WO2015053124A1 - Substrate with transparent electrode, method for evaluation of substrate with transparent electrode, method for fabrication of substrate with transparent electrode, touch panel, and method for fabrication of touch panel - Google Patents
Substrate with transparent electrode, method for evaluation of substrate with transparent electrode, method for fabrication of substrate with transparent electrode, touch panel, and method for fabrication of touch panel Download PDFInfo
- Publication number
- WO2015053124A1 WO2015053124A1 PCT/JP2014/075962 JP2014075962W WO2015053124A1 WO 2015053124 A1 WO2015053124 A1 WO 2015053124A1 JP 2014075962 W JP2014075962 W JP 2014075962W WO 2015053124 A1 WO2015053124 A1 WO 2015053124A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- substrate
- transparent electrode
- transparent
- wavelength
- spectral reflectance
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/041—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
- G06F3/044—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
- G06F3/0443—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a single layer of sensing electrodes
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2203/00—Indexing scheme relating to G06F3/00 - G06F3/048
- G06F2203/041—Indexing scheme relating to G06F3/041 - G06F3/045
- G06F2203/04103—Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices
Definitions
- the present invention relates to a substrate with a transparent electrode, a method for evaluating a substrate with a transparent electrode, a method for manufacturing a substrate with a transparent electrode, a touch panel, and a method for manufacturing a touch panel.
- a substrate with a transparent electrode for a touch panel is formed by forming a transparent electrode on a transparent insulating substrate, and is used as a position sensor for the touch panel.
- the capacitance method requires an electrode pattern for capacitance detection in order to detect a position by detecting a change in capacitance.
- the electrode pattern is generally formed by etching, and is composed of an etched portion (transparent electrode non-formed portion) from which the electrode has been removed by etching and a non-etched portion (transparent electrode forming portion) where the electrode remains without being etched.
- a substrate with a transparent electrode on which a transparent electrode is patterned requires non-visibility of a so-called transparent electrode pattern (hereinafter, also simply referred to as a pattern) in which a patterned trace is not visible.
- the main reason why the transparent electrode pattern is visually recognized is that an optical difference such as reflectance and color value occurs between the etched portion and the non-etched portion. Therefore, many substrates with transparent electrodes for touch panels have improved invisibility by designing a laminated structure such as adjusting the film thickness and refractive index of the transparent dielectric layer.
- JP 2010-182528 A International Publication No. 2010/114056 JP 2013-84376 A JP 2010-76232 A
- Patent Document 1 describes a technique using a color difference ⁇ E calculated according to JIS Z8701 from a reflection spectrum as an invisibility index.
- Patent Document 2 describes a technique using an integrated value of a difference between reflectance spectra of an etched portion and a non-etched portion as an index of invisibility.
- Patent Document 3 describes a technique using an absolute value of a difference between average values of reflection spectra.
- Patent Document 4 describes a technique using a value obtained by multiplying and integrating the absolute value of the difference in reflection spectrum and the standard specific luminous efficiency.
- the present invention relates to a method for evaluating a substrate with a transparent electrode.
- the spectral reflectance R A ( ⁇ ) of the substrate with a transparent electrode (A) in which a transparent dielectric layer and a transparent conductive film layer are laminated in this order on the transparent substrate, and the substrate with the transparent electrode (
- the spectral reflectance R B ( ⁇ ) of the substrate (B) without the transparent conductive film layer of A) is measured, and the spectral reflectance R A ( ⁇ ) and the spectral reflectance R B ( ⁇ )
- the absolute value ⁇ R ( ⁇ ) of the difference spectrum at each wavelength is calculated.
- Equation 1 ⁇ R ( ⁇ ) and C 1 ( ⁇ ) that is the sum of the color matching functions x ( ⁇ ), y ( ⁇ ), and z ( ⁇ ) are calculated.
- the value of ⁇ V 1 obtained by multiplying at each wavelength and integrating in the wavelength range of 380 to 780 nm, or ⁇ R ( ⁇ ) and C 1 ( ⁇ ) as shown in Equation 2 below.
- the light source spectrum L ( ⁇ ) multiplied at each wavelength and integrated in the wavelength range of 380 to 780 nm, and the value of ⁇ S 1 is obtained on the transparent electrode-formed substrate with the transparent electrode patterned thereon. And a transparent electrode non-formation part, it is used for the difference in the visibility of reflected light, that is, the non-visibility index of the transparent electrode pattern.
- the present invention relates to a method for manufacturing a substrate with a transparent electrode in which a transparent dielectric layer and a transparent conductive film layer are laminated in this order on a transparent substrate.
- the above-described substrate with a transparent electrode is evaluated, and whether any one of the above ⁇ V 1 , ⁇ S 1 , ⁇ V 2, and ⁇ S 2 is within a predetermined range. It is characterized by determining.
- One embodiment of the present invention relates to a substrate with a transparent electrode manufactured by the above manufacturing method.
- the present invention provides a substrate with a transparent electrode (A) in which a transparent dielectric layer and a transparent conductive film layer are laminated in this order on a transparent substrate, and a substrate in which the transparent conductive film layer of the substrate with a transparent electrode (A) does not exist.
- A transparent dielectric layer
- A transparent conductive film layer
- B the transparent conductive film layer of the substrate with a transparent electrode
- the value of ⁇ V 1 shown in the above formula 1 is 240% nm or less
- the value of ⁇ S 1 shown in the above formula 2 is 7.0% nm or less.
- the present invention relates to a touch panel comprising the above substrate with a transparent electrode.
- This invention relates to the manufacturing method of the touchscreen characterized by performing the evaluation method of the said board
- the present invention it becomes possible to quantitatively and accurately determine the non-visibility of the transparent electrode pattern on the substrate with a transparent electrode and the touch panel on which the transparent electrode is patterned.
- the problem of the prior art of difference in sex determination does not occur.
- the evaluation method according to the present invention as an index in the production of a substrate with a transparent electrode, it is possible to provide a substrate with a transparent electrode in which the non-visibility of the transparent electrode pattern is good.
- a substrate with a transparent electrode used in the method for evaluating a substrate with a transparent electrode of the present invention (hereinafter also simply referred to as “the evaluation method of the present invention”) will be described.
- FIG. 1 is a cross-sectional view of a substrate (A) with a transparent electrode in which a transparent dielectric layer 2 is formed on a transparent substrate 1 and a transparent conductive film layer 3 is formed thereon.
- FIG. 2 is a cross-sectional view of the substrate (B) from which the transparent conductive film layer 3 has been removed from the substrate with transparent electrodes (A). Note that the dimensional relationship of the thicknesses in FIGS. 1 and 2 is changed as appropriate for the sake of clarity and simplification of the drawings, and does not represent the actual dimensional relationship. Moreover, in each figure, the same referential mark means the same technical matter.
- the base material of the transparent substrate is not particularly limited as long as it is colorless and transparent at least in the visible light region, and any substrate can be used as long as a transparent electrode can be formed thereon.
- examples thereof include polyester resins such as glass, polyethylene terephthalate (PET), polybutylene terephthalate (PBT), and polyethylene naphthalate (PEN), cycloolefin resins, polycarbonate resins, polyimide resins, and cellulose resins.
- polyester resins and cycloolefin resins are preferably used, and polyethylene terephthalate is particularly preferably used.
- the thickness of the substrate is not particularly limited, but a thickness of 0.01 to 0.4 mm is preferable. If it is in the said range, since durability of a transparent substrate can fully be improved and it has moderate softness
- the material for the transparent dielectric layer examples include acrylic resins, silicone resins, materials mainly composed of oxides such as silicon oxide, titanium oxide, niobium oxide, zirconium oxide, aluminum oxide, and calcium fluoride / magnesium fluoride.
- a material having a main component can be used.
- the oxide constituting the transparent dielectric layer an oxide that is colorless and transparent at least in the visible light region and has a resistivity of 10 ⁇ ⁇ cm or more is preferable.
- the thickness of the transparent dielectric layer may be any thickness as long as the resistivity is satisfied.
- the transparent dielectric layer may be composed of only one layer or may be composed of two or more layers.
- a hard coat layer which is also a transparent dielectric layer, may be previously laminated on one side or both sides of the transparent substrate for the purpose of enhancing the durability of the transparent electrode for touch panel.
- a material for the hard coat layer an acrylic resin, a silicone resin, or the like can be used.
- the film thickness of the hard coat is preferably 1 to 10 ⁇ m because it has moderate durability and flexibility.
- the transparent substrate can be subjected to a surface treatment for the purpose of improving the adhesion between the transparent substrate and the transparent conductive film layer.
- a surface treatment for example, there is a method of increasing the adhesion force by imparting electrical polarity to the surface of the substrate, and specific examples include corona discharge, plasma method and the like.
- the material of the transparent conductive film layer is not particularly limited as long as it has both transparency and conductivity.
- examples of such a material include materials mainly composed of indium oxide, zinc oxide, and tin oxide. Among these, from the viewpoint of low resistance, a material mainly composed of indium oxide is preferably used.
- each layer may contain components other than the main component.
- the method for forming the transparent conductive film layer is not particularly limited, and an appropriate method can be selected according to desired characteristics, such as a dry process such as sputtering or ion plating, or a wet process such as sol-gel coating.
- a part of the surface of the transparent conductive film layer is patterned by etching or the like.
- the pattern (transparent electrode pattern) of the transparent conductive film layer is, for example, a method of removing a part of the transparent conductive film layer of the substrate with a transparent electrode by etching, or a part of the transparent conductive film layer when forming the transparent conductive film layer. It is formed by a technique that does not form a film.
- a method for removing the transparent conductive film layer by etching a method is known in which after applying a photosensitive resist, a resist pattern is formed by photolithography or the like, and the exposed transparent conductive film layer is removed with an etching solution. Even other methods may be used arbitrarily as long as the transparent conductive film layer is removed to form a predetermined pattern.
- a method of not forming the transparent conductive film layer partially, a method of forming a transparent conductive film layer after forming a mask pattern on the substrate and removing the mask portion, or the like can be given.
- the evaluation method of the substrate with a transparent electrode of the present invention will be described.
- the spectral reflectance R B ( ⁇ ) of the substrate (B) of the substrate (A) with the transparent electrode without the transparent conductive film layer is measured, and the spectral reflectance R A ( ⁇ ) and the spectral reflectance are measured.
- the absolute value ⁇ R ( ⁇ ) of the spectrum of the difference at each wavelength with R B ( ⁇ ) is calculated.
- the substrate with a transparent electrode (A) As the substrate with a transparent electrode (A), after forming a transparent conductive film layer on the dielectric layer, the substrate before pattern formation or the non-etched portion of the substrate with transparent electrode after pattern formation can be used.
- the pattern may be too fine to perform reflectance measurement. In such a case, as a sampling sample for reflectance measurement, the pattern shape is changed so that measurement is possible, or the substrate with the transparent electrode (A) in which the transparent electrode is present on the entire surface without performing patterning or etching is used.
- An evaluation substrate may be formed.
- the transparent conductive film layer may be crystallized by annealing after forming the transparent conductive film layer. Since the refractive index of the material (such as ITO) constituting the transparent conductive film layer changes before and after crystallization, the invisibility of the transparent electrode pattern also changes before and after crystallization. Therefore, optical design is usually performed based on the optical characteristics of the transparent conductive film layer after crystallization. Moreover, in the transparent conductive film layer before crystallization, since ITO etc. itself absorbs light easily, a transparent electrode pattern becomes easy to visually recognize. For the above reason, when crystallization of a transparent conductive film layer is performed, highly accurate evaluation becomes possible by using what crystallized a transparent conductive film layer as a substrate (A) with a transparent electrode.
- substrate (B) is a thing of the state in which the transparent conductive film layer of the said board
- substrate of the stage before forming a transparent conductive film layer can be used as a board
- the etched portion of the substrate with a transparent electrode after pattern formation can also be used as the substrate (B).
- the substrate (B) for measuring the reflectivity is used as the substrate (B) that has been subjected to the etching process, so that the actual accuracy can be obtained. High evaluation is possible.
- an etching method an appropriate method can be selected according to the touch panel manufacturing process, such as a wet process using an acid or a dry process using plasma.
- the pattern When evaluating as a touch panel, as in the case of the substrate with a transparent electrode (A), the pattern may be too fine to measure the reflectance. In such a case, as an extraction sample for reflectance measurement, the pattern shape may be changed so that measurement is possible, or the evaluation substrate may be formed using the substrate (B) from which the entire transparent electrode has been removed. .
- the reflection spectrum can be measured by a method according to the standard of JIS Z8722.
- a method for measuring the reflection spectrum an in-line spectral reflectometer is used for in-line measurement during the film forming process, an off-line spectrophotometer is used for measurement after film formation, and a simple touch panel is used for inspection. And a method of measuring a completed touch panel product.
- the spectral reflectance R A ( ⁇ ) and the spectral reflectance R B ( ⁇ ) are preferably measured in the same process, such as “measure with an off-line spectrophotometer after film formation”.
- the reflection spectrum As a measuring method, it is preferable to measure using a spectral reflectometer or a spectrophotometer during the film forming process or after the film formation is completed, and it is particularly preferable to measure after the film formation is completed.
- Equation 1 the sum of ⁇ R ( ⁇ ) and color matching functions x ( ⁇ ), y ( ⁇ ), and z ( ⁇ ) is calculated. Is multiplied by C 1 ( ⁇ ) at each wavelength and integrated in a wavelength range of 380 to 780 nm to obtain a value of ⁇ V 1 .
- Equation 2 the ⁇ R ( ⁇ ), the C 1 ( ⁇ ), and the light source spectrum L ( ⁇ ) are multiplied at each wavelength and integrated in a wavelength range of 380 to 780 nm. To obtain the value of ⁇ S 1 .
- the light source spectrum L ( ⁇ ) is a light source spectrum in the environment where the final product is used, and the spectrum of the light source used for measuring the spectral reflectance R A ( ⁇ ) and the spectral reflectance R B ( ⁇ ). Is not necessarily the same as L ( ⁇ ).
- ⁇ R ( ⁇ ) and C 2 ( ⁇ ) are multiplied at each wavelength to obtain a lower limit wavelength ⁇ 1 (nm) to visible light region.
- the value of ⁇ V 2 is obtained by integration in the wavelength range of the upper limit wavelength ⁇ 2 (nm).
- ⁇ R ( ⁇ ), C 2 ( ⁇ ), and light source spectrum L ( ⁇ ) are multiplied at each wavelength to obtain ⁇ 1 (nm) to ⁇ 2 (nm determine the value of [Delta] S 2 integrating in the wavelength range of).
- CIE International Commission on Illumination
- the color matching functions are defined as three functions x ( ⁇ ), y ( ⁇ ), and z ( ⁇ ), reflecting that humans have three-dimensional color coordinates.
- C 1 ( ⁇ ) is a function obtained by adding x ( ⁇ ), y ( ⁇ ), and z ( ⁇ ), and expresses what wavelength light can be perceived by humans.
- C 1 ( ⁇ ) is a function with an emphasis on color. Therefore, by using C 1 ( ⁇ ), the color difference can be reflected more accurately, and as a result, the non-visibility evaluation accuracy can be improved.
- CIE (1964) 10-deg color matching functions which are values of a 10 degree field of view, as the values of x ( ⁇ ), y ( ⁇ ), and z ( ⁇ ).
- FIG. 3 shows C 1 ( ⁇ ) obtained from the color matching function of the 10 ° field of view. Note that as the values of x ( ⁇ ), y ( ⁇ ), and z ( ⁇ ), the value of the double field of view can be used reflecting the use environment of the final product.
- C 2 ( ⁇ ) is used, even when C 2 ( ⁇ ) is used, the non-visibility evaluation accuracy can be improved.
- the light source spectrum used for the calculation of ⁇ S 1 or ⁇ S 2 can be set according to the usage environment of the final product and the like. For example, various light sources, such as sunlight, D65 light source, and a fluorescent lamp, are mentioned. When it is assumed that the final product is used outdoors, a method using a spectrum obtained by referring to an actual measurement value of a sunlight spectrum or a literature value of a D65 light source is preferable. In addition, when it is assumed that the final product is used indoors, a method of using an illumination spectrum as a light source spectrum is preferable, and a daylight color fluorescent light source or a D65 light source spectrum is preferable.
- FIG. 4 shows a spectrum of a daylight fluorescent light source
- FIG. 5 shows a spectrum of a D65 light source.
- ⁇ V 1 [Calculation of ⁇ V 1 and ⁇ S 1 ]
- ⁇ V 1 can be obtained by multiplying ⁇ R ( ⁇ ) and C 1 ( ⁇ ) at each wavelength and integrating in a wavelength range of 380 to 780 nm, as expressed in Equation 1 above.
- ⁇ S 1 is obtained by multiplying ⁇ R ( ⁇ ), C 1 ( ⁇ ), and L ( ⁇ ) at each wavelength and integrating in a wavelength range of 380 to 780 nm, as expressed in Equation 2 above.
- ⁇ V 1 and ⁇ S 1 may be calculated by piecewise quadrature using values at constant wavelength intervals (for example, every 10 nm) as in the examples described later. The same applies to the calculation of ⁇ V 2 and ⁇ S 2 .
- ⁇ V 2 is obtained by multiplying ⁇ R ( ⁇ ) and C 2 ( ⁇ ) at each wavelength, as expressed in Equation 3 above, from the lower limit wavelength ⁇ 1 (nm) to the upper limit wavelength ⁇ 2 (nm) in the visible light region. ) Is obtained by integration in the wavelength range.
- ⁇ S 2 is obtained by multiplying ⁇ R ( ⁇ ), C 2 ( ⁇ ), and L ( ⁇ ) at each wavelength, as expressed in Equation 4 above, to obtain a wavelength of ⁇ 1 (nm) to ⁇ 2 (nm). Obtained by integrating over a range.
- the light source spectrum L ( ⁇ ) used for the calculation of ⁇ S 1 or ⁇ S 2 can be arbitrarily set, but the calculation result changes if light sources having different intensities are used. Therefore, it is necessary to standardize the intensity of the light source spectrum.
- C 1 ( ⁇ ) and L ( ⁇ ) are multiplied by each wavelength and integrated in a wavelength range of 380 to 780 nm, and C 2 ( ⁇ ) and L ( ⁇ ) are Normalization is performed so that the result becomes 10 when integrated in the wavelength range of ⁇ 1 (nm) to ⁇ 2 (nm).
- the normalization of the light source intensity may be performed by integrating only the light source spectrum, but in the present invention, it is necessary to normalize in consideration of human sensitivity, which is 380 to 780 nm (or ⁇ ). 1 (nm) to ⁇ 2 (nm)), the above integrated value was adopted. This is the same reason that the k value described in JIS Z8701 is normalized by the integral value of light source spectrum ⁇ color matching function.
- the values of ⁇ V 1 , ⁇ S 1 , ⁇ V 2, and ⁇ S 2 obtained as described above can be used as indicators of the invisibility of the transparent electrode pattern, respectively.
- ⁇ V 1 , ⁇ S 1 , ⁇ V 2 and ⁇ S 2 are preferably low.
- the value of ⁇ V 1 is preferably 240% nm or less, more preferably 220% nm or less, and further preferably 200% nm or less.
- the value of ⁇ S 1 is preferably 7.0% nm or less, more preferably 6.3% nm or less, and even more preferably 5.6% nm or less.
- the value of ⁇ V 2 is preferably 280% nm or less, more preferably 260% nm or less, and further preferably 190% nm or less.
- the value of ⁇ S 2 is preferably 9.0% nm or less, more preferably 7.5% nm or less, and even more preferably 5.7% nm or less.
- the method for evaluating a substrate with a transparent electrode according to the present invention can be incorporated into the manufacturing process of the substrate with a transparent electrode.
- the above evaluation is performed at the time of setting the manufacturing conditions of the substrate with a transparent electrode, for example, and various manufacturing conditions are determined by adjusting the manufacturing conditions (film forming conditions of the transparent dielectric layer and the transparent conductive film layer) based on the evaluation results. be able to.
- substrate with a transparent electrode can also be performed by implementing the said evaluation in a production line.
- a method for producing a substrate with a transparent electrode including the evaluation method of the present invention is also one aspect of the present invention.
- the manufacturing method of the substrate with a transparent electrode of the present invention is the same as the manufacturing method of the conventional substrate with a transparent electrode except that the above-described evaluation method is incorporated.
- the method for manufacturing a substrate with a transparent electrode it is determined whether any one of the above ⁇ V 1 , ⁇ S 1 , ⁇ V 2 and ⁇ S 2 is within a predetermined range. For example, if the evaluation method of the present invention is performed on the substrate with a transparent electrode after the transparent conductive film layer is formed, and the value of ⁇ V 1 or the like exceeds a predetermined value, the non-visibility of the transparent electrode pattern Is not within the acceptable range.
- the determination result of the value of ⁇ V 1 or ⁇ V 2 is fed back, and the manufacturing conditions are adjusted so that the value falls within a predetermined range, whereby the non-visibility of the pattern on the substrate with the transparent electrode after patterning the transparent electrode Can be improved. If the determination result of the value of ⁇ S 1 or ⁇ S 2 is fed back to the manufacturing conditions, the invisibility in the usage environment of the final product can be improved. That is, as the light source spectrum L ( ⁇ ) used when calculating ⁇ S 1 or ⁇ S 2 , by using the light source spectrum in the use environment of the final product or the light source spectrum close to the use environment, the pattern in the use environment of the final product is determined. It becomes possible to evaluate non-visibility more accurately.
- ⁇ S 1 or ⁇ S 2 is preferably obtained.
- Examples of the production conditions to be adjusted include film formation conditions (material, thickness, gas flow rate, etc.) of the transparent dielectric layer, film formation conditions (material, thickness, gas flow rate, etc.) of the transparent conductive layer, and the like. Two or more manufacturing conditions may be adjusted simultaneously. For example, when the values of ⁇ V 1 , ⁇ S 1, etc. are higher than the target values, reducing the thickness of at least one of the transparent dielectric layer and the transparent conductive film layer, or at least one of the transparent dielectric layer and the transparent conductive film layer These values can be lowered by increasing the amount of oxygen during film formation.
- quality control of a substrate with a transparent electrode can be performed by adding the determination result to the substrate with a transparent electrode.
- the yield of the final product can be increased by selectively using a substrate with a transparent electrode whose values of ⁇ V 1 , ⁇ S 1 and the like are equal to or less than target values.
- a method of adding a determination result to a substrate with a transparent electrode a method of printing a label printed with the determination result or a medium such as an IC chip on which the determination result is recorded is attached to a substrate with a transparent electrode or packed together with a substrate with a transparent electrode, the determination result And a method of printing or printing directly on a substrate with a transparent electrode.
- the determination result can be expressed by letters, numbers, symbols, barcodes, two-dimensional codes, etc., or may be expressed in combination.
- the above-mentioned method is mentioned as a measuring method of a reflection spectrum.
- the method of measuring the reflection spectrum in-line during the film forming process is preferable, and the spectral reflectance R B ( ⁇ ) is preferably measured after the transparent dielectric layer is formed and before the transparent conductive film layer is formed. More preferably, the spectral reflectance of the substrate and the spectral reflectance of the substrate with a transparent electrode after the transparent conductive film layer is formed are measured in-line as the spectral reflectance R A ( ⁇ ).
- ⁇ V 1 is preferably 240% nm or less, more preferably 220% nm or less, and even more preferably 200% nm or less
- ⁇ S 1 is preferably 7.0% nm or less, more preferably 6.3. % V or less, more preferably 5.6% nm or less
- ⁇ V 2 is preferably 280% nm or less, more preferably 260% nm or less, more preferably 190% nm or less
- ⁇ S 2 is
- the transparent electrode pattern should be a substrate with a transparent electrode having high non-visibility, respectively. Can do. By managing the manufacturing conditions so as to be in such a numerical range, it is possible to manufacture a substrate with a transparent electrode with good non-visibility.
- the determination result can be fed back to the film forming process of the transparent conductive film layer without being affected by the difference in determination of the visibility of the transparent electrode pattern due to the evaluator's skill level, etc. Can be detected at an early stage, and can contribute to productivity improvement.
- substrate with a transparent electrode of this invention can be used as transparent electrodes, such as a display, a light emitting element, a photoelectric conversion element, and is used suitably as a transparent electrode for touchscreens.
- a transparent conductive film layer is low resistance, it is preferably used for a capacitive touch panel.
- a conductive ink or paste is applied on a substrate with a transparent electrode, and heat treatment is performed, whereby a collecting electrode as a wiring for a routing circuit is formed.
- the method for the heat treatment is not particularly limited, and examples thereof include a heating method using an oven or an IR heater.
- the temperature and time of the heat treatment are appropriately set in consideration of the temperature and time at which the conductive paste adheres to the transparent electrode. For example, examples include heating at 120 to 150 ° C. for 30 to 60 minutes for heating by an oven and heating at 150 ° C. for 5 minutes for heating by an IR heater.
- the formation method of the circuit wiring is not limited to the above, and may be formed by a dry coating method.
- the wiring for the routing circuit is formed by photolithography, the wiring can be thinned.
- substrate 1 As a substrate (A) 1 with a transparent electrode, a transparent dielectric layer (high refractive index layer, low refractive index layer) and a transparent conductive film layer were sequentially laminated on a base material (transparent substrate). Nb 2 O 5 was used as the high refractive index layer, SiO 2 was used as the low refractive index layer, and ITO in which tin oxide was doped into indium oxide was used as the transparent conductive film layer.
- a film having a hard coat layer (urethane resin) formed on both sides of a PET film (thickness 125 ⁇ m) was used as a substrate, and Nb 2 O 5 , SiO 2 , and ITO were sequentially formed thereon by sputtering.
- the thickness of the hard coat layer was 5 ⁇ m
- the thickness of Nb 2 O 5 was 8 nm
- the thickness of SiO 2 was 50 nm
- the thickness of ITO was 28 nm.
- substrate (A) 1 Since ITO immediately after sputtering is amorphous, the ITO was crystallized by annealing in an oven at 150 ° C. for 30 minutes. The substrate with a transparent electrode thus obtained was designated as substrate (A) 1 .
- Substrate (B) 1 was produced by wet etching the transparent conductive film layer of substrate (A) 1 with a transparent electrode using an etching solution (ITO-02 manufactured by Kanto Chemical).
- the substrate (A) 1 with a transparent electrode was patterned by photolithography to prepare a patterning sample 1.
- the non-visibility of the transparent electrode pattern was evaluated in five levels from level 1 to level 5 under a daylight fluorescent lamp. It shows that non-visibility is so favorable that a number is large.
- the visual invisibility level of the patterning sample 1 was 1.
- a substrate (A) 2 with a transparent electrode was prepared in the same manner as in Example 1 except that the thickness of SiO 2 was 40 nm and the thickness of ITO was 25 nm.
- B) 2 and patterning sample 2 were prepared. The visual invisibility level of the patterning sample 2 was 2.
- Substrate 3 Except that the thickness of Nb 2 O 5 was 7 nm and the thickness of ITO was 26 nm, a substrate with a transparent electrode (A) 3 was prepared in the same manner as in Example 1, and the transparent conductive film layer was wet etched. Substrate (B) 3 and patterning sample 3 were produced. The visual invisibility level of the patterning sample 3 was 3.
- a substrate (A) 4 with a transparent electrode was produced in the same manner as in Example 1 except that the thickness of ITO was set to 26 nm, and the transparent conductive film layer was wet-etched to obtain the substrate (B) 4 and the patterning sample 4 Was made.
- the visual invisibility level of the patterning sample 4 was 4.
- a substrate (A) 5 with a transparent electrode was prepared in the same manner as in Example 1 except that the thickness of Nb 2 O 5 was 6 nm, the thickness of SiO 2 was 34 nm, and the thickness of ITO was 10 nm.
- the substrate (B) 5 and the patterning sample 5 were produced by wet etching. The visual invisibility level of the patterning sample 5 was 5.
- a transparent electrode substrate (A) 6 was prepared in the same manner as in Example 1 except that the thickness of Nb 2 O 5 was 6 nm, the thickness of SiO 2 was 30 nm, and the thickness of ITO was 10 nm.
- the substrate (B) 6 and the patterning sample 6 were produced by wet etching. The visual invisibility level of the patterning sample 5 was 5.
- Example 1 The reflection spectra of the substrates with transparent electrodes (A) 1 to (A) 5 and substrates (B) 1 to (B) 5 prepared above were measured, and ⁇ V 1 was calculated based on Equation 1.
- the reflection spectrum was measured over a wavelength range of 380 nm to 780 nm every wavelength interval of 10 nm using a LAMBDA750 manufactured by PerkinElmer, Inc., which is a spectrophotometer equipped with an integrating sphere. The measurement was performed in a room temperature environment with an air temperature of 25 ° C. and a humidity of 40%. In the measurement of the reflection spectrum, a sample was placed so that the monochromatic light that was split was incident on the film-forming surface, and all transmitted light was measured with an integrating sphere. At the time of measuring the reflection spectrum, the reflectance including the back surface reflection was measured without performing any special treatment such as black coating on the back surface. The sample was fixed by pressing the outside of the portion in contact with the integrating sphere opening, and the measurement was performed with the back surface in contact with air.
- Equation 1 [Calculation of ⁇ V 1 ] ⁇ V 1 was obtained by multiplying ⁇ R ( ⁇ ) and C 1 ( ⁇ ) at each wavelength and integrating in a wavelength range of 380 to 780 nm, as expressed in Equation 1.
- ⁇ R ( ⁇ ) is the absolute value of the difference between the reflection spectra of the substrate with transparent electrode (A) and the substrate (B) obtained by the reflection spectrum measurement.
- the color matching function was adjusted to the measurement wavelength of the reflection spectrum, and a wavelength range of 380 nm to 780 nm was used for each wavelength interval of 10 nm. The same applies to the calculation of ⁇ S 1 , ⁇ V 1 and ⁇ S 2 .
- Example 2 In Example 1, the invisibility was evaluated using ⁇ S 1 instead of the evaluation function ⁇ V 1 .
- ⁇ S 1 the same daylight color fluorescent lamp light source spectrum as the light source used for visual evaluation was used.
- Equation 2 [Calculation of ⁇ S 1 ] ⁇ S 1 is obtained by multiplying ⁇ R ( ⁇ ), C 1 ( ⁇ ), and the light source spectrum L ( ⁇ ) at each wavelength and integrating in the wavelength range of 380 to 780 nm, as expressed in Equation 2. It was. In this example, normalization was performed so that the result was 10 when C 1 ( ⁇ ) and L ( ⁇ ) were multiplied by each wavelength and integrated in a wavelength range of 380 to 780 nm.
- Example 2 [Reference Example 1] In Example 2, ⁇ S 1 was calculated using the D65 light source spectrum as the light source spectrum L ( ⁇ ) instead of the daylight fluorescent lamp light source spectrum.
- FIG. 8 The result obtained by this calculation is shown in FIG. In FIG. 8, for reference, it is compared with the invisibility level evaluated under a daylight color fluorescent lamp. It was confirmed that ⁇ S 1 can be calculated even when the light source is changed.
- Example 1 From the reflection spectrum obtained in Example 1, using CIE (1964) 10-deg color matching functions as the color matching function and the D65 light source spectrum as the light source spectrum, the L * a * b * color system described in JIS Z8701 The color difference ⁇ E was calculated. The obtained results are shown in FIG. The correlation between ⁇ E and visual invisibility evaluation results is poor, and ⁇ E cannot represent invisibility with sufficient accuracy.
- Table 1 shows the results of the patterning sample 6 (substrate (A) 6 with transparent electrode and substrate (B) 6 ).
- ⁇ V 1 and ⁇ S 1 Examples 1 and 2 completely correspond to the order of visual evaluation
- the conventional index Comparative Examples 1 to 4 has a visual evaluation. The order is reversed. Thus, the non-visibility cannot be quantified with sufficient accuracy by the conventional index.
- Example 3 In Example 1, the invisibility was evaluated using ⁇ V 2 instead of the evaluation function ⁇ V 1 . In Examples 3 to 24, the reflection spectra of the substrates with transparent electrodes (A) 1 to (A) 4 and the substrates (B) 1 to (B) 4 were measured.
- Equation 3 [Calculation of ⁇ V 2 ] ⁇ V 2 was obtained by multiplying ⁇ R ( ⁇ ) and C 2 ( ⁇ ) at each wavelength and integrating in a wavelength range of 380 to 780 nm, as expressed in Equation 3.
- Example 25 the invisibility was evaluated using ⁇ S 2 instead of the evaluation function ⁇ S 1 .
- ⁇ S 2 the same daylight color fluorescent light source spectrum as that used for the visual evaluation was used.
- the reflection spectra of the substrates with transparent electrodes (A) 1 to (A) 4 and the substrates (B) 1 to (B) 4 were measured.
- Table 3 shows the results obtained by this calculation. It can be seen that ⁇ S 2 corresponds to the order of visual evaluation as well as ⁇ S 1 .
- Table 2 shows correlation coefficients between ⁇ V 2 (Examples 3 to 24) and visual results (levels 1 to 4).
- Table 3 shows ⁇ S 2 (Examples 25 to 47) and visual results (levels 1 to 4).
- the correlation coefficient with 4) is shown.
- the correlation coefficient is a statistical index indicating the correlation between two variables, and the covariance of two variables ( ⁇ V 2 -level in Table 2 and ⁇ S 2 -level in Table 3), respectively. It can be obtained by dividing by the standard deviation. The closer the correlation coefficient is to ⁇ 1, the more the ⁇ V 2 or ⁇ S 2 matches with the visual evaluation.
- FIG. 13 is a plane triangular coordinate showing the relationship between the values of the coefficients l, m and n of the color matching function C 2 ( ⁇ ) and visual evaluation in ⁇ V 2 (Examples 3 to 24).
- FIG. 14 is a plane triangular coordinate showing the relationship between the values of the coefficients l, m and n of the color matching function C 2 ( ⁇ ) and visual evaluation in ⁇ S 2 (Examples 25 to 47).
- 13 and 14 show the correlation coefficient between ⁇ V 2 or ⁇ S 2 and the visual results (levels 1 to 4), and “ ⁇ ” indicates that the correlation coefficient is ⁇ 1 or more and ⁇ 0.99 or less. , “ ⁇ ” for a value greater than ⁇ 0.99 and ⁇ 0.97 or less, “ ⁇ ” for a value greater than ⁇ 0.97 and ⁇ 0.95 or less, and “ ⁇ ” for a value greater than ⁇ 0.95 Is shown.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Human Computer Interaction (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Laminated Bodies (AREA)
- Position Input By Displaying (AREA)
Abstract
In this method for evaluation of a substrate with a transparent electrode, the spectral reflectivity (RA(λ)) of a substrate with transparent electrode (A) and the spectral reflectivity (RB(λ)) of a substrate (B) whereupon the transparent conductive film layer of the substrate with transparent electrode (A) is absent are measured, and the absolute value (ΔR(λ)) of the spectrum of the difference between the spectral reflectivity (RA(λ)) and the spectral reflectivity (RB(λ)) at each wavelength is calculated. One embodiment is characterized in that either the value of ΔV1, which is obtained by multiplying the ΔR(λ) and the sum (C1(λ)) of isochromatic functions at each wavelength and integrating the result over a wavelength region of 380-780nm, or the value of ΔS1, which is obtained by multiplying the ΔR(λ) and the C1(λ) with a light source spectrum (L(λ)) at each wavelength and integrating the result over the wavelength region of 380-780nm, is used as an index of non-viewability of a transparent electrode pattern.
Description
本発明は、透明電極付き基板、透明電極付き基板の評価方法及び透明電極付き基板の製造方法、並びに、タッチパネル及びタッチパネルの製造方法に関する。
The present invention relates to a substrate with a transparent electrode, a method for evaluating a substrate with a transparent electrode, a method for manufacturing a substrate with a transparent electrode, a touch panel, and a method for manufacturing a touch panel.
タッチパネル用透明電極付き基板は、透明絶縁基板上に透明電極を形成したもので、タッチパネルの位置センサーとして使用される。タッチパネルには様々な検出方式があり、その中の1つである静電容量方式は、静電容量の変化を捉えて位置を検出するために、静電容量検出用の電極パターンが必要である。電極パターンは、一般にエッチングにより形成され、電極がエッチング除去されたエッチング部(透明電極非形成部)と、電極がエッチングされずに残存している非エッチング部(透明電極形成部)とから構成される。
A substrate with a transparent electrode for a touch panel is formed by forming a transparent electrode on a transparent insulating substrate, and is used as a position sensor for the touch panel. There are various detection methods for touch panels, and one of them, the capacitance method, requires an electrode pattern for capacitance detection in order to detect a position by detecting a change in capacitance. . The electrode pattern is generally formed by etching, and is composed of an etched portion (transparent electrode non-formed portion) from which the electrode has been removed by etching and a non-etched portion (transparent electrode forming portion) where the electrode remains without being etched. The
タッチパネルは、通常、ディスプレイ上に配置されるため、透明電極のパターンが目視により視認されると、最終製品の品質を低下させることとなる。そのため、透明電極がパターニングされた透明電極付き基板では、パターニングした形跡が見えない、いわゆる透明電極パターン(以下、単にパターンともいう)の非視認性が求められる。
Since the touch panel is usually arranged on the display, when the transparent electrode pattern is visually recognized, the quality of the final product is deteriorated. Therefore, a substrate with a transparent electrode on which a transparent electrode is patterned requires non-visibility of a so-called transparent electrode pattern (hereinafter, also simply referred to as a pattern) in which a patterned trace is not visible.
透明電極パターンが視認される主因は、エッチング部と非エッチング部との間に、反射率や色彩値等の光学的な差異が発生することにある。そのため、多くのタッチパネル用透明電極付き基板は、透明誘電体層の膜厚や屈折率を調整する等の積層構造の設計により、非視認性を向上させている。
The main reason why the transparent electrode pattern is visually recognized is that an optical difference such as reflectance and color value occurs between the etched portion and the non-etched portion. Therefore, many substrates with transparent electrodes for touch panels have improved invisibility by designing a laminated structure such as adjusting the film thickness and refractive index of the transparent dielectric layer.
このように、透明電極パターンの非視認性は、タッチパネル用透明電極付き基板の重要特性であるにも関わらず、目視による光学的な指標による定量的な数値管理は実現できていなかった。
Thus, in spite of the fact that the invisibility of the transparent electrode pattern is an important characteristic of the substrate with a transparent electrode for a touch panel, quantitative numerical management by visual optical indicators has not been realized.
例えば、特許文献1には、非視認性の指標として反射スペクトルからJIS Z8701に準じて算出した色差ΔEを用いた技術が記載されている。特許文献2には、非視認性の指標としてエッチング部と非エッチング部の反射率スペクトルの差の積算値を用いた技術が記載されている。特許文献3には、反射スペクトルの平均値の差の絶対値を用いた技術が記載されている。特許文献4には、反射スペクトルの差の絶対値と標準比視感度を掛け合わせて積分して得られる値を用いた技術が記載されている。
For example, Patent Document 1 describes a technique using a color difference ΔE calculated according to JIS Z8701 from a reflection spectrum as an invisibility index. Patent Document 2 describes a technique using an integrated value of a difference between reflectance spectra of an etched portion and a non-etched portion as an index of invisibility. Patent Document 3 describes a technique using an absolute value of a difference between average values of reflection spectra. Patent Document 4 describes a technique using a value obtained by multiplying and integrating the absolute value of the difference in reflection spectrum and the standard specific luminous efficiency.
しかし、上記特許文献1におけるΔEに基づく評価や、上記特許文献2~4における反射スペクトルの差の絶対値又は積算値に基づく評価は、人間の官能評価と必ずしも一致しておらず、現状、品質管理のため人間の目視による評価が必要である。そのため、評価者の熟練度、体調等によって判定差が生じるという問題があった。
However, the evaluation based on ΔE in Patent Document 1 and the evaluation based on the absolute value or the integrated value of the difference in reflection spectrum in Patent Documents 2 to 4 do not necessarily coincide with human sensory evaluation. Human visual evaluation is necessary for management. For this reason, there is a problem in that a judgment difference occurs depending on the evaluator's skill level, physical condition and the like.
本発明者らは鋭意検討した結果、以下の式1に示すΔV1、式2に示すΔS1、式3に示すΔV2又は式4に示すΔS2が、従来公知の指標よりも人間の評価結果を精度よく表していることを見出した。
As a result of intensive studies, the present inventors have found that ΔV 1 shown in the following formula 1, ΔS 1 shown in formula 2, ΔV 2 shown in formula 3, or ΔS 2 shown in formula 4 is evaluated by humans more than conventionally known indexes. It was found that the results were accurately represented.
すなわち、本発明は、透明電極付き基板の評価方法に関する。本発明の評価方法では、透明基板上に透明誘電体層及び透明導電膜層がこの順に積層された透明電極付き基板(A)の分光反射率RA(λ)と、上記透明電極付き基板(A)の上記透明導電膜層が存在しない基板(B)の分光反射率RB(λ)とを測定し、上記分光反射率RA(λ)と上記分光反射率RB(λ)との各波長における差分のスペクトルの絶対値ΔR(λ)を計算する。
That is, the present invention relates to a method for evaluating a substrate with a transparent electrode. In the evaluation method of the present invention, the spectral reflectance R A (λ) of the substrate with a transparent electrode (A) in which a transparent dielectric layer and a transparent conductive film layer are laminated in this order on the transparent substrate, and the substrate with the transparent electrode ( The spectral reflectance R B (λ) of the substrate (B) without the transparent conductive film layer of A) is measured, and the spectral reflectance R A (λ) and the spectral reflectance R B (λ) The absolute value ΔR (λ) of the difference spectrum at each wavelength is calculated.
一実施形態においては、以下の式1に示すように、上記ΔR(λ)と、等色関数x(λ)、y(λ)及びz(λ)の和であるC1(λ)とを各波長において掛け合わせて、380~780nmの波長範囲で積分することで得られるΔV1の値、又は、以下の式2に示すように、上記ΔR(λ)と、上記C1(λ)と、光源スペクトルL(λ)とを各波長において掛け合わせて、380~780nmの波長範囲で積分することで得られるΔS1の値を、透明電極がパターニングされた透明電極付き基板における透明電極形成部と透明電極非形成部との反射光の視認性の差、すなわち透明電極パターンの非視認性の指標に用いることを特徴とする。
In one embodiment, as shown in Equation 1 below, ΔR (λ) and C 1 (λ) that is the sum of the color matching functions x (λ), y (λ), and z (λ) are calculated. The value of ΔV 1 obtained by multiplying at each wavelength and integrating in the wavelength range of 380 to 780 nm, or ΔR (λ) and C 1 (λ) as shown in Equation 2 below. , The light source spectrum L (λ) multiplied at each wavelength and integrated in the wavelength range of 380 to 780 nm, and the value of ΔS 1 is obtained on the transparent electrode-formed substrate with the transparent electrode patterned thereon. And a transparent electrode non-formation part, it is used for the difference in the visibility of reflected light, that is, the non-visibility index of the transparent electrode pattern.
また、他の実施形態においては、以下の式3に示すように、上記ΔR(λ)と、等色関数x(λ)、y(λ)及びz(λ)を用いて、式「C2(λ)=l×x(λ)+m×y(λ)+n×z(λ)」で表されるC2(λ)(ただし、l=0~1.25、m=0~2、n=0.4~3、l+m+n=3である)とを各波長において掛け合わせて、可視光領域の下限波長λ1(nm)~上限波長λ2(nm)の波長範囲で積分することで得られるΔV2の値、又は、下記式4に示すように、上記ΔR(λ)と、上記C2(λ)(ただし、l=0~1.6、m=0~1.6、n=0.4~3、l+m+n=3である)と、光源スペクトルL(λ)とを各波長において掛け合わせて、λ1(nm)~λ2(nm)の波長範囲で積分することで得られるΔS2の値を透明電極パターンの非視認性の指標に用いることを特徴とする。
In another embodiment, as shown in Equation 3 below, using the ΔR (λ) and the color matching functions x (λ), y (λ), and z (λ), the expression “C 2 (λ) = l × x ( λ) + m × y (λ) + n × C 2 represented by z (lambda) "(lambda) (However, l = 0 ~ 1.25, m = 0 ~ 2, n = 0.4 to 3, l + m + n = 3) at each wavelength, and integration is performed in the wavelength range from the lower limit wavelength λ 1 (nm) to the upper limit wavelength λ 2 (nm) in the visible light region. ΔV 2 value or the above ΔR (λ) and C 2 (λ) (where l = 0 to 1.6, m = 0 to 1.6, n = 0.4 to 3, l + m + n = 3) and the light source spectrum L (λ) are multiplied at each wavelength and integrated in a wavelength range of λ 1 (nm) to λ 2 (nm). ΔS Characterized by using the values for the index of the non-visibility of the transparent electrode pattern.
本発明は、透明基板上に透明誘電体層及び透明導電膜層がこの順に積層された透明電極付き基板の製造方法に関する。本発明の透明電極付き基板の製造方法では、上述した透明電極付き基板の評価が行われ、上記ΔV1、ΔS1、ΔV2及びΔS2のいずれかの値が所定の範囲内であるかを判定することを特徴とする。
The present invention relates to a method for manufacturing a substrate with a transparent electrode in which a transparent dielectric layer and a transparent conductive film layer are laminated in this order on a transparent substrate. In the method for producing a substrate with a transparent electrode according to the present invention, the above-described substrate with a transparent electrode is evaluated, and whether any one of the above ΔV 1 , ΔS 1 , ΔV 2, and ΔS 2 is within a predetermined range. It is characterized by determining.
本発明の一態様は、上記製造方法により製造されたことを特徴とする透明電極付き基板に関する。
One embodiment of the present invention relates to a substrate with a transparent electrode manufactured by the above manufacturing method.
本発明は、透明基板上に透明誘電体層及び透明導電膜層がこの順に積層された透明電極付き基板(A)と、上記透明電極付き基板(A)の上記透明導電膜層が存在しない基板(B)とを含む透明電極付き基板に関する。本発明の透明電極付き基板では、上記式1に示すΔV1の値が240%nm以下であるか、又は、上記式2に示すΔS1の値が7.0%nm以下であることを特徴とする。
The present invention provides a substrate with a transparent electrode (A) in which a transparent dielectric layer and a transparent conductive film layer are laminated in this order on a transparent substrate, and a substrate in which the transparent conductive film layer of the substrate with a transparent electrode (A) does not exist. And (B). In the substrate with a transparent electrode of the present invention, the value of ΔV 1 shown in the above formula 1 is 240% nm or less, or the value of ΔS 1 shown in the above formula 2 is 7.0% nm or less. And
本発明は、上記透明電極付き基板を備えることを特徴とするタッチパネルに関する。
The present invention relates to a touch panel comprising the above substrate with a transparent electrode.
本発明は、上記透明電極付き基板の評価方法、又は、上記透明電極付き基板の製造方法が行われることを特徴とするタッチパネルの製造方法に関する。さらに、本発明は、上記製造方法により製造されたことを特徴とするタッチパネルに関する。
This invention relates to the manufacturing method of the touchscreen characterized by performing the evaluation method of the said board | substrate with a transparent electrode, or the manufacturing method of the said board | substrate with a transparent electrode. Furthermore, the present invention relates to a touch panel manufactured by the above manufacturing method.
本発明により、透明電極がパターニングされた透明電極付き基板やタッチパネルにおける、透明電極パターンの非視認性を定量的に正確に良否判定することが可能になり、評価者の熟練度等によるパターン非視認性の判定差という従来技術の問題が生じない。本発明による評価方法を、透明電極付き基板の製造における指標に用いることで、透明電極パターンの非視認性が良好な透明電極付き基板を提供することができる。
According to the present invention, it becomes possible to quantitatively and accurately determine the non-visibility of the transparent electrode pattern on the substrate with a transparent electrode and the touch panel on which the transparent electrode is patterned. The problem of the prior art of difference in sex determination does not occur. By using the evaluation method according to the present invention as an index in the production of a substrate with a transparent electrode, it is possible to provide a substrate with a transparent electrode in which the non-visibility of the transparent electrode pattern is good.
以下、本発明の好ましい実施の形態について説明する。まず、本発明の透明電極付き基板の評価方法(以下、単に「本発明の評価方法」ともいう)で使用する透明電極付き基板について説明する。
Hereinafter, preferred embodiments of the present invention will be described. First, a substrate with a transparent electrode used in the method for evaluating a substrate with a transparent electrode of the present invention (hereinafter also simply referred to as “the evaluation method of the present invention”) will be described.
図1は、透明基板1の上に透明誘電体層2が形成され、その上に透明導電膜層3が形成された透明電極付き基板(A)の断面図である。図2は、透明電極付き基板(A)から透明導電膜層3が除去された基板(B)の断面図である。なお、図1及び図2における厚さの寸法関係については、図面の明瞭化と簡略化のため適宣変更されており、実際の寸法関係を表していない。また、各図において、同一の参照符号は同一の技術事項を意味する。
FIG. 1 is a cross-sectional view of a substrate (A) with a transparent electrode in which a transparent dielectric layer 2 is formed on a transparent substrate 1 and a transparent conductive film layer 3 is formed thereon. FIG. 2 is a cross-sectional view of the substrate (B) from which the transparent conductive film layer 3 has been removed from the substrate with transparent electrodes (A). Note that the dimensional relationship of the thicknesses in FIGS. 1 and 2 is changed as appropriate for the sake of clarity and simplification of the drawings, and does not represent the actual dimensional relationship. Moreover, in each figure, the same referential mark means the same technical matter.
透明基板の基材としては、少なくとも可視光領域で無色透明であれば特に限定されず、この上に透明電極を形成可能なものであればよい。例えば、ガラス、ポリエチレンテレフタレート(PET)やポリブチレンテレフテレート(PBT)、ポリエチレンナフタレート(PEN)等のポリエステル樹脂やシクロオレフィン系樹脂、ポリカーボネート樹脂、ポリイミド樹脂、セルロース系樹脂等が挙げられる。中でも、ポリエステル樹脂やシクロオレフィン系樹脂が好ましく用いられ、ポリエチレンテレフタレートが特に好ましく用いられる。基材の厚みは特に限定されないが、0.01~0.4mmの厚みが好ましい。上記範囲内であれば、透明基板の耐久性を十分に高めることができ、適度な柔軟性を有するため、生産性の良いロールトゥロール方式で製膜することができる。
The base material of the transparent substrate is not particularly limited as long as it is colorless and transparent at least in the visible light region, and any substrate can be used as long as a transparent electrode can be formed thereon. Examples thereof include polyester resins such as glass, polyethylene terephthalate (PET), polybutylene terephthalate (PBT), and polyethylene naphthalate (PEN), cycloolefin resins, polycarbonate resins, polyimide resins, and cellulose resins. Among these, polyester resins and cycloolefin resins are preferably used, and polyethylene terephthalate is particularly preferably used. The thickness of the substrate is not particularly limited, but a thickness of 0.01 to 0.4 mm is preferable. If it is in the said range, since durability of a transparent substrate can fully be improved and it has moderate softness | flexibility, it can form into a film by the roll to roll system with sufficient productivity.
透明誘電体層の材料としては、例えば、アクリル樹脂、シリコーン樹脂、酸化ケイ素・酸化チタン・酸化ニオブ・酸化ジルコニウム・酸化アルミニウム等の酸化物を主成分とする材料やフッ化カルシウム・フッ化マグネシウムを主成分とする材料を用いることができる。透明誘電体層を構成する酸化物としては、少なくとも可視光領域で無色透明であり、抵抗率が10Ω・cm以上であるものが好ましい。また、透明誘電体層の厚みは、上記抵抗率を満たせば、任意の厚みでよい。透明誘電体層は1層のみからなるものでもよく、2層以上からなるものでもよい。
Examples of the material for the transparent dielectric layer include acrylic resins, silicone resins, materials mainly composed of oxides such as silicon oxide, titanium oxide, niobium oxide, zirconium oxide, aluminum oxide, and calcium fluoride / magnesium fluoride. A material having a main component can be used. As the oxide constituting the transparent dielectric layer, an oxide that is colorless and transparent at least in the visible light region and has a resistivity of 10 Ω · cm or more is preferable. The thickness of the transparent dielectric layer may be any thickness as long as the resistivity is satisfied. The transparent dielectric layer may be composed of only one layer or may be composed of two or more layers.
透明基板の片面あるいは両面には、タッチパネル用透明電極の耐久性を高める等の目的で、透明誘電体層でもあるハードコート層が予め積層されていても良い。ハードコート層の材料としては、アクリル樹脂、シリコーン樹脂等を用いることができる。ハードコートの膜厚は、適度な耐久性と柔軟性を有することから、1~10μmが好ましい。
A hard coat layer, which is also a transparent dielectric layer, may be previously laminated on one side or both sides of the transparent substrate for the purpose of enhancing the durability of the transparent electrode for touch panel. As a material for the hard coat layer, an acrylic resin, a silicone resin, or the like can be used. The film thickness of the hard coat is preferably 1 to 10 μm because it has moderate durability and flexibility.
上記透明基板には、透明基板と透明導電膜層の付着性を向上させる目的で表面処理を施すことができる。表面処理の手段としては、例えば、基板表面に電気的極性を持たせることで付着力を高める方法等があり、具体的にはコロナ放電、プラズマ法等が挙げられる。本発明における透明導電膜層と透明基板の間の透明誘電体層には、密着性を向上させる効果を持たせることも可能であり、特にSiOx(x=1.8~2.0)であれば、光学特性を損なうことがない点からも好ましい。
The transparent substrate can be subjected to a surface treatment for the purpose of improving the adhesion between the transparent substrate and the transparent conductive film layer. As a means for surface treatment, for example, there is a method of increasing the adhesion force by imparting electrical polarity to the surface of the substrate, and specific examples include corona discharge, plasma method and the like. In the present invention, the transparent dielectric layer between the transparent conductive film layer and the transparent substrate can also have an effect of improving adhesion, and particularly with SiO x (x = 1.8 to 2.0). If it exists, it is preferable also from the point which does not impair an optical characteristic.
透明導電膜層の材料は、透明性と導電性を両立するものであれば特に限定されない。この様な材料としては、酸化インジウム、酸化亜鉛、酸化錫を主成分とする材料等が挙げられる。中でも、低抵抗の観点から、酸化インジウムを主成分とする材料が好ましく用いられる。
The material of the transparent conductive film layer is not particularly limited as long as it has both transparency and conductivity. Examples of such a material include materials mainly composed of indium oxide, zinc oxide, and tin oxide. Among these, from the viewpoint of low resistance, a material mainly composed of indium oxide is preferably used.
本明細書において、ある物質を「主成分とする」とは、当該物質の含有量が51重量%以上、好ましくは70重量%以上、より好ましくは90重量%以上であることを指す。本発明の機能を損なわない限りにおいて、各層には、主成分以外の成分が含まれていてもよい。
In the present specification, “having a main component” as a substance means that the content of the substance is 51% by weight or more, preferably 70% by weight or more, more preferably 90% by weight or more. As long as the function of the present invention is not impaired, each layer may contain components other than the main component.
透明導電膜層の形成方法は特に限定されず、スパッタリングやイオンプレーティング等のドライプロセス、ゾルゲルコーティング等のウェットプロセス等、求める特性に応じて適切な方法を選択することができる。
The method for forming the transparent conductive film layer is not particularly limited, and an appropriate method can be selected according to desired characteristics, such as a dry process such as sputtering or ion plating, or a wet process such as sol-gel coating.
静電容量方式タッチパネル等のタッチパネル用の透明電極付き基板においては、透明導電膜層の面内の一部がエッチング等によりパターニングされて用いられる。透明導電膜層のパターン(透明電極パターン)は、例えば、透明電極付き基板の透明導電膜層の一部をエッチングにより除去する手法や、透明導電膜層製膜時に透明導電膜層を部分的に製膜しない手法により形成される。エッチングにより透明導電膜層を除去する手法としては、感光性レジストを塗布後、フォトリソグラフィー等でレジストのパターンを形成し、露出した透明導電膜層をエッチング液で除去する方法が知られている。この他の手法であっても、所定のパターンを形成するために透明導電膜層が除去されるものであれば任意に用いることができる。透明導電膜層を部分的に製膜しない手法としては、基板にマスクパターンを形成した後に透明導電膜層を形成し、マスク部を除去する手法等が挙げられる。
In a substrate with a transparent electrode for a touch panel such as a capacitive touch panel, a part of the surface of the transparent conductive film layer is patterned by etching or the like. The pattern (transparent electrode pattern) of the transparent conductive film layer is, for example, a method of removing a part of the transparent conductive film layer of the substrate with a transparent electrode by etching, or a part of the transparent conductive film layer when forming the transparent conductive film layer. It is formed by a technique that does not form a film. As a method for removing the transparent conductive film layer by etching, a method is known in which after applying a photosensitive resist, a resist pattern is formed by photolithography or the like, and the exposed transparent conductive film layer is removed with an etching solution. Even other methods may be used arbitrarily as long as the transparent conductive film layer is removed to form a predetermined pattern. As a method of not forming the transparent conductive film layer partially, a method of forming a transparent conductive film layer after forming a mask pattern on the substrate and removing the mask portion, or the like can be given.
次に、本発明の透明電極付き基板の評価方法について説明する。本発明の透明電極付き基板の評価方法では、まず、透明基板上に透明誘電体層及び透明導電膜層がこの順に積層された透明電極付き基板(A)の分光反射率RA(λ)と、上記透明電極付き基板(A)の上記透明導電膜層が存在しない基板(B)の分光反射率RB(λ)とを測定し、上記分光反射率RA(λ)と上記分光反射率RB(λ)との各波長における差分のスペクトルの絶対値ΔR(λ)を計算する。
Next, the evaluation method of the substrate with a transparent electrode of the present invention will be described. In the evaluation method for a substrate with a transparent electrode of the present invention, first, the spectral reflectance R A (λ) of the substrate with a transparent electrode (A) in which a transparent dielectric layer and a transparent conductive film layer are laminated in this order on the transparent substrate and The spectral reflectance R B (λ) of the substrate (B) of the substrate (A) with the transparent electrode without the transparent conductive film layer is measured, and the spectral reflectance R A (λ) and the spectral reflectance are measured. The absolute value ΔR (λ) of the spectrum of the difference at each wavelength with R B (λ) is calculated.
[透明電極付き基板(A)]
透明電極付き基板(A)としては、誘電体層上に透明導電膜層を形成後、パターン形成前のものや、パターン形成後の透明電極付き基板の非エッチング部を用いることができる。タッチパネルとしての評価を行う場合、透明導電膜層のパターニングを行った後ではパターンが細かすぎて反射率測定が行えないことがある。このような場合、反射率測定用の抜き取りサンプルとして、測定が可能なようにパターン形状を変更したり、パターニングやエッチングを行わず透明電極が全面に存在する透明電極付き基板(A)を用いて評価用基板を形成してもよい。 [Substrate with transparent electrode (A)]
As the substrate with a transparent electrode (A), after forming a transparent conductive film layer on the dielectric layer, the substrate before pattern formation or the non-etched portion of the substrate with transparent electrode after pattern formation can be used. When performing evaluation as a touch panel, after patterning the transparent conductive film layer, the pattern may be too fine to perform reflectance measurement. In such a case, as a sampling sample for reflectance measurement, the pattern shape is changed so that measurement is possible, or the substrate with the transparent electrode (A) in which the transparent electrode is present on the entire surface without performing patterning or etching is used. An evaluation substrate may be formed.
透明電極付き基板(A)としては、誘電体層上に透明導電膜層を形成後、パターン形成前のものや、パターン形成後の透明電極付き基板の非エッチング部を用いることができる。タッチパネルとしての評価を行う場合、透明導電膜層のパターニングを行った後ではパターンが細かすぎて反射率測定が行えないことがある。このような場合、反射率測定用の抜き取りサンプルとして、測定が可能なようにパターン形状を変更したり、パターニングやエッチングを行わず透明電極が全面に存在する透明電極付き基板(A)を用いて評価用基板を形成してもよい。 [Substrate with transparent electrode (A)]
As the substrate with a transparent electrode (A), after forming a transparent conductive film layer on the dielectric layer, the substrate before pattern formation or the non-etched portion of the substrate with transparent electrode after pattern formation can be used. When performing evaluation as a touch panel, after patterning the transparent conductive film layer, the pattern may be too fine to perform reflectance measurement. In such a case, as a sampling sample for reflectance measurement, the pattern shape is changed so that measurement is possible, or the substrate with the transparent electrode (A) in which the transparent electrode is present on the entire surface without performing patterning or etching is used. An evaluation substrate may be formed.
透明電極付き基板を利用するタッチパネルでは、透明導電膜層を製膜後、アニールによって透明導電膜層の結晶化が行われることがある。透明導電膜層を構成する材料(ITO等)の屈折率は結晶化前後で変化するため、透明電極パターンの非視認性も結晶化前後で変化する。そのため、通常は、結晶化後の透明導電膜層の光学特性に基づいて光学設計がなされる。また、結晶化前の透明導電膜層では、ITO等自体が光を吸収しやすいため、透明電極パターンが視認されやすくなる。以上の理由により、透明導電膜層の結晶化が行われる場合には、透明電極付き基板(A)として透明導電膜層を結晶化したものを用いることで、精度の高い評価が可能となる。
In a touch panel using a substrate with a transparent electrode, the transparent conductive film layer may be crystallized by annealing after forming the transparent conductive film layer. Since the refractive index of the material (such as ITO) constituting the transparent conductive film layer changes before and after crystallization, the invisibility of the transparent electrode pattern also changes before and after crystallization. Therefore, optical design is usually performed based on the optical characteristics of the transparent conductive film layer after crystallization. Moreover, in the transparent conductive film layer before crystallization, since ITO etc. itself absorbs light easily, a transparent electrode pattern becomes easy to visually recognize. For the above reason, when crystallization of a transparent conductive film layer is performed, highly accurate evaluation becomes possible by using what crystallized a transparent conductive film layer as a substrate (A) with a transparent electrode.
[基板(B)]
基板(B)は、上記透明電極付き基板(A)の透明導電膜層が存在しない状態のものである。透明電極付き基板(A)の透明導電膜層をエッチングした基板や、透明導電膜層を製膜する前の段階の基板を、基板(B)として用いることができる。パターン形成後の透明電極付き基板のエッチング部を基板(B)として用いることもできる。パターニングプロセスにおいて、透明誘電体層がエッチングされたり、変質したりするような場合では、反射率を測定するための基板(B)としてエッチングプロセスを経たものを利用することで、実態に即した精度の高い評価が可能となる。
エッチングの方法としては、酸を用いたウェットプロセスや、プラズマを用いたドライプロセス等、タッチパネルの製造プロセスに応じて適切な方法を選択することができる。 [Substrate (B)]
A board | substrate (B) is a thing of the state in which the transparent conductive film layer of the said board | substrate with a transparent electrode (A) does not exist. The board | substrate which etched the transparent conductive film layer of the board | substrate (A) with a transparent electrode, or the board | substrate of the stage before forming a transparent conductive film layer can be used as a board | substrate (B). The etched portion of the substrate with a transparent electrode after pattern formation can also be used as the substrate (B). In the case where the transparent dielectric layer is etched or altered in the patterning process, the substrate (B) for measuring the reflectivity is used as the substrate (B) that has been subjected to the etching process, so that the actual accuracy can be obtained. High evaluation is possible.
As an etching method, an appropriate method can be selected according to the touch panel manufacturing process, such as a wet process using an acid or a dry process using plasma.
基板(B)は、上記透明電極付き基板(A)の透明導電膜層が存在しない状態のものである。透明電極付き基板(A)の透明導電膜層をエッチングした基板や、透明導電膜層を製膜する前の段階の基板を、基板(B)として用いることができる。パターン形成後の透明電極付き基板のエッチング部を基板(B)として用いることもできる。パターニングプロセスにおいて、透明誘電体層がエッチングされたり、変質したりするような場合では、反射率を測定するための基板(B)としてエッチングプロセスを経たものを利用することで、実態に即した精度の高い評価が可能となる。
エッチングの方法としては、酸を用いたウェットプロセスや、プラズマを用いたドライプロセス等、タッチパネルの製造プロセスに応じて適切な方法を選択することができる。 [Substrate (B)]
A board | substrate (B) is a thing of the state in which the transparent conductive film layer of the said board | substrate with a transparent electrode (A) does not exist. The board | substrate which etched the transparent conductive film layer of the board | substrate (A) with a transparent electrode, or the board | substrate of the stage before forming a transparent conductive film layer can be used as a board | substrate (B). The etched portion of the substrate with a transparent electrode after pattern formation can also be used as the substrate (B). In the case where the transparent dielectric layer is etched or altered in the patterning process, the substrate (B) for measuring the reflectivity is used as the substrate (B) that has been subjected to the etching process, so that the actual accuracy can be obtained. High evaluation is possible.
As an etching method, an appropriate method can be selected according to the touch panel manufacturing process, such as a wet process using an acid or a dry process using plasma.
タッチパネルとしての評価を行う場合、透明電極付き基板(A)の場合と同様、パターンが細かすぎて反射率測定が行えないことがある。このような場合、反射率測定用の抜き取りサンプルとして、測定が可能なようにパターン形状を変更したり、全面の透明電極を除去した基板(B)を用いて評価用基板を形成してもよい。
When evaluating as a touch panel, as in the case of the substrate with a transparent electrode (A), the pattern may be too fine to measure the reflectance. In such a case, as an extraction sample for reflectance measurement, the pattern shape may be changed so that measurement is possible, or the evaluation substrate may be formed using the substrate (B) from which the entire transparent electrode has been removed. .
[反射スペクトル測定]
反射スペクトルの測定は、JIS Z8722の規格に従った方法で行うことができる。反射スペクトルの測定方法としては、インライン分光反射率計を用いて製膜工程中にインラインで測定する方法、製膜終了後にオフライン分光光度計で測定する方法、検査のため簡易タッチパネルに組み上げて測定する方法、完成したタッチパネル製品を測定する方法等が挙げられる。なお、分光反射率RA(λ)と分光反射率RB(λ)は、共に「製膜終了後にオフライン分光光度計で測定する」等のように、同じ工程で測定することが好ましい。また、分光反射率の差分の絶対値ΔR(λ)が製造工程の指標に用いられる場合、RB(λ)の測定には製膜段階での作業が重要なことを考慮すると、反射スペクトルの測定方法としては、製膜工程中か製膜終了後に、分光反射率計又は分光光度計を用いて測定するのが好ましく、特に、製膜終了後に測定するのが好ましい。 [Reflectance spectrum measurement]
The reflection spectrum can be measured by a method according to the standard of JIS Z8722. As a method for measuring the reflection spectrum, an in-line spectral reflectometer is used for in-line measurement during the film forming process, an off-line spectrophotometer is used for measurement after film formation, and a simple touch panel is used for inspection. And a method of measuring a completed touch panel product. The spectral reflectance R A (λ) and the spectral reflectance R B (λ) are preferably measured in the same process, such as “measure with an off-line spectrophotometer after film formation”. In addition, when the absolute value ΔR (λ) of the difference in spectral reflectance is used as an index for the manufacturing process, considering that the work at the film forming stage is important for measuring R B (λ), the reflection spectrum As a measuring method, it is preferable to measure using a spectral reflectometer or a spectrophotometer during the film forming process or after the film formation is completed, and it is particularly preferable to measure after the film formation is completed.
反射スペクトルの測定は、JIS Z8722の規格に従った方法で行うことができる。反射スペクトルの測定方法としては、インライン分光反射率計を用いて製膜工程中にインラインで測定する方法、製膜終了後にオフライン分光光度計で測定する方法、検査のため簡易タッチパネルに組み上げて測定する方法、完成したタッチパネル製品を測定する方法等が挙げられる。なお、分光反射率RA(λ)と分光反射率RB(λ)は、共に「製膜終了後にオフライン分光光度計で測定する」等のように、同じ工程で測定することが好ましい。また、分光反射率の差分の絶対値ΔR(λ)が製造工程の指標に用いられる場合、RB(λ)の測定には製膜段階での作業が重要なことを考慮すると、反射スペクトルの測定方法としては、製膜工程中か製膜終了後に、分光反射率計又は分光光度計を用いて測定するのが好ましく、特に、製膜終了後に測定するのが好ましい。 [Reflectance spectrum measurement]
The reflection spectrum can be measured by a method according to the standard of JIS Z8722. As a method for measuring the reflection spectrum, an in-line spectral reflectometer is used for in-line measurement during the film forming process, an off-line spectrophotometer is used for measurement after film formation, and a simple touch panel is used for inspection. And a method of measuring a completed touch panel product. The spectral reflectance R A (λ) and the spectral reflectance R B (λ) are preferably measured in the same process, such as “measure with an off-line spectrophotometer after film formation”. In addition, when the absolute value ΔR (λ) of the difference in spectral reflectance is used as an index for the manufacturing process, considering that the work at the film forming stage is important for measuring R B (λ), the reflection spectrum As a measuring method, it is preferable to measure using a spectral reflectometer or a spectrophotometer during the film forming process or after the film formation is completed, and it is particularly preferable to measure after the film formation is completed.
上記ΔR(λ)を計算した後、一実施形態においては、上記式1に示すように、上記ΔR(λ)と、等色関数x(λ)、y(λ)及びz(λ)の和であるC1(λ)とを各波長において掛け合わせて、380~780nmの波長範囲で積分することでΔV1の値を求める。又は、上記式2に示すように、上記ΔR(λ)と、上記C1(λ)と、光源スペクトルL(λ)とを各波長において掛け合わせて、380~780nmの波長範囲で積分することでΔS1の値を求める。ここで、C1(λ)は、等色関数x(λ)、y(λ)及びz(λ)を用いて、式「C1(λ)=x(λ)+y(λ)+z(λ)」で表される関数である。後述するように、光源スペクトルL(λ)は、最終製品の使用環境等における光源スペクトルであり、分光反射率RA(λ)および分光反射率RB(λ)の測定に用いられる光源のスペクトルは、必ずしもL(λ)と同一でなくともよい。
After calculating ΔR (λ), in one embodiment, as shown in Equation 1 above, the sum of ΔR (λ) and color matching functions x (λ), y (λ), and z (λ) is calculated. Is multiplied by C 1 (λ) at each wavelength and integrated in a wavelength range of 380 to 780 nm to obtain a value of ΔV 1 . Alternatively, as shown in Equation 2, the ΔR (λ), the C 1 (λ), and the light source spectrum L (λ) are multiplied at each wavelength and integrated in a wavelength range of 380 to 780 nm. To obtain the value of ΔS 1 . Here, C 1 (λ) is expressed by the equation “C 1 (λ) = x (λ) + y (λ) + z (λ) using color matching functions x (λ), y (λ) and z (λ). ) ”. As will be described later, the light source spectrum L (λ) is a light source spectrum in the environment where the final product is used, and the spectrum of the light source used for measuring the spectral reflectance R A (λ) and the spectral reflectance R B (λ). Is not necessarily the same as L (λ).
また、他の実施形態においては、上記式3に示すように、上記ΔR(λ)と、C2(λ)とを各波長において掛け合わせて、可視光領域の下限波長λ1(nm)~上限波長λ2(nm)の波長範囲で積分することでΔV2の値を求める。又は、上記式4に示すように、上記ΔR(λ)と、上記C2(λ)と、光源スペクトルL(λ)とを各波長において掛け合わせて、λ1(nm)~λ2(nm)の波長範囲で積分することでΔS2の値を求める。ここで、C2(λ)は、等色関数x(λ)、y(λ)及びz(λ)を用いて、式「C2(λ)=l×x(λ)+m×y(λ)+n×z(λ)」で表される関数である。
In another embodiment, as shown in the above equation 3, ΔR (λ) and C 2 (λ) are multiplied at each wavelength to obtain a lower limit wavelength λ 1 (nm) to visible light region. The value of ΔV 2 is obtained by integration in the wavelength range of the upper limit wavelength λ 2 (nm). Alternatively, as shown in the above equation 4, ΔR (λ), C 2 (λ), and light source spectrum L (λ) are multiplied at each wavelength to obtain λ 1 (nm) to λ 2 (nm determine the value of [Delta] S 2 integrating in the wavelength range of). Here, C 2 (λ) is expressed by the equation “C 2 (λ) = l × x (λ) + m × y (λ) using color matching functions x (λ), y (λ) and z (λ). ) + N × z (λ) ”.
[等色関数]
上記における等色関数とは、人間の光感度の波長依存性を表したもので、国際照明委員会(CIE)によって規格化されている。CIEの規格の中では、等色関数は人間が3次元の色座標を持っていることを反映して、x(λ)、y(λ)及びz(λ)の3つの関数が規定されている。上記C1(λ)はx(λ)、y(λ)及びz(λ)を足し合わせた関数であり、人間がどの波長の光を多く知覚することができるか、ということを表している。人間がどの波長の光を多く知覚することができるか、ということを表す関数としては、上記C1(λ)の他に、明所視標準比視感度や暗所視標準比視感度が存在する。明所視標準比視感度や暗所視標準比視感度が明るさに重点を置いた関数であるのに対し、C1(λ)は色彩に重点を置いた関数である。そのため、C1(λ)を用いることで、色の違いをより正確に反映することができ、その結果、非視認性の評価精度を向上させることができる。 [Color matching function]
The color matching function described above represents the wavelength dependence of human photosensitivity and is standardized by the International Commission on Illumination (CIE). In the CIE standard, the color matching functions are defined as three functions x (λ), y (λ), and z (λ), reflecting that humans have three-dimensional color coordinates. Yes. C 1 (λ) is a function obtained by adding x (λ), y (λ), and z (λ), and expresses what wavelength light can be perceived by humans. . In addition to the above C 1 (λ), there are photopic standard relative luminosity and scotopic visual standard relative luminosity as functions that indicate what wavelength light can be perceived by humans. To do. Whereas photopic standard relative luminous sensitivity and scotopic visual standard relative luminous sensitivity are functions with an emphasis on brightness, C 1 (λ) is a function with an emphasis on color. Therefore, by using C 1 (λ), the color difference can be reflected more accurately, and as a result, the non-visibility evaluation accuracy can be improved.
上記における等色関数とは、人間の光感度の波長依存性を表したもので、国際照明委員会(CIE)によって規格化されている。CIEの規格の中では、等色関数は人間が3次元の色座標を持っていることを反映して、x(λ)、y(λ)及びz(λ)の3つの関数が規定されている。上記C1(λ)はx(λ)、y(λ)及びz(λ)を足し合わせた関数であり、人間がどの波長の光を多く知覚することができるか、ということを表している。人間がどの波長の光を多く知覚することができるか、ということを表す関数としては、上記C1(λ)の他に、明所視標準比視感度や暗所視標準比視感度が存在する。明所視標準比視感度や暗所視標準比視感度が明るさに重点を置いた関数であるのに対し、C1(λ)は色彩に重点を置いた関数である。そのため、C1(λ)を用いることで、色の違いをより正確に反映することができ、その結果、非視認性の評価精度を向上させることができる。 [Color matching function]
The color matching function described above represents the wavelength dependence of human photosensitivity and is standardized by the International Commission on Illumination (CIE). In the CIE standard, the color matching functions are defined as three functions x (λ), y (λ), and z (λ), reflecting that humans have three-dimensional color coordinates. Yes. C 1 (λ) is a function obtained by adding x (λ), y (λ), and z (λ), and expresses what wavelength light can be perceived by humans. . In addition to the above C 1 (λ), there are photopic standard relative luminosity and scotopic visual standard relative luminosity as functions that indicate what wavelength light can be perceived by humans. To do. Whereas photopic standard relative luminous sensitivity and scotopic visual standard relative luminous sensitivity are functions with an emphasis on brightness, C 1 (λ) is a function with an emphasis on color. Therefore, by using C 1 (λ), the color difference can be reflected more accurately, and as a result, the non-visibility evaluation accuracy can be improved.
本発明においては、x(λ)、y(λ)及びz(λ)の値として、10度視野の値であるCIE(1964)10-deg color matching functionsを用いることが好ましい。図3に10度視野の等色関数から求めたC1(λ)を示す。なお、x(λ)、y(λ)及びz(λ)の値としては、最終製品の使用環境等を反映して2度視野の値を用いることもできる。
In the present invention, it is preferable to use CIE (1964) 10-deg color matching functions, which are values of a 10 degree field of view, as the values of x (λ), y (λ), and z (λ). FIG. 3 shows C 1 (λ) obtained from the color matching function of the 10 ° field of view. Note that as the values of x (λ), y (λ), and z (λ), the value of the double field of view can be used reflecting the use environment of the final product.
上記C2(λ)は、C1(λ)を拡張した関数であり、式「C2(λ)=l×x(λ)+m×y(λ)+n×z(λ)」(ただし、l+m+n=3である)で表される。本発明においては、C2(λ)を用いても、非視認性の評価精度を向上させることができる。
C 2 (λ) is a function obtained by extending C 1 (λ), and the expression “C 2 (λ) = l × x (λ) + m × y (λ) + n × z (λ)” (where l + m + n = 3). In the present invention, even when C 2 (λ) is used, the non-visibility evaluation accuracy can be improved.
ΔV2の値を求める場合、目視による非視認性の評価結果を精度よく表す観点から、上記式中、l=0~1.25、m=0~2、n=0.4~3であり、好ましくはl=0.05~1.2、m=0~2、n=0.6~3であり、より好ましくはl=0.5~1、m=0.6~1.6、n=0.7~1.9である。なお、l=m=n=1であるとき(すなわち、C2(λ)=C1(λ)であるとき)が最も好ましい(後述の実施例3~24及び図13参照)。
When obtaining the value of ΔV 2 , from the viewpoint of accurately expressing the evaluation result of visual invisibility, in the above formula, l = 0 to 1.25, m = 0 to 2, and n = 0.4 to 3. Preferably, l = 0.05 to 1.2, m = 0 to 2, n = 0.6 to 3, more preferably l = 0.5 to 1, m = 0.6 to 1.6, n = 0.7 to 1.9. It is most preferable when l = m = n = 1 (that is, when C 2 (λ) = C 1 (λ)) (see Examples 3 to 24 described later and FIG. 13).
ΔS2の値を求める場合、目視による非視認性の評価結果を精度よく表す観点から、上記式中、l=0~1.6、m=0~1.6、n=0.4~3であり、好ましくはl=0.05~1.6、m=0~1.4、n=0.6~3であり、より好ましくはl=0.2~1.6、m=0.2~1.25、n=0.6~2.6であり、さらに好ましくはl=0.6~1.3、m=0.6~1.1、n=0.8~1.9である。なお、l=m=n=1であるとき(すなわち、C2(λ)=C1(λ)であるとき)が最も好ましい(後述の実施例25~47及び図14参照)。
When obtaining the value of ΔS 2 , from the viewpoint of accurately expressing the evaluation result of visual invisibility, in the above formula, l = 0 to 1.6, m = 0 to 1.6, n = 0.4 to 3 Preferably, l = 0.05 to 1.6, m = 0 to 1.4, n = 0.6 to 3, more preferably l = 0.2 to 1.6, m = 0. 2 to 1.25, n = 0.6 to 2.6, more preferably l = 0.6 to 1.3, m = 0.6 to 1.1, n = 0.8 to 1.9 It is. It is most preferable when l = m = n = 1 (that is, when C 2 (λ) = C 1 (λ)) (see Examples 25 to 47 described later and FIG. 14).
[光源スペクトル]
ΔS1あるいはΔS2の計算に使用する光源スペクトルは、最終製品の使用環境や等に応じて設定することができる。例えば、太陽光やD65光源、蛍光灯等、種々の光源が挙げられる。最終製品が屋外で使用されることを想定する場合、太陽光スペクトルの実測値又はD65光源の文献値を参照して得られたスペクトルを使用する方法が好ましい。また、最終製品が屋内で使用されることを想定する場合、照明のスペクトルを光源スペクトルとして使用する方法が好ましく、昼光色蛍光灯光源又はD65光源のスペクトルが好ましい。図4に昼光色蛍光灯光源のスペクトル、図5にD65光源のスペクトルを示す。 [Light source spectrum]
The light source spectrum used for the calculation of ΔS 1 or ΔS 2 can be set according to the usage environment of the final product and the like. For example, various light sources, such as sunlight, D65 light source, and a fluorescent lamp, are mentioned. When it is assumed that the final product is used outdoors, a method using a spectrum obtained by referring to an actual measurement value of a sunlight spectrum or a literature value of a D65 light source is preferable. In addition, when it is assumed that the final product is used indoors, a method of using an illumination spectrum as a light source spectrum is preferable, and a daylight color fluorescent light source or a D65 light source spectrum is preferable. FIG. 4 shows a spectrum of a daylight fluorescent light source, and FIG. 5 shows a spectrum of a D65 light source.
ΔS1あるいはΔS2の計算に使用する光源スペクトルは、最終製品の使用環境や等に応じて設定することができる。例えば、太陽光やD65光源、蛍光灯等、種々の光源が挙げられる。最終製品が屋外で使用されることを想定する場合、太陽光スペクトルの実測値又はD65光源の文献値を参照して得られたスペクトルを使用する方法が好ましい。また、最終製品が屋内で使用されることを想定する場合、照明のスペクトルを光源スペクトルとして使用する方法が好ましく、昼光色蛍光灯光源又はD65光源のスペクトルが好ましい。図4に昼光色蛍光灯光源のスペクトル、図5にD65光源のスペクトルを示す。 [Light source spectrum]
The light source spectrum used for the calculation of ΔS 1 or ΔS 2 can be set according to the usage environment of the final product and the like. For example, various light sources, such as sunlight, D65 light source, and a fluorescent lamp, are mentioned. When it is assumed that the final product is used outdoors, a method using a spectrum obtained by referring to an actual measurement value of a sunlight spectrum or a literature value of a D65 light source is preferable. In addition, when it is assumed that the final product is used indoors, a method of using an illumination spectrum as a light source spectrum is preferable, and a daylight color fluorescent light source or a D65 light source spectrum is preferable. FIG. 4 shows a spectrum of a daylight fluorescent light source, and FIG. 5 shows a spectrum of a D65 light source.
[ΔV1及びΔS1の計算]
ΔV1は、上記式1に表されるように、ΔR(λ)とC1(λ)とを各波長において掛け合わせ、380~780nmの波長範囲で積分することで得られる。ΔS1は、上記式2に表されるように、ΔR(λ)とC1(λ)とL(λ)とを各波長において掛け合わせ、380~780nmの波長範囲で積分することで得られる。なお、後述の実施例のように、一定の波長間隔(例えば、10nmごと)の値を用いて、区分求積によりΔV1及びΔS1を計算してもよい。ΔV2及びΔS2の計算においても同様である。 [Calculation of ΔV 1 and ΔS 1 ]
ΔV 1 can be obtained by multiplying ΔR (λ) and C 1 (λ) at each wavelength and integrating in a wavelength range of 380 to 780 nm, as expressed inEquation 1 above. ΔS 1 is obtained by multiplying ΔR (λ), C 1 (λ), and L (λ) at each wavelength and integrating in a wavelength range of 380 to 780 nm, as expressed in Equation 2 above. . Note that ΔV 1 and ΔS 1 may be calculated by piecewise quadrature using values at constant wavelength intervals (for example, every 10 nm) as in the examples described later. The same applies to the calculation of ΔV 2 and ΔS 2 .
ΔV1は、上記式1に表されるように、ΔR(λ)とC1(λ)とを各波長において掛け合わせ、380~780nmの波長範囲で積分することで得られる。ΔS1は、上記式2に表されるように、ΔR(λ)とC1(λ)とL(λ)とを各波長において掛け合わせ、380~780nmの波長範囲で積分することで得られる。なお、後述の実施例のように、一定の波長間隔(例えば、10nmごと)の値を用いて、区分求積によりΔV1及びΔS1を計算してもよい。ΔV2及びΔS2の計算においても同様である。 [Calculation of ΔV 1 and ΔS 1 ]
ΔV 1 can be obtained by multiplying ΔR (λ) and C 1 (λ) at each wavelength and integrating in a wavelength range of 380 to 780 nm, as expressed in
[ΔV2及びΔS2の計算]
ΔV2は、上記式3に表されるように、ΔR(λ)とC2(λ)とを各波長において掛け合わせ、可視光領域の下限波長λ1(nm)~上限波長λ2(nm)の波長範囲で積分することで得られる。ΔS2は、上記式4に表されるように、ΔR(λ)とC2(λ)とL(λ)とを各波長において掛け合わせ、λ1(nm)~λ2(nm)の波長範囲で積分することで得られる。可視光領域の下限波長λ1及び上限波長λ2の値は特に限定されないが、λ1=380nm、λ2=780nmであることが好ましい。 [Calculation of ΔV 2 and ΔS 2 ]
ΔV 2 is obtained by multiplying ΔR (λ) and C 2 (λ) at each wavelength, as expressed inEquation 3 above, from the lower limit wavelength λ 1 (nm) to the upper limit wavelength λ 2 (nm) in the visible light region. ) Is obtained by integration in the wavelength range. ΔS 2 is obtained by multiplying ΔR (λ), C 2 (λ), and L (λ) at each wavelength, as expressed in Equation 4 above, to obtain a wavelength of λ 1 (nm) to λ 2 (nm). Obtained by integrating over a range. The values of the lower limit wavelength λ 1 and the upper limit wavelength λ 2 in the visible light region are not particularly limited, but are preferably λ 1 = 380 nm and λ 2 = 780 nm.
ΔV2は、上記式3に表されるように、ΔR(λ)とC2(λ)とを各波長において掛け合わせ、可視光領域の下限波長λ1(nm)~上限波長λ2(nm)の波長範囲で積分することで得られる。ΔS2は、上記式4に表されるように、ΔR(λ)とC2(λ)とL(λ)とを各波長において掛け合わせ、λ1(nm)~λ2(nm)の波長範囲で積分することで得られる。可視光領域の下限波長λ1及び上限波長λ2の値は特に限定されないが、λ1=380nm、λ2=780nmであることが好ましい。 [Calculation of ΔV 2 and ΔS 2 ]
ΔV 2 is obtained by multiplying ΔR (λ) and C 2 (λ) at each wavelength, as expressed in
ΔS1あるいはΔS2の計算に使用する光源スペクトルL(λ)は任意に設定することができるが、強度の異なる光源を使用すると計算結果が変わってしまう。そのため、光源スペクトルの強度を規格化しておく必要がある。本発明においては、C1(λ)とL(λ)とを各波長で掛け合わせて380~780nmの波長範囲で積分した場合、及び、C2(λ)とL(λ)とを各波長で掛け合わせてλ1(nm)~λ2(nm)の波長範囲で積分した場合に、結果が10となるよう規格化を行う。一般的に、光源強度の規格化は、光源スペクトルだけを積分して行うこともあるが、本発明においては人間の感度を考慮した上での規格化が必要となり、それは380~780nm(又はλ1(nm)~λ2(nm))に跨っているため、上記の積分値を採用した。これはJIS Z8701に記載のk値が、光源スペクトル×等色関数の積分値で規格化されていることと同じ理由である。
The light source spectrum L (λ) used for the calculation of ΔS 1 or ΔS 2 can be arbitrarily set, but the calculation result changes if light sources having different intensities are used. Therefore, it is necessary to standardize the intensity of the light source spectrum. In the present invention, when C 1 (λ) and L (λ) are multiplied by each wavelength and integrated in a wavelength range of 380 to 780 nm, and C 2 (λ) and L (λ) are Normalization is performed so that the result becomes 10 when integrated in the wavelength range of λ 1 (nm) to λ 2 (nm). In general, the normalization of the light source intensity may be performed by integrating only the light source spectrum, but in the present invention, it is necessary to normalize in consideration of human sensitivity, which is 380 to 780 nm (or λ). 1 (nm) to λ 2 (nm)), the above integrated value was adopted. This is the same reason that the k value described in JIS Z8701 is normalized by the integral value of light source spectrum × color matching function.
本発明の透明電極付き基板の評価方法では、上記のようにして得られたΔV1、ΔS1、ΔV2及びΔS2の値を、それぞれ透明電極パターンの非視認性の指標に用いることができる。透明電極パターンの非視認性の高い透明電極付き基板とするためには、ΔV1、ΔS1、ΔV2及びΔS2の値は低い方が好ましい。具体的には、ΔV1の値は、240%nm以下が好ましく、220%nm以下がより好ましく、200%nm以下がさらに好ましい。ΔS1の値は、7.0%nm以下が好ましく、6.3%nm以下がより好ましく、5.6%nm以下がさらに好ましい。ΔV2の値は、280%nm以下が好ましく、260%nm以下がより好ましく、190%nm以下がさらに好ましい。ΔS2の値は、9.0%nm以下が好ましく、7.5%nm以下がより好ましく、5.7%nm以下がさらに好ましい。
In the method for evaluating a substrate with a transparent electrode of the present invention, the values of ΔV 1 , ΔS 1 , ΔV 2, and ΔS 2 obtained as described above can be used as indicators of the invisibility of the transparent electrode pattern, respectively. . In order to obtain a transparent electrode substrate with a transparent electrode pattern with high visibility, ΔV 1 , ΔS 1 , ΔV 2 and ΔS 2 are preferably low. Specifically, the value of ΔV 1 is preferably 240% nm or less, more preferably 220% nm or less, and further preferably 200% nm or less. The value of ΔS 1 is preferably 7.0% nm or less, more preferably 6.3% nm or less, and even more preferably 5.6% nm or less. The value of ΔV 2 is preferably 280% nm or less, more preferably 260% nm or less, and further preferably 190% nm or less. The value of ΔS 2 is preferably 9.0% nm or less, more preferably 7.5% nm or less, and even more preferably 5.7% nm or less.
本発明の透明電極付き基板の評価方法は、透明電極付き基板の製造過程に組み込むことができる。上記評価を、例えば透明電極付き基板の製造条件設定時に行い、評価結果に基づき製造条件(透明誘電体層や透明導電膜層の製膜条件等)を調整することで、各種製造条件を決定することができる。また、製造ラインにて上記評価を実施することで、透明電極付き基板の品質管理を行うこともできる。
The method for evaluating a substrate with a transparent electrode according to the present invention can be incorporated into the manufacturing process of the substrate with a transparent electrode. The above evaluation is performed at the time of setting the manufacturing conditions of the substrate with a transparent electrode, for example, and various manufacturing conditions are determined by adjusting the manufacturing conditions (film forming conditions of the transparent dielectric layer and the transparent conductive film layer) based on the evaluation results. be able to. Moreover, quality control of a board | substrate with a transparent electrode can also be performed by implementing the said evaluation in a production line.
このように、本発明の評価方法を含む透明電極付き基板の製造方法もまた、本発明の1つである。本発明の透明電極付き基板の製造方法は、上述の評価方法が組み込まれていること以外は、従来の透明電極付き基板の製造方法と同様である。
Thus, a method for producing a substrate with a transparent electrode including the evaluation method of the present invention is also one aspect of the present invention. The manufacturing method of the substrate with a transparent electrode of the present invention is the same as the manufacturing method of the conventional substrate with a transparent electrode except that the above-described evaluation method is incorporated.
本発明の透明電極付き基板の製造方法では、上記ΔV1、ΔS1、ΔV2及びΔS2のいずれかの値が所定の範囲内であるかを判定する。例えば、透明導電膜層が製膜された後の透明電極付き基板に対して本発明の評価方法を行い、ΔV1等の値が所定の値を超えていれば、透明電極パターンの非視認性が許容範囲内でないことを意味する。
In the method for manufacturing a substrate with a transparent electrode according to the present invention, it is determined whether any one of the above ΔV 1 , ΔS 1 , ΔV 2 and ΔS 2 is within a predetermined range. For example, if the evaluation method of the present invention is performed on the substrate with a transparent electrode after the transparent conductive film layer is formed, and the value of ΔV 1 or the like exceeds a predetermined value, the non-visibility of the transparent electrode pattern Is not within the acceptable range.
上記ΔV1またはΔV2の値の判定結果をフィードバックし、その値が所定の範囲内になるように製造条件を調整することにより、透明電極をパターニング後の透明電極付き基板におけるパターンの非視認性を向上できる。上記ΔS1またはΔS2の値の判定結果を製造条件にフィードバックすれば、最終製品の使用環境における非視認性を高めることができる。すなわち、ΔS1またはΔS2の計算時に用いられる光源スペクトルL(λ)として、最終製品の使用環境等における光源スペクトル、あるいは使用環境に近い光源スペクトルを用いることにより、最終製品の使用環境におけるパターンの非視認性をより正確に評価することが可能となる。例えば、屋外で使用されることが多いモバイル機器では、屋外の太陽光下でパターンが視認され易い傾向があるため、L(λ)として太陽光スペクトルの実測値や、疑似太陽光スペクトルを用いて、ΔS1またはΔS2を求めることが好ましい。
The determination result of the value of ΔV 1 or ΔV 2 is fed back, and the manufacturing conditions are adjusted so that the value falls within a predetermined range, whereby the non-visibility of the pattern on the substrate with the transparent electrode after patterning the transparent electrode Can be improved. If the determination result of the value of ΔS 1 or ΔS 2 is fed back to the manufacturing conditions, the invisibility in the usage environment of the final product can be improved. That is, as the light source spectrum L (λ) used when calculating ΔS 1 or ΔS 2 , by using the light source spectrum in the use environment of the final product or the light source spectrum close to the use environment, the pattern in the use environment of the final product is determined. It becomes possible to evaluate non-visibility more accurately. For example, in a mobile device that is often used outdoors, a pattern tends to be easily visible under outdoor sunlight. Therefore, using an actually measured value of a sunlight spectrum or a pseudo sunlight spectrum as L (λ) , ΔS 1 or ΔS 2 is preferably obtained.
調整する製造条件としては、例えば、透明誘電体層の製膜条件(材質、厚み、ガス流量等)、透明導電膜層の製膜条件(材質、厚み、ガス流量等)等が挙げられる。なお、2以上の製造条件を同時に調整してもよい。例えば、ΔV1、ΔS1等の値が目的の値より高い場合、透明誘電体層及び透明導電膜層の少なくとも一方の厚みを小さくすること、透明誘電体層及び透明導電膜層の少なくとも一方の製膜時における酸素量を増加させること等により、これらの値を低くすることができる。
Examples of the production conditions to be adjusted include film formation conditions (material, thickness, gas flow rate, etc.) of the transparent dielectric layer, film formation conditions (material, thickness, gas flow rate, etc.) of the transparent conductive layer, and the like. Two or more manufacturing conditions may be adjusted simultaneously. For example, when the values of ΔV 1 , ΔS 1, etc. are higher than the target values, reducing the thickness of at least one of the transparent dielectric layer and the transparent conductive film layer, or at least one of the transparent dielectric layer and the transparent conductive film layer These values can be lowered by increasing the amount of oxygen during film formation.
また、上記判定結果を透明電極付き基板に付加することにより、透明電極付き基板の品質管理を行うことができる。例えば、タッチパネルの製造工程において、ΔV1、ΔS1等の値が目的の値以下である透明電極付き基板を選択的に使用することにより、最終製品の歩留まりを高めることができる。判定結果を透明電極付き基板に付加する方法としては、判定結果を印刷したラベルや判定結果を記録したICチップ等の媒体を透明電極付き基板に添付あるいは透明電極付き基板とともに梱包する方法、判定結果を直接透明電極付き基板に印字又は印刷する方法等が挙げられる。判定結果は、文字、数字、記号、バーコード、二次元コード等で表すことができ、これらを組み合わせて表してもよい。
Moreover, quality control of a substrate with a transparent electrode can be performed by adding the determination result to the substrate with a transparent electrode. For example, in a touch panel manufacturing process, the yield of the final product can be increased by selectively using a substrate with a transparent electrode whose values of ΔV 1 , ΔS 1 and the like are equal to or less than target values. As a method of adding a determination result to a substrate with a transparent electrode, a method of printing a label printed with the determination result or a medium such as an IC chip on which the determination result is recorded is attached to a substrate with a transparent electrode or packed together with a substrate with a transparent electrode, the determination result And a method of printing or printing directly on a substrate with a transparent electrode. The determination result can be expressed by letters, numbers, symbols, barcodes, two-dimensional codes, etc., or may be expressed in combination.
反射スペクトルの測定方法としては、上述の方法が挙げられる。中でも、製膜工程中にインラインで反射スペクトルを測定する方法が好ましく、分光反射率RB(λ)として、透明誘電体層が製膜された後で透明導電膜層が製膜される前の基板の分光反射率と、分光反射率RA(λ)として、透明導電膜層が製膜された後の透明電極付き基板の分光反射率とを、各々インラインで測定する方法がより好ましい。
The above-mentioned method is mentioned as a measuring method of a reflection spectrum. Among them, the method of measuring the reflection spectrum in-line during the film forming process is preferable, and the spectral reflectance R B (λ) is preferably measured after the transparent dielectric layer is formed and before the transparent conductive film layer is formed. More preferably, the spectral reflectance of the substrate and the spectral reflectance of the substrate with a transparent electrode after the transparent conductive film layer is formed are measured in-line as the spectral reflectance R A (λ).
ΔV1については、好ましくは240%nm以下、より好ましくは220%nm以下、さらに好ましくは200%nm以下のとき、ΔS1については、好ましくは7.0%nm以下、より好ましくは6.3%nm以下、さらに好ましくは5.6%nm以下のとき、ΔV2については、好ましくは280%nm以下、より好ましくは260%nm以下、さらに好ましくは190%nm以下のとき、ΔS2については、好ましくは9.0%nm以下、より好ましくは7.5%nm以下、さらに好ましくは5.7%nm以下のとき、それぞれ、透明電極パターンの非視認性が高い透明電極付き基板とすることができる。このような数値範囲になるように製造条件を管理することで、非視認性が良好な透明電極付き基板を製造することができる。
ΔV 1 is preferably 240% nm or less, more preferably 220% nm or less, and even more preferably 200% nm or less, and ΔS 1 is preferably 7.0% nm or less, more preferably 6.3. % V or less, more preferably 5.6% nm or less, ΔV 2 is preferably 280% nm or less, more preferably 260% nm or less, more preferably 190% nm or less, and ΔS 2 is When the thickness is preferably 9.0% nm or less, more preferably 7.5% nm or less, and even more preferably 5.7% nm or less, the transparent electrode pattern should be a substrate with a transparent electrode having high non-visibility, respectively. Can do. By managing the manufacturing conditions so as to be in such a numerical range, it is possible to manufacture a substrate with a transparent electrode with good non-visibility.
さらに、本発明によれば、評価者の熟練度等による透明電極パターン視認性の判定差の影響を受けることなく、判定結果を透明導電膜層の製膜工程にフィードバックすることができるため、不具合を早期に発見することができ、生産性向上に寄与することができる。
Furthermore, according to the present invention, the determination result can be fed back to the film forming process of the transparent conductive film layer without being affected by the difference in determination of the visibility of the transparent electrode pattern due to the evaluator's skill level, etc. Can be detected at an early stage, and can contribute to productivity improvement.
[透明電極付き基板の用途]
本発明の透明電極付き基板は、ディスプレイや発光素子、光電変換素子等の透明電極として用いることができ、タッチパネル用の透明電極として好適に用いられる。中でも、透明導電膜層が低抵抗であることから、静電容量方式タッチパネルに好ましく用いられる。 [Use of substrates with transparent electrodes]
The board | substrate with a transparent electrode of this invention can be used as transparent electrodes, such as a display, a light emitting element, a photoelectric conversion element, and is used suitably as a transparent electrode for touchscreens. Especially, since a transparent conductive film layer is low resistance, it is preferably used for a capacitive touch panel.
本発明の透明電極付き基板は、ディスプレイや発光素子、光電変換素子等の透明電極として用いることができ、タッチパネル用の透明電極として好適に用いられる。中でも、透明導電膜層が低抵抗であることから、静電容量方式タッチパネルに好ましく用いられる。 [Use of substrates with transparent electrodes]
The board | substrate with a transparent electrode of this invention can be used as transparent electrodes, such as a display, a light emitting element, a photoelectric conversion element, and is used suitably as a transparent electrode for touchscreens. Especially, since a transparent conductive film layer is low resistance, it is preferably used for a capacitive touch panel.
タッチパネルの形成においては、透明電極付き基板上に、導電性インクやペーストが塗布されて、熱処理されることで、引き廻し回路用配線としての集電極が形成される。加熱処理の方法は特に限定されず、オーブンやIRヒータ等による加熱方法が挙げられる。加熱処理の温度・時間は、導電性ペーストが透明電極に付着する温度・時間を考慮して適宜に設定される。例えば、オーブンによる加熱であれば120~150℃で30~60分、IRヒータによる加熱であれば150℃で5分等の例が挙げられる。なお、引き廻し回路用配線の形成方法は、上記に限定されず、ドライコーティング法によって形成されてもよい。また、フォトリソグラフィーによって引き廻し回路用配線が形成されることで、配線の細線化が可能である。
In the formation of the touch panel, a conductive ink or paste is applied on a substrate with a transparent electrode, and heat treatment is performed, whereby a collecting electrode as a wiring for a routing circuit is formed. The method for the heat treatment is not particularly limited, and examples thereof include a heating method using an oven or an IR heater. The temperature and time of the heat treatment are appropriately set in consideration of the temperature and time at which the conductive paste adheres to the transparent electrode. For example, examples include heating at 120 to 150 ° C. for 30 to 60 minutes for heating by an oven and heating at 150 ° C. for 5 minutes for heating by an IR heater. In addition, the formation method of the circuit wiring is not limited to the above, and may be formed by a dry coating method. In addition, since the wiring for the routing circuit is formed by photolithography, the wiring can be thinned.
以下に、実施例を挙げて本発明をより具体的に説明するが、本発明はこれらの実施例に
限定されるものでは無い。 Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to these examples.
限定されるものでは無い。 Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to these examples.
[基板の作製]
[基板1]
透明電極付き基板(A)1として、基材(透明基板)上に透明誘電体層(高屈折率層、低屈折率層)、透明導電膜層、を順次積層した。高屈折率層としてNb2O5、低屈折率層としてSiO2、透明導電膜層として酸化インジウムに酸化スズのドープされたITOを使用した。 [Production of substrate]
[Substrate 1]
As a substrate (A) 1 with a transparent electrode, a transparent dielectric layer (high refractive index layer, low refractive index layer) and a transparent conductive film layer were sequentially laminated on a base material (transparent substrate). Nb 2 O 5 was used as the high refractive index layer, SiO 2 was used as the low refractive index layer, and ITO in which tin oxide was doped into indium oxide was used as the transparent conductive film layer.
[基板1]
透明電極付き基板(A)1として、基材(透明基板)上に透明誘電体層(高屈折率層、低屈折率層)、透明導電膜層、を順次積層した。高屈折率層としてNb2O5、低屈折率層としてSiO2、透明導電膜層として酸化インジウムに酸化スズのドープされたITOを使用した。 [Production of substrate]
[Substrate 1]
As a substrate (A) 1 with a transparent electrode, a transparent dielectric layer (high refractive index layer, low refractive index layer) and a transparent conductive film layer were sequentially laminated on a base material (transparent substrate). Nb 2 O 5 was used as the high refractive index layer, SiO 2 was used as the low refractive index layer, and ITO in which tin oxide was doped into indium oxide was used as the transparent conductive film layer.
基材としてPETフィルム(厚み125μm)の両面にハードコート層(ウレタン樹脂)が形成されたフィルムを使用し、その上にスパッタリングにより、Nb2O5、SiO2、ITOを順次製膜した。ハードコート層の厚みは5μm、Nb2O5の厚みは8nm、SiO2の厚みは50nm、ITOの厚みは28nmとした。
A film having a hard coat layer (urethane resin) formed on both sides of a PET film (thickness 125 μm) was used as a substrate, and Nb 2 O 5 , SiO 2 , and ITO were sequentially formed thereon by sputtering. The thickness of the hard coat layer was 5 μm, the thickness of Nb 2 O 5 was 8 nm, the thickness of SiO 2 was 50 nm, and the thickness of ITO was 28 nm.
スパッタリング直後のITOは非晶質であるので、150℃のオーブンで30分間のアニールを行うことによりITOの結晶化を行った。このようにして得られた透明電極付き基板を基板(A)1とした。
Since ITO immediately after sputtering is amorphous, the ITO was crystallized by annealing in an oven at 150 ° C. for 30 minutes. The substrate with a transparent electrode thus obtained was designated as substrate (A) 1 .
基板(B)1は、透明電極付き基板(A)1の透明導電膜層を、エッチング液(関東化学製ITO-02)を用いてウェットエッチングすることにより作製した。
Substrate (B) 1 was produced by wet etching the transparent conductive film layer of substrate (A) 1 with a transparent electrode using an etching solution (ITO-02 manufactured by Kanto Chemical).
[目視による非視認性評価]
上記透明電極付き基板(A)1をフォトリソグラフィーによりパターニングし、パターニングサンプル1を作製した。このパターニングサンプル1を用い、昼光色の蛍光灯下で透明電極パターンの非視認性をレベル1からレベル5の5段階で評価した。数字が大きいほど非視認性が良好であることを示す。パターニングサンプル1の目視による非視認性レベルは1であった。 [Visual invisibility evaluation]
The substrate (A) 1 with a transparent electrode was patterned by photolithography to prepare apatterning sample 1. Using this patterning sample 1, the non-visibility of the transparent electrode pattern was evaluated in five levels from level 1 to level 5 under a daylight fluorescent lamp. It shows that non-visibility is so favorable that a number is large. The visual invisibility level of the patterning sample 1 was 1.
上記透明電極付き基板(A)1をフォトリソグラフィーによりパターニングし、パターニングサンプル1を作製した。このパターニングサンプル1を用い、昼光色の蛍光灯下で透明電極パターンの非視認性をレベル1からレベル5の5段階で評価した。数字が大きいほど非視認性が良好であることを示す。パターニングサンプル1の目視による非視認性レベルは1であった。 [Visual invisibility evaluation]
The substrate (A) 1 with a transparent electrode was patterned by photolithography to prepare a
[基板2]
SiO2の厚みを40nm、ITOの厚みを25nmとした以外は、実施例1と同様にして、透明電極付き基板(A)2を作製し、透明導電膜層をウェットエッチングすることにより、基板(B)2およびパターニングサンプル2を作製した。パターニングサンプル2の目視による非視認性レベルは2であった。 [Substrate 2]
A substrate (A) 2 with a transparent electrode was prepared in the same manner as in Example 1 except that the thickness of SiO 2 was 40 nm and the thickness of ITO was 25 nm. B) 2 andpatterning sample 2 were prepared. The visual invisibility level of the patterning sample 2 was 2.
SiO2の厚みを40nm、ITOの厚みを25nmとした以外は、実施例1と同様にして、透明電極付き基板(A)2を作製し、透明導電膜層をウェットエッチングすることにより、基板(B)2およびパターニングサンプル2を作製した。パターニングサンプル2の目視による非視認性レベルは2であった。 [Substrate 2]
A substrate (A) 2 with a transparent electrode was prepared in the same manner as in Example 1 except that the thickness of SiO 2 was 40 nm and the thickness of ITO was 25 nm. B) 2 and
[基板3]
Nb2O5の厚みを7nm、ITOの厚みを26nmとした以外は、実施例1と同様にして、透明電極付き基板(A)3を作製し、透明導電膜層をウェットエッチングすることにより、基板(B)3およびパターニングサンプル3を作製した。パターニングサンプル3の目視による非視認性レベルは3であった。 [Substrate 3]
Except that the thickness of Nb 2 O 5 was 7 nm and the thickness of ITO was 26 nm, a substrate with a transparent electrode (A) 3 was prepared in the same manner as in Example 1, and the transparent conductive film layer was wet etched. Substrate (B) 3 andpatterning sample 3 were produced. The visual invisibility level of the patterning sample 3 was 3.
Nb2O5の厚みを7nm、ITOの厚みを26nmとした以外は、実施例1と同様にして、透明電極付き基板(A)3を作製し、透明導電膜層をウェットエッチングすることにより、基板(B)3およびパターニングサンプル3を作製した。パターニングサンプル3の目視による非視認性レベルは3であった。 [Substrate 3]
Except that the thickness of Nb 2 O 5 was 7 nm and the thickness of ITO was 26 nm, a substrate with a transparent electrode (A) 3 was prepared in the same manner as in Example 1, and the transparent conductive film layer was wet etched. Substrate (B) 3 and
[基板4]
ITOの厚みを26nmとした以外は、実施例1と同様にして、透明電極付き基板(A)4を作製し、透明導電膜層をウェットエッチングすることにより、基板(B)4およびパターニングサンプル4を作製した。パターニングサンプル4の目視による非視認性レベルは4であった。 [Substrate 4]
A substrate (A) 4 with a transparent electrode was produced in the same manner as in Example 1 except that the thickness of ITO was set to 26 nm, and the transparent conductive film layer was wet-etched to obtain the substrate (B) 4 and thepatterning sample 4 Was made. The visual invisibility level of the patterning sample 4 was 4.
ITOの厚みを26nmとした以外は、実施例1と同様にして、透明電極付き基板(A)4を作製し、透明導電膜層をウェットエッチングすることにより、基板(B)4およびパターニングサンプル4を作製した。パターニングサンプル4の目視による非視認性レベルは4であった。 [Substrate 4]
A substrate (A) 4 with a transparent electrode was produced in the same manner as in Example 1 except that the thickness of ITO was set to 26 nm, and the transparent conductive film layer was wet-etched to obtain the substrate (B) 4 and the
[基板5]
Nb2O5の厚みを6nm、SiO2の厚みを34nm、ITOの厚みを10nmとした以外は、実施例1と同様にして、透明電極付き基板(A)5を作製し、透明導電膜層をウェットエッチングすることにより、基板(B)5およびパターニングサンプル5を作製した。パターニングサンプル5の目視による非視認性レベルは5であった。 [Substrate 5]
A substrate (A) 5 with a transparent electrode was prepared in the same manner as in Example 1 except that the thickness of Nb 2 O 5 was 6 nm, the thickness of SiO 2 was 34 nm, and the thickness of ITO was 10 nm. The substrate (B) 5 and thepatterning sample 5 were produced by wet etching. The visual invisibility level of the patterning sample 5 was 5.
Nb2O5の厚みを6nm、SiO2の厚みを34nm、ITOの厚みを10nmとした以外は、実施例1と同様にして、透明電極付き基板(A)5を作製し、透明導電膜層をウェットエッチングすることにより、基板(B)5およびパターニングサンプル5を作製した。パターニングサンプル5の目視による非視認性レベルは5であった。 [Substrate 5]
A substrate (A) 5 with a transparent electrode was prepared in the same manner as in Example 1 except that the thickness of Nb 2 O 5 was 6 nm, the thickness of SiO 2 was 34 nm, and the thickness of ITO was 10 nm. The substrate (B) 5 and the
[基板6]
Nb2O5の厚みを6nm、SiO2の厚みを30nm、ITOの厚みを10nmとした以外は、実施例1と同様にして、透明電極付き基板(A)6を作製し、透明導電膜層をウェットエッチングすることにより、基板(B)6およびパターニングサンプル6を作製した。パターニングサンプル5の目視による非視認性レベルは5であった。 [Substrate 6]
A transparent electrode substrate (A) 6 was prepared in the same manner as in Example 1 except that the thickness of Nb 2 O 5 was 6 nm, the thickness of SiO 2 was 30 nm, and the thickness of ITO was 10 nm. The substrate (B) 6 and the patterning sample 6 were produced by wet etching. The visual invisibility level of thepatterning sample 5 was 5.
Nb2O5の厚みを6nm、SiO2の厚みを30nm、ITOの厚みを10nmとした以外は、実施例1と同様にして、透明電極付き基板(A)6を作製し、透明導電膜層をウェットエッチングすることにより、基板(B)6およびパターニングサンプル6を作製した。パターニングサンプル5の目視による非視認性レベルは5であった。 [Substrate 6]
A transparent electrode substrate (A) 6 was prepared in the same manner as in Example 1 except that the thickness of Nb 2 O 5 was 6 nm, the thickness of SiO 2 was 30 nm, and the thickness of ITO was 10 nm. The substrate (B) 6 and the patterning sample 6 were produced by wet etching. The visual invisibility level of the
[実施例1]
上記において作製した透明電極付き基板(A)1~(A)5及び基板(B)1~(B)5の反射スペクトルを測定し、式1に基づきΔV1を計算した。 [Example 1]
The reflection spectra of the substrates with transparent electrodes (A) 1 to (A) 5 and substrates (B) 1 to (B) 5 prepared above were measured, and ΔV 1 was calculated based onEquation 1.
上記において作製した透明電極付き基板(A)1~(A)5及び基板(B)1~(B)5の反射スペクトルを測定し、式1に基づきΔV1を計算した。 [Example 1]
The reflection spectra of the substrates with transparent electrodes (A) 1 to (A) 5 and substrates (B) 1 to (B) 5 prepared above were measured, and ΔV 1 was calculated based on
[反射スペクトル測定]
反射スペクトルは、積分球を備えた分光光度計である、パーキンエルマー社製LAMBDA750を用いて、380nm~780nmの波長範囲を、波長間隔10nmごとに測定した。測定は気温25℃、湿度40%の室温環境で行った。反射スペクトルの測定では、分光された単色光が製膜面に入射するようにサンプルを設置し、透過した全光線を積分球にて測定した。反射スペクトル測定の際には裏面に黒塗りする等の特別な処理を行わず、裏面反射を含めて反射率を測定した。サンプル固定は積分球開口部に接している部分の外側を押さえることで行い、背面が空気に接している状態で測定した。 [Reflectance spectrum measurement]
The reflection spectrum was measured over a wavelength range of 380 nm to 780 nm every wavelength interval of 10 nm using a LAMBDA750 manufactured by PerkinElmer, Inc., which is a spectrophotometer equipped with an integrating sphere. The measurement was performed in a room temperature environment with an air temperature of 25 ° C. and a humidity of 40%. In the measurement of the reflection spectrum, a sample was placed so that the monochromatic light that was split was incident on the film-forming surface, and all transmitted light was measured with an integrating sphere. At the time of measuring the reflection spectrum, the reflectance including the back surface reflection was measured without performing any special treatment such as black coating on the back surface. The sample was fixed by pressing the outside of the portion in contact with the integrating sphere opening, and the measurement was performed with the back surface in contact with air.
反射スペクトルは、積分球を備えた分光光度計である、パーキンエルマー社製LAMBDA750を用いて、380nm~780nmの波長範囲を、波長間隔10nmごとに測定した。測定は気温25℃、湿度40%の室温環境で行った。反射スペクトルの測定では、分光された単色光が製膜面に入射するようにサンプルを設置し、透過した全光線を積分球にて測定した。反射スペクトル測定の際には裏面に黒塗りする等の特別な処理を行わず、裏面反射を含めて反射率を測定した。サンプル固定は積分球開口部に接している部分の外側を押さえることで行い、背面が空気に接している状態で測定した。 [Reflectance spectrum measurement]
The reflection spectrum was measured over a wavelength range of 380 nm to 780 nm every wavelength interval of 10 nm using a LAMBDA750 manufactured by PerkinElmer, Inc., which is a spectrophotometer equipped with an integrating sphere. The measurement was performed in a room temperature environment with an air temperature of 25 ° C. and a humidity of 40%. In the measurement of the reflection spectrum, a sample was placed so that the monochromatic light that was split was incident on the film-forming surface, and all transmitted light was measured with an integrating sphere. At the time of measuring the reflection spectrum, the reflectance including the back surface reflection was measured without performing any special treatment such as black coating on the back surface. The sample was fixed by pressing the outside of the portion in contact with the integrating sphere opening, and the measurement was performed with the back surface in contact with air.
[ΔV1の計算]
ΔV1は、式1に表されるように、ΔR(λ)とC1(λ)とを各波長において掛け合わせ、380~780nmの波長範囲で積分することで求めた。ΔR(λ)は上記反射スペクトル測定により得られた、透明電極付き基板(A)と基板(B)の反射スペクトルの差の絶対値である。等色関数は反射スペクトルの測定波長に合わせ、380nm~780nmの波長範囲を、波長間隔10nmごとに使用した。ΔS1、ΔV1及びΔS2の計算においても同様である。 [Calculation of ΔV 1 ]
ΔV 1 was obtained by multiplying ΔR (λ) and C 1 (λ) at each wavelength and integrating in a wavelength range of 380 to 780 nm, as expressed inEquation 1. ΔR (λ) is the absolute value of the difference between the reflection spectra of the substrate with transparent electrode (A) and the substrate (B) obtained by the reflection spectrum measurement. The color matching function was adjusted to the measurement wavelength of the reflection spectrum, and a wavelength range of 380 nm to 780 nm was used for each wavelength interval of 10 nm. The same applies to the calculation of ΔS 1 , ΔV 1 and ΔS 2 .
ΔV1は、式1に表されるように、ΔR(λ)とC1(λ)とを各波長において掛け合わせ、380~780nmの波長範囲で積分することで求めた。ΔR(λ)は上記反射スペクトル測定により得られた、透明電極付き基板(A)と基板(B)の反射スペクトルの差の絶対値である。等色関数は反射スペクトルの測定波長に合わせ、380nm~780nmの波長範囲を、波長間隔10nmごとに使用した。ΔS1、ΔV1及びΔS2の計算においても同様である。 [Calculation of ΔV 1 ]
ΔV 1 was obtained by multiplying ΔR (λ) and C 1 (λ) at each wavelength and integrating in a wavelength range of 380 to 780 nm, as expressed in
この計算により得られた結果を図6に示す。ΔV1と目視による非視認性の評価結果は良い相関を示し、ΔV1が非視認性の評価方法として優れていることが分かる。
The result obtained by this calculation is shown in FIG. ΔV 1 and visual non-visibility evaluation results show a good correlation, and it can be seen that ΔV 1 is excellent as a non-visibility evaluation method.
[実施例2]
実施例1において、評価関数ΔV1の代わりにΔS1を使用して、非視認性の評価を行った。ΔS1の計算には、目視評価に使用した光源と同じ、昼光色蛍光灯光源スペクトルを使用した。 [Example 2]
In Example 1, the invisibility was evaluated using ΔS 1 instead of the evaluation function ΔV 1 . For the calculation of ΔS 1, the same daylight color fluorescent lamp light source spectrum as the light source used for visual evaluation was used.
実施例1において、評価関数ΔV1の代わりにΔS1を使用して、非視認性の評価を行った。ΔS1の計算には、目視評価に使用した光源と同じ、昼光色蛍光灯光源スペクトルを使用した。 [Example 2]
In Example 1, the invisibility was evaluated using ΔS 1 instead of the evaluation function ΔV 1 . For the calculation of ΔS 1, the same daylight color fluorescent lamp light source spectrum as the light source used for visual evaluation was used.
[ΔS1の計算]
ΔS1は、式2に表されるように、ΔR(λ)とC1(λ)と光源スペクトルL(λ)とを各波長において掛け合わせ、380~780nmの波長範囲で積分することで求めた。本実施例においては、C1(λ)とL(λ)とを各波長で掛け合わせて380~780nmの波長範囲で積分した場合に、結果が10となるよう規格化を行った。 [Calculation of ΔS 1 ]
ΔS 1 is obtained by multiplying ΔR (λ), C 1 (λ), and the light source spectrum L (λ) at each wavelength and integrating in the wavelength range of 380 to 780 nm, as expressed inEquation 2. It was. In this example, normalization was performed so that the result was 10 when C 1 (λ) and L (λ) were multiplied by each wavelength and integrated in a wavelength range of 380 to 780 nm.
ΔS1は、式2に表されるように、ΔR(λ)とC1(λ)と光源スペクトルL(λ)とを各波長において掛け合わせ、380~780nmの波長範囲で積分することで求めた。本実施例においては、C1(λ)とL(λ)とを各波長で掛け合わせて380~780nmの波長範囲で積分した場合に、結果が10となるよう規格化を行った。 [Calculation of ΔS 1 ]
ΔS 1 is obtained by multiplying ΔR (λ), C 1 (λ), and the light source spectrum L (λ) at each wavelength and integrating in the wavelength range of 380 to 780 nm, as expressed in
この計算により得られた結果を図7に示す。ΔS1と目視による非視認性の評価結果は良い相関を示し、ΔS1が非視認性の評価方法として優れていることが分かる。
The result obtained by this calculation is shown in FIG. ΔS 1 and visual non-visibility evaluation results show a good correlation, and it can be seen that ΔS 1 is excellent as a non-visibility evaluation method.
[参考例1]
実施例2において、光源スペクトルL(λ)として、昼光色蛍光灯光源スペクトルの代わりに、D65光源スペクトルを使用してΔS1を計算した。 [Reference Example 1]
In Example 2, ΔS 1 was calculated using the D65 light source spectrum as the light source spectrum L (λ) instead of the daylight fluorescent lamp light source spectrum.
実施例2において、光源スペクトルL(λ)として、昼光色蛍光灯光源スペクトルの代わりに、D65光源スペクトルを使用してΔS1を計算した。 [Reference Example 1]
In Example 2, ΔS 1 was calculated using the D65 light source spectrum as the light source spectrum L (λ) instead of the daylight fluorescent lamp light source spectrum.
この計算により得られた結果を図8に示す。図8では、参考のために、昼光色の蛍光灯下で評価した非視認性レベルと対比している。光源を変更した場合でもΔS1が計算できることが確認された。
The result obtained by this calculation is shown in FIG. In FIG. 8, for reference, it is compared with the invisibility level evaluated under a daylight color fluorescent lamp. It was confirmed that ΔS 1 can be calculated even when the light source is changed.
[比較例1]
実施例1で得られた反射スペクトルから、等色関数としてCIE(1964)10-deg color matching functions、光源スペクトルとしてD65光源スペクトルを用い、JIS Z8701に記載のL*a*b*表色系における色差ΔEを計算した。得られた結果を図9に示す。ΔEと目視による非視認性の評価結果は相関が悪く、ΔEでは非視認性を十分な精度で表すことができていない。 [Comparative Example 1]
From the reflection spectrum obtained in Example 1, using CIE (1964) 10-deg color matching functions as the color matching function and the D65 light source spectrum as the light source spectrum, the L * a * b * color system described in JIS Z8701 The color difference ΔE was calculated. The obtained results are shown in FIG. The correlation between ΔE and visual invisibility evaluation results is poor, and ΔE cannot represent invisibility with sufficient accuracy.
実施例1で得られた反射スペクトルから、等色関数としてCIE(1964)10-deg color matching functions、光源スペクトルとしてD65光源スペクトルを用い、JIS Z8701に記載のL*a*b*表色系における色差ΔEを計算した。得られた結果を図9に示す。ΔEと目視による非視認性の評価結果は相関が悪く、ΔEでは非視認性を十分な精度で表すことができていない。 [Comparative Example 1]
From the reflection spectrum obtained in Example 1, using CIE (1964) 10-deg color matching functions as the color matching function and the D65 light source spectrum as the light source spectrum, the L * a * b * color system described in JIS Z8701 The color difference ΔE was calculated. The obtained results are shown in FIG. The correlation between ΔE and visual invisibility evaluation results is poor, and ΔE cannot represent invisibility with sufficient accuracy.
[比較例2]
実施例1で得られた反射スペクトルから下記式5を計算することにより、国際公開第2010/114056号(上記特許文献2)に記載の反射スペクトルの差の積算値を計算した。得られた結果を図10に示す。反射スペクトルの差の積算値と目視による非視認性の評価結果は相関が悪く、反射スペクトルの差の積算値では非視認性を十分な精度で表すことができていない。 [Comparative Example 2]
By calculating the followingformula 5 from the reflection spectrum obtained in Example 1, the integrated value of the difference in the reflection spectrum described in International Publication No. 2010/114056 (Patent Document 2) was calculated. The obtained result is shown in FIG. There is a poor correlation between the integrated value of the difference in the reflection spectrum and the evaluation result of the invisibility by visual observation, and the integrated value of the difference in the reflection spectrum cannot express the invisibility with sufficient accuracy.
実施例1で得られた反射スペクトルから下記式5を計算することにより、国際公開第2010/114056号(上記特許文献2)に記載の反射スペクトルの差の積算値を計算した。得られた結果を図10に示す。反射スペクトルの差の積算値と目視による非視認性の評価結果は相関が悪く、反射スペクトルの差の積算値では非視認性を十分な精度で表すことができていない。 [Comparative Example 2]
By calculating the following
[比較例3]
実施例1で得られた反射スペクトルから、特開2013-84376号公報(上記特許文献3)に記載の反射スペクトルの平均の差の絶対値を計算した。得られた結果を図11に示す。反射スペクトルの平均の差の絶対値と目視による非視認性の評価結果は相関が悪く、反射スペクトルの平均の差の絶対値では非視認性を十分な精度で表すことができていない。 [Comparative Example 3]
From the reflection spectrum obtained in Example 1, the absolute value of the average difference of the reflection spectra described in Japanese Patent Laid-Open No. 2013-84376 (Patent Document 3) was calculated. The obtained results are shown in FIG. The absolute value of the average difference in the reflection spectrum and the evaluation result of visual invisibility are poorly correlated, and the absolute value of the average difference in the reflection spectrum cannot express the invisibility with sufficient accuracy.
実施例1で得られた反射スペクトルから、特開2013-84376号公報(上記特許文献3)に記載の反射スペクトルの平均の差の絶対値を計算した。得られた結果を図11に示す。反射スペクトルの平均の差の絶対値と目視による非視認性の評価結果は相関が悪く、反射スペクトルの平均の差の絶対値では非視認性を十分な精度で表すことができていない。 [Comparative Example 3]
From the reflection spectrum obtained in Example 1, the absolute value of the average difference of the reflection spectra described in Japanese Patent Laid-Open No. 2013-84376 (Patent Document 3) was calculated. The obtained results are shown in FIG. The absolute value of the average difference in the reflection spectrum and the evaluation result of visual invisibility are poorly correlated, and the absolute value of the average difference in the reflection spectrum cannot express the invisibility with sufficient accuracy.
[比較例4]
実施例1で得られた反射スペクトルから、特開2010-76232号公報(上記特許文献4)に記載の視感反射率の差の絶対値の積分値を計算した。得られた結果を図12に示す。視感反射率の差の絶対値の積分値と目視による非視認性の評価結果は相関が悪く、視感反射率の差の絶対値の積分値では非視認性を十分な精度で表すことができていない。 [Comparative Example 4]
From the reflection spectrum obtained in Example 1, the integral value of the absolute value of the difference in luminous reflectance described in Japanese Patent Application Laid-Open No. 2010-76232 (Patent Document 4) was calculated. The obtained result is shown in FIG. The integral value of the absolute value of the difference in luminous reflectance and the evaluation result of visual invisibility are not well correlated, and the integral value of the absolute value of the difference in luminous reflectance can represent the non-visibility with sufficient accuracy. Not done.
実施例1で得られた反射スペクトルから、特開2010-76232号公報(上記特許文献4)に記載の視感反射率の差の絶対値の積分値を計算した。得られた結果を図12に示す。視感反射率の差の絶対値の積分値と目視による非視認性の評価結果は相関が悪く、視感反射率の差の絶対値の積分値では非視認性を十分な精度で表すことができていない。 [Comparative Example 4]
From the reflection spectrum obtained in Example 1, the integral value of the absolute value of the difference in luminous reflectance described in Japanese Patent Application Laid-Open No. 2010-76232 (Patent Document 4) was calculated. The obtained result is shown in FIG. The integral value of the absolute value of the difference in luminous reflectance and the evaluation result of visual invisibility are not well correlated, and the integral value of the absolute value of the difference in luminous reflectance can represent the non-visibility with sufficient accuracy. Not done.
各実施例、参考例及び比較例の結果を表1に示す。表1には、パターニングサンプル6(透明電極付き基板(A)6及び基板(B)6)の結果も示している。表1から明らかなように、ΔV1及びΔS1(実施例1及び2)は目視評価の順序と完全に対応しているのに対し、従来の指標(比較例1~4)では目視評価の判定順序と入れ替わっている。このように、従来の指標では非視認性を十分な精度で数値化できていない。
The results of each example, reference example and comparative example are shown in Table 1. Table 1 also shows the results of the patterning sample 6 (substrate (A) 6 with transparent electrode and substrate (B) 6 ). As is apparent from Table 1, ΔV 1 and ΔS 1 (Examples 1 and 2) completely correspond to the order of visual evaluation, whereas the conventional index (Comparative Examples 1 to 4) has a visual evaluation. The order is reversed. Thus, the non-visibility cannot be quantified with sufficient accuracy by the conventional index.
さらに、パターニングサンプル5及び6の結果から、ΔV1及びΔS1を使用することで、目視評価では区別できない非視認性の違いを数値化できていることが分かる。この結果から、ΔV1及びΔS1を使用することで、非視認性が極めて良好な透明電極付き基板であっても、透明電極パターンの非視認性を定量的に評価できることが期待される。
Furthermore, it can be seen from the results of the patterning samples 5 and 6 that by using ΔV 1 and ΔS 1 , the difference in invisibility that cannot be distinguished by visual evaluation can be quantified. From this result, by using ΔV 1 and ΔS 1 , it is expected that the non-visibility of the transparent electrode pattern can be quantitatively evaluated even for a substrate with a transparent electrode with extremely good non-visibility.
[実施例3~24]
実施例1において、評価関数ΔV1の代わりにΔV2を使用して、非視認性の評価を行った。実施例3~24では、透明電極付き基板(A)1~(A)4及び基板(B)1~(B)4の反射スペクトルを測定した。 [Examples 3 to 24]
In Example 1, the invisibility was evaluated using ΔV 2 instead of the evaluation function ΔV 1 . In Examples 3 to 24, the reflection spectra of the substrates with transparent electrodes (A) 1 to (A) 4 and the substrates (B) 1 to (B) 4 were measured.
実施例1において、評価関数ΔV1の代わりにΔV2を使用して、非視認性の評価を行った。実施例3~24では、透明電極付き基板(A)1~(A)4及び基板(B)1~(B)4の反射スペクトルを測定した。 [Examples 3 to 24]
In Example 1, the invisibility was evaluated using ΔV 2 instead of the evaluation function ΔV 1 . In Examples 3 to 24, the reflection spectra of the substrates with transparent electrodes (A) 1 to (A) 4 and the substrates (B) 1 to (B) 4 were measured.
[ΔV2の計算]
ΔV2は、式3に表されるように、ΔR(λ)とC2(λ)とを各波長において掛け合わせ、380~780nmの波長範囲で積分することで求めた。表2に、l、m及びnの値を示す。なお、実施例1では、l=m=n=1すなわちC2(λ)=C1(λ)である。 [Calculation of ΔV 2 ]
ΔV 2 was obtained by multiplying ΔR (λ) and C 2 (λ) at each wavelength and integrating in a wavelength range of 380 to 780 nm, as expressed inEquation 3. Table 2 shows the values of l, m and n. In the first embodiment, l = m = n = 1, that is, C 2 (λ) = C 1 (λ).
ΔV2は、式3に表されるように、ΔR(λ)とC2(λ)とを各波長において掛け合わせ、380~780nmの波長範囲で積分することで求めた。表2に、l、m及びnの値を示す。なお、実施例1では、l=m=n=1すなわちC2(λ)=C1(λ)である。 [Calculation of ΔV 2 ]
ΔV 2 was obtained by multiplying ΔR (λ) and C 2 (λ) at each wavelength and integrating in a wavelength range of 380 to 780 nm, as expressed in
この計算により得られた結果を表2に示す。ΔV1と同様、ΔV2についても目視評価の順序と対応していることが分かる。
The results obtained from this calculation are shown in Table 2. Similar to ΔV 1 , ΔV 2 corresponds to the order of visual evaluation.
[実施例25~47]
実施例2において、評価関数ΔS1の代わりにΔS2を使用して、非視認性の評価を行った。ΔS2の計算には、目視評価に使用した光源と同じ、昼光色蛍光灯光源スペクトルを使用した。実施例25~47では、透明電極付き基板(A)1~(A)4及び基板(B)1~(B)4の反射スペクトルを測定した。 [Examples 25 to 47]
In Example 2, the invisibility was evaluated using ΔS 2 instead of the evaluation function ΔS 1 . For the calculation of ΔS 2, the same daylight color fluorescent light source spectrum as that used for the visual evaluation was used. In Examples 25 to 47, the reflection spectra of the substrates with transparent electrodes (A) 1 to (A) 4 and the substrates (B) 1 to (B) 4 were measured.
実施例2において、評価関数ΔS1の代わりにΔS2を使用して、非視認性の評価を行った。ΔS2の計算には、目視評価に使用した光源と同じ、昼光色蛍光灯光源スペクトルを使用した。実施例25~47では、透明電極付き基板(A)1~(A)4及び基板(B)1~(B)4の反射スペクトルを測定した。 [Examples 25 to 47]
In Example 2, the invisibility was evaluated using ΔS 2 instead of the evaluation function ΔS 1 . For the calculation of ΔS 2, the same daylight color fluorescent light source spectrum as that used for the visual evaluation was used. In Examples 25 to 47, the reflection spectra of the substrates with transparent electrodes (A) 1 to (A) 4 and the substrates (B) 1 to (B) 4 were measured.
[ΔS2の計算]
ΔS2は、式4に表されるように、ΔR(λ)とC2(λ)と光源スペクトルL(λ)とを各波長において掛け合わせ、380~780nmの波長範囲で積分することで求めた。本実施例においては、C2(λ)とL(λ)とを各波長で掛け合わせて380~780nmの波長範囲で積分した場合に、結果が10となるよう規格化を行った。表3に、l、m及びnの値を示す。なお、実施例2では、l=m=n=1すなわちC2(λ)=C1(λ)である。 [Calculation of ΔS 2 ]
ΔS 2 is obtained by multiplying ΔR (λ), C 2 (λ), and the light source spectrum L (λ) at each wavelength and integrating in a wavelength range of 380 to 780 nm, as expressed inEquation 4. It was. In this example, normalization was performed so that the result would be 10 when C 2 (λ) and L (λ) were multiplied by each wavelength and integrated in the wavelength range of 380 to 780 nm. Table 3 shows the values of l, m and n. In the second embodiment, l = m = n = 1, that is, C 2 (λ) = C 1 (λ).
ΔS2は、式4に表されるように、ΔR(λ)とC2(λ)と光源スペクトルL(λ)とを各波長において掛け合わせ、380~780nmの波長範囲で積分することで求めた。本実施例においては、C2(λ)とL(λ)とを各波長で掛け合わせて380~780nmの波長範囲で積分した場合に、結果が10となるよう規格化を行った。表3に、l、m及びnの値を示す。なお、実施例2では、l=m=n=1すなわちC2(λ)=C1(λ)である。 [Calculation of ΔS 2 ]
ΔS 2 is obtained by multiplying ΔR (λ), C 2 (λ), and the light source spectrum L (λ) at each wavelength and integrating in a wavelength range of 380 to 780 nm, as expressed in
この計算により得られた結果を表3に示す。ΔS1と同様、ΔS2についても目視評価の順序と対応していることが分かる。
Table 3 shows the results obtained by this calculation. It can be seen that ΔS 2 corresponds to the order of visual evaluation as well as ΔS 1 .
表2に、ΔV2(実施例3~24)と目視結果(レベル1~4)との相関係数を示し、表3に、ΔS2(実施例25~47)と目視結果(レベル1~4)との相関係数を示す。相関係数は、2つの変数間の相関を示す統計学的な指標であり、2つの変数(表2であればΔV2-レベル、表3であればΔS2-レベル)の共分散をそれぞれの標準偏差で割ることにより求めることができる。相関係数が-1に近いほど、ΔV2又はΔS2と目視評価とが整合していることを意味している。
Table 2 shows correlation coefficients between ΔV 2 (Examples 3 to 24) and visual results (levels 1 to 4). Table 3 shows ΔS 2 (Examples 25 to 47) and visual results (levels 1 to 4). The correlation coefficient with 4) is shown. The correlation coefficient is a statistical index indicating the correlation between two variables, and the covariance of two variables (ΔV 2 -level in Table 2 and ΔS 2 -level in Table 3), respectively. It can be obtained by dividing by the standard deviation. The closer the correlation coefficient is to −1, the more the ΔV 2 or ΔS 2 matches with the visual evaluation.
図13は、ΔV2(実施例3~24)における、等色関数C2(λ)の各係数l、m及びnの値と目視評価との関係を示す平面三角座標である。図14は、ΔS2(実施例25~47)における、等色関数C2(λ)の各係数l、m及びnの値と目視評価との関係を示す平面三角座標である。図13及び図14は、頂点lを3とする0≦l≦3、頂点mを3とする0≦m≦3、頂点nを3とする0≦n≦3の三角座標を表しており、この座標内の任意の点は、l+m+n=3の関係を満たしている。
FIG. 13 is a plane triangular coordinate showing the relationship between the values of the coefficients l, m and n of the color matching function C 2 (λ) and visual evaluation in ΔV 2 (Examples 3 to 24). FIG. 14 is a plane triangular coordinate showing the relationship between the values of the coefficients l, m and n of the color matching function C 2 (λ) and visual evaluation in ΔS 2 (Examples 25 to 47). FIGS. 13 and 14 show triangular coordinates of 0 ≦ l ≦ 3 with vertex l being 3, 0 ≦ m ≦ 3 with vertex m being 3, and 0 ≦ n ≦ 3 having vertex n being 3. Any point in this coordinate satisfies the relationship of l + m + n = 3.
図13及び図14は、ΔV2又はΔS2と目視結果(レベル1~4)との相関係数を示しており、相関係数が-1以上-0.99以下であるものを「○」、-0.99より大きく-0.97以下であるものを「◇」、-0.97より大きく-0.95以下であるものを「△」、-0.95より大きいものを「□」で示している。
13 and 14 show the correlation coefficient between ΔV 2 or ΔS 2 and the visual results (levels 1 to 4), and “○” indicates that the correlation coefficient is −1 or more and −0.99 or less. , “◇” for a value greater than −0.99 and −0.97 or less, “△” for a value greater than −0.97 and −0.95 or less, and “□” for a value greater than −0.95 Is shown.
図13及び図14より、ΔV2及びΔS2のいずれの場合であっても、l、m及びnの値が1に近い場合(x(λ)、y(λ)及びz(λ)の比率がほぼ同じである場合)に目視評価との相関が良く、x(λ)、y(λ)及びz(λ)の比率が少なくとも一方に偏るほど目視評価との相関が悪くなる傾向があることが確認された。
From FIG. 13 and FIG. 14, in any case of ΔV 2 and ΔS 2 , the values of l, m, and n are close to 1 (the ratio of x (λ), y (λ), and z (λ)) The correlation with the visual evaluation is good, and the correlation with the visual evaluation tends to deteriorate as the ratio of x (λ), y (λ) and z (λ) is biased to at least one of Was confirmed.
また、ΔS2と比べて、ΔV2では、lの値が大きい場合(x(λ)の比率が高い場合)に目視評価との相関が悪くなり、m及びnの値が大きい場合(y(λ)及びz(λ)の比率が高い場合)に目視評価との相関が良くなる傾向が確認された。
Also, compared to [Delta] S 2, the [Delta] V 2, correlation between visual evaluation when the value of l is large (x (lambda) when there is a high proportion of) deteriorates, if the value of m and n is greater (y ( It was confirmed that the correlation with the visual evaluation tends to improve in the case where the ratio of λ) and z (λ) is high.
1 透明基板
2 透明誘電体層
3 透明導電膜層
DESCRIPTION OFSYMBOLS 1 Transparent substrate 2 Transparent dielectric layer 3 Transparent conductive film layer
2 透明誘電体層
3 透明導電膜層
DESCRIPTION OF
Claims (12)
- 透明基板上に透明誘電体層及び透明導電膜層がこの順に積層された透明電極付き基板(A)の分光反射率RA(λ)と、前記透明電極付き基板(A)の前記透明導電膜層が存在しない基板(B)の分光反射率RB(λ)とを測定し、
前記分光反射率RA(λ)と前記分光反射率RB(λ)との各波長における差分のスペクトルの絶対値ΔR(λ)を計算し、
下記式1に示すように、前記ΔR(λ)と、等色関数x(λ)、y(λ)及びz(λ)の和であるC1(λ)とを各波長において掛け合わせて、380~780nmの波長範囲で積分することで得られるΔV1の値、又は、下記式2に示すように、前記ΔR(λ)と、前記C1(λ)と、光源スペクトルL(λ)とを各波長において掛け合わせて、380~780nmの波長範囲で積分することで得られるΔS1の値を、透明電極がパターニングされた透明電極付き基板における透明電極形成部と透明電極非形成部との反射光の視認性の差の評価指標に用いることを特徴とする透明電極付き基板の評価方法。
Calculating the absolute value ΔR (λ) of the spectrum of the difference between the spectral reflectance R A (λ) and the spectral reflectance R B (λ) at each wavelength;
As shown in the following equation 1, ΔR (λ) is multiplied by C 1 (λ) which is the sum of the color matching functions x (λ), y (λ) and z (λ) at each wavelength, The value of ΔV 1 obtained by integrating in the wavelength range of 380 to 780 nm, or the ΔR (λ), the C 1 (λ), the light source spectrum L (λ), and Is multiplied at each wavelength and integrated in a wavelength range of 380 to 780 nm, and the value of ΔS 1 is calculated between the transparent electrode forming portion and the transparent electrode non-forming portion in the substrate with the transparent electrode on which the transparent electrode is patterned. An evaluation method for a substrate with a transparent electrode, which is used as an evaluation index for a difference in visibility of reflected light.
- 透明基板上に透明誘電体層及び透明導電膜層がこの順に積層された透明電極付き基板(A)の分光反射率RA(λ)と、前記透明電極付き基板(A)の前記透明導電膜層が存在しない基板(B)の分光反射率RB(λ)とを測定し、
前記分光反射率RA(λ)と前記分光反射率RB(λ)との各波長における差分のスペクトルの絶対値ΔR(λ)を計算し、
下記式3に示すように、前記ΔR(λ)と、等色関数x(λ)、y(λ)及びz(λ)を用いて、式「C2(λ)=l×x(λ)+m×y(λ)+n×z(λ)」で表されるC2(λ)(ただし、l=0~1.25、m=0~2、n=0.4~3、l+m+n=3である)とを各波長において掛け合わせて、可視光領域の下限波長λ1(nm)~上限波長λ2(nm)の波長範囲で積分することで得られるΔV2の値、又は、下記式4に示すように、前記ΔR(λ)と、前記C2(λ)(ただし、l=0~1.6、m=0~1.6、n=0.4~3、l+m+n=3である)と、光源スペクトルL(λ)とを各波長において掛け合わせて、λ1(nm)~λ2(nm)の波長範囲で積分することで得られるΔS2の値を、透明電極がパターニングされた透明電極付き基板における透明電極形成部と透明電極非形成部との反射光の視認性の差の評価指標に用いることを特徴とする透明電極付き基板の評価方法。
Calculating the absolute value ΔR (λ) of the spectrum of the difference between the spectral reflectance R A (λ) and the spectral reflectance R B (λ) at each wavelength;
As shown in the following Equation 3, using the ΔR (λ) and the color matching functions x (λ), y (λ), and z (λ), the equation “C 2 (λ) = 1 × x (λ) + m × y (λ) + n × C 2 represented by z (lambda) "(lambda) (However, l = 0 ~ 1.25, m = 0 ~ 2, n = 0.4 ~ 3, l + m + n = 3 Or the value of ΔV 2 obtained by integrating in the wavelength range from the lower limit wavelength λ 1 (nm) to the upper limit wavelength λ 2 (nm) of the visible light region, or the following formula: As shown in FIG. 4, ΔR (λ) and C 2 (λ) (where l = 0 to 1.6, m = 0 to 1.6, n = 0.4 to 3, l + m + n = 3) patterning any), and a light source spectrum L (lambda) is multiplied at each wavelength, lambda 1 (nm) of the value of [Delta] S 2 obtained by integrating in the wavelength range of ~ lambda 2 (nm), the transparent electrode Transparent electrode evaluation method of a substrate, which comprises using the evaluation index difference in visibility of the reflected light between the transparent electrode formation portion and the transparent electrode-free portion of the transparent electrode-bearing substrate with.
- 透明基板上に透明誘電体層及び透明導電膜層がこの順に積層された透明電極付き基板の製造方法であって、
請求項1又は2に記載の方法により透明電極付き基板の評価が行われ、前記ΔV1、ΔS1、ΔV2及びΔS2のいずれかの値が所定の範囲内であるかを判定することを特徴とする透明電極付き基板の製造方法。 A method for producing a substrate with a transparent electrode, in which a transparent dielectric layer and a transparent conductive film layer are laminated in this order on a transparent substrate,
Evaluation of a substrate with a transparent electrode is performed by the method according to claim 1 or 2, and it is determined whether any of the values of ΔV 1 , ΔS 1 , ΔV 2 and ΔS 2 is within a predetermined range. A method for producing a substrate with a transparent electrode, which is characterized. - 前記ΔV1、ΔS1、ΔV2及びΔS2のいずれかの値の判定結果をフィードバックし、その値が所定の範囲内になるように前記透明誘電体層及び/又は前記透明導電膜層の製膜条件を調整する請求項3に記載の透明電極付き基板の製造方法。 The determination result of any one of the values ΔV 1 , ΔS 1 , ΔV 2, and ΔS 2 is fed back, and the transparent dielectric layer and / or the transparent conductive film layer is manufactured so that the value falls within a predetermined range. The manufacturing method of the board | substrate with a transparent electrode of Claim 3 which adjusts film | membrane conditions.
- 前記評価後に、前記ΔV1、ΔS1、ΔV2及びΔS2のいずれかの値の判定結果を、前記透明電極付き基板に付加するステップをさらに有する、請求項3または4に記載の透明電極付き基板の製造方法。 5. The method with a transparent electrode according to claim 3, further comprising a step of adding a determination result of any value of ΔV 1 , ΔS 1 , ΔV 2, and ΔS 2 to the substrate with a transparent electrode after the evaluation. A method for manufacturing a substrate.
- 前記分光反射率RB(λ)として、前記透明誘電体層が製膜された後かつ前記透明導電膜層が製膜される前の基板の分光反射率と、前記分光反射率RA(λ)として、前記透明導電膜層が製膜された後の透明電極付き基板の分光反射率とを、各々インラインで測定する請求項3~5のいずれか1項に記載の透明電極付き基板の製造方法。 As the spectral reflectance R B (λ), the spectral reflectance of the substrate after the transparent dielectric layer is formed and before the transparent conductive film layer is formed, and the spectral reflectance R A (λ 6. The production of a substrate with a transparent electrode according to claim 3, wherein the spectral reflectance of the substrate with the transparent electrode after the transparent conductive film layer is formed is measured in-line. Method.
- 前記判定は、前記ΔV1の値が240%nm以下であるか、又は、前記ΔS1の値が7.0%nm以下であるかに基づいて行われる、3~6のいずれか1項に記載の透明電極付き基板の製造方法。 The determination is performed based on whether the value of ΔV 1 is 240% nm or less or whether the value of ΔS 1 is 7.0% nm or less. The manufacturing method of the board | substrate with a transparent electrode of description.
- 請求項3~7のいずれか1項に記載の製造方法により製造されたことを特徴とする透明電極付き基板。 A substrate with a transparent electrode, characterized by being produced by the production method according to any one of claims 3 to 7.
- 透明基板上に透明誘電体層及び透明導電膜層がこの順に積層された透明電極付き基板(A)と、前記透明電極付き基板(A)の前記透明導電膜層が存在しない基板(B)とを含む透明電極付き基板であって、
前記透明電極付き基板(A)の分光反射率RA(λ)と、前記基板(B)の分光反射率RB(λ)とを測定し、
前記分光反射率RA(λ)と前記分光反射率RB(λ)との各波長における差分のスペクトルの絶対値ΔR(λ)を計算し、
下記式1に示すように、前記ΔR(λ)と、等色関数x(λ)、y(λ)及びz(λ)の和であるC1(λ)とを各波長において掛け合わせて、380~780nmの波長範囲で積分することで得られるΔV1の値が240%nm以下であるか、又は、下記式2に示すように、前記ΔR(λ)と、前記C1(λ)と、光源スペクトルL(λ)とを各波長において掛け合わせて、380~780nmの波長範囲で積分することで得られるΔS1の値が7.0%nm以下であることを特徴とする透明電極付き基板。
Wherein the spectral reflectance of the transparent electrode-bearing substrate (A) R A (λ) , and a spectral reflectance R B of the substrate (B) (λ) is measured,
Calculating the absolute value ΔR (λ) of the spectrum of the difference between the spectral reflectance R A (λ) and the spectral reflectance R B (λ) at each wavelength;
As shown in the following equation 1, ΔR (λ) is multiplied by C 1 (λ) which is the sum of the color matching functions x (λ), y (λ) and z (λ) at each wavelength, The value of ΔV 1 obtained by integrating in the wavelength range of 380 to 780 nm is 240% nm or less, or, as shown in the following equation 2, ΔR (λ), C 1 (λ) and With a transparent electrode, the value of ΔS 1 obtained by multiplying the light source spectrum L (λ) at each wavelength and integrating in the wavelength range of 380 to 780 nm is 7.0% nm or less substrate.
- 請求項8又は9に記載の透明電極付き基板を備えることを特徴とするタッチパネル。 A touch panel comprising the substrate with a transparent electrode according to claim 8 or 9.
- 請求項1若しくは2に記載の透明電極付き基板の評価方法、又は、請求項3~7のいずれか1項に記載の透明電極付き基板の製造方法が行われることを特徴とするタッチパネルの製造方法。 A method for producing a touch panel, wherein the method for evaluating a substrate with a transparent electrode according to claim 1 or 2 or the method for producing a substrate with a transparent electrode according to any one of claims 3 to 7 is performed. .
- 請求項11に記載の製造方法により製造されたことを特徴とするタッチパネル。 A touch panel manufactured by the manufacturing method according to claim 11.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015541530A JP6389466B2 (en) | 2013-10-10 | 2014-09-29 | Method for evaluating substrate with transparent electrode, method for manufacturing substrate with transparent electrode, and method for manufacturing touch panel |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013213098 | 2013-10-10 | ||
JP2013-213098 | 2013-10-10 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015053124A1 true WO2015053124A1 (en) | 2015-04-16 |
Family
ID=52812943
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/075962 WO2015053124A1 (en) | 2013-10-10 | 2014-09-29 | Substrate with transparent electrode, method for evaluation of substrate with transparent electrode, method for fabrication of substrate with transparent electrode, touch panel, and method for fabrication of touch panel |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP6389466B2 (en) |
TW (1) | TWI623874B (en) |
WO (1) | WO2015053124A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017033034A (en) * | 2015-07-17 | 2017-02-09 | 大日本印刷株式会社 | Laminated body for touch panel, and folding type image display device |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006200960A (en) * | 2005-01-19 | 2006-08-03 | Seiko Epson Corp | Correction of color measurement value obtained by color measurement under different observation conditions |
JP2010041651A (en) * | 2008-08-08 | 2010-02-18 | Ricoh Co Ltd | Color reproduction range evaluating method, color reproduction range evaluating device, and image forming device |
JP2010076232A (en) * | 2008-09-25 | 2010-04-08 | Gunze Ltd | Transparent planar body and transparent touch switch |
JP2010182528A (en) * | 2009-02-05 | 2010-08-19 | Toppan Printing Co Ltd | Transparent conductive film |
JP2011243102A (en) * | 2010-05-20 | 2011-12-01 | Dainippon Printing Co Ltd | Touch panel sensor and laminate for producing touch panel sensor |
-
2014
- 2014-09-29 WO PCT/JP2014/075962 patent/WO2015053124A1/en active Application Filing
- 2014-09-29 JP JP2015541530A patent/JP6389466B2/en active Active
- 2014-10-07 TW TW103134841A patent/TWI623874B/en active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006200960A (en) * | 2005-01-19 | 2006-08-03 | Seiko Epson Corp | Correction of color measurement value obtained by color measurement under different observation conditions |
JP2010041651A (en) * | 2008-08-08 | 2010-02-18 | Ricoh Co Ltd | Color reproduction range evaluating method, color reproduction range evaluating device, and image forming device |
JP2010076232A (en) * | 2008-09-25 | 2010-04-08 | Gunze Ltd | Transparent planar body and transparent touch switch |
JP2010182528A (en) * | 2009-02-05 | 2010-08-19 | Toppan Printing Co Ltd | Transparent conductive film |
JP2011243102A (en) * | 2010-05-20 | 2011-12-01 | Dainippon Printing Co Ltd | Touch panel sensor and laminate for producing touch panel sensor |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017033034A (en) * | 2015-07-17 | 2017-02-09 | 大日本印刷株式会社 | Laminated body for touch panel, and folding type image display device |
Also Published As
Publication number | Publication date |
---|---|
JPWO2015053124A1 (en) | 2017-03-09 |
TWI623874B (en) | 2018-05-11 |
TW201528099A (en) | 2015-07-16 |
JP6389466B2 (en) | 2018-09-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9417141B2 (en) | Force sensitive touch sensor | |
TWI511168B (en) | Conducting substrate, touch screen and display comprising the same | |
JP6136286B2 (en) | Front protective plate for display device and display device | |
KR102388979B1 (en) | Touch sensor arrangement | |
US20120181063A1 (en) | Transparent conductive film and touch panel | |
KR20140006062A (en) | Capacitive touch panel and a method of manufacturing the same | |
JP2006011523A (en) | Touch panel sensor | |
JP6019958B2 (en) | Front protective plate for display device and display device | |
US10031612B2 (en) | Capacitive touch switch panel | |
WO2015072253A1 (en) | Conductive film, touch panel and display device provided with same, and method for evaluating visibility of wiring | |
US11093089B2 (en) | Touch sensor and touch panel with touch electrodes and insulating layer | |
KR101504840B1 (en) | Conducting substrate and method for preparing the same | |
JP6389466B2 (en) | Method for evaluating substrate with transparent electrode, method for manufacturing substrate with transparent electrode, and method for manufacturing touch panel | |
KR101049016B1 (en) | Touch screen panel and its manufacturing method | |
CN111656309A (en) | Capacitive touch panel with diffuser and patterned electrodes | |
TWI579747B (en) | Touch panel and method for manufacturing the same | |
JP2015230510A (en) | Touch panel sensor substrate, touch panel sensor and display device | |
CN104808840A (en) | Touch panel | |
CN106165025A (en) | Duplexer, conductive laminate and electronic equipment | |
JP2014110048A (en) | Transparent conductive substrate and touch panel including the same | |
JP2014199762A (en) | Substrate for touch panel provided with transparent electrode and quality management method for the same | |
JP6130718B2 (en) | Method for evaluating patterning step of light-transmitting conductive film | |
KR20180116364A (en) | Antistatic film and display input device | |
JP2016050777A (en) | Inspection system, inspection method, and touch panel sensor manufacturing method | |
EP2549305A1 (en) | Conductive film |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14852056 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2015541530 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14852056 Country of ref document: EP Kind code of ref document: A1 |