WO2018174208A1 - 電力供給システム - Google Patents
電力供給システム Download PDFInfo
- Publication number
- WO2018174208A1 WO2018174208A1 PCT/JP2018/011545 JP2018011545W WO2018174208A1 WO 2018174208 A1 WO2018174208 A1 WO 2018174208A1 JP 2018011545 W JP2018011545 W JP 2018011545W WO 2018174208 A1 WO2018174208 A1 WO 2018174208A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- power
- packet
- power packet
- router
- power supply
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60R—VEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
- B60R16/00—Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
- B60R16/02—Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J13/00—Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J1/00—Circuit arrangements for dc mains or dc distribution networks
Definitions
- the present invention relates to a power supply system that can be used to supply power on a vehicle or the like.
- an assembly of electric wires is provided between an in-vehicle battery or an alternator (generator) as a main power source and various types of electrical components arranged at various locations on the vehicle. Each is connected via a wire harness. Therefore, the electric power stored in the in-vehicle battery can be supplied as power supply power to various electrical components. Moreover, even when the vehicle is parked, an electrical component such as a security device requires power supply power. Therefore, unless the power supply path is specifically cut off using a fuse, a relay, or the like, the electric power of the in-vehicle battery flows out even when the vehicle is parked.
- Patent Document 1 shows that the operation of the electrical component is stopped when the integrated value of current consumption after the ignition-off is detected is compared with a predetermined upper limit value and exceeds the upper limit value.
- Patent Document 2 discloses a technique for packetizing power and transmitting and distributing power.
- Patent Document 2 discloses a plurality of power storage units that store power of received power packets, a switch unit that distributes the received power packets to the plurality of power storage units, and a power packet based on power stored by the plurality of power storage units.
- 1 shows a power router having an output to generate.
- the present invention has been made in view of the above-described circumstances, and an object of the present invention is to avoid wasteful discharge of electric power such as an in-vehicle battery and to demand for electric power even when the load increases. It is to provide a power supply system capable of maintaining a balance between the power supply capacity and the power supply capacity in an appropriate state.
- the power supply system is characterized by the following (1) to (3).
- a power packet generation unit that generates a power packet based on power supplied from one or more power supply sources;
- a power packet router that receives the power packet via a transmission line and supplies the power of the power packet to a plurality of loads connected downstream;
- a power request sending unit for sending a power distribution request according to the power required by the power packet router;
- a power supply control unit that provides the power packet according to the power distribution request from the power packet generation unit to the power packet router;
- An assigning unit that assigns priorities to the plurality of loads, The power supply control unit restricts power supply to a load having a low priority when the relationship between power demand and supply satisfies a predetermined condition; Power supply system.
- the power supply system configured as described in (1) above, for example, when the power demand exceeds the supply capacity, the relationship between the power demand and the supply satisfies the predetermined condition, If it becomes difficult to supply power to all the loads that are required to be supplied, the power supply to low priority loads can be limited, so that power supply to high priority loads can be maintained and battery power can be increased. It becomes possible to prevent.
- the power supply control unit compares a supply power amount that can be supplied by the power supply source with a demand power amount represented by the power distribution request, and when the demand power amount is larger than the supply power amount. Stops supplying the power supplied to the low priority load, The power supply system according to (1) above.
- the power supply amount is reduced by stopping the power supply to the load with low priority. Since it can suppress becoming larger than demand electric energy, it becomes possible to maintain the electric power supply with respect to a load with high priority, and to prevent a battery run-out.
- the allocation unit corrects the priority order according to at least one of a traveling state of a vehicle on which the power supply system is mounted, an occupant state, and an environment outside the vehicle.
- the power supply system according to (1) or (2) above.
- the priority order of loads to which power should be supplied is appropriately determined according to the situation in which the vehicle is placed, such as the running state of the vehicle, the state of the occupant, and the environment outside the vehicle. Since it can correct
- the power supply system of the present invention it is possible to avoid wasteful discharge of electric power from a vehicle-mounted battery, etc., and even when the load increases, the balance between power demand and supply capacity is in an appropriate state. Can be kept in.
- FIG. 1 is a block diagram showing a configuration example 1 of the power supply system in the embodiment of the present invention.
- FIGS. 2A and 2B are flowcharts showing operation examples of the power packet mixer and the power packet router, respectively.
- FIG. 3 is a block diagram showing a configuration example-2 of the power supply system in the embodiment of the present invention.
- FIG. 4 is a schematic diagram illustrating a configuration example of a power packet.
- FIG. 5 is a block diagram illustrating a configuration example of the power packet mixer.
- FIG. 6 is a flowchart illustrating an operation example of the power packet mixer.
- FIG. 7 is a block diagram illustrating a configuration example of the power packet router.
- FIG. 8 is a flowchart illustrating an operation example of the power packet router.
- FIG. 1 is a block diagram showing a configuration example 1 of the power supply system in the embodiment of the present invention.
- FIGS. 2A and 2B are flowcharts showing operation examples of the power packet mixer and the power packet router
- FIG. 9 is a block diagram illustrating a configuration example of the power distribution management ECU.
- FIG. 10 is a flowchart illustrating an operation example of the power distribution management ECU.
- FIG. 11 is a block diagram showing a configuration example-3 of the power supply system in the embodiment of the present invention.
- FIG. 12 is a schematic diagram illustrating a configuration example of a power packet.
- FIG. 13 is a block diagram illustrating a configuration example of the power packet router.
- FIG. 14 is a flowchart illustrating an operation example of the power distribution management ECU.
- FIG. 15 is a block diagram illustrating a configuration example-4 of the power supply system according to the embodiment of the present invention.
- FIG. 16 is a schematic diagram illustrating a configuration example of a power packet.
- FIG. 10 is a flowchart illustrating an operation example of the power distribution management ECU.
- FIG. 11 is a block diagram showing a configuration example-3 of the power supply system in the embodiment of the present invention.
- FIG. 12
- FIG. 17 is a sequence diagram illustrating an example of an operation procedure of each unit of the power supply system.
- FIG. 18 is a block diagram showing a configuration example-5 of the power supply system in the embodiment of the present invention.
- FIG. 19A and FIG. 19B are block diagrams showing Configuration Example-6 and Configuration Example-7 of the power supply system in the embodiment of the present invention.
- FIG. 20 is a block diagram showing a configuration example-8 of the power supply system in the embodiment of the present invention.
- FIG. 21 is a block diagram showing a configuration example-9 of the power supply system in the embodiment of the present invention.
- FIG. 22 is a block diagram showing a configuration example-10 of the power supply system in the embodiment of the present invention.
- FIG. 23 (a) is a block diagram showing a configuration example-11 of the power supply system in the embodiment of the present invention, and FIGS. 23 (b) and 23 (c) are output to the transmission lines of the respective parts in different operations. It is a time chart which shows the example of a change of an electric power packet.
- FIG. 24 is a block diagram showing a configuration example-12 of the power supply system in the embodiment of the present invention.
- FIG. 25 is a block diagram showing Configuration Example-13 of the power supply system in the embodiment of the present invention.
- FIG. 26 is a block diagram showing a configuration example-14 of the power supply system in the embodiment of the present invention.
- FIG. 27 is a block diagram illustrating a configuration example of a general lamp control circuit.
- FIG. 28 is a block diagram illustrating a configuration example of a lamp control circuit using a power packet.
- FIG. 29 is a flowchart showing an operation example of the power packet mixer in the lamp control circuit of FIG.
- FIG. 30 is a flowchart showing an operation example of the power packet router in the lamp control circuit of FIG.
- FIG. 31 is a block diagram showing Configuration Example-15 of the power supply system in the embodiment of the present invention.
- FIG. 32 is a block diagram showing a configuration example-16 of the power supply system in the embodiment of the present invention.
- FIG. 33 is a flowchart illustrating an operation example of the power packet router.
- FIG. 34 is a flowchart illustrating an operation example of the power distribution management ECU.
- FIG. 35 is a flowchart illustrating an operation example of the power distribution management ECU.
- FIG. 36 is a flowchart illustrating an operation example of the power distribution management ECU.
- FIG. 37 is a flowchart illustrating a power interchange operation example-1.
- FIG. 38 is a flowchart illustrating a power interchange operation example-2.
- FIG. 39 is a flowchart illustrating an operation example of the router at the time of activation.
- FIG. 40 is a graph showing the relationship between load power and efficiency.
- FIG. 41 is a block diagram illustrating an example of the configuration and operation of the power supply system according to the embodiment of the present invention.
- FIG. 42 is a block diagram illustrating an example of the configuration and operation of the power supply system according to the embodiment of the present invention.
- FIG. 41 is a block diagram illustrating an example of the configuration and operation of the power supply system according to the embodiment of the present invention.
- FIG. 43 is a block diagram illustrating an example of the configuration and operation of the power supply system according to the embodiment of the present invention.
- FIG. 44 is a flowchart illustrating an operation example of the power distribution management ECU.
- FIG. 45 is a flowchart showing in more detail an operation example of the power packet mixer shown in FIG.
- FIG. 1 A configuration example of the power supply system 10-1 in the embodiment of the present invention is shown in FIG.
- the power supply system 10-1 shown in FIG. 1 is used in a vehicle to supply power from a vehicle-mounted battery or the like to various electrical components serving as loads via a transmission line such as a wire harness.
- the power supply system 10-1 can use a known power packet transmission technique according to, for example, Patent Document 2.
- the power supply system 10-1 shown in FIG. 1 includes a power packet mixer 11 and a power packet router (router A) 12.
- the power packet output port 11c of the power packet mixer 11 and the power packet input port 12a of the power packet router 12 are connected by a power transmission path 16A configured as a wire harness.
- the power input ports 11a and 11b of the power packet mixer 11 are connected to the in-vehicle batteries (power source 1) 13A and (power source 2) 13B via the power transmission paths 16B and 16C, respectively.
- the power output ports 12b, 12c, and 12d of the power packet router 12 are connected to loads 14A, 14B, and 14C via power transmission paths 16D, 16E, and 16F, respectively.
- These loads 14A to 14C correspond to various electrical components mounted on the vehicle.
- the plurality of power sources such as the in-vehicle batteries 13A and 13B connected to the input of the power packet mixer 11 may have the same voltage or different voltages.
- FIG. 25 shows a configuration example when the voltages are different. In the example illustrated in FIG. 25, it is assumed that the voltage of the in-vehicle battery 13A is 12 [V] and the voltage of the in-vehicle battery 13B is 48 [V]. Of course, other voltages may be used. In the example of FIG.
- the power packet mixer 11 generates a power packet PPL (30) having a voltage of 12 [V] based on the power supply power of 12 [V] supplied from the in-vehicle battery 13A, and the power packet mixer 11 A power packet PPH (30) having a voltage of 48 [V] is generated based on the supplied power of 48 [V]. Therefore, as shown in FIG. 25, power packets PPL and PPH having different voltages may appear alternately on the power transmission path 16A, for example.
- a plurality of power storage units 15A and 15B are connected to the power packet router 12.
- the number and types of power supplies connected to the input side of the power packet mixer 11 can be changed as necessary. Further, the number and types of loads connected to the output side of the power packet router 12 can be changed as necessary. Further, another power packet router 12 can be connected in series to the output side of the power packet router 12.
- the power packet mixer 11 has a function of generating a power packet based on the power supplied from the power input ports 11a and 11b and sending the power packet to the power transmission path 16A.
- the power packet 30 generated by the power packet mixer 11 is configured, for example, as shown in FIG. Due to the payload 32 of the power packet 30, the power on the upstream side is transmitted to the downstream side in units of power packets. Therefore, the power packet mixer 11 can easily manage the amount of power to be transmitted based on the payload length and the number of packets.
- the time length of the payload 32 of the power packet 30 is adjusted according to the voltage. It is assumed that control is performed so that the amount of power per power packet 30 is constant. When the length of the payload 32 is not adjusted, it is necessary to identify the difference in voltage in order to grasp the power for each power packet 30.
- the power packet router 12 takes in a power packet input to the power packet input port 12a, and temporarily stores the power of the power packet in the power storage units 15A and 15B. Then, the power stored in the power storage units 15A and 15B is supplied to the load side.
- the power packet mixer 11 distinguishes and manages the plurality of in-vehicle batteries 13A and 13B that are power supply sources, and includes information for distinguishing them in each power packet to be transmitted. Therefore, the power packet router 12 can also distinguish the power supply source for each received power packet. For example, the power packet router 12 stores the power supplied from the in-vehicle battery 13A only in the power storage unit 15A and stores the power supplied from the in-vehicle battery 13B only in the power storage unit 15B.
- the power packet mixer 11 has the function 11d shown in FIG. 1, and the power packet router 12 has the functions 12e, 12f, and 12g.
- the power packet router 12 monitors the amount of power stored in each power storage unit 15A, 15B as the function 12e. In addition, as a function 12f, the power packet router 12 sends a distribution request to the power packet mixer 11 when the amount of power stored in each of the power storage units 15A and 15B is equal to or less than a threshold value.
- This power distribution request can be sent from the power packet input port 12a to the power packet output port 11c using, for example, the timing when the power transmission path 16A is free.
- the power packet mixer 11 confirms a power distribution request from the power packet router 12, generates a power packet corresponding to the requested amount of power, and sends this power packet to the power packet output port 11c.
- the power packet router 12 receives each power packet sent from the power packet mixer 11 and stores it in the power storage units 15A and 15B.
- a control unit (not shown) in the power packet router 12 is supplied from the in-vehicle battery 13B and the current storage amount Pa of the storage unit 15A that stores the electric power supplied from the in-vehicle battery 13A as the function 12e.
- the current storage amount Pb of the power storage unit 15B storing the remaining power is read (S11).
- step S12 the charged amount Pa and the threshold value Ptha thereof are compared in step S12, and the process proceeds to step S15 only when the condition of “Pa ⁇ Ptha” is satisfied. Further, the charged amount Pb and the threshold value Pthb are compared in step S13, and the process proceeds to step S14 only when the condition of “Pb ⁇ Pthb” is satisfied.
- the control unit in the power packet router 12 sends a power distribution request “Pa_req” to the power packet mixer 11 when the condition 12Pa satisfies the condition “Pa ⁇ Ptha” (S15).
- a power distribution request “Pb_req” is sent to the power packet mixer 11 (S14).
- control unit (not shown) in the power packet mixer 11 determines whether or not the distribution request “Pa_req” or “Pb_req” from the power packet router 12 is received (S16), and any request ( When the request is received, the process proceeds to the next step S17. Then, in S17, it is identified whether the received distribution request is “Pa_req” or “Pb_req”. If the distribution request is “Pa_req”, the process proceeds to S19. If the distribution request is “Pb_req”, the process proceeds to S18.
- step S19 the control unit in the power packet mixer 11 generates a power packet using the power supplied from the in-vehicle battery 13A, and sends the power packet to the power packet router 12 via the power transmission path 16A. .
- Information indicating that the in-vehicle battery 13A is a supply source is added to the power packet. Note that the number of power packets sent by the power packet mixer 11 in a single process in response to a distribution request may be one for each received distribution request or a predetermined number, The power packet router 12 side may designate as a part.
- step S18 the control unit in the power packet mixer 11 generates a power packet using the power supplied from the in-vehicle battery 13B, and sends the power packet to the power packet router 12 via the power transmission path 16A. .
- Information indicating that the in-vehicle battery 13B is a supply source is added to the power packet.
- the power packet mixer 11 supplies only a necessary amount of power when necessary according to a request from the power packet router 12, that is, the power packet router 12 on demand. To supply.
- PA_Flag, PB_Flag, PA, and PB are all 0.
- PA_Flag and PB_Flag are distribution stop flags, respectively. When power supply from the in-vehicle batteries 13A and 13B is impossible, these distribution stop flags are 1.
- PA and PB represent the integrated power amounts supplied from the in-vehicle batteries 13A and 13B, respectively.
- the power packet mixer 11 determines whether or not the distribution request “Pa_req” or “Pb_req” is received from the power packet router 12 (S602). When the request (request) is received, the process proceeds to the next step S604. In step S604, whether the received distribution request is “Pa_req” or “Pb_req” is identified. If the distribution request is “Pa_req”, the process proceeds to step S609. If the distribution request is “Pb_req”, the process proceeds to step S605.
- step S601 if the power transmission stop flag of either PA_Flag or PB_Flag is 1 in step S601, a warning signal is issued or a warning is displayed to the driver (S613). These warnings are ended when it is determined that the engine is turned on (S614). Also, the determination of request signal reception in step S602 ends when it is determined that the engine is turned on (S603).
- step S609 the control unit in the power packet mixer 11 generates a power packet using the power supplied from the in-vehicle battery 13A, and sends the power packet to the power packet router 12 via the power transmission path 16A.
- Information indicating that the in-vehicle battery 13A is a supply source is added to the power packet. Note that the number of power packets sent by the power packet mixer 11 in a single process in response to a distribution request may be one for each received distribution request or a predetermined number, The power packet router 12 side may designate as a part.
- the control unit in the power packet mixer 11 can add the power amount Pa corresponding to the amount of power packet sent this time to the integrated power amount PA transmitted from the in-vehicle battery 13A (S610) and supply it from the in-vehicle battery 13A.
- the flag PA_flag for stopping the power supply from the in-vehicle battery 13A is set to 1, and the The power distribution request is prohibited (S612).
- step S605 the control unit in the power packet mixer 11 generates a power packet using the power supplied from the in-vehicle battery 13B, and the power packet is transmitted to the power packet router 12 via the power transmission path 16A. Send to. Information indicating that the in-vehicle battery 13B is a supply source is added to the power packet.
- the control unit in the power packet mixer 11 can add the power amount Pb corresponding to the current power packet transmission amount to the integrated power amount PB transmitted from the in-vehicle battery 13B (S606), and supply from the in-vehicle battery 13B.
- the flag PB_flag for stopping the power supply from the in-vehicle battery 13A is set to 1, and the in-vehicle battery 13B The power distribution request is prohibited (S608).
- FIG. 3 shows a configuration example of the power supply system 10-2 in the embodiment of the present invention.
- the power supply system 10-2 shown in FIG. 3 is used in a vehicle to supply power source power such as an in-vehicle battery to various electrical components serving as loads via a transmission line such as a wire harness.
- the power supply system 10-2 can use a known power packet transmission technique according to Patent Document 2, for example.
- the power supply system 10-2 shown in FIG. 3 includes a power packet mixer 21, a power packet router 22, and a power distribution management ECU (electronic control unit) 26 as main components.
- a plurality of n power sources 23-1 to 23-n are connected to a plurality of power input ports 21a of the power packet mixer 21 via power transmission paths 29B, respectively.
- Each of the power supplies 23-1 to 23-n corresponds to, for example, an in-vehicle main battery, a sub battery, and other auxiliary power supplies. Further, the output voltages of the n power supplies 23-1 to 23-n may be the same or different from each other.
- the power packet output port 21b of the power packet mixer 21 and the power packet input port 22a of the power packet router 22 are connected to each other via one power transmission path 29A.
- a plurality of loads 24-1 to 24-n are connected to a plurality of power output ports 22b of the power packet router 22 via a power transmission path 29C.
- Each of the loads 24-1 to 24-n corresponds to various electrical components on the vehicle.
- another power packet router 22 can be connected in series to the power output port 22 b of the power packet router 22.
- the power transmission paths 29A, 29B, and 29C correspond to, for example, the electric wires and bus bars that constitute the wire harness mounted on the vehicle. Further, the power distribution management ECU 26 is connected to the power packet mixer 21 and the power packet router 22 in a state where they can communicate with each other. For this communication, a dedicated communication line may be used, or the power transmission path 29A may be used.
- the power packet mixer 21 As a basic function, the power packet mixer 21 generates a power packet 30 from the power supplied from the power sources 23-1 to 23-n, and outputs the power packet 30 to the power transmission path 29A.
- the power packet router 22 receives the power packet 30 sent from the power packet mixer 21 and temporarily accumulates this power internally, and also stores this power in each of the loads 24-1 to 24-n as necessary. Supply.
- the power distribution management ECU 26 communicates with the power packet mixer 21 and the power packet router 22 to manage the power distribution state of the entire system. Among the information exchanged by the power distribution management ECU 26 through communication, a power distribution request 27A transmitted by the power packet router 22, power reception information 27B, a power transmission instruction 28A transmitted by the power distribution management ECU 26, and power transmission information transmitted by the power packet mixer 21 28B.
- the power packet 30 illustrated in FIG. 4 includes a header 31 and a payload 32.
- the header 31 includes a synchronization signal 31a, destination (distribution route) information 31b, and transmission power information (data indicating the amount of transmission) 31c.
- the payload 32 corresponds to the electric power that is actually transmitted. For example, assuming that the voltage and current are constant, power corresponding to the time length of the payload 32 can be transmitted by one power packet 30.
- the power packet mixer 21 shown in FIG. 5 includes an input selection unit 35, a packet generation unit 36, an output port selection unit 37, a control unit 38, and a communication interface unit (I / F) 39.
- the input selection unit 35 selects one of the plurality of power input ports 21a and takes in power from the selected power source.
- the packet generator 36 generates a power packet 30 from the power taken from any of the power input ports 21a.
- the output port selection unit 37 selects one of the plurality of power packet output ports 21b and sends the power packet 30 to the selected port.
- the control unit 38 controls the overall operation of the power packet mixer 21 as described below.
- FIG. 21 An operation example of the power packet mixer 21 is shown in FIG. That is, the control unit 38 performs the control of FIG.
- the control unit 38 Upon receiving information on the power transmission instruction 28A from the power distribution management ECU 26 (S21), the control unit 38 selects a power input by the input selection unit 35 based on the power transmission instruction 28A, and generates a power packet 30 by the packet generation unit 36. (S22). The control unit 38 controls the output port selection unit 37 to send the generated power packet 30 to the predetermined power packet output port 21b (S23). In addition, the control unit 38 notifies the power distribution management ECU 26 of the power transmission information 28B via the communication port 21c (S24).
- FIG. 7 A configuration example of the power packet router 22 is shown in FIG.
- the power packet router 22 illustrated in FIG. 7 includes a header separation analysis unit 41, a power storage unit 42, a packet generation unit 43, an output port selection unit 44, a control unit 45, and a communication interface unit 46.
- the header separation analysis unit 41 processes the power packet 30 input to each of the power packet input ports 22a, separates the header 31, and analyzes the contents of the header 31.
- the power storage unit 42 charges and temporarily stores this power at the timing of the payload 32 of the power packet 30 input to each of the power packet input ports 22a.
- the packet generation unit 43 generates a new power packet 30 from the power stored in the power storage unit 42 when the generation of the power packet 30 is necessary.
- the output port selection unit 44 selectively outputs the power stored in the power storage unit 42 or the power packet 30 generated by the packet generation unit 43 to any of the power output ports 22b.
- the control unit 45 controls the entire power packet router 22 as described below.
- FIG. 22 An example of the operation of the power packet router 22 is shown in FIG. That is, the control unit 45 performs the control of FIG.
- the control unit 45 analyzes the header 31 of the power packet 30 using the header separation analysis unit 41 (S32).
- control unit 45 collates the destination of the destination information 31b included in the header 31 with each of the loads 24-1 to 24-n connected to the own router (S33). As a result of the collation, when the load is connected to the own router, the power of the payload 32 is charged to the power storage unit 42 and the power of the power storage unit 42 is output to a predetermined power output port 22b (S34, S39). ).
- the control unit 45 controls the packet generation unit 43 from the power of the power storage unit 42. Then, a new power packet 30 addressed to the predetermined router is generated (S36). Then, the power packet 30 is output from a predetermined output port (S37) and given to the input port of the predetermined router.
- control unit 45 measures the amount of charge charged in the power storage unit 42 by the power packet 30 received by the power packet router 22 (S34), and generates power reception information 27B including the integrated power reception value corresponding to the payload 32. This is notified to the power distribution management ECU 26 (S38, S40).
- control unit 45 determines whether or not power distribution is necessary based on the driving power of each of the loads 24-1 to 24-n connected to the power output port 22b of the own router and the charge state of the power storage unit 42. Identify and notify the distribution management ECU 26 of the information of the distribution request 27A when necessary. For example, when it is necessary to supply power to each load (there is “power supply request”), the required power amount is compared with the stored power amount of the power storage unit 42 (S42). When the condition “is satisfied, the control unit 45 notifies the distribution management ECU 26 of the information of the distribution request 27A (S43).
- FIG. 9 A configuration example of the power distribution management ECU 26 is shown in FIG.
- the power distribution management ECU 26 shown in FIG. 9 includes a control unit 26a and a communication interface unit 26b. Communication ports 26c and 26d of the communication interface unit 26b are connected to the power packet mixer 21 and the power packet router 22, respectively.
- FIG. 26 An example of the operation of the power distribution management ECU 26 is shown in FIG. That is, the control unit 26a in the power distribution management ECU 26 controls the operation of FIG.
- the control unit 26a in the power distribution management ECU 26 When the information on the power distribution request 27A is notified from the power packet router 22 (S58), the control unit 26a in the power distribution management ECU 26 generates information on the power transmission instruction 28A based on this (S59), and the generated power transmission instruction 28A. Is notified to the power packet mixer 21 (S60).
- the control unit 26a in the power distribution management ECU 26 activates a power reception information reception waiting timer (S52). Furthermore, the control unit 26a in the power distribution management ECU 26 does not receive the power reception information 27B including the integrated received power value from the power packet router 22 before the power reception information reception waiting timer times out (S54), or from the power packet router 22 If there is a mismatch in the result of the comparison between the received received power value in the received power reception information 27B and the power transmission information 28B from the power packet mixer 21 (S55, S56), there is an abnormality such as disconnection or short circuit in the distribution path. It is determined that it has occurred (S57). And it is made not to distribute electricity by the same distribution route.
- the distribution management ECU 26 determines the power actually transmitted by the power packet mixer 21 and the power actually received by the power packet router 22, the occurrence of abnormality can be reliably detected.
- the power distribution management ECU 26 can recognize all the power transmission timings, even if the transmission path (wire harness) is disconnected or dead short, and the header 31 of the power packet 30 is not normally received on the power receiving side. It is possible to detect abnormalities in the transmission path.
- the power supply system 10-2 shown in FIG. 3 assumes a case where there is only one power packet router 22. However, by connecting a plurality of power packet routers 22 in series, for example, various routes can be selected. It becomes possible to use it. In that case, when an abnormality is detected in the distribution route, the distribution management ECU 26 may automatically switch the route so that the power packet 30 passes through another route where no abnormality has occurred. For example, after step S57 shown in FIG. 10, the power distribution management ECU 26 may perform control so as to notify the power packet mixer 21 or each power packet router 22 of power transmission instruction information for instructing the change of the distribution path. .
- FIG. 11 A configuration example of the power supply system 10-3 according to the embodiment of the present invention is shown in FIG.
- the power supply system 10-3 shown in FIG. 11 is used in a vehicle to supply power from a vehicle-mounted battery or the like to various electrical components serving as loads via a transmission line such as a wire harness.
- the power supply system 10-3 can use a known power packet transmission technique according to Patent Document 2, for example.
- the power supply system 10-3 shown in FIG. 11 includes, as main components, a power packet mixer 21B, three power packet routers 22B-1, 22B-2, 22B-3, and a power distribution management ECU (electronic control unit). ) 26B.
- a power packet mixer 21B three power packet routers 22B-1, 22B-2, 22B-3
- a power distribution management ECU electronic control unit
- a plurality of n power sources 23-1 to 23-n are connected to a plurality of power input ports of the power packet mixer 21B through a power transmission path 29B, respectively.
- Each of the power supplies 23-1 to 23-n corresponds to, for example, an in-vehicle main battery, a sub battery, and other auxiliary power supplies.
- the output voltages of the n power supplies 23-1 to 23-n may be the same or different from each other.
- the three power packet output ports of the power packet mixer 21B and the power packet input ports 22a of the three power packet routers 22B-1 to 22B-3 are connected to each other via a power transmission path 29A. .
- a plurality of loads 24-A are connected to a plurality of power output ports 22b of the power packet router 22B-1 through a power transmission path 29C-1.
- a plurality of loads 24-B are connected to a plurality of power output ports 22b of the power packet router 22B-2 through a power transmission path 29C-2.
- a plurality of loads 24-C are connected to a plurality of power output ports 22b of the power packet router 22B-3 via a power transmission path 29C-3.
- Each of the loads 24-A to 24-C corresponds to various electrical components on the vehicle.
- one of the power output ports 22b of the power packet router 22B-1 and one of the power packet input ports 22a of the adjacent power packet router 22B-2 are connected to each other via the power transmission path 29D-1. ing. Furthermore, one of the power output ports 22b of the power packet router 22B-3 and one of the power packet input ports 22a of the adjacent power packet router 22B-2 are connected to each other via the power transmission path 29D-2. ing.
- the power transmission path 29D-1 is used as a path for accommodating the power of the power packet router 22B-1 when the power in the power packet router 22B-2 is insufficient.
- the power transmission path 29D-2 is used as a path for accommodating power of the power packet router 22B-3 when power in the power packet router 22B-2 is insufficient.
- it can also be used as a detour route when an abnormality such as disconnection occurs.
- the power transmission paths 29A, 29B, 29C, and 29D correspond to, for example, the electric wires and bus bars that constitute the wire harness mounted on the vehicle. Further, the power distribution management ECU 26B and the power packet mixer 21B and each power packet router 22B are connected via, for example, a dedicated communication line so that they can communicate with each other. It is also possible to communicate using the power transmission path 29A.
- the power packet mixer 21B As a basic function, the power packet mixer 21B generates a power packet 30B based on the power supplied from the power sources 23-1 to 23-n, and uses the power packet 30B as power transmission paths 29A-1, 29A-2. , 29A-3.
- Each power packet router 22B-1, 22B-2, 22B-3 receives the power packet 30B sent from the power packet mixer 21B, temporarily stores this power inside, and stores this power as needed. Supply to each of the loads 24-A, 24-B, and 24-C. As will be described in detail later, the power packet routers 22B-1, 22B-2, and 22B-3 also perform power interchange as necessary in this embodiment.
- the distribution management ECU 26B communicates with the power packet mixer 21B and each power packet router 22B to manage the distribution state of the entire system.
- the information exchanged by the power distribution management ECU 26B there are a power distribution request 27A and power reception information 27B transmitted by the power packet router 22B, a power transmission instruction 28A transmitted by the power distribution management ECU 26B, and power transmission information transmitted by the power packet mixer 21B. 28B.
- the power packet 30B illustrated in FIG. 12 includes a header 31B and a payload 32.
- the header 31B includes a synchronization signal 31a, destination (distribution route) information 31b, transmission power information (data indicating the amount of transmission) 31c, and power type information 31d.
- the payload 32 corresponds to the electric power that is actually transmitted. For example, assuming that the voltage and current are constant, the power corresponding to the time length of the payload 32 can be transmitted by one power packet 30B.
- the power type information 31d is used to distinguish between normal power and power dedicated for accommodation.
- FIG. 13 A configuration example of the power packet router 22B is shown in FIG. Inside the power packet router 22B shown in FIG. 13 are a header separation analysis unit 41, a normal power storage unit 42A, a flexible power storage unit 42B, a packet generation unit 43, an output port selection unit 44, a control unit 45B, and a communication interface unit 46. Is equipped.
- the header separation analysis unit 41 processes the power packet 30B input to each of the power packet input ports 22a, separates the header 31B, and analyzes the contents of the header 31B.
- the normal power storage unit 42A and the flexible power storage unit 42B charge and temporarily store this power at the timing of the payload 32 of the power packet 30B input to each of the power packet input ports 22a.
- the normal power storage unit 42A is used when normal power feeding is performed, and the flexible power storage unit 42B is dedicatedly used when supplying flexible power.
- the normal power storage unit 42A and the flexible power storage unit 42B may be configured by the same power storage unit, and the normal power supply power and the flexible power may be stored in the power storage unit.
- the packet generation unit 43 generates a new power packet 30B based on the power stored in the normal power storage unit 42A or the flexible power storage unit 42B when the power packet 30B needs to be generated.
- the output port selection unit 44 selectively selects the power stored in either the normal power storage unit 42A or the flexible power storage unit 42B or the power packet 30B generated by the packet generation unit 43 as one of the power output ports 22b. Output.
- the control unit 45B controls the entire power packet router 22B as will be described next.
- each power packet router 22B is the same as the operation of the power packet router 22 shown in FIG. However, the following points are different.
- the power packet router 22B collates the destination information 31b and the power type information 31d included in the header 31B of the power packet 30B received at the power packet input port 22a. As a result of the collation, when the received power packet 30B is addressed to the own router and is normally supplied power, the power of the payload 32 is charged to the normal power storage unit 42A and output to a predetermined output port. If the received power packet 30B is addressed to the own router and has flexible power as a result of the collation, the power of the payload 32 is charged into the flexible power storage unit 42B. Further, when the power packet router 22B receives the power packet 30B addressed to the own router, the power packet router 22B notifies the power distribution management ECU 26B of the power reception information 27B including the type and the amount of received power.
- the power packet router 22B when the power packet router 22B receives the power interchange instruction information from the power distribution management ECU 26, the power packet router 22B generates a power packet 30B addressed to the predetermined router based on the power stored in the accumulator storage unit 42B, and generates a predetermined power from a predetermined output port. Output to the router input port. At the same time, the power packet router 22B notifies the power distribution management ECU 26B of power transmission information including the remaining charge amount of the flexible storage unit 42B. In addition, the power packet router 22B notifies the power distribution management ECU 26 of a power distribution request 27A as necessary based on the driving power of each load connected to the output port and the charging state of the normal power storage unit 42A and the flexible power storage unit 42B. .
- the configuration of the power distribution management ECU 26B is the same as that of the power distribution management ECU 26 shown in FIG.
- the communication port 26c of the communication interface unit 26b of the power distribution management ECU 26B is connected to the power packet mixer 21B, and the communication port 26d is connected to each power packet router 22B.
- FIG. 14 An example of the operation of the power distribution management ECU 26B is shown in FIG. That is, the control unit 26a in the power distribution management ECU 26B controls the operation of FIG. The operation of FIG. 14 will be described below.
- the distribution management ECU 26B When the distribution management ECU 26B is notified of the information of the distribution request 27A from any of the plurality of power packet routers 22B (S78), there should be no abnormality in all the distribution paths between the power packet mixer 21B and the power packet router 22B. For example, information on the power transmission instruction 28A is generated (S80), and the information on the power transmission instruction 28A is notified to the power packet mixer 21B (S81).
- the power distribution management ECU 26B receives the power transmission information 28B from the power packet mixer 21B (S71), the power distribution management ECU 26B starts a power reception information reception waiting timer (S72). Further, when the power reception information 27B from the power packet router 22B is not received before the power reception information reception waiting timer times out, the power distribution management ECU 26B determines that an abnormality such as disconnection or short circuit has occurred in the power distribution path (S76). Then, power distribution through the same power distribution path is not performed (S77).
- the distribution management ECU 26B receives the information of the distribution request 27A from the power packet router 22B, the abnormality is confirmed in all the distribution paths between the power packet mixer 21B and the power packet router 22B as follows. Process as follows. That is, “power interchange instruction information” is generated (S82), and “power interchange instruction” is sent to another power packet router 22B capable of establishing a distribution route with the specific power packet router 22B that has transmitted the distribution request 27A. Information "is notified (S83).
- the power distribution management ECU 26B recognizes the amount of charge in the accumulating power storage unit 42B in the transmission source power packet router 22B based on the power reception information 27B transmitted from the power packet router 22B. Then, based on the recognized charge amount, the power distribution management ECU 26B notifies the power packet mixer 21B of power transmission instruction information for the power interchange power to the power packet router 22B as necessary.
- each of the plurality of power packet routers 22B always stores power in the accumulating power storage unit 42B built in as a buffer, and the stored power amount.
- the router itself knows. Then, when a power shortage occurs in any of the plurality of power packet routers 22B-1 to 22B-3, or in a situation where a power shortage is expected to occur, the corresponding power packet router 22B makes a distribution request.
- the 27A information is notified to the power distribution management ECU 26B. Based on the information of the power distribution request 27A, the power distribution management ECU 26B notifies the “power interchange instruction information” to the power packet router 22B that stores sufficient power in the interchange power storage unit 42B.
- the power of the power packet router 22B-3 is transferred to the power packet router 22B-2 via the power transmission path 29D-2, and the power is Can be flexible. Further, the power of the power packet router 22B-1 can be transferred to the power packet router 22B-2 via the power transmission path 29D-1, so that the power can be accommodated.
- priorities are assigned in advance to each of a plurality of loads connected to each power packet router 22B.
- the plurality of power packet routers 22B-1 to 22B-3 more power packet mixers 21B are connected to the power packet input port 22a of a specific power packet router 22B to which a higher priority load is connected. And the output port of the power packet router 22B is connected.
- the outputs of the power packet routers 22B-1 and 22B-3 are connected to the power packet input port 22a of the power packet router 22B-2, respectively. . Therefore, power can be preferentially supplied from the three power packet routers 22B-1 to 22B-3 to the load 24-B having a high degree of importance connected to the output of the power packet router 22B-2.
- the target power packet is transmitted via the power transmission path that is not disconnected and the power transmission paths 29D-1 and 29D-2.
- Power can be supplied to the router.
- the power packet mixer 21B is connected to the power packet router 22B-1 via the power transmission path 29A-2, the power packet router 22B-2, and the power transmission path 29D-1. Power packets can be transmitted.
- the demand for lower fuel consumption of automobiles is extremely high due to the rising price of fuel oil and environmental problems caused by carbon dioxide emissions. Therefore, an increase in vehicle weight that deteriorates fuel consumption must be avoided.
- the power packet transmission system there is a possibility that multiple power sources can be realized with a minimum number of wires by transmitting power from a plurality of power sources by time division (packetization). That is, an increase in vehicle weight can be prevented. Further, for example, it is possible to suppress an increase in the number of wirings in an environment where a plurality of types of voltages coexist.
- the power supply system 10-4 of the present embodiment employs a power packet transmission technique and can provide a function for easily adding a new load.
- FIG. 15 A configuration example of the power supply system 10-4 according to the embodiment of the present invention is shown in FIG.
- the power supply system 10-4 shown in FIG. 15 represents a basic configuration example, and power supplies and devices can be added or changed as necessary.
- An example of the configuration of the power packet 30C is shown in FIG.
- a power supply system 10-4 shown in FIG. 15 includes a power packet mixer 51, a plurality of power packet routers 52-1 to 52-3, and a power distribution management ECU 56 as main components.
- the plurality of power input ports 51a of the power packet mixer 51 include an in-vehicle battery (power source 1) 53-1 having a voltage of 12 [V] and an in-vehicle battery (power source 2) 53-2 having a voltage of 48 [V]. Are connected via the power transmission path 55B.
- a plurality of power packet routers 52-1 and 52-2 are connected to a plurality of power packet output ports 51b of the power packet mixer 51 via a power transmission path 55A, respectively. Note that the voltages output from the plurality of in-vehicle batteries 53-1 and 53-2 may be the same.
- a power packet router 52-3 and a plurality of loads 54-1 and 54-2 are connected to a power output port 52b of the power packet router 52-1 via a power transmission path 55C. That is, the power packet router 52-1 and the power packet router 52-3 are connected in series.
- Each of the loads 54-1 and 54-2 corresponds to various on-vehicle electrical components.
- a plurality of loads 54-5 and 54-6 are connected to the power output port 52b of the power packet router 52-3 via the power transmission path 55D.
- a plurality of loads 54-3 and 54-4 are connected to the power output port 52b of the power packet router 52-2 via the power transmission path 55C-2.
- the load 54-7 is prepared to be newly added to this system. In the example of FIG. 1, it is assumed that the load 54-7 is connected to an available port of the power output port 52b of the power packet router 52-2. ing.
- Each power transmission path 55A, 55B, 55C, 55D is a power transmission wire or bus bar corresponding to each power capacity, and is configured as a part of a wire harness, for example.
- the power distribution management ECU 56 is connected to the communication port 51c of the power packet mixer 51 via a predetermined communication line.
- An input device 57 and switches 58 are connected to the input of the power distribution management ECU 56.
- the input device 57 and the switches 58 are provided so that an input operation by a user or the like can be accepted.
- the power distribution management ECU 56 has functions of power transmission control and packet transmission schedule construction in this system.
- the power packet mixer 51 is configured in the same manner as the power packet mixer 21 shown in FIG. 5, for example, and has a basic function based on the power supplied from the in-vehicle batteries 53-1, 53-2, etc. And the power packet 30C is transmitted to the power packet output port 51b.
- Each of the power packet routers 52-1 to 52-3 is configured in the same manner as the power packet router 22 shown in FIG. 7, for example, and as a basic function, the power packet 30C input to the power packet input port 52a. Have the ability to receive Furthermore, the function of storing the power of the received power packet 30C internally and supplying it to the load side as needed, or the function of generating a relay power packet 30C and sending it to another downstream power packet router 52 have.
- each of the power distribution management ECU 56, the power packet mixer 51, and the power packet router 52 in the present embodiment incorporates a storage unit (for example, a non-volatile memory) (not shown) for storing route information of the power packet 30C.
- the path information held by each of these storage means is shared by data communication between the power packet mixer 51 and each of the power packet routers 52-1 to 52-3. This data communication can be performed using the power transmission path 55A or the like.
- the route information is updated sequentially.
- the power packet mixer 51 generates power packets 30C having different destinations or voltage amplitudes in order to transmit the power source power of the plurality of in-vehicle batteries 53 through a transmission path having a smaller number than the number of power sources. It is sent to the power transmission path 55A toward the power packet routers 52-1 to 52-3 by the division multiplexing method.
- the power packet 30C is composed of a header 31C and a payload 32 as shown in FIG.
- the header 31C includes a synchronization signal, a destination, route information, transmitted power, timing information, and the like.
- Each power packet router 52-1 to 52-3 reads the information tag from the header 31C of the received power packet 30C, and distributes the power to each load based on the information. That is, the power in the payload 32 of the received power packet 30C is distributed for each destination load.
- the power of the power packet 30C sent to each load 54 is generated intermittently. Therefore, an electrolytic capacitor or the like is used as a buffer, that is, a power storage unit, or a secondary battery is connected to each power packet router 52 in order to compensate for power supply during a time when a packet does not reach.
- a buffer or secondary battery used as a power storage unit may be built in each power packet router 52.
- Each power packet router 52 in the power supply system 10-4 collates the destination information included in the header 31C of the power packet 30C received at the power packet input port 52a.
- the packet is the power packet 30C addressed to the load connected to the own router
- the power of the payload 32 is charged to the power storage unit and this power is output to a predetermined output port.
- a new power packet 30C for relay addressed to the predetermined router is newly created based on the power stored in its own power storage unit. Is output to a predetermined output port and given to an input port of a predetermined router.
- Each power packet router 52 notifies the power distribution management ECU 56 of power reception information corresponding to the payload 32 of each received power packet 30C via the power packet mixer 51.
- Each power packet router 52 makes a distribution request to the distribution management ECU 56 as necessary based on the driving power of each load connected to the power output port 52b and the state of charge of the power storage unit.
- the power supply system 10-4 shown in FIG. 15 simply adds each power packet router 52 and each load connected to the power transmission paths 55A, 55C, 55D, etc., which are the main power transmission paths. It has a function to make it possible. For this function, data communication is performed between the power packet mixer 51 and each power packet router 52, and the connected load is authenticated. When data communication is performed between the power packet mixer 51 and each power packet router 52, for example, bidirectional communication using the power transmission path 55A or the like as a transmission path for communication, or wireless communication is used.
- the seventh new load 54-7 is connected to the power output port 52b of the power packet router 52-2 and added to this system for the power supply system 10-4 shown in FIG.
- the power packet router 52-2 automatically detects that the load 54-7 is new and physically connected, and performs processing necessary for logical connection to the system to the power packet mixer 51, power The packet router 52 and the power distribution management ECU 56 automatically carry out.
- each load 54 assumed to be connected to the output of each power packet router 52 does not hold information such as a “device descriptor” indicating its type and characteristics. Therefore, it is necessary to identify the type and characteristics of each newly connected load by some method.
- an operator such as a user performs a necessary input operation to identify the type and characteristics of each connected load.
- the power packet mixer 51 includes a plurality of power packet output ports 51b, and the power packet 30C can be transmitted to each of the plurality of power packet routers 52 using these.
- the power packet mixer 51 when the power packet mixer 51 is activated, such as when the operator turns on the system, the power packet mixer 51 checks the connection state of each of the power packet output ports 51b and is newly connected. If the power packet router 52 exists, preparation for redistribution (rescheduling) of power resources is performed for the corresponding power packet router 52.
- a device connected to each output port is obtained in the same manner as a USB (Universal Serial Bus) standard device.
- the presence or absence of connection can be automatically detected.
- the pull-up power supply voltage for example, a low voltage of 3.3 [V] or less is preferably used.
- Each power packet router 52 has a function described below in order to allow a load to be added later.
- the power packet router 52 confirms the load connection state of its own power output port 52b at the time of activation, and collects information on the type of newly connected load and driving power.
- the power packet router 52 that has confirmed the new connection requests the operator to input through an input device such as a touch panel (also serving as a display), for example, in order to specify information on the type and specification of the connected new device.
- communication is performed by placing a signal on a frequency different from the basic frequency of the clock of the power packet 30C using a frequency division multiplexing method or the like. It is possible. Further, wireless communication may be performed between the power packet mixer 51 and the power packet router 52 without using the power transmission path 55A or the like.
- the connection to the subsequent stage of the power packet router 52 is limited only to the load 54 or another power packet router 52.
- the power packet router 52 confirms the connection of its output port when the power is turned on, and informs the power packet mixer 51 of information on the connected load 54.
- the power packet router 52 When the power packet router 52 detects a new device, it notifies the power packet mixer 51 of this.
- the power packet mixer 51 requests the operator to input load specification information from the touch panel input device / display, that is, the input device 57, the switches 58, and the like. . Further, the power packet mixer 51 simultaneously assigns an address attached to the power packet router 52 to the device. For example, as shown in FIG. 15, when the new load 54-7 is connected to the third power output port 52b of the second power packet router 52-2, the address is “2-3”. Is granted.
- the power packet mixer 51 and each power packet router 52 work together. Thus, the system feasibility determination and the power packet transmission schedule are reconstructed.
- the power packet mixer 51 is premised on performing processing in cooperation with the power distribution management ECU 56.
- the power packet mixer 51 requests the operator to input information (S100) such as the specifications of the new device using the touch panel or the like (S99). At the same time, the address of the new device is set (S101) and shared with the power packet router 52 (S102). 7). The power packet mixer 51 determines the feasibility of the power packet transmission system based on the device type and specification input by the operator, constructs a packet transmission schedule (S103), and shares it with the router (S104). 8). The new device can be used by the above procedure. Note that the new device here is for power supply at all times, and when interlocking with the operator's switch or other equipment is required, additional settings and reschedules for each drive are required.
- Attachment / removal of devices (routers, loads) downstream of the power packet mixer 51 may be performed in a power-on state.
- the power packet mixer 51 and the power packet router 52 periodically check their connection ports, and when the connection is confirmed, the power distribution management ECU 56 determines feasibility and reschedules, and switches at an arbitrary timing. I do.
- a storage function is provided in the power distribution management ECU 56 connected to the power packet mixer 51, and a database for storing specification examples of various loads 54 expected to be connected in advance and time-dependent transition data of power consumption is constructed. deep. Further, the device type and power consumption specified by the operator are used as additional information. By using these pieces of information, it is possible to estimate the driving frequency and driving pattern of the connected new device. In an environment where such estimation can be performed, it is possible to automatically execute a program for estimating the type of connected device and power consumption, thereby eliminating the need for operator input operation (S100).
- the power supply system may be configured not to include the power distribution management ECU as shown in FIG. In this case, the input device 57 and the switches 58 are connected to the power packet mixer 51.
- the power supply system 10-4 shown in FIG. 15 has a function of recognizing each load 54 to which each power packet router 52 is connected. 54 can be retrofitted. That is, since the power packet router 52 scans the load 54 connected to the power output port 52b at the time of activation, it is possible to confirm what load is connected. Therefore, the power packet router 52 and the power packet mixer 51 can recognize the load 54-7 retrofitted to the power output port 52b.
- the power packet router 52-2 detects the voltage change of the power output port 52b due to the removal of the load 54-7, and proceeds to the next processing using this as a trigger. 2.
- the power packet router 52-2 sends a stop request to the power packet mixer 51 so as to stop the supply of driving power to the removed load 54-7. 3.
- the power packet mixer 51 stops transmission of driving power to the load 54-7 in accordance with the stop request from the power packet router 52-2.
- FIG. 18 A configuration example of the power supply system 10-5 in the embodiment of the present invention is shown in FIG.
- the power supply system 10-5 shown in FIG. 18 includes a power packet mixer 61 and a plurality of power packet routers 62-1 to 62-3 as main components.
- a vehicle-mounted battery (power source) 63 is connected to the power input port 61 a of the power packet mixer 61.
- power packet routers 62-1 to 62-3 are connected to the plurality of power packet output ports 61b of the power packet mixer 61, respectively.
- a plurality of loads 64-A to 64-D are connected to the power output port 62b of the power packet router 62-1.
- a plurality of loads 64-2A and 64-2B are connected to the power output port 62b of the power packet router 62-2.
- a plurality of loads 64-3A and 64-3B are connected to the power output port 62b of the power packet router 62-3.
- the basic configuration and operation of the power packet mixer 61 and the power packet routers 62-1 to 62-3 are the same as those of the power packet mixer 21 shown in FIG. 5 and the power packet router 22 shown in FIG.
- priorities “7”, “1”, “4”, and “2” are assigned to the loads 64-A, 64-B, 64-C, and 64-D, respectively. Assigned. Also, priorities “3” and “8” are assigned in advance to the loads 64-2A and 64-2B, respectively. Priorities “6” and “5” are assigned in advance to the loads 64-3A and 64-3B, respectively.
- the power packet mixer 61 constantly calculates the power supply capacity and the power demand, and monitors whether these balances deviate from an appropriate range. is doing. When the state of “power supply capacity ⁇ power demand” is detected, the power packet mixer 61 performs load priority control.
- the power supply target load is limited to a priority within the range of “1 to 5”, and power supply to other loads is temporarily stopped. Therefore, in this case, power is continuously supplied to the loads 64-B, 64-C, 64-D, 64-2A, 64-3B shown in FIG. The power supply to -A, 64-2B, 64-3A is stopped.
- the network topology of the power supply system is not limited to the tree type as shown in FIG. 18, but may be a star type, a ring type, a bus type, or the like.
- the power packet mixer 61 calculates the power supply capacity and the power demand.
- the power supply mixer 61 includes a power distribution management ECU 26B as shown in FIG.
- the power distribution management ECU 26B may calculate the magnitude of power supply and the magnitude of power demand and monitor whether these balances deviate from an appropriate range. Further, like the power supply system 10-11 described later, the power packet mixer 61 or the power distribution management ECU 26B may appropriately correct the priority of each load according to the situation of the vehicle.
- the power supply system 10-5 it is possible to easily add a load to the main transmission path (main line) or expand (add) the network. Therefore, it is possible to unify the platform in a form that does not depend on the grade of the vehicle (product) while maintaining the merit of the power network by the power packet transmission system (reduction of wire, light weight, mounting on the vehicle) Improvement).
- FIGS. 19 (a) and 19 (b) Two types of configuration examples of the power supply system according to the embodiment of the present invention are shown in FIGS. 19 (a) and 19 (b), respectively.
- the power packet mixer 21 shown in FIG. 5 has only a function of receiving power from the upstream power source to generate a power packet and sending it to the downstream side of the power transmission path.
- the power packet router 22 shown in FIG. 7 has only a function of receiving the power packet sent from the power packet mixer 21 on the upstream side of the power transmission path and supplying it to the downstream side. That is, the power packet cannot be transmitted bidirectionally.
- the power supply system 10-7 shown in FIG. 19B includes two power packet mixers 71B-1 and 71B-2 and two power packet routers 72B-1 and 72B-2.
- a power packet router 72B-2 is disposed in the vicinity of the power packet mixer 71B-1, and two loads 74-3 and 74-4 are connected to the output side of the power packet router 72B-2.
- a power packet router 72B-1 is disposed in the vicinity of the power packet mixer 71B-2, and two loads 74-1 and 74-2 are connected to the output side of the power packet router 72B-1.
- the output of the power packet mixer 71B-1 and the input of the power packet router 72B-1 are connected via the power transmission path 76, and the output of the power packet mixer 71B-2 and the power packet router 72B-2 Is connected via the power transmission path 77.
- this power supply system 10-7 since the forward power transmission path 76 and the return power transmission path 77 must be arranged, the number of wires in the wire harness cannot be reduced. In addition, the number of power packet mixers 71B may increase.
- the power supply system 10-6 includes one composite power packet mixer 71 and two composite power packet routers 72-1 and 72-2.
- the composite power packet mixer 71 is a composite device having a part of the function of the power packet router 22 shown in FIG. 7 in addition to the function of the power packet mixer 21 shown in FIG. That is, the composite power packet mixer 71 has a function of receiving power packets in addition to a function of generating and sending power packets, and can be used to transmit power packets bidirectionally.
- the composite power packet router 72 is a composite apparatus having, for example, a part of the function of the power packet mixer 21 shown in FIG. 5 in addition to the function of the power packet router 22 shown in FIG. That is, since the composite power packet router 72 has a function of generating and sending a power packet in addition to a function of receiving a power packet, the composite power packet router 72 can be used to transmit the power packet bidirectionally.
- each of the composite power packet mixer 71 and the composite power packet routers 72-1 and 72-2 is compatible with bidirectional power packet transmission. Therefore, the composite power packet mixer 71 and the composite power packet router 72-1 are connected by a single bidirectional power transmission path 75-1, and the composite power packet mixer 71 and the composite power packet router 72-2 are connected. Are connected by a single bidirectional power transmission path 75-2. In addition, two loads 74-1 and 74-2 are connected to the output side of the composite power packet router 72-1, and two loads 74-3 and 74-4 are connected to the output side of the composite power packet router 72-2. It is.
- the number of power transmission paths is reduced compared to the power supply system 10-7 in FIG. 19B. Therefore, the number of wires in the wire harness corresponding to the bidirectional power transmission paths 75-1 and 75-2 can be reduced.
- the total number of routers and mixers can be reduced, it is possible to avoid an increase in the size of the device and to reduce the cost required for installing the power packet transmission technology.
- these loads are distributed and arranged at various locations on the vehicle, and power lines for supplying power to these loads are being wired by people. A remarkable effect can be expected.
- FIG. 20 A configuration example of the power supply system 10-8 in the embodiment of the present invention is shown in FIG.
- the power supply system 10-8 shown in FIG. 20 includes a power packet mixer 81 and a plurality of power packet routers 82-1 to 82-4 as main components.
- the basic configuration and operation of the power packet mixer 81 are the same as those of the power packet mixer 21 shown in FIG.
- the basic configuration and operation of each of the power packet routers 82-1 to 82-4 is the same as that of the power packet router 22 shown in FIG. 7 or the power packet router 22B shown in FIG.
- An in-vehicle battery 83 is connected to the input side of the power packet mixer 81 via a power transmission path 85-2.
- the output port of the power packet mixer 81 is connected to the input side of the power packet router 82-1 via the power transmission path 85-1.
- a ring-shaped power transmission path that passes through each of the four power packet routers 82-1 to 82-4 is formed on the output side of the power packet router 82-1. That is, the power transmission path 85-3 connects between the power packet routers 82-1 and 82-2, and the power transmission path 85-4 connects between the power packet routers 82-2 and 82-4 to transmit power.
- a path 85-5 connects between the power packet routers 82-4 and 82-3, and a power transmission path 85-6 connects between the power packet routers 82-3 and 82-1.
- a plurality of loads 84-1, 84-2, 84-3, 84-4 are connected to the output sides of the power packet routers 82-1, 82-2, 82-3, 82-4, respectively. .
- each of the power packet routers 82-1 to 82-4 includes a power storage unit, even if the power transmission path 85-1 is interrupted, power is supplied to the loads 84-1 to 84-4 for a while. Can supply.
- Each of the plurality of power packet routers 82-1 to 82-4 shown in FIG. 20 has a function for data communication with each other.
- at least one of the plurality of power packet routers 82-1 to 82-4, the power packet mixer 81, or a device (not shown) for managing them can detect disconnection of the power transmission path 85-1. It has a function.
- each of the plurality of power packet routers 82-1 to 82-4 has a function of accommodating power as needed. This function is realized by, for example, the control unit 45 in FIG. 7 or the control unit 45B in FIG.
- the power supply system 10-8 illustrated in FIG. 20 operates as follows when the power transmission path 85-1 is disconnected.
- the power packet mixer 81 or the power packet routers 82-1 to 82-4 detects the occurrence of disconnection and the position where the disconnection occurred. 2. When detecting a disconnection, the power packet mixer 81 notifies the driver of this abnormality using the indicator 89 or the like. 3. Among the plurality of power packet routers 82-1 to 82-4, those that maintain the connection state of the power transmission path communicate with each other, and share information indicating the power storage status and the like. 4). Among the plurality of power packet routers 82-1 to 82-4, it is identified whether or not the power storage amount of a specific router to which the load 84 assigned a high priority in advance is connected is sufficient, and power is insufficient If so, other routers will provide power.
- the power stored in the power packet router 82-3 Assume that the amount is insufficient for driving the load 84-3.
- the power packet router 82-1 and other power packet routers 82-4 that store sufficient power send out power packets addressed to the power packet router 82-3, and allow power to be accommodated. Due to this accommodation, even if the power transmission path 85-1 remains cut off, the power storage unit of the power packet router 82-3 is charged with sufficient power. It can be driven for a certain time.
- the power supply system 10-8 includes a power distribution management ECU 26B as shown in FIG. 11, and the power distribution management ECU 26B
- the power storage amounts of the packet routers 82-1 to 82-4 may be stored, and the power packet routers 82-1 to 82-4 may be instructed to exchange power as necessary.
- the power management can be centrally managed by the power distribution management ECU 26B, so that it is not necessary to perform communication for power interchange between the power packet routers. Can be prevented from becoming complicated.
- “failure diagnosis” in the present embodiment detects an abnormality in the transmission path from a change in a physical signal waveform such as a voltage value with respect to an abnormality detection pulse included in a header in the power packet received by the power packet router. .
- FIG. 21 A configuration example of the power supply system 10-9 in the embodiment of the present invention is shown in FIG.
- the power supply system 10-9 shown in FIG. 21 includes a power packet mixer 91 and a plurality of power packet routers 92-1 to 92-4 as main components.
- the basic configuration and operation of the power packet mixer 91 are the same as those of the power packet mixer 21 shown in FIG.
- the basic configuration and operation of each of the power packet routers 92-1 to 92-4 is the same as that of the power packet router 22 shown in FIG.
- a plurality of in-vehicle batteries 93-1 and 93-2 supplying different voltages (48 [V] and 12 [V]) are connected to the input side of the power packet mixer 91 via a power transmission path 95-2. ing.
- the output side port of the power packet mixer 91 is connected to the input of the power packet router 92-1 via the power transmission path 95-1. Note that the output voltages of the plurality of in-vehicle batteries 93-1 and 93-2 may be the same.
- a ring-shaped power transmission path passing through each of the four power packet routers 92-1 to 92-4 is formed on the output side of the power packet router 92-1. That is, the power transmission path 95-3 connects between the power packet routers 92-1 and 92-2, and the power transmission path 95-4 connects between the power packet routers 92-2 and 92-4 to transmit power.
- a path 95-5 connects between the power packet routers 92-4 and 92-3, and a power transmission path 95-6 connects between the power packet routers 92-3 and 92-1.
- a plurality of loads 94-1, 94-2, 94-3, 94-4 are connected to the output side of each of the power packet routers 92-1, 92-2, 92-3, 92-4. .
- the power packet transmitted by the power packet mixer 91 or the like is composed of a header 31D, a payload, and a footer. Furthermore, as shown in FIG. 21, a degradation diagnosis pulse 31Da having a short time width is assigned to the header 31D.
- the deterioration diagnosis pulse 31Da is suitable for diagnosing the deterioration of the wire harness because it includes a broadband signal component.
- the following deterioration may occur in each electric wire of the wire harness due to the influence of aging deterioration.
- the electrical characteristics of the transmission path are deteriorated. Therefore, especially in the case of a signal such as the deterioration diagnosis pulse 31Da having a short pulse width including a high-frequency component, loss during transmission increases. .
- a change occurs between the amplitude (Vd2) of the voltage of the diagnostic pulse 31Da. Therefore, the “failure diagnosis” of the wire harness can be performed by detecting such a voltage change or waveform change of the deterioration diagnosis pulse 31Da.
- a plurality of in-vehicle batteries 93-1 and 93-2 having different output voltages are connected to the input of the power packet mixer 91, so that the power transmission path 95-
- the voltage of the power packet 30D output to 1 also changes to two or more types depending on the timing difference.
- the portion of the header 31D is created based on one predetermined voltage among the outputs of the in-vehicle batteries 93-1 and 93-2 so that the voltage (amplitude) does not change. Therefore, the voltage on the transmission side of the deterioration diagnosis pulse 31Da is constant.
- the power packet router 92-1 uses the deterioration diagnosis pulse 31Da from the header 31D of the power packet 30D received from the power transmission path 95-1. And the voltage value (Vd2) of the deterioration diagnosis pulse 31Da is measured. Specifically, the peak value or average value of the voltage of the deterioration diagnosis pulse 31Da is detected. By comparing this voltage value (Vd2) with, for example, a predetermined normal value, the presence or absence of a failure in the power transmission path 95-1 can be diagnosed.
- information indicating the voltage value (Vd1) of the deterioration diagnosis pulse 31Da in the power packet 30D transmitted from the power packet mixer 91 may be included in the header 31D of the power packet 30D and transmitted.
- the power packet router 92-1 extracts information on the voltage value (Vd1) from the header 31D of the received power packet 30D, and sets the voltage difference between the voltage value (Vd1) and the voltage value (Vd2). Compared with a predetermined threshold value, it is possible to diagnose the presence or absence of a failure in the power transmission path 95-1.
- the deterioration diagnosis pulse 31Da it is conceivable to combine a pulse having a small pulse width and a pulse having a larger pulse width. In that case, the presence or absence of a failure in the power transmission path 95-1 can be diagnosed based on the difference or ratio between the voltage of the pulse having a small pulse width and the voltage of the pulse having a large pulse width. That is, since a signal having a small pulse width is more susceptible to the deterioration of the transmission path, the presence / absence of a failure can be diagnosed based on the difference in voltages of a plurality of signals having different pulse widths.
- the power packet mixer 91 includes information indicating the voltage value (Vd1) of the deterioration diagnosis pulse 31Da in the power transmission information 28B and transmits it. Then, the power packet router 92-1 transmits information indicating the voltage value (Vd2) of the deterioration diagnosis pulse 31Da of the received power packet 30D in the power reception information 27B, and the power distribution management ECU 26 determines the voltage value (Vd1). The difference between the voltage and the voltage value (Vd2) may be compared with a predetermined threshold value to diagnose the presence or absence of a failure in the power transmission path 95-1.
- the power supply system 10-9 may perform the same operation as in FIG. That is, the distribution management ECU 26B receives the information on the voltage value (Vd2) from the power packet router 92-1 after receiving the power transmission information 28B including the information on the voltage value (Vd1) until the timeout of the reception information reception waiting timer. If the power reception information 27B including “No” is not received, it is determined that an abnormality such as disconnection or short circuit has occurred in the power distribution path (S76), and power distribution through the same power distribution path is not performed (S77). For example, in the power supply system 10-9 shown in FIG. 21, the power transmission paths between the four power packet routers 92-1 to 92-4 are connected in a ring shape. You can select multiple routes. Therefore, for example, when a transmission line failure occurs in the power transmission path 95-3, it is also possible to reflect the result of the failure diagnosis and automatically switch to the power transmission path 95-6 to transmit the power packet 30D. It is done.
- the power supply system 10-9 of this embodiment it is possible to reliably detect abnormalities in the power distribution path including disconnection and short circuit (dead short) without using special wiring or equipment. Moreover, it is possible to directly detect an abnormality in the wire harness itself that is actually distributing power.
- the power supply system 10-11 shown in FIG. 22 includes a power packet mixer 111, a power packet router 112, and a power distribution management ECU 116 as main components.
- the basic configuration and operation of the power packet mixer 111 are the same as those of the power packet mixer 21 shown in FIG. 5, for example.
- the basic configuration and operation of the power packet router 112 are the same as those of the power packet router 22 shown in FIG. 7, for example.
- the basic configuration and operation of the power distribution management ECU 116 are the same as, for example, the power distribution management ECU 26 shown in FIG. 9.
- the power distribution management ECU 116 is configured by a body ECU, for example.
- a plurality of in-vehicle batteries (power supplies) 113 are connected to the input side of the power packet mixer 111 via a power transmission path 115-2.
- the output of the power packet mixer 111 and the input of the power packet router 112 are connected via a power transmission path 115-1.
- a plurality of loads 114-1 and 114-2 are connected to the output side of the power packet router 112.
- the voltage which the some vehicle-mounted battery (power supply) 113 outputs it may be the same and may mutually differ.
- the power packet mixer 111 sequentially generates the power packets 117-1, 117-2, 117-3 based on the power supply power supplied from the in-vehicle battery 113, and passes through the power transmission path 115-1. It can be sent to the power packet router 112. Further, the power packet router 112 can supply necessary power to the loads 114-1 and 114-2.
- the power distribution management ECU 116 has a function of monitoring the charge amounts of the plurality of in-vehicle batteries 113.
- the power distribution management ECU 116 is connected to the power packet mixer 111 and can perform power feeding control on the power packet mixer 111.
- the charge amount of the in-vehicle battery 113 may be insufficient for some reason.
- the power packet mixer 111 supplies all the power packets required to drive the loads 114-1 and 114-2 to the power packet router 112. It becomes impossible. Accordingly, the operations of the loads 114-1 and 114-2 are stopped.
- the distribution management ECU 116 manages the level of priority for each of the plurality of loads 114-1, 114-2. This priority is not fixed in advance and changes according to the situation at that time.
- the power distribution management ECU 116 determines the contents of the power supply priority table prepared in advance and information indicating the situation at that time, for example, the difference in the driving environment of the vehicle, the state of the occupant, the difference in the outside environment such as the temperature, light and dark. Based on this, the priority levels of the loads 114-1 and 114-2 are dynamically determined. For example, the example shown in FIG. 22 represents a situation in which the priority of one load 114-1 is high and the priority of the other load 114-2 is low.
- the power distribution management ECU 116 When the power distribution management ECU 116 detects a state in which the charge amount of the in-vehicle battery 113 is insufficient (a state in which the remaining amount of power storage has decreased) based on the result of monitoring the charge amount of the in-vehicle battery 113, the power distribution management ECU 116 Execute priority control.
- the power packets 117-1, 117-3 addressed to the load 114-1 and the power packet 117-2 addressed to the load 114-2 are displayed.
- the output of the power packet 117-2 addressed to the load 114-2 with the low priority is stopped or suppressed by the priority control of the power distribution management ECU 116.
- the power of the power packet 117-3 is increased by the amount of the stopped power packet 117-2, and the increased power is transmitted to the power packet router 112.
- Each power packet 117-1 to 117-3 sent out by the power packet mixer 111 is composed of a header 31 and a payload 32, for example, in the same manner as the power packet 30 shown in FIG.
- the header 31 includes a synchronization signal 31a, destination information 31b, and transmission power information 31c.
- the destination of the power packets 117-1 to 117-3 can be designated by the destination information 31b.
- the amount of power transmitted to each destination can be notified to the power packet router 112 by the transmitted power information 31c.
- the power packet mixer 111 sends a power packet generated based on the power transmission instruction information received from the power distribution management ECU 116 to a predetermined output port.
- the power packet router 112 collates the destination information included in the header of the power packet received at the input port. As a result of the collation, when it is addressed to the load connected to the own router, the power of the payload is charged in the power storage unit and the power of the power storage unit is output to a predetermined output port. As a result of the collation, when the packet is destined for a load connected to another router that relays the own router, a power packet addressed to the predetermined router is generated from the power of the power storage unit, output to a predetermined output port, and transferred to the predetermined router. The power packet router 112 notifies the power distribution management ECU 116 of power distribution request information as necessary based on the driving power of the load connected to the output port and the state of charge of the power storage unit.
- the distribution management ECU 116 When receiving the distribution request information notification from the power packet router 112, the distribution management ECU 116 compares the charge amount of the in-vehicle battery 113 with the required power, and notifies the power packet mixer 111 of the power transmission instruction information when the charge amount exceeds. .
- the power distribution management ECU 116 prohibits a power transmission instruction addressed to the in-vehicle load to which a priority lower than the priority of the in-vehicle load of the distribution request source is assigned. Is ensured, and the power packet mixer 111 is notified of power transmission instruction information for the in-vehicle load as the distribution request source.
- the power distribution management ECU 116 does not perform the power transmission instruction to the power distribution request source vehicle load.
- the priority assigned to each in-vehicle load is notified by, for example, power distribution request information from the power packet router 112 and managed by the power distribution management ECU 116.
- the power distribution management ECU 116 determines and manages the priority of each load based on the type of each load and the vehicle state (traveling state, occupant state, outside environment (temperature, light and dark), etc.).
- the power supply system 10-11 may perform priority determination and management by the power packet mixer 111 instead of the power distribution management ECU 116, similarly to the power supply system 10-5 shown in FIG.
- FIG. 23B and FIG. 23C show examples of changes in the power packet output to the transmission path of each part in different operations.
- the power supply system 10-12 shown in FIG. 23A includes a power packet mixer 121, a plurality of power packet routers 122-1 to 122-3, and a power distribution management ECU 126 as main components.
- the basic configuration and operation of the power packet mixer 121 are the same as those of the power packet mixer 21 shown in FIG.
- the basic configuration and operation of each of the power packet routers 122-1 to 122-3 is the same as that of the power packet router 22 shown in FIG. 7, for example.
- the basic configuration and operation of the power distribution management ECU 126 are the same as, for example, the power distribution management ECU 26 shown in FIG.
- a vehicle-mounted battery (power source) 123 is connected to the input side of the power packet mixer 121.
- input ports of a plurality of power packet routers 122-1 and 122-2 are connected to a plurality of output ports of the power packet mixer 121 via power transmission paths 127-2 and 127-5.
- the plurality of output ports of the power packet router 122-1 are connected to the power packet router 122-3 and the plurality of loads 124-1 and 124-2 via the power transmission path 127-3.
- a plurality of loads 124-5 and 124-6 are connected to a plurality of output ports of the power packet router 122-2 via a power transmission path 127-6.
- a plurality of loads 124-3 and 124-4 are connected to a plurality of output ports of the power packet router 122-3 via a power transmission path 127-4.
- the power distribution management ECU 126 is connected so as to be able to communicate with the power packet mixer 121.
- FIG. 23B shows the states of the power transmission lines 127-1 to 127-6 when the power supply system 10-12 shown in FIG. 23 performs a general operation.
- the power transmission path 127-1 corresponds to the state of the power transmission path connected to all the output ports of the power packet mixer 121.
- each of the power packets P1 to P6 is a packet addressed to a different load (LOAD) 124-1 to 124-6.
- the power of the power packet P1 addressed to the load 124-1 and the power packet P2 addressed to the load 124-2 is transmitted from the power transmission path 127-1 to the destination via the power transmission paths 127-2 and 127-3. Sent.
- the power of the power packet P3 addressed to the load 124-3 and the power packet P4 addressed to the load 124-4 passes from the power transmission path 127-1 to the power transmission paths 127-2, 127-3, 127-4. And sent to the destination. Further, the power of the power packet P5 addressed to the load 124-5 and the power packet P6 addressed to the load 124-6 is transmitted from the power transmission path 127-1 to the destination via the power transmission paths 127-5 and 127-6. Sent.
- the upstream power packet mixer 121 When the load on the power transmission path is increased (corresponding to the state of FIG. 23B), the upstream power packet mixer 121 generates a single power packet by combining a plurality of power packets with different destinations. To do. 2. Each downstream power packet router 122 or power packet mixer 121 separates one power packet into a plurality of power packets for each destination based on the header information of the received power packet, and performs processing for each separated power packet. Execute.
- FIG. 23C shows the states of the power transmission paths 127-1 to 127-6 when the power supply system 10-12 shown in FIG. 23 performs the above characteristic control.
- FIG. 23C shows the states of the power transmission paths 127-1 to 127-6 when the power supply system 10-12 shown in FIG. 23 performs the above characteristic control.
- P1, P2, P3, P4, P5 addressed to the loads 124-1 to 124-6 are used.
- P6 is assumed to be transmitted from the power packet mixer 121 in a substantially continuous state in time.
- the power packet mixer 121 collects the four power packets P1, P2, P3, and P4 that pass through the common power transmission path 127-2 as a result of collecting the power packet router 122. -1 is generated and sent to the power transmission path 127-1.
- the power packet mixer 121 collects the two power packets P5 and P6 passing through the common power transmission path 127-5 as a result of collecting the power packet router 122-2.
- the addressed power packet PR2 is generated and sent to the power transmission path 127-1.
- the power packet PR1 sent out by the power packet mixer 121 reaches the power packet router 122-1 via the power transmission path 127-2.
- the power packet router 122-1 processes the four power packets P1, P2, P3, and P4 included in the power packet PR1 separately from each other based on the information in the packet header. Accordingly, the powers of the separated power packets P1 and P2 are supplied to the destination loads 124-1 and 124-2, respectively.
- the power packet router 122-1 collects the separated power packets P3 and P4, generates a power packet PR3 destined for the power packet router 122-3, and outputs it. Also, the power packet router 122-3 receives the power packet PR3, disassembles it, extracts the power packets P3 and P4, and processes them individually. Therefore, the power of the power packets P3 and P4 is supplied to the destination loads 124-3 and 124-4, respectively.
- the power packet PR2 sent out by the power packet mixer 121 reaches the power packet router 122-2 via the power transmission path 127-5. Receiving this, the power packet router 122-2 separates and processes the two power packets P5 and P6 included in the power packet PR2 based on the information in the packet header. Therefore, the power of the separated power packets P5 and P6 is supplied to the destination loads 124-5 and 124-6, respectively.
- the power addressed to a plurality of loads is collected into a power packet upstream in the distribution system, and reconstructed into power packets addressed to each load based on the header information downstream. Power transmission.
- the time corresponding to the information tag of the header transmitted for each packet is used as the power supply. Can be spent on the payload for. For example, assuming that all packets use information tags having the same number of bits, an increase in transmission power can be expected as compared with the case of general control.
- FIG. 24 shows a configuration example of the power supply system 10-13 in the embodiment of the present invention.
- the power supply system 10-13 shown in FIG. 24 forms a ring topology. That is, the power packet mixers 131-1 and 131-2 and the power packet routers 132-1, 132-2, 132-3, and 132-4 as main components are connected via a power transmission path connected in a ring shape. Are connected to each other. Further, the power distribution management ECU 136 is connected to the power packet mixers 131-1 and 131-2 via the communication lines 137-1 and 137-2.
- each of the power packet mixers 131-1 and 131-2 are the same as those of the power packet mixer 21 shown in FIG. 5, for example.
- the basic configuration and operation of each of the power packet routers 132-1 to 132-4 is the same as that of the power packet router 22 shown in FIG. 7, for example.
- the basic configuration and operation of the power distribution management ECU 136 are the same as those of the power distribution management ECU 26 shown in FIG. 9, for example.
- a plurality of in-vehicle batteries 133-1 and 133-2 are connected to the input of the power packet mixer 131-1.
- a plurality of in-vehicle batteries 133-3 and 133-4 are connected to the input of the power packet mixer 131-2. Note that the voltages output from the plurality of in-vehicle batteries 133-1, 133-2, 133-3, 133-4 may be the same or different from each other.
- a plurality of loads 134-1 are connected to a plurality of output ports of the power packet router 132-1.
- a plurality of loads 134-2 are connected to a plurality of output ports of the power packet router 132-2.
- a load 134-3 is connected to a plurality of output ports of the power packet router 132-3.
- a plurality of loads 134-4 are connected to a plurality of output ports of the power packet router 132-4.
- a plurality of power packet mixers 131-1 and 131-2 may simultaneously transmit power packets on a common power transmission path connected in a ring shape. There is. In some cases, a plurality of transmitted power packets collide on a common power transmission path.
- the power supply system 10-13 shown in FIG. 24 performs the following special control in order to avoid collision of a plurality of transmitted power packets on a common power transmission path.
- a power management node that manages the entire network that is, the power distribution management ECU 136 generates a packet transmission frame configured by connecting a plurality of time slots.
- the allocation information of the power allocated to each subsequent slot is stored in the head slot of this packet transmission frame.
- Each power packet mixer 131 and power packet router 132 on the network detect the transmission / reception timing of the power packet based on the information of the head slot of the packet transmission frame appearing on the network.
- the time slots constituting the packet transmission frame are assigned so that the timings of the power packets transmitted by the power packet mixers 131 and the power packet router 132 do not coincide with each other.
- one packet transmission frame is configured by four time slots T1, T2, T3, and T4, and packet transmissions of the first, second, and third power packet mixers 131 are respectively performed in the time slots T2, T3, and T4.
- the distribution management ECU 136 controls to store the contents of the assignment in the first time slot T1.
- the packet transmission frame assigned by the power distribution management ECU 136 and the information on each slot can be stored in the information tag in the header of the power packet sent out by each power packet mixer 131.
- Each power packet mixer 131 and power packet router 132 can prevent the information tag from deteriorating by sending a packet at the assigned timing. Therefore, even when the ring topology power supply system 10-13 shown in FIG. 24 is configured, it is possible to prevent a plurality of power packets from colliding on the shared network.
- the power distribution management ECU 136 can reconfigure the time slot configuration to an optimum state when, for example, the operator turns on the power switch or connects a new load.
- a communication function required between each power packet mixer 131 and the power packet router 132 can be realized by using an information tag of the power packet.
- communication may be performed by placing a signal on a frequency different from the fundamental frequency of the clock of the power packet using a frequency division multiplexing method or the like, or wireless communication may be used.
- the power supply system 10-13 may adopt other topologies such as a tree type or a star type.
- FIG. 26 shows a configuration example-14 of the power supply system including the non-contact power supply technology.
- the power supply system 10-14 shown in FIG. 26 includes a power packet mixer 11 and a power packet router 12 as in the above-described power supply system.
- the input of the power packet mixer 11 is connected to an in-vehicle battery 13A that outputs a power supply voltage of 12 [V] and an in-vehicle battery 13B that outputs a power supply voltage of 48 [V].
- the basic configuration and operation of the power packet mixer 11 and the power packet router 12 are the same as those in the above-described embodiment. That is, the power packet mixer 11 generates the power packet 30 based on the DC power source power supplied from the in-vehicle batteries 13A and 13B. The generated power packet 30 is supplied to the input of the power packet router 12 via the power transmission path 16A.
- the power packet router 12 acquires information such as a destination from the header 31 of the input power packet 30, and takes out power from the payload 32 and stores it in the power storage units 15A and 15B shown in FIG. Further, the stored electric power is supplied to the load.
- the load 14A is directly connected to the 0th output port of the power packet router 12 by wire, but the other loads 14B and 14C are connected using a non-contact power supply technology. ing. Note that the number n of loads connected to the output of the power packet router 12 by the non-contact power feeding technique can be increased or decreased as necessary.
- an output switch 17 is provided in each of the n output port units. That is, AC power having a desired frequency can be output by periodically turning on and off the output switch 17 as an AC output circuit according to a predetermined condition.
- the first to nth power transmission circuits 18-1 to 18-n are connected to the first to nth output ports of the power packet router 12, respectively.
- the first power transmission circuit 18-1 includes an inductor L11 and a capacitor C11 connected in series with each other. It is also possible to change to a circuit in which these are connected in parallel.
- the inductor L11 and the capacitor C11 of the power transmission circuit 18-1 form a resonance circuit. That is, the circuit impedance becomes an extreme value at a specific resonance frequency f0 corresponding to the time constants of the inductor L11 and the capacitor C11.
- the second to nth power transmission circuits are the same as the power transmission circuit 18-1.
- the resonance frequency f0 may be common to all of the first to nth power transmission circuits 18-1 to 18-n, or may be set to independent frequencies.
- the first to nth power receiving circuits 19-1 to 19-n are arranged in a non-contact state at positions facing the power transmitting circuits 18-1 to 18-n, respectively.
- the first power receiving circuit 19-1 includes an inductor L12 and a capacitor C12 connected in series with each other. It is also possible to change to a circuit in which these are connected in parallel.
- the inductor L12 and the capacitor C12 of the power receiving circuit 19-1 form a resonance circuit. That is, the impedance of the circuit becomes an extreme value at a specific resonance frequency f0 corresponding to the time constants of the inductor L12 and the capacitor C12.
- the second to nth power receiving circuits are similar to the power receiving circuit 19-1.
- the resonance frequency f0 in the first power transmission circuit 18-1 and the resonance frequency f0 in the first power reception circuit 19-1 are designed to be a common frequency.
- the power packet router 12 supplies AC power having the same frequency as the resonance frequency f0 to the power transmission circuit 18-1, electromagnetic induction between the inductor L11 on the power transmission circuit 18-1 side and the inductor L12 on the power reception circuit 19-1 side. These combine. Therefore, AC power is transmitted from the primary-side inductor L11 to the secondary-side inductor L12 from the circuits coupled in a non-contact manner.
- the frequency of the AC power supplied to the power transmission circuits 18-1 to 18-n is set to the resonance frequency f0 of the power transmission circuits 18-1 to 18-n.
- the power packet router 12 supplies AC power having a frequency that matches the resonance frequency f0 of the power transmission circuit 18-1 and the power reception circuit 19-1 to the power transmission circuit 18-1, so that this AC power is supplied to the power transmission circuit 18-1. Therefore, it is possible to perform non-contact power feeding with high efficiency to the power receiving circuit 19-1. The same applies to the second to nth power transmission circuits and power reception circuits.
- the power packet router 12 uses a frequency that matches the common resonance frequency f0. AC power can be generated by the output switch 17 and supplied to each of the power transmission circuits 18-1 to 18-n.
- a load 14B is connected to the output of the power receiving circuit 19-1. Therefore, the power received by the power receiving circuit 19-1 can be supplied to the load 14B.
- a power transmission circuit and a power receiving circuit are not used, and are connected to the output port of the power packet router 12 by wire as shown in FIG.
- Information on the resonance frequency f0 necessary for the power packet router 12 to properly control the power transmission circuits 18-1 to 18-n is stored in the power packet mixer 11 in advance, or is stored in the power distribution management ECU 26 described above. It is assumed that it will be retained. Then, information about the resonance frequency f0 is provided from the power distribution management ECU 26 or the power packet mixer 11 to the power packet router 12.
- the time length and the sending interval for each power packet 30 are made to coincide with the resonance frequency f0 of the power transmission circuits 18-1 to 18-n.
- the power packet 30 is divided and transmitted.
- the power packet router 12 AC power matching the resonance frequency f0 is generated by the power packet 30 periodically received from the power transmission path 16A. If the power packet router 12 supplies the AC power as it is to the power transmission circuits 18-1 to 18-n, the AC power of the power transmission circuits 18-1 to 18-n is not contacted with the power reception circuits 19-1 to 19-n. Power can be supplied with.
- the process of dividing the power packet 30 transmitted from the power packet mixer 11 so as to coincide with the resonance frequency f0 may be performed for the entire power packet 30 or only for the payload 32. Further, the process of dividing the power packet 30 may be performed inside the power packet router 12.
- a side turn signal lamp is provided on a vehicle as a direction indicator for giving a signal of turning left or right.
- a hazard lamp There is also a hazard lamp. These lamps need to be controlled to blink at a constant cycle during operation.
- the lamp control circuit shown in FIG. 27 includes a column switch 302, a hazard switch 303, an ECU (electronic control unit) 304, a flasher ASSY 310, and left and right side turn signal lamps 305 and 306.
- the flasher ASSY 310 includes two independent relays 311 and 312.
- the electric power of the in-vehicle battery 301 is supplied to the side turn signal lamps 305 and 306 via the contacts of the relays 311 and 312 in the flasher ASSY 310, respectively.
- the side turn signal lamps 305 and 306 can be blinked.
- the ECU 304 constantly monitors the state of the column switch 302 and the hazard switch 303. When the column switch 302 or the hazard switch 303 is turned on, the ECU 304 controls the relays 311 and 312 in the flasher ASSY 310 and the side turn signal lamps 305 and 306. Blinks.
- ESS Emergency Stop signal System
- the ESS controls the blinking of the lamp at the blinking cycle for emergency braking.
- a lamp control circuit such as a mechanical relay
- FIG. 28 A configuration example of the lamp control circuit using the power packet is shown in FIG.
- the lamp control circuit shown in FIG. 28 includes a power packet mixer 323, a power packet router 327, batteries 321, 322, a column switch 302, a hazard switch 303, left and right side turn signal lamps 328, 329, and a load 330.
- the voltages of the batteries 321 and 322 may be the same or different from each other.
- the column switch 302 and the hazard switch 303 are connected to the input of the power packet mixer 323.
- a power packet mixer 323 and a power packet router 327 are connected via a power transmission path 326.
- Left and right side turn signal lamps 328 and 329 and a load 330 are connected to a plurality of output ports of the power packet router 327.
- the power packet mixer 323 basically generates the power packet 30 based on the direct-current power supplied from the batteries 321 and 322 and supplies it to the power transmission path 326.
- the column switch 302 and the hazard switch 303 are turned on and off by the driver's manual operation, and generate turn-on / flash command signals for the direction indicator and the hazard lamp.
- the power packet mixer 323 When the power packet mixer 323 receives the lamp lighting command signal from the column switch 302 or the hazard switch 303, the power packet mixer 323 starts transmitting the power packet 30 to the power packet router 327.
- the header 31 of each power packet 30 to be transmitted includes information for specifying the destination load (328, 329, 330).
- the power packet router 327 refers to the contents of the header 31 of the power packet 30 received from the power packet mixer 323 and identifies the load and type of the power supply destination. For example, when the power packet router 327 receives the power packet 30 whose destination load is the side turn signal lamp 328 or 329, the power packet router 327 does not pass the power of the power packet 30 through the power storage units 15A and 15B. , Supplied directly to the side turn signal lamp 328 or 329.
- power transmission from the power packet mixer 323 is time division transmission using the power packet 30. Therefore, the power packet mixer 323 can repeatedly transmit the power packet 30 addressed to the side turn signal lamp 328 or 329, for example, at regular time intervals. In this case, by supplying the power packet 30 received by the power packet router 327 to the side turn signal lamp 328 or 329 as it is, the side turn signal lamp 328 or 329 blinks at a certain time interval at which the power packet 30 is transmitted. Will do.
- the blinking operation of the side turn signal lamp 328 or 329 can be realized without the power packet router 327 performing special blinking control. Furthermore, if the power packet mixer 323 changes the transmission interval of the power packets 30, the blinking cycle of the side turn signal lamps 328 and 329 can be changed. Therefore, it is possible to easily add, for example, an ESS lamp blinking function without changing the circuit configuration shown in FIG.
- the payload 32 of the power packet 30 may be divided into a plurality of parts in order to allow the lamp to blink in a short time period.
- information indicating that the power is dedicated to the signal lamp is written in the header 31 of the power packet 30 by the power packet mixer 323.
- a footer is added to the end of the payload 32 of each power packet 30.
- the power packet mixer 323 writes end information instructing the end of blinking of the lamp in this footer.
- the power packet router 327 ends the power supply to the corresponding lamp according to the footer end information, and ends the blinking operation.
- FIG. 29 shows an operation example of the power packet mixer in the lamp control circuit of FIG. The operation of FIG. 29 will be described below.
- the power packet mixer 323 constantly monitors the signal from the column switch 302 and the signal from the hazard switch 303 (S301, S302).
- the side turn request signal “Column_Flag” from the column switch 302 is turned on (1)
- the left side turn lighting request signal “LAMP_L” is referred to in the next step S303 to identify which lamp lighting request is left or right. To do.
- the power packet mixer 323 sends a left side turn power packet “LAMP_Lp” to the power transmission path 326 in step S306.
- This left side turn power packet “LAMP_Lp” holds information indicating that the destination of the power is the side turn signal lamp 328 and information indicating that the power is dedicated to the signal lamp in the header 31.
- the power packet mixer 323 sends a right side turn power packet “LAMP_Rp” to the power transmission path 326 in step S305.
- the right side turn power packet “LAMP_Rp” holds information indicating that the destination of the power is the side turn signal lamp 329 and information indicating that the power is dedicated to the signal lamp in the header 31.
- the power packet mixer 323 proceeds from step S302 to S304. Then, the power packet mixer 323 sends a left and right side turn power packet “LAMP_LRp” to the power transmission path 326 in order to cause the left and right lamps to blink simultaneously.
- the left and right side turn power packet “LAMP_LRp” holds information indicating that the destination of the power is the side turn signal lamps 328 and 329 and information indicating that the power is dedicated to the signal lamp in the header 31. Thereby, the instruction
- FIG. 30 shows an operation example of the power packet router in the lamp control circuit of FIG. The operation of FIG. 30 will be described below.
- the power packet router 327 performs an operation according to the type of the power packet 30 that has arrived at the input via the power transmission path 326. That is, the power packet router 327 distinguishes the left side turn power packet “LAMP_Lp”, the right side turn power packet “LAMP_Rp”, and the left and right side turn power packet “LAMP_LRp” by referring to the header 31 of the power packet 30 ( S311 to S313).
- the power packet router 327 When the power packet router 327 receives the left side turn power packet “LAMP_Lp”, the power packet router 327 proceeds from S 311 to S 315 and supplies the power of the packet to the left side turn signal lamp 328.
- the power packet router 327 proceeds from S312 to S314, and supplies the power of the packet to the right side turn signal lamp 329.
- the power packet router 327 When receiving the left and right side turn power packet “LAMP_LRp”, the power packet router 327 proceeds from S313 to S314 and S315, and supplies the power of the packet to the left and right side turn signal lamps 328 and 329 simultaneously.
- the lamp control circuit shown in FIG. 28 provides a function for blinking the turn signal lamp and the hazard lamp, but can also be used to drive other loads intermittently. .
- it can be used to intermittently drive a wiper motor or to adjust the amount of heat generated by intermittently driving various heaters.
- the lamp control circuit shown in FIG. 28 When the lamp control circuit shown in FIG. 28 is adopted, for example, the parts of the flasher ASSY 310 shown in FIG. 27 become unnecessary, and the apparatus configuration is simplified. Moreover, even when a function such as ESS is added, it is not necessary to add an extra circuit. For example, it can be dealt with only by changing a program in the power packet mixer 323 or the like.
- the power packet mixer 21, the power packet router 22, and the power distribution management ECU 26 require power supply power to operate. Therefore, it is assumed that the power source power required by the power packet mixer 21, the power packet router 22, and the power distribution management ECU 26 is also supplied from the power sources 23-1 to 23-n.
- the power sources 23-1 to 23-n are commonly used as the power source of the power packet mixer 21, the power packet router 22, and the power distribution management ECU 26 as the control system, and the power source of the loads 24-1 to 24-n. become. However, in that case, the power supplies 23-1 to 23-n need to have the ability to supply power that is greater than the total power required by the loads 24-1 to 24-n.
- the power source power required by the power packet mixer 21, the power packet router 22, the power distribution management ECU 26, and the like is supplied from a dedicated power source different from the power sources 23-1 to 23-n.
- FIG. 31 shows a configuration example-15 of the power supply system in the embodiment of the present invention.
- the basic configuration of the power supply system 10-15 shown in FIG. 31 is the same as that of the power supply system 10-3 shown in FIG.
- a dedicated power supply 161 that supplies power to the control system is added.
- the dedicated power supply 161 is a dedicated battery (secondary battery) independent from the other power supplies 23-1 to 23-n.
- the output of the dedicated power supply 161 is connected to the power supply input terminals of the power packet routers 22B-1, 22B-2, and 22B-3 via the distribution line 162.
- the output of the dedicated power supply 161 is connected to the power input terminal of the power packet mixer 21B via the distribution line 163.
- the output of the dedicated power supply 161 is connected to the power input terminal of the power distribution management ECU 26 ⁇ / b> B via the distribution line 164.
- the distribution lines 163 and 164 may or may not be present. That is, in FIG. 31 and FIG. 32 described below, an example of a distribution line that becomes unnecessary depending on the situation is indicated by a broken line. That is, when the influence of the power consumption of the power packet mixer 21B and the power distribution management ECU 26B is small, power is supplied to the power packet mixer 21B and the power distribution management ECU 26B from the power sources 23-1 to 23-n common to the load. May be.
- FIG. 32 shows a configuration example-16 of the power supply system in the embodiment of the present invention.
- a power supply system 10-16 shown in FIG. 32 is a modification of the power supply system shown in FIG. That is, in the power supply system 10-16 shown in FIG. 32, an energy harvesting mechanism 165 having a function of charging the dedicated power supply 161 is added. The rest is the same as the configuration of FIG.
- the energy harvesting mechanism 165 one that collects mechanical vibration energy generated when driving a switch for operating a vehicle body system and generates power can be assumed. Moreover, you may employ
- the configuration of the power packet mixer 21B is the same as that in FIG.
- the configuration of each of the power packet routers 22B-1 to 22B-3 shown in FIGS. 31 and 32 is the same as that shown in FIG.
- the configuration of the power distribution management ECU 26B shown in FIGS. 31 and 32 is the same as that of FIG.
- the configuration of the power packet 30 generated by the power packet mixer 21B shown in FIGS. 31 and 32 is the same as that in FIG.
- FIG. 33 An example of the operation of the power packet routers 22B-1 to 22B-3 is shown in FIG. The operation shown in FIG. 33 is the same as the operation shown in FIG. 8 described above except that steps S32B and S34B are changed.
- each power packet router 22B-1 to 22B-3 analyzes the header 31 of the power packet 30 that has arrived at the input, and measures the pulse (payload 32) voltage. That is, when each power packet 30 is generated by the power packet mixer 21B based on a plurality of power supplies having different voltages, for example, the power packets 30 such as PPH and PPL having different voltages are different as shown in FIG. It is input to each power packet router 22B-1 to 22B-3 at timing. Therefore, in order to grasp the voltage difference of each power packet 30, each power packet router 22B-1 to 22B-3 measures the voltage of the pulse in S32B.
- each power packet router 22B-1 to 22B-3 charges the power storage unit with the power of the payload 32 of the power packet 30 addressed to itself.
- the value of the received power amount charged here can be calculated based on the pulse voltage measured in S32B and the length of the payload 32.
- FIG. 34 shows the operation of the power distribution management ECU 26B for instructing power transmission to the dedicated power source 161 shown in FIGS. The operation of FIG. 34 will be described below.
- the power distribution management ECU 26B intermittently monitors the remaining power of the dedicated power supply 161 after startup (S431). When the detected remaining power level falls below a predetermined value, control is performed so that the power packet 30 supplies insufficient power from the power sources 23-1 to 23-n for driving the load. That is, the power distribution management ECU 26B generates power transmission instruction information for instructing the power transmission required by the dedicated power supply 161 in S433, and the power distribution management ECU 26B notifies the power packet mixer 21B of this power transmission instruction information in S434.
- the power packet mixer 21B sends the power packet 30 to the distribution line 163 according to the instruction.
- the dedicated power supply 161 receives the power packet 30 via the distribution line 163 and takes in insufficient power from the payload 32 of the power packet 30. Note that steps S435 to S441 in FIG. 34 are the same as those in FIG.
- the power distribution management ECU 26B executes the operation shown in FIG. 34, it can be managed so that the remaining power of the dedicated power source 161 is maintained at a predetermined level or more.
- the power of the power supplies 23-1 to 23-n for driving the load is consumed by other than the normal loads 24-A to 24-C. Even in such a case, the amount of power consumed from the power supplies 23-1 to 23-n can be accurately grasped based on the number of power packets 30 transmitted from the power packet mixer 21B.
- FIG. 35 shows the operation of the power distribution management ECU 26B for supplying power from the dedicated power supply 161 to the input of the power packet mixer 21B shown in FIG. The operation of FIG. 35 will be described below.
- the power distribution management ECU 26B performs control so that power supply from the dedicated power supply 161 to the power packet mixer 21B is started immediately before the power packet mixer 21B is notified of the power transmission instruction information. In addition, after confirming the power reception information from the power packet router 22B, the power supply stop from the dedicated power supply 161 to the power packet mixer 21B is controlled.
- the process proceeds from S418 to S418B in FIG. 35, and the power distribution management ECU 26B performs power supply ON control on the power packet mixer 21B. As a result, power supply from the dedicated power supply 161 to the power packet mixer 21B is started.
- the distribution management ECU 26B When the distribution management ECU 26B receives the power reception information from the power packet router 22B and detects normal termination of distribution by the power packet router 22B in S415 of FIG. 35, the distribution management ECU 26B proceeds to the process of S415B, and the distribution management ECU 26B On the other hand, power supply off control is performed. Thereby, the power supply from the dedicated power supply 161 to the power packet mixer 21B is completed. Other operations of the power distribution management ECU 26B are the same as the operations shown in FIG. Thereby, since the power packet mixer 21B is driven only when generating the power packet 30, it is possible to suppress a decrease in the amount of power stored in the dedicated power supply 161.
- FIG. 36 shows the operation of the power distribution management ECU 26B for supplying power from the power sources 23-1 to 23-n to the input of the power packet mixer 21B shown in FIG. The operation of FIG. 36 will be described below.
- the distribution management ECU 26B performs control so that power supply from the power sources 23-1 to 23-n is started to the input of the power packet mixer 21B when the remaining amount of power of the dedicated power source 161 decreases. Further, after confirming the power reception information from the power packet router 22B, the power supply stop to the power packet mixer 21B is controlled.
- the process proceeds to the process of S432B of FIG. 36, and the power distribution management ECU 26B performs power supply on control for the power packet mixer 21B. To do. As a result, power supply from the power supplies 23-1 to 23-n to the power packet mixer 21B is started.
- the distribution management ECU 26B receives power reception information from the power packet router 22B and the distribution management ECU 26B detects normal termination of distribution by the power packet router 22B in S439 of FIG. 36, the distribution management ECU 26B proceeds to the process of S439B, Power supply off control is performed on the packet mixer 21B. Thereby, the power supply from the power sources 23-1 to 23-n to the input of the power packet mixer 21B is completed.
- Other operations of the power distribution management ECU 26B are the same as the operations shown in FIG. As a result, the power packet mixer 21B is driven when charging of the dedicated power source 161 becomes necessary, so that it is possible to suppress a decrease in the charged amount of the dedicated power source 161 and to prevent a shortage of the charged amount.
- the power packet router 22B-2 outputs the power packet 30 output from the power packet router 22B-1 via the distribution line (power transmission path) 29D-1. Can be fed to the input. Further, the power packet 30 output from the power packet router 22B-3 can be supplied to the input of the power packet router 22B-2 via the distribution line (power transmission path) 29D-2. That is, even when the power packet mixer 21B cannot supply sufficient power, the accumulated power among the plurality of power packet routers 22B-1 to 22B-3 can be accommodated. As shown in FIG. 13, the power for accommodation may be stored in a power storage unit different from the power storage unit for normal power feeding, or power for normal power feeding and power for accommodation may be stored in one power storage unit. The electricity may be stored. The same applies to the other embodiments.
- a more reliable power supply can be realized as a whole vehicle. For example, even when an upstream vehicle battery, a power packet mixer, or the like breaks down or a disconnection occurs in the upstream power distribution path, a plurality of power packet routers 22B-1 to 22B-3 are connected. Thus, it is possible to secure power supply power necessary for the operation of an important load.
- FIG. 37 shows Example 1 of power interchange operation.
- the operation shown in FIG. 37 can be realized, for example, as the operation of the power distribution management ECU 26B shown in FIG.
- the operation of FIG. 37 can be realized as control of each of the power packet routers 22B-1 to 22B-3.
- the power packet mixer 21B may perform this control.
- step S511 of FIG. 37 the power distribution management ECU 26B grasps the stored power amount for each router based on the information received from each of the power packet routers 22B-1 to 22B-3.
- step S512 of FIG. 37 the power distribution management ECU 26B performs control for equalizing the stored power amount based on the stored power amount for each router grasped in S511. That is, among the plurality of power packet routers 22B-1 to 22B-3, control is performed such that the power packet 30 is transmitted from the router with the large amount of stored power to the router with the small amount of stored power and the power is accommodated.
- each of the power packet routers 22B-1 to 22B-3 can secure necessary power before the stored power amount is insufficient.
- each of the loads 24-A to 24-C can be operated at any time.
- Example 2 of power interchange operation is shown in FIG.
- the operation shown in FIG. 38 can be realized, for example, as the operation of the power distribution management ECU 26B shown in FIG.
- the operation of FIG. 38 can be realized as control of each of the power packet routers 22B-1 to 22B-3.
- the power packet mixer 21B may perform this control.
- step S521 of FIG. 38 the power distribution management ECU 26B grasps the stored power amount for each router based on the information received from each of the power packet routers 22B-1 to 22B-3.
- step S522 of FIG. 38 the distribution management ECU 26B determines the priority between these routers according to the importance of the load (auxiliary machine) connected to each of the power packet routers 22B-1 to 22B-3. Determine high or low or priority.
- step S523 of FIG. 38 for example, the power distribution management ECU 26B performs control for equalizing the stored power amount of the power packet routers 22B-1 to 22B-3.
- the power distribution management ECU 26B performs control for equalizing the stored power amount of the power packet routers 22B-1 to 22B-3.
- a large amount of power is accommodated from a router with a low priority order to a router to which an important load is connected.
- the stored power amount of each router is equalized while considering that the stored power amount of the router with higher priority is higher than that of the router with lower priority. Turn into. In order to accommodate power, a router with a large amount of stored power sends the power packet 30 to another router.
- the processing shown in FIG. 38 is repeated periodically, for example, to equalize the stored power amount of the plurality of power packet routers 22B-1 to 22B-3, and to store the routers to which particularly important loads are connected. Enough power can be secured. Therefore, it is possible to prevent a shortage of the stored power amount of routers connected to important loads among the power packet routers 22B-1 to 22B-3. That is, an important load (auxiliary machine) can be reliably operated at any time.
- FIG. 39 An example of the operation of the router at the time of startup is shown in FIG. That is, for example, when each of the power packet routers 62-1 to 62-3 included in the power supply system 10-5 illustrated in FIG. 18 starts the operation illustrated in FIG. 39 (for example, the main power supply is turned on). The connection state of each output port 62b is automatically recognized. Note that the power packet mixer 61 can instruct the power packet routers 62-1 to 62-3 to execute the operation of FIG.
- one or more dedicated ports and other general-purpose ports are included in the plurality of output ports 62b of each of the power packet routers 62-1 to 62-3. is doing.
- the type of load auxiliary device such as electrical equipment
- the general-purpose port can permit connection of a plurality of types of loads as necessary.
- the power packet mixer 61 or each of the power packet routers 62-1 to 62-3 holds the tables TBP1 and TBP2 shown in FIG.
- the table TBP1 is arranged on a predetermined non-volatile memory, and holds constant data representing the type of load connected to each dedicated port.
- the table TBP2 is arranged on a memory in which data can be read and written, and as a result of automatic recognition by the power packet mixer 61 or each of the power packet routers 62-1 to 62-3, the latest connection state (connection of each output port 62b) And information indicating the type of connected load.
- Each power packet router 62-1 to 62-3 inspects the state of each output port 62b in order at the time of system startup, and confirms the presence or absence of connection such as a load (S531). For example, the presence or absence of a load connection can be automatically identified by measuring the current and voltage flowing for each output port or measuring the impedance.
- the process proceeds from S532 to S533, and the power packet routers 62-1 to 62-3 refer to the registered contents of the table TBP1. To do. Each of the power packet routers 62-1 to 62-3 recognizes that the type of load registered in the table TBP1 is connected to the dedicated port. Then, the recognition result is reflected in the table TBP2.
- each of the power packet routers 62-1 to 62-3 determines parameters such as a current flowing through the general-purpose port. Is detected and compared with a plurality of predetermined threshold values to estimate and identify the type of load connected to the general-purpose port.
- Each of the power packet routers 62-1 to 62-3 reflects the data indicating the type of load specified for each general-purpose port in the table TBP2.
- the power packet transmission system As described above, when the PoE technology is used when power supply to the vehicle auxiliary equipment is considered, it is difficult to drive the load due to power shortage. Therefore, it is supported by the power packet transmission system. That is, for example, the power transmission system having the basic configuration as shown in FIG. 11 is used to realize efficient power transmission. The configuration of the power packet to be transmitted is the same as that shown in FIG. 4, for example.
- the path with the lowest loss is used based on the efficiency information held by the power distribution management ECU 26B.
- the power distribution management ECU 26B, the power packet mixer 21B, or each power packet router 22B-1, 22B-2, 22B-3 automatically controls.
- the distribution management ECU 26B performs connection in consideration of load fluctuations. Thereby, power shortage when load power increases can be prevented.
- FIG. 41 An example of the configuration and operation of the power supply system is shown in FIG. Note that the power supply system illustrated in FIG. 41 represents a configuration corresponding to a part of the power supply system illustrated in FIG. 11, for example. Therefore, the power distribution management ECU 26B of FIG. 11 can also be used.
- a plurality of power packet routers 402 and 403 are connected to the downstream side of the power packet mixer 401 via distribution lines 421 and 422. In the configuration shown in FIG.
- the power packet routers 402 and 403 are connected by a distribution line 423.
- loads 411 and 412 are connected to the downstream side of the power packet router 402 via distribution lines 424 and 425.
- Loads 413 and 414 are connected to the downstream side of the power packet router 403 via distribution lines 426 and 427.
- the load 411 corresponds to an auxiliary machine such as a motor whose load power fluctuates within a range of 0 to 100 [W], for example.
- the loads 412, 413, and 414 it is assumed that the respective load powers are constant at 50, 200, and 200 [W].
- the power packet router 402 maintains a highly efficient state in accordance with an instruction from the distribution management ECU 26B or based on information acquired from the distribution management ECU 26B.
- Control 441 can be performed as described. That is, in the example of FIG. 41, since the power packet router 402 is efficient in the range of 150 to 250 [W], the power supply state is controlled to maintain this range.
- the power packet router 402 supplies power of 0 to 100 [W] and 50 [W] to the loads 411 and 412 respectively. Further, the power packet router 402 supplies 100 [W] of power to the power packet router 403. Therefore, the power handled by the power packet router 402 is maintained within the range of 150 to 250 [W].
- the power packet router 403 supplies the loads 413 and 414 with a total of 400 [W] of 300 [W] transmitted from the power packet mixer 401 and 100 [W] transmitted from the power packet router 402. Can do. Therefore, each of the loads 413 and 414 can consume the necessary power 200 [W].
- FIG. 42 An example of the configuration and operation of the power supply system is shown in FIG. Note that the power supply system illustrated in FIG. 42 represents a configuration corresponding to a part of the power supply system illustrated in FIG. 11, for example. Therefore, the power distribution management ECU 26B of FIG. 11 can also be used. Further, in the configuration shown in FIG. 42, a distribution line 428 for supplying power from the output of the power packet router 402 to the load 413 is added. The other configuration is the same as that of FIG.
- the power packet router 402 or 403 can implement a special control 442.
- the two distribution lines 428 and 426 are connected to the input of the load 413, power can be supplied from the output of the power packet router 402 to the load 413 via the distribution line 428, or the power packet router It is also possible to supply power to the load 413 via the distribution line 426 from the output of 403. Furthermore, power can be simultaneously supplied from the plurality of power packet routers 402 and 403 to the load 413. This makes it possible to adjust the power of each router and use an efficient place.
- FIG. 43 An example of the configuration and operation of the power supply system is shown in FIG. Note that the power supply system illustrated in FIG. 43 represents a configuration corresponding to a part of the power supply system illustrated in FIG. 11, for example. Therefore, the power distribution management ECU 26B of FIG. 11 can also be used.
- the efficiency peak (best point) of the power packet mixer 401 is 500 [W].
- the power supplied to the downstream side of the power packet mixer 401 is 600 [W]
- the efficiency of the power packet mixer 401 is lower than the peak. Therefore, the power packet mixer 401 lowers 100 [W] from 600 [W] by the control 431 and supplies 500 [W] to the downstream side. Thereby, the efficiency of the power packet mixer 401 can be maintained near the peak.
- the power packet mixer 401 supplies 300 [W] of power to the power packet router 403 via the distribution line 422 as shown in FIG.
- the power packet router 403 is 400 in total. It is necessary to supply [W] power to the output side. That is, the power of 300 [W] supplied from the power packet mixer 401 to the power packet router 403 is insufficient by 100 [W] compared to the power 400 [W] output from the power packet router 403.
- the power packet router 403 uses, as the control 432, the insufficient power of 100 [W] by using the power stored in the power storage unit (buffer: 15A, 15B in FIG. 1 for example) in the power packet router 403. To control the shortage.
- the input / output power of the mixer and the router is adjusted by using the power of the power storage unit existing in the power packet router 403 and the like, while maintaining a highly efficient state. Keep using with load power.
- the power packet router 403 transmits a power distribution request to the power distribution management ECU 26B. Thereby, driving of the load can be continued.
- FIG. 44 An operation example of the power distribution management ECU 26B is shown in FIG.
- the power distribution management ECU 26B when the power supply path is controlled with the highest priority given to the efficiency of each part of the power supply system, the current flows intensively only in some efficient paths and allowed in some paths. The current may be exceeded.
- the control shown in FIG. 44 by the power distribution management ECU 26B, it is possible to suppress the current from being concentrated only on a part of the paths. The control of FIG. 44 will be described below.
- the distribution management ECU 26B When the distribution management ECU 26B receives a distribution request to each load from the power packet routers 402, 403, etc. in S601, the current allowance of each harness (distribution lines 421 to 427), each router, and mixer is calculated in S602. . Then, the power distribution management ECU 26B compares each current allowable amount with the requested current in S603.
- the power distribution management ECU 26B calculates the most efficient route and supplies the requested power using the route (S610). If there is a place where the current allowable amount is expected to be exceeded, the process proceeds from S604 to S605.
- step S605 the power distribution management ECU 26B confirms whether or not there is no part that is expected to exceed the current allowable amount when determining the power distribution path in consideration of the “load priority”. Then, if there are no more places where the current allowable amount is expected to be exceeded, the process proceeds to S606, and if there are no places where the current allowable amount is expected to be exceeded, the process proceeds to S611.
- load priority is determined so as to give priority to a load through which a large current constantly flows. Further, for a load whose current greatly fluctuates, such as a load that operates intermittently (for example, a wiper motor), the current decreases when the intermittent operation is stopped, so that the priority is determined to be low.
- step S606 the power distribution management ECU 26B takes into consideration the “load priority” in response to the power distribution request in S601, and uses an algorithm different from S610 so as to maintain an efficient state of each unit.
- the right power distribution route That is, the power distribution path is determined so that the current supplied to the load through which a large current flows constantly passes through an efficient path. Further, the path of the current supplied to the fluctuating load is determined without giving importance to efficiency. As a result, it is possible to flow the maximum current through an efficient path.
- step S611 the power distribution management ECU 26B determines the current path using the same algorithm as in S610, but excludes the portion that is expected to exceed the current allowable amount from the selection of the high-efficiency path and increases the efficiency. Assign a route that is not important.
- the power distribution management ECU 26B calculates the current allowable amount of each part of the determined path (S607), and the current value for each path to be transmitted is the current permission. After confirming in S608 that the capacity is not exceeded, a power transmission instruction is given to each power packet router 402, 403 and power packet mixer 401 (S609).
- Resistance loss of copper wire is proportional to length and cross-sectional area. Therefore, as a result of the control in consideration of the efficiency of the power distribution path, the loss can be reduced by half if the wire harness can be switched to a wire harness whose cross-sectional area is twice as large or whose path length is half.
- the efficiency as shown in FIG. 41 is likely to vary. However, by adopting the above-described control different from PoE, it is possible to perform highly efficient power supply in consideration of load fluctuations.
- a power packet generator (61, 111) that generates a power packet based on power supplied from one or more power supply sources (63, 113);
- a power packet router (62-1 to 62-3, 112) that receives the power packet via a transmission line and supplies the power of the power packet to a plurality of loads connected downstream;
- a power request sending unit (62-1 to 62-3, 116) for sending a distribution request according to the power required by the power packet router;
- a power supply control unit (61, 116) that provides the power packet according to the power distribution request from the power packet generation unit to the power packet router;
- An assigning unit (62-1 to 62-3, 116) for assigning priorities to the plurality of loads, The power supply control unit restricts power supply to a load having a low priority when the relationship between power demand and supply satisfies a predetermined condition; Power supply system.
- the power supply control unit compares a supply power amount that can be supplied by the power supply source with a demand power amount represented by the power distribution request, and when the demand power amount is larger than the supply power amount. Stops supplying the power supplied to the low priority load, The power supply system according to [1] above.
- the allocation unit (116) corrects the priority order according to at least one of a traveling state of a vehicle on which the power supply system is mounted, a passenger's state, and an environment outside the vehicle.
- the power supply system according to [1] or [2].
- a power packet generator (power packet mixer 11) that generates a power packet based on power supplied from one or more power supply sources (vehicle batteries 13A and 13B);
- a power packet router (12) that receives the power packet generated by the power packet generator via a transmission line and supplies the power of the power packet to one or more loads on the downstream side;
- a power distribution control unit (distribution management ECUs 26, 26B) that receives a power distribution request (27A) including the required power amount from the power packet router and transmits a power transmission instruction (28A) including the power amount to the power packet generation unit.
- the power packet generation unit transmits power transmission information (28B) including the amount of power of the power packet transmitted to the power packet router to the power distribution control unit
- the power packet router transmits power reception information (27B) including the amount of power of the power packet received from the power packet generation unit to the power distribution control unit
- the power distribution control unit diagnoses the state of the transmission path based on a result of comparing the amount of power included in the power transmission information with the amount of power included in the power reception information (S55 to S57), Power supply system.
- the power packet router includes a power storage unit (15A, 15B) that temporarily stores the power packet received from the power packet generation unit, and the amount of power included in the power reception information is stored in the power storage unit. Represents the amount of power stored, The power supply system according to the above [4] or [5].
- the transmission path includes at least a first transmission path (29A-1) and a second transmission path (29A-2, 29D-1) connected in parallel,
- the power transmission instruction includes a transmission path for transmitting the power packet,
- the power transmission instruction includes the transmission line included in the power transmission instruction.
- a power packet generator (power packet mixers 11 and 21B) that receives power from one or more power supply sources (vehicle batteries 13A and 13B) in response to a power distribution request and generates a power packet;
- a power packet router (12, 22B-1 to 3) that receives the power packet via a transmission line and supplies power contained in the power packet to one or more downstream loads;
- a distribution request generation unit (distribution management ECU 26B, control unit 45) that generates the distribution request including the amount of power required by the power packet router and transmits the generated distribution request to the power packet generation unit;
- a power transmission waveform information generation unit that generates power transmission waveform information (power transmission information 28B, header 31D) of the power packet transmitted by the power packet generation unit toward the power packet router;
- a power receiving waveform information generating unit that generates power receiving waveform information (power receiving information 27B, header 31D) of the power packet received by the power packet router;
- a state diagnosis unit (distribution management ECU 26B, header separation analysis unit
- the power packet includes a header portion including a diagnostic signal (diagnostic pulse 31Da) used for detecting an abnormality in the transmission path, and a payload portion (30) for transmitting power,
- the power transmission waveform information and the power reception waveform information are information related to the waveform of the diagnostic signal.
- the state diagnosis unit recognizes that an abnormality has occurred in the transmission path when the received waveform information is not received within a predetermined time after receiving the transmitted waveform information (S53) (S54, S57), The power supply system according to [8] or [9].
- the transmission path includes at least a first transmission path (29A-1) and a second transmission path (29A-2, 29D-1) connected in parallel,
- the power distribution request includes a transmission path for transmitting the power packet,
- the power distribution request generation unit recognizes that one of the first transmission path and the second transmission path is abnormal, the power distribution request generation unit converts the transmission path included in the power distribution request to the first transmission path.
- Switching to the other of one transmission path and the second transmission path (S77) The power supply system according to any one of [8] to [10].
- a power packet generator (power packet mixers 11, 81) that generates a power packet based on power supplied from one or more power supply sources (on-vehicle batteries 23-1 to 23-n, 83); A first power packet router (22B-1 to 3, 82-1 to 4) that supplies power of the power packet received from the power packet generator via a transmission path to one or more downstream loads; A second power packet router (22B-1 to 3, 82-1 to 4), A mutual supply path (29D-1 to 2, 85-3 to 6) for connecting the first power packet router and the second power packet router, Each of the first power packet router and the second power packet router is: A power distribution request sending unit that transmits a power distribution request including the required amount of power to the power packet generating unit; A power storage unit (normal power storage unit 42A, flexible power storage unit 42B) for storing the power of the power packet, The power distribution request sending unit of one of the first power packet router and the second power packet router can transmit an accommodation request signal for requesting the other to accommodate power, The other of the first power packet router and
- the power storage unit includes a first power storage unit (normal power storage unit 42A) that stores power to be supplied to the load, and a second power storage unit (flexible power storage unit 42B) that stores power used for accommodation. And When the other of the first power packet router and the second power packet router receives the accommodation request signal, the other generates a power packet used for accommodation based on the power stored in the second power storage unit. , The power supply system according to [12] above.
- a diagnosis unit (distribution management ECU 26B, control unit 45B) for diagnosing whether or not an abnormality has occurred in the transmission path is provided.
- the one of the distribution request sending units transmits the accommodation request signal to the other when the diagnosis unit detects that an abnormality has occurred in the transmission path.
- the power supply system according to [12] or [13].
- a power packet generator (power packet mixer 51) that generates a power packet based on power supplied from one or more power supply sources (batteries 53-1, 53-2);
- the power packet generated by the power packet generator is received via a transmission path (power transmission path 55A), and the power of the power packet is supplied to one or more loads (54-1 to 54-6) on the downstream side.
- Power packet routers (52-1, 52-2) to A power request sending unit (control unit 45, S98) for sending a power distribution request according to the power required by the power packet router;
- a power supply control unit (power packet mixer 51, power distribution management ECU 56) for sending the power packet from the power packet generator to the power packet router in response to the power distribution request;
- the power packet router A plurality of downstream ports (power output port 52b) to which at least the load can be connected;
- a connection state detection unit (control unit 45, S95 to S96) that automatically detects a connection state of each of the plurality of downstream ports when a predetermined condition is satisfied;
- a connection state transmission unit (communication interface unit 46) that transmits information representing the connection state to the power supply control unit;
- the power supply control unit reflects the connection state in the transmission of the power packet (S103), Power supply system.
- the power supply control unit includes an input unit (input device 57, switches 58) for a user to input a load attribute, and the power packet is based on the received information indicating the connection state. If it is determined that a new load is connected to the router, the input unit is allowed to input the attribute of the new load (S99 to S100).
- the power supply system according to [1] above.
- the power supply control unit constitutes a part of the power packet generation unit,
- the connection state detection unit transmits information representing the connection state to the power supply control unit via the transmission path.
- the power supply system according to [15] or [16].
- connection state detection unit transmits information representing the connection state to the power supply control unit via wireless communication.
- the power supply system according to [15] or [16].
- a plurality of power packet generators that generate power packets based on the power supplied from the power supply sources (vehicle batteries 133-1 and 133-2) and send them to the transmission path (power transmission path 138) Mixers 131-1, 131-2), A plurality of power packet routers (132-1 to 132-4) for receiving the power packet via the transmission path and supplying the power of the power packet to one or more downstream loads;
- a power distribution control unit (distribution management ECU 136) that receives a power distribution request including the required power amount from the power packet router and transmits a power transmission instruction including the power amount to the power packet generation unit;
- the power distribution control unit generates a packet transmission frame having a plurality of time slots, associates the plurality of power packet generation units with each of the plurality of time slots, Each of the power packet generators transmits the power packet in an associated time slot. Power supply system.
- the transmission line forms a ring-shaped transmission line
- the power packet generator and the power packet router are respectively connected to predetermined locations of the ring transmission line
- the power distribution control unit stores correspondence information indicating correspondence between the time slot and the power packet router at the head of the packet transmission frame
- the power packet generator recognizes the transmission timing of the power packet based on the correspondence information;
- the power supply system according to [19] above.
- the plurality of power packet routers include a first power packet router and a second power packet router, Each of the first power packet router and the second power packet router has a power storage unit that stores power received as a power packet, The power stored in the power storage unit of the first power packet router can be accommodated in the power storage unit of the second power packet router, The power distribution control unit associates the first power packet router with one of the time slots.
- the power supply system according to [20] above.
- a power packet generator (power packet mixer 121) that generates a power packet based on power supplied from one or more power supply sources;
- a power distribution control unit (distribution management ECU 126) that receives a power distribution request including the required power amount from the power packet router and transmits a power distribution instruction including the power amount to the power packet generation unit;
- the plurality of power packet routers include an upstream power packet router (122-1) located on the upstream side and a downstream power packet router (122-3) connected to the downstream side of the upstream power packet router. Including When the power packet generator receives the power distribution instruction for the upstream power packet router and the downstream power packet router, the power packet generator supplies power to the upstream power packet router and the downstream power packet router. Power to be included in the same power packet, Power supply system.
- the upstream power packet router has power storage units (15A, 15B) for storing power and receives the power packet whose destination is the upstream power packet router and the downstream power packet router Includes storing the power of the power packet in the power storage unit, generating a new power packet including power to be supplied to the downstream power packet router out of the power stored in the power storage unit, and generating the downstream power Send to packet router,
- the power supply system according to [22] above.
- the power packet includes a header portion including information indicating a destination, and a payload portion for transmitting power
- the power packet generation unit includes information indicating that the destination is the upstream power packet router and the downstream power packet router in the header unit, and includes the upstream power packet router and the downstream power packet router.
- the total power to be supplied is included in the payload part.
- a power packet generator (power packet mixer 71) that generates a power packet based on the power supplied from the power supply source;
- a power packet router (72-1) that receives the power packet generated by the power packet generator via a transmission path (power transmission path 75-1) and supplies the power of the power packet to a downstream load;
- a power distribution control unit (distribution management ECU 26) that receives a power distribution request including the required power amount from the power packet router and transmits a power transmission instruction including the power amount to the power packet generation unit;
- the power packet generator has a function (72-2) for receiving a power packet and supplying power of the power packet to a load. Power supply system.
- the power packet router has a function (72B-2) for receiving power and generating the power packet.
- the power supply system according to [25] above.
- a power packet generator (power packet mixer 11) that generates a power packet based on power supplied from one or more power supply sources (vehicle batteries 13A and 13B);
- a power packet router (12) that receives the power packet generated by the power packet generator via a transmission path (power transmission path 16A) and supplies the power of the power packet to one or more loads on the downstream side;
- a power request sending part (12f) for sending a power distribution request according to the power required by the power packet router from the power packet router;
- a power supply control unit (11d) for supplying the power packet according to the transmitted power distribution request from the power packet generation unit to the power packet router,
- the power packet router has a power storage unit (15A, 15B) for storing the power of the received power packet,
- the power request sending unit sends the power distribution request when the amount of power stored in the power storage unit falls below a predetermined threshold (S14, S15),
- the power supply control unit determines whether or not to supply power based on a comparison between the amount of power requested
- the power supply system is mounted on a vehicle,
- the power supply source is a battery that stores electric power from the outside of the vehicle or from a power generation device,
- the power supply control unit generates a power packet in the power packet generation unit according to a result of comparing the requested amount of power with the amount of power that can be supplied when the battery is charged.
- the power packet generator is supplied with power from a plurality of the power supply sources,
- the power packet router has at least the same number of the power storage units as the plurality of power supply sources.
- the power supply system according to [27] or [28].
- a power packet generator (power packet mixer 21) that generates power packets based on power supplied from a plurality of power supply sources (power supplies 23-1 to 23-n);
- the power packet generated by the power packet generator is received via a transmission path (power transmission path 29A), and the power of the power packet is supplied to one or more loads (24-1 to 24-n) on the downstream side.
- the power packet generation unit generates the power packet based on each of the power supplied from the plurality of power supply sources, and transmits the plurality of power packets to the power packet router by time division. Power supply system.
- the power packet router includes a plurality of power storage units (15A, 15B) capable of storing the power packets received from the power packet generation unit for each of the plurality of power supply sources.
- the power supply system according to [30] above.
- the power packet includes a header part (31) including destination information (31b) indicating a load to which power is to be supplied, and a payload part (32) for transmitting power,
- the power packet router stores the power of the received power packet in any of the power storage units according to the destination information.
- the power supply system according to [31] above.
- a power packet generator (power packet mixer 323) that generates a power packet based on power supplied from one or more power supply sources (batteries 321, 322);
- a power packet router (327) that receives the power packet generated by the power packet generator via a transmission path (power transmission path 326) and supplies the power of the power packet to a downstream load;
- the load includes a flashable light emitting unit (side turn signal lamps 328 and 329),
- the power packet generator is connected to an input unit (column switch 302, hazard switch 303) for a user to input a blinking light emission instruction to the light emitting unit, When the instruction is input from the input unit, the power packet generation unit intermittently transmits power to the power packet router using the power packet, The power packet router distributes the power of the received power packet to the light emitting unit. Power supply system.
- the load further includes a continuous power supply load (load 330) to which power should be continuously supplied
- the power packet router has a power storage unit (15A, 15B) for temporarily storing the power packet received from the power packet generation unit
- the power packet generator attaches destination information indicating whether the destination of the power packet is the light emitting unit or the continuous power supply load as a header (31) of the power packet
- the power packet router refers to a header of the received power packet, and stores the power in the power storage unit when the destination is the continuous power supply load, and stores the power storage unit when the destination is the light emitting unit. Distribute electricity to the light emitting part without storing electricity in The power supply system according to [33] above.
- a power packet generator (power packet mixer 21B) that generates power packets based on the power supplied from the power supply sources (power supplies 23-1 to n);
- a power packet router (22B-1, 22B-2, and 22B-3) that receives the power packet generated by the power packet generator via a transmission line and supplies the power of the power packet to a downstream load;
- a distribution control unit (distribution management ECU 26B) that receives a power distribution request including the required power amount from the power packet router and transmits a power transmission instruction including the power amount to the power packet generation unit;
- a driving power source (dedicated power source 161) connected to the power packet generation unit and the power packet router via a distribution line (162), and supplying driving power for the power packet generation unit and the power packet router; Comprising a power supply system.
- the driving power source is charged with electric power generated based on at least one of vibration energy, thermal energy, and light energy.
- the power supply system according to [35] above.
- the power distribution control unit when the amount of power stored in the driving power source falls below a predetermined threshold value, from the power packet generating unit via the another transmission path, the driving power source To supply power,
- the power supply system according to [35] or [36].
- the power distribution control unit further has a function of controlling the supply of drive power from the drive power supply to the power packet generation unit, and the power packet generation unit following the start of the supply of drive power (S418, S418B), the supply of the driving power is stopped following the end of transmission of the power packet (S415, S415B),
- the power supply system according to any one of [35] to [37].
- a power packet generator (power packet mixer 401) that generates a power packet based on the power supplied from the power supply source;
- a plurality of power packet routers (power packet routers 402 and 403) that receive the power packet generated by the power packet generator via a transmission line and supply the power of the power packet to one or more loads on the downstream side;
- a power distribution control unit (distribution management ECU 26B) that receives a power distribution request including the required power amount from the power packet router and transmits a power distribution instruction including the power amount to the power packet generation unit,
- the power distribution control unit Efficiency information indicating at least one of transmission efficiency of each transmission path, efficiency of the power packet generation unit with respect to load power, and efficiency with respect to load power of the power packet router, power consumption of each load, and the consumption
- a storage unit for storing load power information representing a power fluctuation range;
- a path setting unit (distribution management ECU 26B) configured to set a power supply path from the power packet generation unit to the load via the power packet router
- the path setting unit transmits power to the load with a small fluctuation in power to be supplied.
- the power supply system according to [39] or [40].
- the power packet router includes a power storage unit (15A, 15B) that stores the power of the received power packet.
- a power storage unit (15A, 15B) that stores the power of the received power packet.
- Japanese patent applications filed on March 22, 2017 Japanese Patent Application 2017-056002
- Japanese patent applications filed on November 30, 2017 Japanese Patent Application 2017-231241
- applications filed on November 30, 2017 Japanese patent application filed on November 30, 2017
- Japanese patent application filed on November 30, 2017 Japanese patent application filed on November 30, 2017
- Japanese patent application filed on November 30, 2017 Japanese patent application filed on November 30, 2017
- Japanese patent application filed on November 30, 2017 Japanese patent application filed on November 30, 2017
- Japanese patent application filed on November 30, 2017 Japanese patent application filed on November 30, 2017
- Japanese Patent Application 2017-231246 Japanese patent application filed on November 30, 2017 (Japanese Patent Application) Application No.
- the present invention it is possible to avoid wasteful discharge of electric power from a vehicle-mounted battery or the like, and to keep a balance between power demand and supply capability in an appropriate state even when the load increases. There is an effect that can be done.
- the present invention that exhibits this effect is useful for a power supply system that can be used to supply power on a vehicle or the like.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Mechanical Engineering (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
- Remote Monitoring And Control Of Power-Distribution Networks (AREA)
Abstract
電力パケットルータ(62-1~62-3)からの配電要求に応じた電力パケットを電力パケットミキサ(61)から電力パケットルータ(62-1~62-3)に与える電力供給制御部(61、116)と、複数の負荷に優先順位を割り当てる割り当て部(62-1~62-3、116)と、を備え、電力供給制御部は、電力の需要と供給との関係が所定の条件を満たす場合に、優先順位の低い負荷に対する電力供給を制限する。
Description
本発明は、車両上などで電力供給を行うために利用可能な電力供給システムに関する。
一般的に、車両上においては、主電源である車載バッテリやオルタネータ(発電機)と、車両上の様々な箇所に配置されている様々な種類の電装品との間が、電線の集合体であるワイヤハーネスを経由してそれぞれ接続されている。したがって、車載バッテリが蓄積している電力を様々な電装品に電源電力として供給することができる。また、車両が駐車しているときであっても、例えばセキュリティ装置のような電装品は電源電力を必要とする。したがって、電力供給経路をヒューズやリレーなどを用いて特別に遮断しない限り、駐車中であっても車載バッテリの電力が流出する。
そして、駐車中に車載バッテリが蓄積している電力が枯渇するとエンジン始動ができなくなる。これを防止するための技術が、例えば特許文献1に示されている。特許文献1においては、イグニッションオフが検知されてからの消費電流の積算値を所定の上限値と比較して上限値を超える場合には電装品の動作を停止させることを示している。
一方、電力をパケット化して送配電するための技術が、例えば特許文献2に示されている。特許文献2は、受信した電力パケットの電力を蓄える複数の蓄電部と、受信した電力パケットを前記複数の蓄電部に振り分けるスイッチ部と、前記複数の蓄電部が蓄電した電力に基づいて電力パケットを生成する出力部とを有する電力ルータを示している。
車両においては、上記のように駐車中に車載バッテリから電装品に流れる比較的小さい電流(暗電流)の影響により、長時間に亘って駐車していると車載バッテリの電力が枯渇する可能性がある。また、特許文献1の技術を利用すればこのような問題を回避できる可能性もある。しかし、車載バッテリの電力が枯渇するまでに許容できる電流容量が、車種の違いや使用年数の違いなどの影響で大きく変動するので、消費電流の積算値と比較する上限値を適切に定めることが非常に難しい。
一方、車両上に特許文献2の技術を適用して電力供給システムを構築した場合には、負荷などを必要に応じて追加することが想定される。しかし、設計時の想定以上に負荷が増えると、電力の需要と供給能力とのバランスが適度な状態から逸脱し、電力の供給能力が不足してバッテリ上がりが生じる可能性がある。
本発明は、上述した事情に鑑みてなされたものであり、その目的は、車載バッテリ等の電力が無駄に放出されるのを避けることができ、且つ、負荷が増えた場合においても電力の需要と供給能力とのバランスを適度な状態に保つことができる電力供給システムを提供することにある。
前述した目的を達成するために、本発明に係る電力供給システムは、下記(1)~(3)を特徴としている。
(1) 1つ以上の電力供給源から供給される電力に基づいて電力パケットを生成する電力パケット生成部と、
伝送路を介して前記電力パケットを受け取り、当該電力パケットの電力を下流側に接続された複数の負荷に供給する電力パケットルータと、
前記電力パケットルータが必要とする電力に応じた配電要求を送出する電力要求送出部と、
前記配電要求に応じた前記電力パケットを前記電力パケット生成部から前記電力パケットルータに与える電力供給制御部と、
前記複数の負荷に優先順位を割り当てる割り当て部と、を備え、
前記電力供給制御部は、電力の需要と供給との関係が所定の条件を満たす場合に、前記優先順位の低い負荷に対する電力供給を制限する、
電力供給システム。
(1) 1つ以上の電力供給源から供給される電力に基づいて電力パケットを生成する電力パケット生成部と、
伝送路を介して前記電力パケットを受け取り、当該電力パケットの電力を下流側に接続された複数の負荷に供給する電力パケットルータと、
前記電力パケットルータが必要とする電力に応じた配電要求を送出する電力要求送出部と、
前記配電要求に応じた前記電力パケットを前記電力パケット生成部から前記電力パケットルータに与える電力供給制御部と、
前記複数の負荷に優先順位を割り当てる割り当て部と、を備え、
前記電力供給制御部は、電力の需要と供給との関係が所定の条件を満たす場合に、前記優先順位の低い負荷に対する電力供給を制限する、
電力供給システム。
上記(1)の構成の電力供給システムによれば、例えば電力の需要が供給能力を上回るような状況になった場合など、電力の需要と供給との関係が所定の条件を満たすことにより電力の供給が要求されているすべての負荷に対する電力の供給が難しくなった場合には、優先順位の低い負荷に対する電力供給を制限できるので、優先順位の高い負荷に対する電力供給を維持し、且つバッテリー上がりを防止することが可能になる。
(2) 前記電力供給制御部は、前記電力供給源が供給可能な供給電力量と、前記配電要求が表す需要電力量とを比較し、前記供給電力量よりも前記需要電力量が大きい場合には、前記優先順位の低い負荷に供給されている電力の供給を中止する、
上記(1)に記載の電力供給システム。
上記(1)に記載の電力供給システム。
上記(2)の構成の電力供給システムによれば、電力の需要が供給能力を上回るような状況になった場合には、優先順位の低い負荷に対する電力供給を中止することにより、供給電力量が需要電力量より大きくなることを抑制できるので、優先順位の高い負荷に対する電力供給を維持し、且つバッテリー上がりを防止することが可能になる。
(3) 前記割り当て部は、前記電力供給システムが搭載される車両の走行状態、乗員の状態、前記車両外の環境の少なくともいずれか1つに応じて前記優先順位を補正する、
上記(1)又は(2)に記載の電力供給システム。
上記(1)又は(2)に記載の電力供給システム。
上記(3)の構成の電力供給システムによれば、車両の走行状態、乗員の状態、車両外の環境など、車両がおかれている状況に応じて電力を供給すべき負荷の優先順位を適宜補正できるので、各状況において駆動を継続すべき負荷に対する電力の供給が途絶えることを抑制できる。
本発明の電力供給システムによれば、車載バッテリ等の電力が無駄に放出されるのを避けることができ、且つ、負荷が増えた場合においても電力の需要と供給能力とのバランスを適度な状態に保つことができる。
本発明に関する具体的な実施形態について、各図を参照しながら以下に説明する。
<暗電流による電力消費を防止するための技術>
<システムの構成例>
本発明の実施形態における電力供給システム10-1の構成例を図1に示す。図1に示した電力供給システム10-1は、車両において、車載バッテリ等の電源電力をワイヤハーネス等の伝送路を経由して負荷となる各種電装品に供給するために利用される。また、この電力供給システム10-1は、例えば特許文献2などにより公知の電力パケット伝送技術を利用できる。
<システムの構成例>
本発明の実施形態における電力供給システム10-1の構成例を図1に示す。図1に示した電力供給システム10-1は、車両において、車載バッテリ等の電源電力をワイヤハーネス等の伝送路を経由して負荷となる各種電装品に供給するために利用される。また、この電力供給システム10-1は、例えば特許文献2などにより公知の電力パケット伝送技術を利用できる。
図1に示した電力供給システム10-1は、電力パケットミキサ11、および電力パケットルータ(ルータA)12を備えている。また、電力パケットミキサ11の電力パケット出力ポート11cと、電力パケットルータ12の電力パケット入力ポート12aとの間は、ワイヤハーネスとして構成される電力伝送路16Aで接続されている。
また、電力パケットミキサ11の各電力入力ポート11a、11bは、それぞれ電力伝送路16B、16Cを経由して車載バッテリ(電源1)13A、(電源2)13Bと接続されている。また、電力パケットルータ12の各電力出力ポート12b、12c、12dは、それぞれ電力伝送路16D、16E、16Fを経由して負荷14A、14B、14Cと接続されている。これらの負荷14A~14Cは、車両に搭載される様々な電装品に相当する。
ここで、電力パケットミキサ11の入力に接続する車載バッテリ13A、13B等の複数の電源については、電圧が同一であってもよいし、電圧が互いに異なるものであってもよい。電圧が異なる場合の構成例を図25に示す。図25に示した例では、車載バッテリ13Aの電圧が12[V]、車載バッテリ13Bの電圧が48[V]の場合を想定している。勿論、これ以外の電圧であってもよい。図25の例では、電力パケットミキサ11は、車載バッテリ13Aから供給される12[V]の電源電力に基づいて電圧が12[V]の電力パケットPPL(30)を生成し、車載バッテリ13Bから供給される48[V]の電源電力に基づいて電圧が48[V]の電力パケットPPH(30)を生成する。したがって、図25に示すように、電力伝送路16A上に互いに電圧の異なる電力パケットPPL、およびPPHが例えば交互に現れる場合もある。
また、電力パケットルータ12には複数の蓄電部15A、15Bが接続されている。なお、電力パケットミキサ11の入力側に接続する電源の数や種類については必要に応じて変更できる。また、電力パケットルータ12の出力側に接続する負荷の数や種類についても必要に応じて変更できる。更に、電力パケットルータ12の出力側に他の電力パケットルータ12を直列に接続することも可能である。
基本的な機能として、電力パケットミキサ11は、電力入力ポート11a、11bから供給される電力に基づいて電力パケットを生成し、この電力パケットを電力伝送路16Aに送り出す機能を有している。電力パケットミキサ11が生成する電力パケット30は、例えば図4に示すように構成される。この電力パケット30のペイロード32により、上流側の電力が電力パケット単位で下流側に伝送される。したがって、電力パケットミキサ11は送出する電力量をペイロード長とパケットの個数により容易に管理できる。
なお、図25に示したように、互いに電圧が異なる車載バッテリ13Aおよび13Bを電力パケットミキサ11の入力に接続する場合には、例えば電圧に応じて電力パケット30のペイロード32の時間長を調節し、電力パケット30の一個あたりの電力量が一定になるように制御することが想定される。ペイロード32の長さを調整しない場合には、電力パケット30毎に電力を把握するために電圧の違いを識別する必要がある。
また、電力パケットルータ12は、基本的な機能として、電力パケット入力ポート12aに入力される電力パケットを取り込み、この電力パケットの電力を蓄電部15A、15Bに一時的に蓄電する。そして、蓄電部15A、15Bに蓄電した電力を負荷側に供給する。
また、本実施形態では、電力パケットミキサ11は、電力の供給元である複数の車載バッテリ13A、13Bを区別して管理すると共に、これらを区別するための情報を、送出する各電力パケットに含める。したがって、電力パケットルータ12も受け取った電力パケットのそれぞれについて電力の供給元を区別できる。そして、電力パケットルータ12は、例えば車載バッテリ13Aから供給された電力を蓄電部15Aのみに蓄電し、車載バッテリ13Bから供給された電力を蓄電部15Bのみに蓄電する。
更に、本実施形態においては、特徴的な機能として、電力パケットミキサ11が図1に示した機能11dを備え、電力パケットルータ12が各機能12e、12f、12gを備えている。
すなわち、電力パケットルータ12は機能12eとして、各蓄電部15A、15Bが蓄電している電力量を監視する。また、電力パケットルータ12は機能12fとして、各蓄電部15A、15Bが蓄電している電力量が閾値以下の場合に、配電要求を電力パケットミキサ11に送る。この配電要求は、例えば電力伝送路16Aの空いているタイミングを利用して、電力パケット入力ポート12aから電力パケット出力ポート11cに向けて送ることができる。
また、電力パケットミキサ11は機能11dとして、電力パケットルータ12からの配電要求を確認し、要求された電力量相当分だけ電力パケットを生成し、この電力パケットを電力パケット出力ポート11cに送出する。電力パケットルータ12は機能12gとして、電力パケットミキサ11から送出された各電力パケットを受電して蓄電部15A、15Bに蓄電する。
<システムの動作>
図2(a)および図2(b)に示した電力パケットミキサおよび電力パケットルータの動作例について以下に説明する。
図2(a)および図2(b)に示した電力パケットミキサおよび電力パケットルータの動作例について以下に説明する。
電力パケットルータ12内の制御部(図示せず)は、前記機能12eとして、車載バッテリ13Aから供給された電力を蓄電している蓄電部15Aの現在の蓄電量Paと、車載バッテリ13Bから供給された電力を蓄電している蓄電部15Bの現在の蓄電量Pbとをそれぞれ読み取る(S11)。
そして、蓄電量Paとその閾値PthaとをステップS12で比較して、「Pa<Ptha」の条件を満たす場合にのみステップS15に進む。また、蓄電量Pbとその閾値PthbとをステップS13で比較して、「Pb<Pthb」の条件を満たす場合にのみステップS14に進む。
そして、電力パケットルータ12内の制御部は、前記機能12fとして「Pa<Ptha」の条件を満たす場合は配電要求「Pa_req」を電力パケットミキサ11に送る(S15)。また、「Pb<Pthb」の条件を満たす場合は配電要求「Pb_req」を電力パケットミキサ11に送る(S14)。
一方、電力パケットミキサ11内の制御部(図示せず)は、電力パケットルータ12からの配電要求「Pa_req」又は「Pb_req」を受信したか否かを判定し(S16)、いずれかの要求(リクエスト)を受信した場合に次のステップS17に進む。そして、受信した配電要求が「Pa_req」、「Pb_req」のいずれであるかをS17で識別し、配電要求「Pa_req」の場合はS19に進み、配電要求「Pb_req」の場合はS18に進む。
ステップS19では、電力パケットミキサ11内の制御部は、車載バッテリ13Aから供給される電力を利用して電力パケットを生成し、この電力パケットを電力伝送路16Aを経由して電力パケットルータ12に送る。この電力パケットには、車載バッテリ13Aが供給元であることを表す情報が付加される。なお、配電要求に対して電力パケットミキサ11が1回の処理で送出する電力パケットの数については、受信した配電要求毎に1つ、又は事前に定めた一定数としてもよいし、配電要求の一部分として電力パケットルータ12側が指定してもよい。
ステップS18では、電力パケットミキサ11内の制御部は、車載バッテリ13Bから供給される電力を利用して電力パケットを生成し、この電力パケットを電力伝送路16Aを経由して電力パケットルータ12に送る。この電力パケットには、車載バッテリ13Bが供給元であることを表す情報が付加される。
つまり、図1に示した電力供給システム10-1においては、電力パケットミキサ11は、電力パケットルータ12からの要求に従って、必要な時に必要な量の電力のみを、つまりオンデマンドで電力パケットルータ12に供給する。
そのため、電力パケットルータ12からの要求が発生しない限り、電力伝送路16Aに電力が供給されず、一般的な電力供給システムのように出力側に常時電力を供給するわけではないので、暗電流による電力消費が発生しない。したがって、例えば車両が長時間駐車しているような状況において、バッテリ上がりが生じるのを抑制することが可能になる。
ここで、図45を用いて、電力パケットミキサ11内の制御部(図示せず)による動作例をより詳細に説明する。
まず、PA_Flag、PB_Flag、PA、PBはいずれも0になっている。PA_Flag、PB_Flagは、それぞれ配電停止フラグであり、車載バッテリ13A、13Bからの電力供給が不可の場合に、これらの配電停止フラグは1となる。また、PA、PBは、車載バッテリ13A、13Bからそれぞれ供給された積算電力量を表している。
電力パケットミキサ11は、電力送信停止フラグがいずれも0の場合に(S601)、電力パケットルータ12から配電要求「Pa_req」又は「Pb_req」を受信したか否かを判定し(S602)、いずれかの要求(リクエスト)を受信した場合に次のステップS604に進む。そして、受信した配電要求が「Pa_req」、「Pb_req」のいずれであるかをS604で識別し、配電要求「Pa_req」の場合はS609に進み、配電要求「Pb_req」の場合はS605に進む。一方、ステップS601において、PA_Flag、あるいはPB_Flagのいずれかの電力送信停止フラグが1の場合には、運転者に対し警告信号を発したり警告表示を行う(S613)。これらの警告は、エンジンがONになったと判定されると(S614)終了する。また、ステップS602におけるリクエスト信号受信の判定は、エンジンがONになったと判定されると(S603)終了する。
ステップS609では、電力パケットミキサ11内の制御部は、車載バッテリ13Aから供給される電力を利用して電力パケットを生成し、この電力パケットを電力伝送路16Aを経由して電力パケットルータ12に送る。この電力パケットには、車載バッテリ13Aが供給元であることを表す情報が付加される。なお、配電要求に対して電力パケットミキサ11が1回の処理で送出する電力パケットの数については、受信した配電要求毎に1つ、又は事前に定めた一定数としてもよいし、配電要求の一部分として電力パケットルータ12側が指定してもよい。
そして、電力パケットミキサ11内の制御部は、車載バッテリ13Aから送電された積算電力量PAに、今回の電力パケットの送出分に相当する電力量Paを加え(S610)、車載バッテリ13Aから供給可能な電力量の上限PA_maxと比較し(S611)、積算電力量PAが電力量の上限PA_maxを超えているならば、車載バッテリ13Aからの電力供給を停止するフラグPA_flagを1とし、車載バッテリ13Aに対する配電要求を禁止する(S612)。
一方、ステップS605では、電力パケットミキサ11内の制御部は、車載バッテリ13Bから供給される電力を利用して電力パケットを生成し、この電力パケットを電力伝送路16Aを経由して電力パケットルータ12に送る。この電力パケットには、車載バッテリ13Bが供給元であることを表す情報が付加される。
そして、電力パケットミキサ11内の制御部は、車載バッテリ13Bから送電された積算電力量PBに、今回の電力パケットの送出分に相当する電力量Pbを加え(S606)、車載バッテリ13Bから供給可能な電力量の上限PB_maxと比較し(S607)、積算電力量PBが電力量の上限PB_maxを超えているならば、車載バッテリ13Aからの電力供給を停止するフラグPB_flagを1とし、車載バッテリ13Bに対する配電要求を禁止する(S608)。
<「ワイヤハーネス診断」の技術>
<システムの構成例>
本発明の実施形態における電力供給システム10-2の構成例を図3に示す。図3に示した電力供給システム10-2は、車両において、車載バッテリ等の電源電力をワイヤハーネス等の伝送路を経由して負荷となる各種電装品に供給するために利用される。また、この電力供給システム10-2は、例えば特許文献2などにより公知の電力パケット伝送技術を利用できる。
<システムの構成例>
本発明の実施形態における電力供給システム10-2の構成例を図3に示す。図3に示した電力供給システム10-2は、車両において、車載バッテリ等の電源電力をワイヤハーネス等の伝送路を経由して負荷となる各種電装品に供給するために利用される。また、この電力供給システム10-2は、例えば特許文献2などにより公知の電力パケット伝送技術を利用できる。
図3に示した電力供給システム10-2は、主要な構成要素として、電力パケットミキサ21、電力パケットルータ22、および配電管理ECU(電子制御ユニット)26を備えている。
電力パケットミキサ21の複数の電力入力ポート21aには、複数のn個の電源23-1~23-nが、電力伝送路29Bを介してそれぞれ接続されている。電源23-1~23-nの各々は、例えば車載のメインバッテリ、サブバッテリ、その他の補助電源などに相当する。また、n個の電源23-1~23-nの出力電圧については、同じであってもよいし、互いに異なっていてもよい。
電力パケットミキサ21の電力パケット出力ポート21bと電力パケットルータ22の電力パケット入力ポート22aとの間は1つの電力伝送路29Aを介して互いに接続されている。電力パケットルータ22の複数の電力出力ポート22bには、電力伝送路29Cを介して複数の負荷24-1~24-nが接続されている。負荷24-1~24-nの各々は、車両上の様々な電装品に相当する。また、電力パケットルータ22の電力出力ポート22bには、他の電力パケットルータ22を直列に接続することもできる。
電力伝送路29A、29B、29Cは、例えば車両に搭載されたワイヤハーネスを構成する各電線やバスバーに相当する。また、配電管理ECU26と、電力パケットミキサ21および電力パケットルータ22との間は、互いに通信が可能な状態で接続されている。この通信には、専用の通信線が利用されてもよく、電力伝送路29Aが利用されてもよい。
電力パケットミキサ21は、基本的な機能として、電源23-1~23-nから供給される電力から電力パケット30を生成し、この電力パケット30を電力伝送路29Aに出力する。また、電力パケットルータ22は電力パケットミキサ21が送出した電力パケット30を受け取ってこの電力を一時的に内部で蓄積すると共に、この電力を必要に応じて負荷24-1~24-nの各々に供給する。
配電管理ECU26は、電力パケットミキサ21、および電力パケットルータ22との間で通信を行い、システム全体の配電状態を管理する。配電管理ECU26が通信でやり取りする情報の中には、電力パケットルータ22が送出する配電要求27A、受電情報27Bと、配電管理ECU26が送出する送電指示28Aと、電力パケットミキサ21が送出する送電情報28Bとが含まれる。
<電力パケット30の構成例>
電力パケット30の構成例を図4に示す。
図4に示した電力パケット30は、ヘッダ31とペイロード32とで構成されている。また、ヘッダ31の中には、同期信号31a、宛先(配電経路)情報31b、送電電力情報(送電量を表すデータ)31cが含まれている。ペイロード32は、実際に送電する電力に相当する。例えば、電圧および電流が一定の場合を想定すると、ペイロード32の時間長に応じた電力を1つの電力パケット30で送電することができる。
電力パケット30の構成例を図4に示す。
図4に示した電力パケット30は、ヘッダ31とペイロード32とで構成されている。また、ヘッダ31の中には、同期信号31a、宛先(配電経路)情報31b、送電電力情報(送電量を表すデータ)31cが含まれている。ペイロード32は、実際に送電する電力に相当する。例えば、電圧および電流が一定の場合を想定すると、ペイロード32の時間長に応じた電力を1つの電力パケット30で送電することができる。
<電力パケットミキサ21の構成例>
電力パケットミキサ21の構成例を図5に示す。
図5に示した電力パケットミキサ21の内部には、入力選択部35、パケット生成部36、出力ポート選択部37、制御部38、および通信インタフェース部(I/F)39が備わっている。
電力パケットミキサ21の構成例を図5に示す。
図5に示した電力パケットミキサ21の内部には、入力選択部35、パケット生成部36、出力ポート選択部37、制御部38、および通信インタフェース部(I/F)39が備わっている。
入力選択部35は、複数の電力入力ポート21aのいずれかを選択し、選択した電源から電力を取り込む。パケット生成部36は、電力入力ポート21aのいずれかから取り込んだ電力から電力パケット30を生成する。出力ポート選択部37は、複数の電力パケット出力ポート21bのいずれかを選択し、選択したポートに電力パケット30を送出する。制御部38は、次に説明するように、電力パケットミキサ21の全体の動作を制御する。
<電力パケットミキサ21の動作例>
電力パケットミキサ21の動作例を図6に示す。すなわち、制御部38が図6の制御を実施する。
電力パケットミキサ21の動作例を図6に示す。すなわち、制御部38が図6の制御を実施する。
制御部38は、配電管理ECU26から送電指示28Aの情報を受領すると(S21)、この送電指示28Aに基づき、入力選択部35で電源入力を選択し、パケット生成部36で電力パケット30を生成するように制御する(S22)。また、制御部38は出力ポート選択部37を制御して、生成した電力パケット30を所定の電力パケット出力ポート21bに送出する(S23)。また、制御部38は、送電情報28Bを通信ポート21cを介して配電管理ECU26へ通知する(S24)。
<電力パケットルータ22の構成例>
電力パケットルータ22の構成例を図7に示す。
図7に示した電力パケットルータ22の内部には、ヘッダ分離解析部41、蓄電部42、パケット生成部43、出力ポート選択部44、制御部45、および通信インタフェース部46が備わっている。
電力パケットルータ22の構成例を図7に示す。
図7に示した電力パケットルータ22の内部には、ヘッダ分離解析部41、蓄電部42、パケット生成部43、出力ポート選択部44、制御部45、および通信インタフェース部46が備わっている。
ヘッダ分離解析部41は、電力パケット入力ポート22aの各々に入力された電力パケット30を処理してそのヘッダ31を分離し、ヘッダ31の内容の解析を実施する。蓄電部42は、電力パケット入力ポート22aの各々に入力された電力パケット30のペイロード32のタイミングで、この電力を充電し一時的に蓄積する。
パケット生成部43は、電力パケット30の生成が必要な時に、蓄電部42が蓄積している電力から新たな電力パケット30を生成する。出力ポート選択部44は、蓄電部42が蓄積している電力、又はパケット生成部43が生成した電力パケット30を、電力出力ポート22bのいずれかに選択的に出力する。制御部45は、次に説明するように、電力パケットルータ22の全体の制御を実施する。
<電力パケットルータ22の動作例>
電力パケットルータ22の動作例を図8に示す。すなわち、制御部45が図8の制御を実施する。
電力パケットルータ22の動作例を図8に示す。すなわち、制御部45が図8の制御を実施する。
制御部45は、電力パケットルータ22が電力パケット入力ポート22aで電力パケット30を受信した場合に(S31)、この電力パケット30のヘッダ31をヘッダ分離解析部41を用いて解析する(S32)。
この解析により、制御部45はヘッダ31に含まれる宛先情報31bの宛先と、自ルータに接続されている各負荷24-1~24-nとを照合する(S33)。そして、照合の結果、自ルータに接続された負荷宛の場合には、ペイロード32の電力を蓄電部42に充電するとともに蓄電部42の電力を所定の電力出力ポート22bへ出力する(S34,S39)。
また、上記照合の結果、受信した電力パケット30の宛先が、自ルータを経由した他ルータに接続される負荷宛の場合には、蓄電部42の電力から制御部45がパケット生成部43を制御して所定ルータ宛の新たな電力パケット30を生成する(S36)。そして、この電力パケット30を所定の出力ポートから出力し(S37)、所定ルータの入力ポートへ与える。
また、制御部45は、電力パケットルータ22が受信した電力パケット30により蓄電部42へ充電した充電量を計測し(S34)、ペイロード32に対応する積算受電電力値を含む受電情報27Bを生成してこれを配電管理ECU26へ通知する(S38,S40)。
また、制御部45は、自ルータの電力出力ポート22bに接続されている各負荷24-1~24-nの駆動電力と、蓄電部42の充電状態とに基づいて配電が必要か否かを識別し、必要な時に配電管理ECU26へ配電要求27Aの情報を通知する。例えば、各負荷へ電源電力を供給する必要があるときに(「給電要求」あり)、この要求電力量と、蓄電部42の蓄電量とを比較し(S42)、「蓄電量<要求電力量」の条件を満たす時に、制御部45が配電要求27Aの情報を配電管理ECU26に通知する(S43)。
<配電管理ECU26の構成例>
配電管理ECU26の構成例を図9に示す。
図9に示した配電管理ECU26は、制御部26aおよび通信インタフェース部26bを内蔵している。通信インタフェース部26bの通信ポート26c、および26dは、それぞれ電力パケットミキサ21、および電力パケットルータ22と接続される。
配電管理ECU26の構成例を図9に示す。
図9に示した配電管理ECU26は、制御部26aおよび通信インタフェース部26bを内蔵している。通信インタフェース部26bの通信ポート26c、および26dは、それぞれ電力パケットミキサ21、および電力パケットルータ22と接続される。
<配電管理ECU26の動作例>
配電管理ECU26の動作例を図10に示す。すなわち、配電管理ECU26内の制御部26aが、図10の動作を制御する。
配電管理ECU26の動作例を図10に示す。すなわち、配電管理ECU26内の制御部26aが、図10の動作を制御する。
配電管理ECU26内の制御部26aは、電力パケットルータ22から配電要求27Aの情報が通知されると(S58)、これに基づいて送電指示28Aの情報を生成し(S59)、生成した送電指示28Aの情報を電力パケットミキサ21に通知する(S60)。
また、配電管理ECU26内の制御部26aは、電力パケットミキサ21からの送電情報28Bを受領すると(S51)、受電情報受領待ちタイマを起動する(S52)。更に、配電管理ECU26内の制御部26aは、受電情報受領待ちタイマのタイムアウトまでに、電力パケットルータ22から積算受電電力値を含む受電情報27Bを受領しない場合(S54)、又は電力パケットルータ22から受領した受電情報27B内の積算受電電力値と、電力パケットミキサ21からの送電情報28Bとの比較の結果に不整合があった場合(S55,S56)、配電経路に断線、短絡等の異常が生じていると判定する(S57)。そして、同一配電経路による配電を行わないようにする。
<電力供給システム10-2の利点>
ワイヤハーネス等の短絡などを診断する際に、一般的な技術を採用する場合には、伝送線路の異常検出のために新たな機器を追加したり、複雑な信号処理が必要になる。また、断線や短絡(デッドショート)等の異常を検出できないケースも考えられる。しかし、上述の制御を実施する電力供給システム10-2においては、新たな機器を追加したり、複雑な信号処理を実施しなくても、断線や短絡(デッドショート)等を含む配電経路の異常を確実に検出できる。
ワイヤハーネス等の短絡などを診断する際に、一般的な技術を採用する場合には、伝送線路の異常検出のために新たな機器を追加したり、複雑な信号処理が必要になる。また、断線や短絡(デッドショート)等の異常を検出できないケースも考えられる。しかし、上述の制御を実施する電力供給システム10-2においては、新たな機器を追加したり、複雑な信号処理を実施しなくても、断線や短絡(デッドショート)等を含む配電経路の異常を確実に検出できる。
つまり、電力パケットミキサ21が実際に送電した電力と、電力パケットルータ22が実際に受電した電力とを配電管理ECU26が比較した結果により判定するので、異常の発生を確実に検出できる。
また、配電管理ECU26は全ての送電タイミングを認識可能であるので、伝送路(ワイヤハーネス)が断線やデッドショート状態となり、受電側で電力パケット30のヘッダ31が正常に受信されない場合であっても、伝送路の異常を検出できる。
<電力供給システム10-2の変形例>
図3に示した電力供給システム10-2は電力パケットルータ22が1台だけの場合を想定しているが、複数台の電力パケットルータ22を例えば直列に接続することにより、様々な経路を選択的に使用することが可能になる。その場合には、配電経路の異常を検知した時に、異常が発生していない別の経路を電力パケット30が通るように、配電管理ECU26が経路を自動的に切り替えることが考えられる。例えば、図10に示したステップS57の後で、配電管理ECU26が、配電経路の変更を指示するための送電指示情報を電力パケットミキサ21あるいは各電力パケットルータ22に通知するように制御すればよい。
図3に示した電力供給システム10-2は電力パケットルータ22が1台だけの場合を想定しているが、複数台の電力パケットルータ22を例えば直列に接続することにより、様々な経路を選択的に使用することが可能になる。その場合には、配電経路の異常を検知した時に、異常が発生していない別の経路を電力パケット30が通るように、配電管理ECU26が経路を自動的に切り替えることが考えられる。例えば、図10に示したステップS57の後で、配電管理ECU26が、配電経路の変更を指示するための送電指示情報を電力パケットミキサ21あるいは各電力パケットルータ22に通知するように制御すればよい。
<不足する電源電力を融通するための技術>
<システムの構成例>
本発明の実施形態における電力供給システム10-3の構成例を図11に示す。図11に示した電力供給システム10-3は、車両において、車載バッテリ等の電源電力をワイヤハーネス等の伝送路を経由して負荷となる各種電装品に供給するために利用される。また、この電力供給システム10-3は、例えば特許文献2などにより公知の電力パケット伝送技術を利用できる。
<システムの構成例>
本発明の実施形態における電力供給システム10-3の構成例を図11に示す。図11に示した電力供給システム10-3は、車両において、車載バッテリ等の電源電力をワイヤハーネス等の伝送路を経由して負荷となる各種電装品に供給するために利用される。また、この電力供給システム10-3は、例えば特許文献2などにより公知の電力パケット伝送技術を利用できる。
図11に示した電力供給システム10-3は、主要な構成要素として、電力パケットミキサ21B、3台の電力パケットルータ22B-1、22B-2、22B-3、および配電管理ECU(電子制御ユニット)26Bを備えている。なお、以下において、3個の電力パケットルータ22B-1~22B-3を区別して説明する必要がないときは、電力パケットルータ22Bとして説明する。また、他の構成要素についても、区別して説明する必要がないときは、“-1”、“-2”などの枝番を省略して説明する。また、他の実施形態においても同様である。
電力パケットミキサ21Bの複数の電力入力ポートには、複数のn個の電源23-1~23-nが、電力伝送路29Bを介してそれぞれ接続されている。電源23-1~23-nの各々は、例えば車載のメインバッテリ、サブバッテリ、その他の補助電源などに相当する。ここで、n個の電源23-1~23-nの出力電圧については、同じであってもよいし互いに異なっていてもよい。
電力パケットミキサ21Bの3つの電力パケット出力ポートと3台の各電力パケットルータ22B-1~22B-3の電力パケット入力ポート22aとの間は、それぞれ電力伝送路29Aを介して互いに接続されている。
電力パケットルータ22B-1の複数の電力出力ポート22bには、電力伝送路29C-1を介して複数の負荷24-Aが接続されている。また、電力パケットルータ22B-2の複数の電力出力ポート22bには、電力伝送路29C-2を介して複数の負荷24-Bが接続されている。電力パケットルータ22B-3の複数の電力出力ポート22bには、電力伝送路29C-3を介して複数の負荷24-Cが接続されている。負荷24-A~24-Cの各々は、車両上の様々な電装品に相当する。
また、電力パケットルータ22B-1の電力出力ポート22bの1つと、隣接する電力パケットルータ22B-2の電力パケット入力ポート22aの1つとの間が、電力伝送路29D-1を介して互いに接続されている。更に、電力パケットルータ22B-3の電力出力ポート22bの1つと、隣接する電力パケットルータ22B-2の電力パケット入力ポート22aの1つとの間が、電力伝送路29D-2を介して互いに接続されている。
電力伝送路29D-1は、電力パケットルータ22B-2における電力が不足する場合に、電力パケットルータ22B-1の電力を融通するための経路として利用される。同様に、電力伝送路29D-2は、電力パケットルータ22B-2における電力が不足する場合に、電力パケットルータ22B-3の電力を融通するための経路として利用される。勿論、電力融通の他に、断線等の異常が発生した場合の迂回経路として利用することも可能である。
電力伝送路29A、29B、29C、29Dは、例えば車両に搭載されたワイヤハーネスを構成する各電線やバスバーに相当する。また、配電管理ECU26Bと、電力パケットミキサ21Bおよび各電力パケットルータ22Bとの間は、互いに通信ができるように、例えば専用の通信線を介して接続されている。なお、電力伝送路29Aを利用して通信することも可能である。
電力パケットミキサ21Bは、基本的な機能として、電源23-1~23-nから供給される電力に基づいて電力パケット30Bを生成し、この電力パケット30Bを電力伝送路29A-1、29A-2、29A-3のいずれかに出力する。
また、各電力パケットルータ22B-1、22B-2、22B-3は電力パケットミキサ21Bが送出した電力パケット30Bを受け取ってこの電力を一時的に内部で蓄積すると共に、この電力を必要に応じて負荷24-A、24-B、24-Cの各々に供給する。また、後で詳細に説明するが、各電力パケットルータ22B-1、22B-2、22B-3が、本実施形態では電力の融通も必要に応じて実施する。
配電管理ECU26Bは、電力パケットミキサ21B、および各電力パケットルータ22Bとの間で通信を行い、システム全体の配電状態を管理する。配電管理ECU26Bが通信でやり取りする情報の中には、電力パケットルータ22Bが送出する配電要求27A、受電情報27Bと、配電管理ECU26Bが送出する送電指示28Aと、電力パケットミキサ21Bが送出する送電情報28Bとが含まれる。
<電力パケット30Bの構成例>
電力パケット30Bの構成例を図12に示す。
図12に示した電力パケット30Bは、ヘッダ31Bとペイロード32とで構成されている。また、ヘッダ31Bの中には、同期信号31a、宛先(配電経路)情報31b、送電電力情報(送電量を表すデータ)31c、および電力種別情報31dが含まれている。ペイロード32は、実際に送電する電力に相当する。例えば、電圧および電流が一定の場合を想定すると、ペイロード32の時間長に応じた電力を1つの電力パケット30Bで送電することができる。電力種別情報31dは、通常の電力と融通専用の電力とを区別するために利用される。
電力パケット30Bの構成例を図12に示す。
図12に示した電力パケット30Bは、ヘッダ31Bとペイロード32とで構成されている。また、ヘッダ31Bの中には、同期信号31a、宛先(配電経路)情報31b、送電電力情報(送電量を表すデータ)31c、および電力種別情報31dが含まれている。ペイロード32は、実際に送電する電力に相当する。例えば、電圧および電流が一定の場合を想定すると、ペイロード32の時間長に応じた電力を1つの電力パケット30Bで送電することができる。電力種別情報31dは、通常の電力と融通専用の電力とを区別するために利用される。
<電力パケットミキサ21Bの構成および動作>
電力パケットミキサ21Bの構成は、図5に示した電力パケットミキサ21とほぼ同じである。また、電力パケットミキサ21Bの動作は図6に示した電力パケットミキサ21の動作と同様である。
電力パケットミキサ21Bの構成は、図5に示した電力パケットミキサ21とほぼ同じである。また、電力パケットミキサ21Bの動作は図6に示した電力パケットミキサ21の動作と同様である。
<電力パケットルータ22Bの構成例>
電力パケットルータ22Bの構成例を図13に示す。
図13に示した電力パケットルータ22Bの内部には、ヘッダ分離解析部41、通常蓄電部42A、融通蓄電部42B、パケット生成部43、出力ポート選択部44、制御部45B、および通信インタフェース部46が備わっている。
電力パケットルータ22Bの構成例を図13に示す。
図13に示した電力パケットルータ22Bの内部には、ヘッダ分離解析部41、通常蓄電部42A、融通蓄電部42B、パケット生成部43、出力ポート選択部44、制御部45B、および通信インタフェース部46が備わっている。
ヘッダ分離解析部41は、電力パケット入力ポート22aの各々に入力された電力パケット30Bを処理してそのヘッダ31Bを分離し、ヘッダ31Bの内容の解析を実施する。
通常蓄電部42Aおよび融通蓄電部42Bは、電力パケット入力ポート22aの各々に入力された電力パケット30Bのペイロード32のタイミングで、この電力を充電し一時的に蓄積する。通常蓄電部42Aは通常給電を行う場合に使用され、融通蓄電部42Bは融通電力の給電を行う場合に専用に使用される。なお、通常蓄電部42Aと融通蓄電部42Bが同じ蓄電部により構成され、当該蓄電部に通常給電用の電力と融通電力とが蓄電されるようにしてもよい。
パケット生成部43は、電力パケット30Bの生成が必要な時に、通常蓄電部42A、又は融通蓄電部42Bが蓄積している電力に基づいて新たな電力パケット30Bを生成する。出力ポート選択部44は、通常蓄電部42A、融通蓄電部42Bのいずれかが蓄積している電力、又はパケット生成部43が生成した電力パケット30Bを、電力出力ポート22bのいずれかに選択的に出力する。制御部45Bは、次に説明するように、電力パケットルータ22Bの全体の制御を実施する。
<電力パケットルータ22Bの動作例>
各電力パケットルータ22Bの基本的な動作は、図8に示した電力パケットルータ22の動作と同様である。但し、次に説明する点が異なる。
各電力パケットルータ22Bの基本的な動作は、図8に示した電力パケットルータ22の動作と同様である。但し、次に説明する点が異なる。
電力パケットルータ22Bは、電力パケット入力ポート22aで受信した電力パケット30Bのヘッダ31Bに含まれる宛先情報31b、および電力種別情報31dを照合する。照合の結果、受信した電力パケット30Bが自ルータ宛で且つ通常給電電力の場合には、ペイロード32の電力を通常蓄電部42Aに充電するとともに所定の出力ポートへ出力する。また、前記照合の結果、受信した電力パケット30Bが自ルータ宛で且つ融通電力の場合には、ペイロード32の電力を融通蓄電部42Bに充電する。また、電力パケットルータ22Bは、自ルータ宛の電力パケット30Bを受電すると、種別や受電電力量等を含む受電情報27Bを配電管理ECU26Bへ通知する。
また、電力パケットルータ22Bは、配電管理ECU26から電力融通の指示情報を受信すると、融通蓄電部42Bに蓄積されている電力に基づき、所定ルータ宛の電力パケット30Bを生成し所定の出力ポートから所定ルータの入力ポートへ出力する。これと同時に、電力パケットルータ22Bは配電管理ECU26Bへ、融通蓄電部42Bの充電残量を含む送電情報を通知する。また、電力パケットルータ22Bは、出力ポートに接続される各負荷の駆動電力と通常蓄電部42A、融通蓄電部42Bの充電状態とに基づき、必要に応じて配電管理ECU26へ配電要求27Aを通知する。
<配電管理ECU26Bの構成>
配電管理ECU26Bの構成は、図9に示した配電管理ECU26の構成と同様である。
配電管理ECU26Bの通信インタフェース部26bの通信ポート26cは電力パケットミキサ21Bと接続され、通信ポート26dは、各電力パケットルータ22Bと接続されている。
配電管理ECU26Bの構成は、図9に示した配電管理ECU26の構成と同様である。
配電管理ECU26Bの通信インタフェース部26bの通信ポート26cは電力パケットミキサ21Bと接続され、通信ポート26dは、各電力パケットルータ22Bと接続されている。
<配電管理ECU26Bの動作例>
配電管理ECU26Bの動作例を図14に示す。すなわち、配電管理ECU26B内の制御部26aが、図14の動作を制御する。図14の動作について以下に説明する。
配電管理ECU26Bの動作例を図14に示す。すなわち、配電管理ECU26B内の制御部26aが、図14の動作を制御する。図14の動作について以下に説明する。
配電管理ECU26Bは、複数の電力パケットルータ22Bのいずれかから配電要求27Aの情報を通知された場合に(S78)、電力パケットミキサ21Bと電力パケットルータ22Bの間の全ての配電経路について異常がなければ、送電指示28Aの情報を生成し(S80)、電力パケットミキサ21Bに対して送電指示28Aの情報を通知する(S81)。
また、配電管理ECU26Bは、電力パケットミキサ21Bからの送電情報28Bを受領すると(S71)、受電情報受領待ちタイマを起動する(S72)。更に、配電管理ECU26Bは、受電情報受領待ちタイマのタイムアウトまでに、電力パケットルータ22Bからの受電情報27Bが受領されない場合、配電経路に断線、短絡等の異常が生じていると判定し(S76)、同一配電経路による配電を行わないようにする(S77)。
また、配電管理ECU26Bは、電力パケットルータ22Bから配電要求27Aの情報を受領した時に、電力パケットミキサ21Bと電力パケットルータ22Bの間の全ての配電経路で異常が確認されている場合には次のように処理する。すなわち、「電力融通指示情報」を生成し(S82)、配電要求27Aを送出した特定の電力パケットルータ22Bとの間で配電経路を構築可能な他の電力パケットルータ22Bに対して「電力融通指示情報」を通知する(S83)。
また、配電管理ECU26Bは、電力パケットルータ22Bから送信される受電情報27Bに基づいて、送信元の電力パケットルータ22B内の融通蓄電部42Bにおける充電量を認識する。そして、配電管理ECU26Bは認識した充電量に基づき、必要に応じて、電力パケットミキサ21Bに対して、電力パケットルータ22Bに対する電力融通用電力の送電指示情報を通知する。
<システム全体の動作>
つまり、図11に示した電力供給システム10-3においては、複数の電力パケットルータ22Bのそれぞれが、バッファとして内蔵している融通蓄電部42Bに常時蓄電すると共に、この蓄電している電力量をルータ自身で把握している。そして、複数の電力パケットルータ22B-1~22B-3のいずれかにおいて電力量の不足が生じた場合や、電力量不足の発生が見込まれるような状況において、該当する電力パケットルータ22Bが配電要求27Aの情報を配電管理ECU26Bに通知する。この配電要求27Aの情報に基づき、融通蓄電部42Bに十分な電力を蓄電している電力パケットルータ22Bに対して、配電管理ECU26Bが「電力融通指示情報」を通知する。
つまり、図11に示した電力供給システム10-3においては、複数の電力パケットルータ22Bのそれぞれが、バッファとして内蔵している融通蓄電部42Bに常時蓄電すると共に、この蓄電している電力量をルータ自身で把握している。そして、複数の電力パケットルータ22B-1~22B-3のいずれかにおいて電力量の不足が生じた場合や、電力量不足の発生が見込まれるような状況において、該当する電力パケットルータ22Bが配電要求27Aの情報を配電管理ECU26Bに通知する。この配電要求27Aの情報に基づき、融通蓄電部42Bに十分な電力を蓄電している電力パケットルータ22Bに対して、配電管理ECU26Bが「電力融通指示情報」を通知する。
したがって、例えば電力パケットルータ22B-2で電力不足が発生した場合に、電力伝送路29D-2を経由して、電力パケットルータ22B-3の電力を電力パケットルータ22B-2に転送し、電力を融通することができる。また、電力伝送路29D-1を経由して、電力パケットルータ22B-1の電力を電力パケットルータ22B-2に転送し、電力を融通することもできる。
また、このような電力の融通は、例えば、電力伝送路29A等で断線が発生し、各電力パケットルータ22B-1~22B-3の入力への電力供給が途絶えた場合に、各電力パケットルータ22B-1~22B-3の間で互いに電力を融通することにより、重要な負荷に対する電力供給を一定時間だけ継続することが可能になる。したがって、例えば衝突した車両が安全に停止するまでの間は、重要な負荷に電力を供給できる。
また、上記のように負荷の種類に応じた優先制御を実施する場合には、各電力パケットルータ22Bに接続される複数の負荷のそれぞれに優先度を事前に割り当てておく。また、複数の電力パケットルータ22B-1~22B-3の中で、より高い優先度の負荷が接続された特定の電力パケットルータ22Bの電力パケット入力ポート22aには、より多くの電力パケットミキサ21Bや電力パケットルータ22Bの出力ポートが接続されるように構成する。
例えば、図11に示した電力供給システム10-3においては、電力パケットルータ22B-2の電力パケット入力ポート22aに、電力パケットルータ22B-1、および22B-3の出力を、それぞれ接続してある。したがって、電力パケットルータ22B-2の出力に接続されている重要度の高い負荷24-Bに対して、3つの電力パケットルータ22B-1~22B-3から優先的に電力を供給できる。
また、電力伝送路29A-1~29A-3のうちいずれかが断線した場合に、断線していない電力伝送路と、電力伝送路29D-1,29D-2とを経由して目的の電力パケットルータに電力を供給することができる。例えば、電力伝送路29A-1が断線した場合、電力パケットミキサ21Bから電力パケットルータ22B-1へは、電力伝送路29A-2、電力パケットルータ22B-2、および電力伝送路29D-1を経由して電力パケットを伝送できる。
<ルータや電装品(負荷)を増設可能にするための技術>
<負荷及びルータを後付けする必要性の説明>
自動車においては、ADAS(Advanced Driver Assistance System:先進運転システム)、ナビゲーションシステム、エンジン制御系等の技術発展に伴い、車両に搭載される電子デバイス及びそれらを駆動するために要求される電力量が増加の一途であり、電源のパワーアップ及び効率改善が必要になる。そのため、自動車における多電源化、例えば電圧が異なる複数種類(12[V]、48[V]の組み合わせ等)のバッテリの搭載、大出カオルタネータ、回生ブレーキ、エナジーハーベストなどが予見されている。
<負荷及びルータを後付けする必要性の説明>
自動車においては、ADAS(Advanced Driver Assistance System:先進運転システム)、ナビゲーションシステム、エンジン制御系等の技術発展に伴い、車両に搭載される電子デバイス及びそれらを駆動するために要求される電力量が増加の一途であり、電源のパワーアップ及び効率改善が必要になる。そのため、自動車における多電源化、例えば電圧が異なる複数種類(12[V]、48[V]の組み合わせ等)のバッテリの搭載、大出カオルタネータ、回生ブレーキ、エナジーハーベストなどが予見されている。
反面、燃料である石油の価格高騰や二酸化炭素排出による環境問題の背景より、自動車の低燃費化の要求は非常に高いことから、燃費を悪化させる車両重量の増加は避けなくてはならない。電力パケット伝送システムは、複数の電源からの電力を時分割(パケット化)によって伝送することで、最小限な配線数で多電源化を実現できる可能性がある。つまり、車両重量の増加を防止できる。また、例えば複数種類の電圧が共存する環境における配線数の増加を抑制できる。
しかし、一般的な電力パケット伝送システムの場合には、システム全体の構成が事前に決定されているので、例えば車両の仕様変更などに伴い、システムの負荷として、新たな電装品を追加したり、接続する電装品の種類を変更するような場合に対応できない。つまり、新たな電装品を追加したり、接続する電装品の種類を変更するような場合には、システム全体を設計し直す必要があるので、仕様変更に伴う設計コストが増えてしまう。
本実施形態の電力供給システム10-4は、後述するように、電力パケット伝送の技術を採用すると共に、新たな負荷の追加を容易にするための機能を提供できる。
<電力供給システム10-4の構成例>
本発明の実施形態における電力供給システム10-4の構成例を図15に示す。なお、図15に示した電力供給システム10-4は基本的な構成例を表しており、必要に応じて電源、機器の追加や変更を行うことができる。また、電力パケット30Cの構成例を図16に示す。
本発明の実施形態における電力供給システム10-4の構成例を図15に示す。なお、図15に示した電力供給システム10-4は基本的な構成例を表しており、必要に応じて電源、機器の追加や変更を行うことができる。また、電力パケット30Cの構成例を図16に示す。
図15に示した電力供給システム10-4は、主要な構成要素として、電力パケットミキサ51、複数の電力パケットルータ52-1~52-3、および配電管理ECU56を備えている。
電力パケットミキサ51の複数の電力入力ポート51aには、電圧が12[V]の車載バッテリ(電源1)53-1と、電圧が48[V]の車載バッテリ(電源2)53-2とが、電力伝送路55Bを介してそれぞれ接続されている。また、電力パケットミキサ51の複数の電力パケット出力ポート51bに、複数の電力パケットルータ52-1、52-2が電力伝送路55Aを介してそれぞれ接続されている。なお、複数の車載バッテリ53-1、および53-2の出力する電圧が同じであってもよい。
電力パケットルータ52-1の電力出力ポート52bに、電力パケットルータ52-3と、複数の負荷54-1、54-2とが電力伝送路55Cを介して接続されている。つまり、電力パケットルータ52-1と電力パケットルータ52-3とが直列に接続されている。各負荷54-1、54-2は車載の各種電装品に相当する。
電力パケットルータ52-3の電力出力ポート52bに、複数の負荷54-5、54-6が電力伝送路55Dを介して接続されている。また、電力パケットルータ52-2の電力出力ポート52bに、複数の負荷54-3、54-4が電力伝送路55C-2を介して接続されている。負荷54-7は、このシステムに新たに追加するために用意されたものであり、図1の例では電力パケットルータ52-2の電力出力ポート52bの空いているポートに接続することを想定している。
なお、各電力伝送路55A、55B、55C、55Dは、それぞれの電力容量に対応した送電用の電線、あるいはバスバーであり、例えばワイヤハーネスの一部分として構成される。
配電管理ECU56は、電力パケットミキサ51の通信ポート51cと所定の通信線を介して接続されている。また、配電管理ECU56の入力に、入力機器57およびスイッチ類58が接続されている。入力機器57およびスイッチ類58は、ユーザ等の入力操作を受付可能にするために設けてある。配電管理ECU56は、このシステムにおいて送電制御やパケット伝送のスケジュール構築の機能を担う。
電力パケットミキサ51は、例えば図5に示した電力パケットミキサ21と同じように構成され、基本的な機能として、車載バッテリ53-1、53-2等から供給される電力に基づいて電力パケット30Cを生成し、この電力パケット30Cを電力パケット出力ポート51bに送出する機能を有している。
また、各電力パケットルータ52-1~52-3は、例えば図7に示した電力パケットルータ22と同じように構成され、基本的な機能として、電力パケット入力ポート52aに入力された電力パケット30Cを受け取る機能を有している。更に、受け取った電力パケット30Cの電力を内部で蓄電して必要に応じて負荷側に供給する機能や、中継用の電力パケット30Cを生成して下流側の他の電力パケットルータ52に送出する機能を有している。
また、本実施形態における配電管理ECU56、電力パケットミキサ51、電力パケットルータ52の各々は、電力パケット30Cの経路情報を格納するための図示しない記憶手段(例えば不揮発性メモリ)を内蔵している。これらの各記憶手段が保持している経路情報は、電力パケットミキサ51と、各電力パケットルータ52-1~52-3との間のデータ通信により共有される。このデータ通信は、電力伝送路55A等を用いて行うことができる。そして、電力パケットミキサ51の下流側の接続状態が変化した場合には、経路情報が逐次更新される。
電力パケットミキサ51は、複数の車載バッテリ53の電源電力を、電源数よりも少数の伝送路で伝送するために、行き先または電圧振幅の異なる電力パケット30Cを生成し、それぞれの電力パケット30Cを時分割多重方式で電力パケットルータ52-1~52-3に向けて電力伝送路55Aに送出する。
電力パケット30Cは、図16に示すように、ヘッダ31Cとペイロード32とで構成されている。また、ヘッダ31Cには同期信号、宛先、経路情報、送電電力、タイミング情報等が含まれている。
各電力パケットルータ52-1~52-3は、受信した電力パケット30Cのヘッダ31Cからその情報タグを読み取り、その情報に基づいて各負荷に電力を分配する。つまり、受信した電力パケット30Cのペイロード32における電力は、宛先の負荷毎に分配する。各負荷54に送られる電力パケット30Cの電力は断続的に発生する。したがって、パケットが届かない時間中の電力供給を補償するために、電解コンデンサ等をバッファ、すなわち蓄電部として使用するか、または二次電池を各電力パケットルータ52に接続する。
蓄電部の容量については、システムが使用する電力パケット30Cの時間周期が長くなるのに比例して必要容量が増加する。したがって、容量が大きいほど汎用的に使用できる。蓄電部として使用するバッファまたは二次電池は各電力パケットルータ52に内蔵してもよい。
<電力供給システム10-4の基本的な動作>
電力供給システム10-4内の各電力パケットルータ52は、電力パケット入力ポート52aで受信した電力パケット30Cのヘッダ31Cに含まれる宛先情報を照合する。照合の結果、自ルータに接続される負荷宛の電力パケット30Cである場合は、ペイロード32の電力を蓄電部に充電するとともに、この電力を所定の出力ポートへ出力する。照合の結果、自ルータを中継した他ルータに接続される負荷宛の電力パケット30Cの場合には、それ自身の蓄電部に蓄電した電力に基づき、所定ルータ宛の中継用の電力パケット30Cを新たに生成して、これを所定の出力ポートに出力して、所定ルータの入力ポートへ与える。
電力供給システム10-4内の各電力パケットルータ52は、電力パケット入力ポート52aで受信した電力パケット30Cのヘッダ31Cに含まれる宛先情報を照合する。照合の結果、自ルータに接続される負荷宛の電力パケット30Cである場合は、ペイロード32の電力を蓄電部に充電するとともに、この電力を所定の出力ポートへ出力する。照合の結果、自ルータを中継した他ルータに接続される負荷宛の電力パケット30Cの場合には、それ自身の蓄電部に蓄電した電力に基づき、所定ルータ宛の中継用の電力パケット30Cを新たに生成して、これを所定の出力ポートに出力して、所定ルータの入力ポートへ与える。
各電力パケットルータ52は、受信した各電力パケット30Cのペイロード32に対応した受電情報を、電力パケットミキサ51を介して配電管理ECU56へ通知する。また、各電力パケットルータ52は、電力出力ポート52bに接続される各負荷の駆動電力と蓄電部の充電状態に基づいて、必要に応じて配電管理ECU56へ配電要求を行う。
<電力供給システム10-4の特徴的な機能>
図15に示した電力供給システム10-4は、電力の主伝送路である電力伝送路55A、55C、55D等に対して、各電力パケットルータ52およびそれらに接続される各負荷を簡易に増設可能にするための機能を備えている。その機能のために、電力パケットミキサ51と各電力パケットルータ52との間でデータ通信を行い、接続した負荷の認証を実施する。電力パケットミキサ51と各電力パケットルータ52との間でデータ通信を行う場合には、例えば、通信用の伝送路として電力伝送路55A等を利用する双方向通信や、無線通信を利用する。
図15に示した電力供給システム10-4は、電力の主伝送路である電力伝送路55A、55C、55D等に対して、各電力パケットルータ52およびそれらに接続される各負荷を簡易に増設可能にするための機能を備えている。その機能のために、電力パケットミキサ51と各電力パケットルータ52との間でデータ通信を行い、接続した負荷の認証を実施する。電力パケットミキサ51と各電力パケットルータ52との間でデータ通信を行う場合には、例えば、通信用の伝送路として電力伝送路55A等を利用する双方向通信や、無線通信を利用する。
例えば、図15に示した電力供給システム10-4に対して、7番目の新たな負荷54-7を電力パケットルータ52-2の電力出力ポート52bに接続して、このシステムに追加する場合には、負荷54-7が新規で物理的に接続されたことを電力パケットルータ52-2が自動的に検知し、このシステムへの論理的な接続に必要な処理を、電力パケットミキサ51、電力パケットルータ52、配電管理ECU56が自動的に実施する。
なお、各電力パケットルータ52の出力に接続することが想定される各負荷54については、その種類や特性を表す「デバイスディスクリプタ」等の情報を保持していないことが想定される。したがって、新規に接続された各負荷の種類や特性を何らかの方法で特定する必要がある。本実施形態においては、ユーザ等の操作者が必要な入力操作を行うことにより、接続された各負荷の種類や特性を特定している。但し、後述するように、自動的に特定することも可能である。
また、電力パケットミキサ51の出力や、各電力パケットルータ52の出力に他の新たな電力パケットルータ52を後付けで追加することも可能である。その場合、電力パケットミキサ51は複数の電力パケット出力ポート51bを備え、これらを利用して、複数の電力パケットルータ52のそれぞれに対して電力パケット30Cの送出を行うことができる。
例えば、操作者がシステムの電源をオンに切り替えた場合のように、電力パケットミキサ51が起動した時に、電力パケットミキサ51は電力パケット出力ポート51bの各々の接続状態を確認し、新規に接続された電力パケットルータ52が存在する場合には、該当する電力パケットルータ52に対して電力リソースの再分配(再スケジュール)の準備を行う。
例えば、電力パケット出力ポート51bの各信号端子を抵抗器を介して所定の電源ラインにプルアップしておくことにより、USB(Universal Serial Bus)規格のデバイスと同じように、各出力ポートへのデバイス接続の有無を自動的に検出できる。プルアップ用の電源電圧としては、例えば3.3[V]以下の低い電圧を用いるのがよい。
この電力供給システム10-4に新規に電力パケットルータ52が接続された場合には、この電力パケットルータ52からの信号により、負荷が接続されていることが電力パケットミキサ51に通知された時には、後述のように電力リソースの再分配(再スケジュール)を行う。
各電力パケットルータ52は、後付けで負荷を追加することを可能にするために、次に説明する機能を備える。電力パケットルータ52は、起動時にそれ自身の電力出力ポート52bの負荷接続状態を確認し、新規に接続された負荷の種類や駆動電力の情報収集を行う。新規の接続を確認した電力パケットルータ52は、接続された新規のデバイスの種類や仕様の情報を特定するために、例えばタッチパネル等(ディスプレイを兼ねる)の入力装置を通じて操作者に入力を求める。
その後、電力パケットミキサ51と電力パケットルータ52との間の双方向通信により情報の交換を行い、電力パケットミキサ51が電力容量や供給タイミングの観点から新たな負荷を加えたシステムの成立性の判断及び、電力リソース分配のスケジュールの再調整を行う。
電力パケットミキサ51と電力パケットルータ52との間で必要とされる双方向通信では、電力パケットミキサ51から電力パケットルータ52に向かう方向のデータ通信の場合には電力パケット30Cのヘッダ31C等の情報タグを利用できる。
また、電力パケットルータ52から電力パケットミキサ51に向かう方向のデータ通信の場合には、例えば周波数分割多重方式等を用いて電力パケット30Cのクロックの基本周波数と異なる周波数に信号を乗せて通信を行うことが考えられる。また、電力伝送路55A等を利用せずに、電力パケットミキサ51と電力パケットルータ52との間で無線通信を行ってもよい。
<新規デバイス接続時の電力供給システムの動作手順の例>
電力供給システム10-4の各部の動作手順の例を図17に示す。但し、ここでは次に示す「前提条件」の下で動作することを想定している。
電力供給システム10-4の各部の動作手順の例を図17に示す。但し、ここでは次に示す「前提条件」の下で動作することを想定している。
<前提条件>
電力パケットミキサ51の下流へのデバイス(電力パケットルータ52や負荷54)の取付け/取外しは電源オフの状態で行われ、電源オン時にデバイスの接続の確認を行う。
電力パケットミキサ51の下流へのデバイス(電力パケットルータ52や負荷54)の取付け/取外しは電源オフの状態で行われ、電源オン時にデバイスの接続の確認を行う。
電力パケットミキサ51の後段に接続されるのは電力パケットルータ52のみとする。よってデバイスが自身の正体を知らせるための「デバイスディスクリプタ」等の送受信は必要とせず、ルータや負荷が「デバイスディスクリプタ」等を保持する必要は無い。
電力パケットルータ52の後段に接続されるのは負荷54、又は他の電力パケットルータ52のみに限定される。電力パケットルータ52は、電源オン時に自身の出力ポートの接続を確認し、接続されている負荷54の情報を電力パケットミキサ51に知らせる。
電力パケットルータ52が新規のデバイスを検出したときには、それを電力パケットミキサ51に知らせる。また、接続されたデバイスが負荷54であった場合には、電力パケットミキサ51が操作者に対してタッチパネル入力装置兼ディスプレイ、すなわち入力機器57、スイッチ類58などから負荷の仕様情報の入力を求める。また、電力パケットミキサ51は同時にデバイスに対し電力パケットルータ52に組付いたアドレスを付与する。例えば、図15に示したように、新規の負荷54-7が、2番目の電力パケットルータ52-2の3番目の電力出力ポート52bに接続された場合には、アドレスとして「2-3」を付与する。
操作者によって入力されたデバイスの仕様情報と配電管理ECU56が持つ図示しないデータテーブル(デバイス種類に応じた駆動パターン等を保有)を基に、電力パケットミキサ51と各電力パケットルータ52とが連動して、システムの成立性判断及び電力パケットの伝送スケジュールの再構築を行う。また、電力パケットミキサ51は、配電管理ECU56との連携による処理を行うことを前提としている。
<手順の説明>
1.操作者の操作によりシステムの電源が投入される(S91)。
2.電力パケットミキサ51は、複数ある自身の出力ポートの接続を確認し、接続されている各電力パケットルータ52を検出する(S92,S93)。
3.電力パケットミキサ51の制御により電力パケットルータ52への電源供給(の許可)を行い、電力パケットルータ52の電源が投入される(S94,S95)。
4.電力パケットルータ52は複数ある自身の電力出力ポート52bの接続を確認し、新規デバイスを検出する(S96,S97)。
5.電力パケットルータ52は新規デバイスの情報入力とアドレスの付与を電力パケットミキサ51に要求する(S98)。
6.電力パケットミキサ51は、タッチパネル等で操作者へ新規デバイスの仕様等の情報入力(S100)を求める(S99)。同時に新規デバイスのアドレスを設定し(S101)、電力パケットルータ52と共有する(S102)。
7.電力パケットミキサ51は操作者が入力したデバイスの種類や仕様を基に電力パケット伝送システムの成立性を判断した上でパケット伝送スケジュールの構築を行い(S103)、ルータと共有する(S104)。
8.以上の手順により新規デバイスが利用可能となる。なお、ここでの新規デバイスは常時給電用であり、操作者のスイッチや他の機器との連動が必要な場合、追加の設定や駆動毎の再スケジュールが必要となる。
1.操作者の操作によりシステムの電源が投入される(S91)。
2.電力パケットミキサ51は、複数ある自身の出力ポートの接続を確認し、接続されている各電力パケットルータ52を検出する(S92,S93)。
3.電力パケットミキサ51の制御により電力パケットルータ52への電源供給(の許可)を行い、電力パケットルータ52の電源が投入される(S94,S95)。
4.電力パケットルータ52は複数ある自身の電力出力ポート52bの接続を確認し、新規デバイスを検出する(S96,S97)。
5.電力パケットルータ52は新規デバイスの情報入力とアドレスの付与を電力パケットミキサ51に要求する(S98)。
6.電力パケットミキサ51は、タッチパネル等で操作者へ新規デバイスの仕様等の情報入力(S100)を求める(S99)。同時に新規デバイスのアドレスを設定し(S101)、電力パケットルータ52と共有する(S102)。
7.電力パケットミキサ51は操作者が入力したデバイスの種類や仕様を基に電力パケット伝送システムの成立性を判断した上でパケット伝送スケジュールの構築を行い(S103)、ルータと共有する(S104)。
8.以上の手順により新規デバイスが利用可能となる。なお、ここでの新規デバイスは常時給電用であり、操作者のスイッチや他の機器との連動が必要な場合、追加の設定や駆動毎の再スケジュールが必要となる。
なお、以下に示すように変更してもよい。
電力パケットミキサ51の下流へのデバイス(ルータ、負荷)の取付け/取外しは電源オン状態で行ってもよい。この場合、電力パケットミキサ51や電力パケットルータ52は定期的に自身の接続ポートのチェックを行い、接続を確認したときに配電管理ECU56にて成立性判断、再スケジュールを行い、任意のタイミングで切り換えを行う。
電力パケットミキサ51の下流へのデバイス(ルータ、負荷)の取付け/取外しは電源オン状態で行ってもよい。この場合、電力パケットミキサ51や電力パケットルータ52は定期的に自身の接続ポートのチェックを行い、接続を確認したときに配電管理ECU56にて成立性判断、再スケジュールを行い、任意のタイミングで切り換えを行う。
電力パケットミキサ51に接続される配電管理ECU56にストレージ機能を配備し、予め接続が想定される各種負荷54の仕様例や、消費電力の時間軸的な推移データ等を収容するデータベースを構築しておく。また、操作者が指定したデバイスの種類や、消費電力を追加情報として利用する。これらの情報を利用することにより、接続された新規デバイスの駆動頻度や駆動パターンを推定することが可能になる。また、このような推定ができる環境においては、接続されたデバイスの種類、消費電力を推定するプログラムを自動実行し、操作者の入力操作(S100)を不要にすることも可能である。
電力リソース分配のスケジュールの再調整を行う際、電力パケットミキサ51に接続された電源53-1、53-2の容量が十分でない場合、負荷54の削減または電源の増設等を促すアラートを出すなどの機能を実装することが考えられる。また、この機能において製造者、販売者がコントロールできる部分、例えばライトやパワーウインドその他の必要不可欠な負荷、ADASシステムの構成部品などに割当られる電力量と、ユーザがコントロールできる部分(オーディオのスピーカ増設など)とで分けて上限の供給量から振り分けを行うことで、供給可能な電力量を把握、制限できる。これにより、ユーザによる過剰なカスタマイズ等による予期せぬバッテリ上がりやバッテリの酷使による早期の劣化などを未然に防ぐことができる。また、突入電流や高負荷時を見据えてシステムがある程度のマージンを確保しつつ事前にバッテリ上がりの恐れをなくすことが可能になる。また、配電管理ECU56の機能を電力パケットミキサ51に実行させることにより、図1に示すように電力供給システムが配電管理ECUを備えない構成としてもよい。この場合、入力機器57やスイッチ類58は、電力パケットミキサ51に接続するようにする。
以上説明したように、図15に示した電力供給システム10-4においては、各電力パケットルータ52が接続された各負荷54を認識する機能を備えているので、これを利用して新たな負荷54を後付けすることが可能になる。つまり、電力パケットルータ52は起動時に電力出力ポート52bに接続されている負荷54をスキャンするので、どんな負荷が接続されているかを確認できる。そのため、電力出力ポート52bに後付けした負荷54-7についても、電力パケットルータ52および電力パケットミキサ51が認識できる。
<負荷54-7を取り外す場合>
一方、図15に示した電力供給システム10-4において、電力パケットルータ52-2の電力出力ポート52bから負荷54-7を取り外す場合に各部で実行される動作の手順は以下の通りである。
一方、図15に示した電力供給システム10-4において、電力パケットルータ52-2の電力出力ポート52bから負荷54-7を取り外す場合に各部で実行される動作の手順は以下の通りである。
1.負荷54-7の取り外しによる電力出力ポート52bの電圧変化を電力パケットルータ52-2が検知し、これをトリガとして次の処理に進む。
2.電力パケットルータ52-2は、取り外された負荷54-7に対する駆動電力の供給を停止するように、停止要求を電力パケットミキサ51に送る。
3.電力パケットミキサ51は、電力パケットルータ52-2からの停止要求に従い、負荷54-7に対する駆動電力の送電を停止する。
2.電力パケットルータ52-2は、取り外された負荷54-7に対する駆動電力の供給を停止するように、停止要求を電力パケットミキサ51に送る。
3.電力パケットミキサ51は、電力パケットルータ52-2からの停止要求に従い、負荷54-7に対する駆動電力の送電を停止する。
<バッテリ上がりを防止するための優先制御の技術>
前述のように、図15に示した電力供給システム10-4においては、負荷などを必要に応じて追加することができる。しかし、設計時の想定以上に負荷が増えると、電力の需要と供給能力とのバランスが適度な状態から逸脱し、電力の供給能力が不足してバッテリ上がりが生じる可能性がある。そこで、本実施形態の電力供給システム10-5においては、ミキサ及びほかのルータ間で電力の供給量と需要を調整する。また、電力供給量が電力需要より小さい場合に、各負荷に優先順位を付けて優先制御を実施する。
前述のように、図15に示した電力供給システム10-4においては、負荷などを必要に応じて追加することができる。しかし、設計時の想定以上に負荷が増えると、電力の需要と供給能力とのバランスが適度な状態から逸脱し、電力の供給能力が不足してバッテリ上がりが生じる可能性がある。そこで、本実施形態の電力供給システム10-5においては、ミキサ及びほかのルータ間で電力の供給量と需要を調整する。また、電力供給量が電力需要より小さい場合に、各負荷に優先順位を付けて優先制御を実施する。
<電力供給システム10-5の構成例>
本発明の実施形態における電力供給システム10-5の構成例を図18に示す。
図18に示した電力供給システム10-5は、主要な構成要素として、電力パケットミキサ61、および複数の電力パケットルータ62-1~62-3を備えている。電力パケットミキサ61の電力入力ポート61aには、車載バッテリ(電源)63が接続されている。また、電力パケットミキサ61の複数の電力パケット出力ポート61bには、それぞれ電力パケットルータ62-1~62-3が接続されている。
本発明の実施形態における電力供給システム10-5の構成例を図18に示す。
図18に示した電力供給システム10-5は、主要な構成要素として、電力パケットミキサ61、および複数の電力パケットルータ62-1~62-3を備えている。電力パケットミキサ61の電力入力ポート61aには、車載バッテリ(電源)63が接続されている。また、電力パケットミキサ61の複数の電力パケット出力ポート61bには、それぞれ電力パケットルータ62-1~62-3が接続されている。
また、電力パケットルータ62-1の電力出力ポート62bには、複数の負荷64-A~64-Dが接続されている。また、電力パケットルータ62-2の電力出力ポート62bには、複数の負荷64-2A、64-2Bが接続されている。また、電力パケットルータ62-3の電力出力ポート62bには、複数の負荷64-3A、64-3Bが接続されている。
電力パケットミキサ61および電力パケットルータ62-1~62-3の基本的な構成および動作については、図5に示した電力パケットミキサ21、および図7に示した電力パケットルータ22と同様である。
また、図18に示した例では、各負荷64-A、64-B、64-C、64-Dには、それぞれ優先度「7」、「1」、「4」、「2」が事前に割り当ててある。また、各負荷64-2A、64-2Bには、それぞれ優先度「3」、「8」が事前に割り当ててある。各負荷64-3A、64-3Bには、それぞれ優先度「6」、「5」が事前に割り当ててある。
図18に示した電力供給システム10-5においては、電力供給能力の大きさおよび電力需要の大きさを電力パケットミキサ61が常時算出し、これらのバランスが適正な範囲を逸脱していないか監視している。そして、「電力供給能力<電力需要」の状態を検知すると、電力パケットミキサ61が負荷の優先制御を実施する。
例えば、電力供給対象の負荷を、優先度が「1~5」の範囲内のみに限定し、それ以外の負荷への電力供給を一時的に停止する。したがって、その場合には、図18に示した負荷64-B、64-C、64-D、64-2A、64-3Bに対しては電力供給が継続されるが、優先度の低い負荷64-A、64-2B、64-3Aに対する電力供給は停止する。
このような優先制御により、電力需要を削減できるので「電力供給能力≧電力需要」の状態を維持することができる。そのため、バッテリ上がりを防止できる。しかも、優先度の高い負荷に対する電力供給状態を維持できるので、重要なシステムに対する悪影響を抑制できる。
具体例としては、車両において、ワイパ、デフォッガー、空調機器、ヘッドライト/フォグライト等の同時駆動を行う場合が想定される。このような高負荷運転環境等のワーストケースを想定したマージンを設定し、電源の電力供給能力とつき合わせて電力供給のスケジューリングを行った場合には、エンタメ系に費やせる電力枠が窮屈になるという問題が生じる。しかし、上記のような優先制御を実施する場合には、そのような問題が生じにくい。また、上記のような優先制御を実施する場合には、必ずしもすべての負荷の合計駆動電力と最大供給能力とを一致させる必要が無くなり、バッテリコスト等を抑えることが可能になる。
なお、電力供給システムのネットワークトポロジーについては、図18に示したようなツリー型に限らず、スター型、リング型、バス型その他でもよい。
また、上記の電力供給システム10-5においては、電力パケットミキサ61が電力供給能力の大きさや電力需要の大きさを算出しているが、図11に示したような配電管理ECU26Bを備えるようにし、配電管理ECU26Bが電力供給の大きさや電力需要の大きさを算出し、これらのバランスが適正な範囲を逸脱していないか監視するようにしてもよい。また、後述する電力供給システム10-11のように、電力パケットミキサ61あるいは配電管理ECU26Bが、車両の状況に応じて各負荷の優先度を適宜補正するようにしてもよい。
電力供給システム10-5の構成においては、主伝送路(幹線)に対して簡易に負荷を追加したり、ネットワークを拡大(増設)することが可能である。したがって、電力パケット伝送システムによる電力ネットワークのメリット(省線化、軽量化、車両への搭載性)を維持しつつプラットフォームを車両(製品)のグレードに依らない形に統一することが可能(汎用性の向上)である。
<ワイヤハーネスの省線化のための技術>
本発明の実施形態における電力供給システムの2種類の構成例を図19(a)および図19(b)にそれぞれ示す。
本発明の実施形態における電力供給システムの2種類の構成例を図19(a)および図19(b)にそれぞれ示す。
車両上で利用される電力供給システムに上述のような電力パケット伝送技術を採用することにより、例えば電圧等が異なる様々な種類の電源からの電力を共通の電力伝送路を利用して負荷側に伝送することが可能になる。したがって、ワイヤハーネスの省線化に寄与することになる。しかし、実際の車両においては、車両上の様々な箇所に配置された負荷に対し、様々な方向から電源線が配索される状況が想定されるので、ワイヤハーネスを省線化する効果があまり得られない可能性がある。
例えば、図5に示した電力パケットミキサ21は上流側の電源から電力を受け取って電力パケットを生成し、電力伝送路の下流側に送出する機能だけしか有していない。また、図7に示した電力パケットルータ22は、電力伝送路の上流側の電力パケットミキサ21から送出された電力パケットを受け取って下流側に供給する機能だけしか有していない。つまり、電力パケットを双方向に伝送することはできない。
したがって、前述のような構成の電力パケットミキサ21や電力パケットルータ22を用いて電力供給システムを構成する場合には、複数の負荷が分散して配置されている状況において、例えば図19(b)に示した電力供給システム10-7のように構成される。
図19(b)に示した電力供給システム10-7は、2台の電力パケットミキサ71B-1、71B-2と、2台の電力パケットルータ72B-1、72B-2とを備えている。そして、電力パケットミキサ71B-1の近傍に電力パケットルータ72B-2が配置され、電力パケットルータ72B-2の出力側に2つの負荷74-3、74-4が接続されている。また、電力パケットミキサ71B-2の近傍に電力パケットルータ72B-1が配置され、電力パケットルータ72B-1の出力側に2つの負荷74-1、74-2が接続されている。
また、電力パケットミキサ71B-1の出力と、電力パケットルータ72B-1の入力との間が電力伝送路76を介して接続され、電力パケットミキサ71B-2の出力と、電力パケットルータ72B-2の入力との間が電力伝送路77を介して接続されている。
つまり、この電力供給システム10-7においては、往路の電力伝送路76と復路の電力伝送路77とをそれぞれ配置しなければならないので、ワイヤハーネスの電線数を削減できない。また、電力パケットミキサ71Bの数が増える可能性がある。
そこで、本実施形態では、図19(a)に示した電力供給システム10-6のように構成する。この電力供給システム10-6は、1台の複合電力パケットミキサ71と、2台の複合電力パケットルータ72-1、72-2とを備えている。
複合電力パケットミキサ71は、例えば図5に示した電力パケットミキサ21の機能の他に、図7に示した電力パケットルータ22の一部の機能を備えた複合装置である。つまり、複合電力パケットミキサ71は電力パケットを生成して送出する機能の他に、電力パケットを受け取る機能を備えており、電力パケットを双方向に伝送するために利用できる。
また、複合電力パケットルータ72は、例えば図7に示した電力パケットルータ22の機能の他に、例えば図5に示した電力パケットミキサ21の一部の機能を備えた複合装置である。つまり、複合電力パケットルータ72は、電力パケットを受け取る機能の他に、電力パケットを生成して送出する機能も備えているため、電力パケットを双方向に伝送するために利用できる。
図19(a)に示した電力供給システム10-6においては、複合電力パケットミキサ71、複合電力パケットルータ72-1、72-2のそれぞれが双方向の電力パケット伝送に対応している。したがって、複合電力パケットミキサ71と複合電力パケットルータ72-1との間を単一の双方向電力伝送路75-1で接続し、複合電力パケットミキサ71と複合電力パケットルータ72-2との間を単一の双方向電力伝送路75-2で接続してある。また、複合電力パケットルータ72-1の出力側に2つの負荷74-1、74-2を接続し、複合電力パケットルータ72-2の出力側に2つの負荷74-3、74-4を接続してある。
つまり、図19(a)に示した電力供給システム10-6においては、図19(b)の電力供給システム10-7と比べて電力伝送路の数が削減されている。したがって、双方向電力伝送路75-1、75-2に相当するワイヤハーネスの電線数を削減できる。また、ルータやミキサの総数も削減できるので、機器の大型化を避けることができ、電力パケット伝送技術の搭載にかかるコストを低減できる。特に、負荷の種類や総数が増えて、これらの負荷が車両上の様々な箇所に分散して配置され、それら負荷に電力を供給する電源線が方々から配索されているような状況において、顕著な効果が期待できる。
<不足する電源電力を融通するための技術-2>
<電力供給システム10-8の構成例>
本発明の実施形態における電力供給システム10-8の構成例を図20に示す。
図20に示した電力供給システム10-8は、主要な構成要素として、電力パケットミキサ81と、複数の電力パケットルータ82-1~82-4とを備えている。電力パケットミキサ81の基本的な構成および動作は、図5に示した電力パケットミキサ21と同様である。また、各電力パケットルータ82-1~82-4の基本的な構成および動作は図7に示した電力パケットルータ22、あるいは図13に示した電力パケットルータ22Bと同様である。
<電力供給システム10-8の構成例>
本発明の実施形態における電力供給システム10-8の構成例を図20に示す。
図20に示した電力供給システム10-8は、主要な構成要素として、電力パケットミキサ81と、複数の電力パケットルータ82-1~82-4とを備えている。電力パケットミキサ81の基本的な構成および動作は、図5に示した電力パケットミキサ21と同様である。また、各電力パケットルータ82-1~82-4の基本的な構成および動作は図7に示した電力パケットルータ22、あるいは図13に示した電力パケットルータ22Bと同様である。
電力パケットミキサ81の入力側には電力伝送路85-2を介して車載バッテリ83が接続されている。また、電力パケットミキサ81の出力側のポートは、電力伝送路85-1を介して電力パケットルータ82-1の入力側に接続されている。
また、電力パケットルータ82-1の出力側には、4つの電力パケットルータ82-1~82-4のそれぞれを通るリング状の電力伝送路が形成されている。すなわち、電力伝送路85-3が電力パケットルータ82-1、82-2の間を接続し、電力伝送路85-4が電力パケットルータ82-2、82-4の間を接続し、電力伝送路85-5が電力パケットルータ82-4、82-3の間を接続し、電力伝送路85-6が電力パケットルータ82-3、82-1の間を接続している。
また、電力パケットルータ82-1、82-2、82-3、82-4の出力側それぞれには、複数の負荷84-1、84-2、84-3、84-4が接続されている。
<電力融通の必要性>
図20に示した電力供給システム10-8のような状況において、各負荷84-1~84-4がどのように使われるかは、車両の運転状況やユーザの利用状況次第で大きく変化する。したがって、各電力パケットルータ82-1~82-4の蓄電部に各時点で蓄電されている瞬時的な蓄電電力も互いに異なる。
図20に示した電力供給システム10-8のような状況において、各負荷84-1~84-4がどのように使われるかは、車両の運転状況やユーザの利用状況次第で大きく変化する。したがって、各電力パケットルータ82-1~82-4の蓄電部に各時点で蓄電されている瞬時的な蓄電電力も互いに異なる。
そして、例えばワイヤハーネスの断線により、電力伝送路85-1の経路が遮断されると、車載バッテリ83からの電力を各電力パケットルータ82-1~82-4に供給できなくなる。各電力パケットルータ82-1~82-4は、それぞれ蓄電部を備えているので、電力伝送路85-1が遮断された場合でも、しばらくの間は負荷84-1~84-4に電力を供給できる。
しかし、各電力パケットルータ82-1~82-4が蓄電している電力量は、その時の状況に応じて変化するので、重要度の高い負荷に対する電力供給が短時間で停止する可能性もある。したがって、電力伝送路85-1が遮断された場合に、優先順位の高い負荷の機能を、例えば車両が安全に停止するまでの間は維持するようなシステムが必要になる。
<電力供給システム10-8における特別な機能>
図20に示した複数の電力パケットルータ82-1~82-4の各々は、お互いの間でデータ通信するための機能を有している。また、複数の電力パケットルータ82-1~82-4の少なくとも1つ、電力パケットミキサ81、又はこれらを管理する装置(図示せず)が、電力伝送路85-1の断線を検出するための機能を有している。
図20に示した複数の電力パケットルータ82-1~82-4の各々は、お互いの間でデータ通信するための機能を有している。また、複数の電力パケットルータ82-1~82-4の少なくとも1つ、電力パケットミキサ81、又はこれらを管理する装置(図示せず)が、電力伝送路85-1の断線を検出するための機能を有している。
また、電力伝送路85-1の断線が検出された場合に、複数の電力パケットルータ82-1~82-4の各々が蓄積している電力を有効に活用して優先度の高い負荷に対する電力供給を維持するための機能、つまり、複数の電力パケットルータ82-1~82-4の各々が必要に応じて電力を互いに融通する機能を有している。この機能は、例えば図7の制御部45、あるいは図13の制御部45Bによって実現される。
<電力供給システム10-8の動作例>
図20に示した電力供給システム10-8は、電力伝送路85-1に断線が生じた場合に次のように動作する。
図20に示した電力供給システム10-8は、電力伝送路85-1に断線が生じた場合に次のように動作する。
1.例えば電力パケットミキサ81、又は電力パケットルータ82-1~82-4のいずれかが断線の発生と断線した位置を検知する。
2.電力パケットミキサ81は、断線を検知すると、インジケータ89等を用いてこの異常を運転者に報知する。
3.複数の電力パケットルータ82-1~82-4の中で、互いに電力伝送路の接続状態が維持されているもの同士の間で通信を行い、それぞれの蓄電状況等を表す情報を共有する。
4.複数の電力パケットルータ82-1~82-4の中で、事前に高い優先順位が割り当てられた負荷84が接続されている特定のルータの蓄電量が十分か否かを識別し、電力が不足している場合は、他のルータが電力を融通する。
2.電力パケットミキサ81は、断線を検知すると、インジケータ89等を用いてこの異常を運転者に報知する。
3.複数の電力パケットルータ82-1~82-4の中で、互いに電力伝送路の接続状態が維持されているもの同士の間で通信を行い、それぞれの蓄電状況等を表す情報を共有する。
4.複数の電力パケットルータ82-1~82-4の中で、事前に高い優先順位が割り当てられた負荷84が接続されている特定のルータの蓄電量が十分か否かを識別し、電力が不足している場合は、他のルータが電力を融通する。
例えば、図20に示した電力供給システム10-8において、電力パケットルータ82-3に接続されている負荷84-3の優先順位が高い場合に、電力パケットルータ82-3の蓄積している電力量が負荷84-3の駆動に不十分である場合を想定する。この場合は、例えば十分な電力を蓄積している電力パケットルータ82-1や他の電力パケットルータ82-4が、電力パケットルータ82-3に宛てた電力パケットを送出し、電力を融通する。この融通により、電力伝送路85-1が遮断されたままであっても電力パケットルータ82-3の蓄電部には十分な電力が充電されることになり、優先度の高い負荷84-3を少なくとも一定時間の間は駆動できる。
なお、電力パケットルータ82-1~82-4が互いに通信を行い電力を融通する代わりに、電力供給システム10-8が図11に示したような配電管理ECU26Bを備え、配電管理ECU26Bが各電力パケットルータ82-1~82-4の蓄電量を記憶しておき、必要に応じて電力パケットルータ82-1~82-4に対し電力融通の指示を行うようにしてもよい。特に電力供給システム10-8が有する電力パケットルータの数が多い場合には、配電管理ECU26Bにより電力融通を一元管理できるので、電力パケットルータ同士で電力融通のための通信を行う必要がなくなり、システムの複雑化を抑制できる。
<「故障診断」の技術>
車両用の電力供給システムにおいては、例えばワイヤハーネスを構成する各電線の被覆のはがれや、端子嵌合部における半嵌合などが発生する可能性があり、その影響で発生するチャタリングショート等は検知しにくく、システム全体に影響を与える可能性がある。そこで、電力伝送経路における電線等の劣化を検知し、不具合を未然に防ぐシステムが必要になる。なお、一般的な診断技術では、伝送線路の異常を検出するために新たな機器が必要であったり、断線や短絡(デッドショート)等を検出できないケースが考えられる。
車両用の電力供給システムにおいては、例えばワイヤハーネスを構成する各電線の被覆のはがれや、端子嵌合部における半嵌合などが発生する可能性があり、その影響で発生するチャタリングショート等は検知しにくく、システム全体に影響を与える可能性がある。そこで、電力伝送経路における電線等の劣化を検知し、不具合を未然に防ぐシステムが必要になる。なお、一般的な診断技術では、伝送線路の異常を検出するために新たな機器が必要であったり、断線や短絡(デッドショート)等を検出できないケースが考えられる。
そこで、本実施形態における「故障診断」は、電力パケットルータが受信する電力パケット内のヘッダに含まれる異常検出用のパルスに関して、電圧値等の物理信号波形の変化から伝送路の異常を検出する。
<電力供給システム10-9の構成例>
本発明の実施形態における電力供給システム10-9の構成例を図21に示す。
図21に示した電力供給システム10-9は、主要な構成要素として、電力パケットミキサ91と、複数の電力パケットルータ92-1~92-4とを備えている。電力パケットミキサ91の基本的な構成および動作は、図5に示した電力パケットミキサ21と同様である。また、各電力パケットルータ92-1~92-4の基本的な構成および動作は図7に示した電力パケットルータ22と同様である。
本発明の実施形態における電力供給システム10-9の構成例を図21に示す。
図21に示した電力供給システム10-9は、主要な構成要素として、電力パケットミキサ91と、複数の電力パケットルータ92-1~92-4とを備えている。電力パケットミキサ91の基本的な構成および動作は、図5に示した電力パケットミキサ21と同様である。また、各電力パケットルータ92-1~92-4の基本的な構成および動作は図7に示した電力パケットルータ22と同様である。
電力パケットミキサ91の入力側には、互いに異なる電圧(48[V]、12[V])を供給する複数の車載バッテリ93-1、93-2が電力伝送路95-2を介して接続されている。また、電力パケットミキサ91の出力側のポートは、電力伝送路95-1を介して電力パケットルータ92-1の入力と接続されている。なお、複数の車載バッテリ93-1、93-2の出力電圧が同じであってもよい。
また、電力パケットルータ92-1の出力側には、4つの電力パケットルータ92-1~92-4のそれぞれを通るリング状の電力伝送路が形成されている。すなわち、電力伝送路95-3が電力パケットルータ92-1、92-2の間を接続し、電力伝送路95-4が電力パケットルータ92-2、92-4の間を接続し、電力伝送路95-5が電力パケットルータ92-4、92-3の間を接続し、電力伝送路95-6が電力パケットルータ92-3、92-1の間を接続している。
また、電力パケットルータ92-1、92-2、92-3、92-4の出力側それぞれには、複数の負荷94-1、94-2、94-3、94-4が接続されている。
<電力パケット30Dの構成例>
電力供給システム10-9において、電力パケットミキサ91等が送出する電力パケットは、ヘッダ31D、およびペイロード、フッターとで構成されている。更に、図21中に示したように、ヘッダ31Dの中には、時間幅が短い劣化診断用パルス31Daが割り当ててある。
電力供給システム10-9において、電力パケットミキサ91等が送出する電力パケットは、ヘッダ31D、およびペイロード、フッターとで構成されている。更に、図21中に示したように、ヘッダ31Dの中には、時間幅が短い劣化診断用パルス31Daが割り当ててある。
この劣化診断用パルス31Daは、広帯域の信号成分を含んでいるためワイヤハーネスの劣化を診断するのに適している。例えば、経年劣化の影響により、ワイヤハーネスの各電線に次のような劣化が発生する可能性が考えられる。
1.錆が発生する。
2.電線が伸びる。
3.電線表面の絶縁被覆がはがれる。
4.端子が抜けかかる。
5.端子の嵌合部が半嵌合状態になる。
2.電線が伸びる。
3.電線表面の絶縁被覆がはがれる。
4.端子が抜けかかる。
5.端子の嵌合部が半嵌合状態になる。
上記のようなワイヤハーネスの劣化が生じると、伝送路の電気的特性が悪化するので、特に高周波成分を含むパルス幅の短い劣化診断用パルス31Daのような信号は、伝送中の損失が増大する。その結果、例えば電力パケットミキサ91が電力伝送路95-1に送出した電力パケット30Dにおける劣化診断用パルス31Daの電圧の振幅(Vd1)と、電力パケットルータ92-1が受信する電力パケット30Dにおける劣化診断用パルス31Daの電圧の振幅(Vd2)との間に変化が発生する。したがって、このような劣化診断用パルス31Daの電圧変化、あるいは波形変化を検出することにより、ワイヤハーネスの「故障診断」を行うことができる。
なお、図21に示した電力供給システム10-9においては、出力電圧の異なる複数の車載バッテリ93-1、93-2が電力パケットミキサ91の入力に接続されているので、電力伝送路95-1に出力される電力パケット30Dの電圧もタイミングの違いによって2種類またはそれ以上に変化する可能性がある。しかし、ヘッダ31Dの部分については、その電圧(振幅)が変化しないように、車載バッテリ93-1、93-2の出力のうち、予め定めた一方の電圧に基づいて作成される。したがって、劣化診断用パルス31Daの送信側における電圧は一定である。
<「故障診断」の具体例>
例えば図21に示した電力伝送路95-1を診断対象とする場合には、電力パケットルータ92-1が、電力伝送路95-1から受信した電力パケット30Dのヘッダ31Dから劣化診断用パルス31Daを抽出し、劣化診断用パルス31Daの電圧値(Vd2)を計測する。具体的には、劣化診断用パルス31Daの電圧のピーク値、あるいは平均値を検出する。この電圧値(Vd2)を、例えば事前に定めた正常値と比較することにより、電力伝送路95-1における故障の有無を診断できる。
例えば図21に示した電力伝送路95-1を診断対象とする場合には、電力パケットルータ92-1が、電力伝送路95-1から受信した電力パケット30Dのヘッダ31Dから劣化診断用パルス31Daを抽出し、劣化診断用パルス31Daの電圧値(Vd2)を計測する。具体的には、劣化診断用パルス31Daの電圧のピーク値、あるいは平均値を検出する。この電圧値(Vd2)を、例えば事前に定めた正常値と比較することにより、電力伝送路95-1における故障の有無を診断できる。
また、例えば電力パケットミキサ91が送出する電力パケット30Dにおける劣化診断用パルス31Daの電圧値(Vd1)を表す情報を当該電力パケット30Dのヘッダ31Dに含めて送信してもよい。その場合は、例えば電力パケットルータ92-1が、受信した電力パケット30Dのヘッダ31Dから電圧値(Vd1)の情報を抽出し、電圧値(Vd1)と電圧値(Vd2)との差分の電圧を事前に定めた閾値と比較して、電力伝送路95-1における故障の有無を診断できる。
また、例えば劣化診断用パルス31Daとして、パルス幅の小さいパルスと、それよりもパルス幅の大きいパルスとを組み合わせることも考えられる。その場合には、パルス幅の小さいパルスの電圧と、パルス幅の大きいパルスの電圧との差分や比率に基づいて、電力伝送路95-1における故障の有無を診断することも可能である。つまり、パルス幅の小さい信号の方が伝送路の劣化の影響を受けやすいので、パルス幅の異なる複数の信号の電圧の違いに基づいて、故障の有無を診断できる。
また、電力供給システム10-9が図3と同様に配電管理ECU26を備える場合には、電力パケットミキサ91が劣化診断用パルス31Daの電圧値(Vd1)を表す情報を送電情報28Bに含めて送信し、電力パケットルータ92-1が、受信した電力パケット30Dの劣化診断用パルス31Daの電圧値(Vd2)を表す情報を受電情報27Bに含めて送信し、配電管理ECU26が、電圧値(Vd1)と電圧値(Vd2)との差分の電圧を事前に定めた閾値と比較して、電力伝送路95-1における故障の有無を診断するようにしてもよい。
また、電力供給システム10-9は、図14と同様の動作を行ってもよい。すなわち、配電管理ECU26Bが、電圧値(Vd1)の情報を含む送電情報28Bを受信してから、受電情報受領待ちタイマのタイムアウトまでに、電力パケットルータ92-1から、電圧値(Vd2)の情報を含む受電情報27Bが受領されない場合、配電経路に断線、短絡等の異常が生じていると判定し(S76)、同一配電経路による配電を行わないようにする(S77)。たとえば、図21に示した電力供給システム10-9においては、4つの電力パケットルータ92-1~92-4の間の電力伝送路がリング状に接続されているので、この箇所では必要に応じて複数の経路を選択できる。したがって、例えば電力伝送路95-3で伝送路の故障が発生した場合には、故障診断の結果を反映し、電力伝送路95-6に自動的に切り替えて電力パケット30Dを伝送することも考えられる。
本実施形態の電力供給システム10-9においては、特別な配線や機器を使用する事なく、断線や短絡(デッドショート)等を含む配電経路の異常を確実に検出可能である。しかも、実際に配電しているワイヤハーネス自体の異常を直接検出できる。
<負荷毎の優先度を考慮して配電するための技術>
<電力供給システム10-11の構成例>
本発明の実施形態における電力供給システム10-11の構成例を図22に示す。
<電力供給システム10-11の構成例>
本発明の実施形態における電力供給システム10-11の構成例を図22に示す。
図22に示した電力供給システム10-11は、主要な構成要素として、電力パケットミキサ111、電力パケットルータ112、および配電管理ECU116を備えている。
電力パケットミキサ111の基本的な構成および動作は、例えば図5に示した電力パケットミキサ21と同様である。また、電力パケットルータ112の基本的な構成および動作は、例えば図7に示した電力パケットルータ22と同様である。また、配電管理ECU116の基本的な構成および動作は、例えば図9に示した配電管理ECU26と同様であり、本実施形態においては例えばボディECUにより構成されている。
電力パケットミキサ111の基本的な構成および動作は、例えば図5に示した電力パケットミキサ21と同様である。また、電力パケットルータ112の基本的な構成および動作は、例えば図7に示した電力パケットルータ22と同様である。また、配電管理ECU116の基本的な構成および動作は、例えば図9に示した配電管理ECU26と同様であり、本実施形態においては例えばボディECUにより構成されている。
電力パケットミキサ111の入力側には、複数の車載バッテリ(電源)113が電力伝送路115-2を介して接続されている。また、電力パケットミキサ111の出力と電力パケットルータ112の入力との間は、電力伝送路115-1を介して接続されている。また、電力パケットルータ112の出力側には複数の負荷114-1、114-2が接続されている。なお、複数の車載バッテリ(電源)113が出力する電圧については、同じであってもよいし、互いに異なっていてもよい。
したがって、車載バッテリ113から供給される電源電力に基づいて、電力パケットミキサ111で例えば電力パケット117-1、117-2、117-3を順次に生成し、電力伝送路115-1を経由して電力パケットルータ112に送ることができる。また、電力パケットルータ112は各負荷114-1、114-2に必要な電力を供給することができる。
図22に示した例では、配電管理ECU116は、複数の車載バッテリ113の充電量を監視する機能を有している。また、配電管理ECU116は電力パケットミキサ111と接続され、電力パケットミキサ111に対して給電制御を実施することができる。
<負荷毎の優先度に応じた配電の必要性>
図22に示した電力供給システム10-11のような環境において、何らかの原因により車載バッテリ113の充電量が不足する場合がある。そして、車載バッテリ113の充電量が不足する場合には、各負荷114-1、114-2を駆動するために必要とされる全ての電力パケットを、電力パケットミキサ111が電力パケットルータ112に供給できない状態になる。したがって、各負荷114-1、114-2の動作が停止する。
図22に示した電力供給システム10-11のような環境において、何らかの原因により車載バッテリ113の充電量が不足する場合がある。そして、車載バッテリ113の充電量が不足する場合には、各負荷114-1、114-2を駆動するために必要とされる全ての電力パケットを、電力パケットミキサ111が電力パケットルータ112に供給できない状態になる。したがって、各負荷114-1、114-2の動作が停止する。
一方、車両上には実際には様々な種類の負荷が存在しているので、重要度の高い負荷と、重要度の低い負荷とがある。また、各負荷の重要度が高いか否かは走行環境や車両状態に応じて変化する。そして、車載バッテリ113の充電量が不足する場合には、重要度の高い負荷に対する電力の供給も停止する。したがって、車載バッテリ113の充電量が不足する場合であっても、重要度の高い負荷に対する電力供給ができる限り停止しないように、一部の負荷に対して優先的に電力を供給することが必要になる。
<電力供給システム10-11の特徴的な動作>
図22に示した電力供給システム10-11においては、複数の負荷114-1、114-2の各々について優先度の高低を配電管理ECU116が管理している。この優先度は事前に定めた固定的なものではなく、その時の状況に応じて変化する。
図22に示した電力供給システム10-11においては、複数の負荷114-1、114-2の各々について優先度の高低を配電管理ECU116が管理している。この優先度は事前に定めた固定的なものではなく、その時の状況に応じて変化する。
すなわち、配電管理ECU116は、予め用意された給電優先度テーブルの内容と、その時の状況を表す情報、例えば、車両の走行状態の違い、乗員の状態、気温、明暗などの車外環境の違いとに基づいて、各負荷114-1、114-2の優先度の高低を動的に決定する。例えば、図22に示した例では、一方の負荷114-1の優先度が高く、他方の負荷114-2の優先度が低い状況を表している。
配電管理ECU116は、車載バッテリ113の充電量の監視の結果に基づき、車載バッテリ113の充電量が不足する状態(蓄電残量が低下した状態)を検知すると、負荷114-1、114-2に対する優先制御を実行する。
例えば、電力パケットルータ112が送出する配電要求に応じて、図22に示すように負荷114-1宛ての電力パケット117-1、117-3、および負荷114-2宛ての電力パケット117-2が電力パケットミキサ111から順次に送出される状態において、配電管理ECU116の優先制御により、優先度の低い負荷114-2宛ての電力パケット117-2の出力が停止、又は抑制される。また、例えば停止した電力パケット117-2の分だけ、電力パケット117-3の電力を増やし、増やした電力を電力パケットルータ112宛てに送電する。
電力パケットミキサ111が送出する各電力パケット117-1~117-3は、例えば図4に示した電力パケット30と同じように、ヘッダ31およびペイロード32により構成される。また、ヘッダ31には、同期信号31a、宛先情報31b、送電電力情報31cが含まれている。宛先情報31bにより、各電力パケット117-1~117-3の宛先を指定することができる。また、送電電力情報31cにより、各宛先に送電した電力量を電力パケットルータ112に知らせることができる。
電力パケットミキサ111は、配電管理ECU116から受領する送電指示情報に基づき生成した電力パケットを所定の出力ポートへ送出する。
電力パケットルータ112は、入力ポートで受信した電力パケットのヘッダに含まれる宛先情報を照合する。照合の結果、自ルータに接続される負荷宛の場合は、ペイロードの電力を蓄電部に充電するとともに蓄電部の電力を所定の出力ポートへ出力する。照合の結果、自ルータを中継した他ルータに接続される負荷宛の場合は、蓄電部の電力から所定ルータ宛の電力パケットを生成し所定の出力ポートに出力し、所定ルータへ転送する。電力パケットルータ112は、出力ポートに接続される負荷の駆動電力と蓄電部の充電状態とに基づいて、必要に応じ配電管理ECU116へ配電要求情報を通知する。
配電管理ECU116は、電力パケットルータ112から配電要求情報の通知を受けると、車載バッテリ113の充電量と要求電力とを比較し充電量が上回る場合、電力パケットミキサ111に対し送電指示情報を通知する。
また、配電管理ECU116は、車載バッテリ113の充電量が要求電力を下回る場合、配電要求元の車載負荷の優先度よりも低い優先度が割当てられた車載負荷宛の送電指示を禁止し、配電電力を確保したうえで、電力パケットミキサ111に対し配電要求元の車載負荷に対する送電指示情報を通知する。配電要求元の車載負荷の優先度よりも低い優先度が割当てられた車載負荷宛の送電指示が行われていない場合、配電管理ECU116は配電要求元車載負荷に対する送電指示は行わない。
各車載負荷に割当てられる優先度は、例えば電力パケットルータ112からの配電要求情報により通知され配電管理ECU116により管理される。または、配電管理ECU116が、各負荷の種別と車両状態(走行状態、乗員状態、車外環境(気温、明暗)等)とに基づいて、各負荷の優先度を決定し管理する。
図22に示した電力供給システム10-11においては、車載バッテリ113等の電源の供給可能な電力が不足するような場合に、各負荷114-1、114-2に対する優先制御を実施することができる。しかも、給電量や給電タイミングを制御するために特別な回路を追加する必要がない。また、電力パケットにより各車載負荷宛の給電を個別に制御可能であり、システム異常時に配電を許容する車載負荷を限定する事ができるため、重要負荷への配電を最大限継続させることが可能となる。
なお、電力供給システム10-11は、図18に示した電力供給システム10-5と同様、配電管理ECU116の代わりに電力パケットミキサ111によって優先度の決定や管理を行うようにしてもよい。
<複数負荷宛ての電力をまとめて送電する技術>
<電力供給システム10-12の構成例>
本発明の実施形態における電力供給システム10-12の構成例を図23(a)に示す。また、互いに異なる動作において各部の伝送路に出力される電力パケットの変化例を図23(b)および図23(c)に示す。
<電力供給システム10-12の構成例>
本発明の実施形態における電力供給システム10-12の構成例を図23(a)に示す。また、互いに異なる動作において各部の伝送路に出力される電力パケットの変化例を図23(b)および図23(c)に示す。
図23(a)に示した電力供給システム10-12は、主要な構成要素として、電力パケットミキサ121、複数の電力パケットルータ122-1~122-3、および配電管理ECU126を備えている。
電力パケットミキサ121の基本的な構成および動作は、例えば図5に示した電力パケットミキサ21と同様である。また、各電力パケットルータ122-1~122-3の基本的な構成および動作は、例えば図7に示した電力パケットルータ22と同様である。また、配電管理ECU126の基本的な構成および動作は、例えば図9に示した配電管理ECU26と同様である。
電力パケットミキサ121の入力側には車載バッテリ(電源)123が接続されている。また、電力パケットミキサ121の複数の出力ポートには、複数の電力パケットルータ122-1、122-2の入力ポートが電力伝送路127-2、127-5を介して接続されている。
電力パケットルータ122-1の複数の出力ポートには、電力伝送路127-3を経由して、電力パケットルータ122-3、および複数の負荷124-1、124-2が接続されている。電力パケットルータ122-2の複数の出力ポートには、電力伝送路127-6を経由して複数の負荷124-5、124-6が接続されている。電力パケットルータ122-3の複数の出力ポートには、電力伝送路127-4を経由して複数の負荷124-3、124-4が接続されている。また、配電管理ECU126は、電力パケットミキサ121との間で通信できるように接続されている。
<一般的な動作の説明>
図23に示した電力供給システム10-12が一般的な動作を実施する場合における各電力伝送路127-1~127-6の状態が図23(b)に示されている。なお、電力伝送路127-1は、電力パケットミキサ121の全ての出力ポートに接続される電力伝送路の状態に相当する。
図23に示した電力供給システム10-12が一般的な動作を実施する場合における各電力伝送路127-1~127-6の状態が図23(b)に示されている。なお、電力伝送路127-1は、電力パケットミキサ121の全ての出力ポートに接続される電力伝送路の状態に相当する。
図23(b)に示した例では、電力伝送路127-1上に、6個の電力パケットP1、P2、P3、P4、P5、P6が時間的にほぼ連続した状態で順番に現れている。ここで、各電力パケットP1~P6は、それぞれ異なる負荷(LOAD)124-1~124-6宛てのパケットである。
すなわち、負荷124-1宛ての電力パケットP1および、負荷124-2宛ての電力パケットP2の電力は、電力伝送路127-1から、電力伝送路127-2、127-3を経由して宛先まで送られる。
また、負荷124-3宛ての電力パケットP3、および負荷124-4宛ての電力パケットP4の電力は、電力伝送路127-1から、電力伝送路127-2、127-3、127-4を経由して宛先まで送られる。また、負荷124-5宛ての電力パケットP5、および負荷124-6宛ての電力パケットP6の電力は、電力伝送路127-1から、電力伝送路127-5、127-6を経由して宛先まで送られる。
<一般的な動作における課題>
図23(b)に示した従来方式のようにミキサにて接続されたすべての負荷に向けたパケットを生成するとペイロード分の時間が冗長となり、電力伝送路を効率よく利用できない。また、各電力パケットのヘッダの時間帯は送電に利用できない。
図23(b)に示した従来方式のようにミキサにて接続されたすべての負荷に向けたパケットを生成するとペイロード分の時間が冗長となり、電力伝送路を効率よく利用できない。また、各電力パケットのヘッダの時間帯は送電に利用できない。
<特徴的な制御>
上記のような問題を解消するために、図23(a)に示した電力供給システム10-12においては、次に説明するような制御を実施する。
上記のような問題を解消するために、図23(a)に示した電力供給システム10-12においては、次に説明するような制御を実施する。
1.電力伝送路の負荷が多くなったような場合(図23(b)の状態に相当)に、上流側の電力パケットミキサ121は、宛先が異なる複数の電力パケットを纏めて1つの電力パケットを生成する。
2.下流側の各電力パケットルータ122や電力パケットミキサ121は、受信した電力パケットのヘッダ情報に基づいて、1つの電力パケットを宛先毎の複数の電力パケットに分離し、分離した電力パケット毎に処理を実行する。
2.下流側の各電力パケットルータ122や電力パケットミキサ121は、受信した電力パケットのヘッダ情報に基づいて、1つの電力パケットを宛先毎の複数の電力パケットに分離し、分離した電力パケット毎に処理を実行する。
上記のように宛先が異なる複数の電力パケットを1つに纏めることにより、伝送路に送出されるヘッダの所要時間を減らすことが可能になり、効率的な伝送が可能になる。
<特徴的な動作の具体例>
図23に示した電力供給システム10-12が上記の特徴的な制御を実施する場合における各電力伝送路127-1~127-6の状態が図23(c)に示されている。また、図23(c)に示した例では、図23(b)に示した例と同様に、負荷124-1~124-6宛ての6個の電力パケットP1、P2、P3、P4、P5、P6を時間的にほぼ連続した状態で電力パケットミキサ121から送出する必要がある場合を想定している。
図23に示した電力供給システム10-12が上記の特徴的な制御を実施する場合における各電力伝送路127-1~127-6の状態が図23(c)に示されている。また、図23(c)に示した例では、図23(b)に示した例と同様に、負荷124-1~124-6宛ての6個の電力パケットP1、P2、P3、P4、P5、P6を時間的にほぼ連続した状態で電力パケットミキサ121から送出する必要がある場合を想定している。
図23(c)に示した例では、電力パケットミキサ121は、共通の電力伝送路127-2を通過する4個の電力パケットP1、P2、P3、P4を纏めた結果として、電力パケットルータ122-1宛ての電力パケットPR1を生成し、これを電力伝送路127-1に送出している。
また、電力パケットPR1の送出が終了した後で、電力パケットミキサ121は、共通の電力伝送路127-5を通過する2個の電力パケットP5、P6を纏めた結果として、電力パケットルータ122-2宛ての電力パケットPR2を生成し、これを電力伝送路127-1に送出している。
電力パケットミキサ121が送出した電力パケットPR1は、電力伝送路127-2を経由して電力パケットルータ122-1に到達する。これを受け取った電力パケットルータ122-1は、パケットヘッダの情報に基づき、電力パケットPR1に含まれている4個の電力パケットP1、P2、P3、P4を互いに分離して処理する。したがって、分離された電力パケットP1、P2の電力がそれぞれ宛先の負荷124-1、124-2に供給される。
また、電力パケットルータ122-1は、分離した電力パケットP3、P4を纏めて、電力パケットルータ122-3を宛先とする電力パケットPR3を生成し、出力する。また、電力パケットルータ122-3は、電力パケットPR3を受け取って、これを分解し、電力パケットP3、P4をそれぞれ抽出し、これらを個別に処理する。したがって、電力パケットP3、P4の電力が、それぞれ宛先の負荷124-3、124-4に供給される。
電力パケットミキサ121が送出した電力パケットPR2は、電力伝送路127-5を経由して電力パケットルータ122-2に到達する。これを受け取った電力パケットルータ122-2は、パケットヘッダの情報に基づき、電力パケットPR2に含まれている2個の電力パケットP5、P6を互いに分離して処理する。したがって、分離された電力パケットP5、P6の電力がそれぞれ宛先の負荷124-5、124-6に供給される。
つまり、図23に示した電力供給システム10-12においては、配電系上流において複数負荷宛の電力をまとめて電力パケット化し、下流においてヘッダー情報を基にそれぞれの負荷宛の電力パケットに再構築して送電する。
図23(a)に示した電力供給システム10-12においては、複数の電力パケットを1つの電力パケットに纏めて送出するので、パケット毎に送出されるヘッダの情報タグ分の時間を、電力供給用のペイロードに費やすことができる。例えば、全てのパケットが同じビット数の情報タグを使う場合を仮定すると、一般的な制御の場合と比較して、送電電力増加が見込める。
<伝送する電力を時分割制御する技術>
<電力供給システム10-13の構成例>
本発明の実施形態における電力供給システム10-13の構成例を図24に示す。
図24に示した電力供給システム10-13はリングトポロジーを形成している。すなわち、主要な構成要素である電力パケットミキサ131-1、131-2、電力パケットルータ132-1、132-2、132-3、132-4がリング状に接続された電力伝送路を介して互いに接続されている。また、配電管理ECU136が通信線137-1、137-2を介して電力パケットミキサ131-1、131-2と接続されている。
<電力供給システム10-13の構成例>
本発明の実施形態における電力供給システム10-13の構成例を図24に示す。
図24に示した電力供給システム10-13はリングトポロジーを形成している。すなわち、主要な構成要素である電力パケットミキサ131-1、131-2、電力パケットルータ132-1、132-2、132-3、132-4がリング状に接続された電力伝送路を介して互いに接続されている。また、配電管理ECU136が通信線137-1、137-2を介して電力パケットミキサ131-1、131-2と接続されている。
各電力パケットミキサ131-1、131-2の基本的な構成および動作は、例えば図5に示した電力パケットミキサ21と同様である。また、各電力パケットルータ132-1~132-4の基本的な構成および動作は、例えば図7に示した電力パケットルータ22と同様である。また、配電管理ECU136の基本的な構成および動作は、例えば図9に示した配電管理ECU26と同様である。
電力パケットミキサ131-1の入力には、複数の車載バッテリ133-1、133-2が接続されている。電力パケットミキサ131-2の入力には、複数の車載バッテリ133-3、133-4が接続されている。なお、複数の車載バッテリ133-1、133-2、133-3、133-4の出力する電圧については、同じであってもよいし、互いに異なっていてもよい。
電力パケットルータ132-1の複数の出力ポートには複数の負荷134-1が接続されている。電力パケットルータ132-2の複数の出力ポートには複数の負荷134-2が接続されている。電力パケットルータ132-3の複数の出力ポートには負荷134-3が接続されている。電力パケットルータ132-4の複数の出力ポートには複数の負荷134-4が接続されている。
<リングトポロジーのシステムにおける課題>
例えば図24に示した電力供給システム10-13においては、リング状に接続されている共通の電力伝送路上に、複数の電力パケットミキサ131-1、131-2が同時に電力パケットを送出する可能性がある。そして、送出された複数の電力パケットが共通の電力伝送路上で衝突する場合がある。
例えば図24に示した電力供給システム10-13においては、リング状に接続されている共通の電力伝送路上に、複数の電力パケットミキサ131-1、131-2が同時に電力パケットを送出する可能性がある。そして、送出された複数の電力パケットが共通の電力伝送路上で衝突する場合がある。
<電力供給システム10-13の特徴的な制御>
図24に示した電力供給システム10-13は、送出された複数の電力パケットが共通の電力伝送路上で衝突するのを回避するために、次のような特別な制御を実施する。
図24に示した電力供給システム10-13は、送出された複数の電力パケットが共通の電力伝送路上で衝突するのを回避するために、次のような特別な制御を実施する。
1.ネットワークの全体を管理する電力管理ノード、つまり配電管理ECU136が、複数のタイムスロットを連結して構成したパケット伝送フレームを生成する。
2.このパケット伝送フレームの先頭スロットに、後続の各スロットに割り当てられた電力の割り当て情報を格納する。
3.ネットワーク上の各電力パケットミキサ131、電力パケットルータ132は、ネットワーク上に現れたパケット伝送フレームの先頭スロットの情報に基づき、電力パケットの送受信のタイミングを検知する。
2.このパケット伝送フレームの先頭スロットに、後続の各スロットに割り当てられた電力の割り当て情報を格納する。
3.ネットワーク上の各電力パケットミキサ131、電力パケットルータ132は、ネットワーク上に現れたパケット伝送フレームの先頭スロットの情報に基づき、電力パケットの送受信のタイミングを検知する。
パケット伝送フレームを構成する各タイムスロットについては、各電力パケットミキサ131、電力パケットルータ132が送出する電力パケットのタイミングが同時にならないように割り当てを行う。
例えば、4つのタイムスロットT1、T2、T3、T4で1つのパケット伝送フレームを構成し、各タイムスロットT2、T3、T4に、それぞれ1番目、2番目、3番目の電力パケットミキサ131のパケット伝送を割り当てて、この割り当ての内容を先頭のタイムスロットT1に格納するように、配電管理ECU136が制御する。
また、配電管理ECU136が割り当てたパケット伝送フレームおよび各スロットの情報は、各電力パケットミキサ131が送出する電力パケットのヘッダにおける情報タグに格納することが可能である。
各電力パケットミキサ131および電力パケットルータ132は、割り当てられたタイミングにてパケット送出を行うことで情報タグが劣化してしまうことを防ぐことができる。したがって、図24に示したようなリングトポロジーの電力供給システム10-13を構成する場合であっても、複数の電力パケットが共有のネットワーク上で衝突するのを防止できる。
なお、配電管理ECU136は、例えば操作者の電源スイッチON操作や、新規負荷の接続の際に、タイムスロットの構成を最適な状態に組み替えることができる。各電力パケットミキサ131と電力パケットルータ132との間で必要とされる通信機能については、電力パケットの情報タグを利用して実現することが可能である。それ以外に、周波数分割多重方式等を用いて電力パケットのクロックの基本周波数と異なる周波数に信号を乗せて通信を行うことや、無線通信を用いてもよい。
また、上述の電力供給システム10-13においては、リングトポロジーを有する場合を例に説明しているが、電力供給システム10-13がツリー型やスター型など他のトポロジーを採用してもよい。
<電力の非接触給電のための技術>
<非接触給電の必要性の説明>
車両上においては、様々な箇所に存在する様々な種類の負荷に対して電源電力を供給する必要がある。そのため、例えば負荷に電源電力を供給するワイヤハーネスの配索経路が、ドアの接続部のような可動部を経由したり、難配索部位を経由することが避けられない場合がある。したがって、ワイヤハーネスの接触不良や断線が生じやすくなったり、配索作業が困難になるという課題がある。また、このようなワイヤハーネスの配索により、車両形態の自由度や意匠が制限されることになる。ワイヤハーネスを非接触給電で置き換えることができれば、様々な可動部や難配索部位を通過するワイヤハーネスが不要になるので、上記の課題を解決できる。
<非接触給電の必要性の説明>
車両上においては、様々な箇所に存在する様々な種類の負荷に対して電源電力を供給する必要がある。そのため、例えば負荷に電源電力を供給するワイヤハーネスの配索経路が、ドアの接続部のような可動部を経由したり、難配索部位を経由することが避けられない場合がある。したがって、ワイヤハーネスの接触不良や断線が生じやすくなったり、配索作業が困難になるという課題がある。また、このようなワイヤハーネスの配索により、車両形態の自由度や意匠が制限されることになる。ワイヤハーネスを非接触給電で置き換えることができれば、様々な可動部や難配索部位を通過するワイヤハーネスが不要になるので、上記の課題を解決できる。
<電力供給システムの構成例-14>
非接触給電技術を含む電力供給システムの構成例-14を図26に示す。
図26に示した電力供給システム10-14は、前述の電力供給システムと同じように、電力パケットミキサ11および電力パケットルータ12を備えている。電力パケットミキサ11の入力には、12[V]の電源電圧を出力する車載バッテリ13Aと、48[V]の電源電圧を出力する車載バッテリ13Bとが接続されている。なお、複数の車載バッテリ13A、13Bの電圧を同一にしてもよい。
非接触給電技術を含む電力供給システムの構成例-14を図26に示す。
図26に示した電力供給システム10-14は、前述の電力供給システムと同じように、電力パケットミキサ11および電力パケットルータ12を備えている。電力パケットミキサ11の入力には、12[V]の電源電圧を出力する車載バッテリ13Aと、48[V]の電源電圧を出力する車載バッテリ13Bとが接続されている。なお、複数の車載バッテリ13A、13Bの電圧を同一にしてもよい。
電力パケットミキサ11および電力パケットルータ12の基本的な構成および動作は前述の実施形態と同様である。すなわち、電力パケットミキサ11は、車載バッテリ13A、13Bから供給される直流電源電力に基づいて電力パケット30を生成する。生成された電力パケット30は、電力伝送路16Aを経由して電力パケットルータ12の入力に供給される。
電力パケットルータ12は、入力された電力パケット30のヘッダ31から宛先などの情報を取得すると共に、ペイロード32から電力を取り出して、例えば図1に示す蓄電部15A,15Bに蓄電する。また、蓄電した電力を負荷に対して供給する。
図26に示した例では、負荷14Aは電力パケットルータ12の0番目の出力ポートに有線で直接接続されているが、他の負荷14B、および14Cは、非接触給電技術を利用して接続されている。なお、電力パケットルータ12の出力に非接触給電技術で接続する負荷の数nは必要に応じて増減できる。
また、本実施形態では、複数の負荷に選択的に電力を供給するため、n個の出力ポート部各々に出力スイッチ17が備わっている。すなわち、交流出力回路としての出力スイッチ17を所定の条件に従って周期的にオンオフすることにより、所望の周波数の交流電力を出力できる。
電力パケットルータ12の1番目~n番目の各出力ポートには、それぞれ1番目~n番目の送電回路18-1~18-nが接続されている。1番目の送電回路18-1は、互いに直列に接続されたインダクタL11と、キャパシタC11とで構成されている。なお、これらを並列に接続した回路に変更することも可能である。送電回路18-1のインダクタL11およびキャパシタC11は共振回路を形成している。すなわち、インダクタL11およびキャパシタC11の時定数に対応する特定の共振周波数f0において回路のインピーダンスが極値になる。2番目~n番目の送電回路も送電回路18-1と同様である。共振周波数f0については、1番目~n番目の送電回路18-1~18-nの全てについて共通にする場合もあるし、それぞれ独立した周波数に定める場合もある。
一方、送電回路18-1~18-nのそれぞれと対向する位置に、非接触の状態で、1番目~n番目の受電回路19-1~19-nがそれぞれ配置されている。1番目の受電回路19-1は、互いに直列に接続されたインダクタL12と、キャパシタC12とで構成されている。なお、これらを並列に接続した回路に変更することも可能である。受電回路19-1のインダクタL12およびキャパシタC12は共振回路を形成している。すなわち、インダクタL12およびキャパシタC12の時定数に対応する特定の共振周波数f0において回路のインピーダンスが極値になる。2番目~n番目の受電回路も受電回路19-1と同様である。
また、1番目の送電回路18-1における共振周波数f0と、1番目の受電回路19-1における共振周波数f0とが共通の周波数になるように設計される。電力パケットルータ12が共振周波数f0と同じ周波数の交流電力を送電回路18-1に供給すると、送電回路18-1側のインダクタL11と、受電回路19-1側のインダクタL12との間の電磁誘導によりこれらが結合する。したがって、非接触で結合した回路の一次側のインダクタL11から二次側のインダクタL12に対して交流電力が伝達される。
電力パケットルータ12が出力スイッチ17をスイッチングするタイミングを制御することにより、送電回路18-1~18-nに供給する交流電力の周波数を、送電回路18-1~18-nの共振周波数f0と一致させることができる。例えば、電力パケットルータ12が送電回路18-1および受電回路19-1の共振周波数f0と一致する周波数の交流電力を送電回路18-1に供給することにより、この交流電力を送電回路18-1から受電回路19-1に対して高効率で非接触給電することが可能になる。2番目~n番目の送電回路および受電回路についても同様である。各送電回路18-1~18-nおよび各受電回路19-1~19-nの共振周波数f0が全て同一の場合には、電力パケットルータ12は共通の共振周波数f0と一致する周波数を用いて交流電力を出力スイッチ17で生成し、各送電回路18-1~18-nに供給できる。
受電回路19-1の出力に負荷14Bが接続されている。したがって、受電回路19-1が受電した電力を負荷14Bに供給することができる。受電回路19-nに接続された負荷14Cについても同様である。また、非接触給電が不要な負荷14Aについては、送電回路や受電回路は使用せず、図26に示すように有線で電力パケットルータ12の出力ポートに接続する。
電力パケットルータ12が各送電回路18-1~18-nを適切に制御するために必要な共振周波数f0の情報は、予め電力パケットミキサ11に保持しておくか、又は前述の配電管理ECU26に保持しておくことが想定される。そして、配電管理ECU26又は電力パケットミキサ11から電力パケットルータ12に対して、共振周波数f0の情報を提供する。
<非接触給電の変形例>
図26に示した電力供給システム10-14においては、出力スイッチ17を適切に制御することで所望の周波数の交流電力を得ている。しかし、以下に示すように電力パケットミキサ11又は電力パケットルータ12が特別な制御を実施する場合には、出力スイッチ17による制御は不要になる。
図26に示した電力供給システム10-14においては、出力スイッチ17を適切に制御することで所望の周波数の交流電力を得ている。しかし、以下に示すように電力パケットミキサ11又は電力パケットルータ12が特別な制御を実施する場合には、出力スイッチ17による制御は不要になる。
例えば、電力パケットミキサ11が電力パケット30を電力伝送路16Aに送出する際に、電力パケット30毎の時間長や送出間隔が、送電回路18-1~18-nの共振周波数f0と一致するように、電力パケット30を分割してから送出することが想定される。この場合には、電力パケットルータ12の内部では、電力伝送路16Aから周期的に受け取った電力パケット30により、共振周波数f0と一致する交流電力が生成される。この交流電力を電力パケットルータ12が送電回路18-1~18-nにそのまま供給すれば、送電回路18-1~18-nの交流電力を、受電回路19-1~19-nに非接触で給電することができる。
なお、電力パケットミキサ11が送出する電力パケット30を共振周波数f0と一致するように分割する処理については、電力パケット30の全体について実施してもよいし、ペイロード32だけについて実施してもよい。また、電力パケット30を分割する処理を電力パケットルータ12の内部で行ってもよい。
<点滅するランプを駆動するための技術>
<背景の説明>
一般的に、車両上には右左折の合図を出す方向指示器として、サイドターンシグナルランプが装備されている。また、ハザードランプも装備されている。これらのランプは動作時に一定の周期で点滅制御する必要がある。
<背景の説明>
一般的に、車両上には右左折の合図を出す方向指示器として、サイドターンシグナルランプが装備されている。また、ハザードランプも装備されている。これらのランプは動作時に一定の周期で点滅制御する必要がある。
このようなランプを制御するために一般的には図27に示すようなランプ制御回路が用いられている。図27に示したランプ制御回路は、コラムスイッチ302、ハザードスイッチ303、ECU(電子制御ユニット)304、フラッシャASSY310、および左右のサイドターンシグナルランプ305、306を備えている。フラッシャASSY310は互いに独立した2つのリレー311、312を内蔵している。
すなわち、車載バッテリ301の電力が、フラッシャASSY310内のリレー311、312の接点を経由して、それぞれサイドターンシグナルランプ305、306に供給される。リレー311、312のオンオフを周期的に繰り返すことで、サイドターンシグナルランプ305、306を点滅させることができる。
ECU304は、コラムスイッチ302およびハザードスイッチ303の状態を常時モニタリングしており、コラムスイッチ302又はハザードスイッチ303がオンになると、フラッシャASSY310内のリレー311、312を制御し、サイドターンシグナルランプ305、306を点滅させる。
一方、近年では一般的な方向指示器およびハザードランプの他に、例えばESS(Emergency Stop signal System)の機能のように、方向指示器やハザードランプの点滅周期とは異なる点滅周期で点滅制御を行わせる要望もある。なお、ESSは、緊急制動用の点滅周期でランプを点滅制御するものである。しかし、機械式リレーのようなランプ制御回路を用いると、点滅周期に限界があり、また、部品点数の削減も難しい。
前述の電力パケットを利用してランプ制御回路を構成することにより、回路構成を複雑化することなく、ESS等の機能を追加することが容易になる。
<電力パケットを利用したランプ制御回路の構成例>
電力パケットを利用したランプ制御回路の構成例を図28に示す。
図28に示したランプ制御回路は、電力パケットミキサ323、電力パケットルータ327、バッテリ321、322、コラムスイッチ302、ハザードスイッチ303、左右のサイドターンシグナルランプ328、329、および負荷330を備えている。なお、複数のバッテリ321、322の電圧は同じであってもよいし、互いに異なっていてもよい。
電力パケットを利用したランプ制御回路の構成例を図28に示す。
図28に示したランプ制御回路は、電力パケットミキサ323、電力パケットルータ327、バッテリ321、322、コラムスイッチ302、ハザードスイッチ303、左右のサイドターンシグナルランプ328、329、および負荷330を備えている。なお、複数のバッテリ321、322の電圧は同じであってもよいし、互いに異なっていてもよい。
図28の構成においては、電力パケットミキサ323の入力にコラムスイッチ302およびハザードスイッチ303が接続されている。また、電力伝送路326を介して電力パケットミキサ323と電力パケットルータ327とが接続されている。電力パケットルータ327の複数の出力ポートには、左右のサイドターンシグナルランプ328、329、および負荷330が接続されている。
電力パケットミキサ323は、基本的にはバッテリ321、322から供給される直流の電源電力に基づいて前述の電力パケット30を生成し、電力伝送路326に供給する。コラムスイッチ302およびハザードスイッチ303は、運転者の手動操作によりオンオフし、方向指示器およびハザードランプの点灯(点滅)指令信号を生成する。
電力パケットミキサ323は、コラムスイッチ302又はハザードスイッチ303からランプの点灯指令信号を受信すると、電力パケットルータ327に対して電力パケット30の送電を開始する。送電する各電力パケット30のヘッダ31には、宛先の負荷(328,329,330)を特定する情報が含まれている。
電力パケットルータ327は、電力パケットミキサ323から受け取った電力パケット30のヘッダ31の内容を参照して電力供給先の負荷およびその種類を特定する。例えば、宛先の負荷がサイドターンシグナルランプ328又は329の電力パケット30を電力パケットルータ327が受け取った場合には、電力パケットルータ327はこの電力パケット30の電力を蓄電部15A,15Bを通すことなく、直接サイドターンシグナルランプ328又は329へ供給する。
図28に示したランプ制御回路において、電力パケットミキサ323からの電力の伝送は電力パケット30を用いた時分割伝送である。したがって、電力パケットミキサ323は、サイドターンシグナルランプ328又は329宛ての電力パケット30を、例えば一定の時間間隔で繰り返し送出することができる。この場合、電力パケットルータ327が受け取った電力パケット30をそのままサイドターンシグナルランプ328又は329へ供給することにより、電力パケット30が送出される一定の時間間隔で、サイドターンシグナルランプ328又は329が点滅することになる。
つまり、電力パケットルータ327が特別な点滅制御を実施することなく、サイドターンシグナルランプ328又は329の点滅動作を実現できる。更に、電力パケットミキサ323が電力パケット30の送出間隔を変更すれば、サイドターンシグナルランプ328および329の点滅周期を変更できる。したがって、図28に示した回路構成を変更しなくても、例えばESSのランプ点滅機能を付加することが容易に実現できる。
なお、短い時間周期でのランプ点滅を可能にするために、電力パケット30のペイロード32を複数に分割する場合もある。また、電力パケット30のヘッダ31には、宛先を特定する情報の他に、シグナルランプ専用の電力である旨の情報が電力パケットミキサ323により書き込まれる。また、図示しないが、各電力パケット30のペイロード32の最後尾にフッタが付加される。このフッタに、ランプの点滅終了を指示する終了情報が電力パケットミキサ323により書き込まれる。電力パケットルータ327は、フッタの終了情報に従って該当するランプへの電力供給を終了し、点滅動作を終了する。
<電力パケットミキサの具体的な動作例>
図28のランプ制御回路における電力パケットミキサの動作例を図29に示す。図29の動作について以下に説明する。
図28のランプ制御回路における電力パケットミキサの動作例を図29に示す。図29の動作について以下に説明する。
電力パケットミキサ323は、コラムスイッチ302からの信号と、ハザードスイッチ303からの信号を常時モニタリングしている(S301,S302)。そして、コラムスイッチ302からのサイドターンリクエスト信号「Column_Flag」がオン(1)になると、次のステップS303で左サイドターン点灯リクエスト信号「LAMP_L」を参照し、左右のいずれのランプ点灯要求かを識別する。
左のランプ点灯要求があった場合には、電力パケットミキサ323はステップS306で、左サイドターン電力パケット「LAMP_Lp」を電力伝送路326に送出する。この左サイドターン電力パケット「LAMP_Lp」は、当該電力の宛先がサイドターンシグナルランプ328であることを示す情報と、シグナルランプ専用の電力である旨の情報をヘッダ31で保持している。
右のランプ点灯要求があった場合には、電力パケットミキサ323はステップS305で、右サイドターン電力パケット「LAMP_Rp」を電力伝送路326に送出する。この右サイドターン電力パケット「LAMP_Rp」は、当該電力の宛先がサイドターンシグナルランプ329であることを示す情報と、シグナルランプ専用の電力である旨の情報をヘッダ31で保持している。
一方、ハザードスイッチ303からのハザードリクエスト信号「Hazard_Flag」がオン(1)になると、電力パケットミキサ323は、ステップS302からS304に進む。そして、左右のランプを同時点滅させるために、電力パケットミキサ323は左右サイドターン電力パケット「LAMP_LRp」を電力伝送路326に送出する。
この左右サイドターン電力パケット「LAMP_LRp」は、当該電力の宛先がサイドターンシグナルランプ328および329であることを示す情報と、シグナルランプ専用の電力である旨の情報をヘッダ31で保持している。これにより、左右ランプ同時点滅の指示をこのパケットで同時に送ることができる。
<電力パケットルータの具体的な動作例>
図28のランプ制御回路における電力パケットルータの動作例を図30に示す。図30の動作について以下に説明する。
図28のランプ制御回路における電力パケットルータの動作例を図30に示す。図30の動作について以下に説明する。
電力パケットルータ327は、電力伝送路326を経由して入力に到着した電力パケット30の種類に応じた動作を実施する。すなわち、電力パケットルータ327は、電力パケット30のヘッダ31を参照することにより、左サイドターン電力パケット「LAMP_Lp」、右サイドターン電力パケット「LAMP_Rp」、左右サイドターン電力パケット「LAMP_LRp」を区別する(S311~S313)。
電力パケットルータ327は、左サイドターン電力パケット「LAMP_Lp」を受け取った場合には、S311からS315に進み、当該パケットの電力を左側のサイドターンシグナルランプ328に供給する。
電力パケットルータ327は、右サイドターン電力パケット「LAMP_Rp」を受け取った場合には、S312からS314に進み、当該パケットの電力を右側のサイドターンシグナルランプ329に供給する。
電力パケットルータ327は、左右サイドターン電力パケット「LAMP_LRp」を受け取った場合には、S313からS314およびS315に進み、当該パケットの電力を左右のサイドターンシグナルランプ328、329に同時に供給する。
なお、図28に示したランプ制御回路は、ターンシグナルランプやハザードランプの点滅を行うための機能を提供するものであるが、これ以外の負荷を間欠的に駆動するために利用することもできる。例えば、ワイパのモータを間欠駆動するために利用したり、各種ヒータを間欠駆動して発熱量を調整するために利用することもできる。
図28に示したランプ制御回路を採用する場合には、例えば図27に示したフラッシャASSY 310の部品が不要になり、装置構成が簡略化される。しかも、ESSなどの機能を付加する場合であっても、余分な回路の追加は不要であり、例えば電力パケットミキサ323等におけるプログラムの変更だけで対応できる。
<負荷が利用する電力と制御系が利用する電力とを別系統で供給するための技術>
_<電源を別系統にする必要性の説明>
例えば図3に示した電力供給システム10-2において、各負荷24-1~24-nに供給する電力は、電源23-1~23-nから供給される電源電力に基づいて、電力パケットミキサ21が電力パケット30として生成する。
_<電源を別系統にする必要性の説明>
例えば図3に示した電力供給システム10-2において、各負荷24-1~24-nに供給する電力は、電源23-1~23-nから供給される電源電力に基づいて、電力パケットミキサ21が電力パケット30として生成する。
しかし、実際には負荷24-1~24-n以外に、電力パケットミキサ21、電力パケットルータ22、および配電管理ECU26がそれぞれ動作するために電源電力が必要になる。したがって、電力パケットミキサ21、電力パケットルータ22、および配電管理ECU26が必要とする電源電力も、電源23-1~23-nから供給することが想定される。
つまり、制御系である電力パケットミキサ21、電力パケットルータ22、および配電管理ECU26の電源、および負荷24-1~24-nの電源として、電源23-1~23-nを共通に利用することになる。しかし、その場合には負荷24-1~24-nが必要とする電力の総和以上の電力を供給する能力を、電源23-1~23-nに持たせる必要がある。
そのため、電源23-1~23-nの電力容量を増やす必要がある。また、負荷24-1~24-nの全てが電力を消費しない状況であっても、電源23-1~23-nの電力が消費されるので、電源23-1~23-nが蓄積している電力残量の管理が困難になったり、暗電流の問題が生じる可能性もある。
したがって、電力パケットミキサ21、電力パケットルータ22、および配電管理ECU26等が必要とする電源電力を、電源23-1~23-nとは別の専用電源から供給することが想定される。
<電力供給システムの構成例-15>
本発明の実施形態における電力供給システムの構成例-15を図31に示す。
図31に示した電力供給システム10-15の基本的な構成は、図11に示した電力供給システム10-3と同様である。但し、図31の構成では制御系へ電源電力を供給する専用電源161が追加されている。専用電源161は、他の電源23-1~23-nから独立した専用のバッテリ(二次電池)である。
本発明の実施形態における電力供給システムの構成例-15を図31に示す。
図31に示した電力供給システム10-15の基本的な構成は、図11に示した電力供給システム10-3と同様である。但し、図31の構成では制御系へ電源電力を供給する専用電源161が追加されている。専用電源161は、他の電源23-1~23-nから独立した専用のバッテリ(二次電池)である。
図31に示した構成においては、専用電源161の出力は、配電線162を経由して電力パケットルータ22B-1、22B-2、および22B-3の各電源入力端子に接続されている。また、専用電源161の出力は、配電線163を経由して電力パケットミキサ21Bの電源入力端子と接続されている。また、専用電源161の出力は、配電線164を経由して配電管理ECU26Bの電源入力端子と接続されている。
なお、電力パケットミキサ21Bおよび配電管理ECU26Bの消費電力が小さい場合には、配電線163および164はあってもよいし、なくてもよい。つまり、図31および以下に説明する図32において、状況に応じて不要となる配電線の一例が破線により示されている。すなわち、電力パケットミキサ21Bおよび配電管理ECU26Bの消費電力の影響が小さい場合には、負荷と共通の電源23-1~23-nから電力パケットミキサ21Bおよび配電管理ECU26Bに対して電源電力を供給してもよい。
<電力供給システムの構成例-16>
本発明の実施形態における電力供給システムの構成例-16を図32に示す。
図32に示した電力供給システム10-16は、図31に示した電力供給システムの変形例である。すなわち、図32に示した電力供給システム10-16においては、専用電源161を充電する機能を有する環境発電機構165が追加されている。それ以外は図31の構成と同様である。
本発明の実施形態における電力供給システムの構成例-16を図32に示す。
図32に示した電力供給システム10-16は、図31に示した電力供給システムの変形例である。すなわち、図32に示した電力供給システム10-16においては、専用電源161を充電する機能を有する環境発電機構165が追加されている。それ以外は図31の構成と同様である。
環境発電機構165の具体例としては、車両のボディ系システムを操作するためのスイッチ駆動時に発生する機械的振動エネルギーを回収して発電するものが想定される。また、車両のボディ表面に配置された太陽光パネルにより収集される光エネルギーを電力に変換するものを採用してもよい。また、車両のボディ表面や車両の構造体に伝導蓄熱される熱エネルギーを回収して発電するものを採用してもよい。
_<システム各部の構成>
図31および図32に示した電力供給システムにおいて、電力パケットミキサ21Bの構成は図7と同様である。また、図31および図32に示した各電力パケットルータ22B-1~22B-3の構成は図13と同様である。また、図31および図32に示した配電管理ECU26Bの構成は図9と同様である。また、図31および図32に示した電力パケットミキサ21Bが生成する電力パケット30の構成は図12と同様である。
図31および図32に示した電力供給システムにおいて、電力パケットミキサ21Bの構成は図7と同様である。また、図31および図32に示した各電力パケットルータ22B-1~22B-3の構成は図13と同様である。また、図31および図32に示した配電管理ECU26Bの構成は図9と同様である。また、図31および図32に示した電力パケットミキサ21Bが生成する電力パケット30の構成は図12と同様である。
<システムの動作例>
<電力パケットルータの動作例>
電力パケットルータ22B-1~22B-3の動作例を図33に示す。図33に示した動作において、各ステップS32B、S34Bが変更されている以外は、既に説明した図8の動作と同様である。
<電力パケットルータの動作例>
電力パケットルータ22B-1~22B-3の動作例を図33に示す。図33に示した動作において、各ステップS32B、S34Bが変更されている以外は、既に説明した図8の動作と同様である。
図33のステップS32Bでは、各電力パケットルータ22B-1~22B-3は、入力に到着した電力パケット30のヘッダ31を解析すると共に、パルス(ペイロード32)電圧の測定を実施する。すなわち、各電力パケット30が電圧の異なる複数の電源電力に基づいて電力パケットミキサ21Bで生成される場合には、例えば図25に示したように電圧の異なるPPH、PPL等の電力パケット30が異なるタイミングで各電力パケットルータ22B-1~22B-3に入力される。したがって、各電力パケット30の電圧の違いを把握するために、各電力パケットルータ22B-1~22B-3はS32Bでパルスの電圧を測定する。
図33のステップS34Bでは、各電力パケットルータ22B-1~22B-3は、自ルータ宛ての電力パケット30のペイロード32の電力を蓄電部に充電する。ここで充電される受電電力量の値については、S32Bで測定したパルス電圧とペイロード32の長さとに基づいて算出できる。
<配電管理ECUの動作-1>
図31に示した通常の負荷24-A、24-B、24-C等に対する給電を指示するための配電管理ECU26Bの動作は、図14に示した動作と同じである。
図31に示した通常の負荷24-A、24-B、24-C等に対する給電を指示するための配電管理ECU26Bの動作は、図14に示した動作と同じである。
<配電管理ECUの動作-2>
配電管理ECUの動作例を図34に示す。図34は、図31、図32に示した専用電源161に対する送電指示のための配電管理ECU26Bの動作を表している。図34の動作について以下に説明する。
配電管理ECUの動作例を図34に示す。図34は、図31、図32に示した専用電源161に対する送電指示のための配電管理ECU26Bの動作を表している。図34の動作について以下に説明する。
配電管理ECU26Bは、起動後に専用電源161の電力残量を間欠的にモニターする(S431)。そして、検出した電力残量が所定値を下回った場合には、負荷を駆動するための電源23-1~23-nから不足分の電力を電力パケット30により供給するように制御する。すなわち、専用電源161が必要とする電力の送電を指示するための送電指示情報をS433で配電管理ECU26Bが生成し、この送電指示情報を配電管理ECU26BがS434で電力パケットミキサ21Bに通知する。
この場合、電力パケットミキサ21Bが指示に従って電力パケット30を配電線163に送出する。専用電源161は、配電線163を介して電力パケット30を受け取り、不足分の電力を電力パケット30のペイロード32から取り込む。なお、図34の各ステップS435~S441については図14と同様である。
したがって、配電管理ECU26Bが図34に示した動作を実行することにより、専用電源161の電力残量が所定以上に維持されるように管理できる。この場合は、負荷を駆動するための電源23-1~23-nの電力を、通常の負荷24-A~24-C以外が消費することになる。その場合でも、電源23-1~23-nから流出する電力の消費量は電力パケットミキサ21Bが送出した電力パケット30の数などに基づいて正確に把握できる。
<配電管理ECUの動作-3>
配電管理ECUの動作例を図35に示す。図35は、図31に示した電力パケットミキサ21Bの入力へ専用電源161から給電するための配電管理ECU26Bの動作を表している。図35の動作について以下に説明する。
配電管理ECUの動作例を図35に示す。図35は、図31に示した電力パケットミキサ21Bの入力へ専用電源161から給電するための配電管理ECU26Bの動作を表している。図35の動作について以下に説明する。
配電管理ECU26Bは、電力パケットミキサ21Bに対して送電指示情報を通知する直前に、専用電源161から電力パケットミキサ21Bへの給電を開始するように制御する。また、電力パケットルータ22Bからの受電情報を確認した後で、専用電源161から電力パケットミキサ21Bへの給電停止を制御する。
すなわち、配電管理ECU26Bが電力パケットルータ22Bからの給電要求情報を受領した時に、図35のS418からS418Bの処理に進み、配電管理ECU26Bが電力パケットミキサ21Bに対して給電オン制御を実施する。これにより、専用電源161から電力パケットミキサ21Bへの給電が開始される。
また、配電管理ECU26Bは、電力パケットルータ22Bから受電情報を受領し電力パケットルータ22Bによる配電の正常終了を図35のS415で検知すると、S415Bの処理に進み、配電管理ECU26Bは電力パケットミキサ21Bに対して給電オフ制御を実施する。これにより、専用電源161から電力パケットミキサ21Bへの給電が終了する。これ以外の配電管理ECU26Bの動作については、図14に示した動作と同様である。
これにより、電力パケットミキサ21Bは電力パケット30を生成するときのみ駆動するので、専用電源161の蓄電量低下を抑制できる。
これにより、電力パケットミキサ21Bは電力パケット30を生成するときのみ駆動するので、専用電源161の蓄電量低下を抑制できる。
<配電管理ECUの動作-4>
配電管理ECUの動作例を図36に示す。図36は、図31に示した電力パケットミキサ21Bの入力へ電源23-1~23-nから給電するための配電管理ECU26Bの動作を表している。図36の動作について以下に説明する。
配電管理ECUの動作例を図36に示す。図36は、図31に示した電力パケットミキサ21Bの入力へ電源23-1~23-nから給電するための配電管理ECU26Bの動作を表している。図36の動作について以下に説明する。
配電管理ECU26Bは、専用電源161の電力残量が低下した時に、電力パケットミキサ21Bの入力へ電源23-1~23-nから給電を開始するように制御する。また、電力パケットルータ22Bからの受電情報を確認した後で、電力パケットミキサ21Bへの給電停止を制御する。
すなわち、配電管理ECU26Bが専用電源161における電力残量の不足を図36のS432で検知した時に、図36のS432Bの処理に進み、配電管理ECU26Bが電力パケットミキサ21Bに対して給電オン制御を実施する。これにより、電源23-1~23-nから電力パケットミキサ21Bへの給電が開始される。
また、配電管理ECU26Bは、電力パケットルータ22Bから受電情報を受領し電力パケットルータ22Bによる配電の正常終了を配電管理ECU26Bが図36のS439で検知すると、S439Bの処理に進み、配電管理ECU26Bは電力パケットミキサ21Bに対して給電オフ制御を実施する。これにより、電源23-1~23-nから電力パケットミキサ21Bの入力への給電が終了する。これ以外の配電管理ECU26Bの動作については、図34に示した動作と同様である。
これにより、電力パケットミキサ21Bは専用電源161への充電が必要になったときに駆動するので専用電源161の蓄電量低下を抑制できるとともに、蓄電量不足を防止できる。
これにより、電力パケットミキサ21Bは専用電源161への充電が必要になったときに駆動するので専用電源161の蓄電量低下を抑制できるとともに、蓄電量不足を防止できる。
<電力融通の最適化の技術>
例えば、図11に示した電力供給システム10-3においては、電力パケットルータ22B-1が出力する電力パケット30を、配電線(電力伝送路)29D-1を経由して電力パケットルータ22B-2の入力へ供給することができる。また、電力パケットルータ22B-3が出力する電力パケット30を、配電線(電力伝送路)29D-2を経由して電力パケットルータ22B-2の入力へ供給することもできる。つまり、電力パケットミキサ21Bが十分な電力を供給できない場合であっても、複数の電力パケットルータ22B-1~22B-3の間で蓄積した電力を融通することができる。なお、融通用電力は、図13に示したように通常給電用の蓄電部とは別の融通蓄電部に蓄電されてもよいし、1つの蓄電部に通常給電用の電力と融通電力とが蓄電されるようにしてもよい。他の実施例についても同様である。
例えば、図11に示した電力供給システム10-3においては、電力パケットルータ22B-1が出力する電力パケット30を、配電線(電力伝送路)29D-1を経由して電力パケットルータ22B-2の入力へ供給することができる。また、電力パケットルータ22B-3が出力する電力パケット30を、配電線(電力伝送路)29D-2を経由して電力パケットルータ22B-2の入力へ供給することもできる。つまり、電力パケットミキサ21Bが十分な電力を供給できない場合であっても、複数の電力パケットルータ22B-1~22B-3の間で蓄積した電力を融通することができる。なお、融通用電力は、図13に示したように通常給電用の蓄電部とは別の融通蓄電部に蓄電されてもよいし、1つの蓄電部に通常給電用の電力と融通電力とが蓄電されるようにしてもよい。他の実施例についても同様である。
ここで、複数の電力パケットルータ22B-1~22B-3の間で電力の融通を適切に制御することにより、車両全体として、より信頼性の高い電力供給が実現する。例えば、上流側の車載バッテリや、電力パケットミキサ等が故障したり、上流側の配電経路において断線が生じたような場合であっても、複数の電力パケットルータ22B-1~22B-3の間の電力融通により、重要な負荷が動作するために必要な電源電力を確保できる。
_<電力融通動作の例-1>
電力融通動作の例-1を図37に示す。図37に示した動作は、例えば図11に示した配電管理ECU26Bの動作として実現できる。また、例えば複数の電力パケットルータ22B-1~22B-3の間で通信ができる場合には、各電力パケットルータ22B-1~22B-3の制御として、図37の動作を実現できる。あるいは、電力パケットミキサ21Bがこの制御を実施してもよい。
電力融通動作の例-1を図37に示す。図37に示した動作は、例えば図11に示した配電管理ECU26Bの動作として実現できる。また、例えば複数の電力パケットルータ22B-1~22B-3の間で通信ができる場合には、各電力パケットルータ22B-1~22B-3の制御として、図37の動作を実現できる。あるいは、電力パケットミキサ21Bがこの制御を実施してもよい。
図37のステップS511では、例えば配電管理ECU26Bが、各電力パケットルータ22B-1~22B-3から受領した情報に基づいて、ルータ毎の蓄積電力量を把握する。
図37のステップS512では、例えば配電管理ECU26Bが、S511で把握したルータ毎の蓄積電力量に基づいて、蓄積電力量を均等化するための制御を実施する。すなわち、複数の電力パケットルータ22B-1~22B-3の中で、蓄積電力量の多いルータから蓄積電力量の少ないルータに宛てて電力パケット30を送出し、電力を融通するように制御する。
図37に示した処理を例えば定期的に繰り返し実施することにより、複数の電力パケットルータ22B-1~22B-3の蓄積電力量を均一化することができる。したがって、各電力パケットルータ22B-1~22B-3は、蓄積電力量の不足が発生する前に、必要な電力を確保できる。これにより、負荷24-A~24-Cの各々をいつでも動作させることが可能になる。
<電力融通動作の例-2>
電力融通動作の例-2を図38に示す。図38に示した動作は、例えば図11に示した配電管理ECU26Bの動作として実現できる。また、例えば複数の電力パケットルータ22B-1~22B-3の間で通信ができる場合には、各電力パケットルータ22B-1~22B-3の制御として、図38の動作を実現できる。あるいは、電力パケットミキサ21Bがこの制御を実施してもよい。
電力融通動作の例-2を図38に示す。図38に示した動作は、例えば図11に示した配電管理ECU26Bの動作として実現できる。また、例えば複数の電力パケットルータ22B-1~22B-3の間で通信ができる場合には、各電力パケットルータ22B-1~22B-3の制御として、図38の動作を実現できる。あるいは、電力パケットミキサ21Bがこの制御を実施してもよい。
図38のステップS521では、例えば配電管理ECU26Bが、各電力パケットルータ22B-1~22B-3から受領した情報に基づいて、ルータ毎の蓄積電力量を把握する。
図38のステップS522では、例えば配電管理ECU26Bが、電力パケットルータ22B-1~22B-3のそれぞれに接続されている負荷(補機)の重要度に応じて、これらのルータ間の優先度の高低あるいは優先順位を決定する。
図38のステップS523では、例えば配電管理ECU26Bが、電力パケットルータ22B-1~22B-3の蓄積電力量を均等化するための制御を実施する。この均等化の際に、S522で決定した複数のルータ間の優先順位に基づいて、優先順位の低いルータから、重要な負荷がつながっているルータに対して多めに電力を融通する。
すなわち、複数の電力パケットルータ22B-1~22B-3の中で、優先順位の低いルータよりも優先順位の高いルータの蓄積電力量が多くなるように配慮しつつ各ルータの蓄積電力量を均等化する。そして、電力を融通するために、蓄積電力量の多いルータは電力パケット30を他のルータ宛てに送出する。
図38に示した処理を例えば定期的に繰り返し実施することにより、複数の電力パケットルータ22B-1~22B-3の蓄積電力量を均一化すると共に、特に重要な負荷がつながっているルータの蓄積電力量を十分に確保できる。したがって、電力パケットルータ22B-1~22B-3の中で、重要な負荷がつながっているルータの蓄積電力量が不足するのを防止できる。つまり、重要な負荷(補機)をいつでも確実に動作させることが可能になる。
<接続された負荷を自動認識するための技術>
<接続された負荷を自動認識する必要性の説明>
例えば図18に示した電力供給システム10-5においては、電力パケットルータ62-1~62-3の複数の出力ポートのそれぞれに、様々な種類の負荷や他のルータが最初から接続されていたり、未接続のままであったり、種類の違う負荷が後で接続される可能性がある。このような状況を許容できるようにシステムを構成することにより、例えば車両の仕様変更などへの対応が容易になる。
<接続された負荷を自動認識する必要性の説明>
例えば図18に示した電力供給システム10-5においては、電力パケットルータ62-1~62-3の複数の出力ポートのそれぞれに、様々な種類の負荷や他のルータが最初から接続されていたり、未接続のままであったり、種類の違う負荷が後で接続される可能性がある。このような状況を許容できるようにシステムを構成することにより、例えば車両の仕様変更などへの対応が容易になる。
しかし、各出力ポートへ接続される負荷の種類が変化すると、各ルータが供給する電力の容量が不足したり、負荷に対して電力を供給する条件やタイミングが不適切になる可能性も考えられる。また、特定の負荷については接続するポートの位置を予め固定したいという要望もある。また、各出力ポートに負荷が接続されていない場合には、まだ接続されていない負荷のためにルータが必要以上の電力を過剰に確保してしまうため、他のルータの電力確保が困難になる場合も想定される。したがって、システムの動作を最適化するためには、各ルータの出力ポートへの負荷の接続の有無や、接続された負荷の種類を自動的に認識できることが望まれる。
_<接続された負荷を自動認識する動作の具体例>
起動時のルータの動作例を図39に示す。すなわち、例えば図18に示した電力供給システム10-5に含まれている電力パケットルータ62-1~62-3の各々が、図39に示した動作を起動時(例えば主電源がオンになった時)に実行することにより、各々の出力ポート62bの接続状態を自動的に認識する。なお、電力パケットミキサ61が各電力パケットルータ62-1~62-3に指示を与えて図39の動作を実行することもできる。
起動時のルータの動作例を図39に示す。すなわち、例えば図18に示した電力供給システム10-5に含まれている電力パケットルータ62-1~62-3の各々が、図39に示した動作を起動時(例えば主電源がオンになった時)に実行することにより、各々の出力ポート62bの接続状態を自動的に認識する。なお、電力パケットミキサ61が各電力パケットルータ62-1~62-3に指示を与えて図39の動作を実行することもできる。
また、本実施形態においては、各電力パケットルータ62-1~62-3の複数の出力ポート62bの中に、1つ又は複数の専用ポートと、それ以外の汎用ポートとが含まれる場合を想定している。専用ポートは、その箇所に接続可能な負荷(電装品などの補機)の種類が予め固定されている。汎用ポートは、必要に応じて複数種類の負荷の接続を許容することができる。
また、本実施形態においては、電力パケットミキサ61又は各電力パケットルータ62-1~62-3が図39に示したテーブルTBP1、TBP2を保持する場合を想定している。テーブルTBP1は、所定の不揮発性メモリ上に配置され、各専用ポートに接続する負荷の種類を表す定数データを保持している。
テーブルTBP2は、データの読み書きが自在なメモリ上に配置され、電力パケットミキサ61又は各電力パケットルータ62-1~62-3が自動認識した結果として、各出力ポート62bの最新の接続状態(接続の有無)および接続された負荷の種類を表す情報を保持するものである。
図39に示した動作について以下に説明する。
各電力パケットルータ62-1~62-3は、システムの起動時に、各出力ポート62bの状態を順番に検査して負荷等の接続の有無を確認する(S531)。例えば、出力ポート毎に流れる電流や電圧を測定したり、インピーダンスを測定することにより、負荷接続の有無を自動的に識別できる。
各電力パケットルータ62-1~62-3は、システムの起動時に、各出力ポート62bの状態を順番に検査して負荷等の接続の有無を確認する(S531)。例えば、出力ポート毎に流れる電流や電圧を測定したり、インピーダンスを測定することにより、負荷接続の有無を自動的に識別できる。
また、各出力ポート62bのうち前述の専用ポートについて負荷接続を検知した場合には、S532からS533の処理に進み、各電力パケットルータ62-1~62-3は、テーブルTBP1の登録内容を参照する。そして、各電力パケットルータ62-1~62-3は、テーブルTBP1に登録されている種類の負荷が当該専用ポートに接続されているものと認識する。そして、認識の結果をテーブルTBP2に反映する。
また、各出力ポート62bのうち汎用ポートについて負荷接続を検知した場合には、S534からS535の処理に進み、各電力パケットルータ62-1~62-3は、当該汎用ポートに流れる電流などのパラメータを検知して、予め定めた複数の閾値と比較することにより、当該汎用ポートに接続されている負荷の種類を推定し特定する。そして、各電力パケットルータ62-1~62-3は、汎用ポート毎に特定した負荷の種類を表すデータを、テーブルTBP2に反映する。
したがって、例えば図18に示した電力供給システム10-5において、電力パケットミキサ61や各電力パケットルータ62-1~62-3が各出力ポート62bを制御する際には、起動時に自動的に更新されるテーブルTBP2の内容を参照することにより、適切な制御を実施できる。
<電力の効率化伝送のための技術>
_<効率化伝送の課題>
例えば特許文献3に示されているように、イーサネット(登録商標)においてLANケーブルを介して電力を供給する技術PoE(Power over Ethernet(登録商標))を利用すると共に、総合電力損失を減らすための技術が知られている。
_<効率化伝送の課題>
例えば特許文献3に示されているように、イーサネット(登録商標)においてLANケーブルを介して電力を供給する技術PoE(Power over Ethernet(登録商標))を利用すると共に、総合電力損失を減らすための技術が知られている。
しかし、PoEを採用する場合には、その仕様上最大12.95Wの電力しか受電できず、それより大きな電力が必要な車の補機類への給電は難しい。また、このような従来技術においては、モータのように負荷電力の変動が大きいものを想定していない。車載用途では、負荷が補器用の小型モータである場合が多く、電力変動が大きく対応が難しい。
また、リアルタイムで負荷電力を検知すると、例えばワイパーの間欠動作時など停止中の電力を検知して経路をフィッティングしてしまう可能性がある。そのような状態で大電力が流れた際に損失の増加や、駆動できない可能性がある。最悪の場合は機器の機能に影響を与える可能性が生じる。また、負荷への給電線路だけで効率が決まるため、負荷が少ない場合は選択の余地が少なく効果が薄い。
_<効率化伝送の実施形態>
上述のように、車両の補機類への給電を考えた際にPoEの技術を利用すると、電力不足により負荷の駆動が難しい。よって電力パケット伝送システムで対応する。すなわち、例えば図11に示したような基本構成の電力供給システムを用いて電力の効率化伝送を実現する。なお、伝送する電力パケットの構成については例えば図4と同様である。
上述のように、車両の補機類への給電を考えた際にPoEの技術を利用すると、電力不足により負荷の駆動が難しい。よって電力パケット伝送システムで対応する。すなわち、例えば図11に示したような基本構成の電力供給システムを用いて電力の効率化伝送を実現する。なお、伝送する電力パケットの構成については例えば図4と同様である。
__<特徴的な技術>
図11に示したような電力供給システムにおいては、各給電線路のワイヤーハーネスにおける効率や、各電力パケットルータの効率が、負荷電力の大きさの変化に応じて例えば図40に示すように変化する。
図11に示したような電力供給システムにおいては、各給電線路のワイヤーハーネスにおける効率や、各電力パケットルータの効率が、負荷電力の大きさの変化に応じて例えば図40に示すように変化する。
そこで、効率的に電力を伝送するために、例えば配電管理ECU26Bの中に、各ワイヤーハーネスの効率情報(抵抗値など)、各ルータ、ミキサの負荷電力に対する効率情報(図40参照)を入れておく。
そして、電力パケットミキサ21Bから各負荷24-A、24-B、24-Cに電力を送電する際に、配電管理ECU26Bが保持している効率情報に基づいて、最も損失の低い経路を使用するように、配電管理ECU26B、電力パケットミキサ21B、又は各電力パケットルータ22B-1、22B-2、22B-3が自動的に制御する。
また、配電管理ECU26Bの中に、負荷の変動範囲の情報も入れておく。そして負荷の変動を考慮した接続を配電管理ECU26Bが行う。これにより、負荷電力が増加した時の電力不足を防ぐことができる。
__<制御の具体例-1>
電力供給システムの構成および動作の例を図41に示す。なお、図41に示した電力供給システムは、例えば図11に示した電力供給システムの一部分に相当する構成を表している。したがって、図11の配電管理ECU26Bも利用することができる。
電力供給システムの構成および動作の例を図41に示す。なお、図41に示した電力供給システムは、例えば図11に示した電力供給システムの一部分に相当する構成を表している。したがって、図11の配電管理ECU26Bも利用することができる。
図41に示した構成においては、電力パケットミキサ401の下流側に複数の電力パケットルータ402、403が配電線421、422を介して接続されている。また、電力パケットルータ402、403の間が配電線423で接続されている。
また、電力パケットルータ402の下流側に配電線424、425を介して、負荷411、412が接続されている。電力パケットルータ403の下流側に配電線426、427を介して、負荷413、414が接続されている。負荷411は、例えば0~100[W]の範囲内で負荷電力が変動するモータのような補機に相当する。負荷412、413、および414については、それぞれの負荷電力が50、200、および200[W]で一定の場合を想定している。
図41に示した構成において、電力パケットルータ402は、負荷電力が変動した場合であっても、配電管理ECU26Bの指示に従って、又は配電管理ECU26Bから取得した情報に基づいて、効率の高い状態が維持されるように制御441を行うことができる。すなわち、図41の例では、電力パケットルータ402は150~250[W]の範囲内が効率的であるので、この範囲内を維持するように給電状態を制御する。
すなわち、図41のように、電力パケットルータ402は負荷411、および412に対して、それぞれ0~100[W]および50[W]の電力を給電する。更に、電力パケットルータ402は電力パケットルータ403に対して100[W]の電力を給電する。したがって、電力パケットルータ402が扱う電力は150~250[W]の範囲内に維持される。
また、電力パケットルータ403は、電力パケットミキサ401から送電される300[W]と、電力パケットルータ402から送電される100[W]との合計400[W]を負荷413、414に給電することができる。したがって、負荷413および414は、それぞれ必要な電力200[W]を消費できる。
このように、ミキサー及びルータの負荷電力に対する効率の値に基づいて制御を実施することで、ある瞬間の最大効率に合わせて負荷へ給電するのではなく、負荷変動が考慮された長期的に見て高効率になるような給電経路を選択できる。
__<制御の具体例-2>
電力供給システムの構成および動作の例を図42に示す。なお、図42に示した電力供給システムは、例えば図11に示した電力供給システムの一部分に相当する構成を表している。したがって、図11の配電管理ECU26Bも利用することができる。また、図42に示した構成においては、電力パケットルータ402の出力から負荷413へ給電するための配電線428が追加されている。それ以外の構成は図41と同様である。
電力供給システムの構成および動作の例を図42に示す。なお、図42に示した電力供給システムは、例えば図11に示した電力供給システムの一部分に相当する構成を表している。したがって、図11の配電管理ECU26Bも利用することができる。また、図42に示した構成においては、電力パケットルータ402の出力から負荷413へ給電するための配電線428が追加されている。それ以外の構成は図41と同様である。
図42に示した構成においては、電力パケットルータ402、又は403が特別な制御442を実施することができる。すなわち、負荷413の入力に2つの配電線428、426が接続されているので、電力パケットルータ402の出力から配電線428を経由して負荷413に電力を供給することもできるし、電力パケットルータ403の出力から配電線426を経由して負荷413に電力を供給することもできる。更に、複数の電力パケットルータ402、403から負荷413に対して同時に給電することもできる。これにより、各ルータの電力を調整し、効率の良い所を使用することが可能になる。
__<制御の具体例-3>
電力供給システムの構成および動作の例を図43に示す。なお、図43に示した電力供給システムは、例えば図11に示した電力供給システムの一部分に相当する構成を表している。したがって、図11の配電管理ECU26Bも利用することができる。
電力供給システムの構成および動作の例を図43に示す。なお、図43に示した電力供給システムは、例えば図11に示した電力供給システムの一部分に相当する構成を表している。したがって、図11の配電管理ECU26Bも利用することができる。
図43に示した例では、電力パケットミキサ401の効率のピーク(最良点)が500[W]である場合を想定している。ここで、例えば電力パケットミキサ401がその下流側に供給する電力が600[W]である場合を想定すると、電力パケットミキサ401の効率がピークに比べて低下する。そこで、電力パケットミキサ401は制御431により、600[W]から100[W]引き下げて、500[W]の電力を下流側に給電する。これにより、電力パケットミキサ401の効率をピークの近傍に維持することができる。
その結果、図43のように電力パケットミキサ401が300[W]の電力を配電線422を経由して電力パケットルータ403に供給することになる。但し、電力パケットルータ403の出力には200[W]の電力を消費する負荷413と、200[W]の電力を消費する負荷414とが接続されているので、電力パケットルータ403は全体で400[W]の電力を出力側に供給する必要がある。つまり、電力パケットミキサ401が電力パケットルータ403に供給する300[W]の電力は、電力パケットルータ403が出力する電力400[W]に比べて100[W]だけ不足する。
そこで、電力パケットルータ403は、制御432として、不足する100[W]の電力を、電力パケットルータ403内部の蓄電部(バッファ:例えば図1の15A,15B)に蓄積されている電力を利用してその不足分をまかなうように制御する。
つまり、図43の構成においては、電力パケットルータ403内などに存在する蓄電部の電力を使用することで、ミキサー及びルータの入出力電力を調整し、効率の高い状態を維持したまま、必要な負荷電力で使用し続けるようにする。なお、電力パケットルータ403等の蓄電部に蓄積された電力が減少して負荷の駆動が難しくなった場合には、例えば電力パケットルータ403が配電管理ECU26Bに対して配電要求を送信する。これにより、負荷の駆動を継続することができる。
__<制御の具体例-4>
配電管理ECU26Bの動作例を図44に示す。上述のように電力供給システム各部の効率を最優先に考慮して電力供給経路の制御を行う場合には、効率のよい一部の経路にのみ電流が集中的に流れ、一部の経路で許容電流を超える可能性がある。配電管理ECU26Bが図44に示した制御を実施することにより、電流が一部の経路にのみ集中するのを抑制できる。図44の制御について以下に説明する。
配電管理ECU26Bの動作例を図44に示す。上述のように電力供給システム各部の効率を最優先に考慮して電力供給経路の制御を行う場合には、効率のよい一部の経路にのみ電流が集中的に流れ、一部の経路で許容電流を超える可能性がある。配電管理ECU26Bが図44に示した制御を実施することにより、電流が一部の経路にのみ集中するのを抑制できる。図44の制御について以下に説明する。
配電管理ECU26Bは、電力パケットルータ402、403等から各負荷への配電要求をS601で受信すると、各ハーネス(配電線421~427)、各ルータ、ミキサのそれぞれの電流許容量をS602で算出する。そして、配電管理ECU26Bはそれぞれの電流許容量と、要求された電流とをS603で比較する。
つまり、要求された電力を、効率を考慮してそのまま負荷側に供給すると、一部の経路に電流が集中して電流許容量を超える可能性があるので、実際に供給を行う前に、問題が発生しないかどうかをS603、S604で確認する。
電流許容量を超えないことを確認できた場合には、配電管理ECU26Bは、最も効率のよい経路を算出し、その経路を利用して要求された電力の給電を実施する(S610)。電流許容量を超えることが予想される箇所がある場合には、S604からS605の処理に進む。
ステップS605では、配電管理ECU26Bは、「負荷の優先度」を考慮して配電経路を決める場合に、電流許容量を超えることが予想される箇所がなくなるか否かを確認する。そして、電流許容量を超えることが予想される箇所がなくなる場合はS606に進み、電流許容量を超えることが予想される箇所がなくならない場合はS611に進む。
ここで、「負荷の優先度」については、定常的に大電流が流れる負荷を優先するように決定する。また、間欠動作する負荷(例えばワイパのモータ)のように、電流が大きく変動する負荷については、間欠動作の停止時に電流が少なくなるので、優先度を低くするように決定する。
ステップS606では、配電管理ECU26Bは、S601の配電要求に対して、「負荷の優先度」を考慮し、且つ各部の効率のよい状態を維持するように、S610とは異なるアルゴリズムを用いて、適切な配電経路を決定する。つまり、定常的に大電流が流れる負荷に対して供給する電流が、効率のよい経路を通過するように、配電経路を定める。また、変動する負荷に供給する電流の経路については、効率を重視せずに決定する。これにより、効率の良い経路に最大限電流を流すことが可能になる。
ステップS611では、配電管理ECU26Bは、S610と同様のアルゴリズムを用いて電流の経路を決定するが、電流許容量を超えることが予想される箇所については、高効率経路の選択から除外し、効率を重視しない経路を割り当てる。
S610、S606、S611のいずれかで電流供給経路を決定した後、配電管理ECU26Bは、決定された経路各部の電流許容量を算出し(S607)、送電予定の経路毎の電流値が前記電流許容量を超えないことをS608で確認した後で、各電力パケットルータ402、403、および電力パケットミキサ401に対して送電指示を与える(S609)。
なお、図41~図44に示したような上述の各制御については、図32に示した専用電源161の制御に対しても同様に適用できる。
_<効率化伝送の利点>
(1)銅線の抵抗損失は長さと断面積に比例する。したがって、配電経路の効率を考慮した制御の結果として、ワイヤーハーネスの断面積が2倍広い、もしく経路長が半分のワイヤーハーネスに切り換えることができれば損失を半分に減らす事ができる。
(2)車載機器を負荷として給電する場合には、出力電力が大きい為、ミキサー及びルータの取り扱える電力を大きくする必要がある。また、電力が大きくなる分、効率に図41のようなバラつきが発生し易くなる。しかし、PoEとは異なる上述の制御を採用することにより、負荷変動を考慮した高効率な給電が可能となる。
(3)仮に10%の効率改善があるとすると、取り扱う電力が数kWの大電力なので数百Wの損失改善となり絶対値が大きくなる。
(4)大電力に対応し機器の故障を防げるので、安全性が求められる車載用途に適用し易くなる。
(1)銅線の抵抗損失は長さと断面積に比例する。したがって、配電経路の効率を考慮した制御の結果として、ワイヤーハーネスの断面積が2倍広い、もしく経路長が半分のワイヤーハーネスに切り換えることができれば損失を半分に減らす事ができる。
(2)車載機器を負荷として給電する場合には、出力電力が大きい為、ミキサー及びルータの取り扱える電力を大きくする必要がある。また、電力が大きくなる分、効率に図41のようなバラつきが発生し易くなる。しかし、PoEとは異なる上述の制御を採用することにより、負荷変動を考慮した高効率な給電が可能となる。
(3)仮に10%の効率改善があるとすると、取り扱う電力が数kWの大電力なので数百Wの損失改善となり絶対値が大きくなる。
(4)大電力に対応し機器の故障を防げるので、安全性が求められる車載用途に適用し易くなる。
ここで、上述した本発明に係る電力供給システムの実施形態の特徴をそれぞれ以下[1]~[42]に簡潔に纏めて列記する。
[1] 1つ以上の電力供給源(63、113)から供給される電力に基づいて電力パケットを生成する電力パケット生成部(61、111)と、
伝送路を介して前記電力パケットを受け取り、当該電力パケットの電力を下流側に接続された複数の負荷に供給する電力パケットルータ(62-1~62-3、112)と、
前記電力パケットルータが必要とする電力に応じた配電要求を送出する電力要求送出部(62-1~62-3、116)と、
前記配電要求に応じた前記電力パケットを前記電力パケット生成部から前記電力パケットルータに与える電力供給制御部(61、116)と、
前記複数の負荷に優先順位を割り当てる割り当て部(62-1~62-3、116)と、を備え、
前記電力供給制御部は、電力の需要と供給との関係が所定の条件を満たす場合に、前記優先順位の低い負荷に対する電力供給を制限する、
電力供給システム。
[1] 1つ以上の電力供給源(63、113)から供給される電力に基づいて電力パケットを生成する電力パケット生成部(61、111)と、
伝送路を介して前記電力パケットを受け取り、当該電力パケットの電力を下流側に接続された複数の負荷に供給する電力パケットルータ(62-1~62-3、112)と、
前記電力パケットルータが必要とする電力に応じた配電要求を送出する電力要求送出部(62-1~62-3、116)と、
前記配電要求に応じた前記電力パケットを前記電力パケット生成部から前記電力パケットルータに与える電力供給制御部(61、116)と、
前記複数の負荷に優先順位を割り当てる割り当て部(62-1~62-3、116)と、を備え、
前記電力供給制御部は、電力の需要と供給との関係が所定の条件を満たす場合に、前記優先順位の低い負荷に対する電力供給を制限する、
電力供給システム。
[2] 前記電力供給制御部は、前記電力供給源が供給可能な供給電力量と、前記配電要求が表す需要電力量とを比較し、前記供給電力量よりも前記需要電力量が大きい場合には、前記優先順位の低い負荷に供給されている電力の供給を中止する、
上記[1]に記載の電力供給システム。
上記[1]に記載の電力供給システム。
[3] 前記割り当て部(116)は、前記電力供給システムが搭載される車両の走行状態、乗員の状態、前記車両外の環境の少なくともいずれか1つに応じて前記優先順位を補正する、
上記[1]又は[2]に記載の電力供給システム。
上記[1]又は[2]に記載の電力供給システム。
[4] 1つ以上の電力供給源(車載バッテリ13A,13B)から供給される電力に基づいて電力パケットを生成する電力パケット生成部(電力パケットミキサ11)と、
前記電力パケット生成部が生成した前記電力パケットを伝送路を介して受け取り、当該電力パケットの電力を下流側の1つ以上の負荷に供給する電力パケットルータ(12)と、
前記電力パケットルータから必要とする電力量を含む配電要求(27A)を受信して、前記電力パケット生成部に当該電力量を含む送電指示(28A)を送信する配電制御部(配電管理ECU26,26B)と、を備え、
前記電力パケット生成部は、前記電力パケットルータに向けて送出した前記電力パケットの電力量を含む送電情報(28B)を前記配電制御部に送信し、
前記電力パケットルータは、前記電力パケット生成部から受け取った前記電力パケットの電力量を含む受電情報(27B)を前記配電制御部に送信し、
前記配電制御部は、前記送電情報に含まれる電力量と前記受電情報に含まれる電力量とを比較した結果に基づいて前記伝送路の状態を診断する(S55~S57)、
電力供給システム。
前記電力パケット生成部が生成した前記電力パケットを伝送路を介して受け取り、当該電力パケットの電力を下流側の1つ以上の負荷に供給する電力パケットルータ(12)と、
前記電力パケットルータから必要とする電力量を含む配電要求(27A)を受信して、前記電力パケット生成部に当該電力量を含む送電指示(28A)を送信する配電制御部(配電管理ECU26,26B)と、を備え、
前記電力パケット生成部は、前記電力パケットルータに向けて送出した前記電力パケットの電力量を含む送電情報(28B)を前記配電制御部に送信し、
前記電力パケットルータは、前記電力パケット生成部から受け取った前記電力パケットの電力量を含む受電情報(27B)を前記配電制御部に送信し、
前記配電制御部は、前記送電情報に含まれる電力量と前記受電情報に含まれる電力量とを比較した結果に基づいて前記伝送路の状態を診断する(S55~S57)、
電力供給システム。
[5] 前記配電制御部は、前記送電情報を受信してから所定時間以内に前記受電情報を受信しない場合に(S53)前記伝送路に異常が発生していると認識する(S54,S57)、
上記[4]に記載の電力供給システム。
上記[4]に記載の電力供給システム。
[6] 前記電力パケットルータは、前記電力パケット生成部から受け取った前記電力パケットを一時的に蓄電する蓄電部(15A,15B)を備え、前記受電情報に含まれる電力量は、前記蓄電部に蓄電された電力量を表す、
上記[4]又は[5]に記載の電力供給システム。
上記[4]又は[5]に記載の電力供給システム。
[7] 前記伝送路は、並列に接続された少なくとも第1の伝送路(29A-1)および第2の伝送路(29A-2,29D-1)を備え、
前記送電指示には、前記電力パケットを伝送すべき伝送路が含まれ、
前記配電制御部は、前記第1の伝送路および前記第2の伝送路のうち一方に異常が発生していると認識した場合には、前記送電指示に含まれる前記伝送路を、前記第1の伝送路および前記第2の伝送路のうち他方に切り替える(S77)、
上記[4]乃至[6]のいずれかに記載の電力供給システム。
前記送電指示には、前記電力パケットを伝送すべき伝送路が含まれ、
前記配電制御部は、前記第1の伝送路および前記第2の伝送路のうち一方に異常が発生していると認識した場合には、前記送電指示に含まれる前記伝送路を、前記第1の伝送路および前記第2の伝送路のうち他方に切り替える(S77)、
上記[4]乃至[6]のいずれかに記載の電力供給システム。
[8] 配電要求に応じて1つ以上の電力供給源(車載バッテリ13A,13B)から電力を受け取り電力パケットを生成する電力パケット生成部(電力パケットミキサ11、21B)と、
伝送路を介して前記電力パケットを受け取り、当該電力パケットに含まれる電力を下流側の1つ以上の負荷に供給する電力パケットルータ(12、22B-1~3)と、
前記電力パケットルータが必要とする電力量を含む前記配電要求を生成し前記電力パケット生成部に送信する配電要求生成部(配電管理ECU26B、制御部45)と、
前記電力パケット生成部が前記電力パケットルータに向けて送出した前記電力パケットの送電波形情報(送電情報28B、ヘッダ31D)を生成する送電波形情報生成部と、
前記電力パケットルータが受け取った前記電力パケットの受電波形情報(受電情報27B、ヘッダ31D)を生成する受電波形情報生成部と、
前記送電波形情報と前記受電波形情報とを比較した結果に基づいて前記伝送路の状態を診断する状態診断部(配電管理ECU26B、ヘッダ分離解析部41)と、
を備えた電力供給システム。
伝送路を介して前記電力パケットを受け取り、当該電力パケットに含まれる電力を下流側の1つ以上の負荷に供給する電力パケットルータ(12、22B-1~3)と、
前記電力パケットルータが必要とする電力量を含む前記配電要求を生成し前記電力パケット生成部に送信する配電要求生成部(配電管理ECU26B、制御部45)と、
前記電力パケット生成部が前記電力パケットルータに向けて送出した前記電力パケットの送電波形情報(送電情報28B、ヘッダ31D)を生成する送電波形情報生成部と、
前記電力パケットルータが受け取った前記電力パケットの受電波形情報(受電情報27B、ヘッダ31D)を生成する受電波形情報生成部と、
前記送電波形情報と前記受電波形情報とを比較した結果に基づいて前記伝送路の状態を診断する状態診断部(配電管理ECU26B、ヘッダ分離解析部41)と、
を備えた電力供給システム。
[9] 前記電力パケットは、前記伝送路の異常検出に用いられる診断用信号(診断用パルス31Da)を含むヘッダ部と、電力を伝送するためのペイロード部(30)と、を有し、
前記送電波形情報および前記受電波形情報は、前記診断用信号の波形に関する情報である、
上記[8]に記載の電力供給システム。
前記送電波形情報および前記受電波形情報は、前記診断用信号の波形に関する情報である、
上記[8]に記載の電力供給システム。
[10] 前記状態診断部は、前記送電波形情報を受信してから所定時間以内に前記受電波形情報を受信しない場合に(S53)前記伝送路に異常が発生していると認識する(S54,S57)、
上記[8]又は[9]に記載の電力供給システム。
上記[8]又は[9]に記載の電力供給システム。
[11] 前記伝送路は、並列に接続された少なくとも第1の伝送路(29A-1)および第2の伝送路(29A-2,29D-1)を備え、
前記配電要求には、前記電力パケットを伝送すべき伝送路が含まれ、
前記配電要求生成部は、前記第1の伝送路および前記第2の伝送路のうち一方に異常が発生していると認識した場合には、前記配電要求に含まれる前記伝送路を、前記第1の伝送路および前記第2の伝送路のうち他方に切り替える(S77)、
上記[8]乃至[10]のいずれかに記載の電力供給システム。
前記配電要求には、前記電力パケットを伝送すべき伝送路が含まれ、
前記配電要求生成部は、前記第1の伝送路および前記第2の伝送路のうち一方に異常が発生していると認識した場合には、前記配電要求に含まれる前記伝送路を、前記第1の伝送路および前記第2の伝送路のうち他方に切り替える(S77)、
上記[8]乃至[10]のいずれかに記載の電力供給システム。
[12] 1つ以上の電力供給源(車載バッテリ23-1~23-n、83)から供給される電力に基づいて電力パケットを生成する電力パケット生成部(電力パケットミキサ11、81)と、
前記電力パケット生成部から伝送路を介して受け取った前記電力パケットの電力を、下流側の1つ以上の負荷に供給する第1電力パケットルータ(22B-1~3、82-1~4)および第2電力パケットルータ(22B-1~3、82-1~4)と、
前記第1電力パケットルータと前記第2電力パケットルータとを接続する相互供給経路(29D-1~2、85-3~6)と、を備え、
前記第1電力パケットルータおよび前記第2電力パケットルータそれぞれは、
必要とする電力量を含む配電要求を前記電力パケット生成部に対し送信する配電要求送出部と、
前記電力パケットの電力を蓄電するための蓄電部(通常蓄電部42A、融通蓄電部42B)と、を有し、
前記第1電力パケットルータおよび前記第2電力パケットルータのうち一方の前記配電要求送出部は、他方に対し電力を融通するよう要求する融通要求信号を送信可能であり、
前記第1電力パケットルータおよび前記第2電力パケットルータのうち前記他方は、前記融通要求信号を受信すると、前記他方の前記蓄電部から前記相互供給経路を介して前記一方に電力を融通する、
電力供給システム。
前記電力パケット生成部から伝送路を介して受け取った前記電力パケットの電力を、下流側の1つ以上の負荷に供給する第1電力パケットルータ(22B-1~3、82-1~4)および第2電力パケットルータ(22B-1~3、82-1~4)と、
前記第1電力パケットルータと前記第2電力パケットルータとを接続する相互供給経路(29D-1~2、85-3~6)と、を備え、
前記第1電力パケットルータおよび前記第2電力パケットルータそれぞれは、
必要とする電力量を含む配電要求を前記電力パケット生成部に対し送信する配電要求送出部と、
前記電力パケットの電力を蓄電するための蓄電部(通常蓄電部42A、融通蓄電部42B)と、を有し、
前記第1電力パケットルータおよび前記第2電力パケットルータのうち一方の前記配電要求送出部は、他方に対し電力を融通するよう要求する融通要求信号を送信可能であり、
前記第1電力パケットルータおよび前記第2電力パケットルータのうち前記他方は、前記融通要求信号を受信すると、前記他方の前記蓄電部から前記相互供給経路を介して前記一方に電力を融通する、
電力供給システム。
[13] 前記蓄電部は、前記負荷に供給する電力を蓄電する第1蓄電部(通常蓄電部42A)と、融通に用いる電力を蓄電する第2蓄電部(融通蓄電部42B)と、により構成され、
前記第1電力パケットルータおよび前記第2電力パケットルータのうち前記他方は、前記融通要求信号を受信すると、前記第2蓄電部に蓄電されている電力に基づいて融通に用いられる電力パケットを生成する、
上記[12]に記載の電力供給システム。
前記第1電力パケットルータおよび前記第2電力パケットルータのうち前記他方は、前記融通要求信号を受信すると、前記第2蓄電部に蓄電されている電力に基づいて融通に用いられる電力パケットを生成する、
上記[12]に記載の電力供給システム。
[14] 前記伝送路における異常発生の有無を診断する診断部(配電管理ECU26B、制御部45B)を備え、
前記一方の前記配電要求送出部は、前記診断部により前記伝送路に異常が発生していることが検出された場合に、前記他方に対し前記融通要求信号を送信する、
上記[12]又は[13]に記載の電力供給システム。
前記一方の前記配電要求送出部は、前記診断部により前記伝送路に異常が発生していることが検出された場合に、前記他方に対し前記融通要求信号を送信する、
上記[12]又は[13]に記載の電力供給システム。
[15] 1つ以上の電力供給源(バッテリ53-1、53-2)から供給される電力に基づいて電力パケットを生成する電力パケット生成部(電力パケットミキサ51)と、
前記電力パケット生成部が生成した前記電力パケットを伝送路(電力伝送路55A)を介して受け取り、当該電力パケットの電力を下流側の1つ以上の負荷(54-1~54-6)に供給する電力パケットルータ(52-1、52-2)と、
前記電力パケットルータが必要とする電力に応じた配電要求を送出する電力要求送出部(制御部45、S98)と、
前記配電要求に応じて前記電力パケットを前記電力パケット生成部から前記電力パケットルータに送出させる電力供給制御部(電力パケットミキサ51、配電管理ECU56)と、を備え、
前記電力パケットルータは、
少なくとも前記負荷を接続可能な複数の下流側ポート(電力出力ポート52b)と、
所定の条件を満たすときに、前記複数の下流側ポートの各々の接続状態を自動的に検出する接続状態検出部(制御部45、S95~S96)と、
前記接続状態を表す情報を前記電力供給制御部に送信する接続状態送信部(通信インタフェース部46)と、を有し、
前記電力供給制御部は、前記電力パケットの送出に前記接続状態を反映させる(S103)、
電力供給システム。
前記電力パケット生成部が生成した前記電力パケットを伝送路(電力伝送路55A)を介して受け取り、当該電力パケットの電力を下流側の1つ以上の負荷(54-1~54-6)に供給する電力パケットルータ(52-1、52-2)と、
前記電力パケットルータが必要とする電力に応じた配電要求を送出する電力要求送出部(制御部45、S98)と、
前記配電要求に応じて前記電力パケットを前記電力パケット生成部から前記電力パケットルータに送出させる電力供給制御部(電力パケットミキサ51、配電管理ECU56)と、を備え、
前記電力パケットルータは、
少なくとも前記負荷を接続可能な複数の下流側ポート(電力出力ポート52b)と、
所定の条件を満たすときに、前記複数の下流側ポートの各々の接続状態を自動的に検出する接続状態検出部(制御部45、S95~S96)と、
前記接続状態を表す情報を前記電力供給制御部に送信する接続状態送信部(通信インタフェース部46)と、を有し、
前記電力供給制御部は、前記電力パケットの送出に前記接続状態を反映させる(S103)、
電力供給システム。
[16] 前記電力供給制御部は、利用者が負荷の属性を入力するための入力部(入力機器57、スイッチ類58)を有し、受信した前記接続状態を表す情報に基づいて前記電力パケットルータに新しい負荷が接続されたと判断した場合には、前記入力部による当該新しい負荷の属性の入力を許可状態とする(S99~S100)、
上記[1]に記載の電力供給システム。
上記[1]に記載の電力供給システム。
[17] 前記電力供給制御部は、前記電力パケット生成部の一部を構成し、
前記接続状態検出部は、前記伝送路を経由して前記接続状態を表す情報を前記電力供給制御部に送信する、
上記[15]又は[16]に記載の電力供給システム。
前記接続状態検出部は、前記伝送路を経由して前記接続状態を表す情報を前記電力供給制御部に送信する、
上記[15]又は[16]に記載の電力供給システム。
[18] 前記接続状態検出部は、無線通信を経由して前記接続状態を表す情報を前記電力供給制御部に送信する、
上記[15]又は[16]に記載の電力供給システム。
上記[15]又は[16]に記載の電力供給システム。
[19] 電力供給源(車載バッテリ133-1、133-2)から供給される電力に基づいて電力パケットを生成し伝送路(電力伝送路138)に送出する複数の電力パケット生成部(電力パケットミキサ131-1、131-2)と、
前記伝送路を介して前記電力パケットを受け取り、当該電力パケットの電力を下流側の1つ以上の負荷に供給する複数の電力パケットルータ(132-1~132-4)と、
前記電力パケットルータから必要とする電力量を含む配電要求を受信して、前記電力パケット生成部に当該電力量を含む送電指示を送信する配電制御部(配電管理ECU136)と、を備え、
前記配電制御部は、複数のタイムスロットを有するパケット伝送フレームを生成し、複数の前記タイムスロットそれぞれに複数の前記電力パケット生成部を対応付け、
各前記電力パケット生成部は、対応付けられたタイムスロットにおいて前記電力パケットを送出する、
電力供給システム。
前記伝送路を介して前記電力パケットを受け取り、当該電力パケットの電力を下流側の1つ以上の負荷に供給する複数の電力パケットルータ(132-1~132-4)と、
前記電力パケットルータから必要とする電力量を含む配電要求を受信して、前記電力パケット生成部に当該電力量を含む送電指示を送信する配電制御部(配電管理ECU136)と、を備え、
前記配電制御部は、複数のタイムスロットを有するパケット伝送フレームを生成し、複数の前記タイムスロットそれぞれに複数の前記電力パケット生成部を対応付け、
各前記電力パケット生成部は、対応付けられたタイムスロットにおいて前記電力パケットを送出する、
電力供給システム。
[20] 前記伝送路は、リング状伝送路を形成し、
前記電力パケット生成部および前記電力パケットルータは、前記リング状伝送路の所定の場所にそれぞれ接続され、
前記配電制御部は、前記パケット伝送フレームの先頭側に、前記タイムスロットと前記電力パケットルータとの対応付けを表す対応情報を格納し、
前記電力パケット生成部は、前記対応情報に基づいて電力パケットの送出タイミングを認識する、
上記[19]に記載の電力供給システム。
前記電力パケット生成部および前記電力パケットルータは、前記リング状伝送路の所定の場所にそれぞれ接続され、
前記配電制御部は、前記パケット伝送フレームの先頭側に、前記タイムスロットと前記電力パケットルータとの対応付けを表す対応情報を格納し、
前記電力パケット生成部は、前記対応情報に基づいて電力パケットの送出タイミングを認識する、
上記[19]に記載の電力供給システム。
[21] 複数の前記電力パケットルータは、第1の電力パケットルータおよび第2の電力パケットルータを含み、
前記第1の電力パケットルータおよび前記第2の電力パケットルータそれぞれは、電力パケットとして受け取った電力を蓄電する蓄電部を有し、
前記第1の電力パケットルータの蓄電部に蓄電されている電力は、前記第2の電力パケットルータの蓄電部に融通可能であり、
前記配電制御部は、前記タイムスロットの1つに前記第1の電力パケットルータを対応付ける、
上記[20]に記載の電力供給システム。
前記第1の電力パケットルータおよび前記第2の電力パケットルータそれぞれは、電力パケットとして受け取った電力を蓄電する蓄電部を有し、
前記第1の電力パケットルータの蓄電部に蓄電されている電力は、前記第2の電力パケットルータの蓄電部に融通可能であり、
前記配電制御部は、前記タイムスロットの1つに前記第1の電力パケットルータを対応付ける、
上記[20]に記載の電力供給システム。
[22] 1つ以上の電力供給源から供給される電力に基づいて電力パケットを生成する電力パケット生成部(電力パケットミキサ121)と、
前記電力パケット生成部が生成した前記電力パケットを伝送路を介して受け取り、当該電力パケットの電力を下流側の1つ以上の負荷に供給する複数の電力パケットルータ(122-1~3)と、
前記電力パケットルータから必要とする電力量を含む配電要求を受信して、前記電力パケット生成部に当該電力量を含む配電指示を送信する配電制御部(配電管理ECU126)と、を備え、
前記複数の電力パケットルータは、上流側に位置する上流側電力パケットルータ(122-1)と、前記上流側電力パケットルータの下流側に接続される下流側電力パケットルータ(122-3)とを含み、
前記電力パケット生成部は、前記上流側電力パケットルータおよび前記下流側電力パケットルータに対する前記配電指示を受信した場合には、前記上流側電力パケットルータに供給する電力と前記下流側電力パケットルータに供給する電力を同一の前記電力パケットに含める、
電力供給システム。
前記電力パケット生成部が生成した前記電力パケットを伝送路を介して受け取り、当該電力パケットの電力を下流側の1つ以上の負荷に供給する複数の電力パケットルータ(122-1~3)と、
前記電力パケットルータから必要とする電力量を含む配電要求を受信して、前記電力パケット生成部に当該電力量を含む配電指示を送信する配電制御部(配電管理ECU126)と、を備え、
前記複数の電力パケットルータは、上流側に位置する上流側電力パケットルータ(122-1)と、前記上流側電力パケットルータの下流側に接続される下流側電力パケットルータ(122-3)とを含み、
前記電力パケット生成部は、前記上流側電力パケットルータおよび前記下流側電力パケットルータに対する前記配電指示を受信した場合には、前記上流側電力パケットルータに供給する電力と前記下流側電力パケットルータに供給する電力を同一の前記電力パケットに含める、
電力供給システム。
[23] 前記上流側電力パケットルータは、電力を蓄電する蓄電部(15A、15B)を有し、宛先が前記上流側電力パケットルータおよび前記下流側電力パケットルータである前記電力パケットを受け取った場合には、前記電力パケットの電力を前記蓄電部に蓄電し、前記蓄電部に蓄電された電力のうち前記下流側電力パケットルータに供給すべき電力を含む新たな電力パケットを生成し前記下流側電力パケットルータに送出する、
上記[22]に記載の電力供給システム。
上記[22]に記載の電力供給システム。
[24] 前記電力パケットは、宛先を表す情報を含むヘッダ部と、電力を伝送するためのペイロード部と、を有し、
前記電力パケット生成部は、前記宛先が前記上流側電力パケットルータおよび前記下流側電力パケットルータであることを表す情報を前記ヘッダ部に含め、前記上流側電力パケットルータおよび前記下流側電力パケットルータに供給する合計の電力を前記ペイロード部に含める、
上記[22]又は[23]に記載の電力供給システム。
前記電力パケット生成部は、前記宛先が前記上流側電力パケットルータおよび前記下流側電力パケットルータであることを表す情報を前記ヘッダ部に含め、前記上流側電力パケットルータおよび前記下流側電力パケットルータに供給する合計の電力を前記ペイロード部に含める、
上記[22]又は[23]に記載の電力供給システム。
[25] 電力供給源から供給される電力に基づいて電力パケットを生成する電力パケット生成部(電力パケットミキサ71)と、
前記電力パケット生成部が生成した前記電力パケットを伝送路(電力伝送路75-1)を介して受け取り、当該電力パケットの電力を下流側の負荷に供給する電力パケットルータ(72-1)と、
前記電力パケットルータから必要とする電力量を含む配電要求を受信して、前記電力パケット生成部に当該電力量を含む送電指示を送信する配電制御部(配電管理ECU26)と、を備え、
前記電力パケット生成部は、電力パケットを受け取り、当該電力パケットの電力を負荷に供給する機能(72-2)を有する、
電力供給システム。
前記電力パケット生成部が生成した前記電力パケットを伝送路(電力伝送路75-1)を介して受け取り、当該電力パケットの電力を下流側の負荷に供給する電力パケットルータ(72-1)と、
前記電力パケットルータから必要とする電力量を含む配電要求を受信して、前記電力パケット生成部に当該電力量を含む送電指示を送信する配電制御部(配電管理ECU26)と、を備え、
前記電力パケット生成部は、電力パケットを受け取り、当該電力パケットの電力を負荷に供給する機能(72-2)を有する、
電力供給システム。
[26] 前記電力パケットルータは、電力を受け取り前記電力パケットを生成する機能(72B-2)を有する、
上記[25]に記載の電力供給システム。
上記[25]に記載の電力供給システム。
[27] 1つ以上の電力供給源(車載バッテリ13A、13B)から供給される電力に基づいて電力パケットを生成する電力パケット生成部(電力パケットミキサ11)と、
前記電力パケット生成部が生成した前記電力パケットを伝送路(電力伝送路16A)を介して受け取り、当該電力パケットの電力を下流側の1つ以上の負荷に供給する電力パケットルータ(12)と、
前記電力パケットルータが必要とする電力に応じた配電要求を前記電力パケットルータから送出する電力要求送出部(12f)と、
送出された前記配電要求に応じた前記電力パケットを前記電力パケット生成部から前記電力パケットルータに与える電力供給制御部(11d)と、を備え、
前記電力パケットルータは、受け取った電力パケットの電力を蓄電する蓄電部(15A、15B)を有し、
前記電力要求送出部は、前記蓄電部の蓄電量が所定の閾値を下回った場合に、前記配電要求を送出し(S14、S15)、
前記電力供給制御部は、前記配電要求により要求された電力量と、前記電力供給源が供給可能な電力量との比較に基づいて電力供給の可否を判定する(S607、S611)、
電力供給システム。
前記電力パケット生成部が生成した前記電力パケットを伝送路(電力伝送路16A)を介して受け取り、当該電力パケットの電力を下流側の1つ以上の負荷に供給する電力パケットルータ(12)と、
前記電力パケットルータが必要とする電力に応じた配電要求を前記電力パケットルータから送出する電力要求送出部(12f)と、
送出された前記配電要求に応じた前記電力パケットを前記電力パケット生成部から前記電力パケットルータに与える電力供給制御部(11d)と、を備え、
前記電力パケットルータは、受け取った電力パケットの電力を蓄電する蓄電部(15A、15B)を有し、
前記電力要求送出部は、前記蓄電部の蓄電量が所定の閾値を下回った場合に、前記配電要求を送出し(S14、S15)、
前記電力供給制御部は、前記配電要求により要求された電力量と、前記電力供給源が供給可能な電力量との比較に基づいて電力供給の可否を判定する(S607、S611)、
電力供給システム。
[28] 前記電力供給システムは、車両に搭載され、
前記電力供給源は、前記車両の外部あるいは発電装置からの電力を蓄電するバッテリであり、
前記電力供給制御部は、前記バッテリへの蓄電が行われている場合には、要求された電力量と給電可能な電力量とを比較した結果に応じて前記電力パケット生成部に電力パケットを生成させる、
上記[27]に記載の電力供給システム。
前記電力供給源は、前記車両の外部あるいは発電装置からの電力を蓄電するバッテリであり、
前記電力供給制御部は、前記バッテリへの蓄電が行われている場合には、要求された電力量と給電可能な電力量とを比較した結果に応じて前記電力パケット生成部に電力パケットを生成させる、
上記[27]に記載の電力供給システム。
[29] 前記電力パケット生成部は、複数の前記電力供給源から電力が供給され、
前記電力パケットルータは、複数の前記電力供給源と少なくとも同じ数の前記蓄電部を有する、
上記[27]又は[28]に記載の電力供給システム。
前記電力パケットルータは、複数の前記電力供給源と少なくとも同じ数の前記蓄電部を有する、
上記[27]又は[28]に記載の電力供給システム。
[30] 複数の電力供給源(電源23-1~23-n)から供給される電力に基づいて電力パケットを生成する電力パケット生成部(電力パケットミキサ21)と、
前記電力パケット生成部が生成した前記電力パケットを伝送路(電力伝送路29A)を介して受け取り、当該電力パケットの電力を下流側の1つ以上の負荷(24-1~24-n)に供給する電力パケットルータ(22)と、
前記電力パケットルータから必要とする電力量を含む配電要求を受信して、前記電力パケット生成部に当該電力量を含む送電指示を送信する配電制御部(配電管理ECU26)と、を備え、
前記電力パケット生成部は、複数の前記電力供給源から供給される電力それぞれに基づいて前記電力パケットを生成し、複数の前記電力パケットを時分割により前記電力パケットルータに伝送する、
電力供給システム。
前記電力パケット生成部が生成した前記電力パケットを伝送路(電力伝送路29A)を介して受け取り、当該電力パケットの電力を下流側の1つ以上の負荷(24-1~24-n)に供給する電力パケットルータ(22)と、
前記電力パケットルータから必要とする電力量を含む配電要求を受信して、前記電力パケット生成部に当該電力量を含む送電指示を送信する配電制御部(配電管理ECU26)と、を備え、
前記電力パケット生成部は、複数の前記電力供給源から供給される電力それぞれに基づいて前記電力パケットを生成し、複数の前記電力パケットを時分割により前記電力パケットルータに伝送する、
電力供給システム。
[31] 前記電力パケットルータは、前記電力パケット生成部から受け取った前記電力パケットを、複数の前記電力供給源ごとに区別して蓄電可能な複数の蓄電部(15A、15B)を備える、
上記[30]に記載の電力供給システム。
上記[30]に記載の電力供給システム。
[32] 前記電力パケットは、電力を供給すべき負荷を表す宛先情報(31b)を含むヘッダ部(31)と、電力を伝送するためのペイロード部(32)と、を有し、
前記電力パケットルータは、受け取った電力パケットの電力を前記宛先情報に応じていずれかの前記蓄電部に蓄電する、
上記[31]に記載の電力供給システム。
前記電力パケットルータは、受け取った電力パケットの電力を前記宛先情報に応じていずれかの前記蓄電部に蓄電する、
上記[31]に記載の電力供給システム。
[33] 1つ以上の電力供給源(バッテリ321、322)から供給される電力に基づいて電力パケットを生成する電力パケット生成部(電力パケットミキサ323)と、
前記電力パケット生成部が生成した前記電力パケットを伝送路(電力伝送路326)を介して受け取り、当該電力パケットの電力を下流側の負荷に供給する電力パケットルータ(327)と、を備え、
前記負荷は、点滅可能な発光部(サイドターンシグナルランプ328、329)を含み、
前記電力パケット生成部には、利用者が前記発光部に対する点滅発光の指示を入力するための入力部(コラムスイッチ302、ハザードスイッチ303)が接続され、
前記電力パケット生成部は、前記入力部から前記指示が入力されると、前記電力パケットを用いて間欠的に電力を前記電力パケットルータに送信し、
前記電力パケットルータは、受け取った前記電力パケットの電力を前記発光部に配電する、
電力供給システム。
前記電力パケット生成部が生成した前記電力パケットを伝送路(電力伝送路326)を介して受け取り、当該電力パケットの電力を下流側の負荷に供給する電力パケットルータ(327)と、を備え、
前記負荷は、点滅可能な発光部(サイドターンシグナルランプ328、329)を含み、
前記電力パケット生成部には、利用者が前記発光部に対する点滅発光の指示を入力するための入力部(コラムスイッチ302、ハザードスイッチ303)が接続され、
前記電力パケット生成部は、前記入力部から前記指示が入力されると、前記電力パケットを用いて間欠的に電力を前記電力パケットルータに送信し、
前記電力パケットルータは、受け取った前記電力パケットの電力を前記発光部に配電する、
電力供給システム。
[34] 前記負荷には、電力を連続的に給電すべき連続給電負荷(負荷330)がさらに含まれ、
前記電力パケットルータは、前記電力パケット生成部から受け取った前記電力パケットを一時的に蓄電する蓄電部(15A、15B)を有し、
前記電力パケット生成部は、前記電力パケットの宛先が前記発光部および前記連続給電負荷のいずれであるかを表す宛先情報を前記電力パケットのヘッダ(31)として添付し、
前記電力パケットルータは、受け取った前記電力パケットのヘッダを参照し、前記宛先が前記連続給電負荷の場合には、前記蓄電部に蓄電し、前記宛先が前記発光部の場合には、前記蓄電部に蓄電せず前記発光部に配電する、
上記[33]に記載の電力供給システム。
前記電力パケットルータは、前記電力パケット生成部から受け取った前記電力パケットを一時的に蓄電する蓄電部(15A、15B)を有し、
前記電力パケット生成部は、前記電力パケットの宛先が前記発光部および前記連続給電負荷のいずれであるかを表す宛先情報を前記電力パケットのヘッダ(31)として添付し、
前記電力パケットルータは、受け取った前記電力パケットのヘッダを参照し、前記宛先が前記連続給電負荷の場合には、前記蓄電部に蓄電し、前記宛先が前記発光部の場合には、前記蓄電部に蓄電せず前記発光部に配電する、
上記[33]に記載の電力供給システム。
[35] 電力供給源(電源23-1~n)から供給される電力に基づいて電力パケットを生成する電力パケット生成部(電力パケットミキサ21B)と、
前記電力パケット生成部が生成した前記電力パケットを伝送路を介して受け取り、当該電力パケットの電力を下流側の負荷に供給する電力パケットルータ(22B-1、22B-2、および22B-3)と、
前記電力パケットルータから必要とする電力量を含む配電要求を受信して、前記電力パケット生成部に当該電力量を含む送電指示を送信する配電制御部(配電管理ECU26B)と、
前記電力パケット生成部および前記電力パケットルータと配電線(162)を経由して接続され、前記電力パケット生成部および前記電力パケットルータの駆動用電力を供給する駆動用電源(専用電源161)と、を備える
電力供給システム。
前記電力パケット生成部が生成した前記電力パケットを伝送路を介して受け取り、当該電力パケットの電力を下流側の負荷に供給する電力パケットルータ(22B-1、22B-2、および22B-3)と、
前記電力パケットルータから必要とする電力量を含む配電要求を受信して、前記電力パケット生成部に当該電力量を含む送電指示を送信する配電制御部(配電管理ECU26B)と、
前記電力パケット生成部および前記電力パケットルータと配電線(162)を経由して接続され、前記電力パケット生成部および前記電力パケットルータの駆動用電力を供給する駆動用電源(専用電源161)と、を備える
電力供給システム。
[36] 前記駆動用電源は、振動エネルギー、熱エネルギーおよび光エネルギーのうち少なくともいずれかに基づいて発電された電力により充電される、
上記[35]に記載の電力供給システム。
上記[35]に記載の電力供給システム。
[37] 前記電力パケット生成部と前記駆動用電源とを接続するもう一つの伝送路(配電線163)をさらに備え、
前記配電制御部は、前記駆動用電源に蓄電されている電力量が予め定められた閾値を下回った場合には、前記電力パケット生成部から前記もう一つの伝送路を経由して前記駆動用電源に電力を供給させる、
上記[35]又は[36]に記載の電力供給システム。
前記配電制御部は、前記駆動用電源に蓄電されている電力量が予め定められた閾値を下回った場合には、前記電力パケット生成部から前記もう一つの伝送路を経由して前記駆動用電源に電力を供給させる、
上記[35]又は[36]に記載の電力供給システム。
[38] 前記配電制御部は、前記駆動用電源から前記電力パケット生成部への駆動用電力の供給を制御する機能をさらに有し、前記駆動用電力の供給開始に引き続いて前記電力パケット生成部に前記送電指示を送信し(S418、S418B)、前記電力パケットの伝送終了に引き続いて前記駆動用電力の供給を停止させる(S415、S415B)、
上記[35]乃至[37]のいずれかに記載の電力供給システム。
上記[35]乃至[37]のいずれかに記載の電力供給システム。
[39] 電力供給源から供給される電力に基づいて電力パケットを生成する電力パケット生成部(電力パケットミキサ401)と、
前記電力パケット生成部が生成した前記電力パケットを伝送路を介して受け取り、当該電力パケットの電力を下流側の1つ以上の負荷に供給する複数の電力パケットルータ(電力パケットルータ402、403)と、
前記電力パケットルータから必要とする電力量を含む配電要求を受信して、前記電力パケット生成部に当該電力量を含む配電指示を送信する配電制御部(配電管理ECU26B)と、を備え、
前記配電制御部は、
各前記伝送路の伝送効率、前記電力パケット生成部の負荷電力に対する効率、および前記電力パケットルータの負荷電力に対する効率のうちの少なくともいずれかを表す効率情報と、各前記負荷の消費電力および当該消費電力の変動範囲を表す負荷電力情報と、を記憶する記憶部と、
前記電力パケット生成部から前記電力パケットルータを経由して前記負荷までの給電経路を、前記効率情報および前記負荷電力情報に基づいて設定する経路設定部(配電管理ECU26B)と、を有する
電力供給システム。
前記電力パケット生成部が生成した前記電力パケットを伝送路を介して受け取り、当該電力パケットの電力を下流側の1つ以上の負荷に供給する複数の電力パケットルータ(電力パケットルータ402、403)と、
前記電力パケットルータから必要とする電力量を含む配電要求を受信して、前記電力パケット生成部に当該電力量を含む配電指示を送信する配電制御部(配電管理ECU26B)と、を備え、
前記配電制御部は、
各前記伝送路の伝送効率、前記電力パケット生成部の負荷電力に対する効率、および前記電力パケットルータの負荷電力に対する効率のうちの少なくともいずれかを表す効率情報と、各前記負荷の消費電力および当該消費電力の変動範囲を表す負荷電力情報と、を記憶する記憶部と、
前記電力パケット生成部から前記電力パケットルータを経由して前記負荷までの給電経路を、前記効率情報および前記負荷電力情報に基づいて設定する経路設定部(配電管理ECU26B)と、を有する
電力供給システム。
[40] 前記経路設定部は、前記給電経路の設定により所定の前記伝送路を流れる電流が予め定められた閾値を超えた場合には、大電流を必要とする前記負荷に対する電力の伝送を当該伝送路において優先させる、
上記[39]に記載の電力供給システム。
上記[39]に記載の電力供給システム。
[41] 前記経路設定部は、前記給電経路の設定により所定の前記伝送路を流れる電流が予め定められた閾値を超えた場合には、供給すべき電力の変動が小さい前記負荷に対する電力の伝送を当該伝送路において優先させる、
上記[39]又は[40]に記載の電力供給システム。
上記[39]又は[40]に記載の電力供給システム。
[42] 前記電力パケットルータは、受け取った前記電力パケットの電力を蓄電する蓄電部(15A、15B)を有し、
前記経路設定部により前記給電経路が設定された結果、前記電力パケット生成部から供給される電力が不足する前記負荷がある場合には、前記蓄電部から不足分の電力を当該負荷に対し供給する、
上記[39]乃至[41]のいずれかに記載の電力供給システム。
前記経路設定部により前記給電経路が設定された結果、前記電力パケット生成部から供給される電力が不足する前記負荷がある場合には、前記蓄電部から不足分の電力を当該負荷に対し供給する、
上記[39]乃至[41]のいずれかに記載の電力供給システム。
本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
本出願は、2017年3月22日出願の日本特許出願(特願2017-056002)、2017年11月30日出願の日本特許出願(特願2017-231241)、2017年11月30日出願の日本特許出願(特願2017-231242)、2017年11月30日出願の日本特許出願(特願2017-231243)、2017年11月30日出願の日本特許出願(特願2017-231244)、2017年11月30日出願の日本特許出願(特願2017-231245)、2017年11月30日出願の日本特許出願(特願2017-231246)、2017年11月30日出願の日本特許出願(特願2017-231247)、2017年11月30日出願の日本特許出願(特願2017-231248)、2017年11月30日出願の日本特許出願(特願2017-231249)、2017年11月30日出願の日本特許出願(特願2017-231250)、2017年11月30日出願の日本特許出願(特願2017-231252)、2017年11月30日出願の日本特許出願(特願2017-231253)、2017年11月30日出願の日本特許出願(特願2017-231254)、に基づくものであり、その内容はここに参照として取り込まれる。
本発明によれば、車載バッテリ等の電力が無駄に放出されるのを避けることができ、且つ、負荷が増えた場合においても電力の需要と供給能力とのバランスを適度な状態に保つことができるという効果を奏する。この効果を奏する本発明は、車両上などで電力供給を行うために利用可能な電力供給システムに関して有用である。
10-1,10-2,10-3,10-4,10-5 電力供給システム
10-6,10-7,10-8,10-9 電力供給システム
11,21,21B,51,61 電力パケットミキサ
11a,11b,21a,51a 電力入力ポート
11c,21b,51b 電力パケット出力ポート
12,22,22B,52,62 電力パケットルータ
12a,22a,52a 電力パケット入力ポート
12b,12c,12d,22b,52b 電力出力ポート
13A,13B,53,63 車載バッテリ
14A,14B,14C,54,64 負荷
15A,15B 蓄電部
16A,16B,16C,16D,16E,16F 電力伝送路
17 交流出力回路
18-1,18-n 送電回路
19-1,19-n 受電回路
21c,26c,26d 通信ポート
23-1,23-2,23-n 電源
24-1,24-2,24-n,24-A,24-B,24-C 負荷
26,26B,56,116,126 配電管理ECU
26a 制御部
26b 通信インタフェース部
27A 配電要求
27B 受電情報
28A 送電指示
28B 送電情報
29A,29B,29C 電力伝送路
30,30B,30C 電力パケット
31,31B,31C,31D ヘッダ
31a 同期信号
31b 宛先情報
31c 送電電力情報
31d 電力種別情報
31Da 劣化診断用ビット
32 ペイロード
35 入力選択部
36 パケット生成部
37 出力ポート選択部
38,45,45B 制御部
39,46 通信インタフェース部
41 ヘッダ分離解析部
42 蓄電部
42A 通常蓄電部
42B 融通蓄電部
43 パケット生成部
44 出力ポート選択部
55A,55B,55C 電力伝送路
57 入力機器
58 スイッチ類
71 複合電力パケットミキサ
72 複合電力パケットルータ
74 負荷
75-1,75-2 双方向電力伝送路
76,77 電力伝送路
81,91,111,121,131 電力パケットミキサ
82,92,112,122,132 電力パケットルータ
83,93,113,123,133 車載バッテリ
84,94,114,124,134 負荷
85,95,115,127,135 電力伝送路
89 インジケータ
117,P1,P2,P3,P4,P5,P6 電力パケット
137 通信線
161 専用電源
162,163,164 配電線
165 環境発電機構
301,321,322 バッテリ
302 コラムスイッチ
303 ハザードスイッチ
323 電力パケットミキサ
324,325,326 電力伝送路
327 電力パケットルータ
328,329 サイドターンシグナルランプ
PR1,PR2,PR3 電力パケット
PPH,PPL 電力パケット
10-6,10-7,10-8,10-9 電力供給システム
11,21,21B,51,61 電力パケットミキサ
11a,11b,21a,51a 電力入力ポート
11c,21b,51b 電力パケット出力ポート
12,22,22B,52,62 電力パケットルータ
12a,22a,52a 電力パケット入力ポート
12b,12c,12d,22b,52b 電力出力ポート
13A,13B,53,63 車載バッテリ
14A,14B,14C,54,64 負荷
15A,15B 蓄電部
16A,16B,16C,16D,16E,16F 電力伝送路
17 交流出力回路
18-1,18-n 送電回路
19-1,19-n 受電回路
21c,26c,26d 通信ポート
23-1,23-2,23-n 電源
24-1,24-2,24-n,24-A,24-B,24-C 負荷
26,26B,56,116,126 配電管理ECU
26a 制御部
26b 通信インタフェース部
27A 配電要求
27B 受電情報
28A 送電指示
28B 送電情報
29A,29B,29C 電力伝送路
30,30B,30C 電力パケット
31,31B,31C,31D ヘッダ
31a 同期信号
31b 宛先情報
31c 送電電力情報
31d 電力種別情報
31Da 劣化診断用ビット
32 ペイロード
35 入力選択部
36 パケット生成部
37 出力ポート選択部
38,45,45B 制御部
39,46 通信インタフェース部
41 ヘッダ分離解析部
42 蓄電部
42A 通常蓄電部
42B 融通蓄電部
43 パケット生成部
44 出力ポート選択部
55A,55B,55C 電力伝送路
57 入力機器
58 スイッチ類
71 複合電力パケットミキサ
72 複合電力パケットルータ
74 負荷
75-1,75-2 双方向電力伝送路
76,77 電力伝送路
81,91,111,121,131 電力パケットミキサ
82,92,112,122,132 電力パケットルータ
83,93,113,123,133 車載バッテリ
84,94,114,124,134 負荷
85,95,115,127,135 電力伝送路
89 インジケータ
117,P1,P2,P3,P4,P5,P6 電力パケット
137 通信線
161 専用電源
162,163,164 配電線
165 環境発電機構
301,321,322 バッテリ
302 コラムスイッチ
303 ハザードスイッチ
323 電力パケットミキサ
324,325,326 電力伝送路
327 電力パケットルータ
328,329 サイドターンシグナルランプ
PR1,PR2,PR3 電力パケット
PPH,PPL 電力パケット
Claims (3)
- 1つ以上の電力供給源から供給される電力に基づいて電力パケットを生成する電力パケット生成部と、
伝送路を介して前記電力パケットを受け取り、当該電力パケットの電力を下流側に接続された複数の負荷に供給する電力パケットルータと、
前記電力パケットルータが必要とする電力に応じた配電要求を送出する電力要求送出部と、
前記配電要求に応じた前記電力パケットを前記電力パケット生成部から前記電力パケットルータに与える電力供給制御部と、
前記複数の負荷に優先順位を割り当てる割り当て部と、を備え、
前記電力供給制御部は、電力の需要と供給との関係が所定の条件を満たす場合に、前記優先順位の低い負荷に対する電力供給を制限する、
電力供給システム。 - 前記電力供給制御部は、前記電力供給源が供給可能な供給電力量と、前記配電要求が表す需要電力量とを比較し、前記供給電力量よりも前記需要電力量が大きい場合には、前記優先順位の低い負荷に供給されている電力の供給を中止する、
請求項1に記載の電力供給システム。 - 前記割り当て部は、前記電力供給システムが搭載される車両の走行状態、乗員の状態、前記車両外の環境の少なくともいずれか1つに応じて前記優先順位を補正する、
請求項1又は請求項2に記載の電力供給システム。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201880013529.3A CN110366806A (zh) | 2017-03-22 | 2018-03-22 | 供电系统 |
EP18770833.4A EP3605789A4 (en) | 2017-03-22 | 2018-03-22 | POWER SUPPLY SYSTEM |
US16/546,166 US20190366872A1 (en) | 2017-03-22 | 2019-08-20 | Vehicular power supply system |
Applications Claiming Priority (28)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017056002 | 2017-03-22 | ||
JP2017-056002 | 2017-03-22 | ||
JP2017231248A JP6856513B2 (ja) | 2017-03-22 | 2017-11-30 | 電力供給システム |
JP2017-231252 | 2017-11-30 | ||
JP2017-231246 | 2017-11-30 | ||
JP2017-231241 | 2017-11-30 | ||
JP2017-231244 | 2017-11-30 | ||
JP2017-231248 | 2017-11-30 | ||
JP2017-231253 | 2017-11-30 | ||
JP2017231245A JP6856510B2 (ja) | 2017-03-22 | 2017-11-30 | 電力供給システム |
JP2017231246A JP6856511B2 (ja) | 2017-03-22 | 2017-11-30 | 電力供給システム |
JP2017-231249 | 2017-11-30 | ||
JP2017-231242 | 2017-11-30 | ||
JP2017231253A JP6856517B2 (ja) | 2017-03-22 | 2017-11-30 | 電力供給システム |
JP2017-231245 | 2017-11-30 | ||
JP2017-231247 | 2017-11-30 | ||
JP2017231252A JP6856516B2 (ja) | 2017-03-22 | 2017-11-30 | 電力供給システム |
JP2017231254A JP6856518B2 (ja) | 2017-03-22 | 2017-11-30 | 電力供給システム |
JP2017231247A JP6856512B2 (ja) | 2017-03-22 | 2017-11-30 | 電力供給システム |
JP2017-231243 | 2017-11-30 | ||
JP2017-231250 | 2017-11-30 | ||
JP2017231250A JP6856515B2 (ja) | 2017-03-22 | 2017-11-30 | 電力供給システム |
JP2017231249A JP6856514B2 (ja) | 2017-03-22 | 2017-11-30 | 電力供給システム |
JP2017-231254 | 2017-11-30 | ||
JP2017231242A JP6856507B2 (ja) | 2017-03-22 | 2017-11-30 | 電力供給システム |
JP2017231244A JP6856509B2 (ja) | 2017-03-22 | 2017-11-30 | 車両の電力供給システム |
JP2017231241A JP6856506B2 (ja) | 2017-03-22 | 2017-11-30 | 電力供給システム |
JP2017231243A JP6856508B2 (ja) | 2017-03-22 | 2017-11-30 | 電力供給システム |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/546,166 Continuation US20190366872A1 (en) | 2017-03-22 | 2019-08-20 | Vehicular power supply system |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018174208A1 true WO2018174208A1 (ja) | 2018-09-27 |
Family
ID=63586383
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/011545 WO2018174208A1 (ja) | 2017-03-22 | 2018-03-22 | 電力供給システム |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2018174208A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110460032A (zh) * | 2019-07-09 | 2019-11-15 | 国网河北省电力有限公司衡水供电分公司 | 一种电力传输方法 |
TWI859559B (zh) | 2022-07-22 | 2024-10-21 | 宏正自動科技股份有限公司 | 供電裝置及供電方法 |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090193268A1 (en) * | 2008-01-29 | 2009-07-30 | Barrett Kreiner | Packetized Power |
WO2011030558A1 (ja) * | 2009-09-10 | 2011-03-17 | Abe Rikiya | 多端子型電力変換装置、多端子型電力授受装置及び電力ネットワークシステム |
US20120059532A1 (en) * | 2009-05-15 | 2012-03-08 | Gip Ag | Method and device for the directional transmission of electrical energy in an electricity grid |
WO2012081312A1 (ja) * | 2010-12-14 | 2012-06-21 | コニカミノルタホールディングス株式会社 | 電力供給方法 |
JP2013226909A (ja) | 2012-04-25 | 2013-11-07 | Clarion Co Ltd | 車内省電力制御装置 |
WO2014077191A1 (ja) | 2012-11-14 | 2014-05-22 | 国立大学法人京都大学 | 電力ルータ及び電力ネットワーク |
WO2014189051A1 (ja) * | 2013-05-21 | 2014-11-27 | 国立大学法人京都大学 | 電力パケット生成装置、電力ルータおよび電力ネットワーク |
WO2015109193A1 (en) * | 2014-01-19 | 2015-07-23 | VoltServer, Inc. | Digital power network method and apparatus |
WO2015163312A1 (ja) * | 2014-04-21 | 2015-10-29 | 山口 作太郎 | ワイヤーハーネスシステムと装置と給電方法 |
JP2017056002A (ja) | 2015-09-17 | 2017-03-23 | カシオ計算機株式会社 | 描画装置及び描画方法 |
-
2018
- 2018-03-22 WO PCT/JP2018/011545 patent/WO2018174208A1/ja unknown
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090193268A1 (en) * | 2008-01-29 | 2009-07-30 | Barrett Kreiner | Packetized Power |
US20120059532A1 (en) * | 2009-05-15 | 2012-03-08 | Gip Ag | Method and device for the directional transmission of electrical energy in an electricity grid |
WO2011030558A1 (ja) * | 2009-09-10 | 2011-03-17 | Abe Rikiya | 多端子型電力変換装置、多端子型電力授受装置及び電力ネットワークシステム |
WO2012081312A1 (ja) * | 2010-12-14 | 2012-06-21 | コニカミノルタホールディングス株式会社 | 電力供給方法 |
JP2013226909A (ja) | 2012-04-25 | 2013-11-07 | Clarion Co Ltd | 車内省電力制御装置 |
WO2014077191A1 (ja) | 2012-11-14 | 2014-05-22 | 国立大学法人京都大学 | 電力ルータ及び電力ネットワーク |
WO2014189051A1 (ja) * | 2013-05-21 | 2014-11-27 | 国立大学法人京都大学 | 電力パケット生成装置、電力ルータおよび電力ネットワーク |
WO2015109193A1 (en) * | 2014-01-19 | 2015-07-23 | VoltServer, Inc. | Digital power network method and apparatus |
WO2015163312A1 (ja) * | 2014-04-21 | 2015-10-29 | 山口 作太郎 | ワイヤーハーネスシステムと装置と給電方法 |
JP2017056002A (ja) | 2015-09-17 | 2017-03-23 | カシオ計算機株式会社 | 描画装置及び描画方法 |
Non-Patent Citations (1)
Title |
---|
SUGIYAMA, HISAYOSHI ET AL.: "Packet Switched Power Network with Decentralized Control Based on Synchronized QoS Routing", ICTA 2012, 13 November 2012 (2012-11-13), pages 147 - 152, XP055608876 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110460032A (zh) * | 2019-07-09 | 2019-11-15 | 国网河北省电力有限公司衡水供电分公司 | 一种电力传输方法 |
TWI859559B (zh) | 2022-07-22 | 2024-10-21 | 宏正自動科技股份有限公司 | 供電裝置及供電方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6856507B2 (ja) | 電力供給システム | |
CN110087934B (zh) | 车载控制装置 | |
JP5479597B2 (ja) | ジャンプスタート方法、およびジャンプスタート方法を実施するための装置 | |
CN103034181A (zh) | 用于管理车辆中的电力负载的系统和方法 | |
JP6125855B2 (ja) | 車両用電源管理装置および車両用電源システム | |
WO2015140618A1 (en) | Charging system mouted on vehicle | |
JP4709907B2 (ja) | 並列に配置されている複数のジェネレータユニットを備えたシステムにおけるアドレス設定方法およびアドレス設定装置 | |
WO2018174208A1 (ja) | 電力供給システム | |
JP7398234B2 (ja) | 車載通信システムおよび電源制御方法 | |
JP2009220601A (ja) | 車両電源システム | |
CN114243895B (zh) | 车辆及其供电系统 | |
JP3923737B2 (ja) | 分散電源用発電機の制御方法 | |
JP2019083465A (ja) | 車載制御装置 | |
JP2014036459A (ja) | 車載制御システム | |
CN106627184A (zh) | 电动汽车电能分配方法 | |
CN117134311A (zh) | 具有直流变压器的机动车和用于运行机动车的方法 | |
JP2013241095A (ja) | 補機用回路 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18770833 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2018770833 Country of ref document: EP Effective date: 20191022 |