WO2017220018A1 - 一种用于烯烃连续聚合的催化剂预接触装置及催化剂预接触的方法 - Google Patents

一种用于烯烃连续聚合的催化剂预接触装置及催化剂预接触的方法 Download PDF

Info

Publication number
WO2017220018A1
WO2017220018A1 PCT/CN2017/089759 CN2017089759W WO2017220018A1 WO 2017220018 A1 WO2017220018 A1 WO 2017220018A1 CN 2017089759 W CN2017089759 W CN 2017089759W WO 2017220018 A1 WO2017220018 A1 WO 2017220018A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
precontacting
coil
precontact
polymerization
Prior art date
Application number
PCT/CN2017/089759
Other languages
English (en)
French (fr)
Inventor
夏先知
张天一
刘月祥
赵瑾
Original Assignee
中国石油化工股份有限公司
中国石油化工股份有限公司北京化工研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201610465431.4A external-priority patent/CN107540766B/zh
Priority claimed from CN201610466027.9A external-priority patent/CN107537408A/zh
Application filed by 中国石油化工股份有限公司, 中国石油化工股份有限公司北京化工研究院 filed Critical 中国石油化工股份有限公司
Priority to RU2019101639A priority Critical patent/RU2738204C2/ru
Priority to MYPI2018002700A priority patent/MY198000A/en
Priority to KR1020197002140A priority patent/KR20190022700A/ko
Priority to EP17814756.7A priority patent/EP3476868A4/en
Priority to US16/312,962 priority patent/US10988553B2/en
Publication of WO2017220018A1 publication Critical patent/WO2017220018A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J4/00Feed or outlet devices; Feed or outlet control devices
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/001Multistage polymerisation processes characterised by a change in reactor conditions without deactivating the intermediate polymer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J10/00Chemical processes in general for reacting liquid with gaseous media other than in the presence of solid particles, or apparatus specially adapted therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/18Stationary reactors having moving elements inside
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/18Stationary reactors having moving elements inside
    • B01J19/1812Tubular reactors
    • B01J19/1831Tubular reactors spirally, concentrically or zigzag wound
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0072Preparation of particles, e.g. dispersion of droplets in an oil bath
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/001Controlling catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/0015Feeding of the particles in the reactor; Evacuation of the particles out of the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/08Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with moving particles
    • B01J8/10Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with moving particles moved by stirrers or by rotary drums or rotary receptacles or endless belts
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/01Processes of polymerisation characterised by special features of the polymerisation apparatus used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/34Polymerisation in gaseous state
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/38Polymerisation using regulators, e.g. chain terminating agents, e.g. telomerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2204/00Aspects relating to feed or outlet devices; Regulating devices for feed or outlet devices
    • B01J2204/002Aspects relating to feed or outlet devices; Regulating devices for feed or outlet devices the feeding side being of particular interest
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00743Feeding or discharging of solids
    • B01J2208/00752Feeding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00796Details of the reactor or of the particulate material
    • B01J2208/00823Mixing elements
    • B01J2208/00858Moving elements
    • B01J2208/00867Moving elements inside the bed, e.g. rotary mixer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00796Details of the reactor or of the particulate material
    • B01J2208/00893Feeding means for the reactants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00796Details of the reactor or of the particulate material
    • B01J2208/00946Features relating to the reactants or products
    • B01J2208/00955Sampling of the particulate material, the reactants or the products
    • B01J2208/00982Particulate material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00002Chemical plants
    • B01J2219/00027Process aspects
    • B01J2219/00033Continuous processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00002Chemical plants
    • B01J2219/00027Process aspects
    • B01J2219/0004Processes in series
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00074Controlling the temperature by indirect heating or cooling employing heat exchange fluids
    • B01J2219/00087Controlling the temperature by indirect heating or cooling employing heat exchange fluids with heat exchange elements outside the reactor
    • B01J2219/00094Jackets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00074Controlling the temperature by indirect heating or cooling employing heat exchange fluids
    • B01J2219/00087Controlling the temperature by indirect heating or cooling employing heat exchange fluids with heat exchange elements outside the reactor
    • B01J2219/00099Controlling the temperature by indirect heating or cooling employing heat exchange fluids with heat exchange elements outside the reactor the reactor being immersed in the heat exchange medium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00164Controlling or regulating processes controlling the flow
    • B01J2219/00166Controlling or regulating processes controlling the flow controlling the residence time inside the reactor vessel
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F10/02Ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2410/00Features related to the catalyst preparation, the catalyst use or to the deactivation of the catalyst
    • C08F2410/06Catalyst characterized by its size

Definitions

  • the present invention is in the field of olefin polymerization, and in particular relates to a catalyst precontacting apparatus for continuous polymerization of olefins and a catalyst precontacting method.
  • main catalysts currently used in the industrial polymerization of olefins are solid particulate type main catalysts, including spherical or spheroidal solid procatalysts.
  • One way of feeding the solid procatalyst is to formulate the procatalyst into a slurry or paste of a concentration which is fed into the subsequent polymerization reactor system by metering the feed system after precontacting with the cocatalyst and optionally the external electron donor. . Therefore, catalyst precontacting is known. See, for example, Chinese Patent Application No. 96193736.X and 201020206046.6.
  • Figure 1 schematically depicts catalyst precontact in prior art industrial plants.
  • the prior art slurry or liquid catalyst precontacting device comprises a catalyst precontacting tank, and the slurry or liquid catalyst from the slurry or liquid catalyst feed line is conveyed by the metering pump through the plugging tube into the catalyst precontacting.
  • the cocatalyst such as triethylaluminum and the external electron donor, also enters the catalyst precontacting tank.
  • the catalyst precontacting tank is provided with a stirring device for thoroughly mixing the three agents for the precontacting reaction.
  • the precontacted catalyst enters the subsequent catalyst prepolymerization system or directly enters the main polymerization system.
  • the inventors have surprisingly found that the conditions of the precontact between the catalyst and the cocatalyst and the optional external electron donor can affect the performance of the catalyst and can be optimized by adjusting the precontact temperature and the precontact duration. Catalyst performance.
  • the present invention has been completed on this basis.
  • Another object of the present invention is to provide a catalyst precontacting apparatus comprising a catalyst precontacting tank and at least one catalyst precontacting coil connected to the catalyst precontacting tank, the catalyst precontacting coil being provided with at least Two access/exit ports with valves.
  • It is still another object of the present invention to provide a catalyst precontacting apparatus comprising a catalyst precontacting coil, the catalyst precontacting coil being provided with a valved inlet and connected to at least two feed lines, one of which The feed line is connected to the beginning of the catalyst precontact coil, and the remaining feed lines are connected to the catalyst precontact coil through the inlet. It is yet another object of the present invention to provide a catalyst precontacting apparatus comprising a plurality of microcatalyst precontacting cans in series, each microcatalyst precontacting can having a jacket and agitating means.
  • the catalyst precontacting process and apparatus of the present invention are widely used in olefin polymerization processes, particularly in liquid phase bulk-gas phase olefin polymerization processes.
  • the catalyst precontacting device can precisely control the catalyst precontacting time and the precontacting temperature over a relatively wide range, and the precontacting materials are not backmixed, and the investment cost is low.
  • Figure 1 is a schematic illustration of a catalyst precontacting device used in current industrial production and pilot plants.
  • FIG. 2 is a schematic view of a catalyst precontacting apparatus according to an embodiment of the present invention.
  • Figure 3 is a schematic illustration of a catalyst precontacting device in accordance with another embodiment of the present invention.
  • Figure 4a depicts the activity of Catalyst A versus precontact temperature.
  • Figure 4b depicts a plot of isotacticity of Catalyst A versus precontact temperature.
  • Figure 4c depicts a plot of the melt flow index of Catalyst A versus precontact temperature.
  • Figure 5a depicts a plot of activity of Catalyst C versus precontact temperature.
  • Figure 5b depicts a plot of isotacticity of Catalyst C versus precontact temperature.
  • Figure 5c depicts a plot of the melt flow index of Catalyst C versus precontact temperature.
  • Figure 6a depicts the activity of Catalyst B versus precontact temperature.
  • Figure 6b depicts a plot of isotacticity of Catalyst B versus precontact temperature.
  • Figure 6c depicts a plot of the melt flow index of Catalyst B versus precontact temperature.
  • Figure 7a depicts the activity of Catalyst D versus precontact temperature.
  • Figure 7b depicts a plot of isotacticity of catalyst D versus precontact temperature.
  • Figure 7c depicts a plot of melt flow index for catalyst D versus precontact temperature.
  • Figure 8a depicts a plot of activity of Catalyst D versus precontact temperature.
  • Figure 8b depicts a plot of isotacticity of catalyst D versus precontact temperature.
  • Figure 8c depicts a plot of the melt flow index of Catalyst D versus precontact temperature.
  • the term "catalyst component” means a conventional catalyst component for the polymerization of an olefin, including a main catalyst, a cocatalyst (for example, triethylaluminum), and an optional external electron donor (for example, a methyl ring). Hexyldimethoxysilane).
  • a main catalyst for example, triethylaluminum
  • an optional external electron donor for example, a methyl ring. Hexyldimethoxysilane.
  • the main catalyst, cocatalyst, and optional electron donor are sometimes collectively referred to as "three doses" hereinafter.
  • catalyst precontacting refers to the mixing and contacting of a main catalyst with a cocatalyst and an optional external electron donor prior to prepolymerization or polymerization.
  • the product after precontacting of the catalyst is a catalytically active polyolefin catalyst.
  • the term "the duration of catalyst precontacting” means from the initiation of contact of the main catalyst with the cocatalyst and the optional external electron donor to the contacted polyolefin catalyst into the prepolymerization unit (when present) or polymerization. The duration of the device (when no prepolymerization device is present).
  • the present invention provides a catalyst precontacting process for the continuous polymerization of olefins, wherein the main catalyst, the cocatalyst and the optional external electron donor are mixed for precontacting, the precontacting temperature is -30 ° C Adjustable to 40 ° C, the duration of precontacting is adjustable from 0.5 min to 70 min, and the precontacted catalyst enters the prepolymerization system and then enters the polymerization system as required by the polymerization process, or directly enters the polymerization system.
  • the polymerization system employs a liquid phase bulk polymerization process with a duration of precontacting in the range of from 1 min to 20 min, preferably in the range of from 1 min to 15 min, more preferably in the range of from 1 min to 10 min, still more preferably in The temperature of the precontacting is in the range of from -25 ° C to 15 ° C, preferably from -25 ° C to 10 ° C, more preferably from -20 ° C to 8 ° C, in the range of from 1 min to 9 min.
  • the polymerization system employs a gas phase polymerization process, and the reaction time of the precontacting is in the range of 1 min to 20 min, preferably in the range of 1 min to 15 min, more preferably in the range of 1 min to 10 min, and the precontacting reaction temperature is in the range of 1 min to 10 min. It is in the range of -30 ° C to 30 ° C, preferably -25 ° C to 20 ° C, more preferably -10 ° C to 10 ° C.
  • the catalyst precontacting method comprises:
  • the precontacted catalyst is then fed to the prepolymerization system as required by the polymerization process and then to the polymerization system or directly to the polymerization system.
  • the techniques of laboratory polymerization evaluation are known per se. It is feasible to determine the desired temperature and desired duration of precontacting of the catalyst with the cocatalyst and the optional external electron donor by laboratory polymerization evaluation experiments.
  • the main factors to be considered in determining the desired temperature and the desired duration are the polymerization activity of the catalyst, the melt flow index and isotactic index of the resulting polymer, and the like.
  • the catalyst precontacting process is carried out by a catalyst, a cocatalyst, and optionally an external electron donor precontacting device comprising at least two, preferably 2-20, more Preferably 3-10 inlet/outlet tubular installations or at least two microcatalyst precontacted tanks connected in series.
  • the method comprises: a) feeding a main catalyst, a cocatalyst, and an optional external electron donor to a catalyst precontacting tank; b) passing the mixture obtained in step a) The inlet port is fed to the catalyst precontact control device; and the mixture is fed to the prepolymerization system via the catalyst precontact control device and then to the polymerization system or directly to the polymerization system.
  • the pre-contacted catalyst will pass through different lengths of tubing into a subsequent prepolymerization system or polymerization system to adjust the precontact time.
  • the method comprises: continuously passing the main catalyst through a catalyst feed line through a catalyst feed line into a catalyst precontact tank, and the cocatalyst such as triethyl aluminum and an external electron donor respectively pass respective metering
  • the units are combined and then continuously fed into the catalyst pre-contact tank, which are thoroughly mixed under high-speed agitation; then, the corresponding catalyst pre-contact coil inlet is selected according to the set pre-contact time, so that the three doses pass the overflow form or Other forms of selected inlets enter the catalyst precontact control coil and pass through the catalyst precontact control coil into the downstream unit.
  • the stirring speed may be from 50 to 2000 rpm, preferably from 100 to 1000 rpm, further preferably from 200 to 800 rpm.
  • the temperature at which the catalyst is precontacted is also controlled.
  • the method of controlling the temperature at which the catalyst is precontacted is controlled by a thermostatic cell or jacket disposed outside of the apparatus for precontacting the catalyst, such as a precontacted can or precontacted coil, or both, as described below.
  • the present invention provides a catalyst precontacting apparatus for continuous polymerization of an olefin, the catalyst precontacting apparatus comprising a catalyst precontacting tank and at least one catalyst precontacting coil connected to the catalyst precontacting tank,
  • the catalyst precontacting coil is provided with at least two inlets with valves.
  • Figure 2 depicts a catalyst precontacting apparatus in accordance with an embodiment of this aspect of the invention, wherein 1 represents a catalyst precontacting tank, 2 is a catalyst precontacting coil, 3 is a constant temperature bath, and a, b, c, d, e and f represent inlets with valves.
  • the catalyst precontact tank is connected to the catalyst precontact coil via a line with a valve.
  • the catalyst precontact coil is an internally polished coil.
  • the catalyst precontacting coil may be of any shape that ensures no dead angle in the tube, thereby allowing the components of the catalyst to pass smoothly.
  • the catalyst precontact coil is spring shaped.
  • the catalyst precontact coil is a serpentine tube.
  • the manner in which the catalyst precontacting coil is placed is not particularly limited as long as the smooth flow of each catalyst component can be ensured.
  • the catalyst pre-contact coils can be placed horizontally, vertically, or at any other angle, while ensuring smooth flow of the various catalyst components.
  • the catalyst precontact coil is provided with at least two inlets with valves.
  • the upper limit of the number of the inlets is not particularly limited, and is mainly determined by the necessity of the polymerization process and the convenience of processing the apparatus.
  • the catalyst precontact coil 2 can be provided with from 2 to about 20, preferably from 2 to about 10, inlets with valves.
  • the valved inlet can be placed anywhere in the catalyst precontact coil.
  • An arrangement of the access port is schematically depicted in FIG. As shown in Figure 2, according to the flow direction of the material, the inlet can be placed at the beginning of the coil (inlet a), and can also be placed anywhere in the middle of the coil (for example, access ports b, c, d, and e) .
  • the valved inlet may be provided at the outlet line at the end of the coil (inlet port f), in which case the material from the catalyst precontacting tank passes directly into the downstream unit through the inlet port f.
  • the catalyst precontacting device is tailored to the process requirements.
  • the number and position of the inlets with valves can be freely set according to the material pre-contact time of the continuous olefin continuous polymerization process. For example, in a particular olefin continuous polymerization process, the required three-part pre-contact time has been determined, then one of the valved inlets is provided at the corresponding location of the coil; in an additional olefin continuous polymerization process
  • the valved inlet is described.
  • the catalyst precontacting device includes a catalyst precontacting coil provided with a plurality of valved inlets, wherein the plurality of valved inlets are from a catalyst precontacting disk
  • the beginnings of the tubes are initially placed at substantially equal intervals on the catalyst precontact coils.
  • the particular inlet is selected as desired such that the actual catalyst precontact duration is as close as possible to the determined desired catalyst precontact duration.
  • the catalyst pre-contact coil is preferably further provided with an anti-backflow valve.
  • an anti-backflow valve is provided immediately upstream of each inlet except for the inlet provided at the beginning of the catalyst precontact coil.
  • the catalyst precontact coil may generally have a diameter of from 3 to 25 mm.
  • the total length of the catalyst precontact coil can be determined based on the maximum residence time of the three passes through the conduit. Depending on the polymerization activity of the olefin polymerization catalyst and the capacity of the polymerization apparatus, generally, the total length of the catalyst precontact coil is used for the continuous residence time of the olefin continuous polymerization process through the pipeline for a maximum residence time of 50 to 70 minutes. In addition, the total length of the catalyst precontact coil can be extended to increase the precontact time of three doses if required by the process.
  • the catalyst precontacting device in order to achieve control of the catalyst precontacting temperature, further includes a temperature control device, which can be selected with reference to the prior art.
  • the catalyst precontacting device further comprises a constant temperature pool, wherein the catalyst precontacting coil is located in the constant temperature pool, and the temperature of the three catalysts in the precontacting coil of the catalyst is controlled by the constant temperature medium in the thermostatic bath. .
  • the outer portion of the catalyst precontacting coil is provided with a jacket, i.e., the catalyst precontacting coil is a jacketed coil.
  • the constant temperature medium enters the jacket to control the pre-contact temperature of the three doses.
  • the flow direction of the constant temperature medium and the three doses may be the same or opposite.
  • the constant temperature medium and the three doses are reversely flowed.
  • the size of the catalyst precontact tank can be adjusted according to the capacity of the polymerization apparatus.
  • the catalyst precontacting tank is a small agitating tank having a volume which is used in a continuous polymerization process of an olefin having an average residence time in the tank of less than 30 minutes, preferably less than 10 minutes, further preferably 0.1- 5 minutes.
  • the agitator in the small agitating tank of the present invention is not particularly limited as long as it can be sufficiently mixed.
  • the effect is fine.
  • the agitator may be a single layer, and the agitation form may be selected from the group consisting of paddle, turbine, propulsion, Bruma gold, toothed, anchor, frame, ribbon and screw.
  • the agitator may also be two or more layers, in which case the agitator may be a composite of one or more of the aforementioned agitated forms.
  • the catalyst pre-contact tank may be provided with a jacket, and the temperature of the three doses is controlled by the constant temperature medium in the jacket.
  • the catalyst precontacting coils may be one or more sets of coils.
  • the catalyst precontacting device comprises more than two sets of catalyst precontacting coils connected in parallel. Such a design allows adjustment of the pre-contact time and/or pre-contact temperature of the three doses over a wider range and allows at least one set of catalyst pre-contact coils to be used as a backup.
  • the present invention provides a catalyst precontacting apparatus for continuous polymerization of olefins comprising a catalyst precontacting tank and at least one catalyst precontacting coil connected to the catalyst precontacting tank, wherein the catalyst
  • the precontacting coil has a feed port disposed at the beginning end and at least two valved outlet ports downstream of the start end, and material from the catalyst precontacting tank will enter the catalyst precontacting coil from the feed port. And it is taken out by one of the outlets and enters the prepolymerization unit (when present) or the polymerization unit (when no prepolymerization unit is present).
  • the catalyst precontacting time can be controlled by selecting an outlet for the contacted material (i.e., the precontacted catalyst).
  • the structure and design features of the catalyst precontacting can and the at least one catalyst precontacting coil itself are in contact with the catalyst precontacting can and catalyst of the catalyst precontacting device of the second aspect of the invention.
  • the structural and design features described for the coil are similar except for the anti-backflow valve provided on the catalyst precontact coil.
  • the catalyst precontact coil is preferably also provided with a shutoff valve.
  • a shutoff valve is provided immediately downstream of each outlet.
  • the present invention provides a catalyst precontacting apparatus for continuous polymerization of olefins, comprising a catalyst precontacting coil, wherein the catalyst precontacting coil is provided with a valved inlet and connected with at least two a feed line, wherein one feed line is connected to the beginning of the catalyst precontact coil, and the remaining feed lines are connected to the catalyst precontact coil through the inlet.
  • Figure 3 depicts a catalyst precontacting apparatus in accordance with an embodiment of this aspect of the invention, wherein 1 represents a catalyst precontact coil, 2 represents a constant temperature bath, and a, b, c, d, e and f represent valved connections Entrance.
  • the coil is precontacted at a controlled temperature and the precontacted catalyst is then passed to a downstream unit (i.e., a prepolymerization unit or a polymerization unit).
  • the precontact time of the catalyst component can be adjusted by selecting an inlet for introducing a cocatalyst and optionally an external electron donor.
  • the catalyst precontact coil is an internally polished coil.
  • the catalyst precontacting coil may be of any shape that ensures no dead angle in the tube, thereby allowing the components of the catalyst to pass smoothly.
  • the shape of the catalyst precontacting coil is spring-like.
  • the catalyst precontacting coil is a serpentine tube.
  • the manner in which the catalyst precontacting coil is placed is not particularly limited as long as the smooth flow of each catalyst component can be ensured.
  • the catalyst pre-contact coils may be placed horizontally, vertically, or at any other angle, provided that the flow of each catalyst component is smooth.
  • the catalyst precontact coil is provided with at least two inlets with valves.
  • the upper limit of the number of the inlets is not particularly limited, and is mainly determined by the necessity of the polymerization process and the convenience of processing the apparatus.
  • the catalyst precontact coil can be provided with from 2 to about 20, preferably from 2 to about 10, inlet ports with valves.
  • the valved inlet can be placed anywhere in the catalyst precontact coil.
  • An arrangement of the access port is schematically depicted in FIG. As shown in Fig. 3, according to the flow direction of the material, the inlet can be set at the beginning of the coil (inlet a), and can also be placed at any position in the middle of the coil (access ports b, c, d and e).
  • the inlet with the valve can also be arranged on the outlet line at the end of the coil (inlet port f). In this case, the materials of the two feed lines are merged at the inlet f and directly enter The catalyst is precontacted to the outlet line and then passed to the downstream unit.
  • the catalyst precontacting device is tailored to the process requirements.
  • the number and position of the inlets with valves can be freely set according to the required material precontacting time for the continuous polymerization process of olefins. For example, in a particular olefin continuous polymerization process, the required three-part pre-contact time has been determined, then one of the valved inlets is provided at the corresponding location of the coil; in an additional olefin continuous polymerization process Considering from different angles (for example, catalyst activity, polyolefin isotactic index or melt index, etc.), it is necessary to adjust the pre-contact time of three doses to achieve different requirements, then set one or more at the corresponding position of the coil. The valved inlet.
  • the catalyst precontacting device includes a catalyst precontacting coil provided with a plurality of valved inlets, wherein the plurality of valved inlets are precontacted from the catalyst The beginnings of the coils are initially placed at substantially equal intervals on the catalyst precontact coil.
  • the inlet for introducing the cocatalyst and the optional external electron donor is selected as desired such that the actual catalyst precontact time is as close as possible to the determined desired catalyst precontact time.
  • the catalyst precontact coil may generally have a diameter of from 3 to 30 mm.
  • the total length of the catalyst precontact coil can be determined based on the maximum residence time of the three doses through the conduit. Typically, the total length of the catalyst precontact coil is used for a continuous residence time of the olefin continuous polymerization process through the conduit for a maximum residence time of 50-70 minutes. In addition, the total length of the catalyst precontact coil can be extended to increase the precontact time of three doses if required by the process.
  • the catalyst precontacting device further includes a temperature control device, and the temperature control device can be selected with reference to the prior art.
  • the catalyst precontacting device further comprises a constant temperature bath, the catalyst precontacting coil being located in the thermostatic bath.
  • the temperature of the material in the pre-contact coil of the catalyst is controlled by a constant temperature medium in the constant temperature bath.
  • the outer portion of the catalyst precontacting coil is provided with a jacket, i.e., the catalyst precontacting coil is a jacketed coil.
  • the constant temperature medium flows in the jacket to control the pre-contact temperature of the three doses.
  • the flow direction of the constant temperature medium and the three doses may be the same or opposite.
  • the constant temperature The medium flows backwards with three doses.
  • the catalyst precontact coil is further provided with a pipe mixer for mixing materials from each feed line.
  • the conduit mixer can be located at the co-current of the three-way outlet line.
  • the pipe mixer may be selected from various pipe mixers used in the market, and specific examples thereof include, but are not limited to, a nozzle type pipe mixer, a vortex line pipe mixer, a profile pipe mixer or a static pipe mixer, and the like.
  • the static pipeline mixer may be selected from the group consisting of an SV type static pipeline mixer, an SK type static pipeline mixer, an SX type static pipeline mixer, an SH type static pipeline mixer or an SL type static pipeline mixer.
  • the pipe mixer is selected from the group consisting of SK type static pipe mixers.
  • the catalyst precontacting device can include one or more catalyst precontacting coils.
  • the catalyst precontacting device comprises more than two sets of catalyst precontacting coils connected in parallel, such a design may allow adjustment of the pre-contact time and/or pre-contact temperature of the three doses over a wider range, and At least one catalyst pre-contact coil is allowed as a backup.
  • the present invention provides a catalyst precontacting device comprising a plurality of microcatalyst precontacting cans in series.
  • the catalyst precontact tank is provided with a temperature adjustable jacket for controlling the precontact temperature of the three doses.
  • each microcatalyst precontact tank allows the average residence time of the material for the olefin continuous polymerization process to be less than about 10 minutes, such as less than about 5 minutes, such as in the range of 0.1 to 4 minutes, or in the range of 0.2 to 3 minutes.
  • the catalyst precontact tank is provided with a stirring system. Further details of the catalyst precontacting tank can be found in the description of the catalyst precontacting tank in the catalyst precontacting apparatus of the second aspect of the invention.
  • the procatalyst, cocatalyst, and optional external electron donor can be passed through one or more catalyst precontact tanks in series to a subsequent prepolymerization site or polymerization unit, thereby controlling the precontact time.
  • An advantage of the catalyst precontacting device according to this aspect of the invention is that the settling and non-uniformization of the catalyst composition during the precontacting process can be prevented by providing a stirring device in each of the microcatalyst precontacting cans.
  • the catalyst precontacting device of the present invention can be widely applied to various olefin polymerization processes, particularly liquid phase bulk-gas phase propylene polymerization processes, such as LyondellBasell Corporation, which is well known in the art.
  • Spheripol process, Mitsui Chemical's Hypol process, Borealis's Borstar process, etc. gas phase propylene polymerization process, such as Unipol polyolefin process, Inovene polypropylene process, Novolen polypropylene process. Processes for the polymerization of ethylene or other olefins have also been contemplated.
  • the downstream means refers to a prepolymerization system (when present) or a primary polymerization system (when no prepolymerization system is present) in a conventional olefin continuous polymerization process.
  • the catalyst precontacting device is as close as possible to the prepolymerization or main polymerization system in actual installation.
  • an inlet may be added to the outlet line of the catalyst precontact tank, the catalyst precontacting disc, and/or the feed line for each catalyst component for introducing an inert gas or an inert solvent as needed.
  • the inert gas is used to purge the system, specific examples of which include, but are not limited to, nitrogen or argon; the inert solvent is used in a cleaning system or the like, which may be selected from hexane, heptane, and the like.
  • the pressure of the inert gas or inert solvent should be greater than the pressure of the downstream unit.
  • the precontacting time of the components of the catalyst and the precontacting temperature of the catalyst can be adjusted.
  • the method can avoid the back-mixing of the pre-contact materials, and has the characteristics of low equipment investment.
  • the catalyst precontacting device of the present invention can adjust the precontacting temperature and precontacting time of the catalyst, so that the performance of the catalyst can reach a superior level according to a specific process.
  • the catalyst precontacting device of the invention can be controlled in a wide range, and the contact of each stream is basically carried out in the form of a plug flow, which can keep the pre-contact time of the catalyst uniform and avoid three batches of different pre-contact time in the existing polymerization process. Anti-mixing phenomenon.
  • the catalyst precontacting device is small and efficient, and the retrofitting of the existing polymerization device is simple, and does not require excessive control and operation.
  • the preparation method of the catalyst used in the examples is as follows:
  • This example compares the results obtained with catalyst precontact and no catalyst precontact.
  • the catalyst precontacting device used is as shown in FIG. 2, including a catalyst precontacting tank 1, a catalyst precontacting coil 2 and a constant temperature tank 3, wherein the catalyst precontacting tank 1 is a 50 ml.
  • the stirring kettle is equipped with a three-bladed pitcher stirrer.
  • the temperature of the stirred tank is controlled by the constant temperature medium in the jacket;
  • the catalyst pre-contact coil 2 is provided with inlets a, b, c, d, e and f, and the catalyst is precontacted.
  • the temperature of the coil 2 is controlled by a constant temperature medium in the constant temperature bath 3.
  • the temperature of the catalyst precontacting tank was controlled by a constant temperature medium to 10 ° C, and the time for controlling the main catalyst, the cocatalyst and the electron donor to pass through the catalyst precontacting device was less than 1 minute. That is, immediately after the main catalyst, the cocatalyst, and the electron donor are combined and stirred in the catalyst precontacting tank, the total contact time is less than 1 minute, the f inlet is introduced and passed through the line to the subsequent polymerization step.
  • the main catalyst is the above catalyst B or D.
  • the polymerization temperature was 70 ° C and the polymerization residence time was 60 min.
  • the stirring speed of the polymerization vessel was controlled at 500 rpm.
  • the experimental results obtained are shown in Table 1.
  • the catalyst precontacting can improve and enhance the polymerization activity, isotactic index and melt index of the catalyst.
  • the catalyst precontacting device used in these examples comprises a catalyst precontacting can 1, a catalyst precontacting coil 2, and a constant temperature bath 3, wherein the catalyst precontacting tank 1 is a 50 ml stirred tank. a three-bladed pitched agitator is provided, the temperature of the stirred tank is controlled by a constant temperature medium in the jacket; the catalyst pre-contact coil 2 is provided with inlets a, b, c, d, e and f, and the catalyst pre-contacts the coil 2 The temperature is controlled by a constant temperature medium in the constant temperature bath 3.
  • the main catalyst is the above catalyst C.
  • the polymerization temperature was 70 ° C and the polymerization residence time was 60 min.
  • the stirring speed of the polymerization vessel was controlled at 500 rpm.
  • the catalyst precontacting device is used to control the temperature of the catalyst precontacting tank and the catalyst precontacting coil by a constant temperature medium to 10 ° C, and the time for controlling the main catalyst, the cocatalyst and the electron donor to pass through the catalyst precontacting device is controlled. Less than 1 minute. That is, immediately after the main catalyst, the cocatalyst, and the electron donor are combined and stirred in the catalyst precontacting tank, the total contact time is less than 1 minute, the f inlet is introduced and passed through the line to the subsequent polymerization step. The amount of hydrogen added during the polymerization was 500 ppm. The experimental results obtained are shown in Table 1.
  • Example 3-7 was carried out in the same manner as in Example 2, except that the precontacting time for controlling the main catalyst, the cocatalyst and the external electron donor was 5 minutes, 10 minutes, 20 minutes, 30 minutes, 60 minutes, respectively (ie, Open the corresponding inlet valve separately, the remaining inlet valves are closed), and the three doses are pre-contacted and then enter the subsequent gathering. Combined process.
  • the experimental results obtained are shown in Table 2.
  • Examples 8-16 were carried out in the same manner as in Example 2 except that the material coming out of the catalyst contact tank was passed through the c inlet into the precontact coil and then into the polymerization unit, thereby controlling the main catalyst, the cocatalyst and the electron donor.
  • the precontacting time through the catalyst precontacting device is about 30 minutes, and the temperatures of both the catalyst precontacting can and the catalyst precontacting coil are controlled by the constant temperature medium to be -10 ° C, -5 ° C, -0 ° C, 5 ° C, respectively. 10 ° C, 15 ° C, 20 ° C, 25 ° C and 30 ° C.
  • the amount of hydrogen added during the polymerization was 2,500 ppm.
  • the experimental results obtained are shown in Table 3.
  • the desired precontact temperature is from about -10 to about 5 °C, and the desired precontact time is less than about 10 minutes.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Abstract

一种用于烯烃连续聚合的催化剂预接触方法,其中主催化剂、助催化剂和任选的外给电子体混合后进行预接触反应,预接触的反应温度为-30℃至35℃且可调,预接触的反应时间为0.5min-10min且可调,预接触后的催化剂进入催化剂预聚合系统和然后进入催化剂聚合系统,或者直接进入催化剂聚合系统。还公开了用于烯烃连续聚合的催化剂预接触装置,其能够调节催化剂的预接触时间和预接触温度,使催化剂的性能根据工艺达到较优的水平。

Description

一种用于烯烃连续聚合的催化剂预接触装置及催化剂预接触的方法 技术领域
本发明属于烯烃聚合领域,具体地涉及用于烯烃连续聚合的催化剂预接触装置以及催化剂预接触方法。
背景技术
目前工业上应用于烯烃聚合反应的主催化剂大多为固体颗粒型主催化剂,包括呈球形或类球形的固体主催化剂。固体主催化剂加料的一种方式是将主催化剂配制成一定浓度的浆液或膏状物,在与助催化剂和任选的外给电子体预接触后用计量加料系统送入后续聚合反应器系统中。因此,催化剂预接触是已知的。参见例如中国专利申请号96193736.X和201020206046.6。图1示意性描述了现有工业装置中的催化剂预接触。如图1所示,现有的工业上的浆液或液体催化剂预接触装置包括催化剂预接触罐,来自浆液或液体催化剂进料管线的浆液或液体催化剂由计量泵输送通过插底管进入催化剂预接触罐中。助催化剂如三乙基铝和外给电子体合并后也进入催化剂预接触罐中。催化剂预接触罐带有搅拌装置,用于将三剂充分混合进行预接触反应。经过预接触的催化剂进入后续的催化剂预聚合系统或直接进入主聚合反应系统中。
但是,没有现有技术教导对催化剂预接触的条件如预接触温度和预接触时间进行调节来优化催化剂的聚合性能。
发明内容
本发明人已经惊讶地发现,催化剂与助催化剂和可选的外给电子体间的预接触的条件能够影响催化剂的性能,并且通过调节预接触温度和预接触持续时间可以优 化催化剂的性能。在此基础上完成了本发明。
本发明的一个目的是提供一种用于烯烃连续聚合的催化剂预接触方法,其中主催化剂、助催化剂和任选的外给电子体混合后进行预接触反应,预接触的温度为-30℃至40℃且可调,预接触的持续时间为0.5min-70min且可调,预接触后的催化剂进入催化剂预聚合系统和然后进入催化剂聚合系统,或者直接进入催化剂聚合系统。
本发明的另一个目的是提供一种催化剂预接触装置,其包括催化剂预接触罐和与所述催化剂预接触罐连接的至少一个催化剂预接触盘管,所述催化剂预接触盘管上设置有至少两个带阀门的接入/引出口。
本发明的又一个目的是提供一种催化剂预接触装置,其包括催化剂预接触盘管,所述催化剂预接触盘管上设置有带阀门的接入口并连接有至少两条进料管线,其中一条进料管线连接至催化剂预接触盘管的始端,其余进料管线通过所述接入口与催化剂预接触盘管连接。本发明的又一个目的是提供一种催化剂预接触装置,其包括多个串联的微型催化剂预接触罐,每个微型催化剂预接触罐带有夹套和搅拌装置。
本发明的催化剂预接触方法和装置可广泛用于烯烃聚合工艺中,特别是液相本体-气相烯烃聚合工艺中。所述催化剂预接触装置能够在相当宽的范围内精确控制催化剂预接触时间和预接触温度,且使预接触物料不反混,而且投资成本低。
附图简要说明
图1为目前工业生产及中试装置上使用的催化剂预接触装置的示意图。
图2为本发明的一个实施方案的催化剂预接触装置的示意图。
图3为本发明的另一个实施方案的催化剂预接触装置的示意图。
图4a描绘了催化剂A的活性对预接触温度的曲线。
图4b描绘了催化剂A的等规度对预接触温度的曲线。
图4c描绘了催化剂A的熔体流动指数对预接触温度的曲线。
图5a描绘了催化剂C的活性对预接触温度的曲线。
图5b描绘了催化剂C的等规度对预接触温度的曲线。
图5c描绘了催化剂C的熔体流动指数对预接触温度的曲线。
图6a描绘了催化剂B的活性对预接触温度的曲线。
图6b描绘了催化剂B的等规度对预接触温度的曲线。
图6c描绘了催化剂B的熔体流动指数对预接触温度的曲线。
图7a描绘了催化剂D的活性对预接触温度的曲线。
图7b描绘了催化剂D的等规度对预接触温度的曲线。
图7c描绘了催化剂D的熔体流动指数对预接触温度的曲线。
图8a描绘了催化剂D的活性对预接触温度的曲线。
图8b描绘了催化剂D的等规度对预接触温度的曲线。
图8c描绘了催化剂D的熔体流动指数对预接触温度的曲线。
优选实施方案的描述
以下对本发明的具体实施方案进行详细描述。应当理解的是,此处所描述的具体实施方案仅用于说明和解释本发明,并不用于限制本发明。
在本发明中,术语“催化剂组分”是指烯烃聚合反应的常规催化剂组分,包括主催化剂、助催化剂(例如,三乙基铝)和可选的外给电子体(例如,甲基环己基二甲氧基硅烷)。为了便于描述,下文中有时将主催化剂、助催化剂和可选的给电子体统称为“三剂”。
本发明中使用的术语“催化剂预接触”是指在预聚合或者聚合前主催化剂与助催化剂和任选的外给电子体的混合和接触。该催化剂预接触后的产物是具有催化活性的聚烯烃催化剂。
本发明中使用的术语“催化剂预接触的持续时间”是指从主催化剂与助催化剂和可选的外给电子体开始接触至接触后的聚烯烃催化剂进入预聚合装置(当存在时)或者聚合装置(当不存在预聚合装置时)的持续时间。
在第一方面,本发明提供了一种用于烯烃连续聚合的催化剂预接触方法,其中主催化剂、助催化剂和任选的外给电子体混合以进行预接触,预接触的温度为-30℃至40℃且可调,预接触的持续时间为0.5min-70min且可调,预接触后的催化剂按照聚合工艺要求进入预聚合系统和然后进入聚合系统,或者直接进入聚合系统。
在一些实施方案中,所述聚合系统采用液相本体聚合工艺,预接触的持续时间在1min-20min,优选在1min-15min的范围内,更优选在1min-10min的范围内,仍更优选在1min-9min的范围内,预接触的温度在-25℃至15℃,优选-25℃至10℃,更优选-20℃至8℃的范围内。
在另一些实施方案中,所述聚合系统采用气相聚合工艺,预接触的反应时间在1min-20min,优选在1min-15min的范围内,更优选在1min-10min的范围内,预接触反应温度在-30℃至30℃,优选-25℃至20℃,更优选-10℃至10℃的范围内。
在一些实施方案中,所述催化剂预接触方法包括:
提供一种催化剂;
通过实验室聚合评价实验确定该催化剂与助催化剂和任选的外给电子体间预接触的希望的温度和希望的持续时间;
使所述催化剂与所述助催化剂和所述任选的外给电子体在预接触装置中在所述希望的预接触温度±3℃下接触所述希望的持续反应时间±2分钟,以提供预接触过的催化剂;和
然后将所述预接触过的催化剂按照聚合工艺要求进料至预聚合系统和然后进入聚合系统,或者直接进入聚合系统。
实验室聚合评价的技术本质上是已知。通过实验室聚合评价实验确定催化剂与助催化剂和任选的外给电子体间预接触的希望的温度和希望的持续时间是可行的。确定所述希望的温度和希望的持续时间时考虑的主要因素是催化剂的聚合活性、所得聚合物的熔体流动指数和等规指数等。
在一些实施方案中,所述催化剂预接触方法通过催化剂、助催化剂和任选的外给电子体预接触装置来实施,该预接触装置包括具有至少两个,优选2-20个,更 优选3-10个接入/引出口的管式设施或者至少两个串联的微型催化剂预接触罐。
在一些优选的实施方案中,所述方法包括:a)将主催化剂、助催化剂和任选的外给电子体进料至催化剂预接触罐;b)将在步骤a)中得到的混合物通过选择的接入口送入催化剂预接触控制装置;和将所述混合物经所述催化剂预接触控制装置送入预聚合系统和然后送入聚合系统,或者直接送入聚合系统。通过选择不同的进入口,预接触过的催化剂将经过不同长度的管路进入后续的预聚合系统或聚合系统,从而可以调节预接触的时间。
在一个具体的实施方案中,所述方法包括:将主催化剂通过计量装置经过催化剂进料管线连续进入到催化剂预接触罐中,助催化剂如三乙基铝和外给电子体分别通过各自的计量单元后合并,接着连续进入催化剂预接触罐中,它们在高速搅拌下充分混合;然后,根据设定的预接触时间选择相应的催化剂预接触盘管的接入口,使三剂通过溢流形式或者其它形式经选择的接入口进入催化剂预接触控制盘管,并且经所述催化剂预接触控制盘管进入下游装置中。在催化剂预接触罐中,搅拌的速度可以为50-2000rpm,优选为100-1000rpm,进一步优选为200-800rpm。
在本发明的方法中,还控制催化剂预接触时的温度。对控制催化剂预接触时的温度的方法没有特殊的限制。方便地,通过设置在进行所述催化剂预接触的设备如预接触罐或预接触盘管或二者外面的恒温池或夹套来控制催化剂预接触时的温度,如下文所述。
在第二方面,本发明提供了一种用于烯烃连续聚合的催化剂预接触装置,该催化剂预接触装置包括催化剂预接触罐和与所述催化剂预接触罐连接的至少一个催化剂预接触盘管,所述催化剂预接触盘管上设置有至少两个带阀门的接入口。
图2描述了按照本发明该方面的一个实施方案的催化剂预接触装置,其中1表示催化剂预接触罐,2表示是催化剂预接触盘管,3表示恒温池,和a,b,c,d,e和f表示带阀门的接入口。
在一些实施方案中,所述催化剂预接触罐通过带有阀门的管线与所述催化剂预接触盘管连接。
在一些实施方案中,所述催化剂预接触盘管为内抛光的盘管。
在本发明中,所述催化剂预接触盘管可以是能保证管内无死角的任何形状,从而允许催化剂各组分顺利通过。在一种优选的实施方案中,所述催化剂预接触盘管的形状为弹簧状。在另一种优选的实施方案中,所述催化剂预接触盘管是蛇形管。
在本发明中,对所述催化剂预接触盘管的放置方式没有特殊的限制,只要能够保证各催化剂组分的顺利流动。例如,在保证各催化剂组分流动顺利的情况下,所述催化剂预接触盘管可以水平放置、垂直放置或者以其它任意角度放置。
所述催化剂预接触盘管设置有至少两个带有阀门的接入口。对所述接入口的数目的上限没有特殊的限定,其主要由聚合工艺的需要和设备加工的便利性决定。例如,所述催化剂预接触盘管2可以设置有2-约20,优选2-约10个带有阀门的接入口。
所述带有阀门的接入口可以设置在催化剂预接触盘管的任意位置。图2中示意性描述了所述接入口的一种布置方案。如图2所示,按照物料的流动方向,接入口可以设置在盘管的始端(接入口a),还可以设置在盘管中间的任意部位(例如,接入口b、c、d和e)。另外,所述带有阀门的接入口还可以设置在盘管末端的出口管线上(接入口f),这种情况下,来自催化剂预接触罐的物料通过接入口f直接进入到下游装置中。
根据本发明的一种实施方式,所述催化剂预接触装置根据工艺需求定制。其中,带阀门的接入口的数量和位置可以根据所需烯烃连续聚合工艺的物料预接触时间自由设置。例如,在一种具体的烯烃连续聚合工艺中,已确定所需的三剂预接触时间,则在盘管的相应位置上设置有一个所述带阀门的接入口;在另外的烯烃连续聚合工艺中,从不同的角度考虑(例如,催化剂活性、聚烯烃等规指数或熔融指数等),需调整三剂的预接触时间以实现不同的要求,则在盘管的相应位置上设置一个或多个所述的带阀门的接入口。
根据本发明的另一种实施方式,所述催化剂预接触装置包括设置有多个带阀门的接入口的催化剂预接触盘管,其中所述多个带有阀门的接入口从催化剂预接触盘 管的始端开始大致等间隔地设置在催化剂预接触盘管上。在具体应用中,根据需要选择特定的接入口,使得实际的催化剂预接触持续时间尽可能地接近所确定的希望的催化剂预接触持续时间。
在一些实施方案中,为了防止三剂经接入口进入盘管后倒流至该接入口前端部位的盘管内,所述催化剂预接触盘管上还优选设置有防倒流阀门。优选地,在紧邻除设置在所述催化剂预接触盘管始端处的接入口外的每个接入口的上游处设置一个防倒流阀门。
所述催化剂预接触盘管的直径一般可以为3-25mm。所述催化剂预接触盘管的总长度可以依据三剂通过管道的最长停留时间来确定。根据烯烃聚合催化剂的聚合活性和聚合装置的产能,一般地,所述催化剂预接触盘管的总长度使用于烯烃连续聚合工艺的物料通过管道的最长停留时间在50-70分钟。此外,如果工艺需要,还可以延长所述催化剂预接触盘管的总长度来增加三剂的预接触时间。
本发明中,为了实现对催化剂预接触温度的控制,所述催化剂预接触装置还包括控温设备,所述控温设备可以参照现有技术进行选择。
根据一种优选的实施方式,所述催化剂预接触装置还包括恒温池,所述催化剂预接触盘管位于恒温池中,通过恒温池中的恒温介质实现对催化剂预接触盘管内三剂温度的控制。
根据另一种优选的实施方式,催化剂预接触盘管的外部设置有夹套,即,所述催化剂预接触盘管为带夹套的盘管。恒温介质进入夹套,从而对三剂的预接触温度进行控制。其中,恒温介质与三剂的流动方向可以相同或相反。在烯烃连续聚合工艺中,优选地,恒温介质与三剂进行逆向的流动。
本发明中,所述催化剂预接触罐的大小可以根据聚合装置的产能进行调整。通常地,所述催化剂预接触罐为小型搅拌罐,所述小型搅拌罐的容积使用于烯烃连续聚合工艺的物料在罐内的平均停留时间小于30分钟,优选小于10分钟,进一步优选为0.1-5分钟。
本发明对所述小型搅拌罐中的搅拌器没有特别的限制,只要能起到充分混合的 作用即可。例如,所述搅拌器可以是单层的,搅拌形式可以选自桨式、涡轮式、推进式、布鲁马金式、齿片式、锚式、框式、螺带式和螺杆式中的一种;所述搅拌器也可以是双层或更多层的,这种情况下,所述搅拌器可以是前述搅拌形式中的一种或几种的复合体。
另外,所述催化剂预接触罐外还可以设置有夹套,通过夹套中的恒温介质来控制三剂的温度。
在所述催化剂预接触装置中,催化剂预接触盘管可以是一组或多组盘管。根据一种实施方式,所述催化剂预接触装置包括两组以上并联连接的催化剂预接触盘管。这样的设计允许在更宽的范围内调整三剂的预接触时间和/或预接触温度,并且允许至少一组催化剂预接触盘管作为备用。
在第三方面,本发明提供了一种用于烯烃连续聚合的催化剂预接触装置,其包括催化剂预接触罐和与所述催化剂预接触罐连接的至少一个催化剂预接触盘管,其中所述催化剂预接触盘管具有设置在始端的一个进料口和在始端下游的至少两个带阀门的引出口,来自催化剂预接触罐的物料将从所述进料口进入所述催化剂预接触盘管,并且由所述引出口之一引出并进入预聚合装置(当存在时)或者聚合装置(当不存在预聚合装置时)。通过选择引出所述接触过的物料(即预接触过的催化剂)的引出口,所述催化剂预接触时间可以被控制。
在本发明的该方面中,所述催化剂预接触罐和所述至少一个催化剂预接触盘管本身的结构和设计特征与对本发明第二方面的催化剂预接触装置的催化剂预接触罐和催化剂预接触盘管所描述的结构和设计特征类似,除了所述催化剂预接触盘管上设置的防倒流阀门外。
在本发明该方面中,为了防止三剂进入所选择的引出口后面的盘管体积中,所述催化剂预接触盘管上还优选设置有截止阀门。优选地,在紧邻每个引出口的下游处设置一个截止阀门。
所述催化剂预接触罐和所述至少一个催化剂预接触盘管的其它结构和设计特征的细节和优先选择可以参见前面的描述。
在第四方面,本发明提供了一种用于烯烃连续聚合的催化剂预接触装置,其包括催化剂预接触盘管,所述催化剂预接触盘管上设置有带阀门的接入口并连接有至少两条进料管线,其中一条进料管线与催化剂预接触盘管的始端连接,其余进料管线通过所述接入口与催化剂预接触盘管连接。
图3描述了按照本发明该方面的一个实施方案的催化剂预接触装置,其中1表示催化剂预接触盘管,2表示恒温池,和a,b,c,d,e和f表示带阀门的接入口。催化剂从所述催化剂预接触盘管的始端进入,并且与从接入口a,b,c,d,e和f之一中进入的助催化剂和任选的外给电子体合并,从而在所述盘管内在控制的温度下预接触,然后预接触过的催化剂进入下游装置(即,预聚合装置或聚合装置)。通过选择引入助催化剂和任选的外给电子体的接入口,可以调节所述催化剂组分的预接触时间。
在一些实施方案中,所述催化剂预接触盘管为内抛光的盘管。
在本发明中,所述催化剂预接触盘管可以是能保证管内无死角的任何形状,从而允许催化剂各组分顺利通过。根据一种优选的实施方式,所述催化剂预接触盘管的形状为弹簧状。根据另一种优选的实施方式,所述催化剂预接触盘管为蛇形管。
在本发明中,对所述催化剂预接触盘管的放置方式没有特殊的限制,只要能够保证各催化剂组分的顺利流动。例如,在保证各催化剂组分流动顺利的情况下,所述催化剂预接触盘管可以是水平放置、垂直放置或者以其它任意角度放置。
所述催化剂预接触盘管设置有至少两个带有阀门的接入口。对所述接入口的数目的上限没有特殊的限定,其主要由聚合工艺的需要和设备加工的便利性决定。例如,所述催化剂预接触盘管可以设置有2-约20,优选2-约10个带有阀门的接入口。
所述带有阀门的接入口可以设置在催化剂预接触盘管的任意位置。图3中示意性描述了所述接入口的一种布置方案。如图3所示,按照物料的流动方向,接入口可以设置在盘管的始端(接入口a),还可以设置在盘管中间的任意部位(接入口b、c、d和e)。另外,所述带有阀门的接入口还可以设置在盘管末端的出口管线上(接入口f),这种情况下,两条进料管线的物料在接入口f处合并并直接进入 到出口管线进行催化剂预接触,然后进入下游装置。
根据本发明的一种实施方式,所述催化剂预接触装置根据工艺需求定制。其中,带阀门的接入口的数量和位置可以根据所需的用于烯烃连续聚合工艺的物料预接触时间自由设置。例如,在一种具体的烯烃连续聚合工艺中,已确定所需的三剂预接触时间,则在盘管的相应位置上设置一个所述带阀门的接入口;在另外的烯烃连续聚合工艺中,从不同的角度考虑(例如,催化剂活性、聚烯烃等规指数或熔融指数等),需调整三剂的预接触时间以实现不同的要求,则在盘管的相应位置上设置一个或多个所述的带阀门的接入口。
根据本发明该方面的另一种实施方式,所述催化剂预接触装置包括设置有多个带阀门的接入口的催化剂预接触盘管,其中所述多个带有阀门的接入口从催化剂预接触盘管的始端开始大致等间隔地设置在催化剂预接触盘管上。在具体应用中,根据需要选择用于引入助催化剂和任选的外给电子体的接入口,使得实际的催化剂预接触时间尽可能地接近所确定的希望的催化剂预接触时间。
所述催化剂预接触盘管的直径一般可以为3-30mm。所述催化剂预接触盘管的总长度可以根据三剂通过管道的最长停留时间来确定。一般地,所述催化剂预接触盘管的总长度使用于烯烃连续聚合工艺的物料通过管道的最长停留时间在50-70分钟。此外,如果工艺需要,还可以延长所述催化剂预接触盘管的总长度来增加三剂的预接触时间。
本发明中,所述催化剂预接触装置还包括控温设备,所述控温设备可以参照现有技术进行选择。
根据一种优选的实施方式,所述催化剂预接触装置还包括恒温池,所述催化剂预接触盘管位于恒温池中。通过恒温池中的恒温介质实现对催化剂预接触盘管内物料温度的控制。
根据另一种优选的实施方式,催化剂预接触盘管的外部设置有夹套,即,所述催化剂预接触盘管为带夹套的盘管。恒温介质在夹套内流动,从而对三剂的预接触温度进行控制。其中,恒温介质与三剂的流动方向可以相同或相反。优选地,恒温 介质与三剂逆向流动。
优选地,所述催化剂预接触盘管还设置有管道混合器,用于混合来自各进料管线的物料。当盘管的接入口设置在末端(例如图3中所示的f处)时,所述管道混合器可以位于出口管线的三通并流处。
所述管道混合器可选自市场上使用的各种管道混合器,其具体实例包括但不限于:喷嘴式管道混合器、涡流式管道混合器、异型管道混合器或静态管道混合器等。其中,所述静态管道混合器可以选自SV型静态管道混合器、SK型静态管道混合器、SX型静态管道混合器、SH型静态管道混合器或SL型静态管道混合器等。
根据一种优选的实施方式,所述管道混合器选自SK型静态管道混合器。
所述催化剂预接触装置可以包括一个或多个催化剂预接触盘管。根据一种实施方式,所述催化剂预接触装置包括两组以上并联连接的催化剂预接触盘管,这样的设计可以允许在更宽范围内调整三剂的预接触时间和/或预接触温度,并且允许至少一个催化剂预接触盘管作为备用。在第五方面,本发明提供了一种催化剂预接触装置,其包括多个串联的微型催化剂预接触罐。所述催化剂预接触罐带有可调节温度的夹套,用来控制三剂的预接触温度。每个微型催化剂预接触罐的容积使得用于烯烃连续聚合工艺的物料在罐内的平均停留时间小于约10min,例如小于约5min,例如在0.1-4min的范围内,或者在0.2-3min的范围内。另外,所述催化剂预接触罐带有搅拌系统。所述催化剂预接触罐的更多细节可以见对本发明第二方面的催化剂预接触装置中催化剂预接触罐的描述。
按照本发明的该方面,主催化剂、助催化剂和任选的外给电子体可以经过一个或多个串联的催化剂预接触罐进入后续的预聚合住址或聚合装置,由此来控制预接触时间。
按照本发明该方面的催化剂预接触装置的一个优点是,由于每个微型催化剂预接触罐中都设有搅拌装置,可以防止预接触过程中催化剂组合物的沉降和不均匀化。
本发明的催化剂预接触装置可广泛地应用于各种烯烃聚合反应工艺中,特别是液相本体-气相丙烯聚合工艺中,例如本领域公知的LyondellBasell公司的 Spheripol工艺,三井化学公司的Hypol工艺,Borealis公司的Borstar工艺等,气相法丙烯聚合工艺中,如Unipol聚烯烃工艺,Inovene聚丙烯工艺,Novolen聚丙烯工艺等。乙烯或其它烯烃聚合的工艺也已被想到。
本发明中,所述下游装置是指常规的烯烃连续聚合工艺中的预聚合系统(当存在时)或主聚合系统(当不存在预聚合系统时)。为了更精确控制预接触的温度和时间,所述催化剂预接触装置在实际安装中尽量靠近预聚合或主聚合系统。
可选地,可以在催化剂预接触罐的出口管线、催化剂预接触盘和/或各催化剂组分的进料管线上增加接入口,用于在需要时引入惰性气体或惰性溶剂。所述惰性气体用来吹扫系统,其具体实例包括但不限于氮气或氩气;所述惰性溶剂用于清洗系统等,其可以选自己烷,庚烷等。所述惰性气体或惰性溶剂的压力应大于下游装置的压力。
根据本发明的方法,催化剂各组分的预接触时间和催化剂预接触温度均可调节。另外,该方法能避免预接触物料的反混,而且具有设备投资低的特点。
在各种烯烃连续聚合工艺中,采用本发明的催化剂预接触装置能够调节催化剂的预接触温度和预接触时间,使催化剂的性能根据具体工艺达到较优的水平。而且,本发明的催化剂预接触装置可调控范围广,各物流的接触基本上以活塞流形式进行,能使催化剂的预接触时间保持均匀一致,避免现有聚合工艺中不同预接触时间的三剂的反混现象。催化剂预接触装置小巧且高效,对现有聚合装置的改造简单,不需要增加过多的控制和操作。
下面将通过具体的实施例对本发明进行详细描述,但其仅仅是解释说明而不是限定本发明。
在实施例中使用的催化剂的制备方法如下:
催化剂A:
在经过高纯氮气充分置换的300mL带搅拌的玻璃反应瓶中,加入100mL四氯化钛,冷却至-20℃,加入8g球形氯化镁醇合物(按照CN1330086A实施例1的方法制得,载体中乙醇与氯化镁的摩尔比值为2.62)。分阶段缓慢升温至110℃,在升 温过程中加入邻苯二甲酸二丁酯3.9mmol,在110℃恒温0.5h后,得到固体沉淀物,滤去液体,每次加100mL四氯化钛处理两次,然后用已烷洗涤五次,真空干燥后得到含钛固体催化剂组分A(主催化剂)。
催化剂B:
在经过高纯氮气充分置换的300mL带搅拌的玻璃反应瓶中,加入90mL四氯化钛和10mL己烷,冷却至-20℃,加入球形氯化镁醇合物8g(按照CN1330086A实施例1的方法制得,载体中乙醇与氯化镁的摩尔比值为2.62)。接着,在搅拌下,分阶段缓慢升温,当温度达到40℃时,加入2,4-戊二醇二苯甲酸酯4.9mmol和2-异丙基-2-异戊基-1,3-二甲氧基丙烷4.5mmol。继续升温至110℃,并恒温0.5h,得到固体沉淀物,滤去液体,向固体中每次加入100mL四氯化钛,在110℃处理1小时,重复该处理步骤3次;再用己烷洗涤5次,最后真空干燥后,得到固体催化剂组分A(主催化剂)。
催化剂C:
1、球形氯化镁加合物的制备
在500mL的反应釜中,依次加入150ml甲基硅油、30g氯化镁、50ml乙醇和9ml二甲氧基丙烷,在搅拌下升温至125℃。恒温反应2小时后,将混合物压入预热至115℃的辛基酚聚氧乙烯(10)醚/甲基硅油(1.5ml/350ml)中,高速搅拌分散30分钟。然后氮气压入预先冷至-30℃的2L已烷中,滤去液体,用已烷洗涤固体5次,真空干燥,得球形氯化镁加合物。平均粒径(D50)为45.2m,粒径分布值SPAN((D90-D10)/D50)为0.96。
2、球形催化剂组分的制备
在300mL的玻璃反应瓶中,依次加入90ml四氯化钛、10ml己烷,冷却至-20℃,加入上述的球形载体8g,升温至110℃。在升温过程中加入邻苯二甲酸二异丁酯(DIBP)1.5ml,滤去液体,用四氯化钛洗涤二次,用己烷洗涤三次,真空干燥后得球形催化剂。
催化剂D:
在经过高纯氮气充分置换的反应器中,依次加入氯化镁4.8g,甲苯70ml,环氧氯丙烷4ml,磷酸三丁酯(TBP)12.5ml,1.0ml四乙氧基硅烷,搅拌下升温至60℃,并维持1.0小时,固体完全溶解。加入邻苯二甲酸酐1.4g和30ml甲苯,继续维持1小时。将溶液冷却至-28℃以下,1小时内滴加TiCl4 56ml(5ml/min),缓慢升温至85℃(5℃/min),在升温过程中逐渐析出固体物,加入邻苯二甲酸二正丁酯1.1ml,维持85℃温度1小时,过滤后,用甲苯洗涤二次,得到固体沉淀物。然后加入甲苯72ml,TiCl4 48ml,升温到110℃,处理0.5小时,排去滤液后,用己烷洗涤五次,真空干燥得到固体催化剂组分。
实施例1
本实施例比较了有催化剂预接触和没有催化剂预接触得到的结果。
在有催化剂预接触的实验中,采用的催化剂预接触装置如图2所示,包括催化剂预接触罐1、催化剂预接触盘管2和恒温池3,其中催化剂预接触罐1为一个50毫升的搅拌釜,内设三叶斜桨搅拌器,搅拌釜的温度由夹套内的恒温介质控制;催化剂预接触盘管2设置有接入口a,b,c,d,e和f,催化剂预接触盘管2的温度由恒温池3内的恒温介质控制。通过恒温介质控制催化剂预接触罐内的温度为10℃,控制主催化剂、助催化剂和给电子体经过催化剂预接触装置的时间小于1分钟。即,在将主催化剂、助催化剂和给电子体在催化剂预接触罐中合并并搅拌后马上(总接触时间小于1分钟)引入f接入口并经管路进入后续聚合工序。
在没有催化剂预接触的实验中,直接将主催化剂、助催化剂和给电子体分别引入聚合釜。
主催化剂为上述催化剂B或D。采用液相本体法进行丙烯聚合,其中氢气的浓度为500ppm;控制助催化剂(三乙基铝)和给电子体(甲基环己基二甲氧基硅烷)以Al/Si计的摩尔比为25,Al/Ti摩尔比为300。聚合温度为70℃,聚合停留时间60min。聚合釜搅拌转速控制在500转/分钟。得到的实验结果见表1。
表1
Figure PCTCN2017089759-appb-000001
Figure PCTCN2017089759-appb-000002
由上表中结果可知,催化剂预接触可以改善和提高催化剂的聚合活性,等规指数和熔融指数。
实施例2-16
这些实施例用于说明本发明的催化剂预接触方法。
在这些实施例中采用的催化剂预接触装置如图2所示,包括催化剂预接触罐1、催化剂预接触盘管2和恒温池3,其中催化剂预接触罐1为一个50毫升的搅拌釜,内设三叶斜桨搅拌器,搅拌釜的温度由夹套内的恒温介质控制;催化剂预接触盘管2设置有接入口a,b,c,d,e和f,催化剂预接触盘管2的温度由恒温池3内的恒温介质控制。
主催化剂为上述催化剂C。采用液相本体法进行丙烯聚合,其中氢气的浓度为500ppm或2500ppm;控制助催化剂(三乙基铝)和给电子体(甲基环己基二甲氧基硅烷)以Al/Si计的摩尔比为25,Al/Ti摩尔比为300。聚合温度为70℃,聚合停留时间60min。聚合釜搅拌转速控制在500转/分钟。
在实施例2中,采用上述催化剂预接触装置,通过恒温介质控制催化剂预接触罐和催化剂预接触盘管内的温度为10℃,控制主催化剂、助催化剂和给电子体经过催化剂预接触装置的时间小于1分钟。即,在将主催化剂、助催化剂和给电子体在催化剂预接触罐中合并并搅拌后马上(总接触时间小于1分钟)引入f接入口并经管路进入后续聚合工序。聚合中氢加入量为500ppm。得到的实验结果见表1。
实施例3-7以与实施例2相同的方式进行,但是控制主催化剂、助催化剂和外给电子体的预接触时间分别为5分钟,10分钟,20分钟,30分钟,60分钟(即,分别将相应的接入口阀门打开,其余的接入口阀门关闭),三剂预接触后进入后续聚 合工序。得到的实验结果见表2。
实施例8-16以与实施例2相同的方式进行,但是使从催化剂接触罐出来的物料经c接入口进入预接触盘管和然后进入聚合装置,从而控制主催化剂、助催化剂和给电子体通过催化剂预接触装置的预接触时间为30分钟左右,并且通过恒温介质控制催化剂预接触罐和催化剂预接触盘管二者的温度分别为-10℃,-5℃,-0℃,5℃,10℃,15℃,20℃,25℃和30℃。聚合中氢加入量为2500ppm。得到的实验结果见表3。
表2,采用催化剂C的聚合结果
Figure PCTCN2017089759-appb-000003
由表2可知,催化剂、助催化剂和给电子体的预接触时间增加,催化剂的聚合活性逐渐降低;得到的聚合物等规指数增加,熔融指数降低。
表3,采用催化剂C的聚合结果
Figure PCTCN2017089759-appb-000004
由表2可知,催化剂、助催化剂和给电子体的预接触温度增加,催化剂的聚合活性逐渐增加,达到一定值后逐渐降低;得到的聚合物等规指数增加,熔融指数降低。
综合考虑表2和表3中的结果,可以确定对于上述催化剂C来说,希望的预接触温度为约-10至约5℃,和希望的预接触时间为小于约10分钟。
实施例17
采用上述A催化剂,并且采用实施例2-16中描述的聚合方法和条件,考察预 接触时间和预接触温度对聚合结果的影响。结果如下表4和5中所示。
表4.预接触时间对聚合结果的影响
Figure PCTCN2017089759-appb-000005
*预接触温度为10℃
表5.预接触温度对聚合结果的影响
Figure PCTCN2017089759-appb-000006
*预接触时间:30分钟
实施例18
采用上述催化剂B,并且采用实施例2-16中描述的聚合方法和条件,考察预接触时间对聚合结果的影响。结果如下表6中所示。
表6.预接触时间对聚合结果的影响
Figure PCTCN2017089759-appb-000007
*预接触温度为10℃
实施例19
采用催化剂D,并且采用实施例1-15中描述的聚合方法和条件,考察预接触时间和预接触温度对聚合结果的影响。结果如下表7和8中所示。
表7.预接触时间对聚合结果的影响
Figure PCTCN2017089759-appb-000008
*预接触温度:10℃
表8.预接触温度对聚合结果的影响
Figure PCTCN2017089759-appb-000009
*预接触温度为10℃
实施例17-19的结果表明,催化剂预接触时间和预接触温度的改变对其它聚烯烃催化剂的聚合性能也会产生一定的影响。
以上详细描述了本发明的优选实施方式,但是,本发明并不限于上述实施方 式中的具体细节,在本发明的技术构思范围内,可以对本发明的技术方案进行多种简单变型,这些简单变型均属于本发明的保护范围。此外,本发明的各种不同的实施方式之间也可以进行任意组合,只要其不违背本发明的思想,其同样应当视为本发明所公开的内容。

Claims (14)

  1. 一种用于烯烃连续聚合的催化剂预接触方法,其特征在于,主催化剂、助催化剂和任选的外给电子体混合后进行预接触反应,预接触的温度为-30℃至40℃且可调,预接触的时间为0.5min-70min且可调,预接触后的催化剂按照聚合工艺要求进入预聚合系统和然后进入聚合系统或者直接进入聚合系统。
  2. 根据权利要求1所述的催化剂预接触方法,其中所述聚合系统采用液相本体聚合工艺,预接触的时间在1min-20min的范围内,预接触的温度在-25℃至15℃的范围内。
  3. 根据权利要求1所述的催化剂预接触方法,其中所述聚合系统采用气相聚合工艺,预接触的时间在1min-20min的范围内,预接触的温度在-30℃至30℃的范围内。
  4. 根据权利要求1所述的催化剂预接触方法,其包括:
    提供一种催化剂;
    通过实验室聚合评价实验确定该催化剂与助催化剂和任选的外给电子体间预接触的希望的温度和希望的持续时间;
    使所述催化剂与所述助催化剂和所述任选的外给电子体在预接触装置中在所述希望的预接触温度±3℃下接触所述希望的持续时间±2分钟,以提供预接触过的催化剂;和
    然后将所述预接触过的催化剂按照聚合工艺要求进料至预聚合系统和然后进入聚合系统,或者直接进入聚合系统。
  5. 根据权利要求1所述的催化剂预接触方法,其通过催化剂、助催化剂和任选的外给电子体预接触装置来实施,该预接触装置包括具有至少两个接入/引出口的管式设施或者至少两个串联的微型催化剂预接触罐。
  6. 催化剂预接触装置,其包括催化剂预接触罐和与所述催化剂预接触罐连接的至少一个催化剂预接触盘管,所述催化剂预接触盘管上设置有至少两个带阀门的接入/引出口。
  7. 根据权利要求6所述的催化剂预接触装置,其具有以下特征中至少之一:
    -所述催化剂预接触盘管上设置有2-20个带阀门的接入/引出口;
    -所述催化剂预接触盘管为内抛光的盘管;
    -所述催化剂预接触盘管的形状为弹簧状,或者所述催化剂预接触盘管是蛇形管;
    -所述催化剂预接触装置还包括恒温池,所述催化剂预接触盘管位于所述恒温池中;或者,所述催化剂预接触装置还包括夹套,所述夹套设置于所述催化剂预接触盘管的外部;
    -所述催化剂预接触罐外设置有夹套;
    -所述催化剂预接触罐为小型搅拌罐,其容积使得用于烯烃连续聚合工艺的物料在罐内的平均停留时间小于5min;
    -所述催化剂预接触装置包括两个或更多个并联连接的催化剂预接触盘管;和
    -所述催化剂预接触盘管水平放置、垂直放置或者以任意其它角度放置。
  8. 根据权利要求6所述的催化剂预接触装置,其中所述催化剂预接触盘管上还设置有防倒流阀门,优选在除第一接入口外的每个接入口的上游设置一个防倒流阀门。
  9. 根据权利要求6所述的催化剂预接触装置,其中所述催化剂预接触盘管上还设置有截止阀门,优选在紧邻每个引出口的下游处设置一个截止阀门。
  10. 催化剂预接触装置,其包括催化剂预接触盘管,所述催化剂预接触盘管上设置有带阀门的接入口并连接有至少两条进料管线,其中一条进料管线连接至催化剂预接触盘管的始端,其余进料管线通过所述接入口与催化剂预接触盘管连接。
  11. 根据权利要求10所述的催化剂预接触装置,其具有以下特征中至少之一:
    -所述催化剂预接触盘管为内抛光的盘管;
    -所述催化剂预接触盘管为弹簧状的盘管或蛇形管;
    -所述催化剂预接触装置还包括恒温池,所述催化剂预接触盘管位于恒温池中,或者所述催化剂预接触盘管为带夹套的盘管;
    -所述催化剂预接触盘管内设置有管道混合器,用于混合来自所述进料管线的物料;
    -所述催化剂预接触装置包括两个或更多个并联连接的催化剂预接触盘管;和
    -所述催化剂预接触盘管水平放置、垂直放置或者以任意其它角度放置。
  12. 根据权利要求10所述的催化剂预接触装置,其中所述催化剂预接触盘管内设置有管道混合器,所述管道混合器选自喷嘴式管道混合器、涡流式管道混合器、异型板管道混合器或静态管道混合器。
  13. 催化剂预接触装置,其包括多个串联的、带有可调节温度的夹套的微型催化剂预接触罐,其中主催化剂、助催化剂和任选的外给电子体在进入预聚合/聚合装置之前通过一个或多个所述串联的催化剂预接触罐,以控制预接触时间。
  14. 根据权利要求13所述的催化剂预接触装置,其具有以下特征中至少之一:
    所述催化剂预接触罐的容积相同或不同,并且每个罐的容积使得用于烯烃连续聚合工艺的物料在罐内的平均停留时间小于5min;和
    所述催化剂预接触罐带有搅拌系统。
PCT/CN2017/089759 2016-06-23 2017-06-23 一种用于烯烃连续聚合的催化剂预接触装置及催化剂预接触的方法 WO2017220018A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
RU2019101639A RU2738204C2 (ru) 2016-06-23 2017-06-23 Устройство предварительного контакта катализатора для непрерывной полимеризации олефинов и способ предварительного контакта катализатора
MYPI2018002700A MY198000A (en) 2016-06-23 2017-06-23 Catalyst pre-contact device and method for continuous polymerization of olefin and method for catalyst pre-contact
KR1020197002140A KR20190022700A (ko) 2016-06-23 2017-06-23 올레핀의 연속 중합을 위한 촉매 예비-접촉 장치 및 방법
EP17814756.7A EP3476868A4 (en) 2016-06-23 2017-06-23 CATALYST PRECONTACT DEVICE AND METHOD FOR CONTINUOUS POLYMERIZATION OF OLEFIN
US16/312,962 US10988553B2 (en) 2016-06-23 2017-06-23 Catalyst pre-contact device for continuous polymerization of olefins and method for catalyst pre-contact

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201610465431.4 2016-06-23
CN201610466027.9 2016-06-23
CN201610465431.4A CN107540766B (zh) 2016-06-23 2016-06-23 一种用于烯烃连续聚合的催化剂预接触装置及催化剂预接触的方法
CN201610466027.9A CN107537408A (zh) 2016-06-23 2016-06-23 一种用于烯烃连续聚合的催化剂预接触装置及催化剂预接触的方法

Publications (1)

Publication Number Publication Date
WO2017220018A1 true WO2017220018A1 (zh) 2017-12-28

Family

ID=60783324

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/089759 WO2017220018A1 (zh) 2016-06-23 2017-06-23 一种用于烯烃连续聚合的催化剂预接触装置及催化剂预接触的方法

Country Status (6)

Country Link
US (1) US10988553B2 (zh)
EP (1) EP3476868A4 (zh)
KR (1) KR20190022700A (zh)
MY (1) MY198000A (zh)
RU (1) RU2738204C2 (zh)
WO (1) WO2017220018A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113698513A (zh) * 2020-05-21 2021-11-26 中国石油化工股份有限公司 一种催化剂的配制方法及其应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101613426A (zh) * 2009-08-06 2009-12-30 浙江绍兴三圆石化有限公司 聚丙烯的生产方法及其装置
US20090326168A1 (en) * 2005-09-30 2009-12-31 Chevron Phillips Chemical Company Lp Multiple component feed methods and systems
CN201694979U (zh) * 2010-05-28 2011-01-05 浙江绍兴三锦石化有限公司 预接触罐冷却装置
CN104558297A (zh) * 2013-10-17 2015-04-29 中国石油化工股份有限公司 一种双向拉伸薄膜用聚丙烯树脂及其制备方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3752331T2 (de) 1987-02-02 2001-09-20 Fina Technology, Inc. Verfahren zur Verbesserung der Effektivität eines prepolymerisierten Katalysators
CA2089970A1 (en) 1992-03-04 1993-09-05 Edwar S. Shamshoum Catalyst formulation and polymerization processes
FI952175A (fi) * 1995-05-05 1996-11-06 Borealis As Menetelmä ja katalysaattorikomponentti olefiinien homo- tai kopolymeroimiseksi
JP2001348405A (ja) 2000-06-06 2001-12-18 Sunallomer Ltd オレフィン重合触媒成分の予備接触方法およびオレフィン重合方法
CN1151183C (zh) 2000-06-15 2004-05-26 中国石油化工股份有限公司 用于烯烃聚合或共聚合的球形催化剂组分及其催化剂
ATE420721T1 (de) 2004-08-05 2009-01-15 Saudi Basic Ind Corp Verfahren mit einem mit katalysator beschichteten wärmetauscher
US20090110600A1 (en) 2007-10-30 2009-04-30 Holl Richard A Methods of operating film surface reactors and reactors employing such methods
US20120172645A1 (en) 2010-12-29 2012-07-05 Chevron Phillips Chemical Company Lp Olefin Oligomerization catalysts and Methods of Making and Using Same
US8821800B2 (en) 2012-10-18 2014-09-02 Chevron Phillips Chemical Company Lp System and method for catalyst preparation
KR101733391B1 (ko) 2013-10-24 2017-05-10 바셀 폴리올레핀 이탈리아 에스.알.엘 다공질 프로필렌 중합체의 제조 공정
JP7058216B2 (ja) 2016-06-24 2022-04-21 株式会社カネカ フロー式リアクター

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090326168A1 (en) * 2005-09-30 2009-12-31 Chevron Phillips Chemical Company Lp Multiple component feed methods and systems
CN101613426A (zh) * 2009-08-06 2009-12-30 浙江绍兴三圆石化有限公司 聚丙烯的生产方法及其装置
CN201694979U (zh) * 2010-05-28 2011-01-05 浙江绍兴三锦石化有限公司 预接触罐冷却装置
CN104558297A (zh) * 2013-10-17 2015-04-29 中国石油化工股份有限公司 一种双向拉伸薄膜用聚丙烯树脂及其制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113698513A (zh) * 2020-05-21 2021-11-26 中国石油化工股份有限公司 一种催化剂的配制方法及其应用
CN113698513B (zh) * 2020-05-21 2023-09-15 中国石油化工股份有限公司 一种催化剂的配制方法及其应用

Also Published As

Publication number Publication date
US10988553B2 (en) 2021-04-27
RU2019101639A (ru) 2020-07-23
EP3476868A1 (en) 2019-05-01
EP3476868A4 (en) 2020-02-19
KR20190022700A (ko) 2019-03-06
RU2019101639A3 (zh) 2020-07-23
RU2738204C2 (ru) 2020-12-09
US20190218314A1 (en) 2019-07-18
MY198000A (en) 2023-07-25

Similar Documents

Publication Publication Date Title
EP0969916B1 (en) Polymerization process using a dual shear mixing element
JP2003510425A (ja) オレフィン重合用触媒成分の製造法
RU2373227C2 (ru) Высокоактивный и с хорошей чувствительностью к водороду катализатор циглера-натта полимеризации этилена
EP1713842B1 (en) Process for improving the co-polymerization of ethylene and an olefin co-monomer in a polymerization loop reactor.
BRPI1008916B1 (pt) processo em pasta fluida para preparar um polímero de etileno
WO2020107926A1 (zh) 一种生产超高分子量聚烯烃用催化剂及其制备方法和应用
WO2017220018A1 (zh) 一种用于烯烃连续聚合的催化剂预接触装置及催化剂预接触的方法
CN105622808A (zh) 一种抗冲聚丙烯的生产方法
WO2015165405A1 (zh) 一种用于烯烃聚合的催化剂组分的制备方法
CN104031183B (zh) 一种用于烯烃聚合的催化剂组分、制备方法及其应用
JP2008150466A (ja) プロピレン系ブロック共重合体の気相連続製造方法
JP2007522310A (ja) スラリーループ反応装置
JP5118847B2 (ja) α−オレフィン重合用固体触媒成分、α−オレフィン重合用触媒、及びα−オレフィン重合体の製造方法
JP5577219B2 (ja) プロピレン重合反応装置及びプロピレン系重合体の製造方法
JP2008150465A (ja) プロピレン系ブロック共重合体の気相連続製造方法
CN111777700A (zh) 微反应器中配位聚合制备聚烯烃的方法
CN108367935B (zh) 采用塞流反应器(pfr)的ast离线zn催化剂用二氯化镁载体的合成
CN107540766B (zh) 一种用于烯烃连续聚合的催化剂预接触装置及催化剂预接触的方法
CN109678995A (zh) 一种烯烃间歇聚合工艺
CN109678994A (zh) 一种烯烃间歇聚合工艺
CN107537408A (zh) 一种用于烯烃连续聚合的催化剂预接触装置及催化剂预接触的方法
CN103857709B (zh) 提供先进的产量分配控制的环式反应器
WO2022082154A1 (en) Catalyst pretreatment and feeding system for polypropylene production
CN106589179B (zh) 用于乙烯聚合的催化剂组分及其制备方法
JP2017149913A (ja) ポリオレフィンの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17814756

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197002140

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017814756

Country of ref document: EP

Effective date: 20190123