WO2018025645A1 - 蓄電モジュール - Google Patents

蓄電モジュール Download PDF

Info

Publication number
WO2018025645A1
WO2018025645A1 PCT/JP2017/026200 JP2017026200W WO2018025645A1 WO 2018025645 A1 WO2018025645 A1 WO 2018025645A1 JP 2017026200 W JP2017026200 W JP 2017026200W WO 2018025645 A1 WO2018025645 A1 WO 2018025645A1
Authority
WO
WIPO (PCT)
Prior art keywords
power storage
heat transfer
storage module
folded
refrigerant
Prior art date
Application number
PCT/JP2017/026200
Other languages
English (en)
French (fr)
Inventor
秀幸 久保木
平井 宏樹
東小薗 誠
細江 晃久
廣瀬 義幸
昭弘 永渕
知陽 竹山
小林 英一
Original Assignee
株式会社オートネットワーク技術研究所
住友電装株式会社
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社オートネットワーク技術研究所, 住友電装株式会社, 住友電気工業株式会社 filed Critical 株式会社オートネットワーク技術研究所
Priority to CN201780047260.6A priority Critical patent/CN109565091B/zh
Priority to US16/322,276 priority patent/US10998588B2/en
Publication of WO2018025645A1 publication Critical patent/WO2018025645A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/14Arrangements or processes for adjusting or protecting hybrid or EDL capacitors
    • H01G11/18Arrangements or processes for adjusting or protecting hybrid or EDL capacitors against thermal overloads, e.g. heating, cooling or ventilating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/64Heating or cooling; Temperature control characterised by the shape of the cells
    • H01M10/647Prismatic or flat cells, e.g. pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6552Closed pipes transferring heat by thermal conductivity or phase transition, e.g. heat pipes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6554Rods or plates
    • H01M10/6555Rods or plates arranged between the cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • H01M10/6557Solid parts with flow channel passages or pipes for heat exchange arranged between the cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6569Fluids undergoing a liquid-gas phase change or transition, e.g. evaporation or condensation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/211Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • Patent Document 1 a battery module is housed in a pack case, and the positive terminals and the negative terminals of a plurality of single cells are electrically connected by a bus bar.
  • the refrigerant filled in the lower part of the pack case evaporates and condenses in the upper part of the pack case, whereby the heat of the battery is radiated to the outside.
  • Patent Document 1 since the refrigerant is evaporated and condensed in the pack case, it is necessary to seal the whole pack case, and there is a problem that it is not easy to simplify the configuration of the power storage module.
  • the power storage module described in the present specification includes a cooling member having a refrigerant and an enclosure that encloses the refrigerant in a sealed state, a power storage element overlaid on the cooling member, and the cooling member with respect to the power storage element.
  • a heat transfer plate that is sandwiched and stacked, wherein the enclosure is capable of forming a bulge portion that is deformed by evaporation of the refrigerant in a region that does not overlap the power storage element, and the heat transfer plate includes the bulge
  • the part has a folded part folded back so as to be able to contact.
  • coolant is contained in the case where the electrical storage element was accommodated, for example Compared with the configuration in which the case is filled, it is not always necessary to seal the case, so that the configuration of the power storage module can be simplified.
  • the cooling member and the heat transfer plate are used for heat dissipation of the electricity storage element, the heat of the bulging portion is heated if the bulging portion where the enclosure has bulged and deformed is not in contact with the heat transfer plate.
  • the tip end side of the folded portion has a bent portion bent toward the bulging portion side.
  • the bent portion can regulate the bulging of the bulging portion, the bulging portion can easily adhere to the folded portion, and the thermal conductivity from the bulging portion to the heat transfer plate is improved. be able to.
  • the said bulging part is distribute
  • the spacer is sandwiched between the adjacent folded portions of the heat transfer plate. In this way, heat transfer between adjacent heat transfer plates can be promoted via the spacer, so that the heat of the power storage element can be dissipated through the heat transfer plate and the spacer, improving heat dissipation. Can be made.
  • the cooling member includes an absorbing member that is disposed in the enclosure and absorbs the refrigerant. If it does in this way, since it becomes easy to move a refrigerant
  • the configuration of the power storage module can be simplified.
  • FIG. 1 The perspective view which shows the electrical storage module of Embodiment 1.
  • FIG. 4 is an enlarged sectional view of a part of FIG.
  • FIG. 5 is a cross-sectional view of the state in which the enclosure does not bulge and deform with respect to FIG.
  • Front view showing power storage module Sectional view showing the storage module Sectional drawing in which a part of FIG. 11 is enlarged
  • Front view showing power storage module Sectional view showing the storage module 17 is an enlarged cross-sectional view of a part of FIG.
  • Front view showing power storage module Sectional view showing the storage module 21 is an enlarged sectional view of a part of FIG.
  • the first embodiment will be described with reference to FIGS. 1 to 8.
  • the power storage module 10 of this embodiment is mounted on a vehicle such as an electric vehicle or a hybrid vehicle, and supplies power to a load such as a motor.
  • the power storage module 10 can be arranged in an arbitrary direction, but in the following description, the X direction is left, the Y direction is front, and the Z direction is upward.
  • the power storage module 10 includes a plurality (six in this embodiment) of power storage elements 11 and a plurality of cooling members 20 that overlap the power storage elements 11 and cool the power storage elements 11 (this embodiment). 6), and a plurality (six in this embodiment) of heat transfer plates 30 that are superposed between each cooling member 20 and each power storage element 11 to transfer heat from the cooling member 20 and the power storage element 11. Is provided.
  • the power storage element 11 is formed by sandwiching a power storage element (not shown) between a pair of battery laminate sheets and liquid-tightly bonding the side edges of the battery laminate sheet by a known technique such as thermal welding.
  • a known technique such as thermal welding.
  • the positive electrode terminal 12 ⁇ / b> A and the negative electrode terminal 12 ⁇ / b> B in the form of a metal foil are in a liquid-tight state with the inner surface of the battery laminate sheet from the front edge of the power storage element 11.
  • the laminate sheet protrudes from the inside to the outside.
  • the electrode terminal 12A and the electrode terminal 12B of each power storage element 11 are arranged with a space therebetween and are electrically connected to the internal power storage element.
  • the plurality of power storage elements 11 are arranged side by side in the vertical direction, and the adjacent power storage elements 11 are disposed so that the other electrode terminal 12B is positioned next to the one electrode terminal 12A.
  • Adjacent electrode terminal 12A and electrode terminal 12B are electrically connected via a plurality of U-shaped (five in this embodiment) connecting members 13.
  • the electrode terminals 12A and 12B and the connection member 13 are connected by a known method such as laser welding, ultrasonic welding, brazing, or the like.
  • a secondary battery such as a lithium ion secondary battery or a nickel metal hydride secondary battery may be used as the power storage element 11, and a capacitor such as an electric double layer capacitor or a lithium ion capacitor is used. Any type can be appropriately selected as necessary.
  • the cooling member 20 includes a refrigerant 21 whose state changes between liquid and gas, an absorbing member 22 that absorbs the refrigerant 21, and an enclosure 25 that encloses the refrigerant 21 and the absorbing member 22 in a sealed state.
  • the refrigerant 21 for example, one or more selected from the group consisting of perfluorocarbon, hydrofluoroether, hydrofluoroketone, fluorine inert liquid, water, methanol, ethanol and other alcohols can be used.
  • the refrigerant 21 may have insulating properties or may have conductivity.
  • coolant 21 enclosed in the enclosure 25 can be suitably selected as needed.
  • the absorbing member 22 has a substantially rectangular sheet shape.
  • the absorbing member 22 is made of a material that can absorb the refrigerant 21.
  • the absorbent member 22 may be a woven or non-woven fabric obtained by processing a material capable of absorbing the refrigerant 21 into a fiber.
  • the form of the nonwoven fabric may be a fiber sheet, a web (a thin film-like sheet composed only of fibers), or a bat (a blanket-like fiber).
  • the material constituting the absorbent member 22 may be natural fiber, synthetic fiber made of synthetic resin, or a material using both natural fiber and synthetic fiber.
  • the absorption member 22 Since the absorption member 22 is arranged in a wide area with respect to the area where the power storage element 11 overlaps, the absorption member 22 in the enclosure 25 extends from the area where the power storage element 11 overlaps to the area where the power storage element 11 does not overlap.
  • the absorption extending portion 23 is provided.
  • the inclusion body 25 can be formed by, for example, liquid-tightly joining two sheet members having a substantially rectangular shape by a known method such as adhesion, welding, or welding. Each sheet member is formed by laminating a synthetic resin film on both surfaces of a metal sheet.
  • a metal constituting the metal sheet any metal such as aluminum, aluminum alloy, copper, copper alloy and the like can be appropriately selected as necessary.
  • Synthetic resins constituting the synthetic resin film include polyolefins such as polyethylene and polypropylene, polyesters such as polybutylene terephthalate and polyethylene terephthalate, polyamides such as nylon 6, nylon 6 and 6, and any synthetic resin as required. Can be selected as appropriate.
  • the enclosure 25 according to the present embodiment is heat-sealed by superimposing the surfaces of the two sheet members on which the synthetic resin films are laminated.
  • the enclosure 25 includes a first sheet portion 26 ⁇ / b> A that covers the upper side of the absorbing member 22, and a second sheet portion 26 ⁇ / b> B that covers the lower side of the absorbing member 22.
  • the upper surface of the first sheet portion 26 ⁇ / b> A is in contact with the lower surface of the power storage element 11, and the lower surface of the second sheet portion 26 ⁇ / b> B is in contact with the upper surface of the heat transfer plate 30.
  • a portion of the first sheet portion 26A that extends to a region that does not overlap the power storage element 11 and covers the absorption extension portion 23 of the absorption member 22 is a refrigerant in the enclosure 25 as shown in FIG.
  • the bulging portion 28 is bulged and deformable by evaporation of 21.
  • the bulging portion 28 is formed by deformation so that the internal pressure of the enclosure 25 rises due to evaporation of the refrigerant 21 in the enclosure 25 and the enclosure 25 expands.
  • the internal pressure of the enclosure 25 other than the bulging portion 28 increases due to the evaporation of the refrigerant 21 in the enclosure 25, but the expansion is restricted by contacting the power storage element 11 or the heat transfer plate 30. Therefore, it does not bulge and deform.
  • the heat transfer plate 30 is stacked on the power storage element 11 with the cooling member 20 interposed therebetween, and a member having high thermal conductivity such as aluminum or an aluminum alloy, copper, or a copper alloy is used. As shown in FIGS. 7 and 8, the heat transfer plate 30 has a rectangular shape, a contact portion 31 that contacts the power storage element 11 and the second sheet portion 26 ⁇ / b> B, and a U-shape that continues to the side of the contact portion 31. And a folded portion 35 that is folded back into a shape.
  • the contact portion 31 has a rectangular shape and is superimposed on the region of the power storage element 11 to receive heat from the power storage element 11. Before and after the contact portion 31, a pair of projecting pieces 34 are formed at end edges extending in a region that does not overlap the power storage element 11. Each protrusion 34 is formed with a rectangular through hole 34A.
  • the folded portion 35 is orthogonal to the plate surface of the heat transfer extension 36 from the edge of the heat transfer extension 36 and the heat transfer extension 36 extending flush with the contact portion 31 to the right of the contact portion 31.
  • An end wall 37 rising in the direction and a return portion 38 extending leftward from the upper end of the end wall 37 are provided.
  • the return portion 38 extends in a direction parallel to the contact portion 31, and includes a bent portion 39 that bends at an obtuse angle toward the contact portion 31 at the tip portion.
  • a gap G ⁇ b> 1 is formed between the return portion 38 connected to the end wall 37 and the heat transfer extending portion 36 of the upper (next) heat transfer plate 30. It is said that it is a size.
  • the heat transfer plate 30 forms an accommodation space S that can accommodate the bulging portion 28 of the enclosure 25 between the heat transfer extension portion 36 and the return portion 38.
  • the shape of the folded portion 35 is set such that the bulging portion 28 abuts against the inner surface of the folded portion 35 according to the size of the bulging portion 28 in which the enclosure 25 bulges and deforms.
  • the outer surface of the bulging portion 28 is in close contact with the inner surface of the folded portion 35.
  • the bulging portion 28 of the present embodiment slightly presses the inner surface of the folded portion 35.
  • Heat dissipation member 40 As shown in FIG. 5, a heat radiating member 40 that radiates heat transferred to the heat transfer plate 30 to the outside is disposed on the side of the power storage module 10. The left side surface of the heat radiating member 40 (the surface on the power storage module 10 side) is in close contact with the outer surface of the end wall 37 of the heat transfer plate 30.
  • the heat radiating member 40 is made of a metal such as aluminum or an aluminum alloy, and has an inlet and an outlet for a coolant (not shown). As the coolant, the coolant is introduced from the lower inlet, led out from the upper outlet, and the coolant is circulated through a heat dissipation path (not shown), so that the heat transmitted to the coolant is radiated to the outside.
  • the heat radiating member 40 may extend over the entire inside while a plurality of pipes (not shown) through which the cooling liquid passes are folded back.
  • water is used as the coolant, but the present invention is not limited to this, and a liquid such as oil may be used. Further, an antifreeze liquid may be used as the cooling liquid. Moreover, it is not restricted to a liquid, You may use gas as a coolant.
  • the power storage module 10 includes a cooling member 20 having a refrigerant 21 and an enclosure 25 that encloses the refrigerant 21 in a sealed state, a power storage element 11 stacked on the cooling member 20, and the cooling member 20 sandwiched between the power storage elements 11.
  • the encapsulant 25 can form a bulging portion 28 deformed by evaporation of the refrigerant 21 in a region that does not overlap the power storage element 11. 28 has a folded portion 35 which is folded back so as to be able to contact.
  • the heat of the power storage element 11 can be dissipated through the cooling member 20 and the heat transfer plate 30 in which the refrigerant 21 is sealed in the enclosure 25.
  • the configuration of the power storage module 10 can be simplified.
  • the cooling member 20 and the heat transfer plate 30 are used for heat dissipation of the power storage element 11
  • the bulging portion 28 bulging and deforming the enclosure 25 is not in contact with the heat transfer plate 30
  • the expansion of the protruding portion 28 is radiated through a space (air) having low thermal conductivity, and there is a problem that the heat radiating property of the protruding portion 28 is not good.
  • the heat transfer plate 30 since the heat transfer plate 30 has the folded portion 35 that contacts the bulging portion 28 of the enclosure 25, the heat of the bulging portion 28 is transmitted to the folded portion 35 of the heat transfer plate 30, and the heat transfer is performed. Since heat can be radiated to the outside via the hot plate 30, heat dissipation can be improved.
  • the distal end side of the folded portion 35 has a bent portion 39 bent toward the bulging portion 28 side.
  • the bulging portion 28 can be restricted from being deformed more than a predetermined amount. It becomes easy and the thermal conductivity from the bulging part 28 to the heat exchanger plate 30 can be improved.
  • the bulging portion 28 is disposed inside the folded portion 35. If it does in this way, the heat transfer nature between the bulging part 28 and the folding
  • the cooling member 20 includes an absorbing member 22 that is disposed in the enclosure 25 and absorbs the refrigerant 21. If it does in this way, since it becomes easy to move the refrigerant
  • FIG. 1 A block diagram illustrating an absorbing member 22 that is disposed in the enclosure 25 and absorbs the refrigerant 21. If it does in this way, since it becomes easy to move the refrigerant
  • the folded portion 35 of the heat transfer plate 30 is configured to contact the bulging portion 28 of the cooling member 20 placed on the heat transfer plate 30, but the power storage module 50 of the second embodiment.
  • the heat transfer plate 51 is in contact with the bulging portion 28 of the cooling member 20 on the lower (adjacent) stage of the cooling member 20 on which the heat transfer plate 51 is placed.
  • the same components as those of the first embodiment are denoted by the same reference numerals and description thereof is omitted.
  • the heat transfer plate 51 is stacked on the power storage element 11 with the cooling member 20 interposed therebetween. As shown in FIGS. 13 and 14, the heat transfer plate 51 is rectangular and has a flat plate-like contact portion 31 that overlaps the cooling member 20. And a folded portion 52 that is folded back from one side edge of the contact portion 31.
  • the folded portion 52 includes a heat transfer extension portion 52A that extends flush with the contact portion 31, and an end wall 53 that extends from the edge of the heat transfer extension portion 52A in a direction orthogonal to the plate surface of the heat transfer extension portion 52A. And a return portion 54 that is orthogonal to the end wall 53 from the lower end of the end wall 37 and extends in a direction parallel to the heat transfer extension portion 52A. A bent portion 55 that is bent to the opposite side to the contact portion 31 is formed on the distal end side of the return portion 54.
  • the height of the end wall 53 is a height at which the bulging portion 28 of the lower-stage (adjacent) cooling member 20 contacts the return portion 54.
  • the heat transfer plate 51 forms a gap in which the bulging portion 28 of the enclosure 25 is disposed between the return portion 54 of the folded portion 52 and the heat transfer extending portion 52A of the lower folded portion 52.
  • the shape of the folded portion 52 is set such that the bulged portion 28 comes into contact with the inner surface of the folded portion 52 according to the size of the bulged portion 28 due to the deformation of the enclosure 25, but the outer surface of the bulged portion 28 is A shape that is in close contact with the inner surface of the folded portion 52 is preferable because the thermal conductivity between the bulged portion 28 and the folded portion 52 is enhanced.
  • the plurality of cooling members 20, the plurality of power storage elements 11, and the plurality of heat transfer plates 51 are provided, and the plurality of heat transfer plates 51 have the adjacent folded portions 52 spaced apart. It arrange
  • the folded portion 52 of the heat transfer plate 51 is configured to contact the upper surface side of the bulging portion 28 of the lower cooling member 20 of the cooling member 20 on which the heat transfer plate 51 is placed.
  • the folded portion 63 of the heat transfer plate 61 accommodates the bulging portion 28 of the cooling member 20 below the cooling member 20 on which the heat transfer plate 61 is placed. It is a shape.
  • the same components as those in the above embodiment are denoted by the same reference numerals and description thereof is omitted.
  • the heat transfer plate 61 includes a contact portion 31 that is stacked on the power storage element 11, a folded portion 63 that is folded back so that the bulging portion 28 can be inserted, and a connecting portion 62 that couples the contact portion 31 and the folded portion 63 in an inclined direction. Prepare.
  • the folded portion 63 includes a heat transfer extension portion 64 extending in parallel with the contact portion 31, an end wall 65 extending in a direction perpendicular to the plate surface of the heat transfer extension portion 64, and the contact portion 31 from the lower end of the end wall 65. And a return portion 66 extending in a parallel direction.
  • the height of the end wall 65 is set to a height at which the bulging portion 28 is accommodated between the heat transfer extension portion 64 and the return portion 66 connected to the end wall 65 and contacts the inner surface of the folded portion 63.
  • a gap is formed between the return portion 66 of the heat transfer plate 61 and the heat transfer extension 64 of the heat transfer plate 61 on the lower stage.
  • the heat transfer plate 61 forms an accommodation space that can accommodate the bulging portion 28 of the enclosure 25 inside the folded portion 63.
  • the shape of the folded portion 63 is set such that the bulged portion 28 comes into contact with the inner surface of the folded portion 63, but the outer surface of the bulged portion 28 is in close contact with a wide range of the inner surface of the folded portion 63. preferable.
  • heat transfer plates 67 and 68 having different shapes from the heat transfer plate 61 are used at the uppermost and lowermost stages of the power storage module 60.
  • the spacer 71 has a rectangular parallelepiped shape, for example, and is in contact with both the return portion 38 of the heat transfer plate 30 and the heat transfer contact portion 36 of the upper heat transfer plate 30 (adjacent) of the heat transfer plate 30.
  • the heat transfer between the adjacent heat transfer plates 30 is possible via the spacer 71.
  • the spacer 71 only needs to have at least higher thermal conductivity than air, and in this embodiment, a sponge made of elastically deformable synthetic resin or the like is used.
  • the spacer 71 is made of rubber, metal, or the like. Various members can be used.
  • the spacer 71 can be fixed to the return portion 38 and the heat transfer contact portion 36 of the heat transfer plate 30 with, for example, an adhesive.
  • a plurality of cooling members 20, a plurality of power storage elements 11, and a plurality of heat transfer plates 30 are provided, and the plurality of heat transfer plates 30 have adjacent folded portions 35 spaced apart.
  • the spacer 71 is disposed and is sandwiched between adjacent folded portions 35 in the plurality of heat transfer plates 30. In this way, heat transfer between the adjacent heat transfer plates 30 via the spacer 71 can be promoted, so that the heat of the power storage element 11 can be radiated via the heat transfer plate 30 and the spacer 71. , Heat dissipation can be improved.
  • the number of the cooling member 20, the power storage element 11, and the heat transfer plates 30, 51, 61 is not limited to the number in the above embodiment, and can be changed as appropriate.
  • the power storage module 10 may be covered with a metal or synthetic resin case (not shown), and the heat of the power storage module 10 may be radiated to the outside through the case.
  • the case may be such that the heat radiating member 40 is a part of the case, or a case that covers the entire power storage module 10 including the heat radiating member 40 may be provided.
  • the power storage module 10 may be held by being sandwiched from above and below the power storage module 10 by a case.
  • Power storage module 11 Power storage element 20: Cooling member 21: Refrigerant 22: Absorbing member 25: Inclusion body 28: Swelling portions 30, 51, 61: Heat transfer plates 35, 52, 63: Folding Part 39: Bending part 40: Heat radiation member 71: Spacer G1: Gap S: Accommodating space

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

蓄電モジュール10は、冷媒21と冷媒21を密閉状態で封入する封入体25とを有する冷却部材20と、冷却部材20に重ねられる蓄電素子11と、蓄電素子11に対して冷却部材20を挟んで重ねられる伝熱板30と、を備え、封入体25は、蓄電素子11に重ならない領域において冷媒21の蒸発により変形した膨出部28を形成可能とされ、伝熱板30は、膨出部28が当接可能に折り返された折返し部35を有する。

Description

蓄電モジュール
 本明細書では、蓄電素子の放熱を行う技術を開示する。
 従来、蓄電素子の放熱を行う技術が知られている。特許文献1は、電池モジュールがパックケースに収容されており、複数の単電池の正極端子と負極端子とがバスバーで電気的に接続されている。パックケースの下部に充填された冷媒が蒸発し、パックケースの上部で凝縮することにより、電池の熱が外部に放熱される。
特開2010-211963号公報
 ところで、特許文献1では、パックケース内で冷媒の蒸発、凝縮を行うため、パックケースの全体を密閉する必要があり、蓄電モジュールの構成を簡素化することが容易ではないという問題がある。
 本明細書に開示された技術は上記のような事情に基づいて完成されたものであって、蓄電モジュールの構成を簡素化することを目的とする。
 本明細書に記載された蓄電モジュールは、冷媒と前記冷媒を密閉状態で封入する封入体とを有する冷却部材と、前記冷却部材に重ねられる蓄電素子と、前記蓄電素子に対して前記冷却部材を挟んで重ねられる伝熱板と、を備え、前記封入体は、前記蓄電素子に重ならない領域において前記冷媒の蒸発により変形した膨出部を形成可能とされ、前記伝熱板は、前記膨出部が当接可能に折り返された折返し部を有する。
 上記の構成によれば、蓄電素子の熱を、冷媒が封入体に密閉された冷却部材、伝熱板を介して放熱することが可能になるため、例えば蓄電素子が収容されたケース内に冷媒を充填する構成と比較して、必ずしもケースを密閉する必要がないため、蓄電モジュールの構成を簡素化することが可能になる。ここで、蓄電素子の放熱のために冷却部材及び伝熱板を用いる場合には、封入体が膨出変形した膨出部が伝熱板に接触していなければ、膨出部の熱が熱伝導性の低い空間(空気)を介して放熱されることになり、膨出部の放熱性が良くないという問題がある。本構成によれば、伝熱板は、封入体の膨出部に当接する折返し部を有するため、膨出部の熱が伝熱板の折返し部に伝わり、伝熱板を介して外部に放熱させることが可能になるため、放熱性を向上させることができる。
 本明細書に記載された技術の実施態様としては以下の態様が好ましい。
 前記折返し部の先端側は、前記膨出部側に曲げられた曲げ部を有する。
 このようにすれば、曲げ部が膨出部の膨出を規制することができるため、膨出部が折返し部に密着しやすくなり、膨出部から伝熱板への熱伝導性を向上させることができる。
 前記膨出部は、前記折返し部の内側に配される。
 このようにすれば、膨出部と折返し部との間の伝熱性を高めることができる。
 複数の前記冷却部材と、複数の前記蓄電素子と、複数の前記伝熱板と、を備え、前記複数の伝熱板は、隣り合う前記折返し部が間隔を空けて配置されており、前記膨出部は、隣り合う前記折返し部の間に挟まれる。
 このようにすれば、隣り合う折返し部の間の隙間による熱伝導性の低下を抑制することができる。
 複数の前記冷却部材と、複数の前記蓄電素子と、複数の前記伝熱板と、を備え、前記複数の伝熱板は、隣り合う前記折返し部が間隔を空けて配置されており、前記複数の伝熱板における隣り合う前記折返し部の間に挟まれるスペーサを備える。
 このようにすれば、スペーサを介して隣り合う伝熱板間の熱の移動を促進できるため、蓄電素子の熱を伝熱板及びスペーサを介して放熱させることが可能になり、放熱性を向上させることができる。
 前記冷却部材は、前記封入体内に配されて前記冷媒を吸収する吸収部材を備える。
 このようにすれば、吸収部材により冷媒が移動しやすくなるため、冷却部材の冷却性能を向上させることが可能になる。
 本明細書に記載された技術によれば、蓄電モジュールの構成を簡素化することができる。
実施形態1の蓄電モジュールを示す斜視図 蓄電モジュールを示す平面図 蓄電モジュールを示す正面図 図2のA-A断面図 図4の一部を拡大した断面図 図5に対して封入体が膨出変形していない状態の断面図 伝熱板を示す平面図 伝熱板を示す正面図 実施形態2の蓄電モジュールを示す斜視図 蓄電モジュールを示す正面図 蓄電モジュールを示す断面図 図11の一部を拡大した断面図 伝熱板を示す底面図 伝熱板を示す背面図 実施形態3の蓄電モジュールを示す斜視図 蓄電モジュールを示す正面図 蓄電モジュールを示す断面図 図17の一部を拡大した断面図 実施形態4の蓄電モジュールを示す斜視図 蓄電モジュールを示す正面図 蓄電モジュールを示す断面図 図21の一部を拡大した断面図
 <実施形態1>
 実施形態1について図1から図8を参照しつつ説明する。本実施形態の蓄電モジュール10は、例えば電気自動車やハイブリッド自動車等の車両に搭載されてモータ等の負荷に電力を供給する。蓄電モジュール10は任意の向きで配置可能であるが、以下では、X方向を左方、Y方向を前方、Z方向を上方として説明する。
(蓄電モジュール10)
 蓄電モジュール10は、図4に示すように、複数(本実施形態では6個)の蓄電素子11と、各蓄電素子11に重ねられて蓄電素子11を冷却する複数の冷却部材20(本実施形態では6個)と、各冷却部材20と各蓄電素子11との間に重ねられて冷却部材20及び蓄電素子11の熱が伝達される複数(本実施形態では6個)の伝熱板30とを備える。
(蓄電素子11)
 蓄電素子11は、一対の電池用ラミネートシートの間に図示しない蓄電要素を挟んで、電池用ラミネートシートの側縁を、熱溶着等の公知の手法により液密に接合してなる。蓄電素子11の前端縁からは、図1に示すように、金属箔状をなす正極の電極端子12Aと、負極の電極端子12Bとが、電池用ラミネートシートの内面と液密状態で、電池用ラミネートシートの内側から外側へと突出している。各蓄電素子11の電極端子12Aと電極端子12Bとは、間隔を開けて配され、内部の蓄電要素と電気的に接続されている。
 複数の蓄電素子11は、上下方向に並べて配されており、隣り合う蓄電素子11は、一の電極端子12Aの隣に他の電極端子12Bが位置するように配されている。隣り合う電極端子12Aと電極端子12Bとは、U字状の複数(本実施形態では5個)の接続部材13を介して電気的に接続される。各電極端子12A,12Bと接続部材13とは例えばレーザー溶接、超音波用溶接、ロウ付け等の公知の手法により接続されている。隣り合う電極端子12A,12B間が各接続部材13で接続されることにより、複数の蓄電素子11が直列に接続されている。
 本実施形態においては、蓄電素子11として、例えば、リチウムイオン二次電池、ニッケル水素二次電池等の二次電池を用いてもよく、また、電気二重層キャパシタ、リチウムイオンキャパシタ等のキャパシタを用いてもよく、必要に応じて任意の種類を適宜に選択できる。
(冷却部材20)
 冷却部材20は、図4に示すように、液体と気体とに状態が変化する冷媒21と、冷媒21を吸収する吸収部材22と、冷媒21及び吸収部材22を密閉状態で封入する封入体25とを備える。冷媒21は、例えば、パーフルオロカーボン、ハイドロフルオロエーテル、ハイドロフルオロケトン、フッ素不活性液体、水、メタノール、エタノール等のアルコールからなる群から選ばれる1つ、又は複数を用いることができる。冷媒21は、絶縁性を有していてもよく、また、導電性を有していてもよい。封入体25内に封入される冷媒21の量は、必要に応じて適宜に選択できる。
 吸収部材22は略長方形のシート状をなしている。吸収部材22は、冷媒21を吸収可能な材料により形成されている。この吸収部材22は、冷媒21を吸収可能な材料を繊維状に加工したものを織物としたものであってもよく、また、不織布としたものであってもよい。不織布の形態としては、繊維シート、ウェブ(繊維だけで構成された薄い膜状のシート)、又はバット(毛布状の繊維)であってもよい。吸収部材22を構成する材料としては、天然繊維でもよく、また、合成樹脂からなる合成繊維であってもよく、また、天然繊維と合成繊維の双方を用いたものであってもよい。
 吸収部材22は、蓄電素子11が重なる領域に対して広い領域に配されているため、封入体25内における吸収部材22は、蓄電素子11が重なる領域から蓄電素子11が重ならない領域に延設された吸収延設部23を備えている。
 封入体25は、例えば略長方形状をなす2つのシート部材を、接着、溶着、溶接等の公知の手法により液密に接合して形成することができる。各シート部材は、金属製シートの両面に合成樹脂製のフィルムが積層されてなる。金属製シートを構成する金属としては、アルミニウム、アルミニウム合金、銅、銅合金等、必要に応じて任意の金属を適宜に選択できる。合成樹脂製のフィルムを構成する合成樹脂としては、ポリエチレン、ポリプロピレン等のポリオレフィン、ポリブチレンテレフタレート、ポリエチレンテレフタレート等のポリエステル、ナイロン6、ナイロン6,6等のポリアミド等、必要に応じて任意の合成樹脂を適宜に選択できる。本実施形態に係る封入体25は、両シート部材における合成樹脂製のフィルムが積層された面同士を重ね合わせて熱融着されてなる。
 封入体25は、図6に示すように、吸収部材22の上側を覆う第1シート部26Aと、吸収部材22の下側を覆う第2シート部26Bとを有する。第1シート部26Aの上面は、蓄電素子11の下面に接触し、第2シート部26Bの下面は、伝熱板30の上面に接触する。ここで、第1シート部26Aのうち、蓄電素子11に重ならない領域に延出され、吸収部材22の吸収延設部23を覆う部分は、図5に示すように、封入体25内の冷媒21の蒸発により膨出変形可能な膨出部28とされている。
 膨出部28は、封入体25内の冷媒21の蒸発により封入体25の内圧が上昇して封入体25が膨らむように変形することにより形成される。なお、封入体25のうち、膨出部28以外の部分については、封入体25内の冷媒21の蒸発により内圧が上昇するが、蓄電素子11や伝熱板30に接触して膨張が規制されているため、膨出変形しない。
(伝熱板30)
 伝熱板30は、蓄電素子11に対して冷却部材20を挟んで重ねられており、アルミニウムまたはアルミニウム合金、銅、銅合金等の熱伝導性が高い部材が用いられている。図7,図8に示すように、伝熱板30は、長方形状であって、蓄電素子11及び第2シート部26Bに接触する接触部31と、接触部31の側方に連なってU字状に折り返す折返し部35とを有する。接触部31は、長方形状であって、蓄電素子11の領域に重ねられて蓄電素子11の熱を受ける。接触部31の前後は、蓄電素子11に重ならない領域に延びた端縁部に一対の突片34が形成されている。各突片34には、長方形状の貫通孔34Aが形成されている。
 折返し部35は、接触部31の右方に接触部31と面一に延びる伝熱延出部36と、伝熱延出部36の端縁から伝熱延出部36の板面と直交する方向に起立する端壁37と、端壁37の上端から左方に延びる戻り部38とを備える。戻り部38は、接触部31と平行な方向に延びており、先端部には、接触部31側に鈍角で曲がる曲げ部39とを備える。端壁37の高さは、この端壁37に連なる戻り部38と、上段側(隣り)の伝熱板30の伝熱延出部36との間に隙間G1(図5参照)が形成される大きさとされる。
 伝熱板30は、伝熱延出部36と戻り部38との間に封入体25の膨出部28を収容可能な収容空間Sを形成している。折返し部35の形状は、封入体25が膨出変形する膨出部28の大きさに応じて膨出部28が折返し部35の内面に当接する形状が設定される。本実施形態では、膨出部28の外面が折返し部35の内面に密着する形状とされている。本実施形態の膨出部28は、折返し部35の内面をわずかに押圧している。
(放熱部材40)
 図5に示すように、蓄電モジュール10の側方には、伝熱板30に伝達された熱を外部に放熱する放熱部材40が配されている。放熱部材40の左側面(蓄電モジュール10側の面)は、伝熱板30の端壁37の外面に密着する。放熱部材40は、アルミニウム、アルミニウム合金等の金属からなり、図示しない冷却材の導入口と導出口が開口している。冷却材として冷却液が下側の導入口から導入され、上方の導出口から導出され、図示しない放熱経路を通って冷却液が循環することで、冷却液に伝わった熱が外部に放熱される。なお、放熱部材40は、内部に冷却液が通るパイプ(図示しない)が複数回折り返しつつ内部の全体に亘って延びるようにしてもよい。本実施形態では、冷却液として水が用いられているが、これに限られず、油等の液体を用いてもよい。また、冷却液として不凍液を用いてもよい。また、液体に限られず、気体を冷却材として用いてもよい。
 本実施形態によれば、以下の作用、効果を奏する。
 蓄電モジュール10は、冷媒21と冷媒21を密閉状態で封入する封入体25とを有する冷却部材20と、冷却部材20に重ねられる蓄電素子11と、蓄電素子11に対して冷却部材20を挟んで重ねられる伝熱板30と、を備え、封入体25は、蓄電素子11に重ならない領域において冷媒21の蒸発により変形した膨出部28を形成可能とされ、伝熱板30は、膨出部28が当接可能に折り返された折返し部35を有する。
 本実施形態によれば、蓄電素子11の熱を、冷媒21が封入体25に密閉された冷却部材20、伝熱板30を介して放熱することが可能になるため、例えば蓄電素子11が収容されたケース内に冷媒21を充填する構成と比較して、必ずしもケースを密閉する等の必要がないため、蓄電モジュール10の構成を簡素化することが可能になる。ここで、蓄電素子11の放熱のために冷却部材20及び伝熱板30を用いる場合には、封入体25が膨出変形した膨出部28が伝熱板30に接触していなければ、膨出部28の熱が熱伝導性の低い空間(空気)を介して放熱されることになり、膨出部28の放熱性が良くないという問題がある。本実施形態によれば、伝熱板30は、封入体25の膨出部28に当接する折返し部35を有するため、膨出部28の熱が伝熱板30の折返し部35に伝わり、伝熱板30を介して外部に放熱させることが可能になるため、放熱性を向上させることができる。
 また、折返し部35の先端側は、膨出部28側に曲げられた曲げ部39を有する。
 このようにすれば、曲げ部39が膨出部28に当接することにより、膨出部28の所定以上の膨出変形を規制することができるため、膨出部28が折返し部35に密着しやすくなり、膨出部28から伝熱板30への熱伝導性を向上させることができる。
 また、膨出部28は、折返し部35の内側に配される。
 このようにすれば、膨出部28と折返し部35との間の伝熱性を高めることができる。
 また、冷却部材20は、封入体25内に配されて冷媒21を吸収する吸収部材22を備える。
 このようにすれば、吸収部材22により冷媒21が移動しやすくなるため、冷却部材20の冷却性能を向上させることが可能になる。
 <実施形態2>
 次に、実施形態2を図9から図14を参照して説明する。実施形態1では、伝熱板30の折返し部35は、当該伝熱板30の上に載置された冷却部材20の膨出部28に当接する構成としたが、実施形態2の蓄電モジュール50は、図12に示すように、伝熱板51が載置する冷却部材20の下側(隣り)の段の冷却部材20の膨出部28に当接する構成としたものである。以下では、実施形態1と同一の構成については同一の符号を付して説明を省略する。
 伝熱板51は、蓄電素子11に対して冷却部材20を挟んで重ねられており、図13,図14に示すように、長方形状であって、冷却部材20に重なる平板状の接触部31と、接触部31の一方の側端縁から折り返す折返し部52とを有する。
 折返し部52は、接触部31と面一に延びる伝熱延出部52Aと、伝熱延出部52Aの端縁から伝熱延出部52Aの板面と直交する方向に延びる端壁53と、端壁37の下端から端壁53に直交し、伝熱延出部52Aと平行な方向に延びる戻り部54と、を備える。戻り部54の先端側には、接触部31とは反対側に曲がる曲げ部55が形成されている。端壁53の高さは、下段側(隣り)の冷却部材20の膨出部28が戻り部54に当接する高さとされる。
 伝熱板51は、折返し部52の戻り部54と、下段の折返し部52の伝熱延出部52Aとの間に封入体25の膨出部28が配される隙間を形成している。折返し部52の形状は、封入体25の変形による膨出部28の大きさに応じて膨出部28が折返し部52の内面に当接する形状が設定されるが、膨出部28の外面が折返し部52の内面に密着する形状とした方が、膨出部28と折返し部52との間の熱伝導性が高められて好ましい。
 実施形態2によれば、複数の冷却部材20と、複数の蓄電素子11と、複数の伝熱板51と、を備え、複数の伝熱板51は、隣り合う折返し部52が間隔を空けて配置されており、膨出部28は、隣り合う折返し部52の間に挟まれる。
 このようにすれば、隣り合う折返し部52の間の隙間による熱伝導性の低下を抑制することができる。
 <実施形態3>
 次に、実施形態3を図15から図18を参照して説明する。実施形態2では、伝熱板51の折返し部52は、伝熱板51が載置する冷却部材20の下段の冷却部材20の膨出部28の上面側に当接する構成としたが、実施形態3の蓄電モジュール60は、図18に示すように、伝熱板61の折返し部63は、伝熱板61が載置する冷却部材20の下側の冷却部材20の膨出部28を収容する形状としたものである。以下では、上記実施形態と同一の構成については同一の符号を付して説明を省略する。
 伝熱板61は、蓄電素子11に重ねられる接触部31と、膨出部28を挿通可能に折り返す折返し部63と、接触部31と折返し部63とを傾斜方向に連結する連結部62とを備える。
 折返し部63は、接触部31と平行に延びる伝熱延出部64と、伝熱延出部64の板面と直交する方向に延びる端壁65と、端壁65の下端から接触部31と平行な方向に延びる戻り部66とを備える。端壁65の高さは、この端壁65に連なる伝熱延出部64と戻り部66との間に膨出部28が収容されて折返し部63の内面に接触する高さとされる。なお、伝熱板61の戻り部66と、一段下側の伝熱板61の伝熱延出部64との間には隙間が形成されている。
 伝熱板61は、折返し部63の内側に封入体25の膨出部28を収容可能な収容空間を形成している。折返し部63の形状は、膨出部28が折返し部63の内面に当接する形状が設定されるが、膨出部28の外面が折返し部63の内面の広い範囲に密着する形状とすることが好ましい。なお、蓄電モジュール60の最上段と最下段については、伝熱板61とは形状の異なる伝熱板67,68が用いられている。
 <実施形態4>
 次に、実施形態4を図19から図22を参照して説明する。実施形態4の蓄電モジュール70は、実施形態1の蓄電モジュール10に対して、伝熱板30の戻り部38と、当該伝熱板30の上段側(隣り)の伝熱板30の伝熱接触部36との間の隙間G1に、スペーサ71を設けたものである。以下では、上記実施形態と同一の構成については同一の符号を付して説明を省略する。
 スペーサ71は、例えば直方体状であって、伝熱板30の戻り部38と、当該伝熱板30の上段側(隣り)の伝熱板30の伝熱接触部36との双方に接触しており、隣り合う伝熱板30間は、スペーサ71を介した熱伝達が可能とされている。スペーサ71は、少なくとも空気よりも熱伝導性が高ければよく、本実施形態では、弾性変形可能な合成樹脂等からなるスポンジが用いられているが、これに限られず、例えば、ゴム、金属等からなる種々の部材を用いることができる。スペーサ71は、伝熱板30の戻り部38や伝熱接触部36に、例えば、接着剤等により固定することができる。
 実施形態4によれば、複数の冷却部材20と、複数の蓄電素子11と、複数の伝熱板30と、を備え、複数の伝熱板30は、隣り合う折返し部35が間隔を空けて配置されており、複数の伝熱板30における隣り合う折返し部35の間に挟まれるスペーサ71を備える。
 このようにすれば、スペーサ71を介して隣り合う伝熱板30間の熱の移動を促進できるため、蓄電素子11の熱を伝熱板30及びスペーサ71を介して放熱させることが可能になり、放熱性を向上させることができる。
 <他の実施形態>
 本明細書に記載された技術は上記記述及び図面によって説明した実施形態に限定されるものではなく、例えば次のような実施形態も本明細書に記載された技術の技術的範囲に含まれる。
 (1)折返し部35,52は、先端部に曲げ部39,55を設ける構成としたが、曲げ部39,55を設けなくてもよい。
 (2)冷却部材20、蓄電素子11、伝熱板30,51,61の数は、上記実施形態の数に限られず、適宜変更することができる。
 (3)放熱部材40を備えない構成としてもよい。例えば蓄電モジュール10が図示しない金属製や合成樹脂製のケースで覆われるようにし、ケースを介して蓄電モジュール10の熱を外部に放熱するようにしてもよい。また、ケースは、例えば、放熱部材40をケースの一部としたり、放熱部材40を含めた蓄電モジュール10の全体を覆うケースを設けるようにしてもよい。この場合、例えばケースにより、蓄電モジュール10の上下から挟んで蓄電モジュール10を保持する構成としてもよい。
10,50,60,70: 蓄電モジュール
11: 蓄電素子
20: 冷却部材
21: 冷媒
22: 吸収部材
25: 封入体
28: 膨出部
30,51,61: 伝熱板
35,52,63: 折返し部
39: 曲げ部
40: 放熱部材
71: スペーサ
G1: 隙間
S: 収容空間

Claims (6)

  1. 冷媒と前記冷媒を密閉状態で封入する封入体とを有する冷却部材と、
     前記冷却部材に重ねられる蓄電素子と、
     前記蓄電素子に対して前記冷却部材を挟んで重ねられる伝熱板と、を備え、
     前記封入体は、前記蓄電素子に重ならない領域において前記冷媒の蒸発により変形した膨出部を形成可能とされ、
     前記伝熱板は、前記膨出部が当接可能に折り返された折返し部を有する、蓄電モジュール。
  2. 前記折返し部の先端側は、前記膨出部側に曲げられた曲げ部を有する請求項1に記載の蓄電モジュール。
  3. 前記膨出部は、前記折返し部の内側に配される請求項1又は請求項2に記載の蓄電モジュール。
  4. 複数の前記冷却部材と、複数の前記蓄電素子と、複数の前記伝熱板と、を備え、
     前記複数の伝熱板は、隣り合う前記折返し部が間隔を空けて配置されており、
     前記膨出部は、隣り合う前記折返し部の間に挟まれる請求項1から請求項3のいずれか一項に記載の蓄電モジュール。
  5. 複数の前記冷却部材と、複数の前記蓄電素子と、複数の前記伝熱板と、を備え、
     前記複数の伝熱板は、隣り合う前記折返し部が間隔を空けて配置されており、
     前記複数の伝熱板における隣り合う前記折返し部の間に挟まれるスペーサを備える請求項1から請求項4のいずれか一項に記載の蓄電モジュール。
  6. 前記冷却部材は、前記封入体内に配されて前記冷媒を吸収する吸収部材を備える請求項1から請求項5のいずれか一項に記載の蓄電モジュール。
PCT/JP2017/026200 2016-08-03 2017-07-20 蓄電モジュール WO2018025645A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780047260.6A CN109565091B (zh) 2016-08-03 2017-07-20 蓄电模块
US16/322,276 US10998588B2 (en) 2016-08-03 2017-07-20 Power storage module including a cooling member

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016152695A JP6598026B2 (ja) 2016-08-03 2016-08-03 蓄電モジュール
JP2016-152695 2016-08-03

Publications (1)

Publication Number Publication Date
WO2018025645A1 true WO2018025645A1 (ja) 2018-02-08

Family

ID=61074111

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/026200 WO2018025645A1 (ja) 2016-08-03 2017-07-20 蓄電モジュール

Country Status (4)

Country Link
US (1) US10998588B2 (ja)
JP (1) JP6598026B2 (ja)
CN (1) CN109565091B (ja)
WO (1) WO2018025645A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6597519B2 (ja) * 2016-08-16 2019-10-30 株式会社オートネットワーク技術研究所 蓄電モジュール
DE102018104935B4 (de) * 2018-03-05 2023-02-09 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Verfahren, System und Batteriemodul zur Kühlung einer mittels Federwirkung kontaktierten Leistungselektronik

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070292751A1 (en) * 2006-06-15 2007-12-20 Jing-Yih Cherng Battery Apparatus with Heat Absorbing Body
JP2010055908A (ja) * 2008-08-28 2010-03-11 Toyoda Gosei Co Ltd 組電池装置
JP2015069845A (ja) * 2013-09-30 2015-04-13 三菱自動車工業株式会社 電池の温調装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010211963A (ja) 2009-03-06 2010-09-24 Toyota Motor Corp 蓄電装置
CN202839892U (zh) * 2010-04-08 2013-03-27 Jsr株式会社 蓄电设备
JP5598442B2 (ja) * 2011-08-03 2014-10-01 トヨタ自動車株式会社 電池モジュール
US9050898B2 (en) * 2011-10-19 2015-06-09 GM Global Technology Operations LLC Wave fin battery module
KR20150127863A (ko) * 2012-08-30 2015-11-18 에스케이이노베이션 주식회사 배터리 모듈
CN103715472B (zh) * 2012-09-29 2017-06-06 上海汽车集团股份有限公司 冷却水套及汽车动力电池系统
JP2015049990A (ja) * 2013-08-30 2015-03-16 プライムアースEvエナジー株式会社 電池パック
JP6548032B2 (ja) * 2015-03-19 2019-07-24 株式会社オートネットワーク技術研究所 冷却部材、及び蓄電モジュール

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070292751A1 (en) * 2006-06-15 2007-12-20 Jing-Yih Cherng Battery Apparatus with Heat Absorbing Body
JP2010055908A (ja) * 2008-08-28 2010-03-11 Toyoda Gosei Co Ltd 組電池装置
JP2015069845A (ja) * 2013-09-30 2015-04-13 三菱自動車工業株式会社 電池の温調装置

Also Published As

Publication number Publication date
US20190198950A1 (en) 2019-06-27
CN109565091A (zh) 2019-04-02
CN109565091B (zh) 2022-02-25
JP6598026B2 (ja) 2019-10-30
US10998588B2 (en) 2021-05-04
JP2018022603A (ja) 2018-02-08

Similar Documents

Publication Publication Date Title
EP3273195B1 (en) Cooling member and power storage module
JP6555107B2 (ja) 冷却部材及び蓄電モジュール
WO2018034122A1 (ja) 蓄電モジュール
WO2018061761A1 (ja) 蓄電モジュール
CN108292788B (zh) 蓄电模块
WO2018034130A1 (ja) 蓄電モジュール
JP6598026B2 (ja) 蓄電モジュール
CN108779963B (zh) 冷却部件及蓄电模块
JP6597519B2 (ja) 蓄電モジュール
WO2016148225A1 (ja) 冷却部材、及び蓄電モジュール
JP6772657B2 (ja) 蓄電モジュール

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17836751

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17836751

Country of ref document: EP

Kind code of ref document: A1