂側から前記第1樹脂に光を照射することにより前記第1樹脂を硬化させ、
    前記第2の樹脂硬化工程では、前記基材側から前記第2樹脂に光を照射することにより前記第2樹脂を硬化させる請求項1~4のいずれかに記載のプリント配線板の製造方法。
    The first polymerization initiator is a photopolymerization initiator,
    The second polymerization initiator is a photopolymerization initiator,
    The substrate has translucency,
    In the resin laminating step, the first resin and the second resin are laminated with the light impermeable layer interposed between the first resin and the second resin,
    In the first resin curing step, the first resin is cured by irradiating the first resin with light from the first resin side,
    The method for manufacturing a printed wiring board according to any one of claims 1 to 4, wherein in the second resin curing step, the second resin is cured by irradiating the second resin with light from the substrate side.
  13. 前記第1重合開始剤は、第1波長の光を照射されることにより光重合開始剤として機能し、
    前記第2重合開始剤は、第2波長の光を照射されることにより光重合開始剤として機能し、
    前記第1波長と、前記第2波長とは異なる波長であり、
    前記第1の樹脂硬化工程では、前記第2樹脂の半硬化状態を維持させたまま、前記第1樹脂に前記第1波長の光を照射し、前記第1樹脂を硬化させ、
    前記第2の樹脂硬化工程では、前記第2樹脂に第2波長の光を照射することにより前記第2樹脂を硬化させる請求項1~4のいずれかに記載のプリント配線板の製造方法。
    The first polymerization initiator functions as a photopolymerization initiator by being irradiated with light of a first wavelength,
    The second polymerization initiator functions as a photopolymerization initiator by being irradiated with light of a second wavelength,
    The first wavelength and the second wavelength are different wavelengths,
    In the first resin curing step, while the semi-cured state of the second resin is maintained, the first resin is irradiated with light of the first wavelength to cure the first resin,
    The method for manufacturing a printed wiring board according to any one of claims 1 to 4, wherein in the second resin curing step, the second resin is cured by irradiating the second resin with light of a second wavelength.
  14. 前記基材は透光性を有しており、
    前記第2の樹脂硬化工程では、少なくとも基材側から前記第2樹脂に第2波長の光を照射することにより前記第2樹脂を硬化させる請求項13に記載のプリント配線板の製造方法。
    The above-mentioned base material has translucency,
    The method for manufacturing a printed wiring board according to claim 13, wherein in the second resin curing step, the second resin is cured by irradiating the second resin with light of a second wavelength at least from the substrate side.
  15. 前記樹脂積層工程、前記配線パターン形成工程、前記第1の樹脂硬化工程、前記基材貼り合わせ工程及び前記第2の樹脂硬化工程を、ロールプレス機において連続的に行う請求項1~14のいずれかに記載のプリント配線板の製造方法。 15. The roll pressing machine according to any one of claims 1 to 14, wherein the resin laminating step, the wiring pattern forming step, the first resin curing step, the base material bonding step and the second resin curing step are continuously performed. A method of manufacturing a printed wiring board according to any one of the above.
  16. 一方の面に配線パターンが形成された第1硬化樹脂層と、
    前記配線パターンが形成された面と反対側の前記第1硬化樹脂層の面に積層された第2硬化樹脂層と、
    前記第1硬化樹脂層と接する面と反対側の前記第2硬化樹脂層の面に接着された基材とからなるプリント配線板であって、
    前記第1硬化樹脂層は、第1樹脂が第1重合開始剤により硬化した硬化樹脂であり、
    前記第2硬化樹脂層は、第2樹脂が第2重合開始剤により硬化した硬化樹脂であり、
    前記第1樹脂を前記第1重合開始剤により硬化させる第1硬化手段と、前記第2樹脂を前記第2重合開始剤により硬化させる第2手段とは異なることを特徴とするプリント配線板。
    A first cured resin layer having a wiring pattern formed on one side thereof,
    A second cured resin layer laminated on the surface of the first cured resin layer opposite to the surface on which the wiring pattern is formed;
    A printed wiring board comprising: a base material adhered to the surface of the second cured resin layer opposite to the surface in contact with the first cured resin layer;
    The first cured resin layer is a cured resin in which a first resin is cured by a first polymerization initiator,
    The second cured resin layer is a cured resin in which a second resin is cured by a second polymerization initiator,
    A printed wiring board, which is different from a first curing means for curing the first resin by the first polymerization initiator and a second means for curing the second resin by the second polymerization initiator.
  17. 前記配線パターンは、前記第1硬化樹脂層に埋め込まれている請求項16に記載のプリント配線板。 The printed wiring board according to claim 16, wherein the wiring pattern is embedded in the first cured resin layer.
  18. 上層プリント配線板と、下層プリント配線板とを積層して多層プリント配線板を製造する多層プリント配線板の製造方法であって、
    半硬化状態の第1樹脂と、半硬化状態の第2樹脂とを積層する上層プリント配線板用樹脂積層工程と、
    前記第1樹脂に第1配線パターンを形成する第1配線パターン形成工程と、
    前記第2樹脂の半硬化状態を維持させたまま、前記第1樹脂を硬化させ上層プリント配線板を作製する第1の樹脂硬化工程と、
    第3樹脂に第2配線パターンが形成された下層プリント配線板を準備する下層プリント配線板準備工程と、
    前記上層プリント配線板の下に、前記下層プリント配線板を積層するプリント配線板積層工程と、
    前記第2樹脂を硬化させ、前記上層プリント配線板と前記下層プリント配線板とを接着する第2の樹脂硬化工程とを含み、
    前記第1樹脂は、第1重合開始剤を含有し、
    前記第2樹脂は、第2重合開始剤を含有することを特徴とする多層プリント配線板の製造方法。
    A method for producing a multilayer printed wiring board, comprising: laminating an upper layer printed wiring board and a lower layer printed wiring board to produce a multilayer printed wiring board,
    A resin laminating step for the upper layer printed wiring board, wherein the first resin in the semi-cured state and the second resin in the semi-cured state are laminated;
    Forming a first wiring pattern in the first resin;
    A first resin curing step of curing the first resin to produce an upper layer printed wiring board while maintaining the semi-cured state of the second resin;
    A lower layer printed wiring board preparing step of preparing a lower layer printed wiring board in which a second wiring pattern is formed in a third resin;
    A printed wiring board laminating step of laminating the lower layer printed wiring board under the upper layer printed wiring board;
    And a second resin curing step of curing the second resin to bond the upper layer printed wiring board and the lower layer printed wiring board.
    The first resin contains a first polymerization initiator,
    The method for producing a multilayer printed wiring board, wherein the second resin contains a second polymerization initiator.
  19. 前記プリント配線板積層工程では、前記第1配線パターンと、前記第2配線パターンとが導電部材を介して電気的に接続するように、上層プリント配線板と下層プリント配線板とを積層する請求項18に記載の多層プリント配線板の製造方法。 In the printed wiring board laminating step, the upper layer printed wiring board and the lower layer printed wiring board are laminated such that the first wiring pattern and the second wiring pattern are electrically connected via the conductive member. The manufacturing method of the multilayer printed wiring board of Claim 18.
  20. 前記第1重合開始剤は、光重合開始剤であり、
    前記第2重合開始剤は、熱重合開始剤であり、
    前記第1の樹脂硬化工程では、前記第1樹脂に光を照射することにより前記第1樹脂を硬化させ、
    前記第2の樹脂硬化工程では、前記第2樹脂に熱を加えることにより前記第2樹脂を硬化させる請求項18又は19に記載の多層プリント配線板の製造方法。
    The first polymerization initiator is a photopolymerization initiator,
    The second polymerization initiator is a thermal polymerization initiator,
    In the first resin curing step, the first resin is cured by irradiating the first resin with light.
    The method for manufacturing a multilayer printed wiring board according to claim 18, wherein the second resin is cured by applying heat to the second resin in the second resin curing step.
  21. 前記第1重合開始剤は、光重合開始剤及び熱重合開始剤であり、
    前記第2重合開始剤は、熱重合開始剤であり、
    前記第1の樹脂硬化工程では、前記第1樹脂に光を照射することにより、前記第1樹脂を硬化させ、
    前記第2の樹脂硬化工程では、前記第2樹脂に熱を加えることにより前記第2樹脂を硬化させ、同時に、前記第1樹脂に熱を加えることにより前記第1樹脂を硬化させる請求項18又は19に記載の多層プリント配線板の製造方法。
    The first polymerization initiator is a photopolymerization initiator and a thermal polymerization initiator,
    The second polymerization initiator is a thermal polymerization initiator,
    In the first resin curing step, the first resin is cured by irradiating the first resin with light.
    In the second resin curing step, the second resin is cured by applying heat to the second resin, and at the same time, the first resin is cured by applying heat to the first resin. The manufacturing method of the multilayer printed wiring board as described in 19.
  22. 前記第1重合開始剤は、熱重合開始剤であり、
    前記第2重合開始剤は、光重合開始剤であり、
    前記第1の樹脂硬化工程では、前記第1樹脂に熱を加えることにより前記第1樹脂を硬化させ、
    前記第2の樹脂硬化工程では、前記第2樹脂に光を照射することにより前記第2樹脂を硬化させる請求項18又は19に記載の多層プリント配線板の製造方法。
    The first polymerization initiator is a thermal polymerization initiator,
    The second polymerization initiator is a photopolymerization initiator,
    In the first resin curing step, the first resin is cured by applying heat to the first resin,
    The method for manufacturing a multilayer printed wiring board according to claim 18 or 19, wherein in the second resin curing step, the second resin is cured by irradiating the second resin with light.
  23. 前記第1重合開始剤は、熱重合開始剤及び光重合開始剤であり、
    前記第2重合開始剤は、光重合開始剤であり、
    前記第1の樹脂硬化工程では、前記第1樹脂に熱を加えることにより、前記第1樹脂を硬化させ、
    前記第2の樹脂硬化工程では、前記第2樹脂に光を照射することにより前記第2樹脂を硬化させ、同時に、前記第1樹脂に光を照射することにより前記第1樹脂を硬化させる請求項18又は19に記載の多層プリント配線板の製造方法。
    The first polymerization initiator is a thermal polymerization initiator and a photopolymerization initiator,
    The second polymerization initiator is a photopolymerization initiator,
    In the first resin curing step, the first resin is cured by applying heat to the first resin,
    In the second resin curing step, the second resin is cured by irradiating the second resin with light, and at the same time, the first resin is cured by irradiating the first resin with light. The manufacturing method of the multilayer printed wiring board as described in 18 or 19.
  24. 前記第1重合開始剤は、熱重合開始剤であり、
    前記第2重合開始剤は、熱重合開始剤であり、
    前記第1の樹脂硬化工程では、前記第2樹脂が半硬化状態を維持したままとなる温度であり、かつ、前記第1樹脂が硬化する温度の熱を加え、前記第1樹脂を硬化させ、
    前記第2の樹脂硬化工程では、前記第2樹脂が硬化する温度の熱を加え前記第2樹脂を硬化させる請求項18又は19のいずれかに記載の多層プリント配線板の製造方法。
    The first polymerization initiator is a thermal polymerization initiator,
    The second polymerization initiator is a thermal polymerization initiator,
    In the first resin curing step, heat is applied at a temperature at which the second resin remains in a semi-cured state and at a temperature at which the first resin cures, thereby curing the first resin.
    The method for manufacturing a multilayer printed wiring board according to any one of claims 18 and 19, wherein in the second resin curing step, heat of a temperature at which the second resin cures is applied to cure the second resin.
  25. 前記第1重合開始剤の10時間半減期温度は、前記第2重合開始剤の10時間半減期温度よりも低く、
    前記第1の樹脂硬化工程では、前記第2重合開始剤の10時間半減期温度よりも低い温度で、前記第1樹脂に熱を加えることにより前記第1樹脂を硬化させ、
    前記第2の樹脂硬化工程では、前記第2重合開始剤の10時間半減期温度よりも高い温度で、前記第2樹脂に熱を加えることにより前記第2樹脂を硬化させる請求項24に記載の多層プリント配線板の製造方法。
    The 10-hour half-life temperature of the first polymerization initiator is lower than the 10-hour half-life temperature of the second polymerization initiator,
    In the first resin curing step, the first resin is cured by applying heat to the first resin at a temperature lower than the 10-hour half-life temperature of the second polymerization initiator,
    The second resin curing process according to claim 24, wherein the second resin is cured by applying heat to the second resin at a temperature higher than the 10-hour half-life temperature of the second polymerization initiator. Method of manufacturing multilayer printed wiring board.
  26. 前記第1重合開始剤は、第1波長の光を照射されることにより光重合開始剤として機能し、
    前記第2重合開始剤は、第2波長の光を照射されることにより光重合開始剤として機能し、
    前記第1波長と、前記第2波長とは異なる波長であり、
    前記第1の樹脂硬化工程では、前記第2樹脂の半硬化状態を維持させたまま、前記第1樹脂に前記第1波長の光を照射し、前記第1樹脂を硬化させ、
    前記第2の樹脂硬化工程では、前記第2樹脂に第2波長の光を照射することにより前記第2樹脂を硬化させる請求項18又は19に記載の多層プリント配線板の製造方法。
    The first polymerization initiator functions as a photopolymerization initiator by being irradiated with light of a first wavelength,
    The second polymerization initiator functions as a photopolymerization initiator by being irradiated with light of a second wavelength,
    The first wavelength and the second wavelength are different wavelengths,
    In the first resin curing step, while the semi-cured state of the second resin is maintained, the first resin is irradiated with light of the first wavelength to cure the first resin,
    The method for manufacturing a multilayer printed wiring board according to claim 18 or 19, wherein in the second resin curing step, the second resin is cured by irradiating the second resin with light of a second wavelength.
  27. 前記下層プリント配線板準備工程では、第3重合開始剤を含む半硬化状態の前記第3樹脂に前記第2配線パターンを形成し、その後、前記第3樹脂が完全に硬化しないように前記第3樹脂を硬化させて前記下層プリント配線板を作製し、
    前記第2の樹脂硬化工程では、前記第2樹脂を硬化させ、同時に、前記第3樹脂を完全に硬化させて前記上層プリント配線板と前記下層プリント配線板とを接着する請求項18~26のいずれかに記載の多層プリント配線板の製造方法。
    In the lower layer printed wiring board preparation step, the second wiring pattern is formed on the third resin in a semi-cured state containing a third polymerization initiator, and then the third resin is not completely cured. The resin is cured to produce the lower layer printed wiring board,
    27. The method according to claim 18, wherein in the second resin curing step, the second resin is cured, and at the same time, the third resin is completely cured to bond the upper layer printed wiring board and the lower layer printed wiring board. The manufacturing method of the multilayer printed wiring board in any one.
  28. 前記下層プリント配線板準備工程では、第3重合開始剤を含む半硬化状態の前記第3樹脂と、第4重合開始剤を含む半硬化状態の第4樹脂とを積層し、前記第3樹脂に前記第2配線パターンを形成し、その後、前記第4樹脂の半硬化状態を維持させたまま、前記第3樹脂を硬化させ下層プリント配線板を作製し、
    第2の樹脂硬化工程では、前記第4樹脂も硬化させる請求項18~26のいずれかに記載の多層プリント配線板の製造方法。
    In the lower layer printed wiring board preparation step, the third resin in a semi-cured state containing a third polymerization initiator and the fourth resin in a semi-cured state containing a fourth polymerization initiator are laminated, and the third resin is added to the third resin. The second wiring pattern is formed, and then, while the semi-cured state of the fourth resin is maintained, the third resin is cured to produce a lower layer printed wiring board.
    The method for producing a multilayer printed wiring board according to any one of claims 18 to 26, wherein the fourth resin is also cured in the second resin curing step.
  29. 第1配線パターンが形成された上層プリント配線板と、第3樹脂に第2配線パターンが形成された下層プリント配線板とが積層された多層プリント配線板であって、
    前記上層プリント配線板は、一方の面に前記第1配線パターンが形成された第1硬化樹脂層と、
    前記第1配線パターンが形成された面と反対側の前記第1硬化樹脂層の面に積層された第2硬化樹脂層とからなり、
    前記第1硬化樹脂層は、第1樹脂が第1重合開始剤により硬化した硬化樹脂であり、
    前記第2硬化樹脂層は、第2樹脂が第2重合開始剤により硬化した硬化樹脂であり、
    前記第1樹脂を前記第1重合開始剤により硬化させる第1硬化手段と、前記第2樹脂を前記第2重合開始剤により硬化させる第2手段とは異なることを特徴とするプリント配線板。
    A multilayer printed wiring board in which an upper layer printed wiring board on which a first wiring pattern is formed and a lower layer printed wiring board on which a second wiring pattern is formed on a third resin are laminated,
    The upper layer printed wiring board has a first cured resin layer in which the first wiring pattern is formed on one surface thereof;
    And a second cured resin layer laminated on the surface of the first cured resin layer opposite to the surface on which the first wiring pattern is formed,
    The first cured resin layer is a cured resin in which a first resin is cured by a first polymerization initiator,
    The second cured resin layer is a cured resin in which a second resin is cured by a second polymerization initiator,
    A printed wiring board, which is different from a first curing means for curing the first resin by the first polymerization initiator and a second means for curing the second resin by the second polymerization initiator.
PCT/JP2018/018706 2017-09-01 2018-05-15 Printed circuit board production method, printed circuit board, multi-layered printed circuit board production method, and multi-layered printed circuit board WO2019044051A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017168562A JP6732706B2 (en) 2017-09-01 2017-09-01 Method for manufacturing printed wiring board, printed wiring board, method for manufacturing multilayer printed wiring board, and multilayer printed wiring board
JP2017-168562 2017-09-01

Publications (1)

Publication Number Publication Date
WO2019044051A1 true WO2019044051A1 (en) 2019-03-07

Family

ID=65525448

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/018706 WO2019044051A1 (en) 2017-09-01 2018-05-15 Printed circuit board production method, printed circuit board, multi-layered printed circuit board production method, and multi-layered printed circuit board

Country Status (3)

Country Link
JP (1) JP6732706B2 (en)
TW (1) TW201914387A (en)
WO (1) WO2019044051A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7223672B2 (en) * 2019-11-08 2023-02-16 日本特殊陶業株式会社 multilayer wiring board
EP4286153A1 (en) * 2021-01-26 2023-12-06 Toyobo Co., Ltd. Method for producing layered body, layered body, and multilayered body

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0117277B2 (en) * 1982-10-05 1989-03-29 Sumitomo Bakelite Co
JPH0818241A (en) * 1994-06-24 1996-01-19 Sony Corp Multilayer printed circuit board and method of manufacture
JPH08174755A (en) * 1994-12-21 1996-07-09 Toagosei Co Ltd Manufacture of copper-clad insulation sheet and multilayer printed wiring board
JP2003078250A (en) * 2001-09-04 2003-03-14 Matsushita Electric Ind Co Ltd Module incorporating component and manufacturing method thereof
JP2007088004A (en) * 2005-09-20 2007-04-05 Seiko Epson Corp Multilayer circuit board, method of manufacturing the same, electro-optical device, and electronic device
JP2013131714A (en) * 2011-12-22 2013-07-04 Taiyo Ink Mfg Ltd Manufacturing method of print circuit board, print circuit board, and flip chip mounting substrate
JP2017076763A (en) * 2015-10-16 2017-04-20 日本特殊陶業株式会社 Wiring board and manufacturing method therefor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6417277A (en) * 1987-07-11 1989-01-20 Hitachi Maxell Discoid recording medium

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0117277B2 (en) * 1982-10-05 1989-03-29 Sumitomo Bakelite Co
JPH0818241A (en) * 1994-06-24 1996-01-19 Sony Corp Multilayer printed circuit board and method of manufacture
JPH08174755A (en) * 1994-12-21 1996-07-09 Toagosei Co Ltd Manufacture of copper-clad insulation sheet and multilayer printed wiring board
JP2003078250A (en) * 2001-09-04 2003-03-14 Matsushita Electric Ind Co Ltd Module incorporating component and manufacturing method thereof
JP2007088004A (en) * 2005-09-20 2007-04-05 Seiko Epson Corp Multilayer circuit board, method of manufacturing the same, electro-optical device, and electronic device
JP2013131714A (en) * 2011-12-22 2013-07-04 Taiyo Ink Mfg Ltd Manufacturing method of print circuit board, print circuit board, and flip chip mounting substrate
JP2017076763A (en) * 2015-10-16 2017-04-20 日本特殊陶業株式会社 Wiring board and manufacturing method therefor

Also Published As

Publication number Publication date
TW201914387A (en) 2019-04-01
JP6732706B2 (en) 2020-07-29
JP2019046968A (en) 2019-03-22

Similar Documents

Publication Publication Date Title
JP5464304B1 (en) Epoxy resin, method for producing epoxy resin, epoxy resin composition, cured product thereof, and heat radiation resin material
JP7365574B2 (en) Maleimide compounds and their production methods, amic acid compounds and their production methods, resin compositions, cured products, resin sheets, prepregs, metal foil clad laminates, printed wiring boards, sealing materials, fiber reinforced composite materials, adhesives, and semiconductor devices
KR102340503B1 (en) Resin composition and multilayer substrate
US8404764B1 (en) Resin composition and prepreg, laminate and circuit board thereof
KR102572049B1 (en) curable resin composition
KR20210142149A (en) curable resin composition
WO2017183621A1 (en) Prepreg, metal-clad laminate board, and printed wiring board
WO2019044051A1 (en) Printed circuit board production method, printed circuit board, multi-layered printed circuit board production method, and multi-layered printed circuit board
JP5825544B2 (en) Cyanate ester compound, curable resin composition containing the compound, and cured product thereof
KR101969191B1 (en) Resin composition, prepreg, and laminate
JP2006328286A (en) Cyanate ester compound, flame retarding resin composition and prepreg and lamination plate using the same
KR20210000675A (en) Resin composition
JP5524525B2 (en) Copper foil with resin, laminated board and printed wiring board
JPWO2020031545A1 (en) Resin composition for printed wiring board, prepreg, laminated board, metal foil-clad laminated board, printed wiring board and multilayer printed wiring board
WO2019065552A1 (en) Phosphorus-containing phenoxy resin, resin composition thereof, and cured product
JP7532932B2 (en) Resin composition
KR102483491B1 (en) Resin composition, prepreg, resin sheet, metal foil-clad laminate, and printed wiring board
JP7052797B2 (en) Resin composition, cured product, single-layer resin sheet, laminated resin sheet, prepreg, metal leaf-clad laminated board, printed wiring board, sealing material, fiber-reinforced composite material and adhesive
CN111471270A (en) Epoxy resin composition, cured product thereof, prepreg, adhesive sheet, and laminate
JP2020100728A (en) Phenoxy resin, resin composition thereof, cured product thereof, and production method thereof
JP2011084697A (en) Polymerizable phosphorus-containing (poly)xylylene aryl ether compound, method for producing the same, flame-retardant thermocurable resin composition, cured product and laminated board
JP5508342B2 (en) B-stage film for printed wiring board and multilayer board
JP2015127410A (en) Epoxy resin composition and use thereof
JP2019006980A (en) Resin composition for insulation film, insulation film, and multilayer printed board
KR101981440B1 (en) Resin composition, prepreg, metal foil clad laminate, resin sheet and printed wiring board

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18852541

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18852541

Country of ref document: EP

Kind code of ref document: A1