WO2017026011A1 - Refrigeration cycle device - Google Patents

Refrigeration cycle device Download PDF

Info

Publication number
WO2017026011A1
WO2017026011A1 PCT/JP2015/072551 JP2015072551W WO2017026011A1 WO 2017026011 A1 WO2017026011 A1 WO 2017026011A1 JP 2015072551 W JP2015072551 W JP 2015072551W WO 2017026011 A1 WO2017026011 A1 WO 2017026011A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
condenser
compressor
expansion valve
pressure
Prior art date
Application number
PCT/JP2015/072551
Other languages
French (fr)
Japanese (ja)
Inventor
悟 梁池
大林 誠善
仁隆 門脇
七種 哲二
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2017534039A priority Critical patent/JP6498299B2/en
Priority to PCT/JP2015/072551 priority patent/WO2017026011A1/en
Publication of WO2017026011A1 publication Critical patent/WO2017026011A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle

Definitions

  • the present invention relates to a refrigeration cycle apparatus having an injection pipe.
  • a high pressure switch that stops protection of the compressor
  • a high pressure sensor that detects the high pressure of the refrigerant circuit or its pressure saturation temperature
  • High pressure control means for performing high pressure protection control.
  • the high pressure control means which calculates
  • the refrigerant circuit is set so that the temperature of the heat medium becomes an arbitrary set temperature.
  • the condensing temperature is controlled.
  • the pressure (high pressure) of the refrigerant discharged from the compressor of the refrigerant circuit increases as the condensation temperature increases.
  • Patent Document 1 calculates an average of a plurality of detected pressures by a high-pressure sensor in order to suppress frequent stoppage in high-pressure protection, and high-pressure protection control works when the average value exceeds a threshold value. I am doing so. However, since the high pressure protection is entered when the average pressure reaches a predetermined value, high pressure suppression is not fundamentally achieved.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a refrigeration cycle apparatus that can suppress an increase in the high-pressure pressure of a refrigerant circuit.
  • the refrigeration cycle apparatus includes a compressor, a condenser, a first expansion valve, and an evaporator, and includes a refrigerant circuit that circulates refrigerant and a control device that controls the compressor, and the compressor Has a compression chamber and an injection port for injecting refrigerant into the compression chamber, and the refrigerant circuit includes an internal heat exchanger provided between the condenser and the first expansion valve.
  • the control device controls the drive frequency of the compressor based on the temperature of the heat medium flowing out from the condenser, and the amount of the refrigerant sealed in the refrigerant circuit is In the state where the drive frequency is controlled, the amount of the first refrigerant is a two-phase state.
  • the heat transfer coefficient in the condenser can be improved by making the refrigerant flowing out of the condenser into a two-phase state. Therefore, even when the temperature of the refrigerant flowing into the condenser rises, an increase in the high pressure of the refrigerant circuit can be suppressed.
  • FIG. 3 is a ph diagram showing the state of the refrigerant in the refrigerant circuit that is the premise of Embodiment 1 of the present invention.
  • FIG. 3 is a ph diagram showing the state of refrigerant in the refrigerant circuit 30 according to Embodiment 1 of the present invention. It is a figure which shows typically the structure of the compressor 1 which concerns on Embodiment 2 of this invention.
  • FIG. 1 is a circuit configuration diagram showing the configuration of the refrigeration cycle apparatus according to the present embodiment.
  • the refrigeration cycle apparatus supplies hot or cold heat to a fluid (for example, a liquid heat medium or air such as water, antifreeze, or brine) that is a heat transfer medium (heat medium) in air conditioning or the like.
  • a fluid for example, a liquid heat medium or air such as water, antifreeze, or brine
  • heat transfer medium heat medium
  • the refrigeration cycle apparatus in the present embodiment has a refrigerant circuit 30 for circulating the refrigerant.
  • the refrigerant circuit 30 has a main circuit in which the compressor 1, the condenser 2, the first expansion valve 4 and the evaporator 5 are sequentially connected in an annular manner through a refrigerant pipe.
  • the compressor 1 compresses the sucked low-pressure refrigerant and discharges it as a high-pressure refrigerant.
  • various compressors such as a scroll compressor, can be used, for example.
  • the compressor 1 includes a compression unit that includes a compression chamber that compresses a refrigerant, a motor that drives the compression unit, and a shell that houses the compression unit and the motor. Refrigerating machine oil that lubricates the sliding portion in the compressor 1 is stored at the bottom of the shell.
  • the compressor 1 can arbitrarily change the drive frequency based on a command signal sent from the control device 100 described later.
  • the compression port of the compressor 1 is provided with an injection port 1a.
  • the injection port 1a is for injecting a medium-pressure gas-liquid two-phase refrigerant into a medium-pressure compression chamber in the middle of the compression stroke in the compression section.
  • the medium pressure is lower than the high pressure in the refrigerant circuit 30 (for example, the discharge pressure of the compressor 1 or the pressure in the condenser 2), and the low pressure (for example, the suction pressure of the compressor 1 or the evaporator). Pressure within 5).
  • the condenser 2 is a load-side heat exchanger that exchanges heat between the high-pressure refrigerant compressed by the compressor 1 and water (an example of a heat medium) flowing through a water flow path 20 described later.
  • the condenser 2 is, for example, a plate heat exchanger in which a plurality of heat transfer plates are stacked.
  • the first expansion valve 4 is a valve that expands the refrigerant by decompressing it.
  • the first expansion valve 4 is, for example, an electronic expansion valve that can adjust the opening degree based on a command signal from the control device 100.
  • the evaporator 5 is a heat exchanger on the heat source side that performs heat exchange between the refrigerant decompressed by the first expansion valve 4 and an external fluid (for example, outdoor air) to evaporate the refrigerant to be in a gas phase state.
  • the refrigerant circuit 30 further includes an internal heat exchanger 3, an injection pipe 7, and a second expansion valve 6.
  • the internal heat exchanger 3 is provided between the condenser 2 and the first expansion valve 4 in the main circuit.
  • the injection pipe 7 is a refrigerant pipe that connects the branch portion 18 provided between the internal heat exchanger 3 and the first expansion valve 4 in the main circuit and the injection port 1a of the compressor 1.
  • the injection pipe 7 divides a part of the refrigerant flowing between the internal heat exchanger 3 of the main circuit and the first expansion valve 4 and injects it into the compression chamber of medium pressure of the compressor 1 through the injection port 1a. Is.
  • the second expansion valve 6 is provided between the branch portion 18 and the internal heat exchanger 3 in the injection pipe 7.
  • the second expansion valve 6 expands the high-pressure refrigerant divided into the injection piping 7 by reducing the pressure to a medium pressure.
  • the second expansion valve 6 is an electronic expansion valve capable of adjusting the opening degree based on a command signal from the control device 100, for example.
  • the internal heat exchanger 3 includes a high-pressure refrigerant (for example, a two-phase refrigerant) that has flowed out of the condenser 2 in the main circuit, and a medium-pressure two-phase refrigerant that is diverted to the injection pipe 7 and decompressed by the second expansion valve 6. And a heat exchanger that performs heat exchange.
  • a high-pressure refrigerant for example, a two-phase refrigerant
  • a medium-pressure two-phase refrigerant that is diverted to the injection pipe 7 and decompressed by the second expansion valve 6.
  • a heat exchanger that performs heat exchange.
  • the water channel 20 is constituted by a pipe or the like, and becomes a channel through which water flows.
  • water may be circulated by connecting the pipe of the water channel 20 in a ring shape.
  • the water flow path 20 is provided with a pump 8 that delivers water.
  • the control device 100 is configured by a microcomputer, for example, and includes a CPU, a RAM, a ROM, and the like. A control program and the like are stored in the ROM. Detection values are input to the control device 100 from various sensors that detect the pressure and temperature of the refrigerant in the refrigerant circuit 30 and the temperature of water in the water flow path 20. The control device 100 controls each component of the refrigeration cycle apparatus based on the detection value from each sensor.
  • the control device 100 controls the drive frequency of the compressor 1 so that the temperature of the water flowing out of the condenser 2 becomes a set temperature.
  • the set temperature is a temperature arbitrarily set in advance by a user or the like.
  • the control device 100 acquires a detection value from a temperature sensor that detects the temperature of water flowing out of the condenser 2.
  • the control device 100 increases the drive frequency of the compressor 1 and increases the circulation amount of the refrigerant.
  • the control device 100 decreases the drive frequency of the compressor 1 and decreases the circulation amount of the refrigerant.
  • control device 100 controls the opening degree of the first expansion valve 4 so that the subcool of the refrigerant flowing out of the condenser 2 becomes a predetermined value (including 0K). Further, the control device 100 controls the opening degree of the second expansion valve 6 so that the subcool of the refrigerant flowing into the first expansion valve 4 becomes a predetermined value.
  • the amount of refrigerant sealed in the refrigerant circuit 30 is such that the refrigerant flowing out of the condenser 2 in a state where the driving frequency of the compressor 1 is controlled so that the temperature of the water flowing out of the condenser 2 becomes a set temperature. It is the amount that results in a gas-liquid two-phase state.
  • FIG. 2 is a ph diagram showing the state of the refrigerant in the refrigerant circuit that is the premise of the present embodiment.
  • the horizontal axis of FIG. 2 represents enthalpy [kJ / kg], and the vertical axis represents pressure [MPa].
  • the gas refrigerant that has flowed into the condenser 2 is cooled and condensed by heat exchange with water flowing through the water flow path 20, and becomes a supercooled liquid refrigerant (point b1).
  • the water in the water flow path 20 is heated by the heat radiated from the refrigerant (mainly the latent heat of condensation of the refrigerant) to become hot water.
  • the liquid refrigerant that has flowed out of the condenser 2 is further subcooled by heat exchange in the internal heat exchanger 3 (point c1).
  • the liquid refrigerant flowing out of the internal heat exchanger 3 is decompressed by the first expansion valve 4 and becomes a low-pressure two-phase refrigerant (point d1).
  • the two-phase refrigerant that has flowed out of the first expansion valve 4 flows into the evaporator 5.
  • the two-phase refrigerant that has flowed into the evaporator 5 is heated and evaporated by heat exchange with the external fluid, and becomes a low-pressure gas refrigerant (point e1).
  • the low-pressure gas refrigerant that has flowed out of the evaporator 5 is sucked into the compressor 1.
  • a part of the liquid refrigerant flowing out of the internal heat exchanger 3 is divided into the injection pipe 7.
  • the liquid refrigerant branched into the injection pipe 7 is depressurized by the second expansion valve 6 and becomes a medium-pressure two-phase refrigerant having a low dryness (point h1).
  • This two-phase refrigerant is heated by heat exchange in the internal heat exchanger 3, and becomes a medium-pressure two-phase refrigerant having a high dryness (point i1).
  • the medium-pressure two-phase refrigerant that has flowed out of the internal heat exchanger 3 is injected into a compression chamber that is in the middle of the compression stroke (for example, a pressure approximately halfway between the suction pressure and the discharge pressure) via the injection port 1a. .
  • the low-pressure gas refrigerant sucked into the compressor 1 joins the medium-pressure two-phase refrigerant injected through the injection port 1a (point g1) when it is compressed to the medium pressure in the compression chamber (point f1). ).
  • the merged refrigerant is further compressed in the compression chamber and discharged as a high-temperature and high-pressure gas refrigerant (point a1).
  • FIG. 3 shows the refrigerant circuit 30 according to the present embodiment.
  • FIG. 6 is a ph diagram showing the state of the refrigerant in FIG.
  • the horizontal axis of FIG. 3 represents enthalpy [kJ / kg], and the vertical axis represents pressure [MPa].
  • the basic refrigerant state in the present embodiment is the same as the ph diagram shown in FIG.
  • the points a2, c2, d2, e2, f2, g2, h2, and i2 in FIG. 3 correspond to the points a1, c1, d1, e1, f1, g1, h1, and i1 in FIG. 2, respectively.
  • the state of the refrigerant flowing out of the condenser 2 is a liquid phase (point b1) in FIG. 2, but is a gas-liquid two phase (point b2) in FIG.
  • the refrigerant flowing into the first expansion valve 4 is in a liquid phase in both FIGS. 2 and 3 (points c1 and c2).
  • the difference between the enthalpy of the refrigerant flowing out from the condenser 2 and the enthalpy of the refrigerant flowing into the first expansion valve 4 becomes large. Therefore, in this embodiment, it is necessary to increase the amount of heat exchange in the internal heat exchanger 3. In the configuration of the present embodiment, in order to increase the heat exchange amount in the internal heat exchanger 3, it is necessary to increase the amount of refrigerant that is diverted to the injection pipe 7.
  • the amount of refrigerant that flows into the injection pipe 7 is increased, the amount of liquid refrigerant that flows into the compressor 1 increases. For this reason, when the injection position of the liquid refrigerant is not appropriate, the liquid refrigerant flowing into the compressor 1 may be mixed with the refrigerating machine oil at the bottom of the shell, and the refrigerating machine oil may be diluted to lower the concentration. When the refrigeration oil is diluted, problems such as seizure of the compressor 1 are likely to occur due to poor lubrication of the sliding portion.
  • the medium pressure refrigerant that has been depressurized by being diverted to the injection pipe 7 is injected through the injection port 1a into the medium pressure compression chamber in the middle of the compression stroke without passing through the shell bottom.
  • the refrigerating machine oil at the bottom of the shell is hardly diluted.
  • the heat exchange amount of the internal heat exchanger 3 can be increased while ensuring the reliability of the compressor 1.
  • the heat transfer coefficient in the condenser 2 can be improved. Therefore, even when the temperature of the refrigerant flowing into the condenser 2 rises, an increase in the high pressure of the refrigerant circuit 30 can be suppressed. Thereby, the operating range of the refrigeration cycle apparatus can be expanded.
  • the flow resistance of the refrigerant generated in the first expansion valve 4 can be reduced.
  • the 1st expansion valve 4 can be reduced in size.
  • noise generated in the first expansion valve 4 can be reduced, and durability and reliability of the first expansion valve 4 can be improved.
  • FIG. A refrigeration cycle apparatus according to Embodiment 2 of the present invention will be described.
  • the refrigeration cycle apparatus according to the present embodiment is characterized in that the compressor 1 is a low-pressure shell type.
  • the overall configuration of the refrigerant circuit 30 is the same as that of the first embodiment.
  • FIG. 4 is a diagram schematically showing the configuration of the compressor 1 according to the present embodiment.
  • the compressor 1 includes a compression unit 10 including a compression chamber that compresses a refrigerant, a motor 12 that drives the compression unit 10, and a shell 9 that houses the compression unit 10 and the motor 12. Have.
  • the motor 12 and the compression unit 10 are connected by a shaft 11 that transmits the driving force of the motor 12 to the compression unit 10.
  • An oil sump 17 for storing refrigeration oil is provided at the bottom of the shell 9.
  • Connected to the shell 9 is a suction pipe 13 for sucking low-pressure gas refrigerant flowing out from the outlet of the evaporator 5. Since the compressor 1 is a low-pressure shell type, the low-pressure gas refrigerant sucked from the suction pipe 13 is sucked into the compression unit 10 via the suction space in the shell 9.
  • the compression unit 10 is provided with a suction port 16 and an injection port 1a.
  • the suction port 16 sucks the gas refrigerant in the suction space in the shell 9 into the compression chamber of the compression unit 10.
  • the injection port 1a is for injecting a medium-pressure gas-liquid two-phase refrigerant into a medium-pressure compression chamber in the middle of the compression stroke.
  • An injection pipe 7 is connected to the injection port 1a.
  • a discharge pipe 15 that discharges the high-pressure gas refrigerant compressed by the compression unit 10 to the inlet side of the condenser 2 is connected to the compression unit 10.
  • the liquid refrigerant flowing into the compressor 1 may be mixed with the refrigerating machine oil at the bottom of the shell 9, and the refrigerating machine oil may be diluted.
  • the medium-pressure refrigerant that has been depressurized by being diverted to the injection pipe 7 is injected into the medium-pressure compression chamber through the injection pipe 7 and the injection port 1a without passing through the suction space in the shell 9. The For this reason, even if the amount of liquid refrigerant injected into the compression chamber of medium pressure increases, the refrigerating machine oil at the bottom of the shell 9 is difficult to be diluted. As a result, even when the amount of refrigerant diverted to the injection pipe 7 is increased, problems such as seizure of the compressor 1 can be prevented more reliably, and the reliability of the compressor 1 can be improved.
  • the refrigeration cycle apparatus includes the compressor 1, the condenser 2, the first expansion valve 4, and the evaporator 5, the refrigerant circuit 30 that circulates the refrigerant, and the compressor 1.
  • the compressor 1 has a compression chamber and an injection port 1a for injecting a refrigerant into the compression chamber, and the refrigerant circuit 30 includes the condenser 2 and the first expansion.
  • the internal heat exchanger 3 provided between the valve 4, the branch portion 18 provided between the internal heat exchanger 3 and the first expansion valve 4, and the injection port 1 a are connected to the internal heat exchanger 3.
  • the injection pipe 7 connected via the second expansion valve 6 provided between the branch portion 18 and the internal heat exchanger 3 of the injection pipe 7, and the internal heat exchanger 3.
  • the controller 100 performs heat exchange with water, and the control device 100 controls the drive frequency of the compressor 1 based on the temperature of the water flowing out of the condenser 2, and is a refrigerant sealed in the refrigerant circuit 30. This amount is the amount at which the first refrigerant is in a two-phase state in a state where the drive frequency of the compressor 1 is controlled by the control device 100.
  • the heat transfer coefficient in the condenser 2 can be improved. Therefore, even when the temperature of the refrigerant flowing into the condenser 2 rises, an increase in the high pressure of the refrigerant circuit 30 can be suppressed.
  • the compressor 1 may be a low pressure shell type. According to this configuration, even if the amount of liquid refrigerant injected into the medium pressure compression chamber increases, the refrigerating machine oil at the bottom of the shell 9 is difficult to be diluted. As a result, even when the amount of refrigerant diverted to the injection pipe 7 is increased, problems such as seizure of the compressor 1 can be more reliably prevented.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

This refrigeration cycle device is equipped with a refrigerant circuit and a control device. The refrigerant circuit has an internal heat exchanger, an injection pipe, and a second expansion valve. The internal heat exchanger performs heat exchange between a first refrigerant, which is a refrigerant flowing out from a condenser, and a second refrigerant, which is a refrigerant branching into the injection pipe and expanded by the second expansion valve. The condenser performs heat exchange between the refrigerant flowing through the refrigerant circuit and a heat carrier passing through the condenser. The control device controls the drive frequency of a compressor on the basis of the temperature of the heat carrier flowing out from the condenser. The amount of the refrigerant sealed in the refrigerant circuit is an amount such that, with the drive frequency controlled, the first refrigerant is in a two-phase state.

Description

冷凍サイクル装置Refrigeration cycle equipment
 本発明は、インジェクション配管を備える冷凍サイクル装置に関する。 The present invention relates to a refrigeration cycle apparatus having an injection pipe.
 従来の冷凍サイクル装置においては、冷媒回路の高圧圧力が設定圧力以上となったとき、圧縮機を保護停止する高圧スイッチと、冷媒回路の高圧圧力もしくはその圧力飽和温度を検出する高圧圧力センサーと、高圧保護制御を行う高圧制御手段とを備えている。そして、高圧制御手段は、高圧圧力センサーでの複数回の検知圧力の平均を求め、平均値が閾値を超えた場合に高圧保護制御を行うものが提案されている(例えば、特許文献1参照)。 In the conventional refrigeration cycle apparatus, when the high pressure of the refrigerant circuit becomes equal to or higher than the set pressure, a high pressure switch that stops protection of the compressor, a high pressure sensor that detects the high pressure of the refrigerant circuit or its pressure saturation temperature, High pressure control means for performing high pressure protection control. And the high pressure control means which calculates | requires the average of the detection pressure of the multiple times in a high pressure sensor, and performs high pressure protection control when the average value exceeds a threshold value is proposed (for example, refer patent document 1). .
特開2011-252621号公報JP 2011-252621 A
 熱媒体流路を流れる熱媒体(例えば水)と、冷媒回路の凝縮器を流れる冷媒とが熱交換を行う冷凍サイクル装置においては、熱媒体の温度が任意の設定温度となるように、冷媒回路の凝縮温度を制御している。しかし、熱媒体の設定温度が高い場合には、凝縮温度の上昇に伴い、冷媒回路の圧縮機から吐出される冷媒の圧力(高圧圧力)が上昇してしまう、という課題があった。 In the refrigeration cycle apparatus in which the heat medium (for example, water) flowing through the heat medium flow path and the refrigerant flowing through the condenser of the refrigerant circuit perform heat exchange, the refrigerant circuit is set so that the temperature of the heat medium becomes an arbitrary set temperature. The condensing temperature is controlled. However, when the set temperature of the heat medium is high, there is a problem that the pressure (high pressure) of the refrigerant discharged from the compressor of the refrigerant circuit increases as the condensation temperature increases.
 特許文献1に記載の技術は、高圧保護での頻繁な停止を抑制するため、高圧圧力センサーでの複数回の検知圧力の平均を求め、平均値が閾値を超えた場合に高圧保護制御が働くようにしている。しかし、平均圧力が所定値に達すれば高圧保護に入るので、根本的に高圧抑制はできていない。 The technique described in Patent Document 1 calculates an average of a plurality of detected pressures by a high-pressure sensor in order to suppress frequent stoppage in high-pressure protection, and high-pressure protection control works when the average value exceeds a threshold value. I am doing so. However, since the high pressure protection is entered when the average pressure reaches a predetermined value, high pressure suppression is not fundamentally achieved.
 本発明は、上述のような課題を解決するためになされたものであり、冷媒回路の高圧圧力の上昇を抑制することができる冷凍サイクル装置を提供することを目的とする。 The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a refrigeration cycle apparatus that can suppress an increase in the high-pressure pressure of a refrigerant circuit.
 本発明に係る冷凍サイクル装置は、圧縮機、凝縮器、第1膨張弁及び蒸発器を有し、冷媒を循環させる冷媒回路と、前記圧縮機を制御する制御装置と、を備え、前記圧縮機は、圧縮室と、前記圧縮室に冷媒を注入するインジェクションポートと、を有しており、前記冷媒回路は、前記凝縮器と前記第1膨張弁との間に設けられた内部熱交換器と、前記内部熱交換器と前記第1膨張弁との間に設けられた分岐部と前記インジェクションポートとを、前記内部熱交換器を経由して接続するインジェクション配管と、前記インジェクション配管のうち前記分岐部と前記内部熱交換器との間に設けられた第2膨張弁と、をさらに有しており、前記内部熱交換器は、前記凝縮器から流出した冷媒である第1冷媒と、前記インジェクション配管に分流して前記第2膨張弁で膨張した冷媒である第2冷媒と、の熱交換を行うものであり、前記凝縮器は、前記冷媒回路を流れる冷媒と前記凝縮器を通過する熱媒体との熱交換を行うものであり、前記制御装置は、前記凝縮器から流出する熱媒体の温度に基づいて前記圧縮機の駆動周波数を制御するものであり、前記冷媒回路内に封入される冷媒の量は、前記駆動周波数が制御されている状態において、前記第1冷媒が二相状態となる量である。 The refrigeration cycle apparatus according to the present invention includes a compressor, a condenser, a first expansion valve, and an evaporator, and includes a refrigerant circuit that circulates refrigerant and a control device that controls the compressor, and the compressor Has a compression chamber and an injection port for injecting refrigerant into the compression chamber, and the refrigerant circuit includes an internal heat exchanger provided between the condenser and the first expansion valve. An injection pipe for connecting a branch portion provided between the internal heat exchanger and the first expansion valve and the injection port via the internal heat exchanger, and the branch of the injection pipe And a second expansion valve provided between the internal heat exchanger, and the internal heat exchanger includes a first refrigerant that is a refrigerant flowing out of the condenser, and the injection Dividing into piping Heat exchange is performed with a second refrigerant that is a refrigerant expanded by the second expansion valve, and the condenser exchanges heat between the refrigerant flowing through the refrigerant circuit and the heat medium passing through the condenser. The control device controls the drive frequency of the compressor based on the temperature of the heat medium flowing out from the condenser, and the amount of the refrigerant sealed in the refrigerant circuit is In the state where the drive frequency is controlled, the amount of the first refrigerant is a two-phase state.
 本発明によれば、凝縮器から流出する冷媒を二相状態とすることによって、凝縮器での熱伝達率を向上させることができる。したがって、凝縮器に流入する冷媒の温度が上昇した場合にも、冷媒回路の高圧圧力の上昇を抑制することができる。 According to the present invention, the heat transfer coefficient in the condenser can be improved by making the refrigerant flowing out of the condenser into a two-phase state. Therefore, even when the temperature of the refrigerant flowing into the condenser rises, an increase in the high pressure of the refrigerant circuit can be suppressed.
本発明の実施の形態1に係る冷凍サイクル装置の構成を示す回路構成図である。It is a circuit block diagram which shows the structure of the refrigerating-cycle apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態1の前提となる冷媒回路における冷媒の状態を示すp-h線図である。FIG. 3 is a ph diagram showing the state of the refrigerant in the refrigerant circuit that is the premise of Embodiment 1 of the present invention. 本発明の実施の形態1に係る冷媒回路30における冷媒の状態を示すp-h線図である。FIG. 3 is a ph diagram showing the state of refrigerant in the refrigerant circuit 30 according to Embodiment 1 of the present invention. 本発明の実施の形態2に係る圧縮機1の構成を模式的に示す図である。It is a figure which shows typically the structure of the compressor 1 which concerns on Embodiment 2 of this invention.
 以下、本発明に係る冷凍サイクル装置の実施の形態について、図面を参照しながら説明する。なお、以下に説明する実施の形態によって本発明が限定されるものではない。また、以下の説明において、温度及び圧力の高低は、特に絶対的な値との関係で定まるものではなく、冷凍サイクル装置の動作等において相対的に定まるものとする。 Hereinafter, embodiments of the refrigeration cycle apparatus according to the present invention will be described with reference to the drawings. The present invention is not limited to the embodiments described below. In the following description, the temperature and pressure levels are not particularly determined in relation to absolute values, but are relatively determined in the operation of the refrigeration cycle apparatus.
実施の形態1.
 本発明の実施の形態1に係る冷凍サイクル装置について説明する。図1は、本実施の形態に係る冷凍サイクル装置の構成を示す回路構成図である。冷凍サイクル装置は、例えば空気調和等において熱の搬送媒体(熱媒体)となる流体(例えば、水、不凍液、ブライン等の液状熱媒体や空気)に温熱又は冷熱を供給するものである。本実施の形態では、水に温熱を供給する冷凍サイクル装置を例示している。
Embodiment 1 FIG.
A refrigeration cycle apparatus according to Embodiment 1 of the present invention will be described. FIG. 1 is a circuit configuration diagram showing the configuration of the refrigeration cycle apparatus according to the present embodiment. The refrigeration cycle apparatus supplies hot or cold heat to a fluid (for example, a liquid heat medium or air such as water, antifreeze, or brine) that is a heat transfer medium (heat medium) in air conditioning or the like. In this Embodiment, the refrigerating cycle apparatus which supplies warm heat to water is illustrated.
 図1に示すように、本実施の形態における冷凍サイクル装置は、冷媒を循環させる冷媒回路30を有している。冷媒回路30は、圧縮機1、凝縮器2、第1膨張弁4及び蒸発器5が冷媒配管を介して順次環状に接続された主回路を有している。 As shown in FIG. 1, the refrigeration cycle apparatus in the present embodiment has a refrigerant circuit 30 for circulating the refrigerant. The refrigerant circuit 30 has a main circuit in which the compressor 1, the condenser 2, the first expansion valve 4 and the evaporator 5 are sequentially connected in an annular manner through a refrigerant pipe.
 圧縮機1は、吸入した低圧冷媒を圧縮し、高圧冷媒として吐出するものである。圧縮機1としては、例えばスクロール圧縮機等の種々の圧縮機を用いることができる。圧縮機1は、冷媒を圧縮する圧縮室を備えた圧縮部と、圧縮部を駆動するモータと、圧縮部及びモータを収容するシェルと、を有している。シェルの底部には、圧縮機1内の摺動部を潤滑する冷凍機油が貯留されている。圧縮機1は、例えば、後述する制御装置100から送られた指令の信号に基づいて駆動周波数を任意に変化することができる。圧縮機1の圧縮部には、インジェクションポート1aが設けられている。インジェクションポート1aは、圧縮部における圧縮行程途中の中圧の圧縮室に、中圧の気液二相冷媒を注入するものである。ここで、中圧とは、冷媒回路30内の高圧圧力(例えば、圧縮機1の吐出圧力又は凝縮器2内の圧力)よりも低く、低圧圧力(例えば、圧縮機1の吸入圧力又は蒸発器5内の圧力)よりも高い圧力である。 The compressor 1 compresses the sucked low-pressure refrigerant and discharges it as a high-pressure refrigerant. As the compressor 1, various compressors, such as a scroll compressor, can be used, for example. The compressor 1 includes a compression unit that includes a compression chamber that compresses a refrigerant, a motor that drives the compression unit, and a shell that houses the compression unit and the motor. Refrigerating machine oil that lubricates the sliding portion in the compressor 1 is stored at the bottom of the shell. For example, the compressor 1 can arbitrarily change the drive frequency based on a command signal sent from the control device 100 described later. The compression port of the compressor 1 is provided with an injection port 1a. The injection port 1a is for injecting a medium-pressure gas-liquid two-phase refrigerant into a medium-pressure compression chamber in the middle of the compression stroke in the compression section. Here, the medium pressure is lower than the high pressure in the refrigerant circuit 30 (for example, the discharge pressure of the compressor 1 or the pressure in the condenser 2), and the low pressure (for example, the suction pressure of the compressor 1 or the evaporator). Pressure within 5).
 凝縮器2は、圧縮機1で圧縮された高圧冷媒と、後述する水流路20を流れる水(熱媒体の一例)と、の熱交換を行う負荷側の熱交換器である。凝縮器2は、例えば、複数枚の伝熱プレートが積層されたプレート式熱交換器である。 The condenser 2 is a load-side heat exchanger that exchanges heat between the high-pressure refrigerant compressed by the compressor 1 and water (an example of a heat medium) flowing through a water flow path 20 described later. The condenser 2 is, for example, a plate heat exchanger in which a plurality of heat transfer plates are stacked.
 第1膨張弁4は、冷媒を減圧して膨張させる弁である。第1膨張弁4は、例えば、制御装置100からの指令の信号に基づいて開度を調整することができる電子膨張弁である。蒸発器5は、第1膨張弁4で減圧された冷媒と外部流体(例えば、室外空気)との熱交換を行い、冷媒を蒸発させて気相状態にする熱源側の熱交換器である。 The first expansion valve 4 is a valve that expands the refrigerant by decompressing it. The first expansion valve 4 is, for example, an electronic expansion valve that can adjust the opening degree based on a command signal from the control device 100. The evaporator 5 is a heat exchanger on the heat source side that performs heat exchange between the refrigerant decompressed by the first expansion valve 4 and an external fluid (for example, outdoor air) to evaporate the refrigerant to be in a gas phase state.
 また、冷媒回路30は、内部熱交換器3、インジェクション配管7及び第2膨張弁6をさらに有している。内部熱交換器3は、主回路において凝縮器2と第1膨張弁4との間に設けられている。 The refrigerant circuit 30 further includes an internal heat exchanger 3, an injection pipe 7, and a second expansion valve 6. The internal heat exchanger 3 is provided between the condenser 2 and the first expansion valve 4 in the main circuit.
 インジェクション配管7は、主回路において内部熱交換器3と第1膨張弁4との間に設けられた分岐部18と、圧縮機1のインジェクションポート1aと、を接続する冷媒配管である。インジェクション配管7は、主回路の内部熱交換器3と第1膨張弁4との間を流れる冷媒の一部を分流させ、インジェクションポート1aを介して圧縮機1の中圧の圧縮室に注入するものである。 The injection pipe 7 is a refrigerant pipe that connects the branch portion 18 provided between the internal heat exchanger 3 and the first expansion valve 4 in the main circuit and the injection port 1a of the compressor 1. The injection pipe 7 divides a part of the refrigerant flowing between the internal heat exchanger 3 of the main circuit and the first expansion valve 4 and injects it into the compression chamber of medium pressure of the compressor 1 through the injection port 1a. Is.
 第2膨張弁6は、インジェクション配管7のうち分岐部18と内部熱交換器3との間に設けられている。第2膨張弁6は、インジェクション配管7に分流した高圧冷媒を中圧に減圧して膨張させるものである。第2膨張弁6は、例えば、制御装置100からの指令の信号に基づいて開度を調整することができる電子膨張弁である。 The second expansion valve 6 is provided between the branch portion 18 and the internal heat exchanger 3 in the injection pipe 7. The second expansion valve 6 expands the high-pressure refrigerant divided into the injection piping 7 by reducing the pressure to a medium pressure. The second expansion valve 6 is an electronic expansion valve capable of adjusting the opening degree based on a command signal from the control device 100, for example.
 内部熱交換器3は、主回路において凝縮器2から流出した高圧の冷媒(例えば、二相冷媒)と、インジェクション配管7に分流して第2膨張弁6で減圧された中圧の二相冷媒と、の熱交換を行う熱交換器である。 The internal heat exchanger 3 includes a high-pressure refrigerant (for example, a two-phase refrigerant) that has flowed out of the condenser 2 in the main circuit, and a medium-pressure two-phase refrigerant that is diverted to the injection pipe 7 and decompressed by the second expansion valve 6. And a heat exchanger that performs heat exchange.
 水流路20は、配管等で構成され、水が流れる流路となる。例えば水流路20の配管を環状に接続して水が循環するようにしてもよい。水流路20には、水を送出するポンプ8が設けられている。 The water channel 20 is constituted by a pipe or the like, and becomes a channel through which water flows. For example, water may be circulated by connecting the pipe of the water channel 20 in a ring shape. The water flow path 20 is provided with a pump 8 that delivers water.
 制御装置100は、例えばマイクロコンピュータで構成され、CPU、RAM及びROM等を備えている。ROMには制御プログラム等が記憶されている。制御装置100には、冷媒回路30における冷媒の圧力及び温度等、並びに水流路20の水の温度等を検出する各種のセンサーから検出値が入力される。制御装置100は、各センサーからの検出値に基づいて、冷凍サイクル装置の各構成部を制御する。 The control device 100 is configured by a microcomputer, for example, and includes a CPU, a RAM, a ROM, and the like. A control program and the like are stored in the ROM. Detection values are input to the control device 100 from various sensors that detect the pressure and temperature of the refrigerant in the refrigerant circuit 30 and the temperature of water in the water flow path 20. The control device 100 controls each component of the refrigeration cycle apparatus based on the detection value from each sensor.
<制御動作>
 次に、制御装置100の制御動作について説明する。
 制御装置100は、凝縮器2から流出する水の温度が設定温度となるように、圧縮機1の駆動周波数を制御する。ここで、設定温度は、使用者などによって予め任意に設定される温度である。制御装置100は、例えば凝縮器2から流出する水の温度を検出する温度センサーからの検出値を取得する。水の温度が設定温度よりも低い場合には、制御装置100は、圧縮機1の駆動周波数を増加させ、冷媒の循環量を増加させる。一方、水の温度が設定温度よりも高い場合には、制御装置100は、圧縮機1の駆動周波数を減少させ、冷媒の循環量を減少させる。
<Control action>
Next, the control operation of the control device 100 will be described.
The control device 100 controls the drive frequency of the compressor 1 so that the temperature of the water flowing out of the condenser 2 becomes a set temperature. Here, the set temperature is a temperature arbitrarily set in advance by a user or the like. For example, the control device 100 acquires a detection value from a temperature sensor that detects the temperature of water flowing out of the condenser 2. When the water temperature is lower than the set temperature, the control device 100 increases the drive frequency of the compressor 1 and increases the circulation amount of the refrigerant. On the other hand, when the temperature of water is higher than the set temperature, the control device 100 decreases the drive frequency of the compressor 1 and decreases the circulation amount of the refrigerant.
 また、制御装置100は、凝縮器2から流出する冷媒のサブクールが所定値(0Kを含む)となるように、第1膨張弁4の開度を制御する。また、制御装置100は、第1膨張弁4に流入する冷媒のサブクールが所定値となるように、第2膨張弁6の開度を制御する。 Further, the control device 100 controls the opening degree of the first expansion valve 4 so that the subcool of the refrigerant flowing out of the condenser 2 becomes a predetermined value (including 0K). Further, the control device 100 controls the opening degree of the second expansion valve 6 so that the subcool of the refrigerant flowing into the first expansion valve 4 becomes a predetermined value.
<冷媒封入量>
 冷媒回路30に封入される冷媒の量は、凝縮器2から流出する水の温度が設定温度となるように圧縮機1の駆動周波数が制御されている状態において、凝縮器2から流出する冷媒が気液二相状態となる量である。
<Refrigerant amount>
The amount of refrigerant sealed in the refrigerant circuit 30 is such that the refrigerant flowing out of the condenser 2 in a state where the driving frequency of the compressor 1 is controlled so that the temperature of the water flowing out of the condenser 2 becomes a set temperature. It is the amount that results in a gas-liquid two-phase state.
<冷媒の動作>
 まず、本実施の形態の前提として、凝縮器2から流出する冷媒が液単相となるような量の冷媒が冷媒回路30に封入されている冷凍サイクル装置の動作について説明する。図2は、本実施の形態の前提となる冷媒回路における冷媒の状態を示すp-h線図である。図2の横軸はエンタルピ[kJ/kg]を表しており、縦軸は圧力[MPa]を表している。
<Operation of refrigerant>
First, as a premise of the present embodiment, the operation of the refrigeration cycle apparatus in which the refrigerant circuit 30 is filled with an amount of refrigerant that makes the refrigerant flowing out of the condenser 2 into a liquid single phase will be described. FIG. 2 is a ph diagram showing the state of the refrigerant in the refrigerant circuit that is the premise of the present embodiment. The horizontal axis of FIG. 2 represents enthalpy [kJ / kg], and the vertical axis represents pressure [MPa].
 圧縮機1から吐出された高温高圧のガス冷媒(図2の点a1)は、凝縮器2に流入する。凝縮器2に流入したガス冷媒は、水流路20内を流通する水との熱交換により冷却されて凝縮し、過冷却された液冷媒となる(点b1)。一方、水流路20内の水は、冷媒から放熱された熱(主に冷媒の凝縮潜熱)により加熱されて温水となる。凝縮器2から流出した液冷媒は、内部熱交換器3での熱交換によりさらに過冷却される(点c1)。内部熱交換器3から流出した液冷媒は、第1膨張弁4で減圧され、低圧の二相冷媒となる(点d1)。第1膨張弁4から流出した二相冷媒は、蒸発器5に流入する。蒸発器5に流入した二相冷媒は、外部流体との熱交換により加熱されて蒸発し、低圧のガス冷媒となる(点e1)。蒸発器5から流出した低圧のガス冷媒は、圧縮機1に吸入される。 The high-temperature and high-pressure gas refrigerant (point a1 in FIG. 2) discharged from the compressor 1 flows into the condenser 2. The gas refrigerant that has flowed into the condenser 2 is cooled and condensed by heat exchange with water flowing through the water flow path 20, and becomes a supercooled liquid refrigerant (point b1). On the other hand, the water in the water flow path 20 is heated by the heat radiated from the refrigerant (mainly the latent heat of condensation of the refrigerant) to become hot water. The liquid refrigerant that has flowed out of the condenser 2 is further subcooled by heat exchange in the internal heat exchanger 3 (point c1). The liquid refrigerant flowing out of the internal heat exchanger 3 is decompressed by the first expansion valve 4 and becomes a low-pressure two-phase refrigerant (point d1). The two-phase refrigerant that has flowed out of the first expansion valve 4 flows into the evaporator 5. The two-phase refrigerant that has flowed into the evaporator 5 is heated and evaporated by heat exchange with the external fluid, and becomes a low-pressure gas refrigerant (point e1). The low-pressure gas refrigerant that has flowed out of the evaporator 5 is sucked into the compressor 1.
 内部熱交換器3から流出した液冷媒の一部は、インジェクション配管7に分流する。インジェクション配管7に分流した液冷媒は、第2膨張弁6で減圧され、乾き度の低い中圧の二相冷媒となる(点h1)。この二相冷媒は、内部熱交換器3での熱交換によって加熱され、乾き度の高い中圧の二相冷媒となる(点i1)。内部熱交換器3から流出した中圧の二相冷媒は、インジェクションポート1aを介して、圧縮行程途中の中圧(例えば、吸入圧力と吐出圧力のほぼ中間の圧力)の圧縮室に注入される。 A part of the liquid refrigerant flowing out of the internal heat exchanger 3 is divided into the injection pipe 7. The liquid refrigerant branched into the injection pipe 7 is depressurized by the second expansion valve 6 and becomes a medium-pressure two-phase refrigerant having a low dryness (point h1). This two-phase refrigerant is heated by heat exchange in the internal heat exchanger 3, and becomes a medium-pressure two-phase refrigerant having a high dryness (point i1). The medium-pressure two-phase refrigerant that has flowed out of the internal heat exchanger 3 is injected into a compression chamber that is in the middle of the compression stroke (for example, a pressure approximately halfway between the suction pressure and the discharge pressure) via the injection port 1a. .
 圧縮機1に吸入された低圧のガス冷媒は、圧縮室内で中圧まで圧縮された段階で(点f1)、インジェクションポート1aを介して注入される中圧の二相冷媒と合流する(点g1)。合流した冷媒は、圧縮室内でさらに圧縮され、高温高圧のガス冷媒として吐出される(点a1)。 The low-pressure gas refrigerant sucked into the compressor 1 joins the medium-pressure two-phase refrigerant injected through the injection port 1a (point g1) when it is compressed to the medium pressure in the compression chamber (point f1). ). The merged refrigerant is further compressed in the compression chamber and discharged as a high-temperature and high-pressure gas refrigerant (point a1).
 次に、本実施の形態に係る冷凍サイクル装置の動作について説明する。本実施の形態に係る冷媒回路30には、凝縮器2から流出する冷媒が気液二相となるような量の冷媒が封入されている、図3は、本実施の形態に係る冷媒回路30における冷媒の状態を示すp-h線図である。図3の横軸はエンタルピ[kJ/kg]を表しており、縦軸は圧力[MPa]を表している。 Next, the operation of the refrigeration cycle apparatus according to the present embodiment will be described. The refrigerant circuit 30 according to the present embodiment is filled with an amount of refrigerant such that the refrigerant flowing out of the condenser 2 becomes a gas-liquid two-phase. FIG. 3 shows the refrigerant circuit 30 according to the present embodiment. FIG. 6 is a ph diagram showing the state of the refrigerant in FIG. The horizontal axis of FIG. 3 represents enthalpy [kJ / kg], and the vertical axis represents pressure [MPa].
 図3に示すように、本実施の形態における基本的な冷媒の状態は、図2に示したp-h線図と同様になる。図3の点a2、c2、d2、e2、f2、g2、h2、i2は、図2の点a1、c1、d1、e1、f1、g1、h1、i1にそれぞれ対応している。ただし、凝縮器2から流出する冷媒の状態は、図2では液相(点b1)であるのに対し、図3では気液二相(点b2)となっている。一方で、第1膨張弁4に流入する冷媒は、図2及び図3の双方で液相となっている(点c1、c2)。このため、本実施の形態では、凝縮器2から流出する冷媒のエンタルピと、第1膨張弁4に流入する冷媒のエンタルピとの差が大きくなる。したがって、本実施の形態では、内部熱交換器3での熱交換量をより大きくする必要がある。本実施の形態の構成において、内部熱交換器3での熱交換量を大きくするには、インジェクション配管7に分流する冷媒量を増加させる必要がある。 As shown in FIG. 3, the basic refrigerant state in the present embodiment is the same as the ph diagram shown in FIG. The points a2, c2, d2, e2, f2, g2, h2, and i2 in FIG. 3 correspond to the points a1, c1, d1, e1, f1, g1, h1, and i1 in FIG. 2, respectively. However, the state of the refrigerant flowing out of the condenser 2 is a liquid phase (point b1) in FIG. 2, but is a gas-liquid two phase (point b2) in FIG. On the other hand, the refrigerant flowing into the first expansion valve 4 is in a liquid phase in both FIGS. 2 and 3 (points c1 and c2). For this reason, in the present embodiment, the difference between the enthalpy of the refrigerant flowing out from the condenser 2 and the enthalpy of the refrigerant flowing into the first expansion valve 4 becomes large. Therefore, in this embodiment, it is necessary to increase the amount of heat exchange in the internal heat exchanger 3. In the configuration of the present embodiment, in order to increase the heat exchange amount in the internal heat exchanger 3, it is necessary to increase the amount of refrigerant that is diverted to the injection pipe 7.
 ところが、インジェクション配管7に分流する冷媒量を増加させると、圧縮機1に流入する液冷媒の量が増加してしまう。このため、液冷媒のインジェクション位置が適切でない場合、圧縮機1に流入した液冷媒がシェル底部の冷凍機油と混合してしまい、冷凍機油が希釈されて濃度が低下してしまう場合がある。冷凍機油が希釈されると、摺動部の潤滑不良によって圧縮機1の焼付きなどの不具合が生じやすくなってしまう。 However, when the amount of refrigerant that flows into the injection pipe 7 is increased, the amount of liquid refrigerant that flows into the compressor 1 increases. For this reason, when the injection position of the liquid refrigerant is not appropriate, the liquid refrigerant flowing into the compressor 1 may be mixed with the refrigerating machine oil at the bottom of the shell, and the refrigerating machine oil may be diluted to lower the concentration. When the refrigeration oil is diluted, problems such as seizure of the compressor 1 are likely to occur due to poor lubrication of the sliding portion.
 この点に関し、本実施の形態では、インジェクション配管7に分流して減圧された中圧冷媒は、シェル底部を経由せず、インジェクションポート1aを介して圧縮行程途中の中圧の圧縮室に注入される。このため、中圧の圧縮室に注入される液冷媒の量が増加したとしても、シェル底部の冷凍機油が希釈されにくくなっている。これにより、インジェクション配管7に分流する冷媒量を増加させた場合においても、圧縮機1の焼付きなどの不具合を防止でき、圧縮機1の信頼性を向上させることができる。したがって、圧縮機1の信頼性を確保しつつ、内部熱交換器3の熱交換量を増加させることができる。 With respect to this point, in the present embodiment, the medium pressure refrigerant that has been depressurized by being diverted to the injection pipe 7 is injected through the injection port 1a into the medium pressure compression chamber in the middle of the compression stroke without passing through the shell bottom. The For this reason, even if the amount of liquid refrigerant injected into the compression chamber of medium pressure increases, the refrigerating machine oil at the bottom of the shell is hardly diluted. Thereby, even when the amount of refrigerant branched into the injection pipe 7 is increased, problems such as seizure of the compressor 1 can be prevented, and the reliability of the compressor 1 can be improved. Therefore, the heat exchange amount of the internal heat exchanger 3 can be increased while ensuring the reliability of the compressor 1.
 また、本実施の形態では、凝縮器2の出口においても冷媒が二相状態となるため、凝縮器2での熱伝達率を向上させることができる。したがって、凝縮器2に流入する冷媒の温度が上昇した場合にも、冷媒回路30の高圧圧力の上昇を抑制することができる。これにより、冷凍サイクル装置の運転範囲を拡大することができる。 In the present embodiment, since the refrigerant is also in a two-phase state at the outlet of the condenser 2, the heat transfer coefficient in the condenser 2 can be improved. Therefore, even when the temperature of the refrigerant flowing into the condenser 2 rises, an increase in the high pressure of the refrigerant circuit 30 can be suppressed. Thereby, the operating range of the refrigeration cycle apparatus can be expanded.
 さらに、本実施の形態では、液単相の冷媒を第1膨張弁4に流入させることができるため、第1膨張弁4で生じる冷媒の流動抵抗を小さくすることができる。これにより、第1膨張弁4を大型化する必要がなくなるため、第1膨張弁4を小型化することができる。また、第1膨張弁4で発生する騒音を低減できるとともに、第1膨張弁4の耐久性及び信頼性を向上できる。 Furthermore, in the present embodiment, since the liquid single-phase refrigerant can flow into the first expansion valve 4, the flow resistance of the refrigerant generated in the first expansion valve 4 can be reduced. Thereby, since it is not necessary to enlarge the 1st expansion valve 4, the 1st expansion valve 4 can be reduced in size. In addition, noise generated in the first expansion valve 4 can be reduced, and durability and reliability of the first expansion valve 4 can be improved.
実施の形態2.
 本発明の実施の形態2に係る冷凍サイクル装置について説明する。本実施の形態に係る冷凍サイクル装置は、圧縮機1が低圧シェル型である点に特徴を有する。冷媒回路30の全体構成は実施の形態1と同様である。
Embodiment 2. FIG.
A refrigeration cycle apparatus according to Embodiment 2 of the present invention will be described. The refrigeration cycle apparatus according to the present embodiment is characterized in that the compressor 1 is a low-pressure shell type. The overall configuration of the refrigerant circuit 30 is the same as that of the first embodiment.
 図4は、本実施の形態に係る圧縮機1の構成を模式的に示す図である。図4に示すように、圧縮機1は、冷媒を圧縮する圧縮室を備えた圧縮部10と、圧縮部10を駆動するモータ12と、圧縮部10及びモータ12を収容するシェル9と、を有している。モータ12と圧縮部10との間は、モータ12の駆動力を圧縮部10に伝達する軸11によって接続されている。シェル9の底部には、冷凍機油を貯留する油溜め17が設けられている。シェル9には、蒸発器5の出口から流出した低圧のガス冷媒を吸入する吸入配管13が接続されている。圧縮機1は低圧シェル型であるため、吸入配管13から吸入された低圧のガス冷媒は、シェル9内の吸入空間を経由して圧縮部10に吸入される。 FIG. 4 is a diagram schematically showing the configuration of the compressor 1 according to the present embodiment. As shown in FIG. 4, the compressor 1 includes a compression unit 10 including a compression chamber that compresses a refrigerant, a motor 12 that drives the compression unit 10, and a shell 9 that houses the compression unit 10 and the motor 12. Have. The motor 12 and the compression unit 10 are connected by a shaft 11 that transmits the driving force of the motor 12 to the compression unit 10. An oil sump 17 for storing refrigeration oil is provided at the bottom of the shell 9. Connected to the shell 9 is a suction pipe 13 for sucking low-pressure gas refrigerant flowing out from the outlet of the evaporator 5. Since the compressor 1 is a low-pressure shell type, the low-pressure gas refrigerant sucked from the suction pipe 13 is sucked into the compression unit 10 via the suction space in the shell 9.
 圧縮部10には、吸入ポート16及びインジェクションポート1aが設けられている。吸入ポート16は、シェル9内の吸入空間のガス冷媒を圧縮部10の圧縮室に吸入するものである。インジェクションポート1aは、中圧の気液二相冷媒を圧縮行程途中の中圧の圧縮室に注入するものである。インジェクションポート1aには、インジェクション配管7が接続されている。また、圧縮部10には、圧縮部10で圧縮された高圧のガス冷媒を凝縮器2の入口側に吐出する吐出配管15が接続されている。 The compression unit 10 is provided with a suction port 16 and an injection port 1a. The suction port 16 sucks the gas refrigerant in the suction space in the shell 9 into the compression chamber of the compression unit 10. The injection port 1a is for injecting a medium-pressure gas-liquid two-phase refrigerant into a medium-pressure compression chamber in the middle of the compression stroke. An injection pipe 7 is connected to the injection port 1a. In addition, a discharge pipe 15 that discharges the high-pressure gas refrigerant compressed by the compression unit 10 to the inlet side of the condenser 2 is connected to the compression unit 10.
 特に低圧シェル型の圧縮機1では、液冷媒のインジェクション位置が適切でない場合、圧縮機1に流入した液冷媒がシェル9底部の冷凍機油と混合してしまい、冷凍機油が希釈されてしまうおそれがある。本実施の形態では、インジェクション配管7に分流して減圧された中圧冷媒は、シェル9内の吸入空間を経由せず、インジェクション配管7及びインジェクションポート1aを介して中圧の圧縮室に注入される。このため、中圧の圧縮室に注入される液冷媒の量が増加したとしても、シェル9底部の冷凍機油が希釈されにくくなっている。これにより、インジェクション配管7に分流する冷媒量を増加させた場合においても、圧縮機1の焼付きなどの不具合をより確実に防止でき、圧縮機1の信頼性を向上させることができる。 In particular, in the low-pressure shell type compressor 1, when the liquid refrigerant injection position is not appropriate, the liquid refrigerant flowing into the compressor 1 may be mixed with the refrigerating machine oil at the bottom of the shell 9, and the refrigerating machine oil may be diluted. is there. In the present embodiment, the medium-pressure refrigerant that has been depressurized by being diverted to the injection pipe 7 is injected into the medium-pressure compression chamber through the injection pipe 7 and the injection port 1a without passing through the suction space in the shell 9. The For this reason, even if the amount of liquid refrigerant injected into the compression chamber of medium pressure increases, the refrigerating machine oil at the bottom of the shell 9 is difficult to be diluted. As a result, even when the amount of refrigerant diverted to the injection pipe 7 is increased, problems such as seizure of the compressor 1 can be prevented more reliably, and the reliability of the compressor 1 can be improved.
 以上説明したように、上記実施の形態に係る冷凍サイクル装置は、圧縮機1、凝縮器2、第1膨張弁4及び蒸発器5を有し、冷媒を循環させる冷媒回路30と、圧縮機1を制御する制御装置100と、を備え、圧縮機1は、圧縮室と、圧縮室に冷媒を注入するインジェクションポート1aと、を有しており、冷媒回路30は、凝縮器2と第1膨張弁4との間に設けられた内部熱交換器3と、内部熱交換器3と第1膨張弁4との間に設けられた分岐部18とインジェクションポート1aとを、内部熱交換器3を経由して接続するインジェクション配管7と、インジェクション配管7のうち分岐部18と内部熱交換器3との間に設けられた第2膨張弁6と、をさらに有しており、内部熱交換器3は、凝縮器2から流出した冷媒である第1冷媒と、インジェクション配管7に分流して第2膨張弁6で膨張した冷媒である第2冷媒と、の熱交換を行うものであり、凝縮器2は、冷媒回路30を流れる冷媒と凝縮器2を通過する水との熱交換を行うものであり、制御装置100は、凝縮器2から流出する水の温度に基づいて圧縮機1の駆動周波数を制御するものであり、冷媒回路30内に封入される冷媒の量は、圧縮機1の駆動周波数が制御装置100により制御されている状態において、第1冷媒が二相状態となる量である。 As described above, the refrigeration cycle apparatus according to the above embodiment includes the compressor 1, the condenser 2, the first expansion valve 4, and the evaporator 5, the refrigerant circuit 30 that circulates the refrigerant, and the compressor 1. The compressor 1 has a compression chamber and an injection port 1a for injecting a refrigerant into the compression chamber, and the refrigerant circuit 30 includes the condenser 2 and the first expansion. The internal heat exchanger 3 provided between the valve 4, the branch portion 18 provided between the internal heat exchanger 3 and the first expansion valve 4, and the injection port 1 a are connected to the internal heat exchanger 3. The injection pipe 7 connected via the second expansion valve 6 provided between the branch portion 18 and the internal heat exchanger 3 of the injection pipe 7, and the internal heat exchanger 3. Is a first refrigerant that is a refrigerant flowing out of the condenser 2 and Heat exchange is performed with the second refrigerant, which is a refrigerant diverted to the injection pipe 7 and expanded by the second expansion valve 6, and the condenser 2 passes through the condenser 2 and the refrigerant flowing through the refrigerant circuit 30. The controller 100 performs heat exchange with water, and the control device 100 controls the drive frequency of the compressor 1 based on the temperature of the water flowing out of the condenser 2, and is a refrigerant sealed in the refrigerant circuit 30. This amount is the amount at which the first refrigerant is in a two-phase state in a state where the drive frequency of the compressor 1 is controlled by the control device 100.
 この構成によれば、凝縮器2から流出する冷媒が二相状態となるため、凝縮器2での熱伝達率を向上させることができる。したがって、凝縮器2に流入する冷媒の温度が上昇した場合にも、冷媒回路30の高圧圧力の上昇を抑制することができる。 According to this configuration, since the refrigerant flowing out of the condenser 2 is in a two-phase state, the heat transfer coefficient in the condenser 2 can be improved. Therefore, even when the temperature of the refrigerant flowing into the condenser 2 rises, an increase in the high pressure of the refrigerant circuit 30 can be suppressed.
 また、上記実施の形態に係る冷凍サイクル装置において、圧縮機1は低圧シェル型であってもよい。この構成によれば、中圧の圧縮室に注入される液冷媒の量が増加したとしても、シェル9底部の冷凍機油が希釈されにくくなる。これにより、インジェクション配管7に分流する冷媒量を増加させた場合においても、圧縮機1の焼付きなどの不具合をより確実に防止できる。 In the refrigeration cycle apparatus according to the above embodiment, the compressor 1 may be a low pressure shell type. According to this configuration, even if the amount of liquid refrigerant injected into the medium pressure compression chamber increases, the refrigerating machine oil at the bottom of the shell 9 is difficult to be diluted. As a result, even when the amount of refrigerant diverted to the injection pipe 7 is increased, problems such as seizure of the compressor 1 can be more reliably prevented.
 上記の各実施の形態は、互いに組み合わせて実施することが可能である。 The above embodiments can be implemented in combination with each other.
 1 圧縮機、1a インジェクションポート、2 凝縮器、3 内部熱交換器、4 第1膨張弁、5 蒸発器、6 第2膨張弁、7 インジェクション配管、8 ポンプ、9 シェル、10 圧縮部、11 軸、12 モータ、13 吸入配管、15 吐出配管、16 吸入ポート、17 油溜め、18 分岐部、20 水流路、30 冷媒回路、100 制御装置。 1 compressor, 1a injection port, 2 condenser, 3 internal heat exchanger, 4 1st expansion valve, 5 evaporator, 6 2nd expansion valve, 7 injection piping, 8 pump, 9 shell, 10 compression section, 11 shaft , 12 motor, 13 suction pipe, 15 discharge pipe, 16 suction port, 17 oil sump, 18 branching section, 20 water flow path, 30 refrigerant circuit, 100 control device.

Claims (2)

  1.  圧縮機、凝縮器、第1膨張弁及び蒸発器を有し、冷媒を循環させる冷媒回路と、
     前記圧縮機を制御する制御装置と、
     を備え、
     前記圧縮機は、圧縮室と、前記圧縮室に冷媒を注入するインジェクションポートと、を有しており、
     前記冷媒回路は、
     前記凝縮器と前記第1膨張弁との間に設けられた内部熱交換器と、
     前記内部熱交換器と前記第1膨張弁との間に設けられた分岐部と前記インジェクションポートとを、前記内部熱交換器を経由して接続するインジェクション配管と、
     前記インジェクション配管のうち前記分岐部と前記内部熱交換器との間に設けられた第2膨張弁と、
     をさらに有しており、
     前記内部熱交換器は、前記凝縮器から流出した冷媒である第1冷媒と、前記インジェクション配管に分流して前記第2膨張弁で膨張した冷媒である第2冷媒と、の熱交換を行うものであり、
     前記凝縮器は、前記冷媒回路を流れる冷媒と前記凝縮器を通過する熱媒体との熱交換を行うものであり、
     前記制御装置は、前記凝縮器から流出する熱媒体の温度に基づいて前記圧縮機の駆動周波数を制御するものであり、
     前記冷媒回路内に封入される冷媒の量は、前記駆動周波数が制御されている状態において、前記第1冷媒が二相状態となる量である冷凍サイクル装置。
    A refrigerant circuit having a compressor, a condenser, a first expansion valve and an evaporator, and circulating the refrigerant;
    A control device for controlling the compressor;
    With
    The compressor has a compression chamber, and an injection port for injecting a refrigerant into the compression chamber,
    The refrigerant circuit is
    An internal heat exchanger provided between the condenser and the first expansion valve;
    An injection pipe for connecting the branch portion provided between the internal heat exchanger and the first expansion valve and the injection port via the internal heat exchanger;
    A second expansion valve provided between the branch portion and the internal heat exchanger in the injection pipe;
    In addition,
    The internal heat exchanger performs heat exchange between a first refrigerant that is a refrigerant that has flowed out of the condenser and a second refrigerant that is a refrigerant that is diverted to the injection pipe and expanded by the second expansion valve. And
    The condenser performs heat exchange between a refrigerant flowing through the refrigerant circuit and a heat medium passing through the condenser,
    The control device controls the drive frequency of the compressor based on the temperature of the heat medium flowing out of the condenser,
    The refrigeration cycle apparatus, wherein the amount of the refrigerant sealed in the refrigerant circuit is an amount that causes the first refrigerant to be in a two-phase state when the drive frequency is controlled.
  2.  前記圧縮機は、低圧シェル型である請求項1に記載の冷凍サイクル装置。 The refrigeration cycle apparatus according to claim 1, wherein the compressor is a low-pressure shell type.
PCT/JP2015/072551 2015-08-07 2015-08-07 Refrigeration cycle device WO2017026011A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017534039A JP6498299B2 (en) 2015-08-07 2015-08-07 Refrigeration cycle equipment
PCT/JP2015/072551 WO2017026011A1 (en) 2015-08-07 2015-08-07 Refrigeration cycle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/072551 WO2017026011A1 (en) 2015-08-07 2015-08-07 Refrigeration cycle device

Publications (1)

Publication Number Publication Date
WO2017026011A1 true WO2017026011A1 (en) 2017-02-16

Family

ID=57984244

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/072551 WO2017026011A1 (en) 2015-08-07 2015-08-07 Refrigeration cycle device

Country Status (2)

Country Link
JP (1) JP6498299B2 (en)
WO (1) WO2017026011A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109237671A (en) * 2017-07-10 2019-01-18 Lg电子株式会社 Utilize the air-conditioning device and its control method of steam jetting circulation
KR20190070233A (en) * 2017-12-12 2019-06-20 브이피케이 주식회사 Heat pump system, bidiectional injection operation method of the heat pump
JP2019174048A (en) * 2018-03-28 2019-10-10 三菱重工サーマルシステムズ株式会社 Control device, compressor, electric compressor, belt-drive type compressor, vehicular air conditioning device and control method
JPWO2022013975A1 (en) * 2020-07-15 2022-01-20

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03211363A (en) * 1990-01-17 1991-09-17 Toshiba Corp Air conditioner
JP2005351590A (en) * 2004-06-14 2005-12-22 Matsushita Electric Ind Co Ltd Cooling/warming system
JP2011214753A (en) * 2010-03-31 2011-10-27 Fujitsu General Ltd Refrigerating device
JP2012127565A (en) * 2010-12-15 2012-07-05 Mitsubishi Electric Corp Refrigeration cycle device
WO2013084301A1 (en) * 2011-12-06 2013-06-13 三菱電機株式会社 Heat pump type heating/hot-water supply system

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4061820B2 (en) * 1999-10-20 2008-03-19 株式会社デンソー Refrigeration cycle equipment
JP3918421B2 (en) * 2000-09-21 2007-05-23 三菱電機株式会社 Air conditioner, operation method of air conditioner
JP2002120546A (en) * 2000-10-16 2002-04-23 Denso Corp Air conditioner for vehicle
JP4821599B2 (en) * 2006-12-26 2011-11-24 株式会社富士通ゼネラル Refrigerant circuit
JP4740984B2 (en) * 2008-06-19 2011-08-03 三菱電機株式会社 Refrigeration air conditioner
JP2010007975A (en) * 2008-06-27 2010-01-14 Daikin Ind Ltd Economizer cycle refrigerating apparatus
JP4864110B2 (en) * 2009-03-25 2012-02-01 三菱電機株式会社 Refrigeration air conditioner
JP2011252621A (en) * 2010-05-31 2011-12-15 Mitsubishi Heavy Ind Ltd Heat pump type hot water supplying/air conditioning apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03211363A (en) * 1990-01-17 1991-09-17 Toshiba Corp Air conditioner
JP2005351590A (en) * 2004-06-14 2005-12-22 Matsushita Electric Ind Co Ltd Cooling/warming system
JP2011214753A (en) * 2010-03-31 2011-10-27 Fujitsu General Ltd Refrigerating device
JP2012127565A (en) * 2010-12-15 2012-07-05 Mitsubishi Electric Corp Refrigeration cycle device
WO2013084301A1 (en) * 2011-12-06 2013-06-13 三菱電機株式会社 Heat pump type heating/hot-water supply system

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109237671A (en) * 2017-07-10 2019-01-18 Lg电子株式会社 Utilize the air-conditioning device and its control method of steam jetting circulation
CN109237671B (en) * 2017-07-10 2021-12-14 Lg电子株式会社 Air conditioner using steam injection cycle and control method thereof
KR20190070233A (en) * 2017-12-12 2019-06-20 브이피케이 주식회사 Heat pump system, bidiectional injection operation method of the heat pump
KR102105706B1 (en) * 2017-12-12 2020-04-28 브이피케이 주식회사 Heat pump system, bidiectional injection operation method of the heat pump
JP2019174048A (en) * 2018-03-28 2019-10-10 三菱重工サーマルシステムズ株式会社 Control device, compressor, electric compressor, belt-drive type compressor, vehicular air conditioning device and control method
JPWO2022013975A1 (en) * 2020-07-15 2022-01-20
WO2022013975A1 (en) * 2020-07-15 2022-01-20 三菱電機株式会社 Cold heat source unit and refrigeration cycle device
JP7438363B2 (en) 2020-07-15 2024-02-26 三菱電機株式会社 Cold heat source unit and refrigeration cycle equipment

Also Published As

Publication number Publication date
JPWO2017026011A1 (en) 2018-03-29
JP6498299B2 (en) 2019-04-10

Similar Documents

Publication Publication Date Title
US9341393B2 (en) Refrigerating cycle apparatus having an injection circuit and operating with refrigerant in supercritical state
KR101634483B1 (en) Freezer
JP5042058B2 (en) Heat pump type hot water supply outdoor unit and heat pump type hot water supply device
US9746212B2 (en) Refrigerating and air-conditioning apparatus
EP2551612B1 (en) Supercritical-cycle heat pump
JP6595205B2 (en) Refrigeration cycle equipment
US20090282849A1 (en) Refrigeration System
WO2010013392A1 (en) Refrigerating device
US20140208787A1 (en) Refrigeration apparatus
US9651288B2 (en) Refrigeration apparatus and refrigeration cycle apparatus
JP2009243793A (en) Heat pump type hot water supply outdoor unit
WO2009147826A1 (en) Refrigeration cycle device
US20100192607A1 (en) Air conditioner/heat pump with injection circuit and automatic control thereof
EP2770276B1 (en) Heat pump
JP2009109065A (en) Refrigeration system
JP6498299B2 (en) Refrigeration cycle equipment
WO2017037771A1 (en) Refrigeration cycle device
JP2014190554A (en) Air conditioner
KR101252173B1 (en) Heat pump and control method of the heat pump
JP2014240714A (en) Air conditioner
JP2010002173A (en) Refrigerator
JP2012141070A (en) Refrigerating device
JP2018132224A (en) Binary refrigeration system
WO2017199382A1 (en) Refrigerating device
CN111919073B (en) Refrigerating device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15900966

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017534039

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15900966

Country of ref document: EP

Kind code of ref document: A1