WO2018062444A1 - Closed cell resin foam and method for manufacturing same - Google Patents

Closed cell resin foam and method for manufacturing same Download PDF

Info

Publication number
WO2018062444A1
WO2018062444A1 PCT/JP2017/035362 JP2017035362W WO2018062444A1 WO 2018062444 A1 WO2018062444 A1 WO 2018062444A1 JP 2017035362 W JP2017035362 W JP 2017035362W WO 2018062444 A1 WO2018062444 A1 WO 2018062444A1
Authority
WO
WIPO (PCT)
Prior art keywords
foam
resin
closed
resin foam
closed cell
Prior art date
Application number
PCT/JP2017/035362
Other languages
French (fr)
Japanese (ja)
Inventor
宮崎 健次
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to KR1020187025389A priority Critical patent/KR102125912B1/en
Priority to CN201780014513.XA priority patent/CN108713037B/en
Publication of WO2018062444A1 publication Critical patent/WO2018062444A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/06Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2205/00Foams characterised by their properties
    • C08J2205/04Foams characterised by their properties characterised by the foam pores
    • C08J2205/044Micropores, i.e. average diameter being between 0,1 micrometer and 0,1 millimeter
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2205/00Foams characterised by their properties
    • C08J2205/04Foams characterised by their properties characterised by the foam pores
    • C08J2205/052Closed cells, i.e. more than 50% of the pores are closed
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/04Homopolymers or copolymers of ethene
    • C08J2323/06Polyethene

Definitions

  • the present invention relates to a closed cell resin foam, and more particularly to a closed cell resin foam used as a sealing material such as a waterproof seal material.
  • a waterproof seal material may be used around the electrical components to prevent the electrical components from being flooded.
  • a closed cell foam is used as the waterproof sealing material because it has both excellent flexibility and sealing properties. It is known that the closed cell foam is obtained, for example, by foaming a polyolefin resin blended with a foaming agent, as disclosed in Patent Document 1.
  • the closed cell foam may have fine irregularities on the surface due to foaming of the foaming agent, and the smoothness may be impaired by the fine irregularities.
  • the foam with impaired smoothness is used as a waterproof sealing material, the adhesive strength with the peripheral parts becomes low, and furthermore, a groove-like space is generated between the peripheral parts and the space is a water passage. As a result, waterproofness is reduced.
  • This invention is made
  • the present inventor has found that the above problem can be solved by setting the friction coefficient of the foam surface to a predetermined range, and has completed the following present invention.
  • the present invention provides the following [1] to [9].
  • [1] A closed cell resin foam having closed cells and having a static friction coefficient of 0.30 to 0.70 against the SUS plate measured by JIS K7125 on the surface.
  • [2] The closed cell resin foam according to [1], wherein the resin constituting the closed cell foam includes a polyolefin resin.
  • the closed cell resin foam of the present invention (hereinafter also referred to as a foam) has closed cells and has a static friction coefficient of 0.30 to 0.70 with respect to the SUS plate measured by JIS K7125 on the surface. is there.
  • the static friction coefficient is less than 0.30, the smoothness of the surface of the foam is not good, and the sealing properties such as waterproofness cannot be made good.
  • the static friction coefficient is preferably 0.35 to 0.65, and more preferably 0.40 to 0.65.
  • the foam of the present invention has closed cells, and the closed cell rate is 70% or more. Accordingly, the air bubbles contained in the foam are almost closed and the sealing properties such as waterproofness are improved.
  • the closed cell ratio of the foam is preferably 80% or more, more preferably 90 to 100%, from the viewpoint of ensuring various sealing properties such as high waterproof sealing properties even when the foam is thin.
  • the closed cell ratio can be determined according to ASTM D2856 (1998).
  • the foam should just have the static friction coefficient in the above-mentioned range at least one surface.
  • the foam is preferably in the form of a sheet (foamed sheet), and at least one surface may have a static friction coefficient within the above range, but it is preferable that both surfaces have a static friction coefficient within the above range.
  • the foam preferably has a thickness of 0.02 to 1 mm, more preferably 0.05 to 0.8 mm, and still more preferably 0.08 to 0.7 mm. When the foam is made thin in this way, it can be suitably used in various electronic devices, for example, portable devices with many space constraints.
  • the average cell diameter of the foam is preferably 30 to 350 ⁇ m in MD, 30 to 400 ⁇ m in TD, and 10 to 150 ⁇ m in ZD.
  • the average cell diameter of the bubbles in the foam is more preferably 60 to 300 ⁇ m in MD, 60 to 300 ⁇ m in TD, and 15 to 70 ⁇ m in ZD.
  • the ratio of the average bubble diameter of MD to the average bubble diameter of bubbles (hereinafter also referred to as “MD / ZD”) is 1.5 to 8, and the average bubble diameter of TD with respect to the average bubble diameter of ZD
  • the ratio (hereinafter also referred to as “TD / ZD”) is preferably 1.5 to 9.
  • MD / ZD is 2 to 7
  • TD / ZD is 2 to 7.
  • MD means Machine direction and is a direction that coincides with the extrusion direction and the like
  • TD means Transverse direction and is a direction orthogonal to MD.
  • ZD is the thickness direction of the foam, and is the direction perpendicular to both MD and TD.
  • the expansion ratio of the foam is preferably 1.8 to 20 times, and more preferably 2.5 to 15 times.
  • the foam is suitable for flexibility, mechanical strength and the like of the foam, and it is easy to improve the sealing property of the foam. Moreover, it becomes easy to make a foam surface smooth by the manufacturing method mentioned later.
  • the expansion ratio of the foam is the specific volume (unit: cc / g) of the foam before foaming (foamable composition) and after foaming (foam), and the specific volume after foaming / foaming. It is calculated by the previous specific volume.
  • the apparent density of the foam is preferably 0.05 to 0.5 g / cm 3 , and more preferably 0.08 to 0.30 g / cm 3 .
  • the apparent density of the foam is measured according to JIS K7222.
  • the 25% compressive strength of the foam is preferably 10 to 2000 kPa. By setting the pressure to 10 kPa or more, the mechanical strength is improved, and by setting the pressure to 2000 kPa or less, the flexibility of the foam is improved.
  • the 25% compressive strength is more preferably 30 to 200 kPa from the viewpoints of improving mechanical strength and flexibility in a balanced manner and improving sealing properties such as waterproofness.
  • the 25% compressive strength of the foam is measured according to the method of JIS K6767.
  • the foam is usually cross-linked.
  • the degree of crosslinking of the foam is preferably 15 to 60% by mass. By setting the degree of crosslinking to 15% by mass or more, when the foam is stretched, it is possible to prevent bubbles in the vicinity of the surface of the foam from breaking and causing surface roughness. Further, when the degree of crosslinking is 60% by mass or less, the resin material can be easily adjusted to a desired expansion ratio at the time of heat foaming. From such a viewpoint, the degree of crosslinking is more preferably 20 to 50% by mass.
  • Polyolefin resin As the resin constituting the foam, a resin or rubber conventionally used for the foam can be used, but a polyolefin resin is preferable.
  • the polyolefin resin include a polyethylene resin, a polypropylene resin, and an ethylene-vinyl acetate copolymer. Among these, a polyethylene resin is preferable.
  • a polyolefin resin particularly a polyethylene resin, it becomes easy to adjust the static friction coefficient of the foam within the above range. Moreover, it becomes easy to adjust various physical properties such as compressive strength within the above range, and can be suitably used as a waterproof sealing material.
  • polyethylene resin examples include a polyethylene resin polymerized with a polymerization catalyst such as a Ziegler-Natta compound, a metallocene compound, and a chromium oxide compound.
  • a polyethylene resin polymerized with a polymerization catalyst of a metallocene compound is used.
  • the polyethylene resin is preferably linear low density polyethylene.
  • the linear low density polyethylene is more preferably obtained by using a polymerization catalyst of a metallocene compound.
  • linear low-density polyethylene obtained by using a polymerization catalyst of a metallocene compound, it is possible to impart high flexibility and mechanical strength to the foam, and it is possible to reduce the thickness, which is excellent as a waterproof sealing material.
  • the linear low density polyethylene is obtained by copolymerizing ethylene (for example, 75% by mass or more, preferably 90% by mass or more with respect to the total amount of monomers) and a small amount of ⁇ -olefin as required.
  • a chain low density polyethylene is more preferred.
  • ⁇ -olefin examples include propylene, 1-butene, 1-pentene, 4-methyl-1-pentene, 1-hexene, 1-heptene, and 1-octene. Of these, ⁇ -olefins having 4 to 10 carbon atoms are preferred.
  • Polyethylene resin for example the density of the above-mentioned linear low density polyethylene is preferably 0.870 ⁇ 0.910g / cm 3, more preferably 0.875 ⁇ 0.907g / cm 3, 0.880 ⁇ 0.905g / Cm 3 is more preferable.
  • the polyethylene resin a plurality of polyethylene resins can be used, and a polyethylene resin outside the above-described density range may be added.
  • metallocene compound examples include compounds such as a bis (cyclopentadienyl) metal complex having a structure in which a transition metal is sandwiched between ⁇ -electron unsaturated compounds. More specifically, tetravalent transition metals such as titanium, zirconium, nickel, palladium, hafnium, and platinum have one or more cyclopentadienyl rings or their analogs as ligands (ligands). Can be mentioned. Metallocene compounds have uniform active site properties and each active site has the same activity.
  • a polymer synthesized using a metallocene compound has high uniformity in molecular weight, molecular weight distribution, composition, composition distribution, etc., so when a sheet containing a polymer synthesized using a metallocene compound is crosslinked, the crosslinking is uniform. Proceed to. Therefore, since it can extend
  • Examples of the ligand include a cyclopentadienyl ring and an indenyl ring. These cyclic compounds may be substituted with a hydrocarbon group, a substituted hydrocarbon group or a hydrocarbon-substituted metalloid group.
  • Examples of the hydrocarbon group include a methyl group, an ethyl group, various propyl groups, various butyl groups, various amyl groups, various hexyl groups, 2-ethylhexyl groups, various heptyl groups, various octyl groups, various nonyl groups, and various decyl groups. , Various cetyl groups, phenyl groups and the like.
  • the “various” means various isomers including n-, sec-, tert-, and iso-. Moreover, what polymerized the cyclic compound as an oligomer may be used as a ligand. In addition to ⁇ -electron unsaturated compounds, monovalent anion ligands such as chlorine and bromine or divalent anion chelate ligands, hydrocarbons, alkoxides, arylamides, aryloxides, amides, arylamides, phosphides, aryls Phosphide or the like may be used.
  • monovalent anion ligands such as chlorine and bromine or divalent anion chelate ligands, hydrocarbons, alkoxides, arylamides, aryloxides, amides, arylamides, phosphides, aryls Phosphide or the like may be used.
  • metallocene compounds containing tetravalent transition metals and ligands include, for example, cyclopentadienyl titanium tris (dimethylamide), methylcyclopentadienyl titanium tris (dimethylamide), bis (cyclopentadienyl) titanium dichloride, dimethyl And silyltetramethylcyclopentadienyl-t-butylamidozirconium dichloride.
  • the metallocene compound exhibits an action as a catalyst in the polymerization of various olefins by combining with a specific cocatalyst (co-catalyst).
  • specific cocatalyst include methylaluminoxane (MAO) and boron compounds.
  • the proportion of the cocatalyst used with respect to the metallocene compound is preferably 100,000 to 1,000,000 mole times, more preferably 50 to 5,000 mole times.
  • Examples of the ethylene-vinyl acetate copolymer used as the polyolefin resin include an ethylene-vinyl acetate copolymer containing 50% by mass or more of ethylene.
  • Examples of the polypropylene resin include homopolypropylene and a propylene- ⁇ -olefin copolymer containing 50% by mass or more of propylene. These may be used alone or in combination of two or more.
  • ⁇ -olefin constituting the propylene- ⁇ -olefin copolymer examples include ethylene, 1-butene, 1-pentene, 4-methyl-1-pentene, 1-hexene, 1-heptene, 1- Among these, ⁇ -olefins having 6 to 12 carbon atoms are preferable.
  • the above linear low density polyethylene may be used alone, or may be used in combination with other polyolefin resins. For example, you may use together with other polyolefin resin mentioned above.
  • the ratio of the linear low density polyethylene to the total amount of the linear low density polyethylene and the other polyolefin resin is preferably 50% by mass or more, more preferably 70% by mass or more, More preferably, it is 90 mass% or more.
  • the other polyolefin resin is preferably an ethylene-vinyl acetate copolymer.
  • resin which comprises a foam although polyolefin resin may be used independently, unless the effect of this invention is impaired, resin other than polyolefin resin may be included.
  • the ratio of the polyolefin resin to the total amount of the resin is preferably 70% by mass or more, more preferably 80% by mass or more, and still more preferably 90% by mass or more.
  • the resin other than the polyolefin resin used in the foam include rubber components other than polyolefin resins such as ethylene propylene diene rubber (EPDM), hydrogenated styrene thermoplastic elastomer (SEBS), and olefin elastomer, and resin components.
  • the foam of the present invention is preferably obtained by foaming a foamable composition containing a pyrolytic foaming agent in addition to the above resin.
  • a thermally decomposable foaming agent for example, one having a decomposition temperature higher than the melting temperature of the resin is used.
  • an organic or inorganic chemical foaming agent having a decomposition temperature of 140 to 270 ° C. is used.
  • Organic foaming agents include azodicarbonamide, azodicarboxylic acid metal salts (such as barium azodicarboxylate), azo compounds such as azobisisobutyronitrile, nitroso compounds such as N, N′-dinitrosopentamethylenetetramine, And hydrazine derivatives such as hydrazodicarbonamide, 4,4′-oxybis (benzenesulfonylhydrazide) and toluenesulfonylhydrazide, and semicarbazide compounds such as toluenesulfonyl semicarbazide.
  • azodicarbonamide azodicarboxylic acid metal salts (such as barium azodicarboxylate)
  • azo compounds such as azobisisobutyronitrile
  • nitroso compounds such as N, N′-dinitrosopentamethylenetetramine
  • hydrazine derivatives such as hydrazodicarbonamide, 4,4′
  • the inorganic foaming agent examples include ammonium acid, sodium carbonate, ammonium hydrogen carbonate, sodium hydrogen carbonate, ammonium nitrite, sodium borohydride, anhydrous monosodium citrate, and the like.
  • azo compounds and nitroso compounds are preferable from the viewpoint of obtaining fine bubbles, and from the viewpoints of economy and safety, and azodicarbonamide, azobisisobutyronitrile, N, N′-dinitrosopentamethylene. Tetramine is more preferred, and azodicarbonamide is still more preferred.
  • These pyrolytic foaming agents are used alone or in combination of two or more.
  • the amount of the pyrolytic foaming agent added is preferably 1 to 10 parts by weight, more preferably 1.5 to 5 parts by weight, and more preferably 1.5 to 3 parts by weight with respect to 100 parts by weight of the resin (for example, polyolefin resin). Further preferred.
  • the foamable composition contains additives generally used for foams such as antioxidants, heat stabilizers, colorants, flame retardants, antistatic agents, fillers, etc. You may do it.
  • the foam of the present invention may be used for any application, but is preferably used as a sealing material for waterproofing, dustproofing, etc., and more preferably used as a waterproof sealing material.
  • the sealing material is used by pressing at least one surface against another member.
  • the foam of the present invention has a smooth surface and is in close contact with other members. Therefore, when used as a sealing material, the foam can exhibit high sealing performance.
  • a foam for portable electronic devices such as an electronic device, specifically a notebook personal computer, a mobile phone, a smart phone, a tablet, a portable music device.
  • the foam of the present invention when the foam of the present invention is in the form of a sheet, it may be a pressure-sensitive adhesive sheet provided with a pressure-sensitive adhesive layer on one or both sides. Further, when the foam is used as a sealing material, it is adhered to an adherend with an adhesive layer or a double-sided adhesive tape on one surface, and the other surface is another member such as a glass plate or an acrylic plate. It may be used by being pressed against.
  • the pressure-sensitive adhesive layer has a thickness of 5 to 200 ⁇ m, more preferably 7 to 150 ⁇ m.
  • an adhesive which comprises an adhesive layer For example, an acrylic adhesive, a urethane type adhesive, a rubber-type adhesive, etc. are used.
  • the foam of the present invention is obtained by, for example, foaming a foamable composition containing a resin and a thermally decomposable foaming agent to obtain a foamed intermediate, and the unevenness on the surface of the foamed intermediate resulting from foaming is smoothed. Thus, it is obtained by extending the foamed intermediate. More specifically, the manufacturing method includes the following steps.
  • Step (1) Step of mixing an additive such as a resin and a thermally decomposable foaming agent to form a foamable composition into a resin sheet
  • the method for forming the resin sheet is not particularly limited.
  • the resin and the additive are supplied to an extruder, and melt-kneaded at a temperature lower than the decomposition temperature of the pyrolytic foaming agent. What is necessary is just to shape
  • the method of crosslinking the foamable composition in the step (2) include a method of irradiating the resin sheet with ionizing radiation.
  • an organic peroxide or a sulfur-based compound such as sulfur is blended in advance with the foamable composition, and the foamable composition is heated to decompose the organic peroxide or vulcanize with the sulfur-based compound.
  • Crosslinking may be performed by a method or the like. In these, it is preferable to perform bridge
  • the ionizing radiation include ⁇ -rays, ⁇ -rays, ⁇ -rays, and electron beams, and electron beams are more preferable.
  • the amount of ionizing radiation applied to the resin sheet is preferably 1 to 10 Mrad, more preferably 1.5 to 8 Mrad.
  • the crosslinked foamable composition is heated to a temperature equal to or higher than the decomposition temperature of the thermally decomposable foaming agent to foam.
  • the heating temperature when the foamable composition is heated to foam the pyrolytic foaming agent is usually 140 to 300 ° C, preferably 160 to 260 ° C.
  • the method for foaming the resin sheet is not particularly limited, and examples thereof include a method of heating with hot air, a method of heating with infrared rays, a method using a salt bath, a method using an oil bath, and the like. Good. Further, the foamable composition may be stretched while being foamed in the step (3).
  • the film may be stretched in MD or TD, but is preferably stretched in a direction orthogonal to the direction of stretching in the step (4).
  • the film when extending to TD in a process (4), it is good to extend to MD.
  • step (4) the foamed intermediate is stretched so that the irregularities on the surface of the foamed intermediate caused by foaming are smoothed.
  • the foamed intermediate is preferably stretched in one direction, specifically, preferably stretched to TD or MD, more preferably stretched to TD.
  • stretching to TD it is good to extend to TD, for example, sending a sheet-like intermediate foam to MD.
  • the tensile elastic modulus at the time of stretching may be adjusted to be within a predetermined range.
  • the tensile elastic modulus at the time of stretching falls within a predetermined range so that the foamed intermediate body is stretched in a somewhat softened state, it is estimated that the unevenness due to foaming on the foam surface is thereby reduced or lost. The Moreover, it is not stretched more than necessary, and the foamed intermediate is prevented from breaking.
  • the tensile elastic modulus required for smoothing the foam surface varies depending on the foaming ratio of the foam, and decreases as the foaming ratio of the foam increases. This is probably because the higher the expansion ratio, the higher the flexibility of the foamed intermediate, so that the surface is smoothed with a small tensile force, and the required tensile elastic modulus decreases accordingly.
  • the foamed intermediate when the resin constituting the foam contains a polyolefin resin and the foamed intermediate is stretched in one direction, the foamed intermediate is pulled so as to have a tensile elastic modulus shown in Table 1 below. That's fine. Table 1 shows that when the foaming ratio of the foam is the value on the left side, the foam intermediate may be stretched so as to have the right tensile elastic modulus.
  • the tensile modulus is tensile stress / strain, but generally decreases as the temperature increases. Therefore, the tensile modulus is adjusted by appropriately adjusting the temperature of the intermediate foam during stretching. Is possible. Further, the foamed intermediate body may be pulled to increase the strain and exceed the yield point at the time of stretching, but when the yield point is exceeded, the tensile stress decreases. Therefore, the tensile elastic modulus may vary depending on the amount of strain (that is, elongation). Accordingly, at the time of stretching, the temperature and the elongation rate may be adjusted so that the tensile elastic modulus is in the range shown in Table 1 above.
  • the temperature of the intermediate foam during stretching is not particularly limited, but is, for example, 80 to 150 ° C., preferably 90 to 130 ° C.
  • the intermediate foam may be pulled so that the elongation percentage is, for example, 30 to 300%, preferably 40 to 250%.
  • elongation rate is a ratio with respect to the length of the original intermediate
  • stretching can be confirmed by pulling a foaming intermediate body using a tensile tester on the same strain (elongation rate) and temperature conditions. According to the above production method, for example, a foam having a high static friction coefficient can be provided without polishing the surface or cutting the foam.
  • Crosslinking degree (% by mass) 100 ⁇ (B / A) ⁇ Compressive strength> It measured according to the method of JIS K6767. ⁇ Closed cell ratio> The closed cell ratio of the foam is measured by the method described in the specification.
  • ⁇ Average bubble diameter> The foam is cut into a 50mm square, immersed in liquid nitrogen for 1 minute, then cut in the thickness direction along each of MD and TD, and using a digital microscope (product name VHX-900, manufactured by Keyence Corporation). I took a 200x magnified photo. In the enlarged photograph, the bubble diameters of MD and ZD and the bubble diameters of TD and ZD and the bubble diameters of TD and ZD were measured for all the bubbles present on the cut surface corresponding to a length of 2 mm in each of MD and TD, and the operation was repeated five times.
  • the average value of the bubble diameters of all the bubbles MD and TD is taken as the average bubble diameter of the MD and TD, and the average value of the bubble diameters of all ZDs measured by the above operation is taken as the average bubble diameter of the ZD. It was. ⁇ Static friction coefficient>
  • a foam is placed on a SUS plate (SUS304), a bottom surface is placed on a felt slip plate, and a 200 g weight is placed thereon, and then parallel to the contact interface. The foam was pulled in the direction and the coefficient of static friction when the foam started to move was measured.
  • ⁇ Tensile modulus> By pulling the intermediate foam using a tensile tester (product name: Tensilon RTF series, manufactured by Yamato Scientific Co., Ltd.) under the conditions at the time of stretching in each Example and Comparative Example, the tensile elastic modulus at the time of stretching was It was measured. The tensile modulus was measured according to JIS K6767.
  • ⁇ Waterproof test> A sample for waterproof evaluation was prepared using the foams of the examples and comparative examples. The sample for waterproof evaluation is obtained by sandwiching the foams of the respective examples and comparative examples between two acrylic plates each having a thickness of 10 mm and a vertical and horizontal dimension of 100 mm, and compressed by 30% of the original thickness.
  • the foam has a frame shape in which the outer shape is 60 mm in length and 40 mm in width, and the center of the foam is 58 mm in length and 38 mm in width.
  • a hole having a diameter of 8 mm is formed at the center of one acrylic plate, and water pressure can be applied from there.
  • the double-sided pressure-sensitive adhesive tape (thickness 0.048 mm, manufactured by TESA, “tesa4972”) cut into a frame shape of the same shape as the foam is pasted on one side of the foam, and the other side with the double-sided pressure-sensitive adhesive tape It was made to stick on the acrylic board.
  • Example 1 Linear low-density polyethylene obtained by using a metallocene compound [manufactured by Exxon Chemical Co., Ltd., trade name. EXACT3027] 100 parts by mass, 5 parts by mass of azodicarbonamide as a pyrolytic foaming agent, 0.02 parts by mass of 2,6-di-t-butyl-p-cresol, 0.2 parts by mass of zinc oxide, was supplied to an extruder and melt-kneaded at 135 ° C., and then extruded as a resin sheet having a thickness of about 0.6 mm.
  • a metallocene compound manufactured by Exxon Chemical Co., Ltd., trade name.
  • EXACT3027 100 parts by mass, 5 parts by mass of azodicarbonamide as a pyrolytic foaming agent, 0.02 parts by mass of 2,6-di-t-butyl-p-cresol, 0.2 parts by mass of zinc oxide, was supplied to an extruder and melt-kneaded
  • the resin sheet was cross-linked by irradiating an electron beam with an acceleration voltage of 500 kV on both surfaces thereof for 5 Mrad, and then continuously fed into a foaming furnace maintained at 210 ° C. by hot air and an infrared heater, and the resin sheet was MD.
  • the foamed intermediate was obtained by foaming by heating while being stretched. Thereafter, the foamed intermediate is fed to MD and heated to 110 ° C., and stretched to TD so that the tensile modulus is 1.3 MPa with an elongation of 90%, thereby obtaining a foam sheet having a thickness of 0.5 mm. It was.
  • Table 1 shows the evaluation results of the obtained foamed sheet.
  • Example 2 It implemented like Example 1 except having changed the elongation rate at the time of extending
  • Example 3 Example 1 except that the pyrolytic foaming agent was changed to 2.5 parts by mass, the elongation when the foam intermediate was stretched was changed to 60%, and the tensile modulus was 2.1 MPa. It carried out similarly.
  • Example 4 The pyrolytic foaming agent was changed to 2.5 parts by mass, the electron beam was changed to 8 Mrad, the elongation when the foam intermediate was stretched was changed to 60%, and the tensile modulus was 2.5 MPa. Except for this, the same procedure as in Example 1 was performed.
  • the foam intermediate was stretched so as to have a predetermined tensile elastic modulus after foaming, the surface of the foam was smoothed, and the static friction coefficient became a high value of 0.3 or more. The property could be improved.
  • the foam intermediate was not stretched so as to have a predetermined tensile modulus after foaming, so the surface of the foam was not sufficiently smoothed, and the static friction coefficient was low, less than 0.3. Value. For this reason, the waterproof property could not be improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Molding Of Porous Articles (AREA)

Abstract

This closed cell resin foam has closed cells, and the static friction coefficient of the surface of the closed cell resin against a SUS plate is 0.30-0.70 as measured in accordance with JIS K7125.

Description

独立気泡樹脂発泡体及びその製造方法Closed cell resin foam and method for producing the same
 本発明は、独立気泡樹脂発泡体、特に、防水シール材等のシール材として使用される独立気泡樹脂発泡体に関する。 The present invention relates to a closed cell resin foam, and more particularly to a closed cell resin foam used as a sealing material such as a waterproof seal material.
 ノート型パーソナルコンピューター、携帯電話、スマートフォン、タブレット、携帯音楽機器等の携帯機器においては、電気部品が浸水することを防止するために、電気部品周辺に防水シール材が使用されることがある。防水シール材としては、優れた柔軟性とシール性とを兼ね備えることから、独立気泡発泡体が使用される。独立気泡発泡体は、例えば、特許文献1に開示されるように、発泡剤を配合したポリオレフィン系樹脂を発泡させることにより得られることが知られている。 In portable devices such as notebook personal computers, mobile phones, smartphones, tablets, and portable music devices, a waterproof seal material may be used around the electrical components to prevent the electrical components from being flooded. A closed cell foam is used as the waterproof sealing material because it has both excellent flexibility and sealing properties. It is known that the closed cell foam is obtained, for example, by foaming a polyolefin resin blended with a foaming agent, as disclosed in Patent Document 1.
特開2013-53179号公報JP 2013-53179 A
 独立気泡発泡体は、発泡剤の発泡により表面に微細な凹凸ができ、その微細な凹凸により平滑性が損なわれることがある。平滑性が損なわれた発泡体は、防水シール材として使用すると、周辺部品との密着力が低くなり、さらには、周辺部品との間に溝状の空間を発生させ、その空間が水の通路となって、防水性を低下させる。
 本発明は、以上の実情に鑑みてなされたものであり、防水性等のシール性が良好となる独立気泡発泡体を提供することを課題とする。
The closed cell foam may have fine irregularities on the surface due to foaming of the foaming agent, and the smoothness may be impaired by the fine irregularities. When the foam with impaired smoothness is used as a waterproof sealing material, the adhesive strength with the peripheral parts becomes low, and furthermore, a groove-like space is generated between the peripheral parts and the space is a water passage. As a result, waterproofness is reduced.
This invention is made | formed in view of the above situation, and makes it a subject to provide the closed cell foam from which sealing properties, such as waterproofness, become favorable.
 本発明者は、鋭意検討の結果、発泡体表面の摩擦係数を所定の範囲とすることで上記課題を解決できることを見出し、以下の本発明を完成させた。本発明は、以下の[1]~[9]を提供する。
[1]独立気泡を有し、表面のJIS K7125により測定されるSUS板に対する静摩擦係数が0.30~0.70である独立気泡樹脂発泡体。
[2]独立気泡発泡体を構成する樹脂がポリオレフィン樹脂を含む上記[1]に記載の独立気泡樹脂発泡体。
[3]前記ポリオレフィン樹脂が、ポリエチレン樹脂である上記[2]に記載の独立気泡樹脂発泡体。
[4]発泡倍率が1.8~20倍である上記[1]~[3]のいずれか1項に記載の独立気泡樹脂発泡体。
[5]平均気泡径が、MDにおいて30~350μm、TDにおいて30~400μm、ZDにおいて10~150μmである上記[1]~[4]のいずれか1項に記載の独立気泡樹脂発泡体。
[6]ZDにおける平均気泡径に対するMDにおける平均気泡径の比が1.5~8であるとともに、ZDにおける平均気泡径に対するTDにおける平均気泡径の比が1.5~9である上記[1]~[5]のいずれか1項に記載の独立気泡樹脂発泡体。
[7]前記独立気泡樹脂発泡体が架橋されたものであり、その架橋度が15~60質量%である上記[1]~[6]のいずれか1項に記載の独立気泡樹脂発泡体。
[8]厚さが0.02~1mmである上記[1]~[7]のいずれか1項に記載の独立気泡樹脂発泡体。
[9]上記[1]~[8]のいずれか1項に記載される独立気泡樹脂発泡体の製造方法であって、樹脂及び熱分解型発泡剤を含む発泡性組成物を発泡させて発泡中間体を得て、前記発泡中間体表面の発泡に起因して生じた凹凸が平滑化されるように、前記発泡中間体を延伸させる、独立気泡樹脂発泡体の製造方法。
As a result of intensive studies, the present inventor has found that the above problem can be solved by setting the friction coefficient of the foam surface to a predetermined range, and has completed the following present invention. The present invention provides the following [1] to [9].
[1] A closed cell resin foam having closed cells and having a static friction coefficient of 0.30 to 0.70 against the SUS plate measured by JIS K7125 on the surface.
[2] The closed cell resin foam according to [1], wherein the resin constituting the closed cell foam includes a polyolefin resin.
[3] The closed cell resin foam according to [2], wherein the polyolefin resin is a polyethylene resin.
[4] The closed-cell resin foam according to any one of [1] to [3], wherein the expansion ratio is 1.8 to 20 times.
[5] The closed cell resin foam according to any one of [1] to [4], wherein the average cell diameter is 30 to 350 μm in MD, 30 to 400 μm in TD, and 10 to 150 μm in ZD.
[6] The ratio of the average bubble diameter in MD to the average bubble diameter in ZD is 1.5 to 8, and the ratio of average bubble diameter in TD to the average bubble diameter in ZD is 1.5 to 9. ] The closed cell resin foam according to any one of [5] to [5].
[7] The closed cell resin foam according to any one of the above [1] to [6], wherein the closed cell resin foam is crosslinked, and the degree of crosslinking is 15 to 60% by mass.
[8] The closed-cell resin foam according to any one of [1] to [7], wherein the thickness is 0.02 to 1 mm.
[9] A method for producing a closed cell resin foam as described in any one of [1] to [8] above, wherein a foamable composition containing a resin and a thermally decomposable foaming agent is foamed and foamed. A method for producing a closed cell resin foam, wherein an intermediate is obtained, and the foamed intermediate is stretched so that unevenness caused by foaming on the surface of the foamed intermediate is smoothed.
 本発明では、防水性等のシール性が良好となる独立気泡樹脂発泡体を提供することが可能になる。 In the present invention, it is possible to provide a closed cell resin foam having good sealing properties such as waterproofness.
 以下、本発明の実施形態を参照しつつ詳細に説明する。
[独立気泡樹脂発泡体]
 本発明の独立気泡樹脂発泡体(以下、発泡体ともいう)は、独立気泡を有し、かつ表面のJIS K7125により測定されるSUS板に対する静摩擦係数が0.30~0.70となるものである。
 独立気泡樹脂発泡体においては、静摩擦係数が0.30未満となると、発泡体の表面の平滑性が良好とならず、防水性等のシール性を良好にすることができない。また、0.70より大きくなると、ポリオレフィン樹脂等の各種樹脂により発泡体を製造することが難しくなる。静摩擦係数を良好にしつつ、発泡体を容易に製造することができるようにするためには、上記静摩擦係数は、0.35~0.65が好ましく、0.40~0.65がさらに好ましい。
Hereinafter, it explains in detail, referring to an embodiment of the present invention.
[Closed-cell resin foam]
The closed cell resin foam of the present invention (hereinafter also referred to as a foam) has closed cells and has a static friction coefficient of 0.30 to 0.70 with respect to the SUS plate measured by JIS K7125 on the surface. is there.
In the closed cell resin foam, when the static friction coefficient is less than 0.30, the smoothness of the surface of the foam is not good, and the sealing properties such as waterproofness cannot be made good. Moreover, when larger than 0.70, it will become difficult to manufacture a foam with various resin, such as polyolefin resin. In order to make it possible to easily produce a foam while improving the static friction coefficient, the static friction coefficient is preferably 0.35 to 0.65, and more preferably 0.40 to 0.65.
 本発明の発泡体は、独立気泡を有するものであり、独立気泡率が70%以上となるものである。したがって、発泡体の内部に包含された気泡は概ね独立気泡となり、防水性等のシール性が良好となる。発泡体の独立気泡率は、薄厚の場合でも高い防水シール性等の各種シール性を確保する観点から、好ましくは80%以上、より好ましくは90~100%である。なお、独立気泡率は、ASTM  D2856(1998)に準拠して求めることができる。 The foam of the present invention has closed cells, and the closed cell rate is 70% or more. Accordingly, the air bubbles contained in the foam are almost closed and the sealing properties such as waterproofness are improved. The closed cell ratio of the foam is preferably 80% or more, more preferably 90 to 100%, from the viewpoint of ensuring various sealing properties such as high waterproof sealing properties even when the foam is thin. The closed cell ratio can be determined according to ASTM D2856 (1998).
 独立気泡率は、より詳細には下記の要領で測定できる。
 まず、発泡体から一辺が5cmの平面正方形状の試験片を切り出す。そして、試験片の厚さを測定して試験片の見掛け体積V1を算出すると共に、試験片の重量W1を測定する。
 次に、気泡の占める体積V2を下記式に基づいて算出する。なお、試験片を構成している樹脂の密度はρ(g/cm3)とする。
  気泡の占める体積V2=V1-W1/ρ
 続いて、試験片を23℃の蒸留水中に水面から100mmの深さに沈めて、試験片に15kPaの圧力を3分間に亘って加える。その後、水中で加圧から解放し、1分間静置した後、試験片を水中から取り出して試験片の表面に付着した水分を除去して試験片の重量W2を測定し、下記式に基づいて連続気泡率F1及び独立気泡率F2を算出する。
  連続気泡率F1(%)=100×(W2-W1)/V2
  独立気泡率F2(%)=100-F1
The closed cell ratio can be measured in more detail as follows.
First, a flat square test piece having a side of 5 cm is cut out from the foam. Then, the thickness of the test piece is measured to calculate the apparent volume V 1 of the test piece, and the weight W 1 of the test piece is measured.
Next, the volume V 2 occupied by the bubbles is calculated based on the following formula. The density of the resin constituting the test piece is ρ (g / cm 3 ).
Volume occupied by bubbles V 2 = V 1 −W 1 / ρ
Subsequently, the test piece is submerged in distilled water at 23 ° C. to a depth of 100 mm from the water surface, and a pressure of 15 kPa is applied to the test piece over 3 minutes. Then, after releasing from pressurization in water and allowing to stand for 1 minute, the test piece is taken out of the water, the water adhering to the surface of the test piece is removed, and the weight W 2 of the test piece is measured. The open cell rate F 1 and the closed cell rate F 2 are calculated.
Open cell ratio F 1 (%) = 100 × (W 2 −W 1 ) / V 2
Closed cell ratio F 2 (%) = 100−F 1
 発泡体は、少なくとも1つの面が上記した範囲内の静摩擦係数を有すればよい。また、発泡体は、好ましくはシート状(発泡シート)であり、少なくとも一方の面が上記範囲内の静摩擦係数を有すればよいが、両面が上記範囲内の静摩擦係数を有することが好ましい。
 発泡体は、その厚さが好ましくは0.02~1mm、より好ましくは0.05~0.8mm、さらに好ましくは0.08~0.7mmである。発泡体は、このように薄くすると、各種の電子機器、例えばスペース上の制約が多い携帯機器内部においても好適に使用することが可能である。
The foam should just have the static friction coefficient in the above-mentioned range at least one surface. The foam is preferably in the form of a sheet (foamed sheet), and at least one surface may have a static friction coefficient within the above range, but it is preferable that both surfaces have a static friction coefficient within the above range.
The foam preferably has a thickness of 0.02 to 1 mm, more preferably 0.05 to 0.8 mm, and still more preferably 0.08 to 0.7 mm. When the foam is made thin in this way, it can be suitably used in various electronic devices, for example, portable devices with many space constraints.
(平均気泡径)
 発泡体の平均気泡径は、好ましくはMDにおいて30~350μm、TDにおいて30~400μm、ZDにおいて10~150μmとなるものである。また、発泡体における気泡の平均気泡径は、より好ましくは、MDにおいて60~300μm、TDにおいて60~300μm、ZDにおいて15~70μmとなるものである。
 また、気泡のZDの平均気泡径に対するMDの平均気泡径の比(以下、“MD/ZD”ともいう)が1.5~8であるとともに、ZDの平均気泡径に対するTDの平均気泡径の比(以下、“TD/ZD”ともいう)が1.5~9であることが好ましい。さらには、MD/ZDが2~7、TD/ZDが2~7であることがより好ましい。
 平均気泡径及び平均気泡径の比を上記範囲内とすると、発泡体の柔軟性等が良好となり、防水シール材として好適に使用可能である。
 なお、MDは、Machine directionを意味し、押出方向等と一致する方向であるとともに、TDは、Transverse directionを意味し、MDに直交する方向であり、シート状の発泡体(発泡シート)においてはシート面に平行な方向である。また、ZDは、発泡体の厚さ方向であり、MD及びTDのいずれにも垂直な方向である。
(Average bubble diameter)
The average cell diameter of the foam is preferably 30 to 350 μm in MD, 30 to 400 μm in TD, and 10 to 150 μm in ZD. The average cell diameter of the bubbles in the foam is more preferably 60 to 300 μm in MD, 60 to 300 μm in TD, and 15 to 70 μm in ZD.
The ratio of the average bubble diameter of MD to the average bubble diameter of bubbles (hereinafter also referred to as “MD / ZD”) is 1.5 to 8, and the average bubble diameter of TD with respect to the average bubble diameter of ZD The ratio (hereinafter also referred to as “TD / ZD”) is preferably 1.5 to 9. More preferably, MD / ZD is 2 to 7, and TD / ZD is 2 to 7.
When the ratio of the average cell diameter and the average cell diameter is in the above range, the foam has good flexibility and can be suitably used as a waterproof sealing material.
In addition, MD means Machine direction and is a direction that coincides with the extrusion direction and the like, and TD means Transverse direction and is a direction orthogonal to MD. In a sheet-like foam (foamed sheet), The direction is parallel to the sheet surface. ZD is the thickness direction of the foam, and is the direction perpendicular to both MD and TD.
(発泡倍率)
 発泡体の発泡倍率は、1.8~20倍であることが好ましく、2.5~15倍がより好ましい。発泡体は、発泡倍率を上記範囲内とすることで、発泡体の柔軟性、機械強度等を適切にし、発泡体のシール性も良好にしやすくなる。また、後述する製造方法により、発泡体表面を平滑にしやすくなる。
 なお、発泡体の発泡倍率とは、発泡前のもの(発泡性組成物)と発泡後のもの(発泡体)の比容積(単位:cc/g)を測定し、発泡後の比容積/発泡前の比容積によって算出されたものをいう。
(Foaming ratio)
The expansion ratio of the foam is preferably 1.8 to 20 times, and more preferably 2.5 to 15 times. By setting the expansion ratio within the above-mentioned range, the foam is suitable for flexibility, mechanical strength and the like of the foam, and it is easy to improve the sealing property of the foam. Moreover, it becomes easy to make a foam surface smooth by the manufacturing method mentioned later.
In addition, the expansion ratio of the foam is the specific volume (unit: cc / g) of the foam before foaming (foamable composition) and after foaming (foam), and the specific volume after foaming / foaming. It is calculated by the previous specific volume.
(見かけ密度)
 また、発泡体の見かけ密度は、0.05~0.5g/cm3であることが好ましく、0.08~0.30g/cm3であることがより好ましい。発泡体は、見かけ密度を上記範囲内とすることで、発泡体の柔軟性、機械強度等を適切にし、発泡体のシール性も良好にしやすくなる。なお、発泡体の見かけ密度とは、JIS  K7222に準拠して測定したものである。
(Apparent density)
The apparent density of the foam is preferably 0.05 to 0.5 g / cm 3 , and more preferably 0.08 to 0.30 g / cm 3 . When the foam has an apparent density within the above range, the foam has a suitable flexibility, mechanical strength, and the like, and the sealing property of the foam is easily improved. The apparent density of the foam is measured according to JIS K7222.
(25%圧縮強度)
 発泡体の25%圧縮強度は、10~2000kPaであることが好ましい。10kPa以上とすることで機械強度が良好となり、2000kPa以下とすることで発泡体の柔軟性等が良好になる。また、25%圧縮強度は、機械強度及び柔軟性をバランスよく向上させ、かつ防水性等のシール性を良好にする観点から30~200kPaであることがより好ましい。なお、発泡体の25%圧縮強度はJIS K6767の方法に従って測定したものである。
(25% compressive strength)
The 25% compressive strength of the foam is preferably 10 to 2000 kPa. By setting the pressure to 10 kPa or more, the mechanical strength is improved, and by setting the pressure to 2000 kPa or less, the flexibility of the foam is improved. The 25% compressive strength is more preferably 30 to 200 kPa from the viewpoints of improving mechanical strength and flexibility in a balanced manner and improving sealing properties such as waterproofness. The 25% compressive strength of the foam is measured according to the method of JIS K6767.
(架橋度)
 発泡体は、通常、架橋されたものである。発泡体の架橋度は、好ましくは15~60質量%である。架橋度を15質量%以上とすることで、発泡体を延伸する際に発泡体の表面近傍部の気泡が破泡して表面荒れが生じることが防止される。また、架橋度が60質量%以下であると、樹脂材料を、加熱発泡の際に、所望の発泡倍率に調整しやすくなる。このような観点から、架橋度は20~50質量%がより好ましい。
(Crosslinking degree)
The foam is usually cross-linked. The degree of crosslinking of the foam is preferably 15 to 60% by mass. By setting the degree of crosslinking to 15% by mass or more, when the foam is stretched, it is possible to prevent bubbles in the vicinity of the surface of the foam from breaking and causing surface roughness. Further, when the degree of crosslinking is 60% by mass or less, the resin material can be easily adjusted to a desired expansion ratio at the time of heat foaming. From such a viewpoint, the degree of crosslinking is more preferably 20 to 50% by mass.
(ポリオレフィン樹脂)
 発泡体を構成する樹脂は、発泡体に従来使用される樹脂、ゴムが使用可能であるが、ポリオレフィン樹脂が好ましい。ポリオレフィン樹脂は、ポリエチレン樹脂、ポリプロピレン樹脂、エチレン-酢酸ビニル共重合体等が挙げられ、これらの中ではポリエチレン樹脂が好ましい。ポリオレフィン樹脂、特にポリエチレン樹脂を使用することで、発泡体の静摩擦係数を上記範囲内に調整しやすくなる。また、圧縮強度等の各種物性を上記範囲内に調整しやすくなり、防水シール材として好適に使用することが可能である。
 ポリエチレン樹脂としては、チーグラー・ナッタ化合物、メタロセン化合物、酸化クロム化合物等の重合触媒で重合されたポリエチレン樹脂が挙げられ、好ましくは、メタロセン化合物の重合触媒で重合されたポリエチレン樹脂が用いられる。
(Polyolefin resin)
As the resin constituting the foam, a resin or rubber conventionally used for the foam can be used, but a polyolefin resin is preferable. Examples of the polyolefin resin include a polyethylene resin, a polypropylene resin, and an ethylene-vinyl acetate copolymer. Among these, a polyethylene resin is preferable. By using a polyolefin resin, particularly a polyethylene resin, it becomes easy to adjust the static friction coefficient of the foam within the above range. Moreover, it becomes easy to adjust various physical properties such as compressive strength within the above range, and can be suitably used as a waterproof sealing material.
Examples of the polyethylene resin include a polyethylene resin polymerized with a polymerization catalyst such as a Ziegler-Natta compound, a metallocene compound, and a chromium oxide compound. Preferably, a polyethylene resin polymerized with a polymerization catalyst of a metallocene compound is used.
 また、ポリエチレン樹脂としては、直鎖状低密度ポリエチレンが好ましい。直鎖状低密度ポリエチレンは、メタロセン化合物の重合触媒を用いて得たものがより好ましい。メタロセン化合物の重合触媒を用いて得た直鎖状低密度ポリエチレンを用いることにより、発泡体に高い柔軟性、機械強度を付与できるとともに、薄肉化が可能になり、防水シール材として優れたものとなる。
 直鎖状低密度ポリエチレンは、エチレン(例えば、全モノマー量に対して75質量%以上、好ましくは90質量%以上)と必要に応じて少量のα-オレフィンとを共重合することにより得られる直鎖状低密度ポリエチレンがより好ましい。
 α-オレフィンとして、具体的には、プロピレン、1-ブテン、1-ペンテン、4-メチル-1-ペンテン、1-ヘキセン、1-ヘプテン、及び1-オクテン等が挙げられる。なかでも、炭素数4~10のα-オレフィンが好ましい。
 ポリエチレン樹脂、例えば上記した直鎖状低密度ポリエチレンの密度は、0.870~0.910g/cmが好ましく、0.875~0.907g/cmがより好ましく、0.880~0.905g/cmが更に好ましい。ポリエチレン樹脂としては、複数のポリエチレン樹脂を用いることもでき、また、上記した密度範囲以外のポリエチレン樹脂を加えてもよい。
The polyethylene resin is preferably linear low density polyethylene. The linear low density polyethylene is more preferably obtained by using a polymerization catalyst of a metallocene compound. By using linear low-density polyethylene obtained by using a polymerization catalyst of a metallocene compound, it is possible to impart high flexibility and mechanical strength to the foam, and it is possible to reduce the thickness, which is excellent as a waterproof sealing material. Become.
The linear low density polyethylene is obtained by copolymerizing ethylene (for example, 75% by mass or more, preferably 90% by mass or more with respect to the total amount of monomers) and a small amount of α-olefin as required. A chain low density polyethylene is more preferred.
Specific examples of the α-olefin include propylene, 1-butene, 1-pentene, 4-methyl-1-pentene, 1-hexene, 1-heptene, and 1-octene. Of these, α-olefins having 4 to 10 carbon atoms are preferred.
Polyethylene resin, for example the density of the above-mentioned linear low density polyethylene is preferably 0.870 ~ 0.910g / cm 3, more preferably 0.875 ~ 0.907g / cm 3, 0.880 ~ 0.905g / Cm 3 is more preferable. As the polyethylene resin, a plurality of polyethylene resins can be used, and a polyethylene resin outside the above-described density range may be added.
(メタロセン化合物)
 メタロセン化合物としては、遷移金属をπ電子系の不飽和化合物で挟んだ構造を有するビス(シクロペンタジエニル)金属錯体等の化合物を挙げることができる。より具体的には、チタン、ジルコニウム、ニッケル、パラジウム、ハフニウム、及び白金等の四価の遷移金属に、1又は2以上のシクロペンタジエニル環又はその類縁体がリガンド(配位子)として存在する化合物を挙げることができる。
 メタロセン化合物は、活性点の性質が均一であり各活性点が同じ活性度を備えている。メタロセン化合物を用いて合成した重合体は、分子量、分子量分布、組成、組成分布等の均一性が高いため、メタロセン化合物を用いて合成した重合体を含むシートを架橋した場合には、架橋が均一に進行する。そのため、均一に延伸できるため、発泡体の厚さを均一にでき、防水性等のシール性が良好になる。
(Metallocene compound)
Examples of the metallocene compound include compounds such as a bis (cyclopentadienyl) metal complex having a structure in which a transition metal is sandwiched between π-electron unsaturated compounds. More specifically, tetravalent transition metals such as titanium, zirconium, nickel, palladium, hafnium, and platinum have one or more cyclopentadienyl rings or their analogs as ligands (ligands). Can be mentioned.
Metallocene compounds have uniform active site properties and each active site has the same activity. A polymer synthesized using a metallocene compound has high uniformity in molecular weight, molecular weight distribution, composition, composition distribution, etc., so when a sheet containing a polymer synthesized using a metallocene compound is crosslinked, the crosslinking is uniform. Proceed to. Therefore, since it can extend | stretch uniformly, the thickness of a foam can be made uniform and sealing properties, such as waterproofness, become favorable.
 リガンドとしては、例えば、シクロペンタジエニル環、インデニル環等を挙げることができる。これらの環式化合物は、炭化水素基、置換炭化水素基又は炭化水素-置換メタロイド基により置換されていてもよい。炭化水素基としては、例えば、メチル基、エチル基、各種プロピル基、各種ブチル基、各種アミル基、各種ヘキシル基、2-エチルヘキシル基、各種ヘプチル基、各種オクチル基、各種ノニル基、各種デシル基、各種セチル基、フェニル基等が挙げられる。なお、「各種」とは、n-、sec-、tert-、iso-を含む各種異性体を意味する。
 また、環式化合物をオリゴマーとして重合したものをリガンドとして用いてもよい。
 更に、π電子系の不飽和化合物以外にも、塩素や臭素等の一価のアニオンリガンド又は二価のアニオンキレートリガンド、炭化水素、アルコキシド、アリールアミド、アリールオキシド、アミド、アリールアミド、ホスフィド、アリールホスフィド等を用いてもよい。
Examples of the ligand include a cyclopentadienyl ring and an indenyl ring. These cyclic compounds may be substituted with a hydrocarbon group, a substituted hydrocarbon group or a hydrocarbon-substituted metalloid group. Examples of the hydrocarbon group include a methyl group, an ethyl group, various propyl groups, various butyl groups, various amyl groups, various hexyl groups, 2-ethylhexyl groups, various heptyl groups, various octyl groups, various nonyl groups, and various decyl groups. , Various cetyl groups, phenyl groups and the like. The “various” means various isomers including n-, sec-, tert-, and iso-.
Moreover, what polymerized the cyclic compound as an oligomer may be used as a ligand.
In addition to π-electron unsaturated compounds, monovalent anion ligands such as chlorine and bromine or divalent anion chelate ligands, hydrocarbons, alkoxides, arylamides, aryloxides, amides, arylamides, phosphides, aryls Phosphide or the like may be used.
 四価の遷移金属やリガンドを含むメタロセン化合物としては、例えば、シクロペンタジエニルチタニウムトリス(ジメチルアミド)、メチルシクロペンタジエニルチタニウムトリス(ジメチルアミド)、ビス(シクロペンタジエニル)チタニウムジクロリド、ジメチルシリルテトラメチルシクロペンタジエニル-t-ブチルアミドジルコニウムジクロリド等が挙げられる。
 メタロセン化合物は、特定の共触媒(助触媒)と組み合わせることにより、各種オレフィンの重合の際に触媒としての作用を発揮する。具体的な共触媒としては、メチルアルミノキサン(MAO)、ホウ素系化合物等が挙げられる。なお、メタロセン化合物に対する共触媒の使用割合は、10~100万モル倍が好ましく、50~5,000モル倍がより好ましい。
Examples of metallocene compounds containing tetravalent transition metals and ligands include, for example, cyclopentadienyl titanium tris (dimethylamide), methylcyclopentadienyl titanium tris (dimethylamide), bis (cyclopentadienyl) titanium dichloride, dimethyl And silyltetramethylcyclopentadienyl-t-butylamidozirconium dichloride.
The metallocene compound exhibits an action as a catalyst in the polymerization of various olefins by combining with a specific cocatalyst (co-catalyst). Specific examples of the cocatalyst include methylaluminoxane (MAO) and boron compounds. The proportion of the cocatalyst used with respect to the metallocene compound is preferably 100,000 to 1,000,000 mole times, more preferably 50 to 5,000 mole times.
 ポリオレフィン樹脂として使用するエチレン-酢酸ビニル共重合体は、例えば、エチレンを50質量%以上含有するエチレン-酢酸ビニル共重合体が挙げられる。
 また、ポリプロピレン樹脂としては、例えば、ホモポリプロピレン、プロピレンを50質量%以上含有するプロピレン-α-オレフィン共重合体等が挙げられる。これらは1種を単独で用いてもよく、2種以上を併用してもよい。
 プロピレン-α-オレフィン共重合体を構成するα-オレフィンとしては、具体的には、エチレン、1-ブテン、1-ペンテン、4-メチル-1-ペンテン、1-ヘキセン、1-ヘプテン、1-オクテン等が挙げることができ、これらの中では、炭素数6~12のα-オレフィンが好ましい。
Examples of the ethylene-vinyl acetate copolymer used as the polyolefin resin include an ethylene-vinyl acetate copolymer containing 50% by mass or more of ethylene.
Examples of the polypropylene resin include homopolypropylene and a propylene-α-olefin copolymer containing 50% by mass or more of propylene. These may be used alone or in combination of two or more.
Specific examples of the α-olefin constituting the propylene-α-olefin copolymer include ethylene, 1-butene, 1-pentene, 4-methyl-1-pentene, 1-hexene, 1-heptene, 1- Among these, α-olefins having 6 to 12 carbon atoms are preferable.
 発泡体に含まれるポリオレフィン樹脂は、上記した直鎖状低密度ポリエチレンを使用する場合、上記の直鎖状低密度ポリエチレンを単独で使用してもよいが、他のポリオレフィン樹脂と併用してもよく、例えば、上記した他のポリオレフィン樹脂と併用してもよい。
 他のポリオレフィン樹脂を含有する場合、直鎖状低密度ポリエチレンと他のポリオレフィン樹脂との合計量に対する直鎖状低密度ポリエチレンの割合は、50質量%以上が好ましく、70質量%以上がより好ましく、90質量%以上であることがさらに好ましい。また、他のポリオレフィン樹脂は、エチレン-酢酸ビニル共重合体であることが好ましい。
When the above-mentioned linear low density polyethylene is used as the polyolefin resin contained in the foam, the above linear low density polyethylene may be used alone, or may be used in combination with other polyolefin resins. For example, you may use together with other polyolefin resin mentioned above.
When other polyolefin resin is contained, the ratio of the linear low density polyethylene to the total amount of the linear low density polyethylene and the other polyolefin resin is preferably 50% by mass or more, more preferably 70% by mass or more, More preferably, it is 90 mass% or more. The other polyolefin resin is preferably an ethylene-vinyl acetate copolymer.
 また、発泡体を構成する樹脂としては、ポリオレフィン樹脂を単独で使用してもよいが、本発明の効果を損なわない限り、ポリオレフィン樹脂以外の樹脂を含んでもよい。発泡体において、ポリオレフィン樹脂の樹脂全量に対する割合は、70質量%以上が好ましく、80質量%以上がより好ましく、90質量%以上が更に好ましい。
 発泡体に使用するポリオレフィン樹脂以外の樹脂としては、エチレンプロピレンジエンゴム(EPDM)、水添スチレン系熱可塑性エラストマー(SEBS)、オレフィン系エラストマー等のポリオレフィン樹脂以外のゴム成分、樹脂成分が挙げられる。
Moreover, as resin which comprises a foam, although polyolefin resin may be used independently, unless the effect of this invention is impaired, resin other than polyolefin resin may be included. In the foam, the ratio of the polyolefin resin to the total amount of the resin is preferably 70% by mass or more, more preferably 80% by mass or more, and still more preferably 90% by mass or more.
Examples of the resin other than the polyolefin resin used in the foam include rubber components other than polyolefin resins such as ethylene propylene diene rubber (EPDM), hydrogenated styrene thermoplastic elastomer (SEBS), and olefin elastomer, and resin components.
(熱分解型発泡剤)
 本発明の発泡体は、上記樹脂に加えて、熱分解型発泡剤を含む発泡性組成物を発泡したものであることが好ましい。熱分解型発泡剤としては、例えば、樹脂の溶融温度より高い分解温度を有するものを使用し、例えば、分解温度が140~270℃の有機系又は無機系の化学発泡剤を用いる。
 有機系発泡剤としては、アゾジカルボンアミド、アゾジカルボン酸金属塩(アゾジカルボン酸バリウム等)、アゾビスイソブチロニトリル等のアゾ化合物、N,N’-ジニトロソペンタメチレンテトラミン等のニトロソ化合物、ヒドラゾジカルボンアミド、4,4'-オキシビス(ベンゼンスルホニルヒドラジド)、トルエンスルホニルヒドラジド等のヒドラジン誘導体、トルエンスルホニルセミカルバジド等のセミカルバジド化合物等が挙げられる。
 無機系発泡剤としては、酸アンモニウム、炭酸ナトリウム、炭酸水素アンモニウム、炭酸水素ナトリウム、亜硝酸アンモニウム、水素化ホウ素ナトリウム、無水クエン酸モノソーダ等が挙げられる。
 これらの中では、微細な気泡を得る観点、及び経済性、安全面の観点から、アゾ化合物、ニトロソ化合物が好ましく、アゾジカルボンアミド、アゾビスイソブチロニトリル、N,N’-ジニトロソペンタメチレンテトラミンがより好ましく、アゾジカルボンアミドが更に好ましい。
 これらの熱分解型発泡剤は、単独で又は2以上を組み合わせて使用する。
 熱分解型発泡剤の添加量は、樹脂(例えば、ポリオレフィン樹脂)100質量部に対して1~10質量部が好ましく、1.5~5質量部がより好ましく、1.5~3質量部が更に好ましい。
(Pyrolytic foaming agent)
The foam of the present invention is preferably obtained by foaming a foamable composition containing a pyrolytic foaming agent in addition to the above resin. As the thermally decomposable foaming agent, for example, one having a decomposition temperature higher than the melting temperature of the resin is used. For example, an organic or inorganic chemical foaming agent having a decomposition temperature of 140 to 270 ° C. is used.
Organic foaming agents include azodicarbonamide, azodicarboxylic acid metal salts (such as barium azodicarboxylate), azo compounds such as azobisisobutyronitrile, nitroso compounds such as N, N′-dinitrosopentamethylenetetramine, And hydrazine derivatives such as hydrazodicarbonamide, 4,4′-oxybis (benzenesulfonylhydrazide) and toluenesulfonylhydrazide, and semicarbazide compounds such as toluenesulfonyl semicarbazide.
Examples of the inorganic foaming agent include ammonium acid, sodium carbonate, ammonium hydrogen carbonate, sodium hydrogen carbonate, ammonium nitrite, sodium borohydride, anhydrous monosodium citrate, and the like.
Among these, azo compounds and nitroso compounds are preferable from the viewpoint of obtaining fine bubbles, and from the viewpoints of economy and safety, and azodicarbonamide, azobisisobutyronitrile, N, N′-dinitrosopentamethylene. Tetramine is more preferred, and azodicarbonamide is still more preferred.
These pyrolytic foaming agents are used alone or in combination of two or more.
The amount of the pyrolytic foaming agent added is preferably 1 to 10 parts by weight, more preferably 1.5 to 5 parts by weight, and more preferably 1.5 to 3 parts by weight with respect to 100 parts by weight of the resin (for example, polyolefin resin). Further preferred.
(その他の添加剤)
 発泡性組成物は、必要に応じて、上記以外にも、酸化防止剤、熱安定剤、着色剤、難燃剤、帯電防止剤、充填材等の発泡体に一般的に使用する添加剤を含有していてもよい。
(Other additives)
In addition to the above, the foamable composition contains additives generally used for foams such as antioxidants, heat stabilizers, colorants, flame retardants, antistatic agents, fillers, etc. You may do it.
 本発明の発泡体は、いかなる用途に使用してもよいが、防水、防塵等をするためのシール材として使用することが好ましく、防水シール材として使用することがより好ましい。シール材は、例えば、少なくとも一方の面を他の部材に押し付けて使用する。本発明の発泡体は、上記のように、表面が平滑性を有し、他の部材に密着するため、シール材として使用することで、高いシール性を発揮することが可能である。また、発泡体は、電子機器、具体的には、ノート型パーソナルコンピューター、携帯電話、スマートフォン、タブレット、携帯音楽機器等の携帯電子機器に使用することが好ましい。 The foam of the present invention may be used for any application, but is preferably used as a sealing material for waterproofing, dustproofing, etc., and more preferably used as a waterproof sealing material. For example, the sealing material is used by pressing at least one surface against another member. As described above, the foam of the present invention has a smooth surface and is in close contact with other members. Therefore, when used as a sealing material, the foam can exhibit high sealing performance. Moreover, it is preferable to use a foam for portable electronic devices, such as an electronic device, specifically a notebook personal computer, a mobile phone, a smart phone, a tablet, a portable music device.
 本発明の発泡体は、シート状とした場合には、いずれか一方の面又は両面に粘着剤層を設けた粘着シートとしてもよい。また、発泡体は、シール材として使用する場合には、一方の面に粘着剤層、又は両面粘着テープによって被着体に接着させるとともに、他方の面をガラス板、アクリル板等の別の部材に押し付けて使用してもよい。
 なお、粘着剤層の厚さは、5~200μm、より好ましくは7~150μmである。粘着剤層を構成する粘着剤としては、特に制限はなく、例えば、アクリル系粘着剤、ウレタン系粘着剤、ゴム系粘着剤等を用いる。
When the foam of the present invention is in the form of a sheet, it may be a pressure-sensitive adhesive sheet provided with a pressure-sensitive adhesive layer on one or both sides. Further, when the foam is used as a sealing material, it is adhered to an adherend with an adhesive layer or a double-sided adhesive tape on one surface, and the other surface is another member such as a glass plate or an acrylic plate. It may be used by being pressed against.
The pressure-sensitive adhesive layer has a thickness of 5 to 200 μm, more preferably 7 to 150 μm. There is no restriction | limiting in particular as an adhesive which comprises an adhesive layer, For example, an acrylic adhesive, a urethane type adhesive, a rubber-type adhesive, etc. are used.
[発泡体の製造方法]
 本発明の発泡体は、例えば、樹脂及び熱分解型発泡剤を含む発泡性組成物を発泡させて発泡中間体を得て、発泡に起因して生じた発泡中間体表面の凹凸が平滑化されるように、発泡中間体を延伸させることで得るものである。その製造方法は、より具体的には、以下の工程を含む。
 工程(1):樹脂、熱分解型発泡剤等の添加剤を混合して発泡性組成物を樹脂シートに成形する工程
 工程(2):工程(1)で得られた発泡性組成物を架橋する工程
 工程(3):架橋させた発泡性組成物を加熱し、熱分解型発泡剤を発泡させ、発泡中間体を得る工程
 工程(4):発泡に起因して生じた発泡中間体表面の凹凸が平滑化されるように、発泡中間体を延伸する工程
[Method for producing foam]
The foam of the present invention is obtained by, for example, foaming a foamable composition containing a resin and a thermally decomposable foaming agent to obtain a foamed intermediate, and the unevenness on the surface of the foamed intermediate resulting from foaming is smoothed. Thus, it is obtained by extending the foamed intermediate. More specifically, the manufacturing method includes the following steps.
Step (1): Step of mixing an additive such as a resin and a thermally decomposable foaming agent to form a foamable composition into a resin sheet Step (2): Crosslinking the foamable composition obtained in Step (1) Step (3): Step of heating the cross-linked foamable composition and foaming the pyrolyzable foaming agent to obtain a foamed intermediate Step (4): of the surface of the foamed intermediate resulting from foaming The step of stretching the foamed intermediate so that the unevenness is smoothed
 工程(1)において、樹脂シートを成形する方法は、特に限定されないが、例えば、樹脂及び添加剤を押出機に供給して、熱分解型発泡剤の分解温度未満の温度で溶融混練し、押出機から発泡性組成物をシート状に押出すことによって樹脂シートを成形すればよい。
 工程(2)において発泡性組成物を架橋する方法としては、樹脂シートに電離性放射線を照射する方法が挙げられる。また、発泡性組成物に予め有機過酸化物、又は硫黄などの硫黄系化合物を配合しておき、発泡性組成物を加熱して、有機過酸化物を分解させ又は硫黄系化合物により加硫する方法等により架橋を行ってもよい。これらの中では、電離性放射線により架橋を行うことが好ましい。
 電離性放射線としては、α線、β線、γ線、電子線等が挙げられるが、電子線がより好ましい。樹脂シートに対する電離性放射線の照射量は、1~10Mradが好ましく、1.5~8Mradがより好ましい。
In the step (1), the method for forming the resin sheet is not particularly limited. For example, the resin and the additive are supplied to an extruder, and melt-kneaded at a temperature lower than the decomposition temperature of the pyrolytic foaming agent. What is necessary is just to shape | mold a resin sheet by extruding a foamable composition from a machine in a sheet form.
Examples of the method of crosslinking the foamable composition in the step (2) include a method of irradiating the resin sheet with ionizing radiation. Further, an organic peroxide or a sulfur-based compound such as sulfur is blended in advance with the foamable composition, and the foamable composition is heated to decompose the organic peroxide or vulcanize with the sulfur-based compound. Crosslinking may be performed by a method or the like. In these, it is preferable to perform bridge | crosslinking by ionizing radiation.
Examples of the ionizing radiation include α-rays, β-rays, γ-rays, and electron beams, and electron beams are more preferable. The amount of ionizing radiation applied to the resin sheet is preferably 1 to 10 Mrad, more preferably 1.5 to 8 Mrad.
 工程(3)では、架橋した発泡性組成物を、熱分解型発泡剤の分解温度以上に加熱して発泡する。工程(3)において、発泡性組成物を加熱し熱分解型発泡剤を発泡させるときの加熱温度は、通常140~300℃、好ましくは160~260℃である。また、樹脂シートを発泡させる方法としては、特に制限はなく、例えば、熱風により加熱する方法、赤外線により加熱する方法、塩浴による方法、オイルバスによる方法等が挙げられ、これらは併用してもよい。
 また、発泡性組成物は、工程(3)において発泡させながら延伸させてもよい。この場合、例えば、MD又はTDに延伸させるとよいが、工程(4)において延伸させる方向と直交する方向に延伸させることが好ましい。例えば、工程(4)においてTDに延伸させる場合には、MDに延伸させるとよい。
 なお、本製造方法では、工程(3)及び後述する工程(4)にて延伸を行うことで、平均気泡径及び平均気泡径の比を上記した所望の範囲に調整しやすくなる。
In step (3), the crosslinked foamable composition is heated to a temperature equal to or higher than the decomposition temperature of the thermally decomposable foaming agent to foam. In the step (3), the heating temperature when the foamable composition is heated to foam the pyrolytic foaming agent is usually 140 to 300 ° C, preferably 160 to 260 ° C. The method for foaming the resin sheet is not particularly limited, and examples thereof include a method of heating with hot air, a method of heating with infrared rays, a method using a salt bath, a method using an oil bath, and the like. Good.
Further, the foamable composition may be stretched while being foamed in the step (3). In this case, for example, the film may be stretched in MD or TD, but is preferably stretched in a direction orthogonal to the direction of stretching in the step (4). For example, when extending to TD in a process (4), it is good to extend to MD.
In addition, in this manufacturing method, it becomes easy to adjust the ratio of an average bubble diameter and an average bubble diameter to the above-mentioned desired range by extending | stretching in process (3) and process (4) mentioned later.
 次いで、工程(4)では、発泡に起因して生じた発泡中間体表面の凹凸が平滑化されるように、発泡中間体を延伸する。工程(4)では、発泡中間体は、一方向に延伸させることが好ましく、具体的には、TD又はMDに延伸させることが好ましく、より好ましくはTDに延伸させる。なお、TDに延伸させる場合、例えばシート状の中間発泡体をMDに送り出しながらTDに延伸させるとよい。 Next, in step (4), the foamed intermediate is stretched so that the irregularities on the surface of the foamed intermediate caused by foaming are smoothed. In the step (4), the foamed intermediate is preferably stretched in one direction, specifically, preferably stretched to TD or MD, more preferably stretched to TD. In addition, when extending | stretching to TD, it is good to extend to TD, for example, sending a sheet-like intermediate foam to MD.
 発泡中間体を延伸させる際、発泡体表面を平滑化させるためには、延伸時の引張弾性率を、所定の範囲になるように調整すればよい。発泡中間体は、ある程度柔軟化された状態で伸ばされるように延伸時の引張弾性率が所定の範囲になると、それにより、発泡体表面の発泡に起因する凹凸が小さくなり又は失われると推定される。また、必要以上に延伸されず、発泡中間体が破断したりすることも防止される。
 また、発泡体表面を平滑化するために必要とされる引張弾性率は、後述するように、発泡体の発泡倍率によって異なり、発泡体の発泡倍率が高くなるほど小さくなる。発泡倍率が高いほど、発泡中間体の柔軟性も高いため、小さな引張力で表面が平滑化され、それに伴い、必要とされる引張弾性率も小さくなるためと考えられる。
In order to smooth the foam surface when the foam intermediate is stretched, the tensile elastic modulus at the time of stretching may be adjusted to be within a predetermined range. When the tensile elastic modulus at the time of stretching falls within a predetermined range so that the foamed intermediate body is stretched in a somewhat softened state, it is estimated that the unevenness due to foaming on the foam surface is thereby reduced or lost. The Moreover, it is not stretched more than necessary, and the foamed intermediate is prevented from breaking.
Further, as will be described later, the tensile elastic modulus required for smoothing the foam surface varies depending on the foaming ratio of the foam, and decreases as the foaming ratio of the foam increases. This is probably because the higher the expansion ratio, the higher the flexibility of the foamed intermediate, so that the surface is smoothed with a small tensile force, and the required tensile elastic modulus decreases accordingly.
 具体的には、発泡体を構成する樹脂がポリオレフィン樹脂を含み、かつ発泡中間体を一方向に延伸させる場合には、概ね以下の表1に示す引張弾性率となるように発泡中間体を引っ張ればよい。なお、表1では、発泡体の発泡倍率が左側の値である場合には、右側の引張弾性率となるように発泡中間体を伸張させればよいことを示す。以下に示す引張弾性率で発泡中間体を引っ張ることで、発泡体の表面が平滑化され、静摩擦係数を高くすることができるとともに、発泡中間体が破断したりすることも防止する。 Specifically, when the resin constituting the foam contains a polyolefin resin and the foamed intermediate is stretched in one direction, the foamed intermediate is pulled so as to have a tensile elastic modulus shown in Table 1 below. That's fine. Table 1 shows that when the foaming ratio of the foam is the value on the left side, the foam intermediate may be stretched so as to have the right tensile elastic modulus. By pulling the foamed intermediate with the tensile modulus shown below, the surface of the foam is smoothed, the static friction coefficient can be increased, and the foamed intermediate is also prevented from breaking.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 ここで、引張弾性率は、引張応力/歪みであるが、一般的に温度が高くなると低くなるものであるため、延伸時の中間発泡体の温度を適宜調整することで、引張弾性率を調整することが可能である。また発泡中間体は、延伸時には、歪みを大きくして降伏点を越えるように引っ張られることがあるが、降伏点を越えると引張応力が下がる。そのため、引張弾性率は、歪み量(すなわち、伸び率)によっても変動することがある。したがって、延伸時には、引張弾性率が上記表1に示した範囲となるように、温度及び伸び率を調整すればよい。
 具体的には、延伸時の中間発泡体の温度は、特に限定されないが、例えば80~150℃、好ましくは90~130℃である。また、中間発泡体は、伸び率が、例えば30~300%、好ましくは40~250%となるように引っ張るとよい。なお、伸び率とは、伸び量(歪み)の元の中間発泡体の長さに対する割合である。
 なお、延伸時における引張弾性率は、同じ歪み(伸び率)及び温度条件にて、発泡中間体を、引張試験機を用いて引っ張ることにより確認することが可能である。
 以上の製造方法によれば、例えば表面を研摩したり、発泡体をカットしたりしなくても、高い静摩擦係数を有する発泡体を提供できる。
Here, the tensile modulus is tensile stress / strain, but generally decreases as the temperature increases. Therefore, the tensile modulus is adjusted by appropriately adjusting the temperature of the intermediate foam during stretching. Is possible. Further, the foamed intermediate body may be pulled to increase the strain and exceed the yield point at the time of stretching, but when the yield point is exceeded, the tensile stress decreases. Therefore, the tensile elastic modulus may vary depending on the amount of strain (that is, elongation). Accordingly, at the time of stretching, the temperature and the elongation rate may be adjusted so that the tensile elastic modulus is in the range shown in Table 1 above.
Specifically, the temperature of the intermediate foam during stretching is not particularly limited, but is, for example, 80 to 150 ° C., preferably 90 to 130 ° C. The intermediate foam may be pulled so that the elongation percentage is, for example, 30 to 300%, preferably 40 to 250%. In addition, elongation rate is a ratio with respect to the length of the original intermediate | middle foam of elongation amount (distortion).
In addition, the tensile elasticity modulus at the time of extending | stretching can be confirmed by pulling a foaming intermediate body using a tensile tester on the same strain (elongation rate) and temperature conditions.
According to the above production method, for example, a foam having a high static friction coefficient can be provided without polishing the surface or cutting the foam.
 本発明を実施例により更に詳細に説明するが、本発明はこれらの例によってなんら限定されるものではない。
 なお、各種物性、評価方法は、以下のとおりである。
<見かけ密度>
 JIS  K7222の方法に従って測定した。
<発泡倍率>
 発泡性組成物と発泡体の比容積(単位:cc/g)を測定し、発泡体の比容積/発泡性組成物の比容積によって算出した。
<架橋度>
 発泡体から約100mgの試験片を採取し、試験片の重量A(mg)を精秤する。次に、この試験片を120℃のキシレン30cm3中に浸漬して24時間放置した後、200メッシュの金網で濾過して金網上の不溶解分を採取、真空乾燥し、不溶解分の重量B(mg)を精秤する。得られた値から、下記式により架橋度(質量%)を算出する。
      架橋度(質量%)=100×(B/A)
<圧縮強度>
 JIS K6767の方法に従って測定した。
<独立気泡率>
 発泡体の独立気泡率は、明細書記載の方法で測定したものである。
<平均気泡径>
 発泡体は50mm四方にカットし、液体窒素に1分間浸した後にMD及びTDそれぞれに沿って厚さ方向に切断して、デジタルマイクロスコープ(株式会社キーエンス製、製品名VHX-900)を用いて200倍の拡大写真を撮った。拡大写真において、MD、TDそれぞれにおける長さ2mm分の切断面に存在する全ての気泡についてMD,ZDの気泡径、及びTD,ZDの気泡径を測定し、その操作を5回繰り返した。そして、全ての気泡のMD、TDそれぞれの気泡径の平均値をMD、TDの平均気泡径とするとともに、以上の操作によって測定された全てのZDの気泡径の平均値をZDの平均気泡径とした。
<静摩擦係数>
 JIS K 7125に規定される方法に従って、SUS板(SUS304)の上に発泡体を置き、その上に底面がフェルトのすべり板と更にその上に200gの錘を載せた後、接触界面に平行な方向に発泡体を引っ張り、発泡体が動き始める時の静摩擦係数を測定した。
<引張弾性率>
 中間発泡体を、各実施例、比較例の延伸時の条件で引張試験機(製品名.テンシロンRTFシリーズ、ヤマト科学(株)社製)を用いて引っ張ることで、延伸時の引張弾性率を測定した。引張弾性率の測定は、JIS K6767に準拠して行った。
<防水試験>
 各実施例、比較例の発泡体を用いて、防水評価用サンプルを作成した。防水評価用サンプルは、厚み10mmでタテと横の寸法がそれぞれ100mmの2枚のアクリル板の間に、各実施例、比較例の発泡体を挟み込み、元厚みの30%圧縮したものである。発泡体の寸法は外形がタテ60mm、横40mmであり、その中心にタテ58mm、横38mmの大きさに発泡体をくり貫いた額縁状のものである。2枚のアクリル板のうち、一方のアクリル板の中心に直径8mmの穴が空いており、そこから水圧を掛けられる構造になっている。また、発泡体は、一方の面に発泡体と同形状の額縁状にくり貫いた両面粘着テープ(厚さ0.048mm、TESA社製、「tesa4972」)が貼られ、その両面粘着テープにより他方のアクリル板に貼着させた。
 額縁状の発泡体の中心に水を満たした後、該直径8mmの穴から水圧を掛けて、JISC0920 IPX5に準拠し、防水性を評価した。水圧を掛けてから3分間経っても水漏れがしないものを防水性が優れるとして“A”、1分間以上、3分間未満水が漏れなかったものを防水性が良好であるとして“B”、1分間未満で水漏れが起こったものを防水性が不十分であるとして“C”と評価した。
Examples The present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
Various physical properties and evaluation methods are as follows.
<Apparent density>
It measured according to the method of JISK7222.
<Foaming ratio>
The specific volume (unit: cc / g) of the foamable composition and the foam was measured and calculated by the specific volume of the foam / the specific volume of the foamable composition.
<Degree of crosslinking>
A test piece of about 100 mg is taken from the foam, and the weight A (mg) of the test piece is precisely weighed. Next, this test piece was immersed in 30 cm 3 of xylene at 120 ° C. and allowed to stand for 24 hours, and then filtered through a 200-mesh wire mesh to collect the insoluble matter on the wire mesh, vacuum dried, and the weight of the insoluble matter. Weigh B (mg) precisely. From the obtained value, the degree of crosslinking (mass%) is calculated by the following formula.
Crosslinking degree (% by mass) = 100 × (B / A)
<Compressive strength>
It measured according to the method of JIS K6767.
<Closed cell ratio>
The closed cell ratio of the foam is measured by the method described in the specification.
<Average bubble diameter>
The foam is cut into a 50mm square, immersed in liquid nitrogen for 1 minute, then cut in the thickness direction along each of MD and TD, and using a digital microscope (product name VHX-900, manufactured by Keyence Corporation). I took a 200x magnified photo. In the enlarged photograph, the bubble diameters of MD and ZD and the bubble diameters of TD and ZD and the bubble diameters of TD and ZD were measured for all the bubbles present on the cut surface corresponding to a length of 2 mm in each of MD and TD, and the operation was repeated five times. The average value of the bubble diameters of all the bubbles MD and TD is taken as the average bubble diameter of the MD and TD, and the average value of the bubble diameters of all ZDs measured by the above operation is taken as the average bubble diameter of the ZD. It was.
<Static friction coefficient>
In accordance with the method specified in JIS K 7125, a foam is placed on a SUS plate (SUS304), a bottom surface is placed on a felt slip plate, and a 200 g weight is placed thereon, and then parallel to the contact interface. The foam was pulled in the direction and the coefficient of static friction when the foam started to move was measured.
<Tensile modulus>
By pulling the intermediate foam using a tensile tester (product name: Tensilon RTF series, manufactured by Yamato Scientific Co., Ltd.) under the conditions at the time of stretching in each Example and Comparative Example, the tensile elastic modulus at the time of stretching was It was measured. The tensile modulus was measured according to JIS K6767.
<Waterproof test>
A sample for waterproof evaluation was prepared using the foams of the examples and comparative examples. The sample for waterproof evaluation is obtained by sandwiching the foams of the respective examples and comparative examples between two acrylic plates each having a thickness of 10 mm and a vertical and horizontal dimension of 100 mm, and compressed by 30% of the original thickness. The foam has a frame shape in which the outer shape is 60 mm in length and 40 mm in width, and the center of the foam is 58 mm in length and 38 mm in width. Of the two acrylic plates, a hole having a diameter of 8 mm is formed at the center of one acrylic plate, and water pressure can be applied from there. Also, the double-sided pressure-sensitive adhesive tape (thickness 0.048 mm, manufactured by TESA, “tesa4972”) cut into a frame shape of the same shape as the foam is pasted on one side of the foam, and the other side with the double-sided pressure-sensitive adhesive tape It was made to stick on the acrylic board.
After filling the center of the frame-shaped foam with water, water pressure was applied from the hole with a diameter of 8 mm, and the waterproof property was evaluated according to JISC0920 IPX5. “A” indicates that water leakage does not occur even after 3 minutes from the application of water pressure, “A” indicates that water resistance is excellent, and “B” indicates that water leakage does not leak for more than 3 minutes for less than 3 minutes. A case where water leakage occurred in less than 1 minute was evaluated as “C” because the waterproofness was insufficient.
[実施例1]
 メタロセン化合物を用いて得られた直鎖状低密度ポリエチレン[エクソン・ケミカル社製、商品名.EXACT3027]100質量部と、熱分解型発泡剤としてのアゾジカルボンアミド5質量部と、2,6-ジ-t-ブチル-p-クレゾール0.02質量部と、酸化亜鉛0.2質量部とを押出機に供給して135℃で溶融混練し、その後、厚さ約0.6mmの樹脂シートとして押出した。
 次に、樹脂シートを、その両面に加速電圧500kVの電子線を5Mrad照射して架橋した後、熱風及び赤外線ヒーターにより210℃に保持された発泡炉内に、連続的に送り込み、樹脂シートをMDに延伸させながら加熱して発泡させて、発泡中間体を得た。その後、発泡中間体を、MDに送り出しかつ110℃に加熱しながら、伸び率90%で引張弾性率が1.3MPaとなるようにTDに延伸させて、厚さ0.5mmの発泡シートを得た。得られた発泡シートの評価結果を表1に示す。
[Example 1]
Linear low-density polyethylene obtained by using a metallocene compound [manufactured by Exxon Chemical Co., Ltd., trade name. EXACT3027] 100 parts by mass, 5 parts by mass of azodicarbonamide as a pyrolytic foaming agent, 0.02 parts by mass of 2,6-di-t-butyl-p-cresol, 0.2 parts by mass of zinc oxide, Was supplied to an extruder and melt-kneaded at 135 ° C., and then extruded as a resin sheet having a thickness of about 0.6 mm.
Next, the resin sheet was cross-linked by irradiating an electron beam with an acceleration voltage of 500 kV on both surfaces thereof for 5 Mrad, and then continuously fed into a foaming furnace maintained at 210 ° C. by hot air and an infrared heater, and the resin sheet was MD. The foamed intermediate was obtained by foaming by heating while being stretched. Thereafter, the foamed intermediate is fed to MD and heated to 110 ° C., and stretched to TD so that the tensile modulus is 1.3 MPa with an elongation of 90%, thereby obtaining a foam sheet having a thickness of 0.5 mm. It was. Table 1 shows the evaluation results of the obtained foamed sheet.
[実施例2]
 発泡体中間体を延伸させる際の伸び率を40%に変更し、引張弾性率1.3MPaとしたこと以外は、実施例1と同様に実施した。
[実施例3]
 熱分解型発泡剤を2.5質量部に変更し、発泡体中間体を延伸させる際の伸び率を60%に変更し、引張弾性率を2.1MPaとしたこと以外は、実施例1と同様に実施した。
[実施例4]
 熱分解型発泡剤を2.5質量部に変更し、電子線を8Mradに変更し、発泡体中間体を延伸させる際の伸び率を60%に変更し、引張弾性率を2.5MPaとしたこと以外は、実施例1と同様に実施した。
[Example 2]
It implemented like Example 1 except having changed the elongation rate at the time of extending | stretching a foam intermediate body into 40%, and setting it as the tensile elasticity modulus 1.3MPa.
[Example 3]
Example 1 except that the pyrolytic foaming agent was changed to 2.5 parts by mass, the elongation when the foam intermediate was stretched was changed to 60%, and the tensile modulus was 2.1 MPa. It carried out similarly.
[Example 4]
The pyrolytic foaming agent was changed to 2.5 parts by mass, the electron beam was changed to 8 Mrad, the elongation when the foam intermediate was stretched was changed to 60%, and the tensile modulus was 2.5 MPa. Except for this, the same procedure as in Example 1 was performed.
[比較例1]
 発泡中間体の延伸を75℃、伸び率90%で行い、引張弾性率4.2MPaとした以外は、実施例1と同様に実施した。
[比較例2]
 発泡中間体の延伸を155℃、伸び率90%で行い、引張弾性率0.3MPaとした以外は、実施例1と同様に実施した。
[Comparative Example 1]
The foamed intermediate was stretched at 75 ° C. with an elongation of 90%, and the same procedure as in Example 1 was performed except that the tensile modulus was 4.2 MPa.
[Comparative Example 2]
The foamed intermediate was stretched at 155 ° C. at an elongation of 90%, and the same procedure as in Example 1 was performed except that the tensile modulus was 0.3 MPa.

※なお、各実施例、比較例の発泡シートは、両面とも同じ静摩擦係数であった。

* The foamed sheets of the examples and comparative examples had the same coefficient of static friction on both sides.
 以上の各実施例では、発泡後に所定の引張弾性率となるように発泡中間体を延伸することで、発泡体の表面が平滑され、静摩擦係数が0.3以上の高い値となったため、防水性を良好にすることができた。それに対して、各比較例では、発泡後に所定の引張弾性率となるように発泡中間体を延伸しなかったため、発泡体の表面が十分に平滑化されず、静摩擦係数が0.3未満の低い値となった。そのため、防水性を良好にすることができなかった。
 
 
 
 
In each of the above examples, the foam intermediate was stretched so as to have a predetermined tensile elastic modulus after foaming, the surface of the foam was smoothed, and the static friction coefficient became a high value of 0.3 or more. The property could be improved. On the other hand, in each comparative example, the foam intermediate was not stretched so as to have a predetermined tensile modulus after foaming, so the surface of the foam was not sufficiently smoothed, and the static friction coefficient was low, less than 0.3. Value. For this reason, the waterproof property could not be improved.



Claims (9)

  1.  独立気泡を有し、表面のJIS K7125により測定されるSUS板に対する静摩擦係数が0.30~0.70である独立気泡樹脂発泡体。 A closed cell resin foam having closed cells and having a static friction coefficient of 0.30 to 0.70 against a SUS plate measured by JIS K7125 on the surface.
  2.  独立気泡発泡体を構成する樹脂がポリオレフィン樹脂を含む請求項1に記載の独立気泡樹脂発泡体。 The closed cell resin foam according to claim 1, wherein the resin constituting the closed cell foam contains a polyolefin resin.
  3.  前記ポリオレフィン樹脂が、ポリエチレン樹脂である請求項2に記載の独立気泡樹脂発泡体。 The closed cell resin foam according to claim 2, wherein the polyolefin resin is a polyethylene resin.
  4.  発泡倍率が1.8~20倍である請求項1~3のいずれか1項に記載の独立気泡樹脂発泡体。 The closed-cell resin foam according to any one of claims 1 to 3, wherein the expansion ratio is 1.8 to 20 times.
  5.  平均気泡径が、MDにおいて30~350μm、TDにおいて30~400μm、ZDにおいて10~150μmである請求項1~4のいずれか1項に記載の独立気泡樹脂発泡体。 The closed cell resin foam according to any one of claims 1 to 4, wherein the average cell diameter is 30 to 350 µm in MD, 30 to 400 µm in TD, and 10 to 150 µm in ZD.
  6.  ZDにおける平均気泡径に対するMDにおける平均気泡径の比が1.5~8であるとともに、ZDにおける平均気泡径に対するTDにおける平均気泡径の比が1.5~9である請求項1~5のいずれか1項に記載の独立気泡樹脂発泡体。 The ratio of the average bubble diameter in MD to the average bubble diameter in ZD is 1.5 to 8, and the ratio of average bubble diameter in TD to the average bubble diameter in ZD is 1.5 to 9. The closed cell resin foam according to any one of the preceding claims.
  7.  前記独立気泡樹脂発泡体が架橋されたものであり、その架橋度が15~60質量%である請求項1~6のいずれか1項に記載の独立気泡樹脂発泡体。 The closed-cell resin foam according to any one of claims 1 to 6, wherein the closed-cell resin foam is crosslinked and has a degree of crosslinking of 15 to 60% by mass.
  8.  厚さが0.02~1mmである請求項1~7のいずれか1項に記載の独立気泡樹脂発泡体。 The closed-cell resin foam according to any one of claims 1 to 7, which has a thickness of 0.02 to 1 mm.
  9.  請求項1~8のいずれか1項に記載される独立気泡樹脂発泡体の製造方法であって、樹脂及び熱分解型発泡剤を含む発泡性組成物を発泡させて発泡中間体を得て、前記発泡中間体表面の発泡に起因して生じた凹凸が平滑化されるように、前記発泡中間体を延伸させる、独立気泡樹脂発泡体の製造方法。
     
    A method for producing a closed-cell resin foam according to any one of claims 1 to 8, wherein a foamable composition containing a resin and a pyrolytic foaming agent is foamed to obtain a foamed intermediate, A process for producing a closed-cell resin foam, the foamed intermediate being stretched so that unevenness caused by foaming on the surface of the foamed intermediate is smoothed.
PCT/JP2017/035362 2016-09-30 2017-09-28 Closed cell resin foam and method for manufacturing same WO2018062444A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020187025389A KR102125912B1 (en) 2016-09-30 2017-09-28 Independent bubble resin foam and manufacturing method thereof
CN201780014513.XA CN108713037B (en) 2016-09-30 2017-09-28 Closed cell resin foam and method for producing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016193895A JP6625032B2 (en) 2016-09-30 2016-09-30 Closed-cell resin foam and method for producing the same
JP2016-193895 2016-09-30

Publications (1)

Publication Number Publication Date
WO2018062444A1 true WO2018062444A1 (en) 2018-04-05

Family

ID=61759757

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/035362 WO2018062444A1 (en) 2016-09-30 2017-09-28 Closed cell resin foam and method for manufacturing same

Country Status (4)

Country Link
JP (1) JP6625032B2 (en)
KR (1) KR102125912B1 (en)
CN (2) CN108713037B (en)
WO (1) WO2018062444A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021021036A (en) * 2019-07-30 2021-02-18 積水化学工業株式会社 Foam sheet, laminate, printing roll cushion material, and printing plate cylinder fixing member

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020175699A1 (en) * 2019-02-28 2020-09-03 積水化学工業株式会社 Foam sheet and adhesive tape
KR102382228B1 (en) * 2019-03-26 2022-04-04 도레이 카부시키가이샤 Polyolefin resin foam sheet

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005007731A1 (en) * 2003-07-16 2005-01-27 Sekisui Chemical Co.,Ltd. Foam sheet of crosslinked polyolefin resin, process for producing the same, and pressure-sensitive adhesive tape
JP2010247529A (en) * 2009-03-25 2010-11-04 Jsp Corp Laminated polyethylene resin foamed sheet
JP2012197373A (en) * 2011-03-22 2012-10-18 Sekisui Plastics Co Ltd Foamed molded product and its use
JP2012214623A (en) * 2011-03-31 2012-11-08 Sekisui Chem Co Ltd Adhesive sheet
JP2013203793A (en) * 2012-03-27 2013-10-07 Sekisui Plastics Co Ltd Damping material
JP2013213104A (en) * 2012-03-30 2013-10-17 Sekisui Chem Co Ltd Crosslinked polyolefin resin foamed sheet
JP2015183182A (en) * 2014-03-26 2015-10-22 積水化成品工業株式会社 Foamable composite resin particle, prefoamed particle, and foamed molded body

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0925898A1 (en) * 1997-12-26 1999-06-30 Sumitomo Chemical Company, Limited Foamed thermoplastic resin sheet and manufacturing method of the same
JP2013053179A (en) 2011-08-31 2013-03-21 Sekisui Chem Co Ltd Crosslinked polyolefin resin foamed sheet, pressure-sensitive adhesive tape, and sealing material
CN105579501B (en) * 2013-09-30 2019-08-30 积水化学工业株式会社 Crosslinked polyolefin resin foamed sheet

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005007731A1 (en) * 2003-07-16 2005-01-27 Sekisui Chemical Co.,Ltd. Foam sheet of crosslinked polyolefin resin, process for producing the same, and pressure-sensitive adhesive tape
JP2010247529A (en) * 2009-03-25 2010-11-04 Jsp Corp Laminated polyethylene resin foamed sheet
JP2012197373A (en) * 2011-03-22 2012-10-18 Sekisui Plastics Co Ltd Foamed molded product and its use
JP2012214623A (en) * 2011-03-31 2012-11-08 Sekisui Chem Co Ltd Adhesive sheet
JP2013203793A (en) * 2012-03-27 2013-10-07 Sekisui Plastics Co Ltd Damping material
JP2013213104A (en) * 2012-03-30 2013-10-17 Sekisui Chem Co Ltd Crosslinked polyolefin resin foamed sheet
JP2015183182A (en) * 2014-03-26 2015-10-22 積水化成品工業株式会社 Foamable composite resin particle, prefoamed particle, and foamed molded body

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"The accuracy of static coefficient of friction", JIS K7125, 1999 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021021036A (en) * 2019-07-30 2021-02-18 積水化学工業株式会社 Foam sheet, laminate, printing roll cushion material, and printing plate cylinder fixing member
JP7393149B2 (en) 2019-07-30 2023-12-06 積水化学工業株式会社 Foam sheets, laminates, cushioning materials for printing rolls, and printing plate cylinder fixing members

Also Published As

Publication number Publication date
KR102125912B1 (en) 2020-06-23
CN108713037B (en) 2020-12-04
JP2018053186A (en) 2018-04-05
CN108713037A (en) 2018-10-26
JP6625032B2 (en) 2019-12-25
KR20190055778A (en) 2019-05-23
CN112341690A (en) 2021-02-09

Similar Documents

Publication Publication Date Title
KR102057636B1 (en) Crosslinked polyolefin resin foam sheet
JP7145069B2 (en) Multilayer foam sheet, method for manufacturing multilayer foam sheet, and adhesive tape
JP6633241B2 (en) Closed cell foam sheet
JP7295623B2 (en) Polyolefin resin foam sheet and adhesive tape using the same
JP2019137795A (en) Expanded sheet and adhesive tape
KR102125912B1 (en) Independent bubble resin foam and manufacturing method thereof
JP2018172592A (en) Foam sheet and adhesive tape
KR102557823B1 (en) Resin foam sheet, manufacturing method of resin foam sheet, and adhesive tape
JP7071848B2 (en) Foam sheet and adhesive tape
JP7188896B2 (en) Cushion material for electronic parts and adhesive tape for electronic parts
WO2018181498A1 (en) Polyolefin-based foamed sheet, production method therefor, and pressure-sensitive adhesive tape
WO2018181982A1 (en) Cross-linked resin foam sheet, production method therefor, and adhesive tape
JP6974655B1 (en) Foam sheet
WO2018062514A1 (en) Polyolefin foam sheet, production method therefor, and adhesive tape
JP6956163B2 (en) Closed cell resin foam and its manufacturing method
WO2017170794A1 (en) Closed-cell foam sheet, and display device
JP7128008B2 (en) Sealing material for electronic equipment
KR20160140570A (en) Adhesive tape and method for producing adhesive tape
WO2023176985A1 (en) Foam sheet and adhesive tape
JP2018172671A (en) Sealant for electronic apparatus
WO2023176984A1 (en) Foam sheet and adhesive tape
JP7492315B2 (en) Resin foam sheet
JP6898109B2 (en) Resin foam sheet and its manufacturing method
JP2023040962A (en) foam
JP2023040961A (en) foam

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20187025389

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17856393

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17856393

Country of ref document: EP

Kind code of ref document: A1