WO2015011994A1 - 薄肉光学部品用ポリカーボネート樹脂組成物および薄肉光学部品 - Google Patents

薄肉光学部品用ポリカーボネート樹脂組成物および薄肉光学部品 Download PDF

Info

Publication number
WO2015011994A1
WO2015011994A1 PCT/JP2014/064717 JP2014064717W WO2015011994A1 WO 2015011994 A1 WO2015011994 A1 WO 2015011994A1 JP 2014064717 W JP2014064717 W JP 2014064717W WO 2015011994 A1 WO2015011994 A1 WO 2015011994A1
Authority
WO
WIPO (PCT)
Prior art keywords
polycarbonate resin
thin
resin composition
pellet
mass
Prior art date
Application number
PCT/JP2014/064717
Other languages
English (en)
French (fr)
Inventor
恵介 冨田
松本 晋
Original Assignee
三菱エンジニアリングプラスチックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2013155539A external-priority patent/JP5699188B2/ja
Priority claimed from JP2014081958A external-priority patent/JP5699240B1/ja
Application filed by 三菱エンジニアリングプラスチックス株式会社 filed Critical 三菱エンジニアリングプラスチックス株式会社
Priority to KR1020167001809A priority Critical patent/KR102121093B1/ko
Priority to US14/894,671 priority patent/US9701835B2/en
Priority to CN201480042499.0A priority patent/CN105431488B/zh
Publication of WO2015011994A1 publication Critical patent/WO2015011994A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L69/00Compositions of polycarbonates; Compositions of derivatives of polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/005Stabilisers against oxidation, heat, light, ozone
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/15Heterocyclic compounds having oxygen in the ring
    • C08K5/151Heterocyclic compounds having oxygen in the ring having one oxygen atom in the ring
    • C08K5/1515Three-membered rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/02Polyalkylene oxides

Definitions

  • the present invention relates to a polycarbonate resin composition for thin optical parts and a thin optical part, and more specifically, a polycarbonate resin composition for thin optical parts having high transmittance and good hue, a thin optical part formed by molding the same, and a thin optical part
  • the present invention relates to a method for manufacturing an optical component, a polycarbonate resin pellet for a thin optical component, and a method for manufacturing a polycarbonate resin pellet for a thin optical component.
  • a liquid crystal display device used in personal computers, mobile phones, and the like has a surface light source device incorporated in order to meet the demands for thinning, lightening, labor saving, and high definition.
  • the surface light source device has a wedge-shaped cross-section light guide plate or a flat plate shape with a uniform inclined surface for the purpose of uniformly and efficiently guiding incident light to the liquid crystal display side.
  • a light guide plate is provided. In some cases, an uneven pattern is formed on the surface of the light guide plate to provide a light scattering function.
  • Such a light guide plate is obtained by injection molding of a thermoplastic resin, and the above concavo-convex pattern is imparted by transferring the concavo-convex portion formed on the surface of the nest.
  • the light guide plate has been molded from a resin material such as polymethylmethacrylate (PMMA).
  • PMMA polymethylmethacrylate
  • Polycarbonate resin is excellent in mechanical properties, thermal properties, electrical properties, and weather resistance, but its light transmittance is lower than that of PMMA, etc., so that a surface light source body is formed from a light guide plate made of polycarbonate resin and a light source.
  • a surface light source body is formed from a light guide plate made of polycarbonate resin and a light source.
  • the luminance is low.
  • Patent Document 1 describes a method for improving light transmittance and luminance by adding an acrylic resin and an alicyclic epoxy.
  • Patent Document 2 describes a method for modifying the end of the polycarbonate resin to transfer the uneven portion to the light guide plate.
  • a method for improving the brightness by increasing the brightness, and Patent Document 3 propose a method for improving the brightness by introducing a copolyester carbonate having an aliphatic segment to improve the transferability.
  • Patent Document 1 improves the hue by adding an acrylic resin
  • the light transmittance and luminance cannot be increased due to white turbidity
  • the transmittance is improved by adding an alicyclic epoxy.
  • the effect of improving the hue is not recognized.
  • Patent Document 2 and Patent Document 3 although improvement of fluidity and transferability can be expected, there is a drawback that heat resistance is lowered.
  • Patent Document 4 discloses a ⁇ -irradiation-resistant polycarbonate containing the same.
  • Patent Document 5 describes a thermoplastic resin composition excellent in antistatic property and surface appearance in which the resin is blended with PMMA or the like.
  • Patent Document 6 polyethylene ether glycol represented by the formula: X—O— [CH (—R) —CH 2 —O] n—Y (R is a hydrogen atom or an alkyl group having 1 to 3 carbon atoms) or
  • R is a hydrogen atom or an alkyl group having 1 to 3 carbon atoms
  • the polycarbonate resin for the light guide is thin-molded at a temperature higher than the molding temperature of normal polycarbonate resin, so even if the mechanical strength is sacrificed, the viscosity average molecular weight is lowered and the fluidity is increased. Is required.
  • the polycarbonate resin for thin optical components typified by the light guide is a material having a low mechanical strength compared to the conventional polycarbonate resin, so when producing pellets with an extruder, The extruded polycarbonate resin strands are easily broken during cooling, and there is a problem that stable production is difficult.
  • the average length of the pellets is in the range of 2.5 to 3.5 mm, and more than 70% of the average length length is plus or minus 0.
  • a polycarbonate resin pellet for optical discs in the range of 1 mm has been proposed.
  • the pellet aggregate with such a small amount of fine powder does not involve air entrainment during plasticization, and an optical disk substrate free from silver streak is obtained.
  • the shape of the pellet is described. It has not been.
  • the average value of the pellet length is 2.5 to 3.5 mm
  • the average value of the major axis of the cross-sectional ellipse is 2.60 to 3.2 mm
  • a polycarbonate molding material for an optical disk substrate has been proposed in which 70% or more of the pellets are contained in an average length ⁇ 0.08 mm and an average long diameter ⁇ 0.12 mm.
  • a balanced three-dimensional shape with a ratio of the major axis to the major axis of about 0.7 to 1.5 is obtained, and the distribution is a narrow range.
  • Patent Document 8 is also characterized in that the pellet aggregate has a uniform shape, but there is no description of the details of the elliptical shape of the individual pellets, and the specific manufacturing method of the pellets is simply a strand. It only describes that it is cut and manufactured.
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide a polycarbonate resin composition for a thin-walled optical component having good transmittance and hue without impairing the original properties of the polycarbonate resin. .
  • the present invention can process a low molecular weight polycarbonate resin with low mechanical strength into a shape that generates a relatively small amount of fine powder even when the pellets contact each other, and can be used to form a light guide. Accordingly, it is an object of the present invention to provide a polycarbonate resin pellet for a thin-walled optical component in which yellowing of a molded product and optical fluctuation are unlikely to occur. Moreover, it is providing the method of manufacturing such a pellet stably.
  • the present inventor contains a specific amount of a polyalkylene ether glycol in a polycarbonate resin and a specific amount of a phosphorus stabilizer. It has been found that better transmission, good hue and very good heat discoloration can be achieved. Moreover, when producing pellets of such a polycarbonate resin composition, the strand cross-sectional shape at the time of extrusion is flattened to give the strands elasticity and to prevent cracking during cooling, so that the pellets for thin optical components Can be manufactured stably.
  • the present invention provides the following polycarbonate resin composition for thin optical parts, thin optical parts, methods for producing thin optical parts, polycarbonate resin pellets for thin optical parts, and methods for producing polycarbonate resin pellets for thin optical parts.
  • a polycarbonate resin composition for thin optical parts characterized by containing 0.005 to 0.5 parts by mass.
  • X and Y represent a hydrogen atom, an aliphatic acyl group or an alkyl group having 1 to 22 carbon atoms, X and Y may be different from each other, m is an integer of 3 to 6, and n is Represents an integer of 6 to 100.
  • a thin-walled optical component obtained by molding the polycarbonate resin composition according to any one of [1] to [7] above.
  • the thin optical component according to [8] which is a light guide plate having a thickness of 1 mm or less.
  • An elliptical columnar pellet made of the polycarbonate resin composition according to any one of [1] to [7] above, having a length of 2.0 to 5.0 mm and having an elliptical cross section A polycarbonate resin pellet for a thin-walled optical component, wherein the ratio of major axis / minor axis is 1.5 to 4 and the minor axis is 1.0 to 3.0 mm.
  • the polycarbonate resin pellet is fixed in a 50 liter tumbler, which is stored in a 2 liter polyethylene sealed container having an outer diameter of 125 mm and a total height of 233 mm containing 500 g of the polycarbonate resin pellet.
  • a thin wall characterized by being extruded as a strand from a discharge nozzle having an elliptical die hole provided in a cross section with the major axis of the elliptical section in a substantially horizontal state, cooled and solidified in a cooling water tank, and cut with a strand cutter A method for producing polycarbonate resin pellets for optical parts.
  • the polycarbonate resin composition for thin optical components having good transmittance and hue and good heat discoloration and thin wall having good transmittance and hue are obtained without impairing the original properties of the polycarbonate resin.
  • An optical component can be provided, and can be particularly suitably used for a thin optical component represented by a light guide plate.
  • the polycarbonate resin pellets of the present invention have a low viscosity average molecular weight of 10,000 to 15,500, they are difficult to be pulverized by contact between the pellets, resulting in yellowing of the molded product and optical fluctuations. It is extremely excellent as a pellet for thin optical parts such as difficult light guides.
  • it is possible to stably produce pellets for thin-walled optical components by flattening the cross-sectional shape of the strand at the time of extrusion, thereby giving elasticity to the strand and making it difficult to break during cooling. it can.
  • FIG. 1 is a schematic diagram of a polycarbonate resin pellet for a thin-walled optical component according to the present invention.
  • FIG. 2 is a conceptual diagram of a process for producing a polycarbonate resin pellet by extruding a strand from an extruder and a method for evaluating the limit strength.
  • FIG. 3 is a conceptual diagram showing details of the limit strength evaluation method.
  • the polycarbonate resin composition for thin optical components of the present invention is 0.1 to 2 parts by mass of the polyalkylene ether glycol compound (B) represented by the general formula (1) with respect to 100 parts by mass of the polycarbonate resin (A). And 0.005 to 0.5 parts by mass of the phosphorus stabilizer (C).
  • B polyalkylene ether glycol compound represented by the general formula (1)
  • C phosphorus stabilizer
  • Polycarbonate resin (A) There is no restriction
  • the polycarbonate resin is a polymer having a basic structure having a carbonic acid bond represented by the formula: — [— O—X—O—C ( ⁇ O) —] —.
  • X is generally a hydrocarbon, but for imparting various properties, X into which a hetero atom or a hetero bond is introduced may be used.
  • the polycarbonate resin can be classified into an aromatic polycarbonate resin in which the carbon directly bonded to the carbonic acid bond is an aromatic carbon, and an aliphatic polycarbonate resin in which the carbon is an aliphatic carbon, either of which can be used.
  • aromatic polycarbonate resins are preferred from the viewpoints of heat resistance, mechanical properties, electrical characteristics, and the like.
  • the polycarbonate polymer formed by making a dihydroxy compound and a carbonate precursor react is mentioned.
  • a polyhydroxy compound or the like may be reacted.
  • a method of reacting carbon dioxide with a cyclic ether using a carbonate precursor may be used.
  • the polycarbonate polymer may be linear or branched.
  • the polycarbonate polymer may be a homopolymer composed of one type of repeating unit or a copolymer having two or more types of repeating units.
  • the copolymer can be selected from various copolymerization forms such as a random copolymer and a block copolymer.
  • such a polycarbonate polymer is a thermoplastic resin.
  • aromatic dihydroxy compounds among monomers used as raw materials for aromatic polycarbonate resins are:
  • Dihydroxybenzenes such as 1,2-dihydroxybenzene, 1,3-dihydroxybenzene (ie, resorcinol), 1,4-dihydroxybenzene;
  • Dihydroxybiphenyls such as 2,5-dihydroxybiphenyl, 2,2′-dihydroxybiphenyl, 4,4′-dihydroxybiphenyl;
  • 2,2′-dihydroxy-1,1′-binaphthyl 1,2-dihydroxynaphthalene, 1,3-dihydroxynaphthalene, 2,3-dihydroxynaphthalene, 1,6-dihydroxynaphthalene, 2,6-dihydroxynaphthalene, 1, , 7-dihydroxynaphthalene, dihydroxynaphthalene such as 2,7-dihydroxynaphthalene;
  • 2,2-bis (4-hydroxyphenyl) propane ie, bisphenol A
  • 1,1-bis (4-hydroxyphenyl) propane 2,2-bis (3-methyl-4-hydroxyphenyl) propane, 2,2-bis (3-methoxy-4-hydroxyphenyl) propane, 2- (4-hydroxyphenyl) -2- (3-methoxy-4-hydroxyphenyl) propane, 1,1-bis (3-tert-butyl-4-hydroxyphenyl) propane, 2,2-bis (3,5-dimethyl-4-hydroxyphenyl) propane, 2,2-bis (3-cyclohexyl-4-hydroxyphenyl) propane, 2- (4-hydroxyphenyl) -2- (3-cyclohexyl-4-hydroxyphenyl) propane, ⁇ , ⁇ '-bis (4-hydroxyphenyl) -1,4-diisopropylbenzene, 1,3-bis [2- (4-hydroxyphenyl) -2-propyl] benzene, Bis (4-hydroxyphenyl) methane, Bis (4-hydroxyphenyl)
  • 1,1-bis (4-hydroxyphenyl) cyclopentane 1,1-bis (4-hydroxyphenyl) cyclohexane, 1,1-bis (4-hydroxyphenyl) -3,3-dimethylcyclohexane, 1,1-bis (4-hydroxyphenyl) -3,4-dimethylcyclohexane, 1,1-bis (4-hydroxyphenyl) -3,5-dimethylcyclohexane, 1,1-bis (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane, 1,1-bis (4-hydroxy-3,5-dimethylphenyl) -3,3,5-trimethylcyclohexane, 1,1-bis (4-hydroxyphenyl) -3-propyl-5-methylcyclohexane, 1,1-bis (4-hydroxyphenyl) -3-tert-butyl-cyclohexane, 1,1-bis (4-hydroxyphenyl) -4-tert-butyl-cyclohexan
  • Dihydroxydiaryl sulfoxides such as 4,4'-dihydroxydiphenyl sulfoxide, 4,4'-dihydroxy-3,3'-dimethyldiphenyl sulfoxide;
  • bis (hydroxyaryl) alkanes are preferable, and bis (4-hydroxyphenyl) alkanes are preferable, and 2,2-bis (4-hydroxyphenyl) propane (particularly from the viewpoint of impact resistance and heat resistance). That is, bisphenol A) is preferred.
  • 1 type may be used for an aromatic dihydroxy compound and it may use 2 or more types together by arbitrary combinations and a ratio.
  • Ethane-1,2-diol propane-1,2-diol, propane-1,3-diol, 2,2-dimethylpropane-1,3-diol, 2-methyl-2-propylpropane-1,3- Alkanediols such as diol, butane-1,4-diol, pentane-1,5-diol, hexane-1,6-diol, decane-1,10-diol;
  • Glycols such as ethylene glycol, 2,2'-oxydiethanol (ie, diethylene glycol), triethylene glycol, propylene glycol, spiro glycol and the like;
  • 1,2-epoxyethane ie ethylene oxide
  • 1,2-epoxypropane ie propylene oxide
  • 1,2-epoxycyclopentane 1,2-epoxycyclohexane
  • 1,4-epoxycyclohexane 1,4-epoxycyclohexane
  • 1-methyl -1,2-epoxycyclohexane 2,3-epoxynorbornane
  • cyclic ethers such as 1,3-epoxypropane; and the like.
  • carbonyl halides, carbonate esters and the like are used as examples of carbonate precursors.
  • 1 type may be used for a carbonate precursor and it may use 2 or more types together by arbitrary combinations and a ratio.
  • carbonyl halide examples include phosgene; haloformates such as a bischloroformate of a dihydroxy compound and a monochloroformate of a dihydroxy compound.
  • carbonate ester examples include diaryl carbonates such as diphenyl carbonate and ditolyl carbonate; dialkyl carbonates such as dimethyl carbonate and diethyl carbonate; biscarbonate bodies of dihydroxy compounds, monocarbonate bodies of dihydroxy compounds, and cyclic carbonates. And carbonate bodies of dihydroxy compounds such as
  • the manufacturing method of polycarbonate resin is not specifically limited, Arbitrary methods are employable. Examples thereof include an interfacial polymerization method, a melt transesterification method, a pyridine method, a ring-opening polymerization method of a cyclic carbonate compound, and a solid phase transesterification method of a prepolymer.
  • Arbitrary methods include an interfacial polymerization method, a melt transesterification method, a pyridine method, a ring-opening polymerization method of a cyclic carbonate compound, and a solid phase transesterification method of a prepolymer.
  • a polycarbonate resin is manufactured by the interfacial polymerization method.
  • a dihydroxy compound and a carbonate precursor preferably phosgene
  • an organic solvent inert to the reaction and an aqueous alkaline solution, usually at a pH of 9 or higher.
  • Polycarbonate resin is obtained by interfacial polymerization in the presence.
  • a molecular weight adjusting agent may be present as necessary, or an antioxidant may be present to prevent the oxidation of the dihydroxy compound.
  • the dihydroxy compound and the carbonate precursor are as described above.
  • phosgene is preferably used, and a method using phosgene is particularly called a phosgene method.
  • organic solvent inert to the reaction examples include chlorinated hydrocarbons such as dichloromethane, 1,2-dichloroethane, chloroform, monochlorobenzene and dichlorobenzene; aromatic hydrocarbons such as benzene, toluene and xylene; It is done.
  • 1 type may be used for an organic solvent and it may use 2 or more types together by arbitrary combinations and a ratio.
  • alkali compound contained in the alkaline aqueous solution examples include alkali metal compounds and alkaline earth metal compounds such as sodium hydroxide, potassium hydroxide, lithium hydroxide, and sodium hydrogen carbonate, among which sodium hydroxide and water Potassium oxide is preferred.
  • 1 type may be used for an alkali compound and it may use 2 or more types together by arbitrary combinations and a ratio.
  • the concentration of the alkali compound in the alkaline aqueous solution is not limited, but it is usually used at 5 to 10% by mass in order to control the pH in the alkaline aqueous solution of the reaction to 10 to 12.
  • the molar ratio of the bisphenol compound to the alkali compound is usually 1: 1.9 or more in order to control the pH of the aqueous phase to be 10 to 12, preferably 10 to 11.
  • the ratio is 1: 2.0 or more, usually 1: 3.2 or less, and more preferably 1: 2.5 or less.
  • polymerization catalyst examples include aliphatic tertiary amines such as trimethylamine, triethylamine, tributylamine, tripropylamine, and trihexylamine; alicyclic rings such as N, N′-dimethylcyclohexylamine and N, N′-diethylcyclohexylamine Tertiary amines; aromatic tertiary amines such as N, N′-dimethylaniline and N, N′-diethylaniline; quaternary ammonium salts such as trimethylbenzylammonium chloride, tetramethylammonium chloride, triethylbenzylammonium chloride, etc. Pyridine; guanine; guanidine salt; and the like.
  • 1 type may be used for a polymerization catalyst and it may use 2 or more types together by arbitrary combinations and a ratio.
  • the molecular weight regulator examples include aromatic phenols having a monohydric phenolic hydroxyl group; aliphatic alcohols such as methanol and butanol; mercaptans; phthalimides and the like, among which aromatic phenols are preferred.
  • aromatic phenols include alkyl groups such as m-methylphenol, p-methylphenol, m-propylphenol, p-propylphenol, p-tert-butylphenol, and p-long chain alkyl-substituted phenol.
  • a molecular weight regulator may use 1 type and may use 2 or more types together by arbitrary combinations and a ratio.
  • the amount used of the molecular weight regulator is usually 0.5 mol or more, preferably 1 mol or more, and usually 50 mol or less, preferably 30 mol or less, per 100 mol of the dihydroxy compound.
  • the order of mixing the reaction substrate, reaction medium, catalyst, additive and the like is arbitrary as long as a desired polycarbonate resin is obtained, and an appropriate order may be arbitrarily set.
  • the molecular weight regulator can be mixed at any time as long as it is between the reaction (phosgenation) of the dihydroxy compound and phosgene and the start of the polymerization reaction.
  • the reaction temperature is usually 0 to 40 ° C.
  • the reaction time is usually several minutes (for example, 10 minutes) to several hours (for example, 6 hours).
  • melt transesterification method for example, a transesterification reaction between a carbonic acid diester and a dihydroxy compound is performed.
  • the dihydroxy compound is as described above.
  • examples of the carbonic acid diester include dialkyl carbonate compounds such as dimethyl carbonate, diethyl carbonate, and di-tert-butyl carbonate; diphenyl carbonate; substituted diphenyl carbonate such as ditolyl carbonate, and the like. Among these, diphenyl carbonate and substituted diphenyl carbonate are preferable, and diphenyl carbonate is more preferable.
  • carbonic acid diester may use 1 type and may use 2 or more types together by arbitrary combinations and a ratio.
  • the ratio of the dihydroxy compound and the carbonic acid diester is arbitrary as long as the desired polycarbonate resin is obtained, but it is preferable to use an equimolar amount or more of the carbonic acid diester with respect to 1 mol of the dihydroxy compound, and above all, 1.01 mol or more is used. It is more preferable.
  • the upper limit is usually 1.30 mol or less. By setting it as such a range, the amount of terminal hydroxyl groups can be adjusted to a suitable range.
  • the amount of terminal hydroxyl groups tends to have a large effect on thermal stability, hydrolysis stability, color tone, and the like. For this reason, you may adjust the amount of terminal hydroxyl groups as needed by a well-known arbitrary method.
  • a polycarbonate resin in which the amount of terminal hydroxyl groups is adjusted can be usually obtained by adjusting the mixing ratio of the carbonic diester and the aromatic dihydroxy compound; the degree of vacuum during the transesterification reaction, and the like.
  • the molecular weight of the polycarbonate resin usually obtained can also be adjusted by this operation.
  • the mixing ratio is as described above.
  • a more aggressive adjustment method there may be mentioned a method in which a terminal terminator is mixed separately during the reaction.
  • the terminal terminator at this time include monohydric phenols, monovalent carboxylic acids, carbonic acid diesters, and the like.
  • 1 type may be used for a terminal terminator and it may use 2 or more types together by arbitrary combinations and a ratio.
  • a transesterification catalyst is usually used. Any transesterification catalyst can be used. Among them, it is preferable to use, for example, an alkali metal compound and / or an alkaline earth metal compound. In addition, auxiliary compounds such as basic boron compounds, basic phosphorus compounds, basic ammonium compounds, and amine compounds may be used in combination. In addition, 1 type may be used for a transesterification catalyst and it may use 2 or more types together by arbitrary combinations and a ratio.
  • the reaction temperature is usually 100 to 320 ° C.
  • the pressure during the reaction is usually a reduced pressure condition of 2 mmHg or less.
  • a melt polycondensation reaction may be performed under the above-mentioned conditions while removing a by-product such as an aromatic hydroxy compound.
  • the melt polycondensation reaction can be performed by either a batch method or a continuous method.
  • the order which mixes a reaction substrate, a reaction medium, a catalyst, an additive, etc. is arbitrary as long as a desired aromatic polycarbonate resin is obtained, What is necessary is just to set an appropriate order arbitrarily.
  • the melt polycondensation reaction is preferably carried out continuously.
  • a catalyst deactivator may be used as necessary.
  • a compound that neutralizes the transesterification catalyst can be arbitrarily used. Examples thereof include sulfur-containing acidic compounds and derivatives thereof.
  • 1 type may be used for a catalyst deactivator and it may use 2 or more types together by arbitrary combinations and a ratio.
  • the amount of the catalyst deactivator used is usually 0.5 equivalents or more, preferably 1 equivalent or more, and usually 10 equivalents or less, relative to the alkali metal or alkaline earth metal contained in the transesterification catalyst. Preferably it is 5 equivalents or less. Furthermore, it is 1 ppm or more normally with respect to polycarbonate resin, and is 100 ppm or less normally, Preferably it is 20 ppm or less.
  • the molecular weight of the polycarbonate resin (A) is preferably 10,000 to 15,000 in terms of viscosity average molecular weight (Mv) converted from the solution viscosity measured at a temperature of 25 ° C. using methylene chloride as a solvent.
  • Mv viscosity average molecular weight
  • it is 10,500 or more, More preferably, it is 11,000 or more, Especially, 11,500 or more, Most preferably, it is 12,000 or more, More preferably, it is 14,500 or less.
  • the mechanical strength of the polycarbonate resin composition of the present invention can be further improved, and by making the viscosity average molecular weight not more than the upper limit of the above range, The fluidity of the polycarbonate resin composition of the invention can be suppressed and improved, and the molding processability can be improved and the thin-wall molding process can be easily performed.
  • Two or more types of polycarbonate resins having different viscosity average molecular weights may be mixed and used, and in this case, a polycarbonate resin having a viscosity average molecular weight outside the above-mentioned preferred range may be mixed.
  • the intrinsic viscosity [ ⁇ ] is a value calculated from the following equation by measuring the specific viscosity [ ⁇ sp ] at each solution concentration [C] (g / dl).
  • the terminal hydroxyl group concentration of the polycarbonate resin is arbitrary and may be appropriately selected and determined, but is usually 1000 ppm or less, preferably 800 ppm or less, more preferably 600 ppm or less. Thereby, the residence heat stability and color tone of polycarbonate resin can be improved more.
  • the lower limit is usually 10 ppm or more, preferably 30 ppm or more, more preferably 40 ppm or more, particularly for polycarbonate resins produced by the melt transesterification method. Thereby, the fall of molecular weight can be suppressed and the mechanical characteristic of a resin composition can be improved more.
  • the unit of the terminal hydroxyl group concentration represents the mass of the terminal hydroxyl group with respect to the mass of the polycarbonate resin in ppm.
  • the measuring method is a colorimetric determination by the titanium tetrachloride / acetic acid method (method described in Macromol. Chem. 88 215 (1965)).
  • the polycarbonate resin is a polycarbonate resin alone (the polycarbonate resin alone is not limited to an embodiment containing only one type of polycarbonate resin, and is used in a sense including an embodiment containing a plurality of types of polycarbonate resins having different monomer compositions and molecular weights, for example. .), Or an alloy (mixture) of a polycarbonate resin and another thermoplastic resin may be used in combination.
  • a polycarbonate resin is copolymerized with an oligomer or polymer having a siloxane structure; for the purpose of further improving thermal oxidation stability and flame retardancy
  • the polycarbonate resin may contain a polycarbonate oligomer.
  • the viscosity average molecular weight [Mv] of this polycarbonate oligomer is usually 1500 or more, preferably 2000 or more, and is usually 9500 or less, preferably 9000 or less.
  • the polycarbonate ligomer contained is preferably 30% by mass or less of the polycarbonate resin (including the polycarbonate oligomer).
  • the polycarbonate resin may be not only a virgin raw material but also a polycarbonate resin regenerated from a used product (so-called material-recycled polycarbonate resin).
  • the regenerated polycarbonate resin is preferably 80% by mass or less of the polycarbonate resin, and more preferably 50% by mass or less.
  • Recycled polycarbonate resin is likely to have undergone deterioration such as heat deterioration and aging deterioration, so when such polycarbonate resin is used more than the above range, hue and mechanical properties can be reduced. It is because there is sex.
  • the polycarbonate resin composition for thin optical parts of the present invention contains a polyalkylene ether glycol compound (B) represented by the following general formula (1).
  • X and Y represent a hydrogen atom, an aliphatic acyl group or an alkyl group having 1 to 22 carbon atoms, X and Y may be different from each other, m is an integer of 3 to 6, and n is Represents an integer of 6 to 100.
  • n degree of polymerization
  • a polymerization degree n of less than 6 is not preferable because gas is generated during molding.
  • the polymerization degree n exceeds 100, the compatibility is lowered, which is not preferable.
  • the polyalkylene ether glycol compound (B) may be a copolymer with another copolymer component, but a polyalkylene ether glycol homopolymer is preferred.
  • polypentamethylene ether glycol is m
  • polyalkylene ether glycol compound (B) even if one or both ends thereof are blocked with a fatty acid or alcohol, there is no influence on the performance expression, and a fatty acid ester or ether can be used in the same manner. It may be an aliphatic acyl group or an alkyl group having X and / or 1 to 22 carbon atoms in 1).
  • the fatty acid ester product either a linear or branched fatty acid ester can be used, and the fatty acid constituting the fatty acid ester may be a saturated fatty acid or an unsaturated fatty acid. Also, those in which some hydrogen atoms are substituted with a substituent such as a hydroxyl group can be used.
  • the fatty acid constituting the fatty acid ester is a monovalent or divalent fatty acid having 1 to 22 carbon atoms, for example, a monovalent saturated fatty acid, such as formic acid, acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, enanthic acid.
  • the fatty acid also includes a fatty acid having one or more hydroxyl groups in the molecule.
  • polyalkylene ether glycol fatty acid ester examples include polyalkylene ether glycol monopalmitate, polyalkylene ether glycol dipalmitate, polyalkylene ether glycol monostearate, polyalkylene ether glycol distearate, polyalkylene Examples include ether glycol (monopalmitic acid / monostearic acid) ester, polyalkylene ether glycol behenate, and the like.
  • alkyl group constituting the alkyl ether either linear or branched can be used, and an alkyl group having 1 to 22 carbon atoms such as a methyl group, an ethyl group, a propyl group, a butyl group, an octyl group, a lauryl group
  • Preferred examples include stearyl groups such as alkyl methyl ether, ethyl ether, butyl ether, lauryl ether and stearyl ether of polyalkylene ether glycol.
  • the number average molecular weight of the polyalkylene ether glycol compound (B) is preferably 200 to 5,000, more preferably 300 or more, still more preferably 500 or more, more preferably 4,000 or less, More preferably, it is 3,000 or less. Exceeding the upper limit of the above range is not preferable because the compatibility is lowered, and if it is lower than the lower limit of the above range, gas is generated during molding, which is not preferable.
  • the number average molecular weight of a polyalkylene ether glycol compound here is the number average molecular weight computed based on the hydroxyl value measured based on JISK1577.
  • the content of the polyalkylene ether glycol compound (B) is 0.1 to 2 parts by mass with respect to 100 parts by mass of the polycarbonate resin (A).
  • the preferred content is 0.15 parts by mass or more, more preferably 0.2 parts by mass or more, preferably 1.9 parts by mass or less, more preferably 1.7 parts by mass or less, and further preferably 1.6 parts by mass. It is as follows. When the content is less than 0.1 part by mass, the hue and yellowing are not sufficiently improved. When the content exceeds 2 parts by mass, strand breakage frequently occurs during melt kneading by an extruder, and the resin composition pellets It becomes difficult to create.
  • the polycarbonate resin composition of the present invention needs to contain a phosphorus stabilizer.
  • a phosphorus stabilizer By containing a phosphorus stabilizer, the hue of the polycarbonate resin composition of the present invention is improved, and the heat discoloration is further improved. Any known phosphorous stabilizer can be used.
  • phosphorus oxo acids such as phosphoric acid, phosphonic acid, phosphorous acid, phosphinic acid, and polyphosphoric acid
  • acidic pyrophosphate metal salts such as acidic sodium pyrophosphate, acidic potassium pyrophosphate, and acidic calcium pyrophosphate
  • phosphoric acid Phosphates of Group 1 or Group 2B metals such as potassium, sodium phosphate, cesium phosphate, and zinc phosphate
  • phosphate compounds, phosphite compounds, phosphonite compounds and the like are mentioned, and phosphite compounds are particularly preferred.
  • the phosphite compound is a trivalent phosphorus compound represented by the general formula: P (OR) 3 , and R represents a monovalent or divalent organic group.
  • Examples of such phosphite compounds include triphenyl phosphite, tris (monononylphenyl) phosphite, tris (monononyl / dinonyl phenyl) phosphite, tris (2,4-di-tert-butylphenyl) phosphine.
  • an aromatic phosphite compound represented by the following formula (2) or (3) is more preferable because the heat discoloration of the polycarbonate resin composition of the present invention is effectively enhanced. .
  • R 1 , R 2 and R 3 may be the same or different and each represents an aryl group having 6 to 30 carbon atoms. ]
  • R 4 and R 5 may be the same or different and each represents an aryl group having 6 to 30 carbon atoms. ]
  • phosphite compound represented by the above formula (2) triphenyl phosphite, tris (monononylphenyl) phosphite, tris (2,4-di-tert-butylphenyl) phosphite and the like are preferable. Of these, tris (2,4-di-tert-butylphenyl) phosphite is more preferable.
  • organic phosphite compounds include, for example, “ADEKA STAB 1178” manufactured by ADEKA, “SUMILIZER TNP” manufactured by Sumitomo Chemical Co., Ltd., “JP-351” manufactured by Johoku Chemical Industry Co., Ltd. 2112 ",” Irgaphos 168 “manufactured by BASF,” JP-650 “manufactured by Johoku Chemical Industry Co., Ltd., and the like.
  • Examples of the phosphite compound represented by the above formula (3) include bis (2,4-di-tert-butyl-4-methylphenyl) pentaerythritol diphosphite and bis (2,6-di-tert- Those having a pentaerythritol diphosphite structure such as butyl-4-methylphenyl) pentaerythritol diphosphite and bis (2,4-dicumylphenyl) pentaerythritol diphosphite are particularly preferred.
  • Specific examples of such organic phosphite compounds include “ADEKA STAB PEP-24G”, “ADEKA STAB PEP-36” manufactured by ADEKA, “Doverphos S-9228” manufactured by Doverchemical, and the like.
  • 1 type may contain phosphorus stabilizer and 2 or more types may contain it by arbitrary combinations and ratios.
  • the content of the phosphorus stabilizer (C) is 0.005 to 0.5 parts by mass, preferably 0.007 parts by mass or more, more preferably 0.005 parts by mass with respect to 100 parts by mass of the polycarbonate resin (A). 008 parts by mass or more, particularly preferably 0.01 parts by mass or more, preferably 0.4 parts by mass or less, more preferably 0.3 parts by mass or less, still more preferably 0.2 parts by mass or less, particularly 0 .1 part by mass or less.
  • the content of the phosphorus stabilizer (C) is less than 0.005 parts by mass of the above range, the hue and heat discoloration are insufficient, and the content of the phosphorus stabilizer (C) is 0.5 parts by mass. If it exceeds 1, not only the heat discoloration is deteriorated, but also the wet heat stability is lowered.
  • the polycarbonate resin composition of the present invention preferably further contains an epoxy compound (D).
  • an epoxy compound By containing an epoxy compound, the hue of the polycarbonate resin composition of the present invention becomes better, and the heat discoloration is further improved.
  • epoxy compound (D) a compound having one or more epoxy groups in one molecule is used. Specifically, phenyl glycidyl ether, allyl glycidyl ether, t-butylphenyl glycidyl ether, 3,4-epoxycyclohexylmethyl-3 ′, 4′-epoxycyclohexylcarboxylate, 3,4-epoxy-6-methylcyclohexylmethyl -3 ', 4'-epoxy-6'-methylcyclohexyl carboxylate, 2,3-epoxycyclohexylmethyl-3', 4'-epoxycyclohexyl carboxylate, 4- (3,4-epoxy-5-methylcyclohexyl) Butyl-3 ′, 4′-epoxycyclohexylcarboxylate, 3,4-epoxycyclohexylethylene oxide, cyclohexylmethyl 3,4-epoxycyclohexylcarbox
  • the content of the epoxy compound (D) is preferably 0.0005 to 0.2 parts by mass, more preferably 0.001 parts by mass or more, and still more preferably 0 with respect to 100 parts by mass of the polycarbonate resin (A). 0.003 parts by mass or more, particularly preferably 0.005 parts by mass or more, more preferably 0.15 parts by mass or less, still more preferably 0.1 parts by mass or less, particularly preferably 0.05 parts by mass or less. .
  • the content of the epoxy compound (D) is less than 0.0005 parts by mass, the hue and the heat discoloration tend to be insufficient, and when it exceeds 0.2 parts by mass, the heat discoloration is not only deteriorated. Also, hue and wet heat stability are likely to decrease.
  • the ratio of the content of the phosphorus stabilizer (C) and the epoxy compound (D) in the polycarbonate resin composition is a mass ratio of (C) / (D).
  • a range of 0.5 to 10 is preferable.
  • the mass ratio of (C) / (D) is more preferably 0.7 or more, further preferably 0.8 or more, more preferably 8 or less, still more preferably 7 or less, and particularly preferably 8 It is as follows.
  • the polycarbonate resin composition of the present invention includes other additives other than those described above, for example, antioxidants, mold release agents, ultraviolet absorbers, fluorescent brighteners, pigments, dyes, other polymers other than polycarbonate resins, Additives such as a flame retardant, an impact resistance improver, an antistatic agent, a plasticizer, and a compatibilizing agent can be contained. These additives may be used alone or in combination of two or more.
  • the manufacturing method of a well-known polycarbonate resin composition can be employ
  • the temperature for melt kneading is not particularly limited, but is usually in the range of 240 to 320 ° C.
  • the polycarbonate resin composition for thin optical components of the present invention exhibits high spectral transmittance, and the spectral transmittance measured at an optical path length of 300 mm at a wavelength of 420 nm is preferably 55% or more, more preferably 56% or more, and further Preferably, it can have a high spectral transmittance of 57% or more.
  • the spectral transmittance at a wavelength of 420 nm is a transmittance in a wavelength region close to the wavelength region of a blue LED often used in optical components such as a light guide plate, and if the transmittance in this wavelength region is low, yellowishness Will increase.
  • the spectral transmittance at a wavelength of 420 nm is measured with an optical path length of 300 mm using an injection molded long optical path molded product (300 mm ⁇ 7 mm ⁇ 4 mm), and is specifically performed according to the method described in the examples described later. .
  • the polycarbonate resin composition for thin optical parts of the present invention is usually formed into pellets by melting and kneading each component as described above.
  • the polycarbonate resin pellet is preferably a pellet having an elliptical columnar shape.
  • FIG. 1 is a schematic diagram of the polycarbonate resin pellet for thin-walled optical components.
  • a preferred polycarbonate resin pellet has a length L in the range of 2.0 to 5.0 mm, and a ratio of the major axis d to the minor axis a (d / a) in the elliptical cross section of the pellet is in the range of 1.5 to 4.
  • the minor axis a is in the range of 1.0 to 3.0 mm.
  • the pellets are easily crushed and the amount of fine powder generated tends to increase. If the ratio of the major axis d to the minor axis a (d / a) deviates from the range of 1.5 to 4, the strength of the resin strands tends to decrease, the production of pellets by extrusion becomes unstable, and the elliptical minor axis a If it is not within the range of 1.0 to 3.0 mm, the pellets are easily crushed and the amount of fine powder generated tends to increase.
  • the ratio of the major axis d to the minor axis a is preferably 1.6 or more, more preferably 1.7 or more, still more preferably 1.8 or more, and preferably 3.5 or less. Yes, more preferably 3.0 or less.
  • Such a polycarbonate resin pellet has such a shape that the pellet is accommodated in a paper bag, a flexible container, or the like, and it is difficult to generate fine powder even when subjected to vibration or load when transporting and delivering it. Have. Since the major axis direction of the elliptical cross section of the pellet becomes horizontal and receives the load, it is considered that it is difficult to pulverize.
  • the amount of fine powder generation of such polycarbonate resin pellets is as follows: 500 g of resin pellets are housed in a 2 liter polyethylene sealed container having an outer diameter of 125 mm and a total height of 233 mm, and placed in a 50 liter tumbler and fixed.
  • the amount of fine powder having a particle diameter of 1 mm or less that is generated after rotating at a rotational speed for 20 minutes is preferably 50 ppm or less.
  • the polycarbonate resin is stored in a raw material supply machine, and from there, is fed to the extruder by a feeder (quantitative feeder) from a hopper installed on the extruder.
  • the polycarbonate resin may be in the form of pellets or powder.
  • Other components other than the polycarbonate resin can be blended at any stage before being charged into the extruder. For example, after all components are blended by a tumbler, a Henschel mixer, and a blender, they may be fed into a hopper chute via a feeder and supplied to an extruder as necessary.
  • As the extruder a single screw extruder, a twin screw extruder or the like can be used. Moreover, you may supply to a hopper chute
  • the extruder may be a single screw extruder or a twin screw extruder, but a twin screw extruder is preferred.
  • the L / D of the screw of the extruder is preferably 10 to 80, more preferably 15 to 70, and still more preferably 20 to 60. If the screw is too short, deaeration tends to be insufficient, and if it is too long, the color tone tends to deteriorate.
  • the polycarbonate resin composition is extruded in a strand shape from the discharge nozzle at the tip of the extruder, and it is preferable to use a die having an elliptical die hole as the die of the discharge nozzle.
  • a die having an elliptical die hole As the die of the discharge nozzle, the flatness of the pellet can be changed.
  • the dies of the discharge nozzle are preferably extruded by attaching the major axis of the elliptical die hole in a substantially horizontal state, and attaching the strand having an elliptical cross section to be extruded so that the major axis is substantially horizontal.
  • the temperature of the polycarbonate resin immediately after being extruded is usually about 300 ° C.
  • the strand having an elliptical cross-section has a major axis that is substantially horizontal and is taken up by a take-up roller, and is cooled by being transported through the water stored in the cooling water tank. In order to reduce the deterioration of the resin, it is better that the time from when the strand is pushed out of the die until entering the water is shorter. Normally, it is better to enter the water within 1 second after being pushed out of the die.
  • the cooled strand is sent to a pelletizer by a take-up roller, cut to a pellet length of 2.0 to 5.0 mm, and made into a pellet.
  • FIG. 2 is a conceptual diagram showing a process for producing a polycarbonate resin pellet by extruding a strand from an extruder
  • FIG. 3 is a conceptual diagram showing details of a limit strength evaluation method.
  • an interval (X mm, hereinafter also referred to as “limit interval”) defined as an interval between the support C and the support A where the strand is not broken by continuous operation is 300 mm or less.
  • the polycarbonate resin composition for thin optical components of the present invention can be produced by molding pellets obtained by pelletizing the above-described polycarbonate resin composition by various molding methods. Further, the resin melt-kneaded by an extruder can be directly molded into a thin optical component without going through the pellets.
  • the polycarbonate resin composition of the present invention has excellent fluidity, and even when it is a thin molded product, it has excellent appearance of a molded product without white spot foreign matter, and can achieve both transmittance and hue. It is suitably used for molding optical components.
  • the resin temperature at the time of injection molding is preferably molded at a resin temperature higher than 260 to 300 ° C., which is a temperature generally applied to injection molding of polycarbonate resin, and a resin temperature of 305 to 380 ° C. is preferable.
  • the resin temperature is more preferably 310 ° C or higher, further preferably 315 ° C or higher, particularly preferably 320 ° C or higher, and more preferably 370 ° C or lower.
  • the thin-walled molded article refers to a molded article having a plate-like portion having a thickness of usually 1 mm or less, preferably 0.8 mm or less, more preferably 0.6 mm or less.
  • the plate-like portion may be a flat plate or a curved plate, may be a flat surface, may have irregularities on the surface, and the cross section has an inclined surface. Or a wedge-shaped cross section.
  • Thin-walled optical parts include parts of equipment and instruments that directly or indirectly use light sources such as LEDs, organic EL, incandescent bulbs, fluorescent lamps, cathode tubes, etc., and typical examples include light guide plates and surface light emitter parts. It is illustrated as a thing.
  • the light guide plate is used to guide light from a light source such as an LED in a liquid crystal backlight unit, various display devices, and lighting devices. It diffuses by the unevenness and emits uniform light.
  • the shape is usually flat, and the surface may or may not have irregularities.
  • the light guide plate is usually formed preferably by an injection molding method, an ultra-high speed injection molding method, an injection compression molding method, or the like.
  • the light guide plate molded using the resin composition of the present invention does not have white turbidity or a decrease in transmittance, and has a very good transmittance and hue.
  • the light guide plate made of the polycarbonate resin composition of the present invention can be suitably used in the fields of liquid crystal backlight units, various display devices, and lighting devices.
  • Examples of such devices include mobile phones, mobile notebooks, netbooks, slate PCs, tablet PCs, smartphones, tablet terminals, and other portable terminals, cameras, watches, notebook computers, various displays, lighting devices, and the like. It is done.
  • Example 1 Comparative Examples 1 to 5
  • the raw materials used are as shown in Table 1 below.
  • Example 5 In Example 1, except that the B1 component was changed to 4 parts by mass, pelletization was examined in the same manner as in Example 1. However, strand breakage occurred frequently during melt-kneading by an extruder, and the resin composition pellets Creation was difficult.
  • the molded product of the example has a small YI at 300 mm with a long optical path length, and shows little yellowing. Furthermore, the light transmittance at 420 nm is high and the transparency is excellent. On the other hand, in the comparative example of Table 3, it can be seen that YI of 300 mm is worse than that of the example. Furthermore, the light transmittance is also low.
  • Example 8 to 14 Comparative Examples 6 to 7, Reference Examples 1 to 3
  • the raw materials used are as shown in Table 4 below.
  • ASA 1 manufactured by Nippon Denshoku Industries Co., Ltd., C light source, 2 ° visual field
  • ASA 1 manufactured by Nippon Denshoku Industries Co., Ltd., C light source, 2 ° visual field
  • the thin-walled molded product of the example containing the epoxy compound (D) has a small initial YI at 300 mm having a long optical path length and an excellent hue. Further, it can be seen that the increase in YI value after the heat treatment is small and the heat discoloration is excellent.
  • Example 15 Each component described in Table 1 above was blended in the proportions (parts by mass) described in Example 5 of Table 2 above, mixed for 20 minutes with a tumbler, and then vented twin screw extruder (manufactured by Nippon Steel Works). “TEX44 ⁇ II”) is continuously supplied to the extruder from the hopper, melted and mixed in the extruder, and the major axis is 6.5 mm under the extrusion conditions of a cylinder temperature of 240 ° C., a discharge rate of 150 kg / h, and a screw speed of 250 rpm.
  • a die having an elliptical die hole with a diameter of 3.5 mm is extruded from an extrusion nozzle provided with its major axis horizontal, in a strand shape with the major axis of the elliptical cross section approximately horizontal, introduced into a cooling water tank, and a strand
  • the pellet was cut with a pelletizer at a take-up speed of 40 m / min and a cutter blade rotation speed of 600 rpm to obtain polycarbonate resin pellets.
  • (1) Major axis / minor axis ratio of pellet elliptical cross section The major axis, minor axis, and length of the obtained pellet were measured, and an average value of 100 was shown for each.
  • the ratio of the average value of the major axis / minor axis was defined as the pellet flatness.
  • the major axis of the pellet was 2.9 mm
  • the minor axis was 1.5 mm
  • the pellet length was 2.9 mm
  • the ratio of major axis / minor axis was 1.9.
  • the limit strength of the strand was evaluated by the following method. As shown in FIG. 2, the resin strand obtained by extruding the obtained polycarbonate resin pellets from the extruder is sent to the pelletizer while being supported by the support C to the support B and the support A. As shown in detail in FIG. 3, the critical strength of the resin strand is that the strand take-up speed (Vx) is 100 mm / sec, and the height difference between the support C and A and the support B at the same height supporting the strand is 290 mm. At the time, it was evaluated as an interval (X mm) between the support C and the support A at the same height where the strands were not broken by continuous operation for 1 hour or more. The support spacing was 260 mm.
  • the particle size of the fine powder in this measurement is 1 mm or less.
  • the amount of fine powder generated was 35 ppm by mass.
  • Example 16 Each component described in Table 1 above was blended in the proportions (parts by mass) described in Example 7 in Table 2 above, mixed for 20 minutes with a tumbler, and then vented twin screw extruder (manufactured by Nippon Steel Works). “TEX44 ⁇ II”) is continuously supplied to the extruder from the hopper, melted and mixed in the extruder, and the major axis is 6.5 mm under the extrusion conditions of a cylinder temperature of 240 ° C., a discharge rate of 150 kg / h, and a screw speed of 250 rpm.
  • a die having an elliptical die hole with a diameter of 2.9 mm was extruded from an extrusion nozzle provided with the major axis horizontal, in a strand shape with the major axis of the elliptical section approximately horizontal, introduced into a water tank, and the strand
  • the pellet was cut by a pelletizer at a take-up speed of 40 m / min and a cutter blade rotation speed of 600 rpm to obtain polycarbonate resin pellets.
  • the major axis of the pellet was 2.9 mm
  • the minor axis was 1.2 mm
  • the length of the pellet was 3.2 mm
  • the ratio of major axis / minor axis was 2.4.
  • the number of strand breaks was 0, and the support support interval was 270 mm.
  • the amount of fine powder generated was 34 ppm by mass, the number of white spot defects was zero, and the number of pellets with vacuum voids was zero.
  • Example 17 Each component described in Table 4 above was blended in (parts by mass) in the proportions described in Example 9 in Table 5 above, mixed for 20 minutes with a tumbler, and then vented twin-screw extruder (Nippon Steel Works) Manufactured continuously from a hopper made of “TEX44 ⁇ II”), melted and mixed in the extruder, under a cylinder temperature of 240 ° C., a discharge amount of 150 kg / h, and an extrusion condition of a screw rotation speed of 250 rpm, a major axis of 6.5 mm, A die having an elliptical die hole with a short diameter of 3.5 mm is extruded from an extrusion nozzle provided with the major axis horizontal, in a strand shape with the major axis of the elliptical section approximately horizontal, and introduced into a water tank. The pellet was cut with a pelletizer at a take-up speed of 40 m / min and a cutter blade rotation speed
  • the major axis of the pellet was 2.9 mm
  • the minor axis was 1.5 mm
  • the pellet length was 2.9 mm
  • the ratio of major axis / minor axis was 1.9.
  • the number of strand breaks was 0, and the support support interval was 260 mm.
  • the amount of fine powder generated was 35 ppm by mass, the number of white spot defects was zero, and the number of pellets with vacuum voids was zero.
  • the polycarbonate resin composition of the present invention has very good transmittance and hue and is excellent in heat discoloration. Therefore, the polycarbonate resin composition can be used suitably for thin-walled optical components and has very high industrial applicability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

 高透過率性で良好な色相を有し且つ耐熱変色性に優れた薄肉光学部品用ポリカーボネート樹脂組成物及び薄肉光学部品を提供する。 【解決手段】ポリカーボネート樹脂(A)100質量部に対し、下記一般式(1)で表されるポリアルキレンエーテルグリコール化合物(B)を0.1~2質量部、リン系安定剤(C)を0.005~0.5質量部含有することを特徴とする薄肉光学部品用ポリカーボネート樹脂組成物。

Description

薄肉光学部品用ポリカーボネート樹脂組成物および薄肉光学部品
 本発明は薄肉光学部品用ポリカーボネート樹脂組成物および薄肉光学部品に関し、詳しくは、高透過率性および良好な色相を有する薄肉光学部品用ポリカーボネート樹脂組成物、それを成形して成る薄肉光学部品、薄肉光学部品の製造方法、並びに薄肉光学部品用ポリカーボネート樹脂ペレット及び薄肉光学部品用ポリカーボネート樹脂ペレットの製造方法に関する。
 パーソナルコンピュータ、携帯電話等に使用される液晶表示装置には、その薄型化、軽量化、省力化、高精細化の要求に対応するために、面状光源装置が組み込まれている。そして、この面状光源装置には、入光する光を液晶表示側に均一かつ効率的に導く役割を果たす目的で、一面が一様な傾斜面を有する楔型断面の導光板や平板形状の導光板が備えられている。また導光板の表面に凹凸パターンを形成して光散乱機能を付与するものもある。
 このような導光板は、熱可塑性樹脂の射出成形によって得られ、上記の凹凸パターンは入れ子の表面に形成された凹凸部の転写によって付与される。従来、導光板はポリメチルメタクリレート(PMMA)等の樹脂材料から成形されてきたが、最近では、より鮮明な画像を映し出す表示装置が求められ、光源近傍で発生する熱によって機器装置内が高温化する傾向にあるため、より耐熱性の高いポリカーボネート樹脂材料に置き換えられつつある。
 ポリカーボネート樹脂は、機械的性質、熱的性質、電気的性質、耐候性に優れるが、光線透過率は、PMMA等に比べて低いことから、ポリカーボネート樹脂製の導光板と光源とから面光源体を構成した場合、輝度が低いという問題がある。また最近では導光板の入光部と入光部から離れた場所の色度差を少なくすることが求められているが、ポリカーボネート樹脂はPMMA樹脂と比べて黄変しやすいという問題がある。
 特許文献1には、アクリル樹脂および脂環式エポキシを添加することにより光線透過率および輝度を向上させる方法、特許文献2には、ポリカーボネート樹脂末端を変性し導光板への凹凸部の転写性を上げることにより輝度を向上させる方法、特許文献3には、脂肪族セグメントを有するコポリエステルカーボネートを導入して上記の転写性を向上させることにより輝度を向上させる方法が提案されている。
 しかしながら、特許文献1の方法は、アクリル樹脂の添加により色相は良好になるが白濁するために光線透過率および輝度を上げることができず、脂環式エポキシを添加することにより、透過率が向上する可能性はあるが、色相の改善効果は認められない。特許文献2および特許文献3の方法の場合、流動性や転写性の改善効果は期待できるものの、耐熱性が低下するという欠点がある。
 一方、ポリエチレンエーテルグリコール又はポリ(2-メチル)エチレンエーテルグリコール等をポリカーボネート樹脂等の熱可塑性樹脂に配合することが知られており、特許文献4にはこれを含有する耐γ線照射性のポリカーボネート樹脂が、特許文献5ではPMMA等にこれを配合した帯電防止性と表面外観に優れた熱可塑性樹脂組成物が記載されている。
 そして、特許文献6では、式:X-О-[CH(-R)-CH-O]n-Y (Rは水素原子または炭素数1~3のアルキル基)で表わされるポリエチレンエーテルグリコールまたはポリ(2-アルキル)エチレンエーテルグリコールを配合することにより、透過率や色相を改良する提案がなされている。ポリエチレンエーテルグリコールまたはポリ(2-アルキル)エチレンエーテルグリコールを配合することで透過率や黄変度(イェローインデックス:YI)は若干の改善が見られる。
 しかし、特に最近、スマートフォンやタブレット型端末等の各種携帯端末においては、薄肉化や大型薄肉化が著しいスピードで進行しており、導光板への入光を直下型から横側エッジから行うエッジ型が採用されるようになり、超薄型の光源として十分な輝度が要求されてきている。このようなハイエンドの導光板においては、上記従来技術が達成する透過率やYIレベルでは要求スペックを満たさないというのが現状である。
 また、導光体用のポリカーボネート樹脂としては、通常のポリカーボネート樹脂の成形温度より高温で薄肉成形されることから、機械的強度を犠牲にしてでも、粘度平均分子量を下げて、高流動化することが求められている。このように導光体用に代表される薄肉光学部品用のポリカーボネート樹脂は、従来のポリカーボネート樹脂と比較して、機械的強度が弱い材料であることから、押出機にてペレットを製造する際、押出されたポリカーボネート樹脂のストランドは冷却時に容易に割れてしまい、安定製造が難しい問題がある。
 また、工場で製造されたペレットを配送のため紙袋やフレキシブルコンテナ等に入れ、輸送しただけでも、ペレット同士の接触により一部が微粉化してしまう。このような微粉が混入したペレットを用いて、導光体等を成形すると、成形物の黄変や光学的ゆらぎが発生しやすいといった問題点がある。
 微粉による問題を解決する手段としては、成形する際に微粉除去機を経由して微粉を取り除くことで解消できるが、工程が一つ余計に入り異物混入の恐れがあることから、できれば経由したくないといった要望がある。
 特許文献7には、光ディスクのシルバーストリークの発生防止のために、ペレットの長さの平均値が2.5~3.5mmの範囲にあり、その70%以上が長さの平均値プラスマイナス0.1mmの範囲に含まれる光ディスク用ポリカーボネート樹脂ペレットが提案されている。同文献では、このように微粉の少ないペレット集合体が可塑化時のエアーの巻き込みがなく、シルバーストリークの発生がない光ディスク基板が得られることが記載されているが、そのペレットの形状については記載されていない。
 また、特許文献8には、光ディスク基板の成形サイクルの短縮化を図るべく、ペレットの長さの平均値2.5~3.5mm、断面楕円の長径の平均値2.60~3.2mm、ペレットの70%以上が長さの平均値±0.08mmの範囲及び長径の平均値±0.12mmの範囲に含有されることを特徴とする光ディスク基板用ポリカーボネート成形材料が提案されている。同文献では、ペレットの長さ及び長径を上記の範囲にすることにより、長さと長径の比が約0.7~1.5のバランスのとれた立体形状となり、しかもその分布は一定の狭い範囲内に存するので、非常に均一な形状から構成され、その結果、形状がディスク用射出成型機のシリンダーとスクリューの構造により適合していること、可塑化時の溶融効率が高められて可塑化時間が短縮され、成形サイクルの短い、所謂ハイサイクル成形による光ディスク基板の製造を可能にすることが記載されている。特許文献8もまた、ペレット集合体が均一形状であることを特徴としているが、その個々のペレットの楕円形状の詳細については記載はなく、またそのペレットの具体的な製造方法としては単にストランドをカットして製造することしか記載されていない。
 そして、これら特許文献7~8に記載の発明のように、ペレット集合体中の微粉を極力少なくすることは、導光体等の薄肉光学部品用にとっても重要なことではあるが、それだけでは、黄変や光学的ゆらぎが発生し難い薄肉光学部品用のポリカーボネート樹脂ペレットとしては充分ではない。
特開平11-158364号公報 特開2001-208917号公報 特開2001-215336号公報 特開平1-22959号公報 特開平9-227785号公報 特許第4069364号公報 特開平07-52272号公報 特開平11-035692号公報
 本発明は、上記実情に鑑みなされたものであり、その目的は、ポリカーボネート樹脂本来の特性を何ら損なうことなく、透過率および色相の良好な薄肉光学部品用ポリカーボネート樹脂組成物を提供することにある。
 また、本発明は、機械的強度が弱い低分子量のポリカーボネート樹脂から、ペレット同士が接触しても比較的微粉発生量が少ない形状に加工し、これを用いて導光体を成形することを可能とすることで、成形物の黄変、光学的ゆらぎが発生し難い薄肉光学部品用のポリカーボネート樹脂ペレットを提供することにある。また、このようなペレットを安定して製造する方法を提供することである。
 本発明者は、上記課題を達成すべく、鋭意検討を重ねた結果、ポリカーボネート樹脂に特定のポリアルキレンエーテルグリコールを特定の量で含有し、リン系安定剤を特定の量で含有することにより、より優れた透過率と良好な色相と極めて良好な耐熱変色性を達成することができることを見出した。
 また、このようなポリカーボネート樹脂組成物のペレットを製造する際、押出時のストランド断面形状を扁平化させることにより、ストランドに弾性を持たせ、冷却時に割れにくくすることで、薄肉光学部品用のペレットを安定して製造することを可能とした。そして、ペレタイズ後のペレット形状を特定の扁平形状とすることで、ペレット同士の接触でも微粉化しにくいことを見出し、結果として、成形物の黄変、光学的ゆらぎが発生し難い導光体等の薄肉光学部品用のペレットとして極めて優れていることを見出した。
 本発明は、以下の薄肉光学部品用ポリカーボネート樹脂組成物、薄肉光学部品、薄肉光学部品の製造方法、薄肉光学部品用ポリカーボネート樹脂ペレットおよび薄肉光学部品用ポリカーボネート樹脂ペレットの製造方法を提供する。
[1]ポリカーボネート樹脂(A)100質量部に対し、下記一般式(1)で表されるポリアルキレンエーテルグリコール化合物(B)を0.1~2質量部、リン系安定剤(C)を0.005~0.5質量部含有することを特徴とする薄肉光学部品用ポリカーボネート樹脂組成物。
Figure JPOXMLDOC01-appb-C000002
(式中、X及びYは水素原子、炭素数1~22の、脂肪族アシル基またはアルキル基を示し、XとYは相互に異なっていてもよく、mは3~6の整数、nは6~100の整数を示す。)
[2]さらに、エポキシ化合物(D)を0.0005~0.2質量部含有し、リン系安定剤(C)とエポキシ化合物(D)の含有量の質量比(C)/(D)が0.5~10である上記[1]に記載の薄肉光学部品用ポリカーボネート樹脂組成物。
[3]ポリカーボネート樹脂(A)の粘度平均分子量(Mv)が10,000~15,000である上記[1]又は[2]に記載の薄肉光学部品用ポリカーボネート樹脂組成物。
[4]ポリカーボネート樹脂(A)の粘度平均分子量(Mv)が11,000~14,500である上記[1]~[3]のいずれか1項に記載の薄肉光学部品用ポリカーボネート樹脂組成物。
[5]ポリアルキレンエーテルグリコール化合物(B)がポリテトラメチレンエーテルグリコールである上記[1]~[4]のいずれか1項に記載の薄肉光学部品用ポリカーボネート樹脂組成物。
[6]リン系安定剤(C)がペンタエリスリトールジホスファイト構造を有する安定剤である上記[1]~[5]のいずれか1項に記載の薄肉光学部品用ポリカーボネート樹脂組成物。
[7]300mmの光路長で測定した波長420nmでの分光透過率が55%以上である上記[1]~[6]のいずれか1項に記載の薄肉光学部品用ポリカーボネート樹脂組成物。
[8]上記[1]~[7]のいずれか1項に記載のポリカーボネート樹脂組成物を成形した薄肉光学部品。
[9]1mm以下の厚みを有する導光板である上記[8]に記載の薄肉光学部品。
[10]上記[1]~[7]のいずれか1項に記載のポリカーボネート樹脂組成物を305~380℃で射出成形することを特徴とする肉厚が1mm以下の薄肉光学部品の製造方法。
[11]上記[1]~[7]のいずれか1項に記載のポリカーボネート樹脂組成物からなる楕円柱状のペレットであって、長さが2.0~5.0mmであり、その楕円断面の長径/短径の比が1.5~4、短径が1.0~3.0mmであることを特徴とする薄肉光学部品用ポリカーボネート樹脂ペレット。
[12]前記ポリカーボネート樹脂ペレットは、ポリカーボネート樹脂ペレット500gを収納した外径125mm、全高233mmの容量2リットルのポリエチレン製密閉容器に収納したものを50リットルのタンブラーに入れて固定し、30rpmの回転数で20分間回転させた後に発生する粒径1mm以下の微粉の量が50ppm以下である上記[11]に記載の薄肉光学部品用ポリカーボネート樹脂ペレット。
[13]ペレットの断面楕円の長径/短径の比が1.8~4である上記[11]又は[12]に記載の薄肉光学部品用ポリカーボネート樹脂ペレット。
[14]上記[11]~[13]のいずれか1項に記載の樹脂ペレットを製造する方法であって、粘度平均分子量が10,000~15,000のポリカーボネート樹脂を、押出機の先端部に設けた楕円状のダイス穴を有する吐出ノズルから、断面楕円の長径部を略水平状態にしてストランドとして押出し、これを冷却水槽中で冷却固化し、ストランドカッターによってカットすることを特徴とする薄肉光学部品用ポリカーボネート樹脂ペレットの製造方法。
[15]ストランドの引取速度が100mm/secにおけるストランドを支えるサポートの高低差が290mmであるとき、1時間以上の連続運転でストランドが折れない、同じ高さのサポートの間隔が300mm以下である上記[14]に記載の薄肉光学部品用ポリカーボネート樹脂ペレットの製造方法。
 本発明によれば、ポリカーボネート樹脂本来の特性を何ら損なうことなく、更に、透過率および色相の良好で且つ耐熱変色性の良好な薄肉光学部品用ポリカーボネート樹脂組成物および透過率および色相の良好な薄肉光学部品を提供することができ、導光板に代表されるような薄肉光学部品に特に好適に使用することができる。る。
 本発明のポリカーボネート樹脂ペレットは、粘度平均分子量が10,000~15,500と低いにも係わらず、ペレット同士の接触で微粉化しにくく、結果として、成形物の黄変、光学的ゆらぎが発生し難い導光体等の薄肉光学部品用のペレットとして極めて優れている。また、ペレットを製造する際、押出時のストランド断面形状を扁平化させることにより、ストランドに弾性を持たせ、冷却時に割れにくくすることで、薄肉光学部品用のペレットを安定して製造することができる。
図1は、本発明の薄肉光学部品用ポリカーボネート樹脂ペレットの摸式図である。 図2は、ポリカーボネート樹脂ペレットを押出機からストランドを押出して製造する工程及び限界強度評価方法の概念図である。 図3は、限界強度評価方法の詳細を示す概念図である。
 以下、本発明について実施形態及び例示物等を示して詳細に説明する。
 なお、本願明細書において、「~」とは、特に断りがない場合、その前後に記載される数値を下限値及び上限値として含む意味で使用される。
[概要]
 本発明の薄肉光学部品用ポリカーボネート樹脂組成物は、ポリカーボネート樹脂(A)100質量部に対し、前記一般式(1)で表されるポリアルキレンエーテルグリコール化合物(B)を0.1~2質量部、リン系安定剤(C)を0.005~0.5質量部含有することを特徴とする。
 以下、本発明のポリカーボネート樹脂組成物を構成する各成分等につき、詳細に説明する。
[ポリカーボネート樹脂(A)]
 本発明において使用するポリカーボネート樹脂の種類に制限はなく、ポリカーボネート樹脂は、1種類を用いてもよく、2種類以上を任意の組み合わせ及び任意の比率で併用してもよい。
 ポリカーボネート樹脂は、式:-[-O-X-O-C(=O)-]-で示される炭酸結合を有する基本構造の重合体である。
 式中、Xは一般には炭化水素であるが、種々の特性付与のためヘテロ原子、ヘテロ結合の導入されたXを用いてもよい。
 また、ポリカーボネート樹脂は、炭酸結合に直接結合する炭素がそれぞれ芳香族炭素である芳香族ポリカーボネート樹脂、及び脂肪族炭素である脂肪族ポリカーボネート樹脂に分類できるが、いずれを用いることもできる。なかでも、耐熱性、機械的物性、電気的特性等の観点から、芳香族ポリカーボネート樹脂が好ましい。
 ポリカーボネート樹脂の具体的な種類に制限はないが、例えば、ジヒドロキシ化合物とカーボネート前駆体とを反応させてなるポリカーボネート重合体が挙げられる。この際、ジヒドロキシ化合物及びカーボネート前駆体に加えて、ポリヒドロキシ化合物等を反応させるようにしてもよい。また、二酸化炭素をカーボネート前駆体として、環状エーテルと反応させる方法も用いてもよい。またポリカーボネート重合体は、直鎖状でもよく、分岐鎖状でもよい。さらに、ポリカーボネート重合体は1種の繰り返し単位からなる単重合体であってもよく、2種以上の繰り返し単位を有する共重合体であってもよい。このとき共重合体は、ランダム共重合体、ブロック共重合体等、種々の共重合形態を選択することができる。なお、通常、このようなポリカーボネート重合体は、熱可塑性の樹脂となる。
 芳香族ポリカーボネート樹脂の原料となるモノマーのうち、芳香族ジヒドロキシ化合物の例を挙げると、
1,2-ジヒドロキシベンゼン、1,3-ジヒドロキシベンゼン(即ち、レゾルシノール)、1,4-ジヒドロキシベンゼン等のジヒドロキシベンゼン類;
2,5-ジヒドロキシビフェニル、2,2’-ジヒドロキシビフェニル、4,4’-ジヒドロキシビフェニル等のジヒドロキシビフェニル類;
2,2’-ジヒドロキシ-1,1’-ビナフチル、1,2-ジヒドロキシナフタレン、1,3-ジヒドロキシナフタレン、2,3-ジヒドロキシナフタレン、1,6-ジヒドロキシナフタレン、2,6-ジヒドロキシナフタレン、1,7-ジヒドロキシナフタレン、2,7-ジヒドロキシナフタレン等のジヒドロキシナフタレン類;
2,2’-ジヒドロキシジフェニルエーテル、3,3’-ジヒドロキシジフェニルエーテル、4,4’-ジヒドロキシジフェニルエーテル、4,4’-ジヒドロキシ-3,3’-ジメチルジフェニルエーテル、1,4-ビス(3-ヒドロキシフェノキシ)ベンゼン、1,3-ビス(4-ヒドロキシフェノキシ)ベンゼン等のジヒドロキシジアリールエーテル類;
2,2-ビス(4-ヒドロキシフェニル)プロパン(即ち、ビスフェノールA)、
1,1-ビス(4-ヒドロキシフェニル)プロパン、
2,2-ビス(3-メチル-4-ヒドロキシフェニル)プロパン、
2,2-ビス(3-メトキシ-4-ヒドロキシフェニル)プロパン、
2-(4-ヒドロキシフェニル)-2-(3-メトキシ-4-ヒドロキシフェニル)プロパン、
1,1-ビス(3-tert-ブチル-4-ヒドロキシフェニル)プロパン、
2,2-ビス(3,5-ジメチル-4-ヒドロキシフェニル)プロパン、
2,2-ビス(3-シクロヘキシル-4-ヒドロキシフェニル)プロパン、
2-(4-ヒドロキシフェニル)-2-(3-シクロヘキシル-4-ヒドロキシフェニル)プロパン、
α,α’-ビス(4-ヒドロキシフェニル)-1,4-ジイソプロピルベンゼン、
1,3-ビス[2-(4-ヒドロキシフェニル)-2-プロピル]ベンゼン、
ビス(4-ヒドロキシフェニル)メタン、
ビス(4-ヒドロキシフェニル)シクロヘキシルメタン、
ビス(4-ヒドロキシフェニル)フェニルメタン、
ビス(4-ヒドロキシフェニル)(4-プロペニルフェニル)メタン、
ビス(4-ヒドロキシフェニル)ジフェニルメタン、
ビス(4-ヒドロキシフェニル)ナフチルメタン、
1,1-ビス(4-ヒドロキシフェニル)エタン、
1,1-ビス(4-ヒドロキシフェニル)-1-フェニルエタン、
1,1-ビス(4-ヒドロキシフェニル)-1-ナフチルエタン、
1,1-ビス(4-ヒドロキシフェニル)ブタン、
2,2-ビス(4-ヒドロキシフェニル)ブタン、
2,2-ビス(4-ヒドロキシフェニル)ペンタン、
1,1-ビス(4-ヒドロキシフェニル)ヘキサン、
2,2-ビス(4-ヒドロキシフェニル)ヘキサン、
1,1-ビス(4-ヒドロキシフェニル)オクタン、
2,2-ビス(4-ヒドロキシフェニル)オクタン、
1,1-ビス(4-ヒドロキシフェニル)ヘキサン、
2,2-ビス(4-ヒドロキシフェニル)ヘキサン、
4,4-ビス(4-ヒドロキシフェニル)ヘプタン、
2,2-ビス(4-ヒドロキシフェニル)ノナン、
1,1-ビス(4-ヒドロキシフェニル)デカン、
1,1-ビス(4-ヒドロキシフェニル)ドデカン、
等のビス(ヒドロキシアリール)アルカン類;
1,1-ビス(4-ヒドロキシフェニル)シクロペンタン、
1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン、
1,1-ビス(4-ヒドロキシフェニル)-3,3-ジメチルシクロヘキサン、
1,1-ビス(4-ヒドロキシフェニル)-3,4-ジメチルシクロヘキサン、
1,1-ビス(4-ヒドロキシフェニル)-3,5-ジメチルシクロヘキサン、
1,1-ビス(4-ヒドロキシフェニル)-3,3,5-トリメチルシクロヘキサン、
1,1-ビス(4-ヒドロキシ-3,5-ジメチルフェニル)-3,3,5-トリメチルシクロヘキサン、
1,1-ビス(4-ヒドロキシフェニル)-3-プロピル-5-メチルシクロヘキサン、
1,1-ビス(4-ヒドロキシフェニル)-3-tert-ブチル-シクロヘキサン、
1,1-ビス(4-ヒドロキシフェニル)-4-tert-ブチル-シクロヘキサン、
1,1-ビス(4-ヒドロキシフェニル)-3-フェニルシクロヘキサン、
1,1-ビス(4-ヒドロキシフェニル)-4-フェニルシクロヘキサン、
等のビス(ヒドロキシアリール)シクロアルカン類;
9,9-ビス(4-ヒドロキシフェニル)フルオレン、
9,9-ビス(4-ヒドロキシ-3-メチルフェニル)フルオレン等のカルド構造含有ビスフェノール類;
4,4’-ジヒドロキシジフェニルスルフィド、
4,4’-ジヒドロキシ-3,3’-ジメチルジフェニルスルフィド等のジヒドロキシジアリールスルフィド類;
4,4’-ジヒドロキシジフェニルスルホキシド、4,4’-ジヒドロキシ-3,3’-ジメチルジフェニルスルホキシド等のジヒドロキシジアリールスルホキシド類;
4,4’-ジヒドロキシジフェニルスルホン、
4,4’-ジヒドロキシ-3,3’-ジメチルジフェニルスルホン等のジヒドロキシジアリールスルホン類;
等が挙げられる。
 これらの中ではビス(ヒドロキシアリール)アルカン類が好ましく、中でもビス(4-ヒドロキシフェニル)アルカン類が好ましく、特に耐衝撃性、耐熱性の点から2,2-ビス(4-ヒドロキシフェニル)プロパン(即ち、ビスフェノールA)が好ましい。
 なお、芳香族ジヒドロキシ化合物は、1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
 また、脂肪族ポリカーボネート樹脂の原料となるモノマーの例を挙げると、
 エタン-1,2-ジオール、プロパン-1,2-ジオール、プロパン-1,3-ジオール、2,2-ジメチルプロパン-1,3-ジオール、2-メチル-2-プロピルプロパン-1,3-ジオール、ブタン-1,4-ジオール、ペンタン-1,5-ジオール、ヘキサン-1,6-ジオール、デカン-1,10-ジオール等のアルカンジオール類;
 シクロペンタン-1,2-ジオール、シクロヘキサン-1,2-ジオール、シクロヘキサン-1,4-ジオール、1,4-シクロヘキサンジメタノール、4-(2-ヒドロキシエチル)シクロヘキサノール、2,2,4,4-テトラメチル-シクロブタン-1,3-ジオール等のシクロアルカンジオール類;
 エチレングリコール、2,2’-オキシジエタノール(即ち、ジエチレングリコール)、トリエチレングリコール、プロピレングリコール、スピログリコール等のグリコール類;
 1,2-ベンゼンジメタノール、1,3-ベンゼンジメタノール、1,4-ベンゼンジメタノール、1,4-ベンゼンジエタノール、1,3-ビス(2-ヒドロキシエトキシ)ベンゼン、1,4-ビス(2-ヒドロキシエトキシ)ベンゼン、2,3-ビス(ヒドロキシメチル)ナフタレン、1,6-ビス(ヒドロキシエトキシ)ナフタレン、4,4’-ビフェニルジメタノール、4,4’-ビフェニルジエタノール、1,4-ビス(2-ヒドロキシエトキシ)ビフェニル、ビスフェノールAビス(2-ヒドロキシエチル)エーテル、ビスフェノールSビス(2-ヒドロキシエチル)エーテル等のアラルキルジオール類;
 1,2-エポキシエタン(即ち、エチレンオキシド)、1,2-エポキシプロパン(即ち、プロピレンオキシド)、1,2-エポキシシクロペンタン、1,2-エポキシシクロヘキサン、1,4-エポキシシクロヘキサン、1-メチル-1,2-エポキシシクロヘキサン、2,3-エポキシノルボルナン、1,3-エポキシプロパン等の環状エーテル類;等が挙げられる。
 ポリカーボネート樹脂の原料となるモノマーのうち、カーボネート前駆体の例を挙げると、カルボニルハライド、カーボネートエステル等が使用される。なお、カーボネート前駆体は、1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
 カルボニルハライドとしては、具体的には例えば、ホスゲン;ジヒドロキシ化合物のビスクロロホルメート体、ジヒドロキシ化合物のモノクロロホルメート体等のハロホルメート等が挙げられる。
 カーボネートエステルとしては、具体的には例えば、ジフェニルカーボネート、ジトリルカーボネート等のジアリールカーボネート類;ジメチルカーボネート、ジエチルカーボネート等のジアルキルカーボネート類;ジヒドロキシ化合物のビスカーボネート体、ジヒドロキシ化合物のモノカーボネート体、環状カーボネート等のジヒドロキシ化合物のカーボネート体等が挙げられる。
・ポリカーボネート樹脂の製造方法
 ポリカーボネート樹脂の製造方法は、特に限定されるものではなく、任意の方法を採用できる。その例を挙げると、界面重合法、溶融エステル交換法、ピリジン法、環状カーボネート化合物の開環重合法、プレポリマーの固相エステル交換法などを挙げることができる。
 以下、これらの方法のうち、特に好適なものについて具体的に説明する。
・界面重合法
 まず、ポリカーボネート樹脂を界面重合法で製造する場合について説明する。
 界面重合法では、反応に不活性な有機溶媒及びアルカリ水溶液の存在下で、通常pHを9以上に保ち、ジヒドロキシ化合物とカーボネート前駆体(好ましくは、ホスゲン)とを反応させた後、重合触媒の存在下で界面重合を行うことによってポリカーボネート樹脂を得る。なお、反応系には、必要に応じて分子量調整剤(末端停止剤)を存在させるようにしてもよく、ジヒドロキシ化合物の酸化防止のために酸化防止剤を存在させるようにしてもよい。
 ジヒドロキシ化合物及びカーボネート前駆体は、前述のとおりである。なお、カーボネート前駆体の中でもホスゲンを用いることが好ましく、ホスゲンを用いた場合の方法は特にホスゲン法と呼ばれる。
 反応に不活性な有機溶媒としては、例えば、ジクロロメタン、1,2-ジクロロエタン、クロロホルム、モノクロロベンゼン、ジクロロベンゼン等の塩素化炭化水素等;ベンゼン、トルエン、キシレン等の芳香族炭化水素;などが挙げられる。なお、有機溶媒は、1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
 アルカリ水溶液に含有されるアルカリ化合物としては、例えば、水酸化ナトリウム、水酸化カリウム、水酸化リチウム、炭酸水素ナトリウム等のアルカリ金属化合物やアルカリ土類金属化合物が挙げられるが、中でも水酸化ナトリウム及び水酸化カリウムが好ましい。なお、アルカリ化合物は、1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
 アルカリ水溶液中のアルカリ化合物の濃度に制限はないが、通常、反応のアルカリ水溶液中のpHを10~12にコントロールするために、5~10質量%で使用される。また、例えばホスゲンを吹き込むに際しては、水相のpHが10~12、好ましくは10~11になる様にコントロールするために、ビスフェノール化合物とアルカリ化合物とのモル比を、通常1:1.9以上、中でも1:2.0以上、また、通常1:3.2以下、中でも1:2.5以下とすることが好ましい。
 重合触媒としては、例えば、トリメチルアミン、トリエチルアミン、トリブチルアミン、トリプロピルアミン、トリヘキシルアミン等の脂肪族三級アミン;N,N’-ジメチルシクロヘキシルアミン、N,N’-ジエチルシクロヘキシルアミン等の脂環式三級アミン;N,N’-ジメチルアニリン、N,N’-ジエチルアニリン等の芳香族三級アミン;トリメチルベンジルアンモニウムクロライド、テトラメチルアンモニウムクロライド、トリエチルベンジルアンモニウムクロライド等の第四級アンモニウム塩等;ピリジン;グアニン;グアニジンの塩;等が挙げられる。なお、重合触媒は、1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
 分子量調節剤としては、例えば、一価のフェノール性水酸基を有する芳香族フェノール;メタノール、ブタノールなどの脂肪族アルコール;メルカプタン;フタル酸イミド等が挙げられるが、中でも芳香族フェノールが好ましい。このような芳香族フェノールとしては、具体的に、m-メチルフェノール、p-メチルフェノール、m-プロピルフェノール、p-プロピルフェノール、p-tert-ブチルフェノール、p-長鎖アルキル置換フェノール等のアルキル基置換フェノール;イソプロぺニルフェノール等のビニル基含有フェノール;エポキシ基含有フェノール;o-ヒドロキシ安息香酸、2-メチル-6-ヒドロキシフェニル酢酸等のカルボキシル基含有フェノール;等が挙げられる。なお、分子量調整剤は、1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
 分子量調節剤の使用量は、ジヒドロキシ化合物100モルに対して、通常0.5モル以上、好ましくは1モル以上であり、また、通常50モル以下、好ましくは30モル以下である。分子量調整剤の使用量をこの範囲とすることで、樹脂組成物の熱安定性及び耐加水分解性を向上させることができる。
 反応の際に、反応基質、反応媒、触媒、添加剤等を混合する順番は、所望のポリカーボネート樹脂が得られる限り任意であり、適切な順番を任意に設定すればよい。例えば、カーボネート前駆体としてホスゲンを用いた場合には、分子量調節剤はジヒドロキシ化合物とホスゲンとの反応(ホスゲン化)の時から重合反応開始時までの間であれば任意の時期に混合できる。
 なお、反応温度は通常0~40℃であり、反応時間は通常は数分(例えば、10分)~数時間(例えば、6時間)である。
・溶融エステル交換法
 次に、ポリカーボネート樹脂を溶融エステル交換法で製造する場合について説明する。
 溶融エステル交換法では、例えば、炭酸ジエステルとジヒドロキシ化合物とのエステル交換反応を行う。
 ジヒドロキシ化合物は、前述の通りである。
 一方、炭酸ジエステルとしては、例えば、ジメチルカーボネート、ジエチルカーボネート、ジ-tert-ブチルカーボネート等の炭酸ジアルキル化合物;ジフェニルカーボネート;ジトリルカーボネート等の置換ジフェニルカーボネートなどが挙げられる。中でも、ジフェニルカーボネート及び置換ジフェニルカーボネートが好ましく、特にジフェニルカーボネートがより好ましい。なお、炭酸ジエステルは1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
 ジヒドロキシ化合物と炭酸ジエステルとの比率は、所望のポリカーボネート樹脂が得られる限り任意であるが、ジヒドロキシ化合物1モルに対して、炭酸ジエステルを等モル量以上用いることが好ましく、中でも1.01モル以上用いることがより好ましい。なお、上限は通常1.30モル以下である。このような範囲にすることで、末端水酸基量を好適な範囲に調整できる。
 ポリカーボネート樹脂では、その末端水酸基量が熱安定性、加水分解安定性、色調等に大きな影響を及ぼす傾向がある。このため、公知の任意の方法によって末端水酸基量を必要に応じて調整してもよい。エステル交換反応においては、通常、炭酸ジエステルと芳香族ジヒドロキシ化合物との混合比率;エステル交換反応時の減圧度などを調整することにより、末端水酸基量を調整したポリカーボネート樹脂を得ることができる。なお、この操作により、通常は得られるポリカーボネート樹脂の分子量を調整することもできる。
 炭酸ジエステルとジヒドロキシ化合物との混合比率を調整して末端水酸基量を調整する場合、その混合比率は前記の通りである。
 また、より積極的な調整方法としては、反応時に別途、末端停止剤を混合する方法が挙げられる。この際の末端停止剤としては、例えば、一価フェノール類、一価カルボン酸類、炭酸ジエステル類などが挙げられる。なお、末端停止剤は、1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
 溶融エステル交換法によりポリカーボネート樹脂を製造する際には、通常、エステル交換触媒が使用される。エステル交換触媒は任意のものを使用できる。なかでも、例えばアルカリ金属化合物及び/又はアルカリ土類金属化合物を用いることが好ましい。また補助的に、例えば塩基性ホウ素化合物、塩基性リン化合物、塩基性アンモニウム化合物、アミン系化合物などの塩基性化合物を併用してもよい。なお、エステル交換触媒は、1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
 溶融エステル交換法において、反応温度は通常100~320℃である。また、反応時の圧力は通常2mmHg以下の減圧条件である。具体的操作としては、前記の条件で、芳香族ヒドロキシ化合物等の副生成物を除去しながら、溶融重縮合反応を行えばよい。
 溶融重縮合反応は、バッチ式、連続式の何れの方法でも行うことができる。バッチ式で行う場合、反応基質、反応媒、触媒、添加剤等を混合する順番は、所望の芳香族ポリカーボネート樹脂が得られる限り任意であり、適切な順番を任意に設定すればよい。ただし中でも、ポリカーボネート樹脂の安定性等を考慮すると、溶融重縮合反応は連続式で行うことが好ましい。
 溶融エステル交換法においては、必要に応じて、触媒失活剤を用いてもよい。触媒失活剤としてはエステル交換触媒を中和する化合物を任意に用いることができる。その例を挙げると、イオウ含有酸性化合物及びその誘導体などが挙げられる。なお、触媒失活剤は、1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
 触媒失活剤の使用量は、前記のエステル交換触媒が含有するアルカリ金属又はアルカリ土類金属に対して、通常0.5当量以上、好ましくは1当量以上であり、また、通常10当量以下、好ましくは5当量以下である。更には、ポリカーボネート樹脂に対して、通常1ppm以上であり、また、通常100ppm以下、好ましくは20ppm以下である。
 ポリカーボネート樹脂(A)の分子量は、溶媒としてメチレンクロライドを用い、温度25℃で測定された溶液粘度より換算した粘度平均分子量(Mv)で、10,000~15,000であることが好ましく、より好ましくは10,500以上、さらに好ましくは11,000以上、特には11,500以上、最も好ましくは12,000以上であり、より好ましくは14,500以下である。粘度平均分子量を上記範囲の下限値以上とすることにより、本発明のポリカーボネート樹脂組成物の機械的強度をより向上させることができ、粘度平均分子量を上記範囲の上限値以下とすることにより、本発明のポリカーボネート樹脂組成物の流動性低下を抑制して改善でき、成形加工性を高めて薄肉成形加工を容易に行えるようになる。
 なお、粘度平均分子量の異なる2種類以上のポリカーボネート樹脂を混合して用いてもよく、この場合には、粘度平均分子量が上記の好適な範囲外であるポリカーボネート樹脂を混合してもよい。
 なお、粘度平均分子量[Mv]とは、溶媒としてメチレンクロライドを使用し、ウベローデ粘度計を用いて温度20℃での極限粘度[η](単位dl/g)を求め、Schnellの粘度式、すなわち、η=1.23×10-4Mv0.83 から算出される値を意味する。また、極限粘度[η]とは、各溶液濃度[C](g/dl)での比粘度[ηsp]を測定し、下記式により算出した値である。
Figure JPOXMLDOC01-appb-M000003
 ポリカーボネート樹脂の末端水酸基濃度は任意であり、適宜選択して決定すればよいが、通常1000ppm以下、好ましくは800ppm以下、より好ましくは600ppm以下である。これによりポリカーボネート樹脂の滞留熱安定性及び色調をより向上させることができる。また、その下限は、特に溶融エステル交換法で製造されたポリカーボネート樹脂では、通常10ppm以上、好ましくは30ppm以上、より好ましくは40ppm以上である。これにより、分子量の低下を抑制し、樹脂組成物の機械的特性をより向上させることができる。
 なお、末端水酸基濃度の単位は、ポリカーボネート樹脂の質量に対する、末端水酸基の質量をppmで表示したものである。その測定方法は、四塩化チタン/酢酸法による比色定量(Macromol.Chem.88 215(1965)に記載の方法)である。
 ポリカーボネート樹脂は、ポリカーボネート樹脂単独(ポリカーボネート樹脂単独とは、ポリカーボネート樹脂の1種のみを含む態様に限定されず、例えば、モノマー組成や分子量が互いに異なる複数種のポリカーボネート樹脂を含む態様を含む意味で用いる。)で用いてもよく、ポリカーボネート樹脂と他の熱可塑性樹脂とのアロイ(混合物)とを組み合わせて用いてもよい。さらに、例えば、難燃性や耐衝撃性をさらに高める目的で、ポリカーボネート樹脂を、シロキサン構造を有するオリゴマーまたはポリマーとの共重合体;熱酸化安定性や難燃性をさらに向上させる目的でリン原子を有するモノマー、オリゴマーまたはポリマーとの共重合体;熱酸化安定性を向上させる目的で、ジヒドロキシアントラキノン構造を有するモノマー、オリゴマーまたはポリマーとの共重合体;光学的性質を改良するためにポリスチレン等のオレフィン系構造を有するオリゴマーまたはポリマーとの共重合体;耐薬品性を向上させる目的でポリエステル樹脂オリゴマーまたはポリマーとの共重合体;等の、ポリカーボネート樹脂を主体とする共重合体として構成してもよい。
 また、成形品の外観の向上や流動性の向上を図るため、ポリカーボネート樹脂は、ポリカーボネートオリゴマーを含有していてもよい。このポリカーボネートオリゴマーの粘度平均分子量[Mv]は、通常1500以上、好ましくは2000以上であり、また、通常9500以下、好ましくは9000以下である。さらに、含有されるポリカーボネートリゴマーは、ポリカーボネート樹脂(ポリカーボネートオリゴマーを含む)の30質量%以下とすることが好ましい。
 さらにポリカーボネート樹脂は、バージン原料だけでなく、使用済みの製品から再生されたポリカーボネート樹脂(いわゆるマテリアルリサイクルされたポリカーボネート樹脂)であってもよい。
 ただし、再生されたポリカーボネート樹脂は、ポリカーボネート樹脂のうち、80質量%以下であることが好ましく、中でも50質量%以下であることがより好ましい。再生されたポリカーボネート樹脂は、熱劣化や経年劣化等の劣化を受けている可能性が高いため、このようなポリカーボネート樹脂を前記の範囲よりも多く用いた場合、色相や機械的物性を低下させる可能性があるためである。
[ポリアルキレンエーテルグリコール化合物(B)]
 本発明の薄肉光学部品用ポリカーボネート樹脂組成物は、下記一般式(1)で表されるポリアルキレンエーテルグリコール化合物(B)を含有する。
Figure JPOXMLDOC01-appb-C000004
(式中、X及びYは水素原子、炭素数1~22の、脂肪族アシル基またはアルキル基を示し、XとYは相互に異なっていてもよく、mは3~6の整数、nは6~100の整数を示す。)
 上記一般式(1)において、n(重合度)は、6~100の整数であるが、好ましくは8以上、より好ましくは10以上であり、好ましくは90以下、より好ましくは80以下である。重合度nが6未満の場合、成形時にガスが発生するので好ましくない。一方、重合度nが100を超える場合、相溶性が低下するので好ましくない。
 ポリアルキレンエーテルグリコール化合物(B)としては、他の共重合成分との共重合体であってもよいが、ポリアルキレンエーテルグリコール単独重合体が好ましい。
 ポリアルキレンエーテルグリコール化合物(B)としては、式(1)中のX及びYが水素原子で、mが3であるポリトリメチレンエーテルグリコール、mが4であるポリテトラメチレンエーテルグリコール、mが5であるポリペンタメチレンエーテルグリコール、mが6であるポリヘキサメチレンエーテルグリコールが好ましく挙げられ、より好ましくはポリトリメチレンエーテルグリコール、ポリテトラメチレンエーテルグリコール、特に好ましくはポリテトラメチレンエーテルグリコールあるいはそのエステル化物またはエーテル化物である。
 また、ポリアルキレンエーテルグリコール化合物(B)として、その片末端あるいは両末端が脂肪酸またはアルコールで封鎖されていてもその性能発現に影響はなく、脂肪酸エステル化物またはエーテル化物が同様に使用でき、式(1)中のX及び/又は炭素数1~22である、脂肪族アシル基またはアルキル基であってもよい。
 脂肪酸エステル化物としては、直鎖状又は分岐状脂肪酸エステルのいずれも使用でき、脂肪酸エステルを構成する脂肪酸は、飽和脂肪酸であってもよく不飽和脂肪酸であってもよい。また、一部の水素原子がヒドロキシル基などの置換基で置換されたものも使用できる。
 脂肪酸エステルを構成する脂肪酸としては、炭素数1~22の1価又は2価の脂肪酸、例えば、1価の飽和脂肪酸、例えば、ギ酸、酢酸、プロピオン酸、酪酸、吉草酸、カプロン酸、エナント酸、カプリル酸、カプリン酸、ラウリン酸、ミリスチン酸、ペンタデシル酸、パルミチン酸、ヘプタデシル酸、ステアリン酸、ノナデカン酸、アラキジン酸、ベヘン酸や、1価の不飽和脂肪酸、例えば、オレイン酸、エライジン酸、リノール酸、リノレン酸、アラキドン酸などの不飽和脂肪酸、また炭素数10以上の二価の脂肪酸、例えば、セバシン酸、ウンデカン二酸、ドデカン二酸、テトラデカン二酸、タプシア酸及びデセン二酸、ウンデセン二酸、ドデセン二酸である。
 これらの脂肪酸は一種又は二種以上組み合せて使用できる。前記脂肪酸には、1つ又は複数のヒドロキシル基を分子内に有する脂肪酸も含まれる。
 ポリアルキレンエーテルグリコール脂肪酸エステルの好ましい具体例としては、ポリアルキレンエーテルグリコールモノパルミチン酸エステル、ポリアルキレンエーテルグリコールジパルミチン酸エステル、ポリアルキレンエーテルグリコールモノステアリン酸エステル、ポリアルキレンエーテルグリコールジステアリン酸エステル、ポリアルキレンエーテルグリコール(モノパルミチン酸・モノステアリン酸)エステル、ポリアルキレンエーテルグリコールベヘネート等が挙げられる。
 アルキルエーテルを構成するアルキル基としては、直鎖状又は分岐状のいずれも使用でき、炭素数1~22のアルキル基、例えばメチル基、エチル基、プロピル基、ブチル基、オクチル基、ラウリル基、ステアリル基等であり、ポリアルキレンエーテルグリコールのアルキルメチルエーテル、エチルエーテル、ブチルエーテル、ラウリルエーテル、ステアリルエーテル等が好ましく例示できる。
 また、ポリアルキレンエーテルグリコール化合物(B)の数平均分子量としては、200~5,000であることが好ましく、より好ましくは300以上、さらに好ましくは500以上であり、より好ましくは4,000以下、さらに好ましくは3,000以下である。上記範囲の上限を超えると、相溶性が低下するので好ましくなく、又上記範囲の下限を下回ると成形時にガスが発生するので好ましくない。
 ここでいうポリアルキレンエーテルグリコール化合物の数平均分子量はJIS K1577に準拠して測定した水酸基価に基づいて算出した数平均分子量である。
 ポリアルキレンエーテルグリコール化合物(B)の含有量は、ポリカーボネート樹脂(A)100質量部に対し、0.1~2質量部である。好ましい含有量は0.15質量部以上、より好ましくは0.2質量部以上であり、好ましくは1.9質量部以下、より好ましくは1.7質量部以下、さらに好ましくは1.6質量部以下である。含有量が0.1質量部を下回ると、色相や黄変の改善が十分でなく、2質量部を超えると、押出機による溶融混練の際に、ストランドの断線が多発し、樹脂組成物ペレットの作成が困難となる。
[リン系安定剤(C)]
 本発明のポリカーボネート樹脂組成物は、リン系安定剤を含有することを必要とする。リン系安定剤を含有することで、本発明のポリカーボネート樹脂組成物の色相が良好なものとなり、さらに耐熱変色性が向上する。
 リン系安定剤としては、公知の任意のものを使用できる。具体例を挙げると、リン酸、ホスホン酸、亜燐酸、ホスフィン酸、ポリリン酸などのリンのオキソ酸;酸性ピロリン酸ナトリウム、酸性ピロリン酸カリウム、酸性ピロリン酸カルシウムなどの酸性ピロリン酸金属塩;リン酸カリウム、リン酸ナトリウム、リン酸セシウム、リン酸亜鉛など第1族または第2B族金属のリン酸塩;ホスフェート化合物、ホスファイト化合物、ホスホナイト化合物などが挙げられるが、ホスファイト化合物が特に好ましい。ホスファイト化合物を選択することで、より高い耐変色性と連続生産性を有するポリカーボネート樹脂組成物が得られる。
 ここでホスファイト化合物は、一般式:P(OR)で表される3価のリン化合物であり、Rは、1価または2価の有機基を表す。
 このようなホスファイト化合物としては、例えば、トリフェニルホスファイト、トリス(モノノニルフェニル)ホスファイト、トリス(モノノニル/ジノニル・フェニル)ホスファイト、トリス(2,4-ジ-tert-ブチルフェニル)ホスファイト、モノオクチルジフェニルホスファイト、ジオクチルモノフェニルホスファイト、モノデシルジフェニルホスファイト、ジデシルモノフェニルホスファイト、トリデシルホスファイト、トリラウリルホスファイト、トリステアリルホスファイト、ジステアリルペンタエリスリトールジホスファイト、ビス(2,4-ジ-tert-ブチル-4-メチルフェニル)ペンタエリスリトールホスファイト、ビス(2,6-ジ-tert-ブチルフェニル)オクチルホスファイト、2,2-メチレンビス(4,6-ジ-tert-ブチルフェニル)オクチルホスファイト、テトラキス(2,4-ジ-tert-ブチルフェニル)-4,4’-ビフェニレン-ジホスファイト、6-[3-(3-tert-ブチル-ヒドロキシ-5-メチルフェニル)プロポキシ]-2,4,8,10-テトラ-tert-ブチルジベンゾ[d,f][1,3,2]-ジオキサホスフェピン等が挙げられる。
 このようなホスファイト化合物のなかでも、下記式(2)または(3)で表される芳香族ホスファイト化合物が、本発明のポリカーボネート樹脂組成物の耐熱変色性が効果的に高まるため、より好ましい。
Figure JPOXMLDOC01-appb-C000005
[式(2)中、R、R及びRは、それぞれ同一であっても異なっていてもよく、炭素数6以上30以下のアリール基を表す。]
Figure JPOXMLDOC01-appb-C000006
[式(3)中、R及びRは、それぞれ同一であっても異なっていてもよく、炭素数6以上30以下のアリール基を表す。]
 上記式(2)で表されるホスファイト化合物としては、なかでもトリフェニルホスファイト、トリス(モノノニルフェニル)ホスファイト、トリス(2,4-ジ-tert-ブチルフェニル)ホスファイト等が好ましく、なかでもトリス(2,4-ジ-tert-ブチルフェニル)ホスファイトがより好ましい。このような、有機ホスファイト化合物としては、具体的には例えば、ADEKA社製「アデカスタブ1178」、住友化学社製「スミライザーTNP」、城北化学工業社製「JP-351」、ADEKA社製「アデカスタブ2112」、BASF社製「イルガフォス168」、城北化学工業社製「JP-650」等が挙げられる。
 上記式(3)で表されるホスファイト化合物としては、なかでもビス(2,4-ジ-tert-ブチル-4-メチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,6-ジ-tert-ブチル-4-メチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,4-ジクミルフェニル)ペンタエリスリトールジホスファイトのようなペンタエリスリトールジホスファイト構造を有するものが特に好ましい。このような、有機ホスファイト化合物としては、具体的には例えば、ADEKA社製「アデカスタブPEP-24G」、「アデカスタブPEP-36」、Doverchemical社製「Doverphos S-9228」等が好ましく挙げられる。
 なお、リン系安定剤は、1種が含有されていてもよく、2種以上が任意の組み合わせ及び比率で含有されていても良い。
 リン系安定剤(C)の含有量は、ポリカーボネート樹脂(A)100質量部に対して、0.005~0.5質量部であり、好ましくは0.007質量部以上、より好ましくは0.008質量部以上、特に好ましくは0.01質量部以上であり、また、好ましくは0.4質量以下、より好ましくは0.3質量部以下、さらに好ましくは0.2質量部以下、特には0.1質量部以下である。リン系安定剤(C)の含有量が前記範囲の0.005質量部未満の場合は、色相、耐熱変色性が不十分となり、リン系安定剤(C)の含有量が0.5質量部を超える場合は、耐熱変色性がかえって悪化するだけでなく、湿熱安定性も低下する。
[エポキシ化合物(D)]
 本発明のポリカーボネート樹脂組成物は、さらにエポキシ化合物(D)を含有することが好ましい。エポキシ化合物を含有することで、本発明のポリカーボネート樹脂組成物の色相がより良好なものとなり、さらに耐熱変色性がより向上する。
 エポキシ化合物(D)としては、1分子中にエポキシ基を1個以上有する化合物が用いられる。具体的には、フェニルグリシジルエーテル、アリルグリシジルエーテル、t-ブチルフェニルグリシジルエーテル、3,4-エポキシシクロヘキシルメチル-3’,4’-エポキシシクロヘキシルカルボキシレート、3,4-エポキシ-6-メチルシクロヘキシルメチル-3’,4’-エポキシ-6’-メチルシクロヘキシルカルボキシレート、2,3-エポキシシクロヘキシルメチル-3’,4’-エポキシシクロヘキシルカルボキシレート、4-(3,4-エポキシ-5-メチルシクロヘキシル)ブチル-3’,4’-エポキシシクロヘキシルカルボキシレート、3,4-エポキシシクロヘキシルエチレンオキシド、シクロヘキシルメチル3,4-エポキシシクロヘキシルカルボキシレート、3,4-エポキシ-6-メチルシクロヘキシルメチル-6’-メチルシロヘキシルカルボキシレート、ビスフェノール-Aジグリシジルエーテル、テトラブロモビスフェノール-Aグリシジルエーテル、フタル酸のジグリシジルエステル、ヘキサヒドロフタル酸のジグリシジルエステル、ビス-エポキシジシクロペンタジエニルエーテル、ビス-エポキシエチレングリコール、ビス-エポキシシクロヘキシルアジペート、ブタジエンジエポキシド、テトラフェニルエチレンエポキシド、オクチルエポキシタレート、エポキシ化ポリブタジエン、3,4-ジメチル-1,2-エポキシシクロヘキサン、3,5-ジメチル-1,2-エポキシシクロヘキサン、3-メチル-5-t-ブチル-1,2-エポキシシクロヘキサン、オクタデシル-2,2-ジメチル-3,4-エポキシシクロヘキシルカルボキシレート、N-ブチル-2,2-ジメチル-3,4-エポキシシクロヘキシルカルボキシレート、シクロヘキシル-2-メチル-3,4-エポキシシクロヘキシルカルボキシレート、N-ブチル-2-イソプロピル-3,4-エポキシ-5-メチルシクロヘキシルカルボキシレート、オクタデシル-3,4-エポキシシクロヘキシルカルボキシレート、2-エチルヘキシル-3’,4’-エポキシシクロヘキシルカルボキシレート、4,6-ジメチル-2,3-エポキシシクロヘキシル-3’,4’-エポキシシクロヘキシルカルボキシレート、4,5-エポキシ無水テトラヒドロフタル酸、3-t-ブチル-4,5-エポキシ無水テトラヒドロフタル酸、ジエチル4,5-エポキシ-シス-1,2-シクロヘキシルジカルボキシレート、ジ-n-ブチル-3-t-ブチル-4,5-エポキシ-シス-1,2-シクロヘキシルジカルボキシレート、エポキシ化大豆油、エポキシ化アマニ油などを好ましく例示することができる。
 エポキシ化合物は、単独で用いても2種以上組み合わせて用いてもよい。
 エポキシ化合物(D)の含有量は、ポリカーボネート樹脂(A)100質量部に対して、好ましくは0.0005~0.2質量部であり、より好ましくは0.001質量部以上、さらに好ましくは0.003質量部以上、特に好ましくは0.005質量部以上であり、また、より好ましくは0.15質量以下、さらに好ましくは0.1質量部以下、特に好ましくは0.05質量部以下である。エポキシ化合物(D)の含有量が0.0005質量部未満の場合は、色相、耐熱変色性が不十分となりやすく、0.2質量部を超える場合は、耐熱変色性がかえって悪化するだけでなく、色相や湿熱安定性も低下しやすい。
[リン系安定剤(C)とエポキシ化合物(D)の含有量の比]
 エポキシ化合物(D)を含有する場合には、ポリカーボネート樹脂組成物中の、リン系安定剤(C)とエポキシ化合物(D)の含有量の比は、(C)/(D)の質量比で0.5~10の範囲にあることが好ましい。(C)/(D)の質量比が0.5を下回ると色相、特に初期YI値が悪くなりやすく、10を超えると耐熱変色性が悪くなりやすい。(C)/(D)の質量比は、より好ましくは0.7以上であり、さらに好ましくは0.8以上であり、また、より好ましくは8以下、さらに好ましくは7以下、特に好ましくは8以下である。
[添加剤等]
 本発明のポリカーボネート樹脂組成物は、上記した以外のその他の添加剤、例えば、酸化防止剤、離型剤、紫外線吸収剤、蛍光増白剤、顔料、染料、ポリカーボネート樹脂以外の他のポリマー、難燃剤、耐衝撃改良剤、帯電防止剤、可塑剤、相溶化剤などの添加剤を含有することができる。これらの添加剤は一種または二種以上を配合してもよい。
[ポリカーボネート樹脂組成物の製造方法]
 本発明のポリカーボネート樹脂組成物の製造方法に制限はなく、公知のポリカーボネート樹脂組成物の製造方法を広く採用でき、ポリカーボネート樹脂(A)、ポリアルキレンエーテルグリコール(B)及びリン系安定剤(C)、並びに、必要に応じて配合されるその他の成分を、例えばタンブラーやヘンシェルミキサーなどの各種混合機を用い予め混合した後、バンバリーミキサー、ロール、ブラベンダー、単軸混練押出機、二軸混練押出機、ニーダーなどの混合機で溶融混練する方法が挙げられる。なお、溶融混練の温度は特に制限されないが、通常240~320℃の範囲である。
 本発明の薄肉光学部品用ポリカーボネート樹脂組成物は、高い分光透過率を示し、300mmの光路長で測定した波長420nmでの分光透過率が、好ましくは55%以上、より好ましくは56%以上、さらに好ましくは57%以上という高い分光透過率を有することができる。
 波長420nmでの分光透過率は、導光板等の光学部品でも多用される青色LEDの波長領域に近接する波長域での透過率であり、またこの波長域での透過率が低いと黄色味が増加することになる。
 なお、波長420nmでの分光透過率は、射出成形された長光路成形品(300mm×7mm×4mm)を用い300mmの光路長で測定され、具体的には後記実施例に記載の方法に従って行われる。
[ポリカーボネート樹脂ペレット]
 本発明の薄肉光学部品用ポリカーボネート樹脂組成物は、上記したように各成分を溶融混練して、通常はペレットとされる。ポリカーボネート樹脂ペレットとしては、楕円柱状の形状を有するペレットとすることが好ましい。
 図1は、その薄肉光学部品用ポリカーボネート樹脂ペレットの摸式図である。
 好ましいポリカーボネート樹脂ペレットは、長さLが2.0~5.0mmの範囲にあり、ペレットの楕円断面の長径dと短径aの比(d/a)が1.5~4の範囲にあり、かつ短径aが1.0~3.0mmの範囲にあることを特徴とする。
 長さLが2.0~5.0mmの範囲にないとペレットが容易に砕けやすくなりやすく、微粉の発生量が多くなりやすい。長径dと短径aの比(d/a)が1.5~4の範囲から外れると樹脂のストランドの強度が低下しやすく、押出によるペレットの生産が不安定となり、楕円の短径aが1.0~3.0mmの範囲にないとペレットが容易に砕けやすくなり、微粉の発生量が多くなりやすい。
 長径dと短径aの比(d/a)は、好ましくは1.6以上であり、より好ましくは1.7以上、さらに好ましくは1.8以上であり、また好ましくは3.5以下であり、より好ましくは3.0以下である。
 このようなポリカーボネート樹脂ペレットは、このような形状を有することで、ペレットを紙袋やフレキシブルコンテナ等に収容し、これを輸送配送する際に振動や荷重を受けても微粉を発生しにくいという特徴を有する。ペレットの楕円断面の長径方向が水平になって、荷重を受け止めるので、微粉化しにくいものと考えられる。
 このようなポリカーボネート樹脂ペレットの微粉発生の量は、樹脂ペレット500gを外径125mm、全高233mmの容量2リットルのポリエチレン製密閉容器に収納し、それを50リットルのタンブラーに入れて固定し、30rpmの回転数で20分間回転させた後に発生する粒径1mm以下の微粉の量は、好ましくは50ppm以下である。
[ポリカーボネート樹脂ペレットの製造]
 上記ポリカーボネート樹脂ペレットを製造する方法としては、各種の方法が適用可能であるが、以下にその好適な態様を説明する。
 ポリカーボネート樹脂は、原料供給機に貯蔵され、そこからフィーダー(定量供給機)によって、押出機上に設置されたホッパーより押出機に供給される。なお、ポリカーボネート樹脂はペレットでもパウダー状でも構わない。
 ポリカーボネート樹脂以外の他の成分は、押出機に投入される前の任意の段階で配合することができる。例えば、タンブラー、ヘンシェルミキサー、ブレンダーによって全成分を配合したのち、必要に応じてフィーダーを介してホッパーシュートに投入し、押出機に供給してもよい。押出機には一軸押出機、二軸押出機などが使用出来る。また、ポリカーボネート樹脂とは別経路でホッパーシュートに供給してもよい。
 押出機としては、一軸押出機でも二軸押出機でよいが、二軸押出機が好ましい。押出機のスクリューのL/Dとしては、10~80が好ましく、より好ましくは15~70、さらに好ましくは20~60である。スクリューは短すぎると脱気が不足しやすく、長すぎると色調が悪化しやすい。
 次に、ポリカーボネート樹脂組成物は、押出機の先端部の吐出ノズルからストランド状に押出されるが、吐出ノズルのダイスとしては、楕円状のダイス穴を有するダイスを用いることが好ましい。吐出ノズルの楕円状のダイス穴の扁平率を変えることによりペレットの扁平率を変えることができる。
 吐出ノズルのダイスは、楕円状のダイス穴の長径を略水平状態に取り付け、押出される断面が楕円状のストランドがその長径を略水平状になるように取り付けて、押出すことが好ましい。押出された直後のポリカーボネート樹脂の温度は、通常300℃程度である。
 楕円断面状のストランドは、その長径を略水平にして引き取りローラーによって引き取られ、冷却水槽に溜められた水中を搬送されるようにして、冷却される。樹脂の劣化を少なくするために、ストランドがダイから押し出されてから水に入るまでの時間は短い方が良い。通常は、ダイから押し出されてから1秒以内に水中に入るのが良い。
 冷却されたストランドは、引き取りローラーによりペレタイザーに送られ、ペレット長さ2.0~5.0mmにカッティングされて、ペレットとされる。
 図2はポリカーボネート樹脂ペレットを押出機からストランドを押出して製造する工程を示す概念図、図3は限界強度評価方法の詳細を示す概念図である。
 ポリカーボネート樹脂ペレットを押出機の吐出ノズル2から押出されたストランド1は、冷却水槽3に導入して冷却された後、引き取りローラーのサポートC、B、Aに順に支持されながら引き取られ、ペレタイザー4に送られる。この際、ストランドの引取速度(Vx)が100mm/secで、ストランド1を支える同じ高さにあるサポートC及びAとC-A間にあるサポートBの高低差が290mmであるとき、1時間以上の連続運転でストランドが折れないサポートCとサポートAの間隔として定義される間隔(Xmm、以下「限界間隔」ともいう。)が、300mm以下であることが好ましい。
[薄肉光学部品]
 本発明の薄肉光学部品用ポリカーボネート樹脂組成物は、上記したポリカーボネート樹脂組成物をペレタイズしたペレットを各種の成形法で成形して薄肉光学部品を製造することができる。またペレットを経由せずに、押出機で溶融混練された樹脂を直接、成形して薄肉光学部品にすることもできる。
 本発明のポリカーボネート樹脂組成物は、流動性に優れ、薄肉の成形品にした場合でも、白点異物のない成形品外観に優れ、透過率や色相を両立できることから、射出成形法により、薄肉の光学部品を成形するのに好適に用いられる。射出成形の際の樹脂温度は、一般にポリカーボネート樹脂の射出成形に適用される温度である260~300℃よりも高い樹脂温度にて成形することが好ましく、305~380℃の樹脂温度が好ましい。樹脂温度は310℃以上であるのがより好ましく、315℃以上がさらに好ましく、320℃以上が特に好ましく、370℃以下がより好ましい。従来のポリカーボネート樹脂組成物を用いた場合には、薄肉成形品を成形するために成形時の樹脂温度を高めと、成形品の表面に白点異物が生じやすくなるという問題もあったが、本発明の樹脂組成物を使用することで、上記の温度範囲であっても、良好な外観を有する薄肉成形品を製造することが可能となる。
 なお、樹脂温度とは、直接測定することが困難な場合はバレル設定温度として把握される。
 本発明において薄肉成形品とは、通常肉厚が1mm以下、好ましくは0.8mm以下、より好ましくは0.6mm以下の板状部を有する成形品をいう。ここで、板状部は、平板であっても曲板状になっていてもよく、平坦な表面であっても、表面に凹凸等を有してもよく、また断面は傾斜面を有していたり、楔型断面等であってもよい。
 薄肉光学部品としては、LED、有機EL、白熱電球、蛍光ランプ、陰極管等の光源を直接または間接に利用する機器・器具の部品が挙げられ、導光板や面発光体用部品等が代表的なものとして例示される。
 導光板は、液晶バックライトユニットや各種の表示装置、照明装置の中で、LED等の光源の光を導光するためのものであり、側面または裏面等から入れた光を、通常表面に設けられた凹凸により拡散させ、均一の光を出す。その形状は、通常平板状であり、表面には凹凸を有していても有していなくてもよい。
 導光板の成形は、通常、好ましくは射出成形法、超高速射出成形法、射出圧縮成形法などにより行われる。
 本発明の樹脂組成物を用いて成形した導光板は、白濁や透過率の低下がなく、透過率および色相が極めて良好である。
 本発明のポリカーボネート樹脂組成物による導光板は、液晶バックライトユニットや各種の表示装置、照明装置の分野で好適に使用できる。このような装置の例としては、携帯電話、モバイルノート、ネットブック、スレートPC、タブレットPC、スマートフォン、タブレット型端末等の各種携帯端末、カメラ、時計、ノートパソコン、各種ディスプレイ、照明機器等が挙げられる。
 以下、実施例を示して本発明について更に具体的に説明する。ただし、本発明は以下の実施例に限定して解釈されるものではない。
(実施例1~7、比較例1~5)
 使用した原料は以下の表1の通りである。
 なお、ポリカーボネート樹脂(A)の粘度平均分子量は、ウベローデ粘度計を用いて塩化メチレン中20℃の極限粘度[η]を測定し、以下の式より求めた。
  [η]=1.23×10-4×(Mv)0.83
Figure JPOXMLDOC01-appb-T000007
[樹脂組成物ペレットの製造]
 上記した各成分を、表2及び表3に記した割合(質量部)で配合し、タンブラーにて20分混合した後、スクリュー径40mmのベント付単軸押出機(田辺プラスチック機械社製「VS-40」)により、シリンダー温度240℃で溶融混練し、ストランドカットによりペレットを得た。
[色相(YI)と光線透過率の測定]
 得られたペレットを120℃で5~7時間、熱風循環式乾燥機により乾燥した後、射出成形機(東芝機械社製「EC100SX-2A」)により、樹脂温度340℃、金型温度80℃で長光路成形品(300mm×7mm×4mm)を成形した。
 この長光路成形品について、300mmの光路長でYI(黄変度)と波長420nmの分光透過率(単位:%)の測定を行った。測定には長光路分光透過色計(日本電色工業社製「ASA 1」、C光源、2°視野)を使用した。
 以上の評価結果を以下の表2および表3に示す。
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
 [比較例5]
 実施例1において、B1成分を4質量部にした以外は実施例1と同様の方法でペレット化を検討したが、押出機による溶融混練の際のストランドの断線が多発し、樹脂組成物ペレットの作成が困難であった。
 表2から明らかなように、実施例の成形品は光路長の長い300mmでのYIが小さく、黄変が少ないことを示している。さらに420nmでの光線透過率も高く、透明性にも優れる。
 一方、表3の比較例のものは300mmのYIが実施例のものに較べて、悪いことが分かる。さらに光線透過率も低い。
(実施例8~14、比較例6~7、参考例1~3)
 使用した原料は以下の表4の通りである。
Figure JPOXMLDOC01-appb-T000010
[樹脂組成物ペレットの製造]
 上記した各成分を、表5及び表6に記した割合(質量部)で配合し、タンブラーにて20分混合した後、スクリュー径40mmのベント付単軸押出機(田辺プラスチック機械社製「VS-40」)により、シリンダー温度240℃で溶融混練し、ストランドカットによりペレットを得た。
[色相(YI)と光線透過率の測定]
 得られたペレットを120℃で5~7時間、熱風循環式乾燥機により乾燥した後、射出成形機(東芝機械社製「EC100SX-2A」)により、樹脂温度340℃、金型温度80℃で長光路成形品(300mm×7mm×4mm)を成形した。
 この長光路成形品について、300mmの光路長でYI(黄変度)(以下、「初期YI」)と波長420nmの分光透過率(単位:%)の測定を行った。測定には長光路分光透過色計(日本電色工業社製「ASA 1」、C光源、2°視野)を使用した。
 さらに、長光路成形品を、85℃で800時間保持した後、300mm光路長でYIを測定(処理後YI)し、YI値の差(ΔYI=処理後YI-初期YI)を求めた。
 以上の評価結果を以下の表5及び表6に示す。
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
 上記表5から明らかなように、エポキシ化合物(D)を含有する実施例の薄肉成形品は光路長の長い300mmでの初期YIが小さく色相に優れることを示している。さらに加熱処理後のYI値の上昇も小さく耐熱変色性に優れていることが分かる。
(実施例15)
 前記表1に記載した各成分を、前記表2の実施例5に記した割合(質量部)で配合し、タンブラーにて20分混合した後、ベント式二軸押出機(日本製鋼所社製「TEX44αII」)のホッパーから押出機に連続的に供給し、押出機内で溶融混合し、シリンダー温度240℃、吐出量150kg/h、スクリュー回転数250rpmの押出条件にて、長径6.5mm、短径3.5mmの楕円状のダイス穴を有するダイスを、その長径を水平にして設けた押出ノズルから、ストランド状にその楕円断面の長径を略水平にして押出し、冷却水槽に導入して、ストランドの引取速度40m/min、カッター刃の回転速度600rpmで、ペレタイザーで切断してポリカーボネート樹脂のペレットを得た。
(1)ペレット楕円断面の長径/短径比
 得られたペレットの長径と短径、長さを測定し、それぞれ100個の平均値を示した。長径/短径の平均値の比をペレット扁平率とした。
 ペレットの長径は2.9mm、短径は1.5mm、ペレットの長さは2.9mm、長径/短径の比は1.9であった。
(2)ストランドの安定性
 ダイスから出てくるストランドは、押出の方向が定まらずに蛇行することを防ぐため、ストランドにサポートを押し付けて一定の負荷をかけることにより、ストランドが真直ぐに押出されるようにしている。
 この状態で、1時間当たりのストランドが切れた回数をカウントし、押出の安定性を評価した。
 ストランド切れ回数は0回であった。
(3)ストランドの限界強度
 また、ストランドの限界強度を以下の方法で評価した。
 図2に示すように、得られたポリカーボネート樹脂ペレットを押出機から押出された樹脂ストランドは、サポートCからサポートB、サポートAに支えながらペレタイザーに送られる。樹脂ストランドの限界強度は、図3に詳細に示すとおり、ストランドの引取速度(Vx)が100mm/secで、ストランドを支える同じ高さにあるサポートC及びAとサポートBの高低差が290mmであるとき、1時間以上の連続運転でストランドが折れない同じ高さのサポートCとサポートAの間隔(Xmm)として評価した。
 サポートの限界間隔は260mmであった。
(4)振動試験による微粉発生量の測定
 得られたポリカーボネート樹脂ペレット500gを外径125mm、全高233mmの容量2リットルのポリエチレン製密閉容器に収納し、それを50リットルのタンブラー(誠和鉄工所社製「SKD-50」)に入れて固定し、30rpmの回転数で20分間回転させ、ペレット同士が擦れて微粉が発生する状況にした。
 微粉量の測定は、水とエチルアルコールを1:1で混合した液体1リットル中に振動試験後のペレット500gを入れて充分に撹拌した後、濾紙を用いてペレットの微粉を含む上澄み液を濾過した後の濾紙を120℃のオーブンで2時間乾燥した後の質量を測定し、濾紙質量の純増量から付着微粉量(質量ppm)を算出し、それを微粉発生量とした。本測定における微粉の粒径は1mm以下である。
 微粉発生量は35質量ppmであった。
(5)白点不良
 得られたポリカーボネート樹脂ペレットを用い、射出成形機(東芝機械社製「EC100SX-2A」)により、340℃の温度で、100mm×100mm×0.4mm厚の薄肉平板を成形し、10枚当たりの白点不良を生じた個数(枚数)をカウントした。
 白点不良は0個であった。
(6)真空ボイド
 得られたポリカーボネート樹脂ペレット100個について、目視観察を行い、真空ボイドが存在するペレットの数をカウントした。
 真空ボイドが存在したペレットの個数は0個であった。
(実施例16)
 前記表1に記載した各成分を、前記表2の実施例7に記した割合(質量部)で配合し、タンブラーにて20分混合した後、ベント式二軸押出機(日本製鋼所社製「TEX44αII」)のホッパーから押出機に連続的に供給し、押出機内で溶融混合し、シリンダー温度240℃、吐出量150kg/h、スクリュー回転数250rpmの押出条件にて、長径6.5mm、短径2.9mmの楕円状のダイス穴を有するダイスを、その長径を水平にして設けた押出ノズルから、ストランド状にその楕円断面の長径を略水平にして押出し、水槽に導入して、ストランドの引取速度40m/min、カッター刃の回転速度600rpmで、ペレタイザーで切断してポリカーボネート樹脂のペレットを得た。
 ペレットの長径は2.9mm、短径は1.2mm、ペレットの長さは3.2mm、長径/短径の比は2.4であった。
 ストランド切れ回数は0回であり、サポートの限界間隔は270mmであった。微粉発生量は34質量ppm、白点不良は0個、真空ボイドが存在したペレットの個数は0個であった。
(実施例17)
 前記表4に記載した各成分を、前記表5の実施例9に記した割合で(質量部)で配合し、タンブラーにて20分混合した後、ベント式二軸押出機(日本製鋼所社製「TEX44αII」)のホッパーから押出機に連続的に供給し、押出機内で溶融混合し、シリンダー温度240℃、吐出量150kg/h、スクリュー回転数250rpmの押出条件にて、長径6.5mm、短径3.5mmの楕円状のダイス穴を有するダイスを、その長径を水平にして設けた押出ノズルから、ストランド状にその楕円断面の長径を略水平にして押出し、水槽に導入して、ストランドの引取速度40m/min、カッター刃の回転速度600rpmで、ペレタイザーで切断してポリカーボネート樹脂のペレットを得た。
 ペレットの長径は2.9mm、短径は1.5mm、ペレットの長さは2.9mm、長径/短径の比は1.9であった。
 ストランド切れ回数は0回であり、サポートの限界間隔は260mmであった。微粉発生量は35質量ppm、白点不良は0個、真空ボイドが存在したペレットの個数は0個であった。
 本発明のポリカーボネート樹脂組成物は、透過率および色相が極めて良好で且つ耐熱変色性に優れるので、薄肉光学部品に極めて好適に利用でき、産業上の利用性は非常に高い。

Claims (15)

  1.  ポリカーボネート樹脂(A)100質量部に対し、下記一般式(1)で表されるポリアルキレンエーテルグリコール化合物(B)を0.1~2質量部、リン系安定剤(C)を0.005~0.5質量部含有することを特徴とする薄肉光学部品用ポリカーボネート樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
    (式中、X及びYは水素原子、炭素数1~22の、脂肪族アシル基またはアルキル基を示し、XとYは相互に異なっていてもよく、mは3~6の整数、nは6~100の整数を示す。)
  2.  さらに、エポキシ化合物(D)を0.0005~0.2質量部含有し、リン系安定剤(C)とエポキシ化合物(D)の含有量の質量比(C)/(D)が0.5~10である請求項1に記載の薄肉光学部品用ポリカーボネート樹脂組成物。
  3.  ポリカーボネート樹脂(A)の粘度平均分子量(Mv)が10,000~15,000である請求項1又は2に記載の薄肉光学部品用ポリカーボネート樹脂組成物。
  4.  ポリカーボネート樹脂(A)の粘度平均分子量(Mv)が11,000~14,500である請求項1~3のいずれか1項に記載の薄肉光学部品用ポリカーボネート樹脂組成物。
  5.  ポリアルキレンエーテルグリコール化合物(B)がポリテトラメチレンエーテルグリコールである請求項1~4のいずれか1項に記載の薄肉光学部品用ポリカーボネート樹脂組成物。
  6.  リン系安定剤(C)がペンタエリスリトールジホスファイト構造を有する安定剤である請求項1~5のいずれか1項に記載の薄肉光学部品用ポリカーボネート樹脂組成物。
  7.  300mmの光路長で測定した波長420nmでの分光透過率が55%以上である請求項1~6のいずれか1項に記載の薄肉光学部品用ポリカーボネート樹脂組成物。
  8.  請求項1~7のいずれか1項に記載のポリカーボネート樹脂組成物を成形した薄肉光学部品。
  9.  1mm以下の厚みを有する導光板である請求項8に記載の薄肉光学部品。
  10.  請求項1~7のいずれか1項に記載のポリカーボネート樹脂組成物を305~380℃で射出成形することを特徴とする肉厚が1mm以下の薄肉光学部品の製造方法。
  11.  請求項1~7のいずれか1項に記載のポリカーボネート樹脂組成物からなる楕円柱状のペレットであって、長さが2.0~5.0mmであり、その楕円断面の長径/短径の比が1.5~4、短径が1.0~3.0mmであることを特徴とする薄肉光学部品用ポリカーボネート樹脂ペレット。
  12.  前記ポリカーボネート樹脂ペレットは、ポリカーボネート樹脂ペレット500gを収納した外径125mm、全高233mmの容量2リットルのポリエチレン製密閉容器に収納したものを50リットルのタンブラーに入れて固定し、30rpmの回転数で20分間回転させた後に発生する粒径1mm以下の微粉の量が50ppm以下である請求項11に記載の薄肉光学部品用ポリカーボネート樹脂ペレット。
  13.  ペレットの断面楕円の長径/短径の比が1.8~4である請求項11又は12に記載の薄肉光学部品用ポリカーボネート樹脂ペレット。
  14.  請求項11~13のいずれか1項に記載の樹脂ペレットを製造する方法であって、粘度平均分子量が10,000~15,000のポリカーボネート樹脂を、押出機の先端部に設けた楕円状のダイス穴を有する吐出ノズルから、断面楕円の長径部を略水平状態にしてストランドとして押出し、これを冷却水槽中で冷却固化し、ストランドカッターによってカットすることを特徴とする薄肉光学部品用ポリカーボネート樹脂ペレットの製造方法。
  15.  ストランドの引取速度が100mm/secにおけるストランドを支えるサポートの高低差が290mmであるとき、1時間以上の連続運転でストランドが折れない、同じ高さのサポートの間隔が300mm以下である請求項14に記載の薄肉光学部品用ポリカーボネート樹脂ペレットの製造方法。
PCT/JP2014/064717 2013-07-26 2014-06-03 薄肉光学部品用ポリカーボネート樹脂組成物および薄肉光学部品 WO2015011994A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020167001809A KR102121093B1 (ko) 2013-07-26 2014-06-03 박육 광학 부품용 폴리카르보네이트 수지 조성물 및 박육 광학 부품
US14/894,671 US9701835B2 (en) 2013-07-26 2014-06-03 Polycarbonate resin composition for thin optical component, and thin optical component
CN201480042499.0A CN105431488B (zh) 2013-07-26 2014-06-03 薄壁光学构件用聚碳酸酯树脂组合物及薄壁光学构件

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2013-155539 2013-07-26
JP2013155539A JP5699188B2 (ja) 2013-07-26 2013-07-26 薄肉光学部品用ポリカーボネート樹脂組成物および薄肉光学部品
JP2014043838 2014-03-06
JP2014-043838 2014-03-06
JP2014-081958 2014-04-11
JP2014081958A JP5699240B1 (ja) 2014-03-06 2014-04-11 薄肉光学部品用ポリカーボネート樹脂組成物および薄肉光学部品

Publications (1)

Publication Number Publication Date
WO2015011994A1 true WO2015011994A1 (ja) 2015-01-29

Family

ID=52393047

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/064717 WO2015011994A1 (ja) 2013-07-26 2014-06-03 薄肉光学部品用ポリカーボネート樹脂組成物および薄肉光学部品

Country Status (1)

Country Link
WO (1) WO2015011994A1 (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016111117A1 (ja) * 2015-01-07 2016-07-14 三菱エンジニアリングプラスチックス株式会社 薄肉光学部品用ポリカーボネート樹脂組成物および薄肉光学部品
WO2016111101A1 (ja) * 2015-01-07 2016-07-14 三菱エンジニアリングプラスチックス株式会社 薄肉光学部品用ポリカーボネート樹脂組成物および薄肉光学部品
WO2016194749A1 (ja) 2015-05-29 2016-12-08 出光興産株式会社 ポリカーボネート樹脂組成物及びその成形品
JP2016222860A (ja) * 2015-06-03 2016-12-28 住化スタイロンポリカーボネート株式会社 ポリカーボネート樹脂組成物およびそれからなる光学用成形品
EP3070124A4 (en) * 2013-11-11 2017-07-12 Idemitsu Kosan Co., Ltd. Polycarbonate resin composition
CN107109046A (zh) * 2015-02-03 2017-08-29 三菱工程塑胶株式会社 芳香族聚碳酸酯树脂组合物及其成型品
JP2017197704A (ja) * 2016-04-20 2017-11-02 住化ポリカーボネート株式会社 ポリカーボネート樹脂組成物及び光学用成形品
CN107949604A (zh) * 2015-11-27 2018-04-20 三菱工程塑胶株式会社 芳香族聚碳酸酯树脂组合物及其成型品
JP2019035098A (ja) * 2017-02-01 2019-03-07 出光興産株式会社 ポリカーボネート樹脂組成物
US10472477B2 (en) 2015-01-07 2019-11-12 Mitsubishi Engineering-Plastics Corporation Polycarbonate resin composition for thin optical component, and thin optical component
CN110546204A (zh) * 2017-04-18 2019-12-06 三菱工程塑料株式会社 光学部件用聚碳酸酯树脂组合物和光学部件
JPWO2019026784A1 (ja) * 2017-07-31 2020-05-28 出光興産株式会社 芳香族ポリカーボネート樹脂組成物及び光学成形品
JP2020193253A (ja) * 2019-05-27 2020-12-03 三菱エンジニアリングプラスチックス株式会社 ポリカーボネート樹脂組成物

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1135692A (ja) * 1997-07-23 1999-02-09 Mitsubishi Eng Plast Kk 光ディスク基板用ポリカーボネート成形材料
JP2000234052A (ja) * 1999-02-16 2000-08-29 Mitsubishi Engineering Plastics Corp 光ディスク基板用ポリカーボネート成形材料
WO2011083635A1 (ja) * 2010-01-07 2011-07-14 出光興産株式会社 芳香族ポリカーボネート樹脂組成物及びそれを用いた光学成形品
JP2013000913A (ja) * 2011-06-13 2013-01-07 Asahi Kasei Chemicals Corp 押出機およびそれを用いた溶融混練方法
JP2013139097A (ja) * 2011-12-28 2013-07-18 Idemitsu Kosan Co Ltd ポリカーボネート樹脂組成物ペレット及びその製造方法
JP2013231899A (ja) * 2012-05-01 2013-11-14 Mitsubishi Engineering Plastics Corp 導光板用ポリカーボネート樹脂組成物および導光板

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1135692A (ja) * 1997-07-23 1999-02-09 Mitsubishi Eng Plast Kk 光ディスク基板用ポリカーボネート成形材料
JP2000234052A (ja) * 1999-02-16 2000-08-29 Mitsubishi Engineering Plastics Corp 光ディスク基板用ポリカーボネート成形材料
WO2011083635A1 (ja) * 2010-01-07 2011-07-14 出光興産株式会社 芳香族ポリカーボネート樹脂組成物及びそれを用いた光学成形品
JP2013000913A (ja) * 2011-06-13 2013-01-07 Asahi Kasei Chemicals Corp 押出機およびそれを用いた溶融混練方法
JP2013139097A (ja) * 2011-12-28 2013-07-18 Idemitsu Kosan Co Ltd ポリカーボネート樹脂組成物ペレット及びその製造方法
JP2013231899A (ja) * 2012-05-01 2013-11-14 Mitsubishi Engineering Plastics Corp 導光板用ポリカーボネート樹脂組成物および導光板

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3070124A4 (en) * 2013-11-11 2017-07-12 Idemitsu Kosan Co., Ltd. Polycarbonate resin composition
US9783674B2 (en) 2013-11-11 2017-10-10 Idemitsu Kosan Co., Ltd. Polycarbonate resin composition
US10472477B2 (en) 2015-01-07 2019-11-12 Mitsubishi Engineering-Plastics Corporation Polycarbonate resin composition for thin optical component, and thin optical component
WO2016111101A1 (ja) * 2015-01-07 2016-07-14 三菱エンジニアリングプラスチックス株式会社 薄肉光学部品用ポリカーボネート樹脂組成物および薄肉光学部品
WO2016111117A1 (ja) * 2015-01-07 2016-07-14 三菱エンジニアリングプラスチックス株式会社 薄肉光学部品用ポリカーボネート樹脂組成物および薄肉光学部品
CN107109046A (zh) * 2015-02-03 2017-08-29 三菱工程塑胶株式会社 芳香族聚碳酸酯树脂组合物及其成型品
WO2016194749A1 (ja) 2015-05-29 2016-12-08 出光興産株式会社 ポリカーボネート樹脂組成物及びその成形品
JP7271860B2 (ja) 2015-05-29 2023-05-12 出光興産株式会社 ポリカーボネート樹脂組成物及びその成形品
JPWO2016194749A1 (ja) * 2015-05-29 2018-03-15 出光興産株式会社 ポリカーボネート樹脂組成物及びその成形品
US11034834B2 (en) 2015-05-29 2021-06-15 Idemitsu Kosan Co., Ltd. Polycarbonate resin composition and molded article of same
JP2016222860A (ja) * 2015-06-03 2016-12-28 住化スタイロンポリカーボネート株式会社 ポリカーボネート樹脂組成物およびそれからなる光学用成形品
CN107949604B (zh) * 2015-11-27 2020-10-09 三菱工程塑胶株式会社 芳香族聚碳酸酯树脂组合物及其成型品
US10767043B2 (en) 2015-11-27 2020-09-08 Mitsubishi Enigineering-Plastics Corporation Aromatic polycarbonate resin composition and molded article of the same
CN107949604A (zh) * 2015-11-27 2018-04-20 三菱工程塑胶株式会社 芳香族聚碳酸酯树脂组合物及其成型品
JP2017197704A (ja) * 2016-04-20 2017-11-02 住化ポリカーボネート株式会社 ポリカーボネート樹脂組成物及び光学用成形品
JP2019035098A (ja) * 2017-02-01 2019-03-07 出光興産株式会社 ポリカーボネート樹脂組成物
EP3578608A4 (en) * 2017-02-01 2020-10-14 Idemitsu Kosan Co.,Ltd. POLYCARBONATE RESIN COMPOSITION
JP7033051B2 (ja) 2017-02-01 2022-03-09 出光興産株式会社 ポリカーボネート樹脂組成物
CN110546204A (zh) * 2017-04-18 2019-12-06 三菱工程塑料株式会社 光学部件用聚碳酸酯树脂组合物和光学部件
CN110546204B (zh) * 2017-04-18 2021-08-17 三菱工程塑料株式会社 光学部件用聚碳酸酯树脂组合物和光学部件
JPWO2019026784A1 (ja) * 2017-07-31 2020-05-28 出光興産株式会社 芳香族ポリカーボネート樹脂組成物及び光学成形品
US11525056B2 (en) 2017-07-31 2022-12-13 Idemitsu Kosan Co., Ltd. Aromatic polycarbonate resin composition and optical molded article
JP2020193253A (ja) * 2019-05-27 2020-12-03 三菱エンジニアリングプラスチックス株式会社 ポリカーボネート樹脂組成物

Similar Documents

Publication Publication Date Title
JP6101856B1 (ja) 薄肉光学部品用ポリカーボネート樹脂組成物および薄肉光学部品
KR102121093B1 (ko) 박육 광학 부품용 폴리카르보네이트 수지 조성물 및 박육 광학 부품
WO2015011994A1 (ja) 薄肉光学部品用ポリカーボネート樹脂組成物および薄肉光学部品
JP5699240B1 (ja) 薄肉光学部品用ポリカーボネート樹脂組成物および薄肉光学部品
JP5699188B2 (ja) 薄肉光学部品用ポリカーボネート樹脂組成物および薄肉光学部品
JP5893774B1 (ja) 薄肉光学部品用ポリカーボネート樹脂組成物および薄肉光学部品
JP2018028025A (ja) 光学部材用ポリカーボネート樹脂組成物
JP6587948B2 (ja) 光学部品用ポリカーボネート樹脂組成物および光学部品
JP6893340B2 (ja) 光学部品用ポリカーボネート樹脂組成物および光学部品
JP6416423B1 (ja) 光学部品用ポリカーボネート樹脂組成物および光学部品
JP6645886B2 (ja) ポリカーボネート樹脂組成物
JP6522818B2 (ja) 光学部品用ポリカーボネート樹脂組成物及び光学部品
JP6526871B2 (ja) 薄肉光学部品用ポリカーボネート樹脂組成物および薄肉光学部品
WO2016111117A1 (ja) 薄肉光学部品用ポリカーボネート樹脂組成物および薄肉光学部品
JP6490490B2 (ja) ポリカーボネート樹脂組成物および薄肉光学部品
JP6522493B2 (ja) 光学部品用ポリカーボネート樹脂組成物および光学部品
JP6396792B2 (ja) 導光部材用ポリカーボネート樹脂組成物及び導光部材
JP6446601B1 (ja) 光学部品用ポリカーボネート樹脂組成物及び光学部品
WO2018193702A1 (ja) 光学部品用ポリカーボネート樹脂組成物及び光学部品
JP6422734B2 (ja) 薄肉光学部品用ポリカーボネート樹脂組成物および薄肉光学部品
JP2019214744A (ja) ポリカーボネート樹脂組成物

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480042499.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14830289

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14894671

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20167001809

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14830289

Country of ref document: EP

Kind code of ref document: A1