WO2018174269A1 - 非水電解質電池、電池パック及び電池システム - Google Patents

非水電解質電池、電池パック及び電池システム Download PDF

Info

Publication number
WO2018174269A1
WO2018174269A1 PCT/JP2018/011861 JP2018011861W WO2018174269A1 WO 2018174269 A1 WO2018174269 A1 WO 2018174269A1 JP 2018011861 W JP2018011861 W JP 2018011861W WO 2018174269 A1 WO2018174269 A1 WO 2018174269A1
Authority
WO
WIPO (PCT)
Prior art keywords
nonaqueous electrolyte
positive electrode
battery
weight
electrolyte battery
Prior art date
Application number
PCT/JP2018/011861
Other languages
English (en)
French (fr)
Inventor
大 山本
祐輝 渡邉
信保 根岸
諒 原
Original Assignee
株式会社 東芝
東芝インフラシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝, 東芝インフラシステムズ株式会社 filed Critical 株式会社 東芝
Priority to JP2019507036A priority Critical patent/JP6776439B2/ja
Priority to CN201880014932.8A priority patent/CN110366793B/zh
Priority to EP18770708.8A priority patent/EP3605701B1/en
Publication of WO2018174269A1 publication Critical patent/WO2018174269A1/ja
Priority to US16/537,874 priority patent/US20190372154A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/06Lead-acid accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M2010/4292Aspects relating to capacity ratio of electrodes/electrolyte or anode/cathode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • H01M2300/0037Mixture of solvents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • Embodiments of the present invention relate to a non-aqueous electrolyte battery, a battery pack, and a battery system.
  • Lithium ion secondary batteries that are charged and discharged by moving lithium ions between the negative electrode and the positive electrode take advantage of high energy density and high output. It is widely applied to large-scale applications such as power supply and demand adjustment systems.
  • a non-aqueous electrolyte battery using a lithium titanium composite oxide having a lithium occlusion / release potential as high as about 1.55 V with respect to a lithium electrode instead of a carbon material has been put into practical use.
  • Lithium titanium composite oxide is excellent in cycle performance because there is little volume change accompanying charge / discharge.
  • a negative electrode including a lithium titanium composite oxide does not deposit lithium metal during lithium insertion and extraction, a secondary battery including this negative electrode can be charged with a large current.
  • the open circuit voltage (OCV) of a nonaqueous electrolyte battery As an attempt to lower the open circuit voltage (OCV) of a nonaqueous electrolyte battery, an attempt has been made to adjust the ratio of the capacities of the positive electrode and the negative electrode of the nonaqueous electrolyte battery.
  • the use potential range of the positive electrode can be limited by making the positive electrode capacity excessive with respect to the negative electrode capacity. According to such a design, the OCV of the nonaqueous electrolyte battery can be lowered as a result.
  • Japanese Patent No. 3754218 Japanese Unexamined Patent Publication No. 2016-35901 Japanese Patent No. 5433953 JP 2007-305447 A JP 2005-142047 A JP 2004-87229 A
  • a non-aqueous electrolyte battery includes a positive electrode, a negative electrode, and a nonaqueous electrolyte.
  • the positive electrode includes a lithium cobalt composite oxide.
  • the negative electrode includes a lithium titanium composite oxide.
  • the positive electrode and the negative electrode satisfy the formula (1): 1.25 ⁇ p / n ⁇ 1.6.
  • p is the positive electrode capacity [mAh / cm 2 ]
  • n is the negative electrode capacity [mAh / cm 2 ].
  • the non-aqueous electrolyte includes at least one propionic acid ester.
  • the content w of at least one propionic acid ester in the non-aqueous electrolyte is 20% by weight or more and less than 64% by weight with respect to the weight of the non-aqueous electrolyte.
  • the nonaqueous electrolyte battery according to the embodiment satisfies the formula (2): 13 ⁇ w / (p / n) ⁇ 40.
  • a battery pack is provided. This battery pack includes the nonaqueous electrolyte battery according to the embodiment.
  • a battery system is provided.
  • the battery system includes a first battery unit and a second battery unit connected in parallel to the first battery unit.
  • the first battery unit includes the nonaqueous electrolyte battery according to the embodiment.
  • the second battery unit includes a lead storage battery.
  • FIG. 1 is a schematic cutaway perspective view of an example nonaqueous electrolyte battery according to an embodiment.
  • FIG. 2 is a schematic cross-sectional view of a part A shown in FIG.
  • FIG. 3 is a schematic plan view of the positive electrode included in the nonaqueous electrolyte battery shown in FIG.
  • FIG. 4 is a schematic cross-sectional view of another example of an electrode group that can be included in the nonaqueous electrolyte battery according to the embodiment.
  • FIG. 5 is an exploded perspective view of an example battery pack according to the embodiment. 6 is a block diagram showing an electric circuit of the battery pack shown in FIG.
  • FIG. 7 is an electric circuit diagram of an example battery system according to the embodiment.
  • a non-aqueous electrolyte battery includes a positive electrode, a negative electrode, and a nonaqueous electrolyte.
  • the positive electrode includes a lithium cobalt composite oxide.
  • the negative electrode includes a lithium titanium composite oxide.
  • the positive electrode and the negative electrode satisfy the formula (1): 1.25 ⁇ p / n ⁇ 1.6.
  • p is a capacity [mAh / cm 2 ] per unit area of the positive electrode
  • n is a capacity [mAh / cm 2 ] per unit area of the negative electrode.
  • the non-aqueous electrolyte includes at least one propionic acid ester.
  • the content w of at least one propionic acid ester in the non-aqueous electrolyte is 20% by weight or more and less than 64% by weight with respect to the weight of the non-aqueous electrolyte.
  • the nonaqueous electrolyte battery according to the embodiment satisfies the formula (2): 13 ⁇ w / (p / n) ⁇ 40.
  • the non-aqueous electrolyte battery in which the positive electrode capacity is excessive and the OCV is lowered has a problem that the amount of gas generated during charge and discharge increases when no measures are taken. I discovered that there is.
  • a lithium cobalt composite oxide is included in the positive electrode.
  • the lithium cobalt composite oxide exhibits a buffering action against oxidative decomposition of the nonaqueous electrolyte and can suppress gas in the nonaqueous electrolyte battery.
  • this effect is manifested mainly in a state where the positive electrode potential is 4.1 V (vs. Li / Li + ) or higher.
  • a battery in which the positive electrode capacity is excessive with respect to the negative electrode capacity cannot increase the potential of the positive electrode to 4.1 V (vs. Li / Li + ) or more even when the battery is almost fully charged. It was found that the gas generation suppression effect by the composite oxide was not exhibited.
  • a non-conductive film is formed on the surface of the positive electrode current collector.
  • this method can suppress the decomposition of the nonaqueous electrolyte on the surface of the current collector, but cannot suppress the decomposition of the nonaqueous electrolyte on the surface of the active material.
  • the inventors have conducted research in view of such a situation, and as a result, realized the nonaqueous electrolyte battery according to the embodiment.
  • the nonaqueous electrolyte battery according to the embodiment can suppress gas generation during charging and discharging, and as a result, can exhibit excellent life performance.
  • the mechanism by which the nonaqueous electrolyte battery according to the embodiment can suppress gas generation is not known in detail, it can be inferred that it is as follows. However, the reason why the nonaqueous electrolyte battery according to the embodiment can suppress gas generation is not limited to the following theory.
  • the lithium cobalt composite oxide contained in the positive electrode can act on the decomposition products of the components of the nonaqueous electrolyte. At least one propionic acid ester contained in the non-aqueous electrolyte can generate a compound containing propionic acid, for example, by hydrolysis.
  • the lithium cobalt composite oxide contained in the positive electrode can suppress gas generation by interacting with the compound containing propionic acid.
  • Examples of the decomposition product of propionate capable of interacting with the lithium cobalt composite oxide are not only hydrolysis products but also decomposition products generated by oxidative decomposition, reductive decomposition, thermal decomposition and the like.
  • the inventors have mainly determined that the gas generation suppression effect due to the interaction between the lithium cobalt composite oxide and the decomposition product of propionate is based on the capacity ratio per unit area of the positive electrode and the negative electrode. It was found that the concentration of propionate in the non-aqueous electrolyte was affected. Specifically, this finding is as follows. First, in a nonaqueous electrolyte battery having a capacity ratio p / n of 1.25 or more, the positive electrode capacity is excessive with respect to the negative electrode capacity. In such a battery, the charging reaction and discharging reaction of the battery are repeated in a state where a large amount of Li is occluded in the positive electrode containing the lithium cobalt composite oxide.
  • Li occluded in the positive electrode may cause a side reaction and cause gas generation. And it is estimated that the interaction of the decomposition product of propionate and lithium cobalt complex oxide is mainly influenced by the amount of Li occluded in the positive electrode. From these estimates, the inventors derived that there is an appropriate range for suppressing gas generation between the concentration of propionic acid ester in the non-aqueous electrolyte and the ratio of the volume ratio p / n.
  • the nonaqueous electrolyte battery according to the embodiment includes the following formulas (1) and (2): Formula (1): 1.25 ⁇ p / n ⁇ 1.6; and Formula (2): 13 ⁇ w / (p / n) ⁇ 40 are satisfied.
  • p is a capacity [mAh / cm 2 ] per unit area of the positive electrode
  • n is a capacity [mAh / cm 2 ] per unit area of the negative electrode.
  • W is the content [wt%] of at least one propionic acid ester in the non-aqueous electrolyte.
  • the content w is in the range of 20 wt% or more and less than 64 wt% with respect to the weight of the nonaqueous electrolyte.
  • the nonaqueous electrolyte battery according to the embodiment can sufficiently exhibit the effect of suppressing the gas generation due to the interaction between the lithium cobalt composite oxide and the decomposition product of propionate, and as a result, has an excellent lifetime. Performance can be demonstrated.
  • the nonaqueous electrolyte battery that does not satisfy the formula (1) and / or the formula (2) cannot sufficiently exhibit the effect of suppressing the gas generation for the following reason.
  • non-aqueous electrolyte battery having a ratio w / (p / n) of 13 or less
  • the following non-aqueous electrolyte battery can be considered.
  • a non-aqueous electrolyte battery in which no propionate is included in the non-aqueous electrolyte, i.e., w 0.
  • nonaqueous electrolyte batteries during the charge and discharge, the amount of the decomposition product of propionate that interacts with the lithium cobalt composite oxide becomes too small with respect to the amount of Li stored in the positive electrode.
  • Such nonaqueous electrolyte batteries cannot exhibit a sufficient gas generation suppression effect.
  • non-aqueous electrolyte battery having a ratio w / (p / n) value of 13 or less
  • the capacity p per unit area of the positive electrode is excessively large, thereby causing the capacity ratio p / n to be too large.
  • a non-aqueous electrolyte battery is mentioned.
  • charging and discharging are repeated in a state where an excessive amount of Li is occluded in the positive electrode. Therefore, in such a nonaqueous electrolyte battery, the amount of decomposition products of propionate that interacts with the lithium cobalt composite oxide is reduced with respect to the amount of Li stored in the positive electrode during charging and discharging. Pass.
  • non-aqueous electrolyte batteries having a ratio w / (p / n) value greater than 40 include the following non-aqueous electrolyte batteries.
  • One example is a non-aqueous electrolyte battery where the concentration of propionate in the non-aqueous electrolyte is too high.
  • the amount of Li occluded in the positive electrode becomes too small with respect to the decomposition product derived from propionate during charging and discharging.
  • the effect of suppressing gas generation cannot be sufficiently obtained.
  • dissociation of Li ions from the electrolyte in the non-aqueous electrolyte is not promoted, resulting in an increase in resistance.
  • non-aqueous electrolyte batteries having a ratio w / (p / n) value greater than 40 include non-aqueous electrolyte batteries having a capacity ratio p / n that is too small.
  • the positive electrode potential becomes too high in a charged state close to a fully charged state.
  • the oxidative decomposition of the propionic acid ester is excessively caused and the amount of gas generated increases.
  • a non-aqueous electrolyte battery having a capacity ratio p / n of 1.25 or more and 1.6 or less the use range of the positive electrode is limited, and the OCV of the non-aqueous electrolyte battery can be lowered. In such a battery, the potential of the positive electrode is kept low even in a state close to a fully charged state, and deterioration of the active material can be suppressed. On the other hand, in a nonaqueous electrolyte battery having a capacity ratio p / n smaller than 1.25, the positive electrode potential becomes too high in a state close to a fully charged state.
  • the lithium cobalt composite oxide When the lithium cobalt composite oxide is included in the positive electrode, an effect of suppressing gas generation can be obtained, but capacity deterioration is promoted, resulting in a decrease in life performance. Further, in a nonaqueous electrolyte battery having a capacity ratio p / n larger than 1.6, the capacity p per unit area of the positive electrode is excessive with respect to the capacity n per unit area of the negative electrode. Such a non-aqueous electrolyte battery has too low energy density. In addition, such a nonaqueous electrolyte battery has a high resistance because the charge reaction and the discharge reaction proceed while Li is excessively occluded in the positive electrode.
  • a non-aqueous electrolyte battery having high resistance is subjected to a large load due to repeated charging and discharging, and deterioration is likely to proceed. Therefore, such a nonaqueous electrolyte battery is inferior not only in input / output performance but also in life performance.
  • the lithium titanium composite oxide included in the negative electrode of the nonaqueous electrolyte battery according to the embodiment can function as a negative electrode active material.
  • the nonaqueous electrolyte battery according to the embodiment using the lithium titanium composite oxide for the negative electrode has a capacity ratio p / n of 1.25 or more, but can exhibit excellent life performance.
  • the value of the capacity ratio p / n is preferably in the range of 1.3 or more and less than 1.5.
  • a nonaqueous electrolyte battery having a capacity ratio p / n within a preferable range can increase the energy density of the nonaqueous electrolyte battery while suppressing gas generation.
  • the value of the capacity ratio p / n is more preferably in the range of 1.3 or more and less than 1.45.
  • the capacity ratio p / n of the nonaqueous electrolyte battery is, for example, the coating amount of the positive electrode preparation slurry and the negative electrode preparation slurry, the type and blending ratio of each active material in each slurry, and the sub members such as the conductive agent and the binder. It can be controlled by the mixing ratio. For example, according to the procedure described in the examples, a nonaqueous electrolyte battery having a capacity ratio p / n of 1.25 or more and 1.6 or less can be manufactured.
  • the content w of propionic acid ester in the non-aqueous electrolyte is in the range of 20 wt% to 64 wt% with respect to the weight of the non-aqueous electrolyte, and the formula (2): 13 ⁇ w / (p / n) ⁇ 40 is satisfied.
  • the amount of propionic acid generated during charge / discharge of the nonaqueous electrolyte is not sufficient, and gas generation is sufficiently suppressed. I can not.
  • the resistance of the nonaqueous electrolyte increases and the rate characteristics deteriorate. Further, in such a battery, the deterioration of the battery due to the decomposition of the propionic acid ester becomes remarkable, and the life characteristics are deteriorated.
  • the content w of propionic acid ester in the nonaqueous electrolyte is preferably 20% by weight or more and less than 50% by weight, and more preferably 20% by weight or more and less than 40% by weight with respect to the weight of the nonaqueous electrolyte.
  • the value of the ratio w / (p / n) is preferably in the range of 13.0 ⁇ w / (p / n) ⁇ 40, and in the range of 14 ⁇ w / (p / n) ⁇ 35. More preferably, it is more preferably in the range of 15 ⁇ w / (p / n) ⁇ 30.
  • the non-aqueous electrolyte battery in which the value of the ratio w / (p / n) is within a preferable range can further suppress gas generation during charging / discharging.
  • the nonaqueous electrolyte battery according to the embodiment includes a positive electrode, a negative electrode, and a nonaqueous electrolyte.
  • the positive electrode can comprise a positive electrode current collector.
  • the positive electrode current collector can have, for example, a belt-like planar shape.
  • the strip-shaped positive electrode current collector can have two surfaces including a first surface and a second surface as its back surface.
  • the positive electrode can further include a positive electrode active material-containing layer.
  • the positive electrode active material-containing layer can be formed on, for example, two surfaces or one surface of the positive electrode current collector.
  • the positive electrode current collector can include a portion where the positive electrode active material-containing layer is not formed on the surface. This part can act as a positive lead.
  • the positive electrode includes a lithium cobalt composite oxide.
  • the lithium cobalt composite oxide can have, for example, a composition represented by a general formula of Li x1 CoO 2 .
  • the subscript x1 can take a value in the range of 0 ⁇ x1 ⁇ 1 depending on the state of charge of the lithium cobalt composite oxide.
  • the lithium cobalt composite oxide can also be called lithium cobaltate. That is, the lithium cobalt composite oxide contained in the positive electrode can include, for example, lithium cobaltate having a composition represented by the general formula of Li x1 CoO 2 , where 0 ⁇ x1 ⁇ 1. .
  • the lithium cobalt composite oxide can act as a positive electrode active material.
  • the lithium cobalt composite oxide can be included in the positive electrode active material-containing layer.
  • the positive electrode active material-containing layer may further contain a conductive agent and a binder.
  • the positive electrode active material-containing layer can further contain a positive electrode active material other than the lithium cobalt composite oxide.
  • the negative electrode can comprise a negative electrode current collector.
  • the negative electrode current collector can have, for example, a belt-like planar shape.
  • the strip-shaped negative electrode current collector can have two surfaces including a first surface and a second surface as its back surface.
  • the negative electrode can further comprise a negative electrode active material-containing layer.
  • the negative electrode active material-containing layer can be formed on, for example, two surfaces or one surface of the negative electrode current collector.
  • the negative electrode current collector can include a portion where the negative electrode active material-containing layer is not formed on the surface. This part can act as a positive lead.
  • the negative electrode contains a lithium titanium composite oxide.
  • the lithium titanium composite oxide can function as a negative electrode active material.
  • the lithium titanium composite oxide can be included in the negative electrode active material-containing layer.
  • the negative electrode active material-containing layer can also contain a conductive agent and a binder.
  • the negative electrode active material-containing layer can further contain a negative electrode active material other than the lithium titanium composite oxide.
  • the positive electrode and the negative electrode can constitute an electrode group with the positive electrode active material-containing layer and the negative electrode active material-containing layer facing each other with a separator interposed therebetween.
  • the structure of the electrode group formed in this way is not particularly limited.
  • the electrode group can have a stack structure.
  • the stack structure has a structure in which the positive electrode and the negative electrode described above are stacked with a separator interposed therebetween.
  • the electrode group may have a wound structure.
  • the wound structure is a structure in which the positive electrode and the negative electrode described above are stacked with a separator interposed therebetween, and the stacked body thus obtained is wound in a spiral shape.
  • the nonaqueous electrolyte can be impregnated in the electrode group, for example.
  • the non-aqueous electrolyte can include, for example, a non-aqueous solvent and an electrolyte.
  • the electrolyte can be dissolved in a non-aqueous solvent.
  • the nonaqueous electrolyte battery according to the embodiment may further include a container for accommodating the electrode group and the nonaqueous electrolyte.
  • the nonaqueous electrolyte battery according to the embodiment may further include a positive electrode current collecting tab electrically connected to the positive electrode lead and a negative electrode current collecting tab electrically connected to the negative electrode lead.
  • the positive electrode current collecting tab and the negative electrode current collecting tab can be pulled out of the container and serve as a positive electrode terminal and a negative electrode terminal.
  • a positive electrode current collection tab and a negative electrode current collection tab can also be connected to each of a positive electrode terminal and a negative electrode terminal.
  • Positive electrode As a positive electrode electrical power collector, metal foil, such as aluminum and copper, can be used, for example.
  • the positive electrode active material other than the lithium cobalt composite oxide is not particularly limited as long as it can absorb and release lithium or lithium ions.
  • the positive electrode active material other than the lithium cobalt composite oxide include manganese dioxide (MnO 2 ), iron oxide, copper oxide, nickel oxide, lithium nickel composite oxide (for example, Li x2 NiO 2 , 0 ⁇ x2 ⁇ 1) , Lithium nickel cobalt manganese composite oxide (for example, Li x Ni 1-abc Co a Mn b M 1 c O 2 may have a composition represented by the general formula: M 1 is Mg, Al, Si, Ti, It is at least one selected from the group consisting of Zn, Zr, Ca, W, Nb and Sn, and each subscript is ⁇ 0.2 ⁇ x ⁇ 0.5, 0 ⁇ a ⁇ 0.4 (preferably, 0.25 ⁇ a ⁇ 0.4), 0 ⁇ b ⁇ 0.5, 0 ⁇ c ⁇ 0.1), lithium nickel cobalt composite oxide (for example, Li
  • the weight of the lithium cobalt composite oxide in the positive electrode active material is preferably 5% by weight or more and 100% by weight or less, and more preferably 10% by weight or more and 100% by weight or less with respect to the weight of the positive electrode active material.
  • the positive electrode can include a positive electrode active material.
  • the positive electrode active material can include, for example, the lithium cobalt composite oxide described above.
  • the weight of the lithium cobalt composite oxide is preferably 5% by weight or more and 100% by weight or less, more preferably 10% by weight or more and 100% by weight or less with respect to the weight of the positive electrode active material.
  • the positive electrode preferably further contains the lithium nickel cobalt manganese composite oxide mentioned above.
  • the cobalt component in the lithium nickel cobalt manganese composite oxide acts effectively, and gas generation can be further suppressed.
  • the positive electrode comprises a lithium cobalt composite oxide and a lithium nickel cobalt manganese composite oxide represented by the general formula Li 1-x Ni 1-abc Co a Mn b M1 c O 2.
  • the subscripts are ⁇ 0.2 ⁇ x ⁇ 0.5, 0 ⁇ a ⁇ 0.4, 0 ⁇ b ⁇ 0. 5, 0 ⁇ c ⁇ 0.1.
  • the positive electrode contains a lithium cobalt composite oxide and a lithium nickel cobalt manganese composite oxide represented by the above general formula in a weight ratio of 100: 0 to 10:90, and 100: 0 to 20:80. More preferably, it is contained in a weight ratio of
  • the conductive agent included in the positive electrode active material-containing layer preferably includes a carbon material.
  • the carbon material include acetylene black, ketjen black, furnace black, graphite, and carbon nanotube.
  • the positive electrode active material-containing layer can contain one or more of the above carbon materials, or can further contain another conductive agent.
  • the binder that the positive electrode active material-containing layer can contain is not particularly limited.
  • a polymer that is well dispersed in a mixing solvent for slurry preparation can be used as the binder.
  • examples of such a polymer include polyvinylidene fluoride, hexafluoropropylene, and polytetrafluoroethylene.
  • the contents of the positive electrode active material, the conductive agent and the binder in the positive electrode active material-containing layer are 80% by weight to 98% by weight, 1% by weight to 10% by weight, respectively, based on the weight of the positive electrode active material-containing layer. It is preferably 1% by weight or more and 10% by weight or less, more preferably 90% by weight or more and 94% by weight or less, 2% by weight or more and 8% by weight or less, and 1% by weight or more and 5% by weight or less.
  • the positive electrode can be produced, for example, by the following method. First, a lithium cobalt composite oxide, any other active material, any conductive agent, and any binder are charged into an appropriate solvent to obtain a mixture. Subsequently, the obtained mixture is put into a stirrer. In this stirrer, the mixture is stirred to obtain a slurry.
  • the positive electrode can be produced by applying the slurry thus obtained onto the positive electrode current collector, drying the slurry, and then pressing the slurry.
  • Negative electrode As a negative electrode collector, metal foil, such as aluminum and copper, can be used, for example.
  • the lithium titanium composite oxide included in the negative electrode is, for example, lithium titanate having a spinel crystal structure (for example, Li 4 + y Ti 5 O 12 (y is in the range of 0 ⁇ y ⁇ 3 depending on the state of charge).
  • the composition can vary within a range).
  • examples of other lithium-titanium composite oxides include lithium titanate having a ramsdelite type crystal structure. That is, the lithium-titanium composite oxide can include, for example, lithium titanate having a spinel crystal structure and a general formula of Li 4 + y Ti 5 O 12 , where 0 ⁇ y ⁇ 3.
  • active materials other than lithium-titanium composite oxides include anatase-type, rutile-type, bronze-type titanium-containing oxides, niobium-titanium-containing oxides having a monoclinic crystal structure, and orthorhombic crystal structures.
  • active materials other than lithium-titanium composite oxides include anatase-type, rutile-type, bronze-type titanium-containing oxides, niobium-titanium-containing oxides having a monoclinic crystal structure, and orthorhombic crystal structures.
  • examples thereof include Na-containing niobium titanium composite oxide.
  • the negative electrode active material is lithium titanate having a spinel crystal structure.
  • the negative electrode active material is particularly preferably made of lithium titanate having a spinel crystal structure.
  • the same materials as those that can be contained in the positive electrode active material-containing layer can be used.
  • the content of the negative electrode active material, the conductive agent and the binder in the negative electrode active material-containing layer is 80% by weight to 98% by weight, 1% by weight to 10% by weight, respectively, based on the weight of the negative electrode active material-containing layer. It is preferably 1% by weight or more and 10% by weight or less, more preferably 90% by weight or more and 94% by weight or less, 2% by weight or more and 8% by weight or less, and 1% by weight or more and 5% by weight or less.
  • the negative electrode can be produced, for example, by the following procedure. First, a negative electrode active material, a conductive agent, and a binder are mixed. The mixture thus obtained is added to a solvent to prepare a slurry. This slurry is applied to the negative electrode current collector, dried, and then pressed. Thus, a negative electrode can be produced.
  • Nonaqueous electrolyte At least one propionic acid ester may be contained in the nonaqueous electrolyte as a nonaqueous solvent, for example.
  • the at least one propionate can include, for example, at least one selected from the group consisting of methyl propionate, ethyl propionate, propyl propionate, and butyl propionate.
  • the at least one propionate preferably contains at least one selected from the group consisting of methyl propionate and ethyl propionate.
  • the non-aqueous electrolyte can further contain propylene carbonate (PC) as a non-aqueous solvent.
  • PC propylene carbonate
  • a compound containing propylene glycol can be produced from the propylene carbonate solvent.
  • This compound can play the same role as a compound containing propionic acid in a non-aqueous electrolyte battery, and gas generation can be further suppressed by the interaction between the compound and the lithium cobalt composite oxide.
  • the content of propylene carbonate in the nonaqueous electrolyte is preferably 20% by weight or more and less than 60% by weight, and more preferably 25% by weight or more and less than 55% by weight with respect to the weight of the nonaqueous electrolyte.
  • the content of propylene carbonate in the non-aqueous electrolyte is 20% by weight or more and less than 40% by weight with respect to the weight of the non-aqueous electrolyte.
  • the content of propylene carbonate in the non-aqueous electrolyte is 25% by weight or more and less than 40% by weight with respect to the weight of the non-aqueous electrolyte.
  • the nonaqueous electrolyte battery in which the content of propylene carbonate is in a particularly preferred range the nonaqueous electrolyte can exhibit better ion conductivity, and as a result, a lower internal resistance of the battery can be realized.
  • non-aqueous solvent examples include, for example, ethylene carbonate (EC), butylene carbonate (BC), dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC), ⁇ -butyrolactone ( ⁇ -BL ), Sulfolane, acetonitrile, 1,2-dimethoxyethane, 1,3-dimethoxypropane, dimethyl ether, tetrahydrofuran (THF), 2-methyltetrahydrofuran and the like.
  • EC ethylene carbonate
  • BC dimethyl carbonate
  • DEC diethyl carbonate
  • EMC ethyl methyl carbonate
  • ⁇ -BL ⁇ -butyrolactone
  • the non-aqueous solvent one type of solvent may be used alone, or a mixed solvent obtained by mixing two or more types of solvents may be used.
  • the non-aqueous solvent consists of at least one propionic acid ester and propylene carbonate.
  • the weight ratio of propionic acid ester: propylene carbonate is preferably in the range of 25:75 to 75:25.
  • the nonaqueous solvent of this aspect can further contain these decomposition products in addition to propionic acid ester and propylene carbonate.
  • Examples of the electrolyte include lithium perchlorate (LiClO 4 ), lithium hexafluorophosphate (LiPF 6 ), lithium tetrafluoroborate (LiBF 4 ), lithium hexafluoroarsenide (LiAsF 6 ), and trifluoromethanesulfonic acid.
  • a lithium salt such as lithium (LiCF 3 SO 3 ) can be given.
  • the electrolyte one type of electrolyte may be used alone, or a mixture of two or more types of electrolytes may be used.
  • the amount of electrolyte dissolved in a non-aqueous solvent is desirably 0.5 mol / L to 3 mol / L. If the amount of dissolution is too high, it may not be completely dissolved in the electrolytic solution.
  • the separator is not particularly limited, and for example, a microporous film, a woven fabric, a non-woven fabric, a laminate of the same material or different materials among these can be used.
  • the material for forming the separator include polyethylene, polypropylene, ethylene-propylene copolymer, ethylene-butene copolymer, and cellulose.
  • Container for example, a metal container or a laminate film container can be used, but it is not particularly limited.
  • a nonaqueous electrolyte battery excellent in impact resistance and long-term reliability can be realized.
  • a laminate film container as the container it is possible to realize a non-aqueous electrolyte battery excellent in corrosion resistance and to reduce the weight of the non-aqueous electrolyte battery.
  • a metal container having a wall thickness in the range of 0.2 mm to 1 mm can be used. More preferably, the metal container has a wall thickness of 0.3 to 0.8 mm or less.
  • the metal container preferably contains at least one selected from the group consisting of Fe, Ni, Cu, Sn and Al.
  • the metal container can be made of, for example, aluminum, aluminum alloy, iron, nickel (Ni) plated iron, stainless steel (SUS), or the like.
  • the aluminum alloy is preferably an alloy containing elements such as magnesium, zinc, and silicon. When the alloy contains a transition metal such as iron, copper, nickel, or chromium, the content is preferably 1% by weight or less. Thereby, long-term reliability and heat dissipation in a high temperature environment can be dramatically improved.
  • the laminate film container for example, a container having a thickness in the range of 0.1 to 2 mm can be used.
  • the thickness of the laminate film is more preferably 0.2 mm or less.
  • a multilayer film including a metal layer and a resin layer sandwiching the metal layer is used.
  • the metal layer preferably contains a metal including at least one selected from the group consisting of Fe, Ni, Cu, Sn, and Al.
  • the metal layer is preferably an aluminum foil or an aluminum alloy foil for weight reduction.
  • a polymer material such as polypropylene (PP), polyethylene (PE), nylon, polyethylene terephthalate (PET) can be used.
  • the laminate film can be molded into the shape of an exterior material by sealing by heat sealing.
  • Examples of the shape of the exterior material include a flat type (thin type), a square type, a cylindrical type, a coin type, and a button type.
  • An exterior material can take various dimensions according to a use. For example, when the nonaqueous electrolyte battery according to the first embodiment is used for a portable electronic device, the exterior material can be made small according to the size of the electronic device to be mounted. Alternatively, in the case of a non-aqueous electrolyte battery mounted on a two-wheel or four-wheel automobile, the container may be a large battery container.
  • Positive electrode current collecting tab, negative electrode current collecting tab, positive electrode terminal and negative electrode terminal The positive electrode current collecting tab, the negative electrode current collecting tab, the positive electrode terminal and the negative electrode terminal are preferably formed from, for example, aluminum or an aluminum alloy.
  • Capacity ratio p / n A method for calculating the ratio of the capacity p per unit area of the positive electrode to the capacity n per unit area of the negative electrode, that is, the ratio p / n will be described below.
  • the target non-aqueous electrolyte battery is a battery having a capacity of 80% or more of the rated capacity.
  • the capacity maintenance rate of the battery is determined by the following method. First, the battery is charged to the operating upper limit voltage. The current value at this time is a current value corresponding to the 1C rate obtained from the rated capacity. After reaching the operating upper limit voltage, the voltage is held for 3 hours. After charging and holding the voltage, the battery is discharged to the lower limit of the operating voltage at a rate of 1C. The above charging / discharging is performed for a total of 3 cycles, and the discharge capacity obtained at the time of discharging in the third cycle is recorded. The ratio of the obtained discharge capacity to the rated capacity is defined as the capacity maintenance rate.
  • the battery is placed in an inert gas atmosphere such as a glove box in an argon gas atmosphere.
  • the non-aqueous electrolyte battery is opened in such a glove box.
  • the non-aqueous electrolyte battery can be opened by cutting the heat seal portion around each of the positive electrode current collecting tab and the negative electrode current collecting tab.
  • An electrode group is taken out from the opened nonaqueous electrolyte battery.
  • the extracted electrode group includes the positive electrode lead and the negative electrode lead, the positive electrode lead and the negative electrode lead are cut while being careful not to short-circuit the positive and negative electrodes.
  • the taken-out electrode group is disassembled and decomposed into a positive electrode, a negative electrode, and a separator. Thereafter, the weight W c [g] of the portion of the positive electrode facing the negative electrode is measured. Thereafter, a positive electrode sample including, for example, a 3 cm square positive electrode active material-containing layer is cut out from the positive electrode.
  • the state of charge of the battery may be any state.
  • the positive electrode sample is cut from the portion of the positive electrode that faces the negative electrode. For example, when the positive electrode sample includes a positive electrode active material-containing layer supported on both surfaces of the current collector, the positive electrode active material-containing layer supported on one surface of the current collector is peeled off to form a positive electrode sample. .
  • the weight W cs [g] of the cut positive electrode sample is measured.
  • a bipolar or tripolar electrochemical measurement cell using a positive electrode sample as a working electrode and a lithium metal foil as a counter electrode and a reference electrode is prepared.
  • the prepared electrochemical measurement cell is charged to an upper limit potential of 4.3 V (vs. Li / Li + ).
  • the current value at this time is a current value I 1cc [mA] corresponding to the 1C rate.
  • the current value I 1cc is obtained by the following procedure.
  • C n is the rated capacity [mAh] of the non-aqueous electrolyte battery to be inspected.
  • I 1cc [mA] C cs [mAh] / 1 [h]
  • the potential is maintained for 3 hours.
  • discharging is performed until the positive electrode potential reaches 3.0 V (vs. Li / Li + ) at the same current value as charging.
  • the above charging / discharging is performed for a total of 3 cycles, and the discharge capacity obtained at the time of discharging in the third cycle is recorded.
  • the weight W a [g] of the portion of the negative electrode taken out from the disassembled electrode group that faces the positive electrode is measured.
  • a negative electrode sample including a 3 cm square negative electrode active material-containing layer is cut out from the negative electrode.
  • the state of charge of the battery may be any state.
  • the negative electrode sample is cut from the portion of the negative electrode facing the positive electrode. For example, when the negative electrode sample has a negative electrode active material-containing layer supported on both surfaces of the current collector, the negative electrode active material-containing layer supported on one surface of the current collector is peeled off, and the negative electrode sample and To do.
  • the weight W as [g] of the cut negative electrode sample is measured.
  • a bipolar or tripolar electrochemical measurement cell using a negative electrode sample as a working electrode and a lithium metal foil as a counter electrode and a reference electrode is prepared.
  • the prepared electrochemical measurement cell is charged to a lower limit potential of 1.0 V (vs. Li / Li + ).
  • the current value at this time is a current value I 1ca [A] corresponding to the 1C rate.
  • the current value I 1ca is obtained by the following procedure.
  • C n is the rated capacity [mAh] of the non-aqueous electrolyte battery to be inspected as described above.
  • I 1ac [mA] C as [mAh] / 1 [h]
  • the potential is maintained for 3 hours.
  • discharging is performed until the negative electrode potential becomes 2.0 V (vs. Li / Li + ) at the same current value as charging.
  • the above charging / discharging is performed for a total of 3 cycles, and the discharge capacity obtained at the time of the last discharge is recorded.
  • the positive electrode active material contained in the nonaqueous electrolyte battery can be identified according to the following method. First, the nonaqueous electrolyte battery is discharged at 1 C until the battery voltage reaches 1.0V. Next, the battery in such a state is disassembled in a glove box filled with argon. Remove the positive electrode from the disassembled battery. The taken out positive electrode is washed with an appropriate solvent. For example, ethyl methyl carbonate may be used. If the cleaning is insufficient, an impurity phase such as lithium carbonate or lithium fluoride may be mixed under the influence of lithium ions remaining in the positive electrode.
  • an appropriate solvent For example, ethyl methyl carbonate may be used. If the cleaning is insufficient, an impurity phase such as lithium carbonate or lithium fluoride may be mixed under the influence of lithium ions remaining in the positive electrode.
  • an airtight container which can perform measurement in an inert gas atmosphere may be used.
  • the positive electrode After washing, the positive electrode is subjected to vacuum drying. After drying, the positive electrode active material-containing layer is peeled from the current collector using a spatula or the like to obtain a powdered positive electrode active material-containing layer.
  • the crystal structure of the compound contained in the powder can be identified by performing powder X-ray diffraction measurement (XRD) on the powder thus obtained.
  • the measurement is performed in a measurement range where 2 ⁇ is 10 to 90 ° using CuK ⁇ rays as a radiation source.
  • XRD powder X-ray diffraction measurement
  • an X-ray diffraction pattern of the compound contained in the powder can be obtained.
  • Rigaku SmartLab is used as an apparatus for powder X-ray diffraction measurement.
  • the measurement conditions are as follows: Cu target; 45 kV, 200 mA; Solar slit: 5 ° for both incidence and reception; Step width: 0.02 deg; Scan rate: 20 deg / min; Semiconductor detector: D / teX Ultra 250; Sample Plate holder: Flat glass sample plate holder (thickness 0.5 mm); Measurement range: 10 ° ⁇ 2 ⁇ ⁇ 90 °. If you use other equipment, follow the steps below. First, the measurement using the standard Si powder for powder X-ray diffraction is performed in another apparatus, and the conditions for obtaining the measurement results of the peak intensity and the peak top position similar to the results obtained by the Rigaku SmartLab are found. Next, the sample is measured under the conditions.
  • the mixed state of the active material can be judged by whether or not peaks attributable to a plurality of crystal structures appear in the measurement result.
  • the active material-containing layer is observed with a scanning electron microscope (SEM).
  • SEM scanning electron microscope
  • the particle size distribution of the selected particles is selected to be as wide as possible.
  • the type and composition of constituent elements of the active material are specified by energy dispersive X-ray spectroscopy (Energy Dispersive X-ray Spectroscopy; EDX).
  • EDX Energy Dispersive X-ray Spectroscopy
  • the powder of the positive electrode active material-containing layer is weighed.
  • the weighed powder is dissolved in hydrochloric acid, diluted with ion-exchanged water, and the amount of contained metal is calculated by inductively coupled plasma emission spectroscopy (ICP-AES).
  • ICP-AES inductively coupled plasma emission spectroscopy
  • the mass ratio is estimated from the content ratio of elements unique to each active material.
  • the ratio between the intrinsic element and the active material mass is determined from the composition of the constituent elements obtained by energy dispersive X-ray spectroscopy.
  • the active material contained in the positive electrode of the nonaqueous electrolyte battery can be identified.
  • the negative electrode active material contained in the nonaqueous electrolyte battery can also be identified by the same procedure as above. However, here, in order to grasp the crystal state of the negative electrode active material, lithium ions are separated from the active material to be measured. For example, the nonaqueous electrolyte battery is discharged at 1 C until the battery voltage reaches 1.0V. However, lithium ions remaining in the active material may exist even when the battery is discharged.
  • the nonaqueous electrolyte contained in the battery and electrode group is extracted.
  • the nonaqueous electrolyte can be taken out from the location where the nonaqueous electrolyte battery is opened, the nonaqueous electrolyte is sampled as it is.
  • the electrode group is further disassembled, and for example, a separator impregnated with the nonaqueous electrolyte is taken out.
  • the nonaqueous electrolyte impregnated in the separator can be extracted using, for example, a centrifuge. Thus, sampling of the nonaqueous electrolyte can be performed.
  • the nonaqueous electrolyte contained in the nonaqueous electrolyte battery when the nonaqueous electrolyte contained in the nonaqueous electrolyte battery is small, the nonaqueous electrolyte can be extracted by immersing the electrode and the separator in an acetonitrile solution. The amount of extraction can be calculated by measuring the weight of the acetonitrile solution before and after extraction.
  • the sample of the nonaqueous electrolyte thus obtained is subjected to composition analysis, for example, by subjecting it to a gas chromatography mass spectrometer (GC-MS) or nuclear magnetic resonance spectroscopy (NMR).
  • GC-MS gas chromatography mass spectrometer
  • NMR nuclear magnetic resonance spectroscopy
  • FIG. 1 is a schematic cutaway perspective view of an example nonaqueous electrolyte battery according to an embodiment.
  • FIG. 2 is a schematic cross-sectional view of a part A shown in FIG.
  • FIG. 3 is a schematic plan view of a positive electrode included in an example nonaqueous electrolyte battery according to the embodiment.
  • a nonaqueous electrolyte battery 1 of the first example shown in FIGS. 1 to 3 includes an electrode group 2 shown in FIGS. 1 and 2, a container 3 shown in FIGS. 1 and 2, and a positive electrode shown in FIGS.
  • a current collecting tab 4 and a negative electrode current collecting tab 5 shown in FIG. 1 are provided.
  • 1 and 2 includes a plurality of positive electrodes 6, a plurality of negative electrodes 7, and one separator 8.
  • the positive electrode 6 includes a positive electrode current collector 61 and a positive electrode active material-containing layer 62 formed on both surfaces of the positive electrode current collector 61.
  • the positive electrode current collector 61 includes a portion 63 on the surface where the positive electrode active material-containing layer 62 is not formed, and this portion 63 serves as a positive electrode lead.
  • the positive electrode lead 63 is a narrow portion that is narrower than the positive electrode active material-containing layer 62.
  • the negative electrode 7 includes a negative electrode current collector 71 and negative electrode active material-containing layers 72 formed on both surfaces of the negative electrode current collector 71.
  • the negative electrode current collector 71 includes a portion where the negative electrode active material-containing layer 72 is not formed on the surface, and this portion serves as a negative electrode lead.
  • the separator 8 has ninety nine folds.
  • the positive electrode 6 or the negative electrode 7 is arranged in the space defined by the mutually facing surfaces of the separator 8 that is folded into ninety-nine folds.
  • the positive electrode 6 and the negative electrode 7 are laminated so that the positive electrode active material-containing layer 62 and the negative electrode active material-containing layer 72 are opposed to each other with the separator 8 interposed therebetween.
  • the electrode group 2 is formed.
  • the positive electrode lead 63 of the electrode group 2 extends from the electrode group 2 as shown in FIG. As shown in FIG. 2, these positive electrode leads 63 are combined into one and connected to the positive electrode current collecting tab 4. Although not shown, the negative electrode lead of the electrode group 2 also extends from the electrode group 2. Although not shown, these negative electrode leads are combined into one and connected to the negative electrode current collecting tab 5 shown in FIG.
  • Such an electrode group 2 is housed in a container 3 as shown in FIGS.
  • the container 3 is formed of an aluminum-containing laminate film composed of an aluminum foil 31 and resin films 32 and 33 formed on both surfaces thereof.
  • the aluminum-containing laminate film forming the container 3 accommodates the electrode group 2 by being bent so that the resin film 32 faces inward with the bent portion 3d as a fold.
  • the mutually opposing part of the resin film 32 has pinched
  • the portions of the resin film 32 facing each other sandwich the negative electrode current collecting tab 5 therebetween. Accordingly, the positive electrode current collecting tab 4 and the negative electrode current collecting tab 5 extend from the container 3 in directions opposite to each other.
  • peripheral portions 3 a, 3 b, and 3 c of the container 3 excluding the portion sandwiching the positive electrode current collecting tab 4 and the negative electrode current collecting tab 5 are heat sealed by heat fusion of the resin films 32 facing each other.
  • an insulating film is provided between the positive electrode current collector tab 4 and the resin film 32 as shown in FIG. 2. 9 is provided. Further, at the peripheral edge 3b, the positive electrode current collecting tab 4 and the insulating film 9 are heat-sealed by thermal fusion, and the resin film 32 and the insulating film 9 are heat-sealed by thermal fusion. Similarly, although not shown, an insulating film 9 is also provided between the negative electrode current collecting tab 5 and the resin film 32.
  • the negative electrode current collecting tab 5 and the insulating film 9 are heat sealed by heat fusion, and the resin film 32 and the insulating film 9 are heat sealed by heat fusion. That is, in the nonaqueous electrolyte battery 1 shown in FIGS. 1 to 3, all of the peripheral portions 3a, 3b and 3c of the container 3 are heat-sealed.
  • the container 3 further stores a non-aqueous electrolyte (not shown).
  • the nonaqueous electrolyte is impregnated in the electrode group 2.
  • a plurality of positive electrode leads 63 are grouped in the lowermost layer of the electrode group 2 as shown in FIG. Similarly, although not shown, a plurality of negative electrode leads are collected in the lowermost layer of the electrode group 2. However, as shown in FIG. 4, for example, a plurality of positive electrode leads 63 and a plurality of negative electrode leads 73 are combined in the vicinity of the middle stage of the electrode group 2, and each of the positive electrode current collecting tab 4 and the negative electrode current collecting tab 5 is combined. Can be connected to.
  • a nonaqueous electrolyte battery includes a positive electrode, a negative electrode, and a nonaqueous electrolyte.
  • the positive electrode includes a lithium cobalt composite oxide.
  • the negative electrode includes a lithium titanium composite oxide.
  • the capacity ratio p / n satisfies the formula (1): 1.25 ⁇ p / n ⁇ 1.6.
  • the non-aqueous electrolyte includes at least one propionic acid ester.
  • the content w of at least one propionic acid ester in the non-aqueous electrolyte is 20% by weight or more and less than 64% by weight with respect to the weight of the non-aqueous electrolyte.
  • the nonaqueous electrolyte battery according to the embodiment satisfies the formula (2): 13 ⁇ w / (p / n) ⁇ 40.
  • This nonaqueous electrolyte battery can suppress the generation of gas during charging and discharging due to the interaction between the decomposition product of at least one propionate and the lithium cobalt composite oxide. As a result, the nonaqueous electrolyte battery according to the embodiment can exhibit excellent life performance.
  • a battery pack is provided.
  • This battery pack includes the nonaqueous electrolyte battery according to the embodiment.
  • the battery pack according to the embodiment may include one nonaqueous electrolyte battery.
  • the battery pack according to the embodiment can include a plurality of nonaqueous electrolyte batteries.
  • the plurality of nonaqueous electrolyte batteries can be electrically connected in series, or can be electrically connected in parallel.
  • a plurality of nonaqueous electrolyte batteries can be connected in a combination of series and parallel.
  • the battery pack includes a plurality of nonaqueous electrolyte batteries
  • at least one battery may be the nonaqueous electrolyte battery according to the embodiment.
  • Each of the plurality of nonaqueous electrolyte batteries may be the nonaqueous electrolyte battery according to the embodiment.
  • the battery pack according to the embodiment can include five or six nonaqueous electrolyte batteries, each of which is a nonaqueous electrolyte battery according to the embodiment. These nonaqueous electrolyte batteries may be connected in series, for example.
  • the connected nonaqueous electrolyte battery can constitute an assembled battery. That is, the battery pack according to the embodiment can include an assembled battery.
  • the battery pack according to the embodiment can include, for example, a plurality of assembled batteries.
  • the plurality of assembled batteries can be connected in series, parallel, or a combination of series and parallel.
  • FIG. 5 is an exploded perspective view of an example battery pack according to the embodiment.
  • FIG. 6 is a block diagram showing an electric circuit of the battery pack of FIG.
  • the battery pack 20 shown in FIGS. 5 and 6 includes a plurality of single cells 1.
  • Each unit cell 1 is an example of a flat type nonaqueous electrolyte battery according to the embodiment.
  • the unit cell 1 includes an electrode group (not shown), a nonaqueous electrolyte (not shown), a container 3 shown in FIG. 5, and a positive electrode terminal 11 and a negative electrode terminal 12 shown in FIG.
  • the electrode group and the nonaqueous electrolyte are accommodated in the container 3.
  • the electrode group is impregnated with a non-aqueous electrolyte.
  • the container 3 has a bottomed rectangular tube shape.
  • the container 3 is formed from metals, such as aluminum, aluminum alloy, iron, or stainless steel, for example.
  • the electrode group includes a positive electrode, a negative electrode, and a separator, similar to the electrode group included in the nonaqueous electrolyte battery described with reference to FIGS.
  • the positive electrode terminal 11 is electrically connected to the positive electrode.
  • the negative terminal 12 is electrically connected to the negative electrode.
  • One end portion of the positive electrode terminal 11 and one end portion of the negative electrode terminal 12 respectively extend from the same end surface of the unit cell 1.
  • the plurality of single cells 1 are stacked such that the positive electrode terminal 11 and the negative electrode terminal 12 extending to the outside are aligned in the same direction, and are fastened with an adhesive tape 22 to constitute the assembled battery 10. These unit cells 1 are electrically connected to each other in series as shown in FIG.
  • the printed wiring board 24 is disposed so as to face the end face from which the negative electrode terminal 12 and the positive electrode terminal 11 of the unit cell 1 extend.
  • a thermistor 25, a protection circuit 26, and a terminal 27 for energizing an external device are mounted as shown in FIG.
  • the printed wiring board 24 is provided with an insulating plate (not shown) on the surface facing the assembled battery 10 in order to avoid unnecessary wiring and wiring of the assembled battery 10.
  • One end of the positive electrode side lead 28 is electrically connected to the positive electrode terminal 11 located in the lowermost layer of the assembled battery 10.
  • the other end of the positive electrode side lead 28 is inserted into and electrically connected to the positive electrode side connector 41 of the printed wiring board 24.
  • One end of the negative electrode side lead 29 is electrically connected to the negative electrode terminal 12 located in the uppermost layer of the assembled battery 10.
  • the other end of the negative electrode side lead 29 is inserted into and electrically connected to the negative electrode side connector 42 of the printed wiring board 24.
  • These connectors 41 and 42 are connected to the protection circuit 26 through wirings 43 and 44 formed on the printed wiring board 24.
  • the thermistor 25 detects the temperature of the unit cell 1, and the detection signal is transmitted to the protection circuit 26.
  • the protection circuit 26 can cut off the plus side wiring 45 and the minus side wiring 46 between the protection circuit 26 and the terminal 27 for energization to an external device under a predetermined condition.
  • An example of the predetermined condition is, for example, when the temperature detected by the thermistor 25 is equal to or higher than a predetermined temperature.
  • Another example of the predetermined condition is when, for example, overcharge, overdischarge, overcurrent, or the like of the unit cell 1 is detected. This detection of overcharge or the like is performed for each individual cell 1 or the entire assembled battery 10.
  • the battery voltage may be detected, or the positive electrode potential or the negative electrode potential may be detected.
  • a lithium electrode used as a reference electrode is inserted into each unit cell 1.
  • a wiring 47 for voltage detection is connected to each unit cell 1. A detection signal is transmitted to the protection circuit 26 through these wirings 47.
  • Protective sheets 91 made of rubber or resin are disposed on the three side surfaces of the assembled battery 10 excluding the side surfaces from which the positive electrode terminal 11 and the negative electrode terminal 12 protrude.
  • the assembled battery 10 is stored in the storage container 100 together with each protective sheet 91 and the printed wiring board 24. That is, the protective sheet 91 is disposed on both the inner side surface in the long side direction and the inner side surface in the short side direction of the storage container 100, and the printed wiring board 24 is disposed on the inner side surface on the opposite side in the short side direction.
  • the assembled battery 10 is located in a space surrounded by the protective sheet 91 and the printed wiring board 24.
  • the lid 110 is attached to the upper surface of the storage container 100.
  • a heat shrink tape may be used for fixing the assembled battery 10.
  • a heat-shrink tape a protective sheet is disposed on both side surfaces of the assembled battery 10, the heat-shrinkable tape is circulated, and then the heat-shrinkable tape is heat-shrinked to bind the assembled battery 10.
  • the cells 1 are connected in series.
  • the single cells 1 may be connected in parallel.
  • the assembled battery packs can be connected in series and / or in parallel.
  • the aspect of the battery pack according to the embodiment is appropriately changed depending on the application.
  • a use of the battery pack according to the embodiment one in which cycle performance with high current performance is desired is preferable.
  • Specific applications include power supplies for digital cameras, and in-vehicle applications such as two-wheel to four-wheel hybrid electric vehicles, two-wheel to four-wheel electric vehicles, and assist bicycles.
  • the battery pack according to the embodiment is particularly suitable for in-vehicle use.
  • the battery pack according to the embodiment includes the non-aqueous electrolyte battery according to the embodiment, the battery pack can exhibit excellent life performance.
  • a battery system includes a first battery unit and a second battery unit connected in parallel to the first battery unit.
  • the first battery unit includes the nonaqueous electrolyte battery according to the embodiment.
  • the second battery unit includes a lead storage battery.
  • the first battery unit only needs to include at least one nonaqueous electrolyte battery according to the embodiment.
  • the first battery unit may include one nonaqueous electrolyte battery according to the embodiment.
  • the first battery unit may include a plurality of nonaqueous electrolyte batteries, each of which is a nonaqueous electrolyte battery according to the embodiment.
  • the nonaqueous electrolyte battery can be electrically connected, for example, to form an assembled battery.
  • the connection of the nonaqueous electrolyte battery may be either serial connection or parallel connection, or may be a combination of series connection and parallel connection.
  • the second battery unit only needs to include at least one lead storage battery.
  • the second battery unit may include one lead storage battery.
  • the second battery unit may include a plurality of lead storage batteries.
  • the lead storage battery can be electrically connected to form an assembled battery, for example.
  • the connection of the lead storage battery may be either serial connection or parallel connection, or a combination of series connection and parallel connection.
  • the nonaqueous electrolyte battery included in the first battery unit is the nonaqueous electrolyte battery according to the embodiment, and has a capacity ratio p / n of 1.25 or more and 1.6 or less. As described in the section related to the non-aqueous electrolyte battery according to the embodiment, the non-aqueous electrolyte battery according to the embodiment having a capacity ratio p / n of 1.25 or more and 1.6 or less has a low open circuit voltage (OCV). ).
  • OCV open circuit voltage
  • Non-aqueous electrolyte batteries that can exhibit low OCV can have a narrow range of operable voltages per battery.
  • the operating voltage of the battery unit can be adjusted, for example, by changing the number of batteries included in the battery unit (the number of batteries connected in series).
  • the operable voltage range per battery is narrower, the operating potential of the battery unit including a plurality of batteries can be adjusted more easily. Therefore, the voltage of the first battery unit can be easily adjusted to a value compatible with the lead storage battery. Therefore, the 1st battery unit can show the outstanding voltage compatibility with a lead acid battery. Therefore, the first battery unit including the nonaqueous electrolyte battery according to the embodiment exhibits a large usable capacity in a usable voltage range of the lead storage battery (a voltage range in which deterioration of the lead storage battery can be suppressed). Can do. Therefore, in the battery system according to the embodiment, deterioration of the second battery unit including the lead storage battery can be suppressed.
  • the battery system can further include a terminal for energization.
  • the battery system can be connected to a load via a terminal for energization.
  • the load can be electrically connected in parallel with the first battery unit and the second battery unit. With such connection, the load can receive power supply from both the first battery unit and the second battery unit, and power can be supplied from only one of the first battery unit and the second battery unit. You can also get a supply.
  • the load may be a load incorporated inside the battery system or an external load that can be disconnected from the battery system.
  • the first battery unit and / or the second battery unit can supply power to the load via the terminal for energization.
  • the load may be an electric motor.
  • the first battery unit and / or the second battery unit can supply electric power to the electric motor to drive the electric motor.
  • the energization terminal can be connected to an external power source.
  • the first battery unit and / or the second battery unit can receive electric power from an external power supply via the energization terminal.
  • the 1st battery unit and / or the 2nd battery unit can also receive regenerative energy via the terminal for electricity supply. It is preferable that the 1st battery unit can receive regenerative energy via the terminal for rotation. The regenerative energy will be described later.
  • the battery system may further include a battery management unit (Battery Management Unit: BMU).
  • BMU Battery Management Unit
  • the battery management device may be configured to control the respective operations of the first battery unit and the second battery unit.
  • the battery management device may include the first battery unit and the second battery based on the state-of-charge (SOC) and / or voltage of each of the first battery unit and the second battery unit. Each operation of the unit can be controlled.
  • the battery management device includes, for example, power supply from the first battery unit to the load, power supply from the second battery unit to the load, power supply from the external power supply to the first battery unit, and power supply from the external power supply. It may be configured to control power supply to the second battery unit and input of regenerative energy to the first battery unit.
  • the battery system can be mounted on a vehicle such as a two-wheel or four-wheel hybrid electric vehicle, a two-wheel to four-wheel electric vehicle, an assist bicycle, or the like.
  • a vehicle equipped with a battery system can further include, for example, an alternator mechanically connected to a drive system of the vehicle.
  • An alternator is an alternator that can convert mechanical energy into electrical energy. Therefore, this alternator can convert part of the mechanical energy generated by the drive system into electrical energy.
  • the electrical energy converted by the alternator is an alternating current and is transmitted from the alternator to the rectifier, for example.
  • the rectifier can convert alternating current into direct current.
  • the direct current converted by the rectifier can be supplied to the first battery unit and / or the second battery unit.
  • the alternator may be further connected to the vehicle braking system.
  • the alternator can regenerate mechanical energy generated when the vehicle is braked as electric energy. Such regenerative energy can be transmitted to the first battery unit and / or the second battery unit via a rectifier and a terminal for energization of the battery system.
  • FIG. 7 is an electric circuit diagram of an example battery system according to the embodiment.
  • the battery system 200 shown in FIG. 7 includes a first battery unit 201 and a second battery unit 202 electrically connected to the first battery unit 201 in parallel.
  • the first battery unit 201 includes an example nonaqueous electrolyte battery 1 described with reference to FIGS. 1 to 3.
  • Second battery unit 202 includes a lead storage battery (not shown).
  • the battery system 200 further includes a battery management device (BMU) 203 and a motor 204 as a load.
  • the motor 204 is electrically connected to the first battery unit 201 via the switch 205 and wirings 207 and 208.
  • the motor 204 is electrically connected to the second battery unit 202 via the switch 206 and wirings 207 and 208.
  • Each of the wirings 207 and 208 includes a current-carrying terminal (not shown) configured to be connected to the motor 204.
  • the battery management device (BMU) 203 switches the switch 205 based on the charge state and / or voltage of the first battery unit 201, and switches between energization and shut-off from the first battery unit 201 to the motor 204. be able to.
  • the battery management unit (BMU) 203 switches the switch 206 based on the charge state and / or voltage of the second battery unit 202, and energizes and shuts off the motor 204 from the second battery unit 202. And can be switched.
  • the battery system according to the embodiment includes the first battery unit including the nonaqueous electrolyte battery according to the embodiment, it can exhibit excellent life performance.
  • a non-aqueous electrolyte battery was produced by the following procedure.
  • a powder of lithium cobalt composite oxide (composition formula: LiCoO 2 ) having an average particle size of 10 ⁇ m was prepared.
  • Acetylene black and graphite were prepared as conductive aids.
  • Polyvinylidene fluoride (PVdF) was prepared as a binder. Lithium cobalt composite oxide, acetylene black, graphite, and PVdF were mixed in proportions of 85 wt%, 5.0 wt%, 5.0 wt%, and 5.0 wt%, respectively.
  • the obtained mixture was added to N-methylpyrrolidone as a solvent and stirred to prepare a slurry.
  • the positive electrode slurry obtained after stirring was applied to both surfaces of an aluminum foil having a thickness of 20 ⁇ m with a coating apparatus.
  • the coating amount was adjusted so that the weight after drying per 1 m 2 of the active material-containing layer applied on one side was 85 g / m 2 .
  • a portion where the slurry was not applied was left on the aluminum foil.
  • the obtained coating film was dried and then rolled with a roll press so that the electrode density (not including the current collector) was 2.8 g / cm 3 .
  • a portion of the aluminum foil where the slurry was not applied was punched to form a positive electrode lead.
  • a plurality of positive electrodes were produced.
  • a powder of a spinel type lithium titanium composite oxide (composition formula: Li 4 Ti 5 O 12 ) was prepared.
  • Acetylene black and graphite were prepared as conductive aids.
  • Polyvinylidene fluoride (PVdF) was prepared as a binder.
  • Lithium titanium composite oxide, acetylene black, graphite, and PVdF were mixed in proportions of 85 wt%, 5.0 wt%, 5.0 wt%, and 5.0 wt%, respectively. The resulting mixture was added to N-methylpyrrolidone and stirred to prepare a slurry.
  • the negative electrode slurry obtained after stirring was applied to both surfaces of an aluminum foil having a thickness of 20 ⁇ m with a coating apparatus.
  • the coating amount was adjusted so that the weight after drying per 1 m 2 of the active material-containing layer applied on one side was 50 g / m 2 .
  • a portion where the slurry was not applied was left on the aluminum foil.
  • the obtained coating film was dried and then rolled with a roll press so that the electrode density (not including the current collector) was 2.0 g / cm 3 .
  • coat a slurry among aluminum foil was cut out, and the negative electrode lead was formed. Thus, a plurality of negative electrodes were produced.
  • a strip-shaped microporous membrane separator having a thickness of 30 ⁇ m was prepared. Next, this separator was made into ninety-nine folds. Next, the positive electrode and the negative electrode were alternately inserted into the space defined by the opposing surfaces of the separator that was folded into ninety nines to obtain a laminate. Finally, an anti-winding tape was applied to the obtained laminate to form an electrode group. The electrode area and the number of layers were adjusted so that the discharge capacity of the electrode group was 3.0 Ah.
  • a positive electrode current collecting tab and a negative electrode current collecting tab were produced using aluminum. Subsequently, the positive leads of the plurality of positive electrodes were combined into one and connected to the positive electrode current collecting tab. Similarly, negative electrode leads of a plurality of negative electrodes were combined into one and connected to a negative electrode current collecting tab. In this way, the positive electrode current collecting tab and the negative electrode current collecting tab were installed so as to extend in opposite directions from the electrode group so that current collection from the positive electrode and the negative electrode could be performed easily.
  • FIG. 3 An aluminum-containing laminate film was used as the container. First, an aluminum-containing laminate film was molded into a shape that can accommodate the electrode group. The electrode group was housed in the container of the aluminum-containing laminate film thus formed as described above with reference to FIGS. At this time, as described with reference to FIG. 2, the positive electrode current collector tab was sandwiched between the portions of the resin film facing each other in one peripheral portion (the peripheral portion 3 b in FIG. 2) of the container. Similarly, although not shown in FIG. 2, the negative electrode current collection tab was inserted
  • the resin film was fixed by heat-sealing except for a part of the resin film that was opposed to each other at the periphery.
  • a part of the resin film and the insulating film facing the resin film are heat-sealed and fixed, and the positive electrode current collecting tab and the insulating film facing the heat-fixing are fixed by heat-sealing.
  • the negative electrode current collecting tab and the insulating film facing the heat-seal are heat-sealed.
  • a non-aqueous electrolyte was prepared by the following procedure. First, propylene carbonate and ethyl propionate were prepared as non-aqueous solvents. Moreover, lithium hexafluorophosphate (LiPF 6 ) was prepared as an electrolyte. These were mixed so that the mixing ratio of propylene carbonate: ethyl propionate: LiPF 6 was 50 wt%: 40 wt%: 10 wt%. Thus, a non-aqueous electrolyte was prepared. The content w of ethyl propionate in the prepared nonaqueous electrolyte was 40% by weight with respect to the weight of the nonaqueous electrolyte.
  • the thickness of the central portion in both the height and width of the nonaqueous electrolyte battery was measured, and the measurement result was used as the reference thickness.
  • the thickness of the nonaqueous electrolyte battery is the smallest dimension in three directions orthogonal to each other.
  • the dimensions in the three directions of the nonaqueous electrolyte battery of Example 1 were 100 mm, 120 mm, and 5.5 mm, respectively.
  • the nonaqueous electrolyte battery was left in a constant temperature bath maintained at 60 ° C. for one week. After one week, the non-aqueous electrolyte battery was left in a thermostat kept at 25 ° C. for 3 hours. Next, the nonaqueous electrolyte battery was discharged at a constant current of 0.5 A until the voltage reached 2V. Thereafter, the nonaqueous electrolyte battery was charged in a constant temperature bath maintained at 25 ° C. until the voltage reached 2.8 V with a constant current of 0.5 A. Next, the voltage of 2.8 V of the nonaqueous electrolyte battery was maintained for 3 hours in the same thermostat.
  • the nonaqueous electrolyte battery was left in an open circuit state for 30 minutes.
  • the nonaqueous electrolyte battery was discharged at a constant current of 0.5 A until the voltage reached 2V.
  • the above charge-stand-discharge cycle was repeated three times.
  • the nonaqueous electrolyte battery was charged with a constant current of 0.5 A until the voltage reached 2.8V.
  • the voltage of 2.8 V of the nonaqueous electrolyte battery was maintained for 3 hours in the same thermostat.
  • the nonaqueous electrolyte battery was left in a constant temperature bath maintained at 60 ° C. for 1 week. The above procedure was repeated 5 times.
  • the capacity obtained during the third cycle discharge was defined as the capacity after storage.
  • the capacity retention rate was calculated by dividing the capacity after storage by the rated capacity.
  • the nonaqueous electrolyte battery was charged in a thermostat maintained at 25 ° C. with a constant current of 0.5 A until the voltage reached 2.8V.
  • the voltage of 2.8 V of the nonaqueous electrolyte battery was maintained for 3 hours in the same thermostat. Thereafter, the nonaqueous electrolyte battery was left in an open circuit state for 30 minutes.
  • the battery swelling ratio was obtained by dividing the thickness after storage by the reference thickness.
  • Example 2 A nonaqueous electrolyte battery was produced in the same procedure as in Example 1 except that a nonaqueous electrolyte prepared as follows was used.
  • propylene carbonate and ethyl propionate were prepared as non-aqueous solvents.
  • lithium hexafluorophosphate (LiPF 6 ) was prepared as an electrolyte. These were mixed so that the mixing ratio of propylene carbonate: ethyl propionate: LiPF 6 was 45 wt%: 45 wt%: 10 wt%.
  • a non-aqueous electrolyte was prepared.
  • the content w of ethyl propionate in the prepared nonaqueous electrolyte was 45% by weight based on the weight of the nonaqueous electrolyte.
  • Example 3 A nonaqueous electrolyte battery was produced in the same procedure as in Example 1 except that a nonaqueous electrolyte prepared as follows was used.
  • propylene carbonate and ethyl propionate were prepared as non-aqueous solvents.
  • lithium hexafluorophosphate (LiPF 6 ) was prepared as an electrolyte. These were mixed so that the mixing ratio of propylene carbonate: ethyl propionate: LiPF 6 was 40 wt%: 50 wt%: 10 wt%.
  • a non-aqueous electrolyte was prepared.
  • the content w of ethyl propionate in the prepared nonaqueous electrolyte was 50% by weight with respect to the weight of the nonaqueous electrolyte.
  • Example 4 A nonaqueous electrolyte battery was produced in the same procedure as in Example 1 except that methyl propionate was used as a solvent in place of ethyl propionate when preparing the nonaqueous electrolyte.
  • Example 5 A nonaqueous electrolyte battery was produced in the same procedure as in Example 1 except that propyl propionate was used as a solvent in place of ethyl propionate when preparing the nonaqueous electrolyte.
  • Example 6 A nonaqueous electrolyte battery was prepared in the same manner as in Example 1, except that the amount of the positive electrode slurry applied was adjusted so that the weight after drying per 1 m 2 of the active material-containing layer applied on one side was 75 g / m 2. Produced. The p / n ratio of this nonaqueous electrolyte battery was 1.25.
  • Example 7 A nonaqueous electrolyte battery was prepared in the same manner as in Example 1 except that the amount of the positive electrode slurry applied was adjusted so that the weight after drying per 1 m 2 of the active material-containing layer applied on one side was 98 g / m 2. Produced. The p / n ratio of this nonaqueous electrolyte battery was 1.6.
  • Example 8 A nonaqueous electrolyte battery was produced in the same procedure as in Example 1 except that a nonaqueous electrolyte prepared as follows was used.
  • propylene carbonate, ethyl methyl carbonate, and ethyl propionate were prepared as non-aqueous solvents.
  • lithium hexafluorophosphate (LiPF 6 ) was prepared as an electrolyte. These were mixed so that the mixing ratio of propylene carbonate: ethyl methyl carbonate: ethyl propionate: LiPF 6 was 30 wt%: 30 wt%: 30 wt%: 10 wt%.
  • a non-aqueous electrolyte was prepared.
  • the content w of ethyl propionate in the prepared nonaqueous electrolyte was 30% by weight with respect to the weight of the nonaqueous electrolyte.
  • Example 9 A nonaqueous electrolyte battery was produced in the same procedure as in Example 1 except that a nonaqueous electrolyte prepared as follows was used.
  • propylene carbonate, diethyl carbonate, and ethyl propionate were prepared as nonaqueous solvents.
  • lithium hexafluorophosphate (LiPF 6 ) was prepared as an electrolyte. These were mixed so that the mixing ratio of propylene carbonate: diethyl carbonate: ethyl propionate: LiPF 6 was 30 wt%: 30 wt%: 30 wt%: 10 wt%.
  • a non-aqueous electrolyte was prepared.
  • the content w of ethyl propionate in the prepared nonaqueous electrolyte was 30% by weight with respect to the weight of the nonaqueous electrolyte.
  • Example 10 A nonaqueous electrolyte battery was produced in the same procedure as in Example 1 except that the coating amount of the positive electrode slurry was changed and the nonaqueous electrolyte prepared by the following procedure was used.
  • the coating amount of the positive electrode slurry was adjusted so that the weight after drying per 1 m 2 of the active material-containing layer applied on one side was 75 g / m 2 .
  • the nonaqueous electrolyte was prepared as follows. First, propylene carbonate, ethyl methyl carbonate, and ethyl propionate were prepared as non-aqueous solvents. Moreover, lithium hexafluorophosphate (LiPF 6 ) was prepared as an electrolyte. These were mixed so that the mixing ratio of propylene carbonate: ethyl methyl carbonate: and ethyl propionate: LiPF 6 was 30 wt%: 40 wt%: 20 wt%: 10 wt%.
  • LiPF 6 lithium hexafluorophosphate
  • the content w of ethyl propionate in the prepared nonaqueous electrolyte was 20% by weight with respect to the weight of the nonaqueous electrolyte.
  • the p / n ratio of this nonaqueous electrolyte battery was 1.25.
  • Example 11 A nonaqueous electrolyte battery was produced in the same procedure as in Example 1 except that the coating amount of the positive electrode slurry was changed and the nonaqueous electrolyte prepared by the following procedure was used.
  • the coating amount of the positive electrode slurry was adjusted so that the weight after drying per 1 m 2 of the active material-containing layer applied on one side was 75 g / m 2 .
  • the nonaqueous electrolyte was prepared as follows. First, propylene carbonate, ethyl methyl carbonate, and ethyl propionate were prepared as non-aqueous solvents. Moreover, lithium hexafluorophosphate (LiPF 6 ) was prepared as an electrolyte. These were mixed so that the mixing ratio of propylene carbonate: ethyl methyl carbonate: ethyl propionate: LiPF 6 was 30 wt%: 20 wt%: 40 wt%: 10 wt%.
  • the content w of ethyl propionate in the prepared nonaqueous electrolyte was 40% by weight with respect to the weight of the nonaqueous electrolyte.
  • the p / n ratio of the nonaqueous electrolyte battery in this example was 1.25.
  • Example 12 A nonaqueous electrolyte battery was produced in the same procedure as in Example 1 except that the coating amount of the positive electrode slurry was changed and the nonaqueous electrolyte prepared by the following procedure was used.
  • the coating amount of the positive electrode slurry was adjusted so that the weight after drying per 1 m 2 of the active material-containing layer applied on one side was 98 g / m 2 .
  • the nonaqueous electrolyte was prepared as follows. Ethylene carbonate and ethyl propionate were prepared as non-aqueous solvents. Moreover, lithium hexafluorophosphate (LiPF 6 ) was prepared as an electrolyte. These were mixed so that the mixing ratio of ethylene carbonate: ethyl propionate: LiPF 6 was 50 wt%: 40 wt%: 10 wt%.
  • the content w of ethyl propionate in the prepared nonaqueous electrolyte was 40% by weight with respect to the weight of the nonaqueous electrolyte.
  • the p / n ratio of the nonaqueous electrolyte battery in this example was 1.6.
  • Example 13 A nonaqueous electrolyte battery was produced in the same procedure as in Example 1 except that the positive electrode produced in the following procedure was used.
  • a powder of lithium cobalt composite oxide (composition formula: LiCoO 2 ) having an average particle diameter of 10 ⁇ m and a lithium nickel cobalt manganese composite oxide (composition formula: LiNi 0.5 Co 0.35 ) having an average particle diameter of 8 ⁇ m. Mn 0.15 O 2 ) powder was prepared.
  • Acetylene black and graphite were prepared as conductive aids.
  • Polyvinylidene fluoride (PVdF) was prepared as a binder.
  • Lithium cobalt composite oxide, lithium nickel cobalt manganese composite oxide, acetylene black, graphite, and PVdF are 45 wt%, 40 wt%, 5.0 wt%, 5.0 wt%, and 5.0 wt%, respectively. It mixed so that it might become a ratio. The resulting mixture was added to N-methylpyrrolidone and stirred to prepare a slurry. The positive electrode slurry obtained after stirring was applied to both surfaces of an aluminum foil having a thickness of 20 ⁇ m with a coating apparatus. The coating amount was adjusted so that the weight after drying per 1 m 2 of the active material-containing layer applied on one side was 80 g / m 2 .
  • the obtained coating film was dried and then rolled with a roll press so that the electrode density (not including the current collector) was 2.8 g / cm 3 .
  • a portion of the aluminum foil where the slurry was not applied was punched to form a positive electrode lead.
  • the p / n ratio of the nonaqueous electrolyte battery in this example was 1.4.
  • Example 14 A nonaqueous electrolyte battery was produced in the same procedure as in Example 13 except that the positive electrode produced in the following procedure was used.
  • Example 1 A nonaqueous electrolyte battery was produced in the same procedure as in Example 3 except that the positive electrode produced in the following procedure was used.
  • a powder of lithium nickel cobalt manganese composite oxide (composition formula: LiNi 0.5 Co 0.35 Mn 0.15 O 2 ) having an average particle diameter of 8 ⁇ m was prepared.
  • Acetylene black and graphite were prepared as conductive aids.
  • Polyvinylidene fluoride (PVdF) was prepared as a binder. Lithium nickel cobalt manganese composite oxide, acetylene black, graphite, and PVdF were mixed in proportions of 85 wt%, 5.0 wt%, 5.0 wt%, and 5.0 wt%, respectively. The resulting mixture was added to N-methylpyrrolidone and stirred to prepare a slurry.
  • the positive electrode slurry obtained after stirring was applied to both surfaces of an aluminum foil having a thickness of 20 ⁇ m with a coating apparatus.
  • the coating amount was adjusted so that the weight after drying per 1 m 2 of the active material-containing layer applied on one side was 80 g / m 2 .
  • a portion where the slurry was not applied was left on the aluminum foil.
  • the obtained coating film was dried and then rolled with a roll press so that the electrode density (not including the current collector) was 2.8 g / cm 3 .
  • a portion of the aluminum foil where the slurry was not applied was punched to form a positive electrode lead.
  • the p / n ratio of the nonaqueous electrolyte battery in this example was 1.4.
  • Example 2 A nonaqueous electrolyte battery was produced in the same procedure as in Example 1 except that a nonaqueous electrolyte prepared as follows was used.
  • propylene carbonate and ethyl propionate were prepared as non-aqueous solvents.
  • lithium hexafluorophosphate (LiPF 6 ) was prepared as an electrolyte. These were mixed so that the mixing ratio of propylene carbonate: ethyl propionate: LiPF 6 was 26 wt%: 64 wt%: 10 wt%.
  • a non-aqueous electrolyte was prepared.
  • the content w of ethyl propionate in the prepared nonaqueous electrolyte was 64% by weight with respect to the weight of the nonaqueous electrolyte.
  • Example 3 A nonaqueous electrolyte battery was produced in the same procedure as in Example 1 except that a nonaqueous electrolyte prepared as follows was used.
  • propylene carbonate and ethyl propionate were prepared as non-aqueous solvents.
  • lithium hexafluorophosphate (LiPF 6 ) was prepared as an electrolyte. These were mixed so that the mixing ratio of propylene carbonate: ethyl propionate; LiPF 6 was 75 wt%: 15 wt%: 10 wt%.
  • a non-aqueous electrolyte was prepared.
  • the content w of ethyl propionate in the prepared nonaqueous electrolyte was 15% by weight with respect to the weight of the nonaqueous electrolyte.
  • Example 4 A nonaqueous electrolyte battery was produced in the same procedure as in Example 3 except that the negative electrode produced in the following procedure was used.
  • a natural graphite powder having an average particle size of 10 ⁇ m was prepared.
  • Acetylene black was prepared as a conductive aid.
  • Polyvinylidene fluoride (PVdF) was prepared as a binder.
  • Graphite powder, acetylene black, and PVdF were mixed at a ratio of 90% by weight, 5% by weight, and 5% by weight, respectively.
  • the resulting mixture was added to N-methylpyrrolidone and stirred to prepare a slurry.
  • the negative electrode slurry obtained after stirring was applied on both sides of a copper foil having a thickness of 10 ⁇ m with a coating apparatus.
  • the coating amount was adjusted so that the weight after drying per 1 m 2 of the active material-containing layer applied on one side was 25 g / m 2 . At this time, a portion where the slurry was not applied was left on the copper foil.
  • the obtained coating film was dried and then rolled with a roll press so that the electrode density (not including the current collector) was 1.9 g / cm 3 . Subsequently, the part which did not apply
  • the p / n ratio of the nonaqueous electrolyte battery in this example was 1.4.
  • Example 5 A nonaqueous electrolyte battery was prepared in the same manner as in Example 3 except that the amount of the positive electrode slurry applied was adjusted so that the weight after drying per 1 m 2 of the active material-containing layer applied on one side was 65 g / m 2. Produced. The p / n ratio of this nonaqueous electrolyte battery was 1.1.
  • a nonaqueous electrolyte battery was prepared in the same manner as in Example 3 except that the amount of the positive electrode slurry applied was adjusted so that the weight after drying per 1 m 2 of the active material-containing layer applied on one side was 111 g / m 2. Produced. The p / n ratio of this nonaqueous electrolyte battery was 1.8.
  • Example 7 A nonaqueous electrolyte battery was produced in the same procedure as in Example 1 except that a nonaqueous electrolyte prepared as follows was used.
  • propylene carbonate and ethyl methyl carbonate were prepared as non-aqueous solvents.
  • lithium hexafluorophosphate (LiPF 6 ) was prepared as an electrolyte. These were mixed so that the mixing ratio of propylene carbonate: ethyl methyl carbonate: LiPF 6 was 30 wt%: 60 wt%: 10 wt%.
  • a non-aqueous electrolyte was prepared.
  • the content w of ethyl propionate in the prepared nonaqueous electrolyte was 0% by weight with respect to the weight of the nonaqueous electrolyte.
  • Example 8 A nonaqueous electrolyte battery was produced in the same procedure as in Example 1 except that a nonaqueous electrolyte prepared as follows was used.
  • propylene carbonate and ethyl acetate were prepared as non-aqueous solvents.
  • lithium hexafluorophosphate (LiPF 6 ) was prepared as an electrolyte. These were mixed so that the mixing ratio of propylene carbonate: ethyl acetate: LiPF 6 was 30 wt%: 60 wt%: 10 wt%.
  • a non-aqueous electrolyte was prepared.
  • the content w of ethyl propionate in the prepared nonaqueous electrolyte was 0% by weight with respect to the weight of the nonaqueous electrolyte.
  • Example 9 A nonaqueous electrolyte battery was produced in the same procedure as in Example 1 except that a nonaqueous electrolyte prepared as follows was used.
  • ethylene carbonate and ethyl propionate were prepared as non-aqueous solvents.
  • lithium hexafluorophosphate (LiPF 6 ) was prepared as an electrolyte. These were mixed so that the mixing ratio of ethylene carbonate: ethyl propionate: LiPF 6 was 30 wt%: 60 wt%: 10 wt%.
  • a non-aqueous electrolyte was prepared.
  • the content w of ethyl propionate in the prepared nonaqueous electrolyte was 60% by weight with respect to the weight of the nonaqueous electrolyte.
  • Example 10 A nonaqueous electrolyte battery was produced in the same procedure as in Example 1 except that the coating amount of the positive electrode slurry was changed and the nonaqueous electrolyte prepared by the following procedure was used.
  • the coating amount of the positive electrode slurry was adjusted so that the weight after drying per 1 m 2 of the active material-containing layer applied on one side was 98 g / m 2 .
  • the nonaqueous electrolyte was prepared as follows. Propylene carbonate, ethyl methyl carbonate, and ethyl propionate were prepared as non-aqueous solvents. Moreover, lithium hexafluorophosphate (LiPF 6 ) was prepared as an electrolyte. These were mixed so that the mixing ratio of propylene carbonate: ethyl methyl carbonate: ethyl propionate: LiPF 6 was 30 wt%: 40 wt%: 20 wt%: 10 wt%.
  • the content w of ethyl propionate in the prepared nonaqueous electrolyte was 20% by weight with respect to the weight of the nonaqueous electrolyte.
  • the p / n ratio of the nonaqueous electrolyte battery in this example was 1.6.
  • Example 11 A nonaqueous electrolyte battery was produced in the same procedure as in Example 13 except that the nonaqueous electrolyte prepared as follows was used.
  • propylene carbonate and ethyl propionate were prepared as non-aqueous solvents.
  • lithium hexafluorophosphate (LiPF 6 ) was prepared as an electrolyte. These were mixed so that the mixing ratio of propylene carbonate: ethyl propionate: LiPF 6 was 30 wt%: 60 wt%: 10 wt%.
  • a non-aqueous electrolyte was prepared.
  • the content w of ethyl propionate in the prepared nonaqueous electrolyte was 60% by weight with respect to the weight of the nonaqueous electrolyte.
  • a powder of lithium nickel cobalt manganese composite oxide (composition formula: LiNi 1/3 Mn 1/3 Co 1/3 O 2 ) having an average particle diameter of 8 ⁇ m was prepared.
  • Acetylene black was prepared as a conductive aid.
  • Polyvinylidene fluoride (PVdF) was prepared as a binder. Lithium nickel cobalt manganese composite oxide, acetylene black, and PVdF were mixed so as to have a ratio of 90% by weight, 5% by weight, and 5% by weight, respectively. The obtained mixture was added to N-methylpyrrolidone as a solvent and stirred to prepare a slurry.
  • the positive electrode slurry obtained after stirring was applied to both surfaces of an aluminum foil having a thickness of 20 ⁇ m with a coating apparatus.
  • the coating amount was adjusted so that the weight after drying per 1 m 2 of the active material-containing layer applied on one side was 80 g / m 2 .
  • a portion where the slurry was not applied was left on the aluminum foil.
  • the obtained coating film was dried and then rolled with a roll press so that the electrode density (not including the current collector) was 2.7 g / cm 3 .
  • a portion of the aluminum foil where the slurry was not applied was punched to form a positive electrode lead.
  • a plurality of positive electrodes were produced.
  • a powder of a spinel type lithium titanium composite oxide (composition formula: Li 4 Ti 5 O 12 ) was prepared.
  • Acetylene black was prepared as a conductive aid.
  • Polyvinylidene fluoride (PVdF) was prepared as a binder. Lithium titanium composite oxide, acetylene black, and PVdF were mixed so that the proportions were 85% by weight, 5% by weight, and 10% by weight, respectively.
  • the resulting mixture was added to N-methylpyrrolidone and stirred to prepare a slurry.
  • the negative electrode slurry obtained after stirring was applied on both sides of a copper foil having a thickness of 10 ⁇ m with a coating apparatus.
  • the coating amount was adjusted so that the weight after drying per 1 m 2 of the active material-containing layer applied on one side was 50 g / m 2 . At this time, a portion where the slurry was not applied was left on the copper foil.
  • the obtained coating film was dried and then rolled with a roll press so that the electrode density (not including the current collector) was 2.0 g / cm 3 . Subsequently, the part which did not apply
  • a pre-injection cell was prepared by the same procedure as in Example 1 except that the positive electrode and negative electrode prepared as described above were used.
  • the weight ratio of propylene carbonate: ethyl acetate: LiPF 6 in the prepared nonaqueous electrolyte was approximately 28:60:12.
  • the content w of ethyl propionate in the prepared nonaqueous electrolyte was 0% by weight with respect to the weight of the nonaqueous electrolyte.
  • nonaqueous electrolyte battery Preparation of non-aqueous electrolyte battery
  • the nonaqueous electrolyte prepared as described above was injected into a container of a cell before injection containing the electrode group, and a nonaqueous electrolyte battery was produced.
  • the value of the capacity ratio p / n of the nonaqueous electrolyte battery in this example was 1.4.
  • LCO lithium cobalt composite oxide (composition formula: LiCoO 2 ); LTO: spinel type lithium titanium composite oxide (composition formula: Li 4 Ti 5 O 12 ); NCM: lithium nickel cobalt manganese composite oxide (composition formula: LiNi 0.5 Co 0.35 Mn 0.15 O 2 ); NCM111: Lithium nickel cobalt manganese composite oxide (composition formula: LiNi 1/3 Mn 1/3 Co 1/3 O 2 ); PC: propylene carbonate; EP: ethyl propionate; MP: methyl propionate; EMC: ethyl methyl carbonate; DEC: diethyl carbonate; EC: ethylene carbonate; EA: ethyl acetate.
  • the positive electrode did not contain a lithium cobalt composite oxide. Therefore, it is considered that the battery of Comparative Example 1 had no interaction between the decomposition product of propionate and the positive electrode, and gas generation could not be sufficiently suppressed. In addition, it is considered that the battery of Comparative Example 1 exhibited a poor capacity retention rate because the decomposition product of propionate promoted the deterioration of the positive electrode.
  • the nonaqueous electrolyte battery of Comparative Example 2 had a propionate content w of 64% by weight and a ratio w / (p / n) of 46. Therefore, it is considered that the battery of Comparative Example 2 could not sufficiently suppress gas generation. Further, in the battery of Comparative Example 2, it is considered that the Li ion dissociation from the electrolyte in the nonaqueous electrolyte was not promoted, and thus the resistance was increased. As a result, it was considered that the battery of Comparative Example 2 showed a poor capacity maintenance ratio due to an increased load due to repeated charging and discharging.
  • the nonaqueous electrolyte battery of Comparative Example 3 had a propionate content w of 15% by weight and a ratio w / (p / n) of 11.
  • the nonaqueous electrolyte batteries of Comparative Examples 7, 8, and 12 did not contain propionate.
  • the negative electrode active material was not lithium titanium composite oxide but carbon. And the value of ratio p / n was 1.4. Therefore, in the nonaqueous electrolyte battery of Comparative Example 4, it is considered that the capacity of the negative electrode containing the active material containing carbon is smaller than the capacity of the positive electrode, and the negative electrode has deteriorated due to charge / discharge. The result is thought to have led to a poor capacity maintenance rate and an increase in gas generation amount of the battery of Comparative Example 4.
  • the value of the ratio p / n of the nonaqueous electrolyte battery of Comparative Example 6 was 1.8.
  • the battery of Comparative Example 6 it is considered that the positive electrode capacity p was excessive with respect to the negative electrode capacity n. Therefore, the battery of Comparative Example 8 is considered to have a poor capacity maintenance ratio due to a large load caused by repeated charging and discharging. Further, the battery of Comparative Example 8 contained acetate in the electrolytic solution. As a result, it was considered that the gas generation could not be sufficiently suppressed because the lithium cobalt composite oxide further decomposed the decomposition product of acetate ester into gas components.
  • Comparative Example 10 the value of the ratio w / (p + n) was 13. In the battery of Comparative Example 10, it is considered that gas generation could not be sufficiently suppressed. The result is thought to have led to an increase in the capacity retention rate and gas generation rate of the battery of Comparative Example 10.
  • Example 15 A nonaqueous electrolyte battery was produced in the same procedure as in Example 13 except for the following points.
  • lithium cobalt composite oxide, lithium nickel cobalt manganese composite oxide, acetylene black, graphite, and PVdF were respectively 3 wt%, 82 wt%, 5.0 wt%, and 5.0 wt%. % And 5.0% by weight.
  • the application amount of the positive electrode slurry was adjusted so that the weight after drying per 1 m 2 of the active material-containing layer applied on one side was 70 g / m 2 .
  • Example 16 A nonaqueous electrolyte battery was produced in the same procedure as in Example 13 except for the following points.
  • a lithium nickel cobalt manganese composite oxide (composition formula: LiNi 0.5 Co 0.2 Mn 0.3 O 2 ) having an average particle diameter of 8 ⁇ m was prepared as the lithium nickel cobalt manganese composite oxide.
  • lithium cobalt composite oxide, lithium nickel cobalt manganese composite oxide, acetylene black, graphite, and PVdF were 45 wt%, 40 wt%, 5.0 wt%, 5.0 wt%, and 5.0 wt%, respectively. It mixed so that it might become a ratio of weight%.
  • Example 17 A nonaqueous electrolyte battery was produced in the same procedure as in Example 13 except for the following points.
  • a powder of lithium nickel cobalt manganese oxide (composition formula: LiNi 0.7 Co 0.15 Mn 0.15 O 2 ) having an average particle diameter of 8 ⁇ m was prepared as a lithium nickel cobalt manganese composite oxide.
  • lithium cobalt composite oxide, lithium nickel cobalt manganese composite oxide, acetylene black, graphite, and PVdF were 45 wt%, 40 wt%, 5.0 wt%, 5.0 wt%, and 5.0 wt%, respectively. It mixed so that it might become a ratio of weight%.
  • Example 18 A nonaqueous electrolyte battery was produced in the same procedure as in Example 13 except for the following points.
  • a powder of lithium nickel cobalt manganese oxide (composition formula: LiNi 0.5 Co 0.34 Mn 0.15 Al 0.01 O 2 ) having an average particle diameter of 8 ⁇ m was prepared as a lithium nickel cobalt manganese composite oxide.
  • lithium cobalt composite oxide, lithium nickel cobalt manganese composite oxide, acetylene black, graphite, and PVdF were 45 wt%, 40 wt%, 5.0 wt%, 5.0 wt%, and 5.0 wt%, respectively. It mixed so that it might become a ratio of weight%.
  • Example 19 to 23 Each nonaqueous electrolyte battery was produced in the same procedure as in Example 1 except that the nonaqueous electrolyte prepared to have the composition ratio shown in Table 4 below was used.
  • Example 24 A nonaqueous electrolyte battery was prepared in the same manner as in Example 1, except that the amount of the positive electrode slurry applied was adjusted so that the weight after drying per 1 m 2 of the active material-containing layer applied on one side was 78 g / m 2. Produced. The p / n ratio of this nonaqueous electrolyte battery was 1.3.
  • Example 25 A nonaqueous electrolyte battery was prepared in the same manner as in Example 1, except that the amount of the positive electrode slurry applied was adjusted so that the weight after drying per 1 m 2 of the active material-containing layer applied on one side was 88 g / m 2. Produced. The p / n ratio of this nonaqueous electrolyte battery was 1.47.
  • Example 26 A nonaqueous electrolyte battery was produced in the same procedure as in Example 7 except that the nonaqueous electrolyte prepared in the following procedure was used. The same nonaqueous solvent and electrolyte as those prepared in Example 7 were prepared. Next, using the prepared nonaqueous solvent and electrolyte, a nonaqueous electrolyte was prepared so as to have the composition ratio shown in Table 4 below.
  • Example 27 A nonaqueous electrolyte battery was prepared in the same manner as in Example 10 except that the amount of the positive electrode slurry applied was adjusted so that the weight after drying per 1 m 2 of the active material-containing layer applied on one side was 88 g / m 2. Produced. The p / n ratio of this nonaqueous electrolyte battery was 1.47.
  • Example 28 A nonaqueous electrolyte battery was produced in the same procedure as in Example 1 except that the same nonaqueous electrolyte as that used in Example 10 was used.
  • NCM lithium nickel cobalt manganese composite oxide (composition formula: LiNi 0.5 Co 0.35 Mn 0.15 O 2 )” for Example 15, 16 represents “lithium nickel cobalt manganese composite oxide (composition formula: LiNi 0.5 Co 0.2 Mn 0.3 O 2 )”, and Example 17 represents “lithium nickel cobalt manganese oxide (composition formula: LiNi 0.7 Co 0.15 Mn 0.15). O 2 ) ”and for Example 18,“ lithium nickel cobalt manganese oxide (composition formula: LiNi 0.5 Co 0.34 Mn 0.15 Al 0.01 O 2 ) ”is shown. Other abbreviations are the same as those used in Tables 1 and 2, respectively.
  • the nonaqueous electrolyte batteries of Examples 15 to 28 are superior to the nonaqueous electrolyte batteries of Comparative Examples 1 to 12 as the nonaqueous electrolyte batteries of Examples 1 to 14. It can be seen that the capacity maintenance rate could be shown and the generation of gas could be suppressed.
  • the non-positive examples 13 to 18 in which the positive electrode contains a lithium cobalt composite oxide and a positive electrode active material other than the lithium cobalt composite oxide were able to exhibit an excellent capacity retention rate and was able to suppress gas generation. I understand that.
  • the nonaqueous electrolyte battery of Comparative Example 1 in which the positive electrode did not contain the lithium cobalt composite oxide had a poor capacity retention rate and could not suppress gas generation.
  • the non-aqueous electrolyte battery of Example 7 in which the non-aqueous electrolyte contained propylene carbonate was an example in that the non-aqueous electrolyte contained ethylene carbonate instead of propylene carbonate. It can be seen that the capacity retention rate superior to that of the non-aqueous electrolyte battery of Example 12 different from 7 could be shown and gas generation could be suppressed. Further, from the results shown in Tables 4 and 5, it can be seen that Examples 19 to 23 having different propylene carbonate contents were able to show excellent capacity retention rates.
  • each nonaqueous electrolyte battery was referred to as a “battery”.
  • the battery was discharged at a 1C rate in a 25 ° C. environment until the battery voltage reached 1.5V. The battery was then left for 10 minutes. The battery was then charged at a constant current of 1C rate until the battery voltage reached 2.6V. The battery was then charged at a constant voltage of 2.6V. When the measured current value fell below 0.1 C, charging was stopped. The total charge capacity C total [Ah] from the start of constant current charge to the stop of constant voltage charge was recorded.
  • the battery was left for 10 minutes.
  • the battery was then discharged at a constant current of 1 C rate until 50% of the previously recorded total charge capacity C total was discharged. After stopping the discharge, the battery was left for 3 hours.
  • the voltage between terminals of the positive electrode and the negative electrode of the battery was measured.
  • the measured voltage between terminals was defined as the open circuit voltage OCV [V] of the battery.
  • the OCV value of each non-aqueous electrolyte battery is shown in Table 6 below.
  • each of the nonaqueous electrolyte batteries of Examples 1 to 28 was able to exhibit an OCV lower than that of Comparative Example 5 in which the capacity ratio p / n was 1.1. I understand. From the results shown in Table 6 and the results shown in Tables 3 and 5, the nonaqueous electrolyte batteries of Examples 1 to 28 have an excellent capacity while exhibiting an OCV lower than that of Comparative Example 5. It can be seen that the maintenance rate could be shown and gas generation could be suppressed.
  • a nonaqueous electrolyte battery includes a positive electrode, a negative electrode, and a nonaqueous electrolyte.
  • the positive electrode includes a lithium cobalt composite oxide.
  • the negative electrode includes a lithium titanium composite oxide.
  • the capacity ratio p / n satisfies the formula (1): 1.25 ⁇ p / n ⁇ 1.6.
  • the non-aqueous electrolyte includes at least one propionic acid ester.
  • the content w of at least one propionic acid ester in the non-aqueous electrolyte is 20% by weight or more and less than 64% by weight with respect to the weight of the non-aqueous electrolyte.
  • This nonaqueous electrolyte battery satisfies the formula (2): 13 ⁇ w / (p / n) ⁇ 40.
  • This nonaqueous electrolyte battery can suppress the generation of gas during charging and discharging due to the interaction between the decomposition product of at least one propionate and the lithium cobalt composite oxide. As a result, this nonaqueous electrolyte battery can exhibit excellent life performance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

1つの実施形態によると、非水電解質電池が提供される。この非水電解質電池は、正極と、負極と、非水電解質とを具備する。正極は、リチウムコバルト複合酸化物を含む。負極は、リチウムチタン複合酸化物を含む。正極及び負極は、式(1):1.25≦p/n≦1.6を満たす。ここで、pは正極の容量であり、nは負極の容量である。非水電解質は、少なくとも1種のプロピオン酸エステルを含む。非水電解質における少なくとも1種のプロピオン酸エステルの含有量wは、非水電解質の重量に対して20重量%以上64重量%未満である。非水電解質電池は、式(2):13<w/(p/n)≦40を満たす。

Description

非水電解質電池、電池パック及び電池システム
 本発明の実施形態は、非水電解質電池、電池パック及び電池システムに関する。
 リチウムイオンが負極と正極との間を移動することにより充放電が行われるリチウムイオン二次電池は、高エネルギー密度及び高出力が得られる利点を生かし、携帯電子機器などの小型用途から電気自動車や電力需給調整システムなどの大型用途まで、広く適用が進められている。
 負極活物質としては炭素材料の代わりに、リチウム吸蔵放出電位がリチウム電極基準で約1.55Vと高いリチウムチタン複合酸化物を用いた非水電解質電池も実用化されている。リチウムチタン複合酸化物は、充放電に伴う体積変化が少ないため、サイクル性能に優れている。また、リチウムチタン複合酸化物を含む負極は、リチウムの吸蔵及び放出時にリチウム金属が析出しないため、この負極を備えた二次電池は大電流での充電が可能になる。
 非水電解質電池の開回路電圧(OCV)を下げる試みとして、非水電解質電池の正極及び負極それぞれの容量の比率を調整する試みがなされている。例えば、正極容量を負極容量に対して過剰にすることで、正極の利用電位範囲を限定することができる。このような設計によると、結果として、非水電解質電池のOCVを下げることができる。
 特に、負極活物質にリチウムチタン複合酸化物を用いた非水電解質二次電池において、電池のOCVを低下させることで、鉛蓄電池との電圧適合性を向上させることができる。
特許第3754218号明細書 特開2016-35901号公報 特許第5433953号明細書 特開2007-305447号公報 特開2005-142047号公報 特開2004-87229号公報
 優れた寿命性能を示すことができる非水電解質電池を提供することを目的とする。
 実施形態によると、非水電解質電池が提供される。この非水電解質電池は、正極と、負極と、非水電解質とを具備する。正極は、リチウムコバルト複合酸化物を含む。負極は、リチウムチタン複合酸化物を含む。正極及び負極は、式(1):1.25≦p/n≦1.6を満たす。ここで、pは正極の容量[mAh/cm2]であり、nは負極の容量[mAh/cm2]である。非水電解質は、少なくとも1種のプロピオン酸エステルを含む。非水電解質における少なくとも1種のプロピオン酸エステルの含有量wは、非水電解質の重量に対して20重量%以上64重量%未満である。実施形態に係る非水電解質電池は、式(2):13<w/(p/n)≦40を満たす。 
 実施形態によると、電池パックが提供される。この電池パックは、実施形態に係る非水電解質電池を具備する。 
 実施形態によると、電池システムが提供される。この電池システムは、第1の電池ユニットと、第1の電池ユニットに並列に接続された第2の電池ユニットとを具備する。第1の電池ユニットは、実施形態に係る非水電解質電池を含む。第2の電池ユニットは、鉛蓄電池を含む。
図1は、実施形態に係る一例の非水電解質電池の概略切欠き斜視図である。 図2は、図1に示すA部の概略断面図である。 図3は、図1に示す非水電解質電池が具備する正極の概略平面図である。 図4は、実施形態に係る非水電解質電池が具備することができる電極群の他の一例の概略断面図である。 図5は、実施形態に係る一例の電池パックの分解斜視図である。 図6は、図5に示す電池パックの電気回路を示すブロック図である。 図7は、実施形態に係る一例の電池システムの電気回路図である。
 以下に、実施の形態について図面を参照しながら説明する。なお、実施の形態を通して共通の構成には同一の符号を付すものとし、重複する説明は省略する。また、各図は実施の形態の説明とその理解を促すための模式図であり、その形状や寸法、比などは実際の装置と異なる個所があるが、これらは以下の説明と公知の技術とを参酌して、適宜設計変更することができる。
 (第1の実施形態)
 実施形態によると、非水電解質電池が提供される。この非水電解質電池は、正極と、負極と、非水電解質とを具備する。正極は、リチウムコバルト複合酸化物を含む。負極は、リチウムチタン複合酸化物を含む。正極及び負極は、式(1):1.25≦p/n≦1.6を満たす。ここで、pは正極の単位面積当りの容量[mAh/cm2]であり、nは負極の単位面積当りの容量[mAh/cm2]である。非水電解質は、少なくとも1種のプロピオン酸エステルを含む。非水電解質における少なくとも1種のプロピオン酸エステルの含有量wは、非水電解質の重量に対して20重量%以上64重量%未満である。実施形態に係る非水電解質電池は、式(2):13<w/(p/n)≦40を満たす。
 発明者らは、研究を重ねていく中で、正極容量を過剰にして、OCVを下げた非水電解質電池では、何ら対策を講じない場合、充放電中のガス発生量が多くなるという課題があることを発見した。
 それを踏まえて鋭意研究した結果、発明者らは、正極容量を過剰にしてOCVを下げた非水電解質電池におけるガス発生の原因は、非水電解質の酸化分解にあることを突き止めた。
 このようなガス発生を抑える手段としては、例えば、正極にリチウムコバルト複合酸化物を含ませることが挙げられる。リチウムコバルト複合酸化物は、非水電解質電池において、非水電解質の酸化分解に対する緩衝作用を発現し、ガスを抑制することができる。発明者らが検討した結果、この効果は、正極電位が4.1V(vs. Li/Li+)以上である状態において、主に発現することが分かった。しかしながら、正極容量を負極容量に対して過剰にした電池は、満充電状態に近い状態にしても正極の電位を4.1V(vs. Li/Li+)以上にすることができず、リチウムコバルト複合酸化物によるガス発生抑制効果が発現しないことが分かった。
 非水電解質の酸化分解を抑制する他の方法としては、例えば、正極集電体表面に不導体被膜を形成することが挙げられる。しかしながら、この方法では、集電体表面での非水電解質の分解は抑制できるが、活物質表面における非水電解質の分解を抑制することはできない。
 発明者らは、このような状況を鑑みて研究を続けた結果、実施形態に係る非水電解質電池を実現した。実施形態に係る非水電解質電池は、充放電中のガス発生を抑えることができ、その結果優れた寿命性能を示すことができる。
 実施形態に係る非水電解質電池がガス発生を抑えることができるメカニズムは、詳細にはわかっていないが、以下のとおりであると推察できる。しかしながら、実施形態に係る非水電解質電池がガス発生を抑えることができる理由は、以下の理論に縛られるものではない。
 まず、正極に含まれるリチウムコバルト複合酸化物は、非水電解質の成分の分解生成物に作用することができる。非水電解質に含まれる少なくとも1種のプロピオン酸エステルは、例えば加水分解により、プロピオン酸を含んだ化合物を生成することができる。正極に含まれるリチウムコバルト複合酸化物は、このプロピオン酸を含んだ化合物と相互作用することにより、ガス発生を抑制できる。
 リチウムコバルト複合酸化物と相互作用を起こすことができるプロピオン酸エステルの分解生成物の例は、加水分解生成物だけでなく、酸化分解、還元分解及び熱分解等によって生じる分解生成物でもよい。
 発明者らは、鋭意研究の結果、リチウムコバルト複合酸化物とプロピオン酸エステルの分解生成物との相互作用による上記ガス発生抑制の効果は、主に、正極及び負極の単位面積当りの容量比と、非水電解質におけるプロピオン酸エステルの濃度との影響を受けることが分かった。この知見は、具体的には、以下のとおりである。まず、容量比p/nが1.25以上である非水電解質電池は、正極容量が負極容量に対して過剰である。このような電池では、リチウムコバルト複合酸化物を含んだ正極中にLiが多く吸蔵されている状態で、電池の充電反応及び放電反応が繰り返されることとなる。正極中に吸蔵されているLiが副反応の要因となり、ガス発生を引き起こし得る。そして、プロピオン酸エステルの分解生成物とリチウムコバルト複合酸化物との相互作用は、主に、正極に吸蔵されているLiの量の影響を受けると推定される。これらの推定から、発明者らは、非水電解質中のプロピオン酸エステルの濃度と容量比p/nの比とにはガス発生を抑制するための適切な範囲が存在することを導き出した。
 具体的には、実施形態に係る非水電解質電池は、下記式(1)及び(2):
 式(1):1.25≦p/n≦1.6;及び
 式(2):13<w/(p/n)≦40を満たす。ここで、pは正極の単位面積当りの容量[mAh/cm2]であり、nは負極の単位面積当りの容量[mAh/cm2]である。また、wは、非水電解質における少なくとも1種のプロピオン酸エステルの含有量[重量%]である。含有量wは、非水電解質の重量に対して20重量%以上64重量%未満の範囲内にある。
 実施形態に係る非水電解質電池は、リチウムコバルト複合酸化物とプロピオン酸エステルの分解生成物との相互作用による上記ガス発生を抑制する効果を十分に発現することができ、その結果、優れた寿命性能を示すことができる。
 一方、式(1)及び/又は式(2)を満たさない非水電解質電池は、以下の理由により、上記ガス発生を抑制する効果を十分に発現できない。
 まず、比w/(p/n)の値が13以下である非水電解質電池の例としては、以下の非水電解質電池が考えられる。1つの例は、非水電解質中にプロピオン酸エステルが含まれない、すなわちw=0である非水電解質電池である。他の例は、容量比p/nに対して、非水電解質中のプロピオン酸エステルの濃度が小さ過ぎる非水電解質電池である。これらの非水電解質電池では、充電及び放電中、正極に吸蔵されているLi量に対して、リチウムコバルト複合酸化物と相互作用するプロピオン酸エステルの分解生成物の量が少なくなり過ぎる。これらのような非水電解質電池は、十分なガス発生抑制効果を発揮できない。
 比w/(p/n)の値が13以下である非水電解質電池の更なる例としては、正極の単位面積当りの容量pが過剰であり過ぎ、それにより容量比p/nが大き過ぎる非水電解質電池が挙げられる。このような非水電解質電池では、正極中にLiが過剰に多く吸蔵された状態で、充電及び放電が繰り返されることとなる。そのため、このような非水電解質電池においては、充電及び放電中、正極に吸蔵されているLi量に対して、リチウムコバルト複合酸化物と相互作用するプロピオン酸エステルの分解生成物の量が少なくなり過ぎる。
 一方、比w/(p/n)の値が40よりも大きい非水電解質電池の例としては、以下の非水電解質電池が挙げられる。1つの例は、非水電解質中のプロピオン酸エステルの濃度が高過ぎる非水電解質電池である。このような非水電解質電池では、充電及び放電中、プロピオン酸エステル由来の分解生成物に対し、正極中に吸蔵されているLiの量が少なくなり過ぎる。このような非水電解質電池では、ガス発生の抑制効果が十分に得られない。更に、このような非水電解質電池では、非水電解質中の電解質からのLiイオンの解離が促進されず、その結果抵抗が増大する。
 比w/(p/n)の値が40よりも大きい非水電解質電池の他の例としては、容量比p/nが小さ過ぎる非水電解質電池が挙げられる。このような非水電解質電池では、満充電状態に近い充電状態において正極電位が高くなり過ぎてしまう。その結果、プロピオン酸エステルの酸化分解が過度に引き起こされ、ガスの発生量が増大してしまう。
 容量比p/nの値が1.25以上1.6以下である非水電解質電池では、正極の利用範囲が限定され、非水電解質電池のOCVを下げることができる。このような電池では、満充電状態に近い状態でも正極の電位が低く保たれ、活物質の劣化を抑制することができる。一方、容量比p/nが1.25より小さい非水電解質電池では、満充電状態に近い状態において正極電位が高くなり過ぎてしまう。正極にリチウムコバルト複合酸化物を含む場合、ガス発生を抑制する効果も得られるが、容量劣化が促進されてしまうため、結果として寿命性能が低下する。また、容量比p/nの値が1.6より大きな非水電解質電池では、正極の単位面積当りの容量pが負極の単位面積当りの容量nに対して過剰であり過ぎる。このような非水電解質電池は、エネルギー密度が低過ぎる。また、このような非水電解質電池は、正極にLiが過剰に吸蔵された状態で充電反応及び放電反応が進むため、抵抗が高くなる。抵抗が高い非水電解質電池は、充電及び放電の繰り返しにより負荷が大きくかかり、劣化が進行しやすくなる。そのため、このような非水電解質電池は、入出力性能だけでなく、寿命性能にも劣る。
 また、例えば負極に炭素系の活物質を用いた非水電解質電池では、充放電末期で負極の劣化が加速する問題がある。この劣化の問題は、負極の容量が正極の容量よりも小さくなるほど、顕著となる。そのため、負極に炭素系の活物質を用いた電池では、容量比p/nを1.25以上とすると、負極の劣化が進み、優れた寿命性能を示すことができない。一方、実施形態に係る非水電解質電池の負極が具備するリチウムチタン複合酸化物は、負極活物質として働くことができる。負極にリチウムチタン複合酸化物の活物質を用いた非水電解質電池では、充放電末期での負極の劣化が極めて小さい。そのため、負極にリチウムチタン複合酸化物を用いた実施形態に係る非水電解質電池は、容量比p/nを1.25以上であるが、優れた寿命性能を示すことができる。
 容量比p/nの値は、1.3以上1.5未満の範囲内にあることが好ましい。容量比p/nが好ましい範囲内にある非水電解質電池は、ガス発生を抑制しつつ、非水電解質電池のエネルギー密度を高めることができる。エネルギー密度の観点から容量比p/nの値は、1.3以上1.45未満の範囲内にあることがより好ましい。
 非水電解質電池の容量比p/nは、例えば、正極作製用スラリー及び負極作製用スラリーの塗布量、並びに各スラリーにおける各活物質の種類及び配合比、及び導電剤、バインダー等の副部材の混合比率によって制御することができる。例えば、実施例に記載した手順によると、容量比p/nの値が1.25以上1.6以下である非水電解質電池を作製することができる。
 非水電解質におけるプロピオン酸エステルの含有量wは、非水電解質の重量に対して20重量%以上64重量%以下の範囲内にあり且つ式(2):13<w/(p/n)≦40を満たす。含有量wが式(2)を満たすが20重量%未満である非水電解質電池では、非水電解質の充放電中に生成するプロピオン酸の量が充分でなく、ガス発生を十分に抑制することができない。また、含有量wが式(2)を満たすが64重量%よりも大きい非水電解質電池では、非水電解質の抵抗が増大し、レート特性が低下する。また、このような電池では、プロピオン酸エステルの分解による電池の劣化が顕著になり、寿命特性が低下する。
 非水電解質におけるプロピオン酸エステルの含有量wは、非水電解質の重量に対して20重量%以上50重量%未満であることが好ましく、20重量%以上40重量%未満であることがより好ましい。
 そして、比w/(p/n)の値は、13.0<w/(p/n)≦40の範囲内にあることが好ましく、14<w/(p/n)≦35の範囲内にあることがより好ましく、15<w/(p/n)≦30の範囲内にあることが更に好ましい。比w/(p/n)の値が好ましい範囲内にある非水電解質電池は、充放電中のガス発生をより抑えることができる。
 次に、実施形態に係る非水電解質電池をより詳細に説明する。
 実施形態に係る非水電解質電池は、正極と、負極と、非水電解質とを具備する。
 正極は、正極集電体を具備することができる。正極集電体は、例えば、帯状の平面形状を有することができる。帯状の正極集電体は、第1の面及びその裏面としての第2の面を含む2つの表面を有することができる。
 正極は、正極活物質含有層を更に具備することができる。正極活物質含有層は、例えば、正極集電体の2つの表面上又は一方の表面上に形成され得る。正極集電体は、表面に正極活物質含有層が形成されていない部分を含むことができる。この部分は、正極リードとして働くことができる。
 正極は、リチウムコバルト複合酸化物を含む。リチウムコバルト複合酸化物は、例えば、Lix1CoO2の一般式で表される組成を有することができる。一般式において、添字x1は、リチウムコバルト複合酸化物の充電状態に応じて、0<x1≦1の範囲内の値をとることができる。リチウムコバルト複合酸化物は、コバルト酸リチウムと呼ぶこともできる。すなわち、正極に含まれるリチウムコバルト複合酸化物は、例えば、Lix1CoO2の一般式で表される組成を有するコバルト酸リチウムを含むことができ、上記一般式において、0<x1≦1である。リチウムコバルト複合酸化物は、正極活物質として働くことができる。リチウムコバルト複合酸化物は、正極活物質含有層に含まれ得る。
 正極活物質含有層は、導電剤及び結着剤を更に含むこともできる。正極活物質含有層は、リチウムコバルト複合酸化物以外の正極活物質を更に含むこともできる。
 負極は、負極集電体を具備することができる。負極集電体は、例えば、帯状の平面形状を有することができる。帯状の負極集電体は、第1の面及びその裏面としての第2の面を含む2つの表面を有することができる。
 負極は、負極活物質含有層を更に具備することができる。負極活物質含有層は、例えば、負極集電体の2つの表面上又は一方の表面上に形成され得る。負極集電体は、表面に負極活物質含有層が形成されていない部分を含むことができる。この部分は、正極リードとして働くことができる。
 負極は、リチウムチタン複合酸化物を含む。リチウムチタン複合酸化物は、負極活物質として働くことができる。リチウムチタン複合酸化物は、負極活物質含有層に含まれ得る。負極活物質含有層は、導電剤及び結着剤を含むこともできる。負極活物質含有層は、リチウムチタン複合酸化物以外の負極活物質を更に含むこともできる。
 正極及び負極は、正極活物質含有層と負極活物質含有層とを間にセパレータを介在させて対向させて、電極群を構成することができる。
 このようにして形成される電極群の構造は、特に限定されない。例えば、電極群はスタック構造を有することができる。スタック構造は、先に説明した正極及び負極を間にセパレータを挟んで積層した構造を有する。或いは、電極群は捲回構造を有することができる。捲回構造は、先に説明した正極及び負極を間にセパレータを挟んで積層し、かくして得られた積層体を渦巻状に捲回した構造である。
 非水電解質は、例えば、電極群に含浸され得る。 
 非水電解質は、例えば、非水溶媒と、電解質とを含むことができる。電解質は、非水溶媒中に溶解され得る。
 実施形態に係る非水電解質電池は、電極群及び非水電解質を収容するための容器を更に具備することができる。
 また、実施形態に係る非水電解質電池は、正極リードに電気的に接続された正極集電タブ、及び負極リードに電気的に接続された負極集電タブを更に具備することもできる。正極集電タブ及び負極集電タブは、容器の外に引き出されて、正極端子及び負極端子として働くこともできる。或いは、正極集電タブ及び負極集電タブは、正極端子及び負極端子のそれぞれに接続することもできる。
 次に、実施形態に係る非水電解質電池が具備することができる各部材の材料について、詳細に説明する。
 (1)正極
 正極集電体としては、例えば、アルミニウム及び銅などの金属箔を使用することができる。
 リチウムコバルト複合酸化物以外の正極活物質は、リチウム又はリチウムイオンを吸蔵及び放出できるものであれば可能であれば、特に限定されるものではない。リチウムコバルト複合酸化物以外の正極活物質の例としては、二酸化マンガン(MnO2)、酸化鉄、酸化銅、酸化ニッケル、リチウムニッケル複合酸化物(例えば、Lix2NiO2、0<x2≦1)、リチウムニッケルコバルトマンガン複合酸化物(例えば、LixNi1-a-b-cCoaMnbM1c2の一般式で表される組成を有することができる。M1は、Mg、Al、Si、Ti、Zn、Zr、Ca、W、Nb及びSnからなる群より選択される少なくとも1種であり、各添字は、-0.2≦x≦0.5、0<a<0.4(好ましくは、0.25<a<0.4)、0<b<0.5、0≦c<0.1の範囲内にある)、リチウムニッケルコバルト複合酸化物(例えば、Lix3Ni1-eCoe2、0<x3≦1、0<e<1)、リチウムマンガンコバルト複合酸化物(例えば、Lix4MnfCo1-f2、0<x4≦1、0<f<1)、リチウムニッケルコバルトアルミニウム複合酸化物(例えば、Lix5Ni1-g-hCogAlh2、0<x5≦1、0<g<1、0<h<1)、リチウムマンガン複合酸化物(例えば、Lix6Mn24、Lix6MnO2、0<x6≦1)、オリビン構造を有するリチウムリン酸化物(例えば、Lix7FePO4、Lix7MnPO4、Lix7Mn1-iFeiPO4、Lix7CoPO4、0<x7≦1、0<i<1)、硫酸鉄(Fe2(SO43)、及びバナジウム酸化物(例えば、V25)が挙げられる。
 リチウムコバルト複合酸化物以外の正極活物質の種類は、1種類でもよいし、2種以上でもよい。正極活物質に占めるリチウムコバルト複合酸化物の重量は、正極活物質の重量に対して5重量%以上100重量%以下であることが好ましく、10重量%以上100重量%以下であることがより好ましい。すなわち、正極は、正極活物質を含むことができる。正極活物質は、例えば、先に説明したリチウムコバルト複合酸化物を含むことができる。リチウムコバルト複合酸化物の重量は、正極活物質の重量に対して、5重量%以上100重量%以下であることが好ましく、10重量%以上100重量%以下であることがより好ましい。
 正極は、先に挙げたリチウムニッケルコバルトマンガン複合酸化物を更に含むことが好ましい。先に説明した一般式における添字の数値が先に説明した範囲内にあることで、リチウムニッケルコバルトマンガン複合酸化物中のコバルト成分が効果的に作用し、ガス発生を更に抑制することができる。
 好ましい態様では、正極が、リチウムコバルト複合酸化物と一般式Li1-xNi1-a-b-cCoaMnbM1c2で表されるリチウムニッケルコバルトマンガン複合酸化物とを、100:0~4:96の重量比で含み、リチウムニッケルコバルトマンガン複合酸化物についての上記一般式において、各添字が-0.2≦x≦0.5、0<a≦0.4、0<b≦0.5、0≦c≦0.1の範囲内にある。正極は、リチウムコバルト複合酸化物と上記一般式で表されるリチウムニッケルコバルトマンガン複合酸化物とを、100:0~10:90の重量比で含むことがより好ましく、100:0~20:80の重量比で含むことが更に好ましい。
 正極活物質含有層が含む導電剤は、カーボン材料を含むことが好ましい。カーボン材料としては、例えば、アセチレンブラック、ケチェンブラック、ファーネスブラック、グラファイト、カーボンナノチューブなどを挙げることができる。正極活物質含有層は、上記カーボン材料の1種若しくは2種以上を含むことができるし、又は他の導電剤を更に含むこともできる。
 また、正極活物質含有層が含むことができる結着剤は、特に限定されない。例えば、結着剤として、スラリー調製用の混合用溶媒によく分散するポリマーを用いることができる。このようなポリマーとしては、例えば、ポリフッ化ビニリデン、ヘキサフルオロプロピレン及びポリテトラフルオロエチレンなどが挙げられる。
 正極活物質含有層における正極活物質、導電剤及び結着剤の含有量は、正極活物質含有層の重量を基準として、それぞれ、80重量%以上98重量%以下、1重量%以上10重量%以下及び1重量%以上10重量%以下であることが好ましく、90重量%以上94重量%以下、2重量%以上8重量%以下及び1重量%以上5重量%以下であることがより好ましい。
 正極は、例えば、以下の方法によって作製することができる。まず、リチウムコバルト複合酸化物と、任意の他の活物質と、任意の導電剤と、任意の結着剤とを適切な溶媒に投入して、混合物を得る。続いて、得られた混合物を撹拌機に投入する。この攪拌機において、混合物を撹拌して、スラリーを得る。かくして得られたスラリーを、上記正極集電体上に塗布し、これを乾燥させて、次いでプレスすることによって、正極を作製することができる。
 (2)負極
 負極集電体としては、例えば、アルミニウム、銅などの金属箔を使用することができる。
 負極が含むリチウムチタン複合酸化物は、例えば、スピネル型の結晶構造を有するチタン酸リチウム(例えば、Li4+yTi512(yは、充電状態に応じて、0≦y≦3の範囲内で変化する)の組成を有することができる)を挙げることができる。その他のリチウムチタン複合酸化物としては、例えば、ラムズデライト型の結晶構造を有するチタン酸リチウムが挙げられる。すなわち、リチウムチタン複合酸化物は、例えば、スピネル型の結晶構造を有し且つLi4+yTi512の一般式を有するチタン酸リチウムを含むことができ、上記一般式において、0≦y≦3である。
 リチウムチタン複合酸化物以外の活物質の例としては、アナターゼ型、ルチル型、ブロンズ型のチタン含有酸化物、単斜晶型結晶構造を有するニオブチタン含有酸化物、及び斜方晶型の結晶構造を有するNa含有ニオブチタン複合酸化物が挙げられる。
 負極活物質の50重量%以上が、スピネル型の結晶構造を有するチタン酸リチウムであることが好ましい。負極活物質は、スピネル型の結晶構造を有するチタン酸リチウムからなることが特に好ましい。
 負極活物質含有層が含むことができる導電剤及び結着剤は、正極活物質含有層が含むことができるそれらと同様のものを用いることができる。
 負極活物質含有層における負極活物質、導電剤及び結着剤の含有量は、負極活物質含有層の重量を基準として、それぞれ、80重量%以上98重量%以下、1重量%以上10重量%以下及び1重量%以上10重量%以下であることが好ましく、90重量%以上94重量%以下、2重量%以上8重量%以下及び1重量%以上5重量%以下であることがより好ましい。
 負極は、例えば、以下の手順により作製することができる。まず、負極活物質と、導電剤と、結着剤とを混合する。かくして得られた混合物を溶媒に投入してスラリーを調製する。このスラリーを負極集電体に塗布し、乾燥させ、次いでプレスする。かくして、負極を作製することができる。
 (3)非水電解質
 少なくとも1種のプロピオン酸エステルは、例えば、非水溶媒として非水電解質に含まれ得る。
 少なくとも1種のプロピオン酸エステルは、例えば、プロピオン酸メチル、プロピオン酸エチル、プロピオン酸プロピル及びプロピオン酸ブチルからなる群より選択される少なくとも1種を含むことができる。少なくとも1種のプロピオン酸エステルは、プロピオン酸メチル及びプロピオン酸エチルからなる群より選択される少なくとも1種を含んでいることが好ましい。
 非水電解質は、非水溶媒として、プロピレンカーボネート(PC)を更に含むことができる。プロピレンカーボネート溶媒からは、プロピレングリコールを含む化合物が生成し得る。この化合物は、非水電解質電池において、プロピオン酸を含む化合物と同種の役割を果たすことができ、これとリチウムコバルト複合酸化物との相互作用により、ガス発生を更に抑制することができる。非水電解質におけるプロピレンカーボネートの含有量は、非水電解質の重量に対して、20重量%以上60重量%未満であることが好ましく、25重量%以上55重量%未満であることがより好ましい。より好ましい他の態様では、非水電解質におけるプロピレンカーボネートの含有量は、非水電解質の重量に対して、20重量%以上40重量%未満である。特に好ましくは、非水電解質におけるプロピレンカーボネートの含有量は、非水電解質の重量に対して、25重量%以上40重量%未満である。プロピレンカーボネートの含有量が特に好ましい範囲にある非水電解質電池では、非水電解質がより優れたイオン伝導性を示すことができ、その結果、電池のより低い内部抵抗を実現することができる。
 非水溶媒の他の例としては、例えば、エチレンカーボネート(EC)、ブチレンカーボネート(BC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、γ-ブチロラクトン(γ-BL)、スルホラン、アセトニトリル、1,2-ジメトキシエタン、1,3-ジメトキシプロパン、ジメチルエーテル、テトラヒドロフラン(THF)、2-メチルテトラヒドロフランなどを挙げることができる。
 非水溶媒としては、1種類の溶媒を単独で使用してもよいし、又は2種以上の溶媒を混合した混合溶媒を使用してもよい。好ましい態様では、非水溶媒は、少なくとも1種のプロピオン酸エステルと、プロピレンカーボネートとからなる。また、この態様では、プロピオン酸エステル:プロピレンカーボネートの重量比が、25:75~75:25の範囲内にあることが好ましい。なお、この態様の非水溶媒は、プロピオン酸エステル及びプロピレンカーボネートに加え、これらの分解生成物を更に含むこともできる。
 電解質は、例えば、過塩素酸リチウム(LiClO4)、六フッ化リン酸リチウム(LiPF6)、四フッ化ホウ酸リチウム(LiBF4)、六フッ化砒素リチウム(LiAsF6)、トリフルオロメタンスルホン酸リチウム(LiCF3SO3)などのリチウム塩を挙げることができる。電解質としては、1種類の電解質を単独で使用してもよいし、又は2種以上の電解質の混合物を使用してもよい。
 電解質の非水溶媒に対する溶解量は、0.5mol/L~3mol/Lとすることが望ましい。なお、溶解量が高過ぎると電解液に完全に溶解できない場合がある。
 (4)セパレータ
 セパレータは、特に限定されるものではなく、例えば、微多孔性の膜、織布、不織布、これらのうち同一材または異種材の積層物などを用いることができる。セパレータを形成する材料としては、ポリエチレン、ポリプロピレン、エチレン-プロピレン共重合ポリマー、エチレン-ブテン共重合ポリマー、セルロースなどを挙げることができる。
 (5)容器
 容器としては、例えば金属製容器又はラミネートフィルム製容器を用いることができるが、特に限定されない。
 容器として金属製容器を用いることにより、耐衝撃性及び長期信頼性に優れた非水電解質電池を実現することができる。容器としてラミネートフィルム製容器を用いることにより、耐腐食性に優れた非水電解質電池を実現することができると共に、非水電解質電池の軽量化を図ることができる。
 金属製容器は、例えば、壁厚が0.2mm以上1mm以下の範囲内にあるものを用いることができる。金属製容器は、壁厚が0.3~0.8mm以下であることがより好ましい。
 金属製容器は、Fe、Ni、Cu、Sn及びAlからなる群より選択される少なくとも1種を含んでいることが好ましい。金属製容器は、例えば、アルミニウム、アルミニウム合金、鉄、ニッケル(Ni)めっきした鉄、ステンレス(SUS)等から作ることができる。アルミニウム合金は、マグネシウム、亜鉛、ケイ素等の元素を含む合金が好ましい。合金中に鉄、銅、ニッケル、クロム等の遷移金属を含む場合、その含有量は1重量%以下にすることが好ましい。これにより、高温環境下での長期信頼性及び放熱性を飛躍的に向上させることができる。
 ラミネートフィルム製容器としては、例えば、厚さが0.1以上2mm以下の範囲内にあるものを用いることができる。ラミネートフィルムの厚さは0.2mm以下であることがより好ましい。 
 ラミネートフィルムとしては、金属層と、この金属層を挟み込んだ樹脂層を含む多層フィルムが用いられる。金属層は、Fe、Ni、Cu、Sn及びAlからなる群より選択される少なくとも1種を含む金属を含むことが好ましい。金属層は、軽量化のためにアルミニウム箔若しくはアルミニウム合金箔が好ましい。樹脂層は、例えばポリプロピレン(PP)、ポリエチレン(PE)、ナイロン、ポリエチレンテレフタレート(PET)等の高分子材料を用いることができる。ラミネートフィルムは、熱融着によりシールを行って外装材の形状に成形することができる。
 外装材の形状としては、扁平型(薄型)、角型、円筒型、コイン型、ボタン型等が挙げられる。外装材は、用途に応じて様々な寸法を採ることができる。例えば、第1の実施形態に係る非水電解質電池が携帯用電子機器の用途に用いられる場合は、外装材は搭載する電子機器の大きさに合わせて小型のものにすることができる。或いは、二輪乃至四輪の自動車等に積載される非水電解質電池である場合、容器は大型電池用容器であり得る。
 (6)正極集電タブ、負極集電タブ、正極端子及び負極端子
 正極集電タブ、負極集電タブ、正極端子及び負極端子は、例えば、アルミニウム又はアルミニウム合金から形成することが望ましい。
 [各種測定方法]
 [容量比p/n]
 正極の単位面積当りの容量pと負極の単位面積当りの容量nとの比、すなわち比p/nの算出方法を以下に説明する。
 まず、検査対象の非水電解質電池を用意する。以下では、対象の非水電解質電池として、ラミネートフィルム製容器を具備した非水電解質電池を例に挙げて説明する。対象の非水電解質電池は、定格容量の80%以上の容量を有する電池とする。電池の容量維持率は、以下の方法により判断する。まず、電池を作動上限電圧まで充電する。この時の電流値は定格容量から求めた1Cレートに相当する電流値である。作動上限電圧に達した後、3時間電圧を保持する。充電及び電圧保持後、1Cのレートで作動電圧下限値まで放電を行う。上記の充放電を計3サイクル行い、3サイクル目の放電の際に得られた放電容量を記録する。得られた放電容量の定格容量に対する比率を容量維持率と定義する。
 次に、電池の構成要素が解体時に大気成分や水分と反応することを防ぐために、例えば、アルゴンガス雰囲気のグローブボックス内のような不活性ガス雰囲気内に電池を入れる。次に、このようなグローブボックス内で、非水電解質電池を開く。例えば、正極集電タブ及び負極集電タブのそれぞれの周辺にあるヒートシール部を切断して、非水電解質電池を切り開くことができる。切り開いた非水電解質電池から、電極群を取り出す。取り出した電極群が正極リード及び負極リードを含む場合は、正負極を短絡させないように注意しながら、正極リード及び負極リードを切断する。
 次に、取り出した電極群を解体し正極、負極、セパレータに分解する。その後、正極のうち負極に対向していた部分の重量Wc[g]を測定する。その後、正極から例えば3cm四方の正極活物質含有層を含む正極サンプルを切り取る。電池の充電状態はいずれの状態であっても構わない。なお、正極サンプルは、正極のうち負極に対向していた部分から切り取る。例えば正極サンプルが集電体の両方の表面に担持された正極活物質含有層を含んでいた場合、集電体の一方の表面に担持された正極活物質含有層を剥がし取り、正極サンプルとする。
 次に、切り取った正極サンプルの重量Wcs[g]を測定する。測定後、正極サンプルを作用極とし、対極及び参照極にリチウム金属箔を用いた2極式又は3極式の電気化学測定セルを作成する。作成した電気化学測定セルを、上限電位4.3V(vs. Li/Li+)まで充電する。この時の電流値は、1Cレートに相当する電流値I1cc[mA]とする。電流値I1ccは、以下の手順で求める。まず、正極サンプルの容量Ccs[mAh]を、式:Ccs=Cn×(Wcs/Wc)で求める。ここで、Cnは、検査対象の非水電解質電池の定格容量[mAh]である。この容量Ccsを1時間で充電又は放電可能な電流値をI1cc[mA](=Ccs[mAh]/1[h])と定義する。電位が4.3V(vs. Li/Li+)に達した後、3時間電位を保持する。充電及び電位保持後、充電と同じ電流値で正極電位が3.0V(vs. Li/Li+)になるまで放電を行う。上記の充放電を計3サイクル行い、3サイクル目の放電の際に得られた放電容量を記録する。得られた放電容量を、電気化学測定セルに組み込んだ正極サンプルに含まれている正極活物質含有層の面積、すなわち9cm2(=3cm×3cm)で除することで、正極の単位面積当りの容量p[mAh/cm2]を得る。
 次に、解体した電極郡から取り出した負極のうち正極に対向していた部分の重量Wa[g]を測定する。その後、負極から例えば3cm四方の負極活物質含有層を含む負極サンプルを切り取る。電池の充電状態はいずれの状態であっても構わない。なお、負極サンプルは、負極のうち正極に対向した部分から切り取る。例えば負極サンプルが集電体の両方の表面に担持された負極活物質含有層を具備していた場合、集電体の一方の表面に担持された負極活物質含有層を剥がし取り、負極サンプルとする。
 次に、切り取った負極サンプルの重量Was[g]を測定する。測定後、負極サンプルを作用極とし、対極及び参照極にリチウム金属箔を用いた2極式又は3極式の電気化学測定セルを作成する。作成した電気化学測定セルを、下限電位1.0V(vs. Li/Li+)まで充電する。この時の電流値は、1Cレートに相当する電流値I1ca[A]とする。電流値I1caは、以下の手順で求める。まず、負極サンプルの容量Cas[mAh]を、式:Cas = Cn×(Was/Wa)で求める。ここで、Cnは、先に説明したように、検査対象の非水電解質電池の定格容量[mAh]である。この容量Casを1時間で充電又は放電可能な電流値をI1ac[mA](=Cas[mAh]/1[h])と定義する。電位が1.0V(vs. Li/Li+)に達した後、3時間電位を保持する。充電及び電位保持後、充電と同じ電流値で負極電位が2.0V(vs. Li/Li+)になるまで放電を行う。上記の充放電を計3サイクル行い、最後の放電の際に得られた放電容量を記録する。得られた放電容量を、電気化学測定セルに組み込んだ負極サンプルに含まれている負極活物質含有層の面積、すなわち9cm2(=3cm×3cm)で除することで、負極の単位面積当りの容量n[mAh/cm2]を得る。
 以上のようにして得られた正極の単位面積当りの容量pを負極の単位面積当りの容量nで除することで、p/nを算出する。
 なお、比p/nの算出のために取り出す正極サンプル及び負極サンプルは、非水電解質電池において互いに対向している部分とする。
 [正極活物質及び負極活物質の同定方法]
 非水電解質電池に含まれている正極活物質は、以下の方法に従って同定することができる。 
 まず、非水電解質電池を電池電圧が1.0Vになるまで1Cで放電する。次に、このような状態にした電池を、アルゴンを充填したグローブボックス中で分解する。分解した電池から、正極を取り出す。取り出した正極を適切な溶媒で洗浄する。たとえばエチルメチルカーボネートなどを用いると良い。洗浄が不十分であると、正極中に残留したリチウムイオンの影響で、炭酸リチウムやフッ化リチウムなどの不純物相が混入することがある。その場合は、測定を不活性ガス雰囲気中で行うことができる気密容器を用いるとよい。洗浄した後、正極を真空乾燥に供する。乾燥後、スパチュラなどを用いて正極活物質含有層を集電体から剥離させ、粉末状の正極活物質含有層を得る。
 かくして得られた粉末に対して粉末X線回折測定(X-ray diffraction;XRD)を行うことによって、この粉末に含まれる化合物の結晶構造を同定することができる。測定は、CuKα線を線源として、2θが10~90°の測定範囲で行う。この測定により、この粉末に含まれる化合物のX線回折パターンを得ることができる。粉末X線回折測定の装置としては、例えばRigaku社製SmartLabを用いる。測定条件は以下の通りとする:Cuターゲット;45kV 200mA;ソーラスリット:入射及び受光共に5°;ステップ幅:0.02deg;スキャン速度:20deg/分;半導体検出器:D/teX Ultra 250;試料板ホルダ:平板ガラス試料板ホルダ(厚さ0.5mm);測定範囲:10°≦2θ≦90°の範囲。その他の装置を使用する場合は、以下の手順を踏む。まず、その他の装置において粉末X線回折用標準Si粉末を用いた測定を行って、上記Rigaku社製SmartLabによって得られる結果と同様のピーク強度及びピークトップ位置の測定結果が得られる条件を見つける。次いで、その条件下で、試料の測定を行う。
 測定結果において、複数の結晶構造に帰属されるピークが表れるかどうかで活物質の混合状態を判断することができる。
 続いて、操作型電子顕微鏡(Scanning electron microscope;SEM)によって、活物質含有層を観察する。試料のサンプリングについても大気に触れないようにし、アルゴンや窒素など不活性雰囲気で行う。
 3000倍のSEM観察像にて、視野内で確認される1次粒子あるいは2次粒子の形態を持つ幾つかの粒子を選定する。この際、選定した粒子の粒度分布ができるだけ広くなるように選定する。観察できた活物質粒子に対し、エネルギー分散型X線分光法(Energy Dispersive X-ray Spectroscopy;EDX)で活物質の構成元素の種類及び組成を特定する。これにより、選定したそれぞれの粒子に含まれる元素のうちLi以外の元素の種類及び量を特定することができる。複数の活物質粒子それぞれに対し同様の操作を行い、活物質粒子の混合状態を判断する。
 続いて、正極活物質含有層の粉末を秤量する。秤量した粉末を塩酸で溶解し、イオン交換水で希釈した後、誘導結合プラズマ発光分光分析法(Inductively Coupled Plasma Atomic Emission Spectroscopy:ICP-AES)により含有金属量を算出する。活物質が複数種類存在している場合は、各活物質に固有の元素の含有比率からその質量比を推定する。固有の元素と活物質質量の比率とはエネルギー分散型X線分光法により求めた構成元素の組成から判断する。
 かくして、非水電解質電池の正極に含まれている活物質を同定することができる。
 非水電解質電池に含まれている負極活物質も、先と同様の手順で同定することができる。但し、ここでは、負極活物質の結晶状態を把握するために、測定対象の活物質からリチウムイオンが離脱した状態にする。例えば、非水電解質電池を電池電圧が1.0Vになるまで1Cで放電する。但し、電池を放電した状態でも、活物質に残留したリチウムイオンが存在することがあり得る。
 [非水電解質に含まれる非水溶媒の成分の同定方法]
 非水電解質に含まれる溶媒の成分の同定方法を以下に説明する。 
 まず、測定対象の非水電解質電池を、電池電圧が1.0Vになるまで1Cで放電する。放電した非水電解質電池を、不活性雰囲気のグローブボックス内で解体する。
 次いで、電池及び電極群に含まれる非水電解質を抽出する。非水電解質電池を開封した箇所から非水電解質を取り出せる場合は、そのまま非水電解質のサンプリングを行う。一方、測定対象の非水電解質が電極群に保持されている場合は、電極群を更に解体し、例えば非水電解質を含浸したセパレータを取り出す。セパレータに含浸されている非水電解質は、例えば遠心分離機などを用いて抽出することができる。かくして、非水電解質のサンプリングを行うことができる。なお、非水電解質電池に含まれている非水電解質が少量の場合、電極及びセパレータをアセトニトリル液中に浸すことで非水電解質を抽出することもできる。アセトニトリル液の重量を抽出前後で測定し、抽出量を算出することができる。
 かくして得られた非水電解質のサンプルを、例えばガスクロマトグラフィー質量分析装置(GC-MS)又は核磁気共鳴分光法(NMR)に供して、組成分析を行う。分析に際しては、まず、非水電解質に含まれているプロピオン酸エステルの種類を同定する。次いで、非水電解質に含まれているプロピオン酸エステルの検量線を作製する。複数種類含まれている場合は、それぞれのエステルについての検量線を作成する。作成した検量線と、非水電解質のサンプルを測定して得られた結果におけるピーク強度又は面積とを対比させることで、非水電解質中のプロピオン酸エステルの混合割合を算出することができる。
 次に、図1~図3を参照しながら、実施形態に係る非水電解質電池の一例を更に詳細に説明する。
 図1は、実施形態に係る一例の非水電解質電池の概略切欠き斜視図である。図2は、図1に示すA部の概略断面図である。図3は、実施形態に係る一例の非水電解質電池が具備する正極の概略平面図である。
 図1~図3に示す第1の例の非水電解質電池1は、図1及び図2に示す電極群2と、図1及び図2に示す容器3と、図1及び図2に示す正極集電タブ4と、図1に示す負極集電タブ5とを具備している。
 図1及び図2に示す電極群2は、複数の正極6と、複数の負極7と、1枚のセパレータ8とを備える。
 正極6は、図2及び図3に示すように、正極集電体61と、この正極集電体61の両面に形成された正極活物質含有層62とを備えている。また、図2及び図3に示すように、正極集電体61は表面に正極活物質含有層62が形成されていない部分63を含んでおり、この部分63は正極リードとして働く。図3に示すように、正極リード63は、正極活物質含有層62よりも幅の狭い狭小部となっている。
 負極7は、図2に示すように、負極集電体71と、この負極集電体71の両面に形成された負極活物質含有層72とを備えている。また、図示はしていないが、負極集電体71は表面に負極活物質含有層72が形成されていない部分を含んでおり、この部分は負極リードとして働く。
 図2に一部を示すように、セパレータ8は九十九折にされている。九十九折にされたセパレータ8の互いに対向する面によって規定される空間には、正極6又は負極7がそれぞれ配置されている。それにより、正極6と負極7とは、図2に示すように、正極活物質含有層62と負極活物質含有層72とがセパレータ8を間に介在させて対向するように積層されている。かくして、電極群2が形成されている。
 電極群2の正極リード63は、図2に示すように、電極群2から延出している。これらの正極リード63は、図2に示すように、1つにまとめられて、正極集電タブ4に接続されている。また、図示はしていないが、電極群2の負極リードも電極群2から延出している。これらの負極リードは、図示していないが、1つにまとめられて、図1に示す負極集電タブ5に接続されている。
 このような電極群2は、図1及び図2に示すように、容器3に収納されている。
 容器3は、アルミニウム箔31とその両面に形成された樹脂フィルム32及び33とからなるアルミニウム含有ラミネートフィルムから形成されている。容器3を形成するアルミニウム含有ラミネートフィルムは、折り曲げ部3dを折り目として、樹脂フィルム32が内側を向くように折り曲げられて、電極群2を収納している。また、図1及び図2に示すように、容器3の周縁部3bにおいて、樹脂フィルム32の互いに向き合った部分が、間に正極集電タブ4を挟み込んでいる。同様に、容器3の周縁部3cにおいて、樹脂フィルム32の互いに向き合った部分が、間に負極集電タブ5を挟み込んでいる。それにより、正極集電タブ4及び負極集電タブ5は、容器3から、互いに反対の向きに延出している。
 正極集電タブ4及び負極集電タブ5を挟み込んだ部分を除く容器3の周縁部3a、3b及び3cが、互いに対向した樹脂フィルム32の熱融着によりヒートシールされている。
 また、非水電解質電池1では、正極集電タブ4と樹脂フィルム32との接合強度を向上させるために、図2に示すように、正極集電タブ4と樹脂フィルム32との間に絶縁フィルム9が設けられている。また、周縁部3bにおいて、正極集電タブ4と絶縁フィルム9とが熱融着によりヒートシールされており、樹脂フィルム32と絶縁フィルム9とが熱融着によりヒートシールされている。同様に、図示していないが、負極集電タブ5と樹脂フィルム32との間にも絶縁フィルム9が設けられている。また、周縁部3cにおいて、負極集電タブ5と絶縁フィルム9とが熱融着によりヒートシールされており、樹脂フィルム32と絶縁フィルム9とが熱融着によりヒートシールされている。すなわち、図1~図3に示す非水電解質電池1では、容器3の周縁部3a、3b及び3cの全てが熱シールされている。
 容器3は、図示していない非水電解質を更に収納している。非水電解質は、電極群2に含浸されている。
 図1~図3に示す非水電解質電池1では、図2に示すように、電極群2の最下層に複数の正極リード63をまとめている。同様に、図示していないが、電極群2の最下層に複数の負極リードをまとめている。しかしながら、例えば図4に示すように、電極群2の中段付近に複数の正極リード63及び複数の負極リード73を、それぞれ1つにまとめて、正極集電タブ4及び負極集電タブ5のそれぞれに接続することができる。
 以上に説明した実施形態によると、非水電解質電池が提供される。この非水電解質電池は、正極と、負極と、非水電解質とを具備する。正極は、リチウムコバルト複合酸化物を含む。負極は、リチウムチタン複合酸化物を含む。正極及び負極は、容量比p/nが式(1):1.25≦p/n≦1.6を満たす。非水電解質は、少なくとも1種のプロピオン酸エステルを含む。非水電解質における少なくとも1種のプロピオン酸エステルの含有量wは、非水電解質の重量に対して20重量%以上64重量%未満である。実施形態に係る非水電解質電池は、式(2):13<w/(p/n)≦40を満たす。この非水電解質電池は、少なくとも1種のプロピオン酸エステルの分解生成物とリチウムコバルト複合酸化物との相互作用により、充電及び放電中のガス発生を抑制することができる。その結果、実施形態に係る非水電解質電池は、優れた寿命性能を示すことができる。
 (第2の実施形態)
 実施形態によると、電池パックが提供される。この電池パックは、実施形態に係る非水電解質電池を具備する。
 実施形態に係る電池パックは、1つの非水電解質電池を具備していてもよい。或いは、実施形態に係る電池パックは、複数の非水電解質電池を備えることもできる。複数の非水電解質電池は、電気的に直列に接続することもできるし、又は電気的に並列に接続することもできる。或いは、複数の非水電解質電池を、直列及び並列の組み合わせで接続することもできる。
 電池パックが複数の非水電解質電池を具備する場合、少なくとも1つの電池が、実施形態に係る非水電解質電池であればよい。複数の非水電解質電池の各々が、実施形態に係る非水電解質電池であってもよい。例えば、実施形態に係る電池パックは、5つ又は6つの非水電解質電池を具備することができ、これらの各々が実施形態に係る非水電解質電池である。これらの非水電解質電池は、例えば直列に接続されてもよい。
 また、接続された非水電解質電池は、組電池を構成することができる。すなわち、実施形態に係る電池パックは、組電池を具備することもできる。
 実施形態に係る電池パックは、例えば複数の組電池を具備することができる。複数の組電池は、直列、並列、又は直列及び並列の組み合わせで接続することができる。
 以下に、実施形態に係る電池パックの一例を、図5及び図6を参照しながら説明する。
 図5は、実施形態に係る一例の電池パックの分解斜視図である。図6は、図5の電池パックの電気回路を示すブロック図である。
 図5及び図6に示す電池パック20は、複数の単電池1を備える。各単電池1は、実施形態に係る一例の扁平型非水電解質電池である。単電池1は、図示しない電極群と、図示しない非水電解質と、図5に示す容器3と、図5に示す正極端子11及び負極端子12とを具備する。電極群及び非水電解質は、容器3内に収容されている。電極群には非水電解質が含浸されている。
 容器3は、有底角筒形状を有している。容器3は、例えば、アルミニウム、アルミニウム合金、鉄又はステンレス鋼などの金属から形成されている。
 電極群は、図1~図3を参照しながら説明した非水電解質電池が具備する電極群と同様に、正極、負極及びセパレータを具備する。
 正極端子11は、正極に電気的に接続されている。負極端子12は、負極に電気的に接続されている。正極端子11の一方の端部及び負極端子12の一方の端部は、それぞれ、単電池1の同じ端面から延出している。
 複数の単電池1は、外部に延出した正極端子11及び負極端子12が同じ向きに揃えられるように積層され、粘着テープ22で締結することにより組電池10を構成している。これらの単電池1は、図6に示すように互いに電気的に直列に接続されている。
 プリント配線基板24は、単電池1の負極端子12及び正極端子11が延出する端面に対向して配置されている。プリント配線基板24には、図6にそれぞれ示す、サーミスタ25、保護回路26及び外部機器への通電用端子27が搭載されている。なお、プリント配線基板24には、組電池10と対向する面に組電池10の配線と不要な接続を回避するために絶縁板(図示せず)が取り付けられている。
 正極側リード28の一端は、組電池10の最下層に位置する正極端子11に電気的に接続されている。正極側リード28の他端はプリント配線基板24の正極側コネクタ41に挿入されて電気的に接続されている。負極側リード29の一端は、組電池10の最上層に位置する負極端子12に電気的に接続されている。負極側リード29の他端は、プリント配線基板24の負極側コネクタ42に挿入されて電気的に接続されている。これらのコネクタ41及び42は、プリント配線基板24に形成された配線43及び44を通して保護回路26に接続されている。
 サーミスタ25は、単電池1の温度を検出し、その検出信号は保護回路26に送信される。保護回路26は、所定の条件で保護回路26と外部機器への通電用端子27との間のプラス側配線45及びマイナス側配線46を遮断できる。所定の条件の一例とは、例えば、サーミスタ25の検出温度が所定温度以上になったときである。また、所定の条件の他の例とは、例えば、単電池1の過充電、過放電、過電流等を検出したときである。この過充電等の検出は、個々の単電池1又は組電池10全体について行われる。個々の単電池1を検出する場合、電池電圧を検出してもよいし、正極電位もしくは負極電位を検出してもよい。後者の場合、個々の単電池1中に参照極として用いるリチウム電極が挿入される。図5及び図6の電池パック20の場合、各単電池1に電圧検出のための配線47が接続されている。これら配線47を通して検出信号が保護回路26に送信される。
 正極端子11及び負極端子12が突出する側面を除く組電池10の三側面には、ゴム又は樹脂からなる保護シート91がそれぞれ配置されている。
 組電池10は、各保護シート91及びプリント配線基板24と共に収納容器100内に収納される。すなわち、収納容器100の長辺方向の両方の内側面と短辺方向の内側面とにそれぞれ保護シート91が配置され、短辺方向の反対側の内側面にプリント配線基板24が配置される。組電池10は、保護シート91及びプリント配線基板24で囲まれた空間内に位置する。蓋110は、収納容器100の上面に取り付けられている。
 なお、組電池10の固定には粘着テープ22に代えて、熱収縮テープを用いてもよい。熱収縮テープを用いる場合、組電池10の両側面に保護シートを配置し、熱収縮テープを周回させた後、熱収縮テープを熱収縮させて組電池10を結束させる。
 図5及び図6では、単電池1を直列接続した形態を示している。一方、電池容量を増大させるためには、単電池1を並列に接続してもよい。さらに、組み上がった電池パックを直列及び/又は並列に接続することもできる。
 また、実施形態に係る電池パックの態様は用途により適宜変更される。実施形態に係る電池パックの用途としては、大電流性能でのサイクル性能が望まれるものが好ましい。具体的な用途としては、デジタルカメラの電源用や、二輪乃至四輪のハイブリッド電気自動車、二輪乃至四輪の電気自動車、アシスト自転車等の車載用が挙げられる。実施形態に係る電池パックは、特に、車載用が好適である。
 実施形態に係る電池パックは、実施形態に係る非水電解質電池を具備しているので、優れた寿命性能を示すことができる。
 (第3の実施形態)
 実施形態によると、電池システムが提供される。この電池システムは、第1の電池ユニットと、第1の電池ユニットに並列に接続された第2の電池ユニットとを具備する。第1の電池ユニットは、実施形態に係る非水電解質電池を含む。第2の電池ユニットは、鉛蓄電池を含む。
 第1の電池ユニットは、実施形態に係る少なくとも1つの非水電解質電池を含んでいればよい。例えば、第1の電池ユニットは、実施形態に係る1つの非水電解質電池を含んでいてもよい。或いは、第1の電池ユニットは、各々が実施形態に係る非水電解質電池である複数の非水電解質電池を含んでいてもよい。この場合、非水電解質電池は、例えば、電気的に接続されて、組電池を構成することもできる。非水電解質電池の接続は、直列接続若しくは並列接続の何れでもよいし、又は直列接続及び並列接続の組み合わせでもよい。
 第2の電池ユニットは、少なくとも1つの鉛蓄電池を含んでいればよい。例えば、第2の電池ユニットは、1つの鉛蓄電池を含んでいてもよい。或いは、第2の電池ユニットは、複数の鉛蓄電池を含んでいてもよい。この場合、鉛蓄電池は、例えば、電気的に接続されて、組電池を構成することもできる。鉛蓄電池の接続は、直列接続若しくは並列接続の何れでもよいし、又は直列接続及び並列接続の組み合わせでもよい。
 第1の電池ユニットに含まれる非水電解質電池は、実施形態に係る非水電解質電池であり、容量比p/nの値が1.25以上1.6以下である。実施形態に係る非水電解質電池に関するセクションで述べたように、容量比p/nの値が1.25以上1.6以下である実施形態に係る非水電解質電池は、低い開回路電圧(OCV)を示すことができる。低いOCVを示すことができる非水電解質電池は、電池1つ当りの動作可能な電圧を、狭い範囲とすることができる。ここで、電池ユニットの作動電圧は、例えば、この電池ユニットが含む電池の直列数(直列接続されている電池の数)を変更することにより調整することができる。電池1つ当りの動作可能な電圧範囲が狭いほど、複数の電池を含む電池ユニットの作動電位をより容易に調整することができる。そのため、第1の電池ユニットの電圧は、鉛蓄電池に適合可能な値に容易に調整できる。よって、第1の電池ユニットは、鉛蓄電池との優れた電圧適合性を示すことができる。従って、実施形態に係る非水電解質電池を含んだ第1の電池ユニットは、鉛蓄電池の使用可能な電圧範囲(鉛蓄電池の劣化を抑えることができる電圧範囲)において、大きな使用可能容量を示すことができる。そのため、実施形態に係る電池システムでは、鉛蓄電池を含んだ第2の電池ユニットの劣化を抑えることができる。
 電池システムは、通電用の端子を更に含むことができる。電池システムは、通電用の端子を介して、負荷に接続され得る。負荷は、例えば、第1の電池ユニット及び第2の電池ユニットと電気的に並列に接続することができる。このような接続により、負荷は、第1の電池ユニット及び第2の電池ユニットの両方から電力供給を受けることができるし、第1の電池ユニット及び第2の電池ユニットの何れか一方のみから電力供給を受けることもできる。負荷は、電池システムの内部に組み込まれた負荷でもよいし、又は電池システムから切り離すことのできる外部負荷でもよい。第1の電池ユニット及び/又は第2の電池ユニットは、通電用の端子を介して、負荷に電力を供給することができる。
 例えば、負荷は、電気モーターでもよい。例えば、第1の電池ユニット及び/又は第2の電池ユニットは、電気モーターに電力を供給して、電気モーターを駆動させることができる。
 また、通電用の端子は、外部電源に接続することもできる。第1の電池ユニット及び/又は第2の電池ユニットは、通電用の端子を介して、外部電源から電力を受け取ることができる。或いは、第1の電池ユニット及び/又は第2の電池ユニットは、通電用の端子を介して、回生エネルギーを受け取ることもできる。第1の電池ユニットが通転用の端子を介して回生エネルギーを受け取ることができることが好ましい。回生エネルギーについては、後述する。
 電池システムは、電池管理装置(Battery Management Unit: BMU)を更に具備することもできる。電池管理装置は、第1の電池ユニット及び第2の電池ユニットのそれぞれの作動を制御するように構成され得る。電池管理装置は、例えば、第1の電池ユニット及び第2の電池ユニットのそれぞれの充電状態(State-of-Charge:SOC)及び/又は電圧に基づいて、第1の電池ユニット及び第2の電池ユニットのそれぞれの作動を制御することができる。電池管理装置は、例えば、第1の電池ユニットから負荷への電力供給と、第2の電池ユニットから負荷への電力供給と、外部電源から第1の電池ユニットへの電力供給と、外部電源から第2の電池ユニットへの電力供給と、第1の電池ユニットへの回生エネルギーの入力とを制御するように構成され得る。
 電池システムは、例えば、二輪乃至四輪のハイブリッド電気自動車、二輪乃至四輪の電気自動車、アシスト自転車等などの車両に搭載することができる。
 電池システムを搭載する車両は、例えば、車両の駆動系に機械的に接続されたオルタネータを更に含むことができる。オルタネータは、機械的エネルギーを電気的エネルギーに変換することができる交流発電機である。従って、このオルタネータは、駆動系により生じる機械的エネルギーの一部を電気的エネルギーに変換できる。オルタネータにより変換された電気的エネルギーは、交流電流であり、例えばオルタネータから整流器へと伝えられる。整流器は、交流電流を、直流電流に変換することができる。整流器により変換された直流電流は、第1の電池ユニット及び/又は第2の電池ユニットに供給され得る。
 また、オルタネータは、車両の制動系に更に接続されていてもよい。この態様では、オルタネータは、車両が制動された際に生じる機械的エネルギーを電気エネルギーとして回生することができる。このような回生エネルギーは、整流器及び電池システムの通電用の端子を介して、第1の電池ユニット及び/又は第2の電池ユニットへと伝達され得る。
 次に、図面を参照しながら、実施形態に係る電池システムをより詳細に説明する。
 図7は、実施形態に係る一例の電池システムの電気回路図である。
 図7に示す電池システム200は、第1の電池ユニット201と、第1の電池ユニット201に電気的に並列に接続された第2の電池ユニット202とを具備している。
 第1の電池ユニット201は、図1~図3を参照しながら説明した一例の非水電解質電池1を含む。第2の電池ユニット202は、図示しない鉛蓄電池を含む。
 電池システム200は、電池管理装置(BMU)203及び負荷としてのモーター204を更に含む。モーター204は、スイッチ205並びに配線207及び208を介して、第1の電池ユニット201に電気的に接続されている。モーター204は、スイッチ206並びに配線207及び208を介して、第2の電池ユニット202に電気的に接続されている。配線207及び208のそれぞれは、モーター204に接続するように構成された通電用端子(図示しない)を備えている。
 電池管理装置(BMU)203は、第1の電池ユニット201の充電状態及び/又は電圧に基づいて、スイッチ205の切り替えを行い、第1の電池ユニット201からモーター204への通電と遮断とを切り替えることができる。同様に、電池管理装置(BMU)203は、第2の電池ユニット202の充電状態及び/又は電圧に基づいて、スイッチ206の切り替えを行い、第2の電池ユニット202からモーター204への通電と遮断とを切り替えることができる。
 実施形態に係る電池システムは、実施形態に係る非水電解質電池を含む第1の電池ユニットを具備しているので、優れた寿命性能を示すことができる。
 (実施例)
 以下に実施例を説明する。
 [実施例1]
 以下の手順により非水電解質電池を作製した。 
 [正極の作製]
 正極活物質として、平均粒子径が10μmであるリチウムコバルト複合酸化物(組成式:LiCoO2)の粉末を準備した。導電助剤として、アセチレンブラックと、グラファイトとを準備した。バインダーとして、ポリフッ化ビニリデン(PVdF)を準備した。リチウムコバルト複合酸化物、アセチレンブラック、グラファイト、及びPVdFを、それぞれ、85重量%、5.0重量%、5.0重量%及び5.0重量%の割合となるように混合した。得られた混合物を、溶媒としてのN-メチルピロリドンに添加して攪拌し、スラリーを調製した。撹拌後に得られた正極スラリーを、塗工装置で、厚さが20μmであるアルミニウム箔の両面に塗布した。塗布量は、片面に塗布した活物質含有層1m2当りの乾燥後の重量が85g/m2になるよう調整した。この際、アルミニウム箔に、スラリーを塗布しない部分を残した。得られた塗膜を、乾燥させたのち、ロールプレス機で電極密度(集電体含まず)が2.8g/cm3となるように圧延した。次いで、アルミニウム箔のうちスラリーを塗布しなかった部分を型抜きし、正極リードを形成した。かくして、複数の正極を作製した。
 [負極の作製]
 負極活物質として、スピネル型のリチウムチタン複合酸化物(組成式:Li4Ti512)の粉末を準備した。導電助剤として、アセチレンブラックと、グラファイトを準備した。バインダーとしてポリフッ化ビニリデン(PVdF)を準備した。リチウムチタン複合酸化物、アセチレンブラック、グラファイト及びPVdFを、それぞれ、85重量%、5.0重量%、5.0重量%及び5.0重量%の割合となるように混合した。得られた混合物を、N-メチルピロリドンに添加して攪拌し、スラリーを調製した。撹拌後に得られた負極スラリーを、塗工装置で、厚さが20μmであるアルミニウム箔の両面に塗布した。塗布量は、片面に塗布した活物質含有層1m2当りの乾燥後の重量が50g/m2になるよう調整した。この際、アルミニウム箔に、スラリーを塗布しない部分を残した。得られた塗膜を、乾燥させたのち、ロールプレス機で電極密度(集電体含まず)が2.0g/cm3となるように圧延した。次いで、アルミニウム箔のうちスラリーを塗布しなかった部分を型抜きし、負極リードを形成した。かくして、複数の負極を作製した。
 [比p/nの測定]
 作製した、正極及び負極のそれぞれの一部を用いて、上述の手順に則り単極容量を測定した。単位面積(1cm2)当りの正極と負極との容量比p/nの値は1.4であった。
 [電極群の作製]
 厚さが30μmである帯状の微多孔膜セパレータを準備した。次いで、このセパレータを九十九折にした。次いで、九十九折にしたセパレータの互いに対向する面によって規定された空間に、正極と負極とを交互に挿入し、積層体を得た。最後に、得られた積層体に対して巻き止めテープを貼り、電極群とした。電極群の放電容量が3.0Ahとなるように、電極面積及び積層数を調整した。
 [電極群への正極集電タブ及び負極集電タブの接続]
 正極集電タブと負極集電タブとをアルミニウムを用いて作製した。続いて、複数の正極の正極リードを1つにまとめて、正極集電タブに接続した。同様に、複数の負極の負極リードを1つにまとめて、負極集電タブに接続した。このようにして、正極集電タブ及び負極集電タブを、正極と負極とからの集電をそれぞれ簡便に行える様、電極群から互いに反対の向きに延出するように設置した。
 [容器3の作製]
 容器として、アルミニウム含有ラミネートフィルムを用いた。まず、アルミニウム含有ラミネートフィルムを上記電極群が納まる形状に成型した。このように成形したアルミニウム含有ラミネートフィルムの容器内に、図1及び図2を参照しながら先に説明したように電極群を収納した。この際、図2を参照しながら説明したように、容器の1つの周縁部(図2では周縁部3b)において、樹脂フィルムの互いに向き合った部分の間に正極集電タブを挟み込んだ。同様に、図2にも示していないが、容器の他の1つ周縁部において、樹脂フィルムの互いに向き合った部分の間に負極集電タブを挟み込んだ。正極集電タブと樹脂フィルムとの間、及び、負極集電タブと樹脂フィルムとの間には、絶縁フィルムを配した。
 続いて、樹脂フィルムのうち周縁部において互いに対抗した部分を一部を残して熱融着して固定した。同時に、1つの周縁部において、樹脂フィルムの一部とこれに対向した絶縁フィルムとを熱融着して固定し、且つ正極集電タブとこれに対向した絶縁フィルムとを熱融着して固定した。同様に、1つの周縁部において、樹脂フィルムの一部とこれに対向した絶縁フィルムとを熱融着して固定し、且つ負極集電タブとこれに対向した絶縁フィルムとを熱融着して固定した。かくして注液前セルを作製した。
 [非水電解質の調製]
 非水電解質を以下の手順で調製した。 
 まず、非水溶媒として、プロピレンカーボネート及びプロピオン酸エチルを準備した。また、電解質として、六フッ化リン酸リチウム(LiPF6)を準備した。これらを、プロピレンカーボネート:プロピオン酸エチル:LiPF6の混合比が、50重量%:40重量%:10重量%となるように混合した。かくして、非水電解質を調製した。調製した非水電解質におけるプロピオン酸エチルの含有量wは、非水電解質の重量に対して40重量%であった。
 [非水電解質電池の作製]
 調製した非水電解質を、電極群を収納した注液前セルの容器内に注液し、非水電解質電池を作製した。
 [非水電解質電池の定格容量の測定]
 得られた非水電解質電池を、25℃に保持された恒温槽内で、0.5Aの定電流で電圧が2.8Vになるまで充電した。次いで、非水電解質電池の2.8Vの電圧を、同じ恒温槽内で、3時間にわたって保持した。その後、非水電解質電池を、30分間にわたり、開回路状態で放置した。次いで、非水電解質電池を、0.5Aの定電流で電圧が2Vになるまで放電した。上記の充電-放置-放電のサイクルを3回繰り返した。3サイクル目の放電の際に得られた容量を、定格容量とした。実施例1の非水電解質電池1の定格容量は3.0Ahだった。その後、非水電解質電池を、定格容量に対して充電率50%まで充電した。
 [評価]
 実施例1の非水電解質電池のガス発生量及び容量維持率を、以下の手順により測定した。
 (恒温貯蔵試験)
 実施例1の非水電解質電池を、25℃に保持された恒温槽内で、0.5Aの定電流で電圧が2.8Vになるまで充電した。次いで、同じ恒温槽内で、非水電解質電池の2.8Vの電圧を3時間にわたって保持した。その後、非水電解質電池を、30分間にわたり、開回路状態で放置した。
 次いで、非水電解質電池の高さ及び幅の両方における中央部分の厚みを測定し、測定結果を基準厚みとした。ここで、非水電解質電池の厚さは、互いに直行する3つの方向における最も小さい寸法とする。実施例1の非水電解質電池の3方向における寸法は、それぞれ、100mm、120mm、及び5.5mmであった。
 その後、非水電解質電池を、60℃に保持された恒温槽内に、1週間にわたって放置した。1週間経過後、非水電解質電池を、25℃に保持された恒温槽内に、3時間にわたって放置した。次いで、非水電解質電池を、0.5Aの定電流で電圧が2Vになるまで放電した。その後、非水電解質電池を、25℃に保持された恒温槽内で、0.5Aの定電流で電圧が2.8Vになるまで充電した。次いで、非水電解質電池の2.8Vの電圧を、同じ恒温槽内で、3時間にわたって保持した。その後、非水電解質電池を、30分間にわたって、開回路状態で放置した。次いで、非水電解質電池を、0.5Aの定電流で電圧が2Vになるまで放電した。上記充電-放置-放電のサイクルを3回繰り返して行った。その後、非水電解質電池を、0.5Aの定電流で電圧が2.8Vになるまで充電した。次いで、非水電解質電池の2.8Vの電圧を、同じ恒温槽内で、3時間にわたって保持した。次いで、非水電解質電池を、60℃に保持された恒温槽内に、1週間にわたって放置した。以上の手順を5回繰り返した。
 以上の手順を5回繰り返した後、非水電解質電池に対し、上記充電-放置-放電の1サイクルを3回繰り返し行った。上記3サイクル目の放電時に得られた容量を、貯蔵後の容量とした。貯蔵後の容量を定格容量で除することで、容量維持率を算出した。
 次いで、非水電解質電池を、25℃に保持された恒温槽内で、0.5Aの定電流で電圧が2.8Vになるまで充電した。次いで、非水電解質電池の2.8Vの電圧を、同じ恒温槽内で、3時間にわたって保持した。その後、非水電解質電池を、30分間にわたって開回路状態で放置した。
 その後、非水電解質電池の高さ及び幅の両方における中央部分の厚みを測定し、測定結果を貯蔵後厚みとした。貯蔵後厚みを基準厚みで除したものを、電池膨れ率とした。
 [実施例2]
 以下のようにして調製した非水電解質を用いたこと以外は実施例1と同様の手順で、非水電解質電池を作製した。
 まず、非水溶媒として、プロピレンカーボネート、及びプロピオン酸エチルを準備した。また、電解質として、六フッ化リン酸リチウム(LiPF6)を準備した。これらを、プロピレンカーボネート:プロピオン酸エチル:LiPF6の混合比が45重量%:45重量%:10重量%となるように混合した。かくして、非水電解質を調製した。調製した非水電解質におけるプロピオン酸エチルの含有量wは、非水電解質の重量に対して45重量%であった。
 [実施例3]
 以下のようにして調製した非水電解質を用いたこと以外は実施例1と同様の手順で、非水電解質電池を作製した。
 まず、非水溶媒として、プロピレンカーボネート、及びプロピオン酸エチルを準備した。また、電解質として、六フッ化リン酸リチウム(LiPF6)を準備した。これらを、プロピレンカーボネート:プロピオン酸エチル:LiPF6の混合比が40重量%:50重量%:10重量%となるように混合した。かくして、非水電解質を調製した。調製した非水電解質におけるプロピオン酸エチルの含有量wは、非水電解質の重量に対して50重量%であった。
 [実施例4]
 非水電解質の調製の際、溶媒として、プロピオン酸エチルの代わりにプロピオン酸メチルを用いたこと以外は実施例1と同様の手順で、非水電解質電池を作製した。
 [実施例5]
 非水電解質の調製の際、溶媒として、プロピオン酸エチルの代わりにプロピオン酸プロピルを用いたこと以外は実施例1と同様の手順で、非水電解質電池を作製した。
 [実施例6]
 正極スラリーの塗布量を、片面に塗布した活物質含有層1m2当りの乾燥後の重量が75g/m2になるように調整した以外は実施例1と同様の手順で、非水電解質電池を作製した。この非水電解質電池のp/n比は1.25であった。
 [実施例7]
 正極スラリーの塗布量を、片面に塗布した活物質含有層1m2当りの乾燥後の重量が98g/m2になるように調整した以外は実施例1と同様の手順で、非水電解質電池を作製した。この非水電解質電池のp/n比は1.6であった。
 [実施例8]
 以下のようにして調製した非水電解質を用いたこと以外は実施例1と同様の手順で、非水電解質電池を作製した。
 まず、非水溶媒として、プロピレンカーボネート、エチルメチルカーボネート、及びプロピオン酸エチルを準備した。また、電解質として、六フッ化リン酸リチウム(LiPF6)を準備した。これらを、プロピレンカーボネート:エチルメチルカーボネート:プロピオン酸エチル:LiPF6の混合比が30重量%:30重量%:30重量%:10重量%となるように混合した。かくして、非水電解質を調製した。調製した非水電解質におけるプロピオン酸エチルの含有量wは、非水電解質の重量に対して30重量%であった。
 [実施例9]
 以下のようにして調製した非水電解質を用いたこと以外は実施例1と同様の手順で、非水電解質電池を作製した。
 まず、非水溶媒として、プロピレンカーボネート、ジエチルカーボネート、及びプロピオン酸エチルを準備した。また、電解質として、六フッ化リン酸リチウム(LiPF6)を準備した。これらを、プロピレンカーボネート:ジエチルカーボネート:プロピオン酸エチル:LiPF6の混合比が30重量%:30重量%:30重量%:10重量%となるように混合した。かくして、非水電解質を調製した。調製した非水電解質におけるプロピオン酸エチルの含有量wは、非水電解質の重量に対して30重量%であった。
 [実施例10]
 正極スラリーの塗布量を変更したこと及び以下の手順で調製した非水電解質を用いたこと以外は実施例1と同様の手順で、非水電解質電池を作製した。
 この例では、正極スラリーの塗布量を、片面に塗布した活物質含有層1m2当りの乾燥後の重量が75g/m2になるように調整した。
 非水電解質は、以下のようにして調整した。まず、非水溶媒として、プロピレンカーボネート、エチルメチルカーボネート及びプロピオン酸エチルを準備した。また、電解質として、六フッ化リン酸リチウム(LiPF6)を準備した。これらを、プロピレンカーボネート:エチルメチルカーボネート:及びプロピオン酸エチル:LiPF6の混合比が30重量%:40重量%:20重量%:10重量%となるように混合した。
 調製した非水電解質におけるプロピオン酸エチルの含有量wは、非水電解質の重量に対して、20重量%であった。また、この非水電解質電池のp/n比は1.25であった。
 [実施例11]
 正極スラリーの塗布量を変更したこと及び以下の手順で調製した非水電解質を用いたこと以外は実施例1と同様の手順で、非水電解質電池を作製した。
 この例では、正極スラリーの塗布量を、片面に塗布した活物質含有層1m2当りの乾燥後の重量が75g/m2になるように調整した。
 非水電解質は、以下のようにして調製した。まず、非水溶媒として、プロピレンカーボネート、エチルメチルカーボネート及びプロピオン酸エチルを準備した。また、電解質として六フッ化リン酸リチウム(LiPF6)を準備した。これらを、プロピレンカーボネート:エチルメチルカーボネート:プロピオン酸エチル:LiPF6の混合比が30重量%:20重量%:40重量%:10重量%となるよう混合した。
 調製した非水電解質におけるプロピオン酸エチルの含有量wは、非水電解質の重量に対して、40重量%であった。また、この例の非水電解質電池のp/n比は1.25であった。
 [実施例12]
 正極スラリーの塗布量を変更したこと及び以下の手順で調製した非水電解質を用いたこと以外は実施例1と同様の手順で、非水電解質電池を作製した。
 この例では、正極スラリーの塗布量を、片面に塗布した活物質含有層1m2当りの乾燥後の重量が98g/m2になるように調整した。
 非水電解質は、以下のようにして調製した。非水溶媒として、エチレンカーボネート及びプロピオン酸エチルを準備した。また、電解質として、六フッ化リン酸リチウム(LiPF6)を準備した。これらを、エチレンカーボネート:プロピオン酸エチル:LiPF6の混合比が50重量%:40重量%:10重量%となるよう混合した。
 調製した非水電解質におけるプロピオン酸エチルの含有量wは、非水電解質の重量に対して、40重量%であった。また、この例の非水電解質電池のp/n比は1.6であった。
 [実施例13]
 以下の手順で作製した正極を用いたこと以外は実施例1と同様の手順で、非水電解質電池を作製した。
 正極活物質として、平均粒子径が10μmであるリチウムコバルト複合酸化物(組成式:LiCoO2)の粉末と、平均粒子径が8μmであるリチウムニッケルコバルトマンガン複合酸化物(組成式:LiNi0.5Co0.35Mn0.152)の粉末とを準備した。導電助剤として、アセチレンブラックとグラファイトとを準備した。バインダーとして、ポリフッ化ビニリデン(PVdF)を準備した。リチウムコバルト複合酸化物、リチウムニッケルコバルトマンガン複合酸化物、アセチレンブラック、グラファイト、及びPVdFを、それぞれ、45重量%、40重量%、5.0重量%、5.0重量%及び5.0重量%の割合となるように混合した。得られた混合物を、N-メチルピロリドンに添加して攪拌し、スラリーを調製した。撹拌後に得られた正極スラリーを、塗工装置で、厚さが20μmであるアルミニウム箔の両面に塗布した。塗布量は、片面に塗布した活物質含有層1m2当りの乾燥後の重量が80g/m2になるよう調整した。この際、アルミニウム箔に、スラリーを塗布しない部分を残した。得られた塗膜を、乾燥させたのち、ロールプレス機で電極密度(集電体含まず)が2.8g/cm3となるように圧延した。次いで、アルミニウム箔のうちスラリーを塗布しなかった部分を型抜きし、正極リードを形成した。 
 この例の非水電解質電池のp/n比は、1.4であった。
 [実施例14]
 以下の手順で作製した正極を用いたこと以外は実施例13と同様の手順で、非水電解質電池を作製した。
 リチウムコバルト複合酸化物、リチウムニッケルコバルトマンガン複合酸化物、アセチレンブラック、グラファイト、及びPVdFを、それぞれ、10重量%、75重量%、5.0重量%、5.0重量%及び5.0重量%の割合となるように混合した。得られた混合物を、N-メチルピロリドンに添加して攪拌し、スラリーを調製した。塗布量は、片面に塗布した活物質含有層1m2当りの乾燥後の重量が75g/m2になるよう調整した。得られた塗膜を、乾燥させたのち、ロールプレス機で電極密度(集電体含まず)が2.7g/cm3となるように圧延した。次いで、アルミニウム箔のうちスラリーを塗布しなかった部分を型抜きし、正極リードを形成した。 
 この例の非水電解質電池のp/n比は、1.4であった。
 [比較例1]
 以下の手順で作製した正極を用いたこと以外は実施例3と同様の手順で、非水電解質電池を作製した。
 正極活物質として、平均粒子径が8μmであるリチウムニッケルコバルトマンガン複合酸化物(組成式:LiNi0.5Co0.35Mn0.152)の粉末を準備した。導電助剤として、アセチレンブラックとグラファイトとを準備した。バインダーとして、ポリフッ化ビニリデン(PVdF)を準備した。リチウムニッケルコバルトマンガン複合酸化物、アセチレンブラック、グラファイト、及びPVdFを、それぞれ、85重量%、5.0重量%、5.0重量%及び5.0重量%の割合となるように混合した。得られた混合物を、N-メチルピロリドンに添加して攪拌し、スラリーを調製した。撹拌後に得られた正極スラリーを、塗工装置で、厚さが20μmであるアルミニウム箔の両面に塗布した。塗布量は、片面に塗布した活物質含有層1m2当りの乾燥後の重量が80g/m2になるよう調整した。この際、アルミニウム箔に、スラリーを塗布しない部分を残した。得られた塗膜を、乾燥させたのち、ロールプレス機で電極密度(集電体含まず)が2.8g/cm3となるように圧延した。次いで、アルミニウム箔のうちスラリーを塗布しなかった部分を型抜きし、正極リードを形成した。 
 この例の非水電解質電池のp/n比は、1.4であった。
 [比較例2]
 以下のようにして調製した非水電解質を用いたこと以外は実施例1と同様の手順で、非水電解質電池を作製した。
 まず、非水溶媒として、プロピレンカーボネート及びプロピオン酸エチルを準備した。また、電解質として、六フッ化リン酸リチウム(LiPF6)を準備した。これらを、プロピレンカーボネート:プロピオン酸エチル:LiPF6の混合比が、26重量%:64重量%:10重量%となるよう混合した。かくして、非水電解質を調製した。調製した非水電解質におけるプロピオン酸エチルの含有量wは、非水電解質の重量に対して64重量%であった。
 [比較例3]
 以下のようにして調製した非水電解質を用いたこと以外は実施例1と同様の手順で、非水電解質電池を作製した。
 まず、非水溶媒として、プロピレンカーボネート及びプロピオン酸エチルを準備した。また、電解質として、六フッ化リン酸リチウム(LiPF6)を準備した。これらを、プロピレンカーボネート:プロピオン酸エチル;LiPF6の混合比が、75重量%:15重量%:10重量%となるよう混合した。かくして、非水電解質を調製した。調製した非水電解質におけるプロピオン酸エチルの含有量wは、非水電解質の重量に対して15重量%であった。
 [比較例4]
 以下の手順で作製した負極を用いたこと以外は実施例3と同様の手順で、非水電解質電池を作製した。
 負極活物質として、平均粒子径が10μmである天然黒鉛の粉末を準備した。導電助剤として、アセチレンブラックを準備した。バインダーとして、ポリフッ化ビニリデン(PVdF)を準備した。黒鉛粉末、アセチレンブラック及びPVdFを、それぞれ、90重量%、5重量%、5重量%の割合となるように混合した。得られた混合物を、N-メチルピロリドンに添加して攪拌し、スラリーを調製した。撹拌後に得られた負極スラリーを、塗工装置で、厚さが10μmである銅箔の両面に塗布した。塗布量は、片面に塗布した活物質含有層1m2当りの乾燥後の重量が25g/m2になるよう調整した。この際、銅箔に、スラリーを塗布しない部分を残した。得られた塗膜を、乾燥させたのち、ロールプレス機で電極密度(集電体含まず)が1.9g/cm3となるように圧延した。次いで、銅箔のうちスラリーを塗布しなかった部分を型抜きし、負極リードを形成した。
 この例の非水電解質電池のp/n比は、1.4であった。
 [比較例5]
 正極スラリーの塗布量を、片面に塗布した活物質含有層1m2当りの乾燥後の重量が65g/m2になるように調整した以外は実施例3と同様の手順で、非水電解質電池を作製した。この非水電解質電池のp/n比は1.1であった。
 [比較例6]
 正極スラリーの塗布量を、片面に塗布した活物質含有層1m2当りの乾燥後の重量が111g/m2になるように調整した以外は実施例3と同様の手順で、非水電解質電池を作製した。この非水電解質電池のp/n比は1.8であった。
 [比較例7]
 以下のようにして調製した非水電解質を用いたこと以外は実施例1と同様の手順で、非水電解質電池を作製した。
 まず、非水溶媒として、プロピレンカーボネート及びエチルメチルカーボネートを準備した。また、電解質として、六フッ化リン酸リチウム(LiPF6)を準備した。これらを、プロピレンカーボネート:エチルメチルカーボネート:LiPF6の混合比が30重量%:60重量%:10重量%となるよう混合した。かくして、非水電解質を調製した。調製した非水電解質におけるプロピオン酸エチルの含有量wは、非水電解質の重量に対して0重量%であった。
 [比較例8]
 以下のようにして調製した非水電解質を用いたこと以外は実施例1と同様の手順で、非水電解質電池を作製した。
 まず、非水溶媒として、プロピレンカーボネート及び酢酸エチルを準備した。また、電解質として、六フッ化リン酸リチウム(LiPF6)を準備した。これらを、プロピレンカーボネート:酢酸エチル:LiPF6の混合比が30重量%:60重量%:10重量%となるよう混合した。かくして、非水電解質を調製した。調製した非水電解質におけるプロピオン酸エチルの含有量wは、非水電解質の重量に対して0重量%であった。
 [比較例9]
 以下のようにして調製した非水電解質を用いたこと以外は実施例1と同様の手順で、非水電解質電池を作製した。
 まず、非水溶媒として、エチレンカーボネート及びプロピオン酸エチルを準備した。また、電解質として、六フッ化リン酸リチウム(LiPF6)を準備した。これらを、エチレンカーボネート:プロピオン酸エチル:LiPF6の混合比が30重量%:60重量%:10重量%となるよう混合した。かくして、非水電解質を調製した。調製した非水電解質におけるプロピオン酸エチルの含有量wは、非水電解質の重量に対して60重量%であった。
 [比較例10]
 正極スラリーの塗布量を変更したこと及び以下の手順で調製した非水電解質を用いたこと以外は実施例1と同様の手順で、非水電解質電池を作製した。
 この例では、正極スラリーの塗布量を、片面に塗布した活物質含有層1m2当りの乾燥後の重量が98g/m2になるように調整した。
 非水電解質は、以下のようにして調製した。非水溶媒として、プロピレンカーボネート、エチルメチルカーボネート及びプロピオン酸エチルを準備した。また、電解質として、六フッ化リン酸リチウム(LiPF6)を準備した。これらを、プロピレンカーボネート:エチルメチルカーボネート:プロピオン酸エチル:LiPF6の混合比が30重量%:40重量%:20重量%:10重量%となるよう混合した。
 調製した非水電解質におけるプロピオン酸エチルの含有量wは、非水電解質の重量に対して、20重量%であった。また、この例の非水電解質電池のp/n比は1.6であった。
 [比較例11]
 以下のようにして調製した非水電解質を用いたこと以外は実施例13と同様の手順で、非水電解質電池を作製した。
 まず、非水溶媒として、プロピレンカーボネート及びプロピオン酸エチルを準備した。また、電解質として、六フッ化リン酸リチウム(LiPF6)を準備した。これらを、プロピレンカーボネート:プロピオン酸エチル:LiPF6の混合比が30重量%:60重量%:10重量%となるよう混合した。かくして、非水電解質を調製した。調製した非水電解質におけるプロピオン酸エチルの含有量wは、非水電解質の重量に対して60重量%であった。
 [比較例12]
 以下の手順で非水電解質電池を作製した。
 [正極の作製]
 正極活物質として、平均粒子径が8μmであるリチウムニッケルコバルトマンガン複合酸化物(組成式:LiNi1/3Mn1/3Co1/32)の粉末を準備した。導電助剤として、アセチレンブラックを準備した。バインダーとして、ポリフッ化ビニリデン(PVdF)を準備した。リチウムニッケルコバルトマンガン複合酸化物、アセチレンブラック、及びPVdFを、それぞれ、90重量%、5重量%及び5重量%の割合となるように混合した。得られた混合物を、溶媒としてのN-メチルピロリドンに添加して攪拌し、スラリーを調製した。撹拌後に得られた正極スラリーを、塗工装置で、厚さが20μmであるアルミニウム箔の両面に塗布した。塗布量は、片面に塗布した活物質含有層1m2当りの乾燥後の重量が80g/m2になるよう調整した。この際、アルミニウム箔に、スラリーを塗布しない部分を残した。得られた塗膜を、乾燥させたのち、ロールプレス機で電極密度(集電体含まず)が2.7g/cm3となるように圧延した。次いで、アルミニウム箔のうちスラリーを塗布しなかった部分を型抜きし、正極リードを形成した。かくして、複数の正極を作製した。
 [負極の作製]
 負極活物質として、スピネル型のリチウムチタン複合酸化物(組成式:Li4Ti512)の粉末を準備した。導電助剤として、アセチレンブラックを準備した。バインダーとしてポリフッ化ビニリデン(PVdF)を準備した。リチウムチタン複合酸化物、アセチレンブラック及びPVdFを、それぞれ、85重量%、5重量%及び10重量%の割合となるように混合した。得られた混合物を、N-メチルピロリドンに添加して攪拌し、スラリーを調製した。撹拌後に得られた負極スラリーを、塗工装置で、厚さが10μmである銅箔の両面に塗布した。塗布量は、片面に塗布した活物質含有層1m2当りの乾燥後の重量が50g/m2になるよう調整した。この際、銅箔に、スラリーを塗布しない部分を残した。得られた塗膜を、乾燥させたのち、ロールプレス機で電極密度(集電体含まず)が2.0g/cm3となるように圧延した。次いで、銅箔のうちスラリーを塗布しなかった部分を型抜きし、負極リードを形成した。かくして、複数の負極を作製した。
 [注液前セルの作製]
 以上のようにして作製した正極及び負極を用いたこと以外は実施例1と同様の手順により、注液前セルを作製した。
 [非水電解質の調製]
 非水電解質を以下の手順で調製した。 
 まず、プロピレンカーボネート及び酢酸エチルを1:3の体積比で混合し、非水溶媒としての混合溶媒を得た。この混合溶媒に、六フッ化リン酸リチウム(LiPF6)を、1mol/dm3(=1mol/L)に相当する量で溶解させた。かくして、非水電解質を調製した。調製した非水電解質におけるプロピレンカーボネート:酢酸エチル:LiPF6の重量比は、およそ、28:60:12であった。また、調製した非水電解質におけるプロピオン酸エチルの含有量wは、非水電解質の重量に対して0重量%であった。
 [非水電解質電池の作製]
 以上のようにして調製した非水電解質を、電極群を収納した注液前セルの容器内に注液し、非水電解質電池を作製した。
 この例の非水電解質電池の容量比p/nの値は、1.4であった。
 以下の表1及び表2に、実施例1~14、並びに比較例1~12についての、正極活物質、負極活物質、比p/nの値、非水電解質の組成、プロピオン酸エステルの含有量w、及び比w/(p/n)の値をそれぞれ示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 なお、表1及び表2における各略語は、以下を示す。 
 LCO:リチウムコバルト複合酸化物(組成式:LiCoO2);LTO:スピネル型のリチウムチタン複合酸化物(組成式:Li4Ti512);NCM:リチウムニッケルコバルトマンガン複合酸化物(組成式:LiNi0.5Co0.35Mn0.152);NCM111:リチウムニッケルコバルトマンガン複合酸化物(組成式:LiNi1/3Mn1/3Co1/32);PC:プロピレンカーボネート;EP:プロピオン酸エチル;MP:プロピオン酸メチル;EMC:エチルメチルカーボネート;DEC:ジエチルカーボネート;EC:エチレンカーボネート;EA:酢酸エチル。
 [評価]
 実施例2~14、並びに比較例1~12の非水電解質電池を、実施例1に対して行ったのと同様の手順で、評価試験に供した。その結果を以下の表3に示す。
Figure JPOXMLDOC01-appb-T000003
 表3に示した結果から、実施例1~14の非水電解質電池は、比較例1~12の非水電解質電池よりも優れた容量維持率を示すことができたと共に、ガス発生を抑制できたことが分かる。
 一方、比較例1の非水電解質電池は、正極がリチウムコバルト複合酸化物を含んでいなかった。そのため、比較例1の電池は、プロピオン酸エステルの分解生成物と正極との相互作用が無く、ガス発生を十分に抑制できなかったと考えられる。また、比較例1の電池は、プロピオン酸エステルの分解生成物が正極の劣化を促進したため、乏しい容量維持率を示したと考えられる。
 比較例2の非水電解質電池は、プロピオン酸エステルの含有量wが64重量%であり、比w/(p/n)が46であった。そのため、比較例2の電池では、ガス発生を十分に抑制できなかったと考えられる。また、比較例2の電池では、非水電解質中の電解質からのLiイオンの解離が促進せず、そのため抵抗が上昇したと考えられる。その結果、比較例2の電池は、充電及び放電の繰り返しによる負荷が大きくなり、乏しい容量維持率を示したと考えられる。
 比較例3の非水電解質電池は、プロピオン酸エステルの含有量wが15重量%であり、比w/(p/n)が11であった。また、比較例7、8及び12の非水電解質電池は、非水電解質がプロピオン酸エステルを含まなかった。これらの比較例の電池では、ガス発生を十分に抑えることができたかったと考えられる。その結果が、比較例3、7、8及び12の電池の乏しい容量維持率及びガス発生量の増加に結び付いたと考えられる。
 比較例4の非水電解質電池は、負極活物質がリチウムチタン複合酸化物ではなく、炭素であった。そして、比p/nの値が1.4であった。そのため、比較例4の非水電解質電池では、炭素を含んだ活物質を含む負極の容量が正極の容量に対して小さく、充放電により負極が劣化したと考えられる。その結果が、比較例4の電池の乏しい容量維持率及びガス発生量の増加に結び付いたと考えられる。
 比較例5、9及び11では、比w/(p+n)の値が40を超えていた。これらの比較例の非水電解質電池は、プロピオン酸エステルの量に対して比p/nが小さ過ぎたと考えられる。そのため、これらの比較例の電池では、プロピオン酸エステルの酸化分解が過度に引き起こされ、ガスの発生量が増加したと考えられる。そして、これらの比較例の電池では、ガス発生量の増加により、電池の劣化が促進されたと考えられる。
 比較例6の非水電解質電池は、比p/nの値が1.8であった。比較例6の電池では、正極容量pが負極容量nに対して過剰であり過ぎたと考えられる。そのため、比較例8の電池は、充電及び放電の繰り返しによる負荷が大きく、乏しい容量維持率を示したと考えられる。また、比較例8の電池は、電解液中に酢酸エステルを含んでいた。結果、酢酸エステルの分解生成物をリチウムコバルト複合酸化物が更にガス成分に分解したため、ガス発生を充分に抑えることができなかったと考えられる。
 比較例10では、比w/(p+n)の値が13であった。比較例10の電池では、ガス発生を十分に抑えることができなかったと考えられる。その結果が、比較例10の電池の乏しい容量維持率及びガス発生量の増加に結び付いたと考えられる。
 [実施例15]
 以下の点以外は実施例13と同様の手順で、非水電解質電池を作製した。
 正極スラリーの調製の際、リチウムコバルト複合酸化物、リチウムニッケルコバルトマンガン複合酸化物、アセチレンブラック、グラファイト、及びPVdFを、それぞれ、3重量%、82重量%、5.0重量%、5.0重量%及び5.0重量%の割合となるように混合した。
 また、正極スラリーの塗布量を、片面に塗布した活物質含有層1m2当りの乾燥後の重量が70g/m2になるよう調整した。
 [実施例16]
 以下の点以外は実施例13と同様の手順で、非水電解質電池を作製した。
 正極スラリーの調製の際、リチウムニッケルコバルトマンガン複合酸化物として、平均粒子径が8μmであるリチウムニッケルコバルトマンガン複合酸化物(組成式:LiNi0.5Co0.2Mn0.32)の粉末を準備した。また、リチウムコバルト複合酸化物、リチウムニッケルコバルトマンガン複合酸化物、アセチレンブラック、グラファイト、及びPVdFを、それぞれ、45重量%、40重量%、5.0重量%、5.0重量%及び5.0重量%の割合となるように混合した。
 [実施例17]
 以下の点以外は実施例13と同様の手順で、非水電解質電池を作製した。
 正極スラリーの調製の際、リチウムニッケルコバルトマンガン複合酸化物として、平均粒子径が8μmであるリチウムニッケルコバルトマンガン酸化物(組成式:LiNi0.7Co0.15Mn0.152)の粉末を準備した。また、リチウムコバルト複合酸化物、リチウムニッケルコバルトマンガン複合酸化物、アセチレンブラック、グラファイト、及びPVdFを、それぞれ、45重量%、40重量%、5.0重量%、5.0重量%及び5.0重量%の割合となるように混合した。
 [実施例18]
 以下の点以外は実施例13と同様の手順で、非水電解質電池を作製した。
 正極スラリーの調製の際、リチウムニッケルコバルトマンガン複合酸化物として、平均粒子径が8μmであるリチウムニッケルコバルトマンガン酸化物(組成式:LiNi0.5Co0.34Mn0.15Al0.012)の粉末を準備した。また、リチウムコバルト複合酸化物、リチウムニッケルコバルトマンガン複合酸化物、アセチレンブラック、グラファイト、及びPVdFを、それぞれ、45重量%、40重量%、5.0重量%、5.0重量%及び5.0重量%の割合となるように混合した。
 [実施例19~23]
 以下の表4に示す組成比となるように調製した非水電解質を用いたこと以外は実施例1と同様の手順で、各非水電解質電池を作製した。
 [実施例24]
 正極スラリーの塗布量を、片面に塗布した活物質含有層1m2当りの乾燥後の重量が78g/m2になるように調整した以外は実施例1と同様の手順で、非水電解質電池を作製した。この非水電解質電池のp/n比は1.3であった。
 [実施例25]
 正極スラリーの塗布量を、片面に塗布した活物質含有層1m2当りの乾燥後の重量が88g/m2になるように調整した以外は実施例1と同様の手順で、非水電解質電池を作製した。この非水電解質電池のp/n比は1.47であった。
 [実施例26]
 以下の手順で調製した非水電解質を用いたこと以外は実施例7と同様の手順で、非水電解質電池を作製した。
 実施例7で準備したそれらと同様の非水溶媒及び電解質を準備した。次に、準備した非水溶媒及び電解質を用いて、以下の表4に示す組成比となるように、非水電解質を調製した。
 [実施例27]
 正極スラリーの塗布量を、片面に塗布した活物質含有層1m2当りの乾燥後の重量が88g/m2になるように調整した以外は実施例10と同様の手順で、非水電解質電池を作製した。この非水電解質電池のp/n比は1.47であった。
 [実施例28]
 実施例10で用いた非水電解質と同様の非水電解質を用いたこと以外は実施例1と同様の手順で、非水電解質電池を作製した。
 以下の表4に、実施例15~28についての、正極活物質、負極活物質、比p/nの値、非水電解質の組成、プロピオン酸エステルの含有量w、及び比w/(p/n)の値をそれぞれ示す。
Figure JPOXMLDOC01-appb-T000004
 なお、表4の正極活物質の欄に記載した「NCM」は、実施例15については「リチウムニッケルコバルトマンガン複合酸化物(組成式:LiNi0.5Co0.35Mn0.152)」を示し、実施例16については「リチウムニッケルコバルトマンガン複合酸化物(組成式:LiNi0.5Co0.2Mn0.32)」を示し、実施例17については「リチウムニッケルコバルトマンガン酸化物(組成式:LiNi0.7Co0.15Mn0.152)」を示し、実施例18については「リチウムニッケルコバルトマンガン酸化物(組成式:LiNi0.5Co0.34Mn0.15Al0.012)」を示している。その他の略称は、表1及び表2で用いた略称とそれぞれ同じである。
 [評価]
 実施例15~28の非水電解質電池を、実施例1に対して行ったのと同様の手順で、評価試験に供した。その結果を以下の表5に示す。
Figure JPOXMLDOC01-appb-T000005
 表3及び表5に示した結果から、実施例15~28の非水電解質電池は、実施例1~14の非水電解質電池と同様に、比較例1~12の非水電解質電池よりも優れた容量維持率を示すことができたと共に、ガス発生を抑制できたことが分かる。
 また、表1、表3、表4及び表5に示した結果から、正極がリチウムコバルト複合酸化物と、リチウムコバルト複合酸化物以外の正極活物質とを含んでいる実施例13~18の非水電解質電池は、正極が正極活物質としてリチウムコバルト複合酸化物のみを含む実施例1の非水電解質電池と同様に、優れた容量維持率を示すことができたと共に、ガス発生を抑制できたことが分かる。一方、先に説明したように、正極がリチウムコバルト複合酸化物を含んでいなかった比較例1の非水電解質電池は、容量維持率が乏しく、ガス発生を抑制することもできなかった。
 表1及び表3に示した結果から、非水電解質がプロピレンカーボネートを含んでいた実施例7の非水電解質電池は、非水電解質がプロピレンカーボネートの代わりにエチレンカーボネートを含んでいた点で実施例7と異なる実施例12の非水電解質電池よりも優れた容量維持率を示すことができたと共に、ガス発生を抑制できたことが分かる。また、表4及び5に示した結果から、プロピレンカーボネートの含有量が互いに異なる実施例19~23は、同様に、優れた容量維持率を示すことができたことが分かる。
 [OCVの測定]
 各非水電解質電池の開回路電圧OCV[V]を、以下の手順に従って測定した。以下の手順の説明においては、各非水電解質電池を「電池」と呼ぶ。
 まず、電池を、25℃の環境下において、電池電圧が1.5Vに達するまで、1Cレートで放電した。次いで、電池を10分間放置した。次いで、電池を、電池電圧が2.6Vに達するまで、1Cレートの定電流で充電した。次いで、電池を、2.6Vの定電圧で充電した。計測している電流値が0.1Cを下回った時点で、充電を停止した。定電流充電の開始から定電圧充電の停止までの合計充電容量Ctotal[Ah]を記録した。定電圧充電停止後、電池を10分間放置した。次いで、電池を、先に記録した合計充電容量Ctotalの50%が放電されるまで、1Cレートの定電流で放電した。放電停止後、電池を3時間放置した。次いで、電池の正極と負極との端子間電圧を測定した。測定した端子間電圧を、電池の開回路電圧OCV[V]とした。各非水電解質電池のOCVの値を、以下の表6にしめす。
Figure JPOXMLDOC01-appb-T000006
 表6に示した結果から、実施例1~28の非水電解質電池の各々は、容量比p/nが1.1であった比較例5のそれよりも低いOCVを示すことができたことが分かる。そして、表6に示した結果と、表3及び5に示した結果とから、実施例1~28の非水電解質電池は、比較例5のそれよりも低いOCVを示しながらも、優れた容量維持率を示すことができたと共に、ガス発生を抑制することができたことが分かる。
 以上に説明した少なくとも一つの実施形態及び実施例によると、非水電解質電池が提供される。この非水電解質電池は、正極と、負極と、非水電解質とを具備する。正極は、リチウムコバルト複合酸化物を含む。負極は、リチウムチタン複合酸化物を含む。正極及び負極は、容量比p/nが式(1):1.25≦p/n≦1.6を満たす。非水電解質は、少なくとも1種のプロピオン酸エステルを含む。非水電解質における少なくとも1種のプロピオン酸エステルの含有量wは、非水電解質の重量に対して20重量%以上64重量%未満である。この非水電解質電池は、式(2):13<w/(p/n)≦40を満たす。この非水電解質電池は、少なくとも1種のプロピオン酸エステルの分解生成物とリチウムコバルト複合酸化物との相互作用により、充電及び放電中のガス発生を抑制することができる。その結果、この非水電解質電池は、優れた寿命性能を示すことができる。
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。

Claims (15)

  1.  リチウムコバルト複合酸化物を含んだ正極と、
     リチウムチタン複合酸化物を含んだ負極と、
     非水電解質と
    を具備し、
     前記正極及び前記負極は、式(1):1.25≦p/n≦1.6を満たし、ここで、pは前記正極の容量[mAh/cm2]であり、nは前記負極の容量[mAh/cm2]であり、
     前記非水電解質は、少なくとも1種のプロピオン酸エステルを含み、前記非水電解質における前記少なくとも1種のプロピオン酸エステルの含有量wは、前記非水電解質の重量に対して20重量%以上64重量%未満であり、
     式(2):13<w/(p/n)≦40を満たす非水電解質電池。
  2.  前記少なくとも1種のプロピオン酸エステルは、プロピオン酸メチル及びプロピオン酸エチルからなる群より選択される少なくとも1種を含む請求項1に記載の非水電解質電池。
  3.  前記正極が、一般式Li1-xNi1-a-b-cCoaMnbM1c2で表される組成を有するニッケルコバルトマンガン複合酸化物を更に含み、
     前記一般式において、M1は、Mg、Al、Si、Ti、Zn、Zr、Ca、W、Nb及びSnからなる群より選択される少なくとも1種であり、各添字は、-0.2≦x≦0.5、0<a<0.4、0<b<0.5、0≦c<0.1の範囲内にある請求項1又は2に記載の非水電解質電池。
  4.  前記添字aが、0.25<a<0.4の範囲内にある請求項3に記載の非水電解質電池。
  5.  前記正極は、正極活物質を含み、前記正極活物質は、前記リチウムコバルト複合酸化物を含み、
     前記リチウムコバルト複合酸化物の重量が、前記正極活物質の重量に対して、5重量%以上100重量%以下である請求項1又は2に記載の非水電解質電池。
  6.  前記リチウムコバルト複合酸化物の重量が、前記正極活物質の重量に対して、10重量%以上100重量%以下である請求項5に記載の非水電解質電池。
  7.  前記非水電解質がプロピレンカーボネートを含む請求項1~6の何れか1項に記載の非水電解質電池。
  8.  前記非水電解質における前記プロピレンカーボネートの含有量は、前記非水電解質の重量に対して20重量%以上60重量%未満である請求項7に記載の非水電解質電池。
  9.  前記非水電解質における前記プロピレンカーボネートの含有量は、前記非水電解質の重量に対して20重量%以上40重量%未満である請求項8に記載の非水電解質電池。
  10.  前記リチウムコバルト複合酸化物は、Lix1CoO2の一般式で表される組成を有するコバルト酸リチウムを含み、前記一般式において0<x1≦1である請求項1~9の何れか1項に記載の非水電解質電池。
  11.  前記リチウムチタン複合酸化物は、スピネル型の結晶構造を有し且つLi4+yTi512の一般式を有するチタン酸リチウムを含み、前記一般式において0≦y≦3である請求項1~10の何れか1項に記載の非水電解質電池。
  12.  前記正極及び前記負極は、1.3≦p/n<1.5を満たす請求項1~11の何れか1項に記載の非水電解質電池。
  13.  前記正極及び前記負極は、1.3≦p/n<1.45を満たす請求項1~12の何れか1項に記載の非水電解質電池。
  14.  請求項1~13の何れか1項に記載の非水電解質電池を具備する電池パック。
  15.  請求項1~13の何れか1項に記載の非水電解質電池を含む第1の電池ユニットと、
     前記第1の電池ユニットに電気的に並列に接続され且つ鉛蓄電池を含む第2の電池ユニットと
    を具備する電池システム。
PCT/JP2018/011861 2017-03-23 2018-03-23 非水電解質電池、電池パック及び電池システム WO2018174269A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2019507036A JP6776439B2 (ja) 2017-03-23 2018-03-23 非水電解質電池、電池パック及び電池システム
CN201880014932.8A CN110366793B (zh) 2017-03-23 2018-03-23 非水电解质电池、电池包及电池系统
EP18770708.8A EP3605701B1 (en) 2017-03-23 2018-03-23 Nonaqueous electrolyte battery, battery pack and battery system
US16/537,874 US20190372154A1 (en) 2017-03-23 2019-08-12 Nonaqueous electrolyte battery, battery pack and battery system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017057478 2017-03-23
JP2017-057478 2017-03-23

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/537,874 Continuation US20190372154A1 (en) 2017-03-23 2019-08-12 Nonaqueous electrolyte battery, battery pack and battery system

Publications (1)

Publication Number Publication Date
WO2018174269A1 true WO2018174269A1 (ja) 2018-09-27

Family

ID=63584519

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/011861 WO2018174269A1 (ja) 2017-03-23 2018-03-23 非水電解質電池、電池パック及び電池システム

Country Status (5)

Country Link
US (1) US20190372154A1 (ja)
EP (1) EP3605701B1 (ja)
JP (1) JP6776439B2 (ja)
CN (1) CN110366793B (ja)
WO (1) WO2018174269A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11121408B2 (en) 2019-03-14 2021-09-14 Medtronic, Inc. Lithium-ion battery
JP7434203B2 (ja) * 2021-03-22 2024-02-20 株式会社東芝 二次電池、電池パック及び車両
CN113471439B (zh) * 2021-07-09 2022-07-19 浙江帕瓦新能源股份有限公司 包覆改性的正极材料及其制备方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5433953B2 (ja) 1975-12-25 1979-10-24
JP2002151154A (ja) * 2000-11-07 2002-05-24 Toyota Central Res & Dev Lab Inc リチウム二次電池
JP2003297422A (ja) * 2002-04-02 2003-10-17 Sony Corp 電 池
JP2004087229A (ja) 2002-08-26 2004-03-18 Sanyo Electric Co Ltd リチウム二次電池
JP2005142047A (ja) 2003-11-07 2005-06-02 Matsushita Electric Ind Co Ltd 非水電解質二次電池
JP3754218B2 (ja) 1999-01-25 2006-03-08 三洋電機株式会社 非水電解質電池用正極及びその製造方法、ならびこの正極を用いた非水電解質電池及びその製造方法
JP2007305447A (ja) 2006-05-12 2007-11-22 Gs Yuasa Corporation:Kk 非水電解質二次電池
JP2009301954A (ja) * 2008-06-16 2009-12-24 Mitsubishi Chemicals Corp 非水系電解液及び非水系電解液電池
JP2016035901A (ja) 2014-07-31 2016-03-17 株式会社東芝 非水電解質電池、非水電解質電池の製造方法及び電池パック
WO2016175148A1 (ja) * 2015-04-28 2016-11-03 株式会社カネカ 梱包物

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0827223B1 (en) * 1996-08-29 1999-11-03 Murata Manufacturing Co., Ltd. Lithium secondary battery
JP4061648B2 (ja) * 2003-04-11 2008-03-19 ソニー株式会社 非水電解質二次電池用正極活物質及びそれを用いた非水電解質二次電池
JP4213659B2 (ja) * 2004-12-20 2009-01-21 株式会社東芝 非水電解質電池および正極活物質
JP4602306B2 (ja) * 2006-09-29 2010-12-22 株式会社東芝 非水電解質電池用負極活物質、非水電解質電池、電池パック及び自動車
JP5433953B2 (ja) * 2008-02-07 2014-03-05 株式会社Gsユアサ 非水電解質二次電池
JP5364500B2 (ja) * 2009-08-20 2013-12-11 古河電池株式会社 非水電解液二次電池用正極板の製造方法
JP5341837B2 (ja) * 2009-08-25 2013-11-13 株式会社東芝 正極、非水電解質電池及び電池パック
JP2011192402A (ja) * 2010-03-11 2011-09-29 Sanyo Electric Co Ltd 非水電解質二次電池
JP5110670B2 (ja) * 2011-02-28 2012-12-26 パナソニック株式会社 非水電解質二次電池
CN103460494A (zh) * 2011-03-31 2013-12-18 三洋电机株式会社 非水电解液二次电池系统
JP2015111495A (ja) * 2012-03-29 2015-06-18 三洋電機株式会社 非水電解質二次電池
WO2014021014A1 (ja) * 2012-08-02 2014-02-06 日産自動車株式会社 非水系有機電解液二次電池
WO2014024571A1 (ja) * 2012-08-07 2014-02-13 日産自動車株式会社 リチウムイオン二次電池用正極活物質、リチウムイオン二次電池用正極及びリチウムイオン二次電池
US20150343919A1 (en) * 2012-10-29 2015-12-03 Sanyo Electric Co., Ltd. Vehicle-mounted power supply device and vehicle comprising power supply device
JP6112858B2 (ja) * 2012-12-25 2017-04-12 日立マクセル株式会社 非水電解質二次電池
JP6232070B2 (ja) * 2013-09-05 2017-11-15 石原産業株式会社 非水電解質二次電池及びその製造方法
WO2015068680A1 (ja) * 2013-11-07 2015-05-14 株式会社村田製作所 非水電解質二次電池およびそれを用いた蓄電回路
JP2015118742A (ja) * 2013-12-16 2015-06-25 株式会社カネカ 非水電解質二次電池
JP6300021B2 (ja) * 2014-06-23 2018-03-28 株式会社豊田自動織機 リチウムイオン二次電池用正極及びリチウムイオン二次電池
JP6555506B2 (ja) * 2014-07-31 2019-08-07 株式会社東芝 非水電解質電池及び電池パック
KR101764266B1 (ko) * 2014-12-02 2017-08-04 주식회사 엘지화학 저온 성능이 향상된 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지
EP3273517B1 (en) * 2015-02-16 2023-01-18 Kabushiki Kaisha Toshiba Nonaqueous electrolyte battery and battery pack

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5433953B2 (ja) 1975-12-25 1979-10-24
JP3754218B2 (ja) 1999-01-25 2006-03-08 三洋電機株式会社 非水電解質電池用正極及びその製造方法、ならびこの正極を用いた非水電解質電池及びその製造方法
JP2002151154A (ja) * 2000-11-07 2002-05-24 Toyota Central Res & Dev Lab Inc リチウム二次電池
JP2003297422A (ja) * 2002-04-02 2003-10-17 Sony Corp 電 池
JP2004087229A (ja) 2002-08-26 2004-03-18 Sanyo Electric Co Ltd リチウム二次電池
JP2005142047A (ja) 2003-11-07 2005-06-02 Matsushita Electric Ind Co Ltd 非水電解質二次電池
JP2007305447A (ja) 2006-05-12 2007-11-22 Gs Yuasa Corporation:Kk 非水電解質二次電池
JP2009301954A (ja) * 2008-06-16 2009-12-24 Mitsubishi Chemicals Corp 非水系電解液及び非水系電解液電池
JP2016035901A (ja) 2014-07-31 2016-03-17 株式会社東芝 非水電解質電池、非水電解質電池の製造方法及び電池パック
WO2016175148A1 (ja) * 2015-04-28 2016-11-03 株式会社カネカ 梱包物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3605701A4

Also Published As

Publication number Publication date
JP6776439B2 (ja) 2020-10-28
CN110366793B (zh) 2022-08-02
EP3605701B1 (en) 2022-09-14
EP3605701A1 (en) 2020-02-05
JPWO2018174269A1 (ja) 2019-12-12
US20190372154A1 (en) 2019-12-05
CN110366793A (zh) 2019-10-22
EP3605701A4 (en) 2021-01-20

Similar Documents

Publication Publication Date Title
JP6130053B1 (ja) 組電池及び電池パック
EP3544084A1 (en) Electrode group, secondary battery, battery pack, vehicle, and stationary power supply
JP6169246B2 (ja) 非水電解質電池及び電池パック
EP2980894B1 (en) Nonaqueous electrolyte battery and battery pack
US10141575B2 (en) Electrode, nonaqueous electrolyte battery, battery pack, and vehicle
CN111164819B (zh) 非水电解质电池及电池包
EP3460876B1 (en) Electrode group, secondary battery, battery pack, and vehicle
JP6668478B2 (ja) 非水電解質電池及び電池パック
EP2779283A1 (en) Nonaqueous electrolyte battery and battery pack
US20160036038A1 (en) Nonaqueous electrolyte battery and battery pack
US11394050B2 (en) Nonaqueous electrolyte battery and battery pack
JP6629110B2 (ja) 非水電解質電池、電池パックおよび車両
JP6776439B2 (ja) 非水電解質電池、電池パック及び電池システム
EP3780165A1 (en) Electrode group, battery, and battery pack
US20200295375A1 (en) Electrode, secondary battery, battery pack, and vehicle
JP2023042830A (ja) リチウムイオン二次電池、電池パック、車両及び定置用電源
JP6946429B2 (ja) 非水電解質電池及び電池パック
WO2021186601A1 (ja) 二次電池及び電池パック
US20230197931A1 (en) Secondary battery, battery pack, and vehicle
JP2022141321A (ja) 電極群、二次電池、電池パック及び車両

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18770708

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019507036

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018770708

Country of ref document: EP

Effective date: 20191023