WO2015008969A1 - Inductor having self-focusing structure, method for manufacturing same, and hybrid inductor comprising same - Google Patents
Inductor having self-focusing structure, method for manufacturing same, and hybrid inductor comprising same Download PDFInfo
- Publication number
- WO2015008969A1 WO2015008969A1 PCT/KR2014/006182 KR2014006182W WO2015008969A1 WO 2015008969 A1 WO2015008969 A1 WO 2015008969A1 KR 2014006182 W KR2014006182 W KR 2014006182W WO 2015008969 A1 WO2015008969 A1 WO 2015008969A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- core
- inductor
- focusing cover
- core assembly
- coil
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 75
- 238000000034 method Methods 0.000 title claims abstract description 50
- 238000009792 diffusion process Methods 0.000 claims abstract description 8
- 238000004804 winding Methods 0.000 claims description 39
- 239000000696 magnetic material Substances 0.000 claims description 26
- 229910000831 Steel Inorganic materials 0.000 claims description 21
- 239000010959 steel Substances 0.000 claims description 21
- 238000010168 coupling process Methods 0.000 claims description 15
- 230000008878 coupling Effects 0.000 claims description 14
- 238000005859 coupling reaction Methods 0.000 claims description 14
- 239000011810 insulating material Substances 0.000 claims description 8
- 238000000576 coating method Methods 0.000 claims description 6
- 239000011248 coating agent Substances 0.000 claims description 5
- 238000000926 separation method Methods 0.000 claims description 4
- 239000000126 substance Substances 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 30
- 230000008569 process Effects 0.000 description 13
- 230000000712 assembly Effects 0.000 description 7
- 238000000429 assembly Methods 0.000 description 7
- 239000000463 material Substances 0.000 description 7
- 238000009434 installation Methods 0.000 description 5
- 229910000976 Electrical steel Inorganic materials 0.000 description 4
- 230000001276 controlling effect Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 229910000859 α-Fe Inorganic materials 0.000 description 4
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000005304 joining Methods 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 239000003973 paint Substances 0.000 description 3
- 229920001296 polysiloxane Polymers 0.000 description 3
- 230000002730 additional effect Effects 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 239000012811 non-conductive material Substances 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 239000011800 void material Substances 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 239000002390 adhesive tape Substances 0.000 description 1
- 239000012792 core layer Substances 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 239000005300 metallic glass Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F3/00—Cores, Yokes, or armatures
- H01F3/10—Composite arrangements of magnetic circuits
- H01F3/14—Constrictions; Gaps, e.g. air-gaps
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
- H01F27/34—Special means for preventing or reducing unwanted electric or magnetic effects, e.g. no-load losses, reactive currents, harmonics, oscillations, leakage fields
- H01F27/36—Electric or magnetic shields or screens
- H01F27/366—Electric or magnetic shields or screens made of ferromagnetic material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F17/00—Fixed inductances of the signal type
- H01F17/04—Fixed inductances of the signal type with magnetic core
- H01F17/045—Fixed inductances of the signal type with magnetic core with core of cylindric geometry and coil wound along its longitudinal axis, i.e. rod or drum core
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
- H01F27/02—Casings
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
- H01F27/34—Special means for preventing or reducing unwanted electric or magnetic effects, e.g. no-load losses, reactive currents, harmonics, oscillations, leakage fields
- H01F27/36—Electric or magnetic shields or screens
Definitions
- the present invention relates to an inductor having a self-focusing structure, a method of manufacturing the same, and a hybrid inductor including the same. More specifically, the inductor is applied to various power supply devices such as ballasts of discharge lamps to focus magnetic force lines. Disclosed are an inductor having a focusing cover for increasing efficiency as an air gap and also easily adjusting inductance through a gap flange which functions as an air gap or as a winding guide, and furthermore, a method of manufacturing the same.
- a hybrid inductor including an inductor such as a transformer and an inductor for controlling a trigger of a switching device is disclosed.
- a choke transformer is applied to the power supply for the purpose of controlling the output voltage to be constant.
- a discharge lamp such as a fluorescent lamp requires a high voltage for driving (starting and maintaining lighting) and has a stabilizer because the discharge is stable only when the supplied voltage is constant. Is used.
- FIG. 1 is a cross-sectional view showing an example of an inductor that can function as a general choke transformer.
- an inductor for a choke transformer may include cores 11a, 11b, 12a, and 12b made of ferrite, bobbins 40, and bobbins 40 in which the cores are inserted. It is configured to include a coil (50) and the like wound in the).
- FIG. 1A illustrates an embodiment in which E-E type cores 11a and 12a are applied
- FIG. 1B illustrates an embodiment in which E-I type cores 11b and 12b are applied.
- the choke transformer When the voltage is regulated by the choke transformer (when current flows in the coil), the choke transformer generates magnetic force as shown in FIG. 2, and the magnetic force lines generated by the choke transformer must be focused so as not to spread widely outside the coil 50. The function as an inductor is improved.
- typical inductors for choke transformers are structurally limited in limiting the diffusion of magnetic field lines out of the coil 50.
- the choke transformer inductor having a T-shaped core or an I-shaped core shown in FIG. 2 has a simpler structure than the inductor for a choke transformer having an EE-type core or an EI-type core.
- the efficiency is lower than the inductor for the choke transformer having an EE type core or EI type core and is used only in part.
- the inductor accumulates energy in the form of a magnetic field in the core.
- saturation occurs and the inductor does not accumulate energy and the winding is shorted.
- an air gap is used. Referring to the air gap concept diagram of the inductor shown in FIG. 3, in contrast to the case where the air gap is not applied, The larger the size of the air gap, the greater the inductor's ability to accumulate more energy in the air gap, thereby increasing the magnetic field strength of the inductor.
- portions of the EE cores 11a and 12a shown in FIG. 1A are in contact with each other, and portions of the EI cores 11b and 12b shown in FIG. 1B are in contact with each other. Air gaps are formed, allowing larger currents to flow through the same core without reaching saturation.
- the present invention is to solve the problems of the prior art as described above, it is possible to effectively focus the magnetic force lines generated during voltage regulation, and the structure of the inductor and such an inductor that can be used as a structurally simple choke transformer, etc. It is to provide a manufacturing method that can be easily produced.
- the inductor when air is used to form an air gap in the inductor, the inductor is not easily assembled due to the formation of the air gap, and the air gap is not formed with the correct thickness. It is to solve the problem that the thickness of the air gap is not easy to adjust and the manufacturing process of the inductor is complicated.
- the shape of the core is limited. Due to this problem, it is not easy to apply an air gap, and in the case of a straight core or a T-shaped core, it is intended to solve the problem that the coiled coil is easily detached.
- an object of the present invention is to provide a hybrid inductor including an inductor for a choke transformer and a switching trigger.
- an inductor includes a core assembly including a core having a core body having a predetermined length and a coil wound around the core body; And a magnetic material line, wherein the core assembly is inserted to surround at least a portion of the coil at an outer side of the core assembly, thereby limiting external diffusion of the magnetic force line generated according to the current flow of the coil. It may be configured to include a focusing cover to focus.
- the core assembly may include a core having a flange formed of a magnetic material at one or both ends of the longitudinal body of the core body and having a vertical cross section having an I-type or a T-type.
- the flange may be formed such that the thickness becomes thinner from the center toward the side such that the vertical cross sectional area of the inner circumference on the flange and the horizontal cross sectional area of the core body are the same.
- the core assembly may include a core having a vertical flange having an I-type or T-type with a gap flange formed of a non-conductive material at either or both ends of the longitudinal body.
- the core assembly may include a core having a vertical cross-section of an I-type having a flange formed of a magnetic material at one of both ends of the core body in the longitudinal direction and a gap flange formed of a non-magnetic material at the other. .
- the core assembly may further include a bobbin in which the core body is inserted into a central portion thereof; And it may include a coil wound around the bobbin.
- the core assembly Preferably the core assembly, the insulating layer formed on part or all of the core; And a coil wound around a portion of the core in which the insulating layer is formed.
- the focusing cover may be formed in a circular or polygonal pipe structure provided with openings formed at both ends thereof to insert the core assembly to surround the outer circumference of the coil.
- the focusing cover may be configured by combining a plurality of focusing cover pieces vertically divided in the longitudinal direction.
- the focusing cover may be spaced apart at regular intervals along the side circumference to form a plurality of through holes.
- the focusing cover may be provided with a plurality of grooves spaced apart at regular intervals in the longitudinal direction from the upper or lower side of the side surface, or alternately spaced at regular intervals in the longitudinal direction alternately with the upper and lower sides of the side surfaces to form a plurality of grooves. It may be.
- the focusing cover may have a cup structure in which an opening is formed at one end and a shielding part is formed at the other end, and the core assembly is inserted into the opening to surround the outer circumference of the coil.
- the focusing cover may include: an upper focusing cover formed of a cup structure into which an upper end of the core assembly is inserted; And a lower focusing cover formed of a cup structure into which the lower end of the core assembly is inserted.
- the focusing cover may be formed with a plurality of openings whose sides are opened from the one end to the other end.
- the focusing cover may be formed in a plurality of fan-shaped or cross-shaped shapes in which the shielding part is unfolded from the center to the outside, and the opening part may be formed in correspondence with the shape of the shielding part.
- a coupling groove corresponding to an upper end shape of the core assembly may be formed on an inner surface of the shielding part of the focusing cover, and the upper end of the core assembly may be fitted into the coupling groove to be fastened.
- the focusing cover of another form is formed in a closed cylindrical structure having a space in which shields are formed at both ends of a circular or polygonal pipe to accommodate the core assembly, and a plurality of focusing cover pieces vertically divided in the longitudinal direction are combined. Can be.
- the focusing cover may be formed with a plurality of openings whose side surfaces are open from the upper surface to the lower surface.
- the focusing cover may have a rectangular frame structure having a predetermined thickness, and the core assembly may be inserted into the focusing cover but fitted to the rectangular frame of the focusing cover in a longitudinal direction.
- the focusing cover in another form may include a plurality of support members having a surface corresponding to a longitudinal outer surface of the core assembly and spaced apart from each other by a predetermined distance along an outer angle of the core assembly; And a connecting member connecting the supporting members between the supporting members.
- the support member has a horizontal cross section having three surfaces, one surface corresponding to the outer surface of the core assembly, two surfaces perpendicular to each other, and the four support members are the outer angle of the core assembly.
- the horizontal cross section of the focusing cover may form a square.
- the end of the flange or gap flange and the focusing cover may be fixed to maintain the separation distance between the core assembly and the focusing cover at a predetermined position on the inside of the focusing cover.
- One end may be coupled to each other coupled to each other.
- Another type of core assembly includes a first core body wound around a first coil; A second core body wound around a second coil; And a gap flange positioned between the first coil and the second coil.
- the hybrid inductor according to the present invention comprises a core assembly comprising a core having a core body of a predetermined length and a coil wound around the core body; And a magnetic material line, wherein the core assembly is inserted to surround at least a portion of the coil at an outer side of the core assembly, thereby limiting external diffusion of the magnetic force line generated according to the current flow of the coil.
- the first inductor is spaced apart at regular intervals in the longitudinal direction from the upper or lower side of the side surface to form a plurality of grooves, or alternately spaced at regular intervals in the longitudinal direction by alternating the upper and lower sides of the plurality of grooves.
- a formed focusing cover, and the toroidal coil of the second inductor may be wound around the groove of the focusing cover.
- the toroidal coil may be wound on the insulating layer.
- the first inductor may include: a plurality of support members having a surface corresponding to a longitudinal outer surface of the core assembly and spaced apart from each other by a predetermined distance along an outer angle of the core assembly; And a focusing cover including a connecting member connecting the supporting members between the supporting members, and the toroidal coil of the second inductor may be wound around the connecting member.
- a core assembly comprising a core having a core body of a predetermined length and a coil wound around the core body; And a magnetic material line, wherein the core assembly is inserted to surround at least a portion of the coil at an outer side of the core assembly, thereby limiting external diffusion of the magnetic force line generated according to the current flow of the coil.
- a first inductor including a focusing cover to focus;
- a second inductor may include an inductor ring spaced apart from an upper portion of the focusing cover and connected to the focusing cover with a plurality of support legs, and a coil wound in a toroidal shape on the inductor ring.
- the core assembly may be inserted into a predetermined number of times to form a steel plate having a magnetic property so as to have a through space surrounding the core assembly.
- the method further includes a flange manufacturing step of manufacturing a flange by winding a predetermined number of magnetic steel sheets to have a through space corresponding to the cross-sectional diameter of the core body, wherein the core assembly manufacturing step includes: an upper end of the core body Or fitting the flange to the core body by fitting the flange to at least one of lower ends; And forming a coil wound around the core body at a stop portion of the core body.
- the core body manufacturing step may include: manufacturing a core body having a circular or polygonal cross section wound by winding a steel plate having a magnetic conductivity; And coating the outer surface of the core body with an insulating material or inserting the core body into an insulating member having a through hole corresponding to the diameter of the core body.
- the efficiency of the inductor applied to the choke transformer or transformer can be further improved, and the coil usage of the core assembly can be relatively reduced.
- the manufacturing cost can be reduced, and the inductor used in the choke transformer or transformer can be made more compact, thereby reducing the footprint of the installation.
- the inductance of the inductor can be easily adjusted by the reluctance according to the thickness of the gap flange by applying a gap flange, and in particular, it is not easy to apply an air gap in the structure of an I-shaped or T-shaped core.
- the gap flange may be applied to a straight or T-shaped core to facilitate winding of the coil and prevent the wound coil from being separated.
- the present invention simplifies the manufacturing process and reduces the manufacturing cost by removing the bobbin and replacing the insulating layer, and at the same time, the overall volume and the installation area of the inductor are smaller and the coil usage is reduced compared to the case of using the bobbin. The additional effect of efficient use of resources is also obtained.
- the focusing cover in the present invention by removing a certain portion that is not a full cylindrical or open to ensure the appropriate thickness, through which heat generated in the internal coil can be easily generated in the air can lower the temperature of the coil
- the present invention provides a core through which the magnetic force lines forming closed loops can pass through the same cross-sectional area, and the same overall length as that of a conventional core by applying a core having a flange-adjusted thickness.
- the structure can increase the number of turns while having the same number of turns, but can reduce the overall length of the core while reducing the overall size while improving the performance of the inductor.
- the first inductor used as a choke transformer or the like and the second inductor used as an oscillator to trigger the switching element are packaged into one to further increase the integration of components while miniaturizing the overall electrical and electronic devices. Can contribute to
- the method of manufacturing an inductor having a self-focusing structure manufactures a core by winding a steel sheet in the form of a roll, thereby making it possible to manufacture the inductor through a simpler and safer process by eliminating the existing dangerous and complicated press working process.
- the manufacturing cost can be lowered, and in particular, since the thickness of the steel sheet constituting the core and the number of windings in the form of rolls can be selectively controlled, the characteristics of the inductor can be adjusted by adjusting the core itself without depending on the number of turns of the coil.
- FIG. 1 is a cross-sectional view showing an example of an inductor that can function as a general choke transformer
- FIG. 3 shows a schematic diagram of an air gap of the inductor shown
- FIG. 4 shows a perspective view of a first embodiment of an inductor according to the invention
- FIG. 5 is an exploded perspective view of the modified focusing cover of the first embodiment of FIG. 4;
- FIG. 6 shows a sectional view of the first embodiment of FIG. 4,
- FIG. 7 shows an example of magnetic field lines generated in the inductor according to the present invention shown in FIG. 6,
- FIG. 8 shows a cross-sectional view of a variant embodiment of the first embodiment of FIG. 4,
- FIG. 9 is a conceptual diagram of a core having the same cross-sectional area in the magnetic force line traveling direction proposed in the present invention.
- FIG. 10 shows a cross-sectional view of the core according to the invention of FIG. 9,
- FIG. 13 shows a perspective view of a second embodiment of an inductor according to the invention
- FIG. 14 shows a sectional view of the second embodiment of FIG. 13
- FIG. 15 shows a sectional view of a modified embodiment of the second embodiment of FIG. 13;
- FIG. 16 shows a perspective view of another modified embodiment of the second embodiment of FIG. 13;
- FIG. 17 shows a perspective view of a third embodiment of an inductor according to the invention.
- FIG. 18 shows a perspective view of a modified embodiment of the third embodiment of FIG. 17;
- FIG. 19 shows a perspective view of a fourth embodiment of an inductor according to the present invention.
- FIG. 20 shows a perspective view of a modification to the fourth embodiment of FIG. 19,
- FIG. 21 shows a perspective view of a fifth embodiment of an inductor according to the present invention.
- FIG. 22 shows a perspective view of a modified embodiment of the fifth embodiment of FIG. 21;
- FIG. 23 shows a perspective view of a sixth embodiment of an inductor according to the present invention.
- FIG. 24 shows a sectional view of the sixth embodiment of FIG. 23
- FIG. 25 shows a perspective view of a seventh embodiment of an inductor according to the present invention.
- 26 shows a perspective view of an eighth embodiment of an inductor according to the present invention.
- FIG. 27 shows a perspective view of a ninth embodiment of an inductor according to the invention.
- 29 shows a perspective view of an eleventh embodiment of an inductor according to the present invention.
- FIG. 31 illustrates various modified embodiments of a process of manufacturing a core assembly in a method of manufacturing an inductor according to the present invention.
- FIG. 36 shows a fourth embodiment of the hybrid inductor according to the present invention.
- the first focusing inductor having a magnetic focus structure through the focusing cover, the second through the magnetic field line of the magnetic field of the flange thickness is adjusted so that the same, the third winding guide function or air gap (gap) gap gap applied self-focusing
- An inductor having a structure, a first coil wound by a fourth gap flange and an inductor wound around a second coil, a manufacturing method of an inductor having a fifth self-focusing structure, and a sixth hybrid inductor are described below. Through the present invention will be described.
- the inductor having a self-focusing structure through the focusing cover will be described as the first main feature of the present invention.
- FIG. 4 shows a perspective view of a first embodiment of an inductor according to the invention.
- the inductor 100 is composed of a core assembly 110 and a focusing cover 160 into which the core assembly 110 is inserted.
- the focusing cover 160 focuses the magnetic force lines by restricting the diffusion of the magnetic force lines generated by the current flow of the coil of the core assembly to the outside.
- the focusing cover 160 has a magnetic force line along the surface of the focusing cover 160. It is formed by containing a magnetic material to flow.
- the focusing cover 160 is a cylindrical pipe structure having openings 161 and 162 through which both ends penetrate, and the focusing cover 160 surrounds the coil of the assembly 110.
- the core assembly 110 is inserted into the openings 161 and 162 of the focusing cover 160.
- the focusing cover 160 may be formed of a polygonal pipe such as a square in addition to the cylindrical shape.
- FIG. 5 is an exploded perspective view of the modified focusing cover of the first embodiment illustrated in FIG. 4, wherein a plurality of pipe focusing covers 160 are vertically divided in the longitudinal direction as illustrated in FIG. 5.
- the two focusing cover pieces (a, b) may be configured in combination.
- the core 120 in the core assembly 110 is located on the upper and lower portions of the core body 121.
- the core body 121 is inserted into the bobbin 140 to which the coil 150 is wound, as an I type core having flanges 123 and 124, respectively.
- the core body 121 and the flanges 123 and 124 may be made of various materials through which magnetic force is transmitted, including ferrite, silicon steel, general steel, and the like, and the core assembly 110 may include an I-shaped core.
- Various types of cores, such as a straight core and a T-shaped core, may be applied.
- the focusing cover 160 is a pipe structure provided to surround the bobbin 140 at predetermined intervals, and the coil 150 of the core assembly 110 is positioned inside the focusing cover 160.
- the focusing cover 160 may contain various magnetic materials through which magnetic force passes, including ferrite, silicon steel, and general steel.
- the focusing cover 160 may be manufactured by pressing and molding and then sintering.
- the drawing cover or the plate may be rounded and then bent. It can be manufactured by the method of joining both bent ends, etc. Furthermore, it can also manufacture by winding several sheets in a circular roll form.
- the core assembly 110 and the focusing cover 160 may be coupled using an adhesive, an adhesive tape, a shrinking tube, or the like, or may include a mechanical coupling method such as a press-fitting method for the core assembly 110 and the focusing cover 160.
- Various methods may be used that can be combined firmly.
- the flanges 123 and 124 of the core assembly 110 are illustrated as being inserted into the focusing cover 160, but depending on the applied situation or the manufacturing process.
- One or both of the flanges 123 and 124 of the assembly 110 may be configured to span the focusing cover 160 without being inserted into the focusing cover 160.
- FIG. 7 illustrates an example of magnetic force lines generated in the inductor according to the present invention illustrated in FIG. 6, and as shown in FIG. 7, the coil circumference of the core assembly 110 contains a magnetic material. Since the magnetic field lines directed to the outside flow along the focusing cover 160, the diffusion of the magnetic field lines to the outside of the focusing cover 160 is confined.
- the efficiency of the inductor can be improved by focusing a magnetic force line, so that the first embodiment can relatively use the coil 150 of the core assembly 110.
- the manufacturing cost can be reduced, and the inductor used in the choke transformer or transformer can be made more compact, thereby reducing the footprint of the installation.
- the first embodiment has a simple structure of the core assembly 110 can further reduce the manufacturing cost, and in the case of the choke transformer or transformer is generally installed to adjust the characteristic values such as L value and Q value In order to avoid loss of air gap, it is effective to avoid the area around the winding of the coil. In the case of EE core, the air gap must be formed in the area where both E-type cores meet each other, so it is inevitably corresponding to the loss of magnetic field lines. The coil is wound around the coil, and at this time, the coil located at a portion around the air gap where the two E-type cores meet tends to not function.
- the gap is formed in a portion where the core assembly 110 and the focusing cover 160 are in contact with each other, this loss can be avoided, thereby reducing the number of turns of the coil while having the same effect.
- the coil consumption can be further reduced and the inductor volume as a whole can be reduced.
- FIG. 8 shows a cross-sectional view of a variant embodiment of the first embodiment of FIG. 4, in which FIG. 8 removes the bobbin 140 and the coil 150 from the core body 121 in the configuration shown in FIG. 6. It is directly wound on.
- an insulating layer 130 made of an insulating material is coated on the surface of the core body 121.
- the insulating layer 130 is coated on the core body 121 and the flanges 123 and 124 as a whole.
- the insulating layer 130 may be formed in various ways.
- the core layer 121 may be inserted into a separately manufactured insulating member to form the insulating layer 130.
- the insulating layer 130 may be formed by coating with an insulating material such as liquid silicone, urethane, or insulating paint, or may be formed by other methods such as winding an insulating tape or injecting a tube or plastic.
- an insulating material such as liquid silicone, urethane, or insulating paint
- the manufacturing process can be simplified to reduce the manufacturing cost.
- the overall volume and installation area of the inductor can be reduced, and the additional effect of efficient use of resources such as reducing the amount of coil usage can be obtained.
- the coil is wound around the insulator bobbin and the coil is wound into the core, which increases the dimensions of the coil winding area by the minimum thickness of the bobbin, thereby increasing the overall coil usage.
- a certain cross-sectional area is required for the core used for stable focusing of the magnetic field lines. Due to the characteristics of the E-shaped coils arranged in a plane, the core length becomes too large when the core is designed to optimize the consumption of the coil. As a result, the cross-sectional area of the general core has a rectangular shape, which leads to a problem in that the length of the coil must be longer.
- the coil consumption can be reduced by about 30% compared to the conventional E-type core of the same standard. Even so, the coil consumption can be reduced by nearly 20% compared to the existing E type.
- the center cross section has a dimension of 4.0 * 8.2mm, and the bobbin cross section for winding the coil is 5.7 * 9.6mm. If a coil of 0.27mm diameter is wound around 250 turns on such bobbin, the coil bundle size is about 10.2 * 14.3mm and a coil wire of about 9,950mm is required.
- the coil bundle having an outer diameter of 11 mm is formed when the coil is wound with the same number of turns, thereby forming a coil of about 6,870 mm. Only the wires are needed, which saves about 31% of the coil compared to the use of bobbins on existing E-type cores.
- the required bobbin cross section diameter is 8.0 mm, in which case the outer diameter of the coil bundle of the same turn number is 12.5.
- the required coil wire length is about 8,050mm, which saves about 19% of the coil compared to the existing E-type core, but consumes about 15% more wire than the bobbin is removed.
- the required outer diameter of the core can be reduced by about 1.6 mm. Even if an air gap is provided outside the flange, the size is within 14 mm. Since the volume can be limited compared to the existing E16 type core, the volume is reduced by about 30% and the installation area by about 15%, contributing to the miniaturization of the applied product.
- the present invention proposes a new type of core, which looks at the core whose flange thickness is adjusted so that the area through which the lines of magnetic force, the second main feature of the present invention passes, is the same.
- the core proposed in the present invention is a core through which the magnetic force lines that travel from the core body toward the flange and form a closed loop can pass through the same cross-sectional area
- FIG. 9 illustrates a core having the same cross-sectional area of the magnetic force line traveling direction of the present invention. A conceptual diagram is shown.
- 9 (a) is an EE type core, which is formed to have the same cross-sectional area of each part on a path along which a magnetic force line generated through a coil wound around the core travels, and has a cross-sectional area A1 of the core center and both cross-sectional areas of the upper part of the core.
- the cross-sectional area of the core through which the magnetic force lines travel is partially different.
- the flange 123 is formed from the cross-sectional area A2 of the core body 121. From the center B2 toward the outer C2, the cross-sectional area becomes larger, i.e., if the arc radius of the point where the line of magnetic force passes is R, the area through which the line of magnetic force passes is calculated as 2 ⁇ R * (flange thickness), The cross-sectional area through which the magnetic field lines pass is doubled by 2 ⁇ R * (flange thickness). Therefore, in the case of (b) of FIG. 9, B2 is larger than A2 and C2 is much larger than B2.
- the flanges are formed to be thinner from the center to the side so that the vertical cross sectional area of the inner circumference on the flange and the horizontal cross sectional area of the core body are the same.
- the thickness becomes thinner toward the outside from the center of the flange 123 ', where the horizontal cross-sectional area A3 of the core body 121' and the inner arc of the flange 123 'are formed.
- the vertical cross-sectional areas B3, C3, and the like are all formed to be the same, and more preferably, the flange 123 'may be formed to satisfy the following [Equation 1].
- t (r) is the flange thickness
- r is the radius of the inner arc of the flange
- S is the horizontal cross-sectional area of the core body.
- the present invention proposes a core through which magnetic force lines forming a closed loop can pass through the same cross-sectional area similarly to the E-E type core by applying a core having a flange thickness adjusted thereto.
- the core proposed in the present invention has the same overall length as the conventional core and can increase the number of turns or reduce the overall length of the core while having the same number of turns, thereby reducing the overall size while improving the performance of the inductor.
- FIG. 10 (a) a typical I-type core is shown.
- Flanges 123 and 124 are formed at upper and lower portions of the core body 121, respectively, so that the entire length of the core 120 is H1 and the coil is wound.
- the length of the portion is shown in the form of H2, in contrast to Figure 10 (b) and (c) shows a new type of core (120 ', 120 ′′) proposed in the present invention.
- the core 120 ′ according to the present invention shown in FIG. 10 (b) may increase the number of turns of the coil while having the same overall length as the core 120 shown in FIG. 10 (a). do.
- the length of the region in which the coil can be wound around the core 120 ′′ is H2 equal to that of the core 120 in FIG. 9A, but the flange of the core 120 ′′
- the total length H4 of the core 120 ′′ is formed so that the thickness 123 ′′ and 124 ′′ becomes thinner from the center to the side, so that the total length H4 of the core 120 shown in FIG. It is relatively shorter than H1. Accordingly, when the core 120 ′′ as shown in FIG. 10C is applied, the total length of the core can be reduced while having the same number of turns as the core 120 shown in FIG. 10A. The overall size of the inductor can be further reduced.
- the new type of core proposed in the present invention can pass through the same cross-sectional area of magnetic force lines that form a closed loop by traveling from the body of the core toward the flange, thereby improving the performance of the inductor and at the same time as the conventional core. It is possible to increase the number of turns while having the same or decrease the total length of the core while having the same number of turns.
- FIG. 11 shows various examples of the focusing cover of the inductor according to the present invention.
- the focusing cover shown in (a) of FIG. 11 illustrates the focusing cover of the cylindrical pipe structure described above, and in the present invention, in addition to the focusing cover of the simple cylindrical pipe structure, a plurality of the focusing cover as shown in FIG. It may be applied to a focusing cover formed with a through hole, and as shown in (c) of FIG. 11, a plurality of grooves may be formed spaced apart at regular intervals along the circumferential direction from the upper and lower portions of the focusing cover. Alternatively, as shown in (d) of FIG. 11, a plurality of grooves may be formed in the longitudinal direction by alternately alternating the upper and lower portions of the focusing cover.
- a focusing cover comprising an inner surface corresponding to the longitudinal outer surface of the core assembly to be inserted and a connecting member connecting the support members between the plurality of support members and the support members disposed spaced apart from each other along the outer periphery of the core assembly.
- the support member may be formed such that a horizontal cross section has a plurality of surfaces, and a surface adjacent to the core assembly corresponds to an outer surface of the core assembly, and the plurality of the support members are formed along the outer angle of the core assembly. Spaced apart at regular intervals, the horizontal cross section of the overall focusing cover is formed to form a square. As an embodiment thereof, in FIG.
- the support member has three surfaces thereof, one surface corresponding to an outer surface of the core assembly, and an arc, and two surfaces formed at right angles to each other.
- the focusing cover is spaced apart from each other by a predetermined interval along the outer shell of the core assembly into which the four supporting members are inserted, and is formed such that the outer shell of the cross section forms a quadrangle as a whole.
- the focusing cover of FIGS. 11 (b) to (e) to be applied in the present invention may be made in various forms by removing a predetermined portion rather than a completely cylindrical shape in consideration of an appropriate thickness.
- the cross-sectional area of the focusing cover is larger than the cross-sectional area of the core through which the magnetic lines of force pass, and as the cross-sectional area of the focusing cover becomes larger than necessary, material loss for manufacturing the focusing cover is increased. Therefore, by considering the proper thickness of the cross-sectional area through which the magnetic force lines pass, by manufacturing a focusing cover that removes a certain portion rather than a cylindrical shape, material loss for manufacturing the focusing cover can be reduced. That is, in the case where it is assumed that the thickness of the focusing cover shown in FIG. 11 (a) is an appropriate thickness in consideration of the cross-sectional area where a substantial magnetic force line passes, the (b) to (b) of FIG.
- the focusing cover shown in e) may have the same cross-sectional area as that of the focusing cover shown in FIG. 11A while increasing its thickness, thereby substantially reducing overall material loss of the focusing cover.
- the various types of focusing covers shown in FIG. 11 may be applied not only to the inductor having the bobbin shown in FIG. 6 but also to the inductor having the bobbin shown in FIG. 8 removed, and to various embodiments according to the present invention. Appropriately applicable.
- FIG. 12 illustrates an embodiment of the fastening structure of the core assembly and the focusing cover in the inductor according to the present invention. Shows.
- FIGS. 12A and 12C illustrates various structures in which the cores 120a, 120b, and 120c of the core assembly and the focusing covers 160a, 160b, and 160c are coupled to each other.
- an upper flange End portions 127a and 127c of the 123a and 123c and end portions 163a and 163c of the focusing covers 160a and 160c correspond to each other to form a joining portion, and when the core assembly is inserted into the focusing cover, the joining portions are joined to each other.
- the core assembly is fixed to the focusing cover.
- the core assembly may be fixed to the focusing cover by forming an engaging portion to fasten the end portion 127b of the core 120b of the core assembly to the upper through hole 163b of the focusing cover 160b. have.
- the core assembly When the core assembly is inserted into the focusing cover through the coupling part where the core 120b and the end portion 127b of the core assembly are fastened to the upper through hole 163b, the core assembly can be easily assembled at the correct position to maintain a predetermined position of the core assembly.
- FIG. 13 shows a perspective view of a second embodiment of the inductor according to the invention
- FIG. 14 shows a sectional view of the second embodiment of FIG.
- the second embodiment shown in FIGS. 13 and 14 has the same configuration and operation as those of the first embodiment described above, and since the main difference is in the focusing cover 260, repeated description thereof will be omitted. And focusing on the focusing cover 260 will be described.
- the focusing cover 260 has an opening 262 formed at one end thereof and a shielding part 265 formed at the other end thereof to have a cup structure as a whole.
- the core assembly 210 is inserted into the opening 262 of the focusing cover 260.
- the focusing cover 260 is made of silicon steel or amorphous metal, the focusing cover 260 can be easily manufactured by drawing.
- the flange 220 is formed only at one end of the core body 221 as the core 220 as the T-shaped core, and the core body 221 is the bobbin 240 having the coil 250 wound thereon.
- Inserted in the core assembly 210 is configured, which is not limited to this embodiment may be applied to the type I core with a flange formed on both ends of the core body, all the case of applying the type I core
- the flange may be formed smaller than the diameter of the focusing cover and both may be inserted into the focusing cover, or the upper flange may be formed smaller than the inner diameter of the focusing cover and inserted into the focusing cover, and the lower flange may be formed larger than the inner diameter of the focusing cover.
- the opening of the focusing cover may be shaped to span the lower flange.
- FIG. 15 shows a cross-sectional view of a modified embodiment of the second embodiment of FIG. 14, in which the bobbin 240 of FIG. 14 is removed and the coil 250 is wound directly on the core body 221.
- an insulating layer 230 is formed on the core body 221 and the flange 224 to insulate the core 220 and the coil 250.
- an insulating layer 230 is formed on the core body 221 and the flange 224 as a whole, but an insulating layer may be formed only on a portion of the core body according to a region in which the coil 250 is wound.
- FIG. 16 also shows a perspective view of another modified embodiment of the second embodiment of FIG. 13, wherein in FIG. 16, an opening 262 is formed at one end and the other end is similar to the second embodiment of FIG. 13.
- the shielding part 265 is formed to apply the focusing cover 260 having a cup structure as a whole, and the coupling groove corresponding to the upper end shape of the core assembly 210 on the inner surface of the shielding part 265 of the focusing cover 260 ( 266).
- the coupling groove 266 is formed on the inner surface of the shield 265 of the focusing cover 260 so that the upper end of the core assembly 210 is inserted into the coupling assembly when the core assembly 210 is inserted into the focusing cover 260. 266), the core assembly 210 is fixed in the focusing cover 260 to maintain a stable position of the core assembly 210 even when the inductor is shaken or impacted.
- FIG. 17 shows a perspective view of a third embodiment of an inductor according to the present invention.
- the focusing cover 260a is a modified form of the cup-shaped focusing cover 260 of FIG. 13, and an opening 267a having an open side surface from an opening of the focusing cover 260a to a shielding part is provided. It is formed, the shield 265a is in the form of a plurality of fan-shaped spread from the center. In FIG. 17A, the shield part 265a is formed by unfolding two sectors from the same center, and may be formed in a plurality of sectors such as three or four from the same center.
- the core 220a is a T-shaped core.
- the flange 224a corresponds to the shield portion 265a of the focusing cover 265a, and has a fan shape.
- the core body is formed on a circular bobbin 240a on which the coil 250a is wound. 221a is inserted, and the core assembly is inserted into the focusing cover 260a to surround a part of the side of the coil.
- the focusing cover 260b has a cross-shaped shield 265b, and an opening 267b is formed at the side of the focusing cover 265b in correspondence with the cross-shaped end of the shield 265b. have.
- the flange 224b of the core 220b has a cross shape corresponding to the shielding portion 265b of the focusing cover 265b, and the core body 221a is formed on a square bobbin 240b in which the coil 250b is wound. ) Is inserted.
- the bobbin 240c may have a circular shape.
- the inner shape of the focusing cover 260c may also be formed to correspond to the circular bobbin 240c. desirable.
- FIG. 18 illustrates a perspective view of a modified embodiment of the third embodiment of FIG. 17, wherein FIG. 18A illustrates a cup-type focusing cover having a fan-shaped shield as a modified form of FIG. 17A. 265a is applied and the core 220a also corresponds to the shape of the focusing cover 265a, which is the same as that of FIG. 17A, but in FIG. 18A, the bobbin is removed and the core 220a of the core 220a is removed. The coil 250 was wound directly on the core body 221a to construct a core assembly.
- an insulating layer 230a is formed on a part of the core 220a, and the insulating layer can be inferred through the above-described details, so a detailed description thereof will be omitted. Shall be.
- FIG. 18B a cup-shaped focusing cover 265b having a cross-shaped shield is used as a modified form of FIG. 17B.
- the bobbin was removed and the coil 250 was wound directly on the core body 221b of the core 220b.
- An insulating layer 230b was formed to insulate the core 220b from the coil 250.
- the core body 221b is configured in a quadrangular shape.
- the core body 221c may be configured in the form of a circular column as shown in FIG. 18C.
- FIG. 19 shows a perspective view of a fourth embodiment of an inductor according to the present invention.
- the focusing covers 260d and 260e are formed in a sealed tubular structure having shielding portions formed at both ends of the circular pipe to accommodate the core assemblies 210d and 210e.
- Two focusing cover pieces 260d ', 260d', in which the focusing covers 260d, 260e are vertically divided in the longitudinal direction to easily accommodate 210d, 210e inside the condensed tubular focusing covers 260d, 260e. 260e ', 260e' '), and two focusing cover pieces are joined with the core assemblies 210d and 210e interposed therebetween, and the focusing covers 260d and 260e accommodate the core assemblies 210d and 210e therein. Is formed.
- FIG. 19A illustrates a focusing cover 260d for accommodating a core assembly 210d having a bobbin coil wound thereon
- FIG. 19B a core assembly in which a coil is wound around a straight core
- a focusing cover 260e that houses 210e is shown.
- FIG. 19B coupling grooves corresponding to ends of the core assembly 210e are formed in the upper and lower surfaces of the focusing cover 260e so that the core assembly 210e is fixed in the focusing cover 260e.
- the core assembly 210e may be stably fixed inside the focusing cover 260e.
- the shape may be variously modified, and the number of fragmented focusing cover pieces may be composed of three or more focusing cover pieces divided in consideration of the shape of the core assembly. Can be.
- FIG. 20 illustrates a perspective view of a modified embodiment of the fourth embodiment of FIG. 19, wherein in FIG. 20, a plurality of openings having side surfaces opened from an upper surface to a lower surface in the focusing cover illustrated in the fourth embodiment of FIG. 19. The case where an addition is formed is shown.
- the upper and lower surfaces of the two focusing cover pieces 260f ', 260f ", 260g', and 260g" vertically divided in the longitudinal direction are formed to correspond to each other. Is formed in a fan shape, and is formed in a V shape in FIG. 20 (b).
- the two focusing cover pieces 260f ', 260f', 260g ', and 260g' are combined with the core assemblies 210f and 210g interposed therebetween to form the focusing covers 260f and 260g. That is, in FIG.
- the upper and lower shields of the focusing cover 260f formed by combining two focusing cover pieces 260f 'and 260f' 'correspond to each other to form a fan shape which is unfolded from the center part.
- an opening is formed from an upper surface of the upper shield to a lower surface of the lower shield.
- the upper and lower shields of the focusing cover 260g formed by combining two focusing cover pieces 260g 'and 260g' 'correspond to each other to form a cross.
- an opening is formed from an upper surface of the upper shield to a lower surface of the lower shield.
- FIG. 20A a core assembly 210f to which a bobbin is applied is used, and in FIG. 20B, a core assembly 210g having a coil wound around a straight core is used. It may be variously modified according to performance or application situation, and the coupling groove for stably fixing the core assembly 210g to the focusing cover 260g as shown in FIG. 20 (b) may also be variously modified according to the situation. Can be.
- FIG. 21 is a perspective view of a fifth embodiment of the inductor according to the present invention.
- the focusing covers 360a and 360b have a rectangular frame shape, and the core assembly 310a,
- An inductor 300a or 300b is formed by inserting 310b into the rectangular frame of the focusing covers 360a and 360b in the longitudinal direction.
- the straight cores 320a and 320b are applied to the core assemblies 310a and 310b to the bobbins 340a and 340b on which the coils 350a and 350b are wound.
- 320a and 320b are inserted and configured.
- FIG. 22 also shows a perspective view of a modified embodiment of the fifth embodiment of FIG. 21, wherein FIGS. 22A and 22B respectively remove bobbins from FIGS. 21A and 21B, respectively.
- the coils 350c and 350d are wound directly on the cores 320c and 320d.
- An insulating layer 330c and 330d is formed between the cores 320c and 320d and the coils 350c and 350d. Formed.
- the fifth embodiment and the modified embodiment according to the present invention apply a focusing cover having a simpler structure, a flanged core may be applied, and polygonal in addition to a circular column or a square column.
- the core body may be applied.
- the present invention proposes an inductor which functions as a kind of air gap by forming a flange of a core with a non-magnetic material, wherein a flange formed of a non-magnetic material is different from a flange formed as a magnetic material. It functions as an air gap, so it is called a gap flange.
- the gap flange in the present invention may also function as a winding guide for facilitating winding of the coil and preventing deviation of the coiled coil, and whether the gap flange functions as a void or as a winding guide is an optional function.
- the gap flanges may function only as voids or only as winding guides, or as both voids and winding guides.
- FIG. 23 shows a perspective view of a sixth embodiment of an inductor according to the present invention
- FIG. 24 shows a sectional view of the sixth embodiment of FIG.
- the fifth embodiment of FIG. 23 is an inductor 400 having a core assembly 410 inserted into a cup focusing cover 460 similar to the second embodiment of FIG. 13, and a gap flange ( The core 420 having the 425 formed thereon is applied.
- the I-shaped core 420 of the core assembly 410 is composed of a core body 421 formed of a magnetic material and a lower flange 424 and a gap flange 425 formed of a non-magnetic material.
- the gap flange 425 itself functions as a kind of air gap by forming with a non-conductive material.
- the core 420, the flange 424, and the focusing cover 460 form one magnetic line closed loop, and a gap flange (between the core body 421 and the shield 465 of the focusing cover 460) is formed.
- 425 is positioned so that the gap flange 425 accumulates magnetic energy as a void.
- the reluctance according to the thickness of the gap flange 425 may be adjusted to adjust the inductance of the inductor 400. .
- the insulation layer 430 is formed on the core body 421 and the flange 424, and the coil 450 is wound directly on the core 420.
- the configuration is not limited thereto.
- various focusing covers according to the present invention described above may be applied.
- the inductance of the inductor 400 can be easily adjusted by adjusting the reluctance according to the thickness of the gap flange. Furthermore, by employing a gap flange in the straight core or the T-shaped core, the coil winding can be facilitated, and at the same time, it can function as a winding guide that prevents the winding of the wound coil.
- the inductor to which the gap flange is applied in the present invention may be modified in various ways. Hereinafter, some modified embodiments will be described.
- Figure 25 shows a perspective view of a seventh embodiment of an inductor according to the present invention.
- the focusing cover 560 includes an upper focusing cover 560a and a lower focusing cover 560b, and each of the upper focusing cover 560a and the lower focusing cover 560b has a cup shape. Openings 562a and 562b are formed at the other end, and shields 565a and 565b are formed at the other end, and upper and lower portions of the core assembly 510 are inserted into the upper focusing cover 560a and the lower focusing cover 560b, respectively.
- the upper focusing cover 560a and the lower focusing cover 560b are configured to completely surround the core assembly 510.
- gap flanges 525 and 527 are formed at both ends of the core of the core assembly 510, so that the gap flanges are formed in the closed magnetic loop of the magnetic lines formed by the core assembly 510, the upper focusing cover 560a, and the lower focusing cover 560b. Air gaps through 525 and 527 are formed.
- the core may further facilitate winding of the coil to the core through the gap flanges 525 and 527 as winding guides at both ends, and may prevent the winding of the wound coil.
- the focusing cover 560 of the sealed tubular structure in which the core assembly 510 is accommodated consists of an upper focusing cover 560a and a lower focusing cover 560b horizontally divided.
- the focusing cover of the left focusing cover 560a 'and the right focusing cover 560b' in which the focusing cover 560 'of the closed cylindrical structure in which the core assembly 510 is accommodated is vertically divided. It is composed of pieces, and the left focusing cover 560a 'and the right focusing cover 560b' are coupled with the core assembly 510 therebetween to form a focusing cover 560 '.
- a gap flange is formed at both ends of the core.
- only one gap flange may be selectively configured, or a flange of the magnetic material may be selectively formed.
- Figure 26 shows a perspective view of an eighth embodiment of an inductor according to the present invention.
- the eighth embodiment illustrated in FIG. 26 is the focusing covers 660a and 660b to which the shields 665a and 665b having a fan shape or cross shape are applied.
- the cores 620a and 620b of the core assembly gap flanges 625a and 625b are formed on the upper portion, thereby controlling the magnetoresistance through the gap flanges 625a and 625b.
- FIG. 27 also shows a perspective view of a ninth embodiment of an inductor according to the present invention, similar to the embodiment of FIG. 20, of two focusing cover pieces 660c ', 660c' 'vertically divided longitudinally.
- the upper and lower surfaces are formed in a fan shape corresponding to each other, and two focusing cover pieces 660c 'and 660c' 'are coupled with the core assembly 610c interposed therebetween to form a focusing cover 660c, and a core assembly 610c.
- Gap flanges are applied at both ends of).
- FIG. 28 is a perspective view of a tenth embodiment of the inductor according to the present invention, in which the tenth embodiment shown in FIG. 28 has a rectangular frame structure similar to the fifth embodiment of FIGS. 21 and 22. Focusing cover 760a, 760b, 760c is applied, the core assembly (710a, 69b, 769c) is inserted in the longitudinal direction to the inside of the rectangular frame focusing cover (760a, 760b, 760c) Inductors 700a, 700b, and 700c are constructed.
- gap flanges 725a, 727a, 725b, 727b, 725c, and 727c are formed at both ends of the cores 720a, 720b, and 720c, and the shapes of the gap flanges 725a, 727a, 725b, 727b, 725c, and 727c are It may be formed in various forms such as a circle, a square.
- the core assembly 710c has an elliptical shape in cross section, corresponding to the focus cover shape of the rectangular frame, and thus, the coil region may be utilized by utilizing the inner space of the focus cover more widely. have.
- FIGS. 25 to 28 may be configured as a core assembly to which a bobbin is applied, or may be configured as an assembly in which a coil is wound directly on the core by removing the bobbin.
- the gap flange By applying the gap flange to the core assembly and the focusing cover of various forms as described above, it is possible to configure the inductor to control the magnetoresistance through the gap flange or to prevent the coil from being wound as a winding guide.
- FIG. 29 shows a perspective view of an eleventh embodiment of the inductor according to the present invention. .
- the core assembly 810 includes a first coil 850a and a second coil 850b, and the first coil 850a and the second coil 850b are stopped. It is divided and separated by the gap flange 825b.
- the core assembly 810 including the first coil 850a and the second coil 850b is inserted into the focusing cover 860.
- gap flanges 825a and 825c are applied to the top and bottom of the core assembly 810, but flanges of a magnetic material may be selectively applied to the top and bottom of the core assembly 810.
- the shape of the focusing cover 860 may be applied to the focusing cover of various types described above.
- the present invention provides a simpler and easier method of manufacturing the inductor having the above-described self-focusing structure.
- a method of manufacturing the inductor having the self-focusing structure as a fifth main feature of the present invention will be described. .
- FIG. 30 shows a process embodiment for the method of manufacturing the inductor according to the present invention.
- a core body, a flange, a focusing cover, etc. may be selectively manufactured by winding a steel plate having a magnetic property in a roll shape, as shown in FIG. 30 (a). Winding the steel sheet 901 having a predetermined number of times in a roll form to produce a core body 920a having a drum core shape having a predetermined diameter, and having a conductive property to have a through space corresponding to the cross-sectional diameter of the core body 920a.
- the steel sheet 905 is rolled up a predetermined number of times to produce the flanges 920b and 920c, and also has a ceramic having a ceramic space so as to have a through space in consideration of the cross-sectional diameters of the core body 920a and the flanges 920b and 920c.
- 907 is wound around a certain number of times to produce a focusing cover 960.
- the cross-sectional diameters of the core body 920a and the flanges 920b and 920c may be selected according to the performance of the inductor and the application situation, and may be simply adjusted according to the number of times the steel sheet is wound.
- the cross section of the core body 920a is not limited to a circular shape, but may be formed in various polygonal shapes such as quadrangular and pentagonal shapes, and flanges and focusing covers may also be formed in various shapes corresponding to the shape of the core body.
- the core body 920a is manufactured by winding a steel sheet in the form of a roll, a hole may be formed in the center of the core body 920a.
- the inner empty space of the core body 920a thus formed may be filled with a magnetic material. Infill is preferred.
- the through space formed in the center of the core body 920a may be used as a wiring passage of a coil wound around the core body.
- the core body 920a, the flanges 920b and 920c and the focusing cover 960 are selectively prepared as described above, the flanges 920b and 118b are respectively formed at the top and bottom of the core body 920a as shown in FIG.
- the core 920 is manufactured by inserting and inserting the 920c and the coil 950 is wound around the core 920 to manufacture the core assembly 910.
- the process of inserting and inserting the flanges 920b and 920c into the core body 920a is optional.
- the core body 920a may be a straight core or a flange.
- the 920b and 920c may be a T-shaped core.
- the core assembly 910 When the core assembly 910 is prepared through the above process, as shown in FIG. 30C, the core assembly 910 may be inserted into the focusing cover 960 to manufacture an inductor having a self-focusing structure. .
- the manufacturing of the core body 920a, the flanges 920b, 920c, or the focusing cover 960 by winding the magnetic steel sheet in the form of a roll is an optional process. It may be manufactured using this magnetic steel sheet.
- the core assembly may be manufactured in various shapes and configurations
- FIG. 31 illustrates various modified embodiments of the process of manufacturing the core assembly in the method of manufacturing the inductor according to the present invention.
- a flange 920b is selectively inserted into the top and bottom of the core body 920a to manufacture the core 920 '.
- the coil 950 was wound around the core 920 'to manufacture the assembly 910'.
- the insulating member 930 is a kind of insulating layer formed between the core body 920a and the coil 950, and may be made of a plastic injection molding or a tube of insulating material having a through space in which the core body 920a is inserted.
- the latching jaws 935 of the flanges 920b and 920c may be formed in the insulating member 930 to more stably fix the flanges 920b and 920c at a predetermined position without flowing down.
- FIG. 31 (b) illustrates a case in which an insulating layer is formed by coating an insulating material.
- An insulating layer is formed of the insulating film 930a by coating the insulating material around the core body 920a.
- the core 920 ′′ was manufactured by inserting flanges 920b and 920c selectively on the top and bottom of the core body 920a, and the coil 950 was wound thereon to manufacture the core assembly 910 ′′.
- the process of forming the insulating layer and the like shown in the embodiment of FIG. 31 is optional and may be applied depending on circumstances.
- a coil may be wound directly on the core without applying the insulating layer.
- Flanges are optional and can be applied depending on the circumstances, taking into account the characteristics of the required inductor.
- the inductor having a self-focusing structure according to the present invention as described above, since the core is manufactured by winding the steel sheet in the form of a roll, the inductor can be manufactured through a simpler and safer process by eliminating the existing dangerous and complicated pressing process.
- the manufacturing cost can be reduced, and in particular, the thickness of the steel sheet constituting the core and the number of windings in the form of rolls can be selectively adjusted, so that the characteristics of the inductor can be adjusted by adjusting the core itself without depending on the number of turns of the coil.
- the present invention discloses a hybrid inductor including an inductor having a self-focusing structure as described above and an inductor for controlling a trigger of a switching element.
- a hybrid inductor as a sixth main feature of the present invention will be described. It will be described through the embodiment.
- the hybrid inductor according to the present invention is configured to include the inductor having a self-focusing structure according to the present invention described above, with respect to the inductor having a self-focusing structure will be omitted with reference to the above description.
- an electronic ballast is provided with a so-called oscillator using a toroidal core to trigger two switching elements, and an inductor using a toroidal core is used for transformers and filters in various electronic devices.
- various inductors using such a toroidal core as a transformer or choke transformer and an inductor having a self-focusing structure that can be used as a choke transformer as described above are formed into one package, thereby reducing PCB footprint and components. Discuss how to reduce the number.
- the first embodiment of the hybrid inductor of FIG. 32 includes a core assembly 1110 and a focusing cover 1160 constituting an inductor having a self-focusing structure according to the present invention as described above with the first inductor 1100.
- the focusing cover 1160 has a cylindrical pipe structure, and the focusing cover 1160 is used as a sleeve core of the inductor, and the coil 1250 is wound in a toroidal form in the longitudinal direction of the focusing cover 1160 to form a second inductor. 1200).
- the core assembly 1110 and the focusing cover 1160 constitute the first inductor 1100, and the coil wound around the focusing cover 1160 and the focusing cover 1160. 1250 constitutes the second inductor 1200, and the first inductor 1100 and the second inductor 1200 form the hybrid inductor 1000 in a package form.
- the bobbin is removed and the core assembly 1110 is wound around the core 1120.
- the core assembly 1110 may be configured as necessary. have.
- FIG. 33 illustrates the direction of the magnetic force lines in the first embodiment of the hybrid inductor of FIG. 32 according to the present invention. Referring to FIGS. 32 and 33, the operation principle of the hybrid inductor according to the present invention will be described. do.
- the magnetic field is generated by the current flow of the coil, and the change of the magnetic field applied to the coil produces an induced current in a direction to cancel the change of the magnetic field.
- the hybrid inductor 1000 of FIG. 32 generates a magnetic field B P according to the direction of current I P flowing in the coil of the core assembly 1100 of the first inductor 1100 and the second inductor.
- the magnetic field B S is generated along the direction of the current I S flowing in the coil 1250 of 1200.
- the magnetic field BP generated by the core assembly 1100 of the first inductor 1100 coincides with the direction of the coil 1250 wound on the second inductor 1200
- the change of the magnetic field is changed by the second inductor 1200. It has no effect on the toroidal coil 1250.
- the magnetic field B S generated by the second inductor 1200 also coincides with the direction of the coil 1150 of the core assembly 1110 of the first inductor 1100, the magnetic field B S does not affect the coil 1150 of the core assembly 1110. Does not affect
- the core assembly 1110 Since the first inductor 1100 and the second inductor 1200 positioned outside the core assembly 1110 do not affect each other, each of them may be individually operated.
- the configuration of the core assembly 1110a of the first inductor 1100a is the same as the inductor having the self-focusing structure according to the present invention as described above.
- the focusing cover 1160a is used as a sleeve core of the second inductor 1200a, and the coil 1250a of the second inductor 1200a is wound in a toroidal shape in a portion 1161a where the focusing cover 1160a is formed. do.
- the coil in the groove of the focusing cover 1160a the coil can be prevented from being detached to maintain the position of the coil stably. Production is possible, which prevents waste of materials.
- the coil 1160a is wound to insulate the coil 1250a of the second inductor 1200a from the sleeve core 1160a, and the liquid silicone, urethane, or insulating paint is applied to the focusing cover 1160a used as the sleeve core 1160a.
- the insulating layer may be coated to form an insulating layer, or the insulating layer may be formed by a plastic case, an insulating tape or a tube, or the like.
- various types of focusing covers described with reference to FIG. 11 may be applied to the sleeve core of the second inductor 1200a.
- 35 shows a third embodiment of a hybrid inductor according to the present invention.
- the focusing cover 1160b corresponds to the outer surface of the core assembly 1110b at an outer side of the core assembly 1110b, and has four rounded support members 1163 and support members 1163 spaced at regular intervals from each other. It comprises a connecting member 1164 connecting between the support member 1163 between the cross-sectional view as viewed from the top is a quadrangular as a whole.
- the supporting member 1163 and the connecting member 1164 are used as the sleeve core of the second inductor 1200b, and the core 1250b is wound around the connecting member 1164 in a toroidal shape.
- the coil 1250b of the second inductor is wound to connect the connecting member 1164 used as a sleeve core such as liquid silicone, urethane, or insulating paint.
- the insulating material may be coated to form an insulating layer, or the insulating layer may be formed by a plastic case, an insulating tape or a tube, or the like.
- FIG. 35 four support members 1163 are positioned at four outer parts of the core assembly 1110b to form a quadrangle as viewed from the top, but the present invention is not limited thereto, and three support members are positioned according to circumstances.
- a plurality of support members may be positioned to form a polygon such as forming a triangle or five support members to form a pentagon.
- core assembly 1110b having the bobbin removed is illustrated in FIG. 35C, a core assembly using a bobbin may be used as necessary.
- FIG. 36 shows a fourth embodiment of the hybrid inductor according to the present invention.
- the core assembly 1310 positioned inside the focusing cover 1360 may be applied to the core assembly described above.
- the inductor ring 1462 is positioned on the focusing cover 1360.
- the inductor ring 1462 is connected to the upper end of the focusing cover 1360 by a plurality of support legs 1465 and supported by the focusing cover 1360.
- the coil 1450 wound in the inductor ring 1541 and the inductor ring 1462 in the form of a toroidal body constitutes the second inductor 1400.
- the first inductor 1300 is configured by the core assembly 1310 and the focusing cover 1360 at the lower end thereof, and the inductor ring 1451 and the support leg 1465 at the upper end thereof.
- the sleeve core 1460 and the coil 1450 wound around the inductor ring 1462 constitute the second inductor 1400.
- the core 1320 of the first inductor 1300 may include a core body 1321 formed of a magnetic material, a flange 1324 at a lower end, and a top of a top formed of a non-magnetic material. It may be composed of a gap flange 1325.
- integration efficiency of components is achieved by using an upper portion of the first inductor 1300 as a space of the second inductor 1400. Can be further improved.
- a bobbin wound with a coil may be selectively applied, a partial insulation layer may be formed on the core, and the coil may be wound thereon. And a core having a flange whose thickness is adjusted through FIG. 10 may be applied.
- the inductance of the inductor may be adjusted by applying a gap flange to the hybrid inductor of FIGS. 32 to 36.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Composite Materials (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Coils Or Transformers For Communication (AREA)
Abstract
The present invention relates to an inductor having a self-focusing structure, a method for manufacturing the same, and a hybrid inductor comprising the same and, more particularly, to an inductor, a method for manufacturing the same, and a hybrid inductor comprising the same, the inductor comprising: a core assembly comprising a core having a core body of a predetermined length and a coil wound around the core body; and a focusing cover containing a permeable substance, the focusing cover being formed such that, after the core assembly is inserted therein, the focusing cover surrounds at least a part of the coil at the outer periphery of the core assembly, thereby limiting external diffusion of lines of magnetic force generated by a current flow through the coil and focusing the lines of magnetic force. The present invention is advantageous in that, by focusing lines of magnetic force through the focusing cover, the efficiency of a choke transformer or another type of transformer is improved further; an air gap can be formed through a gap flange; and the simple structure reduces manufacturing costs.
Description
본 발명은 자기 집속 구조를 갖는 인덕터와 이의 제조 방법 및 이를 포함하는 하이브리드 인덕터에 대한 것으로서, 보다 상세하게는 방전램프(discharge lamp)의 안정기 등 각종 전원공급장치에 적용되는 인덕터로서 자기력선을 집속시켜 인덕터로서의 효율을 증대시키기 위한 집속 커버를 구비하며 또한 공극(air gap)으로서 기능하거나 권선 가이드로서 기능하는 갭 플랜지를 통해 인덕턴스(inductance)가 용이하게 조절되는 인덕터와 이를 제조하는 방법을 개시하고, 나아가서 초크 트랜스포머 등의 인덕터와 스위칭 소자의 트리거를 제어하기 위한 인덕터가 같이 구비된 하이브리드 인덕터를 개시한다.The present invention relates to an inductor having a self-focusing structure, a method of manufacturing the same, and a hybrid inductor including the same. More specifically, the inductor is applied to various power supply devices such as ballasts of discharge lamps to focus magnetic force lines. Disclosed are an inductor having a focusing cover for increasing efficiency as an air gap and also easily adjusting inductance through a gap flange which functions as an air gap or as a winding guide, and furthermore, a method of manufacturing the same. A hybrid inductor including an inductor such as a transformer and an inductor for controlling a trigger of a switching device is disclosed.
일반적으로, 전원공급장치에는 출력전압을 일정하도록 제어할 목적으로 초크 트랜스포머가 적용된다. 예를 들면, 형광등과 같은 방전램프는 그 구동(시동 및 점등 유지)에 상용전원에 비하여 높은 전압이 요구되는 데다 공급받는 전압이 일정하여야 방전이 안정적으로 이루어지므로 안정기를 구비하는데, 안정기에도 초크 트랜스포머가 사용된다.Generally, a choke transformer is applied to the power supply for the purpose of controlling the output voltage to be constant. For example, a discharge lamp such as a fluorescent lamp requires a high voltage for driving (starting and maintaining lighting) and has a stabilizer because the discharge is stable only when the supplied voltage is constant. Is used.
도 1은 일반적인 초크 트랜스포머로서 기능할 수 있는 인덕터의 예를 도시한 단면도이다.1 is a cross-sectional view showing an example of an inductor that can function as a general choke transformer.
도 1에 도시된 바와 같이, 초크 트랜스포머용 인덕터는, 페라이트(ferrite)로 이루어진 코어(core)(11a, 11b, 12a, 12b), 상기 코어가 삽입된 보빈(bobbin)(40) 및 보빈(40)에 감긴 코일(coil)(50) 등을 포함하여 구성된다. 도 1의 (a)는 E-E형 코어(11a, 12a)가 적용된 실시예를 도시하며, 도 1의 (b)는 E-I형 코어(11b, 12b)가 적용된 실시예를 도시한다.As shown in FIG. 1, an inductor for a choke transformer may include cores 11a, 11b, 12a, and 12b made of ferrite, bobbins 40, and bobbins 40 in which the cores are inserted. It is configured to include a coil (50) and the like wound in the). FIG. 1A illustrates an embodiment in which E-E type cores 11a and 12a are applied, and FIG. 1B illustrates an embodiment in which E-I type cores 11b and 12b are applied.
이와 같은 초크 트랜스포머에 의한 전압 조절 시(코일에 전류가 흐르면), 초크 트랜스포머에서는 도 2에서와 같이 자기력이 생성되는데, 초크 트랜스포머에서 생성되는 자기력선이 코일(50)의 외부로 넓게 확산되지 않게 집속되어야 인덕터로서의 기능이 향상된다.When the voltage is regulated by the choke transformer (when current flows in the coil), the choke transformer generates magnetic force as shown in FIG. 2, and the magnetic force lines generated by the choke transformer must be focused so as not to spread widely outside the coil 50. The function as an inductor is improved.
그러나, 일반적인 초크 트랜스포머용 인덕터는 구조적으로 코일(50) 외부로의 자기력선 확산을 제한하는 데 한계가 있다. 특히, 상기 도 2에 도시된 T자형 코어나 또는 I자형 코어를 갖는 초크 트랜스포머용 인덕터의 경우에는 E-E형 코어나 E-I형 코어를 갖는 초크 트랜스포머용 인덕터에 비하여 구조가 단순하므로 상대적으로 저비용으로 제조할 수 있다는 이점이 있음에도, 코일의 둘레에 자기력선 집속을 위한 구조가 없기 때문에, E-E형 코어나 E-I형 코어를 갖는 초크 트랜스포머용 인덕터에 비하여 효율이 더 낮아서 극히 일부에만 사용되는 실정이다.However, typical inductors for choke transformers are structurally limited in limiting the diffusion of magnetic field lines out of the coil 50. In particular, the choke transformer inductor having a T-shaped core or an I-shaped core shown in FIG. 2 has a simpler structure than the inductor for a choke transformer having an EE-type core or an EI-type core. Although there is an advantage that it can be, since there is no structure for magnetic field line focusing around the coil, the efficiency is lower than the inductor for the choke transformer having an EE type core or EI type core and is used only in part.
나아가서 인덕터는 코어에 자기장의 형태로 에너지를 축적하며, 인덕터가 축적할 수 있는 에너지의 크기를 넘어서게 되면 포화(Saturation) 상태에 이르러 인덕터는 에너지를 축적하지 못하고 권선 또한 단락상태가 되어버린다.Furthermore, the inductor accumulates energy in the form of a magnetic field in the core. When the inductor exceeds the amount of energy that the inductor can store, saturation occurs and the inductor does not accumulate energy and the winding is shorted.
따라서 인덕터에 더 큰 자계 강도를 부여하기 위해서 공극(air gap)을 이용하는데, 도 3에 도시된 인덕터의 공극(air gap) 개념도를 참고하면, 공극(air gap)을 적용하지 않는 경우와 대비하여 공극(air gap)의 크기를 더 크게 적용할수록 인덕터는 공극(air gap) 상에 더 큰 에너지의 축적이 가능해지므로 인덕터의 자계 강도를 높일 수 있다.Therefore, in order to give the inductor greater magnetic field strength, an air gap is used. Referring to the air gap concept diagram of the inductor shown in FIG. 3, in contrast to the case where the air gap is not applied, The larger the size of the air gap, the greater the inductor's ability to accumulate more energy in the air gap, thereby increasing the magnetic field strength of the inductor.
이를 위해 상기 도 1의 (a)에 도시된 E-E형 코어(11a, 12a)의 서로 접촉되는 부분, 상기 도 1의 (b)에 도시된 E-I형 코어(11b, 12b)의 서로 접촉되는 부분에 공극(air gap)을 형성시켜 동일 코어에 더 큰 전류를 포화 상태에 이르지 않고 흘릴 수 있게 된다.To this end, portions of the EE cores 11a and 12a shown in FIG. 1A are in contact with each other, and portions of the EI cores 11b and 12b shown in FIG. 1B are in contact with each other. Air gaps are formed, allowing larger currents to flow through the same core without reaching saturation.
인덕터에 이와 같은 공극(air gap)을 형성시키기 위해서 공기를 이용하는 경우에 공극 형성으로 인해 인덕터의 조립이 용이하지 않고 정확한 두께로 공극이 형성되지 않는 문제점이 있으며, 또한 마일러필름 등을 삽입하여 공극을 형성시킬 수도 있는데, 이 또한 공극의 정확한 두께 조절이 용이하지 않으며 인덕터의 제조 과정이 복잡해지는 문제점이 있다.When air is used to form such an air gap in the inductor, there is a problem in that the inductor is not easily assembled due to the formation of the air gap and the air gap is not formed to the correct thickness. In addition, it is also difficult to precisely adjust the thickness of the pores, and there is a problem that the manufacturing process of the inductor is complicated.
나아가서 E-E형 코어, E-I형 코어와는 다르게 T자형 코어나 I자형 코어를 적용하는 경우에는 코어의 형태적인 제한으로 인해 공극(air gap)을 적용하기가 용이하지 않은 문제점이 있다.Furthermore, in the case of applying a T-shaped core or an I-shaped core unlike an E-E-type core or an E-I-type core, there is a problem in that it is not easy to apply an air gap due to the shape limitation of the core.
본 발명은 상술한 바와 같은 종래 기술의 문제점을 해결하고자 하는 것으로서, 전압 조절 시에 생성되는 자기력선을 효과적으로 집속시킬 수 있고, 구조적으로 단순한 초크 트랜스포머 등으로 이용될 수 있는 인덕터의 구조와 이와 같은 인덕터를 간단하게 제조할 수 있는 제조 방법을 제공하는 데 있다.The present invention is to solve the problems of the prior art as described above, it is possible to effectively focus the magnetic force lines generated during voltage regulation, and the structure of the inductor and such an inductor that can be used as a structurally simple choke transformer, etc. It is to provide a manufacturing method that can be easily produced.
나아가서 인덕터에 공극(air gap)을 형성시키기 위해서 공기를 이용하는 경우에 공극 형성으로 인해 인덕터의 조립이 용이하지 않고 정확한 두께로 공극이 형성되지 않는 문제점과 마이크로필름 등을 삽입하여 공극을 형성시키는 경우에 공극의 정확한 두께 조절이 용이하지 않으며 인덕터의 제조 과정이 복잡해지는 문제점을 해결하고자 하며, 특히 E-E형 코어, E-I형 코어와는 다르게 T자형 코어나 I자형 코어를 적용하는 경우에는 코어의 형태적인 제한으로 인해 공극(air gap)을 적용하기가 용이하지 않은 문제점과 일자형 코어 또는 T자형 코어의 경우에 권선된 코일이 쉽게 이탈되는 문제점을 해결하고자 한다.Furthermore, when air is used to form an air gap in the inductor, the inductor is not easily assembled due to the formation of the air gap, and the air gap is not formed with the correct thickness. It is to solve the problem that the thickness of the air gap is not easy to adjust and the manufacturing process of the inductor is complicated. Especially, in the case of applying a T-shaped core or an I-shaped core, unlike the EE-type core and the EI-type core, the shape of the core is limited. Due to this problem, it is not easy to apply an air gap, and in the case of a straight core or a T-shaped core, it is intended to solve the problem that the coiled coil is easily detached.
한걸음 더 나아가서 본 발명은 초크 트랜스포머와 스위칭 트리거 등을 위한 인덕터가 함께 구비된 하이브리드 인덕터를 제공하는데 그 목적이 있다.Furthermore, an object of the present invention is to provide a hybrid inductor including an inductor for a choke transformer and a switching trigger.
또한 종래의 변압기나 초크 트랜스포머 등의 제조 공정에 있어서 위험한 프레스 공정을 제거하여 보다 간단하고 쉽게 변압기나 초크 트랜스포머 등의 인덕터를 제조할 수 있는 제조 방법을 제시하고자 한다.In addition, in the manufacturing process of a conventional transformer or choke transformer or the like to remove the dangerous press process to provide a manufacturing method that can be more simply and easily manufacture an inductor such as a transformer or a choke transformer.
본 발명이 해결하려는 과제는 위 과제에 제한되지 않고, 언급되지 않은 기타 과제들은 통상의 기술자(본 발명이 속하는 기술분야에서 통상의 지식을 가진 자)라면 아래의 기재로부터 명확하게 이해할 수 있을 것이다.The problem to be solved by the present invention is not limited to the above problem, and other problems that are not mentioned will be clearly understood by those skilled in the art from the following description.
상기 기술적 과제를 달성하고자 본 발명에 따른 인덕터는, 소정 길이의 코어 바디를 갖는 코어와 상기 코어 바디의 둘레에 권선된 코일을 포함하는 코어 어셈블리; 및 도자성 물질을 함유하여 형성되며 상기 코어 어셈블리가 삽입되어 상기 코어 어셈블리의 외각에서 상기 코일의 적어도 일부분을 감싸도록 형성되어 상기 코일의 전류 흐름에 따라 생성되는 자기력선의 외부확산을 제한하여 상기 자기력선을 집속시키는 집속커버를 포함하여 구성될 수 있다.In accordance with an aspect of the present invention, an inductor includes a core assembly including a core having a core body having a predetermined length and a coil wound around the core body; And a magnetic material line, wherein the core assembly is inserted to surround at least a portion of the coil at an outer side of the core assembly, thereby limiting external diffusion of the magnetic force line generated according to the current flow of the coil. It may be configured to include a focusing cover to focus.
바람직하게는 상기 코어 어셈블리는, 상기 코어 바디의 길이방향 양단 중 어느 하나 또는 양단 모두에 도자성 물질로 형성된 플랜지가 구비되어 수직단면이 I형 또는 T형인 코어를 포함하여 구성될 수 있다.Preferably, the core assembly may include a core having a flange formed of a magnetic material at one or both ends of the longitudinal body of the core body and having a vertical cross section having an I-type or a T-type.
보다 바람직하게는 상기 플랜지는, 상기 플랜지 상의 내부 원주의 수직 단면적과 상기 코어 바디의 수평 단면적이 서로 동일하도록 중심부로부터 측면으로 향할수록 두께가 얇아지도록 형성될 수 있다. More preferably, the flange may be formed such that the thickness becomes thinner from the center toward the side such that the vertical cross sectional area of the inner circumference on the flange and the horizontal cross sectional area of the core body are the same.
또는 상기 코어 어셈블리는, 상기 코어 바디의 길이 방향 양단 중 어느 하나 또는 양단 모두에 비도자성 물질로 형성된 갭 플랜지를 구비하여 수직단면이 I형 또는 T형인 코어를 포함할 수 있다.Alternatively, the core assembly may include a core having a vertical flange having an I-type or T-type with a gap flange formed of a non-conductive material at either or both ends of the longitudinal body.
나아가서 상기 코어 어셈블리는, 상기 코어 바디의 길이 방향 양단 중 어느 하나에는 도자성 물질로 형성된 플랜지가 구비되고 다른 하나에는 비도자성 물질로 형성된 갭 플랜지를 구비하여 수직단면이 I형인 코어를 포함할 수 있다.Further, the core assembly may include a core having a vertical cross-section of an I-type having a flange formed of a magnetic material at one of both ends of the core body in the longitudinal direction and a gap flange formed of a non-magnetic material at the other. .
또한 상기 코어 어셈블리는, 상기 코어 바디가 중심부에 삽입된 보빈; 및 상기 보빈의 둘레에 권선된 코일을 포함할 수 있다.The core assembly may further include a bobbin in which the core body is inserted into a central portion thereof; And it may include a coil wound around the bobbin.
바람직하게는 상기 코어 어셈블리는, 상기 코어의 일부분 또는 전체에 형성된 절연층; 및 상기 절연층이 형성된 상기 코어의 일부분에 권선된 코일을 포함할 수 있다.Preferably the core assembly, the insulating layer formed on part or all of the core; And a coil wound around a portion of the core in which the insulating layer is formed.
보다 바람직하게는 상기 집속커버는, 양단이 관통되어 개구부가 형성되며, 상기 코어 어셈블리가 삽입되어 상기 코일의 둘레 외측을 둘러싸도록 구비된 원형 또는 다각형의 파이프 구조로 형성될 수 있다.More preferably, the focusing cover may be formed in a circular or polygonal pipe structure provided with openings formed at both ends thereof to insert the core assembly to surround the outer circumference of the coil.
여기서 상기 집속 커버는, 길이방향으로 수직 분할된 복수개의 집속 커버 조각이 결합되어 구성될 수 있다.Here, the focusing cover may be configured by combining a plurality of focusing cover pieces vertically divided in the longitudinal direction.
나아가서 집속 커버는, 측면 둘레를 따라서 일정 간격씩 이격되어 복수개의 관통홀이 형성될 수도 있다.Further, the focusing cover may be spaced apart at regular intervals along the side circumference to form a plurality of through holes.
또는 상기 집속 커버는, 측면의 상부 또는 하부로부터 길이방향으로 일정 간격씩 이격되어 복수개의 홈이 형성되거나, 측면의 상부와 하부를 교번하여 번갈아 길이방향으로 일정 간격씩 이격되어 복수개의 홈이 형성될 수도 있다.Alternatively, the focusing cover may be provided with a plurality of grooves spaced apart at regular intervals in the longitudinal direction from the upper or lower side of the side surface, or alternately spaced at regular intervals in the longitudinal direction alternately with the upper and lower sides of the side surfaces to form a plurality of grooves. It may be.
나아가서 상기 집속커버는, 일단에 개구부가 형성되고 타단에 차폐부가 형성되며, 상기 코어 어셈블리가 상기 개구부로 삽입되어 상기 코일의 둘레 외측을 둘러싸도록 구비된 컵 구조로 형성될 수도 있다.Further, the focusing cover may have a cup structure in which an opening is formed at one end and a shielding part is formed at the other end, and the core assembly is inserted into the opening to surround the outer circumference of the coil.
한 걸음 더 나아가서 상기 집속커버는, 상기 코어 어셈블리의 상단부가 삽입되는 컵 구조로 형성된 상부 집속 커버; 및 상기 코어 어셈블리의 하단부가 삽입되는 컵 구조로 형성된 하부 집속 커버를 포함할 수도 있다.Further, the focusing cover may include: an upper focusing cover formed of a cup structure into which an upper end of the core assembly is inserted; And a lower focusing cover formed of a cup structure into which the lower end of the core assembly is inserted.
바람직하게는 상기 집속 커버는, 상기 일단으로부터 상기 타단까지 측면이 개방된 복수개의 개방부가 형성될 수 있다.Preferably, the focusing cover may be formed with a plurality of openings whose sides are opened from the one end to the other end.
또한 상기 집속 커버는, 상기 차폐부가 중심으로부터 외각으로 펼쳐지는 복수개의 부채꼴 형태 또는 십자형태로 형성되며, 상기 차폐부의 형태에 대응하여 상기 개방부가 형성될 수도 있다.In addition, the focusing cover may be formed in a plurality of fan-shaped or cross-shaped shapes in which the shielding part is unfolded from the center to the outside, and the opening part may be formed in correspondence with the shape of the shielding part.
나아가서 상기 집속 커버의 차폐부 내면에는, 상기 코어 어셈블리의 상부 끝단 형상에 대응된 결합홈이 형성되며, 상기 코어 어셈블의 상부 끝단이 상기 결합홈에 끼워져서 체결될 수 있다.Furthermore, a coupling groove corresponding to an upper end shape of the core assembly may be formed on an inner surface of the shielding part of the focusing cover, and the upper end of the core assembly may be fitted into the coupling groove to be fastened.
다른 형태의 상기 집속 커버는, 원형 또는 다각형 파이프의 양단에 차폐부가 형성되어 상기 코어 어셈블리가 수용되는 공간을 갖는 밀폐형 통 구조로 형성되되, 길이방향으로 수직 분할된 복수개의 집속 커버 조각이 결합되어 구성될 수 있다.The focusing cover of another form is formed in a closed cylindrical structure having a space in which shields are formed at both ends of a circular or polygonal pipe to accommodate the core assembly, and a plurality of focusing cover pieces vertically divided in the longitudinal direction are combined. Can be.
여기서 집속 커버는, 상기 상면으로부터 상기 하면까지 측면이 개방된 복수개의 개방부가 형성될 수도 있다.Here, the focusing cover may be formed with a plurality of openings whose side surfaces are open from the upper surface to the lower surface.
또 다른 형태의 상기 집속커버는, 일정 두께를 갖는 사각형 틀 구조로 형성되며, 상기 코어 어셈블리가, 상기 집속 커버에 삽입되되 길이방향으로 상기 집속 커버의 사각형 틀에 끼워질 수 있다.In another embodiment, the focusing cover may have a rectangular frame structure having a predetermined thickness, and the core assembly may be inserted into the focusing cover but fitted to the rectangular frame of the focusing cover in a longitudinal direction.
한걸음 더 나아가서 다른 형태의 상기 집속커버는, 상기 코어 어셈블리의 길이방향 외면에 대응되는 면을 가지고 상기 코어 어셈블리의 외각을 따라 서로 일정 간격 이격되어 배치된 복수개의 지지부재; 및 상기 지지부재 사이에서 상기 지지부재 간을 연결하는 연결부재를 포함할 수도 있다.Further, the focusing cover in another form may include a plurality of support members having a surface corresponding to a longitudinal outer surface of the core assembly and spaced apart from each other by a predetermined distance along an outer angle of the core assembly; And a connecting member connecting the supporting members between the supporting members.
바람직하게는 상기 지지부재는, 수평 단면이 세 개의 면을 갖되, 하나의 면은 상기 코어 어셈블리의 외면에 대응되고, 두 개의 면은 서로 직각을 이루며, 네 개의 상기 지지부재가 상기 코어 어셈블리의 외각을 따라 서로 일정 간격 이격되어 배치되어, 상기 집속 커버의 수평 단면 외각이 사각형을 이룰 수도 있다.Preferably, the support member has a horizontal cross section having three surfaces, one surface corresponding to the outer surface of the core assembly, two surfaces perpendicular to each other, and the four support members are the outer angle of the core assembly. Along each other is spaced apart from each other, the horizontal cross section of the focusing cover may form a square.
보다 바람직하게는 상기 코어 어셈블리를 상기 집속 커버의 내부 상의 기설정된 위치에 고정시키면서 상기 코어 어셈블리와 상기 집속 커버 간의 일정 부분에 대한 이격 거리를 유지시키도록 상기 플랜지 또는 갭 플랜지의 끝단과 상기 집속 커버의 일단에는 상호 대응되어 체결되는 결합부가 형성될 수도 있다.More preferably, the end of the flange or gap flange and the focusing cover may be fixed to maintain the separation distance between the core assembly and the focusing cover at a predetermined position on the inside of the focusing cover. One end may be coupled to each other coupled to each other.
다른 형태의 코어 어셈블리는, 제1 코일이 권선된 제1 코어 바디; 제2 코일이 권선된 제2 코어 바디; 및 상기 제1 코일과 제2 코일 사이에 위치된 갭 플랜지를 포함할 수도 있다.Another type of core assembly includes a first core body wound around a first coil; A second core body wound around a second coil; And a gap flange positioned between the first coil and the second coil.
나아가서 본 발명에 따른 하이브리드 인덕터는, 소정 길이의 코어 바디를 갖는 코어와 상기 코어 바디의 둘레에 권선된 코일을 포함하는 코어 어셈블리; 및 도자성 물질을 함유하여 형성되며 상기 코어 어셈블리가 삽입되어 상기 코어 어셈블리의 외각에서 상기 코일의 적어도 일부분을 감싸도록 형성되어 상기 코일의 전류 흐름에 따라 생성되는 자기력선의 외부확산을 제한하여 상기 자기력선을 집속시키는 집속커버를 포함하는 제1 인덕터와; 상기 집속 커버에 길이방향으로 권선된 토로이덜 코일을 포함하는 제2 인덕터를 포함하여 구성될 수 있다.Furthermore, the hybrid inductor according to the present invention comprises a core assembly comprising a core having a core body of a predetermined length and a coil wound around the core body; And a magnetic material line, wherein the core assembly is inserted to surround at least a portion of the coil at an outer side of the core assembly, thereby limiting external diffusion of the magnetic force line generated according to the current flow of the coil. A first inductor including a focusing cover to focus; It may be configured to include a second inductor including a toroidal coil wound in the longitudinal direction to the focusing cover.
바람직하게는 상기 제1 인덕터는, 측면의 상부 또는 하부로부터 길이방향으로 일정 간격씩 이격되어 복수개의 홈이 형성되거나, 측면의 상부와 하부를 교번하여 번갈아 길이방향으로 일정 간격씩 이격되어 복수개의 홈이 형성된 집속 커버를 포함하여 구성되며, 상기 제2 인덕터의 토로이덜 코일은 상기 집속 커버의 홈에 권선될 수 있다.Preferably, the first inductor is spaced apart at regular intervals in the longitudinal direction from the upper or lower side of the side surface to form a plurality of grooves, or alternately spaced at regular intervals in the longitudinal direction by alternating the upper and lower sides of the plurality of grooves. And a formed focusing cover, and the toroidal coil of the second inductor may be wound around the groove of the focusing cover.
나아가서 상기 집속 커버의 표면에 코팅된 절연층을 포함하며, 상기 토로이덜 코일은 절연층에 권선될 수 있다.Furthermore, it includes an insulating layer coated on the surface of the focusing cover, wherein the toroidal coil may be wound on the insulating layer.
또는 상기 제1 인덕터는, 상기 코어 어셈블리의 길이방향 외면에 대응되는 면을 가지고 상기 코어 어셈블리의 외각을 따라 서로 일정 간격 이격되어 배치된 복수개의 지지부재; 및 상기 지지부재 사이에서 상기 지지부재 간을 연결하는 연결부재를 포함하는 집속 커버를 포함하여 구성되며, 상기 제2 인덕터의 토로이덜 코일은 상기 연결부재에 권선될 수도 있다.Alternatively, the first inductor may include: a plurality of support members having a surface corresponding to a longitudinal outer surface of the core assembly and spaced apart from each other by a predetermined distance along an outer angle of the core assembly; And a focusing cover including a connecting member connecting the supporting members between the supporting members, and the toroidal coil of the second inductor may be wound around the connecting member.
또한 소정 길이의 코어 바디를 갖는 코어와 상기 코어 바디의 둘레에 권선된 코일을 포함하는 코어 어셈블리; 및 도자성 물질을 함유하여 형성되며 상기 코어 어셈블리가 삽입되어 상기 코어 어셈블리의 외각에서 상기 코일의 적어도 일부분을 감싸도록 형성되어 상기 코일의 전류 흐름에 따라 생성되는 자기력선의 외부확산을 제한하여 상기 자기력선을 집속시키는 집속커버를 포함하는 제1 인덕터와; 상기 집속 커버의 상부에 이격되어 복수개의 지지 다리로 상기 집속커버에 연결된 인덕터 링과 상기 인덕터 링에 토로이덜 형태로 권선된 코일을 포함하는 제2 인덕터를 포함하여 구성될 수도 있다.A core assembly comprising a core having a core body of a predetermined length and a coil wound around the core body; And a magnetic material line, wherein the core assembly is inserted to surround at least a portion of the coil at an outer side of the core assembly, thereby limiting external diffusion of the magnetic force line generated according to the current flow of the coil. A first inductor including a focusing cover to focus; A second inductor may include an inductor ring spaced apart from an upper portion of the focusing cover and connected to the focusing cover with a plurality of support legs, and a coil wound in a toroidal shape on the inductor ring.
나아가서 본 발명에 따른 인덕터 제조 방법은, 도자성을 갖는 강판을 일정 회수 감아 단면이 원형 또는 다각형인 코어 바디를 제조하는 코어 바디 제조 단계; 상기 코어 바디의 중단 부분에 상기 코어 바디를 둘러싸며 코일을 권선하여 코어 어셈블리를 제조하는 코어 어셈블리 제조 단계; 도자성 물질을 함유하며 상기 코어 어셈블리의 단면에 대응되는 개구부가 형성된 집속커버를 제조하는 집속 커버 제조 단계; 및 상기 코어 어셈블리의 외각에서 상기 코일의 적어도 일부분을 감싸도록 집속 커버에 상기 코어 어셈블리를 삽입하는 집속 커버 형성 단계를 포함하여 구성될 수 있다.Furthermore, the inductor manufacturing method according to the present invention, the core body manufacturing step of manufacturing a core body of a round or polygonal cross-section wound a certain number of magnetic steel sheet; A core assembly manufacturing step of manufacturing a core assembly by winding a coil surrounding the core body at a stop portion of the core body; A focusing cover manufacturing step of manufacturing a focusing cover containing a magnetic material and having an opening corresponding to a cross section of the core assembly; And a focusing cover forming step of inserting the core assembly into a focusing cover to surround at least a portion of the coil at an outer side of the core assembly.
바람직하게는 상기 집속 커버 제조 단계는, 상기 코어 어셈블리가 삽입되어 상기 코어 어셈블리를 둘러싸는 관통 공간을 갖도록 도자성을 갖는 강판을 일정 회수 감아 형성할 수 있다.Preferably, in the focusing cover manufacturing step, the core assembly may be inserted into a predetermined number of times to form a steel plate having a magnetic property so as to have a through space surrounding the core assembly.
보다 바람직하게는 상기 코어 바디의 단면 직경에 대응되는 관통 공간을 갖도록 도자성을 갖는 강판을 일정 회수 감아 플랜지를 제조하는 플랜지 제조 단계를 더 포함하며, 상기 코어 어셈블리 제조 단계는, 상기 코어 바디의 상단 또는 하단 중 어느 하나 이상에 상기 플랜지를 끼워 상기 코어 바디에 상기 플랜지를 결합하는 단계; 및 상기 코어 바디의 중단 부분에 상기 코어 바디를 둘러싸며 권선된 코일을 형성하는 단계를 포함할 수도 있다.More preferably, the method further includes a flange manufacturing step of manufacturing a flange by winding a predetermined number of magnetic steel sheets to have a through space corresponding to the cross-sectional diameter of the core body, wherein the core assembly manufacturing step includes: an upper end of the core body Or fitting the flange to the core body by fitting the flange to at least one of lower ends; And forming a coil wound around the core body at a stop portion of the core body.
나아가서 상기 코어 바디 제조 단계는, 도자성을 갖는 강판을 일정 회수 감아 단면이 원형 또는 다각형인 코어 바디를 제조하는 단계; 및 상기 코어 바디의 외면을 절연 물질로 코팅하거나 상기 코어 바디의 직경에 대응되는 관통홀이 형성된 절연부재에 상기 코어 바디를 삽입하는 단계를 포함할 수도 있다.Furthermore, the core body manufacturing step may include: manufacturing a core body having a circular or polygonal cross section wound by winding a steel plate having a magnetic conductivity; And coating the outer surface of the core body with an insulating material or inserting the core body into an insulating member having a through hole corresponding to the diameter of the core body.
이와 같은 본 발명에 따른 자기 집속 구조를 갖는 인덕터에 의하면, 집속커버에 의하여 자기력선이 집속됨으로써 초크 트랜스포머나 변압기 등으로 적용되는 인덕터의 효율을 보다 향상시킬 수 있고, 코어 어셈블리의 코일 사용량을 상대적으로 줄일 수 있어 제조비용을 절감할 수 있으며, 초크 트랜스나 변압기 등에 이용되는 인덕터를 더 콤팩트화시킬 수 있어 설치 시의 점유면적을 줄일 수 있다.According to the inductor having a magnetic focusing structure according to the present invention, by focusing the magnetic force lines by the focusing cover, the efficiency of the inductor applied to the choke transformer or transformer can be further improved, and the coil usage of the core assembly can be relatively reduced. The manufacturing cost can be reduced, and the inductor used in the choke transformer or transformer can be made more compact, thereby reducing the footprint of the installation.
또한 본 발명에서는 갭 플랜지를 적용하여 갭 플랜지의 두께에 따른 자기저항(reluctance)으로 인덕터의 인덕턴스(inducetance) 조절이 용이하며, 특히 I자형이나 T자형 코어의 구조상 공극(air gap) 적용이 용이하지 않은 문제점을 해결할 수 있으며, 나아가서 갭 플랜지를 일자형 또는 T 자형 코어에 적용하여 코일의 권선을 용이하게 하고 권선된 코일이 이탈되는 것을 방지할 수 있다.In addition, in the present invention, the inductance of the inductor can be easily adjusted by the reluctance according to the thickness of the gap flange by applying a gap flange, and in particular, it is not easy to apply an air gap in the structure of an I-shaped or T-shaped core. In addition, the gap flange may be applied to a straight or T-shaped core to facilitate winding of the coil and prevent the wound coil from being separated.
나아가서 본 발명에서는 보빈을 제거하고 절연층으로 대체하는 구성을 통해 제조공정의 단순화 및 제조비용의 절감과 동시에 보빈을 이용하는 경우와 비교하여 인덕터의 전체적인 체적과 설치면적이 작아지고 코일의 사용량을 감소시키는 등 자원의 효율적 이용이라는 부가적 효과도 얻을 수 있다.Furthermore, the present invention simplifies the manufacturing process and reduces the manufacturing cost by removing the bobbin and replacing the insulating layer, and at the same time, the overall volume and the installation area of the inductor are smaller and the coil usage is reduced compared to the case of using the bobbin. The additional effect of efficient use of resources is also obtained.
그리고 본 발명에서의 집속 커버는 적정 두께를 보장하기 위해 완전한 원통형이 아닌 일정 부위를 제거하거나 개방부를 적용하여, 이를 통해 내부 코일에서 발생한 열이 대기 중으로 쉽게 발열될 수 있어 코일의 온도를 낮출 수 있으며, 집속 커버를 제조하기 위한 재료를 절약하면서도 자기력선을 효과적으로 집속시키는 인덕터의 제공이 가능해진다.And the focusing cover in the present invention by removing a certain portion that is not a full cylindrical or open to ensure the appropriate thickness, through which heat generated in the internal coil can be easily generated in the air can lower the temperature of the coil In addition, it is possible to provide an inductor that effectively focuses magnetic field lines while saving material for manufacturing the focusing cover.
한걸음 더 나아가서 본 발명에서는 플랜지의 두께를 조절한 코어를 적용함으로써 E-E형 코어와 유사하게 폐루프를 형성하는 자기력선이 동일한 단면적으로 통과할 수 있는 코어를 제공하며, 또한 종래의 코어와 동일한 전체 길이를 가지면서도 권선 수를 늘리거나 동일한 권선수를 가지면서도 코어의 전체 길이를 줄일 수 있는 구조로서 인덕터의 성능을 향상시키면서 전체적인 크기를 줄일 수 있다. Furthermore, the present invention provides a core through which the magnetic force lines forming closed loops can pass through the same cross-sectional area, and the same overall length as that of a conventional core by applying a core having a flange-adjusted thickness. The structure can increase the number of turns while having the same number of turns, but can reduce the overall length of the core while reducing the overall size while improving the performance of the inductor.
본 발명에 따른 하이브리드 인덕터는, 초크 트랜스포머 등으로 이용되는 제1 인덕터와 스위칭 소자를 트리거하기는 오실레이터 등으로 이용되는 제2 인덕터를 하나로 패키지화시켜 부품의 집적도를 더욱 높이면서 전체적으로 전기,전자 기기의 소형화에 기여할 수 있다.In the hybrid inductor according to the present invention, the first inductor used as a choke transformer or the like and the second inductor used as an oscillator to trigger the switching element are packaged into one to further increase the integration of components while miniaturizing the overall electrical and electronic devices. Can contribute to
또한 본 발명에 따른 자기 집속 구조를 갖는 인덕터의 제조 방법은 강판을 롤 형태로 감아 코어를 제작하므로, 기존의 위험하고 복잡한 프레스 가공 공정을 제거함으로써 보다 간단하고 안전한 공정을 통해 인덕터의 제조가 가능해져 제조 단가를 낮출 수 있으며, 특히 코어를 이루는 강판의 두께와 롤 형태로 감기는 회수의 선택적 조절이 가능하므로 코일의 권선수에 의존하지 않고 코어 자체를 조절하여 인덕터의 특성 조절이 가능해진다.In addition, the method of manufacturing an inductor having a self-focusing structure according to the present invention manufactures a core by winding a steel sheet in the form of a roll, thereby making it possible to manufacture the inductor through a simpler and safer process by eliminating the existing dangerous and complicated press working process. The manufacturing cost can be lowered, and in particular, since the thickness of the steel sheet constituting the core and the number of windings in the form of rolls can be selectively controlled, the characteristics of the inductor can be adjusted by adjusting the core itself without depending on the number of turns of the coil.
도 1은 일반적인 초크 트랜스포머로서 기능할 수 있는 인덕터의 예를 도시한 단면도이며,1 is a cross-sectional view showing an example of an inductor that can function as a general choke transformer,
도 2는 인덕터에서 생성되는 자기력의 예를 도시하며,2 shows an example of a magnetic force generated in an inductor,
도 3은 도시된 인덕터의 공극(air gap) 개념도를 도시하며,3 shows a schematic diagram of an air gap of the inductor shown,
도 4는 본 발명에 따른 인덕터의 제1 실시예에 대한 사시도를 도시하며, 4 shows a perspective view of a first embodiment of an inductor according to the invention,
도 5는 상기 도 4의 제1 실시예의 변형된 집속 커버에 대한 분리 사시도를 도시하며,FIG. 5 is an exploded perspective view of the modified focusing cover of the first embodiment of FIG. 4;
도 6은 상기 도 4의 제1 실시예에 대한 단면도를 도시하며,6 shows a sectional view of the first embodiment of FIG. 4,
도 7은 상기 도 6에 도시된 본 발명에 따른 인덕터에서 생성되는 자기력선의 예를 도시하며, FIG. 7 shows an example of magnetic field lines generated in the inductor according to the present invention shown in FIG. 6,
도 8은 상기 도 4의 제1 실시예에 대한 변형 실시예의 단면도를 도시하며,8 shows a cross-sectional view of a variant embodiment of the first embodiment of FIG. 4,
도 9는 본 발명에서 제시하는 자기력선 진행 방향의 동일 단면적을 갖는 코어의 개념도를 도시하며,9 is a conceptual diagram of a core having the same cross-sectional area in the magnetic force line traveling direction proposed in the present invention,
도 10은 상기 도 9의 본 발명에 따른 코어의 단면도를 도시하며,10 shows a cross-sectional view of the core according to the invention of FIG. 9,
도 11은 본 발명에 따른 인덕터의 집속 커버에 대한 다양한 예를 도시하며,11 shows various examples of the focusing cover of the inductor according to the present invention,
도 12는 본 발명에 따른 인덕터에서 코어 어셈블리와 집속 커버의 체결 구조에 대한 실시예를 도시하며,12 shows an embodiment of the fastening structure of the core assembly and the focusing cover in the inductor according to the present invention,
도 13은 본 발명에 따른 인덕터의 제2 실시예에 대한 사시도를 도시하며,13 shows a perspective view of a second embodiment of an inductor according to the invention,
도 14는 상기 도 13의 제2 실시예에 대한 단면도를 도시하며,FIG. 14 shows a sectional view of the second embodiment of FIG. 13;
도 15는 상기 도 13의 제2 실시예에 대한 변형 실시예의 단면도를 도시하며,FIG. 15 shows a sectional view of a modified embodiment of the second embodiment of FIG. 13;
도 16은 상기 도 13의 제2 실시예에 대한 또다른 변형 실시예의 사시도를 도시하며,FIG. 16 shows a perspective view of another modified embodiment of the second embodiment of FIG. 13;
도 17은 본 발명에 따른 인덕터의 제3 실시예에 대한 사시도를 도시하며,17 shows a perspective view of a third embodiment of an inductor according to the invention,
도 18은 상기 도 17의 제3 실시예에 대한 변형 실시예의 사시도를 도시하며,FIG. 18 shows a perspective view of a modified embodiment of the third embodiment of FIG. 17;
도 19는 본 발명에 따른 인덕터의 제4 실시예에 대한 사시도를 도시하며,19 shows a perspective view of a fourth embodiment of an inductor according to the present invention;
도 20는 상기 도 19의 제4 실시예에 대한 변형 실시예의 사시도를 도시하며,20 shows a perspective view of a modification to the fourth embodiment of FIG. 19,
도 21은 본 발명에 따른 인덕터의 제5 실시예에 대한 사시도를 도시하며,21 shows a perspective view of a fifth embodiment of an inductor according to the present invention;
도 22는 상기 도 21의 제5 실시예에 대한 변형 실시예의 사시도를 도시하며,FIG. 22 shows a perspective view of a modified embodiment of the fifth embodiment of FIG. 21;
도 23은 본 발명에 따른 인덕터의 제6 실시예에 대한 사시도를 도시하며,23 shows a perspective view of a sixth embodiment of an inductor according to the present invention;
도 24는 상기 도 23의 제6 실시예에 대한 단면도를 도시하며,FIG. 24 shows a sectional view of the sixth embodiment of FIG. 23;
도 25는 본 발명에 따른 인덕터의 제7 실시예에 대한 사시도를 도시하며,25 shows a perspective view of a seventh embodiment of an inductor according to the present invention;
도 26은 본 발명에 따른 인덕터의 제8 실시예에 대한 사시도를 도시하며,26 shows a perspective view of an eighth embodiment of an inductor according to the present invention;
도 27은 본 발명에 따른 인덕터의 제9 실시예에 대한 사시도를 도시하며,27 shows a perspective view of a ninth embodiment of an inductor according to the invention,
도 28은 본 발명에 따른 인덕터의 제10 실시예에 대한 사시도를 도시하며,28 shows a perspective view of a tenth embodiment of an inductor according to the present invention;
도 29는 본 발명에 따른 인덕터의 제11 실시예에 대한 사시도를 도시하며,29 shows a perspective view of an eleventh embodiment of an inductor according to the present invention;
도 30은 본 발명에 따른 인덕터의 제조 방법에 대한 공정 실시예를 도시하며,30 shows a process embodiment for a method of manufacturing an inductor according to the present invention,
도 31은 본 발명에 따른 인덕터의 제조 방법에서 코어 어셈블리를 제조하는 공정에 대한 다양한 변형 실시예를 도시하며,FIG. 31 illustrates various modified embodiments of a process of manufacturing a core assembly in a method of manufacturing an inductor according to the present invention.
도 32는 본 발명에 따른 하이브리드 인덕터의 제1 실시예를 도시하며,32 shows a first embodiment of a hybrid inductor according to the present invention,
도 33은 본 발명에 따른 하이브리드 인덕터에서의 자기력선을 도시하며,33 illustrates magnetic field lines in a hybrid inductor according to the present invention,
도 34는 본 발명에 따른 하이브리드 인덕터의 제2 실시예를 도시하며,34 shows a second embodiment of a hybrid inductor according to the present invention,
도 35는 본 발명에 따른 하이브리드 인덕터의 제3 실시예를 도시하며,35 shows a third embodiment of a hybrid inductor according to the present invention,
도 36은 본 발명에 따른 하이브리드 인덕터의 제4 실시예를 도시한다.36 shows a fourth embodiment of the hybrid inductor according to the present invention.
본 발명과 본 발명의 동작상의 이점 및 본 발명의 실시에 의하여 달성되는 목적을 설명하기 위하여 이하에서는 본 발명의 바람직한 실시예를 예시하고 이를 참조하여 살펴본다.In order to explain the present invention, the operational advantages of the present invention, and the objects achieved by the practice of the present invention, the following describes exemplary embodiments of the present invention and looks at it with reference.
먼저, 본 출원에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로서, 본 발명을 한정하려는 의도가 아니며, 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함할 수 있다. 또한 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서 상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.First, the terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention, and singular forms may include plural forms unless the context clearly indicates otherwise. Also in this application, terms such as "comprise" or "have" are intended to indicate that there is a feature, number, step, action, component, part, or combination thereof described on the specification, one or more other It is to be understood that the present invention does not exclude the possibility of adding or presenting features or numbers, steps, operations, components, components, or combinations thereof.
본 발명을 설명함에 있어서, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략한다.In describing the present invention, when it is determined that the detailed description of the related well-known configuration or function may obscure the gist of the present invention, the detailed description thereof will be omitted.
본 발명에서는, 첫째 집속 커버를 통해 자기집속 구조를 갖는 인덕터, 둘째 자기력선이 통과하는 면적이 동일하도록 플랜지 두께가 조절된 코어, 셋째 권선 가이드 기능 또는 공극(air gap) 기능의 갭 플랜지를 적용한 자기집속 구조를 갖는 인덕터, 넷째 갭 플랜지로 구획된 제1 코일과 제2 코일이 권선된 인덕터, 다섯째 자기집속 구조를 갖는 인덕터의 제조 방법 및 여섯째 하이브리드 인덕터를 개시하며, 이하에서는 순차적으로 각각의 실시예를 통해 본 발명에 대하여 살펴보기로 한다.In the present invention, the first focusing inductor having a magnetic focus structure through the focusing cover, the second through the magnetic field line of the magnetic field of the flange thickness is adjusted so that the same, the third winding guide function or air gap (gap) gap gap applied self-focusing An inductor having a structure, a first coil wound by a fourth gap flange and an inductor wound around a second coil, a manufacturing method of an inductor having a fifth self-focusing structure, and a sixth hybrid inductor are described below. Through the present invention will be described.
먼저, 본 발명의 첫번째 주된 특징으로서 집속 커버를 통해 자기집속 구조를 갖는 인덕터를 살펴보기로 한다.First, the inductor having a self-focusing structure through the focusing cover will be described as the first main feature of the present invention.
도 4는 본 발명에 따른 인덕터의 제1 실시예에 대한 사시도를 도시한다.4 shows a perspective view of a first embodiment of an inductor according to the invention.
본 발명의 따른 자기 집속 구조를 갖는 인덕터의 제1 실시예에서 인덕터(100)는 코어 어셈블리(110)와 코어 어셈블리(110)가 삽입된 집속 커버(160)로 구성된다. 집속 커버(160)는 코어 어셈블리의 코일의 전류 흐름에 따라 생성되는 자기력선이 외부로 확산되는 것을 제한하여 자기력선을 집속시키는데, 이를 위해 집속 커버(160)는 자기력선이 집속 커버(160)의 면을 따라서 흐를 수 있도록 도자성 물질을 함유하여 형성된다.In the first embodiment of the inductor having a magnetic focusing structure according to the present invention, the inductor 100 is composed of a core assembly 110 and a focusing cover 160 into which the core assembly 110 is inserted. The focusing cover 160 focuses the magnetic force lines by restricting the diffusion of the magnetic force lines generated by the current flow of the coil of the core assembly to the outside. For this purpose, the focusing cover 160 has a magnetic force line along the surface of the focusing cover 160. It is formed by containing a magnetic material to flow.
상기 도 4에 도시된 제1 실시예에서 집속 커버(160)는 양단이 관통된 개구부(161, 162)가 형성된 원통의 파이프 구조이며, 집속 커버(160)가 어셈블리(110)의 코일을 감싸도록 집속 커버(160)의 개구부(161, 162)에 코어 어셈블리(110)가 삽입된 구조이다. 여기서 집속 커버(160)는 원통형 외에도 사각형 등의 다각형 파이프로 형성될 수 있다.In the first embodiment illustrated in FIG. 4, the focusing cover 160 is a cylindrical pipe structure having openings 161 and 162 through which both ends penetrate, and the focusing cover 160 surrounds the coil of the assembly 110. The core assembly 110 is inserted into the openings 161 and 162 of the focusing cover 160. The focusing cover 160 may be formed of a polygonal pipe such as a square in addition to the cylindrical shape.
또한 도 5는 상기 도 4에 도시된 제1 실시예의 변형된 집속 커버에 대한 분리 사시도를 도시하는데, 상기 도 5에 도시된 바와 같이 파이프 구조의 집속 커버(160)를 길이방향으로 수직 분할된 복수개의 집속 커버 조각들(a, b)이 결합하여 구성할 수도 있다. 이와 같이 분할된 복수개의 집속 커버 조각들(a b)를 결합하여 집속 커버(160)를 구성함으로써 코어 어셈블리(110)의 형태와 상관없이 코어 어셈블리(110)를 집속 커버(160)에 수용하는 것이 용이해진다.FIG. 5 is an exploded perspective view of the modified focusing cover of the first embodiment illustrated in FIG. 4, wherein a plurality of pipe focusing covers 160 are vertically divided in the longitudinal direction as illustrated in FIG. 5. The two focusing cover pieces (a, b) may be configured in combination. By combining the plurality of focusing cover pieces ab divided in this way to form the focusing cover 160, it is easy to accommodate the core assembly 110 in the focusing cover 160 regardless of the shape of the core assembly 110. Become.
상기 제1 실시예를 좀 더 구체적으로 살펴보기 위해 도 6에 도시된 제1 실시예에 대한 단면도를 참고하면, 코어 어셈블리(110)에서 코어(120)는 코어 바디(121)의 상부와 하부에 각각 플랜지(123, 124)가 형성된 I형 코어로서 코어 바디(121)가 코일(150)이 권선된 보빈(140)에 삽입되어 있다. 여기서 코어 바디(121)와 플랜지(123, 124)는 페라이트, 규소강(silicon steel), 일반 강 등을 비롯하여 자기력이 통하는 각종 재료로 구성될 수 있으며, 코어 어셈블리(110)에는 I자 형 코어 외에도 일자형 코어, T자형 코어 등 다양한 형태의 코어가 적용될 수 있다.Referring to the cross-sectional view of the first embodiment shown in FIG. 6 to look at the first embodiment in more detail, the core 120 in the core assembly 110 is located on the upper and lower portions of the core body 121. The core body 121 is inserted into the bobbin 140 to which the coil 150 is wound, as an I type core having flanges 123 and 124, respectively. Here, the core body 121 and the flanges 123 and 124 may be made of various materials through which magnetic force is transmitted, including ferrite, silicon steel, general steel, and the like, and the core assembly 110 may include an I-shaped core. Various types of cores, such as a straight core and a T-shaped core, may be applied.
집속커버(160)는 보빈(140)의 둘레를 소정의 간격을 두고 둘러싸도록 구비된 파이프 구조로서, 집속커버(160)의 내부에는 코어 어셈블리(110)의 코일(150)이 위치된다. 이와 같은 집속커버(160)는 페라이트, 규소강(silicon steel), 일반 강 등을 비롯하여 자기력이 통하는 도자성의 각종 재료를 함유할 수 있다. 예를 들어, 집속커버(160)가, 페라이트로 구성되는 경우에는 프레스하여 성형한 후 소결하는 것에 의하여 제조할 수 있고, 규소강으로 구성하는 경우에는 인발 후 절단하는 방식이나 판재를 원형으로 구부린 다음 구부러진 양단을 접합하는 방식 등으로 제조할 수 있으며, 나아가서 판재를 원형 롤형태로 여러겹 감아서 제조할 수도 있다. The focusing cover 160 is a pipe structure provided to surround the bobbin 140 at predetermined intervals, and the coil 150 of the core assembly 110 is positioned inside the focusing cover 160. The focusing cover 160 may contain various magnetic materials through which magnetic force passes, including ferrite, silicon steel, and general steel. For example, when the focusing cover 160 is made of ferrite, the focusing cover 160 may be manufactured by pressing and molding and then sintering. In the case where the focusing cover 160 is made of silicon steel, the drawing cover or the plate may be rounded and then bent. It can be manufactured by the method of joining both bent ends, etc. Furthermore, it can also manufacture by winding several sheets in a circular roll form.
코어 어셈블리(110)와 집속 커버(160) 간은 접착제, 접착테이프, 수축튜브 등을 이용하여 결합될 수 있으며, 또는 압입과 같은 기계적 결합방식을 비롯하여 코어 어셈블리(110)와 집속 커버(160)를 견고하게 결합할 수 있는 각종 방식이 이용될 수도 있다.The core assembly 110 and the focusing cover 160 may be coupled using an adhesive, an adhesive tape, a shrinking tube, or the like, or may include a mechanical coupling method such as a press-fitting method for the core assembly 110 and the focusing cover 160. Various methods may be used that can be combined firmly.
나아가서 상기 도 4 내지 도 6의 제1 실시예에서는 코어 어셈블리(110)의 플랜지(123, 124)까지 집속 커버(160)에 삽입되는 구조로 도시되어 있으나, 적용되는 상황이나 제조 공정에 따라서는 코어 어셈블리(110)의 플랜지(123, 124) 중 어느 하나 또는 둘 모두가 집속 커버(160)에 삽입되지 않고 집속 커버(160)에 걸쳐지는 형태로 구성될 수도 있다.Furthermore, in the first embodiment of FIGS. 4 to 6, the flanges 123 and 124 of the core assembly 110 are illustrated as being inserted into the focusing cover 160, but depending on the applied situation or the manufacturing process. One or both of the flanges 123 and 124 of the assembly 110 may be configured to span the focusing cover 160 without being inserted into the focusing cover 160.
상기 제1 실시예에 코일(150)에 전류가 흐르면 코어 어셈블리(110)에는 자기력선이 생성되는데, 본 발명에서는 집속 커버(160)를 적용하여 코어 어셈블리(110)에서 생성되는 자기력선을 집속시킨다. 도 7은 상기 도 6에 도시된 본 발명에 따른 인덕터에서 생성되는 자기력선의 예를 도시하는데, 상기 도 7에서 보는 바와 같이 코어 어셈블리(110)의 코일 둘레가 도자성 물질을 함유한 집속 커버(160)로 둘러싸여 있기 때문에, 외부로 향하는 자기력선은 집속 커버(160)를 따라서 흐르게 되므로 집속커버(160)의 외부로 자기력선의 확산이 제한되면서 집속되게 된다.In the first embodiment, when a current flows in the coil 150, a magnetic force line is generated in the core assembly 110. In the present invention, the magnetic force lines generated in the core assembly 110 are focused by applying the focusing cover 160. FIG. 7 illustrates an example of magnetic force lines generated in the inductor according to the present invention illustrated in FIG. 6, and as shown in FIG. 7, the coil circumference of the core assembly 110 contains a magnetic material. Since the magnetic field lines directed to the outside flow along the focusing cover 160, the diffusion of the magnetic field lines to the outside of the focusing cover 160 is confined.
따라서 본 발명에 따른 상기 제1 실시예의 자기 집속 구조를 갖는 인덕터에서는 자기력선을 집속시켜서 인덕터의 효율을 향상시킬 수 있으며, 이로써 상기 제1실시예는 코어 어셈블리(110)의 코일(150) 사용량을 상대적으로 줄일 수 있어 제조비용을 절감할 수 있고, 초크 트랜스나 변압기 등에 이용되는 인덕터를 더 콤팩트화시킬 수 있어 설치 시의 점유면적을 줄일 수 있다. Accordingly, in the inductor having the magnetic focusing structure of the first embodiment according to the present invention, the efficiency of the inductor can be improved by focusing a magnetic force line, so that the first embodiment can relatively use the coil 150 of the core assembly 110. In addition, the manufacturing cost can be reduced, and the inductor used in the choke transformer or transformer can be made more compact, thereby reducing the footprint of the installation.
한편, 상기 제1 실시예는 코어 어셈블리(110)의 구조가 단순하여 제조비용을 더욱 절감할 수가 있으며, 또한 일반적으로 초크트랜스나 변압기의 경우에 L값 및 Q값 등 특성치를 조절하기 위해 설치되는 공극(air gap)은 손실을 피하기 위하여 코일의 권선이 되는 부근을 피하는 것이 효과적인데, E-E 코어의 경우에 공극이 양쪽 E형 코어가 서로 만나는 부위에 형성될 수밖에 없으므로 부득이하게 자기력선의 손실부에 해당하는 부위에 코일이 감기게 되며, 이때 양쪽 E형 코어가 만나는 부위인 공극 주변의 일정 부분에 위치된 코일은 실제로 기능을 하지 못하는 경향이 있다. 하지만 본 발명에 따른 제1 실시예에 의하면 공극이 코어 어셈블리(110)와 집속 커버(160)가 접촉되는 부분에 형성됨으로써 이 손실을 피할 수 있으므로 동일한 효과를 가지면서도 코일의 권선수를 줄일 수 있어 코일의 소모량을 추가적으로 줄일 수 있고 또한 인덕터의 체적을 전체적으로 줄일 수 있다. On the other hand, the first embodiment has a simple structure of the core assembly 110 can further reduce the manufacturing cost, and in the case of the choke transformer or transformer is generally installed to adjust the characteristic values such as L value and Q value In order to avoid loss of air gap, it is effective to avoid the area around the winding of the coil. In the case of EE core, the air gap must be formed in the area where both E-type cores meet each other, so it is inevitably corresponding to the loss of magnetic field lines. The coil is wound around the coil, and at this time, the coil located at a portion around the air gap where the two E-type cores meet tends to not function. However, according to the first embodiment of the present invention, since the gap is formed in a portion where the core assembly 110 and the focusing cover 160 are in contact with each other, this loss can be avoided, thereby reducing the number of turns of the coil while having the same effect. The coil consumption can be further reduced and the inductor volume as a whole can be reduced.
도 8은 상기 도 4의 제1 실시예에 대한 변형 실시예의 단면도를 도시하는데, 상기 도 8에서는 상기 도 6에 도시된 구성에서 보빈(140)을 제거하고 코일(150)을 코어 바디(121)에 직접 권선한 형태이다. 보빈(140)을 제거하고 코어 바디(121)에 코일(150)을 직접 권선하기 위해서 코어 바디(121)의 표면에는 절연물질로 이루어진 절연층(130)이 코팅된다. 상기 도 8에서는 코어 바디(121)와 플랜지(123, 124)에 걸쳐 전체적으로 절연층(130)이 코팅되어 있지만, 상황에 따라서는 코일(150)이 감기는 코어 바디(121)의 표면 부분에만 한정되어 코팅될 수도 있다. 나아가서 코팅 방식 외에도 다양한 방식으로 절연층(130)이 형성될 수도 있는데, 가령 별도 제작된 절연부재에 코어 바디(121)가 삽입되어 절연층(130)이 형성될 수도 있다. FIG. 8 shows a cross-sectional view of a variant embodiment of the first embodiment of FIG. 4, in which FIG. 8 removes the bobbin 140 and the coil 150 from the core body 121 in the configuration shown in FIG. 6. It is directly wound on. In order to remove the bobbin 140 and directly wind the coil 150 to the core body 121, an insulating layer 130 made of an insulating material is coated on the surface of the core body 121. In FIG. 8, the insulating layer 130 is coated on the core body 121 and the flanges 123 and 124 as a whole. However, in some cases, only the surface portion of the core body 121 to which the coil 150 is wound is limited. And may be coated. Furthermore, in addition to the coating method, the insulating layer 130 may be formed in various ways. For example, the core layer 121 may be inserted into a separately manufactured insulating member to form the insulating layer 130.
여기서 절연층(130)은 액상 실리콘, 우레탄, 또는 절연 페인트 등의 절연물질로 코팅되어 형성될 수 있고 또는 절연 테이프를 감거나 튜브 또는 플라스틱을 사출하는 등 기타의 방법으로 형성될 수 있다. The insulating layer 130 may be formed by coating with an insulating material such as liquid silicone, urethane, or insulating paint, or may be formed by other methods such as winding an insulating tape or injecting a tube or plastic.
이와 같은 상기 도 8의 실시예는 상기 도 6의 제1 실시예와 대비하여 보빈(140)을 절연층(130)으로 대체하기 때문에, 그만큼 제조공정을 단순화하여 제조비용을 절감할 수 있으며, 보빈을 이용하는 경우와 비교하여 인덕터의 전체적인 체적과 설치면적이 작아지고 코일의 사용량을 감소시키는 등 자원의 효율적 이용이라는 부가적 효과도 얻을 수 있다. Since the embodiment of FIG. 8 replaces the bobbin 140 with the insulating layer 130 in comparison with the first embodiment of FIG. 6, the manufacturing process can be simplified to reduce the manufacturing cost. Compared to the case of using the A-type inductor, the overall volume and installation area of the inductor can be reduced, and the additional effect of efficient use of resources such as reducing the amount of coil usage can be obtained.
상기 도 8의 실시예에서 보빈을 제거하는 효과에 대하여 좀 더 설명하자면, 기존에 일반적으로 많이 사용되는 E형 코어를 기본으로 하는 코어들이나 상기 도 5에 도시된 실시예의 경우에, 작업성과 절연이라는 명제를 달성하기 위해 절연체인 보빈에 코일을 감고, 코일이 감긴 보빈을 코어에 삽입하는 형태로 구성되는데, 이로 인해 보빈의 최소 두께만큼 코일이 감기는 부위의 치수가 커져서 전체적으로 코일의 사용량이 늘어나게 된다. 또한 트랜스포머에서는 자기력선의 안정적인 집속을 위하여 사용되는 코어에 일정 단면적이 필요하게 되는데, 평면으로 배치된 E형 코일의 특성상 코일의 소모량을 최적화하기 위해 코어를 설계하는 경우에 코어의 길이가 너무 커지는 문제가 발생하므로 일반적인 코어의 단면적은 직사각형 형태를 갖게 되며, 이는 결국 그만큼 코일의 길이가 길어져야 하는 문제로 연결된다. In more detail on the effect of removing the bobbin in the embodiment of Figure 8, in the case of the cores based on the E-type core commonly used in the existing or the embodiment shown in FIG. In order to achieve the proposition, the coil is wound around the insulator bobbin and the coil is wound into the core, which increases the dimensions of the coil winding area by the minimum thickness of the bobbin, thereby increasing the overall coil usage. . In addition, in the transformer, a certain cross-sectional area is required for the core used for stable focusing of the magnetic field lines. Due to the characteristics of the E-shaped coils arranged in a plane, the core length becomes too large when the core is designed to optimize the consumption of the coil. As a result, the cross-sectional area of the general core has a rectangular shape, which leads to a problem in that the length of the coil must be longer.
하지만 본 발명에서 제시하는 바와 같이 보빈을 제거하고 원형 단면을 가지는 코어에 직접 코일을 권선하는 경우에는 동일한 규격의 기존 E형 코어에 비해 약 30% 가량 코일 소비량을 줄일 수 있으며, 설사 보빈을 사용한다고 하더라도 기존 E형에 비해 약 20% 가까이 코일 소비량을 절약할 수 있게 된다. However, as shown in the present invention, when the coil is removed and the coil is wound directly on the core having a circular cross section, the coil consumption can be reduced by about 30% compared to the conventional E-type core of the same standard. Even so, the coil consumption can be reduced by nearly 20% compared to the existing E type.
좀 더 구체적으로 살펴보자면, E16형 코어의 경우에는 중앙 단면의 치수는 4.0*8.2mm이며, 이 때 코일을 감기 위한 보빈 단면의 치수는 5.7*9.6mm가 된다. 이와 같은 보빈에 0.27mm 직경의 코일을 약 250턴으로 감는 경우에 그 코일 뭉치의 치수는 약 10.2*14.3mm로서 약 9,950mm 정도의 코일 선이 필요하게 된다. 하지만 본 발명에서 적용하는 보빈을 제거하고 직접 코일이 권선되는 I형 또는 T형 코어의 중앙 단면은 약 6.5mm로서 동일한 턴수로 코일을 감는 경우에 외경 11mm의 코일 뭉치가 형성되어 약 6,870mm의 코일 선만이 필요하게 되므로 기존 E형 코어에 보빈을 이용하는 경우와 대비하여 약 31%의 코일을 절약할 수 있게 된다. More specifically, in the case of the E16 type core, the center cross section has a dimension of 4.0 * 8.2mm, and the bobbin cross section for winding the coil is 5.7 * 9.6mm. If a coil of 0.27mm diameter is wound around 250 turns on such bobbin, the coil bundle size is about 10.2 * 14.3mm and a coil wire of about 9,950mm is required. However, when the bobbin applied in the present invention is removed and the central cross section of the I-type or T-type core in which the coil is directly wound is about 6.5 mm, the coil bundle having an outer diameter of 11 mm is formed when the coil is wound with the same number of turns, thereby forming a coil of about 6,870 mm. Only the wires are needed, which saves about 31% of the coil compared to the use of bobbins on existing E-type cores.
앞서 상기 도 6을 통해 살펴본 본 발명에서와 같은 원형 단면을 가지는 I형 또는 T형 코어에 보빈을 사용하는 경우에는, 필요한 보빈의 단면경이 8.0mm로서, 이 경우 동일한 턴수의 코일 뭉치의 외경은 12.5mm가 되며 필요한 코일 선의 길이는 약 8,050mm로서 기존 E형 코어에 비해 코일을 약 19% 정도 절약할 수 있으나, 보빈을 제거한 경우에 비하면 약 15% 정도 더 많은 선이 소모된다. When the bobbin is used for an I-type or T-type core having a circular cross section as in the present invention as described above with reference to FIG. 6, the required bobbin cross section diameter is 8.0 mm, in which case the outer diameter of the coil bundle of the same turn number is 12.5. The required coil wire length is about 8,050mm, which saves about 19% of the coil compared to the existing E-type core, but consumes about 15% more wire than the bobbin is removed.
이와 같이 본 발명에 따른 자기 집속 구조를 갖는 인덕터에서 보빈을 사용하지 않는 경우에는 필요한 코어의 외경을 약 1.6mm 정도 줄일 수 있어 플랜지의 외부에 공극(air gap)을 설치한다 하더라도 외경 14mm 이내로 그 크기를 제한할 수 있어 기존 E16형 코어에 비해 그 체적은 약 30%, 설치면적은 약 15% 가량 줄어들어 적용하는 제품의 소형화에 기여할 수 있게 된다. As such, when the bobbin is not used in the inductor having the self-focusing structure according to the present invention, the required outer diameter of the core can be reduced by about 1.6 mm. Even if an air gap is provided outside the flange, the size is within 14 mm. Since the volume can be limited compared to the existing E16 type core, the volume is reduced by about 30% and the installation area by about 15%, contributing to the miniaturization of the applied product.
또한 본 발명에서는 새로운 형태의 코어를 제시하는데, 본 발명의 두번째 주된 특징인 자기력선이 통과하는 면적이 동일하도록 플랜지의 두께가 조절된 코어를 살펴본다. 본 발명에서 제시하는 코어는 코어 바디로부터 플랜지를 향해 진행되어 폐루프를 형성하는 자기력선이 동일한 단면적으로 통과할 수 있는 코어로서, 도 9는 본 발명에서 제시하는 자기력선 진행 방향의 동일 단면적을 갖는 코어의 개념도를 도시한다.In addition, the present invention proposes a new type of core, which looks at the core whose flange thickness is adjusted so that the area through which the lines of magnetic force, the second main feature of the present invention passes, is the same. The core proposed in the present invention is a core through which the magnetic force lines that travel from the core body toward the flange and form a closed loop can pass through the same cross-sectional area, and FIG. 9 illustrates a core having the same cross-sectional area of the magnetic force line traveling direction of the present invention. A conceptual diagram is shown.
상기 도 9의 (a)는 E-E형 코어로서, 코어에 권선된 코일을 통해 발생되는 자기력선이 진행하는 경로 상의 각 부분의 단면적이 동일하도록 형성된 코어인데, 코어 중심부의 단면적 A1, 코어 상부의 양측 단면적 합인 B1 및 코어 측면부의 양측 단면적 합인 C1을 동일하게 형성함으로써 코어를 통과하는 자기력선의 폐루프가 모두 동일한 단면적을 통과하게 만들어 인덕터의 효율을 향상시킨다. 9 (a) is an EE type core, which is formed to have the same cross-sectional area of each part on a path along which a magnetic force line generated through a coil wound around the core travels, and has a cross-sectional area A1 of the core center and both cross-sectional areas of the upper part of the core. By forming the sum of B1 and the sum of the cross-sectional areas of both sides of the core side, the closed loops of the magnetic force lines passing through the core all pass through the same cross-sectional area, thereby improving the efficiency of the inductor.
그러나 I자형 코어나 T자형 코어의 경우에 자기력선이 진행하는 코어의 단면적이 부분적으로 상이한데, 상기 도 9의 (b)에 도시된 바와 같이 코어 바디(121)의 단면적 A2로부터 플랜지(123)의 중심부 B2에서 외측 C2로 향할수록 단면적이 커지는데, 즉 자기력선이 통과하는 지점의 원호 반지름이 R인 경우에 자기력선이 통과하는 면적은 2πR*(플랜지 두께)로 산출되어 플랜지의 중심부로부터 외각으로 향할수록 자기력선이 통과하는 단면적은 2πR*(플랜지 두께)만큼 배로 커지게 된다. 따라서 상기 도 9의 (b)의 경우에는 A2보다 B2가 크고 B2보다 C2가 훨씬 커지는 문제점이 있다.However, in the case of the I-shaped or T-shaped core, the cross-sectional area of the core through which the magnetic force lines travel is partially different. As shown in FIG. 9B, the flange 123 is formed from the cross-sectional area A2 of the core body 121. From the center B2 toward the outer C2, the cross-sectional area becomes larger, i.e., if the arc radius of the point where the line of magnetic force passes is R, the area through which the line of magnetic force passes is calculated as 2πR * (flange thickness), The cross-sectional area through which the magnetic field lines pass is doubled by 2πR * (flange thickness). Therefore, in the case of (b) of FIG. 9, B2 is larger than A2 and C2 is much larger than B2.
본 발명에서는 자기력선의 폐루프가 모두 동일한 면적을 통과하기 위해서 플랜지 상의 내부 원주의 수직 단면적과 코어 바디의 수평 단면적이 서로 동일하도록 플랜지가 중심부로부터 측면으로 향할수록 두께가 얇아지도록 형성된다. 상기 도 9의 (c)에 도시된 바와 같이 플랜지(123')의 중심부로부터 외측을 향할수록 두께가 얇아지는데, 여기서 코어 바디(121')의 수평 단면적 A3과 플랜지(123')의 내부 원호의 수직 단면적 B3, C3 등이 모두 동일하도록 형성되며, 보다 바람직하게는 플랜지(123')가 하기 [식 1]을 만족하도록 형성될 수 있다.In the present invention, in order for the closed loops of the magnetic force lines to pass through the same area, the flanges are formed to be thinner from the center to the side so that the vertical cross sectional area of the inner circumference on the flange and the horizontal cross sectional area of the core body are the same. As shown in FIG. 9C, the thickness becomes thinner toward the outside from the center of the flange 123 ', where the horizontal cross-sectional area A3 of the core body 121' and the inner arc of the flange 123 'are formed. The vertical cross-sectional areas B3, C3, and the like are all formed to be the same, and more preferably, the flange 123 'may be formed to satisfy the following [Equation 1].
여기서 t(r)은 플랜지 두께이며, r은 플랜지의 내부 원호의 반지름이며, S는 코어 바디의 수평 단면적이다.Where t (r) is the flange thickness, r is the radius of the inner arc of the flange, and S is the horizontal cross-sectional area of the core body.
이와 같이 본 발명에서는 플랜지의 두께를 조절한 코어를 적용함으로써 E-E형 코어와 유사하게 폐루프를 형성하는 자기력선이 동일한 단면적으로 통과할 수 있는 코어를 제시한다.As described above, the present invention proposes a core through which magnetic force lines forming a closed loop can pass through the same cross-sectional area similarly to the E-E type core by applying a core having a flange thickness adjusted thereto.
나아가서 본 발명에서 제시한 코어는 종래의 코어와 동일한 전체 길이를 가지면서도 권선 수를 늘리거나 동일한 권선수를 가지면서도 코어의 전체 길이를 줄일 수 있는 구조로서 인덕터의 성능을 향상시키면서 전체적인 크기를 줄일 수 있는데, 이와 관련하여 도 10에 도시된 본 발명에 따른 코어의 단면도를 참고하여 살펴본다.Furthermore, the core proposed in the present invention has the same overall length as the conventional core and can increase the number of turns or reduce the overall length of the core while having the same number of turns, thereby reducing the overall size while improving the performance of the inductor. In this regard, it looks at with reference to the cross-sectional view of the core according to the invention shown in FIG.
상기 도 10의 (a)에서는 일반적인 I형 코어를 도시하는데, 코어 바디(121)의 상부와 하부에 각각 플랜지(123, 124)가 형성되어 코어(120)의 전체 길이가 H1이고 코일이 권선되는 부분의 길이가 H2인 형태를 도시하며, 이와 대비하여 상기 도 10의 (b)와 (c)는 본 발명에서 제시하는 새로운 형태의 코어(120', 120'')를 도시한다. In FIG. 10 (a), a typical I-type core is shown. Flanges 123 and 124 are formed at upper and lower portions of the core body 121, respectively, so that the entire length of the core 120 is H1 and the coil is wound. The length of the portion is shown in the form of H2, in contrast to Figure 10 (b) and (c) shows a new type of core (120 ', 120 ″) proposed in the present invention.
상기 도 10의 (b)에서는 상기 도 10의 (a)에 도시된 일반적인 I형 코어와 동일한 전체 길이 H1을 갖는데, 상기 도 9의 실시예를 통해 설명한 바와 같이 코어(120')의 플랜지(123', 124')가 중심부로부터 측면으로 향할수록 두께가 얇아지도록 형성되어 코어(120')에 코일을 권선할 수 있는 영역의 길이가 H3로서 상기 도10의 (a)의 H2와 대비하여 상대적으로 길어졌다. 따라서 상기 도 10의 (b)에 도시된 본 발명에 따른 코어(120')는 상기 도 10의 (a)에 도시된 코어(120)와 동일한 전체 길이를 가지면서도 코일의 권선수를 늘릴 수 있게 된다.10 (b) has the same total length H1 as the general I-type core shown in FIG. 10 (a). As described with reference to the embodiment of FIG. 9, the flange 123 of the core 120 'is illustrated. ', 124' is formed to become thinner from the center toward the side, so that the length of the region in which the coil can be wound around the core 120 'is H3, which is relatively higher than that of H2 of FIG. Lengthened Accordingly, the core 120 ′ according to the present invention shown in FIG. 10 (b) may increase the number of turns of the coil while having the same overall length as the core 120 shown in FIG. 10 (a). do.
상기 도 10의 (c)에서는 코어(120'')에 코일을 권선할 수 있는 영역의 길이가 상기 도 9의 (a)의 코어(120)와 동일한 H2이지만, 코어(120'')의 플랜지(123'', 124'')가 중심부로부터 측면으로 향할수록 두께가 얇아지도록 형성시킴으로써 코어(120'')의 전체 길이 H4가 상기 도 10의 (a)에 도시된 코어(120)의 전체 길이 H1보다 상대적으로 짧아졌다. 따라서 상기 도 10의 (c)와 같은 코어(120'')를 적용하는 경우에 상기 도 10의 (a)에 도시된 코어(120)와 동일한 권선수를 가지면서도 코어의 전체 길이를 줄일 수 있어 인덕터의 전체 크기를 더욱 줄일 수 있게 된다.In FIG. 10C, the length of the region in which the coil can be wound around the core 120 ″ is H2 equal to that of the core 120 in FIG. 9A, but the flange of the core 120 ″ The total length H4 of the core 120 ″ is formed so that the thickness 123 ″ and 124 ″ becomes thinner from the center to the side, so that the total length H4 of the core 120 shown in FIG. It is relatively shorter than H1. Accordingly, when the core 120 ″ as shown in FIG. 10C is applied, the total length of the core can be reduced while having the same number of turns as the core 120 shown in FIG. 10A. The overall size of the inductor can be further reduced.
이와 같이 본 발명에서 제시하는 새로운 형태의 코어는, 코어의 바디로부터 플랜지를 향해 진행되어 폐루프를 형성하는 자기력선이 동일한 단면적으로 통과할 수 있어 인덕터의 성능을 향상시키면서 동시에 종래의 코어와 동일한 전체 길이를 가지면서도 권선수를 늘리거나 동일한 권선수를 가지면서도 코어의 전체 길이를 줄일 수 있다.As described above, the new type of core proposed in the present invention can pass through the same cross-sectional area of magnetic force lines that form a closed loop by traveling from the body of the core toward the flange, thereby improving the performance of the inductor and at the same time as the conventional core. It is possible to increase the number of turns while having the same or decrease the total length of the core while having the same number of turns.
도 11은 본 발명에 따른 인덕터의 집속 커버에 대한 다양한 예를 도시한다.11 shows various examples of the focusing cover of the inductor according to the present invention.
상기 도 11의 (a)에 도시된 집속 커버는 앞서 살펴본 원통형 파이프 구조의 집속커버를 도시하며, 본 발명에서는 단순한 원통형 파이프 구조의 집속 커버 외에도 상기 도 11의 (b)에 도시된 바와 같이 복수개의 관통홀이 형성된 집속 커버로 적용될 수 있고, 상기 도 11의 (c)에 도시된 바와 같이 집속 커버의 상부와 하부로부터 길이방향으로 복수개의 홈이 원주 방향을 따라서 일정 간격씩 이격되어 형성될 수도 있으며, 또는 상기 도 11의 (d)와 같이 집속 커버의 상부와 하부를 교번하여 번갈아 길이방향으로 복수개의 홈이 형성될 수도 있다.The focusing cover shown in (a) of FIG. 11 illustrates the focusing cover of the cylindrical pipe structure described above, and in the present invention, in addition to the focusing cover of the simple cylindrical pipe structure, a plurality of the focusing cover as shown in FIG. It may be applied to a focusing cover formed with a through hole, and as shown in (c) of FIG. 11, a plurality of grooves may be formed spaced apart at regular intervals along the circumferential direction from the upper and lower portions of the focusing cover. Alternatively, as shown in (d) of FIG. 11, a plurality of grooves may be formed in the longitudinal direction by alternately alternating the upper and lower portions of the focusing cover.
나아가서 삽입되는 코어 어셈블리의 길이방향 외면에 대응되는 내부면을 가지고 코어 어셈블리의 외각을 따라서 서로 일정 간격 이격되어 배치된 복수개의 지지 부재와 지지부재 사이에서 지지부재 간을 연결하는 연결부재로 구성된 집속 커버가 적용될 수도 있는데, 바람직하게는 지지부재는 수평 단면이 복수의 면을 갖되 코어 어셈블리에 인접한 면은 상기 코어 어셈블리의 외면에 대응되도록 형성되며, 복수개의 상기 지지부재가 상기 코어 어셈블리의 외각을 따라 서로 일정 간격 이격되어 배치되어, 전체적인 집속 커버의 수평 단면 외각이 사각형을 이루도록 형성된다. 이에 대한 하나의 실시예로서, 상기 도 11의 (e)에서는 지지부재가 그 단면이 세개의 면을 갖되 하나의 면은 코어 어셈블리의 외면에 대응되어 원호를 가지며 두 개의 면은 서로 직각을 이루어 형성되고, 집속 커버는 네 개의 지지부재가 삽입되는 코어 어셈블리의 외각을 따라서 서로 일정 간격씩 이격되어 배치되어 전체적으로 그 단면의 외각이 사각형을 이루도록 형성되어 있다.Furthermore, a focusing cover comprising an inner surface corresponding to the longitudinal outer surface of the core assembly to be inserted and a connecting member connecting the support members between the plurality of support members and the support members disposed spaced apart from each other along the outer periphery of the core assembly. Preferably, the support member may be formed such that a horizontal cross section has a plurality of surfaces, and a surface adjacent to the core assembly corresponds to an outer surface of the core assembly, and the plurality of the support members are formed along the outer angle of the core assembly. Spaced apart at regular intervals, the horizontal cross section of the overall focusing cover is formed to form a square. As an embodiment thereof, in FIG. 11E, the support member has three surfaces thereof, one surface corresponding to an outer surface of the core assembly, and an arc, and two surfaces formed at right angles to each other. The focusing cover is spaced apart from each other by a predetermined interval along the outer shell of the core assembly into which the four supporting members are inserted, and is formed such that the outer shell of the cross section forms a quadrangle as a whole.
이와 같이 본 발명에서 적용되는 상기 도 11의 (b) 내지 (e)의 집속 커버는 적정 두께를 고려하여 완전한 원통형이 아닌 일정 부위를 제거하여 다양한 형태로 만들 수 있는데, 가령 상기 도 9를 통해 살펴본 바와 같이 폐루프를 형성하는 자기력선이 동일한 단면적으로 통과하도록 구성하는 것이 바람직하지만 집속 커버의 제조 공정 상의 한계로 인해 일정 두께 이하로 집속 커버를 제조하는 것이 용이하지 않거나 두께를 일정 이하의 치수로 낮추기 위해 제조 비용이 급격히 상승하는 등의 제반 문제가 있다. 이와 같은 집속 커버의 제조 공정 상의 문제로 인해 상황에 따라서는 자기력선이 통과하는 코어의 단면적보다 집속 커버의 단면적이 크게 되는데 집속 커버의 단면적이 필요이상으로 커짐에 따라 집속 커버를 제작하기 위한 재료 손실이 발생되므로 자기력선이 통과하는 단면적의 적정 두께를 고려하여 완전한 원통형이 아닌 일정 부위를 제거한 집속 커버를 제조함으로써 집속 커버를 제작하기 위한 재료 손실을 줄일 수 있다. 즉 상기 도 11의 (a)에 도시된 집속 커버의 두께가 실질적인 자기력선이 통과하는 단면적을 고려한 적정 두께라고 가정하는 경우에 상기 도 11의 (a)와 대비하여 상기 도 11의 (b) 내지 (e)에 도시된 집속 커버는 두께를 두껍게 하면서도 상기 도 11의 (a)에 도시된 집속 커버와 동일한 단면적을 가질 수 있어 실질적으로 집속 커버의 전체적인 재료 손실을 줄일 수 있게 된다. As described above, the focusing cover of FIGS. 11 (b) to (e) to be applied in the present invention may be made in various forms by removing a predetermined portion rather than a completely cylindrical shape in consideration of an appropriate thickness. As described above, it is preferable to configure the magnetic force lines forming the closed loop to pass through the same cross-sectional area, but due to limitations in the manufacturing process of the focusing cover, it is not easy to manufacture the focusing cover below a certain thickness or to reduce the thickness to a certain size or less. There are various problems such as a sharp increase in manufacturing costs. Due to such problems in the manufacturing process of the focusing cover, the cross-sectional area of the focusing cover is larger than the cross-sectional area of the core through which the magnetic lines of force pass, and as the cross-sectional area of the focusing cover becomes larger than necessary, material loss for manufacturing the focusing cover is increased. Therefore, by considering the proper thickness of the cross-sectional area through which the magnetic force lines pass, by manufacturing a focusing cover that removes a certain portion rather than a cylindrical shape, material loss for manufacturing the focusing cover can be reduced. That is, in the case where it is assumed that the thickness of the focusing cover shown in FIG. 11 (a) is an appropriate thickness in consideration of the cross-sectional area where a substantial magnetic force line passes, the (b) to (b) of FIG. The focusing cover shown in e) may have the same cross-sectional area as that of the focusing cover shown in FIG. 11A while increasing its thickness, thereby substantially reducing overall material loss of the focusing cover.
나아가서 집속 커버의 일정 부위를 제거함에 따라 이를 통해 내부 코일에서 발생한 열이 대기 중으로 쉽게 발열될 수 있어 코일의 온도를 낮출 수 있다. Furthermore, as a certain portion of the focusing cover is removed, heat generated in the internal coil can be easily generated in the air, thereby lowering the temperature of the coil.
상기 도 11에 도시된 다양한 형태의 집속 커버는 상기 도 6에서 제시된 보빈을 갖는 인덕터뿐만 아니라 상기 도 8에서 제시된 보빈을 제거한 인덕터에도 적용될 수 있으며, 이후에 계속해서 살펴본 본 발명에 따른 다양한 실시예에 적절하게 적용될 수 있다. The various types of focusing covers shown in FIG. 11 may be applied not only to the inductor having the bobbin shown in FIG. 6 but also to the inductor having the bobbin shown in FIG. 8 removed, and to various embodiments according to the present invention. Appropriately applicable.
나아가서 본 발명에서는 코어 어셈블리를 집속 커버에 보다 안정적으로 고정시킬 수 있도록 코어 어셈블리와 집속 커버의 체결 구조를 제시하는데, 도 12는 본 발명에 따른 인덕터에서 코어 어셈블리와 집속 커버의 체결 구조에 대한 실시예를 도시한다.Furthermore, the present invention provides a fastening structure of the core assembly and the focusing cover to more stably fix the core assembly to the focusing cover. FIG. 12 illustrates an embodiment of the fastening structure of the core assembly and the focusing cover in the inductor according to the present invention. Shows.
상기 도 12에서는 코어 어셈블리의 코어(120a, 120b, 120c)와 집속 커버(160a, 160b, 160c)가 결합되는 다양한 구조가 제시되어 있는데, 상기 도 12의 (a) 및 (c)에는 상부 플랜지(123a, 123c)의 끝단 부분(127a, 127c)과 집속 커버(160a, 160c)의 끝단 부분(163a, 163c)이 상호 대응되어 체결되는 결합부를 형성시켜 코어 어셈블리를 집속 커버에 삽입시 상기 결합부가 서로 맞물려 코어 어셈블리가 집속 커버에 고정되게 된다. 또한 상기 도 12의 (b)에서는 집속 커버(160b)의 상면 관통홀(163b)에 코어 어셈블리의 코어(120b) 끝단 부분(127b)이 체결되도록 결합부를 형성시켜 코어 어셈블리가 집속 커버에 고정될 수 있다.12 illustrates various structures in which the cores 120a, 120b, and 120c of the core assembly and the focusing covers 160a, 160b, and 160c are coupled to each other. In FIGS. 12A and 12C, an upper flange ( End portions 127a and 127c of the 123a and 123c and end portions 163a and 163c of the focusing covers 160a and 160c correspond to each other to form a joining portion, and when the core assembly is inserted into the focusing cover, the joining portions are joined to each other. The core assembly is fixed to the focusing cover. In addition, in FIG. 12 (b), the core assembly may be fixed to the focusing cover by forming an engaging portion to fasten the end portion 127b of the core 120b of the core assembly to the upper through hole 163b of the focusing cover 160b. have.
이와 같은 상부 플랜지(123a, 123c)의 끝단 부분(127a, 127c)과 집속 커버(160a, 160c)의 끝단 부분(163a, 163b, 163c)이 상호 대응되어 체결되는 결합부나 또는 집속 커버(160b)의 상면 관통홀(163b)에 코어 어셈블리의 코어(120b) 끝단 부분(127b)이 체결되는 결합부를 통해 코어 어셈블리를 집속 커버 내부에 삽입시 정확한 위치에 용이하게 조립하여 코어 어셈블리의 일정 위치를 유지시킬 수 있으며, 또한 집속 커버(160a, 160b, 160c) 끝단과 코어 어셈블리의 하부 플랜지(124a, 124b, 124c) 간에 원하는 이격 거리를 둠으로써 일종의 공극(air gap)으로 작용하는 이격 거리에 생긴 공간의 조절이 용이해진다. The coupling portion or the focusing cover 160b to which the end portions 127a and 127c of the upper flanges 123a and 123c and the end portions 163a, 163b and 163c of the focusing covers 160a and 160c correspond to each other and are fastened. When the core assembly is inserted into the focusing cover through the coupling part where the core 120b and the end portion 127b of the core assembly are fastened to the upper through hole 163b, the core assembly can be easily assembled at the correct position to maintain a predetermined position of the core assembly. In addition, by providing a desired separation distance between the ends of the focusing cover (160a, 160b, 160c) and the lower flange (124a, 124b, 124c) of the core assembly, the adjustment of the space created at the separation distance acting as a kind of air gap It becomes easy.
다음으로 도 13은 본 발명에 따른 인덕터의 제2 실시예에 대한 사시도를 도시하고, 도 14는 상기 도 13의 제2 실시예에 대한 단면도를 도시한다.13 shows a perspective view of a second embodiment of the inductor according to the invention, and FIG. 14 shows a sectional view of the second embodiment of FIG.
상기 도 13와 도 14에 도시된 제2 실시예는 앞서 살펴본 상기 제1실시예와 비교하여 볼 때, 기타 구성 및 그 작용은 동일하며 주된 차이점이 집속 커버(260)에 있으므로 반복적인 설명은 생략하고 집속 커버(260)를 위주로 살펴보기로 한다.13 and 14, the second embodiment shown in FIGS. 13 and 14 has the same configuration and operation as those of the first embodiment described above, and since the main difference is in the focusing cover 260, repeated description thereof will be omitted. And focusing on the focusing cover 260 will be described.
상기 도 13와 도 14에 도시된 제2 실시예의 인덕터(200)에서, 집속 커버(260)는 일단에 개구부(262)가 형성되고 타단에는 차폐부(265)가 형성되어 전체적으로 컵 구조를 가지며, 집속 커버(260)의 개구부(262)로 코어 어셈블리(210)가 삽입된다. 이와 같은 집속 커버(260)를 규소강이나 아몰퍼스 금속으로 구성하는 경우에는 드로잉(drawing) 가공 등을 통해 쉽게 제조할 수 있다. In the inductor 200 of the second embodiment shown in FIGS. 13 and 14, the focusing cover 260 has an opening 262 formed at one end thereof and a shielding part 265 formed at the other end thereof to have a cup structure as a whole. The core assembly 210 is inserted into the opening 262 of the focusing cover 260. When the focusing cover 260 is made of silicon steel or amorphous metal, the focusing cover 260 can be easily manufactured by drawing.
상기 제2 실시예에서는 코어(220)가 T형 코어로서 코어 바디(221)의 한쪽 끝단에만 플랜지(224)가 형성되어 있으며, 코어 바디(221)가 코일(250)이 권선된 보빈(240)에 삽입되어 코어 어셈블리(210)가 구성되어 있는데, 이는 하나의 실시예로서 이에 국한되지 않고 코어 바디의 양쪽 끝단에 모두 플랜지가 형성된 I형 코어가 적용될 수도 있으며, I형 코어를 적용하는 경우에 모든 플랜지가 집속 커버의 직경보다 작게 형성되어 모두 집속 커버의 내부로 삽입될 수도 있고 또는 상부 플랜지는 집속 커버의 내부 직경보다 작게 형성시켜 집속 커버에 삽입되고 하부 플랜지는 집속 커버의 내부 직경보다 크게 형성시켜 집속 커버의 개구부가 하부 플랜지에 걸쳐지는 형태가 될 수도 있다.In the second embodiment, the flange 220 is formed only at one end of the core body 221 as the core 220 as the T-shaped core, and the core body 221 is the bobbin 240 having the coil 250 wound thereon. Inserted in the core assembly 210 is configured, which is not limited to this embodiment may be applied to the type I core with a flange formed on both ends of the core body, all the case of applying the type I core The flange may be formed smaller than the diameter of the focusing cover and both may be inserted into the focusing cover, or the upper flange may be formed smaller than the inner diameter of the focusing cover and inserted into the focusing cover, and the lower flange may be formed larger than the inner diameter of the focusing cover. The opening of the focusing cover may be shaped to span the lower flange.
나아가서 도 15는 상기 도 14의 제2 실시예에 대한 변형 실시예의 단면도를 도시하는데, 상기 도 15에서는 상기 도 14의 보빈(240)을 제거하고 코어 바디(221)에 코일(250)을 직접 권선한 경우로서, 코어(220)와 코일(250) 간의 절연을 위해서 코어 바디(221)와 플랜지(224)에 절연층(230)을 형성시켰다. 상기 도 15에서는 코어 바디(221)와 플랜지(224)에 전체적으로 절연층(230)이 형성되어 있으나 코일(250)이 권선되는 영역에 따라서 코어 바디의 일부분에만 절연층을 형성시킬 수도 있다.Furthermore, FIG. 15 shows a cross-sectional view of a modified embodiment of the second embodiment of FIG. 14, in which the bobbin 240 of FIG. 14 is removed and the coil 250 is wound directly on the core body 221. In one case, an insulating layer 230 is formed on the core body 221 and the flange 224 to insulate the core 220 and the coil 250. In FIG. 15, an insulating layer 230 is formed on the core body 221 and the flange 224 as a whole, but an insulating layer may be formed only on a portion of the core body according to a region in which the coil 250 is wound.
또한 도 16은 상기 도 13의 제2 실시예에 대한 또다른 변형 실시예의 사시도를 도시하는데, 상기 도 16에서는 상기 도 13의 제2 실시예와 유사하게 일단에 개구부(262)가 형성되고 타단에는 차폐부(265)가 형성되어 전체적으로 컵 구조를 가진 집속 커버(260)를 적용하며, 집속 커버(260)의 차폐부(265) 내면에는 코어 어셈블리(210)의 상부 끝단 형상에 대응되는 결합홈(266)이 형성되어 있다.FIG. 16 also shows a perspective view of another modified embodiment of the second embodiment of FIG. 13, wherein in FIG. 16, an opening 262 is formed at one end and the other end is similar to the second embodiment of FIG. 13. The shielding part 265 is formed to apply the focusing cover 260 having a cup structure as a whole, and the coupling groove corresponding to the upper end shape of the core assembly 210 on the inner surface of the shielding part 265 of the focusing cover 260 ( 266).
이와 같이 집속 커버(260)의 차폐부(265) 내면에 결합홈(266)이 형성되어 코어 어셈블리(210)를 집속 커버(260)에 삽입시에 코어 어셈블리(210)의 상부 끝단이 결합홈(266)에 끼워져 집속 커버(260) 내에서 코어 어셈블리(210)의 위치가 고정됨으로써 인덕터의 흔들림이나 충격에도 코어 어셈블리(210)의 안정적인 위치 유지가 가능해진다.As described above, the coupling groove 266 is formed on the inner surface of the shield 265 of the focusing cover 260 so that the upper end of the core assembly 210 is inserted into the coupling assembly when the core assembly 210 is inserted into the focusing cover 260. 266), the core assembly 210 is fixed in the focusing cover 260 to maintain a stable position of the core assembly 210 even when the inductor is shaken or impacted.
도 17은 본 발명에 따른 인덕터의 제3 실시예에 대한 사시도를 도시한다.17 shows a perspective view of a third embodiment of an inductor according to the present invention.
상기 도 17의 (a)에서 집속 커버(260a)는 상기 도 13의 컵형 집속커버(260)의 변형된 형태로서, 집속 커버(260a)의 개구부로부터 차폐부까지 측면이 개방된 개구부(267a)가 형성되며, 차폐부(265a)는 중심으로부터 펼쳐지는 복수개의 부채꼴 형태이다. 상기 도 17의 (a)에서 차폐부(265a)는 동일 중심으로부터 두개의 부채꼴이 펼쳐진 형태인데, 동일 중심으로부터 세개 또는 네개 등 복수개의 부채꼴이 펼쳐진 형태로 형성될 수도 있다.In FIG. 17A, the focusing cover 260a is a modified form of the cup-shaped focusing cover 260 of FIG. 13, and an opening 267a having an open side surface from an opening of the focusing cover 260a to a shielding part is provided. It is formed, the shield 265a is in the form of a plurality of fan-shaped spread from the center. In FIG. 17A, the shield part 265a is formed by unfolding two sectors from the same center, and may be formed in a plurality of sectors such as three or four from the same center.
코어(220a)는 T형 코어로서, 플랜지(224a)가 집속 커버(265a)의 차폐부(265a) 형태에 대응되어 부채꼴 형태이며, 코일(250a)이 권선된 원형 보빈(240a)에 코어 바디(221a)가 삽입되고, 코일의 측면 일부를 둘러 감싸도록 집속 커버(260a)에 코어 어셈블리가 삽입되는 구성이다.The core 220a is a T-shaped core. The flange 224a corresponds to the shield portion 265a of the focusing cover 265a, and has a fan shape. The core body is formed on a circular bobbin 240a on which the coil 250a is wound. 221a is inserted, and the core assembly is inserted into the focusing cover 260a to surround a part of the side of the coil.
상기 도 17의 (b)에서 집속 커버(260b)는 차폐부(265b)가 십자형이며, 차폐부(265b)의 십자형 끝단에 대응하여 집속 커버(265b)의 측면에 개방부(267b)가 형성되어 있다. In FIG. 17B, the focusing cover 260b has a cross-shaped shield 265b, and an opening 267b is formed at the side of the focusing cover 265b in correspondence with the cross-shaped end of the shield 265b. have.
그리고 집속 커버(265b)의 차폐부(265b) 형태에 대응되어 코어(220b)의 플랜지(224b)가 십자형태를 가지며, 코일(250b)이 권선된 사각형 형태의 보빈(240b)에 코어 바디(221a)가 삽입된다. 또한 상기 도 17의 (c)와 같이 보빈(240c)은 원형이 적용될 수도 있으며, 보빈(240c)이 원형인 경우에는 집속 커버(260c)의 내부 형태도 원형 보빈(240c)에 대응되어 형성되는 것이 바람직하다.In addition, the flange 224b of the core 220b has a cross shape corresponding to the shielding portion 265b of the focusing cover 265b, and the core body 221a is formed on a square bobbin 240b in which the coil 250b is wound. ) Is inserted. In addition, as shown in FIG. 17C, the bobbin 240c may have a circular shape. When the bobbin 240c is circular, the inner shape of the focusing cover 260c may also be formed to correspond to the circular bobbin 240c. desirable.
도 18은 상기 도 17의 제3 실시예에 대한 변형 실시예의 사시도를 도시하는데, 상기 도 18의 (a)는 상기 도 17의 (a)의 변형 형태로서 부채꼴 형태의 차폐부를 갖는 컵형 집속 커버(265a)가 적용되고 코어(220a)도 집속 커버(265a)의 형태에 대응되는 형태로서 상기 도 17의 (a)와 동일하지만, 상기 도 18의 (a)에서는 보빈을 제거하고 코어(220a)의 코어 바디(221a)에 직접 코일(250)을 권선하여 코어 어셈블리를 구성하였다. 코어(220a)와 코일(250) 간은 절연시키는 것이 바람직하므로 코어(220a)의 일부분에는 절연층(230a)이 형성되며, 절연층에 대해서는 앞서 살펴본 내용을 통해 유추가 가능하므로 자세한 설명은 생략하기로 한다.FIG. 18 illustrates a perspective view of a modified embodiment of the third embodiment of FIG. 17, wherein FIG. 18A illustrates a cup-type focusing cover having a fan-shaped shield as a modified form of FIG. 17A. 265a is applied and the core 220a also corresponds to the shape of the focusing cover 265a, which is the same as that of FIG. 17A, but in FIG. 18A, the bobbin is removed and the core 220a of the core 220a is removed. The coil 250 was wound directly on the core body 221a to construct a core assembly. Since it is preferable to insulate between the core 220a and the coil 250, an insulating layer 230a is formed on a part of the core 220a, and the insulating layer can be inferred through the above-described details, so a detailed description thereof will be omitted. Shall be.
또한 상기 도 18의 (b)는 상기 도 17의 (b)의 변형 형태로서, 십자 형태의 차폐부를 갖는 컵형 집속 커버(265b)가 적용되었는데, 상기 도 18의 (b)에서는 상기 도 17의 (b)와 다르게 보빈을 제거하고 코어(220b)의 코어 바디(221b)에 직접 코일(250)을 권선하였으며, 코어(220b)와 코일(250) 간의 절연을 위해 절연층(230b)을 형성하였다. 상기 도 18의 (b)에서는 코어 바디(221b)를 사각 형태로 구성하였는데, 이는 선택적인 사항으로서 상기 도 18의 (c)와 같이 코어 바디(221c)를 원형 기둥의 형태로 구성할 수도 있다.In addition, in FIG. 18B, a cup-shaped focusing cover 265b having a cross-shaped shield is used as a modified form of FIG. 17B. In FIG. 18B, FIG. Unlike b), the bobbin was removed and the coil 250 was wound directly on the core body 221b of the core 220b. An insulating layer 230b was formed to insulate the core 220b from the coil 250. In FIG. 18B, the core body 221b is configured in a quadrangular shape. As an optional matter, the core body 221c may be configured in the form of a circular column as shown in FIG. 18C.
이와 같은 개방부를 갖는 집속 커버를 적용하여 집속 커버를 제조하기 위한 재료를 절약하면서도 자기력선을 효과적으로 집속시키는 인덕터의 제공이 가능해진다.By applying a focusing cover having such an opening, it is possible to provide an inductor that focuses a magnetic field line effectively while saving material for manufacturing the focusing cover.
다음으로 도 19는 본 발명에 따른 인덕터의 제4 실시예에 대한 사시도를 도시한다.19 shows a perspective view of a fourth embodiment of an inductor according to the present invention.
상기 도 19의 제4 실시예에서 집속 커버(260d, 260e)는 원형 파이프의 양단에 차폐부가 형성되어 코어 어셈블리(210d, 210e)가 수용되는 공간을 갖는 밀폐형의 통 구조로 형성되는데, 코어 어셈블리(210d, 210e)를 밀폐형 통 구조의 집속 커버(260d, 260e) 내부에 용이하게 수용시키기 위해서 집속 커버(260d, 260e)가 길이방향으로 수직 분할된 2개의 집속 커버 조각(260d', 260d'', 260e', 260e'')로 구성되어 코어 어셈블리(210d, 210e)를 사이에 두고 2개의 집속 커버 조각이 결합되어 그 내부에 코어 어셈블리(210d, 210e)가 수용되는 집속 커버(260d, 260e)가 형성된다. 상기 도 19의 (a)에서는 코일이 권선된 보빈을 갖는 코어 어셈블리(210d)를 수용하는 집속 커버(260d)를 도시하며, 상기 도 19의 (b)에서는 일자형 코어에 코일이 권선된 코어 어셈블리(210e)를 수용하는 집속 커버(260e)를 도시한다. 상기 도 19의 (b)와 같이 코어 어셈블리(210e)가 집속 커버(260e) 내부에서 고정되기 위해 집속 커버(260e)의 상면과 하면 내부에 코어 어셈블리(210e)의 끝단에 대응되는 결합 홈이 형성되어 코어 어셈블리(210e)의 끝단이 상기 결합 홈에 끼워져 체결됨으로써 집속 커버(260e)의 내부에서 코어 어셈블리(210e)가 안정적으로 고정될 수도 있다.In the fourth embodiment of FIG. 19, the focusing covers 260d and 260e are formed in a sealed tubular structure having shielding portions formed at both ends of the circular pipe to accommodate the core assemblies 210d and 210e. Two focusing cover pieces 260d ', 260d', in which the focusing covers 260d, 260e are vertically divided in the longitudinal direction to easily accommodate 210d, 210e inside the condensed tubular focusing covers 260d, 260e. 260e ', 260e' '), and two focusing cover pieces are joined with the core assemblies 210d and 210e interposed therebetween, and the focusing covers 260d and 260e accommodate the core assemblies 210d and 210e therein. Is formed. 19A illustrates a focusing cover 260d for accommodating a core assembly 210d having a bobbin coil wound thereon, and in FIG. 19B, a core assembly in which a coil is wound around a straight core ( A focusing cover 260e that houses 210e is shown. As shown in FIG. 19B, coupling grooves corresponding to ends of the core assembly 210e are formed in the upper and lower surfaces of the focusing cover 260e so that the core assembly 210e is fixed in the focusing cover 260e. As the end of the core assembly 210e is inserted into and coupled to the coupling groove, the core assembly 210e may be stably fixed inside the focusing cover 260e.
나아가서 상기 도 19에서는 원통형의 집속커버로 도시되어 있으나, 그 형태는 다양하게 변형될 수 있으며, 분할된 집속 커버의 조각 수도 코어 어셈블리의 형태를 고려하여 3개 이상으로 분할된 집속 커버 조각으로 구성될 수 있다.Furthermore, although shown as a cylindrical focusing cover in FIG. 19, the shape may be variously modified, and the number of fragmented focusing cover pieces may be composed of three or more focusing cover pieces divided in consideration of the shape of the core assembly. Can be.
도 20은 상기 도 19의 제4 실시예에 대한 변형 실시예의 사시도를 도시하는데, 상기 도 20에서는 상기 도 19의 제4 실시예에 도시된 집속 커버에 상면으로부터 하면까지 측면이 개방된 복수개의 개방부가 형성된 경우를 도시한다.FIG. 20 illustrates a perspective view of a modified embodiment of the fourth embodiment of FIG. 19, wherein in FIG. 20, a plurality of openings having side surfaces opened from an upper surface to a lower surface in the focusing cover illustrated in the fourth embodiment of FIG. 19. The case where an addition is formed is shown.
상기 도 20에서는 길이방향으로 수직 분할된 2개의 집속 커버 조각(260f', 260f'', 260g', 260g'')의 상면과 하면이 서로 대응되는 형태로 형성되는데, 상기 도 20의 (a)에서는 부채꼴 형태로 형성되어 있으며, 상기 도 20의 (b)에서는 V자형 형태로 형성되어 있다. 그리고 2개의 집속 커버 조각(260f', 260f'', 260g', 260g'')이 코어 어셈블리(210f, 210g)를 사이에 두고 결합되어 집속 커버(260f, 260g)를 이루게 된다. 즉 상기 도 20의 (a)에서는 2개의 집속 커버 조각(260f', 260f'')이 결합되어 이루어지는 집속 커버(260f)의 상단 차폐부와 하단 차폐부가 서로 대응되어 중심부로터 펼쳐지는 부채꼴 형태가 되고, 상기 차폐부의 부채꼴 형태에 대응하여 상부 차폐부인 상면부터 하부 차폐부인 하면까지 개방부가 형성된 형태가 된다. 또한 상기 도 20의 (b)에서는 2개의 집속 커버 조각(260g', 260g'')이 결합되어 이루어지는 집속 커버(260g)의 상단 차폐부와 하단 차폐부가 서로 대응되어 십자 형태가 되고, 상기 차폐부의 십자 형태에 대응하여 상부 차폐부인 상면부터 하부 차폐부인 하면까지 개방부가 형성된 형태가 된다.In FIG. 20, the upper and lower surfaces of the two focusing cover pieces 260f ', 260f ", 260g', and 260g" vertically divided in the longitudinal direction are formed to correspond to each other. Is formed in a fan shape, and is formed in a V shape in FIG. 20 (b). The two focusing cover pieces 260f ', 260f', 260g ', and 260g' are combined with the core assemblies 210f and 210g interposed therebetween to form the focusing covers 260f and 260g. That is, in FIG. 20 (a), the upper and lower shields of the focusing cover 260f formed by combining two focusing cover pieces 260f 'and 260f' 'correspond to each other to form a fan shape which is unfolded from the center part. In response to the fan shape of the shield, an opening is formed from an upper surface of the upper shield to a lower surface of the lower shield. In addition, in FIG. 20B, the upper and lower shields of the focusing cover 260g formed by combining two focusing cover pieces 260g 'and 260g' 'correspond to each other to form a cross. Corresponding to the cross shape, an opening is formed from an upper surface of the upper shield to a lower surface of the lower shield.
상기 도 20의 (a)에서는 보빈이 적용된 코어 어셈블리(210f)가 이용되고 상기 도 20의 (b)에서는 일자형 코어에 코일이 권선된 코어 어셈블리(210g)가 이용되었는데, 코어 어셈블리의 구성은 인덕터의 성능이나 적용 상황에 따라 다양하게 변형될 수 있으며, 상기 도 20의 (b)와 같이 집속 커버(260g)에 코어 어셈블리(210g)를 안정적으로 고정시키기 위한 결합홈도 상황에 따라서 다양하게 변형되어 형성될 수 있다.In FIG. 20A, a core assembly 210f to which a bobbin is applied is used, and in FIG. 20B, a core assembly 210g having a coil wound around a straight core is used. It may be variously modified according to performance or application situation, and the coupling groove for stably fixing the core assembly 210g to the focusing cover 260g as shown in FIG. 20 (b) may also be variously modified according to the situation. Can be.
도 21은 본 발명에 따른 인덕터의 제5 실시예에 대한 사시도를 도시하는데, 상기 도 21의 (a)와 (b)에서는 집속 커버(360a, 360b)가 사각틀 형태를 가지며, 코어 어셈블리(310a, 310b)가 길이방향으로 집속 커버(360a, 360b)의 사각형 틀에 끼워지도록 삽입되어 인덕터(300a, 300b)가 구성된다.FIG. 21 is a perspective view of a fifth embodiment of the inductor according to the present invention. In FIGS. 21A and 21B, the focusing covers 360a and 360b have a rectangular frame shape, and the core assembly 310a, An inductor 300a or 300b is formed by inserting 310b into the rectangular frame of the focusing covers 360a and 360b in the longitudinal direction.
상기 도 21의 (a)와 (b)에서는 일자형 코어(320a, 320b)가 적용되어, 코어 어셈블리(310a, 310b)가 코일(350a, 350b)이 권선된 보빈(340a, 340b)에 일자형 코어(320a, 320b)가 삽입되어 구성된다. In FIGS. 21A and 21B, the straight cores 320a and 320b are applied to the core assemblies 310a and 310b to the bobbins 340a and 340b on which the coils 350a and 350b are wound. 320a and 320b are inserted and configured.
또한 도 22는 상기 도 21의 제5 실시예에 대한 변형 실시예의 사시도를 도시하는데, 상기 도 22의 (a)와 (b)는 각각 상기 도 21의 (a)와 (b)에서 보빈을 제거한 코어 어셈블리(310c, 310d)를 적용하여 코어(320c, 320d)에 직접 코일(350c, 350d)을 권선하며 코어(320c, 320d)와 코일(350c, 350d) 사이에는 절연층(330c, 330d)을 형성시켰다.FIG. 22 also shows a perspective view of a modified embodiment of the fifth embodiment of FIG. 21, wherein FIGS. 22A and 22B respectively remove bobbins from FIGS. 21A and 21B, respectively. By applying the core assemblies 310c and 310d, the coils 350c and 350d are wound directly on the cores 320c and 320d. An insulating layer 330c and 330d is formed between the cores 320c and 320d and the coils 350c and 350d. Formed.
상기 도 21 및 도 22에 도시된 본 발명에 따른 제5 실시예와 변형 실시예는 더욱 간단한 구조의 집속 커버를 적용하였으며, 플랜지가 형성된 코어를 적용할 수도 있고, 원형 기둥이나 사각 기둥 이외에도 다각형의 코어 바디가 적용될 수도 있다.21 and 22, the fifth embodiment and the modified embodiment according to the present invention apply a focusing cover having a simpler structure, a flanged core may be applied, and polygonal in addition to a circular column or a square column. The core body may be applied.
다음으로 본 발명의 세번째 주된 특징인 공극(air gap) 기능 또는 권선 가이드 기능의 갭 플랜지를 적용한 자기집속 구조를 갖는 인덕터에 대해서 실시예를 통해 살펴보기로 한다.Next, an inductor having a self-focusing structure in which a gap flange of an air gap function or a winding guide function, which is a third main feature of the present invention, is applied will be described.
앞서 종래기술을 통해 살펴본 바와 같이 쵸크트랜스포머 등의 인덕터에 공극을 형성시킴으로써 인덕터에 더 많은 자기 에너지를 축적할 수 있어 코어에 큰 전류가 흐르는 경우에도 포화 상태에 이르지 않고 안정적으로 인덕터가 구동할 수 있게 되는데, 본 발명에서는 비도자성 물질로 코어의 플랜지를 형성시켜 일종의 공극(air gap)으로서 기능하는 인덕터를 제시하며, 여기서 도자성 물질로서 형성되는 플랜지와는 상이하게 비도자성 물질로 형성되는 플랜지는 공극(air gap)으로서 기능하므로 갭 플랜지라 명명한다.As discussed in the prior art, by forming voids in an inductor such as a choke transformer, more magnetic energy can be accumulated in the inductor so that the inductor can be stably driven without reaching saturation even when a large current flows in the core. The present invention proposes an inductor which functions as a kind of air gap by forming a flange of a core with a non-magnetic material, wherein a flange formed of a non-magnetic material is different from a flange formed as a magnetic material. It functions as an air gap, so it is called a gap flange.
나아가서 본 발명에서의 갭 플랜지는 코일의 권선을 용이하게 하고 권선된 코일의 이탈을 방지하기 위한 권선 가이드로서 기능할 수도 있는데, 갭 플랜지가 공극으로서 기능하는가 아니면 권선 가이드로서 기능하는가는 선택적 기능으로서 상황에 따라 갭 플랜지가 공극으로서만 기능하거나 권선 가이드로서만 기능할 수도 있으며 또는 공극과 권선 가이드 모두로서 기능할 수도 있다.Furthermore, the gap flange in the present invention may also function as a winding guide for facilitating winding of the coil and preventing deviation of the coiled coil, and whether the gap flange functions as a void or as a winding guide is an optional function. Depending on the gap flanges may function only as voids or only as winding guides, or as both voids and winding guides.
도 23은 본 발명에 따른 인덕터의 제6 실시예에 대한 사시도를 도시하며, 도 24는 상기 도 23의 제6 실시예에 대한 단면도를 도시한다.FIG. 23 shows a perspective view of a sixth embodiment of an inductor according to the present invention, and FIG. 24 shows a sectional view of the sixth embodiment of FIG.
상기 도 23의 제5 실시예는 상기 도 13의 제2 실시예와 유사하게 컵형 집속 커버(460)에 코어 어셈블리(410)가 삽입된 인덕터(400)로서, 코어 어셈블리(410)에는 갭 플랜지(425)가 형성된 코어(420)가 적용된다.The fifth embodiment of FIG. 23 is an inductor 400 having a core assembly 410 inserted into a cup focusing cover 460 similar to the second embodiment of FIG. 13, and a gap flange ( The core 420 having the 425 formed thereon is applied.
코어 어셈블리(410)의 I자형 코어(420)는 도자성 물질로 형성된 코어 바디(421)와 하부 플랜지(424) 및 비도자성 물질로 형성된 갭 플랜지(425)로 구성되며, 갭 플랜지(425)를 비도자성 물질로 형성함으로써 갭 플랜지(425) 자체가 일종의 공극(Air gap)으로서 기능하게 된다.The I-shaped core 420 of the core assembly 410 is composed of a core body 421 formed of a magnetic material and a lower flange 424 and a gap flange 425 formed of a non-magnetic material. The gap flange 425 itself functions as a kind of air gap by forming with a non-conductive material.
즉, 코어(420)와 플랜지(424) 및 집속 커버(460)가 하나의 자기력선 폐루프를 형성시키는데, 코어 바디(421)와 집속 커버(460)의 차폐부(465) 간 사이에 갭 플랜지(425)가 위치되어 갭 플랜지(425)가 공극으로서 자기 에너지를 축적하게 된다.That is, the core 420, the flange 424, and the focusing cover 460 form one magnetic line closed loop, and a gap flange (between the core body 421 and the shield 465 of the focusing cover 460) is formed. 425 is positioned so that the gap flange 425 accumulates magnetic energy as a void.
나아가서 갭 플랜지(425)의 두께가 곧 공극(Air gap)의 크기가 되므로 갭 플랜지(425)의 두께에 따른 자기저항(reluctance)이 조절되어 인덕터(400)의 인덕턴스(inductance)가 조절될 수 있다.Furthermore, since the thickness of the gap flange 425 becomes the size of the air gap, the reluctance according to the thickness of the gap flange 425 may be adjusted to adjust the inductance of the inductor 400. .
상기 도 24에서는 코어 바디(421)와 플랜지(424)에 절연층(430)을 형성시키고 코어(420)에 직접 코일(450)을 권선한 구성인데, 이에 국한되지 않고 보빈이 적용된 코어 어셈블리로 구성될 수도 있으며, 나아가서 앞서 살펴본 본 발명에 따른 다양한 집속 커버가 적용될 수도 있다.In FIG. 24, the insulation layer 430 is formed on the core body 421 and the flange 424, and the coil 450 is wound directly on the core 420. However, the configuration is not limited thereto. In addition, various focusing covers according to the present invention described above may be applied.
이와 같이 본 발명에서는 I자형 또는 T자형 등의 코어에 갭 플랜지를 적용하여 공극을 형성시킴으로써 갭 플랜지의 두께에 따른 자기저항(reluctance)을 조절하여 인덕터(400)의 인덕턴스(inductance)를 쉽게 조정할 수 있으며, 나아가서 일자형 코어나 T 자형 코어에 갭 플랜지를 채용하여 코일 권선을 용이하게 하는 동시에 권선된 코일의 이탈을 방지하는 권선 가이드로서 기능할 수도 있다.As such, in the present invention, by forming a gap by applying a gap flange to a core such as an I-shape or a T-shape, the inductance of the inductor 400 can be easily adjusted by adjusting the reluctance according to the thickness of the gap flange. Furthermore, by employing a gap flange in the straight core or the T-shaped core, the coil winding can be facilitated, and at the same time, it can function as a winding guide that prevents the winding of the wound coil.
본 발명에서의 갭 플랜지가 적용되는 인덕터는 다양하게 변형될 수 있는데, 이하에서 몇가지 변형 실시예를 좀더 살펴보기로 한다.The inductor to which the gap flange is applied in the present invention may be modified in various ways. Hereinafter, some modified embodiments will be described.
도 25는 본 발명에 따른 인덕터의 제7 실시예에 대한 사시도를 도시한다.Figure 25 shows a perspective view of a seventh embodiment of an inductor according to the present invention.
상기 도 25의 (a)에서 집속 커버(560)는 상부 집속 커버(560a)와 하부 집속 커버(560b)로 구성되며, 상부 집속 커버(560a)와 하부 집속 커버(560b) 각각은 컵 형태로서 일단에는 개구부(562a,562b)가 형성되고 타단에는 차폐부(565a, 565b)가 형성되며, 코어 어셈블리(510)의 상부와 하부가 각각 상부 집속 커버(560a)와 하부 집속 커버(560b)에 삽입되어 상부 집속 커버(560a)와 하부 집속 커버(560b)가 코어 어셈블리(510)를 전체적으로 감싸도록 구성된다.In FIG. 25A, the focusing cover 560 includes an upper focusing cover 560a and a lower focusing cover 560b, and each of the upper focusing cover 560a and the lower focusing cover 560b has a cup shape. Openings 562a and 562b are formed at the other end, and shields 565a and 565b are formed at the other end, and upper and lower portions of the core assembly 510 are inserted into the upper focusing cover 560a and the lower focusing cover 560b, respectively. The upper focusing cover 560a and the lower focusing cover 560b are configured to completely surround the core assembly 510.
여기서 코어 어셈블리(510)의 코어에는 양단 모두에 갭 플랜지(525, 527)가 형성되어, 코어 어셈블리(510)와 상부 집속 커버(560a) 및 하부 집속 커버(560b)가 이루는 자기력선 폐루프에 갭 플랜지(525, 527)를 통한 공극(air gap)이 형성된다. 또한 코어에는 양단 모두에 권선 가이드로서 갭 플랜지(525, 527)를 통해 코어에 코일의 권선을 더욱 용이하게 하며 권선된 코일의 이탈을 방지할 수 있다.Here, gap flanges 525 and 527 are formed at both ends of the core of the core assembly 510, so that the gap flanges are formed in the closed magnetic loop of the magnetic lines formed by the core assembly 510, the upper focusing cover 560a, and the lower focusing cover 560b. Air gaps through 525 and 527 are formed. In addition, the core may further facilitate winding of the coil to the core through the gap flanges 525 and 527 as winding guides at both ends, and may prevent the winding of the wound coil.
상기 도 25의 (a)에서는 코어 어셈블리(510)가 수용되는 밀폐형 통 구조의 집속 커버(560)가 수평 분할된 상부 집속 커버(560a)와 하부 집속 커버(560b)로 구성된다고 볼 수 있는데, 이에 대하여 상기 도 25의 (b)에서는 코어 어셈블리(510)가 수용되는 밀폐형 통 구조의 집속 커버(560')가 수직으로 분할된 좌측 집속 커버(560a')와 우측 집속 커버(560b')의 집속 커버 조각으로 구성되어, 코어 어셈블리(510)를 사이에 두고 좌측 집속 커버(560a')와 우측 집속 커버(560b')가 결합되어 집속 커버(560')를 이루게 된다.In FIG. 25 (a), it can be seen that the focusing cover 560 of the sealed tubular structure in which the core assembly 510 is accommodated consists of an upper focusing cover 560a and a lower focusing cover 560b horizontally divided. 25 (b), the focusing cover of the left focusing cover 560a 'and the right focusing cover 560b' in which the focusing cover 560 'of the closed cylindrical structure in which the core assembly 510 is accommodated is vertically divided. It is composed of pieces, and the left focusing cover 560a 'and the right focusing cover 560b' are coupled with the core assembly 510 therebetween to form a focusing cover 560 '.
상기 도 25의 제7 실시예에서는 코어 양단 모두에 갭 플랜지를 형성시켰으나 요구되는 인덕터의 특성을 고려하여 갭 플랜지는 선택적으로 하나만 구성될 수도 있고, 선택적으로 도자성물질의 플랜지가 형성될 수도 있다.In the seventh embodiment of FIG. 25, a gap flange is formed at both ends of the core. However, in consideration of the characteristics of the required inductor, only one gap flange may be selectively configured, or a flange of the magnetic material may be selectively formed.
도 26은 본 발명에 따른 인덕터의 제8 실시예에 대한 사시도를 도시한다.Figure 26 shows a perspective view of an eighth embodiment of an inductor according to the present invention.
상기 도 26에 도시된 제8 실시예는 상기 도 17 및 도 18의 제3 실시예와 유사하게, 부채꼴 형태 또는 십자형태의 차폐부(665a, 665b)가 적용된 집속 커버(660a, 660b)이며, 코어 어셈블리의 코어(620a, 620b)에는 상부에 갭 플랜지(625a, 625b)를 형성시켜 갭 플랜지(625a, 625b)를 통한 자기저항이 조절되는 구성이다.Similar to the third embodiment of FIGS. 17 and 18, the eighth embodiment illustrated in FIG. 26 is the focusing covers 660a and 660b to which the shields 665a and 665b having a fan shape or cross shape are applied. In the cores 620a and 620b of the core assembly, gap flanges 625a and 625b are formed on the upper portion, thereby controlling the magnetoresistance through the gap flanges 625a and 625b.
또한 도 27은 본 발명에 따른 인덕터의 제9 실시예에 대한 사시도를 도시하는데, 상기 도 20의 실시예와 유사하게 길이방향으로 수직 분할된 2개의 집속 커버 조각(660c', 660c'')의 상면과 하면이 서로 대응되는 부채꼴 형태로 형성되고, 2개의 집속 커버 조각(660c', 660c'')이 코어 어셈블리(610c)를 사이에 두고 결합되어 집속 커버(660c)를 이루며, 코어 어셈블리(610c)의 양단에 갭 플랜지가 적용되어 있다.FIG. 27 also shows a perspective view of a ninth embodiment of an inductor according to the present invention, similar to the embodiment of FIG. 20, of two focusing cover pieces 660c ', 660c' 'vertically divided longitudinally. The upper and lower surfaces are formed in a fan shape corresponding to each other, and two focusing cover pieces 660c 'and 660c' 'are coupled with the core assembly 610c interposed therebetween to form a focusing cover 660c, and a core assembly 610c. Gap flanges are applied at both ends of).
그리고 도 28은 본 발명에 따른 인덕터의 제10 실시예에 대한 사시도를 도시하는데, 상기 도 28에 도시된 제10 실시예는 상기 도 21 및 도 22의 제5 실시예와 유사하게 사각형 틀 구조의 집속 커버(760a, 760b, 760c)가 적용된 구성으로서, 사각형 틀의 집속 커버(760a, 760b, 760c) 내부(769a, 769b, 769c)에 코어 어셈블리(710a, 710b, 710c)가 길이방향으로 삽입되어 끼워져 인덕터(700a, 700b, 700c)가 구성된다. 여기서 코어(720a, 720b, 720c)의 양끝단에는 갭 플랜지(725a, 727a, 725b, 727b, 725c, 727c)가 형성되며, 갭 플랜지(725a, 727a, 725b, 727b, 725c, 727c)의 형태는 원형, 사각형 등 다양한 형태로 형성될 수 있다. 특히 상기 도 28의 (c)에서는 코어 어셈블리(710c)가 그 단면이 타원형태로 형성되어 있어, 사각형 틀의 집속 커버 형상에 대응되어 보다 넓게 집속 커버의 내부 공간을 활용하여 코일의 영역을 활용할 수 있다.28 is a perspective view of a tenth embodiment of the inductor according to the present invention, in which the tenth embodiment shown in FIG. 28 has a rectangular frame structure similar to the fifth embodiment of FIGS. 21 and 22. Focusing cover 760a, 760b, 760c is applied, the core assembly (710a, 69b, 769c) is inserted in the longitudinal direction to the inside of the rectangular frame focusing cover (760a, 760b, 760c) Inductors 700a, 700b, and 700c are constructed. Here, gap flanges 725a, 727a, 725b, 727b, 725c, and 727c are formed at both ends of the cores 720a, 720b, and 720c, and the shapes of the gap flanges 725a, 727a, 725b, 727b, 725c, and 727c are It may be formed in various forms such as a circle, a square. In particular, in FIG. 28C, the core assembly 710c has an elliptical shape in cross section, corresponding to the focus cover shape of the rectangular frame, and thus, the coil region may be utilized by utilizing the inner space of the focus cover more widely. have.
나아가서 상기 도 25 내지 상기 도 28의 실시예에는 보빈이 적용되는 코어 어셈블리로 구성될 수도 있고 보빈이 제거되어 코어에 직접 코일이 권선된 어셈블리로 구성될 수도 있다.Furthermore, the embodiment of FIGS. 25 to 28 may be configured as a core assembly to which a bobbin is applied, or may be configured as an assembly in which a coil is wound directly on the core by removing the bobbin.
이와 같이 다양한 형태의 코어 어셈블리와 집속 커버에 갭 플랜지를 적용함으로써 갭 플랜지를 통한 자기 저항이 조절되거나 권선 가이드로서 권선된 코일의 이탈을 방지하는 인덕터의 구성이 가능하다.By applying the gap flange to the core assembly and the focusing cover of various forms as described above, it is possible to configure the inductor to control the magnetoresistance through the gap flange or to prevent the coil from being wound as a winding guide.
한걸음 더 나아가서 본 발명에 따른 네번째 주된 특징으로서 갭 플랜지를 이용하여 1차 코일과 2차 코일을 구획할 수도 있는데 이와 관련하여 도 29는 본 발명에 따른 인덕터의 제11 실시예에 대한 사시도를 도시한다.Furthermore, as a fourth main feature according to the present invention, a gap flange may be used to partition the primary coil and the secondary coil. In this regard, FIG. 29 shows a perspective view of an eleventh embodiment of the inductor according to the present invention. .
상기 도 29의 제11 실시예에서는 코어 어셈블리(810)가 제1 코일(850a)과 제2 코일(850b)을 포함하여 구성되어 있으며, 제1 코일(850a)과 제2 코일(850b)은 중단의 갭 플랜지(825b)로 구획되어 분리되어 있다. 그리고 제1 코일(850a)과 제2 코일(850b)을 포함하는 코어 어셈블리(810)가 집속 커버(860)에 삽입되어 구성된다. 상기 도 29의 제11 실시예에서 코어 어셈블리(810)의 상단과 하단에도 갭 플랜지(825a, 825c)가 적용되어 있으나 코어 어셈블리(810)의 상단과 하단에는 선택적으로 도자성 물질의 플랜지가 적용될 수 있으며, 또한 집속 커버(860)의 형태도 원통형 파이프 구조 외에도 앞서 살펴본 다양한 형태의 집속 커버가 적용될 수 있다.In the eleventh embodiment of FIG. 29, the core assembly 810 includes a first coil 850a and a second coil 850b, and the first coil 850a and the second coil 850b are stopped. It is divided and separated by the gap flange 825b. The core assembly 810 including the first coil 850a and the second coil 850b is inserted into the focusing cover 860. In the eleventh embodiment of FIG. 29, gap flanges 825a and 825c are applied to the top and bottom of the core assembly 810, but flanges of a magnetic material may be selectively applied to the top and bottom of the core assembly 810. In addition, in addition to the cylindrical pipe structure, the shape of the focusing cover 860 may be applied to the focusing cover of various types described above.
본 발명에서는 상기에서 살펴본 자기집속 구조를 갖는 인덕터를 보다 간단하고 쉽게 제조하는 방법을 제시하는데, 이하에서는 본 발명에 대한 다섯번째 주된 특징으로서 자기집속 구조를 갖는 인덕터의 제조 방법에 대하여 살펴보기로 한다.The present invention provides a simpler and easier method of manufacturing the inductor having the above-described self-focusing structure. Hereinafter, a method of manufacturing the inductor having the self-focusing structure as a fifth main feature of the present invention will be described. .
도 30은 본 발명에 따른 인덕터의 제조 방법에 대한 공정 실시예를 도시한다.30 shows a process embodiment for the method of manufacturing the inductor according to the present invention.
본 발명에 따른 인덕터의 제조 방법에서는 도자성을 갖는 강판을 롤 형태로 감아 코어 바디, 플랜지, 집속 커버 등을 선택적으로 제조할 수 있는데, 상기 도 30의 (a)에 도시된 바와 같이 도자성을 갖는 강판(901)을 롤 형태로 일정 회수 감아 단면이 일정 직경을 갖는 드럼 코어 형태의 코어 바디(920a)를 제조하고, 코어 바디(920a)의 단면 직경에 대응되는 관통 공간을 갖도록 도자성을 갖는 강판(905)을 롤 형태로 일정 회수 감아 플랜지(920b, 920c)를 제조하며, 또한 코어 바디(920a) 및 플랜지(920b, 920c)의 단면 직경을 고려하여 관통 공간을 갖도록 도자성을 갖는 강판(907)을 일정 회수 감아 집속 커버(960)를 제조한다. 여기서 코어 바디(920a) 및 플랜지(920b, 920c)의 단면 직경은 인덕터의 성능과 적용되는 상황에 따라 선택될 수 있으며 강판을 감는 회수에 따라 간단하게 조절될 수 있다. 또한 코어 바디(920a)는 그 단면이 원형 형태에 한정되지 않고 사각형, 오각형 등 다양한 다각형의 형태로 형성될 수 있으며, 코어 바디의 형상에 대응되어 플랜지와 집속 커버도 다양한 형태로 형성될 수 있다.In the method of manufacturing an inductor according to the present invention, a core body, a flange, a focusing cover, etc. may be selectively manufactured by winding a steel plate having a magnetic property in a roll shape, as shown in FIG. 30 (a). Winding the steel sheet 901 having a predetermined number of times in a roll form to produce a core body 920a having a drum core shape having a predetermined diameter, and having a conductive property to have a through space corresponding to the cross-sectional diameter of the core body 920a. The steel sheet 905 is rolled up a predetermined number of times to produce the flanges 920b and 920c, and also has a ceramic having a ceramic space so as to have a through space in consideration of the cross-sectional diameters of the core body 920a and the flanges 920b and 920c. 907 is wound around a certain number of times to produce a focusing cover 960. Here, the cross-sectional diameters of the core body 920a and the flanges 920b and 920c may be selected according to the performance of the inductor and the application situation, and may be simply adjusted according to the number of times the steel sheet is wound. In addition, the cross section of the core body 920a is not limited to a circular shape, but may be formed in various polygonal shapes such as quadrangular and pentagonal shapes, and flanges and focusing covers may also be formed in various shapes corresponding to the shape of the core body.
나아가서 코어 바디(920a)를 롤 형태로 강판을 감아서 제조함에 따라 코어 바디(920a)의 가운데 중앙에는 구멍이 형성될 수 있는데, 이와 같이 형성된 코어 바디(920a)의 내부 빈 공간은 자성 물질로 채워서 메우는 것이 바람직하다. 한걸음 더 나아가서 코어 바디(920a)의 가운데 중앙에 형성되는 관통 공간을 코어 바디에 권선되는 코일의 배선 통로로 이용할 수도 있다.Further, as the core body 920a is manufactured by winding a steel sheet in the form of a roll, a hole may be formed in the center of the core body 920a. The inner empty space of the core body 920a thus formed may be filled with a magnetic material. Infill is preferred. Furthermore, the through space formed in the center of the core body 920a may be used as a wiring passage of a coil wound around the core body.
이와 같이 코어 바디(920a), 플랜지(920b, 920c) 및 집속 커버(960)가 선택적으로 준비되면, 상기 도 30의 (b)와 같이 코어 바디(920a)의 상단과 하단에 각각 플랜지(920b, 920c)를 삽입하여 끼워서 코어(920)를 제조하고 코어(920)에 코일(950)을 권선하여 코어 어셈블리(910)를 제조한다.When the core body 920a, the flanges 920b and 920c and the focusing cover 960 are selectively prepared as described above, the flanges 920b and 118b are respectively formed at the top and bottom of the core body 920a as shown in FIG. The core 920 is manufactured by inserting and inserting the 920c and the coil 950 is wound around the core 920 to manufacture the core assembly 910.
여기서 코어 바디(920a)에 플랜지(920b, 920c)를 삽입하여 끼우는 과정은 선택적인 것으로서, 가령 플랜지(920b, 920c)를 적용하지 않는 경우에 코어 바디(920a) 자체가 일자형 코어가 될 수도 있고 플랜지(920b, 920c)를 코어 바디(920a)의 상단 또는 하단 중 어느 한 부분에만 끼우는 경우에는 T자형 코어가 될 수도 있다. In this case, the process of inserting and inserting the flanges 920b and 920c into the core body 920a is optional. For example, when the flanges 920b and 920c are not applied, the core body 920a may be a straight core or a flange. In the case where the 920b and 920c are inserted into only one portion of the top or bottom of the core body 920a, the 920b and 920c may be a T-shaped core.
상기의 과정으로 코어 어셈블리(910)가 준비되면, 상기 도 30의 (c)에 도시된 바와 같이 코어 어셈블리(910)를 집속 커버(960)에 삽입하여 자기 집속 구조를 갖는 인덕터가 제조될 수 있다.When the core assembly 910 is prepared through the above process, as shown in FIG. 30C, the core assembly 910 may be inserted into the focusing cover 960 to manufacture an inductor having a self-focusing structure. .
나아가서 상기 도 30의 (a)와 같이 도자성 강판을 롤 형태로 감아서 코어 바디(920a), 플랜지(920b, 920c) 또는 집속 커버(960)를 제조하는 것은 선택적인 과정이므로 이들 중 선택된 구성만이 도자성 강판을 이용하여 제조될 수도 있을 것이다.Furthermore, as shown in FIG. 30 (a), the manufacturing of the core body 920a, the flanges 920b, 920c, or the focusing cover 960 by winding the magnetic steel sheet in the form of a roll is an optional process. It may be manufactured using this magnetic steel sheet.
본 발명에서 코어 어셈블리는 다양한 형태와 구성으로 제조될 수 있는데, 도 31은 본 발명에 따른 인덕터의 제조 방법에서 코어 어셈블리를 제조하는 공정에 대한 다양한 변형 실시예를 도시한다.In the present invention, the core assembly may be manufactured in various shapes and configurations, and FIG. 31 illustrates various modified embodiments of the process of manufacturing the core assembly in the method of manufacturing the inductor according to the present invention.
상기 도 31의 (a)에서는 절연부재(930)에 코어 바디(920a)를 삽입한 후 코어 바디(920a)의 상단과 하단에 선택적으로 플랜지(920b)를 끼워 코어(920')를 제조하고, 코어(920')에 코일(950)을 권선하여 어셈블리(910')를 제조하였다. 여기서 절연 부재(930)는 코어 바디(920a)와 코일(950) 간에 형성된 일종의 절연층으로서, 코어 바디(920a)가 삽입되는 관통 공간이 형성된 플라스틱 사출물이나 절연 물질의 튜브 등으로 제조될 수 있다. 또한 플랜지(920b, 920c)가 흘러내리지 않고 일정 위치에 보다 안정적으로 고정되기 위해 절연 부재(930)에는 플랜지(920b, 920c)의 걸림턱(935)이 형성될 수도 있다.In FIG. 31 (a), after the core body 920a is inserted into the insulating member 930, a flange 920b is selectively inserted into the top and bottom of the core body 920a to manufacture the core 920 '. The coil 950 was wound around the core 920 'to manufacture the assembly 910'. Here, the insulating member 930 is a kind of insulating layer formed between the core body 920a and the coil 950, and may be made of a plastic injection molding or a tube of insulating material having a through space in which the core body 920a is inserted. In addition, the latching jaws 935 of the flanges 920b and 920c may be formed in the insulating member 930 to more stably fix the flanges 920b and 920c at a predetermined position without flowing down.
또한 상기 도 31의 (b)는 절연물질 코팅을 통해 절연층을 형성하는 경우로서, 코어 바디(920a)의 둘레에 절연물질을 코팅하여 절연막(930a)으로 절연층을 형성한다. 그리고 코어 바디(920a)의 상단과 하단에 선택적으로 플랜지(920b, 920c)를 끼워서 코어(920'')를 제조하고 여기에 코일(950)을 권선하여 코어 어셈블리(910'')를 제조하였다.In addition, FIG. 31 (b) illustrates a case in which an insulating layer is formed by coating an insulating material. An insulating layer is formed of the insulating film 930a by coating the insulating material around the core body 920a. In addition, the core 920 ″ was manufactured by inserting flanges 920b and 920c selectively on the top and bottom of the core body 920a, and the coil 950 was wound thereon to manufacture the core assembly 910 ″.
상기 도 31의 실시예에서 제시한 절연층 형성 등의 과정은 선택적인 사항으로서 상황에 따라서 적용될 수 있는데, 가령 저주파용 인덕터의 경우에는 절연층을 적용하지 않고 바로 코어에 코일을 권선할 수도 있다. 그리고 플랜지도 선택적인 사항으로서 필요한 인덕터의 특성을 고려하여 상황에 따라서 적용될 수 있다.The process of forming the insulating layer and the like shown in the embodiment of FIG. 31 is optional and may be applied depending on circumstances. For example, in the case of a low frequency inductor, a coil may be wound directly on the core without applying the insulating layer. Flanges are optional and can be applied depending on the circumstances, taking into account the characteristics of the required inductor.
이상에서 살펴본 본 발명에 따른 자기 집속 구조를 갖는 인덕터의 제조 방법은 강판을 롤 형태로 감아 코어를 제작하므로, 기존의 위험하고 복잡한 프레스 가공 공정을 제거함으로써 보다 간단하고 안전한 공정을 통해 인덕터의 제조가 가능해져 제조 단가를 낮출 수 있으며, 특히 코어를 이루는 강판의 두께와 롤 형태로 감기는 회수의 선택적 조절이 가능하므로 코일의 권선수에 의존하지 않고 코어 자체를 조절하여 인덕터의 특성 조절이 가능해진다.In the manufacturing method of the inductor having a self-focusing structure according to the present invention as described above, since the core is manufactured by winding the steel sheet in the form of a roll, the inductor can be manufactured through a simpler and safer process by eliminating the existing dangerous and complicated pressing process. The manufacturing cost can be reduced, and in particular, the thickness of the steel sheet constituting the core and the number of windings in the form of rolls can be selectively adjusted, so that the characteristics of the inductor can be adjusted by adjusting the core itself without depending on the number of turns of the coil.
나아가서 롤 형태의 원통형 코어를 적용함으로써 기존의 각진 형태의 E자형나 T자의 코어를 이용하는 경우보다 코일의 권선수 대비 코일의 소모량을 더욱 줄일 수 있다.Further, by applying the roll-shaped cylindrical core, it is possible to further reduce the coil consumption compared to the number of turns of the coil than when using the conventional angular E-shaped or T-shaped core.
한걸음 더 나아가서 본 발명에서는 상기에서 살펴본 자기 집속 구조를 갖는 인덕터와 스위칭 소자의 트리거를 제어하기 위한 인덕터가 같이 구비된 하이브리드 인덕터를 개시하는데, 이하에서는 본 발명에 따른 여섯번째 주된 특징으로서의 하이브리드 인덕터에 대하여 그 실시예를 통해 살펴보기로 한다.Furthermore, the present invention discloses a hybrid inductor including an inductor having a self-focusing structure as described above and an inductor for controlling a trigger of a switching element. Hereinafter, a hybrid inductor as a sixth main feature of the present invention will be described. It will be described through the embodiment.
본 발명에 따른 하이브리드 인덕터는 앞서 살펴본 본 발명에 따른 자기 집속 구조를 갖는 인덕터를 포함하여 구성되는데, 자기 집속 구조를 갖는 인덕터에 대해서는 앞서 살펴본 내용을 참조하여 중복된 내용은 생략하기로 한다. The hybrid inductor according to the present invention is configured to include the inductor having a self-focusing structure according to the present invention described above, with respect to the inductor having a self-focusing structure will be omitted with reference to the above description.
일반적으로 전자식 안정기에는 두 개의 스위칭 소자를 트리거하기 위하여 토로이덜 코어를 이용하는 소위 오실레이터가 구비되어 있으며, 또한 다양한 전자 기기에서 토로이덜 코어를 이용한 인덕터를 트랜스포머, 필터 등의 용도로 사용하고 있다. In general, an electronic ballast is provided with a so-called oscillator using a toroidal core to trigger two switching elements, and an inductor using a toroidal core is used for transformers and filters in various electronic devices.
본 발명에서는 이와 같은 토로이덜 코어를 트랜스포머 또는 쵸크트랜스 용도로 사용하는 각종 인덕터와 상기에서 살펴본 초크 트랜스포머 등으로 이용될 수 있는 자기 집속 구조를 갖는 인덕터를 하나의 패키지로 구성하여 PCB 사용 면적을 줄이고 부품 갯수를 줄일 수 있는 방안을 개시한다. In the present invention, various inductors using such a toroidal core as a transformer or choke transformer and an inductor having a self-focusing structure that can be used as a choke transformer as described above are formed into one package, thereby reducing PCB footprint and components. Discuss how to reduce the number.
도 32는 본 발명에 따른 하이브리드 인덕터의 제1 실시예를 도시한다.32 shows a first embodiment of a hybrid inductor according to the present invention.
상기 도 32의 하이브리드 인덕터에 대한 제1실시예에서는 앞서 살펴본 본 발명에 따른 자기 집속 구조를 갖는 인덕터를 제1 인덕터(1100)로 구성하는 코어 어셈블리(1110)와 집속 커버(1160)를 포함한다. The first embodiment of the hybrid inductor of FIG. 32 includes a core assembly 1110 and a focusing cover 1160 constituting an inductor having a self-focusing structure according to the present invention as described above with the first inductor 1100.
그리고 집속 커버(1160)는 원통형의 파이프 구조로서, 집속 커버(1160)가 인덕터의 슬리브 코어로 이용되어 집속 커버(1160)의 길이방향으로 코일(1250)이 토로이덜 형태로 권선되어 제2 인덕터(1200)를 구성하게 된다. In addition, the focusing cover 1160 has a cylindrical pipe structure, and the focusing cover 1160 is used as a sleeve core of the inductor, and the coil 1250 is wound in a toroidal form in the longitudinal direction of the focusing cover 1160 to form a second inductor. 1200).
즉, 본 발명에 따른 하이브리드 인덕터(1000)는 코어 어셈블리(1110)와 집속커버(1160)가 제1 인덕터(1100)를 구성하고, 또한 집속 커버(1160)와 집속 커버(1160)에 권선된 코일(1250)이 제2 인덕터(1200)를 구성하여, 제1 인덕터(1100)와 제2 인덕터(1200)가 패키지 형태로 하이브리드 인덕터(1000)를 구성한다.That is, in the hybrid inductor 1000 according to the present invention, the core assembly 1110 and the focusing cover 1160 constitute the first inductor 1100, and the coil wound around the focusing cover 1160 and the focusing cover 1160. 1250 constitutes the second inductor 1200, and the first inductor 1100 and the second inductor 1200 form the hybrid inductor 1000 in a package form.
상기 도 32에 도시된 제1실시예에서는 보빈을 제거하고 코어(1120)에 직접 코일(1150)이 권선된 코어 어셈블리(1110)로 구성하였는데, 필요에 따라서는 보빈이 적용된 코어 어셈블리로 구성될 수도 있다. In the first embodiment shown in FIG. 32, the bobbin is removed and the core assembly 1110 is wound around the core 1120. The core assembly 1110 may be configured as necessary. have.
도 33은 상기 도 32의 본 발명에 따른 하이브리드 인덕터의 제1 실시예에서의 자기력선 방향을 도시하는데, 상기 도 32과 도 33을 함께 참조하여 본 발명에 따른 하이브리드 인덕터의 작동원리에 대하여 살펴보기로 한다. FIG. 33 illustrates the direction of the magnetic force lines in the first embodiment of the hybrid inductor of FIG. 32 according to the present invention. Referring to FIGS. 32 and 33, the operation principle of the hybrid inductor according to the present invention will be described. do.
코일의 전류 흐름에 따라 자기장이 발생하며, 이때 코일에 가해지는 자기장의 변화는 그 자기장의 변화를 상쇄하려는 방향으로의 유도전류를 만들어낸다. The magnetic field is generated by the current flow of the coil, and the change of the magnetic field applied to the coil produces an induced current in a direction to cancel the change of the magnetic field.
가령 상기 도 32의 하이브리드 인덕터(1000)는 상기 도 33에서와 같이 제1 인덕터(1100)의 코어 어셈블리(1100)의 코일에 흐르는 전류 IP의 방향에 따라 자기장 BP가 발생하며, 제2 인덕터(1200)의 코일(1250)에 흐르는 전류 IS의 방향에 따라 자기장 BS가 발생한다. For example, as shown in FIG. 33, the hybrid inductor 1000 of FIG. 32 generates a magnetic field B P according to the direction of current I P flowing in the coil of the core assembly 1100 of the first inductor 1100 and the second inductor. The magnetic field B S is generated along the direction of the current I S flowing in the coil 1250 of 1200.
상기 제1 인덕터(1100)의 코어 어셈블리(1100)에 의해 만들어지는 자기장 BP는 제2 인덕터(1200)에 감기는 코일(1250)의 방향과 일치하므로 이 자기장의 변화는 제2 인덕터(1200)의 토로이덜 코일(1250)에 아무런 영향을 미치지 않는다. 반대로 제2 인덕터(1200)에 의해 만들어지는 자기장 BS 역시 상기 제1 인덕터(1100)의 코어 어셈블리(1110)의 코일(1150)의 방향과 일치하므로 코어 어셈블리(1110)의 코일(1150)에 아무런 영향을 주지 않는다. Since the magnetic field BP generated by the core assembly 1100 of the first inductor 1100 coincides with the direction of the coil 1250 wound on the second inductor 1200, the change of the magnetic field is changed by the second inductor 1200. It has no effect on the toroidal coil 1250. On the contrary, since the magnetic field B S generated by the second inductor 1200 also coincides with the direction of the coil 1150 of the core assembly 1110 of the first inductor 1100, the magnetic field B S does not affect the coil 1150 of the core assembly 1110. Does not affect
따라서 상기 도 32와 같은 본 발명에 따른 자기 집속 구조를 갖는 제1 인덕터(1100)에 제2 인덕터(1200)가 결합되어 하나의 패키지로 구성된 하이브리드 인덕터(1000)의 경우에, 코어 어셈블리(1110)로 구성된 제1 인덕터(1100)와 코어 어셈블리(1110)의 외부에 위치된 제2 인덕터(1200)가 서로 영향을 미치지 않으므로 각기 개별적으로 동작이 가능하다. Accordingly, in the case of the hybrid inductor 1000 having the second inductor 1200 coupled to the first inductor 1100 having the self-focusing structure according to the present invention as shown in FIG. 32 and configured as one package, the core assembly 1110 Since the first inductor 1100 and the second inductor 1200 positioned outside the core assembly 1110 do not affect each other, each of them may be individually operated.
도 34는 본 발명에 따른 하이브리드 인덕터의 제2 실시예를 도시하는데, 34 shows a second embodiment of a hybrid inductor according to the present invention,
상기 도 34에 도시된 하이브리드 인덕터의 제2실시예에서도 상기 제1 인덕터(1100a)의 코어 어셈블리(1110a)의 구성은 앞서 살펴본 본 발명에 따른 자기 집속 구조를 갖는 인덕터와 동일한데, 집속커버(1160a)로는 측면 둘레를 따라 상부와 하부에 일정 간격씩 이격되어 길이방향으로 복수개의 홈이 형성된 집속 커버가 적용된다. 여기서 집속 커버(1160a)가 제2 인덕터(1200a)의 슬리브 코어로 이용되며, 집속 커버(1160a) 홈이 형성된 부분(1161a)에 제2 인덕터(1200a)의 코일(1250a)이 토로이덜 형태로 권선된다. 이와 같이 집속 커버(1160a)의 홈에 코일을 권선함으로써 코일의 이탈을 방지하여 안정적으로 코일의 위치를 유지시킬 수 있으며, 홈의 위치를 매칭시켜 재료를 커팅함으로써 동일한 재료의 크기로 보다 많은 코어의 생산이 가능하게 되어 재료의 낭비를 방지할 수 있다. In the second embodiment of the hybrid inductor illustrated in FIG. 34, the configuration of the core assembly 1110a of the first inductor 1100a is the same as the inductor having the self-focusing structure according to the present invention as described above. ) Is provided with a focusing cover formed with a plurality of grooves in the longitudinal direction spaced apart at regular intervals in the upper and lower portions along the side circumference. Here, the focusing cover 1160a is used as a sleeve core of the second inductor 1200a, and the coil 1250a of the second inductor 1200a is wound in a toroidal shape in a portion 1161a where the focusing cover 1160a is formed. do. In this way, by winding the coil in the groove of the focusing cover 1160a, the coil can be prevented from being detached to maintain the position of the coil stably. Production is possible, which prevents waste of materials.
여기서 제2 인덕터(1200a)의 코일(1250a)과 슬리브 코어(1160a)의 절연을 위해 코일(1160a)이 권선되어 슬리브 코어(1160a)로 이용되는 집속 커버(1160a)에 액상 실리콘, 우레탄 또는 절연 페인트 등의 절연물질이 코팅되어 절연층이 형성될 수 있으며, 또는 플라스틱 케이스, 절연 테이프나 튜브 등 기타의 방법으로 절연층을 형성할 수 있다. In this case, the coil 1160a is wound to insulate the coil 1250a of the second inductor 1200a from the sleeve core 1160a, and the liquid silicone, urethane, or insulating paint is applied to the focusing cover 1160a used as the sleeve core 1160a. The insulating layer may be coated to form an insulating layer, or the insulating layer may be formed by a plastic case, an insulating tape or a tube, or the like.
나아가서 상기 도 34에 도시된 집속커버 이외에도 상기 도 11을 참조하여 살펴본 다양한 형태의 집속커버가 제2 인덕터(1200a)의 슬리브 코어로 적용될 수 있다. Furthermore, in addition to the focusing cover illustrated in FIG. 34, various types of focusing covers described with reference to FIG. 11 may be applied to the sleeve core of the second inductor 1200a.
도 35는 본 발명에 따른 하이브리드 인덕터의 제3 실시예를 도시한다.35 shows a third embodiment of a hybrid inductor according to the present invention.
상기 도 35에서도 제1 인덕터(1100b)의 코어 어셈블리(1110b)는 앞서 살펴본 코어 어셈블리들이 적용 가능하므로 이에 대한 설명은 생략하기로 한다. In FIG. 35, since the core assemblies described above are applicable to the core assembly 1110b of the first inductor 1100b, a description thereof will be omitted.
상기 도 35에서는 집속 커버(1160b)가 코어 어셈블리(1110b)의 외각에서 코어 어셈블리(1110b)의 외면에 대응되어 둥근 면을 가지고 서로 일정 간격 이격된 4개의 지지부재(1163)와 지지부재(1163) 사이에서 지지부재(1163) 간을 연결하는 연결부재(1164)를 포함하여 구성되어 상부에서 바라본 단면도가 전체적으로 사각형을 이루고 있다. In FIG. 35, the focusing cover 1160b corresponds to the outer surface of the core assembly 1110b at an outer side of the core assembly 1110b, and has four rounded support members 1163 and support members 1163 spaced at regular intervals from each other. It comprises a connecting member 1164 connecting between the support member 1163 between the cross-sectional view as viewed from the top is a quadrangular as a whole.
여기서 지지부재(1163)와 연결부재(1164)가 제2 인덕터(1200b)의 슬리브 코어로 이용되며, 연결부재(1164)에 토로이덜 형태로 코어(1250b)가 권선된다. Here, the supporting member 1163 and the connecting member 1164 are used as the sleeve core of the second inductor 1200b, and the core 1250b is wound around the connecting member 1164 in a toroidal shape.
또한 제2 인덕터의 코일(1250b)과 연결부재(1164)의 절연을 위해 제2 인덕터의 코일(1250b)이 권선되어 슬리브 코어로 이용되는 연결부재(1164)에 액상 실리콘, 우레탄 또는 절연 페인트 등의 절연물질이 코팅되어 절연층이 형성될 수 있으며, 또는 플라스틱 케이스, 절연 테이프나 튜브 등 기타의 방법으로 절연층을 형성할 수 있다. Also, in order to insulate the coil 1250b of the second inductor and the connecting member 1164, the coil 1250b of the second inductor is wound to connect the connecting member 1164 used as a sleeve core such as liquid silicone, urethane, or insulating paint. The insulating material may be coated to form an insulating layer, or the insulating layer may be formed by a plastic case, an insulating tape or a tube, or the like.
상기 도 35에서는 코어 어셈블리(1110b)의 4부분 외각에 4개의 지지부재(1163)가 위치되어 상부에서 바라볼 때 전체적으로 사각형을 이루고 있지만, 이에 국한되지 않고, 상황에 따라서 3개의 지지부재가 위치되어 삼각형을 이루거나, 5개의 지지부재가 위치되어 오각형을 이루는 등 복수개의 지지부재가 위치되어 다각형을 이룰 수도 있다. In FIG. 35, four support members 1163 are positioned at four outer parts of the core assembly 1110b to form a quadrangle as viewed from the top, but the present invention is not limited thereto, and three support members are positioned according to circumstances. A plurality of support members may be positioned to form a polygon such as forming a triangle or five support members to form a pentagon.
나아가서 상기 도 35의 (c)에는 보빈을 제거한 코어 어셈블리(1110b)가 도시되어 있으나, 필요에 따라서는 보빈을 이용하는 코어 어셈블리를 적용할 수도 있다.In addition, although the core assembly 1110b having the bobbin removed is illustrated in FIG. 35C, a core assembly using a bobbin may be used as necessary.
도 36은 본 발명에 따른 하이브리드 인덕터의 제4 실시예를 도시한다.36 shows a fourth embodiment of the hybrid inductor according to the present invention.
상기 도 36에서도 집속 커버(1360)의 내부에 위치된 코어 어셈블리(1310)는 앞서 살펴본 코어 어셈블리의 적용이 가능하며, 상기 도 36에서는 집속커버(1360)의 상부에 인덕터 링(1461)이 위치되며, 인덕터 링(1461)은 복수개의 지지 다리(1465)로 집속커버(1360)의 상단부에 연결되어 집속커버(1360)에 의해 지지된다. 그리고 인덕터 링(1461)과 인덕터 링(1461)에 토로이덜 형태로 권선된 코일(1450)이 제2 인덕터(1400)를 구성하게 된다.In FIG. 36, the core assembly 1310 positioned inside the focusing cover 1360 may be applied to the core assembly described above. In FIG. 36, the inductor ring 1462 is positioned on the focusing cover 1360. The inductor ring 1462 is connected to the upper end of the focusing cover 1360 by a plurality of support legs 1465 and supported by the focusing cover 1360. In addition, the coil 1450 wound in the inductor ring 1541 and the inductor ring 1462 in the form of a toroidal body constitutes the second inductor 1400.
즉, 상기 도 36의 제4 실시예에 따른 하이브리드 인덕터에서는 하단부에 코어 어셈블리(1310)와 집속커버(1360)로 제1 인덕터(1300)가 구성되고 상단부에 인덕터 링(1461)과 지지 다리(1465)로 구성되는 슬리브 코어(1460)와 인덕터 링(1461)에 권선된 코일(1450)이 제2 인덕터(1400)를 구성한다.That is, in the hybrid inductor according to the fourth exemplary embodiment of FIG. 36, the first inductor 1300 is configured by the core assembly 1310 and the focusing cover 1360 at the lower end thereof, and the inductor ring 1451 and the support leg 1465 at the upper end thereof. The sleeve core 1460 and the coil 1450 wound around the inductor ring 1462 constitute the second inductor 1400.
나아가서 상기 도 36의 (b)에 도시된 바와 같이 제1 인덕터(1300)의 코어(1320)는 도자성 물질로 형성된 코어 바디(1321)와 하단의 플랜지(1324) 및 비도자성 물질로 형성된 상단의 갭 플랜지(1325)로 구성될 수도 있다. Further, as shown in FIG. 36B, the core 1320 of the first inductor 1300 may include a core body 1321 formed of a magnetic material, a flange 1324 at a lower end, and a top of a top formed of a non-magnetic material. It may be composed of a gap flange 1325.
상기 도 36과 같이 제1 인덕터(1300)와 제2 인덕터(1400)를 패키지로 형성한 하이브리드 인덕터는 제1 인덕터(1300)의 상부를 제2 인덕터(1400)의 공간으로 이용함으로써 부품의 집적화 효율을 더욱 향상시킬 수 있다.As shown in FIG. 36, in the hybrid inductor in which the first inductor 1300 and the second inductor 1400 are packaged, integration efficiency of components is achieved by using an upper portion of the first inductor 1300 as a space of the second inductor 1400. Can be further improved.
상기에서 살펴본 도 32 내지 도 36의 본 발명에 따른 하이브리드 인덕터에는 선택적으로 코일이 권선된 보빈을 적용할 수도 있고 코어에 부분적으로 절연층을 형성하고 여기에 코일을 권선할 수도 있으며, 또한 상기 도 9 및 도 10을 통해 살펴본 두께가 조절된 플랜지가 형성된 코어가 적용될 수도 있다. 나아가서 상기 도 32 내지 도 36의 하이브리드 인덕터에도 갭 플랜지를 적용하여 인덕터의 인덕턴스를 조절할 수도 있다.In the hybrid inductor according to the present invention of FIGS. 32 to 36 described above, a bobbin wound with a coil may be selectively applied, a partial insulation layer may be formed on the core, and the coil may be wound thereon. And a core having a flange whose thickness is adjusted through FIG. 10 may be applied. In addition, the inductance of the inductor may be adjusted by applying a gap flange to the hybrid inductor of FIGS. 32 to 36.
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서 본 발명에 기재된 실시예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 발명의 기술 사상이 한정되는 것은 아니다. 본 발명의 보호 범위는 아래의 청구범위에 의해서 해석되어야하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.The above description is merely illustrative of the technical idea of the present invention, and those skilled in the art to which the present invention pertains may make various modifications and variations without departing from the essential characteristics of the present invention. Therefore, the embodiments described in the present invention are not intended to limit the technical idea of the present invention but to explain, and the technical idea of the present invention is not limited by these embodiments. The protection scope of the present invention should be interpreted by the following claims, and all technical ideas within the scope equivalent thereto should be construed as being included in the scope of the present invention.
Claims (32)
- 소정 길이의 코어 바디를 갖는 코어와 상기 코어 바디의 둘레에 권선된 코일을 포함하는 코어 어셈블리; 및A core assembly comprising a core having a core body of a predetermined length and a coil wound around the core body; And도자성 물질을 함유하여 형성되며 상기 코어 어셈블리가 삽입되어 상기 코어 어셈블리의 외각에서 상기 코일의 적어도 일부분을 감싸도록 형성되어 상기 코일의 전류 흐름에 따라 생성되는 자기력선의 외부확산을 제한하여 상기 자기력선을 집속시키는 집속커버를 포함하는 것을 특징으로 하는 인덕터.It is formed by containing a magnetic material and the core assembly is inserted so as to surround at least a portion of the coil at the outer shell of the core assembly to limit the external diffusion of the magnetic force line generated by the current flow of the coil to focus the magnetic force line Inductor comprising a focusing cover to.
- 제 1 항에 있어서,The method of claim 1,상기 코어 어셈블리는, The core assembly,상기 코어 바디의 길이방향 양단 중 어느 하나 또는 양단 모두에 도자성 물질로 형성된 플랜지가 구비되어 수직단면이 I형 또는 T형인 코어를 포함하는 것을 특징으로 하는 인덕터.An inductor comprising a core having a flange formed of a magnetic material on one or both ends of the longitudinal body of the core body, the core having an I-type or a T-shaped vertical section.
- 제 2 항에 있어서,The method of claim 2,상기 플랜지는, 상기 플랜지 상의 내부 원주의 수직 단면적과 상기 코어 바디의 수평 단면적이 서로 동일하도록 중심부로부터 측면으로 향할수록 두께가 얇아지도록 형성된 것을 특징으로 하는 인덕터.And the flange is formed such that the thickness becomes thinner from the center toward the side such that the vertical cross sectional area of the inner circumference on the flange and the horizontal cross sectional area of the core body are equal to each other.
- 제 1 항에 있어서,The method of claim 1,상기 코어 어셈블리는,The core assembly,상기 코어 바디의 길이 방향 양단 중 어느 하나 또는 양단 모두에 비도자성 물질로 형성된 갭 플랜지를 구비하여 수직단면이 I형 또는 T형인 코어를 포함하는 것을 특징으로 하는 인덕터.And a core having a vertical flange having an I-type or a T-type, with a gap flange formed of a non-magnetic material at one or both ends of the longitudinal body.
- 제 1 항에 있어서,The method of claim 1,상기 코어 어셈블리는,The core assembly,상기 코어 바디의 길이 방향 양단 중 어느 하나에는 도자성 물질로 형성된 플랜지가 구비되고 다른 하나에는 비도자성 물질로 형성된 갭 플랜지를 구비하여 수직단면이 I형인 코어를 포함하는 것을 특징으로 하는 인덕터.An inductor of any one of longitudinal ends of the core body includes a core having a flange formed of a magnetic material and the other having a gap flange formed of a non-magnetic material, wherein the core has a vertical cross section.
- 제 2 항 또는 제 5 항 중 어느 한 항에 있어서,The method according to any one of claims 2 to 5,상기 코어 어셈블리는,The core assembly,상기 코어 바디가 중심부에 삽입된 보빈; 및A bobbin in which the core body is inserted into the central portion; And상기 보빈의 둘레에 권선된 코일을 포함하는 것을 특징으로 하는 인덕터.And a coil wound around the bobbin.
- 제 2 항 또는 제 5 항 중 어느 한 항에 있어서,The method according to any one of claims 2 to 5,상기 코어 어셈블리는,The core assembly,상기 코어의 일부분 또는 전체에 형성된 절연층; 및An insulating layer formed on a portion or the entirety of the core; And상기 절연층이 형성된 상기 코어의 일부분에 권선된 코일을 포함하는 것을 특징으로 하는 인덕터.And a coil wound around a portion of the core in which the insulating layer is formed.
- 제 1 항 내지 제 5 항 중 어느 한 항에 있어서,The method according to any one of claims 1 to 5,상기 집속커버는, The focusing cover,양단이 관통되어 개구부가 형성되며, 상기 코어 어셈블리가 삽입되어 상기 코일의 둘레 외측을 둘러싸도록 구비된 원형 또는 다각형의 파이프 구조로 형성된 것을 특징으로 하는 인덕터.An inductor is formed at both ends thereof to form an opening, and the core assembly is inserted into a circular or polygonal pipe structure provided to surround the outer circumference of the coil.
- 제 8 항에 있어서,The method of claim 8,상기 집속커버는,The focusing cover,길이방향으로 수직 분할된 복수개의 집속 커버 조각이 결합되어 구성된 것을 특징으로 하는 인덕터.And a plurality of focusing cover pieces vertically divided in the longitudinal direction.
- 제 8 항에 있어서,The method of claim 8,상기 집속 커버는,The focusing cover,측면 둘레를 따라서 일정 간격씩 이격되어 복수개의 관통홀이 형성된 것을 특징으로 하는 인덕터.An inductor characterized in that a plurality of through holes are formed spaced apart at regular intervals along the side circumference.
- 제 8 항에 있어서,The method of claim 8,상기 집속 커버는,The focusing cover,측면의 상부 또는 하부로부터 길이방향으로 일정 간격씩 이격되어 복수개의 홈이 형성되거나,A plurality of grooves are formed spaced apart at regular intervals in the longitudinal direction from the top or bottom of the side,측면의 상부와 하부를 교번하여 번갈아 길이방향으로 일정 간격씩 이격되어 복수개의 홈이 형성된 것을 특징으로 하는 인덕터.An inductor characterized in that a plurality of grooves are formed by alternately spaced in the longitudinal direction alternately the top and bottom of the side.
- 제 1 항 내지 제 5 항 중 어느 한 항에 있어서,The method according to any one of claims 1 to 5,상기 집속커버는,The focusing cover,일단에 개구부가 형성되고 타단에 차폐부가 형성되며, 상기 코어 어셈블리가 상기 개구부로 삽입되어 상기 코일의 둘레 외측을 둘러싸도록 구비된 컵 구조로 형성된 것을 특징으로 하는 인덕터.An inductor is formed at one end and a shielding part is formed at the other end, and the core assembly is formed in a cup structure provided to be inserted into the opening to surround the outer circumference of the coil.
- 제 12 항에 있어서,The method of claim 12,상기 집속커버는,The focusing cover,상기 코어 어셈블리의 상단부가 삽입되는 컵 구조로 형성된 상부 집속 커버; 및An upper focusing cover formed of a cup structure into which an upper end of the core assembly is inserted; And상기 코어 어셈블리의 하단부가 삽입되는 컵 구조로 형성된 하부 집속 커버를 포함하는 것을 특징으로 하는 인덕터.And a lower focusing cover formed of a cup structure into which the lower end of the core assembly is inserted.
- 제 12 항에 있어서,The method of claim 12,상기 집속 커버는,The focusing cover,상기 일단으로부터 상기 타단까지 측면이 개방된 복수개의 개방부가 형성된 것을 특징으로 하는 인덕터.Inductor, characterized in that a plurality of openings are formed with the side opening from the one end to the other end.
- 제 12 항에 있어서,The method of claim 12,상기 집속 커버는,The focusing cover,상기 차폐부가 중심으로부터 외각으로 펼쳐지는 복수개의 부채꼴 형태 또는 십자형태로 형성되며,The shielding portion is formed in a plurality of fan-shaped or cross-shaped spread out from the center,상기 차폐부의 형태에 대응하여 상기 개방부가 형성된 것을 특징으로 하는 인덕터.And the opening is formed corresponding to the shape of the shield.
- 제 12 항 내지 제 15 항 중 어느 한 항에 있어서,The method according to any one of claims 12 to 15,상기 집속 커버의 차폐부 내면에는, 상기 코어 어셈블리의 상부 끝단 형상에 대응된 결합홈이 형성되며,A coupling groove corresponding to an upper end shape of the core assembly is formed on an inner surface of the shielding part of the focusing cover.상기 코어 어셈블의 상부 끝단이 상기 결합홈에 끼워져서 체결된 것을 특징으로 하는 인덕터.And an upper end of the core assembly is fitted into the coupling groove and fastened.
- 제 1 항 내지 제 5 항 중 어느 한 항에 있어서,The method according to any one of claims 1 to 5,상기 집속 커버는,The focusing cover,원형 또는 다각형 파이프의 양단에 차폐부가 형성되어 상기 코어 어셈블리가 수용되는 공간을 갖는 밀폐형 통 구조로 형성되되,Shields are formed at both ends of the circular or polygonal pipe to form a closed cylindrical structure having a space for accommodating the core assembly,길이방향으로 수직 분할된 복수개의 집속 커버 조각이 결합되어 구성된 것을 특징으로 하는 인덕터.And a plurality of focusing cover pieces vertically divided in the longitudinal direction.
- 제 17 항에 있어서,The method of claim 17,상기 집속 커버는,The focusing cover,상기 상면으로부터 상기 하면까지 측면이 개방된 복수개의 개방부가 형성된 것을 특징으로 하는 인덕터.Inductor, characterized in that a plurality of openings are opened from the upper surface to the lower surface.
- 제 1 항 내지 제 5 항 중 어느 한 항에 있어서,The method according to any one of claims 1 to 5,상기 집속커버는,The focusing cover,일정 두께를 갖는 사각형 틀 구조로 형성되며,It is formed in a rectangular frame structure having a certain thickness,상기 코어 어셈블리가, 상기 집속 커버에 삽입되되 길이방향으로 상기 집속 커버의 사각형 틀에 끼워진 것을 특징으로 하는 인덕터.The core assembly is inserted into the focusing cover, characterized in that inserted into the rectangular frame of the focusing cover in the longitudinal direction.
- 제 1 항 내지 제 5 항 중 어느 한 항에 있어서,The method according to any one of claims 1 to 5,상기 집속커버는, The focusing cover,상기 코어 어셈블리의 길이방향 외면에 대응되는 면을 가지고 상기 코어 어셈블리의 외각을 따라 서로 일정 간격 이격되어 배치된 복수개의 지지부재; 및A plurality of support members having a surface corresponding to the longitudinal outer surface of the core assembly spaced apart from each other by a predetermined interval along the outer surface of the core assembly; And상기 지지부재 사이에서 상기 지지부재 간을 연결하는 연결부재를 포함하는 것을 특징으로 하는 자기 집속 구조를 갖는 인덕터.Inductor having a magnetic focus structure, characterized in that it comprises a connecting member for connecting between the supporting member between the supporting member.
- 제 17 항에 있어서,The method of claim 17,상기 지지부재는, 수평 단면이 복수의 면을 갖되 상기 코어 어셈블리에 인접한 면은 상기 코어 어셈블리의 외면에 대응되도록 형성되며,The support member has a horizontal cross section has a plurality of surfaces, the surface adjacent to the core assembly is formed to correspond to the outer surface of the core assembly,복수개의 상기 지지부재가 상기 코어 어셈블리의 외각을 따라 서로 일정 간격 이격되어 배치되어, 상기 집속 커버의 수평 단면 외각이 사각형을 이루는 것을 특징으로 하는 자기 집속 구조를 갖는 인덕터.And a plurality of the supporting members spaced apart from each other along the outer periphery of the core assembly so that a horizontal cross-sectional outer periphery of the focusing cover has a quadrangular shape.
- 제 2 항 내지 제 5 항 중 어느 한 항에 있어서,The method according to any one of claims 2 to 5,상기 코어 어셈블리를 상기 집속 커버의 내부 상의 기설정된 위치에 고정시키면서 상기 코어 어셈블리와 상기 집속 커버 간의 일정 부분에 대한 이격 거리를 유지시키도록 상기 플랜지 또는 갭 플랜지의 끝단과 상기 집속 커버의 일단에는 상호 대응되어 체결되는 결합부가 형성된 것을 특징으로 하는 인덕터.Corresponding to one end of the flange or gap flange and one end of the focusing cover to fix the core assembly to a predetermined position on the inside of the focusing cover while maintaining a separation distance for a portion between the core assembly and the focusing cover. Inductor characterized in that the coupling portion is formed.
- 제 4 항 또는 제 5 항에 있어서,The method according to claim 4 or 5,상기 코어 어셈블리는,The core assembly,제1 코일이 권선된 제1 코어 바디;A first core body wound around the first coil;제2 코일이 권선된 제2 코어 바디; 및A second core body wound around a second coil; And상기 제1 코일과 제2 코일 사이에 위치된 갭 플랜지를 포함하는 것을 것을 특징으로 하는 인덕터.And a gap flange positioned between the first coil and the second coil.
- 제 1 항 내지 제 10 항 또는 제 20 항 내지 제 22 항 중 어느 한 항의 인덕터로 구성된 제1 인덕터와;A first inductor composed of the inductor of any one of claims 1 to 10 or 20 to 22;상기 집속 커버에 길이방향으로 권선된 토로이덜 코일을 포함하는 제2 인덕터를 포함하는 것을 특징으로 하는 하이브리드 인덕터.And a second inductor including a toroidal coil wound longitudinally on the focusing cover.
- 제 24 항에 있어서,The method of claim 24,상기 제1 인덕터는 상기 제 11 항의 인덕터로 구성되며,The first inductor is composed of the inductor of claim 11,상기 제2 인덕터의 토로이덜 코일은 상기 집속 커버의 홈에 권선된 것을 특징으로 하는 하이브리드 인덕터.And a toroidal coil of the second inductor is wound around a groove of the focusing cover.
- 제 24 항에 있어서,The method of claim 24,상기 집속 커버의 표면에 코팅된 절연층을 포함하며,Insulating layer coated on the surface of the focusing cover,상기 토로이덜 코일은 절연층에 권선된 것을 특징으로 하는 하이브리드 인덕터.And the toroidal coil is wound around an insulating layer.
- 제 24 항에 있어서,The method of claim 24,상기 제1 인덕터는, 상기 제 20 항 또는 제 21 항의 인덕터로 구성되며,The first inductor is composed of the inductor of claim 20 or 21,상기 제2 인덕터의 토로이덜 코일은 상기 연결부재에 권선된 것을 특징으로 하는 하이브리드 인덕터.And a toroidal coil of the second inductor is wound around the connection member.
- 제 1 항 내지 제 18 항 또는 제 20 항 내지 제 22 항 중 어느 한 항의 인덕터로 구성된 제1 인덕터; 및A first inductor composed of the inductor of any one of claims 1 to 18 or 20 to 22; And상기 집속 커버의 상부에 이격되어 복수개의 지지 다리로 상기 집속커버에 연결된 인덕터 링과 상기 인덕터 링에 토로이덜 형태로 권선된 코일을 포함하는 제2 인덕터를 포함하는 것을 특징으로 하는 하이브리드 인덕터.And a second inductor including an inductor ring spaced apart from an upper portion of the focusing cover and connected to the focusing cover with a plurality of support legs, and a coil wound in a toroidal shape on the inductor ring.
- 도자성을 갖는 강판을 일정 회수 감아 단면이 원형 또는 다각형인 코어 바디를 제조하는 코어 바디 제조 단계;A core body manufacturing step of winding a steel plate having magnetic properties to produce a core body having a circular or polygonal cross section;상기 코어 바디의 중단 부분에 상기 코어 바디를 둘러싸며 코일을 권선하여 코어 어셈블리를 제조하는 코어 어셈블리 제조 단계; A core assembly manufacturing step of manufacturing a core assembly by winding a coil surrounding the core body at a stop portion of the core body;도자성 물질을 함유하며 상기 코어 어셈블리의 단면에 대응되는 개구부가 형성된 집속커버를 제조하는 집속 커버 제조 단계; 및A focusing cover manufacturing step of manufacturing a focusing cover containing a magnetic material and having an opening corresponding to a cross section of the core assembly; And상기 코어 어셈블리의 외각에서 상기 코일의 적어도 일부분을 감싸도록 집속 커버에 상기 코어 어셈블리를 삽입하는 집속 커버 형성 단계를 포함하는 것을 특징으로 하는 인덕터 제조 방법.And forming a focusing cover to insert the core assembly into a focusing cover so as to surround at least a portion of the coil at an outer side of the core assembly.
- 제 29 항에 있어서,The method of claim 29,상기 집속 커버 제조 단계는,The focusing cover manufacturing step,상기 코어 어셈블리가 삽입되어 상기 코어 어셈블리를 둘러싸는 관통 공간을 갖도록 도자성을 갖는 강판을 일정 회수 감아 형성하는 것을 특징으로 하는 인덕터 제조 방법.And winding a predetermined number of times to form a steel plate having a magnetic property such that the core assembly is inserted to have a through space surrounding the core assembly.
- 제 29 항 또는 제 30 항에 있어서,The method of claim 29 or 30,상기 코어 바디의 단면 직경에 대응되는 관통 공간을 갖도록 도자성을 갖는 강판을 일정 회수 감아 플랜지를 제조하는 플랜지 제조 단계를 더 포함하며,The method further includes a flange manufacturing step of manufacturing a flange by winding a steel plate having a magnetic property to have a through space corresponding to a cross-sectional diameter of the core body a predetermined number of times,상기 코어 어셈블리 제조 단계는,The core assembly manufacturing step,상기 코어 바디의 상단 또는 하단 중 어느 하나 이상에 상기 플랜지를 끼워 상기 코어 바디에 상기 플랜지를 결합하는 단계; 및Coupling the flange to the core body by fitting the flange to at least one of the upper and lower ends of the core body; And상기 코어 바디의 중단 부분에 상기 코어 바디를 둘러싸며 권선된 코일을 형성하는 단계를 포함하는 것을 특징으로 하는 인덕터 제조 방법.And forming a coil wound around the core body at a stop portion of the core body.
- 제 29 항에 있어서,The method of claim 29,상기 코어 바디 제조 단계는,The core body manufacturing step,도자성을 갖는 강판을 일정 회수 감아 단면이 원형 또는 다각형인 코어 바디를 제조하는 단계; 및Winding a steel sheet having a magnetic content a predetermined number of times to produce a core body having a circular or polygonal cross section; And상기 코어 바디의 외면을 절연 물질로 코팅하거나 상기 코어 바디의 직경에 대응되는 관통홀이 형성된 절연부재에 상기 코어 바디를 삽입하는 단계를 포함하는 것을 특징으로 하는 인덕터 제조 방법.Coating the outer surface of the core body with an insulating material or inserting the core body into an insulating member having a through hole corresponding to the diameter of the core body.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2013-0085147 | 2013-07-19 | ||
KR1020130085147A KR20150010315A (en) | 2013-07-19 | 2013-07-19 | Inductor with magnetic flux concentration structure, method for manufacturing this and hybrid-inductor included this |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015008969A1 true WO2015008969A1 (en) | 2015-01-22 |
Family
ID=52346373
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2014/006182 WO2015008969A1 (en) | 2013-07-19 | 2014-07-10 | Inductor having self-focusing structure, method for manufacturing same, and hybrid inductor comprising same |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR20150010315A (en) |
WO (1) | WO2015008969A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106257605A (en) * | 2015-06-17 | 2016-12-28 | Abb技术有限公司 | Electromagnetic induction device |
CN106941739A (en) * | 2017-05-18 | 2017-07-11 | 湖南中科电气股份有限公司 | A kind of inductor of continuous heating |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109643596A (en) | 2016-08-29 | 2019-04-16 | 皇家飞利浦有限公司 | Inductive devices |
JP6912980B2 (en) * | 2017-09-07 | 2021-08-04 | Ntn株式会社 | Inductor |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07142257A (en) * | 1993-11-22 | 1995-06-02 | Taiyo Yuden Co Ltd | Surface-mounting coil |
JPH0831648A (en) * | 1994-07-20 | 1996-02-02 | Taiyo Yuden Co Ltd | Inductance device fitted with outer case |
JPH10144534A (en) * | 1996-11-08 | 1998-05-29 | Mitsui Chem Inc | Magnetic core for inductor and inductor |
JPH10205U (en) * | 1998-02-09 | 1998-09-02 | 株式会社日立メディアエレクトロニクス | Trance |
JPH11195539A (en) * | 1998-01-07 | 1999-07-21 | Murata Mfg Co Ltd | Coil-type inductor and its manufacture |
JP2003257741A (en) * | 2002-02-28 | 2003-09-12 | Sumida Technologies Inc | Inductance element |
JP2010141191A (en) * | 2008-12-12 | 2010-06-24 | Nec Tokin Corp | Inductor and method of manufacturing the same |
JP2013004887A (en) * | 2011-06-21 | 2013-01-07 | Minebea Co Ltd | Coil component |
-
2013
- 2013-07-19 KR KR1020130085147A patent/KR20150010315A/en active IP Right Grant
-
2014
- 2014-07-10 WO PCT/KR2014/006182 patent/WO2015008969A1/en active Application Filing
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07142257A (en) * | 1993-11-22 | 1995-06-02 | Taiyo Yuden Co Ltd | Surface-mounting coil |
JPH0831648A (en) * | 1994-07-20 | 1996-02-02 | Taiyo Yuden Co Ltd | Inductance device fitted with outer case |
JPH10144534A (en) * | 1996-11-08 | 1998-05-29 | Mitsui Chem Inc | Magnetic core for inductor and inductor |
JPH11195539A (en) * | 1998-01-07 | 1999-07-21 | Murata Mfg Co Ltd | Coil-type inductor and its manufacture |
JPH10205U (en) * | 1998-02-09 | 1998-09-02 | 株式会社日立メディアエレクトロニクス | Trance |
JP2003257741A (en) * | 2002-02-28 | 2003-09-12 | Sumida Technologies Inc | Inductance element |
JP2010141191A (en) * | 2008-12-12 | 2010-06-24 | Nec Tokin Corp | Inductor and method of manufacturing the same |
JP2013004887A (en) * | 2011-06-21 | 2013-01-07 | Minebea Co Ltd | Coil component |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106257605A (en) * | 2015-06-17 | 2016-12-28 | Abb技术有限公司 | Electromagnetic induction device |
US10210983B2 (en) | 2015-06-17 | 2019-02-19 | Abb Schweiz Ag | Electromagnetic induction device |
CN106941739A (en) * | 2017-05-18 | 2017-07-11 | 湖南中科电气股份有限公司 | A kind of inductor of continuous heating |
Also Published As
Publication number | Publication date |
---|---|
KR20150010315A (en) | 2015-01-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2015008969A1 (en) | Inductor having self-focusing structure, method for manufacturing same, and hybrid inductor comprising same | |
AU2019312559B2 (en) | Laundry treating apparatus | |
WO2014081155A1 (en) | Integrated-type transformer | |
WO2012064063A2 (en) | Magnetic energy-transmitting element and power source device for cancelling out electrical noise | |
AU604197B2 (en) | High-frequency heating apparatus using frequency-converter- type power supply | |
WO2016080625A1 (en) | Electric shock protection member and mobile electronic device equipped with same | |
WO2020141806A2 (en) | Plasma generating apparatus and method for operating same | |
KR20040104688A (en) | Construction of Medium Voltage Power Line Data Couplers | |
WO2013018998A1 (en) | Plasma generation apparatus and plasma generation method | |
US7205877B2 (en) | Method and apparatus for transferring energy in a power converter circuit | |
CA2542300C (en) | Encapsulated fuse with corona shield | |
JPH11205978A (en) | Electric deterioration limit equipment for totally dielectric self-support cable | |
WO2021261963A1 (en) | Plasma generating device | |
CN101656143A (en) | High-voltage terminal device for transformer | |
WO2019245233A1 (en) | Transformer | |
WO2020138993A1 (en) | Transformer and method for manufacturing same | |
US2724735A (en) | Electrostatic shield for inductive windings | |
WO2024155000A1 (en) | Transformer and manufacturing method therefor | |
WO2021085955A1 (en) | Wireless charging device and moving means including same | |
US1129465A (en) | Transformer. | |
WO2019182388A1 (en) | Wireless charging pad and wireless charging device | |
WO2018093195A1 (en) | Dc-dc converter | |
WO2022158869A1 (en) | Transformer | |
WO2024232678A1 (en) | Induction heating member, induction heating device, and cooktop | |
WO2023146275A1 (en) | Current collecting plate and cylindrical secondary battery including same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14825993 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14825993 Country of ref document: EP Kind code of ref document: A1 |