WO2016120938A1 - 固体高分子形燃料電池のセパレータ用ステンレス鋼板 - Google Patents

固体高分子形燃料電池のセパレータ用ステンレス鋼板 Download PDF

Info

Publication number
WO2016120938A1
WO2016120938A1 PCT/JP2015/006331 JP2015006331W WO2016120938A1 WO 2016120938 A1 WO2016120938 A1 WO 2016120938A1 JP 2015006331 W JP2015006331 W JP 2015006331W WO 2016120938 A1 WO2016120938 A1 WO 2016120938A1
Authority
WO
WIPO (PCT)
Prior art keywords
stainless steel
separator
alloy layer
fuel cell
substrate
Prior art date
Application number
PCT/JP2015/006331
Other languages
English (en)
French (fr)
Other versions
WO2016120938A8 (ja
Inventor
孝宜 矢野
石川 伸
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to US15/546,383 priority Critical patent/US10256478B2/en
Priority to EP15879837.1A priority patent/EP3252856B1/en
Priority to MX2017009672A priority patent/MX2017009672A/es
Priority to KR1020177019046A priority patent/KR101963992B1/ko
Priority to JP2016518459A priority patent/JP6015880B1/ja
Priority to CN201580074749.3A priority patent/CN107210455B/zh
Publication of WO2016120938A1 publication Critical patent/WO2016120938A1/ja
Publication of WO2016120938A8 publication Critical patent/WO2016120938A8/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0223Composites
    • H01M8/0228Composites in the form of layered or coated products
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/56Electroplating: Baths therefor from solutions of alloys
    • C25D3/60Electroplating: Baths therefor from solutions of alloys containing more than 50% by weight of tin
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0206Metals or alloys
    • H01M8/0208Alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0206Metals or alloys
    • H01M8/0208Alloys
    • H01M8/021Alloys based on iron
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0232Metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0241Composites
    • H01M8/0245Composites in the form of layered or coated products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a stainless steel plate for a separator of a polymer electrolyte fuel cell having excellent corrosion resistance and adhesion.
  • the basic structure of the fuel cell is a sandwich-like structure, an electrolyte membrane (ion exchange membrane), two electrodes (fuel electrode and air electrode), a diffusion layer of O 2 (air) and H 2 , and two It consists of a separator.
  • phosphoric acid fuel cells molten carbonate fuel cells, solid oxide fuel cells, alkaline fuel cells and polymer electrolyte fuel cells (PEFCs) It is classified into a membrane fuel cell or a polymer electrolyte fuel cell), and development is underway for each.
  • PEFCs polymer electrolyte fuel cells
  • the polymer electrolyte fuel cell is compared with other fuel cells.
  • the power generation temperature is about 80 ° C, and power generation is possible at a significantly lower temperature.
  • the fuel cell body can be reduced in weight and size.
  • It can be started up in a short time, and has advantages such as high fuel efficiency and high power density. For this reason, the polymer electrolyte fuel cell is expected to be used as a power source for mounting an electric vehicle, a stationary generator for home use or business use, and a small portable generator.
  • the polymer electrolyte fuel cell takes out electricity from H 2 and O 2 through a polymer membrane. That is, as shown in FIG. 1, the membrane-electrode assembly 1 is sandwiched between gas diffusion layers 2 and 3 (for example, carbon paper) and separators 4 and 5, and this is combined with a single component (so-called single cell). To do. Then, an electromotive force is generated between the separator 4 and the separator 5.
  • the membrane-electrode assembly 1 is called an MEA (Membrane-Electrode Assembly), which integrates a polymer membrane and an electrode material such as carbon black carrying a platinum-based catalyst on the front and back surfaces of the membrane. The thickness is several tens of ⁇ m to several hundreds of ⁇ m. Further, the gas diffusion layers 2 and 3 are often integrated with the membrane-electrode assembly 1.
  • the separators 4 and 5 include (a) In addition to serving as a partition wall that separates single cells, (b) a conductor carrying the generated electrons, (c) Air flow path 6 through which O 2 (air) and H 2 flow, hydrogen flow path 7, (d) Discharge path for discharging generated water and gas (air flow path 6 and hydrogen flow path 7 are combined) Function is required. For this reason, the separators 4 and 5 require excellent durability and electrical conductivity.
  • the separator is required to have corrosion resistance that can withstand long-time power generation. The reason is that when metal ions are eluted by corrosion, the proton conductivity of the polymer membrane (electrolyte membrane) decreases.
  • the contact resistance between the separator and the gas diffusion layer is as low as possible.
  • the reason is that when the contact resistance between the separator and the gas diffusion layer increases, the power generation efficiency of the polymer electrolyte fuel cell decreases. That is, it can be said that the smaller the contact resistance between the separator and the gas diffusion layer, the better the power generation characteristics.
  • Patent Document 1 discloses a technique in which a metal that easily forms a passive film such as stainless steel or titanium alloy is used as a separator.
  • a metal that easily forms a passive film such as stainless steel or titanium alloy is used as a separator.
  • the formation of a passive film leads to an increase in contact resistance, leading to a decrease in power generation efficiency.
  • these metal materials have problems to be improved such as a contact resistance larger than that of a graphite material and inferior in corrosion resistance.
  • Patent Document 2 discloses a technique for reducing contact resistance and ensuring high output by performing gold plating on the surface of a metal separator such as austenitic steel plate (SUS304).
  • a metal separator such as austenitic steel plate (SUS304).
  • SUS304 austenitic steel plate
  • Patent Document 3 a film having a Sn alloy layer is formed on the surface of a metal substrate, and conductive particles are contained in the film.
  • a metal plate for a separator of a polymer electrolyte fuel cell was proposed.
  • Sn alloy layer film a film made of an Sn alloy layer (hereinafter also referred to as Sn alloy layer film) is formed on a metal substrate, the surface of wrinkles, rough skin, etc. generated during the production of the metal substrate or when forming the metal substrate into a desired shape It has been found that due to defects, a sound Sn alloy layer film is not formed on the surface of the metal substrate, and defects may occur in the Sn alloy layer film. Thus, when a defect occurs in the Sn alloy layer film and the metal substrate, particularly the stainless steel substrate, is exposed, the substrate exposed portion is preferential when chloride ions are mixed in from the external environment in the environment where the fuel cell separator is used. There is a concern that the substrate is corroded and a hole is formed in the substrate.
  • the present invention has been developed in view of the above-described situation, and even when chloride ions are mixed in from the outside environment or the like in the separator use environment of the polymer electrolyte fuel cell, stainless steel caused by local corrosion. It is an object of the present invention to provide a stainless steel plate for a separator of a polymer electrolyte fuel cell that can prevent perforation of a substrate and obtain excellent corrosion resistance.
  • the inventors used stainless steel as a material for a polymer electrolyte fuel cell separator, a defective portion of the Sn alloy layer coating, and a defective portion of the Sn alloy layer coating in the environment where the fuel cell separator is used.
  • the inventors tried to disperse the corrosion current in order to prevent the concentration of the corrosion current on the exposed portion of the stainless steel substrate, and further studied an effective method for that purpose.
  • local corrosion of the exposed portion of the stainless steel substrate is suppressed by intentionally imparting 10 / cm 2 or more microcracks to the Sn alloy layer coating, thereby preventing the stainless steel substrate from being perforated.
  • the knowledge that it can prevent effectively was acquired.
  • the inventors consider this reason as follows. That is, corrosion that flows preferentially to the defective part of the Sn alloy layer film due to the surface defect of the stainless steel substrate, that is, the exposed part of the sledgeless substrate, by imparting 10 / cm 2 or more microcracks to the Sn alloy layer film. The current is evenly distributed in the microcracks. As a result, local corrosion of the exposed portion of the stainless steel substrate is effectively suppressed, and it is possible to effectively prevent the stainless steel substrate from opening a hole.
  • the present invention was completed after further studies based on the above findings.
  • the gist configuration of the present invention is as follows. 1. A stainless steel substrate and a Sn alloy layer coating on the substrate surface, The Sn alloy layer coating with 10 / cm 2 or more microcracks, stainless steel separator for a polymer electrolyte fuel cell.
  • Stainless steel used as a substrate In the stainless steel plate for a separator of the polymer electrolyte fuel cell of the present invention, there is no particular limitation on the stainless steel used as the substrate, but a stainless steel plate excellent in corrosion resistance (ferritic stainless steel plate, austenite type). Stainless steel sheets, duplex stainless steel sheets) are particularly advantageous.
  • SUS447J1 (Cr: 30% by mass, Mo: 2% by mass), SUS445J1 (Cr: 22% by mass, Mo: 1% by mass), SUS443J1 (Cr: 21% by mass), SUS439 (Cr: 18% by mass), SUS316L (Cr: 18% by mass, Ni: 12% by mass, Mo: 2% by mass) can be suitably used.
  • the thickness of the stainless steel plate for the separator is preferably in the range of 0.03 to 0.3 mm. If the thickness of the stainless steel plate for the separator is less than 0.03 mm, the production efficiency of the stainless steel plate is lowered. On the other hand, if it exceeds 0.3 mm, the mounting space and weight when stacked will increase. More preferably, it is in the range of 0.03 to 0.1 mm.
  • Sn alloy layer coating The Sn alloy layer coating on the surface of the substrate is corrosion resistant in the use environment (pH: 3 (sulfuric acid environment), use temperature: 80 ° C) of the separator for polymer electrolyte fuel cells. It is preferable to use a Sn alloy containing Ni or Fe, which is excellent in resistance. Ni 3 Sn 2 , Ni 3 Sn 4 , FeSn or FeSn 2 is preferable. Particularly preferred is Ni 3 Sn 2 which is an intermetallic compound.
  • the reason why the above-described Sn alloy is excellent in corrosion resistance in the usage environment of the separator for the polymer electrolyte fuel cell is considered as follows. That is, the bond in the Sn alloy, for example, the Sn—Ni or Sn—Fe bond is more stable than the Sn—Sn bond in the metal Sn simple substance, and the corrosion resistance is improved.
  • Ni 3 Sn 2 has excellent corrosion resistance because the formation temperature is 790 ° C or higher and the Sn-Ni bond is very stable according to the Ni-Sn binary alloy phase diagram. Is considered to be obtained.
  • the film thickness of the Sn alloy layer film is preferably 5 ⁇ m or less in consideration of the mounting space and weight at the time of fuel cell stack.
  • the film thickness of the Sn alloy layer film is preferably 0.1 ⁇ m or more. More preferably, it is in the range of 0.5 to 3 ⁇ m.
  • the Sn alloy layer film on the surface of the stainless steel substrate, it is preferable to use a plating method.
  • a plating bath adjusted to a predetermined composition by a conventionally known plating method.
  • the substrate may be immersed and electroplated.
  • the Sn alloy layer film may be formed after removing the passive film on the surface of the substrate by electrolytic treatment or the like.
  • Microcrack structure In the stainless steel plate for the separator of the polymer electrolyte fuel cell of the present invention, it is indispensable to form 10 / cm 2 or more microcracks in the Sn alloy layer film. As a result, even if the Sn alloy layer film is defective and the stainless steel substrate is exposed, and the environment is prone to local decrease in pH and concentration of chloride ions, the corrosion current is turned into microcracks. By dispersing, it becomes possible to effectively suppress the concentration of the corrosion current. As a result, holes in the stainless steel substrate can be effectively prevented.
  • the Sn alloy layer film in order to effectively suppress the concentration of the corrosion current and effectively prevent the opening of the stainless steel substrate, it is necessary to form 10 / cm 2 or more microcracks in the Sn alloy layer film.
  • it is 100 pieces / cm 2 or more, more preferably 1000 pieces / cm 2 or more.
  • the number of micro cracks in the Sn alloy layer coating exceeds 10,000 / cm 2 , the Sn alloy layer coating is easily peeled off from the substrate, and there is a concern about deterioration of corrosion resistance. For this reason, it is preferable that the number of micro cracks in the Sn alloy layer film is 10,000 / cm 2 or less. More preferably, it is 8000 pieces / cm 2 or less.
  • the microcracks here are defined as those having a crack width of 0.1 times or more the thickness of the Sn alloy layer film and 10 ⁇ m or less.
  • the crack width is less than 0.1 times the thickness of the Sn alloy layer coating, the microcracks cannot reach the base, and the corrosion current cannot be dispersed.
  • the Sn alloy layer film is easily peeled off from the substrate.
  • the crack length is not particularly limited, but is usually about 1 to 500 ⁇ m.
  • the crack width of the microcracks described above is measured, for example, by observing the surface of the Sn alloy layer film at a magnification of 5000 using a scanning electron microscope (SEM) and measuring the crack width (opening width) of the observed microcracks. You can ask for it.
  • the crack length can be determined by measuring the length of the line segment connecting the crack ends of the microcracks observed in the same manner (the length of the straight line between the crack ends). Note that one microcrack is used as long as it is connected even if it is branched or has a shape in which cracks are joined together, but the crack length of such a microcrack is the line segment connecting the crack ends. Of these, the length of the line segment having the maximum length is used.
  • microcrack formation conditions must be variously adjusted according to the material and thickness of the stainless steel substrate, the thickness of the Sn alloy layer film, and the like.
  • a corrugated machine gives a corrugated shape with a height of 1.0 mm between adjacent convex parts and a distance of 2.5 mm between the convex parts,
  • a stainless steel plate with a Sn alloy layer coating of 1 to 2 ⁇ m thick by rolling down with a load of 0.5 to 10 MPa (more preferably 1 to 5 MPa), an appropriate micro crack can be applied to the Sn alloy layer coating. Can be formed.
  • a strike plating layer can be provided between the stainless steel substrate and the Sn alloy layer coating for the purpose of improving adhesion.
  • the Sn alloy layer film may be formed after providing a strike plating layer such as Ni, Ni-P, Cu, Ag and Au according to a known method.
  • the strike plating layer may be formed after the passive film on the substrate surface is removed by electrolytic treatment or the like.
  • the adhesion amount of the strike plating layer is preferably in the range of 0.001 to 1 g / m 2 from the viewpoint of achieving both adhesion and corrosion resistance.
  • a range of 0.003 to 0.5 g / m 2 is more preferable, and a range of 0.003 to 0.3 g / m 2 is more preferable.
  • distribution effect to the micro crack of a corrosion current is maintained as it is.
  • the surface of the Sn alloy layer coating may be covered with an oxide layer containing Sn.
  • the corrosion resistance of the Sn alloy layer film when used for a long time in the usage environment of the separator can be further improved.
  • the Sn-containing oxide layer covering the surface of the Sn alloy layer film is not a natural oxide film formed in the atmospheric environment, but is intentionally formed by treatment such as immersion in an acidic solution. This refers to the oxidized film.
  • the film thickness of the natural oxide film is usually about 2 to 3 nm.
  • the oxide layer containing Sn As a main component of the oxide layer containing Sn, SnO 2 is preferable.
  • the film thickness is preferably in the range of 5 to 50 nm. More preferably, it is in the range of 10 to 30 nm. This is because if the oxide layer containing Sn becomes too thick, it causes a decrease in conductivity. On the other hand, if the oxide layer containing Sn is too thin, the effect of improving the corrosion resistance in the use environment of the separator cannot be obtained.
  • Examples of the formation of the oxide layer containing Sn include a method of immersing in an acidic aqueous solution having an oxidizing property such as hydrogen peroxide and nitric acid, and a method of electrochemically performing anodic electrolysis. Further examples include physical vapor deposition (PVD), chemical vapor deposition (CVD), and coating. Note that the oxide layer containing Sn is usually very thin, about 5 to 50 nm, and therefore the oxide layer containing Sn does not affect the effect of microcracks or observation of microcracks.
  • the polymer electrolyte fuel cell separator is used in a severe environment at a temperature of about 80 ° C. and a pH of about 3, and further contains chloride ions from the external environment, so that excellent corrosion resistance is required. Therefore, in view of the required characteristics, the following evaluation was performed on the samples described later.
  • Example 1 SUS447J1 (Cr: 30% by mass, Mo: 2% by mass), SUS445J1 (Cr: 22% by mass, Mo: 1% by mass) or SUS316L (Cr: 18% by mass, Ni: 12% by mass, Mo) : 2 mass%) was corrugated into a corrugated corrugated process in which the height of adjacent convex portions and concave portions was 1.0 mm, and the distance between the convex portions and concave portions was 2.5 mm, to obtain a stainless steel substrate.
  • This corrugating process simulates the shape of a general separator material, and also simulates the generation of surface defects such as wrinkles and rough skin that occur when a stainless steel substrate is manufactured or when a stainless steel substrate is formed into a desired shape.
  • an Sn alloy having the average film thickness shown in Table 1 on the stainless steel substrate under the plating bath composition and plating conditions described later.
  • a layer film was formed to obtain a stainless steel plate for a separator.
  • a strike plating layer having an average adhesion amount shown in Table 1 was formed on the stainless steel substrate under the plating bath composition and plating conditions described later.
  • the Sn alloy layer is energized in a sulfuric acid aqueous solution at a temperature of 60 ° C. and a pH of 2 at a current density of +0.5 mA / cm 2 for 5 minutes.
  • An oxide layer containing Sn was formed on the surface of the film.
  • Microcracks were formed by applying a reduction with a load of 0.5 to 20 MPa as a microcrack forming treatment to the various stainless steel plates for separators thus obtained.
  • the microcrack formation treatment was performed after the formation of the Sn alloy layer film or after the formation of the oxide layer containing Sn.
  • the amount of strike plating layer deposition, the average thickness of the Sn alloy layer coating, and the average thickness of the oxide layer containing Sn are controlled in advance by examining the relationship with the plating time or anode electrolysis time. did.
  • the average number of microcracks was measured by the following method. First, an Sn alloy layer film was formed on the surface of a stainless steel substrate (thickness: 0.05 mm), the above-described microcrack formation treatment was performed, and the sample after the microcrack formation treatment was cut into approximately 20 mW ⁇ 20 mmL. Next, the surface of the Sn alloy layer film in the cut sample is arbitrarily observed with a scanning electron microscope (SEM) at a magnification of 100 to 5000 times, and the number of observed microcracks is counted per 1 cm 2. Converted into the number of microcracks.
  • SEM scanning electron microscope
  • a crack having a width of 0.1 to 10 ⁇ m and a crack length of 1 to 500 ⁇ m was defined as a microcrack. Moreover, as long as it was connected even if it was in the shape where the thing branched and the cracks couple
  • the adhesion amount of the strike plating layer was measured by the following method. First, a sample in which a strike plating layer was formed on the surface of a stainless steel substrate (thickness: 0.05 mm) was cut into about 50 mmW ⁇ 50 mmL, the length of two sides was measured with calipers, and the sample area was calculated. Next, the sample is immersed for 10 minutes in a solution capable of dissolving the strike plating layer (hereinafter, a known stripping solution may be used, and 30% nitric acid for Ni and Ni-P strike plating) to dissolve the strike plating layer. Then, the strike plating layer constituent element dissolved in the solution was quantified with an ICP (Inductively Coupled Plasma) emission spectroscopic analyzer, and the plating area (g / m 2 ) was calculated by dividing the sample area.
  • ICP Inductively Coupled Plasma
  • the average film thickness of the Sn alloy layer film was measured by the following method. First, a sample in which a Sn alloy layer film was formed on the surface of a substrate (thickness: 0.05 mm) was cut to about 10 mmW ⁇ 15 mmL. Next, after embedding the sample in resin and polishing the cross section, the film thickness of the Sn alloy layer film was measured by observing with a scanning electron microscope (SEM). In addition, the measurement of the film thickness of the Sn alloy layer film was performed for each of the ten samples cut into the above shape from the same sample on which the Sn alloy layer film was formed, and the average value of these was calculated as the average film of the Sn alloy layer film. Thickness.
  • the composition of the Sn alloy layer film was identified by an energy dispersive X-ray spectrometer (EDX) and an X-ray diffractometer (XRD) which were performed at the time of SEM observation.
  • EDX energy dispersive X-ray spectrometer
  • the average film thickness of the oxide layer containing Sn was measured by the following method. First, a thin film for cross-sectional observation was fabricated by processing a sample with an oxide layer containing Sn in addition to the strike plating layer and Sn alloy layer film on the surface of the substrate (thickness: 0.05 mm) with a focused ion beam. . Next, the average film thickness of the oxide layer containing Sn was measured by observing the produced thin film for cross-sectional observation with a transmission electron microscope (TEM). The film thickness of the oxide layer containing Sn was measured at three points for the film thickness of the oxide layer containing Sn in the produced thin film for cross-sectional observation, and the average value of these was calculated for the oxide layer containing Sn. It was set as the average film thickness.
  • the composition of the oxide layer was identified by an energy dispersive X-ray spectrometer (EDX) and X-ray photoelectron spectroscopy (XPS) performed during TEM observation.
  • EDX energy dispersive X
  • Nickel chloride 240 g / L Hydrochloric acid: 125ml / L Temperature: 50 ° C Current density: 5 A / dm 2 ⁇ Ni-P strike plating> Nickel sulfate: 1 mol / L Nickel chloride: 0.1mol / L Boric acid: 0.5mol / L Sodium phosphite: 0.05 to 5 mol / L Temperature: 50 ° C Current density: 5 A / dm 2

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Sustainable Development (AREA)
  • General Chemical & Material Sciences (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Composite Materials (AREA)
  • Fuel Cell (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

 ステンレス鋼製の基体と、基体表面にSn合金層皮膜とをそなえ、Sn合金層皮膜が10個/cm2以上のマイクロクラックを有する。

Description

固体高分子形燃料電池のセパレータ用ステンレス鋼板
 本発明は、耐食性および密着性に優れた固体高分子形燃料電池のセパレータ用ステンレス鋼板に関するものである。
 近年、地球環境保全の観点から、発電効率に優れ、CO2を排出しない燃料電池の開発が進められている。ここで、燃料電池は、H2とO2から電気化学反応によって電気を発生させるものである。また、燃料電池の基本構造は、サンドイッチのような構造であり、電解質膜(イオン交換膜)、2つの電極(燃料極および空気極)、O2(空気)とH2の拡散層および2つのセパレータから構成される。
 そして、使用される電解質膜の種類に応じて、リン酸形燃料電池、溶融炭酸塩形燃料電池、固体酸化物形燃料電池、アルカリ形燃料電池および固体高分子形燃料電池(PEFC;proton-exchange membrane fuel cellまたはpolymer electrolyte fuel cell)に分類され、それぞれ開発が進められている。
 これらの燃料電池のうち、固体高分子形燃料電池は、他の燃料電池に比べて、
(a) 発電温度が80℃程度であり、格段に低い温度で発電ができる、
(b) 燃料電池本体の軽量化、小型化が可能である、
(c) 短時間で立上げができ、燃料効率、出力密度が高い
等の利点を有している。
 このため、固体高分子形燃料電池は、電気自動車の搭載用電源、家庭用または業務用の定置型発電機、および携帯用の小型発電機としての利用が期待されている。
 固体高分子形燃料電池は、高分子膜を介してH2とO2から電気を取り出すものである。すなわち、図1に示すように、膜-電極接合体1を、ガス拡散層2,3(たとえばカーボンペーパ等)およびセパレータ4,5によって挟み込み、これを単一の構成要素(いわゆる単セル)とする。そして、セパレータ4とセパレータ5との間に起電力を生じさせる。
 なお、上記の膜-電極接合体1は、MEA(Membrane-Electrode Assembly)と呼ばれていて、高分子膜とその膜の表裏面に白金系触媒を担持したカーボンブラック等の電極材料を一体化したものであり、厚さは数10μm~数100μmである。また、ガス拡散層2,3は、膜-電極接合体1と一体化される場合も多い。
 また、固体高分子形燃料電池を実用に供する場合には、上記のような単セルを直列に数十~数百個つないで燃料電池スタックを構成し、使用するのが一般的である。
 ここに、セパレータ4,5には、
(a) 単セル間を隔てる隔壁
としての役割に加え、
(b) 発生した電子を運ぶ導電体、
(c) O2(空気)とH2が流れる空気流路6、水素流路7、
(d) 生成した水やガスを排出する排出路(空気流路6、水素流路7が兼備)
としての機能が求められる。このため、セパレータ4,5には、優れた耐久性や電気伝導性が必要となる。
 ここで、上記した耐久性に関しては、電気自動車の搭載用電源として使用される場合は、約5000時間と想定されている。また、家庭用の定置型発電機等として使用される場合は、約40000時間と想定されている。したがって、セパレータには、長時間の発電に耐え得る耐食性が要求される。その理由は、腐食によって金属イオンが溶出すると、高分子膜(電解質膜)のプロトン伝導性が低下するからである。
 また、上記した電気伝導性に関しては、セパレータとガス拡散層との接触抵抗が極力低いことが望まれる。その理由は、セパレータとガス拡散層との接触抵抗が増大すると、固体高分子形燃料電池の発電効率が低下するからである。つまり、セパレータとガス拡散層との接触抵抗が小さいほど、発電特性に優れていると言える。
 現在までに、セパレータとしてグラファイトを用いた固体高分子形燃料電池が実用化されている。このグラファイトからなるセパレータは、接触抵抗が比較的低く、しかも腐食しないという利点がある。しかしながら、グラファイト製のセパレータは、衝撃によって破損しやすいので、小型化が困難なだけでなく、空気流路、水素流路を形成するための加工コストが高いという欠点がある。グラファイトからなるセパレータが有するこれらの欠点は、固体高分子形燃料電池の普及を妨げる原因になっている。
 そこで、セパレータの素材として、グラファイトに替えて金属素材を適用する試みがなされている。特に、耐久性向上の観点から、ステンレス鋼やチタン、チタン合金等を素材としたセパレータの実用化に向けて、種々の検討がなされている。
 たとえば、特許文献1には、ステンレス鋼またはチタン合金等の不動態皮膜を形成しやすい金属をセパレータとして用いる技術が開示されている。しかしながら、不動態皮膜の形成は、接触抵抗の上昇を招くことになり、発電効率の低下につながる。このため、これらの金属素材は、グラファイト素材と比べて接触抵抗が大きく、しかも耐食性が劣る等の改善すべき問題点が指摘されていた。
 特許文献2には、オーステナイト系鋼板(SUS304)等の金属セパレータの表面に金めっきを施すことにより、接触抵抗を低減し、高出力を確保する技術が開示されている。しかしながら、薄い金めっきではピンホールの発生を防止することが困難であり、逆に厚い金めっきではコストの問題が残る。
 上記の問題を解決するものとして、発明者らは先に、特許文献3において、「金属製の基体の表面に、Sn合金層からなる皮膜を有し、該皮膜中に導電性粒子を含有する固体高分子形燃料電池のセパレータ用金属板」を提案した。
特開平8-180883号公報 特開平10-228914号公報 特開2012-178324号公報
 上記特許文献3に記載した固体高分子形燃料電池のセパレータ用金属板の開発により、固体高分子形燃料電池のセパレータの使用環境での耐食性を向上させることができた。
 しかしながら、金属基体上にSn合金層からなる皮膜(以下、Sn合金層皮膜ともいう)を形成する際、金属基体製造時や金属基体を所望の形状に成形する時に生じた疵、肌荒れ等の表面欠陥が原因となって、金属基体表面に健全なSn合金層皮膜が形成されず、Sn合金層皮膜に欠陥が生じる場合があることが判明した。このように、Sn合金層皮膜に欠陥が生じて金属基体、特にステンレス基体が露出すると、燃料電池セパレータ使用環境下において外部環境から塩化物イオンの混入が生じた場合に、基体露出部が優先的に腐食され、基体に穴が開くことが懸念される。
 本発明は、上記の現状に鑑み開発されたもので、固体高分子形燃料電池のセパレータ使用環境に外部環境などから塩化物イオンの混入が生じた場合であっても、局所的な腐食によるステンレス基体の穴開きを防止して、優れた耐食性を得ることができる固体高分子形燃料電池のセパレータ用ステンレス鋼板を提供することを目的とする。
 発明者らは、上記の課題を解決すべく、固体高分子形燃料電池用セパレータの素材としてステンレス鋼を用い、Sn合金層皮膜の欠陥部および燃料電池セパレータ使用環境下におけるSn合金層皮膜欠陥部の腐食挙動について、鋭意検討を行った。
 その結果、以下の知見を得た。
(1)まず、発明者らは、燃料電池セパレータ使用環境下において外部環境から塩化物イオンの混入が生じた際の腐食挙動を調査した。その結果、塩化物イオンの混入が生じ、特にpHの低下や塩化物イオンの濃縮が起こりやすい環境になった場合、Sn合金層皮膜に欠陥があり、ステンレス基体に露出部が存在すると、基体露出部が優先的に腐食され、基体に穴が開くおそれがあることがわかった。
(2)そこで次に、発明者らは、上記した環境下において、基体に穴が開くような局所的な腐食が発生する要因について詳しく検討を行った。その結果、発明者らは、上記した環境下では、ステンレス基体はSn合金層皮膜よりも腐食されやすいため、Sn合金層皮膜部と比較してステンレス基体露出部に腐食電流が集中しやすく、これにより基体に穴が開くのではないか、と考えるに至った。
(3)そこで、発明者らは、ステンレス基体露出部への腐食電流の集中を防止するため、腐食電流を分散することを試み、そのための有効な方法についてさらに検討を重ねた。
 その結果、Sn合金層皮膜に10個/cm2以上のマイクロクラックを意図的に付与することで、局所的なステンレス基体露出部の腐食が抑制され、これにより、ステンレス基体に穴が開くことを有効に防止できるとの知見を得た。
(4)この理由について、発明者らは、次のように考えている。すなわち、Sn合金層皮膜に10個/cm2以上のマイクロクラックを付与することで、ステンレス基体の表面欠陥などに起因するSn合金層皮膜の欠陥部、つまりスレンレス基体露出部に優先的に流れる腐食電流が、マイクロクラックにも一様に分散される。その結果、ステンレス基体露出部の局所的な腐食が効果的に抑制され、ステンレス基体に穴が開くことを有効に防止できる。
 本発明は、上記の知見に基づき、さらに検討を加えた末に完成されたものである。
 すなわち、本発明の要旨構成は次のとおりである。
1.ステンレス鋼製の基体と、該基体表面にSn合金層皮膜とをそなえ、
 該Sn合金層皮膜が10個/cm2以上のマイクロクラックを有する、固体高分子形燃料電池のセパレータ用ステンレス鋼板。
2.前記Sn合金層皮膜が、NiおよびFeのうちから選んだ少なくとも一種の元素を含有する、前記1に記載の固体高分子形燃料電池のセパレータ用ステンレス鋼板。
3.前記Sn合金層皮膜が、Ni3Sn2を含有する、前記1または2に記載の固体高分子形燃料電池のセパレータ用ステンレス鋼板。
4.前記Sn合金皮膜と前記ステンレス鋼製の基体との間にストライクめっき層を有する、前記1~3のいずれか1項に記載の固体高分子形燃料電池のセパレータ用ステンレス鋼板。
5.前記Sn合金層皮膜の表面にSnを含む酸化物層を有する、前記1~4のいずれか1項に記載の固体高分子形燃料電池のセパレータ用ステンレス鋼板。
 本発明によれば、固体高分子形燃料電池のセパレータ使用環境に外部環境などから塩化物イオンの混入が生じた場合であっても、局所的な腐食によるステンレス基体の穴開きを防止できる、耐食性に優れた燃料電池用セパレータを得ることができる。
 そして、かような燃料電池用セパレータを適用することにより、耐久性に優れた固体高分子形燃料電池を低コストで得ることが可能となる。
燃料電池の基本構造を示す模式図である。
 以下、本発明を具体的に説明する。
(1)基体として用いるステンレス鋼
 本発明の固体高分子形燃料電池のセパレータ用ステンレス鋼板において、基体として用いるステンレス鋼については特に制限はないが、耐食性に優れるステンレス鋼板(フェライト系ステンレス鋼板、オーステナイト系ステンレス鋼板、二相ステンレス鋼板)がとりわけ有利に適合する。
 例えば、SUS447J1(Cr:30質量%、Mo:2質量%)、SUS445J1(Cr:22質量%、Mo:1質量%)、SUS443J1(Cr:21質量%)、SUS439(Cr:18質量%)、SUS316L(Cr:18質量%、Ni:12質量%、Mo:2質量%)などを好適に使用することができる。
 また、燃料電池スタック時の搭載スペースや重量を鑑みると、セパレータ用ステンレス鋼板の板厚は、0.03~0.3mmの範囲とすることが好ましい。セパレータ用ステンレス鋼板の板厚が0.03mm未満であると、ステンレス鋼板の生産効率が低下する。一方、0.3mmを超えるとスタック時の搭載スペースや重量が増加する。より好ましくは0.03~0.1mmの範囲である。
(2)Sn合金層皮膜
 前記基体の表面に被覆するSn合金層皮膜としては、固体高分子形燃料電池用のセパレータの使用環境(pH:3(硫酸環境)、使用温度:80℃)において耐食性に優れるNiまたはFeを含むSn合金使用することが好ましい。好ましくは、Ni3Sn2、Ni3Sn4、FeSnまたはFeSn2である。特に好ましくは金属間化合物のNi3Sn2である。
 ここに、固体高分子形燃料電池用のセパレータの使用環境において、上記したようなSn合金が耐食性に優れている理由は、次のとおりと考えられる。
 すなわち、金属Sn単体におけるSn-Sn結合よりも、Sn合金における結合、例えばSn-NiまたはSn-Fe結合のほうが、より安定な結合状態をとるために耐食性が向上する。特にNi3Sn2は、Ni-Snの二元合金状態図によれば形成される温度が790℃以上と高温の領域にあり、Sn-Ni結合が非常に安定であるために、優れた耐食性が得られるものと考えられる。
 また、Sn合金層皮膜の膜厚は、燃料電池スタック時の搭載スペースや重量を考慮すると5μm以下とすることが好ましい。しかしながら、Sn合金層皮膜の膜厚が0.1μm未満になると、めっき欠陥が増加して耐食性が劣化し易くなる。このため、Sn合金層皮膜の膜厚は0.1μm以上とすることが好ましい。より好ましくは0.5~3μmの範囲である。
 なお、ステンレス基体の表面に前記Sn合金層皮膜を形成するには、めっき法を利用することが好適であり、この場合は、従来公知のめっき方法で、所定の組成に調整しためっき浴中に基体を浸漬させ、電気めっきを施せばよい。また、基体表面の不動態皮膜を電解処理等で除去した後にSn合金層皮膜を形成しても良い。
(3)マイクロクラック構造
 本発明の固体高分子形燃料電池のセパレータ用ステンレス鋼板では、上記したSn合金層皮膜に、10個/cm2以上のマイクロクラックを形成することが不可欠である。これにより、Sn合金層皮膜に欠陥が生じてステンレス基体が露出し、さらに局所的にpHの低下や塩化物イオンの濃縮が起こりやすい環境になった場合であっても、腐食電流をマイクロクラックに分散させて、腐食電流の集中を効果的に抑制することが可能になる。その結果、ステンレス基体の穴開きを有効に防止できる。
 ここに、腐食電流の集中を効果的に抑制してステンレス基体の穴開きを有効に防止するには、Sn合金層皮膜に10個/cm2以上のマイクロクラックを形成する必要がある。好ましくは、100個/cm2以上、さらに好ましくは1000個/cm2以上である。一方、Sn合金層皮膜のマイクロクラックが10000個/cm2を超えると、基体からSn合金層皮膜が剥離し易くなり耐食性の劣化が懸念される。このため、Sn合金層皮膜のマイクロクラックは10000個/cm2以下とすることが好ましい。より好ましくは8000個/cm2以下である。
 また、ここでいうマイクロクラックとは、クラック幅がSn合金層皮膜の厚みの0.1倍以上で、かつ10μm以下のものと定義する。
 ここで、クラック幅がSn合金層皮膜の厚みの0.1倍未満であると、当該マイクロクラックが下地まで達することができず、腐食電流を分散することができない。また、10μmを超えるクラック幅のクラックが多数存在すると、基体からSn合金層皮膜が剥離し易くなる。なお、クラック長さは、特に限定されるものではないが、通常1~500μm程度である。
 また、上記したマイクロクラックのクラック幅は、例えば、走査型電子顕微鏡(SEM)を用いてSn合金層皮膜の表面を5000倍で観察し、観察されたマイクロクラックのクラック幅(開口幅)を測定することで求めることができる。また、クラック長さについては、同様にして観察されたマイクロクラックのクラック端部間を結ぶ線分の長さ(クラック端部間の直線の長さ)を測定することにより求めることができる。なお、枝別れしたものやクラック同士が結合したような形状でも繋がっている限りは1個のマイクロクラックとするが、かようなマイクロクラックのクラック長さは、クラック端部間を結ぶ線分のうち、長さが最大となる線分の長さとする。
 さらに、Sn合金層皮膜に上記のマイクロクラックを形成する方法としては、応力の高いストライクめっきを下地処理として用いる方法や、めっき後にレベラーやスキンパス等で圧下する手法、また曲げ加工によって歪を加える手法などが挙げられる。
 なお、マイクロクラックの形成条件は、ステンレス基体の材質や厚み、Sn合金層皮膜の厚みなどによって種々調整する必要がある。例えば、板厚0.05mmのステンレス基体(SUS447J1)に、コルゲート加工機を用いて、隣接する凸部と凹部の高さが1.0mm、凸部間の距離が2.5mmの波形状を付与し、表面に1~2μmの厚さのSn合金層皮膜を設けたステンレス鋼板の場合、0.5~10MPa(より好適には1~5MPa)の荷重で圧下することにより、Sn合金層皮膜に適正なマイクロクラックを形成することができる。
(4)ストライクめっき層
 また、ステンレス鋼製の基体とSn合金層皮膜との間に、密着性を向上させる目的で、ストライクめっき層を設けることができる。例えば、公知の手法に従ってNi、Ni-P、Cu、AgおよびAuなどのストライクめっき層を設けた上でSn合金層皮膜を形成しても良い。また、基体表面の不動態皮膜を電解処理等で除去した後にストライクめっき層を形成しても良い。
 ここで、ストライクめっき層の付着量は、密着性と耐食性を両立する観点から、0.001~1g/m2の範囲とすることが好ましい。より好ましくは0.003~0.5g/m2の範囲、さらに好ましくは0.003~0.3g/m2の範囲である。
 なお、上記付着量の範囲内であれば、かようなストライクめっき層を設けた場合であっても、腐食電流のマイクロクラックへの分散効果はそのまま維持される。
(5)Snを含む酸化物層
 また、本発明のセパレータ用ステンレス鋼板では、前記したSn合金層皮膜の表面を、Snを含む酸化物層で被覆しても良い。これにより、セパレータの使用環境下で長時間使用した際のSn合金層皮膜の耐食性を一層向上できる。
 ここで、Sn合金層皮膜の表面に被覆するSnを含む酸化物層は、大気環境下で形成される自然酸化皮膜ではなく、酸性溶液に浸漬させる等の処理を施すことで、意図的に形成させた酸化皮膜をいう。なお、自然酸化皮膜の膜厚は通常2~3nm程度である。
 上記Snを含む酸化物層の主成分としては、SnO2が好ましい。また、その膜厚は5~50nmの範囲にあることが好ましい。より好ましくは10~30nmの範囲である。この理由は、Snを含む酸化物層が厚くなりすぎると、導電性低下の原因となるからである。一方、Snを含む酸化物層が薄すぎると、セパレータの使用環境における耐食性向上効果が得られないからである。
 また、上記のSnを含む酸化物層の形成には、過酸化水素、硝酸等の酸化性を有する酸性水溶液中に浸漬する方法や、電気化学的にアノード電解処理する方法等が挙げられる。さらには、物理的気相成長法(PVD法)や、化学的気相成長法(CVD法)、コーティング法等も挙げられる。
 なお、Snを含む酸化物層は、通常、5~50nm程度と非常に薄いので、このSnを含む酸化物層がマイクロクラックの効果やマイクロクラックの観察に影響を及ぼすことはない。
(6)その他
 また、セパレータ要求特性の一つである導電性を向上させるため、ステンレス鋼製の基体の表面にSn合金層皮膜を被覆した後、またはストライクめっき層を介してSn合金層皮膜を被覆した後、さらにこのSn合金層皮膜上に、電気抵抗の低い導電層を被覆することができる。例えば、接触抵抗を低減させる目的で、金属層、導電性高分子層、導電性粒子を含んだ合金層または導電性粒子を含んだ高分子層を、上記Sn合金層皮膜上またはSnを含む酸化物層上に被覆してもよい。
 固体高分子形燃料電池のセパレータは、温度:80℃、pH:3程度の厳しい環境で使用され、さらに外部環境からの塩化物イオンの混入もあることから、優れた耐食性が要求される。そこで、この要求特性に鑑み、後述する試料について、以下の評価を実施した。
(1)耐食性(セパレータ使用環境での安定性)の評価
 ステンレス鋼は一般的に、印加される電位が高くなるほど過不動態溶解しやすく、耐食性が劣化しやすい。また、塩化物イオンが存在すると孔食が発生し、基体を貫通する穴が開くことが懸念される。そこで、セパレータ使用環境において高電位かつ塩化物イオンが存在する環境にさらされた場合の耐食性を、以下のようにして評価した。
 すなわち、試料を温度:80℃、pH:3、塩化物イオンを30ppm含む硫酸水溶液中に浸漬し、参照電極にAg/AgCl(飽和KCl)を用いて、0.9V(vs.SHE)の電位に20時間保持し、20時間経過時におけるステンレス基体への穴開きを目視により確認した。また、20時間経過時の電流密度の値を測定した。そして、耐食性について以下の基準で評価した。
 ◎(合格、特に優れる):ステンレス基体に穴開きがなく、20時間経過時の電流密度が0.015μA/cm2未満
 ○(合格):ステンレス基体に穴開きがなく、20時間経過時の電流密度が0.015μA/cm2以上0.2μA/cm2未満
 ×(不合格):ステンレス基体に穴開きがある、および/または、20時間経過時の電流密度が0.2μA/cm2以上
実施例1
 板厚0.05mmのSUS447J1(Cr:30質量%、Mo:2質量%)、SUS445J1(Cr:22質量%、Mo:1質量%)またはSUS316L(Cr:18質量%、Ni:12質量%、Mo:2質量%)に、隣接する凸部と凹部の高さが1.0mm、凸部と凹部の距離が2.5mmの波形状のコルゲート加工をして、ステンレス基体とした。このコルゲート加工は、一般的なセパレータ材の形状を模擬するとともに、ステンレス基体製造時や、ステンレス基体を所望の形状に成形する時に生じる疵、肌荒れ等の表面欠陥の生成も模擬している。
 上記のようにして得られたステンレス基体を用い、脱脂等の適切な前処理を実施した後、後述するめっき浴組成およびめっき条件で、ステンレス基体上に表1に示す平均膜厚となるSn合金層皮膜を形成し、セパレータ用ステンレス鋼板を得た。
 また、一部の試料では、Sn合金層皮膜の形成前に、後述するめっき浴組成およびめっき条件で、ステンレス基体上に表1に示す平均付着量となるストライクめっき層を形成した。
 さらに、一部の試料では、Sn合金層皮膜を形成後、温度:60℃、pH:2の硫酸水溶液中で電流密度:+0.5mA/cm2として5分間通電することで、上記Sn合金層皮膜の表面にSnを含む酸化物層を形成した。
 かくして得られた種々のセパレータ用ステンレス鋼板に、マイクロクラック形成処理として0.5~20MPaの荷重で圧下を加えることにより、マイクロクラックを形成した。ここで、マイクロクラック形成処理は、Sn合金層皮膜の形成後、またはSnを含む酸化物層の形成後に行った。
 また、ストライクめっき層の付着量、Sn合金層皮膜の平均膜厚及びSnを含む酸化物層の平均膜厚は、あらかじめ、めっき時間またはアノード電解時間との関係を調べておくことにより、それぞれ制御した。
 ここで、マイクロクラックの平均個数は、下記手法により測定した。まずステンレス基体(厚さ:0.05mm)の表面にSn合金層皮膜を形成して、前述のマイクロクラック形成処理を実施し、マイクロクラック形成処理後の試料を約20mW×20mmLに切断した。次に、この切断した試料におけるSn合金層皮膜の表面を、任意に、走査型電子顕微鏡(SEM)により100~5000倍で観察し、観察されたマイクロクラックの個数をカウントして、1cm2あたりのマイクロクラックの個数に換算した。測定はそれぞれ、Sn合金層皮膜を形成し、マイクロクラック形成処理を実施した同一の試料から、上記の形状に切断した5個の試料について行い、これらの平均値をマイクロクラックの平均個数とした。なお、幅がSn合金層皮膜の厚みの0.1倍以上10μm以下、かつクラック長さが1μm以上500μm以下のクラックをマイクロクラックとした。また、枝別れしたものやクラック同士が結合したような形状でも繋がっている限りは1個とした。
 また、ストライクめっき層の付着量は、下記手法で測定した。まずステンレス基体(厚さ:0.05mm)の表面にストライクめっき層を形成した試料を約50mmW×50mmLに切断し、2辺の長さをノギスで測定し、試料面積を算出した。次に、ストライクめっき層を溶解可能な溶液中(以下、公知の剥離液を用いればよく、Ni、Ni-Pストライクめっきでは30%硝酸)に、試料を10分間浸漬してストライクめっき層を溶解させ、溶液中に溶解したストライクめっき層構成元素をICP(Inductively Coupled Plasma)発光分光分析装置で定量し、試料面積を除することで、めっき付着量(g/m2)を算出した。
 さらに、Sn合金層皮膜の平均膜厚は、下記手法で測定した。まず基体(厚さ:0.05mm)の表面にSn合金層皮膜を形成した試料を約10mmW×15mmLに切断した。次に試料を樹脂中に埋め込み、断面を研磨した後、走査型電子顕微鏡(SEM)で観察することで、Sn合金層皮膜の膜厚を測定した。なお、Sn合金層皮膜の膜厚の測定はそれぞれ、Sn合金層皮膜を形成した同一の試料から上記の形状に切断した10個の試料について行い、これらの平均値をSn合金層皮膜の平均膜厚とした。
 ここで、Sn合金層皮膜の組成は、SEM観察時に実施したエネルギー分散型X線分光器(EDX)およびX線回折装置(XRD)により同定した。
 加えて、Snを含む酸化物層の平均膜厚は、下記手法で測定した。まず基体(厚さ:0.05mm)の表面にストライクめっき層およびSn合金層皮膜に加え、Snを含む酸化物層を形成した試料を収束イオンビームで加工することで、断面観察用薄膜を作製した。次に、作製した断面観察用薄膜を透過電子顕微鏡(TEM)で観察することで、Snを含む酸化物層の平均膜厚を測定した。なお、Snを含む酸化物層の膜厚の測定は、作製した断面観察用薄膜のSnを含む酸化物層の膜厚を3点測定し、これらの平均値を、Snを含む酸化物層の平均膜厚とした。
 ここで、酸化物層の組成は、TEM観察時に実施したエネルギー分散型X線分光器(EDX)およびX線光電子分光法(XPS)により同定した。
(ストライクめっき層のめっき浴組成およびめっき条件)
<Niストライクめっき>
 塩化ニッケル:240g/L
 塩酸:125ml/L
 温度:50℃
 電流密度:5A/dm
<Ni-Pストライクめっき>
 硫酸ニッケル:1mol/L
 塩化ニッケル:0.1mol/L
 ホウ酸:0.5mol/L
 亜リン酸ナトリウム:0.05~5mol/L
 温度:50℃
 電流密度:5A/dm
(Sn合金層皮膜のめっき浴組成およびめっき条件)
<Ni3Sn2
 塩化ニッケル:0.15mol/L
 塩化スズ:0.15mol/L
 ピロリン酸カリウム:0.45mol/L
 グリシン :0.15mol/L
 温度:60℃
 電流密度:1A/dm
<Ni3Sn4
 塩化ニッケル:0.15mol/L
 塩化スズ:0.30mol/L
 ピロリン酸カリウム:0.45mol/L
 温度:60℃
 電流密度:1A/dm
<FeSn>
 塩化鉄:0.15mol/L
 塩化スズ:0.18mol/L
 ピロリン酸カリウム:0.45mol/L
 温度:60℃
 電流密度:1A/dm
<FeSn2
 塩化鉄:0.15mol/L
 塩化スズ:0.36mol/L
 ピロリン酸カリウム:0.45mol/L
 温度:60℃
 電流密度:1A/dm
 なお、本発明において、上記で示しためっき浴組成以外のものであっても、所望のめっきを形成できるならば、公知のめっき方法に従っても良い。
 上記のようにして得られた各試料について、耐食性(セパレータ使用環境での安定性)を評価した結果を表1に整理して示す。
Figure JPOXMLDOC01-appb-T000001
 同表より、次の事項が明らかである。
(a) 発明例の試料はいずれも、耐食性評価における20時間経過後も基体に穴開きが無く、セパレータ使用環境のような高電位環境でかつ塩化物イオンを含む環境に長時間さらされた場合であっても、良好な耐食性が得られている。 
(b) 比較例No.1および7の試料は、マイクロクラック形成処理を実施していないため、耐食性評価における20時間経過後に基体に穴開きが発生し、所望の耐食性が得られていない。
 1 膜-電極接合体
 2,3 ガス拡散層
 4,5 セパレータ
 6 空気流路
 7 水素流路

Claims (5)

  1.  ステンレス鋼製の基体と、該基体表面にSn合金層皮膜とをそなえ、
     該Sn合金層皮膜が10個/cm2以上のマイクロクラックを有する、固体高分子形燃料電池のセパレータ用ステンレス鋼板。
  2.  前記Sn合金層皮膜が、NiおよびFeのうちから選んだ少なくとも一種の元素を含有する、請求項1に記載の固体高分子形燃料電池のセパレータ用ステンレス鋼板。
  3.  前記Sn合金層皮膜が、Ni3Sn2を含有する、請求項1または2に記載の固体高分子形燃料電池のセパレータ用ステンレス鋼板。
  4.  前記Sn合金皮膜と前記ステンレス鋼製の基体との間にストライクめっき層を有する、請求項1~3のいずれか1項に記載の固体高分子形燃料電池のセパレータ用ステンレス鋼板。
  5.  前記Sn合金層皮膜の表面にSnを含む酸化物層を有する、請求項1~4のいずれか1項に記載の固体高分子形燃料電池のセパレータ用ステンレス鋼板。
     
     
     
PCT/JP2015/006331 2015-01-29 2015-12-18 固体高分子形燃料電池のセパレータ用ステンレス鋼板 WO2016120938A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US15/546,383 US10256478B2 (en) 2015-01-29 2015-12-18 Stainless steel sheet for separator of polymer electrolyte fuel cell
EP15879837.1A EP3252856B1 (en) 2015-01-29 2015-12-18 Stainless steel sheet for separator of polymer electrolyte fuel cell
MX2017009672A MX2017009672A (es) 2015-01-29 2015-12-18 Lamina de acero inoxidable para separador de celda de combustible electrolitica de polimero.
KR1020177019046A KR101963992B1 (ko) 2015-01-29 2015-12-18 고체 고분자형 연료 전지의 세퍼레이터용 스테인리스 강판
JP2016518459A JP6015880B1 (ja) 2015-01-29 2015-12-18 固体高分子形燃料電池のセパレータ用ステンレス鋼板
CN201580074749.3A CN107210455B (zh) 2015-01-29 2015-12-18 固体高分子型燃料电池的隔离件用不锈钢板

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015015839 2015-01-29
JP2015-015839 2015-01-29

Publications (2)

Publication Number Publication Date
WO2016120938A1 true WO2016120938A1 (ja) 2016-08-04
WO2016120938A8 WO2016120938A8 (ja) 2017-05-18

Family

ID=56542602

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/006331 WO2016120938A1 (ja) 2015-01-29 2015-12-18 固体高分子形燃料電池のセパレータ用ステンレス鋼板

Country Status (8)

Country Link
US (1) US10256478B2 (ja)
EP (1) EP3252856B1 (ja)
JP (1) JP6015880B1 (ja)
KR (1) KR101963992B1 (ja)
CN (1) CN107210455B (ja)
MX (1) MX2017009672A (ja)
TW (1) TWI617078B (ja)
WO (1) WO2016120938A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3285319A4 (en) * 2015-04-14 2018-02-21 JFE Steel Corporation Metal plate for use as separator of solid polymer fuel cell

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4865700A (en) * 1987-02-13 1989-09-12 M&T Chemicals Inc. Plating bath and process for making microporous chromium deposits
JP2013243113A (ja) * 2012-04-25 2013-12-05 Jfe Steel Corp 固体高分子形燃料電池のセパレータ用金属板
JP2014136832A (ja) * 2013-01-18 2014-07-28 Suzuki Motor Corp 陽極酸化皮膜及びその製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3460346B2 (ja) 1994-12-26 2003-10-27 富士電機株式会社 固体高分子電解質型燃料電池
JP3854682B2 (ja) 1997-02-13 2006-12-06 アイシン高丘株式会社 燃料電池用セパレータ
AUPQ653700A0 (en) * 2000-03-28 2000-04-20 Ceramic Fuel Cells Limited Surface treated electrically conductive metal element and method of forming same
KR101418323B1 (ko) * 2010-04-23 2014-07-10 제이에프이 스틸 가부시키가이샤 고체 고분자형 연료 전지 세퍼레이터용 금속판
JP5412462B2 (ja) * 2011-04-19 2014-02-12 日本パーカライジング株式会社 金属材料用耐食合金コーティング膜及びその形成方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4865700A (en) * 1987-02-13 1989-09-12 M&T Chemicals Inc. Plating bath and process for making microporous chromium deposits
JP2013243113A (ja) * 2012-04-25 2013-12-05 Jfe Steel Corp 固体高分子形燃料電池のセパレータ用金属板
JP2014136832A (ja) * 2013-01-18 2014-07-28 Suzuki Motor Corp 陽極酸化皮膜及びその製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3285319A4 (en) * 2015-04-14 2018-02-21 JFE Steel Corporation Metal plate for use as separator of solid polymer fuel cell

Also Published As

Publication number Publication date
TW201637270A (zh) 2016-10-16
JPWO2016120938A1 (ja) 2017-04-27
KR101963992B1 (ko) 2019-03-29
US10256478B2 (en) 2019-04-09
JP6015880B1 (ja) 2016-10-26
WO2016120938A8 (ja) 2017-05-18
TWI617078B (zh) 2018-03-01
US20180026276A1 (en) 2018-01-25
MX2017009672A (es) 2017-10-12
EP3252856A4 (en) 2017-12-06
KR20170095298A (ko) 2017-08-22
CN107210455B (zh) 2020-09-04
EP3252856B1 (en) 2018-11-07
CN107210455A (zh) 2017-09-26
EP3252856A1 (en) 2017-12-06

Similar Documents

Publication Publication Date Title
JP6108054B1 (ja) 固体高分子形燃料電池のセパレータ用金属板およびその製造用金属板
JP5133466B2 (ja) 燃料電池用セパレータおよびその製造方法
JP6066024B1 (ja) 固体高分子形燃料電池のセパレータ用金属板
KR101679545B1 (ko) 고체 고분자형 연료 전지의 세퍼레이터용 스테인리스박
JP5796694B1 (ja) 固体高分子形燃料電池のセパレータ用ステンレス箔
JP5806099B2 (ja) 燃料電池用セパレータの表面処理方法
JP6015880B1 (ja) 固体高分子形燃料電池のセパレータ用ステンレス鋼板
JP5700183B1 (ja) 固体高分子形燃料電池のセパレータ用ステンレス箔
JP6197977B1 (ja) 燃料電池のセパレータ用ステンレス鋼板およびその製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016518459

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15879837

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177019046

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015879837

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15546383

Country of ref document: US

Ref document number: MX/A/2017/009672

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE