WO2018128949A1 - Systems and methods for selecting mri-compatible stimulation parameters - Google Patents

Systems and methods for selecting mri-compatible stimulation parameters Download PDF

Info

Publication number
WO2018128949A1
WO2018128949A1 PCT/US2017/069118 US2017069118W WO2018128949A1 WO 2018128949 A1 WO2018128949 A1 WO 2018128949A1 US 2017069118 W US2017069118 W US 2017069118W WO 2018128949 A1 WO2018128949 A1 WO 2018128949A1
Authority
WO
WIPO (PCT)
Prior art keywords
stimulation
mri
compatible
program
electrodes
Prior art date
Application number
PCT/US2017/069118
Other languages
French (fr)
Inventor
Chirag Shah
Original Assignee
Boston Scientific Neuromodulation Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Boston Scientific Neuromodulation Corporation filed Critical Boston Scientific Neuromodulation Corporation
Priority to ES17832721T priority Critical patent/ES2871008T3/en
Priority to CN201780082355.1A priority patent/CN110167629B/en
Priority to AU2017391436A priority patent/AU2017391436B2/en
Priority to EP17832721.9A priority patent/EP3515548B1/en
Priority to CA3045697A priority patent/CA3045697C/en
Priority to JP2019536250A priority patent/JP6834005B2/en
Publication of WO2018128949A1 publication Critical patent/WO2018128949A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/3605Implantable neurostimulators for stimulating central or peripheral nerve system
    • A61N1/36128Control systems
    • A61N1/36146Control systems specified by the stimulation parameters
    • A61N1/36167Timing, e.g. stimulation onset
    • A61N1/36175Pulse width or duty cycle
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/08Arrangements or circuits for monitoring, protecting, controlling or indicating
    • A61N1/086Magnetic resonance imaging [MRI] compatible leads
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/36003Applying electric currents by contact electrodes alternating or intermittent currents for stimulation of motor muscles, e.g. for walking assistance
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/3605Implantable neurostimulators for stimulating central or peripheral nerve system
    • A61N1/3606Implantable neurostimulators for stimulating central or peripheral nerve system adapted for a particular treatment
    • A61N1/36062Spinal stimulation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/05Electrodes for implantation or insertion into the body, e.g. heart electrode
    • A61N1/0526Head electrodes
    • A61N1/0529Electrodes for brain stimulation
    • A61N1/0534Electrodes for deep brain stimulation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/3605Implantable neurostimulators for stimulating central or peripheral nerve system
    • A61N1/3606Implantable neurostimulators for stimulating central or peripheral nerve system adapted for a particular treatment
    • A61N1/36071Pain
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/372Arrangements in connection with the implantation of stimulators
    • A61N1/37211Means for communicating with stimulators
    • A61N1/37217Means for communicating with stimulators characterised by the communication link, e.g. acoustic or tactile
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/372Arrangements in connection with the implantation of stimulators
    • A61N1/375Constructional arrangements, e.g. casings
    • A61N1/37514Brain implants

Definitions

  • the present invention is directed to the area of implantable electrical stimulation systems and methods of making and using the systems.
  • the present invention is also directed to systems and methods for selecting magnetic resonance imaging (MRI)- compatible stimulation parameters.
  • MRI magnetic resonance imaging
  • Implantable electrical stimulation systems have proven therapeutic in a variety of diseases and disorders.
  • spinal cord stimulation systems have been used as a therapeutic modality for the treatment of chronic pain syndromes.
  • Peripheral nerve stimulation has been used to treat chronic pain syndrome and incontinence, with a number of other applications under investigation.
  • Functional electrical stimulation systems have been applied to restore some functionality to paralyzed extremities in spinal cord injury patients.
  • Stimulation of the brain such as deep brain stimulation, can be used to treat a variety of diseases or disorders.
  • a stimulator can include a control module (with a pulse generator), one or more leads, and an array of stimulator electrodes on each lead.
  • the stimulator electrodes are in contact with or near the nerves, muscles, or other tissue to be stimulated.
  • the pulse generator in the control module generates electrical pulses that are delivered by the electrodes to body tissue.
  • One embodiment is a system for creating a magnetic resonance imaging (MRI)- compatible stimulation program for electrical stimulation of a patient using an implantable electrical stimulation system including an implantable pulse generator and a lead having a plurality of electrodes
  • the system for creating the MRI-compatible stimulation program includes a processor configured and arranged to: receive a first set of stimulation parameters of a first stimulation program, wherein the first set of stimulation parameters indicates a first set of electrodes for delivery of electrical stimulation; generate an MRI-compatible stimulation program based at least in part on the received first set of stimulation parameters, wherein the MRI-compatible stimulation program includes a second set of stimulation parameters that indicates a second set of electrodes from the plurality of electrodes for delivery of electrical stimulation, wherein generating the MRI- compatible stimulation program comprises modifying the first set of stimulation parameters by the processor to generate the second set of stimulation parameters by at least one of 1) reducing a value of at least one stimulation parameter of the first set of stimulation parameters or 2) replacing, in the first set of electrodes, a case electrode of the electrical stimulation system with at least one
  • the processor is further configured to determine a value that indicates energy consumption for the first stimulation program, wherein generating the MRI-compatible stimulation program further includes reducing the value of the at least one stimulation parameter of the first set of stimulation parameters in response to the value that indicates energy consumption.
  • generating the MRI-compatible stimulation program further includes reducing the value of the at least one stimulation parameter of the first set of stimulation parameters, wherein the at least one stimulation parameter of the first set of stimulation parameters includes at least one of stimulation current, stimulation voltage, pulse width, or pulse frequency.
  • generating the MRI-compatible stimulation program further includes reducing the value of the at least one stimulation parameter of the first set of stimulation parameters, wherein the at least one stimulation parameter of the first set of stimulation parameters includes a stimulation current.
  • the first set of electrodes includes the case electrode and wherein generating the MRI-compatible stimulation program includes replacing, in the first set of electrodes, the case electrode of the electrical stimulation system with at least one of the electrodes of the lead.
  • generating the MRI-compatible stimulation program further includes reducing the value of the at least one stimulation parameter of the first set of stimulation parameters, wherein the at least one stimulation parameter of the first set of stimulation parameters includes the pulse width.
  • generating the MRI-compatible stimulation program further includes replacing the case electrode of the electrical stimulation system with at least one of the electrodes of the lead by distributing stimulation via the case electrode for the first stimulation program over a plurality of electrodes of the lead that are unused in the first stimulation program.
  • the system further includes a user interface communicably coupled to the computer processor, wherein the processor is further configured to receive, via the user interface, user input indicative of user-modification of the MRI-compatible stimulation program; and, responsive to the user input, modify the MRI-compatible stimulation program in accordance with the user-modification to generate a user-modified MRI-compatible stimulation program, wherein initiating the signal that provides the implantable pulse generator of the electrical stimulation system with the MRI-compatible stimulation program for producing electrical stimulation to the patient includes initiating a signal that provides the implantable pulse generator of the electrical stimulation system with the user-modified MRI-compatible stimulation program for producing electrical stimulation to the patient.
  • the processor is further configured to initiate a signal that initiates electrical stimulation to the patient by the electrical stimulation system in accordance with the MRI-compatible program.
  • Another embodiment is a non-transitory computer-readable medium having computer executable instructions stored thereon that, when executed by a processor, cause the processor to perform a method for creating a magnetic resonance imaging (MRI)-compatible stimulation program for electrical stimulation of a patient using an implantable electrical stimulation system including an implantable pulse generator and a lead having a plurality of electrodes.
  • the method includes receiving a first set of stimulation parameters of a first stimulation program, wherein the first set of stimulation parameters indicates a first set of electrodes for delivery of electrical stimulation;
  • MRI magnetic resonance imaging
  • generating an MRI-compatible stimulation program based at least in part on the received first set of stimulation parameters, wherein the MRI-compatible stimulation program includes a second set of stimulation parameters that indicates a second set of electrodes from the plurality of electrodes for delivery of electrical stimulation, wherein generating the MRI-compatible stimulation program comprises modifying the first set of stimulation parameters by the processor to generate the second set of stimulation parameters by at least one of 1) reducing a value of at least one stimulation parameter of the first set of stimulation parameters or 2) replacing, in the first set of electrodes, a case electrode of the electrical stimulation system with at least one of the electrodes of the lead; and initiating a signal that provides the implantable pulse generator of the electrical stimulation system with the MRI-compatible stimulation program for producing electrical stimulation to the patient.
  • the method further includes determining a value that indicates energy consumption for the first stimulation program, wherein generating the MRI-compatible stimulation program further includes reducing the value of the at least one stimulation parameter of the first set of stimulation parameters in response to the value that indicates energy consumption.
  • generating the MRI-compatible stimulation program further includes reducing the value of the at least one stimulation parameter of the first set of stimulation parameters, wherein the at least one stimulation parameter of the first set of stimulation parameters includes at least one of stimulation current, stimulation voltage, pulse width, or pulse frequency.
  • generating the MRI-compatible stimulation program further includes reducing the value of the at least one stimulation parameter of the first set of stimulation parameters, wherein the at least one stimulation parameter of the first set of stimulation parameters includes at least one of stimulation current or pulse.
  • generating the MRI-compatible stimulation program further includes replacing the case electrode of the electrical stimulation system with at least one of the electrodes of the lead by distributing stimulation via the case electrode for the first stimulation program over a plurality of electrodes of the lead that are unused for the first stimulation program.
  • the method further includes receiving, via a user interface, a user input indicative of one or more electrodes to exclude from the second set of electrodes; and responsive to the user input, excluding the one or more electrodes from the second set of electrodes.
  • Yet another embodiment is a method for creating a magnetic resonance imaging (MRI)-compatible stimulation program for electrical stimulation of a patient using an implantable electrical stimulation system including an implantable pulse generator and a lead having a plurality of electrodes.
  • the method includes receiving, by a processor, a first set of stimulation parameters of a first stimulation program, wherein the first set of stimulation parameters indicates a first set of electrodes for delivery of electrical stimulation; generating, by the processor, an MRI-compatible stimulation program based at least in part on the received first set of stimulation parameters, wherein the MRI- compatible stimulation program includes a second set of stimulation parameters that indicates a second set of electrodes from the plurality of electrodes for delivery of electrical stimulation, wherein generating the MRI-compatible stimulation program comprises modifying the first set of stimulation parameters by the processor to generate the second set of stimulation parameters by at least one of 1) reducing a value of at least one stimulation parameter of the first set of stimulation parameters or 2) replacing, in the first set of electrodes, a case electrode of the electrical stimulation system with at least one of the electrodes
  • the method further includes determining, by the processor, a value that indicates energy consumption for the first stimulation program, wherein generating the MRI-compatible stimulation program further includes reducing, by the processor, the value of the at least one stimulation parameter of the first set of stimulation parameters in response to the value that indicates energy consumption. In at least some embodiments, generating the MRI-compatible stimulation program further includes reducing, by the processor, the value of the at least one stimulation parameter of the first set of stimulation parameters, wherein the at least one stimulation parameter of the first set of stimulation parameters includes at least one of stimulation current, stimulation voltage, pulse width, or pulse frequency.
  • generating the MRI-compatible stimulation program further includes replacing, by the processor, the case electrode of the electrical stimulation system with at least one of the electrodes of the lead by distributing stimulation via the case electrode for the first stimulation program over a plurality of electrodes of the lead that are unused for the first stimulation program.
  • initiating the signal that provides the implantable pulse generator of the electrical stimulation system with the MRI-compatible stimulation program for producing electrical stimulation to the patient includes displaying, via a user interface communicatively coupled to the processor, one or more of 1) the second set of stimulation parameters or 2) an estimated stimulation region based on the second set of stimulation parameters; receiving, by the processor via the user interface, a user input indicative of acceptance of the MRI-compatible stimulation program; responsive at least in part to the user input, initiating, by the processor, the signal that provides the implantable pulse generator of the electrical stimulation system with the MRI-compatible stimulation program for producing electrical stimulation to the patient ; responsive at least in part to the patient undergoing an MRI scan, initiating a signal that controls the implantable pulse generator of the electrical stimulation system to implement the MRI- compatible stimulation program; and responsive at least in part to conclusion of the MRI scan, initiating a signal that controls the implantable pulse generator of the electrical stimulation system to implement the first stimulation program.
  • FIG. 1 is a schematic view of one embodiment of an electrical stimulation system, according to the invention.
  • FIG. 2 is a schematic side view of one embodiment of an electrical stimulation lead, according to the invention.
  • FIG. 3 is a schematic block diagram of one embodiment of a system for determining stimulation parameters, according to the invention.
  • FIG. 4 is a flowchart of one embodiment of a method of determining MRI- compatible stimulation parameters, according to the invention.
  • FIG. 5 is a flowchart of a second embodiment of a method of determining MRI- compatible stimulation parameters, according to the invention.
  • FIG. 6 is a diagrammatic illustration of one embodiment of a method of determining MRI-compatible stimulation parameters, according to the invention.
  • the present invention is directed to the area of implantable electrical stimulation systems and methods of making and using the systems.
  • the present invention is also directed to systems and methods for selecting MRI-compatible stimulation parameters.
  • Suitable implantable electrical stimulation systems include, but are not limited to, a least one lead with one or more electrodes disposed on a distal end of the lead and one or more terminals disposed on one or more proximal ends of the lead.
  • Leads include, for example, percutaneous leads, paddle leads, cuff leads, or any other arrangement of electrodes on a lead. Examples of electrical stimulation systems with leads are found in, for example, U.S. Patents Nos.
  • 2007/0150036 2009/0187222; 2009/0276021; 2010/0076535; 2010/0268298; 2011/0005069; 2011/0004267; 201 1/0078900; 201 1/0130817; 2011/0130818; 2011/0238129; 201 1/0313500;
  • a percutaneous lead for electrical stimulation (for example, deep brain or spinal cord stimulation) includes stimulation electrodes that can be ring electrodes, segmented electrodes that extend only partially around the circumference of the lead, or any other type of electrode, or any combination thereof.
  • the segmented electrodes can be provided in sets of electrodes, with each set having electrodes circumferentially distributed about the lead at a particular longitudinal position.
  • the leads are described herein relative to use for deep brain stimulation, but it will be understood that any of the leads can be used for applications other than deep brain stimulation, including spinal cord stimulation, peripheral nerve stimulation, or stimulation of other nerves, muscles, and tissues. In particular, stimulation may stimulate specific targets.
  • targets include, but are not limited to, the subthalamic nucleus (STN), internal segment of the globus pallidus (GPi), external segment of the globus pallidus (GPe), and the like.
  • STN subthalamic nucleus
  • GPi internal segment of the globus pallidus
  • GPe external segment of the globus pallidus
  • an anatomical structure is defined by its physical structure and a physiological target is defined by its functional attributes.
  • the lead may be positioned at least partially within the target, but in other embodiments, the lead may be near, but not inside, the target.
  • an electrical stimulation system 10 includes one or more stimulation leads 12 and an implantable pulse generator (IPG) 14.
  • the system 10 can also include one or more of an external remote control (RC) 16, a clinician's programmer (CP) 18, an external trial stimulator (ETS) 20, or an external charger 22.
  • RC remote control
  • CP clinician's programmer
  • ETS external trial stimulator
  • the IPG 14 is physically connected, optionally via one or more lead extensions 24, to the stimulation lead(s) 12. Each lead carries multiple electrodes 26 arranged in an array.
  • the IPG 14 includes pulse generation circuitry that delivers electrical stimulation energy in the form of, for example, a pulsed electrical waveform (i.e., a temporal series of electrical pulses) to the electrode array 26 in accordance with a set of stimulation parameters.
  • the IPG 14 can be implanted into a patient's body, for example, below the patient's clavicle area or within the patient's buttocks or abdominal cavity.
  • the IPG 14 can have eight stimulation channels which may be independently programmable to control the magnitude of the current stimulus from each channel.
  • the IPG 14 can have more or fewer than eight stimulation channels (for example, 4-, 6-, 16-, 32-, or more stimulation channels).
  • the IPG 14 can have one, two, three, four, or more connector ports, for receiving the terminals of the leads.
  • the ETS 20 may also be physically connected, optionally via the percutaneous lead extensions 28 and external cable 30, to the stimulation leads 12.
  • One difference between the ETS 20 and the IPG 14 is that the ETS 20 is often a non-implantable device that is used on a trial basis after the neurostimulation leads 12 have been implanted and prior to implantation of the IPG 14, to test the responsiveness of the stimulation that is to be provided. Any functions described herein with respect to the IPG 14 can likewise be performed with respect to the ETS 20.
  • the RC 16 may be used to telemetrically communicate with or control the IPG 14 or ETS 20 via a uni- or bi-directional wireless communications link 32. Once the IPG 14 and neurostimulation leads 12 are implanted, the RC 16 may be used to telemetrically communicate with or control the IPG 14 via a uni- or bi-directional communications link 34. Such communication or control allows the IPG 14 to be turned on or off and to be programmed with different stimulation parameter sets. The IPG 14 may also be operated to modify the programmed stimulation parameters to actively control the characteristics of the electrical stimulation energy output by the IPG 14.
  • the CP 18 allows a user, such as a clinician, the ability to program stimulation parameters for the IPG 14 and ETS 20 in the operating room and in follow-up sessions.
  • the CP 18 may perform this function by indirectly communicating with the IPG 14 or ETS 20, through the RC 16, via a wireless communications link 36. Alternatively, the CP 18 may directly communicate with the IPG 14 or ETS 20 via a wireless communications link (not shown).
  • the stimulation parameters provided by the CP 18 are also used to program the RC 16, so that the stimulation parameters can be subsequently modified by operation of the RC 16 in a stand-alone mode (i.e., without the assistance of the CP 18).
  • Figure 2 illustrates one embodiment of a lead 100 with electrodes 125 disposed at least partially about a circumference of the lead 100 along a distal end portion of the lead 100 and terminals 135 disposed along a proximal end portion of the lead 100.
  • the lead 100 can be implanted near or within the desired portion of the body to be stimulated such as, for example, the brain, spinal cord, or other body organs or tissues.
  • access to the desired position in the brain can be accomplished by drilling a hole in the patient's skull or cranium with a cranial drill (commonly referred to as a burr), and coagulating and incising the dura mater, or brain covering.
  • the lead 100 can be inserted into the cranium and brain tissue with the assistance of a stylet (not shown).
  • the lead 100 can be guided to the target location within the brain using, for example, a stereotactic frame and a microdrive motor system.
  • the microdrive motor system can be fully or partially automatic.
  • the microdrive motor system may be configured to perform one or more the following actions (alone or in combination): insert the lead 100, advance the lead 100, retract the lead 100, or rotate the lead 100.
  • measurement devices coupled to the muscles or other tissues stimulated by the target neurons can be coupled to the IPG 14 or microdrive motor system.
  • the measurement device, user, or clinician can indicate a response by the target muscles or other tissues to the stimulation or recording electrode(s) to further identify the target neurons and facilitate positioning of the stimulation electrode(s).
  • a measurement device can be used to observe the muscle and indicate changes in, for example, tremor frequency or amplitude in response to stimulation of neurons.
  • the patient or clinician can observe the muscle and provide feedback.
  • the lead 100 for deep brain stimulation can include stimulation electrodes, recording electrodes, or both.
  • the lead 100 is rotatable so that the stimulation electrodes can be aligned with the target neurons after the neurons have been located using the recording electrodes.
  • Stimulation electrodes may be disposed on the circumference of the lead 100 to stimulate the target neurons. Stimulation electrodes may be ring-shaped so that current projects from each electrode equally in every direction from the position of the electrode along a length of the lead 100. In the embodiment of Figure 2, two of the electrodes 125 are ring electrodes 120. Ring electrodes typically do not enable stimulus current to be directed from only a limited angular range around a lead. Segmented electrodes 130, however, can be used to direct stimulus current to a selected angular range around a lead.
  • segmented electrodes When segmented electrodes are used in conjunction with an implantable pulse generator that delivers constant current stimulus, current steering can be achieved to more precisely deliver the stimulus to a position around an axis of a lead (i.e., radial positioning around the axis of a lead). To achieve current steering, segmented electrodes can be utilized in addition to, or as an alternative to, ring electrodes.
  • the lead 100 includes a lead body 110, terminals 135, one or more ring electrodes
  • the lead body 1 10 can be formed of a biocompatible, non-conducting material such as, for example, a polymeric material. Suitable polymeric materials include, but are not limited to, silicone, polyurethane, polyurea, polyurethane-urea, polyethylene, or the like.
  • the lead 100 Once implanted in the body, the lead 100 may be in contact with body tissue for extended periods of time. In at least some embodiments, the lead 100 has a cross-sectional diameter of no more than 1.5 mm and may be in the range of 0.5 to 1.5 mm.
  • the lead 100 has a length of at least 10 cm and the length of the lead 100 may be in the range of 10 to 70 cm.
  • the electrodes 125 can be made using a metal, alloy, conductive oxide, or any other suitable conductive biocompatible material. Examples of suitable materials include, but are not limited to, platinum, platinum iridium alloy, iridium, titanium, tungsten, palladium, palladium rhodium, or the like. Preferably, the electrodes 125 are made of a material that is biocompatible and does not substantially corrode under expected operating conditions in the operating environment for the expected duration of use. Each of the electrodes 125 can either be used or unused (OFF).
  • the electrode When an electrode is used, the electrode can be used as an anode or cathode and carry anodic or cathodic current. In some instances, an electrode might be an anode for a period of time and a cathode for a period of time.
  • Deep brain stimulation leads may include one or more sets of segmented electrodes. Segmented electrodes may provide for superior current steering than ring electrodes because target structures in deep brain stimulation are not typically symmetric about the axis of the distal electrode array. Instead, a target may be located on one side of a plane running through the axis of the lead.
  • RSEA radially segmented electrode array
  • current steering can be performed not only along a length of the lead but also around a circumference of the lead. This provides precise three- dimensional targeting and delivery of the current stimulus to neural target tissue, while potentially avoiding stimulation of other tissue. Examples of leads with segmented electrodes include U.S. Patents Nos. 8,473,061; 8,571,665; and 8,792,993; U.S. Patent Application Publications Nos. 2010/0268298; 2011/0005069; 2011/0130803;
  • Figure 3 illustrates one embodiment of a system for practicing the invention.
  • the system can include a computing device 300 or any other similar device that includes a processor 302 and a memory 304, a display 306, an input device 308, and, optionally, an electrical stimulation system 312.
  • the system 300 may also optionally include one or more imaging systems 310.
  • the computing device 300 can be a computer, tablet, mobile device, or any other suitable device for processing information.
  • the computing device 300 can be local to the user or can include components that are non-local to the computer including one or both of the processor 302 or memory 304 (or portions thereof).
  • the user may operate a terminal that is connected to a non-local computing device.
  • the memory can be non-local to the user.
  • the computing device 300 can utilize any suitable processor 302 including one or more hardware processors that may be local to the user or non-local to the user or other components of the computing device.
  • the processor 302 is configured to execute instructions provided to the processor 302, as described below.
  • Any suitable memory 304 can be used for the computing device 302.
  • the memory 304 illustrates a type of computer-readable media, namely computer-readable storage media.
  • Computer-readable storage media may include, but is not limited to, nonvolatile, non-transitory, removable, and non-removable media implemented in any method or technology for storage of information, such as computer readable instructions, data structures, program modules, or other data. Examples of computer-readable storage media include RAM, ROM, EEPROM, flash memory, or other memory technology, CD- ROM, digital versatile disks (“DVD”) or other optical storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices, or any other medium which can be used to store the desired information and which can be accessed by a computing device.
  • Communication methods provide another type of computer readable media; namely communication media.
  • Communication media typically embodies computer- readable instructions, data structures, program modules, or other data in a modulated data signal such as a carrier wave, data signal, or other transport mechanism and include any information delivery media.
  • modulated data signal and “carrier-wave signal” includes a signal that has one or more of its characteristics set or changed in such a manner as to encode information, instructions, data, and the like, in the signal.
  • communication media includes wired media such as twisted pair, coaxial cable, fiber optics, wave guides, and other wired media and wireless media such as acoustic, RF, infrared, and other wireless media.
  • the display 306 can be any suitable display device, such as a monitor, screen, display, or the like, and can include a printer.
  • the input device 308 can be, for example, a keyboard, mouse, touch screen, track ball, joystick, voice recognition system, or any combination thereof, or the like.
  • One or more imaging systems 310 can be used including, but not limited to, MRI, computed tomography (CT), ultrasound, or other imaging systems.
  • CT computed tomography
  • the imaging system 310 may communicate through a wired or wireless connection with the computing device 300 or, alternatively or additionally, a user can provide images from the imaging system 310 using a computer-readable medium or by some other mechanism.
  • the electrical stimulation system 312 can include, for example, any of the components illustrated in Figure 1.
  • the electrical stimulation system 312 may communicate with the computing device 300 through a wired or wireless connection or, alternatively or additionally, a user can provide information between the electrical stimulation system 312 and the computing device 300 using a computer-readable medium or by some other mechanism.
  • the computing device 300 may include part of the electrical stimulation system, such as, for example, the IPG 14, CP 18, RC 16, ETS 20, or any combination thereof.
  • Systems referenced herein typically include memory and typically include methods for communication with other devices including mobile devices.
  • Methods of communication can include both wired and wireless (for example, RF, optical, or infrared) communications methods and such methods provide another type of computer readable media; namely communication media.
  • Wired communication can include communication over a twisted pair, coaxial cable, fiber optics, wave guides, or the like, or any combination thereof.
  • Wireless communication can include RF, infrared, acoustic, near field communication, BluetoothTM, or the like, or any combination thereof.
  • a stimulation system that implements a stimulation program will stimulate a desired portion of patient tissue. It has been found, however, that during an MRI scan a power source of the stimulation system may drain at a dramatically higher rate for the same stimulation program. Accordingly, the stimulation system may fail to sufficiently stimulate or may completely fail to stimulate the desired patient tissue. To address this issued, the present systems or methods can generate an MRI- compatible stimulation program that will, at least partially, alleviate the battery drain while still providing useful stimulation to the patient tissue. In at least some
  • the stimulation may be less effective than stimulation using the original stimulation program, but the objective is to provide at least some effective stimulation during the MRI procedure.
  • FIG. 4 illustrates a flowchart of one embodiment of a method of creating the MRI-compatible stimulation program.
  • a first set of stimulation parameters of a first stimulation program is received.
  • a stimulation program can be described by a set of stimulation parameters that produce the stimulation of the stimulation program.
  • Stimulation parameters can include, but are not limited to, selection of electrode or electrodes to produce the stimulation, stimulation amplitude (total amplitude or individual amplitude for each electrode when multiple electrodes are used to produce the stimulation), pulse width, pulse frequency, and the like.
  • at least one stimulation parameter may indicate a minimum permissible parameter value (for example, a minimum stimulation current that represents an estimated minimum amount of current that stimulates the tissue), a maximum permissible parameter value (for example, a maximum pulse width that represents an upper limit of a range of pulse widths that the system may employ), or the like.
  • Some stimulation programs may also be more complex where the selection of electrodes may change during the program (for example, alternating between a first selection of electrodes and second selection of electrodes) or changes in amplitude, pulse width, pulse frequency, or the like. Also, some stimulation programs may also include bursts of stimulation pulses with at least one stimulation parameter indicating a burst frequency, burst width, duty cycle, burst pattern, or the like.
  • the first set of stimulation parameters can be received in any suitable manner.
  • the first set of stimulation parameters may be retrieved from an internal or external memory.
  • the clinician or user can input or otherwise generate the first stimulation program via any manner explained herein.
  • the first set of stimulation parameters may be obtained from the IPG or other device. Combinations of these methods, or any other suitable arrangement for providing the set of stimulation parameters, may also be used to obtain the first set of stimulation parameters.
  • a MRI-compatible stimulation program is generated based on the first stimulation program.
  • the MRI-compatible stimulation program is generated based at least in part on the first set of stimulation parameters of the first stimulation program by modifying one or more of those stimulation parameters.
  • the MRI-compatible stimulation program includes a second set of stimulation parameters. At least some of stimulation parameters of the second set of stimulation parameters are related to, or the same as, the corresponding stimulation parameters in the first set of stimulation parameters.
  • the MRI-compatible stimulation program is generated by modifying one or more of the stimulation parameters of the first set to generate the second set of stimulation parameters.
  • the MRI-compatible stimulation program is generated to increase likelihood that the stimulation system provides suitable stimulates the patient during an MRI scan while ameliorating one or more deleterious effects on the system or patient during the MRI scan.
  • the first stimulation program can be used to stimulate the patient under normal or non-MRI conditions (for example, before or after an MRI scan of the patient) and the MRI-compatible stimulation program can be used for stimulating the patient under MRI scan conditions (for example, during the MRI scan of the patient).
  • generating the MRI-compatible stimulation program may involve reducing, or otherwise altering, a value of at least one stimulation parameter of the first set of stimulation parameters.
  • the value may be reduced or altered so that it does not exceed a predefined threshold, a maximum value, or an upper limit.
  • the total current (or the current associated with any specific electrode) delivered during stimulation may be limited to a predefined threshold (for example, no more than 1, 0.75, 0.5, or 0.25 mA) in the MRI-compatible program. If the current delivered during the first stimulation program exceeds this threshold, then current in the MRI-compatible stimulation program is reduced to the threshold amount (or lower).
  • Other examples of stimulation parameters that may be altered in a similar manner to that described above for stimulation current include, but are not limited to, stimulation voltage, pulse width, pulse frequency, burst width, and burst frequency. Reducing one or more of these parameters may be beneficial during a MRI scan.
  • generating the MRI-compatible stimulation program may involve altering a selection of electrodes for providing the stimulation.
  • the MRI-compatible stimulation program may only permit monophasic stimulation (i.e., only one anode and one cathode).
  • the first stimulation program provides biphasic or multiphasic stimulation (using two or more anodes or two or more cathodes)
  • the selection of electrodes is altered in the MRI-compatible stimulation program to select only one of those anodes/cathodes for stimulation delivery.
  • the case of the IPG 14 is often used as an anode or cathode during stimulation, but the MRI-compatible stimulation program may not allow this usage and may require altering the placement of the cathode or anode on the case of the IPG 14 to one or more electrodes on the lead 12.
  • the computing device 300 delivers the MRI-compatible stimulation program to the IPG 14, ETS 20, or other device.
  • the computing device 300 can initiate the signal that provides the IPG 14, ETS 20, or other device with the MRI- compatible stimulation program.
  • the IPG 14, ETS 20, or other device stimulates the patient using the first stimulation program. This stimulation is provided except for periods of an MRI scan.
  • the IPG 14, ETS 20, or other device is directed to stimulate the patient using the MRI-compatible stimulation program.
  • the IPG 14, ETS 20, or other device is coupled to a sensor or other device that can detect that an MRI scan is occurring or soon to occur (for example, detecting a large static magnetic field of the MRI device or changing magnetic field gradients or RF fields associated with MRI scans) and, responsive to this detection, automatically direct the IPG 14, ETS 20, or other device to switch to the MRI-compatible stimulation program.
  • a user (clinician, patient, or other person) using an external device, such as CP 18, RC 16, or another device, can communicate with the IPG 14, ETS 20, or other device to manually direct the IPG 14, ETS 20, or other device to switch to the MRI- compatible stimulation program.
  • a system may provide for both the automatic or manual direction of the IPG 14, ETS 20, or other device to switch to the MRI-compatible stimulation program.
  • the IPG 14, ETS 20, or other device is directed to return to the first stimulation program to stimulate the patient.
  • the IPG 14, ETS 20, or other device may automatically switch to the first stimulation program after a predetermined period of time.
  • the IPG 14, ETS 20, or other device is coupled to a sensor or other device that can detect when an MRI scan is complete and, responsive to this detection, automatically direct the IPG 14, ETS 20, or other device to switch back to the first stimulation program.
  • a user (clinician, patient, or other person) using an external device, such as CP 18, RC 16, or another device, can communicate with the IPG 14, ETS 20, or other device to manually direct the IPG 14, ETS 20, or other device to switch back to the first stimulation program.
  • an external device such as CP 18, RC 16, or another device
  • CP 18, RC 16 or another device can communicate with the IPG 14, ETS 20, or other device to manually direct the IPG 14, ETS 20, or other device to switch back to the first stimulation program.
  • a combination of two or three of these mechanisms can be available to direct he IPG 14, ETS 20, or other device to switch back to the first stimulation program.
  • Figure 5 illustrates another embodiment of a method for creating the MRI- compatible stimulation program.
  • a first set of stimulation parameters of a first stimulation program is received just as in step 402.
  • a value indicative of energy consumption is determined. This determination may be performed by the IPG 14, ETS 20, CP 18, RC 16, or other device. In at least some embodiments, this value may be known or previously calculated or estimated. In at least some embodiments, the value may be indicative of energy consumption under normal conditions or energy consumption while the stimulation system implements the first stimulation program under MRI scan conditions.
  • the value may be determined using a predefined formula or information in a database (for example, empirical data obtained from observing differences in energy consumption of various stimulation systems under normal conditions versus energy consumption of the various stimulation systems under MRI scan conditions).
  • a value indicative of energy consumption is the pulse width multiplied by a square of the stimulation current or the pulse width multiplied by a square of the minimum stimulation current.
  • Other values and calculations for the values may be used.
  • at least one parameter value may be used in the calculation or as a representation of the energy consumption (for example, pulse width, stimulation current, minimum stimulation current threshold, or another one of those discussed above).
  • multiple values may be taken into account to describe energy consumption.
  • the value indicative of energy consumption may be a measured value (for example, a change in battery charge over time).
  • a MRI-compatible stimulation program is generated based on the first stimulation program and the value indicative of energy consumption determined in the step 504.
  • the system may determine how to modify the first set of stimulation parameters to reduce the energy consumption to a threshold or target value (or lower).
  • generating the MRI-compatible stimulation program may involve reducing, or otherwise altering, a value of at least one stimulation parameter of the first set of stimulation parameters or altering the selection of electrodes, or any combination thereof. Examples of such alterations are provided above with respect to step 404 in Figure 4.
  • the system may iteratively alter stimulation parameters until a value of the energy consumption for the new stimulation program is equal to or less than a threshold or target value. Steps 508 to 514 are the same as steps 406 to 412, respectively.
  • FIG. 6 is a flowchart of one method of creating the MRI-compatible stimulation program.
  • the system provides a graphical user interface (GUI).
  • GUI graphical user interface
  • the user interface may be on, for example, CP 18 or RC 16.
  • the first set of stimulation parameters of the first stimulation program are received and an MRI-compatible stimulation program is generated.
  • step 604 can be performed as described above in steps 402-404 of Figure 4 or steps 502-506 of Figure 5.
  • the user interface may allow the user to set user-defined limitations to the MRI-compatible stimulation program prior to generating the MRI-compatible stimulation program.
  • the user may be permitted to set limits on stimulation parameters or may be able to designate electrodes that cannot be used for stimulation or designate electrodes that must be used for stimulation.
  • the MRI-compatible stimulation program (for example, the stimulation parameters of the MRI-compatible stimulation program) is displayed in the user interface. This permits a user, such as a clinician or patient, to review the MRI- compatible program.
  • the system may display an estimated stimulation region based on the stimulation parameters of the MRI-compatible program.
  • the user interface may also display an estimated stimulation region for the first stimulation program.
  • the user interface allows the user to modify the MRI-compatible stimulation program.
  • the user may be allowed to modify values of one or more of the stimulation parameters or modify electrode selection (either adding or deleting electrodes to be used for stimulation), or any combination thereof.
  • the modified MRI-compatible stimulation program may then be displayed in the user interface.
  • the system may provide at least one warning if an adjustment is outside of previously set thresholds or rules for the MRI-compatible stimulation program. For example, a warning may be issued if an adjusted stimulation parameter exceeds a predefined value or if the resulting value indicative of energy consumption, for that set of stimulation parameters, exceeds a threshold value. As other example, a warning may be issued if the modified electrode selection is biphasic or multiphasic when the MRI-compatible stimulation program is intended to be monophasic or when the case electrode is modified to be used as an anode or cathode when the MRI- compatible stimulation program is intended not to use the case electrode.
  • Any suitable warning can be used including, but not limited to, a visual, audible, or haptic warning or any combination thereof.
  • the system may simply prevent an adjustment that is outside of previously set thresholds or limits or that violates rules for the MRI- compatible stimulation program.
  • some adjustments may be prevented while other adjustments may be allowed with a warning to the user.
  • that estimated stimulation region may be altered with alteration of the stimulation parameters.
  • the user interface may also display the estimated stimulation region based on the stimulation parameters of the unmodified MRI-compatible program.
  • Each of the estimated stimulation regions may be displayed with a visual or graphical difference (such as different coloring, shaping, or the like).
  • Steps 610 to 616 are the same as steps 406 to 412, respectively.
  • the system may require the clinician or user to approve the MRI-compatible stimulation program prior to delivery or use of the MRI- compatible stimulation program. In at least some embodiments, the system may require testing via the ETS 20 before approval.
  • the system can include one or more of the methods described hereinabove with respect to Figures 4-6 in any combination.
  • the methods, systems, and units described herein may be embodied in many different forms and should not be construed as limited to the embodiments set forth herein. Accordingly, the methods, systems, and units described herein may take the form of an entirely hardware embodiment, an entirely software embodiment or an embodiment combining software and hardware aspects.
  • the methods described herein can be performed using any type of processor or any combination of processors where each processor performs at least part of the process. It will be understood that each block of the flowchart illustrations, and combinations of blocks in the flowchart illustrations and methods disclosed herein, can be implemented by computer program instructions.
  • program instructions may be provided to a processor to produce a machine, such that the instructions, which execute on the processor, create means for implementing the actions specified in the flowchart block or blocks disclosed herein.
  • the computer program instructions may be executed by a processor to cause a series of operational steps to be performed by the processor to produce a computer implemented process.
  • the computer program instructions may also cause at least some of the operational steps to be performed in parallel. Moreover, some of the steps may also be performed across more than one processor, such as might arise in a multi-processor computer system.
  • one or more processes may also be performed concurrently with other processes, or even in a different sequence than illustrated without departing from the scope or spirit of the invention.
  • the computer program instructions can be stored on any suitable computer- readable medium including, but not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disks ("DVD”) or other optical storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices, or any other medium which can be used to store the desired information and which can be accessed by a computing device.

Landscapes

  • Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Neurology (AREA)
  • Veterinary Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Public Health (AREA)
  • Neurosurgery (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Electrotherapy Devices (AREA)

Abstract

Methods and systems for generating an MRI-compatible stimulation program based at least in part on a first set of stimulation parameters of a first stimulation program are presented. For example, a method or system (via a processor) can include receiving the first set of stimulation parameters, wherein the first set of stimulation parameters indicates a first set of stimulation electrodes; modifying the first set of stimulation parameters to generate a second set of stimulation parameters of the MRI-compatible stimulation program by at least one of 1) reducing a value of at least one stimulation parameter of the first set of stimulation parameters or 2) replacing, in the first set of electrodes, a case electrode with at least one electrode of the lead; and initiating a signal that provides the IPG with the MRI-compatible stimulation program.

Description

SYSTEMS AND METHODS FOR SELECTING MRI-COMPATIBLE STIMULATION
PARAMETERS
CROSS-REFERENCE TO RELATED APPLICATIONS This application claims the benefit under 35 U.S.C. § 119(e) of U.S. Provisional Patent Application Serial No. 62/441,944, filed January 3, 2017, which is incorporated herein by reference.
FIELD
The present invention is directed to the area of implantable electrical stimulation systems and methods of making and using the systems. The present invention is also directed to systems and methods for selecting magnetic resonance imaging (MRI)- compatible stimulation parameters.
BACKGROUND
Implantable electrical stimulation systems have proven therapeutic in a variety of diseases and disorders. For example, spinal cord stimulation systems have been used as a therapeutic modality for the treatment of chronic pain syndromes. Peripheral nerve stimulation has been used to treat chronic pain syndrome and incontinence, with a number of other applications under investigation. Functional electrical stimulation systems have been applied to restore some functionality to paralyzed extremities in spinal cord injury patients. Stimulation of the brain, such as deep brain stimulation, can be used to treat a variety of diseases or disorders.
Stimulators have been developed to provide therapy for a variety of treatments. A stimulator can include a control module (with a pulse generator), one or more leads, and an array of stimulator electrodes on each lead. The stimulator electrodes are in contact with or near the nerves, muscles, or other tissue to be stimulated. The pulse generator in the control module generates electrical pulses that are delivered by the electrodes to body tissue.
BRIEF SUMMARY
One embodiment is a system for creating a magnetic resonance imaging (MRI)- compatible stimulation program for electrical stimulation of a patient using an implantable electrical stimulation system including an implantable pulse generator and a lead having a plurality of electrodes The system for creating the MRI-compatible stimulation program includes a processor configured and arranged to: receive a first set of stimulation parameters of a first stimulation program, wherein the first set of stimulation parameters indicates a first set of electrodes for delivery of electrical stimulation; generate an MRI-compatible stimulation program based at least in part on the received first set of stimulation parameters, wherein the MRI-compatible stimulation program includes a second set of stimulation parameters that indicates a second set of electrodes from the plurality of electrodes for delivery of electrical stimulation, wherein generating the MRI- compatible stimulation program comprises modifying the first set of stimulation parameters by the processor to generate the second set of stimulation parameters by at least one of 1) reducing a value of at least one stimulation parameter of the first set of stimulation parameters or 2) replacing, in the first set of electrodes, a case electrode of the electrical stimulation system with at least one of the electrodes of the lead; and initiate a signal that provides the implantable pulse generator of the electrical stimulation system with the MRI-compatible stimulation program for producing electrical stimulation to the patient.
In at least some embodiments, the processor is further configured to determine a value that indicates energy consumption for the first stimulation program, wherein generating the MRI-compatible stimulation program further includes reducing the value of the at least one stimulation parameter of the first set of stimulation parameters in response to the value that indicates energy consumption.
In at least some embodiments, generating the MRI-compatible stimulation program further includes reducing the value of the at least one stimulation parameter of the first set of stimulation parameters, wherein the at least one stimulation parameter of the first set of stimulation parameters includes at least one of stimulation current, stimulation voltage, pulse width, or pulse frequency.
In at least some embodiments, generating the MRI-compatible stimulation program further includes reducing the value of the at least one stimulation parameter of the first set of stimulation parameters, wherein the at least one stimulation parameter of the first set of stimulation parameters includes a stimulation current. In at least some embodiments, the first set of electrodes includes the case electrode and wherein generating the MRI-compatible stimulation program includes replacing, in the first set of electrodes, the case electrode of the electrical stimulation system with at least one of the electrodes of the lead.
In at least some embodiments, generating the MRI-compatible stimulation program further includes reducing the value of the at least one stimulation parameter of the first set of stimulation parameters, wherein the at least one stimulation parameter of the first set of stimulation parameters includes the pulse width.
In at least some embodiments, generating the MRI-compatible stimulation program further includes replacing the case electrode of the electrical stimulation system with at least one of the electrodes of the lead by distributing stimulation via the case electrode for the first stimulation program over a plurality of electrodes of the lead that are unused in the first stimulation program.
In at least some embodiments, the system further includes a user interface communicably coupled to the computer processor, wherein the processor is further configured to receive, via the user interface, user input indicative of user-modification of the MRI-compatible stimulation program; and, responsive to the user input, modify the MRI-compatible stimulation program in accordance with the user-modification to generate a user-modified MRI-compatible stimulation program, wherein initiating the signal that provides the implantable pulse generator of the electrical stimulation system with the MRI-compatible stimulation program for producing electrical stimulation to the patient includes initiating a signal that provides the implantable pulse generator of the electrical stimulation system with the user-modified MRI-compatible stimulation program for producing electrical stimulation to the patient.
In at least some embodiments, the processor is further configured to initiate a signal that initiates electrical stimulation to the patient by the electrical stimulation system in accordance with the MRI-compatible program.
Another embodiment is a non-transitory computer-readable medium having computer executable instructions stored thereon that, when executed by a processor, cause the processor to perform a method for creating a magnetic resonance imaging (MRI)-compatible stimulation program for electrical stimulation of a patient using an implantable electrical stimulation system including an implantable pulse generator and a lead having a plurality of electrodes. The method includes receiving a first set of stimulation parameters of a first stimulation program, wherein the first set of stimulation parameters indicates a first set of electrodes for delivery of electrical stimulation;
generating an MRI-compatible stimulation program based at least in part on the received first set of stimulation parameters, wherein the MRI-compatible stimulation program includes a second set of stimulation parameters that indicates a second set of electrodes from the plurality of electrodes for delivery of electrical stimulation, wherein generating the MRI-compatible stimulation program comprises modifying the first set of stimulation parameters by the processor to generate the second set of stimulation parameters by at least one of 1) reducing a value of at least one stimulation parameter of the first set of stimulation parameters or 2) replacing, in the first set of electrodes, a case electrode of the electrical stimulation system with at least one of the electrodes of the lead; and initiating a signal that provides the implantable pulse generator of the electrical stimulation system with the MRI-compatible stimulation program for producing electrical stimulation to the patient.
In at least some embodiments, the method further includes determining a value that indicates energy consumption for the first stimulation program, wherein generating the MRI-compatible stimulation program further includes reducing the value of the at least one stimulation parameter of the first set of stimulation parameters in response to the value that indicates energy consumption.
In at least some embodiments, generating the MRI-compatible stimulation program further includes reducing the value of the at least one stimulation parameter of the first set of stimulation parameters, wherein the at least one stimulation parameter of the first set of stimulation parameters includes at least one of stimulation current, stimulation voltage, pulse width, or pulse frequency.
In at least some embodiments, generating the MRI-compatible stimulation program further includes reducing the value of the at least one stimulation parameter of the first set of stimulation parameters, wherein the at least one stimulation parameter of the first set of stimulation parameters includes at least one of stimulation current or pulse. In at least some embodiments, generating the MRI-compatible stimulation program further includes replacing the case electrode of the electrical stimulation system with at least one of the electrodes of the lead by distributing stimulation via the case electrode for the first stimulation program over a plurality of electrodes of the lead that are unused for the first stimulation program.
In at least some embodiments, the method further includes receiving, via a user interface, a user input indicative of one or more electrodes to exclude from the second set of electrodes; and responsive to the user input, excluding the one or more electrodes from the second set of electrodes.
Yet another embodiment is a method for creating a magnetic resonance imaging (MRI)-compatible stimulation program for electrical stimulation of a patient using an implantable electrical stimulation system including an implantable pulse generator and a lead having a plurality of electrodes. The method includes receiving, by a processor, a first set of stimulation parameters of a first stimulation program, wherein the first set of stimulation parameters indicates a first set of electrodes for delivery of electrical stimulation; generating, by the processor, an MRI-compatible stimulation program based at least in part on the received first set of stimulation parameters, wherein the MRI- compatible stimulation program includes a second set of stimulation parameters that indicates a second set of electrodes from the plurality of electrodes for delivery of electrical stimulation, wherein generating the MRI-compatible stimulation program comprises modifying the first set of stimulation parameters by the processor to generate the second set of stimulation parameters by at least one of 1) reducing a value of at least one stimulation parameter of the first set of stimulation parameters or 2) replacing, in the first set of electrodes, a case electrode of the electrical stimulation system with at least one of the electrodes of the lead; and initiating, by the processor, a signal that provides the implantable pulse generator of the electrical stimulation system with the MRI- compatible stimulation program for producing electrical stimulation to the patient.
In at least some embodiments, the method further includes determining, by the processor, a value that indicates energy consumption for the first stimulation program, wherein generating the MRI-compatible stimulation program further includes reducing, by the processor, the value of the at least one stimulation parameter of the first set of stimulation parameters in response to the value that indicates energy consumption. In at least some embodiments, generating the MRI-compatible stimulation program further includes reducing, by the processor, the value of the at least one stimulation parameter of the first set of stimulation parameters, wherein the at least one stimulation parameter of the first set of stimulation parameters includes at least one of stimulation current, stimulation voltage, pulse width, or pulse frequency.
In at least some embodiments, generating the MRI-compatible stimulation program further includes replacing, by the processor, the case electrode of the electrical stimulation system with at least one of the electrodes of the lead by distributing stimulation via the case electrode for the first stimulation program over a plurality of electrodes of the lead that are unused for the first stimulation program.
In at least some embodiments, initiating the signal that provides the implantable pulse generator of the electrical stimulation system with the MRI-compatible stimulation program for producing electrical stimulation to the patient includes displaying, via a user interface communicatively coupled to the processor, one or more of 1) the second set of stimulation parameters or 2) an estimated stimulation region based on the second set of stimulation parameters; receiving, by the processor via the user interface, a user input indicative of acceptance of the MRI-compatible stimulation program; responsive at least in part to the user input, initiating, by the processor, the signal that provides the implantable pulse generator of the electrical stimulation system with the MRI-compatible stimulation program for producing electrical stimulation to the patient ; responsive at least in part to the patient undergoing an MRI scan, initiating a signal that controls the implantable pulse generator of the electrical stimulation system to implement the MRI- compatible stimulation program; and responsive at least in part to conclusion of the MRI scan, initiating a signal that controls the implantable pulse generator of the electrical stimulation system to implement the first stimulation program.
BRIEF DESCRIPTION OF THE DRAWINGS
Non-limiting and non-exhaustive embodiments of the present invention are described with reference to the following drawings. In the drawings, like reference numerals refer to like parts throughout the various figures unless otherwise specified. For a better understanding of the present invention, reference will be made to the following Detailed Description, which is to be read in association with the accompanying drawings, wherein:
FIG. 1 is a schematic view of one embodiment of an electrical stimulation system, according to the invention;
FIG. 2 is a schematic side view of one embodiment of an electrical stimulation lead, according to the invention;
FIG. 3 is a schematic block diagram of one embodiment of a system for determining stimulation parameters, according to the invention; FIG. 4 is a flowchart of one embodiment of a method of determining MRI- compatible stimulation parameters, according to the invention;
FIG. 5 is a flowchart of a second embodiment of a method of determining MRI- compatible stimulation parameters, according to the invention; and
FIG. 6 is a diagrammatic illustration of one embodiment of a method of determining MRI-compatible stimulation parameters, according to the invention.
DETAILED DESCRIPTION
The present invention is directed to the area of implantable electrical stimulation systems and methods of making and using the systems. The present invention is also directed to systems and methods for selecting MRI-compatible stimulation parameters. Suitable implantable electrical stimulation systems include, but are not limited to, a least one lead with one or more electrodes disposed on a distal end of the lead and one or more terminals disposed on one or more proximal ends of the lead. Leads include, for example, percutaneous leads, paddle leads, cuff leads, or any other arrangement of electrodes on a lead. Examples of electrical stimulation systems with leads are found in, for example, U.S. Patents Nos. 6,181,969; 6,516,227; 6,609,029; 6,609,032; 6,741,892; 7,244,150; 7,450,997; 7,672,734;7,761,165; 7,783,359; 7,792,590; 7,809,446; 7,949,395; 7,974,706; 8,175,710; 8,224,450; 8,271,094; 8,295,944; 8,364,278; 8,391,985; and 8,688,235; and U.S. Patent Applications Publication Nos. 2007/0150036; 2009/0187222; 2009/0276021; 2010/0076535; 2010/0268298; 2011/0005069; 2011/0004267; 201 1/0078900; 201 1/0130817; 2011/0130818; 2011/0238129; 201 1/0313500;
2012/0016378; 2012/0046710; 2012/0071949; 2012/016591 1 ; 2012/0197375;
2012/0203316; 2012/0203320; 2012/0203321 ; 2012/0316615; 2013/0105071 ; and 2013/0197602, all of which are incorporated by reference. In the discussion below, a percutaneous lead will be exemplified, but it will be understood that the methods and systems described herein are also applicable to paddle leads and other leads.
A percutaneous lead for electrical stimulation (for example, deep brain or spinal cord stimulation) includes stimulation electrodes that can be ring electrodes, segmented electrodes that extend only partially around the circumference of the lead, or any other type of electrode, or any combination thereof. The segmented electrodes can be provided in sets of electrodes, with each set having electrodes circumferentially distributed about the lead at a particular longitudinal position. For illustrative purposes, the leads are described herein relative to use for deep brain stimulation, but it will be understood that any of the leads can be used for applications other than deep brain stimulation, including spinal cord stimulation, peripheral nerve stimulation, or stimulation of other nerves, muscles, and tissues. In particular, stimulation may stimulate specific targets. Examples of such targets include, but are not limited to, the subthalamic nucleus (STN), internal segment of the globus pallidus (GPi), external segment of the globus pallidus (GPe), and the like. In at least some embodiments, an anatomical structure is defined by its physical structure and a physiological target is defined by its functional attributes. In at least one of the various embodiments, the lead may be positioned at least partially within the target, but in other embodiments, the lead may be near, but not inside, the target.
Turning to Figure 1, one embodiment of an electrical stimulation system 10 includes one or more stimulation leads 12 and an implantable pulse generator (IPG) 14. The system 10 can also include one or more of an external remote control (RC) 16, a clinician's programmer (CP) 18, an external trial stimulator (ETS) 20, or an external charger 22.
The IPG 14 is physically connected, optionally via one or more lead extensions 24, to the stimulation lead(s) 12. Each lead carries multiple electrodes 26 arranged in an array. The IPG 14 includes pulse generation circuitry that delivers electrical stimulation energy in the form of, for example, a pulsed electrical waveform (i.e., a temporal series of electrical pulses) to the electrode array 26 in accordance with a set of stimulation parameters. The IPG 14 can be implanted into a patient's body, for example, below the patient's clavicle area or within the patient's buttocks or abdominal cavity. The IPG 14 can have eight stimulation channels which may be independently programmable to control the magnitude of the current stimulus from each channel. In at least some embodiments, the IPG 14 can have more or fewer than eight stimulation channels (for example, 4-, 6-, 16-, 32-, or more stimulation channels). The IPG 14 can have one, two, three, four, or more connector ports, for receiving the terminals of the leads.
The ETS 20 may also be physically connected, optionally via the percutaneous lead extensions 28 and external cable 30, to the stimulation leads 12. The ETS 20, which may have similar pulse generation circuitry as the IPG 14, also delivers electrical stimulation energy in the form of, for example, a pulsed electrical waveform to the electrode array 26 in accordance with a set of stimulation parameters. One difference between the ETS 20 and the IPG 14 is that the ETS 20 is often a non-implantable device that is used on a trial basis after the neurostimulation leads 12 have been implanted and prior to implantation of the IPG 14, to test the responsiveness of the stimulation that is to be provided. Any functions described herein with respect to the IPG 14 can likewise be performed with respect to the ETS 20.
The RC 16 may be used to telemetrically communicate with or control the IPG 14 or ETS 20 via a uni- or bi-directional wireless communications link 32. Once the IPG 14 and neurostimulation leads 12 are implanted, the RC 16 may be used to telemetrically communicate with or control the IPG 14 via a uni- or bi-directional communications link 34. Such communication or control allows the IPG 14 to be turned on or off and to be programmed with different stimulation parameter sets. The IPG 14 may also be operated to modify the programmed stimulation parameters to actively control the characteristics of the electrical stimulation energy output by the IPG 14. The CP 18 allows a user, such as a clinician, the ability to program stimulation parameters for the IPG 14 and ETS 20 in the operating room and in follow-up sessions.
The CP 18 may perform this function by indirectly communicating with the IPG 14 or ETS 20, through the RC 16, via a wireless communications link 36. Alternatively, the CP 18 may directly communicate with the IPG 14 or ETS 20 via a wireless communications link (not shown). The stimulation parameters provided by the CP 18 are also used to program the RC 16, so that the stimulation parameters can be subsequently modified by operation of the RC 16 in a stand-alone mode (i.e., without the assistance of the CP 18).
For purposes of brevity, the details of the RC 16, CP 18, ETS 20, and external charger 22 will not be further described herein. Details of exemplary embodiments of these devices are disclosed in U.S. Pat. No. 6,895,280, which is expressly incorporated herein by reference. Other examples of electrical stimulation systems can be found at U.S. Patents Nos. 6,181,969; 6,516,227; 6,609,029; 6,609,032; 6,741,892; 7,949,395; 7,244,150; 7,672,734; and 7,761,165; 7,974,706; 8,175,710; 8,224,450; and 8,364,278; and U.S. Patent Application Publication No. 2007/0150036, as well as the other references cited above, all of which are incorporated by reference.
Figure 2 illustrates one embodiment of a lead 100 with electrodes 125 disposed at least partially about a circumference of the lead 100 along a distal end portion of the lead 100 and terminals 135 disposed along a proximal end portion of the lead 100.
The lead 100 can be implanted near or within the desired portion of the body to be stimulated such as, for example, the brain, spinal cord, or other body organs or tissues. In one example of operation for deep brain stimulation, access to the desired position in the brain can be accomplished by drilling a hole in the patient's skull or cranium with a cranial drill (commonly referred to as a burr), and coagulating and incising the dura mater, or brain covering. The lead 100 can be inserted into the cranium and brain tissue with the assistance of a stylet (not shown). The lead 100 can be guided to the target location within the brain using, for example, a stereotactic frame and a microdrive motor system. In at least some embodiments, the microdrive motor system can be fully or partially automatic. The microdrive motor system may be configured to perform one or more the following actions (alone or in combination): insert the lead 100, advance the lead 100, retract the lead 100, or rotate the lead 100.
In at least some embodiments, measurement devices coupled to the muscles or other tissues stimulated by the target neurons, or a unit responsive to the patient or clinician, can be coupled to the IPG 14 or microdrive motor system. The measurement device, user, or clinician can indicate a response by the target muscles or other tissues to the stimulation or recording electrode(s) to further identify the target neurons and facilitate positioning of the stimulation electrode(s). For example, if the target neurons are directed to a muscle experiencing tremors, a measurement device can be used to observe the muscle and indicate changes in, for example, tremor frequency or amplitude in response to stimulation of neurons. Alternatively, the patient or clinician can observe the muscle and provide feedback.
The lead 100 for deep brain stimulation can include stimulation electrodes, recording electrodes, or both. In at least some embodiments, the lead 100 is rotatable so that the stimulation electrodes can be aligned with the target neurons after the neurons have been located using the recording electrodes.
Stimulation electrodes may be disposed on the circumference of the lead 100 to stimulate the target neurons. Stimulation electrodes may be ring-shaped so that current projects from each electrode equally in every direction from the position of the electrode along a length of the lead 100. In the embodiment of Figure 2, two of the electrodes 125 are ring electrodes 120. Ring electrodes typically do not enable stimulus current to be directed from only a limited angular range around a lead. Segmented electrodes 130, however, can be used to direct stimulus current to a selected angular range around a lead. When segmented electrodes are used in conjunction with an implantable pulse generator that delivers constant current stimulus, current steering can be achieved to more precisely deliver the stimulus to a position around an axis of a lead (i.e., radial positioning around the axis of a lead). To achieve current steering, segmented electrodes can be utilized in addition to, or as an alternative to, ring electrodes. The lead 100 includes a lead body 110, terminals 135, one or more ring electrodes
120, and one or more sets of segmented electrodes 130 (or any other combination of electrodes). The lead body 1 10 can be formed of a biocompatible, non-conducting material such as, for example, a polymeric material. Suitable polymeric materials include, but are not limited to, silicone, polyurethane, polyurea, polyurethane-urea, polyethylene, or the like. Once implanted in the body, the lead 100 may be in contact with body tissue for extended periods of time. In at least some embodiments, the lead 100 has a cross-sectional diameter of no more than 1.5 mm and may be in the range of 0.5 to 1.5 mm. In at least some embodiments, the lead 100 has a length of at least 10 cm and the length of the lead 100 may be in the range of 10 to 70 cm. The electrodes 125 can be made using a metal, alloy, conductive oxide, or any other suitable conductive biocompatible material. Examples of suitable materials include, but are not limited to, platinum, platinum iridium alloy, iridium, titanium, tungsten, palladium, palladium rhodium, or the like. Preferably, the electrodes 125 are made of a material that is biocompatible and does not substantially corrode under expected operating conditions in the operating environment for the expected duration of use. Each of the electrodes 125 can either be used or unused (OFF). When an electrode is used, the electrode can be used as an anode or cathode and carry anodic or cathodic current. In some instances, an electrode might be an anode for a period of time and a cathode for a period of time.
Deep brain stimulation leads may include one or more sets of segmented electrodes. Segmented electrodes may provide for superior current steering than ring electrodes because target structures in deep brain stimulation are not typically symmetric about the axis of the distal electrode array. Instead, a target may be located on one side of a plane running through the axis of the lead. Through the use of a radially segmented electrode array ("RSEA"), current steering can be performed not only along a length of the lead but also around a circumference of the lead. This provides precise three- dimensional targeting and delivery of the current stimulus to neural target tissue, while potentially avoiding stimulation of other tissue. Examples of leads with segmented electrodes include U.S. Patents Nos. 8,473,061; 8,571,665; and 8,792,993; U.S. Patent Application Publications Nos. 2010/0268298; 2011/0005069; 2011/0130803;
2011/0130816; 2011/0130817; 2011/0130818; 2011/0078900; 2011/0238129;
2012/0016378; 2012/0046710; 2012/0071949; 2012/0165911 ; 2012/197375;
2012/0203316; 2012/0203320; 2012/0203321 ; 2013/0197424; 2013/0197602;
2014/0039587; 2014/0353001; 2014/0358208; 2014/0358209; 2014/0358210;
2015/0045864; 2015/0066120; 2015/0018915; 2015/0051681 ; U.S. Patent Applications Serial Nos. 14/557,211 and 14/286,797; and U.S. Provisional Patent Application Serial No. 62/113,291, all of which are incorporated herein by reference.
Figure 3 illustrates one embodiment of a system for practicing the invention. The system can include a computing device 300 or any other similar device that includes a processor 302 and a memory 304, a display 306, an input device 308, and, optionally, an electrical stimulation system 312. The system 300 may also optionally include one or more imaging systems 310. The computing device 300 can be a computer, tablet, mobile device, or any other suitable device for processing information. The computing device 300 can be local to the user or can include components that are non-local to the computer including one or both of the processor 302 or memory 304 (or portions thereof). For example, in at least some embodiments, the user may operate a terminal that is connected to a non-local computing device. In other embodiments, the memory can be non-local to the user.
The computing device 300 can utilize any suitable processor 302 including one or more hardware processors that may be local to the user or non-local to the user or other components of the computing device. The processor 302 is configured to execute instructions provided to the processor 302, as described below.
Any suitable memory 304 can be used for the computing device 302. The memory 304 illustrates a type of computer-readable media, namely computer-readable storage media. Computer-readable storage media may include, but is not limited to, nonvolatile, non-transitory, removable, and non-removable media implemented in any method or technology for storage of information, such as computer readable instructions, data structures, program modules, or other data. Examples of computer-readable storage media include RAM, ROM, EEPROM, flash memory, or other memory technology, CD- ROM, digital versatile disks ("DVD") or other optical storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices, or any other medium which can be used to store the desired information and which can be accessed by a computing device.
Communication methods provide another type of computer readable media; namely communication media. Communication media typically embodies computer- readable instructions, data structures, program modules, or other data in a modulated data signal such as a carrier wave, data signal, or other transport mechanism and include any information delivery media. The terms "modulated data signal," and "carrier-wave signal" includes a signal that has one or more of its characteristics set or changed in such a manner as to encode information, instructions, data, and the like, in the signal. By way of example, communication media includes wired media such as twisted pair, coaxial cable, fiber optics, wave guides, and other wired media and wireless media such as acoustic, RF, infrared, and other wireless media. The display 306 can be any suitable display device, such as a monitor, screen, display, or the like, and can include a printer. The input device 308 can be, for example, a keyboard, mouse, touch screen, track ball, joystick, voice recognition system, or any combination thereof, or the like. One or more imaging systems 310 can be used including, but not limited to, MRI, computed tomography (CT), ultrasound, or other imaging systems. The imaging system 310 may communicate through a wired or wireless connection with the computing device 300 or, alternatively or additionally, a user can provide images from the imaging system 310 using a computer-readable medium or by some other mechanism. The electrical stimulation system 312 can include, for example, any of the components illustrated in Figure 1. The electrical stimulation system 312 may communicate with the computing device 300 through a wired or wireless connection or, alternatively or additionally, a user can provide information between the electrical stimulation system 312 and the computing device 300 using a computer-readable medium or by some other mechanism. In at least some embodiments, the computing device 300 may include part of the electrical stimulation system, such as, for example, the IPG 14, CP 18, RC 16, ETS 20, or any combination thereof.
The methods and systems described herein may be embodied in many different forms and should not be construed as limited to the embodiments set forth herein.
Accordingly, the methods and systems described herein may take the form of an entirely hardware embodiment, an entirely software embodiment or an embodiment combining software and hardware aspects. Systems referenced herein typically include memory and typically include methods for communication with other devices including mobile devices. Methods of communication can include both wired and wireless (for example, RF, optical, or infrared) communications methods and such methods provide another type of computer readable media; namely communication media. Wired communication can include communication over a twisted pair, coaxial cable, fiber optics, wave guides, or the like, or any combination thereof. Wireless communication can include RF, infrared, acoustic, near field communication, Bluetooth™, or the like, or any combination thereof. Under normal operating conditions, a stimulation system that implements a stimulation program will stimulate a desired portion of patient tissue. It has been found, however, that during an MRI scan a power source of the stimulation system may drain at a dramatically higher rate for the same stimulation program. Accordingly, the stimulation system may fail to sufficiently stimulate or may completely fail to stimulate the desired patient tissue. To address this issued, the present systems or methods can generate an MRI- compatible stimulation program that will, at least partially, alleviate the battery drain while still providing useful stimulation to the patient tissue. In at least some
embodiments, the stimulation may be less effective than stimulation using the original stimulation program, but the objective is to provide at least some effective stimulation during the MRI procedure.
Figure 4 illustrates a flowchart of one embodiment of a method of creating the MRI-compatible stimulation program. In step 402, a first set of stimulation parameters of a first stimulation program is received. A stimulation program can be described by a set of stimulation parameters that produce the stimulation of the stimulation program.
Stimulation parameters can include, but are not limited to, selection of electrode or electrodes to produce the stimulation, stimulation amplitude (total amplitude or individual amplitude for each electrode when multiple electrodes are used to produce the stimulation), pulse width, pulse frequency, and the like. In at least some embodiments, at least one stimulation parameter may indicate a minimum permissible parameter value (for example, a minimum stimulation current that represents an estimated minimum amount of current that stimulates the tissue), a maximum permissible parameter value (for example, a maximum pulse width that represents an upper limit of a range of pulse widths that the system may employ), or the like. Some stimulation programs may also be more complex where the selection of electrodes may change during the program (for example, alternating between a first selection of electrodes and second selection of electrodes) or changes in amplitude, pulse width, pulse frequency, or the like. Also, some stimulation programs may also include bursts of stimulation pulses with at least one stimulation parameter indicating a burst frequency, burst width, duty cycle, burst pattern, or the like.
Examples of different stimulation programs and methods and systems for choosing stimulation programs can be found at, for example, U. S. Patents Nos.
8,326,433; 8,675,945; 8,831 ,731 ; 8,849,632; and 8.958,615; U. S. Patent Application Publications Nos. 2009/0287272; 2009/0287273; 2012/0314924; 2013/0116744;
2014/0122379; and 2015/0066111 ; and U.S. Provisional Patent Application Serial No. 62/030,655; U.S. Provisional Patent Application Serial No. 62/186,184, all of which are incorporated herein by reference. The first set of stimulation parameters can be received in any suitable manner.
For example, the first set of stimulation parameters may be retrieved from an internal or external memory. As another example, the clinician or user can input or otherwise generate the first stimulation program via any manner explained herein. The first set of stimulation parameters may be obtained from the IPG or other device. Combinations of these methods, or any other suitable arrangement for providing the set of stimulation parameters, may also be used to obtain the first set of stimulation parameters.
In step 404, a MRI-compatible stimulation program is generated based on the first stimulation program. In at least some embodiments, the MRI-compatible stimulation program is generated based at least in part on the first set of stimulation parameters of the first stimulation program by modifying one or more of those stimulation parameters. The MRI-compatible stimulation program includes a second set of stimulation parameters. At least some of stimulation parameters of the second set of stimulation parameters are related to, or the same as, the corresponding stimulation parameters in the first set of stimulation parameters. In at least some embodiments, the MRI-compatible stimulation program is generated by modifying one or more of the stimulation parameters of the first set to generate the second set of stimulation parameters.
The MRI-compatible stimulation program is generated to increase likelihood that the stimulation system provides suitable stimulates the patient during an MRI scan while ameliorating one or more deleterious effects on the system or patient during the MRI scan. In at least some embodiments, the first stimulation program can be used to stimulate the patient under normal or non-MRI conditions (for example, before or after an MRI scan of the patient) and the MRI-compatible stimulation program can be used for stimulating the patient under MRI scan conditions (for example, during the MRI scan of the patient). In at least some embodiments, generating the MRI-compatible stimulation program may involve reducing, or otherwise altering, a value of at least one stimulation parameter of the first set of stimulation parameters. For example, the value may be reduced or altered so that it does not exceed a predefined threshold, a maximum value, or an upper limit. In at least some embodiments that define the amount of stimulation using current, the total current (or the current associated with any specific electrode) delivered during stimulation may be limited to a predefined threshold (for example, no more than 1, 0.75, 0.5, or 0.25 mA) in the MRI-compatible program. If the current delivered during the first stimulation program exceeds this threshold, then current in the MRI-compatible stimulation program is reduced to the threshold amount (or lower). Other examples of stimulation parameters that may be altered in a similar manner to that described above for stimulation current include, but are not limited to, stimulation voltage, pulse width, pulse frequency, burst width, and burst frequency. Reducing one or more of these parameters may be beneficial during a MRI scan.
In at least some embodiments, generating the MRI-compatible stimulation program may involve altering a selection of electrodes for providing the stimulation. For example, the MRI-compatible stimulation program may only permit monophasic stimulation (i.e., only one anode and one cathode). In this instance, if the first stimulation program provides biphasic or multiphasic stimulation (using two or more anodes or two or more cathodes), then the selection of electrodes is altered in the MRI-compatible stimulation program to select only one of those anodes/cathodes for stimulation delivery. As another example, the case of the IPG 14 is often used as an anode or cathode during stimulation, but the MRI-compatible stimulation program may not allow this usage and may require altering the placement of the cathode or anode on the case of the IPG 14 to one or more electrodes on the lead 12.
In step 406, the computing device 300 delivers the MRI-compatible stimulation program to the IPG 14, ETS 20, or other device. For example, the computing device 300 can initiate the signal that provides the IPG 14, ETS 20, or other device with the MRI- compatible stimulation program.
In step 408, the IPG 14, ETS 20, or other device stimulates the patient using the first stimulation program. This stimulation is provided except for periods of an MRI scan. In step 410, the IPG 14, ETS 20, or other device is directed to stimulate the patient using the MRI-compatible stimulation program. In at least some embodiments, the IPG 14, ETS 20, or other device is coupled to a sensor or other device that can detect that an MRI scan is occurring or soon to occur (for example, detecting a large static magnetic field of the MRI device or changing magnetic field gradients or RF fields associated with MRI scans) and, responsive to this detection, automatically direct the IPG 14, ETS 20, or other device to switch to the MRI-compatible stimulation program. In at least some embodiments, a user (clinician, patient, or other person) using an external device, such as CP 18, RC 16, or another device, can communicate with the IPG 14, ETS 20, or other device to manually direct the IPG 14, ETS 20, or other device to switch to the MRI- compatible stimulation program. In at least some embodiments, a system may provide for both the automatic or manual direction of the IPG 14, ETS 20, or other device to switch to the MRI-compatible stimulation program.
In step 412, the IPG 14, ETS 20, or other device is directed to return to the first stimulation program to stimulate the patient. In at least some embodiments, the IPG 14, ETS 20, or other device may automatically switch to the first stimulation program after a predetermined period of time. In at least some embodiments, the IPG 14, ETS 20, or other device is coupled to a sensor or other device that can detect when an MRI scan is complete and, responsive to this detection, automatically direct the IPG 14, ETS 20, or other device to switch back to the first stimulation program. In at least some
embodiments, a user (clinician, patient, or other person) using an external device, such as CP 18, RC 16, or another device, can communicate with the IPG 14, ETS 20, or other device to manually direct the IPG 14, ETS 20, or other device to switch back to the first stimulation program. In some systems, a combination of two or three of these mechanisms can be available to direct he IPG 14, ETS 20, or other device to switch back to the first stimulation program.
Figure 5 illustrates another embodiment of a method for creating the MRI- compatible stimulation program. In step 502, a first set of stimulation parameters of a first stimulation program is received just as in step 402. In step 504, a value indicative of energy consumption is determined. This determination may be performed by the IPG 14, ETS 20, CP 18, RC 16, or other device. In at least some embodiments, this value may be known or previously calculated or estimated. In at least some embodiments, the value may be indicative of energy consumption under normal conditions or energy consumption while the stimulation system implements the first stimulation program under MRI scan conditions. In at least some embodiments, the value may be determined using a predefined formula or information in a database (for example, empirical data obtained from observing differences in energy consumption of various stimulation systems under normal conditions versus energy consumption of the various stimulation systems under MRI scan conditions). One example of a value indicative of energy consumption is the pulse width multiplied by a square of the stimulation current or the pulse width multiplied by a square of the minimum stimulation current. Other values and calculations for the values may be used. Additionally or alternatively to calculating a value, at least one parameter value may be used in the calculation or as a representation of the energy consumption (for example, pulse width, stimulation current, minimum stimulation current threshold, or another one of those discussed above). In addition, it will be understood that multiple values may be taken into account to describe energy consumption. In at least some embodiments, the value indicative of energy consumption may be a measured value (for example, a change in battery charge over time). In step 506, a MRI-compatible stimulation program is generated based on the first stimulation program and the value indicative of energy consumption determined in the step 504. In determining the MRI-compatible stimulation program, the system may determine how to modify the first set of stimulation parameters to reduce the energy consumption to a threshold or target value (or lower). In at least some embodiments, generating the MRI-compatible stimulation program may involve reducing, or otherwise altering, a value of at least one stimulation parameter of the first set of stimulation parameters or altering the selection of electrodes, or any combination thereof. Examples of such alterations are provided above with respect to step 404 in Figure 4. In at least some embodiments, the system may iteratively alter stimulation parameters until a value of the energy consumption for the new stimulation program is equal to or less than a threshold or target value. Steps 508 to 514 are the same as steps 406 to 412, respectively.
Figure 6 is a flowchart of one method of creating the MRI-compatible stimulation program. In step 602, the system provides a graphical user interface (GUI). The user interface may be on, for example, CP 18 or RC 16. In step 604, the first set of stimulation parameters of the first stimulation program are received and an MRI-compatible stimulation program is generated. For example, step 604 can be performed as described above in steps 402-404 of Figure 4 or steps 502-506 of Figure 5. Optionally, the user interface may allow the user to set user-defined limitations to the MRI-compatible stimulation program prior to generating the MRI-compatible stimulation program. For example, the user may be permitted to set limits on stimulation parameters or may be able to designate electrodes that cannot be used for stimulation or designate electrodes that must be used for stimulation.
In step 606, the MRI-compatible stimulation program (for example, the stimulation parameters of the MRI-compatible stimulation program) is displayed in the user interface. This permits a user, such as a clinician or patient, to review the MRI- compatible program.
In other embodiments, the system may display an estimated stimulation region based on the stimulation parameters of the MRI-compatible program. Optionally, the user interface may also display an estimated stimulation region for the first stimulation program.
In step 608, the user interface allows the user to modify the MRI-compatible stimulation program. For example, the user may be allowed to modify values of one or more of the stimulation parameters or modify electrode selection (either adding or deleting electrodes to be used for stimulation), or any combination thereof. The modified MRI-compatible stimulation program may then be displayed in the user interface.
In at least some embodiments, the system may provide at least one warning if an adjustment is outside of previously set thresholds or rules for the MRI-compatible stimulation program. For example, a warning may be issued if an adjusted stimulation parameter exceeds a predefined value or if the resulting value indicative of energy consumption, for that set of stimulation parameters, exceeds a threshold value. As other example, a warning may be issued if the modified electrode selection is biphasic or multiphasic when the MRI-compatible stimulation program is intended to be monophasic or when the case electrode is modified to be used as an anode or cathode when the MRI- compatible stimulation program is intended not to use the case electrode. Any suitable warning can be used including, but not limited to, a visual, audible, or haptic warning or any combination thereof. Alternatively, the system may simply prevent an adjustment that is outside of previously set thresholds or limits or that violates rules for the MRI- compatible stimulation program. In at least some embodiments, some adjustments may be prevented while other adjustments may be allowed with a warning to the user.
In embodiments that display an estimated stimulation region based on the stimulation parameters of the MRI-compatible program, that estimated stimulation region may be altered with alteration of the stimulation parameters. In at least some
embodiments, the user interface may also display the estimated stimulation region based on the stimulation parameters of the unmodified MRI-compatible program. Each of the estimated stimulation regions may be displayed with a visual or graphical difference (such as different coloring, shaping, or the like).
Steps 610 to 616 are the same as steps 406 to 412, respectively.
In at least some embodiments, the system may require the clinician or user to approve the MRI-compatible stimulation program prior to delivery or use of the MRI- compatible stimulation program. In at least some embodiments, the system may require testing via the ETS 20 before approval.
It will be understood that the system can include one or more of the methods described hereinabove with respect to Figures 4-6 in any combination. The methods, systems, and units described herein may be embodied in many different forms and should not be construed as limited to the embodiments set forth herein. Accordingly, the methods, systems, and units described herein may take the form of an entirely hardware embodiment, an entirely software embodiment or an embodiment combining software and hardware aspects. The methods described herein can be performed using any type of processor or any combination of processors where each processor performs at least part of the process. It will be understood that each block of the flowchart illustrations, and combinations of blocks in the flowchart illustrations and methods disclosed herein, can be implemented by computer program instructions. These program instructions may be provided to a processor to produce a machine, such that the instructions, which execute on the processor, create means for implementing the actions specified in the flowchart block or blocks disclosed herein. The computer program instructions may be executed by a processor to cause a series of operational steps to be performed by the processor to produce a computer implemented process. The computer program instructions may also cause at least some of the operational steps to be performed in parallel. Moreover, some of the steps may also be performed across more than one processor, such as might arise in a multi-processor computer system. In addition, one or more processes may also be performed concurrently with other processes, or even in a different sequence than illustrated without departing from the scope or spirit of the invention.
The computer program instructions can be stored on any suitable computer- readable medium including, but not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disks ("DVD") or other optical storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices, or any other medium which can be used to store the desired information and which can be accessed by a computing device.
The above specification provides a description of the structure, manufacture, and use of the invention. Since many embodiments of the invention can be made without departing from the spirit and scope of the invention, the invention also resides in the claims hereinafter appended.

Claims

CLAIMS What is claimed as new and desired to be protected by Letters Patent of the United States is:
1. A system for creating a magnetic resonance imaging (MRI)-compatible stimulation program for electrical stimulation of a patient using an implantable electrical stimulation system comprising an implantable pulse generator and a lead having a plurality of electrodes, the system for creating the MRI-compatible stimulation program comprising:
a processor configured to:
receive a first set of stimulation parameters of a first stimulation program, wherein the first set of stimulation parameters indicates a first set of electrodes for delivery of electrical stimulation;
generate an MRI-compatible stimulation program based at least in part on the received first set of stimulation parameters, wherein the MRI-compatible stimulation program comprises a second set of stimulation parameters that indicates a second set of electrodes from the plurality of electrodes for delivery of electrical stimulation, wherein generating the MRI-compatible stimulation program comprises modifying the first set of stimulation parameters by the processor to generate the second set of stimulation parameters by at least one of 1) reducing a value of at least one stimulation parameter of the first set of stimulation parameters or 2) replacing, in the first set of electrodes, a case electrode of the electrical stimulation system with at least one of the electrodes of the lead; and initiate a signal that provides the implantable pulse generator of the electrical stimulation system with the MRI-compatible stimulation program for producing electrical stimulation to the patient.
2. The system of claim 1, wherein the processor is further configured to determine a value that indicates energy consumption for the first stimulation program, wherein generating the MRI-compatible stimulation program further comprises reducing the value of the at least one stimulation parameter of the first set of stimulation parameters in response to the value that indicates energy consumption.
3. The system of any one of claims 1 or 2, wherein generating the MRI- compatible stimulation program further comprises reducing the value of the at least one stimulation parameter of the first set of stimulation parameters, wherein the at least one stimulation parameter of the first set of stimulation parameters comprises at least one of stimulation current, stimulation voltage, pulse width, or pulse frequency.
4. The system of any one of claims 1 -3, wherein the first set of electrodes comprises the case electrode and wherein generating the MRI-compatible stimulation program comprises replacing, in the first set of electrodes, the case electrode of the electrical stimulation system with at least one of the electrodes of the lead, wherein, optionally, the at least one of the electrodes of the lead is a plurality of electrodes of the lead that are unused in the first stimulation program.
5. The system of any one of claims 1-4, further comprising a user interface communicably coupled to the computer processor, wherein the processor is further configured to:
receive, via the user interface, user input indicative of user-modification of the MRI-compatible stimulation program; and
responsive to the user input, modify the MRI-compatible stimulation program in accordance with the user-modification to generate a user-modified MRI-compatible stimulation program, wherein initiating the signal that provides the implantable pulse generator of the electrical stimulation system with the MRI-compatible stimulation program for producing electrical stimulation to the patient comprises initiating a signal that provides the implantable pulse generator of the electrical stimulation system with the user-modified MRI-compatible stimulation program for producing electrical stimulation to the patient.
6. A non-transitory computer-readable medium having computer executable instructions stored thereon that, when executed by a processor, cause the processor to perform a method for creating a magnetic resonance imaging (MRI)-compatible stimulation program for electrical stimulation of a patient using an implantable electrical stimulation system comprising an implantable pulse generator and a lead having a plurality of electrodes, the method comprising:
receiving a first set of stimulation parameters of a first stimulation program, wherein the first set of stimulation parameters indicates a first set of electrodes for delivery of electrical stimulation;
generating an MRI-compatible stimulation program based at least in part on the received first set of stimulation parameters, wherein the MRI-compatible stimulation program comprises a second set of stimulation parameters that indicates a second set of electrodes from the plurality of electrodes for delivery of electrical stimulation, wherein generating the MRI-compatible stimulation program comprises modifying the first set of stimulation parameters by the processor to generate the second set of stimulation parameters by at least one of 1) reducing a value of at least one stimulation parameter of the first set of stimulation parameters or 2) replacing, in the first set of electrodes, a case electrode of the electrical stimulation system with at least one of the electrodes of the lead; and
initiating a signal that provides the implantable pulse generator of the electrical stimulation system with the MRI-compatible stimulation program for producing electrical stimulation to the patient.
7. The non-transitory computer-readable medium of claim 6, wherein the method further comprises determining a value that indicates energy consumption for the first stimulation program, wherein generating the MRI-compatible stimulation program further comprises reducing the value of the at least one stimulation parameter of the first set of stimulation parameters in response to the value that indicates energy consumption.
8. The non-transitory computer-readable medium of any one of claims 6 or 7, wherein generating the MRI-compatible stimulation program further comprises reducing the value of the at least one stimulation parameter of the first set of stimulation parameters, wherein the at least one stimulation parameter of the first set of stimulation parameters comprises at least one of stimulation current, stimulation voltage, pulse width, or pulse frequency.
9. The non-transitory computer-readable medium of any one of claims 6-8, wherein generating the MRI-compatible stimulation program further comprises replacing the case electrode of the electrical stimulation system with at least one of the electrodes of the lead by distributing stimulation via the case electrode for the first stimulation program over a plurality of electrodes of the lead that are unused for the first stimulation program.
10. The non-transitory computer-readable medium of any one of claims 6-9, wherein the method further comprises:
receiving, via a user interface, a user input indicative of one or more electrodes to exclude from the second set of electrodes; and
responsive to the user input, excluding the one or more electrodes from the second set of electrodes.
11. A method for creating a magnetic resonance imaging (MRI)-compatible stimulation program for electrical stimulation of a patient using an implantable electrical stimulation system comprising an implantable pulse generator and a lead having a plurality of electrodes, the method comprising:
receiving, by a processor, a first set of stimulation parameters of a first stimulation program, wherein the first set of stimulation parameters indicates a first set of electrodes for delivery of electrical stimulation;
generating, by the processor, an MRI-compatible stimulation program based at least in part on the received first set of stimulation parameters, wherein the MRI- compatible stimulation program comprises a second set of stimulation parameters that indicates a second set of electrodes from the plurality of electrodes for delivery of electrical stimulation, wherein generating the MRI-compatible stimulation program comprises modifying the first set of stimulation parameters by the processor to generate the second set of stimulation parameters by at least one of 1) reducing a value of at least one stimulation parameter of the first set of stimulation parameters or 2) replacing, in the first set of electrodes, a case electrode of the electrical stimulation system with at least one of the electrodes of the lead; and
initiating, by the processor, a signal that provides the implantable pulse generator of the electrical stimulation system with the MRI-compatible stimulation program for producing electrical stimulation to the patient.
12. The method of claim 11 , further comprising determining, by the processor, a value that indicates energy consumption for the first stimulation program, wherein generating the MRI-compatible stimulation program further comprises reducing, by the processor, the value of the at least one stimulation parameter of the first set of stimulation parameters in response to the value that indicates energy consumption.
13. The method of any one of claims 11 or 12, wherein generating the MRI- compatible stimulation program further comprises reducing, by the processor, the value of the at least one stimulation parameter of the first set of stimulation parameters, wherein the at least one stimulation parameter of the first set of stimulation parameters comprises at least one of stimulation current, stimulation voltage, pulse width, or pulse frequency.
14. The method of any one of claims 1 1-13, wherein generating the MRI- compatible stimulation program further comprises replacing, by the processor, the case electrode of the electrical stimulation system with at least one of the electrodes of the lead by distributing stimulation via the case electrode for the first stimulation program over a plurality of electrodes of the lead that are unused for the first stimulation program.
15. The method of any one of claims 1 1-14, wherein initiating the signal that provides the implantable pulse generator of the electrical stimulation system with the MRI-compatible stimulation program for producing electrical stimulation to the patient comprises: displaying, via a user interface communicatively coupled to the processor, one or more of 1) the second set of stimulation parameters or 2) an estimated stimulation region based on the second set of stimulation parameters;
receiving, by the processor via the user interface, a user input indicative of acceptance of the MRI-compatible stimulation program;
responsive at least in part to the user input, initiating, by the processor, the signal that provides the implantable pulse generator of the electrical stimulation system with the MRI-compatible stimulation program for producing electrical stimulation to the patient; responsive at least in part to the patient undergoing an MRI scan, initiating a signal that controls the implantable pulse generator of the electrical stimulation system to implement the MRI-compatible stimulation program; and
responsive at least in part to conclusion of the MRI scan, initiating a signal that controls the implantable pulse generator of the electrical stimulation system to implement the first stimulation program.
PCT/US2017/069118 2017-01-03 2017-12-29 Systems and methods for selecting mri-compatible stimulation parameters WO2018128949A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
ES17832721T ES2871008T3 (en) 2017-01-03 2017-12-29 Systems and Procedures for Selecting MRI-Compatible Stimulation Parameters
CN201780082355.1A CN110167629B (en) 2017-01-03 2017-12-29 System and method for selecting MRI compatible stimulation parameters
AU2017391436A AU2017391436B2 (en) 2017-01-03 2017-12-29 Systems and methods for selecting MRI-compatible stimulation parameters
EP17832721.9A EP3515548B1 (en) 2017-01-03 2017-12-29 Systems and methods for selecting mri-compatible stimulation parameters
CA3045697A CA3045697C (en) 2017-01-03 2017-12-29 Systems and methods for selecting mri-compatible stimulation parameters
JP2019536250A JP6834005B2 (en) 2017-01-03 2017-12-29 Systems and methods for selecting MRI-matched stimulus parameters

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201762441944P 2017-01-03 2017-01-03
US62/441,944 2017-01-03

Publications (1)

Publication Number Publication Date
WO2018128949A1 true WO2018128949A1 (en) 2018-07-12

Family

ID=61007875

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2017/069118 WO2018128949A1 (en) 2017-01-03 2017-12-29 Systems and methods for selecting mri-compatible stimulation parameters

Country Status (8)

Country Link
US (1) US10792501B2 (en)
EP (1) EP3515548B1 (en)
JP (1) JP6834005B2 (en)
CN (1) CN110167629B (en)
AU (1) AU2017391436B2 (en)
CA (1) CA3045697C (en)
ES (1) ES2871008T3 (en)
WO (1) WO2018128949A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10716505B2 (en) 2017-07-14 2020-07-21 Boston Scientific Neuromodulation Corporation Systems and methods for estimating clinical effects of electrical stimulation
WO2019210114A2 (en) 2018-04-27 2019-10-31 Boston Scientific Neuromodulation Corporation Translation between cathodic and anodic neuromodulation parameter settings
US20230140180A1 (en) * 2019-10-04 2023-05-04 Saluda Medical Pty Limited Lead for an active implantable medical device
CN114761074A (en) * 2019-12-31 2022-07-15 波士顿科学神经调制公司 Automatic determination of input to closed-loop algorithm for stimulation parameter optimization
US20220266000A1 (en) 2021-02-25 2022-08-25 Boston Scientific Neuromodulation Corporation Methods and systems for deep brain stimulation of the nucleus basalis of meynert
CN113599699B (en) * 2021-09-09 2024-07-16 景昱医疗科技(苏州)股份有限公司 Method and system for recommending stimulating electrode combinations
CN114870252A (en) * 2022-04-28 2022-08-09 苏州景昱医疗器械有限公司 Program controller, server and nerve stimulation system compatible with multiple IPGs
CN115430053A (en) * 2022-10-21 2022-12-06 苏州景昱医疗器械有限公司 Pulse generator, stimulator, medical system, and computer-readable storage medium

Citations (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6181969B1 (en) 1998-06-26 2001-01-30 Advanced Bionics Corporation Programmable current output stimulus stage for implantable device
US6516227B1 (en) 1999-07-27 2003-02-04 Advanced Bionics Corporation Rechargeable spinal cord stimulator system
US6609029B1 (en) 2000-02-04 2003-08-19 Advanced Bionics Corporation Clip lock mechanism for retaining lead
US6609032B1 (en) 1999-01-07 2003-08-19 Advanced Bionics Corporation Fitting process for a neural stimulation system
US6741892B1 (en) 2000-03-10 2004-05-25 Advanced Bionics Corporation Movable contact locking mechanism for spinal cord stimulator lead connector
US20070150036A1 (en) 2005-12-27 2007-06-28 Advanced Bionics Corporation Stimulator leads and methods for lead fabrication
US7244150B1 (en) 2006-01-09 2007-07-17 Advanced Bionics Corporation Connector and methods of fabrication
US7450997B1 (en) 2000-12-29 2008-11-11 Boston Scientific Neuromodulation Corporation Method of implanting a lead for brain stimulation
US20090187222A1 (en) 2008-01-23 2009-07-23 Boston Scientific Neuromodulation Corporation Steerable stylet handle assembly
US20090276021A1 (en) 2008-04-30 2009-11-05 Boston Scientific Neuromodulation Corporation Electrodes for stimulation leads and methods of manufacture and use
US20090287272A1 (en) 2008-05-15 2009-11-19 Intelect Medical, Inc. Clinician programmer system and method for steering volumesof activation
US7672734B2 (en) 2005-12-27 2010-03-02 Boston Scientific Neuromodulation Corporation Non-linear electrode array
US20100076535A1 (en) 2008-09-25 2010-03-25 Boston Scientific Neuromodulation Corporation Leads with non-circular-shaped distal ends for brain stimulation systems and methods of making and using
US20100137945A1 (en) * 2008-11-26 2010-06-03 Medtronic, Inc. Automated verification of mri compatibility of active implantable medical device
US7761165B1 (en) 2005-09-29 2010-07-20 Boston Scientific Neuromodulation Corporation Implantable stimulator with integrated plastic housing/metal contacts and manufacture and use
US7783359B2 (en) 2005-01-05 2010-08-24 Boston Scientific Neuromodulation Corporation Devices and methods using an implantable pulse generator for brain stimulation
US7809446B2 (en) 2005-01-05 2010-10-05 Boston Scientific Neuromodulation Corporation Devices and methods for brain stimulation
US20100268298A1 (en) 2009-04-16 2010-10-21 Boston Scientific Neuromodulation Corporation Deep brain stimulation current steering with split electrodes
US20110005069A1 (en) 2009-07-07 2011-01-13 Boston Scientific Neuromodulation Corporation Systems and leads with a radially segmented electrode array and methods of manufacture
US20110078900A1 (en) 2009-07-07 2011-04-07 Boston Scientific Neuromodulation Corporation Methods for making leads with radially-aligned segmented electrodes for electrical stimulation systems
WO2011053378A1 (en) * 2009-10-30 2011-05-05 Medtronic, Inc. Configuring operating parameters of a medical device based on a type of source of a disruptive energy field
US7949395B2 (en) 1999-10-01 2011-05-24 Boston Scientific Neuromodulation Corporation Implantable microdevice with extended lead and remote electrode
US20110130816A1 (en) 2009-11-30 2011-06-02 Boston Scientific Neuromodulation Corporation Electrode array with electrodes having cutout portions and methods of making the same
US20110130803A1 (en) 2009-11-30 2011-06-02 Boston Scientific Neuromodulation Corporation Electrode array having concentric windowed cylinder electrodes and methods of making the same
US20110130817A1 (en) 2009-11-30 2011-06-02 Boston Scientific Neuromodulation Corporation Electrode array having a rail system and methods of manufacturing the same
US20110130818A1 (en) 2009-11-30 2011-06-02 Boston Scientific Neuromodulation Corporation Electrode array having concentric split ring electrodes and methods of making the same
US20110160808A1 (en) * 2009-12-31 2011-06-30 Lyden Michael J Implantable medical device including isolation test circuit
US7974706B2 (en) 2006-03-30 2011-07-05 Boston Scientific Neuromodulation Corporation Electrode contact configurations for cuff leads
US20110238129A1 (en) 2010-03-23 2011-09-29 Boston Scientific Neuromodulation Corporation Helical radial spacing of contacts on a cylindrical lead
US20110313500A1 (en) 2010-06-18 2011-12-22 Boston Scientific Neuromodulation Corporation Electrode array having embedded electrodes and methods of making the same
US20120016378A1 (en) 2010-07-16 2012-01-19 Boston Scientific Neuromodulation Corporation Systems and methods for radial steering of electrode arrays
US20120046710A1 (en) 2010-08-18 2012-02-23 Boston Scientific Neuromodulation Corporation Methods, systems, and devices for deep brain stimulation using helical movement of the centroid of stimulation
US20120053652A1 (en) * 2010-09-01 2012-03-01 Pacesetter, Inc. Method and system for sensing external magnetic fields using a multi-function coil of an implantable medical device
US20120071949A1 (en) 2010-09-21 2012-03-22 Boston Scientific Neuromodulation Corporation Systems and methods for making and using radially-aligned segmented electrodes for leads of electrical stimulation systems
US8175710B2 (en) 2006-03-14 2012-05-08 Boston Scientific Neuromodulation Corporation Stimulator system with electrode array and the method of making the same
US20120165911A1 (en) 2010-12-23 2012-06-28 Boston Scientific Neuromodulation Corporation Methods for making leads with segmented electrodes for electrical stimulation systems
US8224450B2 (en) 2006-09-18 2012-07-17 Boston Scientific Neuromodulation Corporation Feed through interconnect assembly for an implantable stimulation system and methods of making and using
US20120197375A1 (en) 2011-02-02 2012-08-02 Boston Scientific Neuromodulation Corporation Leads with spiral of helical segmented electrode arrays and methods of making and using the leads
US20120203320A1 (en) 2011-02-08 2012-08-09 Boston Scientific Neuromodulation Corporation Leads with spirally arranged segmented electrodes and methods of making and using the leads
US20120203321A1 (en) 2011-02-08 2012-08-09 Boston Scientific Neuromodulation Corporation Methods for making leads with segmented electrodes for electrical stimulation systems
US20120203316A1 (en) 2011-02-08 2012-08-09 Boston Scientific Neuromodulation Corporation Leads with segmented electrodes for electrical stimulation of planar regions and methods of making and using
US8271094B1 (en) 2005-09-30 2012-09-18 Boston Scientific Neuromodulation Corporation Devices with cannula and electrode lead for brain stimulation and methods of use and manufacture
US20120314924A1 (en) 2011-03-29 2012-12-13 Boston Scientific Neuromodulation Corporation System and method for atlas registration
US20120316615A1 (en) 2011-06-07 2012-12-13 Boston Scientific Neuromodulation Corporation Systems and methods for making and using improved leads for electrical stimulation systems
US8364278B2 (en) 2002-01-29 2013-01-29 Boston Scientific Neuromodulation Corporation Lead assembly for implantable microstimulator
US20130105071A1 (en) 2011-11-02 2013-05-02 Boston Scientific Neuromodulation Corporation Systems and methods for making and using improved leads for electrical stimulation systems
US20130116744A1 (en) 2011-08-09 2013-05-09 Boston Scientific Neuromodulation Corporation VOA generation system and method using a fiber specific analysis
US20130197602A1 (en) 2012-01-26 2013-08-01 Boston Scientific Neuromodulation Corporation Systems and methods for identifying the circumferential positioning of electrodes of leads for electrical stimulation systems
US20130197424A1 (en) 2006-07-31 2013-08-01 Cranial Medical Systems, Inc. Lead and methods for brain monitoring and modulation
US20140039587A1 (en) 2012-08-03 2014-02-06 Boston Scientific Neuromodulation Corporation Leads with electrode carrier for segmented electrodes and methods of making and using
US8688235B1 (en) 2008-07-22 2014-04-01 Boston Scientific Neuromodulation Corporation Lead with transition and methods of manufacture and use
US20140122379A1 (en) 2012-11-01 2014-05-01 Boston Scientific Neuromodulation Corporation Systems and methods for voa model generation and use
US8792993B2 (en) 2012-06-01 2014-07-29 Boston Scientific, Neuromodulation Corporation Leads with tip electrode for electrical stimulation systems and methods of making and using
US20140358209A1 (en) 2013-05-31 2014-12-04 Boston Scientific Neuromodulation Corporation Leads with segmented electrodes and methods of making and using the leads
US20140358208A1 (en) 2013-05-31 2014-12-04 Boston Scientific Neuromodulation Corporation Segmented electrode leads formed from pre-electrodes with alignment features and methods of making and using the leads
US20140353001A1 (en) 2013-05-31 2014-12-04 Boston Scientific Neuromodulation Corporation Leads containing segmented electrodes with non-perpendicular legs and methods of making and using
US20140358210A1 (en) 2013-05-31 2014-12-04 Boston Scientific Neuromodulation Corporation Methods for manufacturing segmented electrode leads using a removable ring and the leads formed thereby
US20150018915A1 (en) 2013-07-12 2015-01-15 Boston Scientific Neuromodulation Corporation Leads with segmented electrodes and methods of making and using the leads
US20150045864A1 (en) 2013-08-07 2015-02-12 Boston Scientific Neuromodulation Corporation Systems and methods for making and using segmented tip electrodes for leads of electrical stimulation systems
US8958615B2 (en) 2011-08-09 2015-02-17 Boston Scientific Neuromodulation Corporation System and method for weighted atlas generation
US20150051681A1 (en) 2013-08-19 2015-02-19 Boston Scientific Neuromodulation Corporation Methods and systems for anodal stimulation to affect cranial and other nerves
US20150066120A1 (en) 2013-08-30 2015-03-05 Boston Scientific Neuromodulation Corporation Methods of making segmented electrode leads using flanged carrier
US20150066111A1 (en) 2010-06-14 2015-03-05 Boston Scientific Neuromodulation Corporation Programming interface for spinal cord neuromodulation

Family Cites Families (371)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3943936A (en) * 1970-09-21 1976-03-16 Rasor Associates, Inc. Self powered pacers and stimulators
US3999555A (en) 1975-10-28 1976-12-28 Medtronic, Inc. Atrial pinch on lead and insertion tool
AR216293A1 (en) 1976-12-02 1979-12-14 Leon De Pedro F SELF-FIXING TOOTH ELECTRODE AND A GRIPPER FOR ITS MANEUVERING
US4144889A (en) 1977-05-31 1979-03-20 Research Corporation Cardiac electrodes for temporary pacing
US4445500A (en) 1982-03-03 1984-05-01 Thomas Jefferson University Stroke treatment utilizing extravascular circulation of oxygenated synthetic nutrients to treat tissue hypoxic and ischemic disorders
US4378797A (en) 1980-04-14 1983-04-05 Thomas Jefferson University Extravascular circulation of oxygenated synthetic nutrients to treat tissue hypoxic and ischemic disorders
US4341221A (en) 1980-10-07 1982-07-27 Medtronic, Inc. Shielded recording electrode system
US4765341A (en) 1981-06-22 1988-08-23 Mieczyslaw Mirowski Cardiac electrode with attachment fin
US5370675A (en) 1992-08-12 1994-12-06 Vidamed, Inc. Medical probe device and method
US4735208B1 (en) 1987-01-09 1995-07-04 Ad Tech Medical Instr Corp Subdural strip electrode for determining epileptogenic foci
US4841973A (en) 1987-09-21 1989-06-27 Stecker Harold D Electrical stimulators
US6240308B1 (en) 1988-12-23 2001-05-29 Tyrone L. Hardy Method and apparatus for archiving and displaying anatomico-physiological data in a normalized whole brain mapping and imaging system
US5099846A (en) 1988-12-23 1992-03-31 Hardy Tyrone L Method and apparatus for video presentation from a variety of scanner imaging sources
US5067495A (en) 1989-09-27 1991-11-26 Brehm Richard L Electro wave therapy
US5255693A (en) 1989-11-02 1993-10-26 Possis Medical, Inc. Cardiac lead
US5222494A (en) 1991-07-31 1993-06-29 Cyberonics, Inc. Implantable tissue stimulator output stabilization system
US5259387A (en) 1991-09-09 1993-11-09 Quinton Instrument Company ECG muscle artifact filter system
US5304206A (en) 1991-11-18 1994-04-19 Cyberonics, Inc. Activation techniques for implantable medical device
EP0630481B1 (en) 1992-03-09 1999-06-30 University Of Washington Image neurography and diffusion anisotropy imaging
US5603318A (en) 1992-04-21 1997-02-18 University Of Utah Research Foundation Apparatus and method for photogrammetric surgical localization
US5365996A (en) 1992-06-10 1994-11-22 Amei Technologies Inc. Method and apparatus for making customized fixation devices
US6096756A (en) 1992-09-21 2000-08-01 Albert Einstein College Of Medicine Of Yeshiva University Method of simultaneously enhancing analgesic potency and attenuating dependence liability caused by morphine and other bimodally-acting opioid agonists
GB9302335D0 (en) 1993-02-05 1993-03-24 Macdonald Alexander J R Electrotherapeutic apparatus
US5361763A (en) 1993-03-02 1994-11-08 Wisconsin Alumni Research Foundation Method for segmenting features in an image
US5344438A (en) 1993-04-16 1994-09-06 Medtronic, Inc. Cuff electrode
US5607454A (en) 1993-08-06 1997-03-04 Heartstream, Inc. Electrotherapy method and apparatus
US5601612A (en) 1993-08-06 1997-02-11 Heartstream, Inc. Method for applying a multiphasic waveform
US6129685A (en) 1994-02-09 2000-10-10 The University Of Iowa Research Foundation Stereotactic hypothalamic obesity probe
US5651767A (en) 1994-05-06 1997-07-29 Alfred F. Mann Foundation For Scientific Research Replaceable catheter system for physiological sensors, stimulating electrodes and/or implantable fluid delivery systems
JPH10502552A (en) 1994-07-13 1998-03-10 フラウンホファー.ゲゼルシャフト.ツール.フォルデンウング.デール.アンゲヴァンドテン.フォルシュング.エー.ファウ Soft artificial neural plate
US5782762A (en) 1994-10-27 1998-07-21 Wake Forest University Method and system for producing interactive, three-dimensional renderings of selected body organs having hollow lumens to enable simulated movement through the lumen
US6694163B1 (en) 1994-10-27 2004-02-17 Wake Forest University Health Sciences Method and system for producing interactive, three-dimensional renderings of selected body organs having hollow lumens to enable simulated movement through the lumen
US5682468A (en) 1995-01-23 1997-10-28 Intergraph Corporation OLE for design and modeling
US5674258A (en) * 1995-03-08 1997-10-07 Medtronic, Inc. Packaged integrated accelerometer
US5868740A (en) 1995-03-24 1999-02-09 Board Of Regents-Univ Of Nebraska Method for volumetric tissue ablation
US5565949A (en) 1995-07-10 1996-10-15 Kasha, Jr.; John R. Visual field perimetry on a small computer screen
US5724985A (en) 1995-08-02 1998-03-10 Pacesetter, Inc. User interface for an implantable medical device using an integrated digitizer display screen
US6944501B1 (en) 2000-04-05 2005-09-13 Neurospace, Inc. Neurostimulator involving stimulation strategies and process for using it
US6463328B1 (en) 1996-02-02 2002-10-08 Michael Sasha John Adaptive brain stimulation method and system
US6066163A (en) 1996-02-02 2000-05-23 John; Michael Sasha Adaptive brain stimulation method and system
US5713922A (en) 1996-04-25 1998-02-03 Medtronic, Inc. Techniques for adjusting the locus of excitation of neural tissue in the spinal cord or brain
US5925070A (en) 1996-04-04 1999-07-20 Medtronic, Inc. Techniques for adjusting the locus of excitation of electrically excitable tissue
US5716377A (en) 1996-04-25 1998-02-10 Medtronic, Inc. Method of treating movement disorders by brain stimulation
US6094598A (en) 1996-04-25 2000-07-25 Medtronics, Inc. Method of treating movement disorders by brain stimulation and drug infusion
US5711316A (en) 1996-04-30 1998-01-27 Medtronic, Inc. Method of treating movement disorders by brain infusion
US6609031B1 (en) 1996-06-07 2003-08-19 Advanced Neuromodulation Systems, Inc. Multiprogrammable tissue stimulator and method
US5938690A (en) 1996-06-07 1999-08-17 Advanced Neuromodulation Systems, Inc. Pain management system and method
US6246912B1 (en) 1996-06-27 2001-06-12 Sherwood Services Ag Modulated high frequency tissue modification
US5843148A (en) 1996-09-27 1998-12-01 Medtronic, Inc. High resolution brain stimulation lead and method of use
US6029090A (en) 1997-01-27 2000-02-22 Herbst; Ewa Multi-functional electrical stimulation system
US5859922A (en) 1997-02-21 1999-01-12 Hoffmann; Kenneth R. Process of determining the three-dimensional location of a pacemaker leads in the heart of a subject
US6435878B1 (en) 1997-02-27 2002-08-20 Bci, Llc Interactive computer program for measuring and analyzing mental ability
US5843146A (en) 1997-04-30 1998-12-01 Medtronic Incorporated Adjustable medical lead anchor
US6050992A (en) 1997-05-19 2000-04-18 Radiotherapeutics Corporation Apparatus and method for treating tissue with multiple electrodes
US6258084B1 (en) 1997-09-11 2001-07-10 Vnus Medical Technologies, Inc. Method for applying energy to biological tissue including the use of tumescent tissue compression
US5938688A (en) 1997-10-22 1999-08-17 Cornell Research Foundation, Inc. Deep brain stimulation method
US6016449A (en) 1997-10-27 2000-01-18 Neuropace, Inc. System for treatment of neurological disorders
US5978713A (en) 1998-02-06 1999-11-02 Intermedics Inc. Implantable device with digital waveform telemetry
US6205361B1 (en) 1998-02-10 2001-03-20 Advanced Bionics Corporation Implantable expandable multicontact electrodes
US6106460A (en) 1998-03-26 2000-08-22 Scimed Life Systems, Inc. Interface for controlling the display of images of diagnostic or therapeutic instruments in interior body regions and related data
US6115626A (en) 1998-03-26 2000-09-05 Scimed Life Systems, Inc. Systems and methods using annotated images for controlling the use of diagnostic or therapeutic instruments in instruments in interior body regions
US6192266B1 (en) 1998-03-26 2001-02-20 Boston Scientific Corporation Systems and methods for controlling the use of diagnostic or therapeutic instruments in interior body regions using real and idealized images
US6748098B1 (en) 1998-04-14 2004-06-08 General Electric Company Algebraic reconstruction of images from non-equidistant data
US6058331A (en) 1998-04-27 2000-05-02 Medtronic, Inc. Apparatus and method for treating peripheral vascular disease and organ ischemia by electrical stimulation with closed loop feedback control
US6319241B1 (en) 1998-04-30 2001-11-20 Medtronic, Inc. Techniques for positioning therapy delivery elements within a spinal cord or a brain
US6421566B1 (en) 1998-04-30 2002-07-16 Medtronic, Inc. Selective dorsal column stimulation in SCS, using conditioning pulses
US6029091A (en) 1998-07-09 2000-02-22 Irvine Biomedical, Inc. Catheter system having lattice electrodes
US7324851B1 (en) 1998-08-05 2008-01-29 Neurovista Corporation Closed-loop feedback-driven neuromodulation
US7209787B2 (en) 1998-08-05 2007-04-24 Bioneuronics Corporation Apparatus and method for closed-loop intracranial stimulation for optimal control of neurological disease
US7231254B2 (en) 1998-08-05 2007-06-12 Bioneuronics Corporation Closed-loop feedback-driven neuromodulation
US9113801B2 (en) 1998-08-05 2015-08-25 Cyberonics, Inc. Methods and systems for continuous EEG monitoring
US7242984B2 (en) 1998-08-05 2007-07-10 Neurovista Corporation Apparatus and method for closed-loop intracranial stimulation for optimal control of neurological disease
US6366813B1 (en) 1998-08-05 2002-04-02 Dilorenzo Daniel J. Apparatus and method for closed-loop intracranical stimulation for optimal control of neurological disease
JP3330090B2 (en) 1998-09-30 2002-09-30 松下電器産業株式会社 Organ boundary extraction method and apparatus
JP4443672B2 (en) 1998-10-14 2010-03-31 株式会社東芝 Ultrasonic diagnostic equipment
US6208881B1 (en) 1998-10-20 2001-03-27 Micropure Medical, Inc. Catheter with thin film electrodes and method for making same
US6253109B1 (en) 1998-11-05 2001-06-26 Medtronic Inc. System for optimized brain stimulation
US6310619B1 (en) 1998-11-10 2001-10-30 Robert W. Rice Virtual reality, tissue-specific body model having user-variable tissue-specific attributes and a system and method for implementing the same
US6161044A (en) 1998-11-23 2000-12-12 Synaptic Corporation Method and apparatus for treating chronic pain syndromes, tremor, dementia and related disorders and for inducing electroanesthesia using high frequency, high intensity transcutaneous electrical nerve stimulation
US6909917B2 (en) 1999-01-07 2005-06-21 Advanced Bionics Corporation Implantable generator having current steering means
US6368331B1 (en) 1999-02-22 2002-04-09 Vtarget Ltd. Method and system for guiding a diagnostic or therapeutic instrument towards a target region inside the patient's body
US6606523B1 (en) 1999-04-14 2003-08-12 Transneuronix Inc. Gastric stimulator apparatus and method for installing
US6491699B1 (en) 1999-04-20 2002-12-10 Surgical Navigation Technologies, Inc. Instrument guidance method and system for image guided surgery
US6134477A (en) 1999-04-30 2000-10-17 Medtronic, Inc. Adjustable medical lead fixation system
US6353762B1 (en) 1999-04-30 2002-03-05 Medtronic, Inc. Techniques for selective activation of neurons in the brain, spinal cord parenchyma or peripheral nerve
US6109269A (en) 1999-04-30 2000-08-29 Medtronic, Inc. Method of treating addiction by brain infusion
US6579280B1 (en) 1999-04-30 2003-06-17 Medtronic, Inc. Generic multi-step therapeutic treatment protocol
US6539263B1 (en) 1999-06-11 2003-03-25 Cornell Research Foundation, Inc. Feedback mechanism for deep brain stimulation
WO2000076580A1 (en) 1999-06-11 2000-12-21 Cornell Research Foundation, Inc. Feedback mechanism for deep brain stimulation
US6167311A (en) 1999-06-14 2000-12-26 Electro Core Techniques, Llc Method of treating psychological disorders by brain stimulation within the thalamus
DE60026992T2 (en) 1999-06-15 2007-03-15 Caplygin, Dimitri SYSTEM FOR IMPROVING NEUROPHYSIOLOGICAL PROCESSES
FR2795229B1 (en) 1999-06-17 2001-08-03 Ferraz JAW FOR FUSE HOLDER AND FUSE HOLDER PROVIDED WITH SUCH A JAW
US6343226B1 (en) 1999-06-25 2002-01-29 Neurokinetic Aps Multifunction electrode for neural tissue stimulation
US6289248B1 (en) 1999-08-20 2001-09-11 Cardiac Pacemakers, Inc. System and method for detecting and displaying parameter interactions
US6494831B1 (en) 1999-09-03 2002-12-17 Ge Medical Technology Services, Inc. Medical diagnostic system service connectivity method and apparatus
US7047082B1 (en) 1999-09-16 2006-05-16 Micronet Medical, Inc. Neurostimulating lead
US6654642B2 (en) 1999-09-29 2003-11-25 Medtronic, Inc. Patient interactive neurostimulation system and method
US6351675B1 (en) 1999-10-04 2002-02-26 Medtronic, Inc. System and method of programming an implantable medical device
AU1547101A (en) 1999-11-26 2001-06-04 Applied Spectral Imaging Ltd. System and method for functional brain mapping and an oxygen saturation difference map algorithm for effecting same
WO2001039831A1 (en) 1999-12-06 2001-06-07 Advanced Bionics Corporation Implantable device programmer
SE9904626D0 (en) 1999-12-16 1999-12-16 Pacesetter Ab Programming system for medical devices
US7050857B2 (en) 1999-12-16 2006-05-23 St. Jude Medical Ab Programming system for medical devices
US6442432B2 (en) 1999-12-21 2002-08-27 Medtronic, Inc. Instrumentation and software for remote monitoring and programming of implantable medical devices (IMDs)
DE19963468A1 (en) 1999-12-29 2001-07-05 Bosch Gmbh Robert Method for controlling an element of a drive train of a vehicle and control unit for carrying it out
DE60018978T2 (en) 1999-12-30 2006-05-04 Medtronic, Inc., Minneapolis USER AUTHENTICATION IN MEDICAL SYSTEMS
US6301492B1 (en) 2000-01-20 2001-10-09 Electrocore Technologies, Llc Device for performing microelectrode recordings through the central channel of a deep-brain stimulation electrode
US6885888B2 (en) 2000-01-20 2005-04-26 The Cleveland Clinic Foundation Electrical stimulation of the sympathetic nerve chain
US6708064B2 (en) 2000-02-24 2004-03-16 Ali R. Rezai Modulation of the brain to affect psychiatric disorders
US6778846B1 (en) 2000-03-30 2004-08-17 Medtronic, Inc. Method of guiding a medical device and system regarding same
US6466822B1 (en) 2000-04-05 2002-10-15 Neuropace, Inc. Multimodal neurostimulator and process of using it
US7082333B1 (en) 2000-04-27 2006-07-25 Medtronic, Inc. Patient directed therapy management
US6631297B1 (en) 2000-05-18 2003-10-07 Seung-Kee Mo Electrical clinical apparatus and electrical stimulation method using variant assignment method
EP1290539A1 (en) 2000-05-24 2003-03-12 Koninklijke Philips Electronics N.V. A method and apparatus for shorthand processing of medical images
US7818185B2 (en) 2000-06-02 2010-10-19 Qualitymetric Incorporated Method, system and medium for assessing the impact of various ailments on health related quality of life
US6748276B1 (en) 2000-06-05 2004-06-08 Advanced Neuromodulation Systems, Inc. Neuromodulation therapy system
US7285090B2 (en) 2000-06-16 2007-10-23 Bodymedia, Inc. Apparatus for detecting, receiving, deriving and displaying human physiological and contextual information
US20020115603A1 (en) 2000-06-22 2002-08-22 Chiron Corporation Methods and compositions for the treatment of peripheral artery disease
US6324435B1 (en) 2000-06-22 2001-11-27 Ethicon, Inc. Electrical connector for cardiac devices
US7305268B2 (en) 2000-07-13 2007-12-04 Northstar Neurscience, Inc. Systems and methods for automatically optimizing stimulus parameters and electrode configurations for neuro-stimulators
US7010351B2 (en) 2000-07-13 2006-03-07 Northstar Neuroscience, Inc. Methods and apparatus for effectuating a lasting change in a neural-function of a patient
US6510347B2 (en) 2000-08-17 2003-01-21 William N. Borkan Spinal cord stimulation leads
US6662053B2 (en) 2000-08-17 2003-12-09 William N. Borkan Multichannel stimulator electronics and methods
US20020032375A1 (en) 2000-09-11 2002-03-14 Brainlab Ag Method and system for visualizing a body volume and computer program product
US6885886B2 (en) 2000-09-11 2005-04-26 Brainlab Ag Method and system for visualizing a body volume and computer program product
US6560490B2 (en) 2000-09-26 2003-05-06 Case Western Reserve University Waveforms for selective stimulation of central nervous system neurons
US6985774B2 (en) 2000-09-27 2006-01-10 Cvrx, Inc. Stimulus regimens for cardiovascular reflex control
US6845267B2 (en) 2000-09-28 2005-01-18 Advanced Bionics Corporation Systems and methods for modulation of circulatory perfusion by electrical and/or drug stimulation
US6517480B1 (en) 2000-10-04 2003-02-11 Alvin Krass Neurological testing apparatus
WO2002028473A1 (en) 2000-10-04 2002-04-11 Cochlear Limited Cochlear implant electrode array
US8509887B2 (en) 2000-11-20 2013-08-13 Eleanor Schuler Method to record, store and broadcast specific brain waveforms to modulate body organ functioning
US20050251061A1 (en) 2000-11-20 2005-11-10 Schuler Eleanor L Method and system to record, store and transmit waveform signals to regulate body organ function
US7308302B1 (en) 2000-11-20 2007-12-11 Schuler Eleanor L Device and method to record, store and broadcast specific brain waveforms to modulate body organ functioning
US6950707B2 (en) 2000-11-21 2005-09-27 Advanced Bionics Corporation Systems and methods for treatment of obesity and eating disorders by electrical brain stimulation and/or drug infusion
US7212867B2 (en) 2000-12-07 2007-05-01 Medtronic, Inc. Directional brain stimulation and recording leads
CA2438541A1 (en) 2001-02-20 2002-08-29 Case Western Reserve University Systems and methods for reversibly blocking nerve activity
AR035684A1 (en) 2001-02-21 2004-06-23 Yakult Honsha Kk PROCEDURE TO PREPARE 2'-AMINO-5'-HYDROXYPROPIOPHENONE, USE OF THE SAME FOR THE PREPARATION OF CAMPTOTECHINE ANALOGS, PROCEDURE TO PREPARE THEM, INTERMEDIATE COMPOUNDS, PROCEDURE TO PREPARE A TRICYCLINT KITONE USED IN THE CAMP
US6775573B2 (en) 2001-03-01 2004-08-10 Science Medicus Inc. Electrical method to control autonomic nerve stimulation of gastrointestinal tract
DE60207216T2 (en) 2001-03-08 2006-07-06 Medtronic, Inc., Minneapolis CABLE WITH ANGLE AND SPACE POSITION ADJUSTABLE BETWEEN ELECTRODES
US7299096B2 (en) 2001-03-08 2007-11-20 Northstar Neuroscience, Inc. System and method for treating Parkinson's Disease and other movement disorders
EP2263745A1 (en) 2001-03-30 2010-12-22 Case Western Reserve University Systems for selectively stimulating components in, on, or near the pudendal nerve or its branches to achieve selective physiologic responses
US7054692B1 (en) 2001-06-22 2006-05-30 Advanced Bionics Corporation Fixation device for implantable microdevices
EP1269913B1 (en) 2001-06-28 2004-08-04 BrainLAB AG Device for transcranial magnetic stimulation and cortical cartography
EP1273320B1 (en) 2001-06-28 2005-04-27 BrainLAB AG Apparatus for transcranial magnetic stimulation
JP4295086B2 (en) 2001-07-11 2009-07-15 ヌバシブ, インコーポレイテッド System and method for determining nerve proximity, nerve orientation, and pathology during surgery
US6675049B2 (en) 2001-07-17 2004-01-06 Medtronic, Inc. Method and apparatus for automatic implantable medical lead recognition and configuration
US6600956B2 (en) 2001-08-21 2003-07-29 Cyberonics, Inc. Circumneural electrode assembly
US20050143169A1 (en) 2001-09-20 2005-06-30 Igt Direction interfaces and services on a gaming machine
US7136695B2 (en) 2001-10-12 2006-11-14 Pless Benjamin D Patient-specific template development for neurological event detection
DE50102342D1 (en) 2001-10-24 2004-06-24 Brainlab Ag Navigated micro-probe
US6944497B2 (en) 2001-10-31 2005-09-13 Medtronic, Inc. System and method of treating stuttering by neuromodulation
CA2466809A1 (en) 2001-11-21 2003-06-05 Viatronix Incorporated System and method for visualization and navigation of three-dimensional medical images
US6968236B2 (en) * 2002-01-28 2005-11-22 Biophan Technologies, Inc. Ceramic cardiac electrodes
US20030149450A1 (en) 2002-02-01 2003-08-07 Mayberg Marc R. Brainstem and cerebellar modulation of cardiovascular response and disease
US7146223B1 (en) 2002-02-04 2006-12-05 Advanced Bionics Corporation Method for optimizing search for spinal cord stimulation parameter settings
US6990639B2 (en) 2002-02-07 2006-01-24 Microsoft Corporation System and process for controlling electronic components in a ubiquitous computing environment using multimodal integration
US7043305B2 (en) 2002-03-06 2006-05-09 Cardiac Pacemakers, Inc. Method and apparatus for establishing context among events and optimizing implanted medical device performance
US7831292B2 (en) 2002-03-06 2010-11-09 Mako Surgical Corp. Guidance system and method for surgical procedures with improved feedback
US7136696B2 (en) 2002-04-05 2006-11-14 The Cleveland Clinic Foundation Neuron signal analysis system and method
US6937891B2 (en) 2002-04-26 2005-08-30 Medtronic, Inc. Independent therapy programs in an implantable medical device
US7894877B2 (en) 2002-05-17 2011-02-22 Case Western Reserve University System and method for adjusting image parameters based on device tracking
US7151961B1 (en) 2002-05-24 2006-12-19 Advanced Bionics Corporation Treatment of movement disorders by brain stimulation
US7003352B1 (en) 2002-05-24 2006-02-21 Advanced Bionics Corporation Treatment of epilepsy by brain stimulation
US7136518B2 (en) 2003-04-18 2006-11-14 Medispectra, Inc. Methods and apparatus for displaying diagnostic data
US7228179B2 (en) 2002-07-26 2007-06-05 Advanced Neuromodulation Systems, Inc. Method and apparatus for providing complex tissue stimulation patterns
WO2004019799A2 (en) 2002-08-29 2004-03-11 Computerized Medical Systems, Inc. Methods and systems for localizing of a medical imaging probe and of a biopsy needle
US7277748B2 (en) 2002-09-13 2007-10-02 Neuropace, Inc. Spatiotemporal pattern recognition for neurological event detection and prediction in an implantable device
WO2004036370A2 (en) 2002-10-15 2004-04-29 Medtronic Inc. Channel-selective blanking for a medical device system
US20050049649A1 (en) 2002-10-21 2005-03-03 The Cleveland Clinic Foundation Electrical stimulation of the brain
US7216000B2 (en) 2002-10-31 2007-05-08 Medtronic, Inc. Neurostimulation therapy manipulation
US7218968B2 (en) 2002-10-31 2007-05-15 Medtronic, Inc. User interface for programming rate response technical field
WO2004041351A1 (en) 2002-10-31 2004-05-21 Medtronic, Inc. Method and device for applying filter information to identify combinations of electrodes
WO2004041080A2 (en) 2002-10-31 2004-05-21 Medtronic, Inc. Body region indication
AU2003285078A1 (en) 2002-10-31 2004-06-07 Medtronic, Inc. Distributed system for neurostimulation therapy programming
US7236830B2 (en) 2002-12-10 2007-06-26 Northstar Neuroscience, Inc. Systems and methods for enhancing or optimizing neural stimulation therapy for treating symptoms of Parkinson's disease and/or other movement disorders
US7035690B2 (en) 2002-11-15 2006-04-25 Medtronic, Inc. Human-implantable-neurostimulator user interface having multiple levels of abstraction
US7047084B2 (en) 2002-11-20 2006-05-16 Advanced Neuromodulation Systems, Inc. Apparatus for directionally stimulating nerve tissue
WO2004052449A1 (en) 2002-12-09 2004-06-24 Northstar Neuroscience, Inc. Methods for treating neurological language disorders
US7043293B1 (en) 2002-12-24 2006-05-09 Cardiodynamics International Corporation Method and apparatus for waveform assessment
US6978180B2 (en) 2003-01-03 2005-12-20 Advanced Neuromodulation Systems, Inc. System and method for stimulation of a person's brain stem
EP1586020A2 (en) 2003-01-25 2005-10-19 Purdue Research Foundation Methods, systems, and data structures for performing searches on three dimensional objects
US7001357B2 (en) 2003-02-07 2006-02-21 Berry Sr Donald P Baby safe feeder with integrally fitted food container
ATE339989T1 (en) 2003-02-21 2006-10-15 Medtronic Inc PROGRAMMING OF AN IMPLANTABLE NEUROSTIMULATOR WITH BATTERY LIFE DISPLAY
US7347818B2 (en) 2003-02-24 2008-03-25 Neurotrax Corporation Standardized medical cognitive assessment tool
US7647116B2 (en) 2003-03-13 2010-01-12 Medtronic, Inc. Context-sensitive collection of neurostimulation therapy data
US7450983B2 (en) 2003-03-18 2008-11-11 University Of Cincinnati Automated brain MRI and CT prescriptions in Talairach space
US7155279B2 (en) 2003-03-28 2006-12-26 Advanced Bionics Corporation Treatment of movement disorders with drug therapy
US7489970B2 (en) 2003-04-02 2009-02-10 Medtronic, Inc. Management of neurostimulation therapy using parameter sets
US7894908B2 (en) 2003-04-02 2011-02-22 Medtronic, Inc. Neurostimulation therapy optimization based on a rated session log
US7505815B2 (en) 2003-04-02 2009-03-17 Medtronic, Inc. Neurostimulation therapy usage diagnostics
US7548786B2 (en) 2003-04-02 2009-06-16 Medtronic, Inc. Library for management of neurostimulation therapy programs
US7266412B2 (en) 2003-04-22 2007-09-04 Medtronic, Inc. Generation of multiple neurostimulation therapy programs
US7463928B2 (en) 2003-04-25 2008-12-09 Medtronic, Inc. Identifying combinations of electrodes for neurostimulation therapy
US7167760B2 (en) 2003-04-28 2007-01-23 Vanderbilt University Apparatus and methods of optimal placement of deep brain stimulator
US20050261747A1 (en) 2003-05-16 2005-11-24 Schuler Eleanor L Method and system to control respiration by means of neuro-electrical coded signals
WO2004103459A2 (en) 2003-05-16 2004-12-02 Science Medicus, Inc. Respiratory control by means of neuro-electrical coded signals
US20050261601A1 (en) 2003-05-16 2005-11-24 Schuler Eleanor L Method and system for processing neuro-electrical waveform signals
JP4174825B2 (en) 2003-05-23 2008-11-05 株式会社テクノリンク Biological stimulator
WO2004110309A2 (en) 2003-06-11 2004-12-23 Case Western Reserve University Computer-aided-design of skeletal implants
US20050288732A1 (en) 2003-06-18 2005-12-29 Eleanor Schuler Method and system to control skeletal muscles by means of neuro-electrical coded signals
US7058446B2 (en) 2003-07-10 2006-06-06 Science Medicus, Inc. Regulation of endocrine and exocrine glands by means of neuro-electrical coded signals
US8725246B2 (en) 2003-07-23 2014-05-13 Eleanor Schuler Method and system for modulating eating behavior by means of neuro-electrical coded signals
EP1648373A4 (en) 2003-07-23 2007-08-01 Science Medicus Inc Method and device for regulation of limbic system of the brain by means of neuro-electrical coded signals
US7711431B2 (en) 2003-08-04 2010-05-04 Brainlab Ag Method and device for stimulating the brain
US7313430B2 (en) 2003-08-28 2007-12-25 Medtronic Navigation, Inc. Method and apparatus for performing stereotactic surgery
US8396565B2 (en) 2003-09-15 2013-03-12 Medtronic, Inc. Automatic therapy adjustments
US7239926B2 (en) 2003-09-15 2007-07-03 Medtronic, Inc. Selection of neurostimulator parameter configurations using genetic algorithms
US7184837B2 (en) 2003-09-15 2007-02-27 Medtronic, Inc. Selection of neurostimulator parameter configurations using bayesian networks
US7252090B2 (en) 2003-09-15 2007-08-07 Medtronic, Inc. Selection of neurostimulator parameter configurations using neural network
US7617002B2 (en) 2003-09-15 2009-11-10 Medtronic, Inc. Selection of neurostimulator parameter configurations using decision trees
JP2005103055A (en) 2003-09-30 2005-04-21 Konica Minolta Medical & Graphic Inc Medical image processor
US7729766B2 (en) 2003-10-02 2010-06-01 Medtronic, Inc. Circuit board construction for handheld programmer
US7835778B2 (en) 2003-10-16 2010-11-16 Medtronic Navigation, Inc. Method and apparatus for surgical navigation of a multiple piece construct for implantation
JP4403453B2 (en) 2003-11-13 2010-01-27 株式会社島津製作所 Method for converting head surface coordinates into brain surface coordinates, and transcranial brain function measuring device using the converted data
US20060069415A1 (en) 2003-11-20 2006-03-30 Advanced Neuromodulation Systems, Inc. Electrical stimulation system, lead, and method providing modified reduced neuroplasticity effect
WO2005053789A2 (en) 2003-11-25 2005-06-16 Advanced Neuromodulation Systems, Inc. Directional stimulation lead and orientation system, and improved percutaneous-insertion needle and method of implanting a lead
CA2454184A1 (en) 2003-12-23 2005-06-23 Andres M. Lozano Method and apparatus for treating neurological disorders by electrical stimulation of the brain
US7295876B1 (en) 2004-03-04 2007-11-13 Advanced Neuromodulation Systems, Inc. System and method for generating and testing treatment protocols
US7254446B1 (en) 2004-03-04 2007-08-07 Advanced Neuromodulation Systems, Inc. System and method for stimulus calibration for an implantable pulse generator
US20060004422A1 (en) 2004-03-11 2006-01-05 Dirk De Ridder Electrical stimulation system and method for stimulating tissue in the brain to treat a neurological condition
US8308661B2 (en) 2004-03-16 2012-11-13 Medtronic, Inc. Collecting activity and sleep quality information via a medical device
US7596399B2 (en) 2004-04-29 2009-09-29 Medtronic, Inc Implantation of implantable medical device
US20050267347A1 (en) 2004-05-04 2005-12-01 Doran Oster Deep brain stimulation
DE102004025945A1 (en) 2004-05-27 2005-12-29 Forschungszentrum Jülich GmbH Method and device for decoupling and / or desynchronizing neuronal brain activity
US8180601B2 (en) 2006-03-09 2012-05-15 The Cleveland Clinic Foundation Systems and methods for determining volume of activation for deep brain stimulation
US7346382B2 (en) 2004-07-07 2008-03-18 The Cleveland Clinic Foundation Brain stimulation models, systems, devices, and methods
US8209027B2 (en) 2004-07-07 2012-06-26 The Cleveland Clinic Foundation System and method to design structure for delivering electrical energy to tissue
US8694115B2 (en) 2004-07-20 2014-04-08 Medtronic, Inc. Therapy programming guidance based on stored programming history
US7819909B2 (en) 2004-07-20 2010-10-26 Medtronic, Inc. Therapy programming guidance based on stored programming history
CN101829400B (en) * 2004-08-09 2011-12-14 约翰斯·霍普金斯大学 Implantable MRI compatible stimulation leads and antennas and related systems and methods
US20100331883A1 (en) 2004-10-15 2010-12-30 Schmitz Gregory P Access and tissue modification systems and methods
US7603174B2 (en) 2004-10-21 2009-10-13 Advanced Neuromodulation Systems, Inc. Stimulation of the amygdalohippocampal complex to treat neurological conditions
US8019439B2 (en) 2005-01-11 2011-09-13 Boston Scientific Neuromodulation Corporation Lead assembly and method of making same
EP1853344A4 (en) 2005-03-02 2008-05-28 Continence Control Systems Int Improved method and apparatus for treating incontinence
US7519431B2 (en) 2005-04-11 2009-04-14 Medtronic, Inc. Shifting between electrode combinations in electrical stimulation device
US7715912B2 (en) 2005-04-13 2010-05-11 Intelect Medical, Inc. System and method for providing a waveform for stimulating biological tissue
US20060239482A1 (en) 2005-04-13 2006-10-26 Nagi Hatoum System and method for providing a waveform for stimulating biological tissue
US7257447B2 (en) 2005-04-20 2007-08-14 Cardiac Pacemakers, Inc. Method and apparatus for indication-based programming of cardiac rhythm management devices
WO2006119015A1 (en) 2005-04-30 2006-11-09 Medtronic, Inc. Impedance-based stimulation adjustment
WO2006138702A2 (en) 2005-06-16 2006-12-28 Russell Michael J Guided electrical transcranial stimulation (gets) technique
SG129351A1 (en) 2005-07-22 2007-02-26 Inventio Ag Lift installation with a support means end connection and a support means, and a method of fasteningan end of a support means in a lift installation
US7769472B2 (en) 2005-07-29 2010-08-03 Medtronic, Inc. Electrical stimulation lead with conformable array of electrodes
US8620636B2 (en) 2005-08-25 2013-12-31 Schlumberger Technology Corporation Interpreting well test measurements
US20070049817A1 (en) 2005-08-30 2007-03-01 Assaf Preiss Segmentation and registration of multimodal images using physiological data
US8374696B2 (en) 2005-09-14 2013-02-12 University Of Florida Research Foundation, Inc. Closed-loop micro-control system for predicting and preventing epileptic seizures
US7650184B2 (en) 2005-12-01 2010-01-19 Boston Scientific Neuromodulation Corporation Cylindrical multi-contact electrode lead for neural stimulation and method of making same
US20070129769A1 (en) 2005-12-02 2007-06-07 Medtronic, Inc. Wearable ambulatory data recorder
US20070135855A1 (en) 2005-12-13 2007-06-14 Foshee Phillip D Patient management device for portably interfacing with a plurality of implantable medical devices and method thereof
US20080133141A1 (en) 2005-12-22 2008-06-05 Frost Stephen J Weighted Scoring Methods and Use Thereof in Screening
WO2007084456A2 (en) 2006-01-13 2007-07-26 Vanderbilt University System and methods of deep brain stimulation for post-operation patients
US20070191912A1 (en) 2006-02-10 2007-08-16 Vision Quest Industries, Inc. Interactive electrical stimulator device and server-based support system
US7869854B2 (en) 2006-02-23 2011-01-11 Magnetecs, Inc. Apparatus for magnetically deployable catheter with MOSFET sensor and method for mapping and ablation
US20070203538A1 (en) 2006-02-24 2007-08-30 Medtronic, Inc. User interface with an atlas for configuring stimulation therapy
US8543217B2 (en) 2006-02-24 2013-09-24 Medtronic, Inc. Stimulation templates for configuring stimulation therapy
US8452415B2 (en) 2006-02-24 2013-05-28 Medtronic, Inc. Electrical and activation field models for programming a stimulation lead with complex electrode array geometry
US7822483B2 (en) 2006-02-24 2010-10-26 Medtronic, Inc. Electrical and activation field models for configuring stimulation therapy
US7676273B2 (en) 2006-02-24 2010-03-09 Medtronic, Inc. Stimulation templates for programming a stimulation lead with complex electrode array geometry
US8380321B2 (en) 2006-02-24 2013-02-19 Medtronic, Inc. Programming interface with a cross-sectional view of a stimulation lead with complex electrode array geometry
US7848802B2 (en) 2006-02-24 2010-12-07 Medtronic, Inc. Programming interface with a concentric axial view of a stimulation lead with complex electrode array geometry
US7657319B2 (en) 2006-02-24 2010-02-02 Medtronic, Inc. Programming interface with an unwrapped 2D view of a stimulation lead with complex electrode array geometry
US7826902B2 (en) 2006-02-24 2010-11-02 Medtronic, Inc. User interface with 2D views for configuring stimulation therapy
US8612024B2 (en) 2006-02-24 2013-12-17 Medtronic, Inc. User interface with 3D environment for configuring stimulation therapy
US20100113959A1 (en) 2006-03-07 2010-05-06 Beth Israel Deaconess Medical Center, Inc. Transcranial magnetic stimulation (tms) methods and apparatus
US7747330B2 (en) 2006-03-09 2010-06-29 Medtronic, Inc. Global parameter adjustment for multiple stimulation programs
US8606360B2 (en) 2006-03-09 2013-12-10 The Cleveland Clinic Foundation Systems and methods for determining volume of activation for spinal cord and peripheral nerve stimulation
US9067076B2 (en) 2006-03-09 2015-06-30 Medtronic, Inc. Management of multiple stimulation program groups
WO2007112061A2 (en) 2006-03-23 2007-10-04 Medtronic, Inc. Guided programming with feedback
US7949401B2 (en) 2006-04-11 2011-05-24 Advanced Neuromodulation Systems, Inc. Electromagnetic signal delivery for tissue affected by neuronal dysfunction, degradation, damage, and/or necrosis, and associated systems and methods
US8712539B2 (en) 2006-04-12 2014-04-29 Medtronic, Inc. Rule-based stimulation program search
US7774067B2 (en) 2006-04-12 2010-08-10 Medtronic, Inc. Autogeneration of neurostimulation therapy program groups
US8380300B2 (en) 2006-04-28 2013-02-19 Medtronic, Inc. Efficacy visualization
US7715920B2 (en) 2006-04-28 2010-05-11 Medtronic, Inc. Tree-based electrical stimulator programming
US8306624B2 (en) 2006-04-28 2012-11-06 Medtronic, Inc. Patient-individualized efficacy rating
US20070293904A1 (en) * 2006-06-20 2007-12-20 Daniel Gelbart Self-powered resonant leadless pacemaker
EP2043735B1 (en) 2006-06-30 2016-08-31 Medtronic, Inc. Selecting electrode combinations for stimulation therapy
US8160677B2 (en) 2006-09-08 2012-04-17 Medtronic, Inc. Method for identification of anatomical landmarks
US8160676B2 (en) 2006-09-08 2012-04-17 Medtronic, Inc. Method for planning a surgical procedure
US20080081021A1 (en) * 2006-09-29 2008-04-03 Mehmet Bilgen Manganese-enhanced magnetic resonance imaging of neurons using electrical stimulation
US8660635B2 (en) 2006-09-29 2014-02-25 Medtronic, Inc. Method and apparatus for optimizing a computer assisted surgical procedure
US8214345B2 (en) 2006-10-05 2012-07-03 International Business Machines Corporation Custom constraints for faceted exploration
US7729760B2 (en) 2006-10-27 2010-06-01 Cyberonics, Inc. Patient management system for providing parameter data for an implantable medical device
US8280514B2 (en) 2006-10-31 2012-10-02 Advanced Neuromodulation Systems, Inc. Identifying areas of the brain by examining the neuronal signals
WO2008066891A2 (en) 2006-11-28 2008-06-05 Sensable Technologies, Inc. Systems for haptic design of dental restorations
EP2101872B1 (en) 2006-12-06 2013-10-09 Medtronic, Inc. User interface with toolbar for programming electrical stimulation therapy
US9471752B2 (en) 2006-12-06 2016-10-18 Medtronic, Inc. Operating environment monitor for medical device programming
CA2710286A1 (en) 2006-12-22 2008-07-03 Aviir, Inc. Two biomarkers for diagnosis and monitoring of atherosclerotic cardiovascular disease
US8082034B2 (en) 2007-01-26 2011-12-20 Medtronic, Inc. Graphical configuration of electrodes for electrical stimulation
US8014578B2 (en) 2007-02-05 2011-09-06 General Electric Company Method and system for image segmentation using models
WO2008101128A1 (en) 2007-02-14 2008-08-21 The Board Of Trustees Of The Leland Stanford Junior University System, method and applications involving identification of biological circuits such as neurological characteristics
US20080242950A1 (en) 2007-03-30 2008-10-02 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Computational user-health testing
US7945105B1 (en) 2008-04-07 2011-05-17 Decision Sciences International Corporation Automated target shape detection for vehicle muon tomography
EP2152183B1 (en) 2007-04-23 2014-06-11 Medtronic Navigation, Inc. Apparatus for electromagnetic navigation of a magnetic stimulation probe
US8010177B2 (en) 2007-04-24 2011-08-30 Medtronic, Inc. Intraoperative image registration
US8910638B2 (en) 2007-05-09 2014-12-16 Massachusetts Institute Of Technology Methods and apparatus for high-throughput neural screening
US8140167B2 (en) 2007-05-31 2012-03-20 Enteromedics, Inc. Implantable therapy system with external component having multiple operating modes
KR100897528B1 (en) 2007-06-22 2009-05-15 주식회사 사이버메드 Method of determining the position of a deep brain stimulation electrode
JP2009018048A (en) 2007-07-12 2009-01-29 Fujifilm Corp Medical image display, method and program
US8376943B2 (en) 2007-09-24 2013-02-19 Medtronic, Inc. Patient event information
US8380314B2 (en) 2007-09-26 2013-02-19 Medtronic, Inc. Patient directed therapy control
US20090118786A1 (en) 2007-11-02 2009-05-07 Advanced Bionics Corporation Automated fitting system for deep brain stimulation
WO2009061942A1 (en) 2007-11-06 2009-05-14 The Cleveland Clinic Foundation Automated 3d brain atlas fitting using intra-operative neurophysiological data
US9452288B2 (en) 2007-12-06 2016-09-27 Boston Scientific Neuromodulation Corporation Multimodal neurostimulation systems and methods
EP2237809A2 (en) 2008-01-18 2010-10-13 Porex Surgical, Inc. Composite implants and methods of making and using the same
WO2009097224A1 (en) 2008-01-31 2009-08-06 Medtronic Inc. Characterization of electrical stimulation electrodes using postimplant imaging
US9220889B2 (en) 2008-02-11 2015-12-29 Intelect Medical, Inc. Directional electrode devices with locating features
US20090242399A1 (en) 2008-03-25 2009-10-01 Dexcom, Inc. Analyte sensor
WO2009120836A1 (en) 2008-03-26 2009-10-01 Neurosigma, Inc. Methods for identifying and targeting autonomic brain regions
WO2009137120A1 (en) 2008-05-09 2009-11-12 Medtronic, Inc. Programming techniques for peripheral nerve filed stimulation
WO2009137121A1 (en) 2008-05-09 2009-11-12 Medtronic, Inc. Programming techniques for peripheral nerve field stimulation
DE102008002861A1 (en) 2008-05-28 2009-12-03 Schneider Electric Gmbh Communication platform (CoPla) architecture
WO2010006304A2 (en) 2008-07-11 2010-01-14 Boston Scientific Neuromodulation Corporation System and method for converting tissue stimulation programs in a format usable by an electrical current steering navigator
EP2341983A1 (en) 2008-07-14 2011-07-13 Medtronic, Inc Improved interface for implantable medical device programming
US20100023103A1 (en) 2008-07-28 2010-01-28 Boston Scientific Neuromodulation Corporation Systems and Methods for Treating Essential Tremor or Restless Leg Syndrome Using Spinal Cord Stimulation
US20100030312A1 (en) 2008-07-31 2010-02-04 Xiaonan Shen Method and apparatus for lead length determination
US8262714B2 (en) 2008-08-05 2012-09-11 Advanced Neuromodulation Systems, Inc. Techniques for selecting signal delivery sites and other parameters for treating depression and other neurological disorders, and associated systems and methods
US20100064249A1 (en) 2008-09-05 2010-03-11 Gateway Inc. Visual indicator in GUI system for notifying user of data storage device
US20100121409A1 (en) 2008-11-12 2010-05-13 Sridhar Kothandaraman System and method for determining appropriate steering tables for distributing stimulation energy among multiple neurostimulation electrodes
US8995731B2 (en) 2008-11-26 2015-03-31 Medtronic, Inc. Image-based characterization of implanted medical leads
US8380301B2 (en) 2008-12-03 2013-02-19 Boston Scientific Neuromodulation Corporation Method and apparatus for determining relative positioning between neurostimulation leads
CA2745435C (en) 2008-12-04 2020-04-14 The Cleveland Clinic Foundation System and method to define target volume for stimulation in brain
CN105879215A (en) 2009-01-14 2016-08-24 脊髓调制公司 Stimulation leads
US9095303B2 (en) 2009-03-23 2015-08-04 Flint Hills Scientific, Llc System and apparatus for early detection, prevention, containment or abatement of spread abnormal brain activity
EP2419171B1 (en) 2009-04-13 2017-11-01 Research Foundation Of The City University Of New York Neurocranial electrostimulation models
WO2011011554A1 (en) 2009-07-21 2011-01-27 The Regents Of The University Of California Methods for the identification and targeting of brain regions and structures and treatments related thereto
WO2011025865A1 (en) 2009-08-27 2011-03-03 The Cleveland Clinic Foundation System and method to estimate region of tissue activation
US8896462B2 (en) * 2009-11-27 2014-11-25 St. Jude Medical Ab Methods for low power communication in an implantable medical device
WO2011068997A1 (en) 2009-12-02 2011-06-09 The Cleveland Clinic Foundation Reversing cognitive-motor impairments in patients having a neuro-degenerative disease using a computational modeling approach to deep brain stimulation programming
US8352039B2 (en) 2010-01-08 2013-01-08 Medtronic, Inc. Programming therapy delivered by implantable medical device
US9901284B2 (en) * 2010-04-16 2018-02-27 Medtronic, Inc. Coordination of functional MRI scanning and electrical stimulation therapy
WO2011139779A1 (en) 2010-04-27 2011-11-10 Ndi Medical,Llc Systems and methods for percutaneous electrical stimulation
US8560080B2 (en) 2010-06-11 2013-10-15 Medtronic, Inc. Programming techniques for controlling rate of change of electrical stimulation therapy
US8862237B2 (en) 2010-06-14 2014-10-14 Boston Scientific Neuromodulation Corporation Programming interface for spinal cord neuromodulation
US8679009B2 (en) 2010-06-15 2014-03-25 Flint Hills Scientific, Llc Systems approach to comorbidity assessment
US8951192B2 (en) 2010-06-15 2015-02-10 Flint Hills Scientific, Llc Systems approach to disease state and health assessment
US8160357B2 (en) 2010-07-30 2012-04-17 Kabushiki Kaisha Toshiba Image segmentation
ES2734359T3 (en) 2010-08-18 2019-12-05 Boston Scient Neuromodulation Corp User interface for segmented neurostimulation cables
US8622913B2 (en) 2010-09-28 2014-01-07 General Electric Company Method and system for non-invasive monitoring of patient parameters
US9420960B2 (en) 2010-10-21 2016-08-23 Medtronic, Inc. Stereo data representation of biomedical signals along a lead
US9713721B2 (en) 2010-11-10 2017-07-25 Boston Scientific Neuromodulation Corporation System and method for storing application specific and lead configuration information in neurostimulation device
WO2012088482A1 (en) 2010-12-23 2012-06-28 Boston Scientific Neuromodulation Corporation Neurostimulation system for estimating desired stimulation amplitude for electrode configuration
JP5974019B2 (en) 2010-12-27 2016-08-23 ボストン サイエンティフィック ニューロモデュレイション コーポレイション Neural stimulation system that selectively estimates the activation volume for treatment
US8488852B2 (en) 2011-02-15 2013-07-16 Siemens Aktiengesellschaft Medical imaging system for segementing blood vessel
US8994732B2 (en) 2011-03-07 2015-03-31 Microsoft Corporation Integration of sketch-based interaction and computer data analysis
US9227074B2 (en) 2012-08-28 2016-01-05 Boston Scientific Neuromodulation Corporation Parameter visualization, selection, and annotation interface
EP2714187B1 (en) 2011-05-27 2021-11-10 Boston Scientific Neuromodulation Corporation Collection of clinical data for graphical representation and analysis
EP2741817B1 (en) 2011-08-09 2021-12-22 Boston Scientific Neuromodulation Corporation Control and/or quantification of target stimulation volume overlap and interface therefor
AU2012294368B2 (en) 2011-08-09 2017-09-14 Boston Scientific Neuromodulation Corporation Systems and methods for stimulation-related volume analysis, creation, and sharing
US9037256B2 (en) 2011-09-01 2015-05-19 Boston Scientific Neuromodulation Corporation Methods and system for targeted brain stimulation using electrical parameter maps
FR2987747A1 (en) * 2012-03-12 2013-09-13 Sorin Crm Sas INTRACORPORAL INDEPENDENT CAPSULE WITH DOUBLE RECOVERY OF ENERGY
WO2013148092A1 (en) 2012-03-30 2013-10-03 Boston Scientific Neuromodulation Corporation Leads with x-ray fluorescent capsules for electrode identification and methods of manufacture and use
US9259181B2 (en) 2012-04-26 2016-02-16 Medtronic, Inc. Visualizing tissue activated by electrical stimulation
AU2013266508A1 (en) 2012-05-25 2014-11-06 Boston Scientific Neuromodulation Corporation Methods for stimulating the dorsal root ganglion with a lead having segmented electrodes
US9084900B2 (en) * 2012-06-29 2015-07-21 Boston Scientific Neuromodulation Corporation Neuromodulation system and method for reducing energy requirements using feedback
JP6185142B2 (en) 2013-03-15 2017-08-23 ボストン サイエンティフィック ニューロモデュレイション コーポレイション Clinical response data mapping
WO2014186122A2 (en) 2013-05-15 2014-11-20 Boston Scientific Neuromodulation Corporation Systems and methods for making and using tip electrodes for leads of electrical stimulation systems
EP3003465A1 (en) 2013-05-31 2016-04-13 Boston Scientific Neuromodulation Corporation Segmented electrode leads formed from pre-electrodes with depressions or apertures and methods of making
EP3024535B1 (en) 2013-07-22 2017-09-27 Boston Scientific Neuromodulation Corporation Methods of manufacturing molded segmented electrode leads
EP2857064B1 (en) * 2013-10-01 2015-10-14 Sorin CRM SAS Autonomous intracorporeal capsule with energy recovery by piezoelectric transducer
EP3827874A1 (en) 2013-11-14 2021-06-02 Boston Scientific Neuromodulation Corporation Systems and visualization tools for stimulation and sensing of neural systems with system-level interaction models
EP3077039B1 (en) 2013-12-02 2021-10-13 Boston Scientific Neuromodulation Corporation Methods for manufacture of electrical stimulation leads with helically arranged electrodes
US9959388B2 (en) 2014-07-24 2018-05-01 Boston Scientific Neuromodulation Corporation Systems, devices, and methods for providing electrical stimulation therapy feedback
US20160022995A1 (en) 2014-07-24 2016-01-28 Boston Scientific Neuromodulation Corporation Systems, devices, and methods for providing electrical stimulation therapy feedback
US20160023008A1 (en) 2014-07-24 2016-01-28 Boston Scientific Neuromodulation Corporation Systems and methods for synchronizing stimulation data
US10265528B2 (en) 2014-07-30 2019-04-23 Boston Scientific Neuromodulation Corporation Systems and methods for electrical stimulation-related patient population volume analysis and use
WO2016057544A1 (en) 2014-10-07 2016-04-14 Boston Scientific Neuromodulation Corporation Systems, devices, and methods for electrical stimulation using feedback to adjust stimulation parameters
US20160136429A1 (en) 2014-10-07 2016-05-19 Boston Scientific Neuromodulation Corporation Systems, devices, and methods for electrical stimulation using sensors to adjust stimulation parameters
CN104606781B (en) * 2015-01-19 2017-01-04 清华大学 A kind of split implantable medical devices of MRI compatible
US20160256693A1 (en) 2015-03-06 2016-09-08 Boston Scientific Neuromodulation Corporation Systems, devices, and methods for electrical stimulation using a chemical biomarker for feedback to adjust stimulation parameters
US20160375248A1 (en) 2015-06-29 2016-12-29 Boston Scientific Neuromodulation Corporation Systems and methods for selecting stimulation parameters based on stimulation target region, effects, or side effects
WO2017003947A1 (en) * 2015-06-29 2017-01-05 Boston Scientific Neuromodulation Corporation Systems and methods for selecting stimulation parameters by targeting and steering
US10071249B2 (en) 2015-10-09 2018-09-11 Boston Scientific Neuromodulation Corporation System and methods for clinical effects mapping for directional stimulation leads
US20170252570A1 (en) 2016-03-07 2017-09-07 Boston Scientific Neuromodulation Corporation Systems and methods for communication during remote programming

Patent Citations (75)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6181969B1 (en) 1998-06-26 2001-01-30 Advanced Bionics Corporation Programmable current output stimulus stage for implantable device
US6609032B1 (en) 1999-01-07 2003-08-19 Advanced Bionics Corporation Fitting process for a neural stimulation system
US6895280B2 (en) 1999-07-27 2005-05-17 Advanced Bionics Corporation Rechargeable spinal cord stimulator system
US6516227B1 (en) 1999-07-27 2003-02-04 Advanced Bionics Corporation Rechargeable spinal cord stimulator system
US7949395B2 (en) 1999-10-01 2011-05-24 Boston Scientific Neuromodulation Corporation Implantable microdevice with extended lead and remote electrode
US6609029B1 (en) 2000-02-04 2003-08-19 Advanced Bionics Corporation Clip lock mechanism for retaining lead
US6741892B1 (en) 2000-03-10 2004-05-25 Advanced Bionics Corporation Movable contact locking mechanism for spinal cord stimulator lead connector
US7450997B1 (en) 2000-12-29 2008-11-11 Boston Scientific Neuromodulation Corporation Method of implanting a lead for brain stimulation
US7792590B1 (en) 2000-12-29 2010-09-07 Boston Scientific Neuromodulation Corporation Implantable lead systems for brain stimulation
US8364278B2 (en) 2002-01-29 2013-01-29 Boston Scientific Neuromodulation Corporation Lead assembly for implantable microstimulator
US20110004267A1 (en) 2005-01-05 2011-01-06 Boston Scientific Neuromodulation Corporation Devices and methods for brain stimulation
US7809446B2 (en) 2005-01-05 2010-10-05 Boston Scientific Neuromodulation Corporation Devices and methods for brain stimulation
US7783359B2 (en) 2005-01-05 2010-08-24 Boston Scientific Neuromodulation Corporation Devices and methods using an implantable pulse generator for brain stimulation
US7761165B1 (en) 2005-09-29 2010-07-20 Boston Scientific Neuromodulation Corporation Implantable stimulator with integrated plastic housing/metal contacts and manufacture and use
US8271094B1 (en) 2005-09-30 2012-09-18 Boston Scientific Neuromodulation Corporation Devices with cannula and electrode lead for brain stimulation and methods of use and manufacture
US20070150036A1 (en) 2005-12-27 2007-06-28 Advanced Bionics Corporation Stimulator leads and methods for lead fabrication
US7672734B2 (en) 2005-12-27 2010-03-02 Boston Scientific Neuromodulation Corporation Non-linear electrode array
US7244150B1 (en) 2006-01-09 2007-07-17 Advanced Bionics Corporation Connector and methods of fabrication
US8175710B2 (en) 2006-03-14 2012-05-08 Boston Scientific Neuromodulation Corporation Stimulator system with electrode array and the method of making the same
US7974706B2 (en) 2006-03-30 2011-07-05 Boston Scientific Neuromodulation Corporation Electrode contact configurations for cuff leads
US20130197424A1 (en) 2006-07-31 2013-08-01 Cranial Medical Systems, Inc. Lead and methods for brain monitoring and modulation
US8224450B2 (en) 2006-09-18 2012-07-17 Boston Scientific Neuromodulation Corporation Feed through interconnect assembly for an implantable stimulation system and methods of making and using
US20090187222A1 (en) 2008-01-23 2009-07-23 Boston Scientific Neuromodulation Corporation Steerable stylet handle assembly
US20090276021A1 (en) 2008-04-30 2009-11-05 Boston Scientific Neuromodulation Corporation Electrodes for stimulation leads and methods of manufacture and use
US8326433B2 (en) 2008-05-15 2012-12-04 Intelect Medical, Inc. Clinician programmer system and method for calculating volumes of activation for monopolar and bipolar electrode configurations
US8831731B2 (en) 2008-05-15 2014-09-09 Intelect Medical, Inc. Clinician programmer system and method for calculating volumes of activation
US20090287272A1 (en) 2008-05-15 2009-11-19 Intelect Medical, Inc. Clinician programmer system and method for steering volumesof activation
US20090287273A1 (en) 2008-05-15 2009-11-19 Intelect Medical, Inc. Clinician programmer system interface for monitoring patient progress
US8849632B2 (en) 2008-05-15 2014-09-30 Intelect Medical, Inc. Clinician programmer system and method for generating interface models and displays of volumes of activation
US8688235B1 (en) 2008-07-22 2014-04-01 Boston Scientific Neuromodulation Corporation Lead with transition and methods of manufacture and use
US20100076535A1 (en) 2008-09-25 2010-03-25 Boston Scientific Neuromodulation Corporation Leads with non-circular-shaped distal ends for brain stimulation systems and methods of making and using
US20100137945A1 (en) * 2008-11-26 2010-06-03 Medtronic, Inc. Automated verification of mri compatibility of active implantable medical device
US8473061B2 (en) 2009-04-16 2013-06-25 Boston Scientific Neuromodulation Corporation Deep brain stimulation current steering with split electrodes
US20100268298A1 (en) 2009-04-16 2010-10-21 Boston Scientific Neuromodulation Corporation Deep brain stimulation current steering with split electrodes
US20110078900A1 (en) 2009-07-07 2011-04-07 Boston Scientific Neuromodulation Corporation Methods for making leads with radially-aligned segmented electrodes for electrical stimulation systems
US20110005069A1 (en) 2009-07-07 2011-01-13 Boston Scientific Neuromodulation Corporation Systems and leads with a radially segmented electrode array and methods of manufacture
WO2011053378A1 (en) * 2009-10-30 2011-05-05 Medtronic, Inc. Configuring operating parameters of a medical device based on a type of source of a disruptive energy field
US20110130803A1 (en) 2009-11-30 2011-06-02 Boston Scientific Neuromodulation Corporation Electrode array having concentric windowed cylinder electrodes and methods of making the same
US20110130818A1 (en) 2009-11-30 2011-06-02 Boston Scientific Neuromodulation Corporation Electrode array having concentric split ring electrodes and methods of making the same
US20110130817A1 (en) 2009-11-30 2011-06-02 Boston Scientific Neuromodulation Corporation Electrode array having a rail system and methods of manufacturing the same
US20110130816A1 (en) 2009-11-30 2011-06-02 Boston Scientific Neuromodulation Corporation Electrode array with electrodes having cutout portions and methods of making the same
US8295944B2 (en) 2009-11-30 2012-10-23 Boston Scientific Neuromodulation Corporation Electrode array with electrodes having cutout portions and methods of making the same
US8391985B2 (en) 2009-11-30 2013-03-05 Boston Scientific Neuromodulation Corporation Electrode array having concentric windowed cylinder electrodes and methods of making the same
US20110160808A1 (en) * 2009-12-31 2011-06-30 Lyden Michael J Implantable medical device including isolation test circuit
US20110238129A1 (en) 2010-03-23 2011-09-29 Boston Scientific Neuromodulation Corporation Helical radial spacing of contacts on a cylindrical lead
US8571665B2 (en) 2010-03-23 2013-10-29 Boston Scientific Neuromodulation Corporation Helical radial spacing of contacts on a cylindrical lead
US20150066111A1 (en) 2010-06-14 2015-03-05 Boston Scientific Neuromodulation Corporation Programming interface for spinal cord neuromodulation
US20110313500A1 (en) 2010-06-18 2011-12-22 Boston Scientific Neuromodulation Corporation Electrode array having embedded electrodes and methods of making the same
US20120016378A1 (en) 2010-07-16 2012-01-19 Boston Scientific Neuromodulation Corporation Systems and methods for radial steering of electrode arrays
US20120046710A1 (en) 2010-08-18 2012-02-23 Boston Scientific Neuromodulation Corporation Methods, systems, and devices for deep brain stimulation using helical movement of the centroid of stimulation
US20120053652A1 (en) * 2010-09-01 2012-03-01 Pacesetter, Inc. Method and system for sensing external magnetic fields using a multi-function coil of an implantable medical device
US20120071949A1 (en) 2010-09-21 2012-03-22 Boston Scientific Neuromodulation Corporation Systems and methods for making and using radially-aligned segmented electrodes for leads of electrical stimulation systems
US20120165911A1 (en) 2010-12-23 2012-06-28 Boston Scientific Neuromodulation Corporation Methods for making leads with segmented electrodes for electrical stimulation systems
US20120197375A1 (en) 2011-02-02 2012-08-02 Boston Scientific Neuromodulation Corporation Leads with spiral of helical segmented electrode arrays and methods of making and using the leads
US20120203321A1 (en) 2011-02-08 2012-08-09 Boston Scientific Neuromodulation Corporation Methods for making leads with segmented electrodes for electrical stimulation systems
US20120203316A1 (en) 2011-02-08 2012-08-09 Boston Scientific Neuromodulation Corporation Leads with segmented electrodes for electrical stimulation of planar regions and methods of making and using
US20120203320A1 (en) 2011-02-08 2012-08-09 Boston Scientific Neuromodulation Corporation Leads with spirally arranged segmented electrodes and methods of making and using the leads
US8675945B2 (en) 2011-03-29 2014-03-18 Boston Scientific Neuromodulation Corporation System and method for image registration
US20120314924A1 (en) 2011-03-29 2012-12-13 Boston Scientific Neuromodulation Corporation System and method for atlas registration
US20120316615A1 (en) 2011-06-07 2012-12-13 Boston Scientific Neuromodulation Corporation Systems and methods for making and using improved leads for electrical stimulation systems
US8958615B2 (en) 2011-08-09 2015-02-17 Boston Scientific Neuromodulation Corporation System and method for weighted atlas generation
US20130116744A1 (en) 2011-08-09 2013-05-09 Boston Scientific Neuromodulation Corporation VOA generation system and method using a fiber specific analysis
US20130105071A1 (en) 2011-11-02 2013-05-02 Boston Scientific Neuromodulation Corporation Systems and methods for making and using improved leads for electrical stimulation systems
US20130197602A1 (en) 2012-01-26 2013-08-01 Boston Scientific Neuromodulation Corporation Systems and methods for identifying the circumferential positioning of electrodes of leads for electrical stimulation systems
US8792993B2 (en) 2012-06-01 2014-07-29 Boston Scientific, Neuromodulation Corporation Leads with tip electrode for electrical stimulation systems and methods of making and using
US20140039587A1 (en) 2012-08-03 2014-02-06 Boston Scientific Neuromodulation Corporation Leads with electrode carrier for segmented electrodes and methods of making and using
US20140122379A1 (en) 2012-11-01 2014-05-01 Boston Scientific Neuromodulation Corporation Systems and methods for voa model generation and use
US20140358209A1 (en) 2013-05-31 2014-12-04 Boston Scientific Neuromodulation Corporation Leads with segmented electrodes and methods of making and using the leads
US20140358210A1 (en) 2013-05-31 2014-12-04 Boston Scientific Neuromodulation Corporation Methods for manufacturing segmented electrode leads using a removable ring and the leads formed thereby
US20140353001A1 (en) 2013-05-31 2014-12-04 Boston Scientific Neuromodulation Corporation Leads containing segmented electrodes with non-perpendicular legs and methods of making and using
US20140358208A1 (en) 2013-05-31 2014-12-04 Boston Scientific Neuromodulation Corporation Segmented electrode leads formed from pre-electrodes with alignment features and methods of making and using the leads
US20150018915A1 (en) 2013-07-12 2015-01-15 Boston Scientific Neuromodulation Corporation Leads with segmented electrodes and methods of making and using the leads
US20150045864A1 (en) 2013-08-07 2015-02-12 Boston Scientific Neuromodulation Corporation Systems and methods for making and using segmented tip electrodes for leads of electrical stimulation systems
US20150051681A1 (en) 2013-08-19 2015-02-19 Boston Scientific Neuromodulation Corporation Methods and systems for anodal stimulation to affect cranial and other nerves
US20150066120A1 (en) 2013-08-30 2015-03-05 Boston Scientific Neuromodulation Corporation Methods of making segmented electrode leads using flanged carrier

Also Published As

Publication number Publication date
CA3045697A1 (en) 2018-07-12
CN110167629A (en) 2019-08-23
US10792501B2 (en) 2020-10-06
JP6834005B2 (en) 2021-02-24
AU2017391436A1 (en) 2019-05-16
CN110167629B (en) 2023-07-18
CA3045697C (en) 2021-07-20
JP2020513922A (en) 2020-05-21
EP3515548A1 (en) 2019-07-31
US20180185650A1 (en) 2018-07-05
EP3515548B1 (en) 2021-03-17
ES2871008T3 (en) 2021-10-28
AU2017391436B2 (en) 2020-06-18

Similar Documents

Publication Publication Date Title
US11110280B2 (en) Systems and methods for selecting stimulation parameters by targeting and steering
US10792501B2 (en) Systems and methods for selecting MRI-compatible stimulation parameters
US11160981B2 (en) Systems and methods for selecting stimulation parameters based on stimulation target region, effects, or side effects
US11583684B2 (en) Systems and methods for visualizing and programming electrical stimulation
US11944823B2 (en) Multi-mode electrical stimulation systems and methods of making and using
US20230181090A1 (en) Systems and methods for generating and using response maps for electrical stimulation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17832721

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017391436

Country of ref document: AU

Date of ref document: 20171229

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017832721

Country of ref document: EP

Effective date: 20190426

ENP Entry into the national phase

Ref document number: 3045697

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2019536250

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE