WO2017130399A1 - Refrigeration cycle device and flat tube heat exchanger - Google Patents

Refrigeration cycle device and flat tube heat exchanger Download PDF

Info

Publication number
WO2017130399A1
WO2017130399A1 PCT/JP2016/052764 JP2016052764W WO2017130399A1 WO 2017130399 A1 WO2017130399 A1 WO 2017130399A1 JP 2016052764 W JP2016052764 W JP 2016052764W WO 2017130399 A1 WO2017130399 A1 WO 2017130399A1
Authority
WO
WIPO (PCT)
Prior art keywords
flat tube
cut
heat exchanger
virtual surface
parallel
Prior art date
Application number
PCT/JP2016/052764
Other languages
French (fr)
Japanese (ja)
Inventor
前田 剛志
裕樹 宇賀神
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2016/052764 priority Critical patent/WO2017130399A1/en
Priority to JP2017563643A priority patent/JP6548749B2/en
Publication of WO2017130399A1 publication Critical patent/WO2017130399A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements

Definitions

  • the present invention relates to a refrigeration cycle apparatus and a flat tube heat exchanger, and more particularly to a structure for drainage properties such as condensed water.
  • the refrigeration cycle apparatus reduces the amount of refrigerant to be enclosed in order to suppress the global warming effect (reducing the refrigerant) and heat exchange of the heat exchanger to suppress an increase in power consumption. It is desirable to ensure performance.
  • the refrigerant capacity of the copper tube heat exchanger tends to be larger than the refrigerant capacity included in the entire refrigeration cycle apparatus. This is due to the fact that the structure of the copper circular tube heat exchanger is a circular tube.
  • a means for making the heat transfer tube a flat tube can be considered.
  • the flat tube has a smaller tube diameter than the circular tube and has a partition wall inside, so that the capacity of the refrigerant is smaller than that of the circular tube.
  • the flat tube has lower ventilation resistance than the circular tube. For this reason, when attaching a plurality of heat transfer tubes to the fin, the interval between the heat transfer tubes can be set small. That is, the heat transfer tubes can be mounted on the fins with high density, and the heat exchange performance can be improved.
  • flat tubes are less drainable than circular tubes. That is, since the flat tube has a horizontal portion unlike the circular tube, the dew condensation water generated when used as an evaporator tends to accumulate on the flat tube. If condensed water accumulates on the flat tube, it becomes frost between the fins and causes a reduction in heat exchange performance.
  • the dew condensation water on the top surface of the flat tube merges with the dew condensation water flowing from the upper portion of the flat tube, etc. of the fins, flows through the top surface of the flat tube by the action of gravity, and reaches the end of the flat tube It is to be guided.
  • the lower surface of the flat tube is a portion where the condensed water does not flow from the upper portion of the flat tube among the fins. That is, the lower surface of the flat tube is a portion where the flow of condensed water is less likely to occur than the upper surface of the flat tube. Therefore, even if the flat tube is inclined due to the action of surface tension, the dew condensation water on the lower surface of the flat tube is difficult to be guided to the end of the flat tube.
  • the present invention has been made to solve the above-described problems, and an object thereof is to provide a refrigeration cycle apparatus and a flat tube heat exchanger with improved drainage.
  • the refrigeration cycle apparatus is a refrigeration cycle apparatus including a heat exchanger and a blower that supplies air to the heat exchanger, and the heat exchanger is connected to the fins and the fins so that air flows in.
  • the first end located at the first end is connected to the first flat tube disposed below the second end located at the outflow of the air, and the fin, and is below the first flat tube.
  • a second flat tube disposed at an interval, the long axis of the first flat tube in a cross section parallel to the extending direction of the fins as the first long axis, and the second flat tube,
  • the major axis in the cross section parallel to the extending direction of the fin is the second major axis
  • the first major axis and the second major axis are parallel
  • the fin is composed of the first flat tube and the second flat axis.
  • a cut and raised piece is formed at a position between the tube and the cut and raised piece passes through the center between the first flat tube and the second flat tube
  • a plane parallel to the first major axis is defined as a first imaginary plane
  • a plane passing through the center of the width of the first major axis and the center of the width of the second major axis is defined as a second imaginary plane
  • a plane that is parallel to the long axis and passes through the lower surface of the first flat tube is defined as a third virtual plane
  • a surface that is parallel to the gravitational direction and passes through the first end of the first flat tube is defined as the fourth virtual surface.
  • the refrigeration cycle apparatus according to the present invention has the above-described configuration, the drainage of the heat exchanger can be further improved.
  • FIG. 1 It is a schematic block diagram which shows an example of the refrigerant circuit structure of the refrigerating-cycle apparatus which concerns on Embodiment 1 of this invention. It is a schematic block diagram of the flat tube heat exchanger of the refrigeration cycle apparatus which concerns on Embodiment 1 of this invention. It is sectional drawing of the flat tube heat exchanger of the refrigeration cycle apparatus which concerns on Embodiment 1 of this invention. It is a figure which shows the relationship between the amount of water remaining on the flat tube heat exchanger of the refrigerating-cycle apparatus which concerns on Embodiment 1 of this invention, and time.
  • FIG. 1A is a schematic configuration diagram illustrating an example of a refrigerant circuit configuration of a refrigeration cycle apparatus 100A according to Embodiment 1.
  • a refrigeration cycle apparatus 100A will be described based on FIG. 1A.
  • the refrigeration cycle apparatus 100 ⁇ / b> A includes an outdoor unit 1 and an indoor unit 2.
  • the outdoor unit 1 and the indoor unit 2 are connected via a liquid pipe 7 and a gas pipe 9 which are refrigerant pipes.
  • a refrigerant sealed in the refrigeration cycle apparatus 100A for example, a refrigerant having a property of self-decomposition can be used.
  • the outdoor unit (heat source unit) 1 includes a compressor 3 for compressing refrigerant, a four-way valve 4 as refrigerant circuit switching means for switching a refrigerant flow path, and air around the outdoor unit 1 conveyed by the refrigerant and the outdoor blower 5a. And an outdoor heat exchanger 5 for exchanging heat, and an electronic expansion valve 6 for controlling the flow rate of the refrigerant. Further, the outdoor heat exchanger 5 is provided with an outdoor fan 5 a that supplies air to the outdoor heat exchanger 5.
  • the indoor unit (use-side unit) 2 exchanges heat between the refrigerant and the air around the indoor unit 2 conveyed by the indoor blower 8a, and cools or heats the indoor space by, for example, cooling or heating the indoor space.
  • a heat exchanger 8 is provided.
  • the indoor heat exchanger 8 is provided with an indoor blower 8 a that supplies air to the indoor heat exchanger 8.
  • the compressor 3 for compressing the refrigerant it is preferable to use a positive displacement compressor of a type in which the rotation speed is controlled by an inverter circuit and the capacity is controlled.
  • the positive displacement compressor include a rotary compressor, a scroll compressor, a screw compressor, and a reciprocating compressor.
  • the compressor 3 is provided with an electric motor.
  • the four-way valve 4 switches the refrigerant flow path according to a cooling / heating supply mode (for example, cooling operation mode) and a heating / heating supply mode (for example, heating operation mode).
  • a cooling / heating supply mode for example, cooling operation mode
  • a heating / heating supply mode for example, heating operation mode
  • the refrigerant circuit switching unit may be configured by combining two refrigerant valves, for example, two two-way valves or three-way valves. Good.
  • the case where the four-way valve 4 is provided is shown as an example, when the refrigerant circuit configuration in which the refrigerant flow path is not switched is adopted as the refrigeration cycle apparatus 100A, it is not necessary to provide the refrigerant circuit switching means.
  • the outdoor heat exchanger 5 and the indoor heat exchanger 8 function as a condenser or an evaporator, and are configured by, for example, a cross-fin type fin-and-tube heat exchanger configured by heat transfer tubes and a large number of fins. be able to.
  • the outdoor blower 5a supplies air to the outdoor heat exchanger 5, and is configured to be capable of changing the air flow rate.
  • a centrifugal fan or a multiblade fan driven by a motor such as a DC fan motor can be used as the outdoor fan 5a.
  • a transport device such as a pump may be provided instead of the outdoor blower 5a.
  • the electronic expansion valve 6 can adjust the refrigerant flow rate.
  • the pressure reducing mechanism the electronic expansion valve 6 having a variable throttle opening is described as an example, but the present invention is not limited to this.
  • the pressure reducing mechanism may be configured by a mechanical expansion valve that employs a diaphragm for the pressure receiving portion, or a capillary tube.
  • the indoor blower 8a supplies air to the indoor heat exchanger 8, and is configured to be capable of changing the air flow rate.
  • a centrifugal fan or a multiblade fan driven by a motor such as a DC fan motor can be used as the indoor fan 8a.
  • a transfer device such as a pump may be provided instead of the indoor blower 8a.
  • the outdoor unit 1 and the indoor unit 2 comprise a refrigerant circuit by connecting each element apparatus with the liquid pipe 7 and the gas pipe 9 which are refrigerant flow paths.
  • the connection algebra of the outdoor unit 1 and the indoor unit 2 is not limited to one, and any one or each may be a plurality.
  • the refrigeration cycle apparatus 100A includes a control device 50 that performs overall control of the refrigeration cycle apparatus 100A.
  • the control device 50 controls each actuator (driving components such as the compressor 3, the four-way valve 4, the outdoor blower 5a, the electronic expansion valve 6, and the indoor blower 8a) based on the detection value from each detector.
  • the control device 50 can be configured by hardware such as a circuit device that realizes the function, or can be configured by an arithmetic device such as a microcomputer or a CPU and software executed thereon.
  • the four-way valve 4 in the cold supply mode (for example, cooling operation) in which cold is supplied from the indoor heat exchanger 8, the four-way valve 4 is a solid flow path, and a hot supply mode (for example, supplying warm heat from the indoor heat exchanger 8) (for example, In the heating operation), the four-way valve 4 is switched to a dotted flow path. Therefore, in the cold heat supply mode, the compressor 3, the four-way valve 4, the outdoor heat exchanger 5, the electronic expansion valve 6, the indoor heat exchanger 8, and the compressor 3 are connected in an annular shape in this order. In the heat supply mode, the compressor 3, the four-way valve 4, the indoor heat exchanger 8, the electronic expansion valve 6, the outdoor heat exchanger 5, and the compressor 3 are annularly connected in this order.
  • the outdoor heat exchanger 5 functions as a condenser
  • the indoor heat exchanger 8 functions as an evaporator.
  • the outdoor heat exchanger 5 functions as an evaporator
  • the indoor heat exchanger 8 functions as a condenser.
  • the outdoor heat exchanger 5 is described as an example of the flat tube heat exchanger 100 as an example, but the indoor heat exchanger 8 may be used.
  • FIG. 1B is a schematic configuration diagram of the flat tube heat exchanger 100 of the refrigeration cycle apparatus 100A according to the first embodiment.
  • FIG. 2 is a cross-sectional view of the flat tube heat exchanger 100 of the refrigeration cycle apparatus 100A according to the first embodiment.
  • FIG. 1B (a) shows a state in which a plurality of fins 30 are attached to the heat transfer tube 10.
  • FIG. 1B (b) is an explanatory diagram of the heat transfer tube 10. Note that the X direction, the Y direction, and the Z direction in FIG. 1B are orthogonal to each other.
  • FIG. 2 is a cross-sectional view in a cross section parallel to the extending direction of the fin 30. With reference to FIG. 1B and FIG. 2, the structure, function, etc. of the flat tube heat exchanger 100 are demonstrated.
  • the flat tube heat exchanger 100 includes a plate-like fin 30 and a heat transfer tube 10 provided so as to intersect the fin 30.
  • the heat transfer tube 10 is connected to the fins 30.
  • the heat transfer tube 10 includes a first flat tube 10A1, a second flat tube 10A2 provided to face the first flat tube 10A1, a first flat tube 10A1, and a second flat tube 10A2.
  • a curved portion 10B for connecting the two.
  • the heat transfer tube 10 shown in FIG. 1B (b) is connected to, for example, a header (not shown).
  • a plurality of flow paths F through which the refrigerant flows are formed in the first flat tube 10A1, the second flat tube 10A2, and the curved portion 10B.
  • the flat tube heat exchanger 100 is provided with a plurality of fins 30.
  • the plurality of fins 30 are arranged in the Y direction at regular intervals.
  • the plurality of fins 30 are provided in parallel with the Z direction. Further, the drain 30 is formed in the fin 30 to guide the condensed water downward.
  • the heat transfer tube 10 is formed with a flow path through which a refrigerant flows.
  • the first flat tube 10A1 and the second flat tube 10A2 are straight flat tubes.
  • the first flat tube 10 ⁇ / b> A ⁇ b> 1 is provided so as to intersect with the fins 30.
  • the second flat tube 10A2 is also provided so as to intersect the fins 30.
  • the first flat tube 10A1 is connected to the fins 30 and the second flat tube 10A2 is also connected to the fins 30.
  • the first flat tube 10A1 and the second flat tube 10A2 and the fins 30 are orthogonal to each other.
  • a gap is provided between the first flat tube 10A1 and the second flat tube 10A2.
  • the first flat tube 10A1 and the second flat tube 10A2 are arranged in parallel. That is, the long axis AX1 of the first flat tube 10A1 and the long axis AX2 of the second flat tube 10A2 are parallel.
  • the long axis AX1 is a long axis in a cross section of the first flat tube 10A1 parallel to the extending direction of the fins 30.
  • the long axis AX1 corresponds to the first long axis.
  • the long axis AX2 is a long axis in a cross section of the second flat tube 10A2 parallel to the extending direction of the fins 30.
  • the long axis AX2 corresponds to the second long axis.
  • the long axis AX1 is an axis in a cross section parallel to the fins 30 in the first flat tube 10A1, and is not an axis in a direction parallel to the flow path F.
  • the long axis AX2 is also an axis in a cross section parallel to the fins 30 in the second flat tube 10A2, and is not an axis in a direction parallel to the flow path F.
  • the shapes of the first flat tube 10A1 and the second flat tube 10A2 are the same.
  • the first flat tube 10A1 includes a first end E1 located at the end 13A of the drainage channel 13 and a second end E2 located farther from the drainage channel 13 than the first end E1. Including.
  • the first end E1 is located upstream of the second end E2 in the air flow direction. Further, in a state where the flat tube heat exchanger 100 is installed in the refrigeration cycle apparatus 100A, the first flat tube 10A1 is positioned above the second flat tube 10A2.
  • the 2nd flat tube 10A2 is also the structure according to 1st flat tube 10A1. That is, the second flat tube 10A2 includes a third end E3 located at the end 13A of the drainage channel 13 and a fourth end E4 located farther from the drainage channel 13 than the third end E3. Including.
  • the fin 30 is a plate-shaped member. A gap through which air flows is formed between adjacent fins 30.
  • the fin 30 has a plurality of notches into which the heat transfer tubes 10 are inserted. Specifically, the first flat tube 10A1 and the second flat tube 10A2 of the heat transfer tube 10 are inserted into each notch of the fin 30.
  • this Embodiment 1 demonstrates the aspect in which the notch is formed in the fin 30, it is an aspect in which the hole into which the 1st flat tube 10A1 and 2nd flat tube 10A2 are inserted was formed. Also good.
  • the fin 30 includes a drainage channel 13 formed so as to extend in parallel to a predetermined direction (X direction) from the first flat tube 10A1 toward the second flat tube 10A2.
  • the drainage channel 13 is located at the end of the fin 30 in the longitudinal direction.
  • the fin 30 includes a cut and raised piece 11 and a heat exchange cut and raised piece 12 formed at a position between the first flat tube 10A1 and the second flat tube 10A2.
  • the cut and raised pieces 11 and the heat exchange cut and raised pieces 12 have different main functions.
  • the cut and raised piece 11 mainly has a function of promptly guiding the condensed water adhering to the lower surface SF2 of the first flat tube 10A1 to the drainage channel 13. Specifically, condensed water adheres to the lower surface SF2 of the first flat tube 10A1 due to surface tension or the like.
  • the condensed water from the fins 30 is less likely to flow into the lower surface SF2 of the first flat tube 10A1. For this reason, the dew condensation water on the lower surface SF2 tends to remain attached to the lower surface SF2.
  • the cut-and-raised piece 11 is formed, (1) the condensed water on the lower surface SF2 is drawn into the cut-and-raised piece 11, and (2) the condensed water drawn into the cut-and-raised piece 11 is then discharged into the drainage channel 13. Flows in.
  • the cut and raised piece 11 has a function of promptly flowing the condensed water on the lower surface SF2 of the first flat tube 10A1 to the drainage channel 13 in particular.
  • the cut and raised pieces 12 for heat exchange are formed separately from the cut and raised pieces 11. That is, the cut and raised pieces 11 and the heat exchange cut and raised pieces 12 are not integrally but cut and raised pieces.
  • the heat exchange cut and raised piece 12 mainly has a function of improving the heat exchange performance of the flat tube heat exchanger 100.
  • the heat exchange cut and raised piece 12 is positioned above the upper surface SF3 of the second flat tube 10A2.
  • the condensed water adhering to the upper surface SF3 of the second flat tube 10A2 flows more quickly than the condensed water adhering to the lower surface SF4 of the second flat tube 10A2. This is because condensed water flows into the upper surface SF3 from the fins 30 and the like.
  • the cut and raised pieces 12 for heat exchange may be formed larger than the cut and raised pieces 11. If the cut-and-raised piece 11 is made too large, the surface tension of the condensed water drawn into the cut-and-raised piece 11 due to the action of (1) described above increases, and the action of (2) may be hindered. Because there is. That is, the condensed water drawn into the cut and raised pieces 11 is less likely to flow into the drainage channel 13. On the other hand, the cut and raised pieces 12 for heat exchange do not have such drainage as a main function. For this reason, the cut and raised pieces 12 for heat exchange may be larger than the cut and raised pieces 11. Thereby, the heat exchange performance of the fin 30 can be improved.
  • the first virtual plane PL1 is a plane that passes through the center between the first flat tube 10A1 and the second flat tube 10A2 and is parallel to the long axis AX1 of the first flat tube 10A1.
  • the second virtual plane PL2 is a plane that passes through the center of the width of the first flat tube 10A1 on the long axis AX1 and the center of the width of the second flat tube 10A2 on the long axis AX2.
  • the third virtual plane PL3 is parallel to the long axis AX1 of the first flat tube 10A1, and passes through the surface (upper surface SF3) facing the second flat tube 10A2 among the surfaces of the first flat tube 10A1. It is.
  • the fourth virtual plane PL4 is a plane that is parallel to the X direction and passes through the first end E1 of the first flat tube 10A1.
  • the fifth virtual surface PL5 is parallel to the long axis AX2 of the second flat tube 10A2 and passes through the surface (the lower surface SF2) facing the first flat tube 10A1 among the surfaces of the second flat tube 10A2.
  • the sixth virtual plane PL6 is a plane that is parallel to the X direction and passes through the third end E3 of the second flat tube 10A2. In the first embodiment, the fourth virtual surface PL4 and the sixth virtual surface PL6 are located on the same surface.
  • the cut-and-raised piece 11 is disposed in the first region RE1 defined by the first virtual surface PL1, the second virtual surface PL2, the third virtual surface PL3, and the fourth virtual surface PL4. More specifically, the cut-and-raised piece 11 is disposed at a position near the drainage channel 13 and near the lower surface SF2 in the first region RE1.
  • the heat exchange cut-and-raised piece 12 is disposed in the second region RE2 defined by the first virtual surface PL1, the second virtual surface PL2, the fifth virtual surface PL5, and the sixth virtual surface PL6. . More specifically, the heat exchange cut-and-raised piece 12 is disposed at a position near the drainage channel 13 and near the upper surface SF3 in the second region RE2.
  • the cut and raised pieces 11 and the heat exchange cut and raised pieces 12 are arranged in the first region RE1 and the second region RE2 of the fins 30, respectively.
  • the seventh virtual plane PL7 is a plane parallel to the X direction and passing through the second end E2 of the first flat tube 10A1.
  • the eighth virtual plane PL8 is a plane parallel to the X direction and passing through the fourth end E4 of the second flat tube 10A2.
  • the seventh virtual plane PL7 and the eighth virtual plane PL8 are located on the same plane.
  • a portion defined by the first virtual surface PL1, the second virtual surface PL2, the third virtual surface PL3, and the seventh virtual surface PL7 is referred to as a third region RE3.
  • a portion defined by the first virtual surface PL1, the second virtual surface PL2, the fifth virtual surface PL5, and the eighth virtual surface PL8 is referred to as a fourth region RE4.
  • the third region RE3 and the fourth region RE4 are both flat, and no cut and raised pieces are formed. By forming the cut and raised pieces, the pressure loss of the air passing through the fins 30 is prevented from increasing.
  • FIG. 3 is a diagram showing the relationship between the amount of water remaining on the flat tube heat exchanger 100 of the refrigeration cycle apparatus 100A according to Embodiment 1 and time.
  • the flat tube heat exchanger 100 functions as an evaporator
  • the condensed water generated on the lower surface SF2 of the first flat tube 10A1 is cut and raised by forming (standing) the cut pieces 11 on the surface of the fin 30.
  • Capillary force drawn into the piece 11 works. This makes it easy to reduce the amount M of dew condensation water adhering to the flat tube heat exchanger 100, and drains dew condensation water faster than the flat tube heat exchanger in which the fins 30 have no cut and raised pieces 11 on the surface. Can do.
  • the graph shown with the continuous line of FIG. 3 has shown the mode of the reduction
  • FIG. The broken line in FIG. 3 shows how the amount of water M decreases in the flat tube heat exchanger in the form in which the fin 30 is not cut and raised at all.
  • the dashed line in FIG. 3 shows how the amount of water M is reduced in the aspect of the flat tube heat exchanger in which the cut and raised pieces 11 and the heat raised and raised pieces 12 are integrally formed on the fin 30.
  • the amount of water M of the flat tube heat exchanger in which the cut and raised pieces 11 and the heat raised and raised pieces 12 are integrally formed on the fin 30 is also difficult to reduce.
  • the cut and raised pieces 11 and the heat exchange cut and raised pieces 12 are formed separately. That is, they are not united. As a result, the amount of condensed water held by the cut and raised piece alone is reduced, and the surface tension in the cut and raised piece is weakened. Therefore, the condensed water held by the cut and raised pieces 11 can be promptly guided to the drainage channel 13. As a result, the amount of water M remaining in the flat tube heat exchanger 100 can be easily reduced.
  • FIG. 4 is a diagram showing an improvement rate of the heat transfer performance ⁇ o by forming the cut and raised pieces 11 and the heat raised and raised pieces 12 in the flat tube heat exchanger of the refrigeration cycle apparatus 100A according to the first embodiment. is there.
  • the flat tube heat exchanger 100 functions as a condenser, the flow on the surface of the fin 30 is locally disturbed by forming the cut and raised pieces 11 and the cut and raised pieces 12 for heat exchange, and the air and the flat tube heat Since the heat exchange amount of the exchanger 100 is improved, the heat transfer performance ⁇ o is improved.
  • the flat tube heat exchanger 100 has a heat transfer performance ⁇ o improved by about 15% compared to a flat tube heat exchanger in which the cut and raised pieces 11 and the heat raised and raised pieces 12 are not formed. You can see that
  • FIG. 5 shows the improvement rate of year-round energy consumption efficiency (AFP) by forming the cut and raised pieces 11 and the heat raised and raised pieces 12 in the flat tube heat exchanger of the refrigeration cycle apparatus 100A according to the first embodiment.
  • AFP year-round energy consumption efficiency
  • the flat tube heat exchanger 100 has a year-round energy consumption efficiency of 0.5% compared to a flat tube heat exchanger in which the cut and raised pieces 11 and the heat raised and raised pieces 12 are not formed. It turns out that it has improved so much.
  • the heat transfer performance of the flat tube heat exchanger 100 is improved. Improvements can be made.
  • FIG. FIG. 6 is a cross-sectional view of the flat tube heat exchanger 100 of the refrigeration cycle apparatus 100A according to the second embodiment.
  • FIG. 6 is a cross-sectional view in a cross section parallel to the extending direction of the fin 30.
  • components that are the same as those in the first embodiment will be described with the same reference numerals, and different parts from the first embodiment will be mainly described.
  • the cut-and-raised piece 11 described in the first embodiment is formed to extend in parallel to the direction (X direction) from the first flat tube 10A1 toward the second flat tube 10A2.
  • the cut-and-raised piece 11B described in the second embodiment is formed so as to approach the drainage channel 13 from the portion near the first flat tube 10A1 toward the portion near the second flat tube 10A2. That is, the cut-and-raised pieces 11B are formed so as to cross rather than be parallel to the direction of gravity when the flat tube heat exchanger 100 is mounted on the refrigeration cycle apparatus 100A.
  • FIG. 7 is a diagram showing the relationship between the amount of water remaining on the flat tube heat exchanger 100 of the refrigeration cycle apparatus 100A according to Embodiment 2 of the present invention and time.
  • the cut-and-raised piece 11B has a configuration in which one end portion is disposed near the lower surface SF2 and the other end portion is disposed near the drainage channel 13. For this reason, the dew condensation water on the lower surface SF2 of the first flat tube 10A1 can be more reliably guided to the drainage channel 13.
  • the flat tube heat exchanger 100 of the refrigeration cycle apparatus 100 ⁇ / b> A according to the second embodiment has a water amount M that is faster than the aspect of the first embodiment (see the broken line in FIG. 7). It turns out that it decreases.
  • FIG. 8 is a diagram showing the improvement rate of the heat transfer performance ⁇ o by forming the cut and raised pieces 11B and the heat raised and raised pieces 12 in the flat tube heat exchanger 100 of the refrigeration cycle apparatus 100A according to the second embodiment. It is. By forming the cut-and-raised piece 11B, the flow on the surface of the fin 30 is more locally disturbed than in the first embodiment, and the amount of heat exchange between the air and the flat tube heat exchanger 100 is improved. For this reason, the heat transfer performance ⁇ o is further improved as compared with the first embodiment. As shown in FIG. 8, it can be seen that the flat tube heat exchanger 100 of the second embodiment has improved the heat transfer performance ⁇ o by about 2.5% as compared with the aspect of the first embodiment.
  • FIG. 9 is a diagram showing a year-round energy consumption efficiency improvement rate by forming the cut and raised pieces 11B and the heat raised and raised pieces 12 in the flat tube heat exchanger 100 of the refrigeration cycle apparatus 100A according to the second embodiment. It is. By forming the cut-and-raised piece 11B, the ventilation resistance generated when air passes through the flat tube heat exchanger 100 is also increased. However, considering the energy consumption efficiency throughout the year, the energy consumption efficiency is improved because the contribution of the effect of improving the heat transfer performance is significant. As shown in FIG. 9, it can be seen that the flat tube heat exchanger 100 of the second embodiment is improved by 0.1% in year-round energy consumption efficiency as compared with the aspect of the first embodiment. In this way, by forming the cut and raised pieces 11B in the fins 30, the heat transfer performance of the flat tube heat exchanger 100 can be further improved.
  • FIG. 10 is a cross-sectional view of the flat tube heat exchanger 100 of the refrigeration cycle apparatus 100A according to the third embodiment.
  • FIG. 10 is a cross-sectional view in a cross section parallel to the extending direction of the fin 30.
  • the same components as those in the first embodiment will be described with the same reference numerals, and the description will focus on the parts different from the first and second embodiments.
  • the cut and raised pieces 11C and the heat exchange cut and raised pieces 12C have the same shapes as the cut and raised pieces 11 and the heat exchange cut and raised pieces 12 described in the first embodiment. The position is different.
  • the distance between the second virtual surface PL2 and the cut and raised piece 11C is larger than the distance between the second virtual surface PL2 and the cut and raised piece 12C for heat exchange. That is, when the distance between the second virtual plane PL2 and the center line of the cut and raised piece 11C is b1, and b2 is the distance between the second virtual plane PL2 and the center line of the heat exchange cut and raised piece 12, b1 > B2.
  • the cut and raised pieces 11C are described as having the same shape as the cut and raised pieces 11 described in the first embodiment, but the present invention is not limited thereto.
  • the cut and raised piece 11C may have the same shape as the cut and raised piece 11B described in the second embodiment.
  • FIG. 11 is a diagram showing the relationship between the amount of water remaining on the flat tube heat exchanger 100 of the refrigeration cycle apparatus 100A according to Embodiment 3 of the present invention and time.
  • the center line of the cut and raised piece 11C coincides with the center line of the cut and raised piece 12C for heat exchange
  • the condensed water drawn into the cut and raised piece 11C from the lower surface SF2 of the first flat tube 10A1 is heated.
  • the cut and raised piece 12C for replacement may be pulled into the replacement. That is, there is a case where the condensed water remaining on the cut and raised pieces 11C may be drawn into the heat exchange cut and raised pieces 12C due to the action of the capillaries resulting from the heat exchange cut and raised pieces 12C.
  • the center line of the cut and raised piece 11C is shifted from the center line of the heat exchange cut and raised piece 12C.
  • the distance between the second virtual surface PL2 and the cut and raised piece 11C is larger than the distance between the second virtual surface PL2 and the cut and raised piece 12C for heat exchange.
  • the condensed water drained from the cut and raised piece 11C is suppressed from being drawn into the heat exchange cut and raised piece 12, and the condensed water drained from the cut and raised piece 11C is more reliably guided to the drainage channel 13. be able to.
  • the flat tube heat exchanger 100 of the refrigeration cycle apparatus 100 ⁇ / b> A according to the third embodiment has a water amount M that is faster than the aspect of the second embodiment (see the broken line in FIG. 11). It turns out that it decreases.
  • FIG. 12 shows the improvement rate of the heat transfer performance ⁇ o by forming the cut and raised pieces 11C and the heat raised and raised pieces 12C in the flat tube heat exchanger 100 of the refrigeration cycle apparatus 100A according to Embodiment 3 of the present invention.
  • FIG. 12 By making the distance between the second virtual surface PL2 and the cut-and-raised piece 11C larger than the distance between the second virtual surface PL2 and the cut-and-raised piece 12C for heat exchange, the flow on the surface of the fin 30 is further localized. Therefore, the amount of heat exchange between the air and the flat tube heat exchanger 100 is improved.
  • the flat tube heat exchanger 100 of the third embodiment has a heat transfer performance ⁇ o improved by about 5.0% as compared with the aspect of the second embodiment.
  • FIG. 13 shows the improvement rate of year-round energy consumption efficiency by forming the cut and raised pieces 11C and the heat raised and raised pieces 12C in the flat tube heat exchanger 100 of the refrigeration cycle apparatus 100A according to Embodiment 3 of the present invention.
  • FIG. 13 By forming the cut and raised pieces 11C and the heat exchange cut and raised pieces 12C, ventilation resistance generated when air passes through the flat tube heat exchanger 100 is also increased.
  • the energy consumption efficiency is improved because the contribution of the effect of improving the heat transfer performance is significant.
  • the flat tube heat exchanger 100 of the third embodiment is improved in energy consumption efficiency by about 0.2% throughout the year as compared with the aspect of the second embodiment.
  • the heat transfer performance of the flat tube heat exchanger 100 can be further improved by forming the cut and raised pieces 11C and the heat exchange cut and raised pieces 12C on the fins 30.
  • FIG. 14 is a cross-sectional view of flat tube heat exchanger 100 of refrigeration cycle apparatus 100A according to the fourth embodiment.
  • FIG. 14 is a cross-sectional view in a cross section parallel to the extending direction of the fin 30.
  • the same components as those in the first embodiment will be described with the same reference numerals, and the description will focus on parts different from the first to third embodiments.
  • the long axis AX1 of the first flat tube 10A1 and the long axis AX2 of the second flat tube 10A2 are parallel to the horizontal direction.
  • the long axis AX1 of the first flat tube 10A1 and the long axis AX2 of the second flat tube 10A2 intersect with the horizontal direction.
  • the long axis AX1 is a long axis in a cross section of the first flat tube 10A1 parallel to the extending direction of the fins 30.
  • the long axis AX1 corresponds to the first long axis.
  • the long axis AX2 is a long axis in a cross section of the second flat tube 10A2 parallel to the extending direction of the fins 30.
  • the long axis AX2 corresponds to the second long axis.
  • the flat tube heat exchanger includes plate-like fins 30 and heat transfer tubes 10.
  • the heat transfer tube 10 is disposed at a distance below the first flat tube 10A1 provided to intersect the fins 30 and below the first flat tube 10A1 and is provided to intersect the fins 30.
  • the first flat tube 10A1 is connected to the fins 30 and the second flat tube 10A2 is also connected to the fins 30.
  • the first end E1 located on the air inflow side is disposed below the second end E2 located on the air outflow side. That is, the long axis AX1 of the first flat tube 10A1 is not parallel to the horizontal direction but intersects the horizontal direction.
  • the major axis AX1 and the horizontal direction form an angle ⁇ .
  • the third end E3 located on the air inflow side is disposed below the fourth end E4 located on the air outflow side.
  • the first flat tube 10A1 and the second flat tube 10A2 are parallel to each other. That is, the long axis AX1 of the first flat tube 10A1 and the long axis AX2 of the second flat tube 10A2 are arranged in parallel to each other.
  • the long axis AX2 of the second flat tube 10A2 and the horizontal direction form an angle ⁇ .
  • the fin 30 is cut and raised at a position between the first flat tube 10A1 and the second flat tube 10A2 to form a piece 11D.
  • the formation position of the cut and raised piece 11D is the first region RE1 as described in the first to third embodiments.
  • the definition of the fourth virtual plane PL4 is different from those in the first to third embodiments.
  • the fourth virtual surface PL4 is a surface that is parallel to the gravity direction g and passes through the first end E1 of the first flat tube 10A1.
  • the first region RE1 is formed within a range defined by the first virtual surface PL1, the second virtual surface PL2, the third virtual surface PL3, and the fourth virtual surface PL4.
  • the cut and raised piece 11D is formed at a position near the drainage channel 13 in the first region RE1.
  • the cut-and-raised piece 12D for heat exchange is formed in the position between 1st flat tube 10 A1 and 2nd flat tube 10 A2.
  • the formation position of the heat exchange cut-and-raised piece 12D is the second region RE2.
  • the definition of the sixth virtual plane PL6 is different from those in the first to third embodiments.
  • the sixth virtual plane PL6 is a plane that is parallel to the gravity direction g and passes through the third end E3 of the second flat tube 10A2.
  • the second region RE2 is formed within a range defined by the first virtual surface PL1, the second virtual surface PL2, the fifth virtual surface PL5, and the sixth virtual surface PL6.
  • the heat exchange cut-and-raised piece 12D is formed at a position near the drainage channel 13 in the second region RE2.
  • the reason why the definitions of the fourth virtual surface PL4 and the sixth virtual surface PL6 are different from those in the first embodiment is that, in the fourth embodiment, the long axis AX1 and the first axis AX1 of the first flat tube 10A1. This is because the long axis AX2 of the two flat tubes 10A2 is in the form of intersecting in the horizontal direction.
  • the definitions of the fourth virtual surface PL4 and the sixth virtual surface PL6 change, and the shapes of the first region RE1 and the second region RE2 are also different from those of the first embodiment. That is, the first region RE1 and the second region RE2 in the first embodiment are rectangular, but the first region RE1 and the second region RE2 in the fourth embodiment are trapezoidal.
  • the seventh virtual surface PL7 and the eighth virtual surface PL8 are also different from the first to third embodiments.
  • the seventh virtual plane PL7 is a plane that is parallel to the gravity direction g and passes through the second end E2 of the first flat tube 10A1.
  • the eighth virtual plane PL8 is a plane that is parallel to the gravity direction g and passes through the fourth end E4 of the second flat tube 10A2.
  • the third region RE3 is a portion defined by the first virtual surface PL1, the second virtual surface PL2, the third virtual surface PL3, and the seventh virtual surface PL7.
  • the fourth region RE4 is a portion partitioned by the first virtual surface PL1, the second virtual surface PL2, the fifth virtual surface PL5, and the eighth virtual surface PL8.
  • the third region RE3 and the fourth region RE4 are both flat, and no cut and raised pieces are formed. By forming the cut and raised pieces, the pressure loss of the air passing through the fins 30 is prevented from increasing.
  • FIG. 15 is a diagram showing the relationship between the amount of water remaining on the flat tube heat exchanger 100 of the refrigeration cycle apparatus 100A according to Embodiment 4 and time.
  • the long axis AX1 of the first flat tube 10A1 and the long axis AX2 of the second flat tube 10A2 intersect with the horizontal direction. Therefore, the dew condensation water on the upper surface SF1 of the first flat tube 10A1 and the upper surface SF3 of the second flat tube 10A2 flows into the drainage channel 13 together with the dew condensation water flowing from the fins 30 and the like.
  • Condensed water on the lower surface SF2 of the first flat tube 10A1 moves closer to the first end E1 by the action of gravity, and then cuts and raises to the cut piece 11 by the action of the capillary tube by the cut and raised piece 11D. Be drawn. Then, the condensed water drawn into the cut and raised piece 11 ⁇ / b> D flows into the drainage channel 13. In this way, the condensed water on the lower surface SF2 of the first flat tube 10A1 is also quickly guided to the drainage channel 13.
  • the cut and raised pieces 12D for heat exchange are formed separately from the cut and raised pieces 11D. That is, the cut and raised piece 11D and the heat exchange cut and raised piece 12D are not integrally but a divided cut and raised piece. For this reason, it is possible to prevent the surface tension acting on the dew condensation water drawn into the cut and raised pieces 11D from becoming too large, and the dew condensation water of the cut and raised pieces 11D can be quickly flowed to the drainage channel 13.
  • the heat exchange cut and raised piece 12 may be formed larger than the cut and raised piece 11. Thereby, it is possible to prevent the cut and raised piece 11 from becoming too large and the surface tension of the condensed water adhering to the cut and raised piece 11 from being excessively increased, and the heat exchange performance of the heat exchange cut and raised piece 12. Can be improved. That is, the heat exchange performance of the fins 30 can be improved while avoiding the deterioration of the drainage performance of the cut and raised pieces 11D.
  • the amount of water M decreases immediately.
  • the flat tube heat exchanger is in a mode in which the long axis AX1 of the first flat tube 10A1 and the long axis AX2 of the second flat tube 10A2 are parallel to the horizontal direction, as shown by the broken line in FIG. It can be seen that the decrease in the amount of water M is slow.
  • FIG. 20 is a cross-sectional view in a cross section parallel to the extending direction of the fin 30. As shown in FIG. 20, the air toward the first end E1 is less likely to flow along the lower surface SF2 of the first flat tube 10A1 when reaching the first end E1.
  • the air that has collided with the first end E1 and the air that has reached the periphery of the first end E1 is peeled off from the lower surface SF2 and flows downstream.
  • the air separated from the lower surface SF2 flows near the second flat tube 10A2. That is, the amount of air flowing in the second region RE2 is greater than that in the first region RE1. Therefore, the heat exchange efficiency of the flat tube heat exchanger 100 can be efficiently improved by disposing the heat exchange cut and raised pieces 12 in the second region RE2.
  • FIG. 16 is a diagram showing the improvement rate of the heat transfer performance ⁇ o by forming the cut and raised pieces 11D and the heat exchange cut and raised pieces 12D in the flat tube heat exchanger 100 of the refrigeration cycle apparatus 100A according to the fourth embodiment. It is. In the flat tube heat exchanger 100, the heat exchange capability is reduced due to the separation of air around the first flat tube 10A1. However, the heat transfer promoting effect by the heat exchanging and raising pieces 12 is also produced. Since the heat transfer acceleration effect is greater than the heat exchange capacity decrease, the heat transfer performance ⁇ o is improved. As shown in FIG.
  • the flat tube heat exchanger has a longer axis AX1 of the first flat tube 10A1 and a longer axis AX2 of the second flat tube 10A2 than the aspect in which it is parallel to the horizontal direction. It can be seen that the heat transfer performance ⁇ o is improved by about 2.0%.
  • FIG. 17 is a diagram showing a year-round energy consumption efficiency improvement rate by forming the cut and raised pieces 11D and the heat exchange cut and raised pieces 12D in the flat tube heat exchanger 100 of the refrigeration cycle apparatus 100A according to the fourth embodiment. It is. By forming the cut and raised pieces 11D and the heat exchange cut and raised pieces 12D, ventilation resistance generated when air passes through the fins 30 of the flat tube heat exchanger 100 is also increased. However, considering the year-round energy consumption efficiency, the contribution of the effect of improving the heat transfer performance is large, so the year-round energy consumption efficiency is improved. As shown in FIG.
  • the flat tube heat exchanger is compared with a mode in which the long axis AX1 of the first flat tube 10A1 and the long axis AX2 of the second flat tube 10A2 are parallel to the horizontal direction.
  • energy consumption efficiency is equivalent. This is equivalent to the deterioration of the ventilation resistance due to the formation of the cut and raised pieces 11D and the heat raised cut and raised pieces 12D, and the heat transfer promotion effect due to the formation of the cut and raised pieces 11D and the heat exchange cut and raised pieces 12D. It is that.
  • FIG. 18 is a cross-sectional view of the cut and raised pieces 11D and the heat raised and raised pieces 12D formed in the flat tube heat exchanger 100 of the refrigeration cycle apparatus 100A according to the fourth embodiment.
  • the height h of the heat exchange cut and raised pieces 12D and the pitch FP of the fins 30 may be set as follows. That is, the height h of the cut and raised pieces of the heat exchange cut and raised pieces 12 ⁇ / b> D may be less than or equal to half the pitch FP of the fins 30.
  • the height h corresponds to the Y direction in FIG. 1B.
  • FIG. 19 is a diagram showing the relationship between the height h formed in the flat tube heat exchanger of the refrigeration cycle apparatus 100A according to Embodiment 4 and the heat transfer performance ⁇ o.
  • the slit height should be 1 ⁇ 2FP or less. Therefore, in the modification of the fourth embodiment, the height h is set to be equal to or less than half the pitch FP of the fins 30.
  • the configuration described in the second and third embodiments may be applied to the fourth embodiment. That is, the cut-and-raised piece 11D described in the fourth embodiment is drained from the portion near the first flat tube 10A1 toward the portion near the second flat tube 10A2 as in the second embodiment. 13 may be formed so as to approach 13. Further, as in the third embodiment, the distance between the second virtual surface PL2 and the cut-and-raised piece 11D is larger than the distance between the second virtual surface PL2 and the cut-and-raised piece 12D for heat exchange. May be.
  • the refrigeration cycle apparatus described in each embodiment is applied to an apparatus equipped with a refrigeration cycle, such as an air conditioner (for example, a refrigeration apparatus, a room air conditioner, a packaged air conditioner, a multi air conditioner for buildings), a heat pump water heater, and the like. Can be used.
  • a refrigeration cycle such as an air conditioner (for example, a refrigeration apparatus, a room air conditioner, a packaged air conditioner, a multi air conditioner for buildings), a heat pump water heater, and the like. Can be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

A cut and raised piece is disposed in a first region, which is partitioned off by a first virtual plane, a second virtual plane, a third virtual plane, and a fourth virtual plane. The first virtual plane is a plane which passes through the center between a first flat tube and a second flat tube and is parallel to a first longitudinal axis. The second virtual plane is a plane which passes through the center of the width of the first longitudinal axis and the center of the width of a second longitudinal axis. The third virtual plane is a plane which is parallel to the first longitudinal axis and passes through the bottom surface of the first flat tube. The fourth virtual plane is a plane which is parallel to the direction of gravity and passes through a first end of the first flat tube.

Description

冷凍サイクル装置及び扁平管熱交換器Refrigeration cycle apparatus and flat tube heat exchanger
 本発明は、冷凍サイクル装置及び扁平管熱交換器に関し、特に、結露水等の排水性についての構造に関するものである。 The present invention relates to a refrigeration cycle apparatus and a flat tube heat exchanger, and more particularly to a structure for drainage properties such as condensed water.
 冷凍サイクル装置に用いられる熱交換器の伝熱管の種類として銅を原材料とした円管がある。円管は低コストで量産性が良いため、様々な冷凍サイクル装置に広く用いられている。ここで、冷凍サイクル装置は、例えば、地球温暖化効果を抑制するために封入する冷媒量の低減すること(省冷媒化)、及び、消費電力の増大を抑制するために熱交換器の熱交換性能を確保すること等が望まれる。 There is a circular tube made of copper as a raw material for heat exchanger tubes used in refrigeration cycle equipment. Circular pipes are widely used in various refrigeration cycle devices because of their low cost and high productivity. Here, the refrigeration cycle apparatus, for example, reduces the amount of refrigerant to be enclosed in order to suppress the global warming effect (reducing the refrigerant) and heat exchange of the heat exchanger to suppress an increase in power consumption. It is desirable to ensure performance.
 しかし、銅円管熱交換器の冷媒の収容容積は、冷凍サイクル装置全体が含む冷媒の収容容積に対して大きくなりやすい。これは、銅円管熱交換器の構造が円管であることに起因している。熱交換器の収容容積を削減する方法としては、伝熱管を扁平管にする手段が考えられる。扁平管は、円管よりも管径が小さく、内部に隔壁があるため、円管よりも冷媒の収容容積が小さくなっている。 However, the refrigerant capacity of the copper tube heat exchanger tends to be larger than the refrigerant capacity included in the entire refrigeration cycle apparatus. This is due to the fact that the structure of the copper circular tube heat exchanger is a circular tube. As a method for reducing the accommodation volume of the heat exchanger, a means for making the heat transfer tube a flat tube can be considered. The flat tube has a smaller tube diameter than the circular tube and has a partition wall inside, so that the capacity of the refrigerant is smaller than that of the circular tube.
 また、扁平管は、円管よりも通風抵抗が小さい。このため、伝熱管をフィンに複数取り付けるにあたり、伝熱管同士の間隔を小さく設定することができる。すなわち、伝熱管を高密度にフィンに実装することができ、熱交換性能を向上することができる。 Also, the flat tube has lower ventilation resistance than the circular tube. For this reason, when attaching a plurality of heat transfer tubes to the fin, the interval between the heat transfer tubes can be set small. That is, the heat transfer tubes can be mounted on the fins with high density, and the heat exchange performance can be improved.
 しかし、扁平管は、円管よりも排水性が悪い。すなわち、扁平管は円管と異なり水平な部分があるため、蒸発器として用いる場合に発生する結露水が扁平管上に溜まってしまいやすい。結露水が扁平管上に溜まってしまうと、フィン間などで霜となり、熱交換性能の低減を引き起こす。 However, flat tubes are less drainable than circular tubes. That is, since the flat tube has a horizontal portion unlike the circular tube, the dew condensation water generated when used as an evaporator tends to accumulate on the flat tube. If condensed water accumulates on the flat tube, it becomes frost between the fins and causes a reduction in heat exchange performance.
 排水性を向上させる手段としては、扁平管を傾斜配置させて扁平管上の結露水を扁平管の端部に流し、排水を促す手段がある(例えば、特許文献1参照)。 As a means for improving drainage, there is a means for urging drainage by inclining a flat tube and allowing condensed water on the flat tube to flow to the end of the flat tube (see, for example, Patent Document 1).
特開平1-70945号公報JP-A-1-70945
 扁平管を傾斜配置することで、特に、扁平管の上面に付着している結露水をスムーズに扁平管の端部に導くことができる。つまり、扁平管の上面の結露水は、フィンのうちの扁平管の上側の部分などから流れてくる結露水と合流し、重力の作用によって扁平管の上面を流れて、扁平管の端部に導かれるということである。 By arranging the flat tubes in an inclined manner, in particular, condensed water adhering to the upper surface of the flat tubes can be smoothly guided to the ends of the flat tubes. In other words, the dew condensation water on the top surface of the flat tube merges with the dew condensation water flowing from the upper portion of the flat tube, etc. of the fins, flows through the top surface of the flat tube by the action of gravity, and reaches the end of the flat tube It is to be guided.
 一方、扁平管には、表面張力等によって下面にも結露水が付着している。ここで、扁平管の下面は、扁平管の上面と比較すると、フィンのうちの扁平管の上側の部分などから結露水が流れてこない部分である。つまり、扁平管の下面は、扁平管の上面と比較すると、結露水の流れが発生しにくい部分である。したがって、表面張力の働きにより、扁平管が傾斜していても、扁平管の下面の結露水が扁平管の端に導かれにくい。 On the other hand, condensed water adheres to the lower surface of the flat tube due to surface tension or the like. Here, compared to the upper surface of the flat tube, the lower surface of the flat tube is a portion where the condensed water does not flow from the upper portion of the flat tube among the fins. That is, the lower surface of the flat tube is a portion where the flow of condensed water is less likely to occur than the upper surface of the flat tube. Therefore, even if the flat tube is inclined due to the action of surface tension, the dew condensation water on the lower surface of the flat tube is difficult to be guided to the end of the flat tube.
 本発明は、上記のような課題を解決するためになされたもので、排水性を向上させた冷凍サイクル装置及び扁平管熱交換器を提供することを目的としている。 The present invention has been made to solve the above-described problems, and an object thereof is to provide a refrigeration cycle apparatus and a flat tube heat exchanger with improved drainage.
 本発明に係る冷凍サイクル装置は、熱交換器及び熱交換器に空気を供給する送風機を備えた冷凍サイクル装置であって、熱交換器は、フィンと、フィンに連結し、空気が流入する方に位置する第1の端部が、空気が流出する方に位置する第2の端部よりも下に配置された第1の扁平管と、フィンに連結し、第1の扁平管の下に間隔をあけて配置された第2の扁平管と、を備え、第1の扁平管の、フィンの延伸方向に平行な断面における長軸を第1の長軸とし、第2の扁平管の、フィンの延伸方向に平行な断面における長軸を第2の長軸としたとき、第1の長軸と第2の長軸は平行であり、フィンは、第1の扁平管と第2の扁平管との間の位置に切り起こし片が形成され、切り起こし片は、第1の扁平管と第2の扁平管との間の中央を通り、第1の長軸に平行な面を第1の仮想面とし、第1の長軸における幅の中心と第2の長軸における幅の中心とを通る面を第2の仮想面とし、第1の長軸と平行であり、第1の扁平管の下面を通る面を第3の仮想面とし、重力方向に平行であり、第1の扁平管の第1の端部を通る面を第4の仮想面としたとき、第1の仮想面、第2の仮想面、第3の仮想面及び第4の仮想面によって区画される第1の領域に配置されているものである。 The refrigeration cycle apparatus according to the present invention is a refrigeration cycle apparatus including a heat exchanger and a blower that supplies air to the heat exchanger, and the heat exchanger is connected to the fins and the fins so that air flows in. The first end located at the first end is connected to the first flat tube disposed below the second end located at the outflow of the air, and the fin, and is below the first flat tube. A second flat tube disposed at an interval, the long axis of the first flat tube in a cross section parallel to the extending direction of the fins as the first long axis, and the second flat tube, When the major axis in the cross section parallel to the extending direction of the fin is the second major axis, the first major axis and the second major axis are parallel, and the fin is composed of the first flat tube and the second flat axis. A cut and raised piece is formed at a position between the tube and the cut and raised piece passes through the center between the first flat tube and the second flat tube, A plane parallel to the first major axis is defined as a first imaginary plane, a plane passing through the center of the width of the first major axis and the center of the width of the second major axis is defined as a second imaginary plane, A plane that is parallel to the long axis and passes through the lower surface of the first flat tube is defined as a third virtual plane, and a surface that is parallel to the gravitational direction and passes through the first end of the first flat tube is defined as the fourth virtual surface. When a virtual surface is used, the first virtual surface, the second virtual surface, the third virtual surface, and the fourth virtual surface are arranged in a first region.
 本発明に係る冷凍サイクル装置によれば、上記構成を備えているので、熱交換器の排水性をさらに向上させることができる。 Since the refrigeration cycle apparatus according to the present invention has the above-described configuration, the drainage of the heat exchanger can be further improved.
本発明の実施の形態1に係る冷凍サイクル装置の冷媒回路構成の一例を示す概略構成図である。It is a schematic block diagram which shows an example of the refrigerant circuit structure of the refrigerating-cycle apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る冷凍サイクル装置の扁平管熱交換器の概要構成図である。It is a schematic block diagram of the flat tube heat exchanger of the refrigeration cycle apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る冷凍サイクル装置の扁平管熱交換器の断面図である。It is sectional drawing of the flat tube heat exchanger of the refrigeration cycle apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る冷凍サイクル装置の扁平管熱交換器上に残る水量と時間の関係を示す図である。It is a figure which shows the relationship between the amount of water remaining on the flat tube heat exchanger of the refrigerating-cycle apparatus which concerns on Embodiment 1 of this invention, and time. 本発明の実施の形態1に係る冷凍サイクル装置の扁平管熱交換器に切り起こし片及び熱交換用切り起こし片を形成したことによる伝熱性能αoの改善率を示す図である。It is a figure which shows the improvement rate of the heat-transfer performance (alpha) o by having formed the cut-and-raised piece and the cut-and-raised piece for heat exchange in the flat tube heat exchanger of the refrigerating cycle apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る冷凍サイクル装置の扁平管熱交換器に切り起こし片及び熱交換用切り起こし片を形成したことによる通年エネルギー消費効率の改善率を示す図である。It is a figure which shows the improvement rate of a year-round energy consumption efficiency by having formed the cut-and-raised piece and the cut-and-raised piece for heat exchange in the flat tube heat exchanger of the refrigeration cycle apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態2に係る冷凍サイクル装置の扁平管熱交換器の断面図である。It is sectional drawing of the flat tube heat exchanger of the refrigeration cycle apparatus which concerns on Embodiment 2 of this invention. 本発明の実施の形態2に係る冷凍サイクル装置の扁平管熱交換器上に残る水量と時間の関係を示す図である。It is a figure which shows the relationship between the amount of water remaining on the flat tube heat exchanger of the refrigeration cycle apparatus which concerns on Embodiment 2 of this invention, and time. 本発明の実施の形態2に係る冷凍サイクル装置の扁平管熱交換器に切り起こし片及び熱交換用切り起こし片を形成したことによる伝熱性能αoの改善率を示す図である。It is a figure which shows the improvement rate of the heat-transfer performance (alpha) o by having formed the cut-and-raised piece and the cut-and-raised piece for heat exchange in the flat tube heat exchanger of the refrigerating cycle apparatus which concerns on Embodiment 2 of this invention. 本発明の実施の形態2に係る冷凍サイクル装置の扁平管熱交換器に切り起こし片及び熱交換用切り起こし片を形成したことによる通年エネルギー消費効率の改善率を示す図である。It is a figure which shows the improvement rate of a year-round energy consumption efficiency by having formed the cut-and-raised piece and the cut-and-raised piece for heat exchange in the flat tube heat exchanger of the refrigerating-cycle apparatus which concerns on Embodiment 2 of this invention. 本発明の実施の形態3に係る冷凍サイクル装置の扁平管熱交換器の断面図である。It is sectional drawing of the flat tube heat exchanger of the refrigerating-cycle apparatus which concerns on Embodiment 3 of this invention. 本発明の実施の形態3に係る冷凍サイクル装置の扁平管熱交換器上に残る水量と時間の関係を示す図である。It is a figure which shows the relationship between the amount of water remaining on the flat tube heat exchanger of the refrigerating-cycle apparatus which concerns on Embodiment 3 of this invention, and time. 本発明の実施の形態3に係る冷凍サイクル装置の扁平管熱交換器に切り起こし片及び熱交換用切り起こし片を形成したことによる伝熱性能αoの改善率を示す図である。It is a figure which shows the improvement rate of the heat-transfer performance (alpha) o by having formed the cut and raised piece and the cut and raised piece for heat exchange in the flat tube heat exchanger of the refrigerating-cycle apparatus which concerns on Embodiment 3 of this invention. 本発明の実施の形態3に係る冷凍サイクル装置の扁平管熱交換器に切り起こし片及び熱交換用切り起こし片を形成したことによる通年エネルギー消費効率の改善率を示す図である。It is a figure which shows the improvement rate of a year-round energy consumption efficiency by having formed the cut-and-raised piece and the cut-and-raised piece for heat exchange in the flat tube heat exchanger of the refrigeration cycle apparatus which concerns on Embodiment 3 of this invention. 本発明の実施の形態4に係る冷凍サイクル装置の扁平管熱交換器の断面図である。It is sectional drawing of the flat tube heat exchanger of the refrigeration cycle apparatus which concerns on Embodiment 4 of this invention. 本発明の実施の形態4に係る冷凍サイクル装置の扁平管熱交換器上に残る水量と時間の関係を示す図である。It is a figure which shows the relationship between the amount of water remaining on the flat tube heat exchanger of the refrigerating-cycle apparatus which concerns on Embodiment 4 of this invention, and time. 本発明の実施の形態4に係る冷凍サイクル装置の扁平管熱交換器に切り起こし片及び熱交換用切り起こし片を形成したことによる伝熱性能αoの改善率を示す図である。It is a figure which shows the improvement rate of the heat-transfer performance (alpha) o by having formed the cut-and-raised piece and the cut-and-raised piece for heat exchange in the flat tube heat exchanger of the refrigeration cycle apparatus which concerns on Embodiment 4 of this invention. 本発明の実施の形態4に係る冷凍サイクル装置の扁平管熱交換器に切り起こし片及び熱交換用切り起こし片を形成したことによる通年エネルギー消費効率の改善率を示す図である。It is a figure which shows the improvement rate of a year-round energy consumption efficiency by having formed the cut-and-raised piece and the cut-and-raised piece for heat exchange in the flat tube heat exchanger of the refrigeration cycle apparatus which concerns on Embodiment 4 of this invention. 本発明の実施の形態4に係る冷凍サイクル装置の扁平管熱交換器に形成した切り起こし片及び熱交換用切り起こし片の断面図である。It is sectional drawing of the cut-and-raised piece formed in the flat tube heat exchanger of the refrigerating-cycle apparatus which concerns on Embodiment 4 of this invention, and the cut-raised piece for heat exchange. 本発明の実施の形態4に係る冷凍サイクル装置の扁平管熱交換器に形成したスリット高さhと伝熱性能αoの関係を示す図である。It is a figure which shows the relationship between the slit height h formed in the flat tube heat exchanger of the refrigerating-cycle apparatus which concerns on Embodiment 4 of this invention, and heat-transfer performance (alpha) o. 本発明の実施の形態4に係る冷凍サイクル装置の扁平管熱交換器の第1の扁平管の下面から空気が剥離している様子を模式的に説明する図である。It is a figure which illustrates typically a mode that air has peeled from the lower surface of the 1st flat tube of the flat tube heat exchanger of the refrigerating cycle device concerning Embodiment 4 of the present invention.
 以下、図面を適宜参照しながら本発明の実施の形態について説明する。なお、図1を含め、以下の図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。また、図1を含め、以下の図面において、同一の符号を付したものは、同一又はこれに相当するものであり、このことは明細書の全文において共通することとする。さらに、明細書全文に表わされている構成要素の形態は、あくまでも例示であって、これらの記載に限定されるものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings as appropriate. In addition, in the following drawings including FIG. 1, the relationship of the size of each component may be different from the actual one. Further, in the following drawings including FIG. 1, the same reference numerals denote the same or equivalent parts, and this is common throughout the entire specification. Furthermore, the forms of the constituent elements shown in the entire specification are merely examples, and are not limited to these descriptions.
実施の形態1.
 図1Aは、本実施の形態1に係る冷凍サイクル装置100Aの冷媒回路構成の一例を示す概略構成図である。図1Aに基づいて、冷凍サイクル装置100Aについて説明する。
Embodiment 1 FIG.
FIG. 1A is a schematic configuration diagram illustrating an example of a refrigerant circuit configuration of a refrigeration cycle apparatus 100A according to Embodiment 1. A refrigeration cycle apparatus 100A will be described based on FIG. 1A.
[冷凍サイクル装置100A]
 冷凍サイクル装置100Aは、室外機1と、室内機2を有している。室外機1と室内機2とは、冷媒配管である液管7及びガス管9を介して接続されている。冷凍サイクル装置100Aに封入する冷媒には、例えば、自己分解をする性質のものを用いることができる。
[Refrigeration cycle apparatus 100A]
The refrigeration cycle apparatus 100 </ b> A includes an outdoor unit 1 and an indoor unit 2. The outdoor unit 1 and the indoor unit 2 are connected via a liquid pipe 7 and a gas pipe 9 which are refrigerant pipes. As the refrigerant sealed in the refrigeration cycle apparatus 100A, for example, a refrigerant having a property of self-decomposition can be used.
 室外機(熱源機)1は、冷媒を圧縮する圧縮機3と、冷媒流路を切り替える冷媒回路切替手段としての四方弁4と、冷媒と室外送風機5aによって搬送される室外機1の周囲の空気とで熱交換する室外熱交換器5と、冷媒の流量を制御する電子膨張弁6と、を備えている。また、室外熱交換器5には、室外熱交換器5に空気を供給する室外送風機5aが付設されている。
 室内機(利用側機)2は、冷媒と室内送風機8aによって搬送される室内機2の周囲の空気とで熱交換し、例えば室内空間の冷却又は加熱を行うことで冷房又は暖房を実現する室内熱交換器8を備えている。室内熱交換器8には、室内熱交換器8に空気を供給する室内送風機8aが付設されている。
The outdoor unit (heat source unit) 1 includes a compressor 3 for compressing refrigerant, a four-way valve 4 as refrigerant circuit switching means for switching a refrigerant flow path, and air around the outdoor unit 1 conveyed by the refrigerant and the outdoor blower 5a. And an outdoor heat exchanger 5 for exchanging heat, and an electronic expansion valve 6 for controlling the flow rate of the refrigerant. Further, the outdoor heat exchanger 5 is provided with an outdoor fan 5 a that supplies air to the outdoor heat exchanger 5.
The indoor unit (use-side unit) 2 exchanges heat between the refrigerant and the air around the indoor unit 2 conveyed by the indoor blower 8a, and cools or heats the indoor space by, for example, cooling or heating the indoor space. A heat exchanger 8 is provided. The indoor heat exchanger 8 is provided with an indoor blower 8 a that supplies air to the indoor heat exchanger 8.
 冷媒を圧縮する圧縮機3としては、インバータ回路により回転数が制御され容量制御されるタイプの容積式圧縮機を用いるとよい。容積式圧縮機には、例えば、ロータリ圧縮機、スクロール圧縮機、スクリュー圧縮機、往復圧縮機等がある。また、圧縮機3には電動機が備えられている。 As the compressor 3 for compressing the refrigerant, it is preferable to use a positive displacement compressor of a type in which the rotation speed is controlled by an inverter circuit and the capacity is controlled. Examples of the positive displacement compressor include a rotary compressor, a scroll compressor, a screw compressor, and a reciprocating compressor. The compressor 3 is provided with an electric motor.
 四方弁4は、冷熱供給モード(例えば、冷房運転モード)、温熱供給モード(例えば、暖房運転モード)に応じて、冷媒流路を切り替えるものである。なお、冷媒回路切替手段の一例として四方弁4を挙げて説明するが、冷媒回路を選択的に切り替えられるもの、例えば2つの二方弁又は三方弁を組み合わせて冷媒回路切替手段を構成してもよい。また、四方弁4を設けた場合を例に示すが、冷凍サイクル装置100Aとして冷媒流路を切り替えない冷媒回路構成を採用する場合には冷媒回路切替手段を設ける必要はない。 The four-way valve 4 switches the refrigerant flow path according to a cooling / heating supply mode (for example, cooling operation mode) and a heating / heating supply mode (for example, heating operation mode). Although the four-way valve 4 will be described as an example of the refrigerant circuit switching unit, the refrigerant circuit switching unit may be configured by combining two refrigerant valves, for example, two two-way valves or three-way valves. Good. Moreover, although the case where the four-way valve 4 is provided is shown as an example, when the refrigerant circuit configuration in which the refrigerant flow path is not switched is adopted as the refrigeration cycle apparatus 100A, it is not necessary to provide the refrigerant circuit switching means.
 室外熱交換器5及び室内熱交換器8は、凝縮器又は蒸発器として機能し、例えば伝熱管と多数のフィンとにより構成されたクロスフィン式のフィン・アンド・チューブ型熱交換器で構成することができる。 The outdoor heat exchanger 5 and the indoor heat exchanger 8 function as a condenser or an evaporator, and are configured by, for example, a cross-fin type fin-and-tube heat exchanger configured by heat transfer tubes and a large number of fins. be able to.
 室外送風機5aは、室外熱交換器5に空気を供給するものであり、空気の流量を可変することが可能なもので構成されている。例えば、室外送風機5aとして、DCファンモータなどのモータによって駆動される遠心ファンや多翼ファン等を使用することができる。 なお、室外熱交換器5において冷媒と空気以外の熱媒体とで熱交換する場合、室外送風機5aではなく、ポンプ等の搬送装置を設ければよい。 The outdoor blower 5a supplies air to the outdoor heat exchanger 5, and is configured to be capable of changing the air flow rate. For example, a centrifugal fan or a multiblade fan driven by a motor such as a DC fan motor can be used as the outdoor fan 5a. When heat is exchanged between the refrigerant and a heat medium other than air in the outdoor heat exchanger 5, a transport device such as a pump may be provided instead of the outdoor blower 5a.
 電子膨張弁6は、冷媒流量の調節等が行うことが可能なものである。なお、減圧機構の一例として、絞り開度が可変な構造である電子膨張弁6を例に挙げて説明しているが、これに限定するものではない。例えば、受圧部にダイアフラムを採用した機械式膨張弁、または、キャピラリーチューブなどで減圧機構を構成してもよい。 The electronic expansion valve 6 can adjust the refrigerant flow rate. As an example of the pressure reducing mechanism, the electronic expansion valve 6 having a variable throttle opening is described as an example, but the present invention is not limited to this. For example, the pressure reducing mechanism may be configured by a mechanical expansion valve that employs a diaphragm for the pressure receiving portion, or a capillary tube.
 室内送風機8aは、室内熱交換器8に空気を供給するものであり、空気の流量を可変することが可能なもので構成されている。例えば、室内送風機8aとして、DCファンモータなどのモータによって駆動される遠心ファンや多翼ファン等を使用することができる。 なお、室内熱交換器8において冷媒と空気以外の熱媒体とで熱交換する場合、室内送風機8aではなく、ポンプ等の搬送装置を設ければよい。 The indoor blower 8a supplies air to the indoor heat exchanger 8, and is configured to be capable of changing the air flow rate. For example, a centrifugal fan or a multiblade fan driven by a motor such as a DC fan motor can be used as the indoor fan 8a. In addition, when heat is exchanged between the refrigerant and a heat medium other than air in the indoor heat exchanger 8, a transfer device such as a pump may be provided instead of the indoor blower 8a.
 そして、室外機1及び室内機2は、冷媒流路である液管7及びガス管9で各要素機器が接続されることで冷媒回路を構成する。なお、室外機1及び室内機2の接続代数を1台に限定するものではなく、いずれかまたはそれぞれを複数台としてもよい。 And the outdoor unit 1 and the indoor unit 2 comprise a refrigerant circuit by connecting each element apparatus with the liquid pipe 7 and the gas pipe 9 which are refrigerant flow paths. In addition, the connection algebra of the outdoor unit 1 and the indoor unit 2 is not limited to one, and any one or each may be a plurality.
 また、冷凍サイクル装置100Aは、冷凍サイクル装置100Aを統括制御する制御装置50を備えている。制御装置50は、各検知器からの検出値に基づき、各アクチュエータ(圧縮機3、四方弁4、室外送風機5a、電子膨張弁6、室内送風機8aなどの駆動部品)の制御を行う。制御装置50は、その機能を実現する回路デバイスのようなハードウェアで構成することもできるし、マイコンやCPUのような演算装置と、その上で実行されるソフトウェアとにより構成することもできる。 Also, the refrigeration cycle apparatus 100A includes a control device 50 that performs overall control of the refrigeration cycle apparatus 100A. The control device 50 controls each actuator (driving components such as the compressor 3, the four-way valve 4, the outdoor blower 5a, the electronic expansion valve 6, and the indoor blower 8a) based on the detection value from each detector. The control device 50 can be configured by hardware such as a circuit device that realizes the function, or can be configured by an arithmetic device such as a microcomputer or a CPU and software executed thereon.
 図1Aにおいて、室内熱交換器8から冷熱を供給する冷熱供給モード(例えば、冷房運転)では、四方弁4は実線の流路となり、室内熱交換器8から温熱を供給する温熱供給モード(例えば、暖房運転)では、四方弁4は点線の流路に切り替えられる。したがって、冷熱供給モードでは、圧縮機3、四方弁4、室外熱交換器5、電子膨張弁6、室内熱交換器8、圧縮機3がこの順序で環状に接続される。
 また、温熱供給モードでは、圧縮機3、四方弁4、室内熱交換器8、電子膨張弁6、室外熱交換器5、圧縮機3がこの順序で環状に接続される。そのため、冷熱供給モードでは、室外熱交換器5が凝縮器として機能し、室内熱交換器8が蒸発器として機能する。また、温熱供給モードでは、室外熱交換器5が蒸発器として機能し、室内熱交換器8が凝縮器として機能する。
In FIG. 1A, in the cold supply mode (for example, cooling operation) in which cold is supplied from the indoor heat exchanger 8, the four-way valve 4 is a solid flow path, and a hot supply mode (for example, supplying warm heat from the indoor heat exchanger 8) (for example, In the heating operation), the four-way valve 4 is switched to a dotted flow path. Therefore, in the cold heat supply mode, the compressor 3, the four-way valve 4, the outdoor heat exchanger 5, the electronic expansion valve 6, the indoor heat exchanger 8, and the compressor 3 are connected in an annular shape in this order.
In the heat supply mode, the compressor 3, the four-way valve 4, the indoor heat exchanger 8, the electronic expansion valve 6, the outdoor heat exchanger 5, and the compressor 3 are annularly connected in this order. Therefore, in the cold heat supply mode, the outdoor heat exchanger 5 functions as a condenser, and the indoor heat exchanger 8 functions as an evaporator. In the heat supply mode, the outdoor heat exchanger 5 functions as an evaporator, and the indoor heat exchanger 8 functions as a condenser.
 説明の便宜上、実施例として室外熱交換器5が扁平管熱交換器100であるものとして説明するが、室内熱交換器8であっても構わない。 For convenience of explanation, the outdoor heat exchanger 5 is described as an example of the flat tube heat exchanger 100 as an example, but the indoor heat exchanger 8 may be used.
[扁平管熱交換器100]
 図1Bは、本実施の形態1に係る冷凍サイクル装置100Aの扁平管熱交換器100の概要構成図である。図2は、本実施の形態1に係る冷凍サイクル装置100Aの扁平管熱交換器100の断面図である。図1B(a)は、伝熱管10に複数のフィン30が取り付けられている様子を示している。図1B(b)は、伝熱管10の説明図である。なお、図1B中のX方向と、Y方向と、Z方向とは直交する方向である。なお、図2は、フィン30の延伸方向に平行な断面における断面図である。図1B及び図2を参照して、扁平管熱交換器100の構成及び機能などについて説明する。
[Flat tube heat exchanger 100]
FIG. 1B is a schematic configuration diagram of the flat tube heat exchanger 100 of the refrigeration cycle apparatus 100A according to the first embodiment. FIG. 2 is a cross-sectional view of the flat tube heat exchanger 100 of the refrigeration cycle apparatus 100A according to the first embodiment. FIG. 1B (a) shows a state in which a plurality of fins 30 are attached to the heat transfer tube 10. FIG. 1B (b) is an explanatory diagram of the heat transfer tube 10. Note that the X direction, the Y direction, and the Z direction in FIG. 1B are orthogonal to each other. FIG. 2 is a cross-sectional view in a cross section parallel to the extending direction of the fin 30. With reference to FIG. 1B and FIG. 2, the structure, function, etc. of the flat tube heat exchanger 100 are demonstrated.
 扁平管熱交換器100は、板状のフィン30と、フィン30に交差して設けられている伝熱管10とを備えている。伝熱管10は、フィン30に連結している。
 ここで、伝熱管10は、第1の扁平管10A1と、第1の扁平管10A1に対向して設けられた第2の扁平管10A2と、第1の扁平管10A1と第2の扁平管10A2とを接続する曲部10Bとを備えている。図1B(b)に示す伝熱管10が、例えば、図示省略のヘッダー等に接続される。
 第1の扁平管10A1、第2の扁平管10A2及び曲部10Bには、冷媒が流れる流路Fが複数形成されている。
 また、扁平管熱交換器100には、複数のフィン30が設けられている。そして、複数のフィン30は、一定の間隔をあけてY方向に並べられている。複数のフィン30は、Z方向に平行に設けられている。また、フィン30には、結露水を下方に導く排水路13が形成されている。
The flat tube heat exchanger 100 includes a plate-like fin 30 and a heat transfer tube 10 provided so as to intersect the fin 30. The heat transfer tube 10 is connected to the fins 30.
Here, the heat transfer tube 10 includes a first flat tube 10A1, a second flat tube 10A2 provided to face the first flat tube 10A1, a first flat tube 10A1, and a second flat tube 10A2. And a curved portion 10B for connecting the two. The heat transfer tube 10 shown in FIG. 1B (b) is connected to, for example, a header (not shown).
In the first flat tube 10A1, the second flat tube 10A2, and the curved portion 10B, a plurality of flow paths F through which the refrigerant flows are formed.
The flat tube heat exchanger 100 is provided with a plurality of fins 30. The plurality of fins 30 are arranged in the Y direction at regular intervals. The plurality of fins 30 are provided in parallel with the Z direction. Further, the drain 30 is formed in the fin 30 to guide the condensed water downward.
(伝熱管10)
 伝熱管10には、内部に冷媒が流れる流路が形成されている。第1の扁平管10A1及び第2の扁平管10A2は、直線状の扁平管である。第1の扁平管10A1はフィン30に交差して設けられている。第2の扁平管10A2もフィン30に交差して設けられている。第1の扁平管10A1はフィン30に連結し、第2の扁平管10A2もフィン30に連結している。本実施の形態1では、第1の扁平管10A1及び第2の扁平管10A2と、フィン30とは直交している。また、第1の扁平管10A1と第2の扁平管10A2との間には、間隔があけられている。
(Heat transfer tube 10)
The heat transfer tube 10 is formed with a flow path through which a refrigerant flows. The first flat tube 10A1 and the second flat tube 10A2 are straight flat tubes. The first flat tube 10 </ b> A <b> 1 is provided so as to intersect with the fins 30. The second flat tube 10A2 is also provided so as to intersect the fins 30. The first flat tube 10A1 is connected to the fins 30 and the second flat tube 10A2 is also connected to the fins 30. In the first embodiment, the first flat tube 10A1 and the second flat tube 10A2 and the fins 30 are orthogonal to each other. In addition, a gap is provided between the first flat tube 10A1 and the second flat tube 10A2.
 第1の扁平管10A1及び第2の扁平管10A2は、平行に配置されている。すなわち、第1の扁平管10A1の長軸AX1と第2の扁平管10A2の長軸AX2とは、平行である。ここで、長軸AX1は、第1の扁平管10A1の、フィン30の延伸方向に平行な断面における長軸である。長軸AX1は、第1の長軸に対応している。また、長軸AX2は、第2の扁平管10A2の、フィン30の延伸方向に平行な断面における長軸である。長軸AX2は、第2の長軸に対応している。長軸AX1は、第1の扁平管10A1のうち、フィン30に平行な断面における軸であり、流路Fに平行な方向の軸ではない。長軸AX2も、第2の扁平管10A2のうち、フィン30に平行な断面における軸であり、流路Fに平行な方向の軸ではない。また、本実施の形態1において、第1の扁平管10A1と第2の扁平管10A2の形状は同様である。
 第1の扁平管10A1は、排水路13の端13Aに位置する第1の端部E1と、第1の端部E1よりも排水路13から遠い方に位置する第2の端部E2とを含む。扁平管熱交換器100が冷凍サイクル装置100Aに設置された状態においては、第1の端部E1の方が、第2の端部E2よりも、空気の流れ方向の上流側に位置する。また、扁平管熱交換器100が冷凍サイクル装置100Aに設置された状態においては、第1の扁平管10A1の方が第2の扁平管10A2よりも上側に位置する。
 第2の扁平管10A2も、第1の扁平管10A1に準ずる構成である。すなわち、第2の扁平管10A2は、排水路13の端13Aに位置する第3の端部E3と、第3の端部E3よりも排水路13から遠い方に位置する第4の端部E4とを含む。
The first flat tube 10A1 and the second flat tube 10A2 are arranged in parallel. That is, the long axis AX1 of the first flat tube 10A1 and the long axis AX2 of the second flat tube 10A2 are parallel. Here, the long axis AX1 is a long axis in a cross section of the first flat tube 10A1 parallel to the extending direction of the fins 30. The long axis AX1 corresponds to the first long axis. The long axis AX2 is a long axis in a cross section of the second flat tube 10A2 parallel to the extending direction of the fins 30. The long axis AX2 corresponds to the second long axis. The long axis AX1 is an axis in a cross section parallel to the fins 30 in the first flat tube 10A1, and is not an axis in a direction parallel to the flow path F. The long axis AX2 is also an axis in a cross section parallel to the fins 30 in the second flat tube 10A2, and is not an axis in a direction parallel to the flow path F. In the first embodiment, the shapes of the first flat tube 10A1 and the second flat tube 10A2 are the same.
The first flat tube 10A1 includes a first end E1 located at the end 13A of the drainage channel 13 and a second end E2 located farther from the drainage channel 13 than the first end E1. Including. In a state where the flat tube heat exchanger 100 is installed in the refrigeration cycle apparatus 100A, the first end E1 is located upstream of the second end E2 in the air flow direction. Further, in a state where the flat tube heat exchanger 100 is installed in the refrigeration cycle apparatus 100A, the first flat tube 10A1 is positioned above the second flat tube 10A2.
The 2nd flat tube 10A2 is also the structure according to 1st flat tube 10A1. That is, the second flat tube 10A2 includes a third end E3 located at the end 13A of the drainage channel 13 and a fourth end E4 located farther from the drainage channel 13 than the third end E3. Including.
(フィン30)
 フィン30は、板状部材である。隣接するフィン30の間には、空気が流れる隙間が形成されている。フィン30には、伝熱管10が挿入される複数の切欠が形成されている。具体的には、フィン30の各切欠には、伝熱管10の第1の扁平管10A1及び第2の扁平管10A2が挿入される。なお、本実施の形態1では、フィン30に切欠が形成されている態様について説明するが、第1の扁平管10A1及び第2の扁平管10A2が挿入される穴が形成された態様であってもよい。
(Fin 30)
The fin 30 is a plate-shaped member. A gap through which air flows is formed between adjacent fins 30. The fin 30 has a plurality of notches into which the heat transfer tubes 10 are inserted. Specifically, the first flat tube 10A1 and the second flat tube 10A2 of the heat transfer tube 10 are inserted into each notch of the fin 30. In addition, although this Embodiment 1 demonstrates the aspect in which the notch is formed in the fin 30, it is an aspect in which the hole into which the 1st flat tube 10A1 and 2nd flat tube 10A2 are inserted was formed. Also good.
 フィン30は、第1の扁平管10A1から第2の扁平管10A2に向かう予め定められた方向(X方向)に平行に延びるように形成された排水路13を含む。排水路13は、フィン30の長手方向の端部に位置している。 The fin 30 includes a drainage channel 13 formed so as to extend in parallel to a predetermined direction (X direction) from the first flat tube 10A1 toward the second flat tube 10A2. The drainage channel 13 is located at the end of the fin 30 in the longitudinal direction.
 フィン30は、第1の扁平管10A1と第2の扁平管10A2との間の位置に形成された切り起こし片11及び熱交換用切り起こし片12とを含む。切り起こし片11及び熱交換用切り起こし片12は、主な機能が異なっている。 The fin 30 includes a cut and raised piece 11 and a heat exchange cut and raised piece 12 formed at a position between the first flat tube 10A1 and the second flat tube 10A2. The cut and raised pieces 11 and the heat exchange cut and raised pieces 12 have different main functions.
 切り起こし片11は、主に、第1の扁平管10A1の下面SF2に付着している結露水を、排水路13にすみやかに導く機能を有している。具体的には、第1の扁平管10A1の下面SF2には、表面張力などによって結露水が付着している。ここで、第1の扁平管10A1の上面SF1と比較すると、第1の扁平管10A1の下面SF2には、フィン30からの結露水が流れ込んできにくい。このため、下面SF2の結露水は、下面SF2に付着したままとなってしまいやすい。しかし、切り起こし片11が形成されていると、(1)下面SF2の結露水が切り起こし片11に引き込まれ、(2)その後、切り起こし片11に引き込まれた結露水が排水路13に流れ込む。このように、切り起こし片11は、特に、第1の扁平管10A1の下面SF2の結露水を排水路13にすみやかに流す機能を有している。 The cut and raised piece 11 mainly has a function of promptly guiding the condensed water adhering to the lower surface SF2 of the first flat tube 10A1 to the drainage channel 13. Specifically, condensed water adheres to the lower surface SF2 of the first flat tube 10A1 due to surface tension or the like. Here, compared with the upper surface SF1 of the first flat tube 10A1, the condensed water from the fins 30 is less likely to flow into the lower surface SF2 of the first flat tube 10A1. For this reason, the dew condensation water on the lower surface SF2 tends to remain attached to the lower surface SF2. However, if the cut-and-raised piece 11 is formed, (1) the condensed water on the lower surface SF2 is drawn into the cut-and-raised piece 11, and (2) the condensed water drawn into the cut-and-raised piece 11 is then discharged into the drainage channel 13. Flows in. Thus, the cut and raised piece 11 has a function of promptly flowing the condensed water on the lower surface SF2 of the first flat tube 10A1 to the drainage channel 13 in particular.
 熱交換用切り起こし片12は、切り起こし片11とは別体として形成されている。つまり、切り起こし片11と熱交換用切り起こし片12とは一体ではなく分割された切り起こし片である。
 熱交換用切り起こし片12は、主に、扁平管熱交換器100の熱交換性能を向上させる機能を有している。熱交換用切り起こし片12は、第2の扁平管10A2の上面SF3の上側に位置している。第2の扁平管10A2の上面SF3に付着している結露水は、第2の扁平管10A2の下面SF4に付着している結露水よりもすみやかに流れる。これは、上面SF3には、フィン30等から結露水が流れ込んでくるためである。
The cut and raised pieces 12 for heat exchange are formed separately from the cut and raised pieces 11. That is, the cut and raised pieces 11 and the heat exchange cut and raised pieces 12 are not integrally but cut and raised pieces.
The heat exchange cut and raised piece 12 mainly has a function of improving the heat exchange performance of the flat tube heat exchanger 100. The heat exchange cut and raised piece 12 is positioned above the upper surface SF3 of the second flat tube 10A2. The condensed water adhering to the upper surface SF3 of the second flat tube 10A2 flows more quickly than the condensed water adhering to the lower surface SF4 of the second flat tube 10A2. This is because condensed water flows into the upper surface SF3 from the fins 30 and the like.
 ここで、熱交換用切り起こし片12は、切り起こし片11よりも大きく形成するとよい。切り起こし片11を大きくしすぎると、その分、上述の(1)の作用によって切り起こし片11に引き込まれた結露水の表面張力が大きくなってしまい、(2)の作用を阻害する可能性があるためである。すなわち、切り起こし片11に引き込まれた結露水が排水路13へ流出しにくくなるということである。一方、熱交換用切り起こし片12は、こういった排水を主な機能としていない。このため、熱交換用切り起こし片12については、切り起こし片11よりも大きくてもよい。これにより、フィン30の熱交換性能を向上させることができる。 Here, the cut and raised pieces 12 for heat exchange may be formed larger than the cut and raised pieces 11. If the cut-and-raised piece 11 is made too large, the surface tension of the condensed water drawn into the cut-and-raised piece 11 due to the action of (1) described above increases, and the action of (2) may be hindered. Because there is. That is, the condensed water drawn into the cut and raised pieces 11 is less likely to flow into the drainage channel 13. On the other hand, the cut and raised pieces 12 for heat exchange do not have such drainage as a main function. For this reason, the cut and raised pieces 12 for heat exchange may be larger than the cut and raised pieces 11. Thereby, the heat exchange performance of the fin 30 can be improved.
 次に、切り起こし片11及び熱交換用切り起こし片12の配置について説明する。これらの配置の説明にあたり、次に説明する仮想面を定義する。
 第1の仮想面PL1は、第1の扁平管10A1と第2の扁平管10A2との間の中央を通り、第1の扁平管10A1の長軸AX1に平行な面である。
 第2の仮想面PL2は、第1の扁平管10A1の長軸AX1における幅の中心と第2の扁平管10A2の長軸AX2における幅の中心とを通る面である。
 第3の仮想面PL3は、第1の扁平管10A1の長軸AX1と平行であり、第1の扁平管10A1の面のうち第2の扁平管10A2との対向面(上面SF3)を通る面である。
 第4の仮想面PL4は、X方向に平行であり、第1の扁平管10A1の第1の端部E1を通る面である。
 第5の仮想面PL5は、第2の扁平管10A2の長軸AX2と平行であり、第2の扁平管10A2の面のうち第1の扁平管10A1との対向面(下面SF2)を通る面である。
 第6の仮想面PL6は、X方向に平行であり、第2の扁平管10A2の第3の端部E3を通る面である。
 本実施の形態1では、第4の仮想面PL4及び第6の仮想面PL6は、同一面上に位置している。
Next, the arrangement of the cut and raised pieces 11 and the heat exchange cut and raised pieces 12 will be described. In describing these arrangements, the virtual plane described next is defined.
The first virtual plane PL1 is a plane that passes through the center between the first flat tube 10A1 and the second flat tube 10A2 and is parallel to the long axis AX1 of the first flat tube 10A1.
The second virtual plane PL2 is a plane that passes through the center of the width of the first flat tube 10A1 on the long axis AX1 and the center of the width of the second flat tube 10A2 on the long axis AX2.
The third virtual plane PL3 is parallel to the long axis AX1 of the first flat tube 10A1, and passes through the surface (upper surface SF3) facing the second flat tube 10A2 among the surfaces of the first flat tube 10A1. It is.
The fourth virtual plane PL4 is a plane that is parallel to the X direction and passes through the first end E1 of the first flat tube 10A1.
The fifth virtual surface PL5 is parallel to the long axis AX2 of the second flat tube 10A2 and passes through the surface (the lower surface SF2) facing the first flat tube 10A1 among the surfaces of the second flat tube 10A2. It is.
The sixth virtual plane PL6 is a plane that is parallel to the X direction and passes through the third end E3 of the second flat tube 10A2.
In the first embodiment, the fourth virtual surface PL4 and the sixth virtual surface PL6 are located on the same surface.
 切り起こし片11は、第1の仮想面PL1、第2の仮想面PL2、第3の仮想面PL3及び第4の仮想面PL4によって区画される第1の領域RE1に配置されている。より詳細には、切り起こし片11は、第1の領域RE1のうち排水路13寄りであって下面SF2寄りの位置に配置されている。
 熱交換用切り起こし片12は、第1の仮想面PL1、第2の仮想面PL2、第5の仮想面PL5及び第6の仮想面PL6によって区画される第2の領域RE2に配置されている。より詳細には、熱交換用切り起こし片12は、第2の領域RE2のうち排水路13寄りであって上面SF3寄りの位置に配置されている。
 このように、切り起こし片11及び熱交換用切り起こし片12は、フィン30のうちの第1の領域RE1及び第2の領域RE2にそれぞれ配置されている。
The cut-and-raised piece 11 is disposed in the first region RE1 defined by the first virtual surface PL1, the second virtual surface PL2, the third virtual surface PL3, and the fourth virtual surface PL4. More specifically, the cut-and-raised piece 11 is disposed at a position near the drainage channel 13 and near the lower surface SF2 in the first region RE1.
The heat exchange cut-and-raised piece 12 is disposed in the second region RE2 defined by the first virtual surface PL1, the second virtual surface PL2, the fifth virtual surface PL5, and the sixth virtual surface PL6. . More specifically, the heat exchange cut-and-raised piece 12 is disposed at a position near the drainage channel 13 and near the upper surface SF3 in the second region RE2.
Thus, the cut and raised pieces 11 and the heat exchange cut and raised pieces 12 are arranged in the first region RE1 and the second region RE2 of the fins 30, respectively.
 なお、さらに次の仮想面を定義する。
 第7の仮想面PL7は、X方向に平行であり、第1の扁平管10A1の第2の端部E2を通る面である。
 第8の仮想面PL8は、X方向に平行であり、第2の扁平管10A2の第4の端部E4を通る面である。
 本実施の形態1では、第7の仮想面PL7及び第8の仮想面PL8は、同一面上に位置している。
 ここで、第1の仮想面PL1、第2の仮想面PL2、第3の仮想面PL3及び第7の仮想面PL7によって区画される部分を第3の領域RE3と称する。
 また、第1の仮想面PL1、第2の仮想面PL2、第5の仮想面PL5及び第8の仮想面PL8によって区画される部分を第4の領域RE4と称する。
 第3の領域RE3及び第4の領域RE4は、共に平面であり、切り起こし片は形成されていない。切り起こし片が形成されることによって、フィン30を通過する空気の圧力損失が増大してしまうことを回避している。
Furthermore, the following virtual surface is defined.
The seventh virtual plane PL7 is a plane parallel to the X direction and passing through the second end E2 of the first flat tube 10A1.
The eighth virtual plane PL8 is a plane parallel to the X direction and passing through the fourth end E4 of the second flat tube 10A2.
In the first embodiment, the seventh virtual plane PL7 and the eighth virtual plane PL8 are located on the same plane.
Here, a portion defined by the first virtual surface PL1, the second virtual surface PL2, the third virtual surface PL3, and the seventh virtual surface PL7 is referred to as a third region RE3.
A portion defined by the first virtual surface PL1, the second virtual surface PL2, the fifth virtual surface PL5, and the eighth virtual surface PL8 is referred to as a fourth region RE4.
The third region RE3 and the fourth region RE4 are both flat, and no cut and raised pieces are formed. By forming the cut and raised pieces, the pressure loss of the air passing through the fins 30 is prevented from increasing.
[実施の形態1の効果]
 図3は、本実施の形態1に係る冷凍サイクル装置100Aの扁平管熱交換器100上に残る水量と時間の関係を示す図である。
 扁平管熱交換器100が蒸発器として機能するとき、フィン30の表面に切り起こし片11を形成する(立てる)ことによって、第1の扁平管10A1の下面SF2に発生した結露水を、切り起こし片11に引き込む毛管力が働く。これにより、扁平管熱交換器100に付着した結露水の水量Mが減りやすくなり、フィン30の表面に切り起こし片11がない態様の扁平管熱交換器よりも、早く結露水を排水することができる。
[Effect of Embodiment 1]
FIG. 3 is a diagram showing the relationship between the amount of water remaining on the flat tube heat exchanger 100 of the refrigeration cycle apparatus 100A according to Embodiment 1 and time.
When the flat tube heat exchanger 100 functions as an evaporator, the condensed water generated on the lower surface SF2 of the first flat tube 10A1 is cut and raised by forming (standing) the cut pieces 11 on the surface of the fin 30. Capillary force drawn into the piece 11 works. This makes it easy to reduce the amount M of dew condensation water adhering to the flat tube heat exchanger 100, and drains dew condensation water faster than the flat tube heat exchanger in which the fins 30 have no cut and raised pieces 11 on the surface. Can do.
 図3の実線で示すグラフが本実施の形態1に係る冷凍サイクル装置100Aの扁平管熱交換器100についての水量Mの減少の様子を示している。図3の破線は、フィン30に全く切り起こし片を形成しない態様の扁平管熱交換器についての水量Mの減少の様子を示している。図3の一点破線は、フィン30に切り起こし片11及び熱交換用切り起こし片12を一体的に形成した態様の扁平管熱交換器の態様についての水量Mの減少の様子を示している。
 図3の実線で示すように、本実施の形態1に係る冷凍サイクル装置100Aの扁平管熱交換器100はすみやかに水量Mが減少していくことがわかる。一方、フィン30に全く切り起こし片を形成しない態様の扁平管熱交換器では、図3の破線に示すように、水量Mの減少が遅くなっていることがわかる。
The graph shown with the continuous line of FIG. 3 has shown the mode of the reduction | decrease of the water quantity M about the flat tube heat exchanger 100 of 100 A of refrigeration cycle apparatuses which concern on this Embodiment 1. FIG. The broken line in FIG. 3 shows how the amount of water M decreases in the flat tube heat exchanger in the form in which the fin 30 is not cut and raised at all. The dashed line in FIG. 3 shows how the amount of water M is reduced in the aspect of the flat tube heat exchanger in which the cut and raised pieces 11 and the heat raised and raised pieces 12 are integrally formed on the fin 30.
As shown by the solid line in FIG. 3, it can be seen that the amount M of water in the flat tube heat exchanger 100 of the refrigeration cycle apparatus 100 </ b> A according to Embodiment 1 immediately decreases. On the other hand, in the flat tube heat exchanger in which the fins 30 are not cut and raised at all, as shown by the broken lines in FIG.
 また、図3の一点破線に示すように、フィン30に切り起こし片11及び熱交換用切り起こし片12を一体的に形成した態様の扁平管熱交換器の水量Mも減りにくいことがわかる。しかし、本実施の形態1では、切り起こし片11と熱交換用切り起こし片12とを別々に形成している。つまり、これらは一体ではないということである。これにより、切り起こし片単体で保持する結露水の量が少なくなり、切り起こし片内の表面張力が弱くなる。そのため、切り起こし片11で保持している結露水を排水路13へすみやかに導くことができる。この結果、扁平管熱交換器100に残る水量Mが減りやすくなる。 Moreover, as shown by the one-dot broken line in FIG. 3, it is understood that the amount of water M of the flat tube heat exchanger in which the cut and raised pieces 11 and the heat raised and raised pieces 12 are integrally formed on the fin 30 is also difficult to reduce. However, in the first embodiment, the cut and raised pieces 11 and the heat exchange cut and raised pieces 12 are formed separately. That is, they are not united. As a result, the amount of condensed water held by the cut and raised piece alone is reduced, and the surface tension in the cut and raised piece is weakened. Therefore, the condensed water held by the cut and raised pieces 11 can be promptly guided to the drainage channel 13. As a result, the amount of water M remaining in the flat tube heat exchanger 100 can be easily reduced.
 図4は、本実施の形態1に係る冷凍サイクル装置100Aの扁平管熱交換器に切り起こし片11及び熱交換用切り起こし片12を形成したことによる伝熱性能αoの改善率を示す図である。
 扁平管熱交換器100が凝縮器として機能するとき、切り起こし片11、及び熱交換用切り起こし片12を形成することでフィン30の表面の流れが局所的に乱され、空気と扁平管熱交換器100の熱交換量が向上するため、伝熱性能αoが向上する。
 図4に示すように、扁平管熱交換器100は、切り起こし片11及び熱交換用切り起こし片12が形成されていない扁平管熱交換器と比較すると、伝熱性能αoが15%ほど改善していることがわかる。
FIG. 4 is a diagram showing an improvement rate of the heat transfer performance αo by forming the cut and raised pieces 11 and the heat raised and raised pieces 12 in the flat tube heat exchanger of the refrigeration cycle apparatus 100A according to the first embodiment. is there.
When the flat tube heat exchanger 100 functions as a condenser, the flow on the surface of the fin 30 is locally disturbed by forming the cut and raised pieces 11 and the cut and raised pieces 12 for heat exchange, and the air and the flat tube heat Since the heat exchange amount of the exchanger 100 is improved, the heat transfer performance αo is improved.
As shown in FIG. 4, the flat tube heat exchanger 100 has a heat transfer performance αo improved by about 15% compared to a flat tube heat exchanger in which the cut and raised pieces 11 and the heat raised and raised pieces 12 are not formed. You can see that
 図5は、本実施の形態1に係る冷凍サイクル装置100Aの扁平管熱交換器に切り起こし片11及び熱交換用切り起こし片12を形成したことによる通年エネルギー消費効率(AFP)の改善率を示す図である。
 切り起こし片11及び熱交換用切り起こし片12を形成することで空気が扁平管熱交換器100のフィン30を通過する際に発生する通風抵抗も上がってしまう。しかし、通年エネルギー消費効率を考慮すると、伝熱性能が向上する効果の寄与が大きいため、通年エネルギー消費効率は向上する。
 図5に示すように、扁平管熱交換器100は、切り起こし片11及び熱交換用切り起こし片12が形成されていない扁平管熱交換器と比較すると、通年エネルギー消費効率が0.5%ほど改善していることがわかる。
 このように、フィン30に切り起こし片11及び熱交換用切り起こし片12を形成することで、扁平管熱交換器100の排水性を向上しつつ、扁平管熱交換器100の伝熱性能の向上を図ることができる。
FIG. 5 shows the improvement rate of year-round energy consumption efficiency (AFP) by forming the cut and raised pieces 11 and the heat raised and raised pieces 12 in the flat tube heat exchanger of the refrigeration cycle apparatus 100A according to the first embodiment. FIG.
By forming the cut-and-raised pieces 11 and the heat-raised and raised pieces 12, ventilation resistance generated when air passes through the fins 30 of the flat tube heat exchanger 100 is also increased. However, considering the year-round energy consumption efficiency, the contribution of the effect of improving the heat transfer performance is large, so the year-round energy consumption efficiency is improved.
As shown in FIG. 5, the flat tube heat exchanger 100 has a year-round energy consumption efficiency of 0.5% compared to a flat tube heat exchanger in which the cut and raised pieces 11 and the heat raised and raised pieces 12 are not formed. It turns out that it has improved so much.
Thus, by forming the cut and raised pieces 11 and the heat exchange cut and raised pieces 12 on the fins 30, while improving the drainage of the flat tube heat exchanger 100, the heat transfer performance of the flat tube heat exchanger 100 is improved. Improvements can be made.
実施の形態2.
 図6は、本実施の形態2に係る冷凍サイクル装置100Aの扁平管熱交換器100の断面図である。なお、図6は、フィン30の延伸方向に平行な断面における断面図である。本実施の形態2では、実施の形態1と共通する構成については同一符号を付して説明をし、実施の形態1とは異なる部分を中心に説明する。
Embodiment 2. FIG.
FIG. 6 is a cross-sectional view of the flat tube heat exchanger 100 of the refrigeration cycle apparatus 100A according to the second embodiment. FIG. 6 is a cross-sectional view in a cross section parallel to the extending direction of the fin 30. In the second embodiment, components that are the same as those in the first embodiment will be described with the same reference numerals, and different parts from the first embodiment will be mainly described.
 実施の形態1で説明した切り起こし片11は、第1の扁平管10A1から第2の扁平管10A2に向かう方向(X方向)に平行に延びるように形成されていた。
 本実施の形態2で説明する切り起こし片11Bは、第1の扁平管10A1寄りの部分から第2の扁平管10A2寄りの部分に向かうにしたがって、排水路13に近づくように形成されている。すなわち、切り起こし片11Bは、扁平管熱交換器100が冷凍サイクル装置100Aに搭載された状態において、重力方向に対して平行ではなく、交差するように形成されている。
The cut-and-raised piece 11 described in the first embodiment is formed to extend in parallel to the direction (X direction) from the first flat tube 10A1 toward the second flat tube 10A2.
The cut-and-raised piece 11B described in the second embodiment is formed so as to approach the drainage channel 13 from the portion near the first flat tube 10A1 toward the portion near the second flat tube 10A2. That is, the cut-and-raised pieces 11B are formed so as to cross rather than be parallel to the direction of gravity when the flat tube heat exchanger 100 is mounted on the refrigeration cycle apparatus 100A.
[実施の形態2の効果]
 図7は、本発明の実施の形態2に係る冷凍サイクル装置100Aの扁平管熱交換器100上に残る水量と時間の関係を示す図である。
 切り起こし片11Bは、一方の端部が下面SF2寄りに配置され、他方の端部が排水路13寄りに配置された構成となっている。このため、第1の扁平管10A1の下面SF2の結露水を、より確実に排水路13に導くことができるようになっている。
 図7の実線で示すように、本実施の形態2に係る冷凍サイクル装置100Aの扁平管熱交換器100は、実施の形態1の態様(図7の破線参照)よりも、すみやかに水量Mが減少していくことがわかる。
[Effect of Embodiment 2]
FIG. 7 is a diagram showing the relationship between the amount of water remaining on the flat tube heat exchanger 100 of the refrigeration cycle apparatus 100A according to Embodiment 2 of the present invention and time.
The cut-and-raised piece 11B has a configuration in which one end portion is disposed near the lower surface SF2 and the other end portion is disposed near the drainage channel 13. For this reason, the dew condensation water on the lower surface SF2 of the first flat tube 10A1 can be more reliably guided to the drainage channel 13.
As shown by the solid line in FIG. 7, the flat tube heat exchanger 100 of the refrigeration cycle apparatus 100 </ b> A according to the second embodiment has a water amount M that is faster than the aspect of the first embodiment (see the broken line in FIG. 7). It turns out that it decreases.
 図8は、本実施の形態2に係る冷凍サイクル装置100Aの扁平管熱交換器100に切り起こし片11B及び熱交換用切り起こし片12を形成したことによる伝熱性能αoの改善率を示す図である。
 切り起こし片11Bを形成することで、フィン30の表面の流れが実施の形態1よりもさらに局所的に乱され、空気と扁平管熱交換器100の熱交換量が向上する。このため、伝熱性能αoが実施の形態1よりもさらに向上する。
 図8に示すように、本実施の形態2の扁平管熱交換器100は、実施の形態1の態様と比較すると、伝熱性能αoが2.5%ほど改善していることがわかる。
FIG. 8 is a diagram showing the improvement rate of the heat transfer performance αo by forming the cut and raised pieces 11B and the heat raised and raised pieces 12 in the flat tube heat exchanger 100 of the refrigeration cycle apparatus 100A according to the second embodiment. It is.
By forming the cut-and-raised piece 11B, the flow on the surface of the fin 30 is more locally disturbed than in the first embodiment, and the amount of heat exchange between the air and the flat tube heat exchanger 100 is improved. For this reason, the heat transfer performance αo is further improved as compared with the first embodiment.
As shown in FIG. 8, it can be seen that the flat tube heat exchanger 100 of the second embodiment has improved the heat transfer performance αo by about 2.5% as compared with the aspect of the first embodiment.
 図9は、本実施の形態2に係る冷凍サイクル装置100Aの扁平管熱交換器100に切り起こし片11B及び熱交換用切り起こし片12を形成したことによる通年エネルギー消費効率の改善率を示す図である。
 切り起こし片11Bを形成することで空気が扁平管熱交換器100を通過する際に発生する通風抵抗も上がってしまう。しかし、通年エネルギー消費効率通年エネルギー消費効率を考慮すると、伝熱性能が向上する効果の寄与が大きいため、通年エネルギー消費効率は向上する。
 図9に示すように、本実施の形態2の扁平管熱交換器100は、実施の形態1の態様と比較すると、通年エネルギー消費効率が0.1%ほど改善していることがわかる。
 このように、フィン30に切り起こし片11Bを形成することで、さらに、扁平管熱交換器100の伝熱性能の向上を図ることができる。
FIG. 9 is a diagram showing a year-round energy consumption efficiency improvement rate by forming the cut and raised pieces 11B and the heat raised and raised pieces 12 in the flat tube heat exchanger 100 of the refrigeration cycle apparatus 100A according to the second embodiment. It is.
By forming the cut-and-raised piece 11B, the ventilation resistance generated when air passes through the flat tube heat exchanger 100 is also increased. However, considering the energy consumption efficiency throughout the year, the energy consumption efficiency is improved because the contribution of the effect of improving the heat transfer performance is significant.
As shown in FIG. 9, it can be seen that the flat tube heat exchanger 100 of the second embodiment is improved by 0.1% in year-round energy consumption efficiency as compared with the aspect of the first embodiment.
In this way, by forming the cut and raised pieces 11B in the fins 30, the heat transfer performance of the flat tube heat exchanger 100 can be further improved.
実施の形態3.
 図10は、本実施の形態3に係る冷凍サイクル装置100Aの扁平管熱交換器100の断面図である。なお、図10は、フィン30の延伸方向に平行な断面における断面図である。本実施の形態3では、実施の形態1と共通する構成については同一符号を付して説明をし、実施の形態1、2とは異なる部分を中心に説明する。
 なお、本実施の形態3では、切り起こし片11C及び熱交換用切り起こし片12Cは、実施の形態1で説明した切り起こし片11及び熱交換用切り起こし片12と同じ形状であるが、配置位置が異なっている。
Embodiment 3 FIG.
FIG. 10 is a cross-sectional view of the flat tube heat exchanger 100 of the refrigeration cycle apparatus 100A according to the third embodiment. FIG. 10 is a cross-sectional view in a cross section parallel to the extending direction of the fin 30. In the third embodiment, the same components as those in the first embodiment will be described with the same reference numerals, and the description will focus on the parts different from the first and second embodiments.
In the third embodiment, the cut and raised pieces 11C and the heat exchange cut and raised pieces 12C have the same shapes as the cut and raised pieces 11 and the heat exchange cut and raised pieces 12 described in the first embodiment. The position is different.
 図10に示すように、第2の仮想面PL2と切り起こし片11Cとの距離の方が、第2の仮想面PL2と熱交換用切り起こし片12Cとの距離よりも大きい。すなわち、第2の仮想面PL2と切り起こし片11Cの中心線との距離をb1とし、第2の仮想面PL2と熱交換用切り起こし片12の中心線との距離をb2としたとき、b1>b2となっている。 As shown in FIG. 10, the distance between the second virtual surface PL2 and the cut and raised piece 11C is larger than the distance between the second virtual surface PL2 and the cut and raised piece 12C for heat exchange. That is, when the distance between the second virtual plane PL2 and the center line of the cut and raised piece 11C is b1, and b2 is the distance between the second virtual plane PL2 and the center line of the heat exchange cut and raised piece 12, b1 > B2.
 なお、本実施の形態3では、切り起こし片11Cは、実施の形態1で説明した切り起こし片11と同じ形状であるものとして説明しているが、それに限定されるものではない。例えば、切り起こし片11Cは、実施の形態2で説明した切り起こし片11Bと同じ形状であってもよい。 In the third embodiment, the cut and raised pieces 11C are described as having the same shape as the cut and raised pieces 11 described in the first embodiment, but the present invention is not limited thereto. For example, the cut and raised piece 11C may have the same shape as the cut and raised piece 11B described in the second embodiment.
[実施の形態3の効果]
 図11は、本発明の実施の形態3に係る冷凍サイクル装置100Aの扁平管熱交換器100上に残る水量と時間の関係を示す図である。
 切り起こし片11Cの中心線と熱交換用切り起こし片12Cの中心線が一致している場合には、第1の扁平管10A1の下面SF2から切り起こし片11Cに引き込まれた結露水が、熱交換用切り起こし片12Cに引き込まれてしまうことがある。つまり、切り起こし片11Cに留まっている結露水が、熱交換用切り起こし片12Cに起因する毛細管の作用により、熱交換用切り起こし片12Cに引き込まれてしまう現象が生じる場合があるということである。
 本実施の形態3では、このような現象を回避するために、切り起こし片11Cの中心線と熱交換用切り起こし片12Cの中心線をずらしている。具体的には、第2の仮想面PL2と切り起こし片11Cとの距離の方が、第2の仮想面PL2と熱交換用切り起こし片12Cとの距離よりも大きくしている。
 これにより、切り起こし片11Cから排水された結露水が、熱交換用切り起こし片12に引き込まれることを抑制し、切り起こし片11Cから排水された結露水を、より確実に排水路13へ導くことができる。
 図11の実線で示すように、本実施の形態3に係る冷凍サイクル装置100Aの扁平管熱交換器100は、実施の形態2の態様(図11の破線参照)よりも、すみやかに水量Mが減少していくことがわかる。
[Effect of Embodiment 3]
FIG. 11 is a diagram showing the relationship between the amount of water remaining on the flat tube heat exchanger 100 of the refrigeration cycle apparatus 100A according to Embodiment 3 of the present invention and time.
When the center line of the cut and raised piece 11C coincides with the center line of the cut and raised piece 12C for heat exchange, the condensed water drawn into the cut and raised piece 11C from the lower surface SF2 of the first flat tube 10A1 is heated. The cut and raised piece 12C for replacement may be pulled into the replacement. That is, there is a case where the condensed water remaining on the cut and raised pieces 11C may be drawn into the heat exchange cut and raised pieces 12C due to the action of the capillaries resulting from the heat exchange cut and raised pieces 12C. is there.
In the third embodiment, in order to avoid such a phenomenon, the center line of the cut and raised piece 11C is shifted from the center line of the heat exchange cut and raised piece 12C. Specifically, the distance between the second virtual surface PL2 and the cut and raised piece 11C is larger than the distance between the second virtual surface PL2 and the cut and raised piece 12C for heat exchange.
As a result, the condensed water drained from the cut and raised piece 11C is suppressed from being drawn into the heat exchange cut and raised piece 12, and the condensed water drained from the cut and raised piece 11C is more reliably guided to the drainage channel 13. be able to.
As shown by the solid line in FIG. 11, the flat tube heat exchanger 100 of the refrigeration cycle apparatus 100 </ b> A according to the third embodiment has a water amount M that is faster than the aspect of the second embodiment (see the broken line in FIG. 11). It turns out that it decreases.
 図12は、本発明の実施の形態3に係る冷凍サイクル装置100Aの扁平管熱交換器100に切り起こし片11C及び熱交換用切り起こし片12Cを形成したことによる伝熱性能αoの改善率を示す図である。
 第2の仮想面PL2と切り起こし片11Cとの距離を、第2の仮想面PL2と熱交換用切り起こし片12Cとの距離よりも大きくすることで、フィン30の表面の流れがさらに局所的に乱され、空気と扁平管熱交換器100の熱交換量が向上する。
 図12に示すように、本実施の形態3の扁平管熱交換器100は、実施の形態2の態様と比較すると、伝熱性能αoが5.0%ほど改善していることがわかる。
FIG. 12 shows the improvement rate of the heat transfer performance αo by forming the cut and raised pieces 11C and the heat raised and raised pieces 12C in the flat tube heat exchanger 100 of the refrigeration cycle apparatus 100A according to Embodiment 3 of the present invention. FIG.
By making the distance between the second virtual surface PL2 and the cut-and-raised piece 11C larger than the distance between the second virtual surface PL2 and the cut-and-raised piece 12C for heat exchange, the flow on the surface of the fin 30 is further localized. Therefore, the amount of heat exchange between the air and the flat tube heat exchanger 100 is improved.
As shown in FIG. 12, it can be seen that the flat tube heat exchanger 100 of the third embodiment has a heat transfer performance αo improved by about 5.0% as compared with the aspect of the second embodiment.
 図13は、本発明の実施の形態3に係る冷凍サイクル装置100Aの扁平管熱交換器100に切り起こし片11C及び熱交換用切り起こし片12Cを形成したことによる通年エネルギー消費効率の改善率を示す図である。
 切り起こし片11C及び熱交換用切り起こし片12Cを形成することで空気が扁平管熱交換器100を通過する際に発生する通風抵抗も上がってしまう。しかし、通年エネルギー消費効率通年エネルギー消費効率を考慮すると、伝熱性能が向上する効果の寄与が大きいため、通年エネルギー消費効率は向上する。
 図13に示すように、本実施の形態3の扁平管熱交換器100は、実施の形態2の態様と比較すると、通年エネルギー消費効率が0.2%ほど改善していることがわかる。
 このように、フィン30に切り起こし片11C及び熱交換用切り起こし片12Cを形成することで、さらに、扁平管熱交換器100の伝熱性能の向上を図ることができる。
FIG. 13 shows the improvement rate of year-round energy consumption efficiency by forming the cut and raised pieces 11C and the heat raised and raised pieces 12C in the flat tube heat exchanger 100 of the refrigeration cycle apparatus 100A according to Embodiment 3 of the present invention. FIG.
By forming the cut and raised pieces 11C and the heat exchange cut and raised pieces 12C, ventilation resistance generated when air passes through the flat tube heat exchanger 100 is also increased. However, considering the energy consumption efficiency throughout the year, the energy consumption efficiency is improved because the contribution of the effect of improving the heat transfer performance is significant.
As shown in FIG. 13, it can be seen that the flat tube heat exchanger 100 of the third embodiment is improved in energy consumption efficiency by about 0.2% throughout the year as compared with the aspect of the second embodiment.
Thus, the heat transfer performance of the flat tube heat exchanger 100 can be further improved by forming the cut and raised pieces 11C and the heat exchange cut and raised pieces 12C on the fins 30.
実施の形態4.
 図14は、本実施の形態4に係る冷凍サイクル装置100Aの扁平管熱交換器100の断面図である。なお、図14は、フィン30の延伸方向に平行な断面における断面図である。本実施の形態4では、実施の形態1と共通する構成については同一符号を付して説明をし、実施の形態1~3とは異なる部分を中心に説明する。
 上述の実施の形態1~3では、第1の扁平管10A1の長軸AX1及び第2の扁平管10A2の長軸AX2については、水平方向に平行であった。本実施の形態4では、第1の扁平管10A1の長軸AX1及び第2の扁平管10A2の長軸AX2が水平方向と交差する態様となっている。ここで、長軸AX1は、第1の扁平管10A1の、フィン30の延伸方向に平行な断面における長軸である。長軸AX1は、第1の長軸に対応している。また、長軸AX2は、第2の扁平管10A2の、フィン30の延伸方向に平行な断面における長軸である。長軸AX2は、第2の長軸に対応している。
Embodiment 4 FIG.
FIG. 14 is a cross-sectional view of flat tube heat exchanger 100 of refrigeration cycle apparatus 100A according to the fourth embodiment. FIG. 14 is a cross-sectional view in a cross section parallel to the extending direction of the fin 30. In the fourth embodiment, the same components as those in the first embodiment will be described with the same reference numerals, and the description will focus on parts different from the first to third embodiments.
In Embodiments 1 to 3 described above, the long axis AX1 of the first flat tube 10A1 and the long axis AX2 of the second flat tube 10A2 are parallel to the horizontal direction. In the fourth embodiment, the long axis AX1 of the first flat tube 10A1 and the long axis AX2 of the second flat tube 10A2 intersect with the horizontal direction. Here, the long axis AX1 is a long axis in a cross section of the first flat tube 10A1 parallel to the extending direction of the fins 30. The long axis AX1 corresponds to the first long axis. The long axis AX2 is a long axis in a cross section of the second flat tube 10A2 parallel to the extending direction of the fins 30. The long axis AX2 corresponds to the second long axis.
 扁平管熱交換器は、板状のフィン30と、伝熱管10とを備えている。伝熱管10は、フィン30に交差して設けられた第1の扁平管10A1と、第1の扁平管10A1の下に間隔をあけて配置され、フィン30に交差して設けられている第2の扁平管10A2と、第1の扁平管10A1と第2の扁平管10A2とを接続する曲部(図示省略)とを備えている。第1の扁平管10A1はフィン30に連結し、第2の扁平管10A2もフィン30に連結している。
 ここで、第1の扁平管10A1は、空気が流入する方に位置する第1の端部E1が、空気が流出する方に位置する第2の端部E2よりも下に配置されている。すなわち、第1の扁平管10A1の長軸AX1は、水平方向と平行ではなく、水平方向と交差している。なお、長軸AX1と水平方向とは、角度θをなしている。
The flat tube heat exchanger includes plate-like fins 30 and heat transfer tubes 10. The heat transfer tube 10 is disposed at a distance below the first flat tube 10A1 provided to intersect the fins 30 and below the first flat tube 10A1 and is provided to intersect the fins 30. The flat tube 10A2 and a curved portion (not shown) connecting the first flat tube 10A1 and the second flat tube 10A2. The first flat tube 10A1 is connected to the fins 30 and the second flat tube 10A2 is also connected to the fins 30.
Here, in the first flat tube 10A1, the first end E1 located on the air inflow side is disposed below the second end E2 located on the air outflow side. That is, the long axis AX1 of the first flat tube 10A1 is not parallel to the horizontal direction but intersects the horizontal direction. The major axis AX1 and the horizontal direction form an angle θ.
 また、第2の扁平管10A2は、空気が流入する方に位置する第3の端部E3が、空気が流出する方に位置する第4の端部E4よりも下に配置されている。本実施の形態4においては、第1の扁平管10A1と第2の扁平管10A2とは平行である。すなわち、第1の扁平管10A1の長軸AX1及び第2の扁平管10A2の長軸AX2は、互いに平行に配置されている。第2の扁平管10A2の長軸AX2と水平方向とは、角度θをなしている。 Further, in the second flat tube 10A2, the third end E3 located on the air inflow side is disposed below the fourth end E4 located on the air outflow side. In the fourth embodiment, the first flat tube 10A1 and the second flat tube 10A2 are parallel to each other. That is, the long axis AX1 of the first flat tube 10A1 and the long axis AX2 of the second flat tube 10A2 are arranged in parallel to each other. The long axis AX2 of the second flat tube 10A2 and the horizontal direction form an angle θ.
 フィン30は、第1の扁平管10A1と第2の扁平管10A2との間の位置に切り起こし片11Dが形成されている。切り起こし片11Dの形成位置は、実施の形態1~3で説明したように、第1の領域RE1である。ここで、本実施の形態4では、第4の仮想面PL4の定義が実施の形態1~3とは異なっている。
 第4の仮想面PL4は、重力方向gに平行であり、第1の扁平管10A1の第1の端部E1を通る面である。
 そして、第1の領域RE1は、第1の仮想面PL1、第2の仮想面PL2、第3の仮想面PL3及び第4の仮想面PL4によって区画される範囲内に形成されている。本実施の形態4では、切り起こし片11Dは、第1の領域RE1のうちの排水路13寄りの位置に形成されている。
The fin 30 is cut and raised at a position between the first flat tube 10A1 and the second flat tube 10A2 to form a piece 11D. The formation position of the cut and raised piece 11D is the first region RE1 as described in the first to third embodiments. Here, in the fourth embodiment, the definition of the fourth virtual plane PL4 is different from those in the first to third embodiments.
The fourth virtual surface PL4 is a surface that is parallel to the gravity direction g and passes through the first end E1 of the first flat tube 10A1.
The first region RE1 is formed within a range defined by the first virtual surface PL1, the second virtual surface PL2, the third virtual surface PL3, and the fourth virtual surface PL4. In the fourth embodiment, the cut and raised piece 11D is formed at a position near the drainage channel 13 in the first region RE1.
 フィン30は、第1の扁平管10A1と第2の扁平管10A2との間の位置に熱交換用切り起こし片12Dが形成されている。熱交換用切り起こし片12Dの形成位置は、実施の形態1~3で説明したように、第2の領域RE2である。ここで、本実施の形態4では、第6の仮想面PL6の定義が実施の形態1~3とは異なっている。
 第6の仮想面PL6は、重力方向gに平行であり、第2の扁平管10A2の第3の端部E3を通る面である。
 そして、第2の領域RE2は、第1の仮想面PL1、第2の仮想面PL2、第5の仮想面PL5及び第6の仮想面PL6によって区画される範囲内に形成されている。本実施の形態4では、熱交換用切り起こし片12Dは、第2の領域RE2のうちの排水路13寄りの位置に形成されている。
As for the fin 30, the cut-and-raised piece 12D for heat exchange is formed in the position between 1st flat tube 10 A1 and 2nd flat tube 10 A2. As described in the first to third embodiments, the formation position of the heat exchange cut-and-raised piece 12D is the second region RE2. Here, in the fourth embodiment, the definition of the sixth virtual plane PL6 is different from those in the first to third embodiments.
The sixth virtual plane PL6 is a plane that is parallel to the gravity direction g and passes through the third end E3 of the second flat tube 10A2.
The second region RE2 is formed within a range defined by the first virtual surface PL1, the second virtual surface PL2, the fifth virtual surface PL5, and the sixth virtual surface PL6. In the fourth embodiment, the heat exchange cut-and-raised piece 12D is formed at a position near the drainage channel 13 in the second region RE2.
 なお、第4の仮想面PL4及び第6の仮想面PL6の定義が実施の形態1のものとは異なる理由は、本実施の形態4においては、第1の扁平管10A1の長軸AX1及び第2の扁平管10A2の長軸AX2が水平方向に交差する態様をとっているからである。
 このように、第4の仮想面PL4及び第6の仮想面PL6の定義が変わることにより、第1の領域RE1及び第2の領域RE2の形状も実施の形態1とは異なる。すなわち、実施の形態1の第1の領域RE1及び第2の領域RE2は、長方形形状であったが、本実施の形態4の第1の領域RE1及び第2の領域RE2は、台形である。
The reason why the definitions of the fourth virtual surface PL4 and the sixth virtual surface PL6 are different from those in the first embodiment is that, in the fourth embodiment, the long axis AX1 and the first axis AX1 of the first flat tube 10A1. This is because the long axis AX2 of the two flat tubes 10A2 is in the form of intersecting in the horizontal direction.
As described above, the definitions of the fourth virtual surface PL4 and the sixth virtual surface PL6 change, and the shapes of the first region RE1 and the second region RE2 are also different from those of the first embodiment. That is, the first region RE1 and the second region RE2 in the first embodiment are rectangular, but the first region RE1 and the second region RE2 in the fourth embodiment are trapezoidal.
 さらに、第7の仮想面PL7及び第8の仮想面PL8も実施の形態1~3とは異なっている。
 第7の仮想面PL7は、重力方向gに平行であり、第1の扁平管10A1の第2の端部E2を通る面である。
 第8の仮想面PL8は、重力方向gに平行であり、第2の扁平管10A2の第4の端部E4を通る面である。
 第3の領域RE3は、第1の仮想面PL1、第2の仮想面PL2、第3の仮想面PL3及び第7の仮想面PL7によって区画される部分である。
 第4の領域RE4は、第1の仮想面PL1、第2の仮想面PL2、第5の仮想面PL5及び第8の仮想面PL8によって区画される部分である。
 第3の領域RE3及び第4の領域RE4は、共に平面であり、切り起こし片は形成されていない。切り起こし片が形成されることによって、フィン30を通過する空気の圧力損失が増大してしまうことを回避している。
Further, the seventh virtual surface PL7 and the eighth virtual surface PL8 are also different from the first to third embodiments.
The seventh virtual plane PL7 is a plane that is parallel to the gravity direction g and passes through the second end E2 of the first flat tube 10A1.
The eighth virtual plane PL8 is a plane that is parallel to the gravity direction g and passes through the fourth end E4 of the second flat tube 10A2.
The third region RE3 is a portion defined by the first virtual surface PL1, the second virtual surface PL2, the third virtual surface PL3, and the seventh virtual surface PL7.
The fourth region RE4 is a portion partitioned by the first virtual surface PL1, the second virtual surface PL2, the fifth virtual surface PL5, and the eighth virtual surface PL8.
The third region RE3 and the fourth region RE4 are both flat, and no cut and raised pieces are formed. By forming the cut and raised pieces, the pressure loss of the air passing through the fins 30 is prevented from increasing.
[実施の形態4の効果]
 図15は、本実施の形態4に係る冷凍サイクル装置100Aの扁平管熱交換器100上に残る水量と時間の関係を示す図である。
 本実施の形態4では、第1の扁平管10A1の長軸AX1及び第2の扁平管10A2の長軸AX2が水平方向と交差する態様となっている。このため、第1の扁平管10A1の上面SF1及び第2の扁平管10A2の上面SF3の結露水は、フィン30などから流れてくる結露水とともに、排水路13へ流れていく。
 また、第1の扁平管10A1の下面SF2の結露水については、重力の作用によって第1の端部E1寄りに移動していき、その後、切り起こし片11Dによる毛細管の作用によって切り起こし片11に引き込まれる。そして、切り起こし片11Dに引き込まれた結露水は、排水路13に流れていく。このようにして、第1の扁平管10A1の下面SF2の結露水もすみやかに排水路13に導かれることになる。
[Effect of Embodiment 4]
FIG. 15 is a diagram showing the relationship between the amount of water remaining on the flat tube heat exchanger 100 of the refrigeration cycle apparatus 100A according to Embodiment 4 and time.
In the fourth embodiment, the long axis AX1 of the first flat tube 10A1 and the long axis AX2 of the second flat tube 10A2 intersect with the horizontal direction. Therefore, the dew condensation water on the upper surface SF1 of the first flat tube 10A1 and the upper surface SF3 of the second flat tube 10A2 flows into the drainage channel 13 together with the dew condensation water flowing from the fins 30 and the like.
Condensed water on the lower surface SF2 of the first flat tube 10A1 moves closer to the first end E1 by the action of gravity, and then cuts and raises to the cut piece 11 by the action of the capillary tube by the cut and raised piece 11D. Be drawn. Then, the condensed water drawn into the cut and raised piece 11 </ b> D flows into the drainage channel 13. In this way, the condensed water on the lower surface SF2 of the first flat tube 10A1 is also quickly guided to the drainage channel 13.
 熱交換用切り起こし片12Dは、切り起こし片11Dとは別体として形成されている。つまり、切り起こし片11Dと熱交換用切り起こし片12Dとは一体ではなく分割された切り起こし片である。このため、切り起こし片11Dに引き込まれた結露水に働く表面張力が大きくなりすぎることを防止することができ、切り起こし片11Dの結露水をすみやかに排水路13に流すことができる。 The cut and raised pieces 12D for heat exchange are formed separately from the cut and raised pieces 11D. That is, the cut and raised piece 11D and the heat exchange cut and raised piece 12D are not integrally but a divided cut and raised piece. For this reason, it is possible to prevent the surface tension acting on the dew condensation water drawn into the cut and raised pieces 11D from becoming too large, and the dew condensation water of the cut and raised pieces 11D can be quickly flowed to the drainage channel 13.
 実施の形態1で説明したように、熱交換用切り起こし片12は、切り起こし片11よりも大きく形成するとよい。これにより、切り起こし片11が大きくなって切り起こし片11に付着している結露水の表面張力が大きくなりすぎることを防止することができ、また、熱交換用切り起こし片12における熱交換性能を向上させることができる。すなわち、切り起こし片11Dの排水性能が低下することを回避しながら、フィン30の熱交換性能を向上させることができる。 As described in the first embodiment, the heat exchange cut and raised piece 12 may be formed larger than the cut and raised piece 11. Thereby, it is possible to prevent the cut and raised piece 11 from becoming too large and the surface tension of the condensed water adhering to the cut and raised piece 11 from being excessively increased, and the heat exchange performance of the heat exchange cut and raised piece 12. Can be improved. That is, the heat exchange performance of the fins 30 can be improved while avoiding the deterioration of the drainage performance of the cut and raised pieces 11D.
 図15の実線で示すように、本実施の形態4では、すみやかに水量Mが減少していくことがわかる。一方、扁平管熱交換器が、第1の扁平管10A1の長軸AX1及び第2の扁平管10A2の長軸AX2が水平方向と平行の態様であると、図15の破線で示すように、水量Mの減少が遅くなっていることがわかる。 As shown by the solid line in FIG. 15, in the fourth embodiment, it can be seen that the amount of water M decreases immediately. On the other hand, when the flat tube heat exchanger is in a mode in which the long axis AX1 of the first flat tube 10A1 and the long axis AX2 of the second flat tube 10A2 are parallel to the horizontal direction, as shown by the broken line in FIG. It can be seen that the decrease in the amount of water M is slow.
 伝熱管10を重力方向に傾斜させることで、伝熱管10周りの流れがはく離しやすくなり、隣り合う伝熱管の中心線の下部に主流が偏る(図20参照)。図20では、第1の扁平管10A1の第1の端部E1に向かう空気の流れ、及びその後の空気の流れについてだけを矢印で模式的に示している。なお、図20は、フィン30の延伸方向に平行な断面における断面図である。図20に示すように、第1の端部E1に向かう空気は、第1の端部E1に至ると、第1の扁平管10A1の下面SF2に沿って流れにくくなっている。つまり、第1の端部E1に衝突した空気及び第1の端部E1の周囲に至った空気は、下面SF2からはく離して、下流側に流れていく。下面SF2からはく離した空気は、第2の扁平管10A2寄りを流れることになる。つまり、第1の領域RE1よりも第2の領域RE2の方が、空気が流れる量が増大することになる。そこで、第2の領域RE2に熱交換用切り起こし片12を配置することで、扁平管熱交換器100の熱交換効率を効率的に向上させることができる。 By inclining the heat transfer tube 10 in the direction of gravity, the flow around the heat transfer tube 10 is easily separated, and the main flow is biased to the lower part of the center line of the adjacent heat transfer tubes (see FIG. 20). In FIG. 20, only the air flow toward the first end E1 of the first flat tube 10A1 and the subsequent air flow are schematically shown by arrows. FIG. 20 is a cross-sectional view in a cross section parallel to the extending direction of the fin 30. As shown in FIG. 20, the air toward the first end E1 is less likely to flow along the lower surface SF2 of the first flat tube 10A1 when reaching the first end E1. That is, the air that has collided with the first end E1 and the air that has reached the periphery of the first end E1 is peeled off from the lower surface SF2 and flows downstream. The air separated from the lower surface SF2 flows near the second flat tube 10A2. That is, the amount of air flowing in the second region RE2 is greater than that in the first region RE1. Therefore, the heat exchange efficiency of the flat tube heat exchanger 100 can be efficiently improved by disposing the heat exchange cut and raised pieces 12 in the second region RE2.
 図16は、本実施の形態4に係る冷凍サイクル装置100Aの扁平管熱交換器100に切り起こし片11D及び熱交換用切り起こし片12Dを形成したことによる伝熱性能αoの改善率を示す図である。
 扁平管熱交換器100では、第1の扁平管10A1の周りの空気のはく離による熱交換能力低下が生じている。しかし、熱交換用切り起こし片12による伝熱促進効果も生じている。熱交換能力低下よりも、伝熱促進効果の方が大きいため、伝熱性能αoは向上する。
 図16に示すように、本実施の形態4は、扁平管熱交換器が第1の扁平管10A1の長軸AX1及び第2の扁平管10A2の長軸AX2が水平方向と平行の態様よりも、伝熱性能αoが2.0%ほど改善していることがわかる。
FIG. 16 is a diagram showing the improvement rate of the heat transfer performance αo by forming the cut and raised pieces 11D and the heat exchange cut and raised pieces 12D in the flat tube heat exchanger 100 of the refrigeration cycle apparatus 100A according to the fourth embodiment. It is.
In the flat tube heat exchanger 100, the heat exchange capability is reduced due to the separation of air around the first flat tube 10A1. However, the heat transfer promoting effect by the heat exchanging and raising pieces 12 is also produced. Since the heat transfer acceleration effect is greater than the heat exchange capacity decrease, the heat transfer performance αo is improved.
As shown in FIG. 16, in the fourth embodiment, the flat tube heat exchanger has a longer axis AX1 of the first flat tube 10A1 and a longer axis AX2 of the second flat tube 10A2 than the aspect in which it is parallel to the horizontal direction. It can be seen that the heat transfer performance αo is improved by about 2.0%.
 図17は、本実施の形態4に係る冷凍サイクル装置100Aの扁平管熱交換器100に切り起こし片11D及び熱交換用切り起こし片12Dを形成したことによる通年エネルギー消費効率の改善率を示す図である。
 切り起こし片11D及び熱交換用切り起こし片12Dを形成することで空気が扁平管熱交換器100のフィン30を通過する際に発生する通風抵抗も上がってしまう。しかし、通年エネルギー消費効率を考慮すると、伝熱性能が向上する効果の寄与が大きいため、通年エネルギー消費効率は向上する。
 図17に示すように、実施の形態4では、扁平管熱交換器が第1の扁平管10A1の長軸AX1及び第2の扁平管10A2の長軸AX2が水平方向と平行の態様と比較すると、通年エネルギー消費効率は同等である。
 これは、切り起こし片11D及び熱交換用切り起こし片12Dを形成したことによる通風抵抗悪化と、切り起こし片11D及び熱交換用切り起こし片12Dを形成したことによる伝熱促進効果とが同等程度であるということである。
FIG. 17 is a diagram showing a year-round energy consumption efficiency improvement rate by forming the cut and raised pieces 11D and the heat exchange cut and raised pieces 12D in the flat tube heat exchanger 100 of the refrigeration cycle apparatus 100A according to the fourth embodiment. It is.
By forming the cut and raised pieces 11D and the heat exchange cut and raised pieces 12D, ventilation resistance generated when air passes through the fins 30 of the flat tube heat exchanger 100 is also increased. However, considering the year-round energy consumption efficiency, the contribution of the effect of improving the heat transfer performance is large, so the year-round energy consumption efficiency is improved.
As shown in FIG. 17, in the fourth embodiment, the flat tube heat exchanger is compared with a mode in which the long axis AX1 of the first flat tube 10A1 and the long axis AX2 of the second flat tube 10A2 are parallel to the horizontal direction. Throughout the year, energy consumption efficiency is equivalent.
This is equivalent to the deterioration of the ventilation resistance due to the formation of the cut and raised pieces 11D and the heat raised cut and raised pieces 12D, and the heat transfer promotion effect due to the formation of the cut and raised pieces 11D and the heat exchange cut and raised pieces 12D. It is that.
[実施の形態4の変形例]
 図18は、本実施の形態4に係る冷凍サイクル装置100Aの扁平管熱交換器100に形成した切り起こし片11D及び熱交換用切り起こし片12Dの断面図である。
 熱交換用切り起こし片12Dの高さh及びフィン30のピッチFPを次のように設定するとよい。すなわち、熱交換用切り起こし片12Dの切り起こし片の高さhは、フィン30のピッチFPの半分以下とするとよい。ここで、高さhというのは、図1BのY方向に対応している。
[Modification of Embodiment 4]
FIG. 18 is a cross-sectional view of the cut and raised pieces 11D and the heat raised and raised pieces 12D formed in the flat tube heat exchanger 100 of the refrigeration cycle apparatus 100A according to the fourth embodiment.
The height h of the heat exchange cut and raised pieces 12D and the pitch FP of the fins 30 may be set as follows. That is, the height h of the cut and raised pieces of the heat exchange cut and raised pieces 12 </ b> D may be less than or equal to half the pitch FP of the fins 30. Here, the height h corresponds to the Y direction in FIG. 1B.
 図19は、本実施の形態4に係る冷凍サイクル装置100Aの扁平管熱交換器に形成した高さhと伝熱性能αoの関係を示す図である。
 図19に示すように、高さhをパラメータにしたとき、h=1/2FPのとき伝熱性能αoはピーク値をとる。ただし、通風抵抗の寄与が大きい場合はスリット高さを1/2FP以下にしたほうがよい。したがって、本実施の形態4の変形例では、高さhをフィン30のピッチFPの半分以下としている。
FIG. 19 is a diagram showing the relationship between the height h formed in the flat tube heat exchanger of the refrigeration cycle apparatus 100A according to Embodiment 4 and the heat transfer performance αo.
As shown in FIG. 19, when the height h is used as a parameter, the heat transfer performance αo takes a peak value when h = 1 / 2FP. However, if the contribution of ventilation resistance is large, the slit height should be ½FP or less. Therefore, in the modification of the fourth embodiment, the height h is set to be equal to or less than half the pitch FP of the fins 30.
 なお、本実施の形態4は、実施の形態2及び実施の形態3で説明した構成を適用してもよい。
 すなわち、本実施の形態4で説明した切り起こし片11Dは、実施の形態2のように、第1の扁平管10A1寄りの部分から第2の扁平管10A2寄りの部分に向かうにしたがって、排水路13に近づくように形成されていてもよい。
 また、実施の形態3のように、第2の仮想面PL2と切り起こし片11Dとの距離の方が、第2の仮想面PL2と熱交換用切り起こし片12Dとの距離よりも大きくなっていてもよい。
Note that the configuration described in the second and third embodiments may be applied to the fourth embodiment.
That is, the cut-and-raised piece 11D described in the fourth embodiment is drained from the portion near the first flat tube 10A1 toward the portion near the second flat tube 10A2 as in the second embodiment. 13 may be formed so as to approach 13.
Further, as in the third embodiment, the distance between the second virtual surface PL2 and the cut-and-raised piece 11D is larger than the distance between the second virtual surface PL2 and the cut-and-raised piece 12D for heat exchange. May be.
 なお、各実施の形態で説明した冷凍サイクル装置は、空気調和装置(例えば、冷凍装置、ルームエアコン、パッケージエアコン、ビル用マルチエアコン等)、ヒートポンプ給湯機等、冷凍サイクルを備えた装置に適用して利用することができる。 Note that the refrigeration cycle apparatus described in each embodiment is applied to an apparatus equipped with a refrigeration cycle, such as an air conditioner (for example, a refrigeration apparatus, a room air conditioner, a packaged air conditioner, a multi air conditioner for buildings), a heat pump water heater, and the like. Can be used.
 1 室外機、2 室内機、3 圧縮機、4 四方弁、5 室外熱交換器、5a 室外送風機、6 電子膨張弁、7 液管、8 室内熱交換器、8a 室内送風機、9 ガス管、10 伝熱管、10A1 第1の扁平管、10A2 第2の扁平管、10B 曲部、11 切り起こし片、11B 切り起こし片、11C 切り起こし片、11D 切り起こし片、12 熱交換用切り起こし片、12C 熱交換用切り起こし片、12D 熱交換用切り起こし片、13 排水路、13A 端、30 フィン、50 制御装置、100 扁平管熱交換器、100A 冷凍サイクル装置、AX1 長軸、AX2 長軸、E1 第1の端部、E2 第2の端部、E3 第3の端部、E4 第4の端部、FP ピッチ、M 水量、PL1 第1の仮想面、PL2 第2の仮想面、PL3 第3の仮想面、PL4 第4の仮想面、PL5 第5の仮想面、PL6 第6の仮想面、PL7 第7の仮想面、PL8 第8の仮想面、RE1 第1の領域、RE2 第2の領域、RE3 第3の領域、RE4 第4の領域、SF1 上面、SF2 下面、SF3 上面、SF4 下面、g 重力方向、h 高さ、θ 角度、F 流路。 1 outdoor unit, 2 indoor unit, 3 compressor, 4 four-way valve, 5 outdoor heat exchanger, 5a outdoor blower, 6 electronic expansion valve, 7 liquid pipe, 8 indoor heat exchanger, 8a indoor blower, 9 gas pipe, 10 Heat transfer tube, 10A1, first flat tube, 10A2, second flat tube, 10B curved portion, 11 cut and raised piece, 11B cut and raised piece, 11C cut and raised piece, 11D cut and raised piece, 12 heat cut and raised piece, 12C Cut and raised pieces for heat exchange, 12D Cut and raised pieces for heat exchange, 13 drainage channel, 13A end, 30 fins, 50 control device, 100 flat tube heat exchanger, 100A refrigeration cycle device, AX1 long axis, AX2 long axis, E1 1st edge, E2, 2nd edge, E3, 3rd edge, E4, 4th edge, FP pitch, M water volume, PL1, 1st virtual surface, P 2 2nd virtual surface, PL3 3rd virtual surface, PL4 4th virtual surface, PL5 5th virtual surface, PL6 6th virtual surface, PL7 7th virtual surface, PL8 8th virtual surface, RE1 1st area | region, RE2 2nd area | region, RE3 3rd area | region, RE4 4th area | region, SF1 upper surface, SF2 lower surface, SF3 upper surface, SF4 lower surface, g gravity direction, h height, θ angle, F flow path.

Claims (6)

  1.  熱交換器及び前記熱交換器に空気を供給する送風機を備えた冷凍サイクル装置であって、
     前記熱交換器は、
     フィンと、
     前記フィンに連結し、前記空気が流入する方に位置する第1の端部が、前記空気が流出する方に位置する第2の端部よりも下に配置された第1の扁平管と、
     前記フィンに連結し、前記第1の扁平管の下に間隔をあけて配置された第2の扁平管と、
     を備え、
     前記第1の扁平管の、前記フィンの延伸方向に平行な断面における長軸を第1の長軸とし、前記第2の扁平管の、前記フィンの延伸方向に平行な断面における長軸を第2の長軸としたとき、
     前記第1の長軸と前記第2の長軸は平行であり、
     前記フィンは、
     前記第1の扁平管と前記第2の扁平管との間の位置に切り起こし片が形成され、
     前記切り起こし片は、
     前記第1の扁平管と前記第2の扁平管との間の中央を通り、前記第1の長軸に平行な面を第1の仮想面とし、
     前記第1の長軸における幅の中心と前記第2の長軸における幅の中心とを通る面を第2の仮想面とし、
     前記第1の長軸と平行であり、前記第1の扁平管の下面を通る面を第3の仮想面とし、
     重力方向に平行であり、前記第1の扁平管の前記第1の端部を通る面を第4の仮想面としたとき、
     前記第1の仮想面、前記第2の仮想面、前記第3の仮想面及び第4の仮想面によって区画される第1の領域に配置されている
     冷凍サイクル装置。
    A refrigeration cycle apparatus comprising a heat exchanger and a blower for supplying air to the heat exchanger,
    The heat exchanger is
    Fins,
    A first flat tube connected to the fin and positioned at a lower end than a second end positioned at a direction where the air flows out;
    A second flat tube connected to the fin and spaced below the first flat tube;
    With
    The long axis in the cross section of the first flat tube parallel to the extending direction of the fin is defined as the first long axis, and the long axis of the second flat tube in the cross section parallel to the extending direction of the fin is defined as the first long axis. When the major axis is 2,
    The first major axis and the second major axis are parallel;
    The fin is
    A cut and raised piece is formed at a position between the first flat tube and the second flat tube,
    The cut and raised pieces are
    A plane passing through the center between the first flat tube and the second flat tube and parallel to the first long axis is defined as a first virtual surface;
    A plane passing through the center of the width in the first major axis and the center of the width in the second major axis is defined as a second virtual plane,
    A surface that is parallel to the first long axis and passes through the lower surface of the first flat tube is defined as a third virtual surface,
    When a plane that is parallel to the direction of gravity and passes through the first end of the first flat tube is a fourth virtual plane,
    A refrigeration cycle apparatus disposed in a first region defined by the first virtual surface, the second virtual surface, the third virtual surface, and the fourth virtual surface.
  2.  前記第2の扁平管は、
     前記空気が流入する方に位置する第3の端部と、前記空気が流出する方に位置し、前記第3の端部よりも上側に位置する第4の端部とを含み、
     前記フィンは、
     前記第1の扁平管と前記第2の扁平管との間の位置に、空気との熱交換を促進する熱交換用切り起こし片が形成され、
     前記熱交換用切り起こし片は、
     前記第2の長軸と平行であり、前記第2の扁平管の上面を通る面を第5の仮想面とし、
     前記重力方向に平行であり、前記第2の扁平管の前記第3の端部を通る面を第6の仮想面としたとき、
     前記第1の仮想面、前記第2の仮想面、前記第5の仮想面及び第6の仮想面によって区画される第2の領域に配置されている
     請求項1に記載の冷凍サイクル装置。
    The second flat tube is
    A third end located on the air inflow side, and a fourth end located on the upper side of the third end located on the outflow side of the air;
    The fin is
    At the position between the first flat tube and the second flat tube, a heat exchange cut and raised piece that promotes heat exchange with air is formed,
    The heat exchange cut and raised pieces are:
    A plane parallel to the second major axis and passing through the upper surface of the second flat tube is a fifth virtual plane,
    When a plane that is parallel to the direction of gravity and passes through the third end of the second flat tube is a sixth virtual plane,
    The refrigeration cycle apparatus according to claim 1, wherein the refrigeration cycle apparatus is disposed in a second region partitioned by the first virtual surface, the second virtual surface, the fifth virtual surface, and the sixth virtual surface.
  3.  前記熱交換用切り起こし片の高さは、
     前記フィンのピッチの半分以下である
     請求項1又は2に記載の冷凍サイクル装置。
    The height of the heat exchange cut and raised piece is:
    The refrigeration cycle apparatus according to claim 1 or 2, wherein the refrigeration cycle apparatus is half or less of a pitch of the fins.
  4.  フィンと、
     前記フィンに連結している第1の扁平管と、
     前記フィンに連結し、前記第1の扁平管に間隔をあけて配置された第2の扁平管と、
     を備え、
     前記フィンは、
     前記第1の扁平管から前記第2の扁平管に向かう予め定められた方向に平行に延びるように形成され、前記フィンの端部に位置する排水路と、
     前記第1の扁平管と前記第2の扁平管との間の位置に形成された切り起こし片及び熱交換用切り起こし片とを含み、
     前記第1の扁平管の、前記フィンの延伸方向に平行な断面における長軸を第1の長軸とし、前記第2の扁平管の、前記フィンの延伸方向に平行な断面における長軸を第2の長軸としたとき、
     前記第1の長軸と前記第2の長軸は平行であり、
     前記第1の扁平管は、
     前記排水路の端に位置する第1の端部と、前記第1の端部よりも前記排水路から遠い方に位置する第2の端部とを含み、
     前記第2の扁平管は、
     前記排水路の端に位置する第3の端部と、前記第3の端部よりも前記排水路から遠い方に位置する第4の端部とを含み、
     前記切り起こし片は、
     前記第1の扁平管と前記第2の扁平管との間の中央を通り、前記第1の長軸に平行な面を第1の仮想面とし、
     前記第1の長軸における幅の中心と前記第2の長軸における幅の中心とを通る面を第2の仮想面とし、
     前記第1の長軸と平行であり、前記第1の扁平管の面のうち前記第2の扁平管との対向面を通る面を第3の仮想面とし、
     前記予め定められた方向に平行であり、前記第1の扁平管の前記第1の端部を通る面を第4の仮想面としたとき、
     前記第1の仮想面、前記第2の仮想面、前記第3の仮想面及び前記第4の仮想面によって区画される第1の領域に配置され、
     前記熱交換用切り起こし片は、
     前記第2の長軸と平行であり、前記第2の扁平管の面のうち前記第1の扁平管との対向面を通る面を第5の仮想面とし、
     前記予め定められた方向に平行であり、前記第2の扁平管の前記第3の端部を通る面を第6の仮想面としたとき、
     前記第1の仮想面、前記第2の仮想面、前記第5の仮想面及び前記第6の仮想面によって区画される第2の領域に配置されている
     扁平管熱交換器。
    Fins,
    A first flat tube connected to the fin;
    A second flat tube connected to the fin and spaced from the first flat tube;
    With
    The fin is
    A drainage channel formed so as to extend in parallel to a predetermined direction from the first flat tube toward the second flat tube, and located at an end of the fin;
    A cut and raised piece formed at a position between the first flat tube and the second flat tube and a heat exchange cut and raised piece,
    The long axis in the cross section of the first flat tube parallel to the extending direction of the fin is defined as the first long axis, and the long axis of the second flat tube in the cross section parallel to the extending direction of the fin is defined as the first long axis. When the major axis is 2,
    The first major axis and the second major axis are parallel;
    The first flat tube is
    A first end located at an end of the drainage channel, and a second end located farther from the drainage channel than the first end,
    The second flat tube is
    A third end located at the end of the drainage channel, and a fourth end located farther from the drainage channel than the third end,
    The cut and raised pieces are
    A plane passing through the center between the first flat tube and the second flat tube and parallel to the first long axis is defined as a first virtual surface;
    A plane passing through the center of the width in the first major axis and the center of the width in the second major axis is defined as a second virtual plane,
    A surface that is parallel to the first major axis and that passes through the surface facing the second flat tube among the surfaces of the first flat tube is defined as a third virtual surface,
    When a plane that is parallel to the predetermined direction and passes through the first end of the first flat tube is a fourth virtual plane,
    Arranged in a first region partitioned by the first virtual surface, the second virtual surface, the third virtual surface and the fourth virtual surface;
    The heat exchange cut and raised pieces are:
    A surface that is parallel to the second major axis and passes through the surface facing the first flat tube among the surfaces of the second flat tube is defined as a fifth virtual surface,
    When a plane that is parallel to the predetermined direction and passes through the third end of the second flat tube is a sixth virtual plane,
    A flat tube heat exchanger disposed in a second region defined by the first virtual surface, the second virtual surface, the fifth virtual surface, and the sixth virtual surface.
  5.  前記切り起こし片は、
     前記第1の扁平管寄りの部分から前記第2の扁平管寄りの部分に向かうにしたがって、前記排水路に近づくように形成されている
     請求項4に記載の扁平管熱交換器。
    The cut and raised pieces are
    The flat tube heat exchanger according to claim 4, wherein the flat tube heat exchanger is formed so as to approach the drainage channel from a portion near the first flat tube toward a portion near the second flat tube.
  6.  前記第2の仮想面と前記切り起こし片との距離の方が、前記第2の仮想面と前記熱交換用切り起こし片との距離よりも大きい
     請求項4又は5に記載の扁平管熱交換器。
    The flat tube heat exchange according to claim 4 or 5, wherein a distance between the second virtual surface and the cut-and-raised piece is greater than a distance between the second virtual surface and the cut-and-raised piece for heat exchange. vessel.
PCT/JP2016/052764 2016-01-29 2016-01-29 Refrigeration cycle device and flat tube heat exchanger WO2017130399A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2016/052764 WO2017130399A1 (en) 2016-01-29 2016-01-29 Refrigeration cycle device and flat tube heat exchanger
JP2017563643A JP6548749B2 (en) 2016-01-29 2016-01-29 Refrigeration cycle device and flat tube heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/052764 WO2017130399A1 (en) 2016-01-29 2016-01-29 Refrigeration cycle device and flat tube heat exchanger

Publications (1)

Publication Number Publication Date
WO2017130399A1 true WO2017130399A1 (en) 2017-08-03

Family

ID=59397571

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/052764 WO2017130399A1 (en) 2016-01-29 2016-01-29 Refrigeration cycle device and flat tube heat exchanger

Country Status (2)

Country Link
JP (1) JP6548749B2 (en)
WO (1) WO2017130399A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10619930B2 (en) * 2016-09-23 2020-04-14 Daikin Industries, Ltd. Heat exchanger
JP2020201013A (en) * 2019-06-12 2020-12-17 ダイキン工業株式会社 air conditioner
JP7468721B2 (en) 2019-03-26 2024-04-16 株式会社富士通ゼネラル Heat exchanger and air conditioner equipped with heat exchanger
WO2024201694A1 (en) * 2023-03-28 2024-10-03 日本キヤリア株式会社 Heat exchanger
US12140358B2 (en) 2019-06-12 2024-11-12 Daikin Industries, Ltd. Refrigerant cycle system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2095813A (en) * 1981-02-05 1982-10-06 Hutogepgyar Engine cooler
JPH0791873A (en) * 1993-09-20 1995-04-07 Hitachi Ltd Fin and tube type heat exchanger
JP2008002746A (en) * 2006-06-22 2008-01-10 Kenji Umetsu Air heat exchanger of high performance
EP2725311A2 (en) * 2012-10-29 2014-04-30 Samsung Electronics Co., Ltd Heat exchanger
JP2015132468A (en) * 2015-04-22 2015-07-23 三菱電機株式会社 Heat exchanger of air conditioner

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013160951A1 (en) * 2012-04-26 2013-10-31 三菱電機株式会社 Heat exchanger, method for manufacturing heat exchanger, and air conditioner

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2095813A (en) * 1981-02-05 1982-10-06 Hutogepgyar Engine cooler
JPH0791873A (en) * 1993-09-20 1995-04-07 Hitachi Ltd Fin and tube type heat exchanger
JP2008002746A (en) * 2006-06-22 2008-01-10 Kenji Umetsu Air heat exchanger of high performance
EP2725311A2 (en) * 2012-10-29 2014-04-30 Samsung Electronics Co., Ltd Heat exchanger
JP2015132468A (en) * 2015-04-22 2015-07-23 三菱電機株式会社 Heat exchanger of air conditioner

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10619930B2 (en) * 2016-09-23 2020-04-14 Daikin Industries, Ltd. Heat exchanger
JP7468721B2 (en) 2019-03-26 2024-04-16 株式会社富士通ゼネラル Heat exchanger and air conditioner equipped with heat exchanger
US12007179B2 (en) 2019-03-26 2024-06-11 Fujitsu General Limited Heat exchanger and air conditioner including heat exchanger
JP2020201013A (en) * 2019-06-12 2020-12-17 ダイキン工業株式会社 air conditioner
WO2020250953A1 (en) * 2019-06-12 2020-12-17 ダイキン工業株式会社 Air conditioner
EP3961124A4 (en) * 2019-06-12 2022-06-22 Daikin Industries, Ltd. Air conditioner
US12140358B2 (en) 2019-06-12 2024-11-12 Daikin Industries, Ltd. Refrigerant cycle system
WO2024201694A1 (en) * 2023-03-28 2024-10-03 日本キヤリア株式会社 Heat exchanger

Also Published As

Publication number Publication date
JP6548749B2 (en) 2019-07-24
JPWO2017130399A1 (en) 2018-08-30

Similar Documents

Publication Publication Date Title
JP5581671B2 (en) Air conditioner outdoor unit
JP6710205B2 (en) Heat exchanger and refrigeration cycle device
WO2018003123A1 (en) Heat exchanger and refrigeration cycle apparatus
JP6590948B2 (en) Heat exchanger and refrigeration cycle equipment
US10047962B2 (en) Indoor unit for air-conditioning apparatus
WO2017130399A1 (en) Refrigeration cycle device and flat tube heat exchanger
EP3156752B1 (en) Heat exchanger
GB2564277A (en) Heat exchanger
WO2019026239A1 (en) Heat exchanger and refrigeration cycle device
JP6157593B2 (en) Heat exchanger and refrigeration cycle air conditioner using the same
WO2014068687A1 (en) Parallel flow heat exchanger and air conditioner using same
EP3608618B1 (en) Heat exchanger and refrigeration cycle device
WO2018207321A1 (en) Heat exchanger and refrigeration cycle device
JP3584304B2 (en) Heat exchanger and air conditioner provided with the same
JP6471345B2 (en) Heat exchanger
JP6678413B2 (en) Air conditioner
WO2021234957A1 (en) Heat exchanger and air conditioner comprising said heat exchanger
WO2015173938A1 (en) Heat exchanger, and refrigeration cycle device provided with heat exchanger
JP4983878B2 (en) Heat exchanger, refrigerator equipped with this heat exchanger, and air conditioner
JP6608946B2 (en) Air conditioner and outdoor unit of air conditioner
WO2020012548A1 (en) Heat exchanger, heat exchanger unit, and refrigeration cycle device
CN110945300B (en) Refrigerant distributor, heat exchanger, and refrigeration cycle device
WO2021199121A1 (en) Heat exchanger and refrigeration cycle device
JP2012063076A (en) Heat storage apparatus and air conditioning apparatus
JPWO2018235134A1 (en) Unit, air conditioner, and method of manufacturing heat exchanger

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16887985

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017563643

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16887985

Country of ref document: EP

Kind code of ref document: A1