WO2018062573A1 - Method for recovering cells - Google Patents

Method for recovering cells Download PDF

Info

Publication number
WO2018062573A1
WO2018062573A1 PCT/JP2017/036399 JP2017036399W WO2018062573A1 WO 2018062573 A1 WO2018062573 A1 WO 2018062573A1 JP 2017036399 W JP2017036399 W JP 2017036399W WO 2018062573 A1 WO2018062573 A1 WO 2018062573A1
Authority
WO
WIPO (PCT)
Prior art keywords
cells
bacterial
bacterial solution
cell
dna
Prior art date
Application number
PCT/JP2017/036399
Other languages
French (fr)
Japanese (ja)
Inventor
保孝 幸
森 安義
Original Assignee
栄研化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 栄研化学株式会社 filed Critical 栄研化学株式会社
Publication of WO2018062573A1 publication Critical patent/WO2018062573A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/02Separating microorganisms from their culture media
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N7/00Viruses; Bacteriophages; Compositions thereof; Preparation or purification thereof
    • C12N7/02Recovery or purification
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/70Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving virus or bacteriophage
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids

Definitions

  • the present invention relates to a method for recovering microbial cells or animal cells in a specimen, for example.
  • Genetic detection kits for microbial cells or animal cells such as pathogens have minimal detection sensitivity.
  • the amount of specimen used in the genetic test is several to several tens of ⁇ L per test. For this reason, for example, a sample containing 1,000 or more pathogens per mL of sample can be determined as positive, but a sample containing less than 1,000 pathogens cannot be determined as positive and cannot be detected.
  • a method of increasing the sample amount of the kit can be mentioned. However, simply increasing the amount of the sample simultaneously dilutes the reagent component and also increases the amount of the inhibitory component derived from the sample, which may cause erroneous determination in the test result.
  • the centrifugation method In order to avoid this problem, an operation for separating and concentrating microbial cells or animal cells such as pathogens from the sample components is necessary.
  • the centrifugation method is mentioned as a method for separating and concentrating microbial cells or animal cells, the centrifugation method requires expensive equipment and a use environment.
  • an inexpensive and simple method for concentrating microbial cells or animal cells is desired.
  • Patent Document 1 discloses an aliphatic solution at a concentration in which only bacterial cells are aggregated and high molecular polysaccharides are not aggregated in a culture broth of bacteria that secrete and produce polymeric polysaccharides outside the bacterial cells. Alcohol is added to agglomerate cells to separate the cells, while alcohol is added to the culture broth from which the cells are removed to precipitate and recover the polymer polysaccharide. A purification method is disclosed.
  • Patent Document 2 discloses a microorganism recovery method in which microparticles in a sample are adsorbed to the microparticles by bringing the microparticles into contact with the sample.
  • a slurry liquid is prepared by contacting water containing a microorganism and a magnetic substance or an aggregate thereof, and the slurry liquid is solid-liquid separated into an aggregate cake and water by filtering the slurry liquid.
  • a method for concentrating microorganisms in which the cake is separated into microorganisms and magnetic substances to concentrate the microorganisms.
  • conventionally there has not been known a method capable of efficiently concentrating microbial cells or animal cells by using magnetic particles and alcohol in combination.
  • an efficient method for recovering microbial cells or animal cells is desired in order to improve the detection performance of genetic test kits for microbial cells or animal cells such as pathogens.
  • an object of this invention is to provide the efficient collection
  • microbial cells or animal cells co-aggregate with the magnetic particles in the presence of magnetic particles and alcohol, and the microbial cells or animal cells can be easily recovered.
  • the invention has been completed. That is, the present invention includes the following. (1) A method for recovering cells, comprising a step of mixing cells and magnetic particles in the presence of alcohol.
  • kits according to (7), wherein the cells are microbial cells or animal cells.
  • the magnetic particles are magnetic particles containing magnetite and / or silica as a surface material.
  • the alcohol is selected from the group consisting of methanol, ethanol, 1-propanol, isopropyl alcohol, ethylene glycol, 2,2′-iminodiethanol, polyethylene glycol, and mixtures thereof.
  • a kit according to claim 1. (11) The kit according to (10), wherein the polyethylene glycol has a molecular weight of 20,000 or less.
  • a test kit comprising the cell recovery kit according to any one of (7) to (11). This specification includes the disclosure of Japanese Patent Application No. 2016-192190, which is the basis of the priority of the present application.
  • Photo b) shows the appearance of mycobacteria in a typical bacterial cell shape (gonococcal shape) stained red in the aggregate of magnetite particles.
  • Photo c) shows the mycobacteria cells in the field of view with few magnetite particles and the magnetite particles adsorbed so as to border the cells.
  • recovery protocol in the method of this invention is shown.
  • the bacterial cells in the bacterial solution or specimen are recovered as an aggregate consisting of magnetite particles and bacterial cells.
  • the collected agglomerates can then be subjected to an appropriate nucleic acid extraction method or genetic test.
  • the cell collection method according to the present invention is a method including a step of mixing cells and magnetic particles in the presence of alcohol.
  • the present invention by mixing cells and magnetic particles in the presence of alcohol, the cells and magnetic particles co-aggregate to form aggregates.
  • the aggregate formed in this way can be collected and used as an object for a test such as a genetic test.
  • Cells collected by this method are present in, for example, specimens (for example, clinical specimens such as sputum, gastric juice, stool emulsion, urine, pleural effusion, whole blood, serum, plasma).
  • the cells include animal cells such as humans and cells such as microorganisms.
  • the microorganism may be a microorganism (or pathogen) belonging to any genus, such as Mycobacterium bovis BCG strain, Mycobacterium tuberculosis (Mycobacterium tuberculosis), Gram-positive bacteria such as mycobacteria, including Mycobacterium avium and Mycobacterium intracellulare, Bordetella pertussis li, Escherichia coli, etc. Gram-negative bacteria, yeasts (Saccharomyces cerevisiae) and other fungi.
  • the magnetic particles used in this method may be any particles as long as they have magnetism, and examples thereof include particles containing (or consisting of) magnetite and / or silica as surface materials.
  • magnetic particles coated with magnetite and / or silica can be used.
  • the magnetic particles may be surface-modified with a functional group such as a carboxyl group, a methyl group, an octadecyl group, albumin, or boronic acid.
  • the shape of the magnetic particle is not particularly limited, and examples thereof include a spherical shape and an octahedron.
  • examples of the size of the magnetic particles include a diameter ( ⁇ ) of 25 nm to 2 ⁇ m. As these magnetic particles, commercially available particles can be used.
  • examples of alcohol used in the present method include methanol, ethanol (EtOH), 1-propanol, isopropyl alcohol (2-propanol, IPA), ethylene glycol, 2,2′-iminodiethanol, polyethylene glycol (PEG), and These mixtures etc. are mentioned.
  • examples of PEG include those having a molecular weight of 20,000 or less (monoethylene glycol to molecular weight 20,000).
  • 0.5 to 20 mg of magnetic particles and 1,400 ⁇ L of alcohol are added to 600 ⁇ L of a specimen containing cells, mixed, and allowed to stand for 0 to 10 minutes.
  • EtOH for example, EtOH is added to a final concentration of 40 to 90%.
  • IPA IPA is added so that the final concentration is, for example, 20 to 90%.
  • PEG molecular weight 1,000
  • PEG molecular weight 1,000
  • PEG molecular weight 1,000
  • the present invention also relates to a testing method such as genetic testing, which includes a step of extracting nucleic acid from cells collected by the method and a step of subjecting the extracted nucleic acid to testing such as genetic testing.
  • genetic testing refers to PCR (for example, JP-A-2001-286300 and JP-A-62-2000281), SDA (for example, JP-A-5-192195), NASBA (for example, JP-A-5-192181).
  • nucleic acid extraction methods generally used for nucleic acid extraction such as genomes and plasmids (for example, phenol / chloroform method and alkali extraction method) and commercially available methods are available.
  • the nucleic acid extraction method using the nucleic acid extraction kit is not particularly limited.
  • the present invention also relates to a cell collection kit containing magnetic particles and alcohol used in the present method.
  • the cell collection kit can contain, for example, reagents, containers, instruction manuals, etc. used for cell collection.
  • the cell collection kit can be included in a test kit for genetic testing or the like, and can also be provided as a kit for a pretreatment reagent.
  • the test kit can further include reagents, containers, instruction manuals, etc. used for nucleic acid extraction and genetic testing.
  • the objectives of this example are as follows: Observation of magnetite particles agglomerated in alcohol; Observation of the location of bacteria when the cells are aggregated under the condition where the cells and magnetite particles coexist. 2.
  • the materials used in this example were as follows: Mycobacterium bovis BCG Tokyo KK-12-21 strain; Magnetite particles: ferric oxide (III) iron (II) (Wako Pure Chemical Industries); Physiological saline (hereinafter referred to as “raw food”, Otsuka Pharmaceutical Factory); Magnet for collecting magnets; Aggregating solvent: ethanol (hereinafter referred to as “EtOH”; Wako Pure Chemical Industries), distilled water (hereinafter referred to as “DW”; Otsuka Pharmaceutical Factory); Optical microscope: Olympus biological microscope CH2 (OLYMPUS); Spectrophotometer: CO8000 Biowave (Biochrom Ltd.); 2.
  • the prepared bacterial solution was 10 7 CFU / mL, and a 10 6 CFU / mL bacterial solution was prepared by 10-fold dilution.
  • 2) Cell recovery in bacterial solution 2.5 mg of magnetite particles were suspended in 300 ⁇ L of saline or 10 6 CFU / mL bacterial solution. Next, 700 ⁇ L of aggregation solvent (EtOH or DW) was mixed (final concentration 70%). After mixing, magnetite particles were collected with a magnet and the supernatant was removed.
  • EtOH or DW aggregation solvent
  • the purpose of this example is to examine the conditions necessary for cell recovery by this method.
  • Materials The materials used in this example were as follows: 1) Bacterial solution preparation and cell recovery Mycobacterium bovis BCG Tokyo KK-12-21 strain; Magnetite particles: ferric oxide (III) iron (II) (Wako Pure Chemical Industries); Raw food (Otsuka Pharmaceutical Factory); Magnet for collecting magnets Aggregating solvent: EtOH (Wako Pure Chemical Industries), 2-propanol (hereinafter referred to as “IPA”; Wako Pure Chemical Industries), polyethylene glycol 1,000 (hereinafter referred to as “PEG 1,000”) Wako Pure Chemical Industries), DW (Otsuka Pharmaceutical Factory), and PEG 1,000 were prepared in 20% (w / v) aqueous solution and used in the following experiments.
  • Experiment A Method 1) DNA extracted from each concentration of bacterial solution prepared in “Bacterial solution preparation” was subjected to PURE-TB-LAMP.
  • Bacteria recovery by this method (1) 1. Purpose The purpose of this example is to estimate the cell recovery rate by this method. 2. Materials The materials used in this example were as follows: 1) Bacterial solution preparation and bacterial cell collection The same materials as in Example 2 were used. In this experiment, EtOH was used as the aggregation solvent. 2) Gene amplification test The same material as in Example 2 was used. 3. Method 1) Bacterial Solution Preparation McFarland No. The same method as in Example 1 was used for the method for preparing the bacterial solution 1. The prepared bacterial solution was made 10 7 CFU / mL and diluted 10,000 times to prepare a 10 3 CFU / mL bacterial solution.
  • the minimum detection sensitivity was 62.5 CFU / mL.
  • the minimum concentration of the bacterial liquid that can stably obtain a positive result has been improved by 8 times, and the amount of the bacterial liquid used for the method of collecting bacterial cells has been increased by 10 times. Considering that there is a difference, it was speculated that this method can recover the cells in the bacterial solution in a considerable proportion.
  • Bacteria recovery by this method (2) 1.
  • the purpose of this example is to collect cells from a high-concentration bacterial solution and to investigate the recovery rate.
  • Materials The materials used in this example were as follows: 1) Bacterial solution preparation and bacterial cell collection The same materials as in Example 3 were used. In this experiment, EtOH was used as the aggregation solvent. 2) Gene amplification test PURE DNA extraction kit (Eiken Chemical); Commercial real-time PCR measurement apparatus: Mx3005P (Agilent Technologies); Template quantification LAMP reaction reagent prepared in house; It was used. 3. Method 1) Preparation of Bacterial Solution The same method as in Example 1 was used. 2) Cell recovery in the bacterial solution The same method as in Example 2 was used.
  • DNA recovery by this method Purpose The purpose of this example is to confirm the ability of DNA recovery by this method.
  • the obtained DNA solution was dissolved in 10 mM Tris-HCl (pH 8.0), the absorbance value of the DNA solution was measured at an absorption wavelength of 260 nm using a spectrophotometer, and the copy number was calculated from the obtained weight concentration. did. According to the calculated copy number, a 10-fold serial dilution series DNA solution of 100 to 10 5 copies / mL was prepared by saline. 2) DNA recovery from DNA solution The DNA solution prepared in Method 1) was subjected to the same method as in Example 2. The final concentration of the aggregation solvent EtOH is 70%. 3) Extraction of nucleic acid The same method as in Example 2 was used.
  • the purpose of this example is to investigate the relationship between the surface material of magnetic particles, the presence / absence of functional groups on the particle surface, the shape and particle size, and the recovery of bacterial cells.
  • Materials The materials used in this example were as follows: 1) Bacterial solution preparation and bacterial cell collection The same materials as in Example 3 were used. In this experiment, EtOH was used as the aggregation solvent. For the magnetic particle types used in this experiment, see Table 6. As magnetite particles whose surfaces were coated with silica, SiMAG-active, SiMAG-hydrophobe, and SiMAG-affinity series (Chemicell) were used.
  • Magnetite particles include ferric oxide (III) iron (II) (Wako Pure Chemical Industries), ferric oxide (III) iron (II) nanoparticles (Wako Pure Chemical Industries), and magnetite product series (Mitsui). Metal Industry Co., Ltd.) was used. 2) Gene amplification test The same material as in Example 3 was used. 3. Method 1) Bacterial solution preparation The same method as in Example 2 was used. 2) Cell recovery in the bacterial solution The same method as in Example 2 was used. The final concentration of the aggregation solvent EtOH is 70%. 3) Extraction of nucleic acid The same method as in Example 2 was used. 4) Gene amplification test The same method as in Example 2 was used. 4). Results The results are shown in Table 6.
  • n 2 in the triple measurement was negative. From 12 types of each of the particles from which the cells were collected, all obtained positive results in triplicate measurement. From these results, it was confirmed that the cells can be recovered by this method regardless of the surface material of the particles, the presence / absence of the surface-modifying functional group, the shape and the particle size within the range examined in this experiment.
  • coagulation solvent (2) 1. Purpose The purpose of this example is to investigate the optimum concentration range of alcohol as a coagulation solvent species. 2. Materials The materials used in this example were as follows: 1) Bacterial solution preparation and bacterial cell collection The same materials as in Example 3 were used. EtOH and IPA were used as the aggregation solvent. 2) Gene amplification test The same material as in Example 3 was used. 3. Method 1) Bacterial solution preparation The same method as in Example 2 was used. 2) Cell recovery in the bacterial solution The same method as in Example 2 was used. The amount of the aggregation solvent added to 600 ⁇ L of the bacterial solution was changed. See Table 9 for the concentration of the flocculating solvent at the time of mixing, that is, the range of the final concentration.
  • coagulation solvent (3) 1. Purpose The purpose of this example is to investigate the molecular weight and optimal concentration range of PEG. 2. Materials The materials used in this example were as follows: 1) Bacterial solution preparation and bacterial cell collection The same materials as in Example 3 were used. The aggregating solvents used were four kinds of PEG molecular weights of 1,000, 3,350,8,000, and 20,000, and 20% (w / v) aqueous solutions were prepared and used in Experiment A. Further, a 50% (w / v) aqueous solution of PEG 1,000 and a 30% (w / v) aqueous solution of PEG 8,000 were prepared and used in Experiment B. 2) Gene amplification test The same material as in Example 3 was used. 3.
  • Results The results are shown in Tables 10-12. From the results of this experiment A, bacterial recovery was observed at all molecular weights used. From the results of Experiment B, bacterial recovery was observed in the range of 2.5 to 30% for PEG 1,000 and 5.25 to 21% for PEG 8,000. Based on the results of this experiment and the ethylene glycol (monomer) of Example 8, it was confirmed that the molecular weight can be recovered in the range of 62.1 to 20,000. In addition, it has been clarified that there is an optimum concentration range for cell recovery even in the case of PEG.
  • Experiment B Method 2 As a result of subjecting DNA extracted from the aggregate collected by the method of “recovering bacterial cells in bacterial solution” to PURE-TB-LAMP, the minimum detection sensitivity was 15.6 CFU / mL. From these results, it was confirmed that this method can be applied to other species of the genus Mycobacterium other than Mycobacterium bovis. In Experiment A, the detection sensitivity of Mycobacterium tuberculosis used in this experiment was 8 times higher than that of Mycobacterium bovis. (IS6110) copy number difference (16 for Mycobacterium tuberculosis H37Rv KK11-291 and 2 for Mycobacterium bovis BCG Tokyo KK-12-21) It was.
  • the purpose of this example is to investigate the range of applicable bacterial species 2: gram-negative bacteria.
  • Materials The materials used in this example were as follows: 1) Bacterial solution preparation and bacterial cell collection The same materials as in Example 2 were used. In this experiment, Bordetella pertussis Tohama strain; Magnetite particles; Aggregation solvent: Polyethylene glycol 8000 (PEG 8,000, Wako Pure Chemical Industries) and PEG 8,000 were prepared in a 15% (w / v) aqueous solution and used in the following experiments. It was used.
  • the prepared bacterial solution is 1.5 ⁇ 10 8 CFU / mL, diluted 10,000 times to prepare a 1.5 ⁇ 10 3 CFU / mL bacterial solution, and subsequently diluted 4 to 8 times. 3,750, 1,875 CFU / mL of bacterial solution was prepared. 2) Cell recovery in the bacterial solution The same method as in Example 2 was used.
  • the final concentrations of the aggregation solvent EtOH (70%) and PEG 1,000 are 70% and 10.5%, respectively.
  • 3) Extraction of nucleic acid The following treatment was performed using various bacterial solutions.
  • Treatment A Method 1) DNA was extracted from 60 ⁇ L of the bacterial solution prepared by “Preparation of bacterial solution” using the method of Example 2.
  • Process B Method 2) “Recovering bacterial cells in bacterial solution” method, and collecting aggregates collected using EtOH (70%) as an agglutination solvent. Extracted.
  • Process C Method 2) “Recovering bacterial cells in bacterial solution” method, and using PEG 1,000 (15%) as an aggregating solvent to collect and recover the aggregated mass using the nucleic acid extraction method of Example 2 Extracted.
  • the purpose of this example is to investigate biological specimen species that can be recovered by this method.
  • Materials The materials used in this example were as follows: 1) Bacterial solution preparation and bacterial cell collection The same materials as in Example 3 were used. In this experiment, EtOH was used as the aggregation solvent. 2) Specimen Sputum, gastric juice, 10% stool suspension supernatant (stool emulsion), urine, pleural effusion, and whole blood were used as biological specimens. The sputum sample used was a sample obtained by adding 1,200 ⁇ L of 0.5 M NaOH to 600 ⁇ L of the sample, mixing and dissolving. 3) Gene amplification test The same material as in Example 3 was used. 3.
  • Method 1 Bacterial solution preparation The same method as in Example 2 was used. However, in this operation, a 10 3 CFU / mL bacterial solution was prepared. 2) Sample preparation 1/10 amount of the bacterial solution of 1) was added to each biological sample to prepare various bacterial solutions of 10 2 CFU / mL. 3) Cell recovery in bacterial solution The same method as in Example 2 was used. The final concentration of the aggregation solvent EtOH is 70%. 4) Extraction of nucleic acid The same method as in Example 2 was used. 5) Gene amplification test The same method as in Example 2 was used. 4). Results The results are shown in Table 16. All samples listed above were positively detected by LAMP. From this, it was confirmed that the cells can be recovered from a wide variety of specimen species by this method.
  • the purpose of this example is to investigate the order of addition of particles and flocculating solvent.
  • Materials The materials used in this example were as follows: 1) Bacterial solution preparation and bacterial cell collection The same materials as in Example 3 were used. In this experiment, EtOH was used as the aggregation solvent. 2) Gene amplification test The same material as in Example 3 was used. 3. Method 1) Bacterial solution preparation 2) Cell recovery in bacterial solution The same method as in Example 2 was used. The final concentration of the aggregation solvent EtOH is 70%. The addition order of the magnetite particles and the solvent is shown in Table 17. 3) Extraction of nucleic acid The same method as in Example 2 was used.
  • Method 2 DNA extraction was performed with the Loopamp PURE DNA extraction kit using 60 ⁇ L of the magnetite particle suspension prepared in “Recovering cells in suspension”.
  • the DNA extract obtained by the operations of A and B was subjected to a LAMP reaction using Loopamp DNA amplification reagent D and CYP2C19 primer, and triple measurement was performed. 4). Results The results are shown in Table 20. In the cell recovery group using 300 ⁇ L of cell suspension b and the control group using 30 ⁇ L of cell suspensions a and b, all were positive for LAMP reaction in triplicate measurement. On the other hand, in the control group using 30 ⁇ L of the cell suspension c, all LAMP reactions were negative in triplicate measurement. 5).
  • microbial cells or animal cells can be collected inexpensively and easily.
  • the detection performance of the genetic test kit for microbial cells or animal cells such as pathogenic bacteria can be improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Microbiology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • Virology (AREA)
  • Analytical Chemistry (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

The purpose of the present invention is to provide an efficient method for recovering cells such as microorganisms or animal cells; specifically, the present invention pertains to a method for recovering cells, said method including a step for mixing cells and magnetic particles in the presence of an alcohol.

Description

細胞の回収方法Cell recovery method
 本発明は、例えば検体中の微生物細胞又は動物細胞の回収方法に関する。 The present invention relates to a method for recovering microbial cells or animal cells in a specimen, for example.
 病原体等の微生物細胞又は動物細胞に関する遺伝子検査キットには、最小検出感度が存在する。通常、遺伝子検査において供試される検体量は、1試験当たり数~数十μLである。このため、例えば、検体1mL当たり1,000個以上の病原体を含む検体は陽性と判定できるものの、1,000個未満の病原体を含む検体を陽性と判定できず、検出できない場合がある。
 このような検出感度の問題に対する手段としては、キットの検体量を上げる方法が挙げられる。しかしながら、単純に検体量を上げると、同時に、試薬成分が希釈されるため、また、検体由来の阻害成分の持ち込み量も増えてしまうため、検査結果に誤判定を生じる虞がある。この問題を回避するために、病原体等の微生物細胞又は動物細胞を検体成分から分離し、濃縮する操作が必要となる。
 通常、微生物細胞又は動物細胞の分離及び濃縮方法としては遠心分離法が挙げられるものの、遠心分離法には高価な機器及び使用環境が必要となる。
 このように、病原体等の微生物細胞又は動物細胞に関する遺伝子検査キットの検出性能を向上させるべく、安価且つ簡易な微生物細胞又は動物細胞の濃縮方法が望まれる。
 従来知られている細胞の回収方法として、特許文献1は、高分子多糖類を菌体外に分泌産生する細菌の培養ブロスに、菌体のみ凝集し高分子多糖類は凝集しない濃度で脂肪族アルコールを加えて菌体を凝集させ、菌体を分離する一方で、菌体を除いた培養ブロスに、さらにアルコールを追加して、高分子多糖類を沈澱させ、回収する、高分子多糖類の精製方法を開示する。
 特許文献2は、微粒子と試料とを接触させることで、試料中の微生物を微粒子に吸着させる、微生物回収方法を開示する。
 特許文献3は、微生物を含有する水と磁性体又はその凝集体を接触させてスラリー液を作製し、当該スラリー液を濾過することにより凝集体からなるケーキと水とに固液分離し、当該ケーキを微生物と磁性体に分離して微生物を濃縮する、微生物の濃縮方法を開示する。
 しかしながら、従来において、磁性粒子とアルコールとを併用して、微生物細胞又は動物細胞を効率的に濃縮できる方法は、知られていなかった。
Genetic detection kits for microbial cells or animal cells such as pathogens have minimal detection sensitivity. Usually, the amount of specimen used in the genetic test is several to several tens of μL per test. For this reason, for example, a sample containing 1,000 or more pathogens per mL of sample can be determined as positive, but a sample containing less than 1,000 pathogens cannot be determined as positive and cannot be detected.
As a means for such a problem of detection sensitivity, a method of increasing the sample amount of the kit can be mentioned. However, simply increasing the amount of the sample simultaneously dilutes the reagent component and also increases the amount of the inhibitory component derived from the sample, which may cause erroneous determination in the test result. In order to avoid this problem, an operation for separating and concentrating microbial cells or animal cells such as pathogens from the sample components is necessary.
Usually, although the centrifugation method is mentioned as a method for separating and concentrating microbial cells or animal cells, the centrifugation method requires expensive equipment and a use environment.
Thus, in order to improve the detection performance of the genetic test kit for microbial cells or animal cells such as pathogens, an inexpensive and simple method for concentrating microbial cells or animal cells is desired.
As a conventionally known method for recovering cells, Patent Document 1 discloses an aliphatic solution at a concentration in which only bacterial cells are aggregated and high molecular polysaccharides are not aggregated in a culture broth of bacteria that secrete and produce polymeric polysaccharides outside the bacterial cells. Alcohol is added to agglomerate cells to separate the cells, while alcohol is added to the culture broth from which the cells are removed to precipitate and recover the polymer polysaccharide. A purification method is disclosed.
Patent Document 2 discloses a microorganism recovery method in which microparticles in a sample are adsorbed to the microparticles by bringing the microparticles into contact with the sample.
In Patent Document 3, a slurry liquid is prepared by contacting water containing a microorganism and a magnetic substance or an aggregate thereof, and the slurry liquid is solid-liquid separated into an aggregate cake and water by filtering the slurry liquid. Disclosed is a method for concentrating microorganisms, in which the cake is separated into microorganisms and magnetic substances to concentrate the microorganisms.
However, conventionally, there has not been known a method capable of efficiently concentrating microbial cells or animal cells by using magnetic particles and alcohol in combination.
特開平6−209783号公報JP-A-6-209783 国際公開第2006/123781号International Publication No. 2006/123781 特開2012−187083号公報JP 2012-187083 A
 上述のように、病原体等の微生物細胞又は動物細胞に関する遺伝子検査キットの検出性能を向上させるべく、微生物細胞又は動物細胞の効率的な回収方法が望まれている。
 そこで、本発明は、細菌といった微生物細胞や動物細胞の効率的な回収方法を提供することを目的とする。
 上記課題を解決するため鋭意研究を行った結果、磁性粒子とアルコールとの共存下で微生物細胞又は動物細胞が当該磁性粒子と共凝集し、容易に微生物細胞又は動物細胞を回収できることを見出し、本発明を完成するに至った。
 すなわち、本発明は以下を包含する。
(1)細胞と磁性粒子とをアルコール存在下で混合する工程を含む、細胞の回収方法。
(2)細胞が微生物細胞又は動物細胞である、(1)記載の方法。
(3)磁性粒子が表面材質としてマグネタイト及び/又はシリカを含む磁性粒子である、(1)又は(2)記載の方法。
(4)アルコールがメタノール、エタノール、1−プロパノール、イソプロピルアルコール、エチレングリコール、2,2’−イミノジエタノール、ポリエチレングリコール及びこれらの混合物から成る群より選択される、(1)~(3)のいずれか1記載の方法。
(5)ポリエチレングリコールが20,000以下の分子量を有するものである、(4)記載の方法。
(6)(1)~(5)のいずれか1記載の細胞の回収方法を含む検査方法。
(7)磁性粒子とアルコールとを含む、細胞回収キット。
(8)細胞が微生物細胞又は動物細胞である、(7)記載のキット。
(9)磁性粒子が表面材質としてマグネタイト及び/又はシリカを含む磁性粒子である、(7)又は(8)記載のキット。
(10)アルコールがメタノール、エタノール、1−プロパノール、イソプロピルアルコール、エチレングリコール、2,2’−イミノジエタノール、ポリエチレングリコール及びこれらの混合物から成る群より選択される、(7)~(9)のいずれか1記載のキット。
(11)ポリエチレングリコールが20,000以下の分子量を有するものである、(10)記載のキット。
(12)(7)~(11)のいずれか1記載の細胞回収キットを含む検査キット。
 本明細書は本願の優先権の基礎となる日本国特許出願番号2016−192190号の開示内容を包含する。
As described above, an efficient method for recovering microbial cells or animal cells is desired in order to improve the detection performance of genetic test kits for microbial cells or animal cells such as pathogens.
Then, an object of this invention is to provide the efficient collection | recovery method of microbial cells, such as bacteria, and an animal cell.
As a result of diligent research to solve the above problems, it was found that microbial cells or animal cells co-aggregate with the magnetic particles in the presence of magnetic particles and alcohol, and the microbial cells or animal cells can be easily recovered. The invention has been completed.
That is, the present invention includes the following.
(1) A method for recovering cells, comprising a step of mixing cells and magnetic particles in the presence of alcohol.
(2) The method according to (1), wherein the cell is a microbial cell or an animal cell.
(3) The method according to (1) or (2), wherein the magnetic particles are magnetic particles containing magnetite and / or silica as a surface material.
(4) Any of (1) to (3), wherein the alcohol is selected from the group consisting of methanol, ethanol, 1-propanol, isopropyl alcohol, ethylene glycol, 2,2′-iminodiethanol, polyethylene glycol, and mixtures thereof. The method according to claim 1.
(5) The method according to (4), wherein the polyethylene glycol has a molecular weight of 20,000 or less.
(6) A test method including the cell recovery method according to any one of (1) to (5).
(7) A cell recovery kit containing magnetic particles and alcohol.
(8) The kit according to (7), wherein the cells are microbial cells or animal cells.
(9) The kit according to (7) or (8), wherein the magnetic particles are magnetic particles containing magnetite and / or silica as a surface material.
(10) Any of (7) to (9), wherein the alcohol is selected from the group consisting of methanol, ethanol, 1-propanol, isopropyl alcohol, ethylene glycol, 2,2′-iminodiethanol, polyethylene glycol, and mixtures thereof. A kit according to claim 1.
(11) The kit according to (10), wherein the polyethylene glycol has a molecular weight of 20,000 or less.
(12) A test kit comprising the cell recovery kit according to any one of (7) to (11).
This specification includes the disclosure of Japanese Patent Application No. 2016-192190, which is the basis of the priority of the present application.
実施例1における各種溶媒中のマグネタイト粒子の観察結果(×200)を示す写真である(左:DW、右:70%EtOH)。It is a photograph which shows the observation result (x200) of the magnetite particle | grains in the various solvents in Example 1 (left: DW, right: 70% EtOH). 実施例1における菌液にマグネタイト粒子を混合し、EtOH添加条件にて凝集後、抗酸菌染色させた後の観察結果を示す写真である(写真a):×200、写真b)及びc):×400にて観察)。写真a):マグネタイト粒子と菌体の共凝集の様子を示す。黒色部分はマグネタイト粒子、赤く染色された部分は菌体を示す。写真b):マグネタイト粒子の凝集塊中に赤く染色された典型的菌体形状(桿菌形状)の抗酸菌の菌体の様子を示す。写真c):マグネタイト粒子が少ない視野領域における抗酸菌の菌体と、菌体を縁取るように吸着するマグネタイト粒子の様子を示す。It is a photograph which shows the observation result after mixing a magnetite particle | grain with the fungus | bacteria liquid in Example 1, and making it acid-acid-bacteria dyeing | aggregating on EtOH addition conditions (photograph a): * 200, photograph b), and c). : Observed at x400). Photo a): shows the state of co-aggregation of magnetite particles and bacterial cells. The black part shows magnetite particles, and the part dyed red shows microbial cells. Photo b): shows the appearance of mycobacteria in a typical bacterial cell shape (gonococcal shape) stained red in the aggregate of magnetite particles. Photo c): shows the mycobacteria cells in the field of view with few magnetite particles and the magnetite particles adsorbed so as to border the cells. 本発明の方法における基本的な菌体回収プロトコルを示す。本発明の方法により、菌液或いは検体中の菌体は、マグネタイト粒子と菌体からなる凝集塊として回収される。回収された凝集塊は、その後、適当な核酸抽出法や遺伝子検査に供試し得る。The basic microbial cell collection | recovery protocol in the method of this invention is shown. By the method of the present invention, the bacterial cells in the bacterial solution or specimen are recovered as an aggregate consisting of magnetite particles and bacterial cells. The collected agglomerates can then be subjected to an appropriate nucleic acid extraction method or genetic test.
 本発明に係る細胞の回収方法(以下、「本方法」と称する)は、細胞と磁性粒子とをアルコール存在下で混合する工程を含む方法である。本発明によれば、アルコール存在下で、細胞と磁性粒子とを混合することで、細胞と磁性粒子とが共凝集し、凝集塊を形成する。このように形成された凝集塊を回収し、遺伝子検査等の検査の対象物として使用することができる。
 本方法で回収する細胞は、例えば検体(例えば、喀痰、胃液、便乳剤、尿、胸水、全血、血清、血漿等の臨床検体)中に存在する。また、細胞としては、例えばヒト等の動物細胞、微生物等の細胞が挙げられる。さらに、微生物は、いずれの属に属する微生物(又は病原菌)であってもよく、例えばマイコバクテリウム・ボビス(Mycobacterium bovis)BCG株、結核菌(マイコバクテリウム・ツベルクローシス(Mycobacterium tuberculosis))、マイコバクテリウム・アビウム(Mycobacterium avium)及びマイコバクテリウム・イントラセルラーレ(Mycobacterium intracellulare)を含む抗酸菌等のグラム陽性菌、百日咳菌(ボルデテラ・パーツシス(Bordetella pertussis))、大腸菌(Escherichia coli)等のグラム陰性菌、酵母菌(サッカロマイセス・セレビシエ)等の真菌類が挙げられる。
 本方法で使用する磁性粒子としては、磁性を有する粒子であれば、いずれの粒子であってもよく、例えば表面材質としてマグネタイト及び/又はシリカを含む(又はから成る)粒子が挙げられる。換言すれば、本方法では、マグネタイト及び/又はシリカで被覆した磁性粒子を使用することができる。また、磁性粒子は、例えばカルボキシル基、メチル基、オクタデシル基、アルブミン、ボロン酸等の官能基で表面修飾されたものであってもよい。さらに、磁性粒子の形状としては、特に限定されるものではないが、例えば球形、八面体等が挙げられる。また、磁性粒子のサイズとしては、例えば直径(φ)25nm~2μmが挙げられる。これら磁性粒子として、市販されているものを使用することができる。
 一方、本方法で使用するアルコールとしては、例えばメタノール、エタノール(EtOH)、1−プロパノール、イソプロピルアルコール(2−プロパノール、IPA)、エチレングリコール、2,2’−イミノジエタノール、ポリエチレングリコール(PEG)及びこれらの混合物等が挙げられる。PEGとしては、例えば分子量20,000以下のもの(モノマーのエチレングリコールから分子量20,000までのもの)が挙げられる。
 本方法では、先ず回収対象の細胞を含む検体に磁性粒子及びアルコールを添加し、混合する。磁性粒子及びアルコールは、検体に別々に添加してもよく、又は同時に添加してもよい。例えば、細胞を含む検体600μLに対して、0.5~20mgの磁性粒子と1,400μLのアルコールを添加し、混合し、0~10分静置する。EtOHを使用する場合には、例えば40~90%の終濃度となるようにEtOHを添加する。IPAを使用する場合には、例えば20~90%の終濃度となるようにIPAを添加する。PEG(分子量1,000)を使用する場合には、例えば2.5~30%の終濃度となるようにPEG(分子量1,000)を添加する。PEG(分子量8,000)を使用する場合には、例えば5.25~21%の終濃度となるようにPEG(分子量8,000)を添加する。
 次いで、磁石を使用し、細胞と磁性粒子とを含む凝集塊を集磁する。このようにして、検体中の細胞を回収することができる。このように濃縮された細胞(凝集塊)を遺伝子検査等の検査に供することができる。従って、本発明は、また、本方法により回収した細胞から核酸を抽出する工程、及び抽出した核酸を遺伝子検査等の検査に供する工程を含む、遺伝子検査等の検査方法に関する。
 本発明において、遺伝子検査とは、PCR(例えば、特開2001−286300号公報及び特開昭62−000281号公報)、SDA(例えば、特開平5−192195号公報)、NASBA(例えば、特開平2−005864号公報)、RCA(Proceedings of the National Academy of Sciences of the United States of America 92:4641−4645(1995))、及びLAMP(例えば、特許第3313358号公報)、LCR(例えば、特開平2−002934公報)等の核酸増幅法を利用する検査方法が挙げられる。
 また、本方法により回収した細胞から核酸を抽出する方法としては、ゲノムやプラスミド等の核酸抽出に一般的に用いられている核酸抽出方法(例えば、フェノール・クロロホルム法やアルカリ抽出法等)や市販の核酸抽出キットを使用した核酸抽出方法であれば特に限定されない。
 また、本発明は、本方法に使用される磁性粒子とアルコールとを含む細胞回収キットに関する。当該細胞回収キットは、磁性粒子及びアルコール以外に、例えば細胞回収に使用する試薬、容器、取扱い説明書等を含むことができる。
 さらに、当該細胞回収キットは、遺伝子検査等の検査キットに含むことができ、前処理試薬のキットとして提供することもできる。当該検査キットは、さらに核酸抽出及び遺伝子検査に使用する試薬、容器、取扱い説明書等を含むことができる。
 以下、実施例を用いて本発明をより詳細に説明するが、本発明の技術的範囲はこれら実施例に限定されるものではない。
The cell collection method according to the present invention (hereinafter referred to as “the present method”) is a method including a step of mixing cells and magnetic particles in the presence of alcohol. According to the present invention, by mixing cells and magnetic particles in the presence of alcohol, the cells and magnetic particles co-aggregate to form aggregates. The aggregate formed in this way can be collected and used as an object for a test such as a genetic test.
Cells collected by this method are present in, for example, specimens (for example, clinical specimens such as sputum, gastric juice, stool emulsion, urine, pleural effusion, whole blood, serum, plasma). Examples of the cells include animal cells such as humans and cells such as microorganisms. Further, the microorganism may be a microorganism (or pathogen) belonging to any genus, such as Mycobacterium bovis BCG strain, Mycobacterium tuberculosis (Mycobacterium tuberculosis), Gram-positive bacteria such as mycobacteria, including Mycobacterium avium and Mycobacterium intracellulare, Bordetella pertussis li, Escherichia coli, etc. Gram-negative bacteria, yeasts (Saccharomyces cerevisiae) and other fungi.
The magnetic particles used in this method may be any particles as long as they have magnetism, and examples thereof include particles containing (or consisting of) magnetite and / or silica as surface materials. In other words, in this method, magnetic particles coated with magnetite and / or silica can be used. In addition, the magnetic particles may be surface-modified with a functional group such as a carboxyl group, a methyl group, an octadecyl group, albumin, or boronic acid. Furthermore, the shape of the magnetic particle is not particularly limited, and examples thereof include a spherical shape and an octahedron. Further, examples of the size of the magnetic particles include a diameter (φ) of 25 nm to 2 μm. As these magnetic particles, commercially available particles can be used.
On the other hand, examples of alcohol used in the present method include methanol, ethanol (EtOH), 1-propanol, isopropyl alcohol (2-propanol, IPA), ethylene glycol, 2,2′-iminodiethanol, polyethylene glycol (PEG), and These mixtures etc. are mentioned. Examples of PEG include those having a molecular weight of 20,000 or less (monoethylene glycol to molecular weight 20,000).
In this method, first, magnetic particles and alcohol are added to a specimen containing cells to be collected and mixed. The magnetic particles and alcohol may be added separately to the specimen, or may be added simultaneously. For example, 0.5 to 20 mg of magnetic particles and 1,400 μL of alcohol are added to 600 μL of a specimen containing cells, mixed, and allowed to stand for 0 to 10 minutes. When using EtOH, for example, EtOH is added to a final concentration of 40 to 90%. When IPA is used, IPA is added so that the final concentration is, for example, 20 to 90%. When PEG (molecular weight 1,000) is used, PEG (molecular weight 1,000) is added so that the final concentration is, for example, 2.5 to 30%. When PEG (molecular weight: 8,000) is used, PEG (molecular weight: 8,000) is added so that the final concentration is, for example, 5.25 to 21%.
Next, a magnet is used to collect an agglomerate containing cells and magnetic particles. In this way, cells in the specimen can be collected. Thus concentrated cells (aggregates) can be subjected to tests such as genetic tests. Therefore, the present invention also relates to a testing method such as genetic testing, which includes a step of extracting nucleic acid from cells collected by the method and a step of subjecting the extracted nucleic acid to testing such as genetic testing.
In the present invention, genetic testing refers to PCR (for example, JP-A-2001-286300 and JP-A-62-2000281), SDA (for example, JP-A-5-192195), NASBA (for example, JP-A-5-192181). 2-005864), RCA (Proceedings of the National Academy of Sciences of the United States of America 92: 4641-4645 (1995)), and LAMP (for example, Japanese Patent No. 3313358). And an inspection method using a nucleic acid amplification method such as 2-002934).
As a method for extracting nucleic acid from cells collected by this method, nucleic acid extraction methods generally used for nucleic acid extraction such as genomes and plasmids (for example, phenol / chloroform method and alkali extraction method) and commercially available methods are available. The nucleic acid extraction method using the nucleic acid extraction kit is not particularly limited.
The present invention also relates to a cell collection kit containing magnetic particles and alcohol used in the present method. In addition to magnetic particles and alcohol, the cell collection kit can contain, for example, reagents, containers, instruction manuals, etc. used for cell collection.
Furthermore, the cell collection kit can be included in a test kit for genetic testing or the like, and can also be provided as a kit for a pretreatment reagent. The test kit can further include reagents, containers, instruction manuals, etc. used for nucleic acid extraction and genetic testing.
EXAMPLES Hereinafter, although this invention is demonstrated in detail using an Example, the technical scope of this invention is not limited to these Examples.
マグネタイト粒子の観察
1.目的
 本実施例の目的は、以下の通りである:
 アルコール中にて凝集させたマグネタイト粒子の観察;
 菌体とマグネタイト粒子が共存する条件にて凝集させた場合における、細菌の所在の観察。
2.材料
 本実施例で使用した材料は以下の通りであった:
 マイコバクテリウム・ボビスBCG Tokyo KK−12−21株;
 マグネタイト粒子:酸化二鉄(III)鉄(II)(和光純薬工業);
 生理食塩水(以下、「生食」と表記する。大塚製薬工場);
 集磁用磁石;
 凝集溶媒:エタノール(以下、「EtOH」と表記する。和光純薬工業)、蒸留水(以下、「DW」と表記する。大塚製薬工場);
 光学顕微鏡:オリンパス生物顕微鏡CH2(OLYMPUS);
 分光光度計:CO8000 Biowave(Biochrom Ltd.);
 チールネルゼン染色液:石炭酸フクシン液、メチレンブルー液
3.方法
1)菌液調製
 培養したマイコバクテリウム・ボビスBCG Tokyo KK−12−21株1白金耳相当を生食に懸濁した(なお、以降、当該菌の細胞を「菌体」、生食懸濁液を「菌液」と記す)。
 次いで、菌液中の遊離DNAを除く為、遠心分離(3,000xg、20min)での洗浄操作を2回行った。洗浄後、遠心沈渣に生食を1mL加え、再懸濁した。
 分光光度計により、吸光波長600nmにて上記菌液の吸光値を測定し、McFarland No.1(OD600=0.25)に調製した。調製した菌液を10CFU/mLとし、10倍希釈により10CFU/mLの菌液を調製した。
2)菌液中の菌体回収
 生食、あるいは10CFU/mLの菌液300μLに2.5mgのマグネタイト粒子を懸濁した。次いで、凝集溶媒(EtOH,あるいはDW)を700μL混合した(終濃度70%)。
 混合後、磁石にてマグネタイト粒子を集磁し、上清を除去した。上清除去後、300μLの生食にマグネタイト粒子を再懸濁した。
3)観察
 観察(1):生食使用条件にて、2)の処理を行ったマグネタイト粒子をx200の倍率にて観察した。
 観察(2):菌液使用条件にて、2)の処理を行ったマグネタイト粒子を抗酸菌染色に供した後、x200~x400にて観察した。
4.結果
 結果を図1及び2に示す。
 観察(1):DW添加時はマグネタイト粒子が凝集せずに分散している状態が観察された。一方、EtOH添加時はマグネタイト粒子が凝集する様子が観察された(図1)。マグネタイト粒子がEtOH共存下において凝集する現象は、疎水性相互作用が関与している可能性が考えられたが、詳細なメカニズムについては明らかでない。
 観察(2):マグネタイト粒子の中に赤色に染色された菌体が観察された(図2a)x200)。x400で観察した場合は、マグネタイト粒子が密な視野領域では、菌体が凝集した粒子塊に埋もれる様子と共に抗酸菌の典型的な菌体形状が観察され(図2b)x400)、マグネタイト粒子が粗な視野領域では、菌体表面が吸着したマグネタイト粒子に覆われている様子が観察された(図2c)x400)。
 マグネタイト粒子が凝集現象を生じる条件下において、菌体は、その表面にマグネタイト粒子が吸着すると共にマグネタイト粒子と共凝集を起こすことが確認されたことから、この現象を利用して、菌体を磁性回収できるものと予想された。
Observation of magnetite particles Objectives The objectives of this example are as follows:
Observation of magnetite particles agglomerated in alcohol;
Observation of the location of bacteria when the cells are aggregated under the condition where the cells and magnetite particles coexist.
2. Materials The materials used in this example were as follows:
Mycobacterium bovis BCG Tokyo KK-12-21 strain;
Magnetite particles: ferric oxide (III) iron (II) (Wako Pure Chemical Industries);
Physiological saline (hereinafter referred to as “raw food”, Otsuka Pharmaceutical Factory);
Magnet for collecting magnets;
Aggregating solvent: ethanol (hereinafter referred to as “EtOH”; Wako Pure Chemical Industries), distilled water (hereinafter referred to as “DW”; Otsuka Pharmaceutical Factory);
Optical microscope: Olympus biological microscope CH2 (OLYMPUS);
Spectrophotometer: CO8000 Biowave (Biochrom Ltd.);
2. Tielnelsen staining solution: fuchsin carboxylic acid solution, methylene blue solution Method 1) Preparation of Bacterial Solution The cultured Mycobacterium bovis BCG Tokyo KK-12-21 strain 1 platinum ear equivalent was suspended in a raw diet (hereinafter, the cells of the bacterium are referred to as “bacteria”, a saline suspension. Is referred to as “bacterial fluid”).
Subsequently, in order to remove free DNA in the bacterial solution, a washing operation by centrifugation (3,000 × g, 20 min) was performed twice. After washing, 1 mL of saline was added to the centrifugal sediment and resuspended.
Using a spectrophotometer, the absorbance value of the bacterial solution was measured at an absorption wavelength of 600 nm, and McFarland No. 1 (OD600 = 0.25). The prepared bacterial solution was 10 7 CFU / mL, and a 10 6 CFU / mL bacterial solution was prepared by 10-fold dilution.
2) Cell recovery in bacterial solution 2.5 mg of magnetite particles were suspended in 300 μL of saline or 10 6 CFU / mL bacterial solution. Next, 700 μL of aggregation solvent (EtOH or DW) was mixed (final concentration 70%).
After mixing, magnetite particles were collected with a magnet and the supernatant was removed. After removing the supernatant, the magnetite particles were resuspended in 300 μL of raw food.
3) Observation Observation (1): Magnetite particles subjected to the treatment of 2) were observed at a magnification of x200 under the condition of using raw food.
Observation (2): The magnetite particles treated in 2) were subjected to mycobacterial staining under the conditions of using bacterial solution, and then observed at x200 to x400.
4). Results The results are shown in FIGS.
Observation (1): When DW was added, a state where magnetite particles were dispersed without being aggregated was observed. On the other hand, it was observed that the magnetite particles aggregated when EtOH was added (FIG. 1). The phenomenon that the magnetite particles aggregate in the presence of EtOH may have a hydrophobic interaction, but the detailed mechanism is not clear.
Observation (2): Bacteria stained in red in magnetite particles were observed (FIG. 2a) × 200). When observed at x400, in the field of view where the magnetite particles are dense, a typical cell shape of mycobacteria is observed along with the appearance of the cells being buried in the aggregated particles (Fig. 2b) x400). In the rough visual field region, it was observed that the cell surface was covered with adsorbed magnetite particles (FIG. 2c) × 400).
Under the conditions that magnetite particles cause agglomeration phenomenon, it was confirmed that the cell body adsorbs magnetite particles on the surface and co-aggregates with the magnetite particle. It was expected that it could be recovered.
本方法による菌体回収に必要な条件
1.目的
 本実施例の目的は、本方法による菌体回収に必要な条件の検討である。
2.材料
 本実施例で使用した材料は以下の通りであった:
1)菌液調製、菌体回収
 マイコバクテリウム・ボビス(Mycobacterium bovis)BCG Tokyo KK−12−21株;
 マグネタイト粒子:酸化二鉄(III)鉄(II)(和光純薬工業);
 生食(大塚製薬工場);
 集磁用磁石
 凝集溶媒: EtOH(和光純薬工業)、2−プロパノール(以下、「IPA」と表記する。和光純薬工業)、ポリエチレングリコール1,000(以下、「PEG1,000」と表記する。和光純薬工業)、DW(大塚製薬工場)、PEG1,000は20%(w/v)水溶液を調製して以下の実験に用いた。;
 分光光度計:CO8000 Biowave(Biochrom Ltd.)。
2)遺伝子増幅試験
 Loopamp PURE DNA抽出キット(栄研化学、特許第5432891号);
 Loopamp結核菌群検出試薬キット(栄研化学);
 Loopampリアルタイム濁度測定装置LA−320c(栄研化学)。
3.方法
1)菌液調製
 McFarland No.1の菌液調製方法については実施例1と同様の方法を使用した。
 調製した菌液を10CFU/mLとし、これを10,000及び100,000倍希釈し、それぞれ10、10CFU/mLの菌液を調製した。
2)菌液中の菌体回収(図3)
 10CFU/mLの菌液600μLに2.5mgのマグネタイト粒子を懸濁した。次いで、1,400μLの凝集溶媒を添加、混合した。凝集溶媒の終濃度は表2を参照されたい。
 この混合液から磁石にてマグネタイト粒子を集磁し、上清を除去した。
3)核酸の抽出
 1)「菌液調製」にて調製した各濃度の菌液についても、それぞれ60μLからLoopamp PURE DNA抽出キットを用いてDNA抽出液を調製した。
 一方、2)の方法で回収したマグネタイト粒子と菌体からなる凝集塊に10mLのDWを添加して、マグネタイトを分散させ、次いで、再度マグネタイト粒子を集磁し、上清を除去し、60μLの生食にマグネタイト粒子を再懸濁し、この再懸濁液60μL(全量)からLoopamp PURE DNA抽出キットを用いてDNA抽出液を調製した。
4)遺伝子増幅試験
 Loopamp結核菌群検出試薬キットを用いた一連の試験を、以下、「PURE−TB−LAMP」と記す。
 実験A:方法1)「菌液調製」にて調製した各濃度の菌液から抽出したDNAをPURE−TB−LAMPに供試した。
 実験B:方法2)「菌液中の菌体回収」方法にて回収した凝集塊から抽出したDNAをPURE−TB−LAMPに供試した。
4.結果
 結果を表1及び2に示す。
1)実験Aとして、方法1)の10、10CFU/mLの菌液から抽出したDNAをPURE−TB−LAMPにて3重測定した結果(表1)、
 10CFU/mLは、3重測定のうち、n=2にて陰性となった;
 10CFU/mLは、3重測定全てより陽性検出された。
 本実験において、遺伝子増幅試験に用いたPURE−TB−LAMPが安定して陽性結果を得られる菌液の最低濃度は10CFU/mLであった。
2)実験Bとして、方法2)の方法により、且つ表2のa~fの条件にて、回収した凝集塊から抽出したDNAをPURE−TB−LAMPにて3重測定した結果(表2)、
 ・マグネタイトを添加し、且つ、溶媒としてDWを使用した条件aでは、3重測定全て陰性となった;
 ・マグネタイトを添加し、且つ、溶媒としてEtOH、IPA、PEGを使用した条件b、c、dでは、3重測定全て陽性となった;
 ・マグネタイトを添加し、溶媒を使用しなかった条件eでは、3重測定のうちn=2にて陰性となった;
 ・マグネタイト未添加で、溶媒としてEtOHを使用した条件fでは、3重測定全て陰性となった。
 10CFU/mLの菌液600μLから菌体回収を実施した結果、実験Bの条件b、c、dにて、安定して陽性結果を得られたことから、
 ・上記条件にて供試した菌液中の菌体が回収され、且つ、回収された菌体(つまり再懸濁液の菌)の濃度は、10CFU/mLの菌液と同等であること、
 ・本方法で得た再懸濁液からDNAを抽出して、得られたDNAを鋳型として核酸増幅反応実施可能であること、
が確認されたことから、本方法にて菌体が回収されたと判断された。
 また、実験Bの条件a、eの結果より、使用したマグネタイト粒子そのものに菌を回収する性能はなく、実験Bの条件fの結果より、凝集溶媒の単独使用により菌体回収することはできないことが確認されたことから、本方法による菌体の回収条件として、粒子(マグネタイト粒子)と凝集溶媒(EtOH、IPA、PEG)の併用が必須であると判断された。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Conditions necessary for cell recovery by this method Purpose The purpose of this example is to examine the conditions necessary for cell recovery by this method.
2. Materials The materials used in this example were as follows:
1) Bacterial solution preparation and cell recovery Mycobacterium bovis BCG Tokyo KK-12-21 strain;
Magnetite particles: ferric oxide (III) iron (II) (Wako Pure Chemical Industries);
Raw food (Otsuka Pharmaceutical Factory);
Magnet for collecting magnets Aggregating solvent: EtOH (Wako Pure Chemical Industries), 2-propanol (hereinafter referred to as “IPA”; Wako Pure Chemical Industries), polyethylene glycol 1,000 (hereinafter referred to as “PEG 1,000”) Wako Pure Chemical Industries), DW (Otsuka Pharmaceutical Factory), and PEG 1,000 were prepared in 20% (w / v) aqueous solution and used in the following experiments. ;
Spectrophotometer: CO8000 Biowave (Biochrom Ltd.).
2) Gene amplification test Loopamp PURE DNA extraction kit (Eiken Chemical, Patent No. 5432891);
Loopamp Mycobacterium tuberculosis group detection reagent kit (Eiken Chemical);
Loopamp real-time turbidity measurement apparatus LA-320c (Eiken Chemical).
3. Method 1) Bacterial Solution Preparation McFarland No. The same method as in Example 1 was used for the method for preparing the bacterial solution 1.
The prepared bacterial solution was made 10 7 CFU / mL and diluted 10,000 and 100,000 times to prepare bacterial solutions of 10 3 and 10 2 CFU / mL, respectively.
2) Recovery of bacterial cells in bacterial solution (Fig. 3)
2.5 mg of magnetite particles were suspended in 600 μL of 10 2 CFU / mL bacterial solution. Next, 1,400 μL of aggregating solvent was added and mixed. See Table 2 for the final concentration of flocculation solvent.
Magnetite particles were collected from this mixed solution with a magnet, and the supernatant was removed.
3) Extraction of nucleic acid 1) For each concentration of bacterial solution prepared in “Bacterial solution preparation”, a DNA extract was prepared from 60 μL of each using a Loopamp PURE DNA extraction kit.
On the other hand, 10 mL of DW is added to the agglomerates composed of the magnetite particles and bacterial cells recovered by the method 2) to disperse the magnetite, and then the magnetite particles are collected again, and the supernatant is removed. Magnetite particles were resuspended in the raw food, and a DNA extract was prepared from this resuspension 60 μL (total amount) using a Loopamp PURE DNA extraction kit.
4) Gene amplification test A series of tests using the Loopamp tuberculosis group detection reagent kit is hereinafter referred to as “PURE-TB-LAMP”.
Experiment A: Method 1) DNA extracted from each concentration of bacterial solution prepared in “Bacterial solution preparation” was subjected to PURE-TB-LAMP.
Experiment B: Method 2) DNA extracted from the aggregate collected by the method of “recovering cells in bacterial solution” was subjected to PURE-TB-LAMP.
4). Results The results are shown in Tables 1 and 2.
1) As experiment A, the results of triple measurement of DNA extracted from the bacterial solution of 10 2 , 10 3 CFU / mL of method 1) with PURE-TB-LAMP (Table 1),
10 2 CFU / mL became negative at n = 2 of triplicate measurements;
10 3 CFU / mL was positively detected from all triplicate measurements.
In this experiment, the minimum concentration of the bacterial solution that stably obtained a positive result for PURE-TB-LAMP used in the gene amplification test was 10 3 CFU / mL.
2) As experiment B, the results of triple measurement of DNA extracted from the collected aggregates by PURE-TB-LAMP by the method of method 2) and under the conditions a to f of Table 2 (Table 2) ,
-In condition a where magnetite was added and DW was used as the solvent, all triple measurements were negative;
In conditions b, c, and d where magnetite was added and EtOH, IPA, and PEG were used as solvents, all triple measurements were positive;
In condition e in which magnetite was added and no solvent was used, n = 2 in triplicate measurements were negative;
-Under the condition f where no magnetite was added and EtOH was used as a solvent, all the triple measurements were negative.
As a result of carrying out the cell recovery from 600 μL of the 10 2 CFU / mL bacterial solution, a positive result was stably obtained under the conditions b, c and d of Experiment B.
-The bacterial cells in the bacterial solution tested under the above conditions are collected, and the concentration of the collected bacterial cells (that is, the resuspension bacteria) is equivalent to 10 3 CFU / mL bacterial solution. thing,
-DNA can be extracted from the resuspension obtained by this method, and nucleic acid amplification reaction can be performed using the obtained DNA as a template,
Therefore, it was determined that the cells were collected by this method.
In addition, from the results of Experiments B and A, the magnetite particles used do not have the ability to recover bacteria, and from the results of Experiment B, conditions f cannot be recovered by using a flocculating solvent alone. Therefore, it was determined that the combination of particles (magnetite particles) and aggregating solvent (EtOH, IPA, PEG) was essential as a condition for cell recovery by this method.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
本方法による細菌の回収(1)
1.目的
 本実施例の目的は、本方法による菌体回収率の推定である。
2.材料
 本実施例で使用した材料は以下の通りであった:
1)菌液調製、菌体回収
 実施例2と同様の材料を使用した。当実験では凝集溶媒としてEtOHを使用した。
2)遺伝子増幅試験
 実施例2と同様の材料を使用した。
3.方法
1)菌液調製
 McFarland No.1の菌液調製方法については実施例1と同様の方法を使用した。
 調製した菌液を10CFU/mLとし、これを10,000倍希釈して10CFU/mLの菌液を調製した。
 続いて15.6~10CFU/mLの2倍段階希釈系列を調製した。
2)菌液中の菌体回収
 実施例2と同様の方法を使用した。凝集溶媒EtOHの終濃度は70%。
3)核酸の抽出
 実施例2と同様の方法を使用した。
4)遺伝子増幅試験
 実施例2と同様の方法を使用した。
4.結果
 結果を表3に示す。
 菌液の段階希釈系列から抽出したDNAをPURE−TB−LAMPに供試した結果、最小検出感度は500CFU/mLであった。
 実施例2の「菌液中の菌体回収」方法を用いて回収した凝集塊から抽出したDNAをPURE−TB−LAMPに供試した結果、最小検出感度は62.5CFU/mLであった。
 菌液の測定結果と比較して、安定して陽性結果を得られる菌液の最低濃度が8倍に改善されたこと、菌体の回収方法に供試した菌液の使用量に10倍の差があることを考慮すると、本方法は菌液中の菌体を相当の割合で回収できるものと推察された。
Figure JPOXMLDOC01-appb-T000003
Bacteria recovery by this method (1)
1. Purpose The purpose of this example is to estimate the cell recovery rate by this method.
2. Materials The materials used in this example were as follows:
1) Bacterial solution preparation and bacterial cell collection The same materials as in Example 2 were used. In this experiment, EtOH was used as the aggregation solvent.
2) Gene amplification test The same material as in Example 2 was used.
3. Method 1) Bacterial Solution Preparation McFarland No. The same method as in Example 1 was used for the method for preparing the bacterial solution 1.
The prepared bacterial solution was made 10 7 CFU / mL and diluted 10,000 times to prepare a 10 3 CFU / mL bacterial solution.
Subsequently, a 2-fold serial dilution series of 15.6 to 10 3 CFU / mL was prepared.
2) Cell recovery in the bacterial solution The same method as in Example 2 was used. The final concentration of the aggregation solvent EtOH is 70%.
3) Extraction of nucleic acid The same method as in Example 2 was used.
4) Gene amplification test The same method as in Example 2 was used.
4). Results The results are shown in Table 3.
As a result of subjecting DNA extracted from the serial dilution series of the bacterial solution to PURE-TB-LAMP, the minimum detection sensitivity was 500 CFU / mL.
As a result of subjecting the DNA extracted from the aggregate collected using the “recovering bacterial cells in bacterial solution” method of Example 2 to PURE-TB-LAMP, the minimum detection sensitivity was 62.5 CFU / mL.
Compared with the measurement result of the bacterial liquid, the minimum concentration of the bacterial liquid that can stably obtain a positive result has been improved by 8 times, and the amount of the bacterial liquid used for the method of collecting bacterial cells has been increased by 10 times. Considering that there is a difference, it was speculated that this method can recover the cells in the bacterial solution in a considerable proportion.
Figure JPOXMLDOC01-appb-T000003
本方法による細菌の回収(2)
1.目的
 本実施例の目的は、高濃度の菌液からの菌体回収、及び回収率調査である。
2.材料
 本実施例で使用した材料は以下の通りであった:
1)菌液調製、菌体回収
 実施例3と同様の材料を使用した。当実験では凝集溶媒としてEtOHを使用した。
2)遺伝子増幅試験
 PURE DNA抽出キット(栄研化学);
 市販リアルタイムPCR測定装置:Mx3005P(Agilent Technologies);
 in house作製の鋳型定量LAMP反応試薬;
を使用した。
3.方法
1)菌液調製
 実施例1と同様の方法を使用した。
2)菌液中の菌体回収
 実施例2と同様の方法を使用した。凝集溶媒EtOHの終濃度は70%。
3)核酸の抽出
 実施例2と同様の方法を使用した。
4)遺伝子増幅試験
 実験A:方法1)「菌液調製」にて調製した菌液から抽出したDNAの量を定量した。
 実験B:方法2)「菌液中の菌体回収」にて回収した凝集塊から抽出したDNAの量を定量した。
4.結果
 結果を表4に示す。
 実験Aの定量値は(1.6±0.2)×10copies/mL、実験Bの定量値は(1.7±0.2)×10copies/mLであったことから、本実験において、本方法は懸濁液中の菌体をほぼ100%回収できることが確認された。また、実施例3の結果を踏まえ、本方法は幅広い濃度範囲の菌液に適用可能であることが推察された。
Figure JPOXMLDOC01-appb-T000004
Bacteria recovery by this method (2)
1. [Purpose] The purpose of this example is to collect cells from a high-concentration bacterial solution and to investigate the recovery rate.
2. Materials The materials used in this example were as follows:
1) Bacterial solution preparation and bacterial cell collection The same materials as in Example 3 were used. In this experiment, EtOH was used as the aggregation solvent.
2) Gene amplification test PURE DNA extraction kit (Eiken Chemical);
Commercial real-time PCR measurement apparatus: Mx3005P (Agilent Technologies);
Template quantification LAMP reaction reagent prepared in house;
It was used.
3. Method 1) Preparation of Bacterial Solution The same method as in Example 1 was used.
2) Cell recovery in the bacterial solution The same method as in Example 2 was used. The final concentration of the aggregation solvent EtOH is 70%.
3) Extraction of nucleic acid The same method as in Example 2 was used.
4) Gene amplification test Experiment A: Method 1) The amount of DNA extracted from the bacterial solution prepared in “Bacterial solution preparation” was quantified.
Experiment B: Method 2) The amount of DNA extracted from the agglomerates collected in “Recovering cells in bacterial solution” was quantified.
4). Results The results are shown in Table 4.
Since the quantitative value of Experiment A was (1.6 ± 0.2) × 10 6 copies / mL and the quantitative value of Experiment B was (1.7 ± 0.2) × 10 7 copies / mL, In experiments, it was confirmed that this method can recover almost 100% of the cells in the suspension. Moreover, based on the result of Example 3, it was guessed that this method is applicable to the bacterial solution of a wide concentration range.
Figure JPOXMLDOC01-appb-T000004
本方法でのDNAの回収
1.目的
 本実施例の目的は、本方法でのDNA回収能の確認である。
2.材料
 本実施例で使用した材料は以下の通りであった:
1)菌液調製、菌体回収
 実施例3と同様の材料を使用した。当実験では凝集溶媒としてEtOHを使用した。
2)市販DNA抽出キット
 ISOPLANT II(ニッポンジーン社);
 10mM Tris−HCl(pH8.0)。
3)遺伝子増幅試験
 実施例3と同様の材料を使用した。
3.方法
1)菌体のゲノムDNA抽出、精製
 培養したマイコバクテリウム・ボビス BCG Tokyo KK−12−21株1白金耳相当を生食に懸濁した。次いで、市販DNA抽出キットISOPLANT IIにてゲノムDNAを抽出、精製した。
 得られたDNA溶液を、10mM Tris−HCl(pH8.0)に溶解し、分光光度計を用い、吸光波長260nmにてDNA溶液の吸光値を測定し、得られた重量濃度からコピー数を算出した。
 算出したコピー数に準じて、生食にて100~10copies/mLの10倍段階希釈系列のDNA溶液を調製した。
2)DNA溶液中からのDNA回収
 方法1)で調製したDNA溶液を実施例2と同様の方法に供試した。凝集溶媒EtOHの終濃度は70%。
3)核酸の抽出
 実施例2と同様の方法を使用した。
4)遺伝子増幅試験
 Loopamp結核菌群検出試薬キットを用いた一連の試験を、以下、「PURE−TB−LAMP」と記す。
 実験A:方法1)にて調製した各濃度のDNA溶液から抽出したDNAをPURE−TB−LAMPに供試した。
 実験B:方法2)にて回収した凝集塊から抽出したDNAをPURE−TB−LAMPに供試した。
4.結果
 結果を表5に示す。
 実験Aでは、10copy/mLまで陽性反応が全検出され、実験Bでは、10copy/mLまで陽性反応が全検出されことから、本方法はDNA自体を殆ど回収しないことが確認され、実施例2~4の結果は、本方法により菌体を回収したことによる遺伝子検査の検出感度上昇であることが示唆された。
Figure JPOXMLDOC01-appb-T000005
DNA recovery by this method Purpose The purpose of this example is to confirm the ability of DNA recovery by this method.
2. Materials The materials used in this example were as follows:
1) Bacterial solution preparation and bacterial cell collection The same materials as in Example 3 were used. In this experiment, EtOH was used as the aggregation solvent.
2) Commercial DNA extraction kit ISOPLANT II (Nippon Gene);
10 mM Tris-HCl (pH 8.0).
3) Gene amplification test The same material as in Example 3 was used.
3. Method 1) Extraction and purification of bacterial genome DNA The cultured Mycobacterium bovis BCG Tokyo KK-12-21 strain 1 platinum ear equivalent was suspended in a raw diet. Subsequently, genomic DNA was extracted and purified with a commercially available DNA extraction kit ISOPLANT II.
The obtained DNA solution was dissolved in 10 mM Tris-HCl (pH 8.0), the absorbance value of the DNA solution was measured at an absorption wavelength of 260 nm using a spectrophotometer, and the copy number was calculated from the obtained weight concentration. did.
According to the calculated copy number, a 10-fold serial dilution series DNA solution of 100 to 10 5 copies / mL was prepared by saline.
2) DNA recovery from DNA solution The DNA solution prepared in Method 1) was subjected to the same method as in Example 2. The final concentration of the aggregation solvent EtOH is 70%.
3) Extraction of nucleic acid The same method as in Example 2 was used.
4) Gene amplification test A series of tests using the Loopamp tuberculosis group detection reagent kit is hereinafter referred to as “PURE-TB-LAMP”.
Experiment A: DNA extracted from each concentration of DNA solution prepared in Method 1) was subjected to PURE-TB-LAMP.
Experiment B: DNA extracted from the aggregate collected in method 2) was subjected to PURE-TB-LAMP.
4). Results The results are shown in Table 5.
In experiment A, all positive reactions were detected up to 10 3 copy / mL, and in experiment B, all positive reactions were detected up to 10 4 copy / mL. Therefore, it was confirmed that this method hardly recovered DNA itself. The results of Examples 2 to 4 suggested that the detection sensitivity of the genetic test was increased by recovering the cells by this method.
Figure JPOXMLDOC01-appb-T000005
利用可能な磁性粒子種の検討
1.目的
 本実施例の目的は、磁性粒子の表面材質、粒子表面の官能基の有無、形状及び粒径と菌体回収との関係性調査である。
2.材料
 本実施例で使用した材料は以下の通りであった:
1)菌液調製、菌体回収
 実施例3と同様の材料を使用した。当実験では凝集溶媒としてEtOHを使用した。
 なお、当実験で使用した磁性粒子種については表6を参照されたい。シリカで表面が被覆されたマグネタイト粒子としては、SiMAG−active、SiMAG−hydrophobe、SiMAG−affinityシリーズ(Chemicell)を使用した。また、マグネタイト粒子としては、酸化二鉄(III)鉄(II)(和光純薬工業)の他、酸化二鉄(III)鉄(II)ナノ粒子(和光純薬工業)やマグネタイト製品シリーズ(三井金属工業株式会社)を用いた。
2)遺伝子増幅試験
 実施例3と同様の材料を使用した。
3.方法
1)菌液調製
 実施例2と同様の方法を使用した。
2)菌液中の菌体回収
 実施例2と同様の方法を使用した。凝集溶媒EtOHの終濃度は70%。
3)核酸の抽出
 実施例2と同様の方法を使用した。
4)遺伝子増幅試験
 実施例2と同様の方法を使用した。
4.結果
 結果を表6に示す。
 10CFU/mLの菌液60μLをPURE−TB−LAMPにて3重測定した結果、3重測定のうち、n=2にて陰性となった。
 菌体回収を行った粒子各12種からは、全てから3重測定にて全て陽性を得た。
 これらの結果より、本実験において検討した範囲において、粒子の表面材質、表面修飾官能基の有無、形状及び粒径によらず、本方法による菌体の回収は可能であることが確認された。
Figure JPOXMLDOC01-appb-T000006
Examination of available magnetic particle types Purpose The purpose of this example is to investigate the relationship between the surface material of magnetic particles, the presence / absence of functional groups on the particle surface, the shape and particle size, and the recovery of bacterial cells.
2. Materials The materials used in this example were as follows:
1) Bacterial solution preparation and bacterial cell collection The same materials as in Example 3 were used. In this experiment, EtOH was used as the aggregation solvent.
For the magnetic particle types used in this experiment, see Table 6. As magnetite particles whose surfaces were coated with silica, SiMAG-active, SiMAG-hydrophobe, and SiMAG-affinity series (Chemicell) were used. Magnetite particles include ferric oxide (III) iron (II) (Wako Pure Chemical Industries), ferric oxide (III) iron (II) nanoparticles (Wako Pure Chemical Industries), and magnetite product series (Mitsui). Metal Industry Co., Ltd.) was used.
2) Gene amplification test The same material as in Example 3 was used.
3. Method 1) Bacterial solution preparation The same method as in Example 2 was used.
2) Cell recovery in the bacterial solution The same method as in Example 2 was used. The final concentration of the aggregation solvent EtOH is 70%.
3) Extraction of nucleic acid The same method as in Example 2 was used.
4) Gene amplification test The same method as in Example 2 was used.
4). Results The results are shown in Table 6.
As a result of triple measurement of 10 2 CFU / mL of the bacterial solution of 60 2 in PURE-TB-LAMP, n = 2 in the triple measurement was negative.
From 12 types of each of the particles from which the cells were collected, all obtained positive results in triplicate measurement.
From these results, it was confirmed that the cells can be recovered by this method regardless of the surface material of the particles, the presence / absence of the surface-modifying functional group, the shape and the particle size within the range examined in this experiment.
Figure JPOXMLDOC01-appb-T000006
磁性粒子の使用量の検討
1.目的
 本実施例の目的は、使用可能な粒子量の範囲調査である。
2.材料
 本実施例で使用した材料は以下の通りであった:
1)菌液調製、菌体回収
 実施例3と同様の材料を使用した。当実験では凝集溶媒としてEtOHを使用した。
 なお、使用した粒子量については表7を参照されたい。
2)遺伝子増幅試験
 実施例3と同様の材料を使用した。
3.方法
1)菌液調製
 実施例2と同様の方法を使用した。
2)菌液中の菌体回収
 実施例2と同様の方法を使用した。凝集溶媒EtOHの終濃度は70%。
3)核酸の抽出
 実施例2と同様の方法を使用した。
4)遺伝子増幅試験
 実施例2と同様の方法を使用した。
4.結果
 結果を表7に示す。
 粒子の添加量0.5~20mgの範囲で菌回収が可能であった。
Figure JPOXMLDOC01-appb-T000007
1. Examination of the amount of magnetic particles used Purpose The purpose of this example is to investigate the range of usable particle amounts.
2. Materials The materials used in this example were as follows:
1) Bacterial solution preparation and bacterial cell collection The same materials as in Example 3 were used. In this experiment, EtOH was used as the aggregation solvent.
Refer to Table 7 for the amount of particles used.
2) Gene amplification test The same material as in Example 3 was used.
3. Method 1) Bacterial solution preparation The same method as in Example 2 was used.
2) Cell recovery in the bacterial solution The same method as in Example 2 was used. The final concentration of the aggregation solvent EtOH is 70%.
3) Extraction of nucleic acid The same method as in Example 2 was used.
4) Gene amplification test The same method as in Example 2 was used.
4). Results The results are shown in Table 7.
Bacteria could be collected in the range of 0.5 to 20 mg of particles added.
Figure JPOXMLDOC01-appb-T000007
凝集溶媒の検討(1)
1.目的
 本実施例の目的は、利用可能な溶媒種(アルコール種)の調査である。
2.材料
 本実施例で使用した材料は以下の通りであった:
1)菌液調製、菌体回収
 実施例3と同様の材料を使用した。
 なお、使用した凝集溶媒種については表8を参照されたい。
2)遺伝子増幅試験
 実施例3と同様の材料を使用した。
3.方法
1)菌液調製
 実施例2と同様の方法を使用した。
2)菌液中の菌体回収
 実施例2と同様の方法を使用した。凝集溶媒はいずれも終濃度70%で使用した。
3)核酸の抽出
 実施例2と同様の方法を使用した。
4)遺伝子増幅試験
 実施例2と同様の方法を使用した。
4.結果
 結果を表8に示す。
 EtOH、IPA(2−プロパノール)の他、メタノール、1−プロパノール、エチレングリコール、2,2’−イミノジエタノールにて菌回収が認められた。
Figure JPOXMLDOC01-appb-T000008
Examination of coagulation solvent (1)
1. Purpose The purpose of this example is to investigate available solvent species (alcohol species).
2. Materials The materials used in this example were as follows:
1) Bacterial solution preparation and bacterial cell collection The same materials as in Example 3 were used.
Refer to Table 8 for the agglomerated solvent species used.
2) Gene amplification test The same material as in Example 3 was used.
3. Method 1) Bacterial solution preparation The same method as in Example 2 was used.
2) Cell recovery in the bacterial solution The same method as in Example 2 was used. All flocculating solvents were used at a final concentration of 70%.
3) Extraction of nucleic acid The same method as in Example 2 was used.
4) Gene amplification test The same method as in Example 2 was used.
4). Results The results are shown in Table 8.
In addition to EtOH and IPA (2-propanol), bacterial recovery was observed with methanol, 1-propanol, ethylene glycol, and 2,2′-iminodiethanol.
Figure JPOXMLDOC01-appb-T000008
凝集溶媒の検討(2)
1.目的
 本実施例の目的は、凝集溶媒種であるアルコールの至適濃度範囲調査である。
2.材料
 本実施例で使用した材料は以下の通りであった:
1)菌液調製、菌体回収
 実施例3と同様の材料を使用した。凝集溶媒はEtOH及びIPAを使用した。
2)遺伝子増幅試験
 実施例3と同様の材料を使用した。
3.方法
1)菌液調製
 実施例2と同様の方法を使用した。
2)菌液中の菌体回収
 実施例2と同様の方法を使用した。菌液600μLに対して添加する凝集溶媒の量を変えた。凝集溶媒の混合時の濃度、すなわち終濃度の範囲については表9を参照されたい。
3)核酸の抽出
 実施例2と同様の方法を使用した。
4)遺伝子増幅試験
 実施例2と同様の方法を使用した。
4.結果
 結果を表9に示す。
 EtOHでは40~80%、IPAでは20~80%の範囲にて菌回収が認められた。
 これらの結果から、凝集溶媒毎に菌体回収に至適な濃度範囲が存在することが明らかとなった。
 EtOHよりIPAのほうが広い有効濃度を示した理由として、疎水性の強さ(疎水性を示すアルキル基の炭素鎖の長さの違い)による可能性が考えられた。
Figure JPOXMLDOC01-appb-T000009
Examination of coagulation solvent (2)
1. Purpose The purpose of this example is to investigate the optimum concentration range of alcohol as a coagulation solvent species.
2. Materials The materials used in this example were as follows:
1) Bacterial solution preparation and bacterial cell collection The same materials as in Example 3 were used. EtOH and IPA were used as the aggregation solvent.
2) Gene amplification test The same material as in Example 3 was used.
3. Method 1) Bacterial solution preparation The same method as in Example 2 was used.
2) Cell recovery in the bacterial solution The same method as in Example 2 was used. The amount of the aggregation solvent added to 600 μL of the bacterial solution was changed. See Table 9 for the concentration of the flocculating solvent at the time of mixing, that is, the range of the final concentration.
3) Extraction of nucleic acid The same method as in Example 2 was used.
4) Gene amplification test The same method as in Example 2 was used.
4). Results The results are shown in Table 9.
Bacterial recovery was observed in the range of 40 to 80% for EtOH and 20 to 80% for IPA.
From these results, it became clear that there is an optimum concentration range for cell recovery for each aggregation solvent.
The reason that IPA showed a wider effective concentration than EtOH was considered to be due to the strength of hydrophobicity (difference in the length of the carbon chain of the alkyl group exhibiting hydrophobicity).
Figure JPOXMLDOC01-appb-T000009
凝集溶媒の検討(3)
1.目的
 本実施例の目的は、PEGの分子量および至適濃度範囲調査である。
2.材料
 本実施例で使用した材料は以下の通りであった:
1)菌液調製、菌体回収
 実施例3と同様の材料を使用した。
 なお、使用した凝集溶媒はPEG分子量1,000、3,350,8,000、20,000の4種であり、それぞれ20%(w/v)水溶液を調製して実験Aに使用した。また、PEG1,000の50%(w/v)水溶液、とPEG8,000の30%(w/v)水溶液をそれぞれ調製して実験Bに使用した。
2)遺伝子増幅試験
 実施例3と同様の材料を使用した。
3.方法
1)菌液調製
 実施例2と同様の方法を使用した。
2)菌液中の菌体回収
 実施例2と同様の方法を使用し、以下2種類の実験を行った。
 実験A:終濃度15%の条件にて、PEG1,000~20,000での菌回収状況を調査した。
 実験B:菌液600μLに対して添加するPEG1,000、PEG8,000の量を変えて菌回収状況を調査した。
 実験A,Bで使用した凝集溶媒の混合時の濃度、すなわち終濃度の範囲については表10~12を参照されたい。
3)核酸の抽出
 実施例2と同様の方法を使用した。
4)遺伝子増幅試験
 実施例2と同様の方法を使用した。
4.結果
 結果を表10~12に示す。
 本実験Aの結果より、使用したすべての分子量にて菌回収が認められた。
 実験Bの結果より、PEG1,000では2.5~30%、PEG8,000では5.25~21%の範囲にて菌回収が認められた。
 当実験並びに実施例8のエチレングリコール(モノマー)の結果を踏まえると、分子量62.1~20,000の範囲にて回収可能であることが確認された。
 また、PEGの場合においても菌体回収に至適な濃度範囲が存在することが明らかとなった。
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Examination of coagulation solvent (3)
1. Purpose The purpose of this example is to investigate the molecular weight and optimal concentration range of PEG.
2. Materials The materials used in this example were as follows:
1) Bacterial solution preparation and bacterial cell collection The same materials as in Example 3 were used.
The aggregating solvents used were four kinds of PEG molecular weights of 1,000, 3,350,8,000, and 20,000, and 20% (w / v) aqueous solutions were prepared and used in Experiment A. Further, a 50% (w / v) aqueous solution of PEG 1,000 and a 30% (w / v) aqueous solution of PEG 8,000 were prepared and used in Experiment B.
2) Gene amplification test The same material as in Example 3 was used.
3. Method 1) Bacterial solution preparation The same method as in Example 2 was used.
2) Bacterial cell recovery in bacterial solution Using the same method as in Example 2, the following two types of experiments were conducted.
Experiment A: The condition of bacterial recovery with PEG 1,000 to 20,000 was investigated under the condition of a final concentration of 15%.
Experiment B: The microbial recovery state was investigated by changing the amount of PEG 1,000 and PEG 8,000 added to 600 μL of the bacterial solution.
See Tables 10 to 12 for the concentration of the flocculating solvent used in Experiments A and B, that is, the range of final concentrations.
3) Extraction of nucleic acid The same method as in Example 2 was used.
4) Gene amplification test The same method as in Example 2 was used.
4). Results The results are shown in Tables 10-12.
From the results of this experiment A, bacterial recovery was observed at all molecular weights used.
From the results of Experiment B, bacterial recovery was observed in the range of 2.5 to 30% for PEG 1,000 and 5.25 to 21% for PEG 8,000.
Based on the results of this experiment and the ethylene glycol (monomer) of Example 8, it was confirmed that the molecular weight can be recovered in the range of 62.1 to 20,000.
In addition, it has been clarified that there is an optimum concentration range for cell recovery even in the case of PEG.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
菌体の回収(1)
1.目的
 本実施例の目的は、適用菌種の範囲調査1:マイコバクテリウム・ボビス以外の同属菌種への本方法の適用である。
2.材料
 本実施例で使用した材料は以下の通りであった:
1)菌液調製、菌体回収
 実施例3と同様の材料を使用した。当実験では凝集溶媒としてEtOHを使用した。
 なお、本実験ではマイコバクテリウム・ツベルクローシス(Mycobacterium tuberculosis)H37Rv KK11−291株を使用した。
2)遺伝子増幅試験
 実施例3と同様の材料を使用した。
3.方法
1)菌液調製
 実施例3と同様の方法を使用した。ただし、当実験では、7.8~500CFU/mLの2倍段階希釈系列を調製した。
2)菌液中の菌体回収
 実施例3と同様の方法を使用した。凝集溶媒EtOHの終濃度は70%。
3)核酸の抽出
 実施例3と同様の方法を使用した。
4)遺伝子増幅試験
 実施例3と同様の方法を使用した。
4.結果
 結果を表13に示す。
 実験A:方法1)「菌液調製」にて調製した菌液の各希釈液から抽出したDNAをPURE−TB−LAMPに供試し、最小検出感度を調査した結果、125CFU/mLであった。
 実験B:方法2)「菌液中の菌体回収」方法により回収した凝集塊から抽出したDNAをPURE−TB−LAMPに供試した結果、最小検出感度は15.6CFU/mLであった。
 これらの結果より、本方法は、マイコバクテリウム・ボビス以外のマイコバクテリウム属の他の菌種にも適用できることが確認された。
 また、実験Aにおいて、当実験に用いたマイコバクテリウム・ツベルクローシスの検出感度がマイコバクテリウム・ボビスと比較して8倍が高かったことは、それぞれの菌種のゲノムDNA上の標的遺伝子(IS6110)のコピー数の違い(マイコバクテリウム・ツベルクローシスH37Rv KK11−291株は16コピー、マイコバクテリウム・ボビスBCG Tokyo KK−12−21株は2コピー)を反映しているものと考えられた。
Figure JPOXMLDOC01-appb-T000013
Recovery of bacterial cells (1)
1. Purpose The purpose of this example is the application of the present method to the same species of bacteria other than Mycobacterium bovis.
2. Materials The materials used in this example were as follows:
1) Bacterial solution preparation and bacterial cell collection The same materials as in Example 3 were used. In this experiment, EtOH was used as the aggregation solvent.
In this experiment, Mycobacterium tuberculosis H37Rv KK11-291 strain was used.
2) Gene amplification test The same material as in Example 3 was used.
3. Method 1) Bacterial solution preparation The same method as in Example 3 was used. However, in this experiment, a 2-fold serial dilution series of 7.8 to 500 CFU / mL was prepared.
2) Bacterial cell recovery in bacterial solution The same method as in Example 3 was used. The final concentration of the aggregation solvent EtOH is 70%.
3) Extraction of nucleic acid The same method as in Example 3 was used.
4) Gene amplification test The same method as in Example 3 was used.
4). Results The results are shown in Table 13.
Experiment A: Method 1) The DNA extracted from each dilution of the bacterial solution prepared in “Bacterial solution preparation” was subjected to PURE-TB-LAMP, and the minimum detection sensitivity was examined. As a result, it was 125 CFU / mL.
Experiment B: Method 2) As a result of subjecting DNA extracted from the aggregate collected by the method of “recovering bacterial cells in bacterial solution” to PURE-TB-LAMP, the minimum detection sensitivity was 15.6 CFU / mL.
From these results, it was confirmed that this method can be applied to other species of the genus Mycobacterium other than Mycobacterium bovis.
In Experiment A, the detection sensitivity of Mycobacterium tuberculosis used in this experiment was 8 times higher than that of Mycobacterium bovis. (IS6110) copy number difference (16 for Mycobacterium tuberculosis H37Rv KK11-291 and 2 for Mycobacterium bovis BCG Tokyo KK-12-21) It was.
Figure JPOXMLDOC01-appb-T000013
菌体の回収(2)
1.目的
 本実施例の目的は、適用菌種の範囲調査2:グラム陰性菌への適用である。
2.材料
 本実施例で使用した材料は以下の通りであった:
1)菌液調製、菌体回収
 実施例2と同様の材料を使用した。
 なお、本実験では、
 百日咳菌(Bordetella pertussis)Tohama株;
 マグネタイト粒子;
 凝集溶媒:ポリエチレングリコール8000(PEG8,000,和光純薬工業)、PEG8,000は、15%(w/v)水溶液を調製して以下の実験に使用した。
を使用した。
2)遺伝子増幅試験
 Loopamp SR DNA抽出キット(栄研化学);
 Loopamp百日咳菌群検出試薬キット(栄研化学);
 Loopampリアルタイム濁度測定装置LA−320C(栄研化学);
 卓上遠心分離機:マイクロ冷却遠心機3780(久保田商事);
を使用した。
3.方法
1)菌液調製
 培養した百日咳菌1白金耳相当を生食に懸濁した(なお、以降、当該菌の細胞を「菌体」、生食懸濁液を「菌液」と記す)。
 次いで、菌液中の遊離DNAを除く為、遠心分離(15,000xg、20min)での洗浄操作を2回行った。洗浄後、遠心沈渣に生食を1mL加え、再懸濁した。
 分光光度計により、吸光波長600nmにて上記菌液の吸光値を測定し、McFarland No.0.5(OD600=0.13)に調製した。調製した菌液を1.5×10CFU/mLとし、これを10,000倍希釈して1.5×10CFU/mLの菌液を調整し、続いて4、8倍希釈し、3,750、1,875CFU/mLの菌液を調製した。
2)菌液中の菌体回収
 実施例2と同様の方法を使用した。ただし、菌体回収菌液は300μL、凝集溶媒は700μL(凝集溶媒の終濃度10.5%)を用いた。
3)核酸の抽出
 実施例2と同様の方法を使用した。ただし、DNA抽出キットには、Loopamp SR DNA抽出キットを用いた。また、方法2)で回収した凝集塊は、DWによる洗浄ステップを行わず、直接50μLの生食に再懸濁し、DNA抽出キットに供した。
4)遠心分離による菌回収
 各濃度の菌液300μLを15,000xg、5minの条件にて遠心分離に供した。次いで、上清を除去し、50μLの生食に再懸濁した。
5)遺伝子増幅試験
 方法3)で菌液或いは回収した凝集塊からそれぞれ抽出したDNA10μLを使用し、Loopamp百日咳菌群検出試薬キットにて4重測定した。
4.結果
 結果を表14に示す。
 Loopamp百日咳菌群検出試薬キットにて、各DNA抽出液を測定した結果、PEG8,000を使用した場合にのみ両検体とも4重測定全てで陽性となり、遠心分離処理では3,750CFU/mLにて3/4、1,875CFU/mLにて1/4の陽性検出率であった。
Figure JPOXMLDOC01-appb-T000014
Recovery of bacterial cells (2)
1. Purpose The purpose of this example is to investigate the range of applicable bacterial species 2: gram-negative bacteria.
2. Materials The materials used in this example were as follows:
1) Bacterial solution preparation and bacterial cell collection The same materials as in Example 2 were used.
In this experiment,
Bordetella pertussis Tohama strain;
Magnetite particles;
Aggregation solvent: Polyethylene glycol 8000 (PEG 8,000, Wako Pure Chemical Industries) and PEG 8,000 were prepared in a 15% (w / v) aqueous solution and used in the following experiments.
It was used.
2) Gene amplification test Loopamp SR DNA extraction kit (Eiken Chemical);
Loopamp pertussis group detection reagent kit (Eiken Chemical);
Loopamp real-time turbidity measurement device LA-320C (Eiken Chemical);
Tabletop centrifuge: Microcooled centrifuge 3780 (Kubota Corporation);
It was used.
3. Method 1) Preparation of Bacterial Solution Cultured Bordetella pertussis 1 platinum ear equivalent was suspended in saline (hereinafter, the cells of the bacteria are referred to as “bacteria” and the saline suspension as “bacterial fluid”).
Subsequently, in order to remove free DNA in the bacterial solution, a washing operation with centrifugation (15,000 × g, 20 min) was performed twice. After washing, 1 mL of saline was added to the centrifugal sediment and resuspended.
Using a spectrophotometer, the absorbance value of the bacterial solution was measured at an absorption wavelength of 600 nm, and McFarland No. It was adjusted to 0.5 (OD600 = 0.13). The prepared bacterial solution is 1.5 × 10 8 CFU / mL, diluted 10,000 times to prepare a 1.5 × 10 3 CFU / mL bacterial solution, and subsequently diluted 4 to 8 times. 3,750, 1,875 CFU / mL of bacterial solution was prepared.
2) Cell recovery in the bacterial solution The same method as in Example 2 was used. However, 300 μL was used as the bacterial cell recovery bacterial solution, and 700 μL was used as the aggregation solvent (final concentration of the aggregation solvent was 10.5%).
3) Extraction of nucleic acid The same method as in Example 2 was used. However, the Loopamp SR DNA extraction kit was used as the DNA extraction kit. In addition, the agglomerates collected in method 2) were directly resuspended in 50 μL of raw food without using a washing step with DW, and used for the DNA extraction kit.
4) Bacteria recovery by centrifugation 300 μL of each concentration of bacterial solution was subjected to centrifugation under conditions of 15,000 × g and 5 min. The supernatant was then removed and resuspended in 50 μL of saline.
5) Gene Amplification Test Using 10 μL of DNA extracted from the bacterial solution or the collected aggregate in Method 3), quadruplicate measurement was performed using a Loopamp Pertussis group detection reagent kit.
4). Results The results are shown in Table 14.
As a result of measuring each DNA extract with the Loopamp Pertussis group detection reagent kit, both samples were positive only in the case of using PEG 8,000, and all samples were positive in the case of centrifuging. The positive detection rate was 1/4 at 3/4 and 1,875 CFU / mL.
Figure JPOXMLDOC01-appb-T000014
菌体の回収(3)
1.目的
 本実施例の目的は、適用菌種の範囲調査である。
2.材料
1)菌液調製、菌体回収
 実施例2と同様の材料を使用した。
 なお、本実験で使用した菌種として、
 ・マイコバクテリウム・ボビス(Mycobacterium bovis)BCG Tokyo KK12−21株
 ・マイコバクテリウム・アビウム(Mycobacterium avium)JATA51−01株
 ・マイコバクテリウム・イントラセルラー(Mycobacterium intacellulare)JATA52−01株
 ・大腸菌(Escherichia coli)ATCC11775株
 ・酵母菌(Saccharomyces cerevisiae)BY611株
を、培地より約1白金耳相当採取し、生食に懸濁した菌液を使用した。
 また、凝集溶媒として、EtOH,およびPEG1,000を用いた。PEG1,000は、15%(w/v)水溶液を調製して以下の実験に使用した。
2)DNA抽出
 Loopamp PURE DNA抽出キット(栄研化学)を使用した。
3)DNA測定
 吸光値測定はSpectraMax Plus 384(Molecular Devices社)を使用した。
3.方法
1)菌液調製
 ・培養した上記菌体1白金耳相当を生食に懸濁した。
 ・菌液中の遊離DNAを除く為、遠心分離(15,000xg、20min)での洗浄操作を2回行った。
 ・遠心沈渣に生食を1mL加え、再懸濁した。
2)菌液中の菌体回収
 実施例2と同様の方法を使用した。凝集溶媒EtOH(70%)、PEG1,000の終濃度はそれぞれ70%、10.5%。
3)核酸の抽出
 各種菌液を用いて、以下の処理を行った。
 処理A:方法1)「菌液調製」により調製した菌液60μLから実施例2の方法を使用してDNAを抽出した。
 処理B:方法2)「菌液中の菌体回収」方法、且つ凝集溶媒にはEtOH(70%)を使用して回収した凝集塊を、実施例2の核酸抽出方法を使用してDNAを抽出した。
 処理C:方法2)「菌液中の菌体回収」方法、且つ凝集溶媒にはPEG1,000(15%)を使用回収した凝集塊を、実施例2の核酸抽出方法を使用してDNAを抽出した。
4)DNA濃度測定
 得られた各DNA抽出液をTris−HCl pH8.0(和光純薬工業)にて2~10倍に希釈し、吸光度測定値よりDNA濃度を算出した。
4.結果
 結果を表15に示す。
 本試験に供試した全ての菌種において、本方法による菌体回収操作(処理B,C)を行った場合に、何れのDNA抽出液も、本方法を用いずに調製(処理A)したDNA抽出液と比較して、より高いDNA濃度及び濃縮倍率を示した。
 このことから、本方法は、抗酸菌(グラム陽性菌)、グラム陰性菌、真菌類の細胞を回収可能であることが確認された。
Figure JPOXMLDOC01-appb-T000015
Recovery of bacterial cells (3)
1. Purpose The purpose of this example is to investigate the range of applicable bacterial species.
2. Material 1) Bacterial solution preparation and bacterial cell collection The same materials as in Example 2 were used.
In addition, as the bacterial species used in this experiment,
-Mycobacterium bovis BCG Tokyo KK12-21 strain-Mycobacterium avium JATA51-01 strain-Mycobacterium intracellularis E. coli ) ATCC11775 strain-About 1 platinum loop of yeast (Saccharomyces cerevisiae) BY611 strain was collected from the medium and suspended in a saline solution.
Further, EtOH and PEG 1,000 were used as the aggregation solvent. For PEG 1,000, a 15% (w / v) aqueous solution was prepared and used in the following experiments.
2) DNA extraction A Loopamp PURE DNA extraction kit (Eiken Chemical) was used.
3) DNA measurement SpectraMax Plus 384 (Molecular Devices) was used for the absorbance measurement.
3. Method 1) Bacterial solution preparation The cultured bacterial cell 1 equivalent of platinum ear was suspended in a raw food.
-In order to remove free DNA in the bacterial solution, washing with centrifugation (15,000 xg, 20 min) was performed twice.
-1 mL of saline was added to the centrifugal sediment and resuspended.
2) Cell recovery in the bacterial solution The same method as in Example 2 was used. The final concentrations of the aggregation solvent EtOH (70%) and PEG 1,000 are 70% and 10.5%, respectively.
3) Extraction of nucleic acid The following treatment was performed using various bacterial solutions.
Treatment A: Method 1) DNA was extracted from 60 μL of the bacterial solution prepared by “Preparation of bacterial solution” using the method of Example 2.
Process B: Method 2) “Recovering bacterial cells in bacterial solution” method, and collecting aggregates collected using EtOH (70%) as an agglutination solvent. Extracted.
Process C: Method 2) “Recovering bacterial cells in bacterial solution” method, and using PEG 1,000 (15%) as an aggregating solvent to collect and recover the aggregated mass using the nucleic acid extraction method of Example 2 Extracted.
4) DNA concentration measurement Each DNA extract thus obtained was diluted 2 to 10 times with Tris-HCl pH 8.0 (Wako Pure Chemical Industries, Ltd.), and the DNA concentration was calculated from the absorbance measurement value.
4). Results The results are shown in Table 15.
When all the bacterial species used in this test were subjected to the cell collection operation (treatments B and C) according to this method, any DNA extract was prepared (treatment A) without using this method. Compared with the DNA extract, it showed higher DNA concentration and concentration ratio.
From this, it was confirmed that this method can collect cells of acid-fast bacteria (gram-positive bacteria), gram-negative bacteria, and fungi.
Figure JPOXMLDOC01-appb-T000015
様々な検体種への適用
1.目的
 本実施例の目的は、本方法にて菌体回収可能な生体由来の検体種の調査である。
2.材料
 本実施例で使用した材料は以下の通りであった:
1)菌液調製、菌体回収
 実施例3と同様の材料を使用した。当実験では凝集溶媒としてEtOHを使用した。
2)検体
 生体由来検体として喀痰、胃液、10%便懸濁液上清(便乳剤)、尿、胸水、全血を使用した。
 なお、喀痰検体については、同検体600μLに1,200μLの0.5M NaOHを添加し、混合して溶解した検体を使用した。
3)遺伝子増幅試験
 実施例3と同様の材料を使用した。
3.方法
1)菌液調製
 実施例2と同様の方法を使用した。ただし、当操作では10CFU/mLの菌液を調製した。
2)検体調製
 各生体由来の検体に1)の菌液を1/10量添加し、10CFU/mLの各種菌液を調製した。
3)菌液中の菌体回収
 実施例2と同様の方法を使用した。凝集溶媒EtOHの終濃度は70%。
4)核酸の抽出
 実施例2と同様の方法を使用した。
5)遺伝子増幅試験
 実施例2と同様の方法を使用した。
4.結果
 結果を表16に示す。
 上記に挙げた全ての検体からLAMPにて陽性検出された。
 このことから、本方法により幅広い検体種から菌体の回収が可能であることが確認された。
Figure JPOXMLDOC01-appb-T000016
Application to various specimen types [Purpose] The purpose of this example is to investigate biological specimen species that can be recovered by this method.
2. Materials The materials used in this example were as follows:
1) Bacterial solution preparation and bacterial cell collection The same materials as in Example 3 were used. In this experiment, EtOH was used as the aggregation solvent.
2) Specimen Sputum, gastric juice, 10% stool suspension supernatant (stool emulsion), urine, pleural effusion, and whole blood were used as biological specimens.
The sputum sample used was a sample obtained by adding 1,200 μL of 0.5 M NaOH to 600 μL of the sample, mixing and dissolving.
3) Gene amplification test The same material as in Example 3 was used.
3. Method 1) Bacterial solution preparation The same method as in Example 2 was used. However, in this operation, a 10 3 CFU / mL bacterial solution was prepared.
2) Sample preparation 1/10 amount of the bacterial solution of 1) was added to each biological sample to prepare various bacterial solutions of 10 2 CFU / mL.
3) Cell recovery in bacterial solution The same method as in Example 2 was used. The final concentration of the aggregation solvent EtOH is 70%.
4) Extraction of nucleic acid The same method as in Example 2 was used.
5) Gene amplification test The same method as in Example 2 was used.
4). Results The results are shown in Table 16.
All samples listed above were positively detected by LAMP.
From this, it was confirmed that the cells can be recovered from a wide variety of specimen species by this method.
Figure JPOXMLDOC01-appb-T000016
粒子と凝集溶媒の添加順序の検討
1.目的
 本実施例の目的は、粒子と凝集溶媒の添加順序についての調査である。
2.材料
 本実施例で使用した材料は以下の通りであった:
1)菌液調製、菌体回収
 実施例3と同様の材料を使用した。当実験では凝集溶媒としてEtOHを使用した。
2)遺伝子増幅試験
 実施例3と同様の材料を使用した。
3.方法
1)菌液調製
2)菌液中の菌体回収
 実施例2と同様の方法を使用した。凝集溶媒EtOHの終濃度は70%。なお、マグネタイト粒子、溶媒の添加順序を表17に記した。
Figure JPOXMLDOC01-appb-T000017
3)核酸の抽出
 実施例2と同様の方法を使用した。
4)遺伝子増幅試験
 実施例2と同様の方法を使用した。
4.結果
 結果を表18に示す。
 実験A:三重測定で1/3の陽性検出率であった。
 実験B:条件(1)~(3)のいずれの添加順序でも、全て陽性反応が得られた。
 これらの結果から、本方法は試薬の添加順序によらず実施可能であることが確認された。
Figure JPOXMLDOC01-appb-T000018
Examination of order of addition of particles and coagulation solvent Purpose The purpose of this example is to investigate the order of addition of particles and flocculating solvent.
2. Materials The materials used in this example were as follows:
1) Bacterial solution preparation and bacterial cell collection The same materials as in Example 3 were used. In this experiment, EtOH was used as the aggregation solvent.
2) Gene amplification test The same material as in Example 3 was used.
3. Method 1) Bacterial solution preparation 2) Cell recovery in bacterial solution The same method as in Example 2 was used. The final concentration of the aggregation solvent EtOH is 70%. The addition order of the magnetite particles and the solvent is shown in Table 17.
Figure JPOXMLDOC01-appb-T000017
3) Extraction of nucleic acid The same method as in Example 2 was used.
4) Gene amplification test The same method as in Example 2 was used.
4). Results The results are shown in Table 18.
Experiment A: The positive detection rate was 1/3 in triplicate measurement.
Experiment B: A positive reaction was obtained for all the addition orders of the conditions (1) to (3).
From these results, it was confirmed that this method can be carried out regardless of the order of addition of reagents.
Figure JPOXMLDOC01-appb-T000018
凝集溶媒添加後の静置時間の検討
1.目的
 凝集溶媒を添加した後の静置時間と菌体回収との関係性調査
2.材料
1)菌液調製、菌体回収
 実施例3と同様の材料を使用した。当実験では凝集溶媒としてEtOHを使用した。
2)遺伝子増幅試験
 実施例3と同様の材料を使用した。
3.方法
1)菌液調製
 実施例2と同様の方法を使用した。
2)菌液中の菌体回収
 実施例2と同様の方法を使用した。凝集溶媒EtOHの終濃度は70%。
 凝集溶媒添加後の静置時間を0,1,3,5,10分とした。
3)核酸の抽出
 実施例2と同様の方法を使用した。
4)遺伝子増幅試験
 実施例2と同様の方法を使用した。
4.結果
 結果を表19に示す。
 10CFU/mLの菌液60μLをPURE−TB−LAMPにて3重測定した結果、3重測定のうち、n=2にて陰性となった。
 本方法による菌体回収操作を行った場合、0~10分の静置時間によらず、3重測定にてすべて陽性となった。
 これらの結果より、本実験により検討した静置時間の範囲においては、本方法は、菌液に凝集溶媒を添加した後の静置時間によらず菌体を回収できることが確認された。
Figure JPOXMLDOC01-appb-T000019
1. Examination of standing time after addition of flocculating solvent Objective Investigation of the relationship between the standing time after addition of the flocculating solvent and cell recovery. Material 1) Bacterial solution preparation and bacterial cell collection The same materials as in Example 3 were used. In this experiment, EtOH was used as the aggregation solvent.
2) Gene amplification test The same material as in Example 3 was used.
3. Method 1) Bacterial solution preparation The same method as in Example 2 was used.
2) Cell recovery in the bacterial solution The same method as in Example 2 was used. The final concentration of the aggregation solvent EtOH is 70%.
The standing time after addition of the aggregating solvent was set to 0, 1, 3, 5, and 10 minutes.
3) Extraction of nucleic acid The same method as in Example 2 was used.
4) Gene amplification test The same method as in Example 2 was used.
4). Results The results are shown in Table 19.
As a result of triple measurement of 10 2 CFU / mL of the bacterial solution of 60 2 in PURE-TB-LAMP, n = 2 in the triple measurement was negative.
When the bacterial cell collection operation according to this method was performed, all the samples were positive in triplicate measurement regardless of the standing time of 0 to 10 minutes.
From these results, it was confirmed that in the range of the standing time examined by this experiment, the present method can recover the cells regardless of the standing time after adding the aggregation solvent to the bacterial solution.
Figure JPOXMLDOC01-appb-T000019
動物細胞の回収
1.目的
 適用細胞種の範囲調査:動物細胞への本方法の適用。
2.材料
 本実施例で使用した材料は以下の通りであった:
1)細胞懸濁液調製、細胞回収
 細胞:ヒト末梢血単核球(クラボウ)
 生理食塩水(生食):大塚生食注(大塚製薬工場)
 血球計算盤(東京硝子器械)
 マグネタイト粒子:MG−1310(三井金属鉱業)
 集磁用磁石
 凝集溶媒:20%ポリエチレングリコール1,000(PEG1,000,和光純薬工業)、20%ポリエチレングリコール8,000(PEG8,000,和光純薬工業)
2)遺伝子増幅試験
 Loopamp PURE DNA抽出キット(栄研化学)
 Loopamp DNA増幅試薬D(栄研化学)
 ヒトシトクローム遺伝子(CYP2C19)検出用LAMPプライマー
 Loopampリアルタイム濁度測定装置LA−320c(栄研化学)
3.方法
1)細胞懸濁液調製
 生理食塩水にヒト末梢血単核球を懸濁した後、血球計算盤にて細胞計数し、14,300cells/μLの細胞懸濁液を得た。これを生理食塩水にて10倍段階希釈し、以下の濃度の細胞懸濁液を作製した。
 a.1,430cells/μL
 b.143cells/μL
 c.14.3cells/μL
2)懸濁液中の細胞回収
 実施例2と同様の方法を使用した。
 ・300μLの細胞懸濁液bに2.5mgのマグネタイト粒子を懸濁した。
 ・各凝集溶媒を700μL混合した(各PEGの終濃度=14%)。
 ・磁石にてマグネタイト粒子を集磁し、上清を除去した。
 ・磁石を取り外し、10mLの生理食塩水を添加して、マグネタイト粒子を分散させた。
 ・再度、マグネタイト粒子を集磁し、上清を除去した。
 ・60μLの生理食塩水にマグネタイト粒子を再懸濁した。
3)遺伝子増幅試験
 基本的に、実施例2と同様のDNA抽出方法を使用した。
 A.方法1)「細胞懸濁液調製」にて調製した細胞懸濁液a~cを各30μLを用いて、Loopamp PURE DNA抽出キットにてDNA抽出を実施した。
 B.方法2)「懸濁液中の細胞回収」にて調製したマグネタイト粒子懸濁液60μLを用いて、Loopamp PURE DNA抽出キットにてDNA抽出を実施した。
 A及びBの操作にて得られたDNA抽出液を、Loopamp DNA増幅試薬DとCYP2C19プライマーを用いたLAMP反応に供し、3重測定を行った。
4.結果
 結果を表20に示す。
 細胞懸濁液bを300μL使用した細胞回収群と、細胞懸濁液a及びbを30μL使用したコントロール群では、いずれも3重測定にてすべてLAMP反応陽性となった。一方、細胞懸濁液cを30μL使用したコントロール群では3重測定にてすべてLAMP反応陰性となった。
5.考察
 細胞回収実験群にて、細胞が回収されない場合、コントロール群の細胞懸濁液cと同様にLAMP反応陰性となることが考えられるが、細胞懸濁液a及びbと同等の結果が得られたことから、本方法により動物細胞が回収されたものと推察された。
Figure JPOXMLDOC01-appb-T000020
Collection of animal cells Objectives Range survey of applicable cell types: Application of this method to animal cells.
2. Materials The materials used in this example were as follows:
1) Cell suspension preparation, cell recovery Cells: Human peripheral blood mononuclear cells (Kurabo)
Saline (raw food): Otsuka raw food injection (Otsuka Pharmaceutical Factory)
Hemacytometer (Tokyo Glass Instruments)
Magnetite particles: MG-1310 (Mitsui Metals Mining)
Magnet for collecting magnets Aggregating solvent: 20% polyethylene glycol 1,000 (PEG 1,000, Wako Pure Chemical Industries), 20% polyethylene glycol 8,000 (PEG 8,000, Wako Pure Chemical Industries)
2) Gene amplification test Loopamp PURE DNA extraction kit (Eiken Chemical)
Loopamp DNA amplification reagent D (Eiken Chemical)
LAMP primer for detecting human cytochrome gene (CYP2C19) Loopamp real-time turbidity measurement device LA-320c (Eiken Chemical)
3. Method 1) Cell suspension preparation After suspending human peripheral blood mononuclear cells in physiological saline, the cells were counted with a hemocytometer to obtain a cell suspension of 14,300 cells / μL. This was diluted 10 times with physiological saline to prepare a cell suspension having the following concentration.
a. 1,430 cells / μL
b. 143 cells / μL
c. 14.3 cells / μL
2) Cell recovery in suspension The same method as in Example 2 was used.
-2.5 mg of magnetite particles were suspended in 300 μL of cell suspension b.
-700 μL of each aggregation solvent was mixed (final concentration of each PEG = 14%).
-Magnetite particles were collected with a magnet and the supernatant was removed.
-The magnet was removed and 10 mL of physiological saline was added to disperse the magnetite particles.
-The magnetite particles were collected again and the supernatant was removed.
• The magnetite particles were resuspended in 60 μL of physiological saline.
3) Gene amplification test Basically, the same DNA extraction method as in Example 2 was used.
A. Method 1) Using 30 μL of each of the cell suspensions a to c prepared in “Preparation of cell suspension”, DNA extraction was performed with a Loopamp PURE DNA extraction kit.
B. Method 2) DNA extraction was performed with the Loopamp PURE DNA extraction kit using 60 μL of the magnetite particle suspension prepared in “Recovering cells in suspension”.
The DNA extract obtained by the operations of A and B was subjected to a LAMP reaction using Loopamp DNA amplification reagent D and CYP2C19 primer, and triple measurement was performed.
4). Results The results are shown in Table 20.
In the cell recovery group using 300 μL of cell suspension b and the control group using 30 μL of cell suspensions a and b, all were positive for LAMP reaction in triplicate measurement. On the other hand, in the control group using 30 μL of the cell suspension c, all LAMP reactions were negative in triplicate measurement.
5). Discussion When cells are not collected in the cell collection experiment group, it is considered that the LAMP reaction is negative as in the cell suspension c of the control group, but the same results as the cell suspensions a and b are obtained. From this, it was speculated that animal cells were recovered by this method.
Figure JPOXMLDOC01-appb-T000020
 本発明によれば、安価且つ簡易に微生物細胞又は動物細胞を回収することができる。また、本発明に従い、微生物細胞又は動物細胞を回収及び濃縮することで、病原菌等の微生物細胞又は動物細胞に関する遺伝子検査キットの検出性能を向上させることができる。
 本明細書で引用した全ての刊行物、特許及び特許出願はそのまま引用により本明細書に組み入れられるものとする。
According to the present invention, microbial cells or animal cells can be collected inexpensively and easily. In addition, according to the present invention, by collecting and concentrating microbial cells or animal cells, the detection performance of the genetic test kit for microbial cells or animal cells such as pathogenic bacteria can be improved.
All publications, patents and patent applications cited herein are hereby incorporated by reference in their entirety.

Claims (12)

  1.  細胞と磁性粒子とをアルコール存在下で混合する工程を含む、細胞の回収方法。 A method for recovering cells, comprising a step of mixing cells and magnetic particles in the presence of alcohol.
  2.  細胞が微生物又は動物細胞である、請求項1記載の方法。 The method according to claim 1, wherein the cell is a microorganism or an animal cell.
  3.  磁性粒子が表面材質としてマグネタイト及び/又はシリカを含む磁性粒子である、請求項1又は2記載の方法。 The method according to claim 1 or 2, wherein the magnetic particles are magnetic particles containing magnetite and / or silica as a surface material.
  4.  アルコールがメタノール、エタノール、1−プロパノール、イソプロピルアルコール、エチレングリコール、2,2’−イミノジエタノール、ポリエチレングリコール及びこれらの混合物から成る群より選択される、請求項1~3のいずれか1項記載の方法。 The alcohol according to any one of claims 1 to 3, wherein the alcohol is selected from the group consisting of methanol, ethanol, 1-propanol, isopropyl alcohol, ethylene glycol, 2,2'-iminodiethanol, polyethylene glycol and mixtures thereof. Method.
  5.  ポリエチレングリコールが20,000以下の分子量を有するものである、請求項4記載の方法。 The method according to claim 4, wherein the polyethylene glycol has a molecular weight of 20,000 or less.
  6.  請求項1~5のいずれか1項記載の細胞の回収方法を含む検査方法。 An inspection method comprising the cell recovery method according to any one of claims 1 to 5.
  7.  磁性粒子とアルコールとを含む、細胞回収キット。 Cell recovery kit containing magnetic particles and alcohol.
  8.  細胞が微生物又は動物細胞である、請求項7記載のキット。 The kit according to claim 7, wherein the cell is a microorganism or an animal cell.
  9.  磁性粒子が表面材質としてマグネタイト及び/又はシリカを含む磁性粒子である、請求項7又は8記載のキット。 The kit according to claim 7 or 8, wherein the magnetic particles are magnetic particles containing magnetite and / or silica as a surface material.
  10.  アルコールがメタノール、エタノール、1−プロパノール、イソプロピルアルコール、エチレングリコール、2,2’−イミノジエタノール、ポリエチレングリコール及びこれらの混合物から成る群より選択される、請求項7~9のいずれか1項記載のキット。 The alcohol according to any one of claims 7 to 9, wherein the alcohol is selected from the group consisting of methanol, ethanol, 1-propanol, isopropyl alcohol, ethylene glycol, 2,2'-iminodiethanol, polyethylene glycol and mixtures thereof. kit.
  11.  ポリエチレングリコールが20,000以下の分子量を有するものである、請求項10記載のキット。 The kit according to claim 10, wherein the polyethylene glycol has a molecular weight of 20,000 or less.
  12.  請求項7~11のいずれか1項記載の細胞回収キットを含む検査キット。 A test kit comprising the cell recovery kit according to any one of claims 7 to 11.
PCT/JP2017/036399 2016-09-29 2017-09-29 Method for recovering cells WO2018062573A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-192190 2016-09-29
JP2016192190 2016-09-29

Publications (1)

Publication Number Publication Date
WO2018062573A1 true WO2018062573A1 (en) 2018-04-05

Family

ID=61760027

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/036399 WO2018062573A1 (en) 2016-09-29 2017-09-29 Method for recovering cells

Country Status (1)

Country Link
WO (1) WO2018062573A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05504095A (en) * 1990-02-13 1993-07-01 アマーシャム・インターナショナル・ピーエルシー Polymer isolation method using magnetically attractable beads that do not specifically bind to polymers
EP1621618A1 (en) * 1999-05-14 2006-02-01 Promega Corporation Cell concentration and lysate clearance using paramagnetic particles
JP2006508668A (en) * 2002-12-09 2006-03-16 ツィンファ・ユニバーシティ Rapid magnetic-based cell separation
WO2006123781A1 (en) * 2005-05-20 2006-11-23 Arkray, Inc. Methods for recovering microorganism and nucleic acid using fine particle and kit to be used for the methods
JP2007252240A (en) * 2006-03-22 2007-10-04 Hitachi Metals Ltd Magnetic bead for cell recovery
WO2007114758A1 (en) * 2006-03-30 2007-10-11 Ge Healthcare Bio-Sciences Ab Magnetic beads
JP2010178750A (en) * 2005-04-15 2010-08-19 Samsung Electronics Co Ltd Cell separation method using hydrophobic solid support

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05504095A (en) * 1990-02-13 1993-07-01 アマーシャム・インターナショナル・ピーエルシー Polymer isolation method using magnetically attractable beads that do not specifically bind to polymers
EP1621618A1 (en) * 1999-05-14 2006-02-01 Promega Corporation Cell concentration and lysate clearance using paramagnetic particles
JP2006508668A (en) * 2002-12-09 2006-03-16 ツィンファ・ユニバーシティ Rapid magnetic-based cell separation
JP2010178750A (en) * 2005-04-15 2010-08-19 Samsung Electronics Co Ltd Cell separation method using hydrophobic solid support
WO2006123781A1 (en) * 2005-05-20 2006-11-23 Arkray, Inc. Methods for recovering microorganism and nucleic acid using fine particle and kit to be used for the methods
JP2007252240A (en) * 2006-03-22 2007-10-04 Hitachi Metals Ltd Magnetic bead for cell recovery
WO2007114758A1 (en) * 2006-03-30 2007-10-11 Ge Healthcare Bio-Sciences Ab Magnetic beads

Similar Documents

Publication Publication Date Title
US11391732B2 (en) Microorganism concentration process
US8603771B2 (en) Capture of micro-organisms
JP2016127844A (en) Selective lysis of cells
CN104313130A (en) Functionalized magnetic nanoparticles for efficiently enriching microorganisms, preparation and applications thereof
WO2016024263A1 (en) Methods for isolating microbial dna from a blood sample
US20120009560A1 (en) Method For Purifying Nucleic Acids From Microorganisms Present In Liquid Samples
Che et al. Rapid fluorescence detection of pathogenic bacteria using magnetic enrichment technique combined with magnetophoretic chromatography
EP3347485B1 (en) Methods for isolating microbial cells from a blood sample
WO2018062573A1 (en) Method for recovering cells
JP6762082B2 (en) Method of detecting a detection target using stimulus-responsive magnetic nanoparticles
Ozawa et al. Specific single-cell isolation of Escherichia coli O157 from environmental water samples by using flow cytometry and fluorescence-activated cell sorting
Lee et al. Enhanced detection of Listeria monocytogenes using tetraethylenepentamine-functionalized magnetic nanoparticles and LAMP-CRISPR/Cas12a-based biosensor
JP5543694B2 (en) Separation and collection method of biological materials
KR101721796B1 (en) Method for absorbing pathogenic microorganism using micro-bead coated with graphene oxide
Moore et al. A Novel Microfluidic Dielectrophoresis Technology to Enable Rapid Diagnosis of Mycobacteria tuberculosis in Clinical Samples
Yoo et al. Bacterial isolation by adsorption on graphene oxide from large volume sample
WO2020085420A1 (en) Cell collection method
Chen et al. Development of a photothermal bead-based nucleic acid amplification test (pbbNAAT) technique for a high-performance loop-mediated isothermal amplification (LAMP)–based point-of-care test (POCT)
US20120264119A1 (en) New method for decontamination and processing of clinical specimens from a patient
CN117046441B (en) Magnetic graphene oxide particles, preparation method and application thereof
JP2004344108A (en) Method for pre-treating acid-fast bacterium and method for amplifying or detecting gene by using the same
US20230366878A1 (en) Methods of isolating and detecting viruses from liquid with possibility of containing viruses
JP2013226149A (en) Method for separating and collecting organism-related substance
武田啓太 Dielectrophoresis Concentration Method for Increased Sensitivity of the Loop-Mediated Isothermal Amplification Test for the Mycobacterium tuberculosis Complex
CN116973567A (en) Method for rapidly detecting escherichia coli and salmonella in food based on nano enzyme binding aptamer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17856520

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17856520

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP