WO2014123164A1 - 電池用包装材料 - Google Patents

電池用包装材料 Download PDF

Info

Publication number
WO2014123164A1
WO2014123164A1 PCT/JP2014/052696 JP2014052696W WO2014123164A1 WO 2014123164 A1 WO2014123164 A1 WO 2014123164A1 JP 2014052696 W JP2014052696 W JP 2014052696W WO 2014123164 A1 WO2014123164 A1 WO 2014123164A1
Authority
WO
WIPO (PCT)
Prior art keywords
sealant layer
layer
packaging material
sealant
battery
Prior art date
Application number
PCT/JP2014/052696
Other languages
English (en)
French (fr)
Inventor
弘毅 道家
良寛 篠原
鈴木 剛
山下 力也
一彦 横田
正和 神取
堀 弥一郎
哲也 小尻
Original Assignee
大日本印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2013062990A external-priority patent/JP5626393B2/ja
Priority claimed from JP2013062989A external-priority patent/JP5626392B2/ja
Priority claimed from JP2013062991A external-priority patent/JP5626394B2/ja
Priority claimed from JP2013099898A external-priority patent/JP5626404B1/ja
Priority claimed from JP2013164055A external-priority patent/JP5704199B2/ja
Priority claimed from JP2013165503A external-priority patent/JP5668812B1/ja
Priority claimed from JP2013165504A external-priority patent/JP5668813B1/ja
Priority claimed from JP2013182204A external-priority patent/JP5660176B1/ja
Priority to EP14748668.2A priority Critical patent/EP2955770B1/en
Priority to US14/765,187 priority patent/US10347877B2/en
Priority to CN201480007728.5A priority patent/CN104969378B/zh
Priority to KR1020157018519A priority patent/KR102231414B1/ko
Application filed by 大日本印刷株式会社 filed Critical 大日本印刷株式会社
Publication of WO2014123164A1 publication Critical patent/WO2014123164A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/308Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/085Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/302Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising aromatic vinyl (co)polymers, e.g. styrenic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/306Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl acetate or vinyl alcohol (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/117Inorganic material
    • H01M50/119Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/121Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/124Primary casings; Jackets or wrappings characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/124Primary casings; Jackets or wrappings characterised by the material having a layered structure
    • H01M50/126Primary casings; Jackets or wrappings characterised by the material having a layered structure comprising three or more layers
    • H01M50/129Primary casings; Jackets or wrappings characterised by the material having a layered structure comprising three or more layers with two or more layers of only organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/131Primary casings; Jackets or wrappings characterised by physical properties, e.g. gas permeability, size or heat resistance
    • H01M50/133Thickness
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • H01M50/186Sealing members characterised by the disposition of the sealing members
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • H01M50/19Sealing members characterised by the material
    • H01M50/193Organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/206Insulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/31Heat sealable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2439/00Containers; Receptacles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a battery packaging material that can ensure safety even when the pressure or temperature in the battery continuously increases. More specifically, the battery element can be kept sealed until the pressure and temperature in the battery rise to a certain level, and the pressure and temperature in the battery continue to rise continuously.
  • the present invention relates to a battery packaging material that can be opened quickly and gently at the same time to suppress excessive expansion of the packaging material for potential, runaway battery reaction, ignition, and the like.
  • the battery may generate a combustible gas and the pressure may increase.
  • the organic solvent used in the electrolytic solution may be decomposed to generate a combustible gas and cause an increase in pressure.
  • the battery may continuously increase the temperature in the battery due to charging due to overvoltage or discharging with an excessive current, thereby causing a runaway battery reaction.
  • such an increase in pressure or temperature in the battery may cause the battery packaging material to be cleaved and cause ignition due to ejection of combustible gas. Further, if the pressure or temperature rises continuously in the battery and the battery reaction runs out of control when the battery packaging material is excessively expanded, the battery may explode.
  • Patent Document 2 As a packaging material for a battery that can suppress the tearing of the heat seal part and the break before the heat seal part even when the pressure in the battery rises continuously, the sealant layer or adjacent thereto It has been reported that one of the adhesive resin layers has a cleavage inducing portion in which the stress at the time of cleavage is smaller than the stress at the time of cleavage of the fused surface between the sealant layers (see Patent Document 2). However, Patent Document 2 only suppresses the progress of cleavage at low stress at the interface between the adhesive resin layer and the corrosion prevention treatment layer on the metal layer by inducing cleavage at such a cleavage induction portion.
  • the battery packaging material is sealed without sealing until reaching a certain temperature.
  • it is required to design so as to gradually release the gas in the battery packaging material by gently opening the wrapping material while suppressing ignition and the like due to a sudden ejection of the combustible gas.
  • An object of the present invention is to provide a battery packaging material that can ensure safety even when the pressure or temperature in the battery continuously increases. More specifically, the present invention can maintain the battery element in a sealed state until the pressure or temperature in the battery rises to a certain level, and the pressure or temperature in the battery continuously increases. It is an object of the present invention to provide a battery packaging material that can be opened quickly and gently when it reaches an advanced state to suppress excessive expansion of the battery packaging material, runaway battery reaction, ignition, and the like.
  • the present invention provides a battery packaging material comprising at least a base material layer, a metal layer, and a sealant layer in this order.
  • a battery packaging material comprising at least a base material layer, a metal layer, and a sealant layer in this order.
  • Item 1 A battery packaging material comprising a laminate having at least a base material layer, a metal layer, and a sealant layer in this order, When the battery packaging material is heat sealed and the battery element is heated in a sealed state, after peeling occurs in at least a part between the metal layer and the outer surface of the sealant layer while maintaining the sealed state Battery packaging material that operates to transition to an open state.
  • Item 2. Item 2. The battery packaging material according to Item 1, wherein after the inner bag is formed at the part where the peeling occurs, the inner bag is opened and the inner bag is operated to move to the opened state.
  • Item 3. Item 3.
  • Item 4. Item 4. The battery packaging material according to any one of Items 1 to 3, further comprising an adhesive layer between the metal layer and the sealant layer.
  • the peeling includes an interface between the metal layer and the sealant layer, an interface between the metal layer and the adhesive layer, an interface between the adhesive layer and the sealant layer, an inside of the adhesive layer, and an inside of the sealant layer.
  • the battery packaging material according to any one of Items 1 to 4 which occurs at least in one place.
  • Item 6. Item 6.
  • Item 7. The laminate strength between the metal layer and the sealant layer at 80 ° C. is 2.5 (N / 15 mm) or more, and the laminate strength between the metal layer and the sealant layer at 125 ° C. is 2. Item 7. The battery packaging material according to any one of Items 1 to 6, which is 5 (N / 15 mm) or less. Item 8. Item 8. The battery packaging material according to any one of Items 1 to 7, wherein a seal strength of a portion heat-sealed with the sealant layers facing each other is 30 (N / 15 mm) or more at 25 ° C. Item 9. Item 9.
  • the bag-shaped packaging material obtained by heat-sealing with the sealant layers facing each other, after leaving the electrolyte solution in the internal space of the bag-shaped packaging material for 24 hours at 85 ° C. Item 10.
  • the battery packaging material according to any one of Items 1 to 9, wherein the heat-sealed portion has a sealing strength of 0.2 (N / 15 mm) or more.
  • a battery packaging material used for a battery It consists of a laminate having at least a base material layer, a metal layer, and a sealant layer in this order, The sealant layer is located on the metal layer side, and has a first sealant layer containing acid-modified polyolefin, and a second sealant layer containing polyolefin on the innermost layer laminated on the first sealant layer,
  • the first sealant layer and the second sealant layer are represented by the following formulas (1) and (2): ⁇ 10 ⁇ T m1 ⁇ T ⁇ ⁇ 5 (1) ⁇ 5 ⁇ T m2 ⁇ T ⁇ 5 (2)
  • T m1 Melting point (° C.) of the first sealant layer
  • T m2 Melting point (° C.) of the second sealant layer
  • Item 12 The battery packaging material according to Item 11, wherein the acidic polyolefin contained in the first sealant layer contains at least propylene as a constituent monomer.
  • Item 13 The battery packaging material according to Item 11 or 12, wherein the polyolefin contained in the second sealant layer contains at least propylene as a constituent monomer.
  • Item 14. The battery packaging material according to any one of Items 11 to 13, wherein the first sealant layer has a thickness of 5 to 40 ⁇ m, and the second sealant layer has a thickness of 5 to 40 ⁇ m.
  • Item 15. Item 15. The battery packaging material according to any one of Items 11 to 14, wherein the metal layer is an aluminum foil.
  • Item 17. Item 17. A battery, wherein a battery element including at least a positive electrode, a negative electrode, and an electrolyte is accommodated in the battery packaging material according to any one of Items 11 to 16.
  • Item 18. A method for screening a resin component used in a sealant layer formed on a battery packaging material, When the battery packaging material is heated to a set temperature T ° C. determined between 100 ° C. and 160 ° C., the packaging material is not opened until T ° C. is reached.
  • the battery packaging material is composed of a laminate having a base layer, a metal layer, and a sealant layer in this order, and the sealant layer includes a first sealant layer located on the metal layer side, and the first sealant layer.
  • At least acid-modified polyolefin is selected as the resin component forming the first sealant layer
  • at least polyolefin is selected as the resin component forming the second sealant layer
  • the first sealant layer and the second sealant layer are represented by the following formula ( (1) and (2) ⁇ 10 ⁇ T m1 ⁇ T ⁇ ⁇ 5 (1) ⁇ 5 ⁇ T m2 ⁇ T ⁇ 5
  • T m1 Melting point (° C.) of the first sealant layer
  • T m2 Melting point (° C.) of the second sealant layer
  • the screening method is characterized in that the resin component forming the first sealant layer and the second sealant layer is selected so as to satisfy the above.
  • a battery packaging material used for a battery It consists of a laminate having at least a base material layer, a metal layer, and a sealant layer in this order, The sealant layer has a first sealant layer containing acid-modified polyolefin, a second sealant layer containing at least one of polyolefin and acid-modified polyolefin, and a third sealant layer containing polyolefin in order, and the first sealant layer is a metal layer.
  • the first sealant layer, the second sealant layer, and the third sealant layer are represented by the following formulas (1) to (3): ⁇ 10 ⁇ T m1 ⁇ T ⁇ ⁇ 5 (1) 5 ⁇ T m2 ⁇ T ⁇ 10 (2) ⁇ 5 ⁇ T m3 ⁇ T ⁇ 5 (3)
  • T m1 Melting point (° C.) of the first sealant layer
  • T m2 Melting point (° C.) of the second sealant layer
  • T m3 Melting point (° C.) of the third sealant layer
  • a battery wherein a battery element comprising at least a positive electrode, a negative electrode, and an electrolyte is accommodated in the battery packaging material according to any one of Items 19 to 25.
  • Item 27. A method for screening a resin component used in a sealant layer formed on a battery packaging material, When the battery packaging material is heated to a set temperature T ° C. determined between 100 ° C. and 160 ° C., the packaging material is not opened until T ° C. is reached.
  • the battery packaging material is composed of a laminate having a base layer, a metal layer, and a sealant layer in this order, and the sealant layer has a first sealant layer, a second sealant layer, and a sealant layer in this order, and The first sealant layer is disposed on the metal layer side, and the third sealant layer is disposed on the innermost layer, At least acid-modified polyolefin is selected as a resin component for forming the first sealant layer, and at least one of polyolefin and acid-modified polyolefin is selected as a resin component for forming the second sealant layer, thereby forming the third sealant layer.
  • At least polyolefin is selected as the resin component to be processed, and the first sealant layer, the second sealant layer, and the third sealant layer are represented by the following formulas (1) to (3): ⁇ 10 ⁇ T m1 ⁇ T ⁇ ⁇ 5 (1) 5 ⁇ T m2 ⁇ T ⁇ 10 (2) ⁇ 5 ⁇ T m3 ⁇ T ⁇ 5 (3) T m1 : Melting point (° C.) of the first sealant layer T m2 : Melting point (° C.) of the second sealant layer T m3 : Melting point (° C.) of the third sealant layer
  • the screening method is characterized by selecting resin components that form the first sealant layer, the second sealant layer, and the third sealant layer so as to satisfy the above.
  • Item 28 It consists of a laminate having at least a base material layer, a metal layer, and a sealant layer in this order,
  • the sealant layer has a first sealant layer containing an acid-modified polyolefin and a second sealant layer in order, In the sealant layer, the first sealant layer is disposed on the metal layer side, and the second sealant layer is disposed on the innermost layer,
  • the battery packaging material wherein the melting point T m1 of the first sealant layer is 100 to 160 ° C, and the softening point T s1 of the first sealant layer is 60 to 150 ° C.
  • the melting point T m2 of the second sealant layer and the melting point T m1 of the first sealant layer have the following relationship: T m2 ⁇ T m1 Item 29.
  • Item 30. The battery packaging material according to Item 28 or 29, wherein the first sealant layer further comprises at least one of an amorphous polyolefin and a thermoplastic elastomer.
  • Item 31. Item 31.
  • Item 32 The battery packaging material according to any one of Items 28 to 31, which is a battery packaging material used for a battery set so as to prevent the battery from firing and reaction runaway when the packaging material is opened.
  • Item 33 The battery packaging material according to any one of Items 28 to 32, wherein the acidic polyolefin contained in the first sealant layer contains at least propylene as a constituent monomer.
  • Item 34 The battery packaging material according to any one of Items 28 to 33, wherein the second sealant layer contains polyolefin.
  • Item 35 Item 35.
  • Item 35 The battery packaging material according to Item 34, wherein the polyolefin contained in the second sealant layer contains at least propylene as a constituent monomer.
  • Item 36 Item 36.
  • the battery packaging material according to any one of Items 28 to 37 further comprising an adhesive layer between the base material layer and the metal layer.
  • the sealant layer has a first sealant layer containing an acid-modified polyolefin and a second sealant layer in order, In the sealant layer, the first sealant layer is disposed on the metal layer side, and the second sealant layer is disposed on the innermost layer,
  • the battery packaging material wherein the first sealant layer includes at least one of polyethylene and acid-modified polyethylene.
  • Item 40 Item 40.
  • the melting point T m2 of the second sealant layer and the melting point T m1 of the first sealant layer have the following relationship: T m2 ⁇ T m1 Item 41.
  • the battery packaging material according to any one of Items 39 to 43 which is a battery packaging material used for a battery that is set so that the packaging material is opened to prevent battery ignition and reaction runaway. Item 45. Item 45.
  • Item 46. The battery packaging material according to any one of Items 39 to 45, wherein the second sealant layer contains a polyolefin.
  • Item 47. The battery packaging material according to Item 46, wherein the polyolefin contained in the second sealant layer contains at least propylene as a constituent monomer.
  • Item 49. Item 49.
  • the sealant layer has a first sealant layer containing an acid-modified polyolefin and a second sealant layer in order, In the sealant layer, the first sealant layer is disposed on the metal layer side, and the second sealant layer is disposed on the innermost layer,
  • the battery packaging material wherein the first sealant layer includes at least one selected from the group consisting of an ethylene vinyl acetate copolymer, an acrylic resin, a styrene polymer, and a terpene phenol resin.
  • the total content of at least one selected from the group consisting of the ethylene vinyl acetate copolymer, acrylic resin, styrene polymer, and terpene phenol resin in the sealant layer is 5% by mass or more.
  • the melting point T m2 of the second sealant layer and the melting point T m1 of the first sealant layer have the following relationship: T m2 ⁇ T m1 Item 53.
  • the temperature of the battery is raised, peeling occurs at least in part between the metal layer and the outer surface of the sealant layer until the set temperature is reached, but the packaging material is not opened. Item 56.
  • the battery packaging material according to any one of Items 51 to 55 which is a battery packaging material used for a battery that is set so that the packaging material is opened to prevent battery ignition and reaction runaway.
  • Item 57. The battery packaging material according to any one of Items 51 to 56, wherein the acidic polyolefin contained in the first sealant layer contains at least propylene as a constituent monomer.
  • Item 58. The battery packaging material according to any one of Items 51 to 57, wherein the second sealant layer contains polyolefin.
  • the battery packaging material according to Item 58, wherein the polyolefin contained in the second sealant layer contains at least propylene as a constituent monomer.
  • Item 52 The battery packaging material according to any one of Items 51 to 59, wherein the thickness of the first sealant layer is 5 to 40 ⁇ m, and the thickness of the second sealant layer is 5 to 40 ⁇ m.
  • Item 62. The battery packaging material according to any one of Items 51 to 61, further comprising an adhesive layer between the base material layer and the metal layer.
  • Item 63 It is set so that the packaging material is not opened until T ° C is reached when the temperature is raised to the set temperature T ° C set between 100 ° C and 160 ° C, and the packaging material is opened quickly after reaching T ° C.
  • a battery packaging material used for a battery It consists of a laminate having at least a base material layer, a metal layer, an insulating layer, and a sealant layer in this order,
  • the insulating layer is formed of a resin composition containing an acid-modified polyolefin resin and a curing agent,
  • the sealant layer has a first sealant layer containing a polyolefin resin,
  • the insulating layer and the first sealant layer are represented by the following formulas (1) and (2): ⁇ 10 ⁇ T A ⁇ T ⁇ ⁇ 5 (1) ⁇ 5 ⁇ T m1 ⁇ T ⁇ 5 (2)
  • T A melting point (° C.) of the insulating layer
  • T m1 Melting point (° C.) of the first sealant layer
  • Item 64 The acid-modified polyolefin resin in the insulating layer was modified with an acid-modified polyolefin resin modified with an unsaturated carboxylic acid or an acid anhydride thereof, and an unsaturated carboxylic acid or acid anhydride and a (meth) acrylic acid ester.
  • Item 64. The battery packaging material according to Item 63, which is at least one of acid-modified polyolefin resins.
  • Item 65 The acid-modified polyolefin resin modified with the unsaturated carboxylic acid or acid anhydride thereof is formed by modifying at least one of a polyethylene resin or a polypropylene resin with the unsaturated carboxylic acid or acid anhydride thereof.
  • Item 66. The acid-modified polyolefin resin modified with the unsaturated carboxylic acid or acid anhydride thereof and a (meth) acrylic acid ester is such that at least one of a polyethylene resin and a polypropylene resin is the unsaturated carboxylic acid or acid anhydride thereof.
  • Item 65. The battery packaging material according to Item 64, which is modified with (meth) acrylic acid ester.
  • Item 67. Item 67.
  • the curing agent includes at least one selected from the group consisting of a polyfunctional isocyanate compound, a carbodiimide compound, an epoxy compound, and an oxazoline compound.
  • the item 63 to 70 wherein the content of the curing agent in the resin composition is in the range of 0.1 to 50 parts by mass with respect to 100 parts by mass of the acid-modified polyolefin resin.
  • Battery packaging material Item 72.
  • the sealant layer further includes a second sealant layer including at least one of an acid-modified polyolefin resin and a polyolefin resin between the insulating layer and the first sealant layer, and the second sealant layer is represented by the following formula (3 ) 5 ⁇ T m2 ⁇ T ⁇ 10 (3) T m2 : Melting point (° C.) of the second sealant layer Item 72.
  • the battery packaging material according to any one of Items 63 to 71, wherein Item 73. Item 73.
  • the battery packaging material of the present invention is a battery packaging material comprising a laminate having at least a base material layer, a metal layer, and a sealant layer in this order, and the battery packaging material is heat sealed to seal the battery element.
  • the temperature is raised in such a state, it operates so as to shift to the opened state after peeling occurs at least at a part between the metal layer and the outer surface of the sealant layer while keeping the sealed state.
  • the battery packaging material of the present invention can keep the battery element sealed until the pressure or temperature in the battery rises to a certain level, and the battery When the pressure or temperature rises in a continuous state, the sealant layer in the peeled portion can be rapidly opened to cause fine cleaving such as pinholes to be opened gently. More specifically, the internal pressure can be gently lowered by releasing the combustible gas generated inside the battery to the outside after the pressure and temperature inside the battery reach a certain level. By reducing the internal pressure inside the battery, it is possible to suppress the release of the electrolytic solution and the battery cell to the outside.
  • the concentration of the combustible gas generated inside the battery is reduced, and the ignition of the battery can be suppressed. Further, the ignition of the battery can be suppressed also by the fact that the electrolyte in the battery is easily dried by the inflow of air.
  • the battery packaging material of the present invention Since the concentration of the flammable gas that causes ignition can be reduced by the release of the flammable gas generated inside the battery and the inflow of air from the outside, ignition due to a short circuit can be effectively suppressed.
  • the battery packaging material can be gently opened even when the pressure or temperature in the battery continues to rise continuously. Excessive expansion and ignition of the packaging material can be suppressed, ensuring safety.
  • FIG. 1 It is a schematic sectional drawing of the packaging material for batteries of this invention. It is a schematic sectional drawing of the packaging material for batteries of this invention.
  • FIG. 1 One side surface of a state (A) in which two battery packaging materials of the present invention are heat-sealed to form a sealed space (A), a state in which peeling is formed after the temperature rise (B), and a state at the time of opening (C) Is a schematic cross-sectional view (the left end is heat-sealed, and the right-hand side is omitted).
  • One side surface of a state (A) in which two battery packaging materials of the present invention are heat-sealed to form a sealed space (A), a state in which peeling is formed after the temperature rise (B), and a state at the time of opening (C) Is a schematic cross-sectional view (the left end is heat-sealed, and the right-hand side is omitted).
  • One side surface of a state (A) in which two battery packaging materials of the present invention are heat-sealed to form a sealed space (A), a state in which peeling is formed after the temperature rise (B), and a state at the time of opening (C) Is a schematic cross-sectional view (the left end is heat-sealed, and the right-hand side is omitted).
  • One side surface of a state (A) in which two battery packaging materials of the present invention are heat-sealed to form a sealed space (A), a state in which peeling is formed after the temperature rise (B), and a state at the time of opening (C) Is a schematic cross-sectional view (the left end is heat-sealed, and the right-hand side is omitted).
  • One side surface of a state (A) in which two battery packaging materials of the present invention are heat-sealed to form a sealed space (A), a state in which peeling is formed after the temperature rise (B), and a state at the time of opening (C) Is a schematic cross-sectional view (the left end is heat-sealed, and the right-hand side is omitted).
  • One side surface of a state (A) in which two battery packaging materials of the present invention are heat-sealed to form a sealed space (A), a state in which peeling is formed after the temperature rise (B), and a state at the time of opening (C) Is a schematic cross-sectional view (the left end is heat-sealed, and the right-hand side is omitted).
  • the battery packaging material of the present invention has an insulating layer between the metal layer and the sealant layer
  • two battery packaging materials are heat sealed to form a sealed space (A)
  • Cross section of one side of the state (B) before reaching the set temperature T ° C. when the temperature is raised to the set temperature T ° C. determined between 160 ° C.
  • the battery packaging material of the present invention is a battery packaging material comprising a laminate having at least a base material layer, a metal layer, and a sealant layer in this order, and the battery packaging material is heat sealed to seal the battery element.
  • the temperature is raised in such a state, it operates so as to shift to the opened state after peeling occurs at least at a part between the metal layer and the outer surface of the sealant layer while keeping the sealed state.
  • the battery packaging material of the present invention comprises a laminate having at least a base material layer 1, a metal layer 3, and a sealant layer 4 in this order.
  • the base material layer 1 is the outermost layer and the sealant layer 4 is the innermost layer (battery element side).
  • the sealant layers 4 positioned on the periphery of the battery element are brought into contact with each other and thermally welded to seal the battery element, thereby sealing the battery element.
  • the battery packaging material of the present invention may have an adhesive layer 2 between a base material layer 1 and a metal layer 3.
  • the battery packaging material of the present invention may have an adhesive layer 5 or an insulating layer 6 between the metal layer 3 and the sealant layer 4.
  • the battery packaging material of the present invention is a battery element until the pressure or temperature in the battery rises to a certain level (for example, the temperature in the battery is about 100 to 160 ° C.).
  • a certain level for example, the temperature in the battery is about 100 to 160 ° C.
  • the outer surface (the innermost layer side surface) of the metal layer 3 and the sealant layer 4 is maintained.
  • a portion of the sealant layer 4 that is peeled between the layers is provided with a gentle opening property that quickly causes fine cleavage such as pinholes.
  • FIG. 5 to 9 illustrate the case where the adhesive layer 5 or the insulating layer 6 is further provided.
  • FIG. 3 to FIG. 9A show schematic cross-sectional views of one side when a battery element is sealed in two battery packaging materials of the present invention.
  • 3A the edges of the two sealant layers 4 of the battery packaging material are heat-sealed to form a sealed space.
  • the battery element is accommodated in the sealed space, the battery element is omitted in FIGS.
  • (A-1) shows a cross-sectional view when two battery packaging materials are molded together
  • (A-2) shows only one battery packaging material. Sectional drawing at the time of shape
  • the two battery packaging materials may not be molded together.
  • the two battery packaging materials may have different laminated structures.
  • one battery packaging material has the adhesive layer 2 shown in FIGS. 3 and 4.
  • the other battery packaging material may have the adhesive layer 2 and the adhesive layer 5 shown in FIGS.
  • one battery packaging material sealant layer 4 may be heat-sealed to form a sealed space, or a plurality of battery packaging material sealant layers 4 may be heat-sealed. An enclosed space may be formed.
  • the battery packaging material of the present invention has a sealing property until it reaches a certain level (for example, the temperature in the battery is about 100 to 160 ° C.) by at least one of the opening mechanisms shown in FIGS. It has a quick and gentle opening after that.
  • FIG. 3 to FIG. 9 the opening mechanism of the battery packaging material of the present invention will be described using cross-sectional views in which two battery packaging materials are molded. When it is molded and when both are not molded, it is opened by the same mechanism.
  • the unsealing mechanism shown in FIG. 3 when the temperature is raised from the state of FIG. 3A to a certain temperature, at least one of the interfaces between the metal layer 3 and the sealant layer 4 as shown in FIG. 3B. Part peels (interfacial peeling). At this time, it is preferable that the peeled portion of the sealant layer 4 is formed in a bag shape (inner bag) to keep the battery element sealed. Subsequently, the state rapidly shifts to the state shown in FIG. 3C, and a minute tear such as a pinhole (indicated by reference numeral 10 in FIG. 3) is formed in the region (preferably the inner bag) of the sealant layer 4 peeled from the metal layer 3. ) Will occur and will be opened under mild conditions.
  • a minute tear such as a pinhole (indicated by reference numeral 10 in FIG. 3) is formed in the region (preferably the inner bag) of the sealant layer 4 peeled from the metal layer 3.
  • the unsealing mechanism shown in FIG. 4 when the temperature is raised from the state of A in FIG. 4 to a certain temperature, cohesive peeling occurs inside the sealant layer 4 as shown in B of FIG. At this time, it is preferable that the coherent and peeled portion of the sealant layer 4 is formed in a bag shape (inner bag) to keep the battery element sealed. Subsequently, the state quickly shifts to the state shown in FIG. 4C, and a minute tear (indicated by reference numeral 10 in FIG. 4) such as a pinhole occurs in the cohesive peeled region (preferably the inner bag) of the sealant layer 4. Open under mild conditions.
  • the metal layer 3 as shown in FIG. And peeling at at least a part of the interface between the adhesive layer 5 and the insulating layer 6 (interface peeling).
  • the adhesive layer 5 and the sealant layer 4 be in a bag shape (inner bag), or the insulating layer 6 and the sealant layer 4 are in a bag shape (inner bag) to maintain a sealed battery element. Subsequently, the state quickly moves to the state shown in FIG. 5 or FIG.
  • a minute tear such as a pinhole (indicated by reference numeral 10 in FIG. 5 or FIG. 9) occurs in the region (preferably the inner bag), and the region is opened under mild conditions.
  • the unsealing mechanism shown in FIG. 7 when the temperature is raised from the state of A of FIG. 7 to a certain temperature, at least the interface between the adhesive layer 5 and the sealant layer 4 is shown in FIG. Peel partly (interfacial peeling).
  • the sealant layer 4 is preferably in a bag shape (inner bag) and the battery element is kept sealed. Subsequently, the state rapidly shifts to the state shown in FIG. 7C, and a fine tear such as a pinhole (indicated by reference numeral 10 in FIG. 7) is formed in the region (preferably the inner bag) of the sealant layer 4 peeled from the adhesive layer 5. ) Will occur and will be opened under mild conditions.
  • the unsealing mechanism shown in FIG. 8 when the temperature is raised from the state of A in FIG. 8 to a certain temperature, cohesive peeling occurs inside the sealant layer 4 as shown in B of FIG. At this time, it is preferable that the region where the sealant layer 4 is agglomerated and peeled is formed in a bag shape (inner bag) to keep the battery element sealed. Subsequently, the state rapidly shifts to the state shown in FIG. 8C, and a minute tear (indicated by reference numeral 10 in FIG. 8) such as a pinhole occurs in the cohesive peeled region (preferably the inner bag) of the sealant layer 4. Open under mild conditions.
  • the adhesive layer 5 or the sealant layer 4 when the adhesive layer 5 or the sealant layer 4 is formed of a plurality of layers, when peeling occurs inside the adhesive layer 5 or the sealant layer 4, the plurality of layers In at least a part of the interface, peeling occurs, and a fine cleavage such as a pinhole or the like occurs in the peeled area, which may result in an opened state under mild conditions.
  • the outer surface of the metal layer and the sealant layer (the innermost layer side surface) At least a part (at least a part of the interface of each layer or at least a part inside each layer) peels off, but the battery element can be kept sealed by the sealant layer, and then the peeled part of the sealant layer In addition, it can be opened gently by rapidly generating fine cleavage such as pinholes.
  • the unsealed state may be a combination of two or more of FIGS.
  • FIG. 10A shows an example of a state of interfacial delamination in which cleavage progresses rapidly at the heat seal interface between the sealant layers in the conventional battery packaging material.
  • FIG. 10B an example of the state of cohesive peeling in which the cleavage rapidly progresses in the vicinity of the heat seal interface of the sealant layer is shown in FIG. 10B.
  • 10C shows an example of a state of delamination in which cracking proceeds between layers (interlayers in the sealant layer) after the sealant layer is broken in a conventional battery packaging material.
  • the “root break” means that the sealant layer is broken at the inner edge of the heat seal portion.
  • the pressure in the battery is higher than that of the conventional battery packaging material. Excellent safety when temperature and temperature rise continuously.
  • the base material layer 1 is a layer forming the outermost layer.
  • the material for forming the base material layer 1 is not particularly limited as long as it has insulating properties. Examples of the material for forming the base material layer 1 include polyester, polyamide, epoxy, acrylic, fluororesin, polyurethane, silicon resin, phenol, polyetherimide, polyimide, and a mixture or copolymer thereof.
  • polyester examples include polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polybutylene naphthalate, polyethylene isophthalate, polycarbonate, copolymerized polyester mainly composed of ethylene terephthalate, butylene terephthalate as a repeating unit.
  • examples thereof include a copolymer polyester mainly used.
  • the copolymer polyester mainly composed of ethylene terephthalate is a copolymer polyester that polymerizes with ethylene isophthalate mainly composed of ethylene terephthalate (hereinafter, polyethylene (terephthalate / isophthalate)).
  • polyethylene terephthalate / isophthalate
  • polyethylene terephthalate / adipate
  • polyethylene terephthalate / sodium sulfoisophthalate
  • polyethylene terephthalate / sodium isophthalate
  • polyethylene terephthalate / phenyl-dicarboxylate
  • polyethylene terephthalate / decanedicarboxylate
  • polyester mainly composed of butylene terephthalate as a repeating unit
  • a copolymer polyester that polymerizes with butylene isophthalate having butylene terephthalate as a repeating unit hereinafter referred to as polybutylene (terephthalate / isophthalate).
  • polybutylene (terephthalate / adipate) polybutylene (terephthalate / sebacate), polybutylene (terephthalate / decanedicarboxylate), polybutylene naphthalate and the like.
  • These polyesters may be used individually by 1 type, and may be used in combination of 2 or more type.
  • Polyester has the advantage of being excellent in electrolytic solution resistance and less likely to cause whitening due to the adhesion of the electrolytic solution, and is suitably used as a material for forming the base material layer 1.
  • polyamides include aliphatic polyamides such as nylon 6, nylon 66, nylon 610, nylon 12, nylon 46, and copolymers of nylon 6 and nylon 6,6; terephthalic acid and / or Nylon 6I, Nylon 6T, Nylon 6IT, Nylon 6I6T (I represents isophthalic acid, T represents terephthalic acid) and the like containing a structural unit derived from isophthalic acid, polyamide, polymethacrylate Aromatic polyamides such as silylene adipamide (MXD6); alicyclic polyamides such as polyaminomethylcyclohexyl adipamide (PACM6); and lactam components and isocyanate components such as 4,4′-diphenylmethane diisocyanate.
  • MXD6 silylene adipamide
  • POM6 polyaminomethylcyclohexyl adipamide
  • lactam components and isocyanate components such as 4,4′-diphenylmethane di
  • Polymerized polyamide co-weight Examples thereof include polyester amide copolymers and polyether ester amide copolymers, which are copolymers of a composite polyamide and polyester or polyalkylene ether glycol; these copolymers. These polyamides may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the stretched polyamide film is excellent in stretchability, can prevent whitening due to resin cracking of the base material layer 1 during molding, and is suitably used as a material for forming the base material layer 1.
  • the base material layer 1 may be formed of a uniaxial or biaxially stretched resin film, or may be formed of an unstretched resin film. Among them, a uniaxially or biaxially stretched resin film, in particular, a biaxially stretched resin film has improved heat resistance by orientation crystallization, and thus is suitably used as the base material layer 1. Moreover, the base material layer 1 may be formed by coating the above-mentioned raw material on the metal layer 3.
  • the resin film forming the base layer 1 is preferably nylon or polyester, more preferably biaxially stretched nylon, biaxially stretched polyester, and particularly preferably biaxially stretched nylon.
  • the base material layer 1 can be laminated with at least one of resin films and coatings of different materials in order to improve pinhole resistance and insulation when used as a battery package.
  • resin films and coatings of different materials include a multilayer structure in which a polyester film and a nylon film are laminated, and a multilayer structure in which a biaxially stretched polyester and a biaxially stretched nylon are laminated.
  • each resin film may be adhere
  • a method of bonding in a hot melt state such as a co-extrusion method, a sand lamination method, or a thermal laminating method can be mentioned.
  • the adhesive agent to be used may be a two-component curable adhesive, or a one-component curable adhesive.
  • the bonding mechanism of the adhesive is not particularly limited, and may be any of a chemical reaction type, a solvent volatilization type, a heat melting type, a hot pressure type, an electron beam curing type such as UV and EB, and the like.
  • polyester resin, polyether resin, polyurethane resin, epoxy resin, phenol resin resin, polyamide resin, polyolefin resin, polyvinyl acetate resin, cellulose resin, (meth) acrylic resin Resins, polyimide resins, amino resins, rubbers, and silicon resins can be used.
  • the base material layer 1 may have low friction in order to improve moldability.
  • the friction coefficient of the surface is not particularly limited, but for example, 1.0 or less can be mentioned.
  • mat treatment, formation of a thin film layer of a slip agent, a combination thereof, and the like can be given.
  • a matting agent is added to the base material layer 1 in advance to form irregularities on the surface, a transfer method by heating or pressurizing with an embossing roll, a surface is mechanically dry or wet blasting, or a file. There is a way to troll.
  • the matting agent include fine particles having a particle size of about 0.5 nm to 5 ⁇ m.
  • the material of the matting agent is not particularly limited, and examples thereof include metals, metal oxides, inorganic substances, and organic substances.
  • the shape of the matting agent is not particularly limited, and examples thereof include a spherical shape, a fiber shape, a plate shape, an indeterminate shape, and a balloon shape.
  • the matting agent examples include talc, silica, graphite, kaolin, montmorilloid, montmorillonite, synthetic mica, hydrotalcite, silica gel, zeolite, aluminum hydroxide, magnesium hydroxide, zinc oxide, magnesium oxide, and aluminum oxide.
  • matting agents may be used individually by 1 type, and may be used in combination of 2 or more type.
  • these matting agents silica, barium sulfate, and titanium oxide are preferable from the viewpoint of dispersion stability and cost.
  • the matting agent may be subjected to various surface treatments such as insulation treatment and high dispersibility treatment on the surface noodles.
  • the thin film layer of the slip agent can be formed by depositing the slip agent on the surface of the base material layer 1 by bleeding out to form a thin layer, or by laminating the slip agent on the base material layer 1.
  • the slip agent is not particularly limited.
  • Acryl epoxy grafted with silicone, polyether grafted with silicone, polyester grafted with silicone, block-type silicone acrylic copolymer, polyglycerol-modified silicone, paraffin and the like.
  • These slip agents may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the thickness of the base material layer 1 is, for example, 7 to 75 ⁇ m, preferably 12 to 50 ⁇ m.
  • the adhesive layer 2 is a layer provided as necessary for the purpose of improving the adhesion between the base material layer 1 and the metal layer 3.
  • the base material layer 1 and the metal layer 3 may be directly laminated.
  • the adhesive layer 2 is formed of an adhesive resin capable of adhering the base material layer 1 and the metal layer 3.
  • the adhesive resin used for forming the adhesive layer 2 may be a two-component curable adhesive resin or a one-component curable adhesive resin.
  • the adhesion mechanism of the adhesive resin used for forming the adhesive layer 2 is not particularly limited, and may be any of a chemical reaction type, a solvent volatilization type, a hot melt type, a hot pressure type, and the like.
  • the resin component of the adhesive resin that can be used for forming the adhesive layer 2 include polyesters such as polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polybutylene naphthalate, polyethylene isophthalate, polycarbonate, and copolyester.
  • Polyolefin resin polyvinyl acetate resin; cellulose adhesive; (meth) acrylic resin; polyimide resin; amino resin such as urea resin and melamine resin; chloroprene rubber, nitrile rubber, Silicone resin; - Len rubber such as butadiene rubber fluorinated ethylene propylene copolymer, and the like.
  • These adhesive resin components may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the combination mode of two or more kinds of adhesive resin components is not particularly limited.
  • a mixed resin of polyamide and acid-modified polyolefin a mixed resin of polyamide and metal-modified polyolefin, polyamide and polyester
  • examples thereof include a mixed resin of polyester and acid-modified polyolefin, and a mixed resin of polyester and metal-modified polyolefin.
  • extensibility, durability under high-humidity conditions, anti-hypertensive action, thermal deterioration-preventing action during heat sealing, etc. are excellent, and a decrease in lamination strength between the base material layer 1 and the metal layer 3 is suppressed.
  • a polyurethane two-component curable adhesive resin; polyamide, polyester, or a blended resin of these with a modified polyolefin is preferable.
  • the adhesive layer 2 may be multilayered with different adhesive resin components.
  • the adhesive resin component disposed on the base material layer 1 side is used as the base material layer 1 from the viewpoint of improving the lamination strength between the base material layer 1 and the metal layer 3. It is preferable to select a resin having excellent adhesion to the metal layer 3 and to select an adhesive resin component having excellent adhesion to the metal layer 3 as the adhesive resin component disposed on the metal layer 3 side.
  • the adhesive resin component disposed on the metal layer 3 side is preferably an acid-modified polyolefin, a metal-modified polyolefin, a polyester and an acid-modified polyolefin. And a resin containing a copolyester.
  • the thickness of the adhesive layer 2 is, for example, 1 to 50 ⁇ m, preferably 2 to 25 ⁇ m.
  • the metal layer 3 is a layer that functions as a barrier layer for preventing the penetration of water vapor, oxygen, light, etc. into the battery, in addition to improving the strength of the packaging material.
  • the metal forming the metal layer 3 include metal foils such as aluminum, stainless steel, and titanium.
  • aluminum is preferably used.
  • soft aluminum for example, annealed aluminum (JIS A8021P-O) or (JIS A8079P-O) is used as the metal layer 3 in the present invention. Is preferred.
  • the thickness of the metal layer 3 is, for example, 10 to 200 ⁇ m, preferably 15 to 100 ⁇ m.
  • the metal layer 3 is preferably subjected to chemical conversion treatment on at least one surface, preferably at least the surface on the sealant layer 4 side, and more preferably both surfaces, for the purpose of stabilizing adhesion, preventing dissolution and corrosion, and the like.
  • the chemical conversion treatment is a treatment for forming an acid-resistant film on the surface of the metal layer 3.
  • Chemical conversion treatment is, for example, chromate chromate treatment using a chromic acid compound such as chromium nitrate, chromium fluoride, chromium sulfate, chromium acetate, chromium oxalate, chromium biphosphate, chromic acetyl acetate, chromium chloride, potassium sulfate chromium, etc. ; Phosphoric acid chromate treatment using a phosphoric acid compound such as sodium phosphate, potassium phosphate, ammonium phosphate, polyphosphoric acid; aminated phenol heavy consisting of repeating units represented by the following general formulas (1) to (4) Examples thereof include chromate treatment using a coalescence.
  • a chromic acid compound such as chromium nitrate, chromium fluoride, chromium sulfate, chromium acetate, chromium oxalate, chromium biphosphate,
  • X represents a hydrogen atom, a hydroxyl group, an alkyl group, a hydroxyalkyl group, an allyl group or a benzyl group.
  • R 1 and R 2 are the same or different and represent a hydroxyl group, an alkyl group, or a hydroxyalkyl group.
  • examples of the alkyl group represented by X, R 1 and R 2 include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, Examples thereof include a linear or branched alkyl group having 1 to 4 carbon atoms such as a tert-butyl group.
  • Examples of the hydroxyalkyl group represented by X, R 1 and R 2 include a hydroxymethyl group, a 1-hydroxyethyl group, a 2-hydroxyethyl group, a 1-hydroxypropyl group, a 2-hydroxypropyl group, 3- A straight or branched chain having 1 to 4 carbon atoms substituted with one hydroxy group such as hydroxypropyl group, 1-hydroxybutyl group, 2-hydroxybutyl group, 3-hydroxybutyl group, 4-hydroxybutyl group An alkyl group is mentioned. be able to.
  • X is preferably any one of a hydrogen atom, a hydroxyl group, and a droxyalkyl group.
  • the number average molecular weight of the aminated phenol polymer comprising the repeating units represented by the general formulas (1) to (4) is, for example, about 500 to about 1,000,000, preferably about 1,000 to about 20,000.
  • a metal oxide such as aluminum oxide, titanium oxide, cerium oxide, tin oxide, or barium sulfate fine particles dispersed in phosphoric acid is coated.
  • a method of forming a corrosion-resistant treatment layer on the surface of the metal layer 3 by performing a baking treatment at 150 ° C. or higher can be mentioned.
  • the cationic polymer for example, polyethyleneimine, an ionic polymer complex composed of a polymer having polyethyleneimine and a carboxylic acid, a primary amine-grafted acrylic resin in which a primary amine is grafted on an acrylic main skeleton, polyallylamine, or Examples thereof include aminophenols and derivatives thereof.
  • These cationic polymers may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the crosslinking agent include compounds having at least one functional group selected from the group consisting of isocyanate groups, glycidyl groups, carboxyl groups, and oxazoline groups, silane coupling agents, and the like. These crosslinking agents may be used alone or in combination of two or more.
  • These chemical conversion treatments may be performed alone or in combination of two or more chemical conversion treatments. Furthermore, these chemical conversion treatments may be carried out using one kind of compound alone, or may be carried out using a combination of two or more kinds of compounds. Among these, chromic acid chromate treatment is preferable, and chromate treatment in which a chromic acid compound, a phosphoric acid compound, and an aminated phenol polymer are combined is more preferable.
  • the amount of the acid-resistant film formed on the surface of the metal layer 3 in the chemical conversion treatment is not particularly limited.
  • the chromate treatment is performed by combining a chromic acid compound, a phosphoric acid compound, and an aminated phenol polymer.
  • the chromic acid compound is about 0.5 to about 50 mg, preferably about 1.0 to about 40 mg in terms of chromium
  • the phosphorus compound is about 0.5 to about 50 mg in terms of phosphorus per 1 m 2 of the surface of the metal layer 3.
  • Is about 1.0 to about 40 mg, and the aminated phenol polymer is desirably contained in an amount of about 1 to about 200 mg, preferably about 5.0 to 150 mg.
  • a solution containing a compound used for forming an acid-resistant film is applied to the surface of the metal layer 3 by a bar coating method, a roll coating method, a gravure coating method, a dipping method or the like, and then the temperature of the metal layer 3 is reached. Is carried out by heating so as to be about 70 to 200 ° C.
  • the metal layer 3 may be subjected to a degreasing treatment by an alkali dipping method, an electrolytic cleaning method, an acid cleaning method, an electrolytic acid cleaning method, or the like in advance. By performing the degreasing treatment in this way, it becomes possible to more efficiently perform the chemical conversion treatment on the surface of the metal layer 3.
  • the sealant layer 4 corresponds to the innermost layer, and the sealant layers 4 are heat-welded to each other to seal the battery element when the battery is assembled.
  • the sealant layer 4 may be formed of a plurality of layers.
  • the sealant layer 4 When the sealant layer 4 does not have the adhesive layer 5 or the insulating layer 6 described later, the sealant layer 4 can be bonded to the metal layer 3, and the sealant layers 4 are formed of a resin that can be heat-sealed. Further, when the sealant layer 4 has an adhesive layer 5 or an insulating layer 6 to be described later, the sealant layer 4 can be bonded to the adhesive layer 5 or the insulating layer 6, and the sealant layer 4 is formed of a resin that can be heat-sealed. ing.
  • the resin forming the sealant layer 4 is not particularly limited as long as it has such characteristics, and examples thereof include acid-modified polyolefins, polyester resins, and fluorine resins.
  • polyolefin, modified cyclic polyolefin, etc. can be used.
  • the resin forming the sealant layer 4 may be used alone or in combination of two or more.
  • the acid-modified polyolefin used for forming the sealant layer 4 is a polymer modified by graft polymerization of polyolefin with an unsaturated carboxylic acid.
  • Specific examples of the acid-modified polyolefin include polyethylene such as low density polyethylene, medium density polyethylene, high density polyethylene, and linear low density polyethylene; homopolypropylene, block copolymer of polypropylene (for example, block copolymer of propylene and ethylene) ), A random or non-crystalline polypropylene such as a random copolymer of polypropylene (for example, a random copolymer of propylene and ethylene); and a terpolymer of ethylene-butene-propylene.
  • polyolefins having at least propylene as a constituent monomer are preferable, and ethylene-butene-propylene terpolymers and propylene-ethylene random copolymers are more preferable.
  • unsaturated carboxylic acid used for modification include maleic acid, acrylic acid, itaconic acid, crotonic acid, maleic anhydride, itaconic anhydride and the like.
  • maleic acid and maleic anhydride are preferable.
  • These acid-modified polyolefins may be used individually by 1 type, and may be used in combination of 2 or more type.
  • polyester resin used for forming the sealant layer 4 include polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polybutylene naphthalate, polyethylene isophthalate, polycarbonate, and a copolymer mainly composed of ethylene terephthalate.
  • examples thereof include a polyester and a copolyester having butylene terephthalate as a main repeating unit.
  • the copolymer polyester mainly composed of ethylene terephthalate is a copolymer polyester that polymerizes with ethylene isophthalate mainly composed of ethylene terephthalate (hereinafter, polyethylene (terephthalate / isophthalate)).
  • polyethylene terephthalate / isophthalate
  • polyethylene terephthalate / adipate
  • polyethylene terephthalate / sodium sulfoisophthalate
  • polyethylene terephthalate / sodium isophthalate
  • polyethylene terephthalate / phenyl-dicarboxylate
  • polyethylene terephthalate / decanedicarboxylate
  • a copolymer polyester mainly composed of butylene terephthalate as a repeating unit specifically, a copolymer polyester that polymerizes with butylene isophthalate having butylene terephthalate as a repeating unit (hereinafter referred to as polybutylene (terephthalate / isophthalate)).
  • polybutylene (terephthalate / adipate) polybutylene (terephthalate / sebacate), polybutylene (terephthalate / decanedicarboxylate), polybutylene naphthalate and the like.
  • These polyester resins may be used individually by 1 type, and may be used in combination of 2 or more type.
  • fluororesin used for forming the sealant layer 4 include tetrafluoroethylene, trifluoroethylene, polyvinylidene fluoride, polyvinyl fluoride, ethylene tetrafluoroethylene, polychlorotrifluoroethylene, and ethylene chlorotrifluoroethylene.
  • fluororesins may be used alone or in combination of two or more.
  • the sealant layer 4 may be formed of only an acid-modified polyolefin, a polyester resin, or a fluorine-based resin, and may contain other resin components as necessary. May be.
  • the sealant layer 4 contains a resin component other than the acid-modified polyolefin, the polyester resin, or the fluorine resin
  • the content of the acid-modified polyolefin, the polyester resin, or the fluorine resin in the sealant layer 4 is the effect of the present invention.
  • the amount is not particularly limited as long as it does not hinder, for example, 10 to 95% by mass, preferably 30 to 90% by mass, and further 50 to 80% by mass.
  • examples of the resin component that can be contained as necessary include polyolefin.
  • the polyolefin may have an acyclic structure or a cyclic structure.
  • acyclic polyolefin include polyethylene such as low density polyethylene, medium density polyethylene, high density polyethylene, and linear low density polyethylene; homopolypropylene, block copolymer of polypropylene (for example, block copolymer of propylene and ethylene) And a crystalline or amorphous polypropylene such as a random copolymer of polypropylene (for example, a random copolymer of propylene and ethylene); a terpolymer of ethylene-butene-propylene, and the like.
  • the cyclic polyolefin is a copolymer of an olefin and a cyclic monomer.
  • examples of the olefin that is a constituent monomer of the cyclic polyolefin include ethylene, propylene, 4-methyl-1-pentene, styrene, butadiene, and isoprene. Etc.
  • examples of the cyclic monomer that is a constituent monomer of the cyclic polyolefin include cyclic alkenes such as norbornene; specifically, cyclic dienes such as cyclopentadiene, dicyclopentadiene, cyclohexadiene, norbornadiene, and the like. These polyolefins may be used individually by 1 type, and may be used in combination of 2 or more type.
  • polyolefin-based elastomers those having characteristics as an elastomer (that is, polyolefin-based elastomers), particularly propylene-based elastomers, are preferable from the viewpoints of improving adhesive strength after heat sealing, preventing delamination after heat sealing, and the like.
  • propylene-based elastomer examples include polymers containing propylene and one or more ⁇ -olefins (excluding propylene) having 2 to 20 carbon atoms as constituent monomers.
  • ⁇ -olefin of ⁇ 20 examples include ethylene, 1-butene, 1-pentene, 1-hexene, 4-methyl-1-pentene, 1-octene, 1-decene, -Dodecene, 1-tetradecene, 1-hexadecene, 1-octadecene, 1-eicocene and the like.
  • ethylene-based elastomers may be used alone or in combination of two or more.
  • the content of the resin component is appropriately set within a range that does not hinder the object of the present invention.
  • the content of the propylene-based elastomer in the sealant layer 4 is usually 5 to 70% by mass, preferably 10 to 60% by mass, and more preferably 20 to 50% by mass. %.
  • the resin forming the sealant layer 4 is in addition to the acid-modified polyolefin, the polyester resin, the fluorine resin, and the like.
  • the resins may be used alone or in combination of two or more.
  • examples of the polyolefin forming the sealant layer 4 include those exemplified above.
  • the modified cyclic polyolefin is obtained by graft polymerization of a cyclic polyolefin with an unsaturated carboxylic acid.
  • the cyclic polyolefin to be acid-modified is a copolymer of an olefin and a cyclic monomer. Examples of such olefins include ethylene, propylene, 4-methyl-1-pentene, styrene, butadiene, and isoprene.
  • Examples of the cyclic monomer include cyclic alkenes such as norbornene; specifically, cyclic dienes such as cyclopentadiene, dicyclopentadiene, cyclohexadiene, norbornadiene, and the like.
  • Examples of the unsaturated carboxylic acid used for modification include maleic acid, acrylic acid, itaconic acid, crotonic acid, maleic anhydride, itaconic anhydride and the like. Among these unsaturated carboxylic acids, maleic acid and maleic anhydride are preferable.
  • These modified cyclic polyolefins may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the sealant layer 4 may be formed only from an acid-modified polyolefin, a polyester resin, a fluororesin, a polyolefin, or a modified cyclic polyolefin, and if necessary, other than these A resin component may be included.
  • the sealant layer 4 contains a resin component other than these, the content of these resins in the sealant layer 4 is not particularly limited as long as the effect of the present invention is not hindered, for example, 10 to 95% by mass, preferably 30 to 90% by mass, and further 50 to 80% by mass.
  • the resin component that can be contained as necessary include those having the above-described characteristics as an elastomer.
  • the content of the resin component which can be contained as needed it sets suitably in the range which does not disturb the objective of this invention.
  • the content of the propylene-based elastomer in the sealant layer 4 is usually 5 to 70% by mass, preferably 10 to 60% by mass, and more preferably 20 to 50% by mass. %.
  • the melting point T m1 of the sealant layer 4 is preferably 90 to 245 ° C., more preferably 100 to 220 ° C. It is done. From the same viewpoint, the softening point T s1 of the sealant layer 4 is preferably 70 to 180 ° C., more preferably 80 to 150 ° C. Further, from the same viewpoint, the melt flow rate (MFR) at 230 ° C. of the sealant layer 4 is preferably 1.5 to 25 g / 10 minutes, more preferably 3.0 to 18 g / 10 minutes.
  • the melting point T m1 of the sealant layer 4 is a value measured by a DSC method in accordance with JIS K6921-2 (ISO 1873-2.2: 95) for the melting point of the resin component constituting the sealant layer 4. Further, when the sealant layer 4 is formed of a blend resin containing a plurality of resin components, the melting point T m1 is obtained as described above for the melting point of each resin, and these are weighted averages by mass ratio. Can be calculated.
  • the softening point T s1 of the sealant layer 4 is a value measured by a thermo-mechanical analysis method (TMA: Thermo-Mechanical Analyzer). Further, when the sealant layer 4 is formed of a blend resin containing a plurality of resin components, the softening point T s1 is obtained as described above for the softening point of each resin, and these are expressed by mass ratio. It can be calculated by weighted average.
  • TMA thermo-mechanical analysis method
  • the melt flow rate of the sealant layer 4 is a value measured by a melt flow rate measuring device in accordance with JIS K7210.
  • the thickness of the sealant layer 4 is, for example, 12 to 120 ⁇ m, preferably 18 to 80 ⁇ m, and more preferably 20 to 60 ⁇ m.
  • the sealant layer 4 may be a single layer or a multilayer. Further, the sealant layer 4 may contain a slip agent or the like as necessary. When the sealant layer 4 contains a slip agent, the moldability of the battery packaging material can be improved. Furthermore, in this invention, when the sealant layer 4 contains a slip agent, not only the moldability of a battery packaging material but also insulation can be improved. Although the detailed mechanism by which the insulating property of the battery packaging material is enhanced by including the slip agent in the sealant layer 4 is not necessarily clear, for example, it can be considered as follows. That is, when the sealant layer 4 contains a slip agent, when an external force is applied to the sealant layer 4, the molecular chain of the resin easily moves in the sealant layer 4, and cracks are less likely to occur.
  • the sealant layer 4 is formed of a plurality of types of resins, cracks are likely to occur at the interface existing between these resins, but the slip agent is present at such an interface. It is thought that it becomes possible to effectively suppress the occurrence of cracks when an external force is applied by making the resin easy to move. By such a mechanism, it is thought that the fall of the insulating property by a crack producing in a sealant layer is suppressed.
  • the slip agent is not particularly limited, and a known slip agent can be used, and examples thereof include those exemplified in the base material layer 1 described above.
  • a slip agent may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the content of the slip agent in the sealant layer 4 is not particularly limited, and is preferably about 0.01 to 0.2% by mass, more preferably 0 from the viewpoint of improving the moldability and insulation of the electronic packaging material. About 0.05 to 0.15% by mass.
  • the thickness of the sealant layer 4 is, for example, 5 to 40 ⁇ m, preferably 10 to 35 ⁇ m, and more preferably 15 to 30 ⁇ m.
  • the embodiment has two sealant layers.
  • the temperature is between 100 and 160 ° C.
  • the packaging material is not opened until the temperature reaches T.degree. C., and after reaching T.degree. C., the battery is set so that the packaging material is opened quickly.
  • the aspect in which the sealant layer is two layers is as follows.
  • the sealant layer is located on the metal layer side, the first sealant layer containing the acid-modified polyolefin, and the first sealant layer laminated on the first sealant layer and located in the innermost layer, the first containing the polyolefin.
  • the first sealant layer 4a and the second sealant layer 4b are represented by the following formulas (1) and (2): ⁇ 10 ⁇ T m1 ⁇ T ⁇ ⁇ 5 (1) ⁇ 5 ⁇ T m2 ⁇ T ⁇ 5 (2)
  • T m1 Melting point (° C.) of the first sealant layer
  • T m2 Melting point (° C.) of the second sealant layer
  • T Set temperature (° C) determined between 100 and 160 ° C Is satisfied.
  • the set temperature T ° C. is preferably 140 to 160 ° C.
  • the first sealant layer is a layer containing acid-modified polyolefin and located on the metal layer side.
  • the acid-modified polyolefin used for forming the first sealant layer may be the same as those exemplified above for the sealant layer 4.
  • the content of the acid-modified polyolefin in the first sealant layer is not particularly limited as long as the effect of the present invention is not hindered. %, Preferably 30 to 90% by mass, and further 50 to 80% by mass.
  • the resin component that can be contained as necessary can be the same as the sealant layer 4 described above.
  • the content of the resin component is appropriately set within a range that does not hinder the object of the present invention.
  • the content of the propylene elastomer in the first sealant layer is usually 5 to 60% by mass, preferably 10 to 50% by mass, and more preferably 20 to 20% by mass. 40 mass% is mentioned.
  • the first sealant layer is set so as to satisfy the following formula (1) in addition to containing the acid-modified polyolefin. ⁇ 10 ⁇ T m1 ⁇ T ⁇ ⁇ 5 (1) T: Set temperature (° C) determined between 100 and 160 ° C T m1 : Melting point (° C.) of the first sealant layer
  • the melting point T m1 of the first sealant layer is set to a value lower than the set temperature T within a predetermined range, the first sealant layer is melted when the battery is exposed to a high temperature up to T ° C.
  • at least a part of the sealant layer 4 peeled off from the metal layer 3 expands due to internal pressure and swells while maintaining a sealed state. Pinhole or the like), and the gas inside the battery can be released gently.
  • the melting point T m1 of the first sealant layer is a value measured by the DSC method based on the melting point of the resin component constituting the first sealant layer in accordance with JIS K6921-2 (ISO1873-2.2: 95). . Further, when the first sealant layer is formed of a blend resin containing a plurality of resin components, the melting point T m1 of the blend resin conforms to JIS K6921-2 (ISO1873-2.2: 95).
  • the DSC method was used, the ratio of the peak area of the melting point corresponding to each resin component was calculated with the total peak area being 1, and the value obtained by multiplying the melting point corresponding to each resin component and the ratio of the peak area (melting point ⁇ area ratio) ) And the value calculated for each melting point (melting point ⁇ area ratio) is added.
  • the melting point of the resin component is determined by the molecular weight, the type and ratio of the constituent monomer, etc.
  • the acid-modified polyolefin to be blended in the first sealant layer and the other resin component blended as necessary are the above-mentioned of the first sealant layer.
  • the molecular weight, the type and ratio of the constituent monomers, etc. are appropriately set so as to satisfy the melting point range.
  • the first sealant layer may contain a slip agent as necessary.
  • the moldability of the battery packaging material can be improved.
  • a 1st sealant layer contains a slip agent, not only the moldability of a battery packaging material but insulation can be improved.
  • the detailed mechanism by which the insulating property of the battery packaging material is enhanced by including the slip agent in the first sealant layer is not necessarily clear, for example, it can be considered as follows. That is, when the first sealant layer contains a slip agent, when an external force is applied to the first sealant layer, the molecular chains of the resin are likely to move in the first sealant layer, and cracks are less likely to occur.
  • the first sealant layer is formed of a plurality of types of resins
  • cracks are likely to occur at the interfaces existing between these resins.
  • the resin easily moves, so that cracks can be effectively suppressed when an external force is applied.
  • a decrease in insulation due to the occurrence of cracks in the first sealant layer is suppressed.
  • the slip agent is not particularly limited, and a known slip agent can be used, and examples thereof include those exemplified in the base material layer 1 described above.
  • the content of the slip agent in the first sealant layer is not particularly limited, and is preferably about 0.01 to 0.2% by mass, more preferably from the viewpoint of improving the moldability and insulation of the electronic packaging material. Is about 0.1 to 0.15% by mass.
  • the thickness of the first sealant layer is, for example, 5 to 40 ⁇ m, preferably 10 to 35 ⁇ m, and more preferably 15 to 30 ⁇ m.
  • the second sealant layer is a layer containing polyolefin, and is laminated on the first sealant layer and positioned as the innermost layer of the battery packaging material.
  • the polyolefin used for forming the second sealant layer is not particularly limited as long as it satisfies the melting point described above, but can be the same as the illustration of the sealant layer 4 described above.
  • the second sealant layer may be formed only from polyolefin as long as it has the above melting point, and may contain a resin component other than polyolefin as required.
  • the content of the polyolefin in the second sealant layer is not particularly limited as long as the effect of the present invention is not hindered. For example, 10 to 95% by mass, preferably 30 to 90% by mass, and further 50 to 80% by mass.
  • examples of the resin component that can be contained as needed include acid-modified polyolefin.
  • Specific examples of the acid-modified polyolefin can be the same as those of the sealant layer 4.
  • the content of the resin component is appropriately set within a range that does not hinder the object of the present invention.
  • the content of the acid-modified polyolefin in the second sealant layer is usually 5 to 60% by mass, preferably 10 to 50% by mass, and more preferably 20 to 20% by mass. 40 mass% is mentioned.
  • the second sealant layer is set so as to satisfy the following formula (2) in addition to containing polyolefin. ⁇ 5 ⁇ T m2 ⁇ T ⁇ 5 (2) T: Set temperature (° C) determined between 100 and 160 ° C T m2 : Melting point (° C.) of the first sealant layer
  • the melting point T m2 of the second sealant layer is set to be equal to or higher than the melting point T m1 of the first sealant layer, and is set in the temperature range around 5 ° C. with the set temperature T, whereby the battery is set to the set temperature T ° C.
  • the second sealant layer swells at an internal pressure even if it is exposed to a high temperature until the first sealant layer is melted and at least part of the sealant layer 4 is peeled off from the interface between the metal layer 3 and the sealant layer 4.
  • fine cleaving pinholes and the like
  • the melting point T m2 of the second sealant layer is set in a temperature range exceeding 5 ° C. than the set temperature T, the heat seal itself becomes difficult and even if the seal strength varies or reaches T ° C. There is a tendency that the sealant layer 4 cannot be opened quickly.
  • the method for calculating the melting point T m2 of the second sealant layer is the same as that for the melting point T m1 of the first sealant layer.
  • the melting point of the resin component is determined by the molecular weight, the type and ratio of the constituent monomer, etc.
  • the polyolefin compounded in the second sealant layer and the other resin component compounded as necessary are equal to the melting point of the second sealant layer.
  • the molecular weight, the type and ratio of constituent monomers, etc. are appropriately set so as to satisfy the range.
  • the second sealant layer may contain a slip agent as necessary, like the first sealant layer. Moreover, the slip agent may be apply
  • the second sealant layer contains a slip agent and when the slip agent is applied on the surface of the second sealant layer, the moldability of the battery packaging material can be improved.
  • a 2nd sealant layer contains a slip agent
  • the first sealant layer and the second sealant layer contains a slip agent from the viewpoint of enhancing the insulating properties of the battery packaging material.
  • the detailed mechanism by which the insulating property of the battery packaging material is enhanced by including the slip agent in the second sealant layer is not necessarily clear, it can be considered in the same manner as the first sealant layer.
  • the second sealant layer is located in the innermost layer of the battery packaging material, a large external force is easily applied during heat sealing.
  • the moldability and insulation of the battery packaging material can be improved more effectively.
  • the kind and amount of slip agent contained in the second sealant layer can be the same as those in the first sealant layer.
  • the kind of slip agent can be made the same as that of a 1st sealant layer.
  • the application amount of the slip agent is not particularly limited, and may be about 0.01 to 100 mg / m 2 , preferably about 0.1 to 10 mg / m 2 .
  • the thickness of the second sealant layer is, for example, 5 to 40 ⁇ m, preferably 10 to 35 ⁇ m, and more preferably 15 to 30 ⁇ m.
  • the first sealant layer and the second sealant layer satisfy the relationship of 0 ⁇ (T m2 ⁇ T m1 ) ⁇ 15 by satisfying the above-described melting points.
  • the thickness of the sealant layer 4 is determined based on the thickness of each of the first sealant layer and the second sealant layer. For example, the thickness is 10 to 80 ⁇ m, preferably 20 to 70 ⁇ m. More preferred is 30 to 60 ⁇ m.
  • the embodiment has three sealant layers.
  • the battery packaging material of the present invention between 100 to 160 ° C.
  • the packaging material is not opened until the temperature reaches T.degree. C., and after reaching T.degree. C., the battery is set so that the packaging material is opened quickly.
  • the aspect in which the sealant layer is three layers is as follows.
  • the sealant layer has a first sealant layer containing acid-modified polyolefin, a second sealant layer containing at least one of polyolefin and acid-modified polyolefin, and a third sealant layer containing polyolefin in order.
  • the first sealant layer is positioned on the metal layer side, and the third sealant layer is positioned on the innermost layer,
  • the first sealant layer 4a, the second sealant layer 4b, and the third sealant layer 4c are represented by the following formulas (1) to (3): ⁇ 10 ⁇ T m1 ⁇ T ⁇ ⁇ 5 (1) 5 ⁇ T m2 ⁇ T ⁇ 10 (2) ⁇ 5 ⁇ T m3 ⁇ T ⁇ 5 (3)
  • T m1 Melting point (° C.) of the first sealant layer
  • T m2 Melting point (° C.) of the second sealant layer
  • T m3 Melting point (° C) of the third sealant layer
  • T Set temperature (° C) determined between 100 and 160 ° C Is satisfied.
  • the set temperature T ° C. is preferably 140 to 160 ° C.
  • the first sealant layer is a layer containing acid-modified polyolefin and located on the metal layer side.
  • the resin forming the first sealant layer is the same as the two-layer embodiment of item A above.
  • the first sealant layer is set to satisfy the following formula (1). ⁇ 10 ⁇ T m1 ⁇ T ⁇ ⁇ 5 (1) T: Set temperature (° C) determined between 100 and 160 ° C T 1 : Melting point (° C.) of the first sealant layer
  • the first sealant layer melts when the battery is exposed to a high temperature up to T ° C.
  • the state changes, and at least a part of the sealant layer 4 can be peeled from the interface between the metal layer 3 and the sealant layer 4.
  • at least a part of the sealant layer 4 peeled off from the metal layer 3 expands due to internal pressure and swells while maintaining a sealed state. Pinhole or the like), and the gas inside the battery can be released gently.
  • the melting point T m1 of the first sealant layer is a value measured in the same manner as described above.
  • the first sealant layer may contain a slip agent as necessary in the same manner as described above.
  • the thickness of the first sealant layer is, for example, 5 to 40 ⁇ m, preferably 10 to 35 ⁇ m, and more preferably 15 to 30 ⁇ m.
  • the second sealant layer includes at least one of polyolefin and acid-modified polyolefin, and is a layer disposed between the first sealant layer and the third sealant layer.
  • Examples of the polyolefin and the acid-modified polyolefin used for forming the second sealant layer can be the same as those of the sealant layer 4.
  • the second sealant layer may be formed of only one of polyolefin and acid-modified polyolefin as long as it has the above melting point, and may contain other resin components as necessary.
  • the content of at least one of the polyolefin and the acid-modified polyolefin in the second sealant layer is not particularly limited as long as the effect of the present invention is not hindered. For example, 10 to 95% by mass, preferably Is 30 to 90% by mass, and further 50 to 80% by mass.
  • the second sealant layer is set so as to satisfy the following formula (2) in addition to containing at least one of polyolefin and acid-modified polyolefin. ⁇ 5 ⁇ T m2 ⁇ T ⁇ 10 (2) T: Set temperature (° C) determined between 100 and 160 ° C T m2 : Melting point (° C.) of the second sealant layer
  • the melting point T m2 of the second sealant layer is set to be equal to or higher than the melting point T m1 of the first sealant layer, and is set in the temperature range around 5 ° C. with the set temperature T, whereby the battery is set to the set temperature T ° C.
  • the second sealant layer swells at an internal pressure even if it is exposed to a high temperature until the first sealant layer is melted and at least part of the sealant layer 4 is peeled off from the interface between the metal layer 3 and the sealant layer 4.
  • fine cleaving pinholes and the like
  • the melting point T m2 of the second sealant layer is set to be equal to or higher than the melting point T m1 of the first sealant layer and equal to or higher than the melting point T m3 of the third sealant layer. Even in such a case, excellent insulation can be provided.
  • the method for calculating the melting point T m2 of the second sealant layer is the same as that for the melting point T m1 of the first sealant layer.
  • the melting point of the resin component is determined by the molecular weight, the type and ratio of the constituent monomer, etc.
  • the polyolefin compounded in the second sealant layer and the other resin component compounded as necessary are equal to the melting point of the second sealant layer.
  • the molecular weight, the type and ratio of constituent monomers, etc. are appropriately set so as to satisfy the range.
  • the second sealant layer may contain a slip agent as necessary, like the first sealant layer.
  • a 2nd sealant layer contains a slip agent
  • the second sealant layer contains a slip agent, whereby not only the moldability of the battery packaging material but also the insulation can be improved.
  • the detailed mechanism by which the insulating property of the battery packaging material is enhanced by including the slip agent in the second sealant layer is not necessarily clear, it can be considered in the same manner as the first sealant layer.
  • the kind and amount of slip agent contained in the second sealant layer can be the same as those of the first sealant layer.
  • the thickness of the second sealant layer is, for example, 5 to 40 ⁇ m, preferably 10 to 35 ⁇ m, and more preferably 15 to 30 ⁇ m.
  • the third sealant layer is a layer that contains polyolefin and is laminated on the first sealant layer and is positioned as the innermost layer of the battery packaging material.
  • the polyolefin used for forming the third sealant layer can be the same as the illustration of the sealant layer 4.
  • the third sealant layer may be formed of only polyolefin, as long as it has the above melting point, and may contain a resin component other than polyolefin as required.
  • the content of the polyolefin in the third sealant layer is not particularly limited as long as the effect of the present invention is not hindered. For example, 10 to 95% by mass, preferably 30 to 90% by mass, and further 50 to 80% by mass.
  • examples of the resin component that can be contained as needed include acid-modified polyolefin.
  • Specific examples of the acid-modified polyolefin can be the same as those of the sealant layer 4.
  • the content of the resin component is appropriately set within a range that does not hinder the object of the present invention.
  • the content of the acid-modified polyolefin in the third sealant layer is usually 5 to 60% by mass, preferably 10 to 50% by mass, more preferably 20 to 20% by mass. 40 mass% is mentioned.
  • the third sealant layer is set so as to satisfy the following formula (3) in addition to containing polyolefin. ⁇ 5 ⁇ T m3 ⁇ T ⁇ 5 (3) T: Set temperature (° C) determined between 100 and 160 ° C T m3 : Melting point (° C) of the third sealant layer
  • the melting point T m3 of the third sealant layer is set to be equal to or higher than the melting point T m1 of the first sealant layer, and is set to a temperature range around 5 ° C. with the set temperature T, whereby the battery is set to the set temperature T ° C.
  • the sealant layer 4 is peeled off from the interface between the metal layer 3 and the sealant layer 4 and exposed to a high temperature until the sealant layer 4 swells in a sealed state, cracks are generated inside the sealant layer 4. Suppresses abrupt opening due to cohesive failure and causes fine cleaving (pinholes, etc.), and after reaching T ° C., the gas inside the battery can be released gently and gently. .
  • the melting point T m3 of the third sealant layer is set in a temperature range exceeding 5 ° C. from the set temperature T, the heat seal itself becomes difficult, and even if the seal strength varies or reaches T ° C. There is a tendency that the sealant layer 4 cannot be opened quickly.
  • the method for calculating the melting point T m3 of the third sealant layer is the same as that for the melting point T m1 of the first sealant layer.
  • the melting point of the resin component is determined by the molecular weight, the type and ratio of the constituent monomer, etc.
  • the polyolefin compounded in the third sealant layer and the other resin component compounded as necessary include the third sealant.
  • the molecular weight, the type and ratio of constituent monomers, and the like are appropriately set so as to satisfy the melting point range of the layer.
  • the third sealant layer may contain a slip agent as necessary, like the first sealant layer. Moreover, the slip agent may be apply
  • the third sealant layer contains a slip agent and when the slip agent is applied on the surface of the third sealant layer, the moldability of the battery packaging material can be improved.
  • a 3rd sealant layer contains a slip agent, not only the moldability of a battery packaging material but insulation can be improved.
  • the detailed mechanism by which the insulating property of the battery packaging material is enhanced by including the slip agent in the third sealant layer is not necessarily clear, it can be considered in the same manner as the first sealant layer.
  • the third sealant layer is located in the innermost layer of the battery packaging material, a large external force is easily applied during heat sealing.
  • the moldability and insulation of the battery packaging material can be improved more effectively.
  • the kind and amount of slip agent contained in the third sealant layer can be the same as those of the first sealant layer.
  • the kind of slip agent can be made the same as that of a 1st sealant layer.
  • the application amount of the slip agent is not particularly limited, and for example, about 0.01 to 100 mg / m 2 , preferably about 0.1 to 10 mg / m 2 can be mentioned.
  • the thickness of the third sealant layer is, for example, 5 to 40 ⁇ m, preferably 10 to 35 ⁇ m, and more preferably 15 to 30 ⁇ m.
  • the first sealant layer and the second sealant layer satisfy the relationship of 10 ⁇ (T m2 ⁇ T m1 ) ⁇ 20 by satisfying the aforementioned melting points.
  • first sealant layer and the third sealant layer satisfy the relationship of 0 ⁇ (T m3 ⁇ T m1 ) ⁇ 15 by satisfying the melting points described above.
  • the thickness of the sealant layer 4 is determined based on the thickness of each of the first sealant layer, the second sealant layer, and the third sealant layer.
  • the thickness is 15 to 120 ⁇ m.
  • it is 60 to 80 ⁇ m, and more preferably 30 to 60 ⁇ m.
  • the sealant layer 4 has a first sealant layer 4a containing an acid-modified polyolefin and a second sealant layer 4b in this order.
  • the first sealant layer 4a is a metal layer.
  • the second sealant layer 4 b is disposed so as to be located in the innermost layer, the first sealant layer 4 a has a melting point T m1 of 100 to 160 ° C., and the softening point of the first sealant layer 4 a T s1 is 60 to 150 ° C.
  • the opening temperature is usually 150 ° C. or lower.
  • the first sealant layer 4a is a layer containing acid-modified polyolefin and located on the metal layer side.
  • the acid-modified polyolefin used for forming the first sealant layer 4a can be the same as that exemplified for the sealant layer 4 described above.
  • the first sealant layer 4a may be formed only from the acid-modified polyolefin as long as it has a melting point and a softening point described later, and may contain a resin component other than the acid-modified polyolefin as necessary. . From the viewpoint of the first sealant layer 4a having a melting point and a softening point, which will be described later, the first sealant layer 4a may contain at least one of an amorphous polyolefin and a thermoplastic elastomer as a resin component other than the acid-modified polyolefin. preferable.
  • the amorphous polyolefin refers to a polyolefin having a low crystallinity and having substantially no melting point by using an atactic polymer with less stereoregularity.
  • the melting point of polyolefin refers to the endothermic peak temperature in differential scanning calorimetry (DSC).
  • the amorphous polyolefin is not particularly limited as long as it is an amorphous resin containing at least an olefin as a monomer unit.
  • the polyolefin may have an acyclic structure or a cyclic structure.
  • acyclic polyolefin examples include polyethylene such as low density polyethylene, medium density polyethylene, high density polyethylene, and linear low density polyethylene; homopolypropylene, block copolymer of polypropylene (for example, block copolymer of propylene and ethylene) And amorphous polypropylene such as a random copolymer of polypropylene (for example, a random copolymer of propylene and ethylene); a terpolymer of ethylene-butene-propylene, and the like.
  • polyethylene such as low density polyethylene, medium density polyethylene, high density polyethylene, and linear low density polyethylene
  • homopolypropylene, block copolymer of polypropylene for example, block copolymer of propylene and ethylene
  • amorphous polypropylene such as a random copolymer of polypropylene (for example, a random copolymer of propylene and ethylene); a terpolymer of ethylene-butene
  • the cyclic polyolefin is a copolymer of an olefin and a cyclic monomer
  • examples of the olefin that is a constituent monomer of the cyclic polyolefin include ethylene, propylene, 4-methyl-1-pentene, styrene, butadiene, And isoprene.
  • examples of the cyclic monomer that is a constituent monomer of the cyclic polyolefin include cyclic alkenes such as norbornene; specifically, cyclic dienes such as cyclopentadiene, dicyclopentadiene, cyclohexadiene, and norbornadiene.
  • polystyrene resins may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the amorphous polyolefin may be one obtained by acid-modifying these polyolefins by graft polymerization with an unsaturated carboxylic acid.
  • thermoplastic elastomer As another resin component that can be contained as required, for example, a thermoplastic elastomer can be mentioned. As a thermoplastic elastomer, it can be made to be the same as that illustrated as what has the characteristic as an elastomer in the sealant layer 4.
  • the content of the resin component is appropriately set within a range that does not hinder the object of the present invention.
  • the first sealant layer 4a contains at least one of an amorphous polyolefin and a thermoplastic elastomer
  • the content of at least one of the amorphous polyolefin and the thermoplastic elastomer in the first sealant layer 4a is as follows: Usually, 5 to 80% by mass, preferably 10 to 70% by mass, and more preferably 20 to 60% by mass.
  • the first sealant layer 4a contains an acid-modified polyolefin and the melting point T m1 is 100 to 160 ° C.
  • the softening point T s1 of the first sealant layer 4a is By setting the temperature as low as 60 to 150 ° C., when the battery is heated, the first sealant layer 4a is softened. For example, as shown in FIGS. At least a part of the interface with the layer 4 or the inside of the sealant layer 4 can be peeled off. Thereafter, when a certain temperature determined according to the heat resistance required for various batteries is reached, a fine tear (pinhole or the like) is generated in the peeled portion of the sealant layer 4, and the gas inside the battery is gently released. It becomes possible.
  • the gas inside the battery can be released more gently.
  • the melting point T m1 of the first sealant layer 4a is preferably about 105 to 150 ° C., more preferably about 110 to 140 ° C.
  • the softening point T s1 of the first sealant layer 4a is preferably about 65 to 140 ° C., more preferably about 75 to 120 ° C.
  • the melting point T m1 of the first sealant layer 4a is a value measured in the same manner as described above.
  • the softening point T s1 of the first sealant layer 4a is a value measured by the Vicat softening temperature test method JIS K7206.
  • the softening point T s1 is obtained by the sum of the softening point of the constituent components of the blend resin ⁇ the blending fraction. It is done.
  • the melting point and softening point of the resin component are determined by the molecular weight, the type and ratio of the constituent monomer, etc., in the acid-modified polyolefin compounded in the first sealant layer 4a and other resin components compounded as necessary,
  • the molecular weight, the type and ratio of constituent monomers, and the like are appropriately set so as to satisfy the melting point and softening point ranges of the one sealant layer 4a.
  • the softening point T s1 can be lowered to 60 to 150 ° C. while the melting point T m1 of the first sealant layer 4a is set to 100 to 160 ° C.
  • the thickness of the first sealant layer 4a is, for example, 5 to 40 ⁇ m, preferably 10 to 35 ⁇ m, and more preferably 15 to 30 ⁇ m.
  • the second sealant layer 4b is a layer laminated on the first sealant layer 4a and positioned as the innermost layer of the battery packaging material. That is, in the battery packaging material, the second sealant layers are heat-sealed to seal the battery element. From the viewpoint of improving the sealability of the sealant layer 4, the second sealant layer 4b preferably contains polyolefin.
  • the polyolefin used for forming the second sealant layer 4b is not particularly limited.
  • polyethylene such as low density polyethylene, medium density polyethylene, high density polyethylene, and linear low density polyethylene
  • homopolypropylene, polypropylene block copolymer examples thereof include crystalline or amorphous polypropylene such as a block copolymer of propylene and ethylene (for example, a random copolymer of polypropylene and a random copolymer of propylene and ethylene), a terpolymer of ethylene-butene-propylene, and the like.
  • polystyrene resin a polyolefin having at least propylene as a constituent monomer is preferable, and a propylene-ethylene random copolymer, a propylene-ethylene-butene terpolymer, and a propylene homopolymer are more preferable.
  • a polyolefin having at least propylene as a constituent monomer is preferable, and a propylene-ethylene random copolymer, a propylene-ethylene-butene terpolymer, and a propylene homopolymer are more preferable.
  • These polyolefins may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the second sealant layer 4b may be formed only from polyolefin or may contain a resin component other than polyolefin.
  • the content of the polyolefin in the second sealant layer 4b is not particularly limited as long as the effect of the present invention is not hindered, for example, 10 to 95% by mass, Preferably 30 to 90% by mass, and more preferably 50 to 80% by mass.
  • Examples of resin components other than polyolefin that can be included in the second sealant layer 4b include acid-modified polyolefin. Specific examples of the acid-modified polyolefin are the same as those of the first sealant layer 4a.
  • the content of the resin component is appropriately set within a range that does not hinder the object of the present invention.
  • the content of the acid-modified polyolefin in the second sealant layer 4b is usually 5 to 60% by mass, preferably 10 to 50% by mass, and more preferably 20 to 40% by mass can be mentioned.
  • the melting point T m2 of the second sealant layer 4b and the melting point T m1 of the first sealant layer 4a preferably satisfy the following relationship. T m2 ⁇ T m1 That is, when the melting point T m2 of the second sealant layer 4b is equal to or higher than the melting point T m1 of the first sealant layer 4a, the sealant layer 4 is peeled off, for example, as shown in B of FIGS. It is possible to favorably maintain a state in which the battery element is sealed by forming a portion in a bag shape (inner bag). Then, when the opening temperature is reached, for example, the state quickly shifts to the state shown in C of FIGS. 3, 4, 7, and 8.
  • the melting point T m2 of the second sealant layer 4b and the melting point T m1 of the first sealant layer 4a satisfy the following relationship. T m2 ⁇ T m1 +5
  • the calculation method of the melting point T m2 and the softening point T s2 of the second sealant layer 4b is the same as that of the melting point T m1 of the first sealant layer 4a.
  • the melting point T m2 of the second sealant layer 4b is not particularly limited, but when the battery is heated, the peeled portion of the sealant layer 4 becomes a bag shape (inner bag) until the opening temperature is reached. From the viewpoint of suitably maintaining the sealed state of the battery element and leading to opening under a milder condition after reaching the opening temperature, it is preferably 105 to 150 ° C., more preferably 110 to 140 ° C.
  • the softening point T s2 of the second sealant layer 4b is not particularly limited, but from the same viewpoint, it is preferably 65 to 140 ° C., more preferably 70 to 120 ° C.
  • the melting point of the resin component is determined by the molecular weight, the type and ratio of the constituent monomer, etc., in the resin component blended in the second sealant layer 4b, for example, the melting point and softening point of the second sealant layer 4b.
  • the molecular weight, the type and ratio of constituent monomers, and the like are appropriately set so that the battery packaging material is gently opened.
  • the thickness of the second sealant layer 4b is, for example, 5 to 40 ⁇ m, preferably 10 to 35 ⁇ m, and more preferably 15 to 30 ⁇ m.
  • the sealant layer 4 of the battery packaging material according to the present invention includes a third sealant layer 4c, a fourth sealant layer 4d, and the like between the first sealant layer 4a and the second sealant layer 4b. You may have further in order from the sealant layer 4a side. That is, the sealant layer 4 may be composed of three or more layers further including a third sealant layer 4c and the like between the first sealant layer 4a and the second sealant layer 4b.
  • the layer provided between the first sealant layer 4a and the second sealant layer 4b such as the third sealant layer 4c contains at least one of polyolefin and acid-modified polyolefin. Is preferred.
  • the polyolefin used for forming the third sealant layer 4c and the like are the same as those exemplified for the second sealant layer 4b.
  • the acid-modified polyolefin used for forming the third sealant layer 4c include the same ones as exemplified for the first sealant layer 4a.
  • the melting point of the third sealant layer 4c or the like is not particularly limited, but when the battery is heated, the peeled portion of the sealant layer 4 becomes a bag shape (inner bag) until the opening temperature is reached. From the viewpoint of suitably maintaining the sealed state of the battery element and leading to opening under a milder condition after reaching the opening temperature, 100 to 160 ° C. is preferable. Further, the softening point of these layers is not particularly limited, but from the same viewpoint, preferably 60 to 150 ° C. can be mentioned.
  • the thickness of the layer provided between the first sealant layer 4a and the second sealant layer 4b such as the third sealant layer 4c is, for example, 5 to 40 ⁇ m, preferably 10 to 35 ⁇ m, more preferably 15 to 30 ⁇ m. Is mentioned.
  • Total thickness of sealant layer 4 The total thickness of the sealant layer 4 is determined based on the thicknesses of the first sealant layer 4a, the second sealant layer 4b, and the third sealant layer 4c provided as necessary. Preferably, it is 60 to 80 ⁇ m, and more preferably 30 to 60 ⁇ m.
  • the sealant layer 4 has a first sealant layer 4a containing an acid-modified polyolefin and a second sealant layer 4b in this order.
  • the first sealant layer 4a is a metal layer.
  • the second sealant layer 4b is disposed on the innermost layer, and the first sealant layer 4a includes at least one of polyethylene and acid-modified polyethylene.
  • the opening temperature is usually 150 ° C. or lower.
  • the first sealant layer 4a In the second mode of opening in a low temperature range, the first sealant layer 4a preferably contains at least one of polyethylene and acid-modified polyethylene in addition to the acid-modified polyolefin. This makes it possible to lower the softening point while keeping the melting point of the first sealant layer 4a within a certain range, and when the battery is heated, the first sealant layer 4a softens, for example, FIGS. 7 and 8, at least a part of the interface between the metal layer 3 and the sealant layer 4 or the inside of the sealant layer 4 can be peeled off.
  • the acid-modified polyolefin can be the same as the first sealant layer 4a in the first embodiment.
  • the polyethylene is not particularly limited, and examples thereof include low density polyethylene, medium density polyethylene, high density polyethylene, and linear low density polyethylene.
  • the weight average molecular weight of polyethylene is not particularly limited, but preferably 10,000 to 1,000,000, more preferably 20,000 to 500,000.
  • the acid-modified polyethylene is not particularly limited, and examples thereof include those modified by graft polymerization of the above polyolefin with an unsaturated carboxylic acid.
  • the weight average molecular weight of the acid-modified polyethylene is not particularly limited, but is preferably 10,000 to 1,000,000, more preferably 20,000 to 500,000.
  • the weight average molecular weight is a value measured by gel permeation chromatography (GPC) measured under conditions using polystyrene as a standard sample.
  • GPC gel permeation chromatography
  • the total content of polyethylene and acid-modified polyethylene in the first sealant layer 4a is not particularly limited as long as the effect of the present invention is achieved, but until a certain set temperature is reached when the battery is heated. From the viewpoint of suitably maintaining the state where the peeled portion of the sealant layer 4 is in the form of a bag (inner bag) and the battery element is sealed, and after reaching the set temperature, it is preferable from the viewpoint of leading to opening under milder conditions. Is 5% by mass or more, more preferably 10 to 90% by mass, and still more preferably 15 to 85% by mass.
  • the first sealant layer 4a may be formed from only an acid-modified polyolefin and at least one of polyethylene and acid-modified polyethylene, and may contain other resin components as necessary.
  • the resin component that can be contained as necessary include amorphous polyolefins and thermoplastic elastomers exemplified in the first embodiment.
  • the melting point T m1 of the first sealant layer 4a is not particularly limited, but when the battery is heated, the peeled portion of the sealant layer 4 has a bag shape (inner bag) until reaching a certain temperature. From the viewpoint of favorably maintaining the battery element in a sealed state and leading to opening under a milder condition after reaching the temperature, it is preferably 100 to 160 ° C., more preferably 105 to 150 ° C. Preferably, the temperature is 110 to 140 ° C.
  • the softening point T s1 of the first sealant layer 4a is not particularly limited, but from the same viewpoint as the melting point, it is preferably 60 to 150 ° C, more preferably 65 to 140 ° C, and further preferably 75 to 120 ° C. Is mentioned.
  • the melting point T m1 of the first sealant layer 4a and the softening point T s1 of the first sealant layer 4a are values calculated in the same manner as in the first embodiment.
  • the second sealant layer 4b of the second aspect can be the same as the second sealant layer 4b of the first aspect.
  • the melting point T m2 of the second sealant layer 4b is not particularly limited, but when the battery is heated, the peeled portion of the sealant layer 4 is a bag until the opening temperature is reached. From the viewpoint of suitably maintaining the battery element in a sealed state (inner bag) and leading to opening under milder conditions after reaching the opening temperature, it is preferably 100 to 160 ° C., more preferably 105 to A temperature of 150 ° C., more preferably 110 to 140 ° C. is mentioned.
  • the softening point T s2 of the second sealant layer 4b is not particularly limited, but from the same viewpoint, it is preferably 60 to 150 ° C, more preferably 65 to 140 ° C, and still more preferably 70 to 120 ° C. It is done.
  • the calculation methods of the melting point T m2 of the second sealant layer 4b and the softening point T s2 of the second sealant layer 4b are the same as described above.
  • the melting point of the resin component is determined by the molecular weight, the type and ratio of the constituent monomer, etc., in the resin component blended in the second sealant layer 4b, for example, the melting point and softening point of the second sealant layer 4b.
  • the molecular weight, the type and ratio of constituent monomers, and the like are appropriately set so that the battery packaging material is gently opened.
  • the third sealant layer 4c and the like can be the same as in the first aspect.
  • the sealant layer 4 has a first sealant layer containing an acid-modified polyolefin and a second sealant layer in this order.
  • the first sealant layer 4a is on the metal layer 3 side.
  • the second sealant layer 4b is located in the innermost layer, and the first sealant layer 4a is made of an ethylene vinyl acetate copolymer, an acrylic resin, a styrene polymer, and a terpene phenol resin. Including at least one selected from.
  • the opening temperature is usually 150 ° C. or lower.
  • the first sealant layer 4a is selected from the group consisting of an ethylene vinyl acetate copolymer, an acrylic resin, a styrene polymer, and a terpene phenol resin in addition to the acid-modified polyolefin. It is preferable to include at least one kind. This makes it possible to lower the softening point while keeping the melting point of the first sealant layer 4a within a certain range.
  • the first sealant layer 4a For example, as shown in FIGS.
  • the interface between the metal layer 3 and the sealant layer 4 or the inside of the sealant layer 4 can be peeled off. Thereafter, the swelled sealant layer 4 causes fine cleavage (pinholes or the like), and the gas inside the battery can be released gently.
  • the peeled portion of the sealant layer 4 expands due to internal pressure and swells while maintaining a sealed state until fine cleavage occurs in at least a part of the peeled sealant layer 4, the gas inside the battery is more It becomes possible to release gently.
  • ethylene vinyl acetate copolymer, acrylic resin, styrene polymer, and terpene phenol resin all constitute acid-modified polyolefin and metal layer 3 that form sealant layer 4. It is considered that it is possible to lead to such gentle opening due to the adhesive resin having high adhesiveness to metal.
  • the first sealant layer 4a includes at least one selected from the group consisting of an ethylene vinyl acetate copolymer, an acrylic resin, a styrene polymer, and a terpene phenol resin
  • the sealant layers 4 are heat-sealed. The sealing strength is increased, and the laminate strength between the metal layer 3 and the sealant layer 4 is also increased.
  • these resins are both adhesive resins having high adhesiveness with the acid-modified polyolefin forming the sealant layer 4 and the metal forming the metal layer 3. Therefore, it is considered that the seal strength and the laminate strength can be increased.
  • the ethylene vinyl acetate copolymer may be an acid-modified ethylene vinyl acetate copolymer that has been acid-modified with carboxylic acid or the like.
  • the acrylic resin is not particularly limited as long as it is a homopolymer or copolymer of acrylic ester, methacrylic ester, acrylic acid, methacrylic acid or the like.
  • the styrene polymer may be a homopolymer of styrene or a copolymer with other monomers.
  • the terpene phenol resin is not particularly limited as long as it is a copolymer of a terpene monomer and phenol.
  • the ethylene vinyl acetate copolymer, the acrylic resin, the styrene polymer, and the terpene phenol resin may be used alone or in combination of two or more. Good.
  • the total content of the ethylene vinyl acetate copolymer, acrylic resin, styrene polymer, and terpene phenol resin in the first sealant layer 4a is not particularly limited, but reaches the set temperature when the battery is heated.
  • the peeled portion of the sealant layer 4 is formed into a bag shape (inner bag) and the battery element is preferably maintained in a sealed state, and after reaching the set temperature, leads to opening under milder conditions, as well as the above From the viewpoint of further increasing the sealing strength and the laminate strength, it is preferably 5% by mass or more, more preferably 10 to 90% by mass, and still more preferably 15 to 85% by mass.
  • the second sealant layer 4b can be the same as in the first aspect.
  • the melting point T m2 of the second sealant layer 4b and the melting point T m1 of the first sealant layer 4a satisfy the following relationship. T m2 ⁇ T m1 That is, when the melting point T m2 of the second sealant layer 4b is equal to or higher than the melting point T m1 of the first sealant layer 4a, the sealant layer 4 is peeled off, for example, as shown in B of FIGS. It is possible to favorably maintain a state in which the battery element is sealed by forming a portion in a bag shape (inner bag).
  • the melting point T m2 of the second sealant layer 4b and the melting point T m1 of the first sealant layer 4a satisfy the following relationship. T m2 ⁇ T m1 +5
  • the melting point T m2 of the second sealant layer 4b is not particularly limited, but when the battery is heated, the peeled portion of the sealant layer 4 becomes a bag shape (inner bag) until the opening temperature is reached. From the viewpoint of suitably maintaining the sealed state of the battery element and leading to opening under a milder condition after reaching the opening temperature, it is preferably 100 to 160 ° C., more preferably 105 to 150 ° C., and still more preferably 110 to 140 ° C can be mentioned.
  • the softening point T s2 of the second sealant layer 4b is not particularly limited, but from the same viewpoint, it is preferably 60 to 150 ° C, more preferably 65 to 140 ° C, and still more preferably 70 to 120 ° C. It is done.
  • the third sealant layer 4c and the like can be the same as those in the first aspect.
  • an insulating layer 6 may be provided between the metal layer 3 and the sealant layer 4. Even when the insulating layer 6 is provided, the packaging material is not opened until the temperature reaches T ° C. when the temperature is raised to a set temperature T ° C. determined between 100 ° C. and 160 ° C. After that, it can be a battery packaging material used for a battery set so that the packaging material can be opened quickly.
  • the insulating layer 6 is formed of a resin composition containing an acid-modified polyolefin resin and a curing agent.
  • the insulating layer 6 formed of such a specific resin composition is provided between the metal layer 3 and the sealant layer 4 so that the electrode active material and the electrode tab are provided. Even when a minute foreign matter such as a broken piece is present between the battery element and the sealant layer 4, the insulation and durability of the battery packaging material can be improved.
  • the acid-modified polyolefin resin modified with an unsaturated carboxylic acid or an acid anhydride thereof is obtained by modifying a polyolefin resin with an unsaturated carboxylic acid or an acid anhydride thereof.
  • the acid-modified polyolefin resin modified with an unsaturated carboxylic acid or its acid anhydride and (meth) acrylic acid ester is a combination of an unsaturated carboxylic acid or its acid anhydride and (meth) acrylic acid ester. Thus, it is obtained by modifying the polyolefin resin.
  • the polyolefin resin to be modified is not particularly limited as long as it is a resin containing at least an olefin as a monomer unit.
  • the polyolefin resin can be composed of, for example, at least one of a polyethylene resin and a polypropylene resin, and is preferably composed of a polypropylene resin.
  • the polyethylene resin can be composed of, for example, at least one of homopolyethylene and ethylene copolymer.
  • the polypropylene resin can be composed of at least one of a homopolypropylene and a propylene copolymer, for example.
  • propylene copolymer examples include copolymers of propylene and other olefins such as ethylene-propylene copolymer, propylene-butene copolymer, and ethylene-propylene-butene copolymer.
  • the proportion of the propylene unit contained in the polypropylene resin is preferably about 50 mol% to 100 mol%, and preferably about 80 mol% to 100 mol% from the viewpoint of further improving the insulation and durability of the battery packaging material. More preferably.
  • the proportion of ethylene units contained in the polyethylene resin is preferably about 50 mol% to 100 mol%, and more preferably 80 mol% to 100 mol, from the viewpoint of further improving the insulation and durability of the battery packaging material.
  • Each of the ethylene copolymer and the propylene copolymer may be a random copolymer or a block copolymer. Further, the ethylene copolymer and the propylene copolymer may each be crystalline or amorphous, and may be a copolymer or a mixture thereof.
  • the polyolefin resin may be formed of one type of homopolymer or copolymer, or may be formed of two or more types of homopolymer or copolymer.
  • the unsaturated carboxylic acid examples include acrylic acid, methacrylic acid, maleic acid, itaconic acid, fumaric acid, and crotonic acid.
  • an acid anhydride the acid anhydride of the unsaturated carboxylic acid illustrated above is preferable, and maleic anhydride and itaconic anhydride are more preferable.
  • only one type of unsaturated carboxylic acid may be used, or two or more types may be used.
  • Examples of (meth) acrylic acid esters include esterification products of (meth) acrylic acid and alcohols having 1 to 30 carbon atoms, preferably esterification products of (meth) acrylic acid and alcohols having 1 to 20 carbon atoms. Is mentioned. Specific examples of (meth) acrylic acid esters include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, hexyl (meth) acrylate, (meth) Examples include octyl acrylate, decyl (meth) acrylate, lauryl (meth) acrylate, octyl (meth) acrylate, dodecyl (meth) acrylate, stearyl (meth) acrylate, and the like. In modification
  • the ratio of the unsaturated carboxylic acid or its acid anhydride in the acid-modified polyolefin resin is preferably about 0.1 to 30% by mass, and preferably about 0.1 to 20% by mass. Is more preferable. By setting it as such a range, the insulation and durability of the packaging material for batteries can be improved more.
  • the proportion of (meth) acrylic acid ester in the acid-modified polyolefin resin is preferably about 0.1% by mass to 40% by mass, and more preferably about 0.1% by mass to 30% by mass. . By setting it as such a range, the insulation and durability of the packaging material for batteries can be improved more.
  • the weight average molecular weight of the acid-modified polyolefin resin is preferably about 6000 to 200000, and more preferably about 8000 to 150,000. By setting it as such a range, since the affinity of the insulating layer 6 with respect to the metal layer 3 and the sealant layer 4 can be stabilized, the adhesiveness of the metal layer 3 and the sealant layer 4 can be stabilized for a long time. Furthermore, since heat resistance can also be improved, the insulation and durability of the battery packaging material can be further improved.
  • the weight average molecular weight of the acid-modified polyolefin resin is a value measured by gel permeation chromatography (GPC) measured under conditions using polystyrene as a standard sample.
  • the method for modifying the polyolefin resin is not particularly limited, and, for example, an unsaturated carboxylic acid or an acid anhydride thereof or a (meth) acrylic acid ester may be copolymerized with the polyolefin resin.
  • examples of such copolymerization include random copolymerization, block copolymerization, graft copolymerization (graft modification), and the like, and preferably graft copolymerization.
  • the curing agent is not particularly limited as long as it cures the acid-modified polyolefin resin.
  • curing agent what was illustrated by the below-mentioned contact bonding layer 5 is mentioned, for example.
  • the curing agent may be composed of two or more kinds of compounds.
  • the content of the curing agent is preferably in the range of 0.1 to 50 parts by mass with respect to 100 parts by mass of the acid-modified polyolefin resin, and 0.1 to 30 parts by mass. More preferably, it is in the range.
  • the content of the curing agent is preferably in the range of 1 equivalent to 30 equivalents as a reactive group in the curing agent with respect to 1 equivalent of the carboxyl group in the acid-modified polyolefin resin. More preferably in the range of ⁇ 20 equivalents.
  • the insulating layer 6 has a high flexibility, and it is possible to suppress crushing at the time of foreign matter biting due to stress dispersion during compression, It is possible to prevent fine cracks during stretching.
  • the olefinic rubber-like additive include Mitsui Chemicals' Tuffmer P, Tuffmer A, Tuffmer H, Tuffmer XM, Tuffmer BL, Tuffmer PN, and ⁇ -olefin copolymers such as Sumitomo Chemical's Tough Selenium.
  • the hydrocarbon wax include paraffin.
  • the battery packaging material of the present invention is formed from the resin composition containing the acid-modified polyolefin resin and the curing agent as described above, and has high heat resistance and mechanical properties when heat is applied during heat sealing.
  • the insulating layer 6 is formed which has strength, high flexibility, and can suppress generation of fine cracks due to stress such as bending.
  • the sealant layer 4 fine cracks that are likely to occur in thin portions, through-holes due to foreign matters, voids due to foaming of the sealant layer 4 that are generated when the sealant layer 4 is heat-sealed in a state where it is bitten, and the like are formed.
  • the insulating layer 6 can prevent the electrolytic solution from coming into direct contact with the metal layer, and the metal layer 3 is protected.
  • the insulating layer 6 having high heat resistance and high mechanical strength and flexibility can prevent deterioration of the insulating property of the battery packaging material due to foreign matter.
  • the insulating layer 6 is set so as to satisfy the relationship of the following formula (1). ⁇ 10 ⁇ T A ⁇ T ⁇ ⁇ 5 (1) T: Set temperature (° C) determined between 100 and 160 ° C T A : melting point of the insulating layer (° C.)
  • the insulating layer 6 By thus setting the melting point T A of the insulating layer 6 to a low value within a predetermined range than the set temperature T, when the battery is exposed to high temperatures up to T ° C., the insulating layer 6 is in the molten state Thus, at least a part of the insulating layer 6 can be peeled off from the interface between the metal layer 3 and the insulating layer 6. Then, at least a part of the insulating layer 6 peeled off from the metal layer 3 is expanded by an internal pressure together with a sealant layer 4 to be described later, and swells while maintaining a sealed state.
  • T is preferably a set temperature (° C.) determined between 140 and 160 ° C.
  • the melting point T A of the insulating layer 6 is a value calculated in the same manner as the melting point T m1 of the first sealant layer 4a.
  • the acid-modified polyolefin resin blended in the insulating layer 6 has its molecular weight and constituent monomer so as to satisfy the melting point range of the insulating layer 6.
  • the type and ratio are set as appropriate.
  • the thickness of the insulating layer 6 is not particularly limited as long as it is a thickness suitable for a battery packaging material, and may be, for example, about 0.1 ⁇ m to 20 ⁇ m, preferably about 0.5 ⁇ m to 15 ⁇ m. Since the battery packaging material of the present invention is molded into various shapes according to the shape of the battery, a certain degree of flexibility is also required. In the battery packaging material, by setting the thickness of the insulating layer 6 in such a range, the insulation and durability can be further improved while maintaining the flexibility of the battery packaging material.
  • the insulating layer 6 may have a multilayer structure of two or more layers. Thereby, even when a thin-walled portion or a through hole is formed in the first insulating layer together with the sealant layer 4, the insulating properties can be maintained by the second and third insulating layers.
  • the sealant layer 4 has a first sealant layer 4a containing a polyolefin resin.
  • the sealant layer 4 may be formed of a plurality of layers. If necessary, the sealant layer 4 includes at least one of an acid-modified polyolefin resin and a polyolefin resin in order from the first sealant layer 4a side to the metal layer 3 side. You may have the 2nd sealant layer 4b, the 3rd sealant layer 4c containing at least one of acid-modified polyolefin resin and polyolefin resin.
  • the sealant layer 4 is formed of a plurality of layers, the battery has a layer structure in which the first sealant layer 4a containing a polyolefin resin is disposed in the innermost layer of the battery packaging material when the battery is assembled.
  • the 1st sealant layer 4a is a layer which contains polyolefin resin and is located in the innermost layer of the battery packaging material.
  • the polyolefin resin used for forming the first sealant layer 4a is not particularly limited as long as the above melting point is satisfied, and examples thereof include those exemplified above.
  • the first sealant layer 4a may be formed of only a polyolefin resin, and may contain a resin other than the polyolefin resin as necessary.
  • the content of the polyolefin in the first sealant layer 4a is not particularly limited as long as the effect of the present invention is not hindered, for example, 10 to 95% by mass, Preferably 30 to 90% by mass, and more preferably 50 to 80% by mass.
  • examples of the resin that can be contained as necessary include an acid-modified polyolefin resin.
  • examples of the acid-modified polyolefin resin include those exemplified above.
  • denaturation is mentioned as unsaturated carboxylic acid or its acid anhydride used for modification
  • the content of the resin is appropriately set within a range that does not hinder the object of the present invention.
  • the content of the acid-modified polyolefin resin in the first sealant layer 4a is usually 5 to 60% by mass, preferably 10 to 50% by mass, Preferably, it is 20 to 40% by mass.
  • the first sealant layer 4a is set so as to satisfy the following formula (2) in addition to containing the polyolefin resin. ⁇ 5 ⁇ T m1 ⁇ T ⁇ 5 (2) T: Set temperature (° C) determined between 100 and 160 ° C T m1 : Melting point (° C.) of the first sealant layer
  • the melting point T m1 of the first sealant layer 4a is set to higher than the melting point T A of the insulating layer 6, and by setting the temperature range of the set temperature T and 5 ° C. before and after the battery set temperature T ° C.
  • the insulating layer 6 and the sealant layer 4 are swollen in a sealed state when at least a part of the insulating layer 6 is peeled off from the interface between the metal layer 3 and the insulating layer 6 due to exposure to a high temperature, the insulating layer 6 and the sealant Suppresses the rapid progress of cracks inside the layer 4 due to cohesive failure, and causes fine cracks (pinholes, etc.). It becomes possible to release.
  • the melting point T m1 of the first sealant layer 4a is set in a temperature range exceeding 5 ° C. from the set temperature T, the heat seal itself becomes difficult, the seal strength varies, and even if it reaches T ° C., it is quick. There is a tendency that the sealant layer 4 cannot be opened.
  • the calculation method of the melting point T m1 of the first sealant layer 4a is the same as that of the melting point T A of the insulating layer 6.
  • the melting point of the resin is determined by the molecular weight, the type and ratio of the constituent monomer, etc.
  • the polyolefin resin blended in the first sealant layer 4a and other resins blended as necessary have the melting point of the first sealant layer 4a.
  • the molecular weight, the type and ratio of constituent monomers, etc. are appropriately set so as to satisfy the range.
  • the thickness of the first sealant layer 4a is, for example, 5 to 40 ⁇ m, preferably 10 to 35 ⁇ m, and more preferably 15 to 30 ⁇ m.
  • the insulating layer 6 and the first sealant layer 4a satisfy the relationship of 0 ⁇ (T m1 ⁇ T A ) ⁇ 15 by satisfying the above-described melting points.
  • the second sealant layer 4b is a layer provided between the first sealant layer 4a and the insulating layer 6 as necessary when the sealant layer 4 is formed of multiple layers.
  • the second sealant layer 4b includes at least one of a polyolefin resin and an acid-modified polyolefin. Examples of the polyolefin resin and the acid-modified polyolefin used for forming the second sealant layer include the same ones as the first sealant layer 4a.
  • the second sealant layer 4b may be formed of only one of the acid-modified polyolefin resin and the polyolefin resin as long as it has the above melting point, and may contain other resins as necessary. .
  • the content of the acid-modified polyolefin resin in the second sealant layer 4b is not particularly limited as long as the effect of the present invention is not hindered, for example, 5 to 95% by mass, Preferably, it is 10 to 90% by mass, and further 20 to 80% by mass.
  • the content of the polyolefin resin in the second sealant layer 4b is not particularly limited as long as the effect of the present invention is not hindered.
  • it is preferably 5 to 95% by mass, 10 to 90% by mass, and further 20 to 80% by mass.
  • the 2nd sealant layer 4b is set so that following formula (3) may be satisfied. 5 ⁇ T m2 ⁇ T ⁇ 10 (3) T: Set temperature (° C) determined between 100 and 160 ° C T m2 : Melting point (° C.) of the second sealant layer
  • the melting point T m2 of the second sealant layer is set above the melting point T A of the insulating layer, and by setting the high temperature range of 5 ° C. ⁇ 10 ° C. than the set temperature T, the battery set temperature T ° C.
  • the second sealant layer 4b swells with the internal pressure even if it is exposed to high temperatures until the insulating layer 6 is in a molten state and at least a part of the insulating layer 6 is peeled off from the interface between the metal layer 3 and the insulating layer 6.
  • fine cleaving pinholes or the like
  • the melting point T m2 of the second sealant layer 4b is set to be equal to or higher than the melting point T A1 of the insulating layer 6 and equal to or higher than the melting point T m1 of the first sealant layer. Even in such a case, an excellent insulating property can be provided.
  • the method for calculating the melting point T m2 of the second sealant layer 4b is the same as that for the melting point T A of the insulating layer 6.
  • the melting point of the resin is determined by the molecular weight, the type and ratio of the constituent monomer, etc.
  • the acid-modified polyolefin blended in the second sealant layer 4b and other resins blended as necessary are the melting points of the second sealant layer 4b.
  • the molecular weight, the type and ratio of constituent monomers, etc. are appropriately set so as to satisfy this range.
  • the thickness of the second sealant layer 4b is, for example, 5 to 40 ⁇ m, preferably 10 to 35 ⁇ m, and more preferably 15 to 30 ⁇ m.
  • the insulating layer 6 and the second sealant layer 4b satisfy the relationship of 10 ⁇ (T m2 ⁇ T A ) ⁇ 20 by satisfying the aforementioned melting points.
  • the third sealant layer 4c is a layer provided between the second sealant layer 4b and the insulating layer 6 as necessary when the sealant layer 4 is formed of multiple layers.
  • the third sealant layer 4c is formed of the same resin as the second sealant layer 4b. Further, the melting point, thickness, etc. of the third sealant layer 4c can be the same as those of the second sealant layer 4b. (Thickness of the sealant layer 4 when having an insulating layer)
  • the thickness of the sealant layer 4 in the case of having the insulating layer 6 is determined based on the thickness of each of the first sealant layer 4a, the second sealant layer provided as necessary, the third sealant layer, etc. 15 to 120 ⁇ m, preferably 60 to 80 ⁇ m, more preferably 30 to 60 ⁇ m.
  • Adhesive layer 5 In the battery packaging material of the present invention, an adhesive layer is provided between the metal layer 3 and the sealant layer 4 for the purpose of firmly bonding the metal layer 3 and the sealant layer 4 as shown in FIG. 5 may be further provided.
  • the adhesive layer 5 may be formed of one layer or may be formed of a plurality of layers.
  • the adhesive layer 5 is formed of a resin capable of adhering the metal layer 3 and the sealant layer 4.
  • the resin forming the adhesive layer 5 is not particularly limited as long as it is a resin capable of adhering the metal layer 3 and the sealant layer 4, but preferably the acid-modified polyolefin, polyester resin, fluorine resin, or polyether resin described above. , Polyurethane resin, epoxy resin, phenol resin resin, polyamide resin, polyolefin resin, polyvinyl acetate resin, cellulose resin, (meth) acrylic resin, polyimide resin, amino resin, rubber, silicon Examples thereof include resins.
  • the resin forming the adhesive layer 5 may be used alone or in combination of two or more.
  • the adhesive layer 5 may be formed of at least one of these resins, and may contain other resin components as necessary.
  • the adhesive layer 5 contains other resin components, the acid-modified polyolefin, polyester resin, fluororesin, polyether resin, polyurethane resin, epoxy resin, phenol resin resin, polyamide resin in the sealant layer 4 Resin, polyolefin resin, polyvinyl acetate resin, cellulose resin, (meth) acrylic resin, polyimide resin, amino resin, rubber, and silicon resin content, as long as the effects of the present invention are not hindered
  • examples include 10 to 95% by mass, preferably 30 to 90% by mass, and further 50 to 80% by mass.
  • the adhesive layer 5 preferably further contains a curing agent.
  • a curing agent When the adhesive layer 5 contains a curing agent, the mechanical strength of the adhesive layer 5 can be increased, and the insulation of the battery packaging material can be effectively increased.
  • curing agent may be used individually by 1 type, and may be used in combination of 2 or more types.
  • Curing agents are acid-modified polyolefin, polyester resin, fluorine resin, polyether resin, polyurethane resin, epoxy resin, phenol resin resin, polyamide resin, polyolefin resin, polyvinyl acetate resin, cellulose resin , (Meth) acrylic resin, polyimide resin, amino resin, rubber, or silicon resin is not particularly limited.
  • curing agent a polyfunctional isocyanate compound, a carbodiimide compound, an epoxy compound, an oxazoline compound etc. are mentioned, for example.
  • the polyfunctional isocyanate compound is not particularly limited as long as it is a compound having two or more isocyanate groups.
  • Specific examples of the polyfunctional isocyanate compound include isophorone diisocyanate (IPDI), hexamethylene diisocyanate (HDI), tolylene diisocyanate (TDI), diphenylmethane diisocyanate (MDI), those obtained by polymerizing or nurate, mixtures thereof, Examples include copolymers with other polymers.
  • the carbodiimide compound is not particularly limited as long as it is a compound having at least one carbodiimide group (—N ⁇ C ⁇ N—).
  • a polycarbodiimide compound having at least two carbodiimide groups is preferable.
  • Specific examples of particularly preferred carbodiimide compounds include the following general formula (5):
  • n is an integer of 2 or more.
  • n is an integer greater than or equal to 2.
  • n is an integer greater than or equal to 2.
  • the polycarbodiimide compound represented by these is mentioned.
  • n is usually an integer of 30 or less, preferably an integer of 3 to 20.
  • the epoxy compound is not particularly limited as long as it is a compound having at least one epoxy group.
  • the epoxy compound include epoxy resins such as bisphenol A diglycidyl ether, modified bisphenol A diglycidyl ether, novolac glycidyl ether, glycerin polyglycidyl ether, and polyglycerin polyglycidyl ether.
  • the oxazoline compound is not particularly limited as long as it is a compound having an oxazoline skeleton.
  • Specific examples of the oxazoline compound include Epocross series manufactured by Nippon Shokubai Co., Ltd.
  • the curing agent may be composed of two or more kinds of compounds.
  • the content of the curing agent is acid-modified polyolefin, polyester resin, fluorine resin, polyether resin, polyurethane resin, epoxy resin, phenol resin resin, polyamide resin, polyolefin resin, poly It must be in the range of 0.1 to 50 parts by weight with respect to 100 parts by weight of vinyl acetate resin, cellulose resin, (meth) acrylic resin, polyimide resin, amino resin, rubber, or silicon resin. Is more preferable, and the range of 0.1 to 30 parts by mass is more preferable.
  • the content of the curing agent is preferably in the range of 1 equivalent to 30 equivalents as a reactive group in the curing agent with respect to 1 equivalent of the carboxyl group in each resin such as acid-modified polyolefin. More preferably, it is in the range of 1 equivalent to 20 equivalents. Thereby, the insulation and durability of the battery packaging material can be further improved.
  • the adhesive layer 5 may be formed of a two-component curable adhesive resin or a one-component curable adhesive resin.
  • the bonding mechanism of the adhesive is not particularly limited, and may be any of a chemical reaction type, a solvent volatilization type, a heat melting type, a hot pressure type, an electron beam curing type such as UV and EB, and the like.
  • the melting point T m2 of the adhesive layer 5 is preferably 90 to 245 ° C., more preferably 100 to 230 ° C. .
  • the softening point T s2 of the adhesive layer 5 is preferably 70 to 180 ° C., more preferably 80 to 150 ° C.
  • the method for calculating the melting point T m2 and the softening point T s2 of the adhesive layer 5 is the same as that for the sealant layer 4.
  • the thickness of the adhesive layer 5 is not particularly limited, but is preferably 0.01 ⁇ m or more, more preferably 0.05 to 20 ⁇ m. If the thickness of the adhesive layer 5 is less than 0.01 ⁇ m, it may be difficult to stably bond the metal layer 3 and the sealant layer 4.
  • the method for producing the battery packaging material of the present invention is not particularly limited as long as a laminate in which layers having a predetermined composition are laminated is obtained.
  • the following method is exemplified. .
  • laminated body A in which a base material layer 1, an adhesive layer 2, and a metal layer 3 are laminated in this order is formed.
  • the formation of the laminate A in the case of having the adhesive layer 2 is specifically a thermal laminating method or a sand laminating method of the base material layer 1, the adhesive layer 2, and the metal layer 3 whose surface is subjected to chemical conversion treatment as necessary.
  • a dry lamination method By laminating by a dry lamination method, a melt extrusion method, a co-extrusion method, or a combination thereof.
  • the stability of the adhesion between the base material layer 1 and the metal layer 3 by the adhesive layer 2 is increased by performing an aging treatment, a water treatment, a heat treatment, an electron beam treatment, an ultraviolet treatment, or the like. obtain.
  • the laminate A is laminated by a thermal lamination method, a solution coating method, a melt extrusion method, a co-extrusion method, or a combination thereof. A method is mentioned. Under the present circumstances, stability of adhesion
  • the resin constituting the adhesive layer 2 is dissolved or dispersed in water or an organic solvent, and the solution or dispersion is coated on the base material layer 1 to form water.
  • the organic solvent after drying the organic solvent, after forming the contact bonding layer 2 on the base material layer 1, the metal layer 3 can be thermocompression-bonded and performed.
  • the laminate A is formed by the thermal laminating method.
  • a multilayer film in which the base material layer 1 and the adhesive layer 2 are laminated is prepared in advance, and the metal layer 3 is superimposed on the adhesive layer 2 and heated with a heating roll. It can be performed by thermocompression bonding with the adhesive layer 2 sandwiched between the layer 1 and the metal layer 3.
  • the laminate A is formed by the thermal laminating method in which a multilayer film in which the metal layer 3 and the adhesive layer 2 are laminated is prepared in advance, and the base material layer 1 is superposed on the heated metal layer 3 and the adhesive layer 2. It may be performed by thermocompression bonding while sandwiching the adhesive layer 2 between the base material layer 1 and the metal layer 3.
  • the adhesive layer 2 is formed by baking at a temperature equal to or higher than the melting point of the adhesive. By performing baking, the adhesive strength between the metal layer 3 and the adhesive layer 2 is improved.
  • the adhesive constituting the adhesive layer 2 is melt-extruded or solution into the metal foil constituting the metal layer 3 in the same manner. After being laminated by coating and dried, it is formed by baking at a temperature equal to or higher than the melting point of the adhesive constituting the adhesive layer 2.
  • the laminate A is formed by the sand lamination method, for example, by melting and extruding the adhesive constituting the adhesive layer 2 onto the upper surface of the metal layer 3 and bonding the resin film constituting the base material layer 1 to the metal layer. Can be performed. At this time, it is desirable that the resin film is bonded and temporarily bonded, and then heated again to perform the main bonding.
  • the adhesive layer 2 may be multilayered with different resin types. In this case, a multilayer film in which the base material layer 1 and the adhesive layer 2 are laminated is prepared in advance, the adhesive constituting the adhesive layer 2 is melt-extruded on the upper surface of the metal layer 3, and the multilayer resin film and the thermal lamination method are used. What is necessary is just to laminate.
  • the adhesive layer 2 which comprises a multilayer film, and the adhesive layer 2 laminated
  • the adhesive layer 2 is multilayered with different resin types, a multilayer film in which the metal layer 3 and the adhesive layer 2 are laminated is prepared in advance, and the adhesive constituting the adhesive layer 2 is melted on the base material layer 1 It may be extruded and laminated with the adhesive layer 2 on the metal layer 3.
  • the adhesive layer 2 composed of two different adhesives is formed between the multilayer resin film and the base material layer 1.
  • the sealant layer 4 is laminated on the metal layer 3 of the laminate A.
  • Lamination of the sealant layer 4 on the metal layer 3 of the laminate A can be performed by a coextrusion method, a thermal lamination method, a sand lamination method, a coating method, or a combination thereof.
  • the sealant layer 4 can be formed on the metal layer 3 by melt extrusion, thermal lamination, coating, or the like.
  • the sealant layer 4 can be formed by the same method after the adhesive layer 5 is formed on the metal layer 3 by a melt extrusion method, a thermal laminating method, a coating method, or the like.
  • a co-extrusion method in which the adhesive layer 5 and the sealant layer 4 are simultaneously melt-extruded on the metal layer 3 may be performed.
  • a sand laminating method in which the film-like sealant layer 4 is bonded can also be performed.
  • the sealant layer 4 is formed of two layers, for example, one layer of the adhesive layer 5 and the sealant layer 4 is coextruded on the metal layer 3, and then another layer of the sealant layer 4 is pasted by a thermal lamination method. The method of attaching is mentioned.
  • the sealant layer 4 can be further formed by a melt extrusion method, a thermal lamination method, a coating method, or the like.
  • it may be further subjected to heat treatment such as hot roll contact, hot air, near or far infrared irradiation, dielectric heating, heat resistance heating and the like. Examples of such heat treatment conditions include 150 to 250 ° C. and 1 to 10 hours.
  • each layer constituting the laminate improves or stabilizes film forming properties, lamination processing, suitability for final processing (pouching, embossing), etc., as necessary. Therefore, surface activation treatment such as corona treatment, blast treatment, oxidation treatment, and ozone treatment may be performed.
  • the two battery packaging materials may be the same or different.
  • Specific examples of the laminated structure of each battery packaging material in the case of packaging a battery element using two different battery packaging materials include the following.
  • One battery packaging material base material layer 1 (nylon layer) / adhesive layer 2 (two-component curable polyester resin layer) / metal layer 3 (aluminum foil layer) / adhesive layer 5 (acid-modified polypropylene layer) / sealant layer 4 (polypropylene layer)
  • the battery packaging material of the present invention can maintain the sealed state of the battery element until the pressure or temperature in the battery rises to a certain level. When the temperature rises continuously, it can be opened quickly and gently to suppress excessive expansion of the battery packaging material, runaway battery reaction, ignition, and the like.
  • peeling occurs at least partially between the metal layer 3 and the outer surface of the sealant layer 4 until the pressure or temperature in the battery rises to a certain level.
  • the packaging material can be opened more gently, excessive expansion of the battery packaging material, runaway battery reaction, ignition Etc. can be suppressed more effectively.
  • More specific characteristics of the battery packaging material of the present invention include, for example, a temperature increase from room temperature 25 ° C. to 5 ° C./min under atmospheric pressure in a state where the sealant layers 4 are heat sealed to form a sealed space.
  • the packaging material does not open until a certain temperature in the range of 100 to 160 ° C. (set temperature T ° C.) is reached, and then the packaging material can be opened gently.
  • the battery packaging material of the present invention has a characteristic that the packaging material does not open until the above certain temperature is reached under the heating conditions shown below, and gently opens after reaching the opening temperature. It becomes possible.
  • a recess having a depth of 3 mm, a length of 35 and a width of 50 mm is formed at the center of the battery packaging material cut into a shape having a length of 80 mm and a width of 150 mm, and is formed into a shape having an edge around the recess.
  • the edges are overlapped so that the molded sealant layer 4 of the battery packaging material and the other unformed sealant layer 4 of the battery packaging material face each other, and the edges are heat-sealed ( 175 ° C. and surface pressure of 1.4 MPa for 3 seconds) to form a case having a sealed internal space (pressure 1 atm).
  • the packaging material is not opened until the certain temperature described above is reached under the following heating conditions, and gently opened after reaching the opening temperature. It becomes possible to have the characteristic to do.
  • the set temperature T to be determined is preferably set between 140 ° C. and 160 ° C., and the set temperature differs depending on the type of battery to be packaged, the application, safety standards, and the like. For example, some batteries have the set temperature T set to 140 ° C., while others have the set temperature T set to 160 ° C. for safety standards.
  • the battery packaging material of the present invention is provided as a packaging material having a sealing property and an unsealing property corresponding to the set temperature required by the battery to be applied.
  • the time required for the battery to transition to the unsealed state after reaching T ° C. is determined within a range in which safety can be ensured, and varies depending on the type and use of the battery, the rate of temperature increase, etc. Is within 60 minutes, more preferably within 30 minutes, and the battery packaging material can satisfy the time.
  • edge portions are overlapped so that the two sealant layers of the battery packaging material formed as described above face each other, and the edge portions are heat sealed (175 ° C., 3 seconds, surface pressure 1.4 MPa), A case having a sealed internal space (pressure 1 atm) is formed.
  • (3) Put the battery packaging material in the above-mentioned case into an oven that can be depressurized, set the pressure in the oven to 0 atm, and increase the temperature at a rate of 3 ° C / min. Is heated to a set temperature T ° C. determined between and after reaching the set temperature T ° C., the set temperature T ° C. is maintained.
  • the heating temperature of the heating condition (3) is a temperature until the battery packaging material is opened, for example, 150 ° C. If not opened at the time of arrival, the temperature is maintained at 150 ° C., and the time from the arrival at 150 ° C. to the opening is measured.
  • the upper limit of the heating temperature is not limited to 150 ° C., and after raising the temperature to an arbitrarily set opening temperature (for example, a temperature between 100 ° C. and 160 ° C.), the temperature is maintained and reached. You may evaluate a characteristic by measuring time until it opens afterward.
  • the laminate strength between the metal layer 3 and the sealant layer 4 at 25 ° C. Preferably, 3 (N / 15 mm) or more, more preferably 4 to 20 (N / 15 mm). If the laminate strength at 25 ° C. is too low, the laminate may be opened before reaching the set temperature. From the same viewpoint, the laminate strength between the metal layer 3 and the sealant layer 4 at 80 ° C. is preferably 2.5 (N / 15 mm) or more, more preferably 3 to 20 (N / 15 mm). Can be mentioned. Even when the laminate strength at 80 ° C.
  • the laminate may be opened at a temperature lower than 80 ° C.
  • the laminate strength of the metal layer 3 and the sealant layer 4 at 125 ° C. is 2.5 (N / 15 mm) or less, more preferably 0.1 to 2.2 (N / 15 mm). Can be mentioned. If the laminate strength at 125 ° C. is too high, the battery packaging material will not be opened quickly even if the set temperature is exceeded, and the battery will rapidly open in a state where the temperature and internal pressure are very high. Or the battery element may pop out.
  • the sealing strength of the part that is heat sealed (heat sealing condition: 190 ° C., surface pressure: 1.0 MPa for 3 seconds) with the sealant layers 4 facing each other. Is preferably 30 (N / 15 mm) or more at 25 ° C., more preferably 40 to 200 (N / 15 mm). If the seal strength at 25 ° C. is too low, the seal may be opened before reaching the set temperature. From the same point of view, in the battery packaging material of the present invention, the sealing strength of the part that is heat sealed (heat sealing condition: 190 ° C., surface pressure: 1.0 MPa for 3 seconds) with the sealant layers 4 facing each other.
  • a bag obtained by heat sealing heat sealing conditions: 190 ° C., surface pressure of 1.0 MPa for 3 seconds
  • the laminate strength of the metal layer and the sealant layer after standing for 24 hours at 85 ° C. in the state where the inner space of the bag-like packaging material contains the electrolyte solution is 0.1 ( N / 15 mm) or more, and more preferably 0.2 (N / 15 mm) or more.
  • the battery packaging material of the present invention has the above-described opening characteristics, and is gently opened by micro-cleavage when opened. For this reason, when the battery packaging material of the present invention is heated to a certain set temperature T ° C., the packaging material is not opened until the temperature reaches T ° C., and the packaging material is quickly opened after reaching T ° C.
  • T ° C. a certain set temperature
  • the set temperature T determined by the battery is set, for example, between 100 and 160 ° C., preferably between 120 and 150 ° C., and is set according to the type of battery to be packaged, usage, safety standards, etc. The temperature is different.
  • the battery packaging material of the present invention is provided as a packaging material having a sealing property and an opening property corresponding to a set temperature required by a battery to be applied.
  • the time required for the battery to transition to the unsealed state after reaching T ° C. is determined within a range in which safety can be ensured, and varies depending on the type and use of the battery, the rate of temperature increase, etc. Is within 60 minutes, more preferably within 30 minutes, and the battery packaging material of the present invention can satisfy the time.
  • the battery packaging material of the present invention can be used for sealing and housing battery elements such as a positive electrode, a negative electrode, and an electrolyte, and is provided with a space for housing the battery element.
  • the space is formed, for example, by press molding a laminated sheet cut into a short shape.
  • a battery element including at least a positive electrode, a negative electrode, and an electrolyte, with the battery packaging material of the present invention, in a state where the metal terminals connected to each of the positive electrode and the negative electrode protrude outward
  • a battery packaging material is used by covering the periphery of the battery element so that a flange portion (region where the sealant layers 4 are in contact with each other) can be formed and heat sealing the sealant layers 4 of the flange portion together. Batteries are provided.
  • the sealant layer 4 of the battery packaging material of the present invention is inside (surface in contact with the battery element).
  • the battery packaging material of the present invention may be used for either a primary battery or a secondary battery, but is preferably a secondary battery.
  • the type of secondary battery to which the battery packaging material of the present invention is applied is not particularly limited.
  • a lithium ion battery, a lithium ion polymer battery, a lead battery, a nickel / hydrogen battery, a nickel / cadmium battery , Nickel / iron livestock batteries, nickel / zinc livestock batteries, silver oxide / zinc livestock batteries, metal-air batteries, polyvalent cation batteries, capacitors, capacitors and the like are suitable applications for the battery packaging material of the present invention.
  • Example 1-17 and Comparative Example 1-4 Manufacture of battery packaging materials
  • a metal layer 3 made of an aluminum foil (thickness 40 ⁇ m) subjected to chemical conversion treatment on both surfaces was laminated by a dry lamination method.
  • a two-component urethane adhesive (a polyester-based main component and an isocyanate-based curing agent) was applied to one surface of an aluminum foil, and an adhesive layer 2 (thickness 4 ⁇ m) was formed on the metal layer 3. .
  • an aging treatment is performed at 60 ° C.
  • base material layer 1 / adhesive layer 2 / metal layer 3 A laminate was prepared.
  • the chemical conversion treatment of the aluminum foil used as the metal layer 3 is performed by rolling a treatment liquid composed of a phenol resin, a chromium fluoride compound, and phosphoric acid so that the coating amount of chromium is 10 mg / m 2 (dry weight).
  • the coating was applied to both surfaces of the aluminum foil and baked for 20 seconds under the condition that the film temperature was 180 ° C. or higher.
  • the sealant layer 4 was laminated on the metal layer 3 in the methods described in Table 1, and in Examples 4 to 17, the adhesive layer was formed on the metal layer 3. 5 and the sealant layer 4 were laminated.
  • the structures of the adhesive layer 5 and the sealant layer 4 are as shown in Table 1.
  • fusing point of the contact bonding layer 5 and the sealant layer 4 it is the value which measured melting
  • DSC method differential scanning calorimetry method
  • TMA method thermomechanical analysis method
  • a pseudo battery was stacked from above the recesses so that the sealant layers were opposed to each other, and the peripheral portion was heat-sealed to prepare a pseudo battery.
  • the heat sealing conditions were 175 ° C. and surface pressure of 1.4 MPa for 3 seconds.
  • the obtained pseudo battery was placed in an oven, and the temperature was increased from room temperature 25 ° C. to 150 ° C. at a temperature increase rate of 5 ° C./min under atmospheric pressure. Further, after reaching 150 ° C., it was maintained for 60 minutes.
  • the evaluation of the openability of the pseudo battery was performed at a temperature at which the inner bag was formed on the pseudo battery, a temperature at which the inner bag was cleaved, or 150 ° C.
  • the battery packaging material of Comparative Example 2 has a laminate strength at 80 ° C. that is too low, and after being filled with the electrolyte, it is easily peeled off by hand between the adhesive layer and the sealant layer. As it was not usable. Moreover, also in the battery packaging material of Comparative Example 4, the laminate strength at 80 ° C. was too low, and sudden peeling occurred inside the sealant layer at a low temperature of 80 ° C. From the above results, in order for the battery packaging material of the present invention to exhibit the opening mechanism of the present invention, the laminate strength is 3 (N / 15 mm) or more at 25 ° C. and 2 at 80 ° C. as described above.
  • Example 1A-12A and Comparative Example 1A-5A Manufacture of battery packaging materials
  • base material layer 1 / adhesive layer 2 / metal layer 3 A laminate was prepared.
  • the chemical conversion treatment of the aluminum foil used as the metal layer 3 is performed by rolling a treatment liquid composed of a phenol resin, a chromium fluoride compound, and phosphoric acid so that the coating amount of chromium is 10 mg / m 2 (dry weight).
  • the coating was applied to both surfaces of the aluminum foil and baked for 20 seconds under the condition that the film temperature was 180 ° C. or higher.
  • the first sealant layer (on the metal layer 3) is coextruded in a molten state with the resin component forming the first sealant layer and the resin component forming the second sealant layer on the metal layer 3 side of the laminate.
  • the resin components forming the first sealant layer and the second sealant layer are as shown in Tables 2A to 4A.
  • fusing point of each sealant layer it is the value measured by DSC method.
  • a battery packaging material comprising a laminate in which the base material layer 1 / adhesive layer 2 / metal layer 3 / first sealant layer / second sealant layer was laminated in order was obtained.
  • the two battery packaging materials after molding are stacked so that the sealant layers face each other, and the edge where the sealant layers overlap is heat sealed (175 ° C., 3 seconds, surface pressure 1.4 MPa).
  • a case with a sealed internal space (pressure 1 atm) was formed.
  • the battery packaging material thus made into a case is put in an oven that can be depressurized, and the pressure in the oven is set to 0 atm, and the temperature is raised to a set temperature T ° C. at a rate of 3 ° C./min. Then, T ° C was maintained for 30 minutes, and the state of the battery packaging material was visually confirmed at the time immediately before reaching T ° C and 30 minutes after reaching T ° C.
  • the set temperature was set to three types of 140, 150, and 160 ° C.
  • Example 13A A battery packaging material was manufactured in the same manner as in Examples 1A-12A except for the following.
  • a random copolymer of propylene-ethylene modified with maleic acid (MFR: 7, melting point 140 ° C.) was used as the resin for forming the first sealant layer.
  • a random copolymer of propylene-ethylene (MFR: 7, melting point 147 ° C.) was used as a resin for forming the second sealant layer, and 0.025% by mass of erucic acid amide was added as a slip agent.
  • the thickness of the 1st sealant layer shall be 15 micrometers
  • the thickness of the 2nd sealant layer shall be 15 micrometers.
  • Example 14A A battery packaging material was produced in the same manner as in Example 13A, except that the thickness of the first sealant layer was 20 ⁇ m.
  • Example 15A A battery packaging material was manufactured in the same manner as in Example 13A, except that the amount of erucic acid amide was 0.12% by mass.
  • Example 16A A battery packaging material was produced in the same manner as in Example 14A, except that the amount of erucic acid amide was 0.12% by mass.
  • Example 17A A battery packaging material was manufactured in the same manner as in Example 13A, except that 0.12% by mass of erucamide was added to the first sealant layer.
  • Example 18A A battery packaging material was produced in the same manner as in Example 14A, except that 0.12% by mass of erucamide was added to the first sealant layer.
  • a dummy cell (PP block of 3.0 mm ⁇ 49 mm ⁇ 29 mm) with an electrode tab with a tab seal material attached is installed in the recess of the molded packaging material, and fixed so that the tab seal material portion of the dummy cell comes to the sealing portion of the packaging material. .
  • heat sealing was carried out under the conditions of an 80 mm side, 5 mm width, 170 ° C., 2.0 MPa, and 5 seconds so that the metal terminal extended outside from one side where the packaging material opened.
  • one side of the 6.3 mm side was heat-sealed under the conditions of 5 mm width, 170 ° C., 0.5 MPa, and 3 seconds to produce a pouch-type exterior body having an opening on one side.
  • Table 6A shows the depth (mm) of the recesses determined to be able to suppress the occurrence of pinholes in the second sealant layer for the battery packaging materials obtained in Examples 13A to 18A.
  • Example 1Ba-20Ba and Comparative Example 1Ba-18Ba [Manufacture of battery packaging materials] Laminates of base material layer 1 / adhesive layer 2 / metal layer 3 were prepared in the same manner as in Examples 1A to 12A and Comparative Examples 1A to 5A. Next, the resin component forming the first sealant layer and the resin component forming the second sealant layer are coextruded in a molten state on the metal layer 3 side of the laminate, whereby the first sealant layer ( A thickness of 25 ⁇ m) and a second sealant layer (thickness of 25 ⁇ m) were laminated.
  • the resin component forming the third sealant layer is melt-extruded to form a single film, and this is overlaid on the second sealant layer and bonded at 160 ° C. and then heated in an oven at 190 ° C. for 2 minutes.
  • the third sealant (thickness 25 ⁇ m) was laminated on the second sealant layer.
  • the resin components forming the first sealant layer, the second sealant layer, and the third sealant layer are as shown in Tables 1Ba to 5Ba.
  • fusing point of each sealant layer it is the value measured by DSC method.
  • a battery packaging material comprising a laminate in which the base material layer 1 / adhesive layer 2 / metal layer 3 / first sealant layer / second sealant layer / third sealant layer was laminated in order was obtained.
  • the melting point T m1 of the first sealant layer and The difference from the set temperature T (T m1 ⁇ T) is ⁇ 10 ° C. to ⁇ 5 ° C.
  • the difference between the melting point T m2 of the second sealant layer and the set temperature T (T m2 ⁇ T) is + 5 ° C. to + 10 ° C.
  • the sealant must reach the set temperature T ° C. At least a part of the layer 4 peeled off from the interface of the metal layer 3, but the sealant layer 4 peeled off from the metal layer 3 30 minutes after reaching the set temperature T ° C. while maintaining a sealed state inside the bag. Part of sealant 4 fine cleavage, such as a pin hole occurs, was able to lead to opening under mild conditions.
  • the difference between the melting point T m1 of the first sealant layer and the set temperature T (T m1 ⁇ T) and the difference between the melting point T m2 of the second sealant layer and the set temperature T (T m2 ⁇ T) If any one of the differences (T m3 ⁇ T) between the melting point T m3 of the third sealant layer and the set temperature T does not satisfy the above condition, the unsealed state is reached before the set temperature T ° C. is reached. Thus, cohesive failure and sealant layer breakage occurred in the heat-sealed portion, or even after 30 minutes had reached the set temperature T ° C., the unsealed state could not be achieved.
  • Example 21Ba A battery packaging material was manufactured in the same manner as Example 1Ba-20Ba except for the following points. -A maleic acid-modified random copolymer having MFR7 and a melting point of 140 ° C was used as a resin for forming the first sealant layer. -A block copolymer having MFR5 and a melting point of 160 ° C was used as the resin for forming the second sealant layer. A random copolymer having MFR7 and a melting point of 147 ° C. was used as a resin for forming the third sealant layer, and 0.025% by mass of erucic acid amide was added as a slip agent. The thickness of the first sealant layer was 15 ⁇ m, the thickness of the second sealant layer was 15 ⁇ m, and the thickness of the third sealant layer was 15 ⁇ m.
  • Example 22Ba A battery packaging material was produced in the same manner as in Example 21Ba except that the amount of erucic acid amide was 0.10% by mass.
  • Example 23Ba A battery packaging material was produced in the same manner as in Example 21Ba except that the amount of erucic acid amide was 0.12% by mass.
  • Example 22Ba in which the amount of the slip agent is 0.10% by mass
  • Example 23Ba in which the amount of the slip agent is 0.12% by mass, it was revealed that the insulation against cracks is very high.
  • Example 23Ba in which the third sealant layer contains a slip agent, the recesses can be formed deeply and the moldability is high.
  • the amount of slip agent is 0.12% by mass
  • the occurrence of pinholes is suppressed and the moldability is extremely high even when the depth of the recess is as deep as 7.25 mm. It became clear.
  • Example 1Bb-20Bb and Comparative Example 1Bb-18Bb (Manufacture of battery packaging materials] Lamination in which base layer 1 / adhesion layer 2 / metal layer 3 / first sealant layer / second sealant layer / third sealant layer are laminated in the same manner as in Example 1Ba-20Ba and Comparative Example 1Ba-18Ba. A battery packaging material comprising a body was obtained. The resin components forming the first sealant layer, the second sealant layer, and the third sealant layer are as shown in Tables 1Bb to 5Bb.
  • the melting point T m1 of the first sealant layer and The difference from the set temperature T (T m1 ⁇ T) is ⁇ 10 ° C. to ⁇ 5 ° C.
  • the difference between the melting point T m2 of the second sealant layer and the set temperature T (T m2 ⁇ T) is + 5 ° C. to + 10 ° C.
  • the sealant must reach the set temperature T ° C. At least a part of the layer 4 peeled off from the interface of the metal layer 3, but the sealant layer 4 peeled off from the metal layer 3 30 minutes after reaching the set temperature T ° C. while maintaining a sealed state inside the bag. Part of sealant 4 fine cleavage, such as a pin hole occurs, was able to lead to opening under mild conditions.
  • the difference between the melting point T m1 of the first sealant layer and the set temperature T (T m1 ⁇ T) and the difference between the melting point T m2 of the second sealant layer and the set temperature T (T m2 ⁇ T) If any one of the differences (T m3 ⁇ T) between the melting point T m3 of the third sealant layer and the set temperature T does not satisfy the above condition, the unsealed state is reached before the set temperature T ° C. is reached. Thus, cohesive failure and sealant layer breakage occurred in the heat-sealed portion, or even after 30 minutes had reached the set temperature T ° C., the unsealed state could not be achieved.
  • Example 21Bb A battery packaging material was manufactured in the same manner as Example 1Bb-20Bb, except for the following points. -A maleic acid-modified random copolymer having MFR7 and a melting point of 140 ° C was used as a resin for forming the first sealant layer. -A maleic acid-modified block copolymer having MFR5 and a melting point of 160 ° C was used as a resin for forming the second sealant layer. A random copolymer having MFR7 and a melting point of 147 ° C. was used as a resin for forming the third sealant layer, and 0.025% by mass of erucic acid amide was added as a slip agent. The thickness of the first sealant layer was 15 ⁇ m, the thickness of the second sealant layer was 15 ⁇ m, and the thickness of the third sealant layer was 15 ⁇ m.
  • Example 22Bb A battery packaging material was produced in the same manner as in Example 21Bb, except that the amount of erucic acid amide was 0.10% by mass.
  • Example 23Bb A battery packaging material was produced in the same manner as in Example 21Bb except that the amount of erucic acid amide was 0.12% by mass.
  • Example 23Bb in which the third sealant layer contains a slip agent, the recesses can be formed deeply and the moldability is high.
  • the amount of the slip agent is 0.12% by mass
  • the occurrence of pinholes is suppressed and the moldability is extremely high even if the depth of the recess is as very deep as 7.35 mm. It became clear.
  • Example 1C-18C and Comparative Example 1C-2C Manufacture of battery packaging materials
  • a metal layer 3 made of an aluminum foil (thickness 40 ⁇ m) subjected to chemical conversion treatment on both surfaces was laminated by a dry lamination method.
  • a two-component urethane adhesive (a polyol compound and an aromatic isocyanate compound) was applied to one surface of an aluminum foil to form an adhesive layer 2 (thickness 4 ⁇ m) on the metal layer 3.
  • an aging treatment is carried out at 40 ° C.
  • base material layer 1 / adhesive layer 2 / metal layer 3 A laminate was prepared.
  • the chemical conversion treatment of the aluminum foil used as the metal layer 3 is performed by rolling a treatment liquid composed of a phenol resin, a chromium fluoride compound, and phosphoric acid so that the coating amount of chromium is 10 mg / m 2 (dry weight).
  • the coating was applied to both surfaces of the aluminum foil and baked for 20 seconds under the condition that the film temperature was 180 ° C. or higher.
  • the first sealant layer is formed on the metal layer 3 by co-extruding the resin component forming the first sealant layer and the resin component forming the second sealant layer on the metal layer 3 side of the laminate in a molten state.
  • a second sealant layer was laminated.
  • a multilayer CPP film unstretched PP film
  • a second sealant layer was formed on the first sealant layer by a sand lamination method
  • Example 13C In 17C, a multilayer CPP (PP unstretched film) composed of a third sealant layer, a fourth sealant layer, and a second sealant layer was laminated on the first sealant layer by a sand lamination method.
  • each sealant layer is as shown in Table 2C. Moreover, about melting
  • the two battery packaging materials after molding are stacked so that the sealant layers face each other, and the edge where the sealant layers overlap is heat sealed (175 ° C., 3 seconds, surface pressure 1.4 MPa).
  • a case with a sealed internal space (pressure 1 atm) was formed.
  • the battery packaging material in the form of a case is put in an oven that can be decompressed, and the pressure in the oven is set to 0 atm, and the temperature is increased to 150 ° C. at a temperature increase rate of 3 ° C./min. did.
  • the temperature of 150 ° C. was maintained as it was.
  • peeling temperature at which peeling occurred between the metal layer and the sealant layer of the battery packaging material, the time until peeling after reaching the peeling temperature, the opening temperature at which the battery packaging material was opened, and the opening temperature The time from opening to opening until opening was visually confirmed.
  • PPa (A) maleic acid-modified random polypropylene, melting point 160 ° C., softening point 145 ° C.
  • PPa (B) maleic acid-modified random polypropylene, melting point 140 ° C., softening point 130 ° C.
  • PPa (C) maleic acid-modified random polypropylene, melting point 125 ° C., softening point 115 ° C.
  • Amorphous PP Amorphous polypropylene, softening point 70 ° C
  • EVA ethylene vinyl acetate copolymer, melting point 90 ° C., softening point 50 ° C.
  • EPR140 Propylene elastomer, melting point 140 ° C, softening point 125 ° C
  • EPR160 Propylene elastomer, melting point 160 ° C, softening point 110 ° C
  • Acid-modified COC acid-modified cyclic olefin copolymer, softening point 80 ° C
  • MDPE medium density polyolefin, melting point 125 ° C., softening point 75 ° C.
  • Acid-modified MDPE carboxylic acid-modified medium density polyolefin, melting point 125 ° C., softening point 75 ° C.
  • Example 1D-16D and Comparative Example 1D-2D Manufacture of battery packaging materials
  • a battery packaging material comprising a laminate in which the base layer 1 / adhesive layer 2 / metal layer 3 / sealant layer 4 were laminated in order was obtained.
  • a multilayer CPP film unstretched PP film
  • a third sealant layer and a second sealant layer is further formed on the first sealant layer by a sand lamination method.
  • a multilayer CPP (unstretched PP film) composed of a third sealant layer, a fourth sealant layer, and a second sealant layer was laminated on the first sealant layer by a sand lamination method.
  • the resin components forming each sealant layer are as shown in Table 1D.
  • PPa (A) maleic acid-modified random polypropylene, melting point 160 ° C., softening point 145 ° C.
  • PPa (B) maleic acid-modified random polypropylene, melting point 140 ° C., softening point 130 ° C.
  • PPa (C) maleic acid-modified random polypropylene, melting point 125 ° C., softening point 115 ° C.
  • EVA ethylene vinyl acetate copolymer, melting point 90 ° C., softening point 50 ° C.
  • EPR140 propylene-based elastomer, melting point 160 ° C, softening point 110 ° C
  • Amorphous PP Amorphous polypropylene, softening point 70 ° C
  • Acid-modified COC acid-modified cyclic olefin copolymer, softening point 80 ° C
  • LDPE Low density polyolefin, melting point 100 ° C, softening point 80 ° C
  • Acid-modified LDPE Carboxylic acid-modified low-density polyolefin, melting point 100 ° C., softening point 80 ° C.
  • LLDPE Linear low density polyolefin, melting point 120 ° C, softening point 60 ° C
  • Acid-modified LLDPE carboxylic acid-modified linear low density polyolefin, melting point 120 ° C., softening point 60 ° C.
  • MDPE medium density polyolefin, melting point 125 ° C., softening point 75 ° C.
  • Acid-modified MDPE carboxylic acid-modified medium density polyolefin, melting point 125 ° C., softening point 75 ° C.
  • HDPE Medium density polyolefin, melting point 130 ° C, softening point 120 ° C
  • Acid-modified HDPE carboxylic acid-modified medium density polyolefin, melting point 130 ° C, softening point 120 ° C
  • the first sealant layer contains at least one of polyethylene and acid-modified polyethylene in addition to the acid-modified polyolefin
  • at least part of the sealant layer is reached until the opening temperature is reached.
  • no tearing occurred and the sealant layer was formed into a bag shape to maintain the internal sealing performance.
  • a minute tear such as a pinhole occurred in the peeled portion of the sealant layer, and the state shifted to a gentle opening state.
  • Example 1E-13E and Comparative Example 1E-5E Manufacture of battery packaging materials
  • a battery packaging material comprising a laminate in which the base layer 1 / adhesive layer 2 / metal layer 3 / sealant layer 4 were laminated in order was obtained.
  • a multilayer CPP film an unstretched PP film
  • a third sealant layer and a second sealant layer is further formed on the first sealant layer by a sand lamination method.
  • Comparative Example 3E a multilayer CPP (unstretched PP film) composed of a third sealant layer, a fourth sealant layer, and a second sealant layer was laminated on the first sealant layer by a sand lamination method.
  • the resin components forming each sealant layer are as shown in Table 1E.
  • PPa (A) maleic acid-modified random polypropylene, melting point 160 ° C., softening point 145 ° C.
  • PPa (B) maleic acid-modified random polypropylene, melting point 140 ° C., softening point 130 ° C.
  • PPa (C) maleic acid-modified random polypropylene, melting point 125 ° C., softening point 115 ° C.
  • PPa (D) maleic acid-modified homopolypropylene, melting point 160 ° C., softening point 156 ° C.
  • EPR140 Propylene elastomer, melting point 140 ° C, softening point 125 ° C
  • EVA (A) ethylene vinyl acetate copolymer, melting point 90 ° C., softening point 50 ° C.
  • Acid-modified EVA (B) carboxylic acid-modified ethylene vinyl acetate copolymer, melting point 90 ° C., softening point 80 ° C.
  • Acrylic resin Polymethacrylate, no melting point, softening point 80 ° C
  • TP terpene phenol copolymer, no melting point, softening point 100 ° C.
  • Styrene polymer atactic polystyrene, no melting point, softening point 100 ° C.
  • Amorphous PP Amorphous polypropylene, no melting point, softening point 70 ° C
  • LDPE Low density polyolefin, melting point 100 ° C, softening point 80 ° C
  • Acid-modified LDPE Carboxylic acid-modified low-density polyolefin, melting point 100 ° C., softening point 80 ° C.
  • LLDPE Linear low density polyolefin, melting point 120 ° C, softening point 60 ° C
  • Acid-modified LLDPE carboxylic acid-modified linear low density polyolefin, melting point 120 ° C., softening point 60 ° C.
  • the battery packaging materials of Examples 1E to 13E exhibited high seal strength and laminate strength.
  • the sealing strength and the laminate strength were low.
  • the battery packaging material of Comparative Example 4 using an acid-modified polyolefin having a high melting point and not using the above-described adhesive resin peeling and opening occurred even after 5 hours had passed after reaching 150 ° C.
  • Examples 1F to 6F and Comparative Examples 1F to 5F Manufacture of battery packaging materials
  • a laminate in which the base material layer 1 / adhesive layer 2 / metal layer 3 were laminated was obtained.
  • a resin composition containing an acid-modified polyolefin resin having a composition described in Table 2F and a curing agent was applied to a thickness of 5 ⁇ m. , Dried.
  • a resin having a melting point described in Table 2F for forming the first sealant layer 4a is extruded in a molten state from above the dried resin composition, whereby the first sealant layer 4a ( 30 ⁇ m thick) was laminated. Further, by heating the obtained laminate at 190 ° C.
  • the battery is composed of a laminate in which base layer 1 / adhesive layer 2 / metal layer 3 / insulating layer 6 / first sealant layer 4a are sequentially laminated.
  • a packaging material was obtained.
  • the battery packaging materials obtained in Examples 1F to 6F were each cut to 60 mm (MD direction, vertical direction) ⁇ 150 mm (TD direction, horizontal direction). Next, the cut battery packaging material is folded in half so that the sealant layers face each other in the TD direction, one side in the TD direction and one side in the MD direction are thermally welded, and one side in the TD direction is An open bag-shaped battery packaging material was prepared.
  • the heat welding conditions were a temperature of 190 ° C., a surface pressure of 1.0 MPa, and a heating / pressurization time of 3 seconds. Next, 3 g of electrolytic solution was injected from the opening, and the opening was 7 mm wide and thermally welded under the same conditions as described above.
  • each battery packaging material was taken out from the thermostatic layer, the battery packaging material was opened, and the electrolytic solution was taken out.
  • the folded portion of the battery packaging material was cut into a 15 mm wide strip to obtain a test piece.
  • the first sealant layer 4a and the metal layer 3 of the obtained test piece were pulled at a rate of 50 mm / min using a tension machine (trade name AGS-50D manufactured by Shimadzu Corporation), and the peel strength (N / 15 mm) was measured (peel strength after durability test).
  • peel strength was measured in the same manner for the test pieces obtained by cutting the battery packaging materials obtained in Examples 1F to 6F to a width of 15 mm (peel strength before the durability test). The results are shown in Table 2F.
  • the battery packaging materials obtained in Examples 1F to 6F were cut into a size of 40 mm in width and 100 mm in length to obtain test pieces.
  • the test piece was folded so that the short sides were opposed to each other, and arranged so that the surfaces of the first sealant layer 4a of the test piece were opposed to each other.
  • a wire having a diameter of 25 ⁇ m was inserted between the surfaces of the first sealant layer 4a facing each other.
  • the sealant layers were heat-sealed with a heat-sealing machine composed of a flat plate-like hot plate having a width of 7 mm both in the vertical direction in the direction perpendicular to the length direction of the battery packaging material.
  • the terminals of the tester were connected to the surfaces of the base material layers on both sides so that the portion where the wire of the battery packaging material was sandwiched was in the center.
  • a voltage of 100 V was applied between the testers, and the time (seconds) until short-circuiting was measured.
  • the battery packaging materials obtained in Examples 1F to 6F were cut into sheet pieces of 60 mm (MD direction) ⁇ 60 mm (TD direction, lateral direction). Next, these sheet pieces were folded in two in the MD direction (longitudinal direction), and two opposite sides were heat-sealed with a width of 7 mm to produce a pouch-type exterior body having an opening on one side. Next, the obtained exterior body is sealed with a lithium ion battery main body including cells so that the metal terminal extends to the outside from one side of the opening, and the opening is formed while holding the metal terminal with the electrolytic solution. A lithium ion battery was produced by hermetically sealing with a width of 3 mm.
  • the heat sealing was performed under the conditions of a surface pressure of 2.0 MPa, a sealing temperature of 170 ° C., and a sealing time of 5.0 seconds.
  • the insulation evaluation test with respect to a crack was implemented using the impulse application system (Nippon Technate make, a lithium ion battery insulation tester).
  • the impulse application system Nippon Technate make, a lithium ion battery insulation tester.
  • Examples 1F to 6F five lithium ion batteries were prepared, an impulse voltage of 100 V was applied between the negative electrode terminal of each lithium ion battery and the aluminum foil, and a voltage drop after 99 msec was observed. When there was no voltage drop in all five, it was marked with ⁇ .
  • Table 2F The results are shown in Table 2F.
  • the set temperature T and the melting point T A of the insulating layer The difference (T A ⁇ T) is ⁇ 10 ° C. or more and ⁇ 5 ° C. or less, and the difference (T m1 ⁇ T) between the melting point T m1 of the first sealant layer 4a and the set temperature T is ⁇ 5 ° C. or more + 5 ° C.
  • Examples 1F to 6F satisfying the following, at least a part of the insulating layer 6 was peeled off from the interface of the metal layer 3 until the set temperature T ° C., but the insulating layer 6 and the first sealant layer 4a were formed in a bag shape. 30 minutes after reaching the set temperature T.degree. C. while maintaining the internal sealing state, the insulating layer 6 and the first sealant layer 4a separated from the metal layer 3 are finely cleaved, resulting in mild Can lead to opening in a safe state Which was. In contrast, in Comparative Examples 1F to 6F where the difference (T m1 ⁇ T) between the melting point T m1 of the first sealant layer 4a and the set temperature T does not satisfy ⁇ 5 ° C.
  • the heat seal part was agglomerated and the sealant layer was broken or the sealant layer could not be opened even after 30 minutes at the set temperature T ° C.
  • the battery packaging materials of Examples 1F to 6F provided with an insulating layer formed of a resin composition containing an acid-modified polyolefin resin and a curing agent have high insulation against both foreign matter biting and cracks and durability.
  • the change in peel strength before and after the property test was small and the durability was excellent.
  • Examples 7F to 15F and Comparative Examples 6F to 12F Manufacture of battery packaging materials
  • a laminate of base material layer 1 / adhesive layer 2 / metal layer 3 was prepared.
  • a resin composition containing a modified polyolefin resin having a composition described in Table 3F and a curing agent was applied to a thickness of 5 ⁇ m and dried. I let you.
  • a resin for forming the second sealant layer 4b and a resin for forming the first sealant layer are formed on the dried resin composition.
  • Example 9F a resin for forming the second sealant layer 4b (thickness 10 ⁇ m) is applied on the dried resin composition of the insulating layer and dried, and then the first sealant layer 4a is formed.
  • the resin to be melt-extruded is made into a single film, and this is overlaid on the second sealant layer 4b and pressure-bonded at 160 ° C., and then heated in an oven at 190 ° C.
  • Example 11F a resin for forming the second sealant layer 4b is applied on the dried resin composition of the insulating layer and dried, and then the resin for forming the first sealant layer 4a is melt-extruded. Then, a single film is formed, and this is overlaid on the second sealant layer 4b, pressure-bonded at 160 ° C., and then heated in an oven at 190 ° C. for 2 minutes to thereby form the first sealant on the second sealant layer 4b.
  • a battery packaging material comprising a laminate in which (thickness 20 ⁇ m) is laminated and base material layer 1 / adhesive layer 2 / metal layer 3 / insulating layer 6 / second sealant layer 4b / first sealant layer 4a are sequentially laminated.
  • Example 12F the third sealant layer 4c (thickness 5 ⁇ m) / second sealant layer 4b (thickness 20 ⁇ m) formed of the resin described in Table 3F from the dried resin composition of the insulating layer. ) / Laminated films of the first sealant layer 4a (thickness 5 ⁇ m) were laminated and laminated by heat lamination. Further, by heating the obtained laminate at 190 ° C. for 2 minutes, material layer 1 / adhesive layer 2 / metal layer 3 / insulating layer 6 / third sealant layer 4c / second sealant layer 4b / first sealant layer 4a The battery packaging material which consists of a laminated body laminated
  • the resin, the curing agent, and the like that form the insulating layer 6, the first sealant layer 4a, the second sealant layer 4b, and the third sealant layer 4c are as shown in Table 3F. Further, the melting points of the resins forming the insulating layer 6, the first sealant layer 4a, the second sealant layer 4b, and the third sealant layer 4c are values measured by the DSC method.
  • Example 3F ⁇ Insulation evaluation against foreign object biting>
  • a battery comprising an insulating layer formed of a resin composition containing an acid-modified polyolefin resin and a curing agent, a second sealant layer 4b containing a polyolefin resin or an acid-modified polyolefin resin, and a first sealant layer 4a containing a polyolefin resin in this order.
  • the difference (T A ⁇ T) between the melting point T A of the insulating layer and the set temperature T is ⁇ 10 ° C. or more and ⁇ 5 ° C. or less
  • the melting point T m2 of the second sealant layer 4b and the set temperature T Difference (T m2 ⁇ T) is ⁇ 10 ° C. or more and ⁇ 5 ° C.
  • the battery packaging materials of Examples 7F to 13F provided with an insulating layer formed of a resin composition containing an acid-modified polyolefin resin and a curing agent have high insulation against both foreign matter biting and cracks and durability.
  • the change in peel strength before and after the property test was small and the durability was excellent.
  • Examples 16F to 31F and Comparative Examples 13F to 15F Manufacture of battery packaging materials
  • a laminate of base material layer 1 / adhesive layer 2 / metal layer 3 was prepared.
  • a resin composition containing a modified polyolefin resin and a curing agent each having the composition described in Table 4F was applied to a thickness of 5 ⁇ m and dried. It was.
  • the second sealant layer is formed on the insulating layer by co-extruding the resin forming the second sealant layer 4b and the resin forming the first sealant layer 4a in a molten state from above the dried resin composition.
  • the resin, the curing agent, and the like that form the insulating layer 6, the first sealant layer 4a, and the second sealant layer 4b are as shown in Table 4F. Further, the melting points of the resins forming the insulating layer 6, the first sealant layer 4a, and the second sealant layer 4b are values measured by the DSC method.
  • a battery comprising an insulating layer formed of a resin composition containing an acid-modified polyolefin resin and a curing agent, a second sealant layer 4b containing a polyolefin resin or an acid-modified polyolefin resin, and a first sealant layer 4a containing a polyolefin resin in this order.
  • the difference (T A ⁇ T) between the melting point T A of the insulating layer and the set temperature T is ⁇ 10 ° C. or more and ⁇ 5 ° C. or less
  • the melting point T m2 of the second sealant layer 4b and the set temperature T Difference (T m2 ⁇ T) is ⁇ 10 ° C. or more and ⁇ 5 ° C.
  • the battery packaging materials of Examples 16F to 31F provided with the insulating layer 6 formed of a resin composition containing an acid-modified polyolefin resin and a curing agent have high insulation against both foreign matter biting and cracks and durability. The change in peel strength before and after the property test was small and the durability was excellent.
  • the battery packaging material of Comparative Example 13F in which the resin composition forming the insulating layer 6 did not contain a curing agent the insulation against foreign object biting was low and the durability was also low.
  • the battery packaging materials of Comparative Examples 14F and 15F in which the resin composition forming the insulating layer did not contain a curing agent the insulation against both foreign matter biting and cracking was low, and the durability was also low.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Engineering & Computer Science (AREA)
  • Laminated Bodies (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)

Abstract

【課題】電池内の圧力や温度の上昇が持続的に進行した場合であっても、安全性を確保できる電池用包装材料を提供する。 【解決手段】 少なくとも、基材層、金属層、及びシーラント層をこの順に有する積層体からなる電池用包装材料であって、 電池用包装材料をヒートシールして電池素子を密閉した状態で昇温すると、密閉状態を保持したまま金属層とシーラント層の外側表面との間の少なくとも一部において剥離が生じた後、開封状態に移行するように作動する、電池用包装材料。

Description

電池用包装材料
 本発明は、電池内の圧力や温度の上昇が持続的に進行した場合であっても、安全性を確保できる電池用包装材料に関する。より詳細には、電池内の圧力や温度の上昇がある一定の水準になるまでは電池素子を密封した状態を維持でき、しかも電池内の圧力や温度の上昇が持続的に進行した状態になった時点で迅速且つ穏やかに開封して、電位用包装材料の過剰な膨張、電池反応の暴走、発火などを抑制できる電池用包装材料に関する。
 従来、様々なタイプの電池が開発されているが、あらゆる電池において、電極や電解質等の電池素子を封止するために包装材料が不可欠な部材になっている。従来、電池用包装として金属製の包装材料が多用されていたが、近年、電気自動車、ハイブリッド電気自動車、パソコン、カメラ、携帯電話等の高性能化に伴い、電池には、多様な形状が要求されると共に、薄型化や軽量化が求められている。しかしながら、従来多用されていた金属製の電池用包装材料では、形状の多様化に追従することが困難であり、しかも軽量化にも限界があるという欠点がある。
 そこで、近年、多様な形状に加工が容易で、薄型化や軽量化を実現し得る電池用包装材料として、基材層/接着層/金属層/シーラント層が順次積層されたフィルム状の積層体が提案されている(例えば、特許文献1参照)。このようなフィルム状の電池用包装材料では、シーラント層同士を対向させて周縁部をヒートシールにて熱溶着させることにより電池素子を封止できるように形成されている。
 一方、電池は、電解質の種類によっては、可燃性ガスを発生し、圧力が上昇することがある。例えば、電池が高温に晒された場合には、電解液に使用されている有機溶剤が分解して可燃性ガスを発生して圧力の上昇を引き起こすことがある。また、電池は、過電圧による充電や過大電流での放電等により電池内の温度を持続的に上昇させ、電池反応の暴走を引き起こすことがある。
 フィルム状の電池用包装材料を使用した電池において、このような電池内の圧力や温度の上昇は、電池用包装材料を開裂させ、可燃性ガスの噴出による発火等を引き起こすことがある。更に、電池内の圧力や温度の上昇が持続的に進行し、電池用包装材料が過剰に膨張した状態で電池反応が暴走すると、電池の爆発を生じさせることもある。
 従来、電池内の圧力が持続的に上昇した場合であっても、ヒートシール部の開裂や、ヒートシール部の手前で破断が生じるのを抑制できる電池用包装材料として、シーラント層又はそれに隣接する接着樹脂層の一方に、開裂時の応力がシーラント層同士の融着面の開裂時の応力よりも小さい開裂誘導部を有するものが報告されている(特許文献2参照)。しかしながら、特許文献2では、このような開裂誘導部に開裂を誘導することにより、接着樹脂層と金属層上の腐食防止処理層との界面において低応力で開裂が進行することを抑制するに過ぎず、電池内の圧力や温度の上昇が持続的に進行した状態になった時点で穏やかに開封できるように設計されているものではない。実際、特許文献2では、強い応力が加えられた際には、接着性を有する層同士の層間で開裂が進行する層間剥離、又は接着性を有する層の内部で亀裂が進行する凝集破壊が生じるように設計されている。電池内の圧力や温度が上昇した際に、層間剥離や凝集破壊によって電池が開封されると、可燃性ガスの急激な噴出により発火や爆発等の危険性が高まることが懸念される。
 そのため、電池用包装材料には、電池内の圧力や温度の上昇が持続的に進行した際に安全性を確保するために、ある温度に達するまでの間は開裂せず、電池素子を密封した状態を維持することにより、可燃性ガスの急激な噴出による発火等を抑制しつつ、その後に穏やかに開封して電池用包装材料内のガスを徐々に放出するように設計することが求められる。
特開2001-202927号公報 特開2012-203982号公報
 本発明は、電池内の圧力や温度の上昇が持続的に進行した場合であっても、安全性を確保できる電池用包装材料を提供することを目的とする。より具体的には、本発明は、電池内の圧力や温度の上昇がある一定の水準になるまでは電池素子を密封した状態を維持でき、しかも電池内の圧力や温度の上昇が持続的に進行した状態になった時点で迅速且つ穏やかに開封して、電池用包装材料の過剰な膨張、電池反応の暴走、発火などを抑制できる電池用包装材料を提供することを目的とする。
 本発明者等は、前記課題を解決すべく鋭意検討を行ったところ、少なくとも、基材層、金属層、及びシーラント層をこの順に有する積層体からなる電池用包装材料であって、電池用包装材料をヒートシールして電池素子を密閉した状態で昇温すると、密閉状態を保持したまま金属層とシーラント層の外側表面(最内層側表面)との間の少なくとも一部において剥離が生じた後、開封状態に移行するように作動する電池用包装材料は、電池内の圧力や温度の上昇がある一定の水準になるまでは電池素子を密封した状態を維持でき、しかも電池内の圧力や温度の上昇が持続的に進行した状態になった時点で剥離した部分のシーラント層にピンホール等の微細な開裂を迅速に生じさせて穏やかな開封に導くことができることを見出した。本発明は、かかる知見に基づいて更に検討を重ねることにより完成したものである。
 即ち、本発明は、下記に掲げる態様の発明を提供する。
項1. 少なくとも、基材層、金属層、及びシーラント層をこの順に有する積層体からなる電池用包装材料であって、
 前記電池用包装材料をヒートシールして電池素子を密閉した状態で昇温すると、密閉状態を保持したまま前記金属層と前記シーラント層の外側表面との間の少なくとも一部において剥離が生じた後、開封状態に移行するように作動する、電池用包装材料。
項2. 前記剥離が生じた部分において内袋が形成された後、前記内袋が開裂して前記開封状態に移行するように作動する、項1に記載の電池用包装材料。
項3. 前記基材層と前記金属層との間に、接着層をさらに有する、項1または2に記載の電池用包装材料。
項4. 前記金属層と前記シーラント層との間に、接着層をさらに有する、項1~3のいずれかに記載の電池用包装材料。
項5. 前記剥離が、前記金属層と前記シーラント層との界面、前記金属層と前記接着層との界面、前記接着層と前記シーラント層との界面、前記接着層の内部、及び前記シーラント層の内部のうち、少なくとも一箇所で生じる、項1~4のいずれかに記載の電池用包装材料。
項6. 25℃における前記金属層と前記シーラント層との間におけるラミネート強度が、3(N/15mm)以上である、項1~5のいずれかに記載の電池用包装材料。
項7. 80℃における前記金属層と前記シーラント層との間におけるラミネート強度が、2.5(N/15mm)以上であり、かつ、125℃における前記金属層と前記シーラント層とのラミネート強度が、2.5(N/15mm)以下である、項1~6のいずれかに記載の電池用包装材料。
項8. 前記シーラント層同士を対向させた状態でヒートシールした部分のシール強度が、25℃において30(N/15mm)以上である、項1~7のいずれかに記載の電池用包装材料。
項9. 前記シーラント層同士を対向させた状態でヒートシールした部分のシール強度が、125℃において20(N/15mm)以下である、項1~8のいずれかに記載の電池用包装材料。
項10. 前記シーラント層同士を対向させた状態でヒートシールして得られる袋状の包装材料において、前記袋状の包装材料の内部空間に電解液を含む状態で、85℃で24時間放置した後における、当該ヒートシールした部分のシール強度が、0.2(N/15mm)以上である、項1~9のいずれかに記載の電池用包装材料。
項11. 100~160℃の間で定められた設定温度T℃まで昇温した際にT℃に到達するまでは包装材料が開封せず、T℃到達後は迅速に包装材料が開封するように設定された電池に使用される電池用包装材料であって、
 少なくとも、基材層、金属層、及びシーラント層をこの順に有する積層体からなり、
 前記シーラント層は、金属層側に位置し、酸変性ポリオレフィンを含む第1シーラント層と、当該第1シーラント層上に積層され最内層に位置し、ポリオレフィンを含む第2シーラント層を有し、
 前記第1シーラント層及び第2シーラント層が下記式(1)及び(2)
-10≦Tm1-T≦-5  (1)
-5≦Tm2-T≦5    (2)
 Tm1:前記第1シーラント層の融点(℃)
 Tm2:前記第2シーラント層の融点(℃)
を充足することを特徴とする、電池用包装材料。
項12. 前記第1シーラント層に含まれる酸性ポリオレフィンが、構成モノマーとして少なくともプロピレンを含む、項11に記載の電池用包装材料。
項13. 前記第2シーラント層に含まれるポリオレフィンが、構成モノマーとして少なくともプロピレンを含む、項11又は12に記載の電池用包装材料。
項14. 前記第1シーラント層の厚みが5~40μmであり、前記第2シーラント層の厚みが5~40μmである、項11~13のいずれかに記載の電池用包装材料。
項15. 前記金属層が、アルミニウム箔である、項11~14のいずれかに記載の電池用包装材料。
項16. 前記第1シーラント層及び前記第2シーラント層の少なくとも一方がスリップ剤を含む、項11~15のいずれかに記載の電池用包装材料。
項17. 少なくとも正極、負極、及び電解質を備えた電池素子が、項11~16のいずれかに記載の電池用包装材料内に収容されている、電池。
項18. 電池用包装材料に形成されるシーラント層に使用される樹脂成分をスクリーニングする方法であって、
 前記電池用包装材料が、100~160℃の間で定められた設定温度T℃まで昇温した際にT℃に到達するまでは包装材料が開封せず、T℃到達後は迅速に包装材料が開封するように設定された電池に使用されるものであり、
 前記電池用包装材料が、基材層、金属層、及びシーラント層をこの順に有する積層体からなり、且つ前記シーラント層は、金属層側に位置する第1シーラント層と、当該第1シーラント層上に積層され最内層に位置する第2シーラント層を有するものであり、
 前記第1シーラント層を形成する樹脂成分として少なくとも酸変性ポリオレフィンを選定し、前記第2シーラント層を形成する樹脂成分として少なくともポリオレフィンを選定し、且つ第1シーラント層及び第2シーラント層が下記式(1)及び(2)
-10≦Tm1-T≦-5  (1)
-5≦Tm2-T≦5    (2)
 Tm1:前記第1シーラント層の融点(℃)
 Tm2:前記第2シーラント層の融点(℃)
を充足するように、第1シーラント層及び第2シーラント層を形成する樹脂成分を選択することを特徴とする、前記スクリーニング方法。
項19. 100~160℃の間で定められた設定温度T℃まで昇温した際にT℃に到達するまでは包装材料が開封せず、T℃到達後は迅速に包装材料が開封するように設定された電池に使用される電池用包装材料であって、
 少なくとも、基材層、金属層、及びシーラント層をこの順に有する積層体からなり、
 前記シーラント層は、酸変性ポリオレフィンを含む第1シーラント層、ポリオレフィン及び酸変性ポリオレフィンの少なくとも一方を含む第2シーラント層、ポリオレフィンを含む第3シーラント層を順に有し、当該第1シーラント層が金属層側に位置し、当該第3シーラント層が最内層に位置するように配されており、
 前記第1シーラント層、第2シーラント層、及び第3シーラント層が下記式(1)~(3) 
-10≦Tm1-T≦-5  (1)
5≦Tm2-T≦10    (2)
-5≦Tm3-T≦5    (3)
 Tm1:前記第1シーラント層の融点(℃)
 Tm2:前記第2シーラント層の融点(℃)
 Tm3:前記第3シーラント層の融点(℃)
を充足することを特徴とする、電池用包装材料。
項20. 前記第1シーラント層に含まれる酸性ポリオレフィンが、構成モノマーとして少なくともプロピレンを含む、項19に記載の電池用包装材料。
項21. 前記第2シーラント層に含まれるポリオレフィンが、構成モノマーとして少なくともプロピレンを含む、項19又は20に記載の電池用包装材料。
項22. 前記第3シーラント層に含まれるポリオレフィンが、構成モノマーとして少なくともプロピレンを含む、項19~21のいずれかに記載の電池用包装材料。
項23. 前記第1シーラント層の厚みが5~40μmであり、前記第2シーラント層の厚みが5~40μmである、前記第2シーラント層の厚みが5~40μmである、項19~22のいずれかに記載の電池用包装材料。
項24. 前記金属層が、アルミニウム箔である、項19~23のいずれかに記載の電池用包装材料。
項25. 前記第1シーラント層、第2シーラント層、及び前記第3シーラント層の少なくとも1層がスリップ剤を含む、項19~24のいずれかに記載の電池用包装材料。
項26. 少なくとも正極、負極、及び電解質を備えた電池素子が、項19~25のいずれかに記載の電池用包装材料内に収容されている、電池。
項27. 電池用包装材料に形成されるシーラント層に使用される樹脂成分をスクリーニングする方法であって、
 前記電池用包装材料が、100~160℃の間で定められた設定温度T℃まで昇温した際にT℃に到達するまでは包装材料が開封せず、T℃到達後は迅速に包装材料が開封するように設定された電池に使用されるものであり、
 前記電池用包装材料が、基材層、金属層、及びシーラント層をこの順に有する積層体からなり、且つ前記シーラント層は、第1シーラント層、第2シーラント層、シーラント層を順に有し、且つ当該第1シーラント層が金属層側に位置し、当該第3シーラント層が最内層に位置するように配されており、
 前記第1シーラント層を形成する樹脂成分として少なくとも酸変性ポリオレフィンを選定し、前記第2シーラント層を形成する樹脂成分として少なくともポリオレフィンび酸変性ポリオレフィンの少なくとも一方を選定し、前記第3シーラント層を形成する樹脂成分として少なくともポリオレフィンを選定し、且つ第1シーラント層、第2シーラント層、及び第3シーラント層が下記式(1)~(3)
-10≦Tm1-T≦-5  (1)
5≦Tm2-T≦10    (2)
-5≦Tm3-T≦5    (3)
 Tm1:前記第1シーラント層の融点(℃)
 Tm2:前記第2シーラント層の融点(℃)
 Tm3:前記第3シーラント層の融点(℃)
を充足するように、第1シーラント層、第2シーラント層、及び第3シーラント層を形成する樹脂成分を選択することを特徴とする前記スクリーニング方法。
項28. 少なくとも、基材層、金属層、及びシーラント層をこの順に有する積層体からなり、
 前記シーラント層は、酸変性ポリオレフィンを含む第1シーラント層と、第2シーラント層とを順に有し、
 前記シーラント層において、前記第1シーラント層が金属層側に位置し、前記第2シーラント層が最内層に位置するように配されており、
 前記第1シーラント層の融点Tm1が100~160℃であり、かつ、前記第1シーラント層の軟化点Ts1が60~150℃である、電池用包装材料。
項29. 前記第2シーラント層の融点Tm2と前記第1シーラント層の融点Tm1とが、以下の関係:
m2≧Tm1
を充足する、項28に記載の電池用包装材料。
項30. 前記第1シーラント層が、非晶性ポリオレフィン及び熱可塑性エラストマーの少なくとも一方をさらに含む、項28または29に記載の電池用包装材料。
項31. 前記第2シーラント層の融点Tm2が100~160℃であり、かつ、前記第2シーラント層の軟化点Ts2が60~150℃である、項28~30のいずれかに記載の電池用包装材料。
項32. 電池が昇温された際に、設定温度に到達するまでは前記金属層と前記シーラント層の外側表面との少なくとも一部において剥離が生じるが、包装材料は開封せず、設定温度到達後に迅速に前記包装材料が開封し、電池の発火や反応暴走を防止するように設定された電池に使用される電池用包装材料である、項28~31のいずれかに記載の電池用包装材料。
項33. 前記第1シーラント層に含まれる酸性ポリオレフィンが、構成モノマーとして少なくともプロピレンを含む、項28~32のいずれかに記載の電池用包装材料。
項34. 前記第2シーラント層が、ポリオレフィンを含む、項28~33のいずれかに記載の電池用包装材料。
項35. 前記第2シーラント層に含まれる前記ポリオレフィンが、構成モノマーとして少なくともプロピレンを含む、項34に記載の電池用包装材料。
項36. 前記第1シーラント層の厚みが0.1~40μmであり、前記第2シーラント層の厚みが5~40μmである、項28~35のいずれかに記載の電池用包装材料。
項37. 前記金属層が、アルミニウム箔である、項28~36のいずれかに記載の電池用包装材料。
項38. 前記基材層と前記金属層との間に、接着層をさらに有する、項28~37のいずれかに記載の電池用包装材料。
項39. 少なくとも、基材層、金属層、及びシーラント層をこの順に有する積層体からなり、
 前記シーラント層は、酸変性ポリオレフィンを含む第1シーラント層と、第2シーラント層とを順に有し、
 前記シーラント層において、前記第1シーラント層が金属層側に位置し、前記第2シーラント層が最内層に位置するように配されており、
 前記第1シーラント層が、ポリエチレン及び酸変性ポリエチレンの少なくとも一方を含む、電池用包装材料。
項40. 前記シーラント層における前記ポリエチレン及び前記酸変性ポリエチレンの少なくとも一方の含有量の合計が、5質量%以上である、項39に記載の電池用包装材料。
項41. 前記第2シーラント層の融点Tm2と前記第1シーラント層の融点Tm1とが、以下の関係:
m2≧Tm1
を充足する、項39または40に記載の電池用包装材料。
項42. 前記第1シーラント層の融点Tm1が100~160℃であり、前記第1シーラント層の軟化点Ts1が60~150℃である、項39~41のいずれかに記載の電池用包装材料。
項43. 前記第2シーラント層の融点Tm2が100~160℃であり、前記第2シーラント層の軟化点Ts2が60~150℃である、項39~42のいずれかに記載の電池用包装材料。
項44. 電池が昇温された際に、設定温度に到達するまでは前記金属層と前記シーラント層の外側表面との少なくとも一部において剥離が生じるが包装材料は開封せず、設定温度到達後に迅速に前記包装材料が開封し、電池の発火や反応暴走を防止するように設定された電池に使用される電池用包装材料である、項39~43のいずれかに記載の電池用包装材料。
項45. 前記第1シーラント層に含まれる酸性ポリオレフィンが、構成モノマーとして少なくともプロピレンを含む、項39~44のいずれかに記載の電池用包装材料。
項46. 前記第2シーラント層が、ポリオレフィンを含む、項39~45のいずれかに記載の電池用包装材料。
項47. 前記第2シーラント層に含まれる前記ポリオレフィンが、構成モノマーとして少なくともプロピレンを含む、項46に記載の電池用包装材料。
項48. 前記第1シーラント層の厚みが5~40μmであり、前記第2シーラント層の厚みが5~40μmである、項39~47のいずれかに記載の電池用包装材料。
項49. 前記金属層が、アルミニウム箔である、項39~48のいずれかに記載の電池用包装材料。
項50. 前記基材層と前記金属層との間に、接着層をさらに有する、項39~49のいずれかに記載の電池用包装材料。
項51. 少なくとも、基材層、金属層、及びシーラント層をこの順に有する積層体からなり、
 前記シーラント層は、酸変性ポリオレフィンを含む第1シーラント層と、第2シーラント層とを順に有し、
 前記シーラント層において、前記第1シーラント層が金属層側に位置し、前記第2シーラント層が最内層に位置するように配されており、
 前記第1シーラント層が、エチレン酢酸ビニル共重合体、アクリル樹脂、スチレン重合体、及びテルペンフェノール樹脂からなる群から選択された少なくとも1種を含む、電池用包装材料。
項52. 前記シーラント層における前記エチレン酢酸ビニル共重合体、アクリル樹脂、スチレン重合体、及びテルペンフェノール樹脂からなる群から選択された少なくとも1種の含有量の合計が、5質量%以上である、項51に記載の電池用包装材料。
項53. 前記第2シーラント層の融点Tm2と前記第1シーラント層の融点Tm1とが、以下の関係:
m2≧Tm1
を充足する、項51または52に記載の電池用包装材料。
項54. 前記第1シーラント層の融点Tm1が100~160℃であり、前記第1シーラント層の軟化点Ts1が60~150℃である、項51~53のいずれかに記載の電池用包装材料。
項55. 前記第2シーラント層の融点Tm2が100~160℃であり、前記第2シーラント層の軟化点Ts2が60~150℃である、項51~54のいずれかに記載の電池用包装材料。
項56. 電池が昇温された際に、設定温度に到達するまでは前記金属層と前記シーラント層の外側表面との少なくとも一部において剥離が生じるが包装材料は開封せず、設定温度到達後に迅速に前記包装材料が開封し、電池の発火や反応暴走を防止するように設定された電池に使用される電池用包装材料である、項51~55のいずれかに記載の電池用包装材料。
項57. 前記第1シーラント層に含まれる酸性ポリオレフィンが、構成モノマーとして少なくともプロピレンを含む、項51~56のいずれかに記載の電池用包装材料。
項58. 前記第2シーラント層が、ポリオレフィンを含む、項51~57のいずれかに記載の電池用包装材料。
項59. 前記第2シーラント層に含まれる前記ポリオレフィンが、構成モノマーとして少なくともプロピレンを含む、項58に記載の電池用包装材料。
項60. 前記第1シーラント層の厚みが5~40μmであり、前記第2シーラント層の厚みが5~40μmである、項51~59のいずれかに記載の電池用包装材料。
項61. 前記金属層が、アルミニウム箔である、項51~60のいずれかに記載の電池用包装材料。
項62. 前記基材層と前記金属層との間に、接着層をさらに有する、項51~61のいずれかに記載の電池用包装材料。
項63. 100~160℃の間で定められた設定温度T℃まで昇温した際にT℃に到達するまでは包装材料が開封せず、T℃到達後は迅速に包装材料が開封するように設定された電池に使用される電池用包装材料であって、
 少なくとも、基材層、金属層、絶縁層、及びシーラント層をこの順に有する積層体からなり、
 前記絶縁層は、酸変性ポリオレフィン樹脂と硬化剤とを含む樹脂組成物により形成されており、
 前記シーラント層は、ポリオレフィン樹脂を含む第1シーラント層を有し、
 前記絶縁層と、前記第1シーラント層とが下記式(1)及び(2):
-10≦TA-T≦-5  (1)
-5≦Tm1-T≦5    (2)
 TA:前記絶縁層の融点(℃)
 Tm1:前記第1シーラント層の融点(℃)
の関係を充足する、電池用包装材料。
項64. 前記絶縁層おける酸変性ポリオレフィン樹脂が、不飽和カルボン酸またはその酸無水物で変性された酸変性ポリオレフィン樹脂、及び不飽和カルボン酸またはその酸無水物と(メタ)アクリル酸エステルとで変性された酸変性ポリオレフィン樹脂の少なくとも一方である、項63に記載の電池用包装材料。
項65. 前記不飽和カルボン酸またはその酸無水物で変性された酸変性ポリオレフィン樹脂は、ポリエチレン系樹脂及びポリプロピレン系樹脂の少なくとも一方が、前記不飽和カルボン酸またはその酸無水物で変性されて形成されたものである、項64に記載の電池用包装材料。
項66. 前記不飽和カルボン酸またはその酸無水物と(メタ)アクリル酸エステルとで変性された酸変性ポリオレフィン樹脂は、ポリエチレン系樹脂及びポリプロピレン系樹脂の少なくとも一方が、前記不飽和カルボン酸またはその酸無水物と(メタ)アクリル酸エステルとで変性されたものである、項64に記載の電池用包装材料。
項67. 前記第1シーラント層に含まれるポリオレフィン樹脂が、構成モノマーとして少なくともプロピレンを含む、項63~66のいずれかに記載の電池用包装材料。
項68. 前記絶縁層の厚みが0.1~20μmであり、前記第1シーラント層の厚みが1~40μmである、項63~67のいずれかに記載の電池用包装材料。
項69. 前記金属層が、アルミニウム箔である、項63~68のいずれかに記載の電池用包装材料。
項70. 前記硬化剤は、多官能イソシアネート化合物、カルボジイミド化合物、エポキシ化合物、及びオキサゾリン化合物からなる群から選択された少なくとも1種を含む、項63~69のいずれかに記載の電池用包装材料。
項71. 前記樹脂組成物において、前記硬化剤の含有量は、前記酸変性ポリオレフィン樹脂100質量部に対して、0.1質量部~50質量部の範囲にある、項63~70のいずれかに記載の電池用包装材料。
項72. 前記シーラント層は、前記絶縁層と前記第1シーラント層との間に、酸変性ポリオレフィン樹脂及びポリオレフィン樹脂の少なくとも一方を含む第2シーラント層をさらに有し、前記第2シーラント層が下記式(3)
5≦Tm2-T≦10    (3)
 Tm2:前記第2シーラント層の融点(℃)
を充足する、項63~71のいずれかに記載の電池用包装材料。
項73. 前記第2シーラント層における酸変性ポリオレフィン樹脂及びポリオレフィン樹脂が、構成モノマーとして少なくともプロピレンを含む、項72に記載の電池用包装材料。
項74. 少なくとも正極、負極、及び電解質を備えた電池素子が、項63~73のいずれかに記載の電池用包装材料内に収容されている、電池。
 本発明の電池用包装材料は、少なくとも、基材層、金属層、及びシーラント層をこの順に有する積層体からなる電池用包装材料であって、電池用包装材料をヒートシールして電池素子を密閉した状態で昇温すると、密閉状態を保持したまま金属層とシーラント層の外側表面との間の少なくとも一部において剥離が生じた後、開封状態に移行するように作動することを特徴とする。本発明の電池用包装材料は、このような特定の構成を採用することによって、電池内の圧力や温度の上昇がある一定の水準になるまでは電池素子を密封した状態を維持でき、しかも電池内の圧力や温度の上昇が持続的に進行した状態になった時点で剥離した部分のシーラント層にピンホール等の微細な開裂を迅速に生じさせて穏やかに開封できる。より具体的には、電池内の圧力や温度の上昇がある一定の水準になった後、電池内部で発生する可燃性ガスを外部に放出することにより、穏やかに内圧を下げることができる。電池内部の内圧が下がることによって、電解液や電池セルの外部への放出を抑制することができる。さらに、ガスの放出と共に電池内部に空気が流入することにより、電池内部で発生した可燃性ガスの濃度が薄くなり、電池の発火を抑制することができる。また、空気の流入により、電池内部の電解液が乾燥しやすくなることによっても、電池の発火を抑制することができる。特に、電池が高温になると、電池内部のセパレータが収縮しやすくなるため、内圧の上昇と共に電池が変形し、短絡による発火が生じる虞が高まるが、本発明の電池用包装材料を用いることにより、電池内部で発生する可燃性ガスの放出及び外部からの空気の流入により、引火の原因となる可燃性ガスの濃度を薄めることができるため、短絡による発火を効果的に抑制することができる。このように、本発明の電池用包装材料によれば、電池内の圧力や温度の上昇が持続的に進行した場合であっても、電池用包装材料を穏やかに開封することができ、電池用包装材料の過剰な膨張や発火を抑制でき、安全性が確保される。
本発明の電池用包装材料の略図的断面図である。 本発明の電池用包装材料の略図的断面図である。 本発明の電池用包装材料2枚をヒートシールして密封空間を形成した状態(A)、昇温後に剥離が形成された状態(B)、及び開封時の状態(C)について、一方の側面の略図的断面図(左端がヒートシールされており、右側部分は省略)である。 本発明の電池用包装材料2枚をヒートシールして密封空間を形成した状態(A)、昇温後に剥離が形成された状態(B)、及び開封時の状態(C)について、一方の側面の略図的断面図(左端がヒートシールされており、右側部分は省略)である。 本発明の電池用包装材料2枚をヒートシールして密封空間を形成した状態(A)、昇温後に剥離が形成された状態(B)、及び開封時の状態(C)について、一方の側面の略図的断面図(左端がヒートシールされており、右側部分は省略)である。 本発明の電池用包装材料2枚をヒートシールして密封空間を形成した状態(A)、昇温後に剥離が形成された状態(B)、及び開封時の状態(C)について、一方の側面の略図的断面図(左端がヒートシールされており、右側部分は省略)である。 本発明の電池用包装材料2枚をヒートシールして密封空間を形成した状態(A)、昇温後に剥離が形成された状態(B)、及び開封時の状態(C)について、一方の側面の略図的断面図(左端がヒートシールされており、右側部分は省略)である。 本発明の電池用包装材料2枚をヒートシールして密封空間を形成した状態(A)、昇温後に剥離が形成された状態(B)、及び開封時の状態(C)について、一方の側面の略図的断面図(左端がヒートシールされており、右側部分は省略)である。 本発明の電池用包装材料が、金属層とシーラント層との間に絶縁層を有する場合について、電池用包装材料2枚をヒートシールして密封空間を形成した状態(A)、これを100~160℃の間で定められた設定温度T℃まで昇温した際に設定温度T℃到達前までの状態(B)、及び設定温度T℃到達後の状態(C)について、一方の側面の断面図(左端がヒートシールされており、右側部分は省略)である。 従来の電池用包装材料2枚をヒートシールして密封空間を形成し、加熱した際に生じる開裂状態を示す、一方の側面の略図的断面図(左端がヒートシールされており、右側部分は省略)である。
 本発明の電池用包装材料は、少なくとも、基材層、金属層、及びシーラント層をこの順に有する積層体からなる電池用包装材料であって、電池用包装材料をヒートシールして電池素子を密閉した状態で昇温すると、密閉状態を保持したまま金属層とシーラント層の外側表面との間の少なくとも一部において剥離が生じた後、開封状態に移行するように作動することを特徴とする。以下、本発明の電池用包装材料について詳述する。
1.電池用包装材料の積層構造
 本発明の電池用包装材料は、少なくとも、基材層1、金属層3、及びシーラント層4をこの順に有する積層体からなる。本発明の電池用包装材料が電池に使用される際には、基材層1が最外層になり、シーラント層4が最内層(電池素子側)になる。電池の組み立て時に、電池素子の周縁に位置するシーラント層4同士を接面させて熱溶着することにより電池素子が密封され、電池素子が封止される。図1に示すように、本発明の電池用包装材料は、基材層1と金属層3との間に接着層2を有していてもよい。また、図2に示すように、本発明の電池用包装材料は、金属層3とシーラント層4との間に接着層5または絶縁層6を有していてもよい。
2.電池用包装材料の開封機序
 本発明の電池用包装材料は、電池内の圧力や温度の上昇がある一定の水準(例えば、電池内の温度が100~160℃程度)になるまでは電池素子を密封した状態を維持できる密閉性と、電池内の圧力や温度の上昇が持続的に進行した状態になった時点で、金属層3とシーラント層4の外側表面(最内層側表面)との間で剥離した部分のシーラント層4にピンホール等の微細な開裂を迅速に生じさせる穏やかな開封性とを備えている。図3~図9を用いて、本発明の電池用包装材料の開封機序の例を説明する。なお、図3及び図4については、本発明の電池用包装材料が接着層2を有する場合について説明しており、図5~図9については、さらに接着層5または絶縁層6を有する場合について説明している。図3~図9のAには、本発明の電池用包装材料2枚に電池素子を封入した際の一方の側面の略図的断面図を示している。図3~図9のAでは、2枚の電池用包装材料のシーラント層4同士の縁部がヒートシールされ密封空間を形成している。当該密封空間に電池素子が収容されるが、図3~図9では電池素子については省略する。図3のAにおいて、(A-1)は、2枚の電池用包装材料が共に成形された場合の断面図を示しており、(A-2)は、1枚の電池用包装材料のみが成形された場合の断面図を示している。図示しないが、本発明においては、2枚の電池用包装材料が共に成形されていなくてもよい。また、本発明においては、2枚の電池用包装材料は互いに異なる積層構造を有していてもよく、例えば、一方の電池用包装材料が図3及び図4に示される接着層2を有さず、他方の電池用包装材料が図5~図8に示される接着層2及び接着層5を有していてもよい。さらに、本発明においては、1枚の電池用包装材料のシーラント層4同士をヒートシールして密閉空間を形成してもよいし、複数枚の電池用包装材料のシーラント層4同士をヒートシールして密閉空間を形成してもよい。本発明の電池用包装材料は、少なくとも図3~図9に示すいずれかの開封機序により、ある一定の水準(例えば、電池内の温度が100~160℃程度)になるまでの密封性と、その後の速やかで穏やかな開封性を備えている。以下、図3~図9においては、2枚の電池用包装材料が成形された断面図を用いて本発明の電池用包装材料の開封機序を説明するが、1枚の電池用包装材料が成形された場合、及び2枚とも成形されていない場合についても、同様の機序で開封する。
 まず、図3に示す開封機序においては、図3のAの状態から、ある一定の温度まで昇温すると、図3のBに示すように、金属層3とシーラント層4の界面の少なくとも一部が剥離する(界面剥離)。このとき、好ましくは、シーラント層4の剥離した部分が袋状(内袋)になって電池素子が密封された状態を維持する。続いて、図3のCに示す状態に迅速に移行し、金属層3から剥離したシーラント層4の領域(好ましくは内袋)にピンホール等の微細な開裂(図3中の符号10で示す)が生じて穏やかな条件で開封状態になる。
 また、図4に示す開封機序においては、図4のAの状態から、ある一定の温度まで昇温すると、図4のBに示すように、シーラント層4の内部で凝集剥離が生じる。このとき、好ましくは、シーラント層4の凝集剥離した部分が袋状(内袋)になって電池素子が密封された状態を維持する。続いて、図4のCに示す状態に迅速に移行し、シーラント層4の凝集剥離した領域(好ましくは内袋)にピンホール等の微細な開裂(図4中の符号10で示す)が生じて穏やかな条件で開封状態になる。
 また、図5または図9に示す開封機序においては、図5または図9のAの状態から、ある一定の温度まで昇温すると、図5または図9のBに示すように、金属層3と接着層5または絶縁層6との界面の少なくとも一部で剥離する(界面剥離)。このとき、好ましくは、接着層5及びシーラント層4が袋状(内袋)、または絶縁層6及びシーラント層4が袋状(内袋)になって電池素子が密封された状態を維持する。続いて、図5または図9のCに示す状態に迅速に移行し、金属層3から剥離した接着層5及びシーラント層4の領域(好ましくは内袋)、または絶縁層6及びシーラント層4の領域(好ましくは内袋)にピンホール等の微細な開裂(図5または図9中の符号10で示す)が生じて穏やかな条件で開封状態になる。
 また、図6に示す開封機序においては、図6のAの状態から、ある一定の温度まで昇温すると、図6のBに示すように、接着層5の内部で凝集剥離が生じる。このとき、好ましくは、接着層5の凝集剥離した部分及びこれに接するシーラント層4が袋状(内袋)になって電池素子が密封された状態を維持する。続いて、図6のCに示す状態に迅速に移行し、接着層5の凝集剥離した領域及びこれに接するシーラント層4(好ましくは内袋)にピンホール等の微細な開裂(図6中の符号10で示す)が生じて穏やかな条件で開封状態になる。
 また、図7に示す開封機序においては、図7のAの状態から、ある一定の温度まで昇温すると、図7のBに示すように、接着層5とシーラント層4との界面の少なくとも一部で剥離する(界面剥離)。このとき、好ましくは、シーラント層4が袋状(内袋)になって電池素子が密封された状態を維持する。続いて、図7のCに示す状態に迅速に移行し、接着層5から剥離したシーラント層4の領域(好ましくは内袋)にピンホール等の微細な開裂(図7中の符号10で示す)が生じて穏やかな条件で開封状態になる。
 また、図8に示す開封機序においては、図8のAの状態から、ある一定の温度まで昇温すると、図8のBに示すように、シーラント層4の内部で凝集剥離が生じる。このとき、好ましくは、シーラント層4の凝集剥離した領域が袋状(内袋)になって電池素子が密封された状態を維持する。続いて、図8のCに示す状態に迅速に移行し、シーラント層4の凝集剥離した領域(好ましくは内袋)にピンホール等の微細な開裂(図8中の符号10で示す)が生じて穏やかな条件で開封状態になる。
 なお、図示していないが、後述の通り、接着層5またはシーラント層4が複数の層から形成されている場合、接着層5またはシーラント層4の内部において剥離が生じる際には、複数の層の界面の少なくとも一部において、剥離が生じ、剥離した領域にピンホール等の微細な開裂が生じて、穏やかな条件で開封状態になることもある。
 以上のように、本発明の電池用包装材料においては、ある一定の温度(例えば100~160℃の範囲の温度)まで昇温すると、金属層とシーラント層の外側表面(最内層側表面)との間の少なくとも一部(各層の界面の少なくとも一部又は各層の内部の少なくとも一部分)が剥離するが、シーラント層によって電池素子が密封されている状態を保持でき、その後、剥離した部分のシーラント層に、迅速にピンホール等の微細な開裂を生じさせて穏やかに開封できる。なお、開封の状態は、図3~図9のうち2つ以上の組み合わせであってもよい。
 一方、従来の電池用包装材料では、迅速に開封されず発火や爆発する場合や、ある温度に達すると密封状態から開封状態に急激に移行し、可燃性ガスや電解液の急激な噴出を引き起こす場合がある。ここで、従来の電池用包装材料において、シーラント層同士のヒートシール界面で開裂が急激に進行する界面剥離の状態の一例を図10のAに示す。また、従来の電池用包装材料において、シーラント層のヒートシール界面付近の内部で開裂が急激に進行する凝集剥離の状態の一例を図10のBに示す。また、従来の電池用包装材料において、シーラント層が根切れした後に層と層の間(シーラント層内の層間)で開裂が進行する層間剥離の状態の一例を図10のCに示す。なお、「根切れ」とは、ヒートシール部分の内縁にてシーラント層が破断されることをいう。本発明の電池用包装材料では、従来の界面剥離、凝集剥離、又は層間剥離を生じて急激な開封状態に移行させることがないため、従来の電池用包装材料に比して、電池内の圧力や温度の上昇が持続的に進行した際の安全性に優れている。
3.電池用包装材料を形成する各層の組成
[基材層1]
 本発明の電池用包装材料において、基材層1は最外層を形成する層である。基材層1を形成する素材については、絶縁性を備えるものであることを限度として特に制限されるものではない。基材層1を形成する素材としては、例えば、ポリエステル、ポリアミド、エポキシ、アクリル、フッ素樹脂、ポリウレタン、珪素樹脂、フェノール、ポリエーテルイミド、ポリイミド、及びこれらの混合物や共重合物等が挙げられる。
 ポリエステルとしては、具体的には、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンナフタレート、ポリエチレンイソフタレート、ポリカーボネート、エチレンテレフタレートを繰り返し単位の主体とした共重合ポリエステル、ブチレンテレフタレートを繰り返し単位の主体とした共重合ポリエステル等が挙げられる。また、エチレンテレフタレートを繰り返し単位の主体とした共重合ポリエステルとしては、具体的には、エチレンテレフタレートを繰り返し単位の主体としてエチレンイソフタレートと重合する共重合体ポリエステル(以下、ポリエチレン(テレフタレート/イソフタレート)にならって略す)、ポリエチレン(テレフタレート/イソフタレート)、ポリエチレン(テレフタレート/アジペート)、ポリエチレン(テレフタレート/ナトリウムスルホイソフタレート)、ポリエチレン(テレフタレート/ナトリウムイソフタレート)、ポリエチレン(テレフタレート/フェニル-ジカルボキシレート)、ポリエチレン(テレフタレート/デカンジカルボキシレート)等が挙げられる。また、ブチレンテレフタレートを繰り返し単位の主体とした共重合ポリエステルとしては、具体的には、ブチレンテレフタレートを繰り返し単位の主体としてブチレンイソフタレートと重合する共重合体ポリエステル(以下、ポリブチレン(テレフタレート/イソフタレート)にならって略す)、ポリブチレン(テレフタレート/アジペート)、ポリブチレン(テレフタレート/セバケート)、ポリブチレン(テレフタレート/デカンジカルボキシレート)、ポリブチレンナフタレート等が挙げられる。これらのポリエステルは、1種単独で使用してもよく、また2種以上を組み合わせて使用してもよい。ポリエステルは、耐電解液性に優れ、電解液の付着に対して白化等が発生し難いという利点があり、基材層1の形成素材として好適に使用される。
 また、ポリアミドとしては、具体的には、ナイロン6、ナイロン66、ナイロン610、ナイロン12、ナイロン46、ナイロン6とナイロン6,6との共重合体等の脂肪族系ポリアミド;テレフタル酸及び/又はイソフタル酸に由来する構成単位を含むナイロン6I、ナイロン6T、ナイロン6IT、ナイロン6I6T(Iはイソフタル酸、Tはテレフタル酸を表す)等のヘキサメチレンジアミン-イソフタル酸-テレフタル酸共重合ポリアミド、ポリメタキシリレンアジパミド(MXD6)等の芳香族を含むポリアミド;ポリアミノメチルシクロヘキシルアジパミド(PACM6)等の脂環系ポリアミド;さらにラクタム成分や、4,4'-ジフェニルメタン-ジイソシアネート等のイソシアネート成分を共重合させたポリアミド、共重合ポリアミドとポリエステルやポリアルキレンエーテルグリコールとの共重合体であるポリエステルアミド共重合体やポリエーテルエステルアミド共重合体;これらの共重合体等が挙げられる。これらのポリアミドは、1種単独で使用してもよく、また2種以上を組み合わせて使用してもよい。延伸ポリアミドフィルムは延伸性に優れており、成形時の基材層1の樹脂割れによる白化の発生を防ぐことができ、基材層1の形成素材として好適に使用される。
 基材層1は、1軸又は2軸延伸された樹脂フィルムで形成されていてもよく、また未延伸の樹脂フィルムで形成してもよい。中でも、1軸又は2軸延伸された樹脂フィルム、とりわけ2軸延伸された樹脂フィルムは、配向結晶化することにより耐熱性が向上しているので、基材層1として好適に使用される。また、基材層1は、上記の素材を金属層3上にコーティングして形成されていてもよい。
 これらの中でも、基材層1を形成する樹脂フィルムとして、好ましくはナイロン、ポリエステル、更に好ましくは2軸延伸ナイロン、2軸延伸ポリエステル、特に好ましくは2軸延伸ナイロンが挙げられる。
 基材層1は、耐ピンホール性及び電池の包装体とした時の絶縁性を向上させるために、異なる素材の樹脂フィルム及びコーティングの少なくとも一方を積層化することも可能である。具体的には、ポリエステルフィルムとナイロンフィルムとを積層させた多層構造や、2軸延伸ポリエステルと2軸延伸ナイロンとを積層させた多層構造等が挙げられる。基材層1を多層構造にする場合、各樹脂フィルムは接着剤を介して接着してもよく、また接着剤を介さず直接積層させてもよい。接着剤を介さず接着させる場合には、例えば、共押出し法、サンドラミ法、サーマルラミネート法等の熱溶融状態で接着させる方法が挙げられる。また、接着剤を介して接着させる場合、使用する接着剤は、2液硬化型接着剤であってもよく、また1液硬化型接着剤であってもよい。更に、接着剤の接着機構についても、特に制限されず、化学反応型、溶剤揮発型、熱溶融型、熱圧型、UVやEBなどの電子線硬化型等のいずれであってもよい。接着剤の成分としてポリエステル系樹脂、ポリエーテル系樹脂、ポリウレタン系樹脂、エポキシ系樹脂、フェノール樹脂系樹脂、ポリアミド系樹脂、ポリオレフィン系樹脂、ポリ酢酸ビニル系樹脂、セルロース系樹脂、(メタ)アクリル系樹脂、ポリイミド系樹脂、アミノ樹脂、ゴム、シリコン系樹脂が挙げられる。
 基材層1には、成形性を向上させるために低摩擦化させておいてもよい。基材層1を低摩擦化させる場合、その表面の摩擦係数については特に制限されないが、例えば1.0以下が挙げられる。基材層1を低摩擦化するには、例えば、マット処理、スリップ剤の薄膜層の形成、これらの組み合わせ等が挙げられる。
 マット処理としては、予め基材層1にマット化剤を添加し表面に凹凸を形成したり、エンボスロールによる加熱や加圧による転写法や、表面を乾式又は湿式ブラスト法やヤスリで機械的に荒らす方法が挙げられる。マット化剤としては、例えば、粒径が0.5nm~5μm程度の微粒子が挙げられる。マット化剤の材質については、特に制限されないが、例えば、金属、金属酸化物、無機物、有機物等が挙げられる。また、マット化剤の形状についても、特に制限されないが、例えば、球状、繊維状、板状、不定形、バルーン状等が挙げられる。マット化剤として、具体的には、タルク、シリカ、グラファイト、カオリン、モンモリロイド、モンモリロナイト、合成マイカ、ハイドロタルサイト、シリカゲル、ゼオライト、水酸化アルミニウム、水酸化マグネシウム、酸化亜鉛、酸化マグネシウム、酸化アルミニウム、酸化ネオジウム、酸化アンチモン、酸化チタン、酸化セリウム、硫酸カルシウム、硫酸バリウム、炭酸カルシウム、ケイ酸カルシウム、炭酸リチウム、安息香酸カルシウム、シュウ酸カルシウム、ステアリン酸マグネシウム、アルミナ、カーボンブラック、カーボンナノチューブ類、高融点ナイロン、架橋アクリル、架橋スチレン、架橋ポリエチレン、ベンゾグアナミン、金、アルミニウム、銅、ニッケル等が挙げられる。これらのマット化剤は、1種単独で使用してもよく、また2種以上を組み合わせて使用してもよい。これらのマット化剤の中でも、分散安定性やコスト等の観点から、好ましくはりシリカ、硫酸バリウム、酸化チタンが挙げられる。また、マット化剤には、表麺に絶縁処理、高分散性処理等の各種表面処理を施しておいてもよい。
 スリップ剤の薄膜層は、基材層1上にスリップ剤をブリードアウトにより表面に析出させて薄層を形成させる方法や、基材層1にスリップ剤を積層することで形成できる。スリップ剤としては、特に制限されないが、例えば、エルカ酸アマイド、ステアリン酸アマイド、ベヘン酸アマイド、エチレンビスオレイン酸アマイドやエチレンビスステアリン酸アマイド等の脂肪酸アマイド、金属石鹸、親水性シリコーン、シリコーンをグラフトしたアクリル、シリコーンをグラフトしたエポキシ、シリコーンをグラフトしたポリエーテル、シリコーンをグラフトしたポリエステル、ブロック型シリコーンアクリル共重合体、ポリグリセロール変性シリコーン、パラフィン等が挙げられる。これらのスリップ剤は、1種単独で使用してもよく、また2種以上を組み合わせて使用してもよい。
 基材層1の厚さは、例えば、7~75μm、好ましくは12~50μmが挙げられる。
[接着層2]
 本発明の電池用包装材料において、接着層2は、基材層1と金属層3との接着性を高めることなどを目的として、必要に応じて設けられる層である。基材層1と金属層3とは直接積層されていてもよい。
 接着層2は、基材層1と金属層3とを接着可能である接着樹脂によって形成される。接着層2の形成に使用される接着樹脂は、2液硬化型接着樹脂であってもよく、また1液硬化型接着樹脂であってもよい。更に、接着層2の形成に使用される接着樹脂の接着機構についても、特に制限されず、化学反応型、溶剤揮発型、熱溶融型、熱圧型等のいずれであってもよい。
 接着層2の形成に使用できる接着樹脂の樹脂成分としては、具体的には、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンナフタレート、ポリエチレンイソフタレート、ポリカーボネート、共重合ポリエステル等のポリエステル系樹脂;ポリエーテル系接着剤;ポリウレタン系接着剤;エポキシ系樹脂;フェノール樹脂系樹脂;ナイロン6、ナイロン66、ナイロン12、共重合ポリアミド等のポリアミド系樹脂;ポリオレフィン、酸変性ポリオレフィン、金属変性ポリオレフィン等のポリオレフィン系樹脂;ポリ酢酸ビニル系樹脂;セルロース系接着剤;(メタ)アクリル系樹脂;ポリイミド系樹脂;尿素樹脂、メラミン樹脂等のアミノ樹脂;クロロプレンゴム、ニトリルゴム、スチレン-ブタジエンゴム等のゴム;シリコーン系樹脂;フッ化エチレンプロピレン共重合体等が挙げられる。これらの接着樹脂成分は1種単独で使用してもよく、また2種以上を組み合わせて使用してもよい。2種以上の接着樹脂成分の組み合わせ態様については、特に制限されないが、例えば、その接着樹脂成分として、ポリアミドと酸変性ポリオレフィンとの混合樹脂、ポリアミドと金属変性ポリオレフィンとの混合樹脂、ポリアミドとポリエステル、ポリエステルと酸変性ポリオレフィンとの混合樹脂、ポリエステルと金属変性ポリオレフィンとの混合樹脂等が挙げられる。これらの中でも、展延性、高湿度条件下における耐久性や応変抑制作用、ヒートシール時の熱劣化抑制作用等が優れ、基材層1と金属層3との間のラミネーション強度の低下を抑えてデラミネーションの発生を効果的に抑制するという観点から、好ましくはポリウレタン系2液硬化型接着樹脂;ポリアミド、ポリエステル、又はこれらと変性ポリオレフィンとのブレンド樹脂が挙げられる。
 また、接着層2は異なる接着樹脂成分で多層化してもよい。接着層2を異なる接着樹脂成分で多層化する場合、基材層1と金属層3とのラミネーション強度を向上させるという観点から、基材層1側に配される接着樹脂成分を基材層1との接着性に優れる樹脂を選択し、金属層3側に配される接着樹脂成分を金属層3との接着性に優れる接着樹脂成分を選択することが好ましい。接着層2は異なる接着樹脂成分で多層化する場合、具体的には、金属層3側に配置される接着樹脂成分としては、好ましくは、酸変性ポリオレフィン、金属変性ポリオレフィン、ポリエステルと酸変性ポリオレフィンとの混合樹脂、共重合ポリエステルを含む樹脂等が挙げられる。
 接着層2の厚さについては、例えば、1~50μm、好ましくは2~25μmが挙げられる。
[金属層3]
 本発明の電池用包装材料において、金属層3は、包装材料の強度向上の他、電池内部に水蒸気、酸素、光等が侵入するのを防止するためのバリア層として機能する層である。金属層3を形成する金属としては、具体的には、アルミニウム、ステンレス、チタン等の金属箔が挙げられる。これらの中でも、アルミニウムが好適に使用される。包装材料の製造時にしわやピンホールを防止するために、本発明において金属層3として、軟質アルミニウム、例えば、焼きなまし処理済みのアルミニウム(JIS A8021P-O)又は(JIS A8079P-O)等を用いることが好ましい。
 金属層3の厚さについては、例えば、10~200μm、好ましくは15~100μmが挙げられる。
 また、金属層3は、接着の安定化、溶解や腐食の防止等のために、少なくとも一方の面、好ましくは少なくともシーラント層4側の面、更に好ましくは両面が化成処理されていることが好ましい。ここで、化成処理とは、金属層3の表面に耐酸性皮膜を形成する処理である。化成処理は、例えば、硝酸クロム、フッ化クロム、硫酸クロム、酢酸クロム、蓚酸クロム、重リン酸クロム、クロム酸アセチルアセテート、塩化クロム、硫酸カリウムクロム等のクロム酸化合物を用いたクロム酸クロメート処理;リン酸ナトリウム、リン酸カリウム、リン酸アンモニウム、ポリリン酸等のリン酸化合物を用いたリン酸クロメート処理;下記一般式(1)~(4)で表される繰り返し単位からなるアミノ化フェノール重合体を用いたクロメート処理等が挙げられる。
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
 一般式(1)~(4)中、Xは水素原子、ヒドロキシル基、アルキル基、ヒドロキシアルキル基、アリル基又はベンジル基を示す。また、R1及びR2は、同一又は異なって、ヒドロキシル基、アルキル基、又はヒドロキシアルキル基を示す。一般式(1)~(4)において、X、R1、R2で示されるアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基等の炭素数1~4の直鎖又は分枝鎖状アルキル基が挙げられる。また、X、R1、R2で示されるヒドロキシアルキル基としては、例えば、ヒドロキシメチル基、1-ヒドロキシエチル基、2-ヒドロキシエチル基、1-ヒドロキシプロピル基、2-ヒドロキシプロピル基、3-ヒドロキシプロピル基、1-ヒドロキシブチル基、2-ヒドロキシブチル基、3-ヒドロキシブチル基、4-ヒドロキシブチル基等のヒドロキシ基が1個置換された炭素数1~4の直鎖又は分枝鎖状アルキル基が挙げられる。ことができる。一般式(1)~(4)において、Xは、水素原子、ヒドロキシル基、及び、ドロキシアルキル基のいずれかであることが好ましい。一般式(1)~(4)で表される繰り返し単位からなるアミノ化フェノール重合体の数平均分子量は、例えば、約500~約100万、好ましくは約1000~約2万が挙げられる。
 また、金属層3に耐食性を付与する化成処理方法として、リン酸中に、酸化アルミ、酸化チタン、酸化セリウム、酸化スズ等の金属酸化物や硫酸バリウムの微粒子を分散させたものをコーティングし、150℃以上で焼付け処理を行うことにより、金属層3の表面に耐食処理層を形成する方法が挙げられる。また、耐食処理層の上には、カチオン性ポリマーを架橋剤で架橋させた樹脂層を形成してもよい。ここで、カチオン性ポリマーとしては、例えば、ポリエチレンイミン、ポリエチレンイミンとカルボン酸を有するポリマーからなるイオン高分子錯体、アクリル主骨格に1級アミンをグラフトさせた1級アミングラフトアクリル樹脂、ポリアリルアミンまたはその誘導体、アミノフェノール等が挙げられる。これらのカチオン性ポリマーは1種単独で使用してもよく、また2種以上を組み合わせて使用してもよい。また、架橋剤としては、例えば、イソシアネート基、グリシジル基、カルボキシル基、及びオキサゾリン基よりなる群から選ばれる少なくとも1種の官能基を有する化合物、シランカップリング剤等が挙げられる。これらの架橋剤は1種単独で使用してもよく、また2種以上を組み合わせて使用してもよい。
 これらの化成処理は、1種の化成処理を単独で行ってもよく、2種以上の化成処理を組み合わせて行ってもよい。更に、これらの化成処理は、1種の化合物を単独で使用して行ってもよく、また2種以上の化合物を組み合わせて使用して行ってもよい。これらの中でも、好ましくはクロム酸クロメート処理、更に好ましくはクロム酸化合物、リン酸化合物、及びアミノ化フェノール重合体を組み合わせたクロメート処理が挙げられる。
 化成処理において金属層3の表面に形成させる耐酸性皮膜の量については、特に制限されないが、例えばクロム酸化合物、リン酸化合物、及びアミノ化フェノール重合体を組み合わせてクロメート処理を行う場合であれば、金属層3の表面1m2当たり、クロム酸化合物がクロム換算で約0.5~約50mg、好ましくは約1.0~約40mg、リン化合物がリン換算で約0.5~約50mg、好ましくは約1.0~約40mg、及びアミノ化フェノール重合体が約1~約200mg、好ましくは約5.0~150mgの割合で含有されていることが望ましい。
 化成処理は、耐酸性皮膜の形成に使用する化合物を含む溶液を、バーコート法、ロールコート法、グラビアコート法、浸漬法等によって、金属層3の表面に塗布した後に、金属層3の温度が70~200℃程度になるように加熱することにより行われる。また、金属層3に化成処理を施す前に、予め金属層3を、アルカリ浸漬法、電解洗浄法、酸洗浄法、電解酸洗浄法等による脱脂処理に供してもよい。このように脱脂処理を行うことにより、金属層3の表面の化成処理を一層効率的に行うことが可能になる。
[シーラント層4]
 本発明の電池用包装材料において、シーラント層4は、最内層に該当し、電池の組み立て時にシーラント層4同士が熱溶着して電池素子を密封する層である。シーラント層4は、複数の層により形成されていてもよい。
 シーラント層4は、後述する接着層5または絶縁層6を有しない場合、金属層3と接着可能であり、さらにシーラント層4同士が熱融着可能な樹脂により形成されている。また、シーラント層4は、後述する接着層5または絶縁層6を有する場合には、接着層5または絶縁層6と接着可能であり、さらにシーラント層4同士が熱融着可能な樹脂により形成されている。シーラント層4を形成する樹脂としては、このような特性を有するものであれば、特に制限されないが、例えば、酸変性ポリオレフィン、ポリエステル樹脂、フッ素系樹脂などが挙げられる。また、後述する接着層5または絶縁層6を有する場合、これらに加え、ポリオレフィン、変性環状ポリオレフィンなど使用することができる。シーラント層4を形成する樹脂は、1種類単独で使用してもよいし、2種類以上を組み合わせて使用してもよい。
 シーラント層4の形成に使用される酸変性ポリオレフィンとは、ポリオレフィンを不飽和カルボン酸でグラフト重合すること等により変性したポリマーである。酸変性されるポリオレフィンとしては、具体的には、低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、線状低密度ポリエチレン等のポリエチレン;ホモポリプロピレン、ポリプロピレンのブロックコポリマー(例えば、プロピレンとエチレンのブロックコポリマー)、ポリプロピレンのランダムコポリマー(例えば、プロピレンとエチレンのランダムコポリマー)等の結晶性又は非晶性のポリプロピレン;エチレン-ブテン-プロピレンのターポリマー等が挙げられる。これらのポリオレフィンの中でも、耐熱性の点で、好ましくは、少なくともプロピレンを構成モノマーとして有するポリオレフィン、更に好ましくは、エチレン-ブテン-プロピレンのターポリマー、及びプロピレン-エチレンのランダムコポリマーが挙げられる。変性に使用される不飽和カルボン酸としては、例えば、マレイン酸、アクリル酸、イタコン酸、クロトン酸、無水マレイン酸、無水イタコン酸等が挙げられる。これらの不飽和カルボン酸の中でも、好ましくはマレイン酸、無水マレイン酸が挙げられる。これらの酸変性ポリオレフィンは、1種単独で使用してもよく、また2種以上を組み合わせて使用してもよい。
 シーラント層4の形成に使用されるポリエステル樹脂の具体例としては、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンナフタレート、ポリエチレンイソフタレート、ポリカーボネート、エチレンテレフタレートを繰り返し単位の主体とした共重合ポリエステル、ブチレンテレフタレートを繰り返し単位の主体とした共重合ポリエステル等が挙げられる。また、エチレンテレフタレートを繰り返し単位の主体とした共重合ポリエステルとしては、具体的には、エチレンテレフタレートを繰り返し単位の主体としてエチレンイソフタレートと重合する共重合体ポリエステル(以下、ポリエチレン(テレフタレート/イソフタレート)にならって略す)、ポリエチレン(テレフタレート/イソフタレート)、ポリエチレン(テレフタレート/アジペート)、ポリエチレン(テレフタレート/ナトリウムスルホイソフタレート)、ポリエチレン(テレフタレート/ナトリウムイソフタレート)、ポリエチレン(テレフタレート/フェニル-ジカルボキシレート)、ポリエチレン(テレフタレート/デカンジカルボキシレート)等が挙げられる。また、ブチレンテレフタレートを繰り返し単位の主体とした共重合ポリエステルとしては、具体的には、ブチレンテレフタレートを繰り返し単位の主体としてブチレンイソフタレートと重合する共重合体ポリエステル(以下、ポリブチレン(テレフタレート/イソフタレート)にならって略す)、ポリブチレン(テレフタレート/アジペート)、ポリブチレン(テレフタレート/セバケート)、ポリブチレン(テレフタレート/デカンジカルボキシレート)、ポリブチレンナフタレート等が挙げられる。これらのポリエステル樹脂は、1種単独で使用してもよく、また2種以上を組み合わせて使用してもよい。
 シーラント層4の形成に使用されるフッ素系樹脂の具体例としては、テトラフルオロエチレン、トリフルオロエチレン、ポリフッ化ビニリデン、ポリフッ化ビニル、エチレンテトラフルオロエチレン、ポリクロロトリフルオロエチレン、エチレンクロロトリフルオロエチレン共重合体、テトラフルオロエチレンーヘキサフルオロプロピレン共重合体、フッ素系ポリオール等が挙げられる。これらのフッ素系樹脂は、1種単独で使用してもよく、また2種以上を組み合わせて使用してもよい。
 接着層5または絶縁層6を有しない場合、シーラント層4は、酸変性ポリオレフィン、ポリエステル樹脂、またはフッ素系樹脂のみから形成されていてもよく、また必要に応じてこれら以外の樹脂成分を含んでいてもよい。シーラント層4に酸変性ポリオレフィン、ポリエステル樹脂、またはフッ素系樹脂以外の樹脂成分を含有させる場合、シーラント層4中の酸変性ポリオレフィン、ポリエステル樹脂、またはフッ素系樹脂の含有量については、本発明の効果を妨げない限り特に制限されないが、例えば10~95質量%、好ましくは30~90質量%、更に50~80質量%が挙げられる。
 シーラント層4において、酸変性ポリオレフィン、ポリエステル樹脂、またはフッ素系樹脂以外に、必要に応じて含有できる樹脂成分としては、例えば、ポリオレフィンが挙げられる。
 ポリオレフィンは、非環状又は環状のいずれの構造であってもよい。非環状のポリオレフィンとしては、具体的には、低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、線状低密度ポリエチレン等のポリエチレン;ホモポリプロピレン、ポリプロピレンのブロックコポリマー(例えば、プロピレンとエチレンのブロックコポリマー)、ポリプロピレンのランダムコポリマー(例えば、プロピレンとエチレンのランダムコポリマー)等の結晶性又は非晶性のポリプロピレン;エチレン-ブテン-プロピレンのターポリマー等が挙げられる。また、環状のポリオレフィンとは、オレフィンと環状モノマーとの共重合体であり、環状ポリオレフィンの構成モノマーであるオレフィンとしては、例えば、エチレン、プロピレン、4-メチル-1-ペンテン、スチレン、ブタジエン、イソプレン等が挙げられる。また、環状ポリオレフィンの構成モノマーである環状モノマーとしては、例えば、ノルボルネン等の環状アルケン;具体的には、シクロペンタジエン、ジシクロペンタジエン、シクロヘキサジエン、ノルボルナジエン等の環状ジエン等が挙げられる。これらのポリオレフィンは、1種単独で使用してもよく、また2種以上を組み合わせて使用してもよい。
 これらのポリオレフィンの中でも、エラストマーとしての特性を備えるもの(即ち、ポリオレフィン系エラストマー)、とりわけプロピレン系エラストマーは、ヒートシール後の接着強度の向上、ヒートシール後の層間剥離の防止等の観点から、好ましい。プロピレン系エラストマーとしては、プロピレンと、1種又は2種以上の炭素数2~20のα-オレフィン(プロピレンを除く)を構成モノマーとして含む重合体が挙げられ、プロピレン系エラストマーを構成する炭素数2~20のα-オレフィン(プロピレンを除く)としては、具体的には、エチレン、1-ブテン、1-ペンテン、1-ヘキセン、4-メチル-1-ペンテン、1-オクテン、1-デセン、1-ドデセン、1-テトラデセン、1-ヘキサデセン、1-オクタデセン、1-エイコセン等が挙げられる。これらのエチレン系エラストマーは、1種単独で使用してもよく、また2種以上を組み合わせて使用してもよい。
 シーラント層4に、酸変性ポリオレフィン、ポリエステル樹脂、またはフッ素系樹脂以外の樹脂成分を含有させる場合、当該樹脂成分の含有量については、本発明の目的を妨げない範囲で適宜設定される。例えば、シーラント層4にプロピレン系エラストマーを含有させる場合、シーラント層4中のプロピレン系エラストマーの含有量としては、通常5~70質量%、好ましくは10~60質量%、更に好ましくは20~50質量%が挙げられる。
 金属層3とシーラント層4との間に、後述の接着層5または絶縁層6を有する場合、シーラント層4を形成する樹脂としては、上記の酸変性ポリオレフィン、ポリエステル樹脂、フッ素系樹脂などに加えて、ポリオレフィン、変性環状ポリオレフィンなども挙げられる。これらの樹脂は、1種類単独で使用してもよいし、2種類以上を組み合わせて使用してもよい。
 接着層5または絶縁層6を有する場合、シーラント層4を形成するポリオレフィンとしては、上記で例示したものが挙げられる。変性環状ポリオレフィンは、環状ポリオレフィンを不飽和カルボン酸でグラフト重合したものである。酸変性される環状ポリオレフィンは、オレフィンと環状モノマーとの共重合体である。このようなオレフィンとしては、例えば、エチレン、プロピレン、4-メチル-1-ペンテン、スチレン、ブタジエン、イソプレン等が挙げられる。また、環状モノマーとしては、例えば、ノルボルネン等の環状アルケン;具体的には、シクロペンタジエン、ジシクロペンタジエン、シクロヘキサジエン、ノルボルナジエン等の環状ジエン等が挙げられる。変性に使用される不飽和カルボン酸としては、例えば、マレイン酸、アクリル酸、イタコン酸、クロトン酸、無水マレイン酸、無水イタコン酸等が挙げられる。これらの不飽和カルボン酸の中でも、好ましくはマレイン酸、無水マレイン酸が挙げられる。これらの変性環状ポリオレフィンは、1種単独で使用してもよく、また2種以上を組み合わせて使用してもよい。
 接着層5または絶縁層6を有する場合、シーラント層4は、酸変性ポリオレフィン、ポリエステル樹脂、フッ素系樹脂、ポリオレフィン、または変性環状ポリオレフィンのみから形成されていてもよく、また必要に応じてこれら以外の樹脂成分を含んでいてもよい。シーラント層4にこれら以外の樹脂成分を含有させる場合、シーラント層4中のこれらの樹脂の含有量については、本発明の効果を妨げない限り特に制限されないが、例えば10~95質量%、好ましくは30~90質量%、更に50~80質量%が挙げられる。必要に応じて含有できる樹脂成分としては、例えば、上記のエラストマーとしての特性を備えるものが挙げられる。また、必要に応じて含有できる樹脂成分の含有量については、本発明の目的を妨げない範囲で適宜設定される。例えば、シーラント層4にプロピレン系エラストマーを含有させる場合、シーラント層4中のプロピレン系エラストマーの含有量としては、通常5~70質量%、好ましくは10~60質量%、更に好ましくは20~50質量%が挙げられる。
 本発明の電池用包装材料の密閉性と開封性とをより効果的に発揮する観点から、シーラント層4の融点Tm1としては、好ましくは90~245℃、より好ましくは100~220℃が挙げられる。また、同様の観点から、シーラント層4の軟化点Ts1としては、好ましくは70~180℃、より好ましくは80~150℃が挙げられる。さらに、同様の観点から、シーラント層4の230℃におけるメルトフローレート(MFR)は、好ましくは1.5~25g/10分、より好ましくは3.0~18g/10分が挙げられる。
 ここで、シーラント層4の融点Tm1は、シーラント層4を構成する樹脂成分の融点をJIS K6921-2(ISO1873-2.2:95)に準拠しDSC法により測定される値である。また、シーラント層4が、複数の樹脂成分を含むブレンド樹脂で形成されている場合には、その融点Tm1は、それぞれの樹脂の融点を上記のようにして求め、これらを質量比で加重平均して算出することができる。
 また、シーラント層4の軟化点Ts1は、熱機械的分析法(TMA:Thermo-Mechanical Analyzer)により測定される値である。また、シーラント層4が、複数の樹脂成分を含むブレンド樹脂で形成されている場合には、その軟化点Ts1は、それぞれの樹脂の軟化点を上記のようにして求め、これらを質量比で加重平均して算出することができる。
 シーラント層4のメルトフローレートは、JIS K7210に準拠し、メルトフローレート測定器により測定される値である。
 シーラント層4の厚みとしては、例えば、12~120μm、好ましくは18~80μm、更に好ましくは20~60μmが挙げられる。
 シーラント層4は、単層であってもよいし、多層であってもよい。また、シーラント層4は、必要に応じてスリップ剤などを含んでいてもよい。シーラント層4がスリップ剤を含む場合、電池用包装材料の成形性を高め得る。さらに、本発明においては、シーラント層4がスリップ剤を含むことにより、電池用包装材料の成形性だけでなく、絶縁性をも高め得る。シーラント層4がスリップ剤を含むことによって電池用包装材料の絶縁性が高められる詳細な機序は必ずしも明らかではないが、例えば次のように考えることができる。すなわち、シーラント層4がスリップ剤を含む場合、シーラント層4に外力が加わった際に、シーラント層4内において樹脂の分子鎖が動きやすくなり、クラックが生じにくくなると考えられる。特に、シーラント層4が複数種類の樹脂により形成される場合には、これらの樹脂の間に存在する界面において、クラックが生じやすいが、スリップ剤がこのような界面に存在することにより、界面において樹脂が動きやすくなることで、外力が加わった際にクラックに至ることを効果的に抑制できるものと考えられる。このような機序により、シーラント層にクラックが生じることによる絶縁性の低下が抑制されると考えられる。
 スリップ剤としては、特に制限されず、公知のスリップ剤を用いることができ、例えば、上記の基材層1で例示したものなどが挙げられる。スリップ剤は、1種単独で使用してもよく、また2種以上を組み合わせて使用してもよい。シーラント層4におけるスリップ剤の含有量としては、特に制限されず、電子包装用材料の成形性及び絶縁性を高める観点からは、好ましくは0.01~0.2質量%程度、より好ましくは0.05~0.15質量%程度が挙げられる。
 また、シーラント層4の厚みとしては、例えば、5~40μm、好ましくは10~35μm、更に好ましくは15~30μmが挙げられる。
 次に、100~160℃の間で定められた設定温度T℃に到達後に電池用包装材料を開封させるための具体的な態様、より低温域で電池用包装材料を開封させるための具体的な態様、及びシーラント層4と金属層3との間に絶縁層6が設けられている場合の具体的な態様について、それぞれ以下のA~Fに詳述する。
A.100~160℃の間で定められた設定温度T℃に到達後に電池用包装材料を開封させる場合において、シーラント層が2層である態様
 本発明の電池用包装材料において、100~160℃の間で定められた設定温度T℃まで昇温した際にT℃に到達するまでは包装材料が開封せず、T℃到達後は迅速に包装材料が開封するように設定された電池に使用される電池用包装材料とする場合において、シーラント層が2層である態様としては、以下の通りである。
 本発明の電池用包装材料において、シーラント層が、金属層側に位置し、酸変性ポリオレフィンを含む第1シーラント層と、当該第1シーラント層上に積層され最内層に位置し、ポリオレフィンを含む第2シーラント層を有し、
 第1シーラント層4a及び第2シーラント層4bが下記式(1)及び(2)の関係
-10≦Tm1-T≦-5  (1)
-5≦Tm2-T≦5    (2)
 Tm1:第1シーラント層の融点(℃)
 Tm2:第2シーラント層の融点(℃)
 T:100~160℃の間で定められる設定温度(℃)
を充足する。当該設定温度T℃としては、好ましくは140~160℃が挙げられる。
(第1シーラント層)
 当該態様において、第1シーラント層は、酸変性ポリオレフィンを含み、金属層側に位置する層である。第1シーラント層の形成に使用される酸変性ポリオレフィンとしては、上記のシーラント層4の例示と同様とすることができる。第1シーラント層に酸変性ポリオレフィン以外の樹脂成分を含有させる場合、第1シーラント層中の酸変性ポリオレフィンの含有量については、本発明の効果を妨げない限り特に制限されないが、例えば10~95質量%、好ましくは30~90質量%、更に50~80質量%が挙げられる。
 第1シーラント層において、酸変性ポリオレフィン以外に、必要に応じて含有できる樹脂成分としては、上記のシーラント層4の例示と同様とすることができる。
 第1シーラント層に、酸変性ポリオレフィン以外の樹脂成分を含有させる場合、当該樹脂成分の含有量については、本発明の目的を妨げない範囲で適宜設定される。例えば、第1シーラント層にプロピレン系エラストマーを含有させる場合、第1シーラント層中のプロピレン系エラストマーの含有量としては、通常5~60質量%、好ましくは10~50質量%、更に好ましくは20~40質量%が挙げられる。
 また、第1シーラント層は、酸変性ポリオレフィンを含むことに加えて、下記式(1)を充足するように設定される。
-10≦Tm1-T≦-5  (1)
 T:100~160℃の間で定められる設定温度(℃)
 Tm1:第1シーラント層の融点(℃)
 このように第1シーラント層の融点Tm1が設定温度Tよりも所定範囲で低い値に設定することによって、電池がT℃に至るまで高温に晒された場合には、第1シーラント層が溶融状態に変化し、金属層3とシーラント層4の界面からシーラント層4の少なくとも一部が剥離できるようになる。そして、金属層3から剥離した少なくとも一部のシーラント層4は内圧によって伸びて、密封状態を維持したまま膨潤し、その後、膨潤したシーラント層4はT℃到達から30分以内に微細な開裂(ピンホール等)を生じ、電池内部のガスを穏やかに放出することが可能になる。
 ここで、第1シーラント層の融点Tm1は、第1シーラント層を構成する樹脂成分の融点をJIS K6921-2(ISO1873-2.2:95)に準拠しDSC法により測定される値である。また、第1シーラント層が、複数の樹脂成分を含むブレンド樹脂で形成されている場合には、その融点Tm1は、当該ブレンド樹脂をJIS K6921-2(ISO1873-2.2:95)に準拠しDSC法に供し、総ピーク面積を1として各樹脂成分に該当する融点のピーク面積の比率を算出し、各樹脂成分に該当する融点と当該ピーク面積の比率を掛けた値(融点×面積比)を算出し、更に融点毎に算出された当該値(融点×面積比)を加算することにより求められる。
 樹脂成分の融点は、分子量、構成モノマーの種類や比率等によって定まるため、第1シーラント層に配合される酸変性ポリオレフィン及び必要に応じて配合される他の樹脂成分は、第1シーラント層の前記融点の範囲を充足するように、その分子量、構成モノマーの種類や比率等が適宜設定される。
 第1シーラント層は、必要に応じてスリップ剤を含んでいてもよい。第1シーラント層がスリップ剤を含む場合、電池用包装材料の成形性を高め得る。さらに、本発明においては、第1シーラント層がスリップ剤を含むことにより、電池用包装材料の成形性だけでなく、絶縁性をも高め得る。第1シーラント層がスリップ剤を含むことによって電池用包装材料の絶縁性が高められる詳細な機序は必ずしも明らかではないが、例えば次のように考えることができる。すなわち、第1シーラント層がスリップ剤を含む場合、第1シーラント層に外力が加わった際に、第1シーラント層内において樹脂の分子鎖が動きやすくなり、クラックが生じにくくなると考えられる。特に、第1シーラント層が複数種類の樹脂により形成される場合には、これらの樹脂の間に存在する界面において、クラックが生じやすいが、スリップ剤がこのような界面に存在することにより、界面において樹脂が動きやすくなることで、外力が加わった際にクラックに至ることを効果的に抑制できるものと考えられる。このような機序により、第1のシーラント層にクラックが生じることによる絶縁性の低下が抑制されると考えられる。
 スリップ剤としては、特に制限されず、公知のスリップ剤を用いることができ、例えば、上記の基材層1で例示したものが挙げられる。第1シーラント層中におけるスリップ剤の含有量としては、特に制限されず、電子包装用材料の成形性及び絶縁性を高める観点からは、好ましくは0.01~0.2質量%程度、より好ましくは0.1~0.15質量%程度が挙げられる。
 また、第1シーラント層の厚みとしては、例えば、5~40μm、好ましくは10~35μm、更に好ましくは15~30μmが挙げられる。
(第2シーラント層)
 第2シーラント層は、ポリオレフィンを含み、前記第1シーラント層上に積層され電池用包装材料の最内層に位置する層である。第2シーラント層の形成に使用されるポリオレフィンについては、上記の融点を充足することを限度として特に制限されないが、上記のシーラント層4の例示と同様とすることができる。
 第2シーラント層は、上記融点を備えることを限度として、ポリオレフィンのみから形成されていてもよく、また必要に応じてポリオレフィン以外の樹脂成分を含んでいてもよい。第2シーラント層にポリオレフィン以外の樹脂成分を含有させる場合、第2シーラント層中のポリオレフィンの含有量については、本発明の効果を妨げない限り特に制限されないが、例えば10~95質量%、好ましくは30~90質量%、更に50~80質量%が挙げられる。
 第2シーラント層においてポリオレフィン以外に、必要に応じて含有できる樹脂成分としては、例えば、酸変性ポリオレフィンが挙げられる。当該酸変性ポリオレフィンの具体例については、シーラント層4の例示と同様とすることができる。第2シーラント層に、ポリオレフィン以外の樹脂成分を含有させる場合、当該樹脂成分の含有量については、本発明の目的を妨げない範囲で適宜設定される。例えば、第2シーラント層に酸変性ポリオレフィンを含有させる場合、第2シーラント層中の酸変性ポリオレフィンの含有量としては、通常5~60質量%、好ましくは10~50質量%、更に好ましくは20~40質量%が挙げられる。
 また、第2シーラント層は、ポリオレフィンを含むことに加えて、下記式(2)を充足するように設定される。
-5≦Tm2-T≦5  (2)
 T:100~160℃の間で定められる設定温度(℃)
 Tm2:第1シーラント層の融点(℃)
 このように第2シーラント層の融点Tm2が、前記第1シーラント層の融点Tm1以上に設定され、且つ設定温度Tと5℃前後の温度域に設定することによって、電池が設定温度T℃に至るまでに高温に晒され、第1シーラント層が溶融状態になって金属層3とシーラント層4の界面からシーラント層4の少なくとも一部が剥離しても、第2シーラント層は内圧で膨潤しながら密封状態を維持するように機能し、設定温度T℃到達後には、迅速に微細な開裂(ピンホール等)を生じさせ、電池内部のガスを穏やかに放出することが可能になる。また、第2シーラント層の融点Tm2が設定温度Tよりも5℃を超える温度域に設定されていると、ヒートシール自体が困難になり、シール強度がばらついたり、T℃に到達しても迅速にシーラント層4を開封させることができなくなったりする傾向が見られる。
 なお、第2シーラント層の融点Tm2の算出方法は、前記第1シーラント層の融点Tm1の場合と同様である。
 樹脂成分の融点は、分子量、構成モノマーの種類や比率等によって定まるため、第2シーラント層に配合されるポリオレフィン及び必要に応じて配合される他の樹脂成分は、第2シーラント層の前記融点の範囲を充足するように、その分子量、構成モノマーの種類や比率等が適宜設定される。
 第2シーラント層は、第1シーラント層と同様、必要に応じてスリップ剤を含んでいてもよい。また、第2シーラント層の第1シーラント層とは反対側の表面上にスリップ剤が塗布されていてもよい。第2シーラント層がスリップ剤を含む場合、及び第2シーラント層の表面上にスリップ剤が塗布されている場合、電池用包装材料の成形性を高め得る。
 さらに、本発明において、第2シーラント層がスリップ剤を含む場合、電池用包装材料の成形性だけでなく、絶縁性をも高め得る。電池用包装材料の絶縁性を高める観点から、本発明においては、第1シーラント層及び第2シーラント層の少なくとも一方がスリップ剤を含むことが好ましい。第2シーラント層がスリップ剤を含むことによって電池用包装材料の絶縁性が高められる詳細な機序は必ずしも明らかではないが、上記の第1シーラント層と同様に考えることができる。特に、第2シーラント層は、電池用包装材料の最内層に位置するため、ヒートシールの際に大きな外力が加わりやすい。このため、最内層に位置する第2シーラント層に上記のスリップ剤が含まれることにより、電池用包装材料の成形性と絶縁性とをより効果的に高め得る。第2シーラント層に含まれるスリップ剤の種類及び量としては、第1シーラント層と同様とすることができる。また、第2シーラント層の表面上にスリップ剤を塗布する場合、スリップ剤の種類は第1シーラント層と同様とすることができる。スリップ剤の塗布量としては、特に制限されず、例えば0.01~100mg/m2程度、好ましくは0.1~10mg/m2程度が挙げられる。
 また、第2シーラント層の厚みとしては、例えば、5~40μm、好ましくは10~35μm、更に好ましくは15~30μmが挙げられる。
(第1シーラント層と第2シーラント層の融点の関係)
 第1シーラント層と第2シーラント層は、前述する融点を各々充足することにより、0≦(Tm2-Tm1)≦15の関係を充足することになる。
(シーラント層が2層である場合のシーラント層4の厚み)
 シーラント層が2層である場合、シーラント層4の厚みとしては、前記第1シーラント層と第2シーラント層の各々の厚みに基づいて定められるが、例えば、10~80μm、好ましくは20~70μm、更に好ましくは30~60μmが挙げられる。
B.100~160℃の間で定められた設定温度T℃に到達後に電池用包装材料を開封させる場合において、シーラント層が3層である態様
 本発明の電池用包装材料において、100~160℃の間で定められた設定温度T℃まで昇温した際にT℃に到達するまでは包装材料が開封せず、T℃到達後は迅速に包装材料が開封するように設定された電池に使用される電池用包装材料とする場合において、シーラント層が3層である態様としては、以下の通りである。
 本発明の電池用包装材料において、前記シーラント層は、酸変性ポリオレフィンを含む第1シーラント層、ポリオレフィン及び酸変性ポリオレフィンの少なくとも一方を含む第2シーラント層、ポリオレフィンを含む第3シーラント層を順に有し、当該第1シーラント層が金属層側に位置し、当該第3シーラント層が最内層に位置するように配されており、
 第1シーラント層4a、第2シーラント層4b、及び第3シーラント層4cが下記式(1)~(3)の関係
-10≦Tm1-T≦-5  (1)
5≦Tm2-T≦10    (2)
-5≦Tm3-T≦5    (3)
 Tm1:第1シーラント層の融点(℃)
 Tm2:第2シーラント層の融点(℃)
 Tm3:第3シーラント層の融点(℃)
 T:100~160℃の間で定められる設定温度(℃)
を充足する。当該設定温度T℃としては、好ましくは140~160℃が挙げられる。
(第1シーラント層)
 当該態様において、第1シーラント層は、酸変性ポリオレフィンを含み、金属層側に位置する層である。第1シーラント層を形成する樹脂は、上記項目Aの2層の態様と同様である。
 第1シーラント層は、酸変性ポリオレフィンを含むことに加えて、下記式(1)を充足するように設定される。
-10≦Tm1-T≦-5  (1)
 T:100~160℃の間で定められる設定温度(℃)
 T1:第1シーラント層の融点(℃)
 このように第1シーラント層の融点Tm1を設定温度Tよりも所定範囲で低い値に設定することによって、電池がT℃に至るまで高温に晒された場合には、第1シーラント層が溶融状態に変化し、金属層3とシーラント層4の界面からシーラント層4の少なくとも一部が剥離できるようになる。そして、金属層3から剥離した少なくとも一部のシーラント層4は内圧によって伸びて、密封状態を維持したまま膨潤し、その後、膨潤したシーラント層4はT℃到達から30分以内に微細な開裂(ピンホール等)を生じ、電池内部のガスを穏やかに放出することが可能になる。
 ここで、第1シーラント層の融点Tm1は、上記と同様にして測定される値である。
 第1シーラント層は、上記と同様にして、必要に応じてスリップ剤を含んでいてもよい。
 第1シーラント層の厚みとしては、例えば、5~40μm、好ましくは10~35μm、更に好ましくは15~30μmが挙げられる。
(第2シーラント層)
 第2シーラント層は、ポリオレフィン及び酸変性ポリオレフィンの少なくとも一方を含み、第1シーラント層と第3シーラント層の間に配される層である。第2シーラント層の形成に使用されるポリオレフィン及び酸変性ポリオレフィンとしては、シーラント層4の例示と同様とすることができる。
 第2シーラント層は、上記融点を備えることを限度として、ポリオレフィンまたは酸変性ポリオレフィンのいずれか一方のみから形成されていてもよく、また必要に応じて他の樹脂成分を含んでいてもよい。他の樹脂成分を含有させる場合、第2シーラント層中のポリオレフィン及び酸変性ポリオレフィンの少なくとも一方の含有量については、本発明の効果を妨げない限り特に制限されないが、例えば10~95質量%、好ましくは30~90質量%、更に50~80質量%が挙げられる。
 また、第2シーラント層は、ポリオレフィン及び酸変性ポリオレフィンの少なくとも一方を含むことに加えて、下記式(2)を充足するように設定される。
-5≦Tm2-T≦10  (2)
 T:100~160℃の間で定められる設定温度(℃)
 Tm2:第2シーラント層の融点(℃)
 このように第2シーラント層の融点Tm2が、前記第1シーラント層の融点Tm1以上に設定され、且つ設定温度Tと5℃前後の温度域に設定することによって、電池が設定温度T℃に至るまでに高温に晒され、第1シーラント層が溶融状態になって金属層3とシーラント層4の界面からシーラント層4の少なくとも一部が剥離しても、第2シーラント層は内圧で膨潤しながら密封状態を維持するように機能し、設定温度T℃到達後には、迅速に微細な開裂(ピンホール等)を生じさせ、電池内部のガスを穏やかに放出することが可能になる。更に、第2シーラント層の融点Tm2が、前記第1シーラント層の融点Tm1以上且つ第3シーラント層の融点Tm3と同等以上に設定されているため、設定温度T℃に至るまで昇温された場合であっても優れた絶縁性を備えさせることもできる。
 なお、第2シーラント層の融点Tm2の算出方法は、前記第1シーラント層の融点Tm1の場合と同様である。
 樹脂成分の融点は、分子量、構成モノマーの種類や比率等によって定まるため、第2シーラント層に配合されるポリオレフィン及び必要に応じて配合される他の樹脂成分は、第2シーラント層の前記融点の範囲を充足するように、その分子量、構成モノマーの種類や比率等が適宜設定される。
 第2シーラント層は、第1シーラント層と同様、必要に応じてスリップ剤を含んでいてもよい。第2シーラント層がスリップ剤を含む場合、電池用包装材料の成形性を高め得る。さらに、本発明においては、第2シーラント層がスリップ剤を含むことにより、電池用包装材料の成形性だけでなく、絶縁性をも高め得る。第2シーラント層がスリップ剤を含むことによって電池用包装材料の絶縁性が高められる詳細な機序は必ずしも明らかではないが、上記の第1シーラント層と同様に考えることができる。第2シーラント層に含まれるスリップ剤の種類及び量としては、第1シーラント層と同様とすることができる。
 また、第2シーラント層の厚みとしては、例えば、5~40μm、好ましくは10~35μm、更に好ましくは15~30μmが挙げられる。
(第3シーラント層)
 第3シーラント層は、ポリオレフィンを含み、前記第1シーラント層上に積層され電池用包装材料の最内層に位置する層である。第3シーラント層の形成に使用されるポリオレフィンとしては、シーラント層4の例示と同様とすることができる。
 第3シーラント層は、上記融点を備えることを限度として、ポリオレフィンのみから形成されていてもよく、また必要に応じてポリオレフィン以外の樹脂成分を含んでいてもよい。第3シーラント層にポリオレフィン以外の樹脂成分を含有させる場合、第3シーラント層中のポリオレフィンの含有量については、本発明の効果を妨げない限り特に制限されないが、例えば10~95質量%、好ましくは30~90質量%、更に50~80質量%が挙げられる。
 第3シーラント層においてポリオレフィン以外に、必要に応じて含有できる樹脂成分としては、例えば、酸変性ポリオレフィンが挙げられる。当該酸変性ポリオレフィンの具体例については、シーラント層4の例示と同様とすることができる。第3シーラント層に、ポリオレフィン以外の樹脂成分を含有させる場合、当該樹脂成分の含有量については、本発明の目的を妨げない範囲で適宜設定される。例えば、第3シーラント層に酸変性ポリオレフィンを含有させる場合、第3シーラント層中の酸変性ポリオレフィンの含有量としては、通常5~60質量%、好ましくは10~50質量%、更に好ましくは20~40質量%が挙げられる。
 また、第3シーラント層は、ポリオレフィンを含むことに加えて、下記式(3)を充足するように設定される。
-5≦Tm3-T≦5  (3)
 T:100~160℃の間で定められる設定温度(℃)
 Tm3:第3シーラント層の融点(℃)
 このように第3シーラント層の融点Tm3が、前記第1シーラント層の融点Tm1以上に設定され、且つ設定温度Tと5℃前後の温度域に設定することによって、電池が設定温度T℃に至るまでに高温に晒されて金属層3とシーラント層4の界面からシーラント層4の少なくとも一部が剥離してシーラント層4が密封状態で膨潤した際に、シーラント層4の内部で亀裂が進行して凝集破壊により急激に開封されるのを抑制して、微細な開裂(ピンホール等)を生じさせ、T℃到達後は迅速に電池内部のガスを穏やかに放出することが可能になる。また、第3シーラント層の融点Tm3が設定温度Tよりも5℃を超える温度域に設定されていると、ヒートシール自体が困難になり、シール強度がばらついたり、T℃に到達しても迅速にシーラント層4を開封させることができなくなったりする傾向が見られる。
 なお、第3シーラント層の融点Tm3の算出方法は、前記第1シーラント層の融点Tm1の場合と同様である。
 前述するように、樹脂成分の融点は、分子量、構成モノマーの種類や比率等によって定まるため、第3シーラント層に配合されるポリオレフィン及び必要に応じて配合される他の樹脂成分は、第3シーラント層の前記融点の範囲を充足するように、その分子量、構成モノマーの種類や比率等が適宜設定される。
 第3シーラント層は、第1シーラント層と同様、必要に応じてスリップ剤を含んでいてもよい。また、第3シーラント層の第2シーラント層とは反対側の表面上にスリップ剤が塗布されていてもよい。第3シーラント層がスリップ剤を含む場合、及び第3シーラント層の表面上にスリップ剤が塗布されている場合、電池用包装材料の成形性を高め得る。
 さらに、第3シーラント層がスリップ剤を含む場合、電池用包装材料の成形性だけでなく、絶縁性をも高め得る。電池用包装材料の絶縁性を高める観点から、本発明においては、第1シーラント層、第2シーラント層、及び第3シーラント層のうち少なくとも1層がスリップ剤を含むことが好ましい。第3シーラント層がスリップ剤を含むことによって電池用包装材料の絶縁性が高められる詳細な機序は必ずしも明らかではないが、上記の第1シーラント層と同様に考えることができる。特に、第3シーラント層は、電池用包装材料の最内層に位置するため、ヒートシールの際に大きな外力が加わりやすい。このため、最内層に位置する第3シーラント層に上記のスリップ剤が含まれることにより、電池用包装材料の成形性と絶縁性とをより効果的に高め得る。第3シーラント層に含まれるスリップ剤の種類及び量としては、第1シーラント層と同様とすることができる。また、第3シーラント層の表面上にスリップ剤を塗布する場合、スリップ剤の種類は第1シーラント層と同様とすることができる。また、スリップ剤の塗布量としては、特に制限されず、例えば0.01~100mg/m2程度、好ましくは0.1~10mg/m2程度が挙げられる。
 また、第3シーラント層の厚みとしては、例えば、5~40μm、好ましくは10~35μm、更に好ましくは15~30μmが挙げられる。
(第1シーラント層、第2シーラント層、及び第3シーラント層の各融点の関係)
 第1シーラント層と第2シーラント層は、前述する融点を各々充足することにより、10≦(Tm2-Tm1)≦20の関係を充足することになる。
 また、第1シーラント層と第3シーラント層は、前述する融点を各々充足することにより、0≦(Tm3-Tm1)≦15の関係を充足することになる。
(シーラント層4の厚み)
 シーラント層4が3層である場合、シーラント層4の厚みとしては、前記第1シーラント層、第2シーラント層、及び第3シーラント層の各々の厚みに基づいて定められるが、例えば、15~120μm、好ましくは60~80μm、更に好ましくは30~60μmが挙げられる。
C.低温域で開封させる場合の第1の態様
 本発明において、より低温域で電池用包装材料を開封させる好ましい第1の態様は、以下の通りである。
 本発明の電池用包装材料において、シーラント層4が、酸変性ポリオレフィンを含む第1シーラント層4aと、第2シーラント層4bとを順に有し、シーラント層4において、第1シーラント層4aが金属層3側に位置し、第2シーラント層4bが最内層に位置するように配されており、第1シーラント層4a融点Tm1が100~160℃であり、かつ、第1シーラント層4aの軟化点Ts1が60~150℃である。開封温度は、通常、150℃以下である。
(第1のシーラント層)
 低温域で開封させる第1の態様において、第1シーラント層4aは、酸変性ポリオレフィンを含み、金属層側に位置する層である。第1シーラント層4aの形成に使用される酸変性ポリオレフィンとしては、上記のシーラント層4で例示したものと同様とすることができる。
 第1シーラント層4aは、後述する融点及び軟化点を備えることを限度として、酸変性ポリオレフィンのみから形成されていてもよく、また必要に応じて酸変性ポリオレフィン以外の樹脂成分を含んでいてもよい。第1シーラント層4aが後述する融点及び軟化点を備える観点からは、第1シーラント層4aは、酸変性ポリオレフィン以外の樹脂成分として、非晶性のポリオレフィン及び熱可塑性エラストマーの少なくとも一方を含むことが好ましい。なお、本発明において、非晶性のポリオレフィンとは、立体規則性の少ないアタクチックポリマーを用いることで、結晶化度を低くし、実質的に融点を有しないポリオレフィンをいう。また、本発明において、ポリオレフィンの融点とは、示差走査熱量測定(DSC)における吸熱ピーク温度をいう。
 非晶性のポリオレフィンとしては、少なくともモノマー単位としてオレフィンを含む非晶性の樹脂であれば特に限定されない。ポリオレフィンは、非環状又は環状のいずれの構造であってもよい。非環状のポリオレフィンとしては、具体的には、低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、線状低密度ポリエチレン等のポリエチレン;ホモポリプロピレン、ポリプロピレンのブロックコポリマー(例えば、プロピレンとエチレンのブロックコポリマー)、ポリプロピレンのランダムコポリマー(例えば、プロピレンとエチレンのランダムコポリマー)等の非晶性のポリプロピレン;エチレン-ブテン-プロピレンのターポリマー等が挙げられる。また、環状のポリオレフィンとは、オレフィンと環状モノマーとの共重合体であり、前記環状ポリオレフィンの構成モノマーであるオレフィンとしては、例えば、エチレン、プロピレン、4-メチル-1-ペンテン、スチレン、ブタジエン、イソプレン等が挙げられる。また、前記環状ポリオレフィンの構成モノマーである環状モノマーとしては、例えば、ノルボルネン等の環状アルケン;具体的には、シクロペンタジエン、ジシクロペンタジエン、シクロヘキサジエン、ノルボルナジエン等の環状ジエン等が挙げられる。これらのポリオレフィンは、1種単独で使用してもよく、また2種以上を組み合わせて使用してもよい。非晶性のポリオレフィンは、不飽和カルボン酸でグラフト重合すること等によりこれらのポリオレフィンが酸変性されたものであってもよい。
 また、必要に応じて含有できる他の樹脂成分としては、例えば、熱可塑性エラストマーが挙げられる。熱可塑性エラストマーとしては、シーラント層4でエラストマーとしての特性を備えるものとして例示したものと同様とすることができる。
 第1シーラント層4aに、酸変性ポリオレフィン以外の樹脂成分を含有させる場合、当該樹脂成分の含有量については、本発明の目的を妨げない範囲で適宜設定される。例えば、第1シーラント層4aに非晶性のポリオレフィン及び熱可塑性エラストマーの少なくとも一方を含有させる場合、第1シーラント層4a中の非晶性のポリオレフィン及び熱可塑性エラストマーの少なくとも一方の含有量としては、通常5~80質量%、好ましくは10~70質量%、更に好ましくは20~60質量%が挙げられる。
 低温域で開封させる第1の態様においては、第1シーラント層4aが酸変性ポリオレフィンを含み、融点Tm1が100~160℃であることに加えて、第1シーラント層4aの軟化点Ts1が60~150℃と低く設定されていることにより、電池が昇温された際に、第1シーラント層4aが軟化し、例えば図3、4、7、8に示すように、金属層3とシーラント層4との界面またはシーラント層4の内部の少なくとも一部が剥離できるようになる。その後、各種電池に求められる耐熱性等に応じて定められる一定の温度に到達すると、シーラント層4の剥離した部分に微細な開裂(ピンホール等)を生じ、電池内部のガスを穏やかに放出することが可能になる。剥離した部分に微細な開裂を生じるまでの間、剥離した部分が内圧によって伸びて、密封状態を維持したまま膨潤する場合には、電池内部のガスをより穏やかに放出することが可能になる。電池内部のガスをより穏やかに放出する観点から、第1シーラント層4aの融点Tm1としては、好ましくは105~150℃程度、より好ましくは110~140℃程度が挙げられる。また、第1シーラント層4aの軟化点Ts1としては、好ましくは65~140℃程度、より好ましくは75~120℃程度が挙げられる。
 ここで、第1シーラント層4aの融点Tm1は、上記と同様にして測定される値である。
 また、第1シーラント層4aの軟化点Ts1は、ビカット軟化温度試験法JIS K7206により測定される値である。また、第1シーラント層4aが、複数の樹脂成分を含むブレンド樹脂で形成されている場合には、その軟化点Ts1は、当該ブレンド樹脂の構成成分の軟化点×配合分率の和により求められる。
 樹脂成分の融点及び軟化点は、分子量、構成モノマーの種類や比率等によって定まるため、第1シーラント層4aに配合される酸変性ポリオレフィン及び必要に応じて配合される他の樹脂成分においては、第1シーラント層4aの前記融点及び軟化点の範囲を充足するように、その分子量、構成モノマーの種類や比率等が適宜設定される。例えば、上記のように、酸変性ポリオレフィンと、非晶性ポリオレフィン及び熱可塑性エラストマーの少なくとも一方とを混合したり、融点の高い酸変性ポリオレフィンと融点の低い酸変性ポリオレフィンとを混合することなどによって、第1シーラント層4aの融点Tm1を100~160℃としつつ、軟化点Ts1を60~150℃と低くすることができる。
 また、第1シーラント層4aの厚みとしては、例えば、5~40μm、好ましくは10~35μm、更に好ましくは15~30μmが挙げられる。
(第2シーラント層)
 低温域で開封させる第1の態様において、第2シーラント層4bは、第1シーラント層4a上に積層され電池用包装材料の最内層に位置する層である。すなわち、電池用包装材料においては、第2シーラント層同士が熱融着され、電池素子を密封する。シーラント層4のシール性を高める観点からは、第2シーラント層4bは、ポリオレフィンを含むことが好ましい。第2シーラント層4bの形成に使用されるポリオレフィンについては、特に制限されないが、例えば、低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、線状低密度ポリエチレン等のポリエチレン;ホモポリプロピレン、ポリプロピレンのブロックコポリマー(例えば、プロピレンとエチレンのブロックコポリマー)、ポリプロピレンのランダムコポリマー(例えば、プロピレンとエチレンのランダムコポリマー)等の結晶性又は非晶性のポリプロピレン;エチレン-ブテン-プロピレンのターポリマー等が挙げられる。これらのポリオレフィンの中でも、耐熱性の点で、好ましくは、少なくともプロピレンを構成モノマーとして有するポリオレフィン、更に好ましくは、プロピレン-エチレンのランダムコポリマー、プロピレン-エチレン―ブテンのターポリマー、及びプロピレンのホモポリマーが挙げられる。これらのポリオレフィンは、1種単独で使用してもよく、また2種以上を組み合わせて使用してもよい。
 第2シーラント層4bは、ポリオレフィンのみから形成されていてもよく、ポリオレフィン以外の樹脂成分を含んでいてもよい。第2シーラント層4bにポリオレフィン以外の樹脂成分を含有させる場合、第2シーラント層4b中のポリオレフィンの含有量については、本発明の効果を妨げない限り特に制限されないが、例えば10~95質量%、好ましくは30~90質量%、更に50~80質量%が挙げられる。
 第2シーラント層4bに含まれ得るポリオレフィン以外の樹脂成分としては、例えば、酸変性ポリオレフィンが挙げられる。当該酸変性ポリオレフィンの具体例については、第1シーラント層4aと同様である。第2シーラント層4bに、ポリオレフィン以外の樹脂成分を含有させる場合、当該樹脂成分の含有量については、本発明の目的を妨げない範囲で適宜設定される。例えば、第2シーラント層4bに酸変性ポリオレフィンを含有させる場合、第2シーラント層4b中の酸変性ポリオレフィンの含有量としては、通常5~60質量%、好ましくは10~50質量%、更に好ましくは20~40質量%が挙げられる。
 また、本発明においては、第2シーラント層4bの融点Tm2と第1シーラント層4aの融点Tm1とが、以下の関係を充足することが好ましい。
m2≧Tm1
 すなわち、第2シーラント層4bの融点Tm2が、第1シーラント層4aの融点Tm1以上となることにより、例えば図3、4、7、8のBに示すように、シーラント層4の剥離した部分が袋状(内袋)になって電池素子が密封された状態を好適に維持し得る。そして、開封温度に到達すると、例えば図3、4、7、8のCに示す状態に迅速に移行し、シーラント層4の剥離した領域にピンホール等の微細な開裂が生じて、より穏やかな条件で開封状態に導くことが可能となる。このような観点からは、第2シーラント層4bの融点Tm2と第1シーラント層4aの融点Tm1とが、以下の関係を充足することがさらに好ましい。
m2≧Tm1+5
 なお、第2シーラント層4bの融点Tm2及び軟化点Ts2の算出方法は、第1シーラント層4aの融点Tm1の場合と同様である。
 また、第2シーラント層4bの融点Tm2としては、特に制限されないが、電池が昇温された際に、開封温度に到達するまではシーラント層4の剥離した部分が袋状(内袋)になって電池素子が密封された状態を好適に維持し、開封温度到達後に、より穏やかな条件で開封に導く観点からは、好ましくは105~150℃、より好ましくは110~140℃が挙げられる。また、第2シーラント層4bの軟化点Ts2としては、特に制限されないが、同様の観点からは、好ましくは65~140℃、より好ましくは70~120℃が挙げられる。
 前述するように、樹脂成分の融点は、分子量、構成モノマーの種類や比率等によって定まるため、第2シーラント層4bに配合される樹脂成分においては、例えば第2シーラント層4bの前記融点や軟化点の範囲を充足させることなどにより、電池用包装材料が穏やかに開封するように、その分子量、構成モノマーの種類や比率等が適宜設定される。
 また、第2シーラント層4bの厚みとしては、例えば、5~40μm、好ましくは10~35μm、更に好ましくは15~30μmが挙げられる。
(第3シーラント層など)
 第1の態様において、本発明の電池用包装材料のシーラント層4は、第1シーラント層4aと第2シーラント層4bとの間に、第3シーラント層4c、第4シーラント層4dなどを第1シーラント層4a側から順にさらに有していてもよい。すなわち、シーラント層4は、第1シーラント層4aと第2シーラント層4bとの間に、第3シーラント層4cなどをさらに有する、3層以上により構成されていてもよい。シーラント層4のシール性を高める観点からは、第3シーラント層4cなどの第1シーラント層4aと第2シーラント層4bとの間に設けられる層は、ポリオレフィン及び酸変性ポリオレフィンの少なくとも一方を含むことが好ましい。第3シーラント層4cなどの形成に使用されるポリオレフィンとしては、第2シーラント層4bで例示したものと同様のものが挙げられる。また、第3シーラント層4cなどの形成に使用される酸変性ポリオレフィンとしては、第1シーラント層4aで例示したものと同様のものが挙げられる。
 また、第3シーラント層4cなどの融点としては、特に制限されないが、電池が昇温された際に、開封温度に到達するまではシーラント層4の剥離した部分が袋状(内袋)になって電池素子が密封された状態を好適に維持し、開封温度到達後に、より穏やかな条件で開封に導く観点からは、好ましくは100~160℃が挙げられる。また、これらの層の軟化点としては、特に制限されないが、同様の観点からは、好ましくは60~150℃が挙げられる。
 また、第3シーラント層4cなどの第1シーラント層4aと第2シーラント層4bとの間に設けられる層の厚みとしては、例えば、5~40μm、好ましくは10~35μm、更に好ましくは15~30μmが挙げられる。
(シーラント層4の総厚み)
 シーラント層4の総厚みとしては、第1シーラント層4a、第2シーラント層4b、及び必要に応じて設けられる第3シーラント層4cなどの各々の厚みに基づいて定められるが、例えば、15~120μm、好ましくは60~80μm、更に好ましくは30~60μmが挙げられる。
D.低温域で開封させる場合の第2の態様
 本発明において、より低温域で電池用包装材料を開封させる好ましい第2の態様は、以下の通りである。
 本発明の電池用包装材料において、シーラント層4が、酸変性ポリオレフィンを含む第1シーラント層4aと、第2シーラント層4bとを順に有し、シーラント層4において、第1シーラント層4aが金属層3側に位置し、第2シーラント層4bが最内層に位置するように配されており、第1シーラント層4aが、ポリエチレン及び酸変性ポリエチレンの少なくとも一方を含む。開封温度は、通常、150℃以下である。
(第1シーラント層)
 低温域で開封させる第2の態様において、第1シーラント層4aは、酸変性ポリオレフィンに加えて、ポリエチレン及び酸変性ポリエチレンの少なくとも一方を含むことが好ましい。これにより、第1シーラント層4aの融点を一定範囲に保ちつつ、軟化点を下げることが可能となり、電池が昇温された際に、第1シーラント層4aが軟化し、例えば図3、4、7、8に示すように、金属層3とシーラント層4の界面またはシーラント層4の内部の少なくとも一部が剥離できるようになる。その後、各種電池に求められる耐熱性等に応じて定められる一定温度に到達すると、シーラント層4の剥離した部分に微細な開裂(ピンホール等)を生じ、電池内部のガスを穏やかに放出することが可能になる。剥離した部分に微細な開裂を生じるまでの間、剥離した部分が内圧によって伸びて、密封状態を維持したまま膨潤する場合には、電池内部のガスをより穏やかに放出することが可能になる。
 酸変性ポリオレフィンとしては、第1の態様における第1のシーラント層4aと同様とすることができる。また、ポリエチレンとしては、特に制限されないが、例えば、低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、線状低密度ポリエチレン等などが挙げられる。ポリエチレンの重量平均分子量としては、特に制限されないが、好ましくは1万~100万、より好ましくは2万~50万が挙げられる。また、酸変性ポリエチレンとしては、特に制限されないが、例えば、上記のポリオレフィンを不飽和カルボン酸でグラフト重合すること等により変性したものが挙げられる。酸変性ポリエチレンの重量平均分子量としては、特に制限されないが、好ましくは1万~100万、より好ましくは2万~50万が挙げられる。なお、本発明において、重量平均分子量とは、標準サンプルとしてポリスチレンを用いた条件で測定された、ゲル浸透クロマトグラフィ(GPC)により測定された値である。ポリエチレン及び酸変性ポリエチレンは、それぞれ、1種類単独で使用してもよいし、2種類以上を組み合わせて使用してもよい。
 第1シーラント層4aにおけるポリエチレン及び酸変性ポリエチレンの含有量の合計としては、本発明の効果を奏することを限度として特に制限されないが、電池が昇温された際に、ある設定温度に到達するまではシーラント層4の剥離した部分が袋状(内袋)になって電池素子が密封された状態を好適に維持し、当該設定温度到達後に、より穏やかな条件で開封に導く観点からは、好ましくは5質量%以上、より好ましくは10~90質量%、さらに好ましくは15~85質量%が挙げられる。
 第1シーラント層4aは、酸変性ポリオレフィンと、ポリエチレン及び酸変性ポリエチレンの少なくとも一方のみから形成されていてもよく、また必要に応じてこれら以外の樹脂成分を含んでいてもよい。必要に応じて含有できる樹脂成分としては、例えば、第1の態様で例示した非晶性のポリオレフィン、熱可塑性エラストマーなどが挙げられる。
 また、第1シーラント層4aの融点Tm1としては、特に制限されないが、電池が昇温された際に、ある一定の温度に到達するまではシーラント層4の剥離した部分が袋状(内袋)になって電池素子が密封された状態を好適に維持し、当該温度到達後に、より穏やかな条件で開封に導く観点からは、好ましくは100~160℃、より好ましくは105~150℃、さらに好ましくは110~140℃が挙げられる。また、第1シーラント層4aの軟化点Ts1としては、特に制限されないが、融点と同様の観点からは、好ましくは60~150℃、より好ましくは65~140℃、さらに好ましくは75~120℃が挙げられる。なお、第1シーラント層4aの融点Tm1及び第1シーラント層4aの軟化点Ts1は、それぞれ、第1の態様と同様にして算出した値である。
(第2シーラント層)
 第2の態様の第2シーラント層4bは、上記の第1の態様の第2シーラント層4bと同様とすることができる。なお、第2の態様において、第2シーラント層4bの融点Tm2としては、特に制限されないが、電池が昇温された際に、開封温度に到達するまではシーラント層4の剥離した部分が袋状(内袋)になって電池素子が密封された状態を好適に維持し、開封温度到達後に、より穏やかな条件で開封に導く観点からは、好ましくは100~160℃、より好ましくは105~150℃、さらに好ましくは110~140℃が挙げられる。また、第2シーラント層4bの軟化点Ts2としては、特に制限されないが、同様の観点からは、好ましくは60~150℃、より好ましくは65~140℃、さらに好ましくは70~120℃が挙げられる。第2シーラント層4bの融点Tm2及び第2シーラント層4bの軟化点Ts2の算出方法は、それぞれ、上記と同様である。
 前述するように、樹脂成分の融点は、分子量、構成モノマーの種類や比率等によって定まるため、第2シーラント層4bに配合される樹脂成分においては、例えば第2シーラント層4bの前記融点や軟化点の範囲を充足させることなどにより、電池用包装材料が穏やかに開封するように、その分子量、構成モノマーの種類や比率等が適宜設定される。
(第3シーラント層など)
 第2の態様において、第3シーラント層4cなどは、上記の第1の態様と同様とすることができる。
E.低温域で開封させる場合の第3の態様
 本発明において、より低温域で電池用包装材料を開封させる好ましい第3の態様は、以下の通りである。
 本発明の電池用包装材料において、シーラント層4が、酸変性ポリオレフィンを含む第1シーラント層と、第2シーラント層とを順に有し、シーラント層4において、第1シーラント層4aが金属層3側に位置し、第2シーラント層4bが最内層に位置するように配されており、第1シーラント層4aが、エチレン酢酸ビニル共重合体、アクリル樹脂、スチレン重合体、及びテルペンフェノール樹脂からなる群から選択された少なくとも1種を含む。開封温度は、通常、150℃以下である。
(第1シーラント層)
 低温域で開封させる第3の態様において、第1シーラント層4aは、酸変性ポリオレフィンに加えて、エチレン酢酸ビニル共重合体、アクリル樹脂、スチレン重合体、及びテルペンフェノール樹脂からなる群から選択された少なくとも1種を含むことが好ましい。これにより、第1シーラント層4aの融点を一定範囲に保ちつつ、軟化点を下げることが可能となり、電池が設定温度T℃に至るまで高温に晒された場合には、第1シーラント層4aが軟化し、例えば図3、4、7、8に示すように、金属層3とシーラント層4の界面またはシーラント層4の内部の少なくとも一部が剥離できるようになる。その後、膨潤したシーラント層4は微細な開裂(ピンホール等)を生じ、電池内部のガスを穏やかに放出することが可能になる。剥離した少なくとも一部のシーラント層4に微細な開裂を生じるまでの間、シーラント層4の剥離した部分が内圧によって伸びて、密封状態を維持したまま膨潤する場合には、電池内部のガスをより穏やかに放出することが可能になる。この理由の詳細は必ずしも明らかではないが、エチレン酢酸ビニル共重合体、アクリル樹脂、スチレン重合体、及びテルペンフェノール樹脂は、いずれも、シーラント層4を形成する酸変性ポリオレフィンや金属層3を構成する金属との粘着性が高い粘着性樹脂であることに起因して、このような穏やかな開封に導くことが可能になっているものと考えられる。さらに、第1シーラント層4aにエチレン酢酸ビニル共重合体、アクリル樹脂、スチレン重合体、及びテルペンフェノール樹脂からなる群から選択された少なくとも1種を含むことにより、シーラント層4同士をヒートシールした場合のシール強度が高められ、かつ、金属層3とシーラント層4との間におけるラミネート強度も高められる。この理由についても、必ずしも明らかではないが、上記と同様、これらの樹脂が、いずれも、シーラント層4を形成する酸変性ポリオレフィンや金属層3を構成する金属との粘着性が高い粘着性樹脂であるために、シール強度及びラミネート強度が高められるものと考えられる。
 エチレン酢酸ビニル共重合体は、カルボン酸などで酸変性された、酸変性エチレン酢酸ビニル共重合体であってもよい。また、アクリル樹脂は、アクリル酸エステル、メタクリル酸エステル、アクリル酸、メタクリル酸などが単独重合または共重合したものであれば、特に制限されない。スチレン重合体は、スチレンの単独重合体であってもよいし、他のモノマーとの共重合体であってもよい。テルペンフェノール樹脂は、テルペンモノマーとフェノールを共重合したものであれば、特に制限されない。第1シーラント層4aにおいて、エチレン酢酸ビニル共重合体、アクリル樹脂、スチレン重合体、及びテルペンフェノール樹脂は、それぞれ、1種類単独で使用してもよいし、2種類以上を組み合わせて使用してもよい。第1シーラント層4aにおけるエチレン酢酸ビニル共重合体、アクリル樹脂、スチレン重合体、及びテルペンフェノール樹脂の含有量の合計としては、特に制限されないが、電池が昇温された際に、設定温度に到達するまではシーラント層4の剥離した部分が袋状(内袋)になって電池素子が密封された状態を好適に維持し、設定温度到達後に、より穏やかな条件で開封に導く観点、並びに上記のシール強度及びラミネート強度をより高める観点からは、好ましくは5質量%以上、より好ましくは10~90質量%、さらに好ましくは15~85質量%が挙げられる。
(第2シーラント層)
 第2の態様において、第2シーラント層4bは、上記の第1の態様と同様とすることができる。なお、第3の態様において、第2シーラント層4bの融点Tm2と第1シーラント層4aの融点Tm1とは、以下の関係を充足することが好ましい。
m2≧Tm1
 すなわち、第2シーラント層4bの融点Tm2が、第1シーラント層4aの融点Tm1以上となることにより、例えば図3、4、7、8のBに示すように、シーラント層4の剥離した部分が袋状(内袋)になって電池素子が密封された状態を好適に維持し得る。そして、開封温度に到達すると、例えば図3、4、7、8のCに示す状態に迅速に移行し、シーラント層4の剥離した領域にピンホール等の微細な開裂が生じて、より穏やかな条件で開封状態に導くことが可能となる。このような観点からは、第2シーラント層4bの融点Tm2と第1シーラント層4aの融点Tm1とが、以下の関係を充足することがさらに好ましい。
m2≧Tm1+5
 なお、第2の態様における第2シーラント層4bの融点Tm2及び第2シーラント層4bの軟化点Ts2の算出方法は、それぞれ、上記と同様である。
 また、第2シーラント層4bの融点Tm2としては、特に制限されないが、電池が昇温された際に、開封温度に到達するまではシーラント層4の剥離した部分が袋状(内袋)になって電池素子が密封された状態を好適に維持し、開封温度到達後に、より穏やかな条件で開封に導く観点からは、好ましくは100~160℃、より好ましくは105~150℃、さらに好ましくは110~140℃が挙げられる。また、第2シーラント層4bの軟化点Ts2としては、特に制限されないが、同様の観点からは、好ましくは60~150℃、より好ましくは65~140℃、さらに好ましくは70~120℃が挙げられる。
(第3シーラント層など)
 第3の態様において、第3シーラント層4cなどは、上記の第1の態様と同様とすることができる。
F.絶縁層が金属層とシーラント層との間に設けられている場合
[絶縁層6]
 本発明において、図9に示されるように、金属層3とシーラント層4との間に絶縁層6が設けられていてもよい。絶縁層6を有する場合についても、後述の通り、100~160℃の間で定められた設定温度T℃まで昇温した際にT℃に到達するまでは包装材料が開封せず、T℃到達後は迅速に包装材料が開封するように設定された電池に使用される電池用包装材料とすることができる。
 絶縁層6は、酸変性ポリオレフィン樹脂と硬化剤とを含む樹脂組成物により形成されている。本発明の電池用包装材料において、金属層3とシーラント層4との間に、このような特定の樹脂組成物により形成された絶縁層6が設けられていることにより、電極活物質や電極タブの破片などの微小な異物が電池素子とシーラント層4との間に存在する場合にも、電池用包装材料の絶縁性や耐久性が高められる。
 絶縁層6を形成する酸変性ポリオレフィン樹脂としては、特に制限されないが、不飽和カルボン酸またはその酸無水物で変性された酸変性ポリオレフィン樹脂、及び不飽和カルボン酸またはその酸無水物と(メタ)アクリル酸エステルとで変性された酸変性ポリオレフィン樹脂の少なくとも一方であることが好ましい。ここで、不飽和カルボン酸またはその酸無水物で変性された酸変性ポリオレフィン樹脂とは、不飽和カルボン酸またはその酸無水物でポリオレフィン樹脂を変性することにより得られるものである。また、不飽和カルボン酸またはその酸無水物と(メタ)アクリル酸エステルとで変性された酸変性ポリオレフィン樹脂とは、不飽和カルボン酸またはその酸無水物と(メタ)アクリル酸エステルとを併用して、ポリオレフィン樹脂を変性することにより得られるものである。
 変性されるポリオレフィン樹脂は、少なくともモノマー単位としてオレフィンを含む樹脂であれば特に限定されない。ポリオレフィン樹脂は、例えば、ポリエチレン系樹脂及びポリプロピレン系樹脂の少なくとも一方により構成することができ、ポリプロピレン系樹脂により構成することが好ましい。ポリエチレン系樹脂は、例えば、ホモポリエチレン及びエチレン共重合体の少なくとも一方により構成することができる。ポリプロピレン系樹脂は、例えば、ホモポリプロピレン及びプロピレン共重合体の少なくとも一方により構成することができる。プロピレン共重合体としては、エチレン-プロピレン共重合体、プロピレン-ブテン共重合体、エチレン-プロピレン-ブテン共重合体などのプロピレンと他のオレフィンとの共重合体などが挙げられる。ポリプロピレン系樹脂に含まれるプロピレン単位の割合は、電池用包装材料の絶縁性や耐久性をより高める観点から、50モル%~100モル%程度とすることが好ましく、80モル%~100モル%程度とすることがより好ましい。また、ポリエチレン系樹脂に含まれるエチレン単位の割合は、電池用包装材料の絶縁性や耐久性をより高める観点から、50モル%~100モル%程度とすることが好ましく、80モル%~100モル%程度とすることがより好ましい。エチレン共重合体及びプロピレン共重合体は、それぞれ、ランダム共重合体、ブロック共重合体のいずれであってもよい。また、エチレン共重合体及びプロピレン共重合体は、それぞれ、結晶性、非晶性のいずれであってもよく、これらの共重合物または混合物であってもよい。ポリオレフィン樹脂は、1種類のホモポリマーまたは共重合体により形成されていてもよいし、2種類以上のホモポリマーまたは共重合体により形成されていてもよい。
 不飽和カルボン酸としては、例えば、アクリル酸、メタクリル酸、マレイン酸、イタコン酸、フマル酸、クロトン酸などが挙げられる。また、酸無水物としては、上記例示した不飽和カルボン酸の酸無水物が好ましく、無水マレイン酸および無水イタコン酸がより好ましい。ポリオレフィン樹脂の変性において、不飽和カルボン酸は1種類のみを用いてもよいし、2種類以上を用いてもよい。
 (メタ)アクリル酸エステルとしては、例えば、(メタ)アクリル酸と炭素数が1~30のアルコールとのエステル化物、好ましくは(メタ)アクリル酸と炭素数が1~20のアルコールとのエステル化物が挙げられる。(メタ)アクリル酸エステルの具体例としては、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸ブチル、(メタ)アクリル酸ヘキシル、(メタ)アクリル酸オクチル、(メタ)アクリル酸デシル、(メタ)アクリル酸ラウリル、(メタ)アクリル酸オクチル、(メタ)アクリル酸ドデシル、(メタ)アクリル酸ステアリルなどが挙げられる。ポリオレフィン樹脂の変性において、(メタ)アクリル酸エステルは1種類のみを用いてもよいし、2種類以上を用いてもよい。
 酸変性ポリオレフィン樹脂中における不飽和カルボン酸またはその酸無水物の割合は、それぞれ、0.1質量%~30質量%程度であることが好ましく、0.1質量%~20質量%程度であることがより好ましい。このような範囲とすることにより、電池用包装材料の絶縁性や耐久性をより高め得る。
 また、酸変性ポリオレフィン樹脂中における(メタ)アクリル酸エステルの割合は、0.1質量%~40質量%程度であることが好ましく、0.1質量%~30質量%程度であることがより好ましい。このような範囲とすることにより、電池用包装材料の絶縁性や耐久性をより高め得る。
 酸変性ポリオレフィン樹脂の重量平均分子量は、6000~200000程度であることが好ましく、8000~150000程度であることがより好ましい。このような範囲とすることにより、金属層3とシーラント層4に対する絶縁層6の親和性を安定化できるため、金属層3とシーラント層4の接着性を長期に安定化させることができる。さらに、耐熱も向上させることができるため、電池用包装材料の絶縁性や耐久性をより高め得る。なお、酸変性ポリオレフィン樹脂の重量平均分子量は、標準サンプルとしてポリスチレンを用いた条件で測定された、ゲル浸透クロマトグラフィ(GPC)により測定された値である。
 酸変性ポリオレフィン樹脂において、ポリオレフィン樹脂の変性方法は、特に限定されず、例えば不飽和カルボン酸またはその酸無水物や、(メタ)アクリル酸エステルがポリオレフィン樹脂と共重合されていればよい。このような共重合としては、ランダム共重合、ブロック共重合、グラフト共重合(グラフト変性)などが挙げられ、好ましくはグラフト共重合が挙げられる。
 硬化剤は、上記の酸変性ポリオレフィン樹脂を硬化させるものであれば、特に限定されない。硬化剤としては、例えば、後述の接着層5で例示したものが挙げられる。
 絶縁層6の機械的強度を高めるなどの観点から、硬化剤は、2種類以上の化合物により構成されていてもよい。
 樹脂組成物において、硬化剤の含有量は、酸変性ポリオレフィン樹脂100質量部に対して、0.1質量部~50質量部の範囲にあることが好ましく、0.1質量部~30質量部の範囲にあることがより好ましい。また、樹脂組成物において、硬化剤の含有量は、酸変性ポリオレフィン樹脂中のカルボキシル基1当量に対して、硬化剤中の反応基として1当量~30当量の範囲にあることが好ましく、1当量~20当量の範囲にあることがより好ましい。これにより、電池用包装材料の絶縁性や耐久性をより高め得る。
 また、絶縁層6にオレフィン系ゴム様添加剤や炭化水素系蝋を添加することにより、絶縁層6により高い柔軟性を持たせ、圧縮時の応力分散による異物噛み込み時のつぶれの抑制や、延伸時の微細クラック防止などが可能となる。オレフィン系ゴム様添加剤としては、三井化学のタフマーP、タフマーA、タフマーH、タフマーXM、タフマーBL、タフマーPNや、住友化学のタフセレン等のαオレフィンコポリマー等が挙げられる。また、炭化水素系蝋としてはパラフィン等が挙げられる。
 電池の製造工程において、電極活物質や電極タブの破片などの微小な異物が、シーラント層の表面に付着する場合があり、これによって、シーラント層に薄肉部分や貫通孔が生じ、絶縁性が低下する虞がある。これに対して、本発明の電池用包装材料においては、上記のような酸変性ポリオレフィン樹脂及び硬化剤を含む樹脂組成物から形成され、ヒートシール時などの熱が加わったときの高い耐熱機械的強度を有し、柔軟性も高く、屈曲などの応力による微細クラックの発生を抑制できる絶縁層6が形成されている。このため、シーラント層4において、薄肉部分で発生し易い微細クラック、異物などによる貫通孔、電解液を噛み込んだ状態でヒートシールされた場合に発生するシーラント層4の発泡による空隙などが形成された場合にも、絶縁層6によって電解液が直接金属層と接触することが防止でき、金属層3が保護される。また、シーラント層4が異物などを噛み込んだ時なども、耐熱性が高く、機械的強度と柔軟性も高い絶縁層6によって、異物による電池用包装材料の絶縁性低下を防止できる。
 また、絶縁層6は、酸変性ポリオレフィン樹脂及び硬化剤を含む樹脂組成物により形成されていることに加えて、下記式(1)の関係を充足するように設定される。
-10≦TA-T≦-5  (1)
 T:100~160℃の間で定められる設定温度(℃)
 TA:絶縁層の融点(℃)
 このように絶縁層6の融点TAを設定温度Tよりも所定範囲で低い値に設定することによって、電池がT℃に至るまで高温に晒された場合には、絶縁層6が溶融状態に変化し、金属層3と絶縁層6の界面から絶縁層6の少なくとも一部が剥離できるようになる。そして、金属層3から剥離した少なくとも一部の絶縁層6は、後述のシーラント層4と共に内圧によって伸びて、密封状態を維持したまま膨潤し、その後、膨潤した絶縁層6及びシーラント層4はT℃到達から30分以内に微細な開裂(ピンホール等)を生じ、電池内部のガスを穏やかに放出することが可能になる。Tは、140~160℃の間で定められる設定温度(℃)であることが好ましい。
 ここで、絶縁層6の融点TAは、上記の第1シーラント層4aの融点Tm1と同様にして算出された値である。
 樹脂の融点は、分子量、構成モノマーの種類や比率等によって定まるため、絶縁層6に配合される酸変性ポリオレフィン樹脂は、絶縁層6の融点の範囲を充足するように、その分子量、構成モノマーの種類や比率等が適宜設定される。
 絶縁層6の厚みは、電池用包装材料に適した厚みであれば特に限定されないが、例えば、0.1μm~20μm程度、好ましくは0.5μm~15μm程度とすることができる。本発明の電池用包装材料は、電池の形状に合わせて種々の形状に成型されるため、ある程度の柔軟性も求められている。電池用包装材料において、絶縁層6の厚みをこのような範囲とすることにより、電池用包装材料の柔軟性を保持しつつ、絶縁性や耐久性をより高め得る。
 絶縁層6は、2層以上の多層構造としてもよい。これにより、シーラント層4と共に第1の絶縁層に薄肉部分や貫通孔が形成された場合にも、第2、第3の絶縁層で絶縁性を保つことができる。
[絶縁層を有する場合のシーラント層]
 本発明の電池用包装材料において、絶縁層6を有する場合、シーラント層4は、ポリオレフィン樹脂を含む第1シーラント層4aを有する。シーラント層4は、複数の層により形成されていてもよく、必要に応じて、第1シーラント層4a側から金属層3側に向かって順に、酸変性ポリオレフィン樹脂及びポリオレフィン樹脂の少なくとも一方を含む第2シーラント層4b、酸変性ポリオレフィン樹脂及びポリオレフィン樹脂の少なくとも一方を含む第3シーラント層4cなどを有していてもよい。シーラント層4が複数の層により形成されている場合、電池を組み立てる際に、ポリオレフィン樹脂を含む第1シーラント層4aが電池用包装材料の最内層に位置するように配された層構造を備える。
(第1シーラント層)
 第1シーラント層4aは、ポリオレフィン樹脂を含み、電池用包装材料の最内層に位置する層である。第1シーラント層4aの形成に使用されるポリオレフィン樹脂としては、上記融点を充足することを限度として特に制限されず、例えば、上記で例示したものが挙げられる。
 第1シーラント層4aは、ポリオレフィン樹脂のみから形成されていてもよく、また必要に応じてポリオレフィン樹脂以外の樹脂を含んでいてもよい。第1シーラント層4aにポリオレフィン樹脂以外の樹脂を含有させる場合、第1シーラント層4a中のポリオレフィンの含有量については、本発明の効果を妨げない限り特に制限されないが、例えば10~95質量%、好ましくは30~90質量%、更に50~80質量%が挙げられる。
 第1シーラント層4aにおいてポリオレフィン樹脂以外に、必要に応じて含有できる樹脂としては、例えば、酸変性ポリオレフィン樹脂などが挙げられる。酸変性ポリオレフィン樹脂としては、上記で例示したものが挙げられる。また、変性に使用される不飽和カルボン酸またはその酸無水物としては、上記で例示したものが挙げられる。
 第1シーラント層4aに、ポリオレフィン樹脂以外の樹脂を含有させる場合、当該樹脂の含有量については、本発明の目的を妨げない範囲で適宜設定される。例えば、第1シーラント層4aに酸変性ポリオレフィン樹脂を含有させる場合、第1シーラント層4a中の酸変性ポリオレフィン樹脂の含有量としては、通常5~60質量%、好ましくは10~50質量%、更に好ましくは20~40質量%が挙げられる。
 また、第1シーラント層4aは、ポリオレフィン樹脂を含むことに加えて、下記式(2)を充足するように設定される。
-5≦Tm1-T≦5  (2)
 T:100~160℃の間で定められる設定温度(℃)
 Tm1:第1シーラント層の融点(℃)
 このように第1シーラント層4aの融点Tm1が、絶縁層6の融点TA以上に設定され、且つ設定温度Tと5℃前後の温度域に設定することによって、電池が設定温度T℃に至るまでに高温に晒されて金属層3と絶縁層6の界面から絶縁層6の少なくとも一部が剥離して絶縁層6及びシーラント層4が密封状態で膨潤した際に、絶縁層6及びシーラント層4の内部で亀裂が進行して凝集破壊により急激に開封されるのを抑制して、微細な開裂(ピンホール等)を生じさせ、T℃到達後は迅速に電池内部のガスを穏やかに放出することが可能になる。第1シーラント層4aの融点Tm1が設定温度Tよりも5℃を超える温度域に設定されていると、ヒートシール自体が困難になり、シール強度がばらついたり、T℃に到達しても迅速にシーラント層4を開封させることができなくなったりする傾向が見られる。
 なお、第1シーラント層4aの融点Tm1の算出方法は、絶縁層6の融点TAの場合と同様である。
 樹脂の融点は、分子量、構成モノマーの種類や比率等によって定まるため、第1シーラント層4aに配合されるポリオレフィン樹脂及び必要に応じて配合される他の樹脂は、第1シーラント層4aの融点の範囲を充足するように、その分子量、構成モノマーの種類や比率等が適宜設定される。
 第1シーラント層4aの厚みとしては、例えば、5~40μm、好ましくは10~35μm、更に好ましくは15~30μmが挙げられる。
(絶縁層と第1シーラント層の融点の関係)
 絶縁層6と第1シーラント層4aは、前述する融点を各々充足することにより、0≦(Tm1-TA)≦15の関係を充足することになる。
(第2シーラント層)
 第2シーラント層4bは、シーラント層4が複層により形成される場合に、必要に応じて、第1シーラント層4aと絶縁層6との間に設けられる層である。第2シーラント層4bは、ポリオレフィン樹脂及び酸変性ポリオレフィンの少なくとも一方を含む。第2シーラント層の形成に使用されるポリオレフィン樹脂及び酸変性ポリオレフィンとしては、それぞれ、第1シーラント層4aと同じものが挙げられる。
 第2シーラント層4bは、上記融点を備えることを限度として、酸変性ポリオレフィン樹脂及びポリオレフィン樹脂にいずれか一方のみから形成されていてもよく、また必要に応じて他の樹脂を含んでいてもよい。第2シーラント層4bが酸変性ポリオレフィンを含む場合、第2シーラント層4b中の酸変性ポリオレフィン樹脂の含有量については、本発明の効果を妨げない限り特に制限されないが、例えば5~95質量%、好ましくは10~90質量%、更に20~80質量%が挙げられる。また、第2シーラント層4bがポリオレフィン樹脂を含む場合、第2シーラント層4b中のポリオレフィン樹脂の含有量については、本発明の効果を妨げない限り特に制限されないが、例えば5~95質量%、好ましくは10~90質量%、更に20~80質量%が挙げられる。
 また、第2シーラント層4bは、下記式(3)を充足するように設定される。
5≦Tm2-T≦10  (3)
 T:100~160℃の間で定められる設定温度(℃)
 Tm2:第2シーラント層の融点(℃)
 このように第2シーラント層の融点Tm2が、絶縁層の融点TA以上に設定され、且つ設定温度Tより5℃~10℃の高温域に設定することによって、電池が設定温度T℃に至るまでに高温に晒され、絶縁層6が溶融状態になって金属層3と絶縁層6の界面から絶縁層6の少なくとも一部が剥離しても、第2シーラント層4bは内圧で膨潤しながら密封状態を維持するように機能し、設定温度T℃到達後には、迅速に微細な開裂(ピンホール等)を生じさせ、電池内部のガスを穏やかに放出することが可能になる。更に、第2シーラント層4bの融点Tm2が、絶縁層6の融点TA以上且つ第1シーラント層の融点Tm1と同等以上に設定されているため、設定温度T℃に至るまで昇温された場合であっても優れた絶縁性を備えさせることもできる。
 なお、第2シーラント層4bの融点Tm2の算出方法は、絶縁層6の融点TAの場合と同様である。
 樹脂の融点は、分子量、構成モノマーの種類や比率等によって定まるため、第2シーラント層4bに配合される酸変性ポリオレフィン及び必要に応じて配合される他の樹脂は、第2シーラント層4bの融点の範囲を充足するように、その分子量、構成モノマーの種類や比率等が適宜設定される。
 また、第2シーラント層4bの厚みとしては、例えば、5~40μm、好ましくは10~35μm、更に好ましくは15~30μmが挙げられる。
(絶縁層及び第2シーラント層の各融点の関係)
 絶縁層6と第2シーラント層4bは、前述する融点を各々充足することにより、10≦(Tm2-TA)≦20の関係を充足することになる。
(第3シーラント層)
 第3シーラント層4cは、シーラント層4が複層により形成される場合に、必要に応じて、第2シーラント層4bと絶縁層6との間に設けられる層である。第3シーラント層4cは、第2シーラント層4bと同様の樹脂により形成される。また、第3シーラント層4cの融点、厚みなどについても、第2シーラント層4bと同様とすることができる。
(絶縁層を有する場合のシーラント層4の厚み)
 絶縁層6を有する場合のシーラント層4の厚みとしては、第1シーラント層4a、必要に応じて設けられる第2シーラント層、第3シーラント層などの各々の厚みに基づいて定められるが、例えば、15~120μm、好ましくは60~80μm、更に好ましくは30~60μmが挙げられる。
[接着層5]
 本発明の電池用包装材料においては、金属層3とシーラント層4とを強固に接着させることなどを目的として、図2に示されるように、金属層3とシーラント層4との間に接着層5をさらに設けてもよい。接着層5は、1層により形成されていてもよいし、複数層により形成されていてもよい。
 接着層5は、金属層3とシーラント層4とを接着可能な樹脂によって形成される。接着層5を形成する樹脂としては、金属層3とシーラント層4とを接着可能な樹脂であれば特に制限されないが、好ましくは上記の酸変性ポリオレフィン、ポリエステル樹脂、フッ素系樹脂、ポリエーテル系樹脂、ポリウレタン系樹脂、エポキシ系樹脂、フェノール樹脂系樹脂、ポリアミド系樹脂、ポリオレフィン系樹脂、ポリ酢酸ビニル系樹脂、セルロース系樹脂、(メタ)アクリル系樹脂、ポリイミド系樹脂、アミノ樹脂、ゴム、シリコン系樹脂等が挙げられる。接着層5を形成する樹脂は、1種類単独で使用してもよいし、2種類以上を組み合わせて使用してもよい。
 接着層5は、これらの樹脂の少なくとも1種のみから形成されていてもよく、また必要に応じてこれら以外の樹脂成分を含んでいてもよい。接着層5にこれら以外の樹脂成分を含有させる場合、シーラント層4中の酸変性ポリオレフィン、ポリエステル樹脂、フッ素系樹脂、ポリエーテル系樹脂、ポリウレタン系樹脂、エポキシ系樹脂、フェノール樹脂系樹脂、ポリアミド系樹脂、ポリオレフィン系樹脂、ポリ酢酸ビニル系樹脂、セルロース系樹脂、(メタ)アクリル系樹脂、ポリイミド系樹脂、アミノ樹脂、ゴム、及びシリコン系樹脂の含有量については、本発明の効果を妨げない限り特に制限されないが、例えば10~95質量%、好ましくは30~90質量%、更に50~80質量%が挙げられる。
 また、接着層5は、硬化剤をさらに含むことが好ましい。接着層5が硬化剤を含むことにより、接着層5の機械的強度が高められ、電池用包装材料の絶縁性を効果的に高めることができる。硬化剤は、1種類単独で使用してもよいし、2種類以上を組み合わせて使用してもよい。
 硬化剤は、酸変性ポリオレフィン、ポリエステル樹脂、フッ素系樹脂、ポリエーテル系樹脂、ポリウレタン系樹脂、エポキシ系樹脂、フェノール樹脂系樹脂、ポリアミド系樹脂、ポリオレフィン系樹脂、ポリ酢酸ビニル系樹脂、セルロース系樹脂、(メタ)アクリル系樹脂、ポリイミド系樹脂、アミノ樹脂、ゴム、またはシリコン系樹脂を硬化させるものであれば、特に限定されない。硬化剤としては、例えば、多官能イソシアネート化合物、カルボジイミド化合物、エポキシ化合物、オキサゾリン化合物などが挙げられる。
 多官能イソシアネート化合物は、2つ以上のイソシアネート基を有する化合物であれば、特に限定されない。多官能イソシアネート化合物の具体例としては、イソホロンジイソシアネート(IPDI)、ヘキサメチレンジイソシアネート(HDI)、トリレンジイソシアネート(TDI)、ジフェニルメタンジイソシアネート(MDI)、これらをポリマー化やヌレート化したもの、これらの混合物や他ポリマーとの共重合物などが挙げられる。
 カルボジイミド化合物は、カルボジイミド基(-N=C=N-)を少なくとも1つ有する化合物であれば、特に限定されない。カルボジイミド化合物としては、カルボジイミド基を少なくとも2つ以上有するポリカルボジイミド化合物が好ましい。特に好ましいカルボジイミド化合物の具体例としては、下記一般式(5):
Figure JPOXMLDOC01-appb-C000005
[一般式(5)において、nは2以上の整数である。]
で表される繰り返し単位を有するポリカルボジイミド化合物、
 下記一般式(6):
Figure JPOXMLDOC01-appb-C000006
[一般式(6)において、nは2以上の整数である。]
で表される繰り返し単位を有するポリカルボジイミド化合物、
 及び下記一般式(7):
Figure JPOXMLDOC01-appb-C000007
[一般式(7)において、nは2以上の整数である。]
で表されるポリカルボジイミド化合物が挙げられる。一般式(4)~(7)において、nは、通常30以下の整数であり、好ましくは3~20の整数である。
 エポキシ化合物は、少なくとも1つのエポキシ基を有する化合物であれば、特に限定されない。エポキシ化合物としては、例えば、ビスフェノールAジグリシジルエーテル、変性ビスフェノールAジグリシジルエーテル、ノボラックグリシジルエーテル、グリセリンポリグリシジルエーテル、ポリグリセリンポリグリシジルエーテルなどのエポキシ樹脂が挙げられる。
 オキサゾリン化合物は、オキサゾリン骨格を有する化合物であれば、特に限定されない。オキサゾリン化合物としては、具体的には、日本触媒社製のエポクロスシリーズなどが挙げられる。
 接着層5の機械的強度を高めるなどの観点から、硬化剤は、2種類以上の化合物により構成されていてもよい。
 接着層5において、硬化剤の含有量は、酸変性ポリオレフィン、ポリエステル樹脂、フッ素系樹脂、ポリエーテル系樹脂、ポリウレタン系樹脂、エポキシ系樹脂、フェノール樹脂系樹脂、ポリアミド系樹脂、ポリオレフィン系樹脂、ポリ酢酸ビニル系樹脂、セルロース系樹脂、(メタ)アクリル系樹脂、ポリイミド系樹脂、アミノ樹脂、ゴム、またはシリコン系樹脂100質量部に対して、0.1質量部~50質量部の範囲にあることが好ましく、0.1質量部~30質量部の範囲にあることがより好ましい。また、接着層5において、硬化剤の含有量は、酸変性ポリオレフィンなどの各樹脂中のカルボキシル基1当量に対して、硬化剤中の反応基として1当量~30当量の範囲にあることが好ましく、1当量~20当量の範囲にあることがより好ましい。これにより、電池用包装材料の絶縁性や耐久性をより高め得る。
 接着層5が硬化剤を含む場合、接着層5は、2液硬化型接着樹脂により形成してもよいし、1液硬化型接着樹脂により形成してもよい。さらに、接着剤の接着機構についても、特に制限されず、化学反応型、溶剤揮発型、熱溶融型、熱圧型、UVやEBなどの電子線硬化型等のいずれであってもよい。
 本発明の電池用包装材料の密閉性と開封性とをより効果的に奏する観点から、接着層5の融点Tm2としては、好ましくは90~245℃、より好ましくは100~230℃が挙げられる。また、同様の観点から、接着層5の軟化点Ts2としては、好ましくは70~180℃、より好ましくは80~150℃が挙げられる。
 なお、接着層5の融点Tm2、軟化点Ts2の算出方法は、シーラント層4の場合と同様である。
 接着層5の厚みとしては、特に制限されないが、好ましくは0.01μm以上、より好ましくは0.05~20μmが挙げられる。なお、接着層5の厚みが0.01μm未満であると、金属層3とシーラント層4との間を安定して接着させることが困難になる場合がある。
4.電池用包装材料の製造方法
 本発明の電池用包装材料の製造方法については、所定の組成の各層を積層させた積層体が得られる限り、特に制限されないが、例えば、以下の方法が例示される。
 まず、基材層1、必要に応じて接着層2、金属層3が順に積層された積層体(以下、「積層体A」と表記することもある)を形成する。接着層2を有する場合の積層体Aの形成は、具体的には、基材層1、接着層2、及び必要に応じて表面が化成処理された金属層3をサーマルラミネート法、サンドラミネート法、ドライラミネート法、溶融押出し法、共押出し法又はこれらの組み合わせ等によって積層させることにより行われる。なお、積層体Aの形成において、エージング処理、加水処理、加熱処理、電子線処理、紫外線処理等を行うことにより、接着層2による基材層1と金属層3との接着の安定性が高め得る。また、金属層3の上に直接基材層1を積層して積層体Aを形成する方法としては、サーマルラミネート法、溶液コーティング法、溶融押出し法、共押出し法又はこれらの組み合わせ等によって積層させる方法が挙げられる。この際、エージング処理、加水処理、加熱処理、電子線処理、紫外線処理等を行うことにより、基材層1と金属層3との接着の安定性を高め得る。
 ドライラミネート法による積層体Aの形成においては、例えば、接着層2を構成する樹脂を水または有機溶剤に溶解または分散させ、当該溶解液または分散液を基材層1の上にコーティングし、水または有機溶剤を乾燥させることにより、基材層1に上に接着層2を形成した後、金属層3を加熱圧着して行うことができる。
 サーマルラミネート法による積層体Aの形成は、例えば、基材層1と接着層2とが積層された多層フィルムを予め用意し、接着層2に金属層3を重ね合わせて加熱ロールにより、基材層1と金属層3で接着層2を挟持しながら熱圧着することにより行うことができる。また、サーマルラミネート法による積層体Aの形成は、金属層3と接着層2とが積層された多層フィルムを予め用意し、加熱した金属層3と接着層2に基材層1を重ね合わせて基材層1と金属層3で接着層2を挟持しながら熱圧着することにより行ってもよい。
 なお、サーマルラミネート法において予め用意する基材層1と接着層2とが積層された多層フィルムは、基材層1を構成する樹脂フィルムに接着層2を構成する接着剤を溶融押し出し又は溶液コーティング(液状塗工)により積層して乾燥させた後、接着層2を構成する接着剤の融点以上の温度で焼付けて形成する。焼付けを行うことにより、金属層3と接着層2との接着強度が向上する。また、サーマルラミネート法において予め用意する金属層3と接着層2とが積層された多層フィルムについても、同様に金属層3を構成する金属箔に接着層2を構成する接着剤を溶融押し出し又は溶液コーティングにより積層して乾燥させた後、接着層2を構成する接着剤の融点以上の温度で焼付けることにより形成される。
 また、サンドラミネート法による積層体Aの形成は、例えば、接着層2を構成する接着剤を金属層3の上面に溶融押し出しして基材層1を構成する樹脂フィルムを金属層に貼り合わせることにより行うことができる。このとき、樹脂フィルムを貼り合わせて仮接着した後、再度加熱して本接着を行うことが望ましい。なお、サンドラミネート法においても接着層2を異なる樹脂種で多層化してもよい。この場合、基材層1と接着層2とが積層された多層フィルムを予め用意し、金属層3の上面に接着層2を構成する接着剤を溶融押出して多層の樹脂フィルムとサーマルラミネート法により積層すればよい。これにより、多層フィルムを構成する接着層2と、金属層3の上面に積層された接着層2とが接着して2層の接着層2が形成される。接着層2を異なる樹脂種で多層化する場合には、金属層3と接着層2とが積層された多層フィルムを予め用意し、基材層1上に接着層2を構成する接着剤を溶融押出して、これを金属層3上の接着層2と積層してもよい。これにより、多層の樹脂フィルと基材層1との間に2層の異なる接着剤で構成される接着層2が形成される。
 次いで、積層体Aの金属層3上に、シーラント層4を積層させる。積層体Aの金属層3上へのシーラント層4の積層は、共押出し法、サーマルラミネート法、サンドラミネート法、コーティング法、又はこれらの組み合わせ等によって行うことができる。例えば、接着層5を設けない場合、シーラント層4は、金属層3の上にシーラント層4を溶融押出し法、サーマルラミネート法、コーティング法などにより形成することができる。また、接着層5を設ける場合、金属層3の上に接着層5を溶融押出し法、サーマルラミネート法、コーティング法などにより形成した後、同様の方法でシーラント層4を形成することができる。また、金属層3の上に、接着層5とシーラント層4とを同時に溶融押出しする共押出し法を行ってもよい。また、金属層3上に接着層5を溶融押出しすると共に、フィルム状のシーラント層4を貼り合わせるサンドラミネート法を行うこともできる。シーラント層4が2層により形成されている場合、例えば、金属層3上に接着層5とシーラント層4の1層を共押出しした後、シーラント層4の他の1層をサーマルラミネート法で貼り付ける方法が挙げられる。また、金属層3上に接着層5とシーラント層4の1層を共押出しすると共に、フィルム状のシーラント層4の他の1層を貼り合わせる方法なども挙げられる。なお、シーラント層4を3層以上にする場合、さらに溶融押出し法、サーマルラミネート法、コーティング法などによってシーラント層4を形成することができる。
 上記のようにして、基材層1/必要に応じて形成される接着層2/必要に応じて表面が化成処理された金属層3/必要に応じて形成される接着層5/シーラント層4からなる積層体が形成される。接着層2の接着性を強固にするために、更に、熱ロール接触、熱風、近又は遠赤外線照射、誘電加熱、熱抵抗加熱等の加熱処理に供してもよい。このような加熱処理の条件としては、例えば150~250℃で1~10時間が挙げられる。
 また、本発明の電池用包装材料において、積層体を構成する各層は、必要に応じて、製膜性、積層化加工、最終製品2次加工(パウチ化、エンボス成形)適性等を向上又は安定化するために、コロナ処理、ブラスト処理、酸化処理、オゾン処理等の表面活性化処理を施していてもよい。
 本発明の電池用包装材料を用いて電池素子を包装する際には、2枚の電池用包装材料は、同一のものを用いてもよいし、異なるものを用いてもよい。異なる2枚の電池用包装材料を用いて電池素子を包装する場合の各電池用包装材料の積層構造の具体例としては、例えば以下のようなものが挙げられる。一方の電池用包装材料:基材層1(ナイロン層)/接着層2(2液硬化型ポリエステル樹脂層)/金属層3(アルミニウム箔層)/接着層5(酸変性ポリプロピレン層)/シーラント層4(ポリプロピレン層)他方の電池用包装材料:基材層1(アクリル-ウレタンコート層)/金属層3(ステンレ
ス層)/接着層5(フッ素系樹脂層)/シーラント層4(ポリプロピレン)
5.電池用包装材料の特性及び用途
 本発明の電池用包装材料は、電池内の圧力や温度の上昇がある一定の水準になるまでは電池素子を密封した状態を維持でき、しかも電池内の圧力や温度の上昇が持続的に進行した状態になった時点で迅速且つ穏やかに開封して、電池用包装材料の過剰な膨張、電池反応の暴走、発火などを抑制できる。特に、本発明の電池用包装材料において、電池内の圧力や温度の上昇がある一定の水準になるまでに金属層3とシーラント層4の外側表面との間の少なくとも一部において剥離が生じ、剥離が生じた部分において内袋が形成され、その後に内袋が開裂して包装材料が開封する場合には、より穏やかに開封でき、電池用包装材料の過剰な膨張、電池反応の暴走、発火などをより効果的に抑制できる。本発明の電池用包装材料のより具体的な特性としては、例えば、シーラント層4同士をヒートシールして密封空間を形成した状態で、大気圧下で室温25℃から5℃/分の昇温速度で昇温すると、100~160℃の範囲のある一定の温度(設定温度T℃)に到達するまでは包装材料が開封せず、その後に包装材料が穏やかに開封する特性を備えることができる。例えば、本発明の電池用包装材料は、以下に示す加熱条件下で、上記のある一定の温度に到達するまでは包装材料が開封せず、開封温度到達後穏やかに開封する特性を備えることが可能になる。
<加熱条件>
(1)縦80mm及び横150mmの形状に裁断した電池用包装材料の中心部に、深さ3mm、縦35及び横50mmの凹部を形成し、凹部の周囲に縁部を有する形状に成形する。
(2)前記で成形した電池用包装材料のシーラント層4ともう1枚の未成形の電池用包装材料のシーラント層4とが対向するように縁部を重ねあわせ、該縁部をヒートシール(175℃、面圧1.4MPaで3秒間)して、密封された内部空間(圧力1atm)を有するケース状にする。
(3)前記でケース状にした電池用包装材料を、大気圧下でオーブンに入れて、5℃/分の昇温速度で、100~160℃の間の設定温度T℃まで加熱し、設定温度T℃到達後は、設定温度T℃を維持する。
 また、上記の項目A~Fで示した具体的態様においては、以下に示す加熱条件下で、上記のある一定の温度に到達するまでは包装材料が開封せず、開封温度到達後穏やかに開封する特性を備えることが可能になる。なお、定められる設定温度Tは、好ましくは140~160℃の間で設定され、包装対象となる電池の種類、用途、安全性の基準等で当該設定温度は異なる。例えば、安全性の基準上、前記設定温度Tが140℃に定められた電池もあれば、前記設定温度Tが160℃に定められた電池もある。本発明の電池用包装材料は、適用対象となる電池が要求する前記設定温度に応じた密封性と開封性を備えた包装材料として提供される。また、前記電池において要求されるT℃到達後に開封状態に移行する時間は、安全性を確保できる範囲で定められるものであり、電池の種類や用途、昇温速度等に応じて異なるが、通常は60分以内であり、さらに好ましくは30分以内であり、当該電池用包装材料は当該時間を満足することができる。
<加熱条件>
(1)縦80mm及び横150mmの形状に裁断した電池用包装材料の中心部に、深さ3mm、縦35及び横50mmの凹部を形成し、凹部の周囲に縁部を有する形状に成形する。このような形状に成形した電池用包装材料を2枚準備する。
(2)前記で成形した電池用包装材料2枚のシーラント層同士が対向するように縁部を重ねあわせ、該縁部をヒートシール(175℃、3秒、面圧1.4MPa)して、密封された内部空間(圧力1atm)を有するケース状にする。
(3)前記でケース状にした電池用包装材料を、減圧可能なオーブンに入れて、オーブン内の圧力が0atmになるように設定し、3℃/分の昇温速度で、100~160℃の間で定められた設定温度T℃まで加熱し、設定温度T℃到達後は、設定温度T℃を維持する。
 なお、低温域で電池用包装材料を開封させる上記の第1~第3の態様では、上記加熱条件(3)の加熱温度は、電池用包装材料が開封するまでの温度とし、例えば150℃に到達した時点で開封しない場合には、150℃を維持し、150℃到達後から開封するまでの時間を計測する。この試験において、加熱温度の上限は、150℃に限定されず、任意に設定される開封温度(例えば100~160℃の間の温度)まで昇温した後、当該温度を維持し、当該温度到達後から開封するまでの時間を計測して特性を評価してもよい。
 本発明の電池用包装材料の密閉性と開封性とをより効果的に奏する観点から、本発明の電池用包装材料において、25℃における金属層3とシーラント層4との間におけるラミネート強度としては、好ましくは3(N/15mm)以上、より好ましくは4~20(N/15mm)が挙げられる。25℃における当該ラミネート強度が低すぎる場合、設定温度に達する前に開封してしまう虞がある。また、同様の観点から、80℃における金属層3とシーラント層4との間におけるラミネート強度としては、好ましくは2.5(N/15mm)以上、より好ましくは3~20(N/15mm)が挙げられる。80℃における当該ラミネート強度が低すぎる場合にも、80℃を下回る温度で開封してしまう虞がある。さらに、同様の観点から、125℃における金属層3とシーラント層4とのラミネート強度としては、2.5(N/15mm)以下、より好ましくは0.1~2.2(N/15mm)が挙げられる。125℃における当該ラミネート強度が高すぎる場合、設定温度を超えても電池用包装材料が迅速に開封されず、温度及び内圧が非常に高くなった状態で急激に開封が生じ、電池内部の電解液や電池素子が飛び出してしまう場合がある。
 また、同様の観点から、本発明の電池用包装材料において、シーラント層4同士を対向させた状態でヒートシール(ヒートシール条件:190℃、面圧1.0MPaで3秒間)した部分のシール強度としては、25℃において、好ましくは30(N/15mm)以上、より好ましくは40~200(N/15mm)が挙げられる。25℃における当該シール強度が低すぎる場合、設定温度に達する前に開封してしまう虞がある。また、同様の観点から、本発明の電池用包装材料において、シーラント層4同士を対向させた状態でヒートシール(ヒートシール条件:190℃、面圧1.0MPaで3秒間)した部分のシール強度としては、125℃において、好ましくは20(N/15mm)以下、より好ましくは5~16(N/15mm)が挙げられる。125℃における当該シール強度が高すぎる場合、設定温度を超えても電池用包装材料が迅速に開封されず、温度及び内圧が非常に高くなった状態で急激に開封が生じ、電池内部の電解液や電池素子が飛び出してしまう場合がある。
 さらに、同様の観点から、本発明の電池用包装材料において、シーラント層4同士を対向させた状態でヒートシール(ヒートシール条件:190℃、面圧1.0MPaで3秒間)して得られる袋状の包装材料において、当該袋状の包装材料の内部空間に電解液を含む状態で、85℃で24時間放置した後における、金属層とシーラント層のラミネート強度が、85℃において0.1(N/15mm)以上であることが好ましく、0.2(N/15mm)以上であることがより好ましい。当該電解液と接触させた場合のラミネート強度が低すぎる場合、電池が高温下で保管される場合や、電池の充放電で発生する熱などによりに金属層3とシーラント層4との間において、デラミネーションが発生し、電池用包装材料の強度が不十分となる場合がある。
 本発明の電池用包装材料は、前述する開封特性を備え、しかも開封時には微細な開裂によって穏やかに開封する。このため、本発明の電池用包装材料は、ある設定温度T℃まで昇温した際に、T℃に到達するまでは包装材料が開封せず、T℃到達後は迅速に包装材料が開封するように設定された電池の包装用材料として好適に使用することができる。なお、前記電池で定められる設定温度Tは、例えば100~160℃の間、好ましくは120~150℃の間で設定され、包装対象となる電池の種類、用途、安全性の基準等で当該設定温度は異なる。例えば、安全性の基準上、設定温度Tが100℃に定められた電池もあれば、設定温度Tが160℃に定められた電池もある。本発明の電池用包装材料は、適用対象となる電池が要求する設定温度に応じた密封性と開封性を備えた包装材料として提供される。また、前記電池において要求されるT℃到達後に開封状態に移行する時間は、安全性を確保できる範囲で定められるものであり、電池の種類や用途、昇温速度等に応じて異なるが、通常は60分以内であり、さらに好ましくは30分以内であり、本発明の電池用包装材料は当該時間を満足することができる。
 本発明の電池用包装材料は、具体的には、正極、負極、電解質等の電池素子を密封して収容するために使用され得るものであり、当該電池素子を収容するための空間が設けられる。当該空間は、例えば、短形状に裁断された積層シートをプレス成型することにより形成される。
 より具体的には、少なくとも正極、負極、及び電解質を備えた電池素子を、本発明の電池用包装材料で、前記正極及び負極の各々に接続された金属端子が外側に突出させた状態で、電池素子の周縁にフランジ部(シーラント層4同士が接触する領域)が形成できるようにして被覆し、前記フランジ部のシーラント層4同士をヒートシールして密封させることによって、電池用包装材料を使用した電池が提供される。なお、本発明の電池用包装材料を用いて電池素子を収容する場合、本発明の電池用包装材料のシーラント層4が内側(電池素子と接する面)になるようにして用いられる。
 本発明の電池用包装材料は、一次電池、二次電池のいずれに使用してもよいが、好ましくは二次電池である。本発明の電池用包装材料が適用される二次電池の種類については、特に制限されず、例えば、リチウムイオン電池、リチウムイオンポリマー電池、鉛畜電池、ニッケル・水素畜電池、ニッケル・カドミウム畜電池、ニッケル・鉄畜電池、ニッケル・亜鉛畜電池、酸化銀・亜鉛畜電池、金属空気電池、多価カチオン電池、コンデンサー、キャパシター等が挙げられる。これらの二次電池の中でも、本発明の電池用包装材料の好適な適用対象として、リチウムイオン電池及びリチウムイオンポリマー電池が挙げられる。
 以下に実施例及び比較例を示して本発明を詳細に説明する。但し、本発明は実施例に限定されるものではない。
実施例1-17及び比較例1-4
[電池用包装材料の製造]
 二軸延伸ナイロンフィルム(厚さ25μm)からなる基材層1の上に、両面に化成処理を施したアルミニウム箔(厚さ40μm)からなる金属層3をドライラミネーション法により積層させた。具体的には、アルミニウム箔の一方面に、2液型ウレタン接着剤(ポリエステル系の主剤とイソシアネート系の硬化剤)を塗布し、金属層3上に接着層2(厚さ4μm)を形成した。次いで、金属層3上の接着層2と基材層1を加圧加熱貼合した後、60℃で24時間のエージング処理を実施することにより、基材層1/接着層2/金属層3の積層体を調製した。なお、金属層3として使用したアルミニウム箔の化成処理は、フェノール樹脂、フッ化クロム化合物、及びリン酸からなる処理液をクロムの塗布量が10mg/m2(乾燥重量)となるように、ロールコート法によりアルミニウム箔の両面に塗布し、皮膜温度が180℃以上となる条件で20秒間焼付けすることにより行った。
 次いで、それぞれ、表1に記載の方法で、実施例1~3においては、金属層3の上にシーラント層4を積層させ、実施例4~17においては、金属層3の上に、接着層5とシーラント層4とを積層させた。接着層5、シーラント層4の構成については、表1に示す通りである。また、接着層5及びシーラント層4の融点については、示差走査熱量測定法(DSC法)により樹脂の融点を測定した値である。接着層5及びシーラント層4の軟化点については、熱機械的分析法(TMA法)により樹脂の軟化点を測定した値である。なお、樹脂をブレンドした場合は、各樹脂の融点及び軟化点を測定し、これを質量比で加重平均して算出した値である。斯して、基材層1/接着層2/金属層3/接着層5(実施例1~3では無し)/シーラント層4が順に積層された積層体からなる電池用包装材料を得た。
[電池用包装材料の密封性と開封性の評価]
 各電池用包装材料を80mm×150mmに裁断した後、35mm×50mmの口径の成型金型(メス型)とこれに対応した成型金型(オス型)にて、0.4MPaで3.0mmの深さに冷間成型し、その中心部分に凹部を形成した。この凹部に厚み32mm×48mm×3mmのステンレス製の板を擬似的に電池素子として設置した後、電解液(1MのLiPF6と、エチレンカーボネート、ジエチルカーボネート及びジメチルカーボネート(容量比1:1:1)の混合液とからなる)を3g充填した。次に、もう1枚の未成形の電池用包装材料をシーラント層同士が対向するように凹部の上から重ね、周縁部をヒートシールして、擬似電池を作成した。なお、ヒートシールの条件は、175℃、面圧1.4MPaで3秒間とした。得られた擬似電池をオーブン内に入れ、大気圧下で、室温25℃から5℃/分の昇温速度で150℃まで昇温した。さらに、150℃到達後、60分間維持した。また、擬似電池の開封性の評価は、擬似電池に内袋が形成された温度、内袋が開裂した温度、150℃に到達した時点で内袋が開裂していなかった場合には、150℃に到達後に電池用包装材料が開封するまでの時間を目視で観察した。また、剥離が生じていた位置を目視で観察した。なお、温度は、擬似電池の外側に取り付けた熱電対で計測した。結果を表2に示す。
[ラミネート強度の測定]
 表2に示す各温度下において、それぞれ、上記の裁断した各電池用包装材料を、引張り試験機(島津製作所製、AGS-50D(商品名))で金属層とシーラント層とを50mm/分の速度で10mm剥離させ、剥離時の最大強度をラミネート強度とした。
[耐電解液性の確認]
 各電池用包装材料を80mm×150mmに裁断した後、35mm×50mmの口径の成型金型(メス型)とこれに対応した成型金型(オス型)にて、0.4MPaで3.0mmの深さに冷間成型し、その中心部分に凹部を形成した。この凹部に上記の電解液3gを充填し、もう1枚の電池用包装材料をシーラント層同士が対向するように凹部の上から重ね、周縁部をヒートシールした。ヒートシールの条件は、190℃、面圧1.0MPaで3秒間とした。これを、85℃で1日間保存した後、開封して、金属層とシーラント層の間のおけるデラミネーションの有無を目視で確認した。結果を表2示す。
[シール強度の測定]
 シーラント層同士が対向するようにして電池用包装材料を重ね、190℃、面圧1.0MPaで3秒間の条件でヒートシールした後、それぞれ表2に記載の温度で2分間放置した後、引張り試験機(島津製作所製、AGS-50D(商品名))でヒートシール部のシーラント層を30mm/分の速度で10mm剥離させ、剥離時の最大強度をシール強度とした。結果を表2示す。
Figure JPOXMLDOC01-appb-T000008
 表1に示した樹脂は以下の通りである。
PP(A):ランダムポリプロピレン  融点160℃  軟化点110℃
PP(B):ランダムポリプロピレン  融点140℃  軟化点110℃
PP(C):ブロックポリプロピレン  融点163℃  軟化点90℃
PP(D):ランダムポリプロピレン  融点130℃  軟化点70℃
PP(E):ランダムポリプロピレン  融点140℃  軟化点70℃
PP(F):ブロックポリプロピレン  融点160℃  軟化点90℃
LLDPE:直鎖状低密度ポリエチレン  融点120℃  軟化点75℃
LDLE:低密度ポリエチレン   融点110℃  軟化点90℃
酸変性PP(A):カルボン酸変性ポリプロピレン  融点140℃  軟化点110℃
酸変性PP(B):カルボン酸変性ポリプロピレン  融点140℃  軟化点80℃
酸変性PP(C):カルボン酸変性ポリプロピレン  融点160℃  軟化点120℃
酸変性PP(D):カルボン酸変性ポリプロピレン  融点160℃  軟化点80℃
酸変性PP(E):カルボン酸変性ポリプロピレン  融点140℃  軟化点120℃
酸変性PP(F):カルボン酸変性ポリプロピレンのイソシア硬化物
酸変性PP(G):カルボン酸変性ポリプロピレンのオキサゾリンとエポキシの架橋物
酸変性PE(A):カルボン酸変性直鎖状低密度ポリエチレン  融点120℃  軟化点75℃
酸変性PE(B):カルボン酸変性低密度ポリエチレン  融点110℃  軟化点85℃
酸変性PE(C):カルボン酸変性低密度ポリエチレン  融点110℃  軟化点102℃
酸変性PE(D):エチレン・酢酸ビニルコポリマー  融点92℃  軟化点50℃
フッ素系樹脂(A):ポリクロロトリフルオロエチレン  融点220℃  軟化点85℃
フッ素系樹脂(B):2液硬化型フッ素系接着剤(フッ素系ポリオール樹脂にイソホロンジイソシアネート(IPDI)系硬化剤を添加したもの  融点95℃  軟化点65℃
Figure JPOXMLDOC01-appb-T000009
 表2に示されるように、実施例1~17の電池用包装材料では、擬似電池が加熱されると金属層とシーラント層の外側表面(最内層側表面)との間のいずれかの箇所において、剥離が生じ、内袋が形成されていた。さらに、その後、内袋が開裂し、迅速かつ穏やかに電池用包装材料が開封された。一方、比較例1及び3の電池用包装材料を用いた場合、擬似電池が加熱されても剥離が生じず、内袋が形成されなかった。そして、擬似電池の内部温度が150℃に達すると、擬似電池が膨張して、ガスの放出と共に電解液が一気に噴出し、電解液が周囲に飛び散ってしまった。また、比較例2の電池用包装材料は、80℃におけるラミネート強度が低すぎて、電解液を充填した後に、接着層とシーラント層との間において簡単に手で剥がれてしまい、電池用包装材料としては使用できないものであった。また、比較例4の電池用包装材料においても、80℃におけるラミネート強度が低すぎて、80℃という低温でシーラント層内部で急激な剥離が生じてしまった。以上の結果から、本発明の電池用包装材料が、本発明における開封機序を発揮するためには、上記のように、ラミネート強度が25℃において3(N/15mm)以上、80℃において2.5(N/15mm)以上、125℃において2.5(N/15mm)以下であり、シール強度が25℃において30(N/15mm)以上、125℃において20(N/15mm)以下となるようにシーラント層4、接着層5などの組成、融点などを調整することが好ましいことが分かる。
実施例1A-12A及び比較例1A-5A
[電池用包装材料の製造]
 片面にスリップ材を塗布した二軸延伸ナイロンフィルム(厚さ25μm)からなる基材層1のスリップ材非塗布面上に、両面に化成処理を施したアルミニウム箔(厚さ40μm)からなる金属層3をドライラミネーション法により積層させた。具体的には、アルミニウム箔の一方面に、2液型ウレタン接着剤(ポリオール化合物と芳香族イソシアネート系化合物)を塗布し、金属層3上に接着層2(厚さ4μm)を形成した。次いで、金属層3上の接着層2と基材層1を加圧加熱貼合した後、40℃で24時間のエージング処理を実施することにより、基材層1/接着層2/金属層3の積層体を調製した。なお、金属層3として使用したアルミニウム箔の化成処理は、フェノール樹脂、フッ化クロム化合物、及びリン酸からなる処理液をクロムの塗布量が10mg/m2(乾燥重量)となるように、ロールコート法によりアルミニウム箔の両面に塗布し、皮膜温度が180℃以上となる条件で20秒間焼付けすることにより行った。
 次いで、前記積層体の金属層3側に第1シーラント層を形成する樹脂成分と第2シーラント層を形成する樹脂成分を溶融状態で共押し出しすることにより、金属層3上に第1シーラント層(厚さ25μm)と第2シーラント層(厚さ25μm)を積層させた。なお、第1シーラント層及び第2シーラント層を形成する樹脂成分については、表2A~4Aに示す通りである。また、各シーラント層の融点については、DSC法により測定した値である。斯して、基材層1/接着層2/金属層3/第1シーラント層/第2シーラント層が順に積層された積層体からなる電池用包装材料を得た。
[電池用包装材料の密封性と開封性の評価]
 各電池用包装材料を80mm×150mmに裁断した後、35mm×50mmの口径の成型金型(メス型)とこれに対応した成型金型(オス型)にて、0.4MPaで3.0mmの深さに冷間成型し、その中心部分に凹部を形成した。冷間成型後の電池用包装材料について、基材層1側の表面にピンホールが発生しているか否かを目視により観察したところ、いずれの電池用包装材料でもピンホールの発生は認められなかった。また、成型後の電池用包装材料2枚をシーラント層同士が対向するように重ねて、シーラント層同士が重なり合っている縁部をヒートシール(175℃、3秒、面圧1.4MPa)して、密封された内部空間(圧力1atm)を有するケース状にした。斯してケース状にした電池用包装材料を、減圧可能なオーブンに入れて、オーブン内の圧力が0atmになるように設定し、3℃/分の昇温速度で設定温度T℃まで昇温し、T℃を30分維持してT℃到達直前とT℃到達後30分の時点で、それぞれ目視にて電池用包装材料の状態を確認した。なお、本性能評価は、前記設定温度を140、150、及び160℃の3通りに設定して行った。
 前記試験で観察された結果に基づいて、以下の判定基準に従って、各電池用包装材料の密封性と開封性の評価を行った。
Figure JPOXMLDOC01-appb-T000010
 得られた結果を表2A~4Aに示す。この結果から、酸変性ポリオレフィンを含む第1シーラント層とポリオレフィンを含む第2シーラント層を備える電池用包装材料において、第1シーラント層の融点Tm1と設定温度Tとの差(Tm1-T)が-10℃以上-5℃以下であり、且つ第2シーラント層の融点Tm2と設定温度Tとの差(Tm2-T)が-5℃以上+5℃以下を満たす場合には、設定温度T℃到達までは、シーラント層4の少なくとも一部が金属層3の界面から剥離したが、シーラント層4が袋状になって内部の密封状態を維持しつつ、設定温度T℃到達から30分後には金属層3から剥離した部分のシーラント層4にピンホールのような微細な開裂が生じ、穏やかな状態で開封に導くことができていた。これに対して、第1シーラント層の融点Tm1と設定温度Tとの差(Tm1-T)と、第2シーラント層の融点Tm2と設定温度Tとの差(Tm2-T)のいずれか一方でも、前記条件を満たしていない場合には、設定温度T℃に到達する前に開封状態になってヒートシール部分における凝集破壊やシーラント層の根切れが生じた、或いは設定温度T℃に到達30分後でも開封状態にできなかった。
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
実施例13A
 以下の点以外は、実施例1A-12Aと同様にして、電池用包装材料を製造した。
 ・第1シーラント層を形成する樹脂として、マレイン酸で変性したプロピレン-エチレンのランダムコポリマー(MFR:7、融点140℃)を用いたこと。
 ・第2シーラント層を形成する樹脂として、プロピレン-エチレンのランダムコポリマー(MFR:7、融点147℃)を用い、さらにスリップ剤としてエルカ酸アミドを0.025質量%配合したこと。
 ・第1シーラント層の厚みを15μmとし、第2シーラント層の厚みを15μmとしたこと。
実施例14A
 第1シーラント層の厚みを20μmとしたこと以外は、実施例13Aと同様にして、電池用包装材料を製造した。
実施例15A
 エルカ酸アミドの配合量を0.12質量%としたこと以外は、実施例13Aと同様にして、電池用包装材料を製造した。
実施例16A
 エルカ酸アミドの配合量を0.12質量%としたこと以外は、実施例14Aと同様にして、電池用包装材料を製造した。
実施例17A
 第1シーラント層にエルカ酸アミドの配合量を0.12質量%配合したこと以外は、実施例13Aと同様にして、電池用包装材料を製造した。
実施例18A
 第1シーラント層にエルカ酸アミドの配合量を0.12質量%配合したこと以外は、実施例14Aと同様にして、電池用包装材料を製造した。
[クラックに対する絶縁性評価]
 実施例13A~18Aで得られた電池用包装材料を150mm(MD方向)×80mm(TD方向、横方向)のシート片に裁断した後、35mm×50mmの口径の成型金型(メス型)とこれに対応した成型金型(オス型)にて、0.4MPaで3.0mmの深さに冷間成型し、シート片の中心部分に凹部を形成した。次に、これらのシート片を第2シーラント層が内側になるようにしてMD方向(縦方向)に2つ折りし、折り曲げ後のMD方向の長さが6.3mmとなるよう端部をカットし、包材を成形した。成型した包材の凹部に、タブシール材付き電極タブを貼り付けたダミーセル(3.0mm×49mm×29mmのPPブロック)を設置し、ダミーセルのタブシール材部分が包材のシール部にくるよう固定した。次に、包材の開口する1辺から金属端子が外部に延出するようにして、80mmの辺を5mm巾、170℃、2.0MPa、5秒の条件でヒートシールした。また、続いて6.3mmの辺の一方を、5mm巾、170℃、0.5MPa、3秒の条件でヒートシールし、1辺が開口を有するパウチタイプの外装体を作製した。これを12時間ドライルームにて乾燥した。次に、乾燥後の外装体に電解液を入れ、開口部を3mm巾で密封シールした。これを60℃で5時間保持した後、冷却し、残りの6.3mmの一辺を、3mm巾、面圧1.0MPa、シール温度170℃、シール時間3.0秒の条件でシールした。この最終シール部分を成型凸部分の方向に90℃折り曲げた後、戻してから、インパルス印加方式(株式会社日本テクナート製、リチウムイオン電池絶縁試験器)を用いて、クラックに対する絶縁性評価試験を実施した。まず、上記サンプルをそれぞれ20個用意して、各リチウムイオン電池の負極端子とアルミニウム箔との間に印加電圧100Vのインパルス電圧を印加し、99msec後の電圧降下が20V以内のものを合格とした。合格の割合(%)を表5Aに示す。
Figure JPOXMLDOC01-appb-T000014
 表5Aに示される結果から、第2シーラント層にスリップ剤としてエルカ酸アミドを配合することにより、電池用包装材料のクラックに対する絶縁性が高められることが明らかとなった。特に、第1シーラント層または第2シーラント層のスリップ剤量が0.012質量%である実施例15A~18Aでは、クラックに対する絶縁性が非常に高いことが明らかとなった。
[成形性評価]
 実施例13A~18Aで得られた電池用包装材料を、90mm(MD方向)×150mm(TD方向、横方向)のシート片に裁断した後、35mm×50mmの口径の成型金型(メス型)とこれに対応した成型金型(オス型)にて、第2シーラント層側から、0.9MPaで任意の深さに冷間成型し、その中心部分に凹部を形成した。次に、第2シーラント層の凹部が形成された部分の表面にピンホールが発生しているか否かを目視で観察した。サンプル数を20とし、ピンホールが発生していなかったものを合格とした。同様にして、凹部の深さを0.5mmずつ深くしていき、20個のサンプルについて、ピンホール発生の有無を確認していった。表6Aに、実施例13A~18Aで得られた電池用包装材料について、第2シーラント層のピンホールの発生が抑制できると判断した凹部の深さ(mm)を示す。この凹部の深さは、次のようにして算出した。例えば凹部の深さが5.0mmとなるように成形し、20個のサンプル全てにピンホールが発生せず、凹部の深さを5.5mmとした場合にピンホールの発生が無かったものがN個の場合、次式により、ピンホールの発生が抑制できると判断した凹部の深さ(mm)を算出した。
ピンホールの発生が抑制できると判断した凹部の深さ(mm)=5.0(mm)+0.5(mm)×(N個/20個)
Figure JPOXMLDOC01-appb-T000015
 表6Aに示される結果から、第2シーラント層にスリップ剤を多く含む実施例15A~18Aでは、スリップ材の少ない実施例13A~14Aに対して凹部をより深く成形することができ、成形性が高いことが明らかとなった。特に、第1シーラント層または第2シーラント層のスリップ剤量が0.12質量%である実施例15A~18Aでは、凹部の深さが7.00mmを超えてもピンホールの発生が抑制されており、成形性が非常に高いことが明らかとなった。
実施例1Ba-20Ba及び比較例1Ba-18Ba
[電池用包装材料の製造]
 上記の実施例1A~12A及び比較例1A~5Aと同様にして、基材層1/接着層2/金属層3の積層体を調製した。次いで、前記積層体の金属層3側に第1シーラント層を形成する樹脂成分と第2シーラント層を形成する樹脂成分を溶融状態で共押し出しすることにより、金属層3上に第1シーラント層(厚さ25μm)と第2シーラント層(厚さ25μm)を積層させた。更に、第3シーラント層を形成する樹脂成分を溶融押出しして単膜フィルムを作成し、これを前記第2シーラント層の上に重ねあわせて160℃で圧着した後に190℃のオーブンで2分間加熱することにより、第2シーラント層上に第3シーラント(厚さ25μm)を積層させた。なお、第1シーラント層、第2シーラント層及び第3シーラント層を形成する樹脂成分については、表1Ba~5Baに示す通りである。また、各シーラント層の融点については、DSC法により測定した値である。斯して、基材層1/接着層2/金属層3/第1シーラント層/第2シーラント層/第3シーラント層が順に積層された積層体からなる電池用包装材料を得た。
[電池用包装材料の密封性と開封性の評価]
 上記の実施例1A~12A及び比較例1A~5Aと同様の操作を行い、試験で観察された結果に基づいて、上記の表1Aと同じ判定基準に従って、各電池用包装材料の密封性と開封性の評価を行った。得られた結果を表1Ba~5Baに示す。
 この結果から、酸変性ポリオレフィンを含む第1シーラント層、酸変性ポリオレフィンを含む第2シーラント層、及びポリオレフィンを含む第3シーラント層を順に備える電池用包装材料において、第1シーラント層の融点Tm1と設定温度Tとの差(Tm1-T)が-10℃以上-5℃以下であり、第2シーラント層の融点Tm2と設定温度Tとの差(Tm2-T)が+5℃以上+10℃以下であり、且つ第3シーラント層の融点Tm3と設定温度Tとの差(Tm2-T)が-5℃以上+5℃以下を満たす場合には、設定温度T℃到達までは、シーラント層4の少なくとも一部が金属層3の界面から剥離したが、シーラント層4が袋状になって内部の密封状態を維持しつつ、設定温度T℃到達から30分後には金属層3から剥離した部分のシーラント層4にピンホールのような微細な開裂が生じ、穏やかな状態で開封に導くことができていた。これに対して、第1シーラント層の融点Tm1と設定温度Tとの差(Tm1-T)と、第2シーラント層の融点Tm2と設定温度Tとの差(Tm2-T)と、第3シーラント層の融点Tm3と設定温度Tとの差(Tm3-T)のいずれか一つでも、前記条件を満たしていない場合には、設定温度T℃に到達する前に開封状態になってヒートシール部分における凝集破壊やシーラント層の根切れが生じた、或いは設定温度T℃に到達30分後でも開封状態にできなかった。
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000020
実施例21Ba
 以下の点以外は、実施例1Ba-20Baと同様にして、電池用包装材料を製造した。
 ・第1シーラント層を形成する樹脂として、MFR7、融点140℃のマレイン酸変性ランダムコポリマーを用いたこと。
 ・第2シーラント層を形成する樹脂として、MFR5、融点160℃のブロックコポリマーを用いたこと。
 ・第3シーラント層を形成する樹脂として、MFR7、融点147℃のランダムコポリマーを用い、さらにスリップ剤としてエルカ酸アミドを0.025質量%配合したこと。
 ・第1シーラント層の厚みを15μmとし、第2シーラント層の厚みを15μmとし、第3シーラント層の厚みを15μmとしたこと。
実施例22Ba
 エルカ酸アミドの配合量を0.10質量%としたこと以外は、実施例21Baと同様にして、電池用包装材料を製造した。
実施例23Ba
 エルカ酸アミドの配合量を0.12質量%としたこと以外は、実施例21Baと同様にして、電池用包装材料を製造した。
[クラックに対する絶縁性評価]
 実施例21Ba~23Baで得られた電池用包装材料に対して、上記実施例13A~18Aと同様にして、クラックに対する絶縁性評価を行った。合格の割合(%)を表6Baに示す。
Figure JPOXMLDOC01-appb-T000021
 表6Baに示される結果から、第3シーラント層にスリップ剤としてエルカ酸アミドを配合することにより、電池用包装材料のクラックに対する絶縁性が高められることが明らかとなった。特に、スリップ剤量が0.10質量%である実施例22Ba、さらに0.12質量%である実施例23Baでは、クラックに対する絶縁性が非常に高いことが明らかとなった。
[成形性評価]
 実施例21Ba~23Baで得られた電池用包装材料に対して、上記実施例13A~18Aと同様にして、成形性を評価した。結果を表7Baに示す。
Figure JPOXMLDOC01-appb-T000022
 表7Baに示される結果から、第3シーラント層にスリップ剤を含む実施例21Ba~23Baでは、凹部を深く成形することができ、成形性が高いことが明らかとなった。特に、スリップ剤量が0.12質量%である実施例23Baでは、凹部の深さが7.25mmと非常に深くても、ピンホールの発生が抑制されており、成形性が極めて高いことが明らかとなった。
実施例1Bb-20Bb及び比較例1Bb-18Bb
[電池用包装材料の製造]
 上記実施例1Ba-20Ba及び比較例1Ba-18Baと同様にして、基材層1/接着層2/金属層3/第1シーラント層/第2シーラント層/第3シーラント層が順に積層された積層体からなる電池用包装材料を得た。なお、第1シーラント層、第2シーラント層及び第3シーラント層を形成する樹脂成分については、表1Bb~5Bbに示す通りである。
[電池用包装材料の密封性と開封性の評価]
 上記の実施例1A~12A及び比較例1A~5Aと同様の操作を行い、試験で観察された結果に基づいて、上記の表1Aと同じ判定基準に従って、各電池用包装材料の密封性と開封性の評価を行った。得られた結果を表1Bb~5Bbに示す。
 この結果から、酸変性ポリオレフィンを含む第1シーラント層、酸変性ポリオレフィンを含む第2シーラント層、及びポリオレフィンを含む第3シーラント層を順に備える電池用包装材料において、第1シーラント層の融点Tm1と設定温度Tとの差(Tm1-T)が-10℃以上-5℃以下であり、第2シーラント層の融点Tm2と設定温度Tとの差(Tm2-T)が+5℃以上+10℃以下であり、且つ第3シーラント層の融点Tm3と設定温度Tとの差(Tm2-T)が-5℃以上+5℃以下を満たす場合には、設定温度T℃到達までは、シーラント層4の少なくとも一部が金属層3の界面から剥離したが、シーラント層4が袋状になって内部の密封状態を維持しつつ、設定温度T℃到達から30分後には金属層3から剥離した部分のシーラント層4にピンホールのような微細な開裂が生じ、穏やかな状態で開封に導くことができていた。これに対して、第1シーラント層の融点Tm1と設定温度Tとの差(Tm1-T)と、第2シーラント層の融点Tm2と設定温度Tとの差(Tm2-T)と、第3シーラント層の融点Tm3と設定温度Tとの差(Tm3-T)のいずれか一つでも、前記条件を満たしていない場合には、設定温度T℃に到達する前に開封状態になってヒートシール部分における凝集破壊やシーラント層の根切れが生じた、或いは設定温度T℃に到達30分後でも開封状態にできなかった。
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000027
実施例21Bb
 以下の点以外は、実施例1Bb-20Bbと同様にして、電池用包装材料を製造した。
 ・第1シーラント層を形成する樹脂として、MFR7、融点140℃のマレイン酸変性ランダムコポリマーを用いたこと。
 ・第2シーラント層を形成する樹脂として、MFR5、融点160℃のマレイン酸変性ブロックコポリマーを用いたこと。
 ・第3シーラント層を形成する樹脂として、MFR7、融点147℃のランダムコポリマーを用い、さらにスリップ剤としてエルカ酸アミドを0.025質量%配合したこと。
 ・第1シーラント層の厚みを15μmとし、第2シーラント層の厚みを15μmとし、第3シーラント層の厚みを15μmとしたこと。
実施例22Bb
 エルカ酸アミドの配合量を0.10質量%としたこと以外は、実施例21Bbと同様にして、電池用包装材料を製造した。
実施例23Bb
 エルカ酸アミドの配合量を0.12質量%としたこと以外は、実施例21Bbと同様にして、電池用包装材料を製造した。
[クラックに対する絶縁性評価]
 実施例21Bb~23Bbで得られた電池用包装材料に対して、上記実施例13A~18Aと同様にして、クラックに対する絶縁性評価を行った。合格の割合(%)を表6Bbに示す。
Figure JPOXMLDOC01-appb-T000028
 表6Bbに示される結果から、第3シーラント層にスリップ剤としてエルカ酸アミドを配合することにより、電池用包装材料のクラックに対する絶縁性が高められることが明らかとなった。特に、スリップ剤量が0.10質量%である実施例22Bb、さらに0.12質量%である実施例23Bbでは、クラックに対する絶縁性が非常に高いことが明らかとなった。
[成形性評価]
 実施例21Bb~23Bbで得られた電池用包装材料に対して、上記実施例13A~18Aと同様にして、成形性を評価した。結果を表7Bbに示す。
Figure JPOXMLDOC01-appb-T000029
 表7Bbに示される結果から、第3シーラント層にスリップ剤を含む実施例21Bb~23Bbでは、凹部を深く成形することができ、成形性が高いことが明らかとなった。特に、スリップ剤量が0.12質量%である実施例23Bbでは、凹部の深さが7.35mmと非常に深くても、ピンホールの発生が抑制されており、成形性が極めて高いことが明らかとなった。
実施例1C-18C及び比較例1C-2C
[電池用包装材料の製造]
 二軸延伸ナイロンフィルム(厚さ25μm)からなる基材層1の上に、両面に化成処理を施したアルミニウム箔(厚さ40μm)からなる金属層3をドライラミネーション法により積層させた。具体的には、アルミニウム箔の一方面に、2液型ウレタン接着剤(ポリオール化合物と芳香族イソシアネート系化合物)を塗布し、金属層3上に接着層2(厚さ4μm)を形成した。次いで、金属層3上の接着層2と基材層1を加圧加熱貼合した後、40℃で24時間のエージング処理を実施することにより、基材層1/接着層2/金属層3の積層体を調製した。なお、金属層3として使用したアルミニウム箔の化成処理は、フェノール樹脂、フッ化クロム化合物、及びリン酸からなる処理液をクロムの塗布量が10mg/m2(乾燥重量)となるように、ロールコート法によりアルミニウム箔の両面に塗布し、皮膜温度が180℃以上となる条件で20秒間焼付けすることにより行った。
 次いで、前記積層体の金属層3側に第1シーラント層を形成する樹脂成分と第2シーラント層を形成する樹脂成分を溶融状態で共押し出しすることにより、金属層3上に第1シーラント層と第2シーラント層を積層させた。なお、実施例11C、18Cでは、第1シーラント層の上に、第3シーラント層及び第2シーラント層からなる多層CPPフィルム(PPの未延伸フィルム)をサンドラミネーション法によって形成し、実施例13C、17Cでは、第1シーラント層の上に、第3シーラント層、第4シーラント層、及び第2シーラント層からなる多層CPP(PPの未延伸フィルム)をサンドラミネーション法によって積層した。各シーラント層を形成する樹脂成分については、表2Cに示す通りである。また、各シーラント層の融点については、DSC法により測定した値である。斯して、基材層1/接着層2/金属層3/シーラント層4が順に積層された積層体からなる電池用包装材料を得た。
[電池用包装材料の密封性と開封性の評価]
 実施例1C~18C及び比較例1C~2Cで得られた各電池用包装材料を80mm×150mmに裁断した後、35mm×50mmの口径の成型金型(メス型)とこれに対応した成型金型(オス型)にて、0.4MPaで3.0mmの深さに冷間成型し、その中心部分に凹部を形成した。冷間成型後の電池用包装材料について、基材層1側の表面にピンホールが発生しているか否かを目視により観察したところ、いずれの電池用包装材料でもピンホールの発生は認められなかった。また、成型後の電池用包装材料2枚をシーラント層同士が対向するように重ねて、シーラント層同士が重なり合っている縁部をヒートシール(175℃、3秒、面圧1.4MPa)して、密封された内部空間(圧力1atm)を有するケース状にした。斯してケース状にした電池用包装材料を、減圧可能なオーブンに入れて、オーブン内の圧力が0atmになるように設定し、3℃/分の昇温速度で150℃になるまで昇温した。150℃になっても開封しなかった場合には、150℃の温度をそのまま保持した。電池用包装材料の金属層とシーラント層との間で剥離が生じた温度(剥離温度)、当該剥離温度に到達後に剥離するまでの時間、電池用包装材料が開封した開封温度、及び当該開封温度に到達してから開封するまでの時間とを、目視にて確認した。
 前記試験で観察された結果に基づいて、以下の判定基準に従って、各電池用包装材料の密封性と開封性の評価を行った。
Figure JPOXMLDOC01-appb-T000030
Figure JPOXMLDOC01-appb-T000031
 表2C中、各樹脂成分の略号は以下の通りである。
PPa(A):マレイン酸変性ランダムポリプロピレン、融点160℃、軟化点145℃
PPa(B):マレイン酸変性ランダムポリプロピレン、融点140℃、軟化点130℃
PPa(C):マレイン酸変性ランダムポリプロピレン、融点125℃、軟化点115℃
PPa(D):マレイン酸変性ホモポリプロピレン、融点160℃、軟化点156℃
PP(A):ランダムポリプロピレン、融点160℃、軟化点85℃
PP(B):ランダムポリプロピレン、融点140℃、軟化点85℃
PP(C):ランダムポリプロピレン、融点125℃、軟化点80℃
PP(D):ホモポリプロピレン、融点160℃、軟化点150℃
PP(E):ランダムポリプロピレン、融点155℃、軟化点145℃
PP(F):ホモポリプロピレン、融点160℃、軟化点156℃
非晶性PP:非晶性ポリプロピレン、軟化点70℃
EVA:エチレン酢酸ビニル共重合体、融点90℃、軟化点50℃
EPR140:プロピレン系エラストマー、融点140℃、軟化点125℃
EPR160:プロピレン系エラストマー、融点160℃、軟化点110℃
酸変性COC:酸変性環状オレフィンコポリマー、軟化点80℃
MDPE:中密度ポリオレフィン、融点125℃、軟化点75℃
酸変性MDPE:カルボン酸変性の中密度ポリオレフィン、融点125℃、軟化点75℃
 得られた結果を表2Cに示す。この結果から、第1シーラント層の融点が100~160℃であり、軟化点が60~150℃の範囲にある実施例1C~18Cの電池用包装材料では、開封温度到達までは、シーラント層の少なくとも一部が剥離したが開裂が生じておらず、シーラント層が袋状になって内部の密封性が維持されていた。また、開封温度到達後には、剥離した部分のシーラント層にピンホールのような微細な開裂が生じ、穏やかな開封状態に移行した。一方、第1シーラント層の融点は100~160℃の範囲を満たすが、軟化点が60~150℃の範囲を充足していない比較例1Cの電池用包装材料では、150℃に到達後5時間経過しても、剥離及び開封が生じず、このまま温度が上昇すると電池素子のセパレータが溶融し、正極と負極との間の短絡などによって電池反応の暴走や発火が生じ、電池の破裂や爆発の虞があった。また、第1シーラント層にエチレン酢酸ビニル共重合体(EVA)を用いた比較例2Cでは、90℃という低温で急激に開封が生じ、ヒートシール部分における凝集破壊やシーラント層の根切れが生じていた。
実施例1D-16D及び比較例1D-2D
[電池用包装材料の製造]
 実施例1C-18C及び比較例1C-2Cと同様にして、基材層1/接着層2/金属層3/シーラント層4が順に積層された積層体からなる電池用包装材料を得た。なお、実施例11D、16Dでは、第1シーラント層の上にさらに第3シーラント層及び第2シーラント層からなる多層CPPフィルム(PPの未延伸フィルム)をサンドラミネーション法によって形成し、実施例13D、15Dでは、第1シーラント層の上に、第3シーラント層、第4シーラント層、及び第2シーラント層からなる多層CPP(PPの未延伸フィルム)をサンドラミネーション法によって積層した。各シーラント層を形成する樹脂成分については、表1Dに示す通りである。
[電池用包装材料の密封性と開封性の評価]
 実施例1C-18C及び比較例1C-2Cと同様の操作を行い、試験で観察された結果に基づいて、表1Cと同じ判定基準に従って、各電池用包装材料の密封性と開封性の評価を行った。得られた結果を表1Dに示す。
Figure JPOXMLDOC01-appb-T000032
 表1D中、各樹脂成分の略号は以下の通りである。
PPa(A):マレイン酸変性ランダムポリプロピレン、融点160℃、軟化点145℃
PPa(B):マレイン酸変性ランダムポリプロピレン、融点140℃、軟化点130℃
PPa(C):マレイン酸変性ランダムポリプロピレン、融点125℃、軟化点115℃
PPa(D):マレイン酸変性ホモポリプロピレン、融点160℃、軟化点156℃
PP(A):ランダムポリプロピレン、融点160℃、軟化点85℃
PP(B):ランダムポリプロピレン、融点140℃、軟化点85℃
PP(C):ランダムポリプロピレン、融点125℃、軟化点80℃
PP(D):ホモポリプロピレン、融点160℃、軟化点150℃
PP(E):ランダムポリプロピレン、融点155℃、軟化点145℃
PP(F):ホモポリプロピレン、融点160℃、軟化点156℃
EVA:エチレン酢酸ビニル共重合体、融点90℃、軟化点50℃
EPR140:プロピレン系エラストマー、融点160℃、軟化点110℃
非晶性PP:非晶性ポリプロピレン、軟化点70℃
酸変性COC:酸変性環状オレフィンコポリマー、軟化点80℃
LDPE:低密度ポリオレフィン、融点100℃、軟化点80℃
酸変性LDPE:カルボン酸変性の低密度ポリオレフィン、融点100℃、軟化点80℃
LLDPE:線状低密度ポリオレフィン、融点120℃、軟化点60℃
酸変性LLDPE:カルボン酸変性の線状低密度ポリオレフィン、融点120℃、軟化点60℃
MDPE:中密度ポリオレフィン、融点125℃、軟化点75℃
酸変性MDPE:カルボン酸変性の中密度ポリオレフィン、融点125℃、軟化点75℃
HDPE:中密度ポリオレフィン、融点130℃、軟化点120℃
酸変性HDPE:カルボン酸変性の中密度ポリオレフィン、融点130℃、軟化点120℃
 この結果から、第1シーラント層が酸変性ポリオレフィンに加えて、ポリエチレン及び酸変性ポリエチレンの少なくとも一方を含む実施例1D~16Dの電池用包装材料では、開封温度到達までは、シーラント層の少なくとも一部が剥離したが開裂が生じておらず、シーラント層が袋状になって内部の密封性が維持されていた。また、開封温度到達後には、剥離した部分のシーラント層にピンホールのような微細な開裂が生じ、穏やかな開封状態に移行した。一方、第1シーラント層が酸変性ポリオレフィンを含むが、ポリエチレン及び酸変性ポリエチレンのいずれも含まない比較例1の電池用包装材料では、150℃に到達後5時間経過しても、剥離及び開封が生じず、このまま温度が上昇すると電池素子のセパレータが溶融し、正極と負極との間の短絡などによって電池反応の暴走や発火が生じ、電池の破裂や爆発の虞があった。また、第1シーラント層にエチレン酢酸ビニル共重合体(EVA)を用いた比較例2では、90℃という低温で急激に開封が生じ、ヒートシール部分における凝集破壊やシーラント層の根切れが生じていた。
実施例1E-13E及び比較例1E-5E
[電池用包装材料の製造]
 実施例1C-18C及び比較例1C-2Cと同様にして、基材層1/接着層2/金属層3/シーラント層4が順に積層された積層体からなる電池用包装材料を得た。なお、実施例9E,13Eでは、第1シーラント層の上にさらに第3シーラント層及び第2シーラント層からなる多層CPPフィルム(PPの未延伸フィルム)をサンドラミネーション法によって形成し、実施例12E及び比較例3Eでは、第1シーラント層の上に、第3シーラント層、第4シーラント層、及び第2シーラント層からなる多層CPP(PPの未延伸フィルム)をサンドラミネーション法によって積層した。各シーラント層を形成する樹脂成分については、表1Eに示す通りである。
[電池用包装材料の密封性と開封性の評価]
 実施例1C-18C及び比較例1C-2Cと同様の操作を行い、試験で観察された結果に基づいて、表1Cと同じ判定基準に従って、各電池用包装材料の密封性と開封性の評価を行った。得られた結果を表1Eに示す。
[シール強度の測定]
 シーラント層同士が対向するようにして電池用包装材料を重ね、190℃、面圧1.0MPaで3秒間の条件でヒートシールした後、25℃下で2分間放置した後、引張り試験機(島津製作所製、AGS-50D(商品名))でヒートシール部のシーラント層を30mm/分の速度で10mm剥離させ、剥離時の最大強度をシール強度(N/15mm)とした。結果を表1Eに示す。
[ラミネート強度の測定]
 25℃下において、それぞれ、上記の裁断した各電池用包装材料を、引張り試験機(島津製作所製、AGS-50D(商品名))で金属層とシーラント層とを50mm/分の速度で10mm剥離させ、剥離時の最大強度をラミネート強度(N/15mm)とした。結果を表1Eに示す。
Figure JPOXMLDOC01-appb-T000033
 表1E中、各樹脂成分の略号は以下の通りである。
PPa(A):マレイン酸変性ランダムポリプロピレン、融点160℃、軟化点145℃
PPa(B):マレイン酸変性ランダムポリプロピレン、融点140℃、軟化点130℃
PPa(C):マレイン酸変性ランダムポリプロピレン、融点125℃、軟化点115℃
PPa(D):マレイン酸変性ホモポリプロピレン、融点160℃、軟化点156℃
PP(A):ランダムポリプロピレン、融点160℃、軟化点85℃
PP(B):ランダムポリプロピレン、融点140℃、軟化点85℃
PP(C):ランダムポリプロピレン、融点125℃、軟化点80℃
PP(D):ホモポリプロピレン、融点160℃、軟化点150℃
PP(E):ランダムポリプロピレン、融点155℃、軟化点145℃
PP(F):ホモポリプロピレン、融点160℃、軟化点156℃
EPR140:プロピレン系エラストマー、融点140℃、軟化点125℃
EVA(A):エチレン酢酸ビニル共重合体、融点90℃、軟化点50℃
酸変性EVA(A):カルボン酸変性エチレン酢酸ビニル共重合体、融点90℃、軟化点50℃
EVA(B):エチレン酢酸ビニル共重合体、融点90℃、軟化点80℃
酸変性EVA(B):カルボン酸変性エチレン酢酸ビニル共重合体、融点90℃、軟化点80℃
EVA(C):エチレン酢酸ビニル共重合体、融点なし、軟化点60℃
酸変性EVA(C):カルボン酸変性エチレン酢酸ビニル共重合体、融点なし、軟化点60℃
アクリル樹脂:ポリメタクリル酸エステル、融点なし、軟化点80℃
TP:テルペンフェノール共重合体、融点なし、軟化点100℃
スチレン重合体:アタクチックポリスチレン、融点なし、軟化点100℃
非晶性PP:非晶性ポリプロピレン、融点なし、軟化点70℃
LDPE:低密度ポリオレフィン、融点100℃、軟化点80℃
酸変性LDPE:カルボン酸変性の低密度ポリオレフィン、融点100℃、軟化点80℃
LLDPE:線状低密度ポリオレフィン、融点120℃、軟化点60℃
酸変性LLDPE:カルボン酸変性の線状低密度ポリオレフィン、融点120℃、軟化点60℃
 この結果から、第1シーラント層に、酸変性ポリオレフィンに加えて、粘着性樹脂としてエチレン酢酸ビニル共重合体、酸変性エチレン酢酸ビニル共重合体、非晶性ポリプロピレン、アクリル樹脂、スチレン重合体を用いた実施例1E~13Eの電池用包装材料では、開封温度到達までは、シーラント層の少なくとも一部が剥離したが開裂が生じておらず、シーラント層が袋状になって内部の密封性が維持されていた。
 また、開封温度到達後には、剥離した部分のシーラント層にピンホールのような微細な開裂が生じ、穏やかな開封状態に移行した。さらに、実施例1E~13Eの電池用包装材料では、高いシール強度及びラミネート強度を示した。一方、第1シーラント層が酸変性ポリオレフィンを含むが、上記のような粘着性樹脂を用いなかった比較例1E~3Eの電池用包装材料では、シール強度及びラミネート強度が低かった。また、高い融点を有する酸変性ポリオレフィンを用い、上記の様な粘着性樹脂を用いなかった比較例4の電池用包装材料では、150℃に到達後5時間経過しても、剥離及び開封が生じず、このまま温度が上昇すると電池素子のセパレータが溶融し、正極と負極との間の短絡などによって電池反応の暴走や発火が生じ、電池の破裂や爆発の虞があった。また、第1シーラント層にエチレン酢酸ビニル共重合体のみを用いた比較例5では、90℃という低温で急激に開封が生じ、ヒートシール部分における凝集破壊やシーラント層の根切れが生じていた。
実施例1F~6F及び比較例1F~5F
[電池用包装材料の製造]
 実施例1C-18C及び比較例1C-2Cと同様にして、基材層1/接着層2/金属層3が積層された積層体を得た。
 次いで、積層体の金属層3側に絶縁層6を形成するため、それぞれ表2Fに記載の組成を有する酸変性ポリオレフィン樹脂と硬化剤とを含む樹脂組成物を厚さ5μmとなるように塗布し、乾燥させた。次に、乾燥させた樹脂組成物の上から、第1シーラント層4aを形成する表2Fに記載の融点を有する樹脂を溶融状態で押し出しすることにより、絶縁層6上に第1シーラント層4a(厚さ30μm)を積層させた。さらに得られた積層体を190℃で2分間加熱することにより、基材層1/接着層2/金属層3/絶縁層6/第1シーラント層4aが順に積層された積層体からなる電池用包装材料を得た。絶縁層6及び第1シーラント層4aを形成する樹脂の融点については、DSC法により測定した値である。
<電池用包装材料の密封性と開封性の評価>
 上記の実施例1A~12A及び比較例1A~5Aと同様の操作を行い、試験で観察された結果に基づいて、以下の判定基準に従って、各電池用包装材料の密封性と開封性の評価を行った。結果を2Fに示す。
Figure JPOXMLDOC01-appb-T000034
<耐久性評価>
 実施例1F~6Fで得られた電池用包装材料をそれぞれ、60mm(MD方向、縦方向)×150mm(TD方向、横方向)に裁断した。次に、裁断した電池用包装材料をTD方向においてシーラント層同士が対向するようにして2つ折りにし、TD方向の対向する1辺とMD方向の1辺を熱溶着し、TD方向の1辺が開口する袋状の電池用包装材料を作製した。なお、熱溶着の条件は、温度190℃、面圧1.0MPa、加熱・加圧時間3秒とした。次に、開口部から3gの電解液を注入し、開口部を7mm幅で、上記と同じ条件で熱溶着した。なお、電解液は、エチレンカーボネート:ジエチルカーボネート:ジメチルカーボネート=1:1:1の容積比で混合した溶液に6フッ化リン酸リチウムを混合して得られたものである。次に、電池用包装材料の開口部が位置していた部分を上向きにして、85℃の恒温層内に24時間静置した。
 次に、各電池用包装材料を恒温層から取り出して、電池用包装材料を開封して電解液を取り出した。次に、電池用包装材料の折り返されていた部分を15mm巾の短冊状に切り取り試験片を得た。得られた試験片の第1シーラント層4aと金属層3とを引張り機(島津製作所製の商品名AGS-50D)を用いて、50mm/分の速度で引張り、試験片の剥離強度(N/15mm)を測定した(耐久性試験後の剥離強度)。一方、実施例1F~6Fで得られた電池用包装材料を15mm巾に切り取った試験片について、同様にして剥離強度を測定した(耐久性試験前の剥離強度)。結果を表2Fに示す。
<異物噛み込みに対する絶縁性評価>
 実施例1F~6Fで得られた電池用包装材料を幅40mm、長さ100mmのサイズに切り取り試験片を得た。次に、この試験片を短辺同士が対向するように折り返し、試験片の第1シーラント層4aの表面が互いに対向するように配置した。次に、互いに対向する第1シーラント層4aの表面の間に25μmφのワイヤーを挿入した。次に、この状態で電池用包装材料の長さ方向に直交する方向に上下共に7mm幅の平板状熱板からなるヒートシール機でシーラント層同士をヒートシールした。次に、電池用包装材料のワイヤーが挟まれた部分が中央になるようにして、両側の基材層の表面にテスターの端子をそれぞれ接続した。次に、テスター間に100Vの電圧をかけ、短絡するまでの時間(秒)を測定した。実施例1F~6Fで得られた電池用包装材料それぞれ3つずつ(n=3)について短絡するまでの時間(秒)を測定し、3つ全てが10秒以上であったものを○、10秒以下があったものを×とした。結果を表2Fに示す。
<クラックに対する絶縁性評価>
 実施例1F~6Fで得られた電池用包装材料を60mm(MD方向)×60mm(TD方向、横方向)のシート片に裁断した。次に、これらのシート片をMD方向(縦方向)に2つ折りし、対向する2辺を7mm巾でヒートシールして1辺が開口を有するパウチタイプの外装体を作製した。次に、得られた外装体を、開口する1辺から金属端子が外部に延出するようにセルを含むリチウムイオン電池本体を封入し、電解液を入れ金属端子を挟持しながら、開口部を3mm巾で密封シールして、リチウムイオン電池を作製した。このとき、ヒートシールは、面圧2.0MPa、シール温度170℃、シール時間5.0秒の条件で行なった。次に、インパルス印加方式(株式会社日本テクナート製、リチウムイオン電池絶縁試験器)を用いて、クラックに対する絶縁性評価試験を実施した。実施例1F~6Fについて、上記リチウムイオン電池をそれぞれ5つずつ用意して、各リチウムイオン電池の負極端子とアルミニウム箔との間に印加電圧100Vのインパルス電圧を印加し、99msec後の電圧降下が5つ全てにおいて無かった場合は○とし、1つでも電圧降下があった場合は×とした。結果を表2Fに示す。
Figure JPOXMLDOC01-appb-T000035
 酸変性ポリオレフィン樹脂及び硬化剤を含む樹脂組成物により形成された絶縁層とポリオレフィン樹脂を含む第1シーラント層4aとを順に備える電池用包装材料において、絶縁層の融点TAと設定温度Tとの差(TA-T)が-10℃以上-5℃以下であり、且つ、第1シーラント層4aの融点Tm1と設定温度Tとの差(Tm1-T)が-5℃以上+5℃以下を満たす実施例1F~6Fでは、設定温度T℃到達までは、絶縁層6の少なくとも一部が金属層3の界面から剥離したが、絶縁層6及び第1シーラント層4aが袋状になって内部の密封状態を維持しつつ、設定温度T℃到達から30分後には金属層3から剥離した部分の絶縁層6及び第1シーラント層4aにピンホールのような微細な開裂が生じ、穏やかな状態で開封に導くことができていた。これに対して、第1シーラント層4aの融点Tm1と設定温度Tとの差(Tm1-T)が-5℃以上+5℃以下を満たしていない比較例1F~6Fでは、設定温度T℃に到達する前に開封状態になってヒートシール部分における凝集破壊やシーラント層の根切れが生じた、或いは設定温度T℃に到達30分後でも開封状態にできなかった。
 一方、酸変性ポリオレフィン樹脂と硬化剤とを含む樹脂組成物により形成された絶縁層を備える実施例1F~6Fの電池用包装材料においては、異物噛み込み及びクラックのいずれに対する絶縁性も高く、耐久性試験前後における剥離強度の変化も小さく、耐久性も優れていた。
実施例7F~15F及び比較例6F~12F
[電池用包装材料の製造]
 実施例1Fと同様にして、基材層1/接着層2/金属層3の積層体を調製した。次いで、積層体の金属層3側に絶縁層を形成するため、それぞれ表3Fに記載の組成を有する変性ポリオレフィン樹脂と硬化剤とを含む樹脂組成物を厚さ5μmとなるように塗布し、乾燥させた。次いで、実施例7F、8F、10F、13F~15F及び比較例6F~12Fでは、乾燥させた樹脂組成物の上から、第2シーラント層4bを形成する樹脂と第1シーラント層を形成する樹脂とを溶融状態で共押し出しすることにより、絶縁層上に第2シーラント層(厚さ20μm)と第1シーラント層4a(厚さ10μm)を積層させた。さらに得られた積層体を190℃で2分間加熱することにより、基材層1/接着層2/金属層3/絶縁層6/第2シーラント層4b/第1シーラント層4aが順に積層された積層体からなる電池用包装材料を得た。
 一方、実施例9Fでは、乾燥させた絶縁層の樹脂組成物の上から、第2シーラント層4b(厚さ10μm)を形成する樹脂を塗布し、乾燥させた後、第1シーラント層4aを形成する樹脂を溶融押出しして単膜フィルムを作成し、これを第2シーラント層4bの上に重ねあわせて160℃で圧着した後に190℃のオーブンで2分間加熱することにより、第2シーラント層4b上に第1シーラント(厚さ20μm)を積層させ、基材層1/接着層2/金属層3/絶縁層6/第2シーラント層4b/第1シーラント層4aが順に積層された積層体からなる電池用包装材料を得た。
 また、実施例11Fでは、乾燥させた絶縁層の樹脂組成物の上から、第2シーラント層4bを形成する樹脂を塗布し、乾燥させた後、第1シーラント層4aを形成する樹脂を溶融押出しして単膜フィルムを作成し、これを第2シーラント層4bの上に重ねあわせて160℃で圧着した後に190℃のオーブンで2分間加熱することにより、第2シーラント層4b上に第1シーラント(厚さ20μm)を積層させ、基材層1/接着層2/金属層3/絶縁層6/第2シーラント層4b/第1シーラント層4aが順に積層された積層体からなる電池用包装材料を得た。
 また、実施例12Fでは、乾燥させた絶縁層の樹脂組成物の上から、表3Fに記載の樹脂により形成された第3シーラント層4c(厚さ5μm)/第2シーラント層4b(厚さ20μm)/第1シーラント層4a(厚さ5μm)の積層フィルムを積層し、熱ラミネートで貼り合わせることによって積層させた。さらに得られた積層体を190℃で2分間加熱することにより、材層1/接着層2/金属層3/絶縁層6/第3シーラント層4c/第2シーラント層4b/第1シーラント層4aが順に積層された積層体からなる電池用包装材料を得た。なお、絶縁層6、第1シーラント層4a、第2シーラント層4b、第3シーラント層4cを形成する樹脂、硬化剤等については、表3Fに示す通りである。また、絶縁層6、第1シーラント層4a、第2シーラント層4b、第3シーラント層4cを形成する樹脂の融点については、DSC法により測定した値である。
<電池用包装材料の密封性と開封性の評価>
 実施例1Fと同様にして、実施例7F~15F及び比較例6F~12Fで得られた電池用包装材料について、密封性と開封性の評価を行った。結果を表3Fに示す。
<耐久性評価>
 実施例1Fと同様にして、実施例7F~13Fで得られた電池用包装材料について、耐久性評価を行った。結果を表3Fに示す。
<異物噛み込みに対する絶縁性評価>
 実施例1Fと同様にして、実施例7F~13Fで得られた電池用包装材料について、異物噛み込みに対する絶縁性評価を行った。結果を表3Fに示す。
<クラックに対する絶縁性評価>
 実施例1Fと同様にして、実施例7F~13Fで得られた電池用包装材料について、クラックに対する絶縁性評価を行った。結果を表3Fに示す。
Figure JPOXMLDOC01-appb-T000036
 酸変性ポリオレフィン樹脂及び硬化剤を含む樹脂組成物により形成された絶縁層と、ポリオレフィン樹脂または酸変性ポリオレフィン樹脂を含む第2シーラント層4bと、ポリオレフィン樹脂を含む第1シーラント層4aとを順に備える電池用包装材料において、絶縁層の融点TAと設定温度Tとの差(TA-T)が-10℃以上-5℃以下であり、第2シーラント層4bの融点Tm2と設定温度Tとの差(Tm2-T)が-10℃以上-5℃以下であり、第1シーラント層4aの融点Tm1と設定温度Tとの差(Tm1-T)が-5℃以上+5℃以下を全て満たす実施例7F~15Fでは、設定温度T℃到達までは、絶縁層6の少なくとも一部が金属層3の界面から剥離したが、絶縁層6及びシーラント層4が袋状になって内部の密封状態を維持しつつ、設定温度T℃到達から30分後には金属層3から剥離した部分の絶縁層6及びシーラント層4にピンホールのような微細な開裂が生じ、穏やかな状態で開封に導くことができていた。これに対して、第1シーラント層4aの融点Tm1と設定温度Tとの差(Tm1-T)が-5℃以上+5℃以下を満たしていない比較例6F~12Fでは、設定温度T℃に到達する前に開封状態になってヒートシール部分における凝集破壊やシーラント層4の根切れが生じた、或いは設定温度T℃に到達30分後でも開封状態にできなかった。
 一方、酸変性ポリオレフィン樹脂と硬化剤とを含む樹脂組成物により形成された絶縁層を備える実施例7F~13Fの電池用包装材料においては、異物噛み込み及びクラックのいずれに対する絶縁性も高く、耐久性試験前後における剥離強度の変化も小さく、耐久性も優れていた。
実施例16F~31F及び比較例13F~15F
[電池用包装材料の製造]
 実施例1Fと同様にして、基材層1/接着層2/金属層3の積層体を調製した。次いで、積層体の金属層3側に絶縁層を形成するため、それぞれ表4Fに記載の組成を有する変性ポリオレフィン樹脂及び硬化剤を含む樹脂組成物を厚さ5μmとなるように塗布し、乾燥させた。次いで、乾燥させた樹脂組成物の上から、第2シーラント層4bを形成する樹脂と第1シーラント層4aを形成する樹脂とを溶融状態で共押し出しすることにより、絶縁層上に第2シーラント層4b(厚さ20μm)と第1シーラント層4a(厚さ10μm)を積層させた。さらに得られた積層体を以下のA~Dの加熱方法で加熱することにより、基材層1/接着層2/金属層3/絶縁層6/第2シーラント層4b/第1シーラント層4aが順に積層された積層体からなる電池用包装材料を得た。
<加熱方法>
A:190℃で2分間加熱する
B:190℃で2分間加熱した後、60℃で1日エージングする
C:60℃で1日エージングした後、190℃で2分間加熱する
D:80℃で1日エージングする
なお、絶縁層6、第1シーラント層4a及び第2シーラント層4bを形成する樹脂、硬化剤等については、表4Fに示す通りである。また、絶縁層6、第1シーラント層4a、第2シーラント層4bを形成する樹脂の融点については、DSC法により測定した値である。
<電池用包装材料の密封性と開封性の評価>
 実施例1Fと同様にして、実施例16F~31F及び比較例13F~15Fで得られた電池用包装材料について、密封性と開封性の評価を行った。結果を表4Fに示す。
<耐久性評価>
 実施例1Fと同様にして、実施例16F~31F及び比較例13F~15Fで得られた電池用包装材料について、耐久性評価を行った。結果を表4Fに示す。
<異物噛み込みに対する絶縁性評価>
 実施例1Fと同様にして、実施例16F~31F及び比較例13F~15Fで得られた電池用包装材料について、異物噛み込みに対する絶縁性評価を行った。結果を表4Fに示す。
<クラックに対する絶縁性評価>
 実施例1Fと同様にして、実施例16F~31F及び比較例13F~15Fで得られた電池用包装材料について、クラックに対する絶縁性評価を行った。結果を表4Fに示す。
Figure JPOXMLDOC01-appb-T000037
 酸変性ポリオレフィン樹脂及び硬化剤を含む樹脂組成物により形成された絶縁層と、ポリオレフィン樹脂または酸変性ポリオレフィン樹脂を含む第2シーラント層4bと、ポリオレフィン樹脂を含む第1シーラント層4aとを順に備える電池用包装材料において、絶縁層の融点TAと設定温度Tとの差(TA-T)が-10℃以上-5℃以下であり、第2シーラント層4bの融点Tm2と設定温度Tとの差(Tm2-T)が-10℃以上-5℃以下であり、第1シーラント層4aの融点Tm1と設定温度Tとの差(Tm1-T)が-5℃以上+5℃以下を全て満たす実施例16F~31F及び比較例13F~15Fにおいて、設定温度T℃到達までは、絶縁層6の少なくとも一部が金属層3の界面から剥離したが、シーラント層4が袋状になって内部の密封状態を維持しつつ、設定温度T℃到達から30分後には金属層3から剥離した部分の絶縁層6及びシーラント層4にピンホールのような微細な開裂が生じ、穏やかな状態で開封に導くことができていた。
 一方、酸変性ポリオレフィン樹脂及び硬化剤を含む樹脂組成物により形成された絶縁層6を備える実施例16F~31Fの電池用包装材料においては、異物噛み込み及びクラックのいずれに対する絶縁性も高く、耐久性試験前後における剥離強度の変化も小さく、耐久性も優れていた。これに対して、絶縁層6を形成する樹脂組成物に硬化剤を含まなかった比較例13Fの電池用包装材料においては、異物噛み込みに対する絶縁性が低く、耐久性も低かった。また、絶縁層を形成する樹脂組成物に硬化剤を含まなかった比較例14F及び15Fの電池用包装材料においては、異物噛み込み及びクラックのいずれに対する絶縁性も低く、耐久性も低かった。
1 基材層
2 接着層
3 金属層
4 シーラント層
5 接着層
6 絶縁層
10 微細な開裂

Claims (16)

  1.  少なくとも、基材層、金属層、及びシーラント層をこの順に有する積層体からなる電池用包装材料であって、
     前記電池用包装材料をヒートシールして電池素子を密閉した状態で昇温すると、密閉状態を保持したまま前記金属層と前記シーラント層の外側表面との間の少なくとも一部において剥離が生じた後、開封状態に移行するように作動する、電池用包装材料。
  2.  前記剥離が生じた部分において内袋が形成された後、前記内袋が開裂して前記開封状態に移行するように作動する、請求項1に記載の電池用包装材料。
  3.  前記基材層と前記金属層との間に、接着層をさらに有する、請求項1または2に記載の電池用包装材料。
  4.  前記金属層と前記シーラント層との間に、接着層をさらに有する、請求項1~3のいずれかに記載の電池用包装材料。
  5.  前記剥離が、前記金属層と前記シーラント層との界面、前記金属層と前記接着層との界面、前記接着層と前記シーラント層との界面、前記接着層の内部、及び前記シーラント層の内部のうち、少なくとも一箇所で生じる、請求項1~4のいずれかに記載の電池用包装材料。
  6.  25℃における前記金属層と前記シーラント層との間におけるラミネート強度が、3(N/15mm)以上である、請求項1~5のいずれかに記載の電池用包装材料。
  7.  80℃における前記金属層と前記シーラント層との間におけるラミネート強度が、2.5(N/15mm)以上であり、かつ、125℃における前記金属層と前記シーラント層とのラミネート強度が、2.5(N/15mm)以下である、請求項1~6のいずれかに記載の電池用包装材料。
  8.  前記シーラント層同士を対向させた状態でヒートシールした部分のシール強度が、25℃において30(N/15mm)以上である、請求項1~7のいずれかに記載の電池用包装材料。
  9.  前記シーラント層同士を対向させた状態でヒートシールした部分のシール強度が、125℃において20(N/15mm)以下である、請求項1~8のいずれかに記載の電池用包装材料。
  10.  前記シーラント層同士を対向させた状態でヒートシールして得られる袋状の包装材料において、前記袋状の包装材料の内部空間に電解液を含む状態で、85℃で24時間放置した後における、当該ヒートシールした部分のシール強度が、0.2(N/15mm)以上である、請求項1~9のいずれかに記載の電池用包装材料。
  11.  100~160℃の間で定められた設定温度T℃まで昇温した際にT℃に到達するまでは包装材料が開封せず、T℃到達後は迅速に包装材料が開封するように設定された電池に使用される電池用包装材料であって、
     少なくとも、基材層、金属層、及びシーラント層をこの順に有する積層体からなり、
     前記シーラント層は、金属層側に位置し、酸変性ポリオレフィンを含む第1シーラント層と、当該第1シーラント層上に積層され最内層に位置し、ポリオレフィンを含む第2シーラント層を有し、
     前記第1シーラント層及び第2シーラント層が下記式(1)及び(2)
    -10≦Tm1-T≦-5  (1)
    -5≦Tm2-T≦5    (2)
     Tm1:前記第1シーラント層の融点(℃)
     Tm2:前記第2シーラント層の融点(℃)
    を充足することを特徴とする、電池用包装材料。
  12.  100~160℃の間で定められた設定温度T℃まで昇温した際にT℃に到達するまでは包装材料が開封せず、T℃到達後は迅速に包装材料が開封するように設定された電池に使用される電池用包装材料であって、
     少なくとも、基材層、金属層、及びシーラント層をこの順に有する積層体からなり、
     前記シーラント層は、酸変性ポリオレフィンを含む第1シーラント層、ポリオレフィン及び酸変性ポリオレフィンの少なくとも一方を含む第2シーラント層、ポリオレフィンを含む第3シーラント層を順に有し、当該第1シーラント層が金属層側に位置し、当該第3シーラント層が最内層に位置するように配されており、
     前記第1シーラント層、第2シーラント層、及び第3シーラント層が下記式(1)~(3) 
    -10≦Tm1-T≦-5  (1)
    5≦Tm2-T≦10    (2)
    -5≦Tm3-T≦5    (3)
     Tm1:前記第1シーラント層の融点(℃)
     Tm2:前記第2シーラント層の融点(℃)
     Tm3:前記第3シーラント層の融点(℃)
    を充足することを特徴とする、電池用包装材料。
  13.  少なくとも、基材層、金属層、及びシーラント層をこの順に有する積層体からなり、
     前記シーラント層は、酸変性ポリオレフィンを含む第1シーラント層と、第2シーラント層とを順に有し、
     前記シーラント層において、前記第1シーラント層が金属層側に位置し、前記第2シーラント層が最内層に位置するように配されており、
     前記第1シーラント層の融点Tm1が100~160℃であり、かつ、前記第1シーラント層の軟化点Ts1が60~150℃である、電池用包装材料。
  14.  少なくとも、基材層、金属層、及びシーラント層をこの順に有する積層体からなり、
     前記シーラント層は、酸変性ポリオレフィンを含む第1シーラント層と、第2シーラント層とを順に有し、
     前記シーラント層において、前記第1シーラント層が金属層側に位置し、前記第2シーラント層が最内層に位置するように配されており、
     前記第1シーラント層が、ポリエチレン及び酸変性ポリエチレンの少なくとも一方を含む、電池用包装材料。
  15.  少なくとも、基材層、金属層、及びシーラント層をこの順に有する積層体からなり、
     前記シーラント層は、酸変性ポリオレフィンを含む第1シーラント層と、第2シーラント層とを順に有し、
     前記シーラント層において、前記第1シーラント層が金属層側に位置し、前記第2シーラント層が最内層に位置するように配されており、
     前記第1シーラント層が、エチレン酢酸ビニル共重合体、アクリル樹脂、スチレン重合体、及びテルペンフェノール樹脂からなる群から選択された少なくとも1種を含む、電池用包装材料。
  16.  100~160℃の間で定められた設定温度T℃まで昇温した際にT℃に到達するまでは包装材料が開封せず、T℃到達後は迅速に包装材料が開封するように設定された電池に使用される電池用包装材料であって、
     少なくとも、基材層、金属層、絶縁層、及びシーラント層をこの順に有する積層体からなり、
     前記絶縁層は、酸変性ポリオレフィン樹脂と硬化剤とを含む樹脂組成物により形成されており、
     前記シーラント層は、ポリオレフィン樹脂を含む第1シーラント層を有し、
     前記絶縁層と、前記第1シーラント層とが下記式(1)及び(2):
    -10≦TA-T≦-5  (1)
    -5≦Tm1-T≦5    (2)
     TA:前記絶縁層の融点(℃)
     Tm1:前記第1シーラント層の融点(℃)
    の関係を充足する、電池用包装材料。
PCT/JP2014/052696 2013-02-06 2014-02-05 電池用包装材料 WO2014123164A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020157018519A KR102231414B1 (ko) 2013-02-06 2014-02-05 전지용 포장 재료
CN201480007728.5A CN104969378B (zh) 2013-02-06 2014-02-05 电池用包装材料
US14/765,187 US10347877B2 (en) 2013-02-06 2014-02-05 Battery packaging material
EP14748668.2A EP2955770B1 (en) 2013-02-06 2014-02-05 Battery packaging material

Applications Claiming Priority (22)

Application Number Priority Date Filing Date Title
JP2013021785 2013-02-06
JP2013-021787 2013-02-06
JP2013-021786 2013-02-06
JP2013-021785 2013-02-06
JP2013021786 2013-02-06
JP2013021787 2013-02-06
JP2013-062990 2013-03-25
JP2013062990A JP5626393B2 (ja) 2013-02-06 2013-03-25 電池用包装材料
JP2013-062991 2013-03-25
JP2013062991A JP5626394B2 (ja) 2013-02-06 2013-03-25 電池用包装材料
JP2013-062989 2013-03-25
JP2013062989A JP5626392B2 (ja) 2013-02-06 2013-03-25 電池用包装材料
JP2013-099898 2013-05-10
JP2013099898A JP5626404B1 (ja) 2013-05-10 2013-05-10 電池用包装材料
JP2013164055A JP5704199B2 (ja) 2013-08-07 2013-08-07 電池用包装材料
JP2013-164055 2013-08-07
JP2013-165503 2013-08-08
JP2013165503A JP5668812B1 (ja) 2013-08-08 2013-08-08 電池用包装材料
JP2013-165504 2013-08-08
JP2013165504A JP5668813B1 (ja) 2013-08-08 2013-08-08 電池用包装材料
JP2013182204A JP5660176B1 (ja) 2013-09-03 2013-09-03 電池用包装材料
JP2013-182204 2013-09-03

Publications (1)

Publication Number Publication Date
WO2014123164A1 true WO2014123164A1 (ja) 2014-08-14

Family

ID=54222082

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/052696 WO2014123164A1 (ja) 2013-02-06 2014-02-05 電池用包装材料

Country Status (5)

Country Link
US (1) US10347877B2 (ja)
EP (1) EP2955770B1 (ja)
KR (1) KR102231414B1 (ja)
CN (1) CN104969378B (ja)
WO (1) WO2014123164A1 (ja)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015008119A (ja) * 2013-05-31 2015-01-15 昭和電工パッケージング株式会社 電池用外装材及び電池
JP2016072212A (ja) * 2014-09-30 2016-05-09 大日本印刷株式会社 電池用包装材料
CN106558658A (zh) * 2015-09-29 2017-04-05 昭和电工包装株式会社 蓄电装置的外装件用密封剂膜、蓄电装置用外装件及蓄电装置
KR20170038163A (ko) * 2015-09-29 2017-04-06 쇼와 덴코 패키징 가부시키가이샤 축전 디바이스의 외장재용 실런트 필름, 축전 디바이스용 외장재 및 축전 디바이스
JP2017076509A (ja) * 2015-10-14 2017-04-20 昭和電工パッケージング株式会社 蓄電デバイスの外装材用シーラントフィルム、蓄電デバイス用外装材、蓄電デバイス及び蓄電デバイス外装材のシーラントフィルム用樹脂組成物の製造方法
JP2017076510A (ja) * 2015-10-14 2017-04-20 昭和電工パッケージング株式会社 蓄電デバイスの外装材用シーラントフィルム、蓄電デバイス用外装材、蓄電デバイス及び蓄電デバイス外装材のシーラントフィルム用樹脂組成物の製造方法
CN107408644A (zh) * 2015-03-25 2017-11-28 大日本印刷株式会社 电池用包装材料和电池
WO2017209184A1 (ja) * 2016-06-02 2017-12-07 凸版印刷株式会社 蓄電装置用外装材
CN107487050A (zh) * 2016-06-09 2017-12-19 昭和电工包装株式会社 蓄电装置的外包装材料用密封膜、外包装材料及制造方法
US20180086952A1 (en) * 2016-09-29 2018-03-29 Taiflex Scientific Co., Ltd. Adhesive composition and laminated film
CN108292775A (zh) * 2015-12-11 2018-07-17 株式会社Lg化学 用于二次电池的密封设备
WO2020004413A1 (ja) * 2018-06-27 2020-01-02 凸版印刷株式会社 蓄電装置用外装材及びこれを用いた蓄電装置
JP2020167169A (ja) * 2020-06-15 2020-10-08 昭和電工パッケージング株式会社 蓄電デバイスの外装材用シーラントフィルム、蓄電デバイス用外装材、蓄電デバイス及び蓄電デバイス外装材のシーラントフィルム用樹脂組成物の製造方法
WO2021201214A1 (ja) * 2020-04-02 2021-10-07 大日本印刷株式会社 金属端子用接着性フィルム、金属端子用接着性フィルムの製造方法、金属端子用接着性フィルム付き金属端子、蓄電デバイス、及び蓄電デバイスの製造方法

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105009322B (zh) * 2013-02-18 2018-06-29 大日本印刷株式会社 电池用包装材料
JP6187351B2 (ja) * 2014-03-27 2017-08-30 豊田合成株式会社 電池モジュールおよびその製造方法
EP3171425B1 (en) * 2014-07-17 2019-12-18 Dai Nippon Printing Co., Ltd. Cell packaging material
CN106661298B (zh) * 2014-08-28 2020-03-03 株式会社可乐丽 包含乙烯-乙烯醇共聚物的树脂组合物、成型体和多层结构体
WO2016052294A1 (ja) * 2014-09-30 2016-04-07 大日本印刷株式会社 電池用包装材料
KR20170026230A (ko) * 2015-08-27 2017-03-08 주식회사 엘지화학 이차전지의 실링장치
US10448541B2 (en) * 2015-11-19 2019-10-15 Boyd Corporation Densified foam for thermal insulation in electronic devices
JP7244206B2 (ja) * 2016-01-29 2023-03-22 大日本印刷株式会社 包装材料及び電池
KR102069211B1 (ko) * 2016-03-30 2020-01-22 주식회사 엘지화학 리튬이차전지 및 이의 제조방법
WO2017179636A1 (ja) * 2016-04-12 2017-10-19 大日本印刷株式会社 電池用包装材料、その製造方法、及び電池
JP6738189B2 (ja) * 2016-04-21 2020-08-12 昭和電工パッケージング株式会社 蓄電デバイス用外装材及び蓄電デバイス
EP3467897B1 (en) 2016-05-31 2024-09-11 Dai Nippon Printing Co., Ltd. Battery packaging material, production method therefor, battery, and polyester film
KR20170139303A (ko) * 2016-06-09 2017-12-19 주식회사 엘지화학 이차전지
JP6805563B2 (ja) 2016-06-15 2020-12-23 凸版印刷株式会社 蓄電装置用外装材
JP6969892B2 (ja) * 2016-08-17 2021-11-24 昭和電工パッケージング株式会社 蓄電デバイス用外装材及び蓄電デバイス
CN106252538A (zh) * 2016-08-26 2016-12-21 上海紫江新材料科技有限公司 一种表面着色的锂电池铝塑膜及其制备方法
CN106207021A (zh) * 2016-08-30 2016-12-07 上海紫江新材料科技有限公司 一种用热压工艺制成的锂电池软包装膜
CN107919492B (zh) * 2016-10-10 2019-11-12 青岛市比亚迪汽车有限公司 锂离子电池、电池组及电动大巴
KR101894449B1 (ko) 2016-12-01 2018-09-03 율촌화학 주식회사 셀 파우치 및 이의 제조 방법
JP6948134B2 (ja) * 2017-03-17 2021-10-13 昭和電工パッケージング株式会社 蓄電デバイスの外装材用シーラントフィルム、蓄電デバイス用外装材及びその製造方法
CN110447123B (zh) 2017-03-21 2022-07-08 大日本印刷株式会社 电池用包装材料、其制造方法、电池用包装材料用聚对苯二甲酸丁二醇酯膜和电池
KR20220101016A (ko) * 2017-04-20 2022-07-18 다이니폰 인사츠 가부시키가이샤 전지용 포장 재료, 그의 제조 방법 및 전지
KR102451686B1 (ko) * 2017-06-20 2022-10-05 삼성에스디아이 주식회사 이차 전지용 외장재 및 이를 포함하는 이차 전지
WO2019044615A1 (ja) * 2017-08-31 2019-03-07 株式会社村田製作所 蓄電デバイス
JP6936093B2 (ja) * 2017-09-28 2021-09-15 昭和電工パッケージング株式会社 蓄電デバイス用外装材、蓄電デバイス用外装ケース及び蓄電デバイス
KR102643505B1 (ko) * 2017-12-12 2024-03-04 삼성전자주식회사 전지 케이스, 전지, 및 전지의 제조 방법
JP7192795B2 (ja) * 2017-12-20 2022-12-20 大日本印刷株式会社 電池用包装材料及び電池
KR102255537B1 (ko) * 2018-01-12 2021-05-25 주식회사 엘지에너지솔루션 파우치 필름 및 그의 제조 방법
KR102591366B1 (ko) * 2018-03-09 2023-10-18 삼성전자주식회사 전지 케이스, 전지, 및 전지의 제조 방법
CN108615829B (zh) * 2018-04-28 2021-04-16 上海恩捷新材料科技有限公司 一种软包装及其制备的电池
JPWO2020085462A1 (ja) 2018-10-24 2021-09-24 大日本印刷株式会社 蓄電デバイス用外装材、その製造方法、及び蓄電デバイス
JP7356257B2 (ja) * 2019-05-10 2023-10-04 共同印刷株式会社 硫化物系全固体電池用ラミネートシート及びそれを用いたラミネートパック
CN114787311B (zh) * 2019-12-25 2023-05-09 Dic株式会社 粘接剂、层叠体、包装材、电池用包装材、电池
KR102142600B1 (ko) * 2020-02-28 2020-08-07 노대수 배터리 셀 파우치 필름 및 그의 제조방법
US12057592B2 (en) 2020-09-25 2024-08-06 Google Llc Battery expansion control system
US11680918B2 (en) 2020-09-25 2023-06-20 Google Llc Thermal gradient battery monitoring system and methods
US11668756B2 (en) 2020-09-25 2023-06-06 Google Llc Battery degradation monitoring system and methods
CN114379171A (zh) * 2020-10-21 2022-04-22 宁德新能源科技有限公司 封装膜、电池及电子装置
CN113097617A (zh) * 2021-03-30 2021-07-09 宁德新能源科技有限公司 电化学装置和电子装置
KR102660400B1 (ko) * 2021-10-01 2024-04-25 주식회사 엘지에너지솔루션 파우치 필름 적층체 및 이차 전지
CN114474927B (zh) * 2022-01-11 2023-07-07 江苏睿捷新材料科技有限公司 一种包装材料

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001202927A (ja) 2000-01-20 2001-07-27 Dainippon Printing Co Ltd ポリマー電池用包装材料およびその製造方法
JP2001229887A (ja) * 2000-02-16 2001-08-24 Dainippon Printing Co Ltd ポリマー電池用包装材料およびその製造方法
JP2002245983A (ja) * 2001-02-19 2002-08-30 Dainippon Printing Co Ltd リチウムイオン電池用包装材料
JP2003036822A (ja) * 2001-07-19 2003-02-07 Dainippon Printing Co Ltd 電池用包装材料
JP2012003919A (ja) * 2010-06-16 2012-01-05 Hitachi Maxell Energy Ltd ラミネート形電池およびその製造方法
JP2012174438A (ja) * 2011-02-21 2012-09-10 Dainippon Printing Co Ltd 電気化学セル用包装材料およびその製造方法
JP2012203982A (ja) 2011-03-23 2012-10-22 Toppan Printing Co Ltd リチウムイオン電池用外装材及びリチウムイオン電池
JP2012234816A (ja) * 2011-05-04 2012-11-29 Youl Chon Chemical Co Ltd 爆発安全性を持つセルパウチ及びその製造方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1193442C (zh) * 1999-12-17 2005-03-16 大日本印刷株式会社 聚合物电池用包装材料及其制造方法
JP2001266952A (ja) * 2000-03-23 2001-09-28 Sony Corp リチウムイオン電池およびその製造方法
TW562326U (en) * 2002-11-07 2003-11-11 Globlink Technology Inc Power saving mechanism of wireless electric appliance
JP4456801B2 (ja) * 2002-08-29 2010-04-28 パナソニック株式会社 ポリマー電池の絶縁被覆形成方法
JP4925829B2 (ja) * 2004-08-30 2012-05-09 株式会社カネカ 顆粒球吸着材
JP4508199B2 (ja) * 2007-02-05 2010-07-21 ソニー株式会社 リード用シーラントフィルム及び非水電解質電池
US8211568B2 (en) * 2007-03-30 2012-07-03 Dai Nippon Printing Co., Ltd. Packaging material for flat electrochemical cell
JP5584970B2 (ja) * 2008-10-23 2014-09-10 凸版印刷株式会社 リチウム電池用外装材
KR101320011B1 (ko) * 2009-08-07 2013-10-18 다이니폰 인사츠 가부시키가이샤 전기화학 셀용 포장재
JP5670803B2 (ja) * 2011-03-31 2015-02-18 ユニチカ株式会社 電池用外装体及びその製造方法並びに電池

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001202927A (ja) 2000-01-20 2001-07-27 Dainippon Printing Co Ltd ポリマー電池用包装材料およびその製造方法
JP2001229887A (ja) * 2000-02-16 2001-08-24 Dainippon Printing Co Ltd ポリマー電池用包装材料およびその製造方法
JP2002245983A (ja) * 2001-02-19 2002-08-30 Dainippon Printing Co Ltd リチウムイオン電池用包装材料
JP2003036822A (ja) * 2001-07-19 2003-02-07 Dainippon Printing Co Ltd 電池用包装材料
JP2012003919A (ja) * 2010-06-16 2012-01-05 Hitachi Maxell Energy Ltd ラミネート形電池およびその製造方法
JP2012174438A (ja) * 2011-02-21 2012-09-10 Dainippon Printing Co Ltd 電気化学セル用包装材料およびその製造方法
JP2012203982A (ja) 2011-03-23 2012-10-22 Toppan Printing Co Ltd リチウムイオン電池用外装材及びリチウムイオン電池
JP2012234816A (ja) * 2011-05-04 2012-11-29 Youl Chon Chemical Co Ltd 爆発安全性を持つセルパウチ及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2955770A4

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015008119A (ja) * 2013-05-31 2015-01-15 昭和電工パッケージング株式会社 電池用外装材及び電池
JP2016072212A (ja) * 2014-09-30 2016-05-09 大日本印刷株式会社 電池用包装材料
CN107408644A (zh) * 2015-03-25 2017-11-28 大日本印刷株式会社 电池用包装材料和电池
US10396316B2 (en) * 2015-03-25 2019-08-27 Dai Nippon Printing Co., Ltd. Cell packaging material and cell
KR102518096B1 (ko) 2015-09-29 2023-04-06 가부시키가이샤 레조낙·패키징 축전 디바이스의 외장재용 실런트 필름, 축전 디바이스용 외장재 및 축전 디바이스
KR20170038163A (ko) * 2015-09-29 2017-04-06 쇼와 덴코 패키징 가부시키가이샤 축전 디바이스의 외장재용 실런트 필름, 축전 디바이스용 외장재 및 축전 디바이스
KR102583507B1 (ko) 2015-09-29 2023-09-27 가부시키가이샤 레조낙·패키징 축전 디바이스의 외장재용 실런트 필름, 축전 디바이스용 외장재 및 축전 디바이스
KR20170038150A (ko) * 2015-09-29 2017-04-06 쇼와 덴코 패키징 가부시키가이샤 축전 디바이스의 외장재용 실런트 필름, 축전 디바이스용 외장재 및 축전 디바이스
CN106558658A (zh) * 2015-09-29 2017-04-05 昭和电工包装株式会社 蓄电装置的外装件用密封剂膜、蓄电装置用外装件及蓄电装置
CN106558658B (zh) * 2015-09-29 2020-12-08 昭和电工包装株式会社 蓄电装置的外装件用密封剂膜、蓄电装置用外装件及蓄电装置
JP2017076509A (ja) * 2015-10-14 2017-04-20 昭和電工パッケージング株式会社 蓄電デバイスの外装材用シーラントフィルム、蓄電デバイス用外装材、蓄電デバイス及び蓄電デバイス外装材のシーラントフィルム用樹脂組成物の製造方法
JP2017076510A (ja) * 2015-10-14 2017-04-20 昭和電工パッケージング株式会社 蓄電デバイスの外装材用シーラントフィルム、蓄電デバイス用外装材、蓄電デバイス及び蓄電デバイス外装材のシーラントフィルム用樹脂組成物の製造方法
CN108292775A (zh) * 2015-12-11 2018-07-17 株式会社Lg化学 用于二次电池的密封设备
JP7066965B2 (ja) 2016-06-02 2022-05-16 凸版印刷株式会社 蓄電装置用外装材
JP2017216207A (ja) * 2016-06-02 2017-12-07 凸版印刷株式会社 蓄電装置用外装材
US11833781B2 (en) 2016-06-02 2023-12-05 Toppan Printing Co., Ltd. Power storage device packaging material
JP7377416B2 (ja) 2016-06-02 2023-11-10 Toppanホールディングス株式会社 蓄電装置用外装材
WO2017209184A1 (ja) * 2016-06-02 2017-12-07 凸版印刷株式会社 蓄電装置用外装材
JP2022058490A (ja) * 2016-06-02 2022-04-12 凸版印刷株式会社 蓄電装置用外装材
CN107487050A (zh) * 2016-06-09 2017-12-19 昭和电工包装株式会社 蓄电装置的外包装材料用密封膜、外包装材料及制造方法
US20180086952A1 (en) * 2016-09-29 2018-03-29 Taiflex Scientific Co., Ltd. Adhesive composition and laminated film
WO2020004413A1 (ja) * 2018-06-27 2020-01-02 凸版印刷株式会社 蓄電装置用外装材及びこれを用いた蓄電装置
JP7318647B2 (ja) 2018-06-27 2023-08-01 凸版印刷株式会社 蓄電装置用外装材及びこれを用いた蓄電装置
JPWO2020004413A1 (ja) * 2018-06-27 2021-08-05 凸版印刷株式会社 蓄電装置用外装材及びこれを用いた蓄電装置
JPWO2021201214A1 (ja) * 2020-04-02 2021-10-07
WO2021201214A1 (ja) * 2020-04-02 2021-10-07 大日本印刷株式会社 金属端子用接着性フィルム、金属端子用接着性フィルムの製造方法、金属端子用接着性フィルム付き金属端子、蓄電デバイス、及び蓄電デバイスの製造方法
JP7088437B2 (ja) 2020-04-02 2022-06-21 大日本印刷株式会社 金属端子用接着性フィルム、金属端子用接着性フィルムの製造方法、金属端子用接着性フィルム付き金属端子、蓄電デバイス、及び蓄電デバイスの製造方法
JP2020167169A (ja) * 2020-06-15 2020-10-08 昭和電工パッケージング株式会社 蓄電デバイスの外装材用シーラントフィルム、蓄電デバイス用外装材、蓄電デバイス及び蓄電デバイス外装材のシーラントフィルム用樹脂組成物の製造方法

Also Published As

Publication number Publication date
CN104969378A (zh) 2015-10-07
EP2955770A4 (en) 2016-09-14
KR102231414B1 (ko) 2021-03-25
US20150372263A1 (en) 2015-12-24
EP2955770B1 (en) 2019-05-08
EP2955770A1 (en) 2015-12-16
KR20150114470A (ko) 2015-10-12
CN104969378B (zh) 2019-10-22
US10347877B2 (en) 2019-07-09

Similar Documents

Publication Publication Date Title
WO2014123164A1 (ja) 電池用包装材料
JP5626392B2 (ja) 電池用包装材料
WO2015033958A1 (ja) 電池用包装材料のシーラント層用の樹脂組成物
JP5114260B2 (ja) 扁平型電気化学セル用包装材料
JP5660176B1 (ja) 電池用包装材料
JP5704202B2 (ja) 電池用包装材料
JP6458338B2 (ja) 二次電池用外装材、二次電池、及び二次電池用外装材の製造方法
JP5668812B1 (ja) 電池用包装材料
JP2019029300A (ja) 電池用包装材料、その製造方法、及び電池
WO2016159190A1 (ja) 電池用包装材料、その製造方法及び電池
JP5626404B1 (ja) 電池用包装材料
KR102518096B1 (ko) 축전 디바이스의 외장재용 실런트 필름, 축전 디바이스용 외장재 및 축전 디바이스
JP6592933B2 (ja) 電池用包装材料
WO2017188445A1 (ja) 電池用包装材料及び電池
JP5704199B2 (ja) 電池用包装材料
JP5626394B2 (ja) 電池用包装材料
JP5626393B2 (ja) 電池用包装材料
JP6686634B2 (ja) 電池用包装材料、その製造方法及び電池
JP5668813B1 (ja) 電池用包装材料
JP2017079199A (ja) 電池用包装材料
JP5761278B2 (ja) 電池用包装材料のシーラント層用の樹脂組成物
KR102647429B1 (ko) 실란트 수지 조성물 및 이를 이용한 이차전지용 외장재
JP2017107861A (ja) 電池用包装材料のシーラント層用の樹脂組成物
JP6275080B2 (ja) 電池用包装材料のシーラント層用の樹脂組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14748668

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157018519

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14765187

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2014748668

Country of ref document: EP