WO2018143535A1 - Ice display device - Google Patents
Ice display device Download PDFInfo
- Publication number
- WO2018143535A1 WO2018143535A1 PCT/KR2017/011059 KR2017011059W WO2018143535A1 WO 2018143535 A1 WO2018143535 A1 WO 2018143535A1 KR 2017011059 W KR2017011059 W KR 2017011059W WO 2018143535 A1 WO2018143535 A1 WO 2018143535A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- light
- ice
- layer
- display module
- display
- Prior art date
Links
- 238000009792 diffusion process Methods 0.000 claims description 27
- 238000000034 method Methods 0.000 claims description 16
- 239000003795 chemical substances by application Substances 0.000 claims description 9
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical group O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 6
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 claims description 6
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 claims description 6
- 230000001678 irradiating effect Effects 0.000 claims description 5
- 229920003229 poly(methyl methacrylate) Polymers 0.000 claims description 5
- GZVHEAJQGPRDLQ-UHFFFAOYSA-N 6-phenyl-1,3,5-triazine-2,4-diamine Chemical compound NC1=NC(N)=NC(C=2C=CC=CC=2)=N1 GZVHEAJQGPRDLQ-UHFFFAOYSA-N 0.000 claims description 4
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 3
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 claims description 3
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 3
- 229920000642 polymer Polymers 0.000 claims description 3
- 229910052710 silicon Inorganic materials 0.000 claims description 3
- 239000010703 silicon Substances 0.000 claims description 3
- 239000000377 silicon dioxide Substances 0.000 claims description 3
- 239000004926 polymethyl methacrylate Substances 0.000 claims description 2
- 239000012530 fluid Substances 0.000 description 3
- 239000003973 paint Substances 0.000 description 3
- 239000003086 colorant Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 235000011089 carbon dioxide Nutrition 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 229920000193 polymethacrylate Polymers 0.000 description 1
- 239000003507 refrigerant Substances 0.000 description 1
- 239000012780 transparent material Substances 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09F—DISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
- G09F19/00—Advertising or display means not otherwise provided for
- G09F19/22—Advertising or display means on roads, walls or similar surfaces, e.g. illuminated
- G09F19/228—Ground signs, i.e. display signs fixed on the ground
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09F—DISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
- G09F19/00—Advertising or display means not otherwise provided for
- G09F19/12—Advertising or display means not otherwise provided for using special optical effects
- G09F19/18—Advertising or display means not otherwise provided for using special optical effects involving the use of optical projection means, e.g. projection of images on clouds
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09F—DISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
- G09F19/00—Advertising or display means not otherwise provided for
- G09F19/22—Advertising or display means on roads, walls or similar surfaces, e.g. illuminated
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09F—DISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
- G09F9/00—Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
- G09F9/30—Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
- G09F9/33—Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements being semiconductor devices, e.g. diodes
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09F—DISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
- G09F19/00—Advertising or display means not otherwise provided for
- G09F19/22—Advertising or display means on roads, walls or similar surfaces, e.g. illuminated
- G09F2019/223—Advertising or display means on roads, walls or similar surfaces, e.g. illuminated in pavement panels
Definitions
- the present invention relates to an ice display device, and more particularly, to an ice display device capable of producing a visual display by installing a display module capable of displaying a display module below a ice plate such as an ice rink.
- the production of performances on the ice represented by the ice rink is performed by directing the light toward the surface of the ice by using a directing method using dry ice and a plurality of lights located above the ice. How to produce a variety of characters or shapes.
- the method of irradiating light from the upside that is, the method of directing only the projector image
- the method of directing only the projector image has a problem in that the brightness and clarity of the light reflected from the ice sheet are poor, and the limitation of the vivid image is generated.
- an object of the present invention is to solve such a conventional problem, by installing a display module on the lower portion of the surface of the ice and scattering the light emitted from the display module through the scattering layer formed on the ice, it is possible to display a variety of forms
- the present invention provides an ice display device capable of realizing a lighter display image with better light efficiency by including a light collecting part for reflecting and condensing light emitted from each display module toward the top.
- the above object forms an ice plate on the surface, the ice body is formed scattering layer therein; And at least one display module installed under the scattering layer in the ice body and configured to display a light through the surface by irradiating light toward the surface, wherein the display module is configured to irradiate the light. ; And it may be achieved by the ice plate display device including a light collecting unit for reflecting and condensing the light emitted from the light source toward the top.
- the light source unit may be formed of an RGB light emitting diode (LED).
- LED RGB light emitting diode
- the light diffusion layer for reflecting the irradiated light at various diffusion angles may be formed on the reflective surface of the light collecting portion.
- the diffusion angle preferably has a range between 10 degrees and 150 degrees.
- the light collecting part may have a radius along the irradiation direction of the light and may be a straight surface.
- the light converging part may have a radius gradually increasing in a direction along the irradiation direction of the light, and a cross section may have a shape of a secondary curved surface.
- the scattering layer may be formed including a plurality of bubbles or may include a scattering agent.
- the scattering agent may include silica, silicon, alumina, titanium dioxide (TiO 2), zirconia (ZrO 2), barium sulfate, zinc oxide (ZnO), and methyl polymethacrylate. (poly (methylmethacrylate)), and a benzoguanamine-based polymer.
- the ice body is a first ice layer formed on the bottom surface; A second ice layer formed on the first ice layer and on which the display module is installed; And a third ice layer formed on the second ice layer and including the scattering layer.
- the display module may have a form in which a plurality of light source units formed of the RGB light emitting diodes and a unit display module including the condensing units are arrayed at regular intervals.
- the transparent cover may further include a transparent cover that is fixed to the light collecting part and transmits light, and the emission surface of the transparent cover may have a concave shape.
- the display module can be installed on the surface of the ice by irradiating light toward the scattering layer on the upper portion by installing the display module under the ice surface.
- the display module may include a light collecting part for condensing the light emitted from the light source toward the upper side, thereby realizing a lighter display image with better light efficiency.
- the light diffusing layer is formed on the reflecting surface of the light collecting portion, so that white light by mixing RGB light can be easily formed.
- FIG. 1 is a cross-sectional view of an ice display device according to an embodiment of the present invention.
- FIG. 2 is a perspective view of a display module according to an embodiment of the present invention.
- FIG. 3 is a partial cross-sectional view of A of FIG. 2.
- FIG 4 illustrates various forms of the light collecting portion according to the present invention.
- FIG. 5 is a view comparing light irradiation states when a light collecting unit is not formed around a light source unit and when a light collecting unit is formed according to the present invention.
- FIG. 6 is an actual photograph in which a part is not formed around a light source and a part is displayed by using a display module in which a light is formed according to the present invention.
- FIG. 7 is a graph showing light distribution distribution when a light collecting unit is formed according to the present invention.
- FIG. 8 is a view showing a distribution of light reflected through the light diffusion layer by forming a light diffusion layer on the reflective surface of the light collecting portion according to the present invention.
- FIG. 9 is a diagram illustrating a comparison of distribution of light reflected and spread along the light diffusion layer.
- FIG. 10 is a diagram illustrating color distribution irradiated for each RGB light source when a light collecting unit is formed according to an embodiment of the present invention.
- FIG. 11 is a view showing the mixed white light color distribution of the RGB light source in the case where the light diffusing layer is formed or not in the light collecting portion.
- FIG. 1 is a cross-sectional view of an ice display device according to an embodiment of the present invention
- FIG. 2 is a perspective view of a display module according to an embodiment of the present invention
- FIG. 3 is a partial cross-sectional view of A of FIG. 5 shows various forms of the light collecting unit according to the present invention.
- FIG. 5 is a view comparing the irradiation conditions of light when the light collecting unit is not formed around the light source unit and when the light collecting unit is formed according to the present invention.
- FIG. 8 is a graph showing the distribution of light distribution
- FIG. 8 is a view showing the distribution of light reflected through the light diffusion layer by forming a light diffusion layer on the reflecting surface of the light collecting portion according to the present invention.
- FIG. 10 is a view illustrating a distribution of light reflected and spread according to a light diffusion layer
- FIG. 10 is a view illustrating color distribution irradiated by RGB light sources when a light collecting unit is formed according to an embodiment of the present invention. Is a view showing the color distribution of the mixed white light of the RGB light source in the case where the light diffusion layer is formed or not.
- the ice display device may be configured to include an ice body and a display module 200.
- the ice body may be formed of a plurality of ice layers 110, 130, 140, and 160 as a part of forming an ice plate on a surface thereof.
- the first ice layer 110 may be formed on the bottom surface as a part for forming the base of the whole ice body, and a coolant tube 100 may be formed at the bottom of the bottom surface to supply and circulate the refrigerant therein.
- the first ice layer 110 and the second to fourth ice layers 130, 140, and 160 which will be described later, may be formed to a predetermined thickness by repeating the cooling process after spraying water with a spraying device or the like.
- White paint may be applied to the upper portion of the first ice layer 110, and the white paint layer 120 may prevent the first ice layer 110 and the bottom surface from being seen from the outside and at the same time. It can be used as the background color of the display screen.
- the second ice layer 130 including the display module 200 may be formed on the white paint layer 120.
- the heights of the display module 200 and the second ice layer 130 are the same, but the display module 200 is formed under the second ice layer 130, that is, of the display module 200.
- the second ice layer 130 may be formed on the upper side including the side surface.
- the third ice layer 140, the scattering layer 150, and the fourth ice layer 160 may be sequentially formed on the second ice layer 130 including the display module 200.
- the third ice layer 140 and the fourth ice layer 160 is preferably formed of a transparent layer.
- the scattering layer 150 formed on the display module 200 may include a plurality of bubbles or may include a scattering agent to form an opaque layer.
- the fluid forming the scattering layer 150 may be water.
- the scattering agent it is preferable to use an appropriate fluid in which the fluid forming the scattering layer 150 does not dissolve in the scattering agent.
- the scattering layer 150 scatters the light that is irradiated from the lower display module 200 and passed through the ice layer, and the scattered light is diffused and transmitted to the outside to form a display image.
- Scattering agents forming the scattering layer 150 include silica, silicon, alumina, titanium dioxide (TiO 2), zirconia (ZrO 2), barium sulfate, zinc oxide (ZnO), Polymethyl methacrylate (poly (methylmethacrylate)), and may be at least one from the group consisting of benzoguanamine (Benzoguanamine) polymer.
- FIG. 2 illustrates a display module 200 according to an embodiment of the present invention, wherein the unit display module may be formed in a plurality of arrays at regular or irregular intervals in the horizontal and vertical directions.
- Each unit display module may include a light source unit 220 and a light collecting unit 230, as shown in FIG.
- a PCB substrate 210 may be formed to control an electrical signal to the light source unit 220.
- the unit display modules may be formed at predetermined intervals on the PCB substrate 210.
- the light source unit 220 may be formed. As described above, the light source unit 220 emits light from the inside of the ice body to the upper surface to enable display display through the surface of the ice plate.
- a light emitting diode may be used as the light source unit 220 used in the present embodiment, and a plurality of RGB light emitting diodes may be formed in each unit display module.
- the light collecting unit 230 may be a member that reflects and collects light emitted from the light source unit 220, and may be formed to surround the light source unit 220 and extend in a light irradiation direction. At this time, the light collecting unit 230 prevents the light emitted from the light source unit 220 is dispersed and spread, and condenses toward the top to reduce the light loss and to implement a clearer display image.
- the shape of the light collecting part 230 may be a structure in which the radius is gradually increased along the irradiation direction of light and the cross section forms a straight surface as shown in (a) of FIG. 4. Likewise, the radius may gradually increase along the irradiation direction of light, but the cross section may form a secondary curved surface, but is not limited thereto.
- a transparent cover 242 formed of a transparent material may be formed on the light collecting unit 230.
- the transparent cover 242 is irradiated from the light source unit 220 to collect the light collecting unit 230. Allow rough light to pass through.
- the transparent cover 242 may be fixedly formed in a shape that is inserted into a groove formed in the cover part 240 covering the light collecting part 230.
- the exit surface of the transparent cover 242 may be formed in a concave shape, in order to prevent the damage caused by impact or scratches is exposed to the outside of the exit surface of the transparent cover 242 is emitted light.
- FIG. 5A illustrates a case in which the light collecting unit 230 is not formed
- FIG. 5B illustrates a distribution of light emitted from each unit display module when the light collecting unit 230 is formed as in the present invention.
- the condenser 230 when the condenser 230 is not formed, the irradiated light spreads upward at a wide angle, and some of the light is reflected from the upper cover part 240 to be opposite. Part of the light emitted from the light source unit 220 is lost.
- a portion overlapping with light emitted from a neighboring display module may occur.
- the condenser 230 is formed to reflect the light emitted from the light source unit 220 to focus toward the upper cover portion 240 as shown in FIG.
- the amount of light reflected and lost from the light is reduced, and the interference between light irradiated from neighboring display modules is also reduced.
- FIG. 6 illustrates an actual display module 200 when the control unit is configured to display an arrow using a display module 200 in which a part of the light collecting part 230 is formed and a part of the light collecting part 230 is not formed, according to the present invention.
- the photoconcentrator 230 is applied to a portion to which the condenser 230 is applied, and thus, a clearer display image can be realized by condensing and diverging without interference between light emitted from neighboring unit display modules. have.
- FIG. 7 illustrates a distribution of light distribution in a display module having a light collecting unit 230 according to the present invention, and it can be seen that the light irradiated intensively toward the upper irradiation direction by the light collecting unit 230 is distributed. .
- a light diffusion layer (not shown) may be formed on the reflective surface of the light collecting unit 230.
- the light diffusing layer may be formed by a method of coating the light diffusing agent on the surface.
- the light diffusion layer formed on the reflective surface may reflect light emitted from the light source unit 220 as a whole toward the top, but may be reflected at various diffusion angles.
- FIG. 9 illustrates a reflection distribution according to a light diffusion layer when light incident at a predetermined angle is reflected through a reflection surface.
- the diffusion angle of the light diffusion layer is relatively small in FIG. 9A.
- the case where the diffusion angle is relatively large by the light diffusion layer is shown.
- an RGB light emitting diode may be used as the light source unit 220 of the unit display module.
- FIG. 10 illustrates an irradiation state for each RGB light source when the light collecting unit 230 is provided according to the present invention. At this time, when the respective RGB colors are mixed, white light can be formed.
- the light diffusion layer is formed on the reflective surface of the light converging unit 230 as described above, the light emitted from each light emitting diode may be dispersed and reflected at various angles, and thus different colors may be used. You can mix light evenly.
- the light mixing state of the white light is good as in (a) of FIG. 11, whereas the light diffusion layer is not formed in FIG. 11. As shown in (b), it can be seen that the light mixing state of the white light is relatively poor.
- the diffusion angle by the light diffusion layer formed on the reflective surface of the light collecting unit 230 according to the present invention preferably has a range between 10 degrees to 150 degrees.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Business, Economics & Management (AREA)
- Accounting & Taxation (AREA)
- Marketing (AREA)
- Optical Elements Other Than Lenses (AREA)
- Devices For Indicating Variable Information By Combining Individual Elements (AREA)
Abstract
The present invention relates to an ice display device, the ice display device according to the present invention being characterized by including: an ice body in which ice is formed on the surface and a scattering layer is formed on the inside; and at least one display module which is disposed inside the ice body and installed under the scattering layer, and irradiates light toward the surface, thereby allowing a display to be presented through the surface, wherein the display module includes: a light source unit which irradiates the light; and a light collection unit which upwardly reflects the light irradiated from the light source unit and thereby collects the light.
Description
본 발명은 빙판 디스플레이 장치에 관한 것으로서, 보다 상세하게는 아이스링크 등의 빙판의 하부에 디스플레이가 가능한 디스플레이 모듈을 설치하여 시각적인 디스플레이 연출이 가능한 빙판 디스플레이 장치에 관한 것이다.The present invention relates to an ice display device, and more particularly, to an ice display device capable of producing a visual display by installing a display module capable of displaying a display module below a ice plate such as an ice rink.
일반적으로 아이스링크로 대표되는 빙판에서의 공연 연출은 드라이아이스 등을 이용한 연출 방법과, 빙판의 상향에 위치하는 다수의 조명 등을 이용하여 빛을 빙판 표면을 향해 조사함으로써 그 반사광이나 투과광으로 빙판 상에 다양한 문자 또는 모양을 연출하는 방법 등이 있다. In general, the production of performances on the ice represented by the ice rink is performed by directing the light toward the surface of the ice by using a directing method using dry ice and a plurality of lights located above the ice. How to produce a variety of characters or shapes.
그러나, 상향에서 빛을 조사하는 방법, 즉 프로젝터 영상만으로 연출하는 방법은 빙판에서 반사되는 빛의 밝기 및 선명도가 떨어져 생동감 있는 영상 규현에 있어서 한계가 발생하는 문제점이 있었다.However, the method of irradiating light from the upside, that is, the method of directing only the projector image, has a problem in that the brightness and clarity of the light reflected from the ice sheet are poor, and the limitation of the vivid image is generated.
따라서, 본 발명의 목적은 이와 같은 종래의 문제점을 해결하기 위한 것으로서, 빙판 표면의 하부에 디스플레이 모듈을 설치하여 디스플레이 모듈에서 조사된 빛을 빙체에 형성된 산란층을 통해 산란시켜 다양한 형태의 디스플레이가 가능하도록 하고, 각 디스플레이 모듈에서 조사된 빛을 상부를 향하여 반사시켜 집광시키는 집광부를 구비하여 광 효율이 좋고 더욱 선명한 디스플레이 영상을 구현할 수 있는 빙판 디스플레이 장치를 제공함에 있다.Accordingly, an object of the present invention is to solve such a conventional problem, by installing a display module on the lower portion of the surface of the ice and scattering the light emitted from the display module through the scattering layer formed on the ice, it is possible to display a variety of forms In addition, the present invention provides an ice display device capable of realizing a lighter display image with better light efficiency by including a light collecting part for reflecting and condensing light emitted from each display module toward the top.
본 발명이 해결하고자 하는 과제들은 이상에서 언급한 과제들로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.Problems to be solved by the present invention are not limited to the above-mentioned problems, and other problems not mentioned will be clearly understood by those skilled in the art from the following description.
상기 목적은, 본 발명에 따라, 표면에 빙판을 형성하며, 내부에 산란층이 형성되는 빙체; 및 상기 빙체 내부에서 상기 산란층의 아래에 설치되며 상기 표면을 향하여 빛을 조사하여 상기 표면을 통해 디스플레이 연출을 가능하게 하는 적어도 하나의 디스플레이 모듈을 포함하며, 상기 디스플레이 모듈은 상기 빛을 조사하는 광원부; 및 상기 광원부로부터 조사된 빛을 상부를 향하여 반사시켜 집광시키는 집광부를 포함하는 빙판 디스플레이 장치에 의해 달성될 수가 있다. The above object, according to the present invention, forms an ice plate on the surface, the ice body is formed scattering layer therein; And at least one display module installed under the scattering layer in the ice body and configured to display a light through the surface by irradiating light toward the surface, wherein the display module is configured to irradiate the light. ; And it may be achieved by the ice plate display device including a light collecting unit for reflecting and condensing the light emitted from the light source toward the top.
여기서, 상기 광원부는 RGB 발광다이오드(LED: Light emitting diode)로 형성될 수가 있다. The light source unit may be formed of an RGB light emitting diode (LED).
여기서, 상기 집광부의 반사면에는 상기 조사된 빛을 다양한 확산 각도로 반사시키는 광 확산층이 형성될 수가 있다. Here, the light diffusion layer for reflecting the irradiated light at various diffusion angles may be formed on the reflective surface of the light collecting portion.
여기서, 상기 확산 각도는 10도~150도 사이의 범위를 가지는 것이 바람직하다. Here, the diffusion angle preferably has a range between 10 degrees and 150 degrees.
여기서, 상기 집광부는 상기 빛의 조사 방향을 따라서 반경이 점차적으로 커지고 단면이 직선면일 수가 있다. Here, the light collecting part may have a radius along the irradiation direction of the light and may be a straight surface.
여기서, 상기 집광부는 상기 빛의 조사 방향을 따라서 반경이 점차적으로 커지고 단면이 2차 곡선면의 형상일 수가 있다. Here, the light converging part may have a radius gradually increasing in a direction along the irradiation direction of the light, and a cross section may have a shape of a secondary curved surface.
여기서, 상기 산란층은 다수의 기포를 포함하여 형성되거나 산란제를 포함하여 형성될 수가 있다. Here, the scattering layer may be formed including a plurality of bubbles or may include a scattering agent.
여기서, 상기 산란제는 실리카(Silica), 실리콘(Silicon), 알루미나(Alumina), 이산화티타늄(TiO2), 지르코니아(ZrO2), 황산바륨(barium Sulfate), 산화아연(ZnO), 폴리메타크릴산메틸(poly(methylmethacrylate)), 및 벤조구아나민(Benzoguanamine)계 폴리머로 이루어진 군으로부터 적어도 하나를 포함할 수가 있다. The scattering agent may include silica, silicon, alumina, titanium dioxide (TiO 2), zirconia (ZrO 2), barium sulfate, zinc oxide (ZnO), and methyl polymethacrylate. (poly (methylmethacrylate)), and a benzoguanamine-based polymer.
여기서, 상기 빙체는 바닥면에 형성되는 제 1 빙층; 상기 제 1 빙층의 상부에 형성되며, 상기 디스플레이 모듈이 설치되는 제 2 빙층; 및 상기 제 2 빙층의 상부에 형성되고 상기 산란층을 포함하는 제 3 빙층을 포함할 수가 있다. Here, the ice body is a first ice layer formed on the bottom surface; A second ice layer formed on the first ice layer and on which the display module is installed; And a third ice layer formed on the second ice layer and including the scattering layer.
여기서, 상기 디스플레이 모듈은 상기 RGB 발광다이오드로 형성되는 광원부 및 상기 집광부로 구성되는 단위 디스플레이 모듈이 일정 간격으로 복수 개 어레이되는 형태일 수가 있다.The display module may have a form in which a plurality of light source units formed of the RGB light emitting diodes and a unit display module including the condensing units are arrayed at regular intervals.
여기서, 상기 집광부의 상부에 고정 형성되어 빛을 투과시키는 투명 커버를 더 포함하고, 상기 투명 커버의 출사면은 오목한 형상일 수가 있다. The transparent cover may further include a transparent cover that is fixed to the light collecting part and transmits light, and the emission surface of the transparent cover may have a concave shape.
상기한 바와 같은 본 발명의 빙판 디스플레이 장치에 따르면 빙판 표면의 하부에 디스플레이 모듈을 설치하여 상부의 산란층을 향하여 빛을 조사함으로써 빙판 표면에서 다양한 형태의 디스플레이가 가능하다는 장점이 있다. According to the ice display device of the present invention as described above, there is an advantage that the display module can be installed on the surface of the ice by irradiating light toward the scattering layer on the upper portion by installing the display module under the ice surface.
또한, 디스플레이 모듈에는 광원부로부터 조사된 빛을 상부를 향하여 반사시켜 집광시키는 집광부를 구비하여 광 효율이 좋고 더욱 선명한 디스플레이 영상을 구현할 수 있다는 장점도 있다.In addition, the display module may include a light collecting part for condensing the light emitted from the light source toward the upper side, thereby realizing a lighter display image with better light efficiency.
또한, 집광부의 반사면에는 광 확산층을 형성하여 RGB 광의 혼합에 의한 백색광을 용이하게 형성할 수 있다는 장점도 있다. In addition, the light diffusing layer is formed on the reflecting surface of the light collecting portion, so that white light by mixing RGB light can be easily formed.
도 1은 본 발명의 일 실시예에 따른 빙판 디스플레이 장치의 단면도이다.1 is a cross-sectional view of an ice display device according to an embodiment of the present invention.
도 2는 본 발명의 일 실시예에 따른 디스플레이 모듈의 사시도이다. 2 is a perspective view of a display module according to an embodiment of the present invention.
도 3은 도 2의 A의 부분 단면도이다. 3 is a partial cross-sectional view of A of FIG. 2.
도 4는 본 발명에 따른 집광부의 다양한 형태를 도시한다. 4 illustrates various forms of the light collecting portion according to the present invention.
도 5는 광원부 주위에 집광부를 형성하지 않은 경우와 본 발명에 따라 집광부를 형성한 경우의 빛의 조사 상태를 비교하는 도면이다. 5 is a view comparing light irradiation states when a light collecting unit is not formed around a light source unit and when a light collecting unit is formed according to the present invention.
도 6은 일부는 광원부 주위에 집광부를 형성하지 않고 일부는 본 발명에 따라 집광부를 형성한 디스플레이 모듈을 이용하여 화살표를 디스플레이 하도록 한 실제 사진이다. FIG. 6 is an actual photograph in which a part is not formed around a light source and a part is displayed by using a display module in which a light is formed according to the present invention.
도 7은 본 발명에 따라 집광부를 형성한 경우의 배광 분포를 나타내는 그래프이다. 7 is a graph showing light distribution distribution when a light collecting unit is formed according to the present invention.
도 8은 본 발명에 따라 집광부의 반사면에 광 확산층을 형성하여 광 확산층을 통해 반사되는 빛의 분포를 도시하는 도면이다. 8 is a view showing a distribution of light reflected through the light diffusion layer by forming a light diffusion layer on the reflective surface of the light collecting portion according to the present invention.
도 9는 광 확산층에 따라 반사되어 퍼지는 빛의 분포를 비교하여 도시하는 도면이다. 9 is a diagram illustrating a comparison of distribution of light reflected and spread along the light diffusion layer.
도 10은 본 발명의 일 실시예에 따라 집광부를 형성하였을 때의 RGB 광원 별 조사된 색상 분포를 보여주는 도면이다. FIG. 10 is a diagram illustrating color distribution irradiated for each RGB light source when a light collecting unit is formed according to an embodiment of the present invention.
도 11은 집광부에 광 확산층이 형성된 경우와 형성되지 않은 경우에 있어서의 RGB 광원의 혼합된 백색광 색상 분포를 보여주는 도면이다.FIG. 11 is a view showing the mixed white light color distribution of the RGB light source in the case where the light diffusing layer is formed or not in the light collecting portion.
실시예들의 구체적인 사항들은 상세한 설명 및 도면들에 포함되어 있다.Details of the embodiments are included in the detailed description and drawings.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하고, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. 명세서 전체에 걸쳐 동일 참조 부호는 동일 구성 요소를 지칭한다 Advantages and features of the present invention and methods for achieving them will be apparent with reference to the embodiments described below in detail with the accompanying drawings. However, the present invention is not limited to the embodiments disclosed below, but can be implemented in various different forms, and only the embodiments make the disclosure of the present invention complete, and the general knowledge in the art to which the present invention belongs. It is provided to fully inform the person having the scope of the invention, which is defined only by the scope of the claims. Like reference numerals refer to like elements throughout.
이하, 본 발명의 실시예들에 의하여 빙판 디스플레이 장치를 설명하기 위한 도면들을 참고하여 본 발명에 대해 설명하도록 한다.Hereinafter, the present invention will be described with reference to the drawings for explaining an ice display device according to embodiments of the present invention.
도 1은 본 발명의 일 실시예에 따른 빙판 디스플레이 장치의 단면도이고, 도 2는 본 발명의 일 실시예에 따른 디스플레이 모듈의 사시도이고, 도 3은 도 2의 A의 부분 단면도이고, 도 4는 본 발명에 따른 집광부의 다양한 형태를 도시하고, 도 5는 광원부 주위에 집광부를 형성하지 않은 경우와 본 발명에 따라 집광부를 형성한 경우의 빛의 조사 상태를 비교하는 도면이고, 도 6은 일부는 광원부 주위에 집광부를 형성하지 않고 일부는 본 발명에 따라 집광부를 형성한 디스플레이 모듈을 이용하여 화살표를 디스플레이 하도록 한 실제 사진이고, 도 7은 본 발명에 따라 집광부를 형성한 경우의 배광 분포를 나타내는 그래프이고, 도 8은 본 발명에 따라 집광부의 반사면에 광 확산층을 형성하여 광 확산층을 통해 반사되는 빛의 분포를 도시하는 도면이고, 도 9는 광 확산층에 따라 반사되어 퍼지는 빛의 분포를 비교하여 도시하는 도면이고, 도 10은 본 발명의 일 실시예에 따라 집광부를 형성하였을 때의 RGB 광원 별 조사된 색상 분포를 보여주는 도면이고, 도 11은 집광부에 광 확산층이 형성된 경우와 형성되지 않은 경우에 있어서의 RGB 광원의 혼합된 백색광의 색상 분포를 보여주는 도면이다. 1 is a cross-sectional view of an ice display device according to an embodiment of the present invention, FIG. 2 is a perspective view of a display module according to an embodiment of the present invention, FIG. 3 is a partial cross-sectional view of A of FIG. 5 shows various forms of the light collecting unit according to the present invention. FIG. 5 is a view comparing the irradiation conditions of light when the light collecting unit is not formed around the light source unit and when the light collecting unit is formed according to the present invention. Some are actual photographs to display an arrow using a display module in which a condenser is not formed around the light source part and some are formed according to the present invention, and FIG. 7 is a case in which the condenser is formed according to the present invention. 8 is a graph showing the distribution of light distribution, and FIG. 8 is a view showing the distribution of light reflected through the light diffusion layer by forming a light diffusion layer on the reflecting surface of the light collecting portion according to the present invention. FIG. 10 is a view illustrating a distribution of light reflected and spread according to a light diffusion layer, and FIG. 10 is a view illustrating color distribution irradiated by RGB light sources when a light collecting unit is formed according to an embodiment of the present invention. Is a view showing the color distribution of the mixed white light of the RGB light source in the case where the light diffusion layer is formed or not.
본 발명의 일 실시예에 따른 빙판 디스플레이 장치는 빙체 및 디스플레이 모듈(200)을 포함하여 구성될 수가 있다. The ice display device according to the embodiment of the present invention may be configured to include an ice body and a display module 200.
도 1에 도시되어 있는 것과 같이 빙체는 표면에 빙판을 형성하는 부분으로서, 복수의 빙층(110, 130, 140, 160)으로 형성될 수가 있다. 제 1 빙층(110)은 전체 빙체의 기저부를 형성하는 분분으로서 바닥면에 형성되고, 바닥면의 하부에는 내부에 냉매가 공급되어 순환하도록 마련되는 냉매관(100)이 형성될 수가 있다. 제 1 빙층(110) 및 후술하는 제 2 내지 제 4 빙층(130, 140, 160)은 모두 분무장치 등으로 물을 분사한 후 냉각시키는 과정을 반복하여 소정의 두께로 형성될 수가 있다. As shown in FIG. 1, the ice body may be formed of a plurality of ice layers 110, 130, 140, and 160 as a part of forming an ice plate on a surface thereof. The first ice layer 110 may be formed on the bottom surface as a part for forming the base of the whole ice body, and a coolant tube 100 may be formed at the bottom of the bottom surface to supply and circulate the refrigerant therein. The first ice layer 110 and the second to fourth ice layers 130, 140, and 160, which will be described later, may be formed to a predetermined thickness by repeating the cooling process after spraying water with a spraying device or the like.
제 1 빙층(110)의 상부에는 백색의 페인트를 도포할 수가 있는데, 백색의 페인트 층(120)은 아래의 제 1 빙층(110) 및 바닥면 등이 외부에서 보여지는 것을 방지하도록 함과 동시에 전체 디스플레이 화면의 배경 색상으로 사용될 수 있도록 한다. White paint may be applied to the upper portion of the first ice layer 110, and the white paint layer 120 may prevent the first ice layer 110 and the bottom surface from being seen from the outside and at the same time. It can be used as the background color of the display screen.
백색의 페인트 층(120)의 상부에는 디스플레이 모듈(200)을 포함하는 제 2 빙층(130)이 형성될 수가 있다. 도 1에서는 디스플레이 모듈(200)과 제 2 빙층(130)의 높이가 동일하도록 형성되어 있으나, 제 2 빙층(130)의 하측에 디스플레이 모듈(200)이 형성되도록 하여, 즉 디스플레이 모듈(200)의 측면을 포함하여 상측에도 제 2 빙층(130)이 형성되도록 하여도 무방하다. The second ice layer 130 including the display module 200 may be formed on the white paint layer 120. In FIG. 1, the heights of the display module 200 and the second ice layer 130 are the same, but the display module 200 is formed under the second ice layer 130, that is, of the display module 200. The second ice layer 130 may be formed on the upper side including the side surface.
디스플레이 모듈(200)을 포함하는 제 2 빙층(130)의 상부에는 차례대로 제 3 빙층(140), 산란층(150) 및 제 4 빙층(160)이 형성될 수가 있다. The third ice layer 140, the scattering layer 150, and the fourth ice layer 160 may be sequentially formed on the second ice layer 130 including the display module 200.
이때, 제 3 빙층(140) 및 제 4 빙층(160)은 투명층으로 형성되는 것이 바람직하다. At this time, the third ice layer 140 and the fourth ice layer 160 is preferably formed of a transparent layer.
디스플레이 모듈(200)의 상부에 형성되는 산란층(150)은 다수의 기포를 포함하거나 또는 산란제를 포함시켜 불투명층으로 형성될 수가 있다. 기포를 이용하는 경우 산란층(150)을 형성하는 유체는 물일 수가 있고, 산란제가 포함되는 경우에는 산란층(150)을 형성하는 유체가 산란제에 용해되지 않는 적절한 유체를 사용하는 것이 바람직하다.The scattering layer 150 formed on the display module 200 may include a plurality of bubbles or may include a scattering agent to form an opaque layer. In the case of using bubbles, the fluid forming the scattering layer 150 may be water. When the scattering agent is included, it is preferable to use an appropriate fluid in which the fluid forming the scattering layer 150 does not dissolve in the scattering agent.
이때, 산란층(150)은 하부의 디스플레이 모듈(200)로부터 조사되어 빙층을 통과한 빛을 산란시키는데, 산란된 빛은 외부로 확산 투과되어 디스플레이 영상을 형성하도록 한다. In this case, the scattering layer 150 scatters the light that is irradiated from the lower display module 200 and passed through the ice layer, and the scattered light is diffused and transmitted to the outside to form a display image.
산란층(150)을 형성하는 산란제는 실리카(Silica), 실리콘(Silicon), 알루미나(Alumina), 이산화티타늄(TiO2), 지르코니아(ZrO2), 황산바륨(barium Sulfate), 산화아연(ZnO), 폴리메타크릴산메틸(poly(methylmethacrylate)), 및 벤조구아나민(Benzoguanamine)계 폴리머로 이루어진 군으로부터 적어도 하나를 포함할 수가 있다. Scattering agents forming the scattering layer 150 include silica, silicon, alumina, titanium dioxide (TiO 2), zirconia (ZrO 2), barium sulfate, zinc oxide (ZnO), Polymethyl methacrylate (poly (methylmethacrylate)), and may be at least one from the group consisting of benzoguanamine (Benzoguanamine) polymer.
도 2는 본 발명의 일 실시예에 따른 디스플레이 모듈(200)을 도시하고 있는데, 단위 디스플레이 모듈은 가로 및 세로 방향으로 규칙 또는 불규칙한 간격으로 복수 개 어레이 형태로 형성될 수가 있다. 2 illustrates a display module 200 according to an embodiment of the present invention, wherein the unit display module may be formed in a plurality of arrays at regular or irregular intervals in the horizontal and vertical directions.
각각의 단위 디스플레이 모듈은 도 3에 도시되어 있는 것과 같이 광원부(220) 및 집광부(230)를 포함하여 구성될 수가 있다. Each unit display module may include a light source unit 220 and a light collecting unit 230, as shown in FIG.
디스플레이 모듈(200)의 하측면에는 광원부(220)에 전기적인 신호를 제어하도록 하는 PCB 기판(210)이 형성될 수가 있고, PCB 기판(210)의 상부에는 소정의 간격으로 각 단위 디스플레이 모듈을 형성하는 광원부(220)가 형성될 수가 있다. 광원부(220)는 전술한 바와 같이 빙체 내부에서 상부 표면으로 빛을 조사하여 빙판의 표면을 통해 디스플레이 연출이 가능하도록 한다.On the lower side of the display module 200, a PCB substrate 210 may be formed to control an electrical signal to the light source unit 220. The unit display modules may be formed at predetermined intervals on the PCB substrate 210. The light source unit 220 may be formed. As described above, the light source unit 220 emits light from the inside of the ice body to the upper surface to enable display display through the surface of the ice plate.
이때, 본 실시예에서 사용되는 광원부(220)로는 발광다이오드를 사용할 수가 있는데, 각각의 단위 디스플레이 모듈에는 복수의 RGB 발광다이오드가 형성될 수가 있다. In this case, a light emitting diode may be used as the light source unit 220 used in the present embodiment, and a plurality of RGB light emitting diodes may be formed in each unit display module.
집광부(230)는 광원부(220)로부터 조사된 빛을 반사시켜 집광시키는 부재로 광원부(220)를 둘러싸며 빛의 조사 방향으로 연장되도록 형성될 수가 있다. 이때, 집광부(230)는 광원부(220)로부터 조사된 빛이 분산되어 퍼지는 것을 방지하고 상부를 향하여 집광시킴으로써 광 손실을 줄이고 보다 선명한 디스플레이 영상을 구현할 수 있도록 한다. The light collecting unit 230 may be a member that reflects and collects light emitted from the light source unit 220, and may be formed to surround the light source unit 220 and extend in a light irradiation direction. At this time, the light collecting unit 230 prevents the light emitted from the light source unit 220 is dispersed and spread, and condenses toward the top to reduce the light loss and to implement a clearer display image.
집광부(230)의 형태는 도 4의 (a)에 도시되어 있는 것과 같이 빛의 조사 방향을 따라서 반경이 점차적으로 커지고 단면이 직선면을 형성하는 구조일 수도 있고, 도 4의 (b)와 같이 빛의 조사 방향을 따라서 반경이 점차적으로 커지되 단면이 2차 곡선면을 형성하는 구조일 수도 있는데, 이에 한정되는 것은 아니다. The shape of the light collecting part 230 may be a structure in which the radius is gradually increased along the irradiation direction of light and the cross section forms a straight surface as shown in (a) of FIG. 4. Likewise, the radius may gradually increase along the irradiation direction of light, but the cross section may form a secondary curved surface, but is not limited thereto.
도 3에 도시되어 있는 것과 같이 집광부(230)의 상부에는 투명 재질로 형성된 투명 커버(242)가 형성될 수가 있는데, 투명 커버(242)는 광원부(220)로부터 조사되어 집광부(230)를 거친 빛을 외부로 투과시키도록 한다. 이때, 투명 커버(242)는 집광부(230) 상부를 덮는 덮개부(240)에 형성된 홈에 삽입되는 형태로 고정 형성될 수가 있다. 이때, 투명 커버(242)의 출사면은 오목한 형상으로 형성될 수가 있는데, 이는 빛이 방출되는 투명 커버(242)의 출사면이 외부에 노출되어 충격 또는 스크래치 등에 의한 손상을 방지하도록 하기 위함이다. As shown in FIG. 3, a transparent cover 242 formed of a transparent material may be formed on the light collecting unit 230. The transparent cover 242 is irradiated from the light source unit 220 to collect the light collecting unit 230. Allow rough light to pass through. In this case, the transparent cover 242 may be fixedly formed in a shape that is inserted into a groove formed in the cover part 240 covering the light collecting part 230. At this time, the exit surface of the transparent cover 242 may be formed in a concave shape, in order to prevent the damage caused by impact or scratches is exposed to the outside of the exit surface of the transparent cover 242 is emitted light.
도 5의 (a)는 집광부(230)가 형성되지 않은 경우를 도 5의 (b)는 본 발명에서와 같이 집광부(230)가 형성된 경우의 각 단위 디스플레이 모듈로부터의 빛의 조사 분포를 도시하는데, 도 5의 (a)에서와 같이 집광부(230)가 형성되지 않는 경우 조사된 빛이 넓은 각도로 상부로 퍼져서 나아가게 되고, 일부의 빛은 상부의 덮개부(240)로부터 반사되어 반대 방향으로 향하게 되어 광원부(220)로부터 조사된 빛의 일부는 소실하게 된다. 또한, 단위 디스플레이 모듈로부터 조사되는 빛은 넓게 퍼지면서 외부로 조사되기 때문에 이웃하는 디스플레이 모듈에서 조사되는 빛과 중첩되는 부분도 발생하게 된다. 반면에, 본 발명에서와 같이 집광부(230)를 형성하여 광원부(220)로부터 조사된 빛을 반사시켜 상부를 향하여 집광시키도록 하면 도 5의 (b)에서와 같이 상부의 덮개부(240)로부터 반사되어 소실되는 빛의 양도 줄어들고, 이웃하는 디스플레이 모듈에서 조사된 빛 사이의 간섭도 줄어들게 된다. 5A illustrates a case in which the light collecting unit 230 is not formed, and FIG. 5B illustrates a distribution of light emitted from each unit display module when the light collecting unit 230 is formed as in the present invention. As shown in FIG. 5A, when the condenser 230 is not formed, the irradiated light spreads upward at a wide angle, and some of the light is reflected from the upper cover part 240 to be opposite. Part of the light emitted from the light source unit 220 is lost. In addition, since light emitted from the unit display module is widely spread and irradiated to the outside, a portion overlapping with light emitted from a neighboring display module may occur. On the other hand, as shown in the present invention, if the condenser 230 is formed to reflect the light emitted from the light source unit 220 to focus toward the upper cover portion 240 as shown in FIG. The amount of light reflected and lost from the light is reduced, and the interference between light irradiated from neighboring display modules is also reduced.
도 6은 일부는 본 발명에 따라 집광부(230)를 형성하고 일부는 집광부(230)를 형성하지 않은 디스플레이 모듈(200)을 이용하여 화살표를 표시하도록 제어하였을 때의 실제 디스플레이 모듈(200)의 사진을 도시하는데, 확대된 사진에서와 같이 집광부(230)가 적용된 부분에서는 이웃하는 단위 디스플레이 모듈에서 조사된 빛 사이의 간섭이 없고 집광하여 발산함으로써 보다 선명한 디스플레이 영상을 구현할 수 있음을 알 수가 있다. FIG. 6 illustrates an actual display module 200 when the control unit is configured to display an arrow using a display module 200 in which a part of the light collecting part 230 is formed and a part of the light collecting part 230 is not formed, according to the present invention. As shown in the enlarged photograph, the photoconcentrator 230 is applied to a portion to which the condenser 230 is applied, and thus, a clearer display image can be realized by condensing and diverging without interference between light emitted from neighboring unit display modules. have.
도 7은 본 발명에 따라 집광부(230)를 구비한 디스플레이 모듈에서의 배광 분포를 도시하는데, 집광부(230)에 의해 상부의 조사 방향을 향해 집중적으로 조사된 빛이 분포함을 알 수가 있다. FIG. 7 illustrates a distribution of light distribution in a display module having a light collecting unit 230 according to the present invention, and it can be seen that the light irradiated intensively toward the upper irradiation direction by the light collecting unit 230 is distributed. .
또한, 본 발명에서는 집광부(230)의 반사면에 광 확산층(미도시)이 형성될 수가 있다. 이때, 광 확산층은 광 확산제를 표면에 코팅하는 방법 등으로 형성될 수가 있다. In addition, in the present invention, a light diffusion layer (not shown) may be formed on the reflective surface of the light collecting unit 230. In this case, the light diffusing layer may be formed by a method of coating the light diffusing agent on the surface.
도 8에 도시되어 있는 것과 같이 반사면에 형성된 광 확산층은 광원부(220)로부터 조사된 빛을 전체적으로는 상부를 향하여 반사시키되 다양한 확산 각도로 반사시킬 수가 있다. As illustrated in FIG. 8, the light diffusion layer formed on the reflective surface may reflect light emitted from the light source unit 220 as a whole toward the top, but may be reflected at various diffusion angles.
도 9는 소정의 각도로 입사된 빛이 반사면을 통해 반사될 때 광 확산층에 따른 반사 분포를 도시하는데, 도 9의 (a)에서는 광 확산층에 의해 확산 각도가 상대적으로 작은 경우를 도 9의 (b)에서는 광 확산층에 의해 확산 각도가 상대적으로 큰 경우를 도시하고 있다. FIG. 9 illustrates a reflection distribution according to a light diffusion layer when light incident at a predetermined angle is reflected through a reflection surface. In FIG. 9A, the diffusion angle of the light diffusion layer is relatively small in FIG. 9A. In (b), the case where the diffusion angle is relatively large by the light diffusion layer is shown.
이와 같이 반사면에 광 확산층을 다양하게 형성함으로써 소정의 각도로 조사된 빛을 다양한 각도의 범위로 확산시켜 반사시킬 수가 있다. As described above, by forming various light diffusion layers on the reflection surface, light irradiated at a predetermined angle can be diffused and reflected in a range of various angles.
전술한 바와 같이 단위 디스플레이 모듈의 광원부(220)로 RGB 발광다이오드를 사용할 수가 있다. 도 10은 본 발명에 따라 집광부(230)를 구비하였을 때의 RGB 광원 별 조사 상태를 도시하고 있다. 이때, 각각의 RGB 색상을 혼합시키면 백색광을 형성할 수가 있다. As described above, an RGB light emitting diode may be used as the light source unit 220 of the unit display module. FIG. 10 illustrates an irradiation state for each RGB light source when the light collecting unit 230 is provided according to the present invention. At this time, when the respective RGB colors are mixed, white light can be formed.
이와 같이 백색광을 형성할 때, 전술한 바와 같이 집광부(230)의 반사면에 광 확산층을 형성하면 각각의 발광다이오드로부터 조사된 빛을 다양한 각도로 분산시켜 반사시킬 수가 있어서, 각각의 서로 다른 색깔의 빛을 골고루 혼합시킬 수가 있다. As described above, when the light diffusion layer is formed on the reflective surface of the light converging unit 230 as described above, the light emitted from each light emitting diode may be dispersed and reflected at various angles, and thus different colors may be used. You can mix light evenly.
본 발명에서와 같이 집광부(230)의 반사면에 광 확산층을 형성한 경우 도 11의 (a)에서와 같이 백색광의 광 혼합 상태가 좋은데 반하여, 별도의 광 확산층을 형성하지 않은 경우는 도 11의 (b)에서와 같이 백색광의 광 혼합 상태가 상대적으로 좋지 않음을 알 수가 있다. In the case where the light diffusion layer is formed on the reflecting surface of the light collecting unit 230 as in the present invention, the light mixing state of the white light is good as in (a) of FIG. 11, whereas the light diffusion layer is not formed in FIG. 11. As shown in (b), it can be seen that the light mixing state of the white light is relatively poor.
이때, 본 발명에 따라 집광부(230)의 반사면에 형성되는 광 확산층에 의한 확산 각도는 10도~150도 사이의 범위를 가지는 것이 바람직하다. At this time, the diffusion angle by the light diffusion layer formed on the reflective surface of the light collecting unit 230 according to the present invention preferably has a range between 10 degrees to 150 degrees.
본 발명의 권리범위는 상술한 실시예에 한정되는 것이 아니라 첨부된 특허청구범위 내에서 다양한 형태의 실시예로 구현될 수 있다. 특허청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 누구든지 변형 가능한 다양한 범위까지 본 발명의 청구범위 기재의 범위 내에 있는 것으로 본다.The scope of the present invention is not limited to the above-described embodiment, but may be embodied in various forms of embodiments within the scope of the appended claims. Without departing from the gist of the invention claimed in the claims, it is intended that any person skilled in the art to which the present invention pertains falls within the scope of the claims described in the present invention to various extents which can be modified.
Claims (11)
- 표면에 빙판을 형성하며, 내부에 산란층이 형성되는 빙체; 및An ice sheet to form an ice plate on the surface thereof, and a scattering layer formed therein; And상기 빙체 내부에서 상기 산란층의 아래에 설치되며 상기 표면을 향하여 빛을 조사하여 상기 표면을 통해 디스플레이 연출을 가능하게 하는 적어도 하나의 디스플레이 모듈을 포함하며,At least one display module installed under the scattering layer in the ice body and irradiating light toward the surface to enable display display through the surface;상기 디스플레이 모듈은 The display module상기 빛을 조사하는 광원부; 및A light source unit for irradiating the light; And상기 광원부로부터 조사된 빛을 상부를 향하여 반사시켜 집광시키는 집광부를 포함하는 빙판 디스플레이 장치.And a light collecting part for reflecting and condensing the light emitted from the light source toward the top.
- 제 1 항에 있어서,The method of claim 1,상기 광원부는 RGB 발광다이오드(LED: Light emitting diode)로 형성되는 빙판 디스플레이 장치.The light source unit is an ice display device formed of an RGB light emitting diode (LED).
- 제 2 항에 있어서,The method of claim 2,상기 집광부의 반사면에는 상기 조사된 빛을 다양한 확산 각도로 반사시키는 광 확산층이 형성되는 빙판 디스플레이 장치.And a light diffusion layer that reflects the irradiated light at various diffusion angles on a reflection surface of the light collecting portion.
- 제 3 항에 있어서,The method of claim 3, wherein상기 확산 각도는 10도~150도 사이의 범위를 가지는 빙판 디스플레이 장치.The diffusion angle of the ice display device having a range of 10 degrees to 150 degrees.
- 제 1 항에 있어서,The method of claim 1,상기 집광부는 상기 빛의 조사 방향을 따라서 반경이 점차적으로 커지고 단면이 직선면인 빙판 디스플레이 장치. And the light converging portion has a radius gradually increasing along the irradiation direction of the light and having a straight cross section.
- 제 1 항에 있어서,The method of claim 1,상기 집광부는 상기 빛의 조사 방향을 따라서 반경이 점차적으로 커지고 단면이 2차 곡선면의 형상인 빙판 디스플레이 장치.And the light converging portion has a radius gradually increasing along the irradiation direction of the light, and a cross section having a shape of a second curved surface.
- 제 1 항에 있어서,The method of claim 1,상기 산란층은 다수의 기포를 포함하여 형성되거나 산란제를 포함하여 형성되는 빙판 디스플레이 장치.The scattering layer is formed with a plurality of bubbles or ice display device including a scattering agent.
- 제 7 항에 있어서,The method of claim 7, wherein상기 산란제는 실리카(Silica), 실리콘(Silicon), 알루미나(Alumina), 이산화티타늄(TiO2), 지르코니아(ZrO2), 황산바륨(barium Sulfate), 산화아연(ZnO), 폴리메타크릴산메틸(poly(methylmethacrylate)), 및 벤조구아나민(Benzoguanamine)계 폴리머로 이루어진 군으로부터 적어도 하나를 포함하는 빙판 디스플레이 장치.The scattering agent is silica, silicon, alumina, titanium dioxide (TiO 2), zirconia (ZrO 2), barium sulfate, zinc oxide (ZnO), polymethyl methacrylate (poly) (methylmethacrylate)), and a benzoguanamine-based polymer comprising at least one from the group consisting of.
- 제 1 항에 있어서,The method of claim 1,상기 빙체는 The ice body is바닥면에 형성되는 제 1 빙층; A first ice layer formed on the bottom surface;상기 제 1 빙층의 상부에 형성되며, 상기 디스플레이 모듈이 설치되는 제 2 빙층; 및A second ice layer formed on the first ice layer and on which the display module is installed; And상기 제 2 빙층의 상부에 형성되고 상기 산란층을 포함하는 제 3 빙층을 포함하는 빙판 디스플레이 장치.An ice display device including a third ice layer formed on the second ice layer and including the scattering layer.
- 제 2 항에 있어서,The method of claim 2,상기 디스플레이 모듈은 상기 RGB 발광다이오드로 형성되는 광원부 및 상기 집광부로 구성되는 단위 디스플레이 모듈이 일정 간격으로 복수 개 어레이되는 형태인 빙판 디스플레이 장치.The display module of claim 1, wherein a plurality of unit display modules including the light source unit formed of the RGB light emitting diodes and the condensing unit are arranged at a predetermined interval.
- 제 1 항에 있어서,The method of claim 1,상기 집광부의 상부에 고정 형성되어 빛을 투과시키는 투명 커버를 더 포함하고, 상기 투명 커버의 출사면은 오목한 형상인 빙판 디스플레이 장치.And a transparent cover fixedly formed at an upper portion of the light collecting part to transmit light, and an exit surface of the transparent cover has a concave shape.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020170014745A KR20180090407A (en) | 2017-02-02 | 2017-02-02 | Display apparatus for icerink |
KR10-2017-0014745 | 2017-02-02 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018143535A1 true WO2018143535A1 (en) | 2018-08-09 |
Family
ID=63040816
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2017/011059 WO2018143535A1 (en) | 2017-02-02 | 2017-09-29 | Ice display device |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR20180090407A (en) |
WO (1) | WO2018143535A1 (en) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61279267A (en) * | 1985-06-03 | 1986-12-10 | 日立プラント建設株式会社 | Light emitter in ice |
US4667481A (en) * | 1984-09-11 | 1987-05-26 | Hitachi Plant Engineering & Construction Co., Ltd. | Method of and apparatus for emitting light in ice |
JP2001350198A (en) * | 2000-06-07 | 2001-12-21 | Canon Inc | Projection device with scanner function |
US6866589B1 (en) * | 2003-09-24 | 2005-03-15 | Innovative Products Incorporated | Ice rink |
US7237396B1 (en) * | 2004-03-22 | 2007-07-03 | Briteice Technologies Llc | Ice lighting device |
KR20070084724A (en) * | 2006-02-21 | 2007-08-27 | 주식회사 엘지화학 | Anisotropy diffusion sheet |
KR20160091781A (en) * | 2015-01-26 | 2016-08-03 | 엘지전자 주식회사 | Outdoor display apparatus |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100448644B1 (en) | 2002-04-12 | 2004-09-13 | 에버테크노 주식회사 | Apparatus for Aging Cellular Phone |
KR101419014B1 (en) | 2014-01-28 | 2014-07-16 | 주식회사 엠디텍 | Refigeration equipment building process and Refigeration equipment in ice rink |
-
2017
- 2017-02-02 KR KR1020170014745A patent/KR20180090407A/en active Search and Examination
- 2017-09-29 WO PCT/KR2017/011059 patent/WO2018143535A1/en active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4667481A (en) * | 1984-09-11 | 1987-05-26 | Hitachi Plant Engineering & Construction Co., Ltd. | Method of and apparatus for emitting light in ice |
JPS61279267A (en) * | 1985-06-03 | 1986-12-10 | 日立プラント建設株式会社 | Light emitter in ice |
JP2001350198A (en) * | 2000-06-07 | 2001-12-21 | Canon Inc | Projection device with scanner function |
US6866589B1 (en) * | 2003-09-24 | 2005-03-15 | Innovative Products Incorporated | Ice rink |
US7237396B1 (en) * | 2004-03-22 | 2007-07-03 | Briteice Technologies Llc | Ice lighting device |
KR20070084724A (en) * | 2006-02-21 | 2007-08-27 | 주식회사 엘지화학 | Anisotropy diffusion sheet |
KR20160091781A (en) * | 2015-01-26 | 2016-08-03 | 엘지전자 주식회사 | Outdoor display apparatus |
Also Published As
Publication number | Publication date |
---|---|
KR20180090407A (en) | 2018-08-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101495801B (en) | Surface area illumination device | |
JP4959491B2 (en) | LED package and backlight assembly for liquid crystal display device provided with the same | |
WO2007083805A1 (en) | Planar illumination device | |
WO2016056727A1 (en) | Light emitting device package and method of fabricating the same | |
WO2014025193A1 (en) | Lens for light-emitting diode, backlight unit and display device including same | |
WO2007145248A1 (en) | Light guide plate, light guide plate assembly, and surface illuminating device and liquid crystal display device using these | |
US8550668B2 (en) | Light control member with intersecting groups of parallel prisms, and light-emitting device using such member | |
KR101775802B1 (en) | Light-guiding body, light-guiding body fabrication method, optical shutter, and planar light source device | |
CN102141218B (en) | Light source device | |
JP2009048791A (en) | Backlight and display device | |
WO2020222358A1 (en) | Diffusion plate having optical path control function and backlight device | |
WO2011030941A1 (en) | Local dimming backlight apparatus | |
WO2018208056A1 (en) | Diffusion lens and light emitting device adopting same | |
WO2018143535A1 (en) | Ice display device | |
CN101839448A (en) | Edge-light type lighting device | |
US20170160590A1 (en) | Backlighting device | |
JP5954663B2 (en) | lighting equipment | |
TW201616042A (en) | Illumination device | |
WO2013066048A1 (en) | Optical sheet and lighting device including the same | |
WO2020004849A1 (en) | Optical film for mini led or micro led backlight unit | |
WO2020166864A1 (en) | Optical film for mini led or micro led backlight unit | |
KR101015880B1 (en) | A guide indicating apparatus provided with a security light | |
WO2012030084A1 (en) | Backlight unit | |
WO2010005205A2 (en) | High-diffusion condenser sheet and backlight assembly using same | |
KR101078852B1 (en) | Diffusion plate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17895331 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17895331 Country of ref document: EP Kind code of ref document: A1 |