WO2014119880A1 - 무선 통신 시스템에서 D2D(Device-to-Device) 통신을 위한 순환 전치 설정 방법 및 이를 위한 장치 - Google Patents

무선 통신 시스템에서 D2D(Device-to-Device) 통신을 위한 순환 전치 설정 방법 및 이를 위한 장치 Download PDF

Info

Publication number
WO2014119880A1
WO2014119880A1 PCT/KR2014/000705 KR2014000705W WO2014119880A1 WO 2014119880 A1 WO2014119880 A1 WO 2014119880A1 KR 2014000705 W KR2014000705 W KR 2014000705W WO 2014119880 A1 WO2014119880 A1 WO 2014119880A1
Authority
WO
WIPO (PCT)
Prior art keywords
length
communication
terminal
signal
predetermined
Prior art date
Application number
PCT/KR2014/000705
Other languages
English (en)
French (fr)
Inventor
서대원
김학성
서한별
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to KR1020157018541A priority Critical patent/KR20150112942A/ko
Priority to CN201480007111.3A priority patent/CN104969488B/zh
Priority to US14/760,455 priority patent/US10064041B2/en
Publication of WO2014119880A1 publication Critical patent/WO2014119880A1/ko

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/005Discovery of network devices, e.g. terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0069Cell search, i.e. determining cell identity [cell-ID]
    • H04J11/0086Search parameters, e.g. search strategy, accumulation length, range of search, thresholds
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/2605Symbol extensions, e.g. Zero Tail, Unique Word [UW]
    • H04L27/2607Cyclic extensions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/02Selection of wireless resources by user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/51Allocation or scheduling criteria for wireless resources based on terminal or device properties
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J2011/0096Network synchronisation

Definitions

  • the present invention relates to a wireless communication system, and more particularly, to a method of setting a cyclic prefix for device-to-device (D2D) communication in a wireless communication system and an apparatus therefor.
  • D2D device-to-device
  • a 3GPP LTE (3rd Generation Partnership Project Long Term Evolution (LTE)) communication system will be described in brief.
  • E-UMTS Evolved Universal Mobile Telecommunications System
  • E-UMTS is an evolution from the existing UMTS Jniversal Mobile Telecommunications System (E-UMTS), and is currently undergoing basic standardization in 3GPP.
  • E-UMTS may be referred to as LTE Long Term Evolution (LTE) system.
  • LTE Long Term Evolution
  • Technical specifications of UMTS and E-UMTS ⁇ For details, refer to Release 7 and Release 8 of the "3rd Generation Partnership Project; Technical Specification Group Radio Access Network", respectively.
  • an E-UMTS is located at an end of a user equipment (UE), a base station (eNode B; eNB), and a network (E-UTRAN) and is connected to an external network (Access Gateway). AG).
  • the base station may transmit multiple data streams simultaneously for broadcast service, multicast service and / or unicast service.
  • SAL is set to one of the bandwidth of 1.44, 3, 5, 10, 15, 20Mhz, etc. to provide a downlink or uplink transmission service to multiple terminals. Different cells may be configured to provide different bandwidths.
  • the base station controls data transmission and reception for a plurality of terminals.
  • the base station transmits downlink scheduling information to downlink (DL) data to the corresponding terminal. It informs the time / frequency domain, encoding, data size, and HARQ Hybrid Automatic Repeat and reQuest related information.
  • the base station transmits uplink scheduling information to the terminal for uplink (UL) data to inform the user equipment of the time / frequency domain, encoding, data size, HARQ-related information, etc.
  • the core network may be composed of an AG and a network node for user registration of the terminal.
  • the AG manages the mobility of the terminal in units of a TAOYacking Area).
  • Wireless communication technology has been developed up to LTE based on WCDMA, but the demands and expectations of users and operators are continuously increasing. Also, as other wireless access technologies continue to be developed, new technology advances in order to be competitive in the future. Required. Reduced cost per bit, increased service availability, flexible use of frequency bands, simple structure and open interface, and adequate power consumption of the terminal are required.
  • An object of the present invention is to provide a method of setting a cyclic prefix for device-to-device (D2D) communication in a wireless communication system and an apparatus therefor.
  • D2D device-to-device
  • a method of transmitting and receiving a signal by a terminal performing device-to-device (D2D) communication in a wireless communication system may require a predetermined length of CP Cyclic Prefix (CP). And transmitting and receiving a signal using a frame having a frame, wherein the predetermined CP length is set to one of a first CP length and a second CP length, and the first CP length is set for communication between the base station and the terminal.
  • CP length, and the second CP length is characterized in that the CP length set for the communication between the terminal and the terminal.
  • the predetermined CP length may be determined based on a detection signal for a D2D communication.
  • the detection signal includes a primary synchronization signal (PSS) and a secondary synchronization signal (SSS) configured for D2D communication
  • PSS primary synchronization signal
  • SSS secondary synchronization signal
  • the CP length depends on a timing difference between the PSS and the SSS. May be characterized.
  • the SSS may be set in front of one 0rthogonal frequency division multiplexing (FDM) symbol than the PSS.
  • the detection signal includes a parameter set differently for each of a normal CP and an extended CP, and the predetermined CP length is a parameter included in the detection signal. It may be characterized in that based on.
  • the predetermined CP length may be maintained until a new discovery signal for D2D communication is received.
  • the predetermined CP length may be set independently for each of at least one other terminal.
  • the predetermined CP length is set differently for a plurality of D2D groups for D2D communication, and each of the plurality of D2D groups is configured with at least one terminal or base station. Can be.
  • the signals may be transmitted only to one D2D group determined according to a priority order according to CP length.
  • a terminal for performing device-to-device (D2D) communication in a wireless communication system the radio frequency unit (Radio Frequency Unit); And a processor, wherein the processor is configured to transmit and receive a signal using a frame having a predetermined cyclic length, and the predetermined CP length includes a first CP length and a second CP.
  • the predetermined CP length includes a first CP length and a second CP.
  • One of the length is set, the first CP length is a CP configured for communication between the base station and the terminal Length, and the second CP length may be a CP length set for communication between the terminal and the terminal.
  • the cyclic prefix can be efficiently set.
  • FIG. 1 illustrates an E-UMTS network structure as an example of a wireless communication system.
  • FIG. 2 illustrates a control plane and a user plane structure of a radio interface protocol between a terminal and an E-UTRAN based on the 3GPP radio access network standard.
  • 3 shows physical channels used in a 3GPP LTE system and a general signal transmission method using the same.
  • FIG. 4 shows a structure of a radio frame used in an LTE system.
  • FIG. 5 illustrates a structure of a synchronization channel and a broadcast channel in a radio frame.
  • FIG. 8 illustrates a structure of a downlink subframe.
  • FIG. 9 shows a structure of an uplink subframe used in LTE.
  • ⁇ 10 represents D2D communication.
  • 11 and 12 illustrate a CP for D2D communication according to an embodiment of the present invention.
  • Figure 13 illustrates a base station and user equipment that can be applied to an embodiment of the present invention.
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • CDMA may be implemented by radio technologies such as UTRA Jniversal Terrestrial Radio Access) or CDMA2000.
  • TDMA can be implemented with wireless technologies such as Global System for Mobile Communications (GSM) / General Packet Radio Service (GPRS) / Enhanced Data Rates for GSM Evolution (EDGE).
  • GSM Global System for Mobile Communications
  • GPRS General Packet Radio Service
  • EDGE Enhanced Data Rates for GSM Evolution
  • 0FDMA may be implemented by a radio technology such as IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, Evolved UTRA (E-UTRA).
  • UTRA is part of the Universal Mobile TelecOTimunications System (UMTS).
  • the 3rd Generation Partnership Project (3GPP) LTEClong term evolution (0GDMA) employs 0FDMA in downlink and SC-FDMA in uplink as part of E-UMTS (Evolved UMTS) using E-UTRA.
  • LTE-A Advanced is an evolution of 3GPP LTE.
  • FIG. 2 is a diagram illustrating a control plane and a user plane structure of a radio interface protocol between a terminal and an E-UTRAN based on the 3GPP radio access network standard.
  • the control plane refers to a path through which control messages used by a user equipment (UE) and a network to manage a call are transmitted.
  • the user plane refers to a path through which data generated at an application layer, for example, voice data or Internet packet data, is transmitted.
  • a physical layer which is a first layer, provides an information transfer service to a higher layer by using a physical channel.
  • the physical layer is connected to the upper layer of the medium access control layer through a trans antenna port channel. Every channel through the transmission channel. Data moves between the physical access control layer and the physical layer. Data moves between the physical layer at the transmitting side and the physical layer at the receiving side.
  • the physical channel utilizes time and frequency as radio resources. Specifically, the physical channel is in the downlink
  • FDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • the second layer medium access control (MAC) negotiation provides a service to a higher link radio link control (RLC) layer through a logical channel.
  • the RLC layer of the second layer supports reliable data transmission.
  • the function of the RLC layer may be implemented as a function block inside the MAC.
  • the Packet Data Convergence Protocol (PDCP) layer of the second layer performs a header compression function to reduce unnecessary control information for efficiently transmitting an IP packet such as IPv4 or IPv6 over a narrow bandwidth wireless interface.
  • PDCP Packet Data Convergence Protocol
  • a radio resource control (RRC) layer located at the bottom of the third layer is defined only in the control plane.
  • the RRC layer is responsible for the control of logical channels, transport channels, and physical channels in connection with configuration, re-conf igurat ion, and release of radio bearers (RBs).
  • RB means a service provided by the second layer for data transmission between the terminal and the network.
  • the RRC layers of the UE and the network exchange RRC messages with each other. If there is an RRC connected (RRC Connected) between the terminal and the RRC layer of the network, the terminal is in the RRC connected mode (Connected Mode), otherwise it is in the RRC idle mode (Idle Mode).
  • NAS Non-Access Stratum
  • [38] to the single cells constituting the base station (eNB) is set to one for "bandwidth, such as 1.4, 3, 5, 10, 15, 20Mhz provide downlink or uplink transmission services to multiple terminals. Different cells may be set to provide different bandwidths.
  • a downlink transport channel for transmitting data from a network to a terminal includes a broadcast channel (BCH) for transmitting system information, a paging channel (PCH) for transmitting a paging message, and a downlink shared channel (SCH) for transmitting a user traffic or control message.
  • BCH broadcast channel
  • PCH paging channel
  • SCH downlink shared channel
  • Traffic or control messages of a downlink multicast or broadcast service may be transmitted through a downlink SCH or may be transmitted through a separate downlink multicast channel (MCH).
  • the uplink transmission channel for transmitting data from the terminal to the network includes a random access channel (RAC) for transmitting an initial control message and an uplink shared channel (SCH) for transmitting user traffic or a control message.
  • RAC random access channel
  • the logical channel that is located above the transport channel and is mapped to the transport channel is' Broadcast Control Channel (BCCH), Paging Control Channel (PCCH), Common Control Channel (CCCH), Multicast Control Channel (MCCH), MTC
  • 3 is a diagram for explaining physical channels used in the 3GPP LTE system and a general signal transmission method using the same.
  • a user device that is powered on again or enters a new cell performs an initial cell search operation such as synchronizing with a base station.
  • the user equipment receives a Primary Synchronization Channel (P-SCH) and a Secondary Synchronization Channel (S-SCH) from the base station, synchronizes with the base station, and obtains information such as a cell ID. Thereafter, the user equipment may receive a physical broadcast channel from the base station to obtain broadcast information in a cell.
  • the user equipment may receive a downlink reference signal (DL RS) in the initial cell search step to check the downlink channel state.
  • DL RS downlink reference signal
  • the user equipment that has completed the initial cell search may have a physical downlink control channel (PDSCH) according to the information of the physical downlink control channel (PDCCH) and the physical downlink control channel. Receive a more detailed system information can be obtained.
  • PDSCH physical downlink control channel
  • the user equipment may perform a random access procedure such as step S303 to step S306 to complete the access to the base station.
  • the user equipment transmits a preamble through a physical random access channel (PRACH) (S303), and a physical downlink control channel and a physical downlink shared channel to the preamble for the preamble.
  • PRACH physical random access channel
  • a response message may be received (S304).
  • Additional physical for contention-based random access A content ion resolution procedure, such as transmission of the access channel (S305) and reception of the physical downlink control channel and the corresponding physical downlink shared channel (S306), may be performed.
  • UCI uplink control information
  • UCI includes HARQ ACK / NACK (Hybrid Automatic Repeat and reQuest Acknowledgment / Negative-ACK) SRCScheduling Request (CSI), Channel State Information (CSI), and the like.
  • HARQ ACK / NACK is simply referred to as HARQ-ACK or ACK / NACK (A / N).
  • HARQ-ACK includes at least one of positive ACK (simply ACK), negative ACK (NACK), DTX, and NACK / DTX.
  • CSI includes CQKChannel Quality Indicator), PMKPrecoding Matrix Indicator), RKRank Indication), and the like.
  • UCI is generally transmitted through PUCCH, but can be transmitted through PUSCH when control information and traffic data should be transmitted at the same time. In addition, the UCI can be aperiodically transmitted through the PUSCH by the network request / instruction.
  • FIG. 4 is a diagram illustrating a structure of a radio frame used in an LTE system.
  • uplink / downlink data packet transmission is performed in subframe units, and one subframe includes a plurality of OFDM symbols. It is defined as a time interval.
  • the 3GPP LTE standard supports a type 1 radio frame structure applicable to FDE Frequency Division Duplex (FDE) and a type 2 radio frame structure applicable to TDD (Time Division Duplex).
  • the downlink radio frame consists of 10 subframes, and one subframe consists of two slots in the time domain.
  • the time taken for one subframe to be transmitted is ⁇ (transmission time interval) It is called.
  • the length of one subframe may be lms, and the length of one slot may be 0.5ms.
  • One slot includes a plurality of OFDM symbols in the time domain and includes a plurality of resource blocks (RBs) in the frequency domain.
  • RBs resource blocks
  • an OFDM symbol represents one symbol period.
  • OFDM symbols may also be referred to as SC-FOMA symbols or symbol intervals.
  • a resource block (RB) as a resource allocation unit may include a plurality of consecutive subcarriers in one slot.
  • the number of OFDM symbols included in one slot may vary depending on the configuration of a cyclic prefix (CP).
  • CPs have extended CPs and standard CPC normal CPs. For example, if an OFDM symbol is configured by a standard CP, the number of OFDM symbols included in one slot may be seven.
  • the OFDM symbol is configured by an extended CP, since the length of one OFDM symbol is increased, the number of OFDM symbols included in one slot is smaller than that of the standard CP.
  • the number of OFDM symbols included in one slot may be six.
  • an extended CP may be used to further reduce interference between symbols.
  • one subframe includes 14 OFDM symbols.
  • the first up to three OFDM symbols of each subframe may be allocated to a physical downlink control channel (PDCCH), and the remaining 0FDM symbols may be allocated to a physical downlink shared channel (PDSCH).
  • PDCCH physical downlink control channel
  • PDSCH physical downlink shared channel
  • the type 2 radio frame consists of two half frames, each of which has four general subframes including two slots, a down pilot pilot slot (DwPTS), and a guard period (GP). And a special subframe including an UpPTSOJplink Pilot Time Slot.
  • DwPTS down pilot pilot slot
  • GP guard period
  • DwPTS is used for initial cell search, synchronization, or channel estimation in a user equipment.
  • UpPTS is used for channel estimation at base station and synchronization of uplink transmission of user equipment. That is, DwPTS is used for downlink transmission and UpPTS is used for uplink transmission.
  • UpPTS is a PRACH preamble or It is used for the purpose of SRS transmission.
  • the guard interval is a section for removing the interference generated in the uplink due to the multipath delay of the downlink signal between the uplink and the downlink.
  • DvvPTS and UpPTS are shown, and the rest of the area is set as a protection interval.
  • the structure of the type 2 radio frame that is, the UL / DL link subframe configuration (UL / DL configuration) in the TDD system is shown in Table 2 below.
  • D denotes a downlink subframe
  • U denotes an uplink subframe
  • S denotes the special subframe.
  • Table 2 also shows a downlink-uplink switch period in an uplink / downlink subframe configuration in each system.
  • the structure of the radio frame described above is merely an example, and the number of subframes included in the radio frame, the number of slots included in the subframe, and the number of symbols included in the slot may be variously changed.
  • FIG. 5 illustrates a primary broadcast channel (P-BCH) and a synchronization channel (SCH) of an LTE system.
  • SCH includes P-SCH and S-SCH.
  • a Primary Synchronization Signal (PSS) is transmitted on the P-SCH, and a Secondary Synchronization Signal (SSS) is transmitted on the S-SCH. .
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • the P-SCH is slot # 0 (ie, first slot of subframe # 0) and slot # 10 (ie, in each radio frame). Located in the last OFDM symbol of the first slot of subframe # 5).
  • the S-SCH is located in the immediately preceding 0FDM symbol of slot # 0 and the last 0FDM symbol of slot # 10 in every radio frame.
  • the S-SCH and P-SCH are located in adjacent 0FDM symbols.
  • frame structure type -2 ie TDD
  • the P-SCH is transmitted on the third 0FDM symbol of subframes # 1 / # 6 and the S-SCH is slot # 1 (ie, the second slot of subframe # 0).
  • the P-BCH is transmitted every four radio frames, regardless of the frame structure type, and is transmitted using the first through fourth FDM symbols of the second slot of subframe # 0.
  • the P-SCH is transmitted using 72 subcarriers (10 subcarriers are reserved and 62 subcarriers are transmitted by PSS) centered on a DCXdirect current subcarrier within a corresponding 0FDM symbol.
  • S-SCH is transmitted using 72 subcarriers (10 subcarriers are reserved, SSS transmission to 62 subcarriers) centered on a DCXdirect current subcarrier within a corresponding 0FDM symbol.
  • the P-BCH is mapped to 72 subcarriers around 4 0FDM symbols and DCXdirect current subcarriers in one subframe.
  • FIG. 6 is a diagram illustrating an example of a symbol structure including a CP cyclic prefix).
  • the symbol period Ts is the sum of the effective symbol period Tb and the guard period Tg in which actual data is transmitted.
  • the receiver After receiving the guard interval, the receiver performs demodulation by taking data during the valid symbol interval.
  • Sender and Receiver Can be synchronized with each other using the cyclic prefix and can maintain the orthogonality between the data symbols.
  • the symbol in the present invention may be a 0 FDMA symbol.
  • FIG. 7 illustrates a resource grid for a downlink slot.
  • the downlink slot includes Nb OFDM symbols in the time domain and N resource blocks in the frequency domain. Since each resource block includes subcarriers, the downlink slot includes N ⁇ N subcarriers in the frequency domain. 7 illustrates that the downlink slot includes 7 OFDM symbols and the resource block includes 12 subcarriers, but is not necessarily limited thereto. For example, the number of OFDM symbols included in the downlink slot may be modified according to the length of a cyclic prefix (CP).
  • CP cyclic prefix
  • Each element on the resource grid is called a resource element (RE), and one resource element is indicated by one OFDM symbol index and one subcarrier index.
  • One RB is composed of N bx N c B resource elements.
  • the number N of resource blocks included in the downlink slot depends on a downlink a transmission bandwidth set in the cell.
  • FIG. 8 illustrates a structure of a downlink subframe.
  • up to three (4) OFDM symbols located in the first part of the first slot of the subframe are in the control region to which the control channel is allocated.
  • the remaining OFDM symbols correspond to the data region to which the PDSCHCPhysical Downlink Shared Channel is allocated.
  • Examples of the downlink control channel used in LTE include a Physical Control Format Indicator Channel (PCFICH), a Physical Downlink Control Channel (PDCCH), a Physical Hybrid ARQ Indicator Channel (PHICH), and the like.
  • the PCFICH is transmitted in the first OFDM symbol of a subframe and carries information on the number of OFDM symbols used for transmission of control channels in the subframe.
  • PHICH carries a HARQ ACK / NACK (Hybrid Automatic Repeat request acknowledgment / negative—acknowledgment) signal in response to uplink transmission.
  • DCI Downlink Control Information
  • Tx uplink transmission
  • the PDCCH includes transport format and resource allocation information of a downlink shared channel (DL-SCH), transport format and resource allocation information of an uplink shared channel (UL-SCH), and a paging channel.
  • paging channel PCH
  • system information on the DL-SCH resource allocation information of higher-layer control messages such as random access response transmitted on the PDSCH, and Tx power control for individual user devices in the user device group.
  • a plurality of PDCCHs may be transmitted in the control region.
  • the user equipment may monitor the plurality of PDCCHs.
  • the PDCCH is transmitted on an aggregation of one or a plurality of consecutive control channel elements (CCEs).
  • CCEs control channel elements
  • the CCE is a logical allocation unit used to provide a PDCCH with a coding rate based on radio channel conditions.
  • the CCE refers to a plurality of resource element groups (REGs).
  • the format of the PDCCH and the number of PDCCH bits are determined according to the number of CCEs.
  • the base station determines the PDCCH format according to the DCI to be transmitted to the user equipment, and adds a CRCCcycHc redundancy check to the control information.
  • the CRC is masked with an identifier (eg, radio network temporary identifier (RNTI)) according to the owner or purpose of use of the PDCCH.
  • RNTI radio network temporary identifier
  • an identifier eg, cell-RNTI (C-RNTI)
  • C-RNTI cell-RNTI
  • P-R TI paging-RNTI
  • SI-RNTI system information RNTI
  • RA-RNTI random access-RNTI
  • FIG 9 illustrates a structure of an uplink subframe used in LTE.
  • an uplink subframe includes a plurality of slots (eg, two).
  • the slot may include different numbers of SC-FDMA symbols according to the CP length.
  • the uplink subframe is divided into a data region and a control region in the frequency domain.
  • the data area includes a PUSCH and is used to transmit data signals such as voice. All.
  • the control region includes a PUCCH and is used to transmit uplink control information (UCI).
  • the PUCCH includes RB pairs located at both ends of the data region on the frequency axis and hops to a slot boundary.
  • the PUCCH may be used to transmit the following control information.
  • [74]-HARQ ACK / NACK This is a voice response signal for a downlink data packet on a PDSCH. Indicates whether the downlink data packet was successfully received. One bit of ACK / NACK is transmitted in response to a single downlink codeword, and two bits of ACK / NACK are transmitted in response to two downlink codewords.
  • CSI Feedback information on a downlink channel.
  • CQI Channel Quality Indicator
  • MIM0 Multiple Input Multiple Output
  • RKRank Indicator PMKPrecoding Matrix Indicator
  • PTKPrecoding Type Indicator 20 bits are used per subframe.
  • the amount of control information (UCI) that a user equipment can transmit in a subframe depends on the number of SC-FDMA available for transmission of control information.
  • SC-FDMA available for transmission of control information means the remaining SC-FDMA symbol except for the SC-FDMA symbol for transmitting the reference signal in the subframe, and in the case of the subframe in which the Sounding Reference Signal (SRS) is set, the end of the subframe SC-FDMA symbols are also excluded.
  • the reference signal is used for coherent detection of the PUCCH.
  • a wireless communication system as described above eg, a 3GPP LTE system or
  • FIG. 10 is a diagram for conceptually explaining D2D communication.
  • FIG. 10 (a) shows a conventional base station-centric communication method, in which a first terminal UE1 transmits data to a base station on uplink, and a base station transmits data from the first terminal UE1 on downlink. It can transmit to 2 UE (UE2).
  • UE2 2 UE
  • D2D communication shows an example of a UE-to-UE communication method as an example of D2D communication, and data exchange between terminals may be performed without passing through a base station. All. As such, a link directly established between devices may be referred to as a D2D link. D2D communication has advantages such as reduced latency and less radio resources than conventional base station-oriented communication methods.
  • D2D communication is a method of supporting communication between devices (or terminals) without passing through a base station, but D2D communication reuses resources of an existing wireless communication system (eg, 3GPP LTE / LTE-A). It should not cause interference or disturbance to existing wireless communication system because it is performed by In the same vein, it is also important to minimize the interference of D2D communication by terminals, base stations, etc. operating in existing wireless communication systems.
  • the present invention proposes a setting method regarding a length of a cyclic prefix (CP) of UEs performing device-to-device (D2D) communication.
  • CP cyclic prefix
  • a terminal blind-decodes a secondary synchronization signal (SSS) according to a situation of SAL, and thus a standard CP (normal CP).
  • SSS secondary synchronization signal
  • CP normal CP
  • the CP length may have cell-specific characteristics.
  • the UE may be performed in parallel with two modes of D2D communication and eNB communication.
  • the length of the cyclic shift to be used in the D2D communication may be preferably set differently from the eNB communication.
  • the present invention describes a method for setting a CP length for a subframe used for D2D communication as a method for supporting an operation of performing the D2D communication and the eNB communication of the UE.
  • UE_D a UE participating in D2D communication
  • UE_C a UE communicating only with an eNB
  • the UE_D may also be UE_C since there may be a case in which communication is performed only with the eNB on a specific subframe. That is, UE_D can communicate with UE_D, eNB, and black that are different for each subframe.
  • SF_D is a subframe that can be used for D2D communication with respect to a subframe (SF) in which the UE performs communication
  • SF_C is a subframe used only for communication with the eNB.
  • a UE ie, UE_D
  • UE_D a specific subframe may be used as SF_C in subframe units and the remaining subframes may be used as SF_D.
  • SF_C is configured to blind decode the SSS in the current wireless communication system (ie, Rel-10) so that one of a normal CP and an extended CP is determined.
  • discovery SF_D a subframe for a discovery signal
  • data SF_D a subframe for transmitting and receiving data
  • the present invention describes a method of setting CP lengths different from SFJ :, discovery SF_D, and data SF_D as described above, and the embodiments of the present invention described below include a plurality of links. It may be extended even if formed. More specifically, the method and operation of determining a CP length to be used in the discovery SF_D and the data SF_D will be described.
  • the CP length of the subframe SF_D that can be used for D2D communication may have a fixed value.
  • an extended CP extended CP
  • SF_C extended CP
  • this method can omit a separate CP length indication signal, which is especially useful when the UE_D is outside the coverage, which makes it impossible to control the eNB or when the operation is related to public safety (disaster, emergency, etc.). can do.
  • This method can also be used as the starting value (black is the default) before changing the CP length.
  • a CP length of a subframe (SF_D) that can be used for D2D communication is set semi-static or dynamic by eNB control. Can be.
  • the CP length may be determined, or the base station may set the CP length to the terminal through separate signaling (for example, higher layer signaling).
  • the eNB may indicate setting of a CP length of 51_1.
  • the eNB may determine CP according to the request of UE_D and inform CP_ of CP length to UE_D.
  • the CP lengths of the discovery SF_D and the data SF_D may be indicated through downlink subframes (hereinafter, DL SF_C, eg, RRC or other physical downlink channel) used only for communication with the eNB, According to the configuration of, the indication of the CP length of the discovery SF_D or the data SF_D may be omitted.
  • the eNB may reject the D2D communication request if it is determined that the overall collision of the D2D resources (time / frequency) is severe.
  • the CP length setting operation according to the second embodiment of the present invention has a feature of being set semi-statically since a very long time is required. Therefore, when the UE exists in eNB coverage and is not an urgent transmission (for example, commercial data transmission), it is preferable to apply. [98] ⁇ Third Embodiment>
  • UEs participating in D2D communication may determine a CP length without an eNB instruction.
  • PSS and SSS are applied to a detection signal (hereinafter, D2D according to the present invention).
  • PSS and SSS modified for the purpose are defined as PSS_D and SSS_D, respectively.
  • CP length can be determined.
  • a detection signal for example, a synchronization signal such as PSS_D / SSS_D
  • the 0FDM symbol in front of the slot boundary ie, In case of normal CP, SSSJ
  • the 6th 0FDM symbol and in the extended CP, 5th 0FDM symbol is transmitted in the 6th 0FDM symbol and in the extended CP, 5th 0FDM symbol.
  • the receiving terminal monitors and detects the PSS_D according to all times, and then, at the two points of time (ie, normal CP and extended CP) where the SSS_D is estimated to be located based on the detection time point (for example, the boundary of the slot). Accordingly, the CP length may be calculated by blind detecting ion at two different time points).
  • S33_D is located at a predetermined difference (for example, the number of one or more 0FDM symbols) based on the detected 0FDM symbol,? 33_1)
  • two CPs that is, SSS_D and Extended in the case of Normal CP
  • FFT that is, blind detection
  • all of SSS_D can be compared using FFT (that is, blind detection) to calculate an applied CP length. For example, when the PSS_D is located on a random 0FDM symbol instead of the slot boundary, the UE monitors and detects? 33_1) at all times, and blinds the SSS_D based on the detected? 33_1). Detection can be performed.
  • SSS_D is located by a predetermined 0FDM symbol (regardless of before / after) based on the position of PSS_D and SSS_D when the number of predetermined 0FDM symbols is a predefined Normal CP and SSS_D when Extended CP. If any one of the Daewoong, the terminal can check the applied CP length. [103] If the LTE Rel.-10 scheme is used as it is, since the CP length has the same characteristics in the cell, the CP lengths of the discovery SF_D and the data SF_D will be the same, but the data is included in the discovery signal. If the CP length information of the SF_D is transmitted and transmitted, the CP length of the discovery SF_D and the data SF_D may be different.
  • the channel state is likely to be relatively good. Therefore, by configuring the detection signal to determine the multi-path characteristic of the channel, the multi-path characteristic of the channel is received by receiving the discovery signal. If below a certain criterion, it may be determined that a normal CP with 14 0FDM three balls is used. If it is determined to use an extended CP when the multi-path characteristic of the channel is above a certain criterion, it may be decided to use an extended CP having 12 0FDM symbols.
  • the CP length of the subframe must be known, i) the slot length is independent of the CP length value.
  • the slot length is independent of the CP length value.
  • a predefined default CP length e.g. extended CP
  • a higher order transmitted in SF_D follow the CP length indicated by a layer signal or a separate physical layer signal (eg, RRC signal, PDCCH, etc.), or 4
  • the CP participating in the D2D communication can determine the CP length of the subframe for receiving the detection signal.
  • UE_D may arbitrarily determine a CP length (according to a predefined setting). For example, depending on the type of D2D data, UE_D may be set to extended CP if it is a kind requiring rapidity (eg, public safety) and normal CP if it is general data transmission (eg, commercial data transmission). In this case, the UE_D (eg, UE # 1) should inform the counterpart UE_D (eg, UE # 2) of the CP length through the eNB or transmit the CP length information in a detection signal.
  • UE_D may arbitrarily determine a CP length (according to a predefined setting). For example, depending on the type of D2D data, UE_D may be set to extended CP if it is a kind requiring rapidity (eg, public safety) and normal CP if it is general data transmission (eg, commercial data transmission). In this case, the UE_D (eg, UE # 1) should inform the counterpart UE_D (
  • a part of a detection sequence parameter (eg, sequence index, hopping pattern, cyclic shift, comb, etc.) may be replaced with normal CP,
  • a part of a detection sequence parameter eg, sequence index, hopping pattern, cyclic shift, comb, etc.
  • normal CP By differently setting the extended CP, when the counterpart UE_D normally receives a detection signal, information of the CP length may be determined. Furthermore, even in this case, the CP lengths of the discovery SF_D and the data SF_D may be different from each other.
  • the UE_D since the UE_D can determine the CP length, in the D2D communication between UEs that exist outside the coverage, it can be applied even when changing / resetting the CP length. have.
  • a signal corresponding to the ACK is transmitted to the counterpart UE_D according to the determined CP length.
  • the signal corresponding to the ACK may have a transmission time defined in advance (for example, n + 4 from a detection signal). That is, after receiving a discovery signal, the CP length of SF_D transmitting the ACK is automatically determined.
  • the UE may transmit an ACK through a PUCCH or a PUSCH (or some modified channel for D2D use) of SF_D. However, in some cases, the ACK transmission procedure may be omitted and data may be immediately started. 1 ⁇ _! May be regarded as receiving an ACK when data is transmitted).
  • each may be independently implemented, but may be implemented in a combination of some embodiments in consideration of efficient use of radio resources or D2D performance.
  • the description is omitted for clarity.
  • the subframe (discovery SF_D) for the detection signal for D2D communication is set to comply with the extended CP as a default, but the terminal has a CP length of the detection signal (discovery signal)
  • the subframe (data SF_D) for D2D communication credit data transmission can be changed to comply with standard CP normal CP).
  • CP configuration of the terminal is preferably maintained until a separate change signal is received from the eNB or the configuration of the CP length is changed by a new discovery signal.
  • FIG. 11 illustrates a case in which CP lengths of a subframe for a detection signal (CP Length) are set according to an extended CP for UEs participating in D2D communication. Indicates.
  • UE_D # 1 performs D2D communication with UE_D # 2 and UE_D # 3.
  • a discovery signal is previously set to be transmitted using an extended CP.
  • UE_D # 1 always monitors a detection signal with an extended CP until an detection signal of another UE_D is found in a subframe for D2D communication (SF_D), and then UE_D # 2, a detection signal may be received from the UE_D # 3.
  • SF_D subframe for D2D communication
  • each detection signal includes information indicating a normal CP and an extended CP, and a data sub for D2D communication after a predetermined interval. It can be seen that the frame (data SF_D) is changed to correspond to the corresponding CP.
  • the UE_D # 1 receiving the detection signal including the information indicating the data SF_D using the standard CP from the UE_D # 2 has a D2D using the UE_D # 2 and the standard CP after a predetermined offset. May be changed to perform communication (ie, DL_D # 2, UL_D # 2).
  • the UE_D # 1 that has received the detection signal including the information indicating the data SF_D using the extended CP may perform D2D communication with the UE_D # 3 according to the already set extended CP. Can also be (ie DL_D # 3, UL_D # 3)
  • the present invention is not limited thereto, and other offsets may be applied in some cases. (E.g., n + 5, n + 9, ...)
  • the interval of data SF_D may also be set to a value other than four.
  • the CP setting of data SF_D may be maintained semi-statically until an indication about a new CP length is received.
  • a CP Length of a subframe for discovery signal for a UE participating in D2D communication may be set using PSS_D / SSS ⁇ D.
  • UE_D # 1 always corresponds to a normal CP and an extended CP until a discovery signal of another UE_D is found in a subframe for D2D communication (SF # D).
  • CP) Perform FFT on both heartbeat timings. That is, the type of CP may be determined by performing an FFT on the SSS (that is, SSS_D) based on the PSS based on the normal CP and the extended CKextended CP timing in a predetermined distance based on the PSS. Accordingly, UE_D # 1 may set a CP length of a subframe for D2D communication for another UE_D (ie, UE_D # 2, UE_D # 3) according to the determined CP length.
  • UE_D # 1 is changed to perform D2D communication according to UE—D # 2 and standard CP. Can be.
  • D2D communication received from UE_D # 3 is changed to perform D2D communication according to UE—D # 2 and standard CP.
  • D2D communication may be performed by maintaining an extended CP with UE_D # 3.
  • the CP length is determined regardless of the eNB.
  • the CP length of the subframe (discovery SF—D) for the detection signal for the D2D communication is set by the eNB, or the subframe for the entire D2D communication. It is also possible to give the length of the CP for the frame SF_D.
  • the UE_D monitors with a discovery CP length for a detection signal indicated by the eNB, and if a discovery signal is found, the UE_D returns a data CP length for data transmission and reception. Communication can be performed by switching. Alternatively, UE_D may use the length of the CP indicated by the discovery signal as the data CP length for the data signal.
  • the UE (D_D) participating in the D2D communication receives and transmits a signal transmitted to the eNB, a signal transmitted to the UE_D, or a plurality of detection signals simultaneously to multiple UE_Ds (eg, Consider group D2D or one-to-many D2D situations.
  • prioritization according to CP length eg, extended CP priority
  • ii priority e.g., content to be transmitted (eg, public). safety priority
  • iii) prioritization e.g., UE_D # 2-> eNB-> UE_D # 3 in order of priority for each transmission target. Only sets can be sent.
  • Figure 13 illustrates a base station and user equipment that can be applied to an embodiment of the present invention.
  • a relay When a relay is included in the wireless communication system, communication is performed between the base station and the relay in the backhaul link and communication is performed between the relay and the user equipment in the access link.
  • the base station or user equipment illustrated in the figure may be replaced with a relay according to the situation.
  • a wireless communication system includes a base station (BS) 1310 and a user equipment (UE) 1320.
  • the base station 1310 includes a processor 1312, a memory 1314, and a radio frequency (RF) unit 1316.
  • the processor 1312 may be configured to implement the procedures and / or methods proposed in the present invention.
  • the memory 1314 is connected with the processor 1312 and stores various information related to the operation of the processor 1312.
  • the RF unit 1316 is connected with the processor 1312 and transmits and / or receives a radio signal.
  • the user device 1320 includes a processor 1322, a memory 1324, and an RF unit 1326.
  • the processor 1322 may be configured to implement the procedures and / or methods proposed by the present invention.
  • the memory 1324 is connected with the processor 1322 and stores various information related to the operation of the processor 1322.
  • the RF unit 1326 is connected with the processor 1322 and transmits and / or receives wireless signals.
  • Base station 1310 and / or user equipment 1320 may have a single antenna or multiple antennas.
  • An embodiment according to the present invention may be implemented by various means, for example, hardware, firmware, software, or a combination thereof.
  • one embodiment of the present invention may include one or more applicat ion specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), and programmable logic devices (PLDs). ), Programmable programmable gate arrays (FPGAs), processor controllers, microcontrollers, microprocessors, and the like.
  • ASICs applicat ion specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGAs Programmable programmable gate arrays
  • processor controllers microcontrollers
  • microprocessors and the like.
  • an embodiment of the present invention may be implemented in the form of modules, procedures, functions, etc. that perform the functions or operations described above.
  • Software code may be stored in a memory unit and driven by a processor.
  • the memory unit may be located inside or outside the processor, and may exchange data with the processor by various known means.
  • the CP setting method and the device for the device-to-device (D2D) communication have been described with reference to the example applied to the 3GPP LTE system. It is possible to apply to the system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Databases & Information Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

본 발명은 무선 통신 시스템에서 D2D(Device-to-Device) 통신을 수행하는 단말이 신호를 송수신하는 방법 및 장치에 관한 것이다. 구체적으로, 소정의 CP(Cyclic Prefix) 길이를 가지는 프레임을 이용하여 신호를 송수신하는 단계를 포함하며, 소정의 CP 길이는 제 1 CP 길이 및 제 2 CP 길이 중 하나로 설정되며, 제 1 CP 길이는 기지국과 단말 사이의 통신을 위하여 설정된 CP 길이이고, 제 2 CP 길이는 단말과 단말 사이의 통신을 위하여 설정된 CP 길이인 것을 특징으로 한다.

Description

【명세서】
【발명의 명칭】
무선 통신 시스템에서 D2D(Device-to-Device) 통신을 위한 순환 전치 설정 방법 및 이를 위한 장치
【기술분야】
[1] 본 발명은 무선 통신 시스템에 관한 것으로, 보다 구체적으로 무선 통신 시스템에서 D2D(Device-to-Device) 통신을 위한 순환 전치 설정 방법 및 이를 위한 장치에 관한 것이다.
【배경기술】
[2] 본 발명이 적용될 수 있는 무선 통신 시스템의 일례로서 3GPP LTE (3rd Generation Partnership Project Long Term Evolution; 이하 "LTE"라 함) 통신 시스템에 대해 개략적으로 설명한다.
[3] 도 1 은 무선 통신 시스템의 일례로서 E-UMTS 망구조를 개략적으로 도시 한 도면이다. E-UMTS( Evolved Universal Mobile Telecommunications System) 시 스템은 기존 UMTS Jniversal Mobile Telecommunications System)에서 진화한 시 스템으로서, 현재 3GPP 에서 기초적인 표준화 작업을 진행하고 있다. 일반적으 로 E-UMTS 는 LTE Long Term Evolution) 시스템이라고 할 수도 있다. UMTS 및 E-UMTS 의 기술 규격 (technical specification;^ 상세한 내용은 각각 "3rd Generation Partnership Project; Technical Specification 그룹 Radio Access Network"의 Release 7과 Release 8을 참조할 수 있다.
[4] 도 1 을 참조하면, E-UMTS는 단말 (User Equipment; UE)과 기지국 (eNode B; eNB), 네트워크 (E-UTRAN)의 종단에 위치하여 외부 네트워크와 연결되는 접속 게이트웨이 (Access Gateway; AG)를 포함한다. 기지국은 브로드캐스트 서비스, 멀티캐스트 서비스 및 /또는 유니캐스트 서비스를 위해 다중 데이터 스트림을 동 시에 전송할 수 있다.
[5] 한 기지국에는 하나 이상의 셀이 존재한다. 샐은 1.44, 3, 5, 10, 15, 20Mhz 등의 대역폭 중 하나로 설정돼 여러 단말에게 하향 또는 상향 전송 서비 스를 제공한다. 서로 다른 셀은 서로 다른 대역폭을 제공하도록 설정될 수 있다. 기지국은 다수의 단말에 대한 데이터 송수신을 제어한다. 하향 링크 (Downlink; DL) 데이터에 대해 기지국은 하향 링크 스케줄링 정보를 전송하여 해당 단말에 게 데이터가 전송될 시간 /주파수 영역, 부호화, 데이터 크기, HARQ Hybrid Automatic Repeat and reQuest) 관련 정보 등을 알려준다. 또한, 상향 링크 (Uplink; UL) 데이터에 대해 기지국은 상향 링크 스케줄링 정보를 해당 단말에 게 전송하여 해당 단말이 사용할 수 있는 시간 /주파수 영역, 부호화, 데이터 크 기, HARQ 관련 정보 등을 알려준다. 기지국간에는 사용자 트래픽 또는 제어 트 래픽 전송을 위한 인터페이스가 사용될 수 있다. 핵심망 (Core Network; CN)은 AG와 단말의 사용자 등록 등을 위한 네트워크 노드 등으로 구성될 수 있다. AG 는 복수의 셀들로 구성되는 TAOYacking Area) 단위로 단말의 이동성을 관리한 다.
[6] 무선 통신 기술은 WCDMA를 기반으로 LTE까지 개발되어 왔지만, 사용자 와 사업자의 요구와 기대는 지속적으로 증가하고 있다 또한, 다른 무선 접속 기술이 계속 개발되고 있으므로 향후 경쟁력을 가지기 위해서는 새로운 기술 진 화가 요구된다. 비트당 비용 감소, 서비스 가용성 증대, 융통성 있는 주파수 밴 드의 사용, 단순구조와 개방형 인터페이스, 단말의 적절한 파워 소모등이 요구 된다.
【발명의 상세한 설명】
【기술적 과제】
[7] 본 발명의 목적은 무선 통신 시스템에서 D2D(Device-t으 Device) 통신을 위한 순환 전치 설정 방법 및 이를 위한 장치를 제공하는 데 있다.
[8] 본 발명에서 이루고자 하는 기술적 과제들은 상기 기술적 과제로 제한되 지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명 이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
【기술적 해결방법】
[9] 상술한 문제점을 해결하기 위한 본 발명의 일 양상인, 무선 통신 시스템 에서 D2D(Device-t으 Device) 통신을 수행하는 단말이 신호를 송수신하는 방법은, 소정의 CP Cyclic Prefix) 길이를 가지는 프레임을 이용하여 신호를 송수신하는 단계를 포함하며, 상기 소정의 CP 길이는 제 1 CP 길이 및 제 2 CP 길이 증 하 나로 설정되며, 상기 제 1 CP길이는 기지국과 단말 사이의 통신을 위하여 설정 된 CP 길이이고, 상기 제 2 CP 길이는 단말과 단말 사이의 통신을 위하여 설정 된 CP길이인 것을 특징으로 한다.
[10] 나아가, 상기 소정의 CP 길이는, D2D 통신을 위한 검출 신호 (discovery signal)에 기반하여 결정되는 것을 특징으로 할 수 있다.
[11] 나아가, 상기 검출 신호는, D2D 통신을 위하여 설정된 PSS (Primary Synchronization Signal)및 SSS( Secondary Synchronization Signal)를 포함하며, 상기 CP 길이는, 상기 PSS 및 상기 SSS 간의 시간 (timing) 차이에 따라 결정되 는 것을 특징으로 할 수 있다. 바람직하게는, 상기 SSS는, 상기 PSS보다 하나 의 0FDM(0rthogonal Frequency Division Multiplexing) 심불 앞에 설정된 것을 특징으로 할 수 있다.
[12] 나아가, 상기 검출 신호는, 표준 CP(Normal CP) 및 확장된 CP(Ext ended CP) 각각에 대하여 상이하게 설정된 파라미터를 포함하며, 상기 소정의 CP길이 는, 상기 검출 신호에 포함된 파라미터에 기반하여 결정되는 것을 특징으로 할 수 있다.
[13] 나아가, 상기 소정의 CP 길이는, D2D 통신을 위한 새로운 검출 신호 (discovery signal)를 수신할 때까지 유지되는 것을 특징으로 할 수 있다.
[14] 나아가, 상기 소정의 CP 길이는, 적어도 하나의 다른 단말에 대하여 각 각 독립적으로 설정되는 것을 특징으로 할 수 있다.
[15] 나아가, 상기 소정의 CP 길이는, D2D통신을 위한 다수의 D2D그룹에 대 하여 각각 상이하게 설정되며, 상기 다수의 D2D그룹 각각은, 적어도 하나의 단 말 또는 기지국으로 구성된 것을 특징으로 할 수 있다. 바람직하게는, 상기 다 수의 D2D그룹에 대하여 동시에 신호를 전송하는 경우, CP 길이에 따른 우선 순 위에 따라 결정된 하나의 D2D 그룹에 대하여만 신호를 전송하는 것을 특징으로 할 수 있다.
[16] 상술한 문제점을 해결하기 위한 본 발명의 다른 양상인, 무선 통신 시스 템에서 D2D(Device-to-Device) 통신을 수행하는 단말은, 무선 주파수 유닛 (Radio Frequency Unit); 및 프로세서 (Processor)를 포함하며, 상기 프로세서는, 소정의 CP(Cyclic Prefix) 길이를 가지는 프레임을 이용하여 신호를 송수신하도 톡 구성되며, 상기 소정의 CP길이는, 제 1 CP길이 및 제 2 CP길이 중 하나로 설정되며, 상기 제 1 CP길이는 기지국과 단말사이의 통신을 위하여 설정된 CP 길이이고, 상기 제 2 CP 길이는 단말과 단말 사이의 통신을 위하여 설정된 CP 길이인 것을 특징으로 할 수 있다.
【유리한 효과】
[17] 본 발명에 의하면, 무선 통신 시스템에서 D2D 통신 및 eNB 통신을 동시 에 수행하는 경우에 순환 전치를 효율적으로 설정해줄 수 있다.
[18] 본 발명에서 얻은 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래와 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다. 【도면의 간단한 설명】
[19] 본 발명에 관한 이해를 돕기 위해 상세한 설명의 일부로 포함되는, 첨부 도면은 본 발명에 대한 실시예를 제공하고, 상세한 설명과 함께 본 발명의 기술 적 사상을 설명한다. .
[20] 도 1은 무선 통신 시스템의 일례로서 E-UMTS망구조를 나타낸다.
[21] 도 2 는 3GPP 무선 접속망 규격을 기반으로 한 단말과 E-UTRAN 사이의 무선 인터페이스 프로토콜 (Radio Interface Protocol)의 제어평면 (Control Plane) 및 사용자평면 (User Plane) 구조를 나타낸다.
[22] 도 3 은 3GPP LTE 시스템에 이용되는 물리 채널들 및 이들을 이용한 일 반적인 신호 전송 방법을 나타낸다.
[23] 4는 LTE시스템에서 사용되는 무선 프레임의 구조를 나타낸다.
[24] 도 5는 무선 프레임에서 동기 채널 및 방송 채널의 구조를 예시한다.
[25] 도 6은 CP Cyclic Prefix)를 포함하는 심볼 구조를 나타낸다.
[26] 7은 하향링크 슬롯에 대한 자원 그리드 (resource grid)를 나타낸다.
[27] 도 8은 하향링크 서브프레임의 구조를 예시한다 .
[28] 도 9은 LTE에서 사용되는 상향링크 서브프레임의 구조를 나타낸다.
[29] τζ 10은 D2D통신을 나타낸다.
[30] 11 및 도 12 는 본 발명의 실시예에 따라 D2D 통신을 위하여 CP 를
(재)설정하는 예를 나타낸다.
[31] 도 13 은 본 발명의 실시예에 적용될 수 있는 기지국 및 사용자 기기를 예시한다.
【발명의 실시를 위한 형태】 [32] 이하의 기술은 CDMA(code division multiple access), FDMA( frequency division multiple access) , TDMA(time division multiple access) , 0FDMA( orthogonal frequency division multiple access) , SC-FDMA( single carrier frequency division multiple access) 등과 같은 다양한 무선 접속 시 스템에 사용될 수 있다. CDMA 는 UTRA Jniversal Terrestrial Radio Access)나 CDMA2000 과 같은 무선 기술 (radio technology)로 구현될 수 있다. TDMA 는 GSM(Global System for Mobile communicat ions)/GPRS(General Packet Radio Service) /EDGE (Enhanced Data Rates for GSM Evolution)와 같은 무선 기술로 구 현될 수 있다. 0FDMA 는 IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802- 20, E-UTRA(Evolved UTRA) 등과 같은 무선 기술로 구현될 수 있다. UTRA 는 UMTS(Universal Mobile TelecOTimunications System)의 일부이다. 3GPP(3rd Generation Partnership Project) LTEClong term evolution)는 E—UTRA 를 사용 하는 E-UMTS (Evolved UMTS)의 일부로서 하향링크에서 0FDMA를 채용하고 상향링 크에서 SC-FDMA를 채용한다. LTE-A (Advanced)는 3GPP LTE의 진화된 버전이다.
[33] 설명을 명확하게 하기 위해, 3GPP LTE/LTE-A 를 위주로 기술하지만 본 발명의 기술적 사상이 이에 제한되는 것은 아니다. 또한, 이하의 설명에서 사용 되는 특정 (特定) 용어들은 본 발명의 이해를 돕기 위해서 제공된 것이며, 이러 한 특정 용어의 사용은 본 발명의 기술적 사상을 벗어나지 않는 범위에서 다른 형태로 변경될 수 있다.
[34] 도 2 는 3GPP 무선 접속망 규격을 기반으로 한 단말과 E-UTRAN 사이의 무선 인터페이스 프로토콜 (Radio Interface Protocol)의 제어평면 (Control Plane) 및 사용자평면 (User Plane) 구조를 나타내는 도면이다. 제어평면은 단말 (User Equipment; UE)과 네트워크가 호를 관리하기 위해서 이용하는 제어 메시 지들이 전송되는 통로를 의미한다. 사용자평면은 애플리케이션 계층에서 생성된 데이터, 예를 들어, 음성 데이터 또는 인터넷 패킷 데이터 등이 전송되는 통로 를 의미한다.
[35] 제 1 계층인 물리계충은 물리채널 (Physical Channel)을 이용하여 상위 계층에게 정보 전송 서비스 (Information Transfer Service)를 제공한다. 물리계 층은 상위에 있는 매체접속제어 (Medium Access Control) 계층과는 전송채널 (Trans 안테나 포트 Channel)을 통해 연결되어 있다. 상기 전송채널을 통해 매 체접속제어 계층과 물리계층 사이에 데이터가 이동한다. 송신측과 수신측의 물 리계층 사이는 물리채널을 통해 데이터가 이동한다. 상기 물리채널은 시간과 주 파수를 무선 자원으로 활용한다. 구체적으로, 물리채널은 하향 링크에서
0FDMA( Orthogonal Frequency Division Multiple Access) 방식으로 변조되고, 상 향 링크에서 SC-FDMA( Single Carrier Frequency Division Multiple Access) 방 식으로 변조된다.
[36] 제 2 계층의 매체접속제어 (Medium Access Control; MAC) 계충은 논리채 널 (Logical Channel)을 통해 상위계충인 무선링크제어 (Radio Link Control; RLC) 계층에 서비스를 제공한다. 제 2 계층의 RLC 계층은 신뢰성 있는 데이터 전송을 지원한다. RLC 계층의 기능은 MAC 내부의 기능 블톡으로 구현될 수도 있다. 제 2 계층의 PDCP(Packet Data Convergence Protocol) 계층은 대역폭이 좁은 무선 인터페이스에서 IPv4나 IPv6와 같은 IP패킷을 효율적으로 전송하기 위해 불필 요한 제어정보를 줄여주는 해더 압축 (Header Compression) 기능을 수행한다.
[37] 제 3 계층의 최하부에 위치한 무선 자원제어 (Radio Resource Control; RRC) 계층은 제어평면에서만 정의된다. RRC 계층은 무선베어러 (Radio Bearer; RB)들의 설정 (Configuration), 재설정 (Re-conf igurat ion) 및 해제 (Release)와 관련되어 논리채널, 전송채널 및 물리채널들의 제어를 담당한다. RB 는 단말과 네트워크 간의 데이터 전달을 위해 제 2 계층에 의해 제공되는 서비스를 의미한 다. 이를 위해, 단말과 네트워크의 RRC 계층은 서로 RRC 메시지를 교환한다. 단 말과 네트워크의 RRC 계층 사이에 RRC 연결 (RRC Connected)이 있을 경우, 단말 은 RRC 연결 상태 (Connected Mode)에 있게 되고, 그렇지 못할 경우 RRC휴지 상 태 (Idle Mode)에 있게 된다. RRC 계층의 상위에 있는 NAS(Non-Access Stratum) 계충은 세션 관리 (Session Management)와 이동성 관리 (Mobility Management ) 등 의 기능을 수행한다.
[38] 기지국 (eNB)을 구성하는 하나의 셀은 1.4, 3, 5, 10, 15, 20Mhz 등의 대' 역폭 중 하나로 설정되어 여러 단말에게 하향 또는 상향 전송 서비스를 제공한 다. 서로 다른 샐은 서로 다른 대역폭을 제공하도록 설정될 수 있다.
[39] 네트워크에서 단말로 데이터를 전송하는 하향 전송채널은 시스템 정보를 전송하는 BCH(Broadcast Channel), 페이징 메시지를 전송하는 PCH(Paging Channel), 사용자트래픽이나 제어 메시지를 전송하는 하향 SCH(Shared Channel) 등이 있다. 하향 멀티캐스트 또는 방송 서비스의 트래픽 또는 제어 메시지의 경 우 하향 SCH 를 통해 전송될 수도 있고, 또는 별도의 하향 MCH(Multicast Channel)을 통해 전송될 수도 있다. 한편, 단말에서 네트워크로 데이터를 전송 하는 상향 전송채널로는 초기 제어 메시지를 전송하는 RACH(Random Access Channel), 사용자 트래픽이나 제어 메시지를 전송하는 상향 SCH(Shared Channel) 가 있다. 전송채널의 상위에 있으며, 전송채널에 매핑되는 논리채널 (Logical Channel)'로는 BCCH (Broadcast Control Channel ) , PCCH( Paging Control Channel), CCCH( Common Control Channel), MCCH(Multicast Control Channel ) , MTCHCMulticast Traffic Channel) 등이 있다.
[40] 도 3 은 3GPP LTE 시스템에 이용되는 물리 채널들 및 이들을 이용한 일 반적인 신호 전송 방법을 설명하기 위한 도면이다.
[41] 전원이 꺼진 상태에서 다시 전원이 켜지거나, 새로이 셀에 진입한 사용 자 기기는 단계 S301 에서 기지국과 동기를 맞추는 등의 초기 셀 탐색 (Initial cell search) 작업을 수행한다. 이를 위해 사용자 기기는 기지국으로부터 주동 기 채널 (Primary Synchronization Channel , P-SCH) 및 부동기 채널 (Secondary Synchronization Channel, S-SCH)을 수신하여 기지국과 동기를 맞추고, 셀 ID 등의 정보를 획득한다. 그 후, 사용자 기기는 기지국으로부터 물리방송채널 (Physical Broadcast Channel)를 수신하여 셀 내 방송 정보를 획득할 수 있다. 한편, 사용자 기기는 초기 셀 탐색 단계에서 하향링크 참조 신호 (Downlink Reference Signal, DL RS)를 수신하여 하향링크 채널 상태를 확인할 수 있다.
[42] 초기 셀 탐색을 마친 사용자 기기는 단계 S302 에서 물리 하향링크제어 채널 (Physical Downlink Control Channel, PDCCH) 및 물리하향링크제어채널 정 보에 따른 물리하향링크공유 채널 (Physical Downlink Control Channel, PDSCH) 을 수신하여 좀더 구체적인 시스템 정보를 획득할 수 있다.
[43] 이후, 사용자 기기는 기지국에 접속을 완료하기 위해 이후 단계 S303 내 지 단계 S306 과 같은 임의 접속 과정 (Random Access Procedure)을 수행할 수 있다. 이를 위해 사용자 기기는 물리임의접속채널 (Physical Random Access Channel, PRACH)을 통해 프리앰블 (preamble)을 전송하고 (S303), 물리하향링크제 어채널 및 이에 대웅하는 물리하향링크공유 채널을 통해 프리앰블에 대한 응답 메시지를 수신할 수 있다 (S304). 경쟁 기반 임의 접속의 경우 추가적인 물리임 의접속채널의 전송 (S305) 및 물리하향링크제어채널 및 이에 대응하는 물리하향 링크공유 채널 수신 (S306)과 같은 층돌해결절차 (Content ion Resolution Procedure)를 수행할 수 있다.
[44] 상술한 바와 같은 절차를 수행한 사용자 기기는 이후 일반적인 상 /하향 링크 신호 전송 절차로서 물리하향링크제어채널 /물리하향링크공유채널 수신 (S307) 및 물리상향링크공유채널 (Physical Uplink Shared Channel , PUSCH)/물리 상향링크제어채널 (Physical Uplink Control Channel, PUCCH) 전송 (S308)을 수행 할 수 있다. 사용자 기기가 기지국으로 전송하는 제어 정보를 통칭하여 상향링 크 제어 정보 (Uplink Control Information, UCI)라고 지칭한다. UCI 는 HARQ ACK/NACK(Hybrid Automatic Repeat and reQuest Acknowledgement/Negat ive-ACK) SRCScheduling Request), CSI (Channel State Information) 등을 포함한다. 본 명세서에서, HARQ ACK/NACK은 간단히 HARQ-ACK혹은 ACK/NACK(A/N)으로 지칭된 다. HARQ-ACK 은 포지티브 ACK (간단히, ACK), 네거티브 ACK(NACK), DTX 및 NACK/DTX중 적어도 하나를 포함한다. CSI 는 CQKChannel Quality Indicator), PMKPrecoding Matrix Indicator), RKRank Indication) 등을 포함한다. UCI 는 일반적으로 PUCCH를 통해 전송되지만, 제어 정보와 트래픽 데이터가 동시에 전 송되어야 할 경우 PUSCH 를 통해 전송될 수 있다. 또한, 네트워크의 요청 /지시 에 의해 PUSCH를 통해 UCI를 비주기적으로 전송할 수 있다.
[45] 도 4 는 LTE 시스템에서 사용되는 무선 프레임의 구조를 예시하는 도면 이다.
[46] 도 4 를 참조하면, 샐를라 OFDM 무선 패킷 통신 시스템에서, 상향링크 / 하향링크 데이터 패킷 전송은 서브프레임 (subframe) 단위로 이루어지며, 한 서 브프레임은 다수의 OFDM 심볼을 포함하는 일정 시간 구간으로 정의된다. 3GPP LTE표준에서는 FDE Frequency Division Duplex)에 적용 가능한 타입 1무선 프 레임 (radio frame) 구조와 TDD(Time Division Duplex)에 적용 가능한 타입 2 의 무선 프레임 구조를 지원한다.
[47] 도 4 의 (a)는 타입 1 무선 프레임의 구조를 예시한다. 하향링크 무선 프레임 (radio frame)은 10 개의 서브프레임 (subframe)으로 구성되고, 하나의 서 브프레임은 시간 영역 (time domain)에서 2 개의 슬롯 (slot)으로 구성된다. 하나 의 서브프레임이 전송되는 데 걸리는 시간을 ΓΠ (transmission time interval) 라 한다. 예를 들어 하나의 서브프레임의 길이는 lms 이고, 하나의 슬롯의 길이 는 0.5ms 일 수 있다. 하나의 슬롯은 시간 영역에서 복수의 OFDM심볼을 포함하 고, 주파수 영역에서 다수의 자원블록 (Resource Block; RB)을 포함한 [다. 3GPP LTE시스템에서는 하향링크에서 0FDMA를 사용하므로, OFDM심볼이 하나의 심볼 구간을 나타낸다. OFDM심볼은 또한 SC-FOMA심볼 또는 심볼 구간으로 칭하여질 수도 있다. 자원 할당 단위로서의 자원 블록 (RB)은 하나의 슬롯에서 복수개의 연속적인 부반송파 (subcarrier)를 포함할 수 있다.
[48] 하나의 슬롯에 포함되는 OFDM 심볼의 수는 CP(Cyclic Prefix)의 구성 (configuration)에 따라 달라질 수 있다. CP에는 확장된 CP(extended CP)와 표 준 CPCnormal CP)가 있다. 예를 들어, OFDM 심볼이 표준 CP 에 의해 구성된 경 우, 하나의 슬롯에 포함되는 OFDM심볼의 수는 7 개일 수 있다. OFDM심볼이 확 장된 CP 에 의해 구성된 경우, 한 OFDM 심볼의 길이가 늘어나므로, 한 슬롯에 포함되는 OFDM심볼의 수는 표준 CP인 경우보다 적다. 확장된 CP의 경우에, 예 를 들어, 하나의 슬롯에 포함되는 OFDM심볼의 수는 6 개일 수 있다. 사용자 기 기가 빠른 속도로 이동하는 등의 경우와 같이 채널상태가 불안정한 경우, 심볼 간 간섭을 더욱 줄이기 위해 확장된 CP가사용될 수 있다.
[49] 표준 CP가사용되는 경우 하나의 슬롯은 7개의 OFDM심볼을 포함하므로 , 하나의 서브프레임은 14개의 OFDM심볼을 포함한다. 이때, 각 서브프레임의 처 음 최대 3 개의 OFDM심볼은 PDCCH(physical downlink control channel)에 할당 되고, 나머지 0FDM 심볼은 PDSCH(physical downlink shared channel)에 할당될 수 있다.
[50] 도 4 의 (b)는 타입 2무선 프레임의 구조를 예시한다. 타입 2 무선 프 레임은 2개의 하프 프레임 (half frame)으로 구성되며, 각 하프 프레임은 2개의 슬롯을 포함하는 4 개의 일반 서브프레임과 DwPTS(Downnnk Pilot Time Slot), 보호구간 (Guard Period, GP) 및 UpPTSOJplink Pilot Time Slot)을 포함하는 특 별 서브프레임 (special subframe)으로 구성된다.
[51] 상기 특별 서브프레임에서, DwPTS 는 사용자 기기에서의 초기 샐 탐색, 동기화 또는 채널 추정에 사용된다. UpPTS는 기지국에서의 채널 추정과 사용자 기기의 상향링크 전송 동기를 맞추는 데 사용된다. 즉, DwPTS는 하향링크 전송 으로, UpPTS는 상향링크 전송으로 사용되며, 특히 UpPTS는 PRACH프리앰블이나 SRS 전송의 용도로 활용된다. 또한, 보호구간은 상향링크와 하향링크 사이에 하 향링크 신호의 다중경로 지연으로 인해 상향링크에서 생기는 간섭을 제거하기 위한 구간이다.
[52] 상기 특별 서브프레임에 관하여 현재 3GPP 표준 문서에서는 아래 표 1 과 같이 설정을 정의하고 있다. 표 1 에서 = 1/(15000x2048)인 경우
DvvPTS와 UpPTS를 나타내며, 나머지 영역이 보호구간으로 설정된다.
[53] 【표 1】
Figure imgf000012_0001
[54] 한편, 타입 2 무선 프레임의 구조, 즉 TDD 시스템에서 상향링크 /하향링 크 서브프레임 설정 (UL/DL configuration)은 아래의 표 2와 같다.
[55] 【표 2】
Figure imgf000012_0002
[56] 상기 표 2 에서 D 는 하향링크 서브프레임, U 는 상향링크 서브프레임을 지시하며, S 는 상기 특별 서브프레임을 의미한다. 또한, 상기 표 2 는 각각의 시스템에서 상향링크 /하향링크 서브프레임 설정에서 하향링크-상향링크 스위- 주기 역시 나타나있다. [57] 상술한 무선 프레임의 구조는 예시에 불과하고, 무선 프레임에 포함되는 서브프레임의 수또는서브프레임에 포함되는 슬롯의 수, 슬롯에 포함되는 심볼 의 수는 다양하게 변경될 수 있다.
[58] 도 5 는 LTE 시스템의 P-BCH(Primary broadcast channel) 및 SCH(Synchronization channel)를 예시한다. SCH는 P-SCH 및 S-SCH를 포함한다. P-SCH 상으로 PSS(Primary Synchronization Signal)가 전송되고, S-SCH 상으로 SSS(Secondary Synchronization Signal)가 전송된다. .
[59] 도 5 를 참조하면, 프레임 구조 타입 -1(즉, FDD)에서 P-SCH 는 매 무선 프레임에서 슬롯 #0(즉, 서브프레임 #0 의 첫 번째 슬롯)과 슬롯 #10(즉, 서브 프레임 #5 의 첫 번째 슬롯)의 마지막 OFDM 심볼에 위치한다. S-SCH 는 매 무선 프레임에서 슬롯 #0 과 슬롯 #10 의 마지막 0FDM 심볼의 바로 이전 0FDM 심볼에 위치한다. S-SCH와 P-SCH는 인접하는 0FDM 심볼에 위치한다. 프레임 구조 타입 -2(즉, TDD)에서 P-SCH는 서브프레임 #1/#6의 3번째 0FDM 심볼을 통해 전송되 고 S-SCH 는 슬롯 #1(즉, 서브프레임 #0 의 두 번째 슬롯)과 슬롯 #11(즉, 서브 프레임 #5 의 두 번째 슬롯)의 마지막 0FDM 심볼에 위치한다. P-BCH 는 프레임 구조 타입에 관계 없이 매 4 개의 무선 프레임마다 전송되며 서브프레임 #0 의 두 번째 슬롯의 1번째 내지 4번째 0FDM 심볼을 이용하여 전송된다.
[60] P-SCH 는 해당 0FDM 심볼 내에서 DCXdirect current) 부반송파를 중심 으로 72개의 부반송파 (10개의 부반송파는 예비 , 62개의 부반송파에 PSS 전송) 를 사용하여 전송된다. S-SCH 는 해당 0FDM 심볼 내에서 DCXdirect current) 부 반송파를 중심으로 72 개의 부반송파 (10 개의 부반송파는 예비, 62 개의 부반송 파에 SSS 전송)를 사용하여 전송된다. P-BCH 는 한 서브프레임 안에서 4 개의 0FDM 심볼과 DCXdirect current) 부반송파를 중심으로 72 개의 부반송파에 맵핑 된다.
[61] 도 6 은 CP cyclic prefix)를 포함하는 심볼 구조의 일 예를 나타내는 도면이다.
[62] 도 6 을 참조하면, 심볼 주기 (Ts)는 실제 데이터가 전송되는 유효 심볼 구간 (Tb)과 보호구간 (Tg)의 합이 된다. 수신단에서는 보호구간을 제거한 후 유 효 심볼 구간 동안의 데이터를 취하여 복조를 수행하게 된다. 송신단 및 수신단 은 순환전치 부호를 사용하여 서로 동기화를 이를 수 있으며, 데이터 심볼간 직 교성을 유지할 수 있다. 본 발명에서 말하는 심볼은 0FDMA심볼일 수 있다.
[63] 도 7은 하향링크 슬롯에 대한 자원 그리드 (resource grid)를 예시한다.
[64] 도 7을 참조하면, 하향링크 슬롯은 시간 영역에서 N b OFDM심볼을 포 함하고 주파수 영역에서 N 자원블록을 포함한다. 각각의 자원블록이 부 반송파를 포함하므로 하향링크 슬롯은 주파수 영역에서 N x N 부반송파를 포함한다. 도 7 은 하향링크 슬롯이 7 OFDM 심볼을 포함하고 자원블록이 12 부 반송파를 포함하는 것으로 예시하고 있지만 반드시 이로 제한되는 것은 아니다. 예를 들어, 하향링크 슬롯에 포함되는 OFDM 심볼의 개수는 순환전치 (Cyclic Prefix; CP)의 길이에 따라 변형될 수 있다.
[65] 자원 그리드 상의 각 요소를 자원요소 (Resource Element; RE)라 하고, 하나의 자원 요소는 하나의 OFDM 심볼 인덱스 및 하나의 부반송파 인덱스로 지 시된다. 하나의 RB 는 N bx Nc B 자원요소로 구성되어 있다. 하향링크 슬롯에 포함되는 자원블록의 수 ( N )는 셀에서 설정되는 하향링 a 전송 대역폭 (bandwidth)에 종속한다.
[66] 도 8은 하향링크 서브프레임의 구조를 예시한다.
[67] 도 8 을 참조하면, 서브프레임의 첫 번째 슬롯에서 앞부분에 위치한 최 대 3(4)개의 OFDM 심볼은 제어 채널이 할당되는 제어 영역에 대웅한다. 남은 OFDM심볼은 PDSCHCPhysical Downlink Shared Channel)가 할당되는 데이터 영역 에 해당한다. LTE 에서 사용되는 하향링크 제어 채널의 예는 PCFICH(Physical Control Format Indicator Channel ) , PDCCH(Physical Downlink Control Channel), PHICH(Physical hybrid ARQ indicator Channel) 등을 포함한다. PCFICH는 서브프레임의 첫 번째 OFDM심볼에서 전송되고 서브프레임 내에서 제 어 채널의 전송에 사용되는 OFDM 심볼의 개수에 관한 정보를 나른다. PHICH 는 상향링크 전송에 대한 웅답으로 HARQ ACK/NACK(Hybrid Automatic Repeat request acknowledgment/negative—acknowledgment) 신호를 나른다.
[68] PDCCH를 통해 전송되는 제어 정보를 DCKDownlink Control Information) 라고 지칭한다. DCI 는 사용자 기기 또는 사용자 기기 그룹을 위한 자원 할당 정보 및 다른 제어 정보를 포함한다. 예를 들어, DCI 는 상향 /하향링크 스케줄 링 정보, 상향링크 전송 (Tx) 파워 제어 명령 등을 포함한다.
[69] PDCCH는 하향링크 공유 채널 (downlink shared channel, DL-SCH)의 전송 포맷 및 자원 할당 정보, 상향링크 공유 채널 (uplink shared channel, UL-SCH) 의 전송 포맷 및 자원 할당 정보, 페이징 채널 (paging channel, PCH) 상의 페이 징 정보, DL-SCH 상의 시스템 정보, PDSCH 상에서 전송되는 랜덤 접속 웅답과 같은 상위 -계층 제어 메시지의 자원 할당 정보, 사용자 기기 그룹 내의 개별 사 용자 기기들에 대한 Tx 파워 제어 명령 세트, Tx 파워 제어 명령, VoIP Voice over IP)의 활성화 지시 정보 등을 나른다. 복수의 PDCCH 가 제어 영역 내에서 전송될 수 있다. 사용자 기기는 복수의 PDCCH를 모니터링 할 수 있다. PDCCH는 하나 또는 복수의 연속된 제어 채널 요소 (control channel element, CCE)들의 집합 (aggregation) 상에서 전송된다. CCE는 PDCCH 에 무선 채널 상태에 기초한 코딩 레이트를 제공하는데 사용되는 논리적 할당 유닛이다. CCE는 복수의 자원 요소 그룹 (resource element group, REG)에 대웅한다. PDCCH 의 포맷 및 PDCCH 비트의 개수는 CCE 의 개수에 따라 결정된다. 기지국은 사용자 기기에게 전송될 DCI 에 따라 PDCCH포맷을 결정하고, 제어 정보에 CRCCcycHc redundancy check) 를 부가한다. CRC 는 PDCCH 의 소유자 또는 사용 목적에 따라 식별자 (예, RNTI (radio network temporary identifier))로 마스킹 된다. 예를 들어, PDCCH 가 특정 사용자 기기를 위한 것일 경우, 해당 사용자 기기의 식별자 (예, cell- RNTI (C-RNTI))가 CRC에 마스킹 될 수 있다. PDCCH가 페이징 메시지를 위한 것 일 경우, 페이징 식별자 (예, paging-RNTI (P-R TI))가 CRC 에 마스킹 될 수 있 다. PDCCH 가 시스템 정보 (보다 구체적으로, 시스템 정보 블록 (system Information block, SIC))를 위한 것일 경우, SI-RNTI (system Information RNTI) 가 CRC에 마스킹 될 수 있다. PDCCH가 랜덤 접속 응답을 위한 것일 경우, RA- RNTI (random access-RNTI)가 CRC에 마스킹 될 수 있다 .
[70] 도 9는 LTE에서 사용되는 상향링크 서브프레임의 구조를 예시한다 .
[71] 도 9를 참조하면, 상향링크 서브프레임은 복수 (예, 2개)의 슬롯을 포함 한다. 슬롯은 CP 길이에 따라 서로 다른 수의 SC-FDMA 심볼을 포함할 수 있다. 상향링크 서브프레임은 주파수 영역에서 데이터 영역과 제어 영역으로 구분된다. 데이터 영역은 PUSCH 를 포함하고 음성 등의 데이터 신호를 전송하는데 사용된 다. 제어 영역은 PUCCH 를 포함하고 상향링크 제어 정보 (Uplink Control Information, UCI)를 전송하는데 사용된다. PUCCH 는 주파수 축에서 데이터 영 역의 양끝 부분에 위치한 RB쌍 (RB pair)을 포함하며 슬롯을 경계로 호핑한다.
[72] PUCCH는 다음의 제어 정보를 전송하는데 사용될 수 있다.
[73] - SR(Scheduling Request): 상향링크 UL-SCH 자원을 요청하는데 사용되 는 정보이다. 00K(0n-0ff Keying) 방식을 이용하여 전송된다.
[74] - HARQ ACK/NACK: PDSCH 상의 하향링크 데이터 패킷에 대한 웅답 신호이 다. 하향링크 데이터 패킷이 성공적으로 수신되었는지 여부를 나타낸다. 단일 하향링크 코드워드에 대한 응답으로 ACK/NACK 1 비트가 전송되고, 두 개의 하향 링크 코드워드에 대한 응답으로 ACK/NACK 2비트가 전송된다.
[75] - CSI (Channel State Information): 하향링크 채널에 대한 피드백 정보 이다. CSI 는 CQI (Channel Quality Indicator)를 포함하고, MIM0(Mult iple Input Multiple Output) '관련 피드백 정보는 RKRank Indicator), PMKPrecoding Matrix Indicator), PTKPrecoding타입 Indicator) 등을 포함한 다. 서브프레임 당 20비트가사용된다.
[76] 사용자 기기가 서브프레임에서 전송할 수 있는 제어 정보 (UCI)의 양은 제어 정보 전송에 가용한 SC-FDMA 의 개수에 의존한다. 제어 정보 전송에 가용 한 SC-FDMA는 서브프레임에서 참조 신호 전송을 위한 SC-FDMA 심볼을 제외하고 남은 SC-FDMA 심볼을 의미하고, SRS(Sounding Reference Signal)가 설정된 서브 프레임의 경우 서브프레임의 마지막 SC-FDMA 심볼도 제외된다. 참조 신호는 PUCCH의 코히어런트 검출에 사용된다 .
[77] 전술한 바와 같은 무선 통신 시스템 (예를 들어, 3GPP LTE 시스템 또는
3GPP LTE-A시스템)에 D2D통신이 도입되는 경우, D2D 통신을 수행하기 위한 구 체적인 방안에 대하여 이하에서 설명한다.
[78] 도 10 은 D2D 통신을 개념적으로 설명하기 위한 도면이다. 도 10(a)는 기존의 기지국 중심 통신 방식을 나타내는 것으로, 제 1 단말 (UE1)이 상향링크 상에서 기지국으로 데이터를 전송하고, 제 1 단말 (UE1)로부터의 데이터를 기지 국이 하향링크 상에서 제 2 단말 (UE2)에게 전송할 수 있다.
[79] 도 10(b)는 D2D 통신의 일례로서 단말 대 단말 (UE-to-UE) 통신 방식을 나타내는 것으로, 단말간의 데이터 교환이 기지국을 거치지 않고 수행될 수 있 다. 이와 같이 장치들 간에 직접 설정되는 링크를 D2D 링크라고 명칭 할 수 있 다. D2D 통신은 기존의 기지국 중심의 통신 방식에 비하여 지연 (latency)이 줄 어들고, 보다 적은 무선 자원을 필요로 하는 등의 장점을 가진다.
[80] D2D통신은 기지국을 거치지 않고 장치간 (또는 단말간)의 통신을 지원하 는 방식이지만, D2D통신은 기존의 무선통신시스템 (예를 들어, 3GPP LTE/LTE-A) 의 자원을 재사용하여 수행되기 때문에 기존의 무선통신시스템에 간섭 또는 교 란을 일으키지 않아야 한다. 같은 맥락에서, 기존의 무선통신시스템에서 동작하 는 단말, 기지국 등에 의해 D2D통신이 받는 간섭을 최소화하는 것 역시 중요하 다. [81] 전술한 내용을 바탕으로 본 발명에서는 D2D 통신 (Device to Device communication)을 하는 단말들의 순환 전치 (cyclic prefix, CP)의 길이 (length) 에 관한 설정 방법을 제안한다.
[82] 기존 무선 통신 시스템 (예를 들어, LTE Release 10 이하의 시스템)상에 서는 샐의 상황에 따라 단말이 SSS(secondary synchronization signal)를 불라 인드 디코딩 (blind decoding)하여 표준 CP(normal CP)와 확장 CP(extended CP) 중 적절한 것을 선택한다. 여기서, 순환 전치 길이 (CP Length)는 cell-specific 한 특성을 가질 수 있다. 하지만, D2D상황에서 단말은 D2D통신과 eNB통신 두 가지 모드를 병행하여 수행될 수 있는데, 이러한 경우 D2D 통신에서 사용할 순 환 전치의 길이는 eNB통신과는 상이하게 설정되는 것이 바람직할 수 있다.
[83] 따라서, 본 발명에서는 단말의 D2D통신과 eNB통신을 함께 수행하는 동 작을 지원하기 위한 방법으로서, D2D통신에 사용되는 서브프레임에 대한 CP길 이를 설정하는 방법에 대하여 설명한다.
[84] 먼저 본 발명의 설명의 편의를 위하여 D2D 통신에 참여하는 단말 (UE)를 UE_D라 나타내며 오직 eNB와만 통신하는 UE를 UE_C라고 한다. 따라서, 하나 의 단말 (UE)이 D2D 통신을 수행하는 중인 경우에도 특정 서브프레임 상에서는 eNB와만 통신을 수행하는 경우도 있을 수 있으므로, UE_D는 UE_C가 될 수 도 있다. 즉, UEᅳ D는 서브프레임별로 상이한 UE_D나 eNB, 흑은 두 가지 모두와 통 신을 할 수 있다. [85] 그리고, 본 발명이 적용되는 경우, 단말이 통신을 수행하는 서브프레임 (SF)에 대하여 D2D 통신 용도로 이용될 수 있는 서브프레임을 SF_D, 오직 eNB 와의 통신 용도로 이용되는 서브프레임은 SF_C 로 나타낸다. 본 발명에서는 설 명의 편의를 위하여, SF_D 와 SF— C 는 서로 중복되지 않음을 전제로 설명하나, 이에 한정하여서 본 발명을 제한 해석해서는 아니된다. 나아가, 본 발명의 실시 예들은 SF_D와 SF_C는 중복되는 경우에도 적용될 수 있다.
[86] D2D 통신에 참여하는 단말 (즉, UE_D)이라고 하더라도 eNB 와 통신 연결 을 완전히 단절 (release)하지는 않는다. D2D 와 셀를러 (eel lular)통신 (즉, eNB 와의 통신)을 모두 유지하기 위하여, 서브프레임 단위로 특정 서브프레임은 SF_C 으로 사용하고 나머지 서브프레임들은 SF_D 로 사용될 수 있다. 따라서 , SF_C 는 현재 무선통신 시스템 상 (즉, Rel-10)에서는 SSS 를 블라인드 디코딩 (blind decoding)하여 표준 CP(normal CP)와 확장 CP( extended CP)중 하나가 결 정되도록 설정되어 있다. 또한, 같은 SF_D 이더라도 검출 신호 (discovery signal)를 위한 서브프레임 (이하, discovery SF_D)과 데이터 송수신을 위한 서 브프레임 (이하, data SF_D)의 CP길이 (CP length)설정은 상이할 수 있다.
[87] 따라서 , 본 발명은 상술한 SFJ:, discovery SF_D, data SF_D 가 서로 상 이한 CP 길이를 설정하는 방법에 대하여 설명하며, 이하에서 상술하는 본 발명 의 실시예들은 복수의 링크 (link)가 형성되는 경우에도 확장 적용될 수 있다. 보다 구체적으로는 discovery SF_D, data SF_D 에서 사용할 CP길이 (CP length) 를 결정하는 방법 및 동작을 중심으로 설명한다.
[88] <제 1실시예 >
[89] 본 발명의 제 1 실시예에 따르면, D2D통신 용도로 이용될 수 있는 서브 프레임 (SF_D)의 CP길이는 고정된 값을 가질 수 있다.
[90] 즉, UE_D들은 eNB 와 통신할 때 고유의 TA(timing alignment)값을 가지 므로 D2D통신을 위해서는 D2D통신에 참여하는 UE_D들 사이에 별도의 시간 동 기화 (time synchronization)절차가 필요하다. 하지만 D2D 통신의 특성상, 기존 의 PRACH 와 같은 복잡한 시간 동기화 절차를 수행하기는 어려우므로, 시간 동 기화 측면에서 좀 더 유리한 확장된 CP(extended CP)가 기본 CP 가 사용되도록 설정될 수 있다. [91] 즉 SF_C의 CP length와는 무관하게 SF_D의 전부 혹은 일부는 extended CP 로 동작하도록 한다. 특히 이 방법은 별도의 CP length 지시 신호를 생략할 수 있으므로 UE_D 가 coverage 외부에 존재하는 상황이어서 eNB 의 제어가 불가 능하거나, public safety 와 관련된 동작 (재난, 긴급, 등.. )일 때 특히 유용할 수 있다. 또한 이 방법은 CP length 를 변경하기 전의 시초값 (흑은 기본값)으로 서 사용할 수 있다.
[92] <제 2 실시예 >
[93] 본 발명의 제 2 실시예에에서는, eNB 의 제어로 반 -정적 (semi-static) 혹은 동적 (dynamic)으로, D2D 통신 용도로 이용될 수 있는 서브프레임 (SF_D)의 CP 길이가 설정될 수 있다.
[94] 본 발명의 제 2 실시예에 따르면, (상술한 제 1 실시예와 달리) CP 길이 (CP length) 설정에 관하여, eNB 및 UE 사이에 미리 특정한 규칙 /설정 /정보가 설정되어 (암묵적으로) 이에 따라 CP 길이가 정해질 수 있으며, 또는 별도의 시 그널링 (예를 들어, 상위 계층 시그널링)등을 통하여 기지국이 단말에게 CP 길이 를 설정해 줄 수 도 있다.
[95] 즉, D2D 통신에 참여하는 단말 (즉, UE_D)은 D2D 통신을 하더라도 eNB 와 접속을 유지한 상태이므로, eNB에서 51_1)의 CP 길이 (CP length) 설정을 지시해 줄 수 있다. 또는, UE_D 가 D2D 통신을 위한 CP 길이 (CP length) 연관 정보를 요청하면 eNB 가 UE_D 의 요청에 따라 CP 를 결정하여 UE_D 에게 CP 길이 (CP length)를 알려줄 수 도 있다.
[96] 나아가, 오직 eNB 와의 통신 용도로 사용되는 하향링크 서브프레임 (이하, DL SF_C, 예, RRC 혹은 다른 물리적 하향링크 채널)을 통해 discovery SF_D 와 data SF_D 의 CP 길이를 각각 알려줄 수도 있으나, 시스템의 설정에 따라 discovery SF_D 나 data SF_D 의 CP 길이에 관한 지시는 생략될 수 도 있다. 물 론, eNB 는 전체 D2D 자원 (시간 /주파수)의 층돌이 심하다고 판단되는 경우에는 D2D통신 요청을 거절할 수 도 있다.
[97] 본 발명의 제 2 실시예에 따른 CP 길이 (CP length) 설정 동작은 상당히 긴 시간이 필요하기 때문에, 반—정적 (semi-static)하게 설정되는 특징을 가지고 있다. 따라서, UE 가 eNB 커버리지 내에 존재하며, 긴급한 전송이 아닌 경우 (예 를 들어, commercial data transmission)등에 적용됨이 바람직하다. [98] <제 3 실시예 >
[99] 본 발명의 제 3 실시예에 따르면, D2D 통신에 참여하는 UE 들 (즉, UE_D) 들은 eNB의 지시 없이 CP 길이 (CP length)를 결정할 수도 있다.
[100] 예를 들어, 본 발명에서는 기존 무선 통신 시스템 (즉, 3GPP LTE Re 1.-10 이하)과 유사하게, 검출 신호 (discovery signal)에 PSS, SSS 를 적용하여 (이하 본 발명에 따라 D2D용도를 위하여 수정된 PSS, SSS를 각각 PSS_D, SSS_D라 정 의한다) CP 길이 (CP length)를 결정할 수 있다.
[101] 즉, 검출 신호 (예를 들어, PSSᅳ D/SSS_D 와 같은 동기 신호)를 복수의 OFDM 심볼들에 위치하여 두 OFDM 심볼의 검출 시점 차이로 CP 길이 (CP length) 를 결정하는 방법이다. 예를 들어, 송신 단말에서 슬롯의 경계 (slot boundary) 에 ?35_1 를 위치시키고 (즉, normal CP에서는 7번째 ( DM 심볼, extended CP에 서는 6 번째 0FOM 심볼), 슬롯의 경계 앞 0FDM 심볼 (즉, normal CP 에서는 6 번 째 0FDM 심볼, extended CP 에서는 5 번째 0FDM 심볼) 에 SSSJ)를 위치시켜 전 송한다. 수신 단말에서는 모든 시간에 따라 PSS_D 를 모니터링하여 검출한 후, 그 검출 시점 (예를 들어, 슬롯의 경계)를 기준으로 SSS_D 가 위치할 것으로 추 정되는 두 가지 시점 (즉, normal CP 와 extended CP 에 따라 다른 두가지 시점) 에서 SSSᅳ D를 검출시도 (blind detect ion)하여 실제 적용된 CP길이를 산출할 수 있다.
[102] 또한, ?33_1)가 검출된 0FDM 심볼을 기준으로 SSS_D가 소정의 차이 (예를 들어, 하나 이상의 0FDM 심볼 개수)로 위치한다면, 두 가지 CP (즉, Normal CP 인 경우의 SSS_D 및 Extended CP인 경우의 SSS_D)를모두 FFT를 이용하여 비교 하여 (즉, Blind Detection), 적용된 CP 길이 (CP length)를 산출할 수 있다. 예 를 들어, 단말은 PSS_D 가 슬롯의 경계가 아닌 임의의 0FDM 심볼상에 위치하는 경우에, ?33_1)를모든 시간에 따라 모니터링하여 검출하고, 검출된 ?33_1)를 기 준으로 SSS_D 에 대한 Blind Detection 을 수행할 수 있다. 따라서 SSS_D 가 PSS_D 의 위치를 기준으로 (이전 /이후와 상관없이) 소정의 0FDM 심볼만큼 떨어 져 위치하고, 소정의 0FDM 심볼의 개수가 사전에 정의된 Normal CP 인 경우의 SSS_D 및 Extended CP 인 경우의 SSS_D 중 어느 하나에 대웅한다면, 단말은 적 용되어 있는 CP 길이를 확인할 수 있다. [103] 만약, LTE Rel.-10의 방식을 그대로 차용한다면, CP길이는 셀 내에서는 동일한 특징을 가지므로 discovery SF_D과 data SF_D의 CP의 길이는 같을 것 이나, 검출 신호 (discovery signal)에 data SF_D 의 CP 길이 정보를 포함하여 전송한다면, discovery SF_D와 data SF_D의 CP길이는 상이할 수 있다.
[104] 다른 예로, D2D 통신은 근거리에 위치한 UE_D 간 통신을 목적으로 하므 로, 채널 상태가 비교적 좋을 가능성이 크다. 따라서 검출 신호 (discovery signal)를 채널의 다중 -경로 (multi-path) 특성을 판단할 수 있도록 구성함으로 써, 검출 신호 (discovery signal)를 수신하여 채널의 다증 -경로 (multi-path) 특 성이 일정 기준 이하인 경우, 14 개의 0FDM 삼볼을 가지는 표준 (normal) CP 가 사용되도록 결정될 수 있다. 만약 채널의 다중 -경로 (multi-path) 특성이 일정 기준 이상일 때는 확장된 CP를 사용하도록 결정된 경우라면, 12개의 0FDM심볼 을 가지는 확장된 (extended) CP가사용되도록 결정할 수 도 있다.
[105] 다만 이러한 경우에도, 검출 신호 (discovery signal)을 수신하기 위해서 는 서브프레임의 CP 길이 (CP length)를 알아야 하는데, i) CP 길이 (CP length) 의 값과 무관하도록 슬롯 (slot) 의 마지막 0FDM 심볼상에 위치하거나 (즉, LTE Re 1.-10 의 PSS), ii) 사전에 정의된 기본 CP 길이 (default CP length, 예, extended CP)를 따르거나, iii) SF_D에서 전송되는 상위계층 신호나 별도의 물 리 계층 신호 (예, RRC신호, PDCCH등)를 통해 지시된 CP길이 (CP length)를 따 르거나, 4) 해당 서브프레임 /심볼에서는 표준 CP(normal CP)와 확장된 CP 두가 지 모두를 블라인드 디코딩하도록 설정함으로써, D2D 통신에 참여하는 단말이 검출 신호을 수신하기 위한서브프레임의 CP길이를 파악할 수 있다.
[106] 또 다른 예로, UE_D 가 (미리 정의된 설정에 따라) 자의적으로 CP 길이 (CP length)를 결정할 수 있다. 예를 들어, D2D 데이터의 종류에 따라 UE_D자 체적으로 신속성을 요하는 종류 (예, public safety)이면 extended CP, 일반적인 데이터 전송 (예, commercial data transmission)이라면 normal CP로 설정할 수 있다. 이러한 경우, UE_D (예, UE#1)는 eNB 를 통하여 CP길이를 상대 UE_D(예, UE#2)에게 알려주거나, 검출 신호 (discovery signal)에 CP 길이 의 정보를 포함 하여 전송하여야 한다.
[107] 구체적인 예로 검출 시뭔스 (discovery sequence )의 파라미터 (예, sequence index, hopping pattern, cyclic shift , comb등)의 일부를 normal CP, extended CP 에 대하여 상이하게 설정함으로써, 상대 UE_D 가 검출 신호 (discovery signal)을 정상적으로 수신하면 CP 길이 (CP length)의 정보를 판단 할 수 있다. 나아가, 이러한 경우에도, discovery SF_D과 data SF_D의 CP길이 는 서로 상이할 수 있다.
[108] 제 3 실시예에 따르면, UE_D 가 CP 길이를 결정할 수 있으므로, 커버리 지 (coverage) 외부에 존재하는 UE간의 D2D통신에서, CP길이를 변경 /재설정하 는 경우에도 적용될 수 있다는 장점이 있다.
[109] 상술한 본 발명의 실시예들에 의하여 CP 의 길이가 결정되었다면 결정 된 CP 길이에 따라 상대 UE_D 에게 ACK 에 해당하는 신호를 전송한다. 이러한 ACK 에 해당하는 신호는 미리 전송 시점이 정의 (예, 검출 신호 (discovery signal)로부터 n+4)되어 있을 수 있다. 즉, 검출 신호 (discovery signal)을 수 신한 이후부터는 ACK을 전송하는 SF_D 의 CP 길이는 자동으로 결정되게 된다. 또한, 단말은 SF_D 의 PUCCH혹은 PUSCH (또는 D2D 용도를 위한 일부 수정된 채 널)을 통하여 ACK을 전송할 수 있으나, 경우에 따라서, 이러한 ACK 전송 절차 는 생략되고 바로 데이터 전송을 시작할 수도 있다 (이러한 경우 데이터 전송이 된 경우 1见_!)는 ACK을 수신한 것으로 간주할 수 있다).
[110] 상술한 본 발명의 실시예들과 구현예들의 경우 각각이 독립적으로 실시 될 수 도 있으나, 무선 자원의 효율적 활용이나 D2D성능을 고려하여 일부 실시 예들의 조합 형태로 실시될 수 있으며, 중복되는 내용은 명확성을 위하여 설명 을 생략한다.
[111] 따라서 , 본 발명에 따르면, D2D 통신용 검출 시그널을 위한 서브프레임 (discovery SF_D)은 기본적 (default)으로 extended CP 에 따르도록 설정되어 있 으나, 단말이 검출 신호 (discovery signal)의 CP 길이 (CP length)정보를 수신함 으로써 , 표준 CP normal CP)에 따라 D2D통신이 수행됨을 인지함으로써 , D2D통 신용 데이터 전송을 위한 서브프레임 (data SF_D)은 표준 CP normal CP)에 따르 도록 변경할 수 있다. 나아가, 단말의 이러한 CP설정은 eNB로부터 별도의 변경 신호가 수신되거나, 새로운 검출 신호 (discovery signal)에 의해 CP 길이에 대 한 설정이 변경되기 전까지는 유지되는 것이 바람직하다. [112] 다른 예로, 도 11 은 D2D 통신에 참여하는 단말들에 대하여 검출 신호를 위한 서브프레임 (discovery SF)의 CP 길이 (CP Length)를 확장된 CP( extended CP) 에 따르도록 설정한 경우를 나타낸다.
[113] 도 11에서는, UE_D#1이 UE_D#2 및 UE_D#3와 D2D통신을 수행하는 경우 를 가정한다. 도 11 에서 검출 신호 (discovery signal)은 확장된 CP(extended CP)를 이용하여 전송된다고 미리 설정되었다고 가정한다.
[114] 도 11 에서 UE_D#1 은 D2D 통신을 위한 서브프레임 (SF_D)에서는 다른 UE_D 의 검출 신호가 발견될 때까지 항상 확장된 CP(ext ended CP)로 검출 신호 를 모니터링 하고 있다가, UE_D#2, UE_D#3 로부터 검출 신호 (discovery signal) 을 수신할 수 있다.
[115] 여기서, 각각의 검출 신호 (discovery signal)는 표준 CP(normal CP), 확 장된 CP(extended CP)를 지시하는 정보를 포함하며, 사전에 정의된 일정 간격 이후의 D2D 통신을 위한 데이터 서브프레임 (data SF_D)을 해당 CP 에 대응되도 록 변경하는 것을 알 수 있다.
[116] 즉, UE_D#2 로부터 표준 CP 를 이용하는 data SF_D 를 지시하는 정보가 포함된 검출 신호를 수신한 UE_D#1 은, 소정의 오프셋 (offset)이후에 UE_D#2 와 표준 CP 를 이용하여 D2D 통신을 수행하도록 변경될 수 있다 (즉, DL_D#2, UL_D#2). 그러나, UE_D#3 과 같이, 확장된 CP를 이용하는 data SF_D 를 지시하 는 정보가포함된 검출 신호를 수신한 UE_D#1 은, 이미 설정된 확장된 CP 에 따 라 UE_D#3와 D2D통신을 수행할 수 도 있다 (즉, DL_D#3, UL_D#3)
[117] 도 11 에서는, 설명의 편의를 위하여, discovery SF 를 n 이라 할 때, n+4, n+8, …의 서브프레임 (즉, 오프셋이 4 인 경우)에 위치하지만, 본 발명은 이를 제한하는 것은 아니며, 경우에 따라 다른 오프셋이 적용될 수 도 있다. (예, n+5, n+9, ···) 또한, data SF_D 의 간격도 4 가 아닌 다론 값으로 설정될 수도 있다. 나아가, 도 11 에서 data SF_D 의 CP 설정은 새로운 CP 길이에 관한 지시 를 수신하기 전까지는 반 -정적 (semi-static)하게 유지될 수 있다.
[118] 또 다른 예로, 도 12 와 같이 D2D 통신에 참여하는 단말들에 대하여 검 출 신호를 위한 서브프레임 (discovery SF)의 CP 길이 (CP Length)를 PSS_D/SSSᅳ D 를 이용하여 설정할 수 도 있다. [119] 도 12 에서, UE_D#1 은 D2D 통신을 위한 서브프레임 (SFᅳ D)에서는 다른 UE_D 의 검출 신호 (discovery signal)가 발견될 때까지 항상 표준 CP(normal CP), 확장된 CP(extended CP) 두 심불 타이밍에 모두 FFT 를 수행한다. 즉 PSS 를 기준으로 사전에 정의된 일정 거리만큼의 OFDM 심볼에서 SSS (즉, SSS_D)를 표준 CP(normal CP)와 확장된 CKextended CP)타이밍에 맞추어 FFT를 수행하여 CP의 종류를 결정할 수 있다. 따라서 , UE_D#1은 결정된 CP의 길이에 따라, 다 른 UE_D(즉, UE_D#2, UE_D#3)에 대한 D2D 통신을 위한 서브프레임의 CP 길이를 설정할 수 있다.
[120] 즉, UE_D#2로부터 수신한 D2D통신을 위한 PSS와 SSS의 타이밍 차이가 표준 CP에 대응하는 경우, UE_D#1은 UE— D#2와 표준 CP에 따라 D2D 통신을 수 행하도록 변경될 수 있다. 이에 반해, UE_D#3 로부터 수신한 D2D 통신을 위한
PSS_D 와 SSS—D 의 타이밍 차이가 확장된 CP 에 대웅하는 경우에는, UE_D#1 은
UE_D#3와는 확장된 CP를 유지하여 D2D 통신을 수행할 수 도 있다.
[121] 도 12 에서는, eNB 와 상관없이 CP 길이가 결정되는 것을 설명하였으나, eNB 에 의해 D2D 통신용 검출 신호를 위한서브프레임 (discovery SF— D)의 CP 길 이가 설정되거나, 전체 D2D통신을 위한서브프레임 (SF_D)에 대한 CP 의 길이가 주어지는 것도 가능하다.
[122] 즉, UE_D 는 eNB 에 의해 지시받은 검출 신호를 위한 CP 길이 (discovery CP length)로 모니터링을 하다가, 검출 신호 (discovery signal)가 발견되면 데 이터 송수신을 위한 CP 길이 (data CP length)로 전환하여 통신을 수행할 수 있 다. 또는, UE_D 는 검출 신호 (discovery signal)로부터 지시받은 CP 의 길이를 데이터 신호를 위한 CP의 길이 (data CP length)로 사용할 수도 있다.
[123] 나아가, D2D 통신에 참여하는 단말 (UE_D)가 하나의 서브프레임에서 eNB 로 송신하는 신호와 UE_D 로 송신하는 신호, 혹은 복수의 검출 신호를 수신해서 여러 UE_D 들로 동시에 송수신하는 (예, 그룹 D2D 혹은 일대다 D2D) 상황을 고려 할 수 있다.
[124] 만약, eNB 신호와 UE_D신호의 CP 길이가 다르거나, 혹은 UE_D간의 신호 의 CP 길이가 다르다면, 전송 심볼의 타이밍이 서로 다르기 때문에 전송이 불가 능하거나 전송장치 구현의 비용이나 복잡도가 크게 높아지게 된다. 이러한 경우 에는 CP 길이에 따라 우선순위를 부여하여, 우선하는 CP 길이의 집합을 전송하 고 낮은 CP길이의 집합을 탈락시킨다.
[125] 우선 순위를 부여하는 기준으로는 예를 들어, i)CP 길이에 따라 우선순 위 부여 (예, 확장된 CP(extended CP) 우선)하거나 ii 전송되는 콘텐츠에 따라 우선순위 (예, public safety우선함)를 부여하거나 iii)전송 타겟 별로 우선순 위 (예, UE_D#2->eNB->UE_D#3 의 순서로 우선순위를 정함)를 정해서, 높은 우선 순위부터 같은 종류의 CP길이의 집합만을 전송할 수 있다.
[126] 도 13 은 본 발명의 실시예에 적용될 수 있는 기지국 및 사용자 기기를 예시한다. 무선 통신 시스템에 릴레이가 포함되는 경우, 백홀 링크에서 통신은 기지국과 릴레이 사이에 이뤄지고 억세스 링크에서 통신은 릴레이와 사용자 기 기 사이에 이뤄진다. 따라서, 도면에 예시된 기지국 또는사용자 기기는 상황에 맞춰 릴레이로 대체될 수 있다.
[127] 도 13 을 참조하면ᅳ 무선 통신 시스템은 기지국 (BS, 1310) 및 사용자 기 기 (UE, 1320)을 포함한다. 기지국 (1310)은 프로세서 (1312), 메모리 (1314) 및 무 선 주파수 (Radio Frequency, RF) 유닛 (1316)을 포함한다. 프로세서 (1312)는 본 발명에서 제안한 절차 및 /또는 방법들을 구현하도록 구성될 수 있다. 메모리 (1314)는 프로세서 (1312)와 연결되고 프로세서 (1312)의 동작과 관련한 다양한 정보를 저장한다. RF 유닛 (1316)은 프로세서 (1312)와 연결되고 무선 신호를 송 신 및 /또는 수신한다. 사용자 기기 (1320)은 프로세서 (1322), 메모리 (1324) 및 RF유닛 (1326)을 포함한다. 프로세서 (1322)는 본 발명에서 제안한 절차 및 /또는 방법들을 구현하도록 구성될 수 있다. 메모리 (1324)는 프로세서 (1322)와 연결되 고 프로세서 (1322)의 동작과 관련한 다양한 정보를 저장한다. RF 유닛 (1326)은 프로세서 (1322)와 연결되고 무선 신호를 송신 및 /또는 수신한다. 기지국 (1310) 및 /또는 사용자 기기 (1320)은 단일 안테나 또는 다중 안테나를 가질 수 있다.
[128] 이상에서 설명된 실시예들은 본 발명의 구성요소들과 특징들이 소정 형 태로 결합된 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려되어야 한다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및 /또는 특징들을 결합하여 본 발명의 실시예를 구성하는 것도 가능하다. 본 발명의 실 시예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구 성이나 특징은 다른 실시예에 포함될 수 있고, 또는 다른 실시예의 대웅하는 구 성 또는 특징과 교체될 수 있다. 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함시킬 수 있음은 자명하다 .
[129] 본 발명에 따른 실시예는 다양한 수단, 예를 들어, 하드웨어, 펌웨어 (firmware), 소프트웨어 또는 그것들의 결합 등에 의해 구현될 수 있다. 하드웨 어에 의한 구현의 경우, 본 발명의 일 실시예는 하나 또는 그 이상의 ASICs(appl icat ion specific integrated circuits) , DSPs(digital signal processors) , DSPDs(digital signal processing devices) , PLDs (programmable logic devices) , FPGAs(f ield programmable gate arrays) , 프로세서 콘트를러 , 마이크로 콘트를러, 마이크로 프로세서 등에 의해 구현될 수 있다.
[130] 펌웨어나 소프트웨어에 의한 구현의 경우, 본 발명의 일 실시예는 이상 에서 설명된 기능 또는 동작들을 수행하는 모들, 절차, 함수 등의 형태로 구현 될 수 있다. 소프트웨어 코드는 메모리 유닛에 저장되어 프로세서에 의해 구동 될 수 있다. 상기 메모리 유닛은 상기 프로세서 내부 또는 외부에 위치하여, 이 미 공지된 다양한 수단에 의해 상기 프로세서와 데이터를 주고 받을 수 있다.
[131] 본 발명은 본 발명의 특징을 벗어나지 않는 범위에서 다른 특정한 형태 로 구체화될 수 있음은 당업자에게 자명하다. 따라서, 상기의 상세한 설명은 모 든 면에서 제한적으로 해석되어서는 아니되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고 본 발 명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다.
[132] 【산업상 이용가능성】
[133] 상술한 바와 같은 무선 통신 시스템에서 D2D(Device-to-Device) 통신을 위한 CP설정 방법 및 이를 위한 장치는 3GPP LTE시스템에 적용되는 예를 중심 으로 설명하였으나, 3GPP LTE시스템 이외에도 다양한 무선 통신 시스템에 적용 하는 것이 가능하다.

Claims

【청구의 범위】 ᅳ
【청구항 1】
무선 통신 시스템에서 D2D(Device-to-Device) 통신을 수행하는 단말이 신호를 송수신하는 방법에 있어서,
소정의 CP(Cyclic Prefix) 길이를 가지는 프레임을 이용하여 신호를 송 수신하는 단계를 포함하며,
상기 소정의 CP 길이는 제 1 CP 길이 및 제 2 CP 길이 중 하나로 설정 되며,
상기 제 1 CP 길이는 기지국과 단말 사이의 통신을 위하여 설정된 CP 길이이고, 상기 제 2 CP 길이는 단말과 단말 사이의 통신을 위하여 설정된 CP 길이인 것을 특징으로 하는
신호 송수신 방법 .
【청구항 2】
제 1 항에 있어서,
상기 소정의 CP길이는,
D2D 통신을 위한 검출 신호 (discovery signal)에 기반하여 결정되는 것 을 특징으로 하는,
신호 송수신 방법 .
【청구항 3]
제 2항에 있어서 ,·
상기 검출 신호는, D2D 통신을 위하여 설정된 PSS(Primary Synchronization Signal)및 SSS (Secondary Synchronization Signal)를 포함하며, 상기 CP 길이는, 상기 PSS 및 상기 SSS 간의 시간 (timing) 차이에 따라 결정되는 것을 특징으로 하는,
신호 송수신 방법 .
【청구항 4】
제 3항에 있어서 ,
상기 SSS의 검출 시점은, 상기 PSS의 검출 시점과 소정의 OFDM심볼에 대응하는 시간 차이를 가지도톡 설정된 것을 특징으로 하는,
신호 송수신 방법.
【청구항 5】
제 4 항에 있어서 ,
상기 소정의 OFDM 심볼에 대웅하는 시 간 차이는,
표준 CP(Normal CP) 및 확장된 CP(Extended CP)에 대하여 각각 정의된 PSS 와 SSS 간의 시간 차이 중 하나에 대웅되는 것을 특징으로 하는,
신호 송수신 방법ᅳ
【청구항 6】
제 3 항에 있어서 ,
상기 SSS 는, 상기 PSS 보다 하나의 0FDM(0rthogonal Frequency Division Mult iplexing) 심볼 앞에 설정된 것을 특징으로 하는 ,
신호 송수신 방법 .
【청구항 7】
제 1 항에 있어서,
상기 검출 신호는 , 표준 CP(Normal CP) 및 확장된 CP(Ext ended CP) 각 각에 대하여 상이하게 설정된 파라미터를 포함하며,
상기 소정의 CP 길이는,
상기 검출 신호에 포함된 파라미 터에 기 반하여 결정되는 것을 특징으로 하는,
신호 송수신 방법 . -
【청구항 8】
제 1 항에 있어서,
상기 소정의 CP 길이는,
D2D 통신을 위 한 새로운 검출 신호 (di scovery signal )를 수신할 때까지 유지되는 것을 특징으로 하는,
신호 송수신 방법 .
【청구항 9】
제 1 항에 있어서,
상기 소정의 CP 길이는 ,
적어도 하나의 다른 단말에 대하여 각각 독립적으로 설정되는 것을 특 징으로 하는 , 신호 송수신 방법 .
【청구항 10]
제 1항에 있어서,
상기 소정의 CP길이는,
D2D통신을 위한 다수의 D2D그룹에 대하여 각각 상이하게 설정되며, 상기 다수의 D2D그룹 각각은,
적어도 하나의 단말 또는 기지국으로 구성된 것을 특징으로 하는, 신호 송수신 방법 .
【청구항 11】
제 10항에 있어서,
상기 다수의 D2D그룹에 대하여 동시에 신호를 전송하는 경우,
CP 길이에 따른 우선 순위에 따라 결정된 하나의 D2D 그룹에 대하여만 신호를 전송하는 것을 특징으로 하는,
신호 송수신 방법 .
【청구항 12】
무선 통신 시스템에서 D2D(Device-to-Device) 통신을 수행하는 단말에 있어서,
무선 주파수 유닛 (Radio Frequency Unit); 및
프로세서 (Processor)를 포함하며,
상기 프로세서는, 소정의 CP Cyclic Prefix) 길이를 가지는 프레임을 이용하여 신호를 송수신하도록 구성되며,
상기 소정의 CP 길이는, 제 1 CP 길이 및 제 2 CP 길이 중 하나로 설정 되며,
상기 제 1 CP 길이는 기지국과 단말 사이의 통신을 위하여 설정된 CP 길이이고, 상기 제 2 CP 길이는 단말과 단말 사이의 통신을 위하여 설정된 CP 길이인 것을 특징으로 하는,
단말.
PCT/KR2014/000705 2013-01-31 2014-01-24 무선 통신 시스템에서 D2D(Device-to-Device) 통신을 위한 순환 전치 설정 방법 및 이를 위한 장치 WO2014119880A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020157018541A KR20150112942A (ko) 2013-01-31 2014-01-24 무선 통신 시스템에서 D2D(Device-to-Device) 통신을 위한 순환 전치 설정 방법 및 이를 위한 장치
CN201480007111.3A CN104969488B (zh) 2013-01-31 2014-01-24 用于在无线电通信系统中设置用于d2d(设备对设备)通信的循环前缀的方法及其设备
US14/760,455 US10064041B2 (en) 2013-01-31 2014-01-24 Method for setting cyclic prefix for D2D (device-to-device) communication in radio communications system and apparatus therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201361758781P 2013-01-31 2013-01-31
US61/758,781 2013-01-31

Publications (1)

Publication Number Publication Date
WO2014119880A1 true WO2014119880A1 (ko) 2014-08-07

Family

ID=51262549

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/000705 WO2014119880A1 (ko) 2013-01-31 2014-01-24 무선 통신 시스템에서 D2D(Device-to-Device) 통신을 위한 순환 전치 설정 방법 및 이를 위한 장치

Country Status (4)

Country Link
US (1) US10064041B2 (ko)
KR (1) KR20150112942A (ko)
CN (1) CN104969488B (ko)
WO (1) WO2014119880A1 (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104852880A (zh) * 2015-04-21 2015-08-19 四川大学 Lte终端之间直通的同步方法和终端
CN104918320A (zh) * 2015-04-21 2015-09-16 四川大学 Lte终端高速直通的方法和终端
CN107148794A (zh) * 2014-10-31 2017-09-08 三菱电机株式会社 通信系统
CN115102661A (zh) * 2017-06-16 2022-09-23 摩托罗拉移动有限责任公司 用于建立与一个或多个通信目标一起使用的多个同步信号序列的集合的方法和装备

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2622865C2 (ru) * 2013-04-10 2017-06-20 Телефонактиеболагет Л М Эрикссон (Пабл) Оборудование пользователя, сетевой узел и выполняемые в них способы осуществления и обеспечения связи типа "устройство-устройство" (d2d) в сети радиосвязи
PL3000192T3 (pl) * 2013-05-21 2020-12-14 Telefonaktiebolaget Lm Ericsson (Publ) Sposób komunikacji i sprzęt użytkownika w mieszanej sieci komórkowej i D2D
US9325480B2 (en) * 2013-07-10 2016-04-26 Google Technology Holdings LLC Methods and device for performing device-to-device communication
US10117224B2 (en) * 2013-09-20 2018-10-30 Qualcomm Incorporated MAC subheader for D2D broadcast communication for public safety
JP6019005B2 (ja) * 2013-10-31 2016-11-02 株式会社Nttドコモ 無線基地局、ユーザ端末及び無線通信方法
JP6388664B2 (ja) * 2014-03-27 2018-09-12 ゼットティーイー ウィストロン テレコム エービー 同期化信号の特性に基づいて測定を行うための方法およびシステム
US10142946B2 (en) * 2014-08-18 2018-11-27 Samsung Electronics Co., Ltd. Method and device for transmitting D2D discovery signal by terminal in wireless communication system
KR101793567B1 (ko) * 2014-09-23 2017-11-03 후아웨이 테크놀러지 컴퍼니 리미티드 동기 신호를 송신/수신하기 위한 송신기, 수신기, 및 방법
JP6545355B2 (ja) * 2015-07-17 2019-07-17 華為技術有限公司Huawei Technologies Co.,Ltd. アップリンクデータパケット送信方法、端末デバイス、基地局、及び通信システム
CN106658697B (zh) * 2015-11-04 2020-11-17 中兴通讯股份有限公司 同步信号发送、检测方法、基站及终端
KR102656885B1 (ko) * 2015-11-13 2024-04-12 엘지전자 주식회사 무선 통신 시스템에서 v2v 통신을 위한 전력 측정 방법 및 이를 위한 장치
US10411928B2 (en) * 2016-02-23 2019-09-10 Qualcomm Incorporated Dynamic cyclic prefix (CP) length
CN107276714B (zh) * 2016-04-08 2020-11-24 北京佰才邦技术有限公司 解调方法、装置、终端及系统
US10574502B2 (en) 2016-05-22 2020-02-25 Lg Electronics Inc. Method and apparatus for configuring frame structure for new radio access technology in wireless communication system
US10498437B2 (en) * 2016-06-01 2019-12-03 Qualcomm Incorporated Conveying hypotheses through resource selection of synchronization and broadcast channels
US10615897B2 (en) 2016-06-01 2020-04-07 Qualcomm Incorporated Time division multiplexing of synchronization channels
US11563505B2 (en) 2016-06-01 2023-01-24 Qualcomm Incorporated Time division multiplexing of synchronization channels
US10887035B2 (en) 2016-06-01 2021-01-05 Qualcomm Incorporated Time division multiplexing of synchronization channels
US11218236B2 (en) 2016-06-01 2022-01-04 Qualcomm Incorporated Time division multiplexing of synchronization channels
US10715372B2 (en) * 2016-06-07 2020-07-14 Lg Electronics Inc. Method for obtaining information about cyclic prefix in wireless communication system and device for same
KR102606781B1 (ko) * 2016-09-02 2023-11-27 삼성전자 주식회사 무선 통신 시스템에서 효율적인 데이터 송수신 방법 및 장치
US10700904B2 (en) * 2016-09-16 2020-06-30 Huawei Technologies Co., Ltd. Systems and methods for the coexistence of differing cyclic prefix lengths
CN112073098B (zh) * 2016-10-15 2022-06-21 上海朗帛通信技术有限公司 一种支持同步信号的ue、基站中的方法和装置
KR102074291B1 (ko) 2016-11-09 2020-02-06 엘지전자 주식회사 동기화 신호 전송 방법 및 이를 위한 장치
US10461976B2 (en) 2016-11-11 2019-10-29 Qualcomm Incorporated Cyclic prefix management in new radio
CN111699660B (zh) * 2018-02-13 2022-02-25 华为技术有限公司 一种循环前缀长度确定方法及装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060013325A1 (en) * 2004-06-04 2006-01-19 Avneesh Agrawal Wireless communication system with configurable cyclic prefix length
KR20100119508A (ko) * 2009-04-30 2010-11-09 엘지전자 주식회사 무선 통신 시스템에서 데이터 송수신 방법 및 장치
US20110064038A1 (en) * 2009-09-17 2011-03-17 Richard Lee-Chee Kuo Method and Apparatus for Handling Information of Cyclic Prefix Length in Wireless Communication System
WO2012129806A1 (en) * 2011-03-31 2012-10-04 Renesas Mobile Corporation Method and apparatus for facilitating device-to-device communication
US20120281551A1 (en) * 2011-05-02 2012-11-08 Renesas Mobile Corporation method for setting a mobile node specific cyclic prefix in a mobile communication

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070002726A1 (en) 2005-07-01 2007-01-04 Zangi Kambiz C System and method for adapting a cyclic prefix in an orthogonal frequency division multiplexing (OFDM) system
WO2009041547A1 (ja) * 2007-09-28 2009-04-02 Nec Corporation 無線通信システム、基地局、移動局、タイミング制御決定方法及びプログラム
CN101488932B (zh) 2008-01-15 2012-04-04 华为技术有限公司 正交频分复用系统中广播信道的定位方法、装置及系统
CN102238122A (zh) 2010-04-26 2011-11-09 电信科学技术研究院 一种数据传输的方法、系统和装置
GB2498575A (en) * 2012-01-20 2013-07-24 Renesas Mobile Corp Device-to-device discovery resource allocation for multiple cells in a device-to-device discovery area
CN102547984B (zh) * 2012-02-23 2015-03-11 华为技术有限公司 一种设备到设备通信中寻呼的方法及装置
WO2014023001A1 (en) * 2012-08-09 2014-02-13 Qualcomm Incorporated Methods and apparatus for device to device communications
US9451570B2 (en) * 2012-08-29 2016-09-20 Alcatel Lucent Device discovery for device-to-device communication

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060013325A1 (en) * 2004-06-04 2006-01-19 Avneesh Agrawal Wireless communication system with configurable cyclic prefix length
KR20100119508A (ko) * 2009-04-30 2010-11-09 엘지전자 주식회사 무선 통신 시스템에서 데이터 송수신 방법 및 장치
US20110064038A1 (en) * 2009-09-17 2011-03-17 Richard Lee-Chee Kuo Method and Apparatus for Handling Information of Cyclic Prefix Length in Wireless Communication System
WO2012129806A1 (en) * 2011-03-31 2012-10-04 Renesas Mobile Corporation Method and apparatus for facilitating device-to-device communication
US20120281551A1 (en) * 2011-05-02 2012-11-08 Renesas Mobile Corporation method for setting a mobile node specific cyclic prefix in a mobile communication

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107148794A (zh) * 2014-10-31 2017-09-08 三菱电机株式会社 通信系统
EP3214869A4 (en) * 2014-10-31 2018-06-13 Mitsubishi Electric Corporation Communication system
US10674514B2 (en) 2014-10-31 2020-06-02 Mitsubishi Electric Corporation Communication system
US11006427B2 (en) 2014-10-31 2021-05-11 Mitsubishi Electric Corporation Communication system, base station, and communication terminal for controlling interference from neighboring cells
CN107148794B (zh) * 2014-10-31 2022-03-25 三菱电机株式会社 通信系统
CN104852880A (zh) * 2015-04-21 2015-08-19 四川大学 Lte终端之间直通的同步方法和终端
CN104918320A (zh) * 2015-04-21 2015-09-16 四川大学 Lte终端高速直通的方法和终端
CN104918320B (zh) * 2015-04-21 2019-01-15 四川大学 Lte终端高速直通的方法和终端
CN115102661A (zh) * 2017-06-16 2022-09-23 摩托罗拉移动有限责任公司 用于建立与一个或多个通信目标一起使用的多个同步信号序列的集合的方法和装备

Also Published As

Publication number Publication date
KR20150112942A (ko) 2015-10-07
US20150358801A1 (en) 2015-12-10
CN104969488B (zh) 2019-04-23
CN104969488A (zh) 2015-10-07
US10064041B2 (en) 2018-08-28

Similar Documents

Publication Publication Date Title
JP6479976B2 (ja) 無線通信システムにおけるd2d信号送受信方法及びそのための装置
US10064041B2 (en) Method for setting cyclic prefix for D2D (device-to-device) communication in radio communications system and apparatus therefor
JP6360202B2 (ja) 無線リソースの用途変更を支援する無線通信システムにおける信号の有効性判断方法及びそのための装置
KR101857667B1 (ko) 무선 자원의 용도 변경을 지원하는 무선 통신 시스템에서 상향링크 제어 채널 송신 방법 및 이를 위한 장치
JP6391806B2 (ja) 無線通信システムにおけるd2d通信のための同期化信号送信方法及びこのための装置
KR101792515B1 (ko) 무선 통신 시스템에서 d2d(device-to-device) 통신을 위한 멀티미디어 방송/멀티캐스트 서비스 방법 및 이를 위한 장치
KR102031094B1 (ko) 무선 통신 시스템에서 무선 자원의 동적 할당 방법 및 이를 위한 장치
US11057260B2 (en) Method for electricity measurement for V2V communications in wireless communication system, and device for same
US9473965B2 (en) Method for monitoring downlink control channel in wireless communication system, and apparatus therefor
US9462450B2 (en) Signal transmission method and device for device-to-device (D2D) in wireless communication system
KR20160122221A (ko) 무선 통신 시스템에서 데이터 전송 방법 및 장치
JP6388963B2 (ja) 無線通信システムにおいてD2D(Device−to−Device)信号送信方法及びそのための装置
KR102284363B1 (ko) 무선 통신 시스템에서 하향링크 신호 송수신 방법 및 이를 위한 장치
EP3595222A1 (en) Method for allocating ack/nack resource in wireless communication system and apparatus therefor
JP6445142B2 (ja) 搬送波集成を支援する無線通信システムにおける信号送受信方法及びそのための装置
JP7141469B2 (ja) 下りリンクデータを送受信する方法及びそのための装置
KR20170040192A (ko) 무선 통신 시스템에서 d2d(device-to-device) 통신을 위한 신호 송수신 방법 및 이를 위한 장치
EP3128800B1 (en) Method for transmitting and receiving signal for device-to-device communication in wireless communication system and device therefor
JP6421234B2 (ja) 搬送波集成を支援する無線通信システムにおいてD2D(Device−to−Device)信号の受信方法及びそのための装置
JP6490797B2 (ja) 無線通信システムにおいてd2d通信のための同期信号送信方法及びそのための装置
WO2015170924A1 (ko) 무선 통신 시스템에서 d2d 신호 송수신 방법 및 이를 위한 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14745926

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157018541

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14760455

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14745926

Country of ref document: EP

Kind code of ref document: A1