WO2014061684A1 - センサーおよびその製造方法 - Google Patents
センサーおよびその製造方法 Download PDFInfo
- Publication number
- WO2014061684A1 WO2014061684A1 PCT/JP2013/078020 JP2013078020W WO2014061684A1 WO 2014061684 A1 WO2014061684 A1 WO 2014061684A1 JP 2013078020 W JP2013078020 W JP 2013078020W WO 2014061684 A1 WO2014061684 A1 WO 2014061684A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- elastomer
- magnetic
- sensor
- magnetic filler
- filler
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L1/00—Measuring force or stress, in general
- G01L1/12—Measuring force or stress, in general by measuring variations in the magnetic properties of materials resulting from the application of stress
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C35/00—Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
- B29C35/02—Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B7/00—Measuring arrangements characterised by the use of electric or magnetic techniques
- G01B7/16—Measuring arrangements characterised by the use of electric or magnetic techniques for measuring the deformation in a solid, e.g. by resistance strain gauge
- G01B7/24—Measuring arrangements characterised by the use of electric or magnetic techniques for measuring the deformation in a solid, e.g. by resistance strain gauge using change in magnetic properties
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B7/00—Measuring arrangements characterised by the use of electric or magnetic techniques
- G01B7/28—Measuring arrangements characterised by the use of electric or magnetic techniques for measuring contours or curvatures
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L1/00—Measuring force or stress, in general
- G01L1/04—Measuring force or stress, in general by measuring elastic deformation of gauges, e.g. of springs
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2075/00—Use of PU, i.e. polyureas or polyurethanes or derivatives thereof, as moulding material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2083/00—Use of polymers having silicon, with or without sulfur, nitrogen, oxygen, or carbon only, in the main chain, as moulding material
- B29K2083/005—LSR, i.e. liquid silicone rubbers, or derivatives thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2505/00—Use of metals, their alloys or their compounds, as filler
- B29K2505/08—Transition metals
- B29K2505/12—Iron
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29L—INDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
- B29L2031/00—Other particular articles
- B29L2031/752—Measuring equipment
Definitions
- the present invention relates to a sensor for detecting deformation caused by contact with a magnetic elastomer containing a magnetic filler and a method for producing the same.
- the present invention relates to a tactile sensor that detects deformation caused by contact of a magnetic filler with a magnetic elastomer that is unevenly distributed in the magnetic elastomer; a bending sensor that detects bending deformation of the magnetic elastomer containing the magnetic filler; It relates to the manufacturing method.
- Tactile sensors are widely used in various fields. Basically, when a certain object comes into contact with another object, the strength, position, direction, etc. of the contact are detected.
- the tactile sensor is applied to, for example, the robot's hand and skin, and is used as information for determining the next action of the robot.
- the seating state detection for automobiles, the surface pressure distribution for beds and carpets, the collision state detection for vehicles It is used for detection of the movement state of a living body (for example, motion capture, detection of a respiratory movement or muscle relaxation state of biological movement), illegal entry into a restricted access area, detection of a foreign object in a sliding door, and a keyboard input device.
- Patent Documents 1 to 3, etc. Many proposals have been made on such a tactile sensor and its manufacturing method.
- Patent Document 1 describes a pressure detection device that includes a buffer unit that includes a magnet and is deformed by pressurization and a sensor unit that detects a change in a magnetic field accompanying the deformation of the buffer unit using a magnetic sensor.
- the magnet present in the buffer portion of the pressure detection device may be a single large magnet (FIG. 1 in Patent Document 1), or small magnets may be uniformly dispersed (see FIG. 7 in Patent Document 1, etc.). In the case of a single large magnet, it is difficult to detect deformation due to tactile sensation, and there is a problem that a foreign object sensation occurs when touched.
- Patent Document 2 describes a detection apparatus including a viscoelastic magnet obtained by kneading and molding a magnet raw material and a viscoelastic material, and magnetic flux detection means for detecting a change in magnetic flux density vector due to deformation of the viscoelastic magnet.
- the magnet raw material is kneaded in the viscoelastic material, the magnet raw material is uniformly dispersed. Therefore, as described in Patent Document 1, the magnetic forces cancel out between the magnet particles. There is a problem that the phenomenon occurs, and the magnet particles near the contact surface move but the inner magnet particles are difficult to move, and the detection sensitivity deteriorates when the external force is small and the deformation is very small.
- Patent Document 3 discloses a pressure sensor including a magnetic sensor, an elastomer and a permanent magnet that are sequentially laminated and fixed on the magnetic sensor, and lead wires respectively connected to input / output terminals of the magnetic sensor. .
- the elastic material and the magnet-containing material are separated from each other, and it is necessary to “sequentially laminate and fix” them, and a lamination process is required. There is a problem that can occur.
- robots and other fields such as car seating state detection, bed and carpet surface pressure distribution, vehicle collision state detection, biological motion state detection (eg motion capture, respiratory state and muscle relaxation state biological motion detection) Etc.), it is necessary to detect the bending of the elastic body with a sensor in illegal entry into restricted access areas, foreign matter detection of sliding doors, and keyboard input devices. It is necessary to detect the bending of the elastomer hitting the skin of the doll robot when controlling the movement of the doll robot or responding to external pressure. Many proposals have been made on sensors for detecting such bending deformation and methods for manufacturing the same (Patent Documents 4 to 5, etc.).
- Patent Document 4 a polymer component containing a monomer unit having a hetero atom or a block copolymer containing a block of the polymer, a polymer component not containing an ion dissociable group, and an ionic liquid are used.
- a flexible element comprising a non-aqueous solid polymer electrolyte and at least a pair of electrodes, wherein the flexible element has a total light transmittance of 70% or more, and is caused by deformation of the flexible element.
- a transparent deformation sensor is described which is characterized by generating electric power. In order to measure the electromotive force, it is necessary to directly install an electrode on the element, and there is a problem that peeling at the interface between the element and the electrode tends to occur.
- Patent Document 5 discloses a magnetic angle sensor capable of maintaining angle detection accuracy by preventing magnetic dust from entering a magnetic gap. There is a problem that there is no flexibility because a disc-shaped solid magnet is used.
- the present invention solves the problems of the conventional sensor and its manufacturing method as described above, Provide a tactile sensor with improved sensor sensitivity by forming a magnetic filler that is not uniformly dispersed, but unevenly distributed on one side, and disperse or unevenly distribute the magnetic filler in the elastomer.
- An object of the present invention is to provide a method for manufacturing these sensors, in which an elastomer including a single layer magnetic filler that does not require lamination is formed and the manufacturing process is not complicated, so that the manufacturing cost is low and the manufacturing efficiency is high.
- the present inventors Provide a tactile sensor with improved sensor sensitivity by forming a magnetic filler that is not uniformly dispersed, but unevenly distributed on one side, and disperse or unevenly distribute the magnetic filler in the elastomer.
- thermosetting elastomer precursor solution By detecting it with multiple magnetic sensors, we provide a flexible and highly sensitive bending sensor, A magnetic filler and a thermosetting elastomer precursor solution are mixed to form a mixed solution, formed into a sheet shape, the magnetic filler is unevenly distributed in the thermosetting elastomer precursor solution, and the thermosetting elastomer precursor solution is
- the method for manufacturing a sensor which includes the step of heating and curing, and magnetizing the magnetic filler to form a magnetic elastomer, by limiting the viscosity of the liquid mixture within a specific range, the manufacturing cost is low and the manufacturing is performed. It has been found that a method for manufacturing a sensor with high efficiency and high sensor sensitivity can be provided, and the present invention has been completed.
- the present invention includes an elastomer containing a magnetic filler, A magnetic sensor for detecting a magnetic change caused by tactile deformation of the elastomer;
- the tactile sensor is characterized in that the magnetic filler is unevenly distributed in the elastomer, and the unevenness degree is 1 to 100.
- the magnetic filler is unevenly distributed on one side of the elastomer, and the unevenly distributed surface is a contact surface;
- the magnetic filler is a rare earth, Fe, Co, Ni, oxide, and has an average particle size of 0.02 to 500 ⁇ m;
- the magnetic filler is added in an amount of 1 to 450 parts by weight per 100 parts by weight of the elastomer;
- the elastomer is a polyurethane elastomer or a silicone elastomer.
- the present invention also includes an elastomer containing a magnetic filler, A plurality of magnetic sensors for detecting magnetic changes caused by bending deformation of the elastomer; It is related with the bending sensor characterized by comprising.
- the magnetic filler is unevenly distributed in the elastomer, and the unevenness is 1 to 100;
- the magnetic filler is unevenly distributed on one side of the elastomer, and a plurality of magnetic sensors are disposed on the opposite side of the uneven surface;
- the magnetic filler is a rare earth, Fe, Co, Ni, oxide, and has an average particle size of 0.02 to 500 ⁇ m;
- the magnetic filler is added in an amount of 1 to 450 parts by weight per 100 parts by weight of the elastomer;
- the elastomer is a polyurethane elastomer or a silicone elastomer; It is desirable.
- the present invention is a method for producing a sensor comprising a magnetic elastomer containing a magnetic filler and a magnetic sensor, (I) a step of mixing a magnetic filler and a thermosetting elastomer precursor solution to form a mixed solution; (Ii) forming the mixture into a sheet; (Iii) a step of unevenly distributing the magnetic filler in the thermosetting elastomer precursor solution; (Iv) heating and curing the thermosetting elastomer precursor solution to form a sheet-like elastomer, and (v) magnetizing the magnetic filler to form a magnetic elastomer,
- the mixed solution formed in the step (i) has a viscosity of 100 to 50,000 mPa ⁇ s, and the degree of uneven distribution in the thermosetting elastomer of the magnetic filler unevenly distributed in the step (iii) is 1 to 100 It is related with the manufacturing method of the sensor characterized by the above-mentioned.
- the step of unevenly distributing the magnetic filler in the step (iii) is performed by applying a magnetic field having a magnetic flux density of 1 to 3000 mT;
- the magnetic filler is unevenly distributed on one side of the elastomer, and the unevenly distributed surface is a contact surface;
- the magnetic filler is a rare earth, Fe, Co, Ni, oxide, and has an average particle size of 0.02 to 500 ⁇ m;
- the magnetic filler is added in an amount of 1 to 450 parts by weight per 100 parts by weight of the elastomer;
- the elastomer is a polyurethane elastomer or a silicone elastomer;
- the degree of uneven distribution is 2 to 90; It is desirable.
- the magnetic filler is not uniformly dispersed in the elastomer but is unevenly distributed, and the uneven distribution degree is limited to 1 to 100. Since the magnetic force does not cancel each other and there are many magnetic fillers near the contact surface, many magnetic fillers are displaced even with a small external force, so even when the external force is small and the deformation is very small, detection with a magnetic sensor is easy. become.
- the tactile sensor of the present invention since the elastomer and the magnetic filler-containing material are not separated, it is possible to manufacture inexpensively and easily without causing separation between layers.
- the magnetic filler is unevenly distributed by mixing the magnetic filler and the elastomer raw material, and then allowing to stand for a predetermined time, or if the magnetic filler is already magnetized, the magnet is placed on one side during mixing. Since uneven distribution occurs due to the attractive force of the magnet, the manufacturing process is simple and easy, and there is no complication due to unnecessary increase in operation.
- a method other than the above for example, a method of performing uneven distribution by performing a centrifugal treatment is also conceivable.
- the magnetic filler is dispersed in the elastomer, and the bending state of the elastomer is detected by a plurality of magnetic sensors, particularly three or more magnetic sensors, so that the accuracy is high. Bending can be detected.
- the magnetic filler can be unevenly distributed in the elastomer, and the uneven distribution degree is 1 to 100. Therefore, there is no phenomenon that the magnetic force cancels out between the magnetic fillers. Therefore, even when the degree of bending is small and the deformation is very small, detection by the bending sensor becomes easy.
- the magnetic filler is not uniformly dispersed in the elastomer but is unevenly distributed, so that the magnetic force does not cancel out between the magnetic fillers, and the magnetic filler is not present in the vicinity of the contact surface. Since many magnetic fillers are displaced even with a small external force, the sensitivity of the sensor increases, and even when the external force is small and the deformation is very small, detection with a magnetic sensor becomes easy.
- the elastomer and the magnetic filler-containing material are not separated, there is no need for a step of laminating each layer, there is no problem such as separation between layers, and the production cost is low. Manufacturing efficiency is increased.
- DELTA sensor output sum
- the degree of uneven distribution is a numerical value representing the degree of uneven distribution of the magnetic filler in the elastomer, which is measured by the following method. Cut out the prepared elastomer with a razor blade, observe the cross section of the sample with a digital microscope at a magnification of 100 times, and use the image analysis software ("WinROOF" manufactured by Mitani Corporation) to measure the thickness direction of the elastomer. The number of magnetic filler particles in the upper, middle and lower layers was counted. By determining the ratio between the number of particles in each layer and the number of particles in the middle layer, the magnetic filler abundance of each layer was determined.
- the degree of uneven distribution was determined by obtaining [(magnetic filler abundance ratio of upper layer) ⁇ (magnetic filler abundance ratio of lower layer)].
- the upper layer is a layer on the contact surface side in the sensor using the unevenly distributed magnetic elastomer. The higher the value of the degree of uneven distribution, the magnetic filler is unevenly distributed.
- FIG. 1 is a schematic diagram showing a cross section of a tactile sensor according to the present invention, and schematically shows a change when there is no pressure (left side in FIG. 1) and when pressure is applied (right side in FIG. 1).
- the tactile sensor of the present invention is basically composed of an elastomer 1 and a magnetic sensor 2.
- the elastomer 1 contains a large amount of the magnetic filler 3.
- the magnetic filler 3 is unevenly distributed in the upper part of the figure, and the uneven distribution degree is 1 to 100.
- a substrate 4 exists between the elastomer 1 and the magnetic sensor 2.
- the substrate 4 may be omitted, but is usually necessary to support the elastomer 1. Further, if the substrate 4 is not present, when the pressure 5 is applied to the elastomer 1, the entire elastomer 1 is bent, and the pressure 5 may not be detected accurately.
- the pressure 5 is a strong force, the change in the position of the magnetic filler 3 will be large. Conversely, if the pressure 5 is small, the change in the position of the magnetic filler 3 will be small. can do. Further, when the pressure 5 is straight upward, it can be detected by one magnetic sensor, but pressure from an oblique direction can also be detected by optimizing the number and arrangement of the magnetic sensors.
- the magnetic filler 3 is preferably unevenly distributed on one side of the elastomer 1, and the unevenly distributed surface is preferably a contact surface. In the embodiment shown in FIG. 1, the unevenly distributed surface is a contact surface. This aspect increases the displacement of the magnetic filler 3 and facilitates detection.
- FIG. 2 is a schematic diagram showing a cross section of the bending sensor of the present invention, and schematically shows a case where there is no bending (left side in FIG. 2) and a case where there is bending (right side in FIG. 2). 3 to 4 will be described in the embodiment.
- the bending sensor of the present invention is basically composed of an elastomer 1 and a magnetic sensor 2.
- the elastomer 1 contains a large amount of magnetic filler 3.
- the magnetic filler 3 is unevenly distributed upward in the figure, and the degree of uneven distribution is preferably 1 to 100.
- three magnetic sensors 2 are shown in FIG. 2, there are a plurality of magnetic sensors 2, so two or more are sufficient. When there are three or more magnetic sensors 2, the detection accuracy is improved.
- the elastomer 1 is not bent on the left side of FIG. 2, but the elastomer 1 is bent into a fan shape on the right side of FIG.
- the elastomer 1 is deformed so that the positions of the magnetic fillers 3 are greatly different. This change in the magnetic filler 3 causes a change in the magnetic field emitted from the magnetic filler 3, which is detected by the magnetic sensor 2.
- the bend is large, the change in the position of the magnetic filler 3 becomes large. Conversely, if the bend is small, the change in the position of the magnetic filler 3 becomes small, and the degree of the bend can be measured by the change in the magnetic field caused by them.
- the magnetic filler 3 is preferably unevenly distributed on one side of the elastomer 1, and the unevenly distributed surface is preferably the outer surface. In the embodiment shown in FIG. 2, the unevenly distributed surface is the outer surface. This aspect increases the displacement of the magnetic filler 3 and facilitates detection.
- the liquid mixture formed in the above step (i) is required to have a viscosity of 100 to 50,000 mPa ⁇ s, preferably 200 to 45,000 mPa ⁇ s. If the viscosity of the liquid mixture is less than 100 mPa ⁇ s, the filler concentration is lowered and the sensor sensitivity is lowered, and if it exceeds 50,000 mPa ⁇ s, the movement of the magnetic filler is hindered and the uneven distribution is lowered.
- the magnetic filler that is unevenly distributed in the step (iii) is required to have an uneven distribution in the magnetic elastomer of 1 to 100, preferably 2 to 90, more preferably 3 to 80. It is. If the degree of uneven distribution is less than 1, the magnetic filler is not very unevenly distributed in the magnetic elastomer, and as described in the prior art, magnetic force cancellation and displacement of the magnetic filler inside the elastomer are small. Detection with a magnetic sensor may be difficult. On the contrary, an uneven distribution degree of 100 is preferable because almost all of the magnetic filler is present on the contact surface of the elastomer, but in practice, it is almost 100 or less. The degree of uneven distribution of the magnetic filler in the magnetic elastomer is determined by measurement as described in [Definition of terms] above.
- the magnetic filler used in the present invention includes rare earth, iron, cobalt, nickel, and oxide, and any of these may be used. Preferably, it is a rare earth system that provides a high magnetic force, but is not limited thereto.
- the shape of the magnetic filler is not particularly limited, and may be spherical, flat, needle-like, columnar, or indefinite.
- the magnetic filler has an average particle size of 0.02 to 500 ⁇ m, preferably 0.1 to 400 ⁇ m, more preferably 0.5 to 300 ⁇ m. When the average particle size is smaller than 0.02 ⁇ m, the magnetic properties of the magnetic filler are deteriorated, and when it exceeds 500 ⁇ m, the mechanical properties of the magnetic elastomer are deteriorated (brittleness).
- the blending amount of the magnetic filler is 1 to 450 parts by mass, preferably 2 to 400 parts by mass with respect to 100 parts by mass of the elastomer.
- the amount is less than 1 part by mass, it is difficult to detect a change in the magnetic field.
- the amount exceeds 450 parts by mass, desired characteristics cannot be obtained, for example, the elastomer itself becomes brittle.
- thermosetting elastomer used in the present invention is preferably a polyurethane elastomer or a silicone elastomer.
- an active hydrogen-containing compound, a solvent, and a magnetic filler are mixed, and an isocyanate component is mixed therein to obtain a mixed solution.
- a solvent and a filler can be mixed with an isocyanate component, and an active hydrogen containing compound can be mixed here, and a liquid mixture can also be obtained.
- a solvent and a magnetic filler are added to a silicone elastomer precursor and mixed to obtain a mixed solution.
- a main agent component and a curing agent component a main component component, a solvent, and a magnetic filler are mixed, and a mixed solution is obtained by mixing the curing agent component therein.
- a solvent and a filler can be mixed with a hardening
- examples of the isocyanate component and active hydrogen-containing compound that can be used include the following.
- the isocyanate component a known compound in the field of polyurethane can be used without particular limitation.
- the isocyanate component 2,4-toluene diisocyanate, 2,6-toluene diisocyanate, 2,2′-diphenylmethane diisocyanate, 2,4′-diphenylmethane diisocyanate, 4,4′-diphenylmethane diisocyanate, 1,5-naphthalene diisocyanate, aromatic diisocyanates such as p-phenylene diisocyanate, m-phenylene diisocyanate, p-xylylene diisocyanate, m-xylylene diisocyanate, ethylene diisocyanate, 2,2,4-trimethylhexamethylene diisocyanate, 1,6-hexamethylene diisocyanate, etc.
- the isocyanate may be modified by urethane modification, allophanate modification, biuret modification, isocyanurate modification or the like.
- the isocyanate may be a prepolymer with a polyol described later.
- active hydrogen-containing compounds include those usually used in the technical field of polyurethane.
- examples include polyether polyols typified by polytetramethylene ether glycol, polyethylene glycol, etc., polyester polyols typified by polybutylene adipate, polycaprolactone polyols, reactants of polyester glycols such as polycaprolactone and alkylene carbonate, etc.
- Polyester polycarbonate polyol Polyester polyol obtained by reacting ethylene carbonate with polyhydric alcohol and then reacting the resulting reaction mixture with organic dicarboxylic acid, Polycarbonate polyol obtained by transesterification of polyhydroxyl compound and aryl carbonate Etc. These may be used alone or in combination of two or more.
- Low molecular weight polyol component such as Ming, ethylenediamine, toly
- thermosetting elastomer is a silicone elastomer
- it is not particularly limited as long as it is a liquid type, but a two-part silicone elastomer is preferable from the viewpoint of workability in the uneven distribution process described later.
- a silicone elastomer that can be used in the present invention two liquids commercially available from Toray Dow Corning Corporation under the trade names “DY35-1106”, “CY52-276”, “EG-3000”, and “EG-3100” Liquid silicone rubber from Shin-Etsu Chemical Co., Ltd.
- the mixed liquid formed in the above step (i) may contain a solvent for viscosity adjustment.
- the solvent is not particularly limited, but toluene, xylene, tetrahydrofuran, 1,4-dioxane, acetone, methyl ethyl ketone, ethyl acetate, butyl acetate, N, N-dimethylformamide, N, N-dimethylacetamide, n-methyl- Examples include 2-pyrrolidone.
- the blending amount of the solvent in the mixed solution is 15 to 200 parts by mass, preferably 20 to 190 parts by mass with respect to 100 parts by mass of the elastomer.
- the liquid mixture may have a high viscosity and handling properties may deteriorate. If the amount exceeds 200 parts by mass, a large amount of energy is required to volatilize the solvent from the cured elastomer. Become.
- the liquid mixture formed in the above step (i) may contain a plasticizer for viscosity adjustment.
- the plasticizer is not particularly limited, but dioctyl phthalate, diisononyl phthalate, diisodecyl phthalate, dibutyl phthalate, dioctyl adipate, diisononyl adipate, trioctyl trimellitic acid, tricresyl phosphate, tributyl acetylcitrate, epoxy And soybean oil and epoxidized linseed oil.
- the blending amount of the plasticizer in the mixed solution is 15 to 200 parts by mass, preferably 20 to 190 parts by mass with respect to 100 parts by mass of the elastomer. When the blending amount of the plasticizer is less than 15 parts by mass, the liquid mixture becomes highly viscous and handling properties may be deteriorated, and when it exceeds 200 parts by mass, the plasticizer may bleed from the elastomer.
- the method of mixing in the step (i) includes a method using a general mixer capable of mixing a liquid resin and a filler, and examples thereof include a homogenizer, a dissolver, and a biaxial planetary mixer.
- the method of forming the mixed solution into a sheet is not particularly limited.
- the batch forming method in which the mixed solution is injected into a mold subjected to a release treatment and cured.
- a continuous molding method in which the mixed solution is continuously supplied and cured on the release-treated face material can be used.
- the step (iii) includes a step of unevenly distributing the magnetic filler in the thermosetting elastomer precursor solution.
- the liquid mixture to which the magnetic filler is added is formed into a sheet shape, and then allowed to stand at room temperature or a predetermined temperature, for example, ⁇ 10 to 50 ° C. for 0.1 to 180 minutes.
- a predetermined temperature for example, ⁇ 10 to 50 ° C. for 0.1 to 180 minutes.
- the magnetic filler settles under its own weight and the magnetic filler is unevenly distributed on the lower surface.
- uneven distribution may be performed using a physical force such as centrifugal force or magnetic force.
- a method of using the magnetic force there is a method of applying a magnetic field having a magnetic flux density of 1 to 3000 mT.
- the magnetic flux density is less than 1 mT, the magnetic attractive force acting on the magnetic filler is weak and the magnetic filler is difficult to move and the degree of uneven distribution decreases. .
- a magnetic force exceeding 3000 mT can be applied, but even if a magnetic field higher than this is applied, the uneven distribution of the magnetic filler is not improved.
- the curing conditions are not particularly limited, and preferably from 60 to 200 ° C. for 10 minutes to 24 hours. If the mechanical strength deteriorates and the curing temperature is too low, curing failure of the elastomer will occur. Further, if the curing time is too long, the elastomer is thermally deteriorated and mechanical strength is deteriorated. If the curing time is too short, the elastomer is poorly cured.
- the method for magnetizing the magnetic filler is not particularly limited, and a commonly used magnetizing device such as “ES-10100-15SH” manufactured by Electronic Magnetic Industry Co., Ltd. It can be performed using “TM-YS4E” manufactured by Tamagawa Seisakusho. Usually, a magnetic field having a magnetic flux density of 1 to 3T is applied.
- the magnetic filler may be added to the elastomer precursor solution after magnetization, but the magnet orientation will be aligned as shown in FIGS. 1 and 2, making it easier to detect the magnetic force, From the viewpoint of handling workability of the magnetic filler, it is preferable that the magnetic filler is magnetized after being added to the elastomer precursor solution.
- the tactile sensor of the present invention is composed of the magnetic elastomer obtained by the steps (i) to (v) of the manufacturing method of the present invention and a magnetic sensor.
- a bending sensor comprising the magnetic elastomer and a plurality of the magnetic sensors is also within the scope of the present invention.
- the magnetic sensor 2 may be any sensor that is normally used for detecting a change in a magnetic field, and may be a magnetoresistive element (for example, a semiconductor compound magnetoresistive element, an anisotropic magnetoresistive element (AMR), a giant magnetoresistive element (GMR)). ) Or tunnel magnetoresistive element (TMR)), Hall element, inductor, MI element, fluxgate sensor, and the like. From the viewpoint of sensitivity, a Hall element is preferably used.
- a Hall element is preferably used.
- neodymium-based magnetic substance powder average particle size 133 ⁇ m
- 120 parts by mass of toluene were premixed and degassed under reduced pressure to obtain a premixed liquid.
- 59 parts by mass of the prepolymer was degassed under reduced pressure while heating to 80 ° C.
- the premixed solution and the prepolymer were mixed and defoamed with a hybrid mixer (“HM-500” manufactured by Keyence Corporation) to obtain a mixed solution.
- HM-500 manufactured by Keyence Corporation
- This mixed solution was poured into a mold subjected to a release treatment, and a polyethylene terephthalate film subjected to a release treatment was placed thereon, and the thickness was adjusted to 1 mm with a nip roll. Thereafter, as a magnetic filler uneven distribution treatment, the magnetic filler was allowed to settle for 120 minutes at room temperature. Thereafter, the mold was placed in an oven at 80 ° C. and cured for 1 hour to obtain a urethane elastomer. The obtained elastomer sheet was magnetized at 1.3 T with a magnetizing device (manufactured by Electronic Magnetic Industry Co., Ltd.) to obtain a urethane magnetic elastomer.
- the uneven distribution was measured according to the following uneven distribution evaluation. Further, using a Hall element as the magnetic sensor, the characteristics of the tactile sensor were performed according to the following tactile sensor characteristics evaluation. The results are shown in Table 1. Regarding the uneven distribution degree, the uneven distribution processing time is also described in Table 1.
- Example 2 A urethane elastomer was obtained in the same manner as in Example 1 except that samarium-based magnetic powder (SmFeN alloy fine powder manufactured by Sumitomo Metal Mining Co., Ltd., average particle size 2.5 ⁇ m) was used as the magnetic filler.
- samarium-based magnetic powder SmFeN alloy fine powder manufactured by Sumitomo Metal Mining Co., Ltd., average particle size 2.5 ⁇ m
- Example 3 50 parts by mass of a two-component liquid silicone rubber main component (“DY-1106A” manufactured by Toray Dow Corning Co., Ltd.) as a silicone precursor, 100 parts by mass of magnetic filler, and 60 parts by mass of toluene are stirred in a reaction vessel and allowed to come to room temperature. For 60 minutes under reduced pressure to obtain a premixed solution.
- a two-component liquid silicone rubber curing agent (“DY-1106B” manufactured by Toray Dow Corning)
- the mixed liquid was obtained by mixing and defoaming with the pre-mixed liquid and the hybrid mixer.
- This mixed solution was dropped onto a mold subjected to a release treatment, and a polyethylene terephthalate film subjected to a release treatment was placed thereon, and the thickness was adjusted to 1 mm with a nip roll. Thereafter, the magnetic filler was allowed to settle for 120 minutes at room temperature as a magnetic filler uneven distribution treatment. Thereafter, the mold was placed in an oven at 120 ° C., cured for 15 minutes, and further cured at 200 ° C. for 4 hours to obtain a silicone elastomer.
- the silicone elastomer sheet obtained was magnetized at 1.3 T with a magnetizing device (manufactured by Electronic Magnetic Industry Co., Ltd.) to obtain a silicone elastomer.
- Example 4 Using the same raw material as in Example 3, 60 mass parts of toluene was used, and a magnetic elastomer uneven distribution treatment was allowed to stand for 60 minutes at room temperature, thereby obtaining a silicone elastomer having a changed magnetic filler uneven distribution degree.
- Example 5 A silicone elastomer was obtained in the same manner as in Example 3 except that the amount of the magnetic filler was changed to 5 parts by mass.
- Example 6 A silicone elastomer was obtained in the same manner as in Example 3 except that the amount of the magnetic filler was changed to 350 parts by mass.
- Example 7 In the same manner as in Comparative Example 2, a silicone elastomer was obtained. Using the silicone elastomer, the degree of uneven distribution was measured according to the following uneven degree evaluation. In addition, using a Hall element as a magnetic sensor, the characteristics of the bending sensor were evaluated according to the following bending sensor characteristics evaluation. The results are shown in Table 2. Regarding the uneven distribution degree, the uneven distribution processing time is also described in Table 2. In Example 7, since the dispersion is uniformly performed by kneading, the uneven distribution process is not performed, and the uneven distribution process time is zero.
- Example 8 In the same manner as in Example 1, a polyurene elastomer was obtained. Using the obtained urethane elastomer, the degree of uneven distribution and the evaluation of bending sensor characteristics were measured in the same manner as in Example 7. The results are shown in Table 2. The sensor output sum obtained from the measured values of the magnetic sensors A, B and C was plotted in FIG.
- Example 9 In the same manner as in Example 2, a urethane elastomer was obtained. Using the obtained urethane elastomer, the degree of uneven distribution and the evaluation of bending sensor characteristics were measured in the same manner as in Example 7. The results are shown in Table 2. The sensor output sum obtained from the measured values of the magnetic sensors A, B and C was plotted in FIG.
- Example 10 In the same manner as in Example 3, a silicone elastomer was obtained. Using the obtained silicone elastomer, the degree of uneven distribution and evaluation of bending sensor characteristics were measured in the same manner as in Example 7. The results are shown in Table 2. The sensor output sum obtained from the measured values of the magnetic sensors A, B and C was plotted in FIG.
- Example 11 In the same manner as in Example 4, a silicone elastomer was obtained. Using the obtained silicone elastomer, the degree of uneven distribution and evaluation of bending sensor characteristics were measured in the same manner as in Example 7. The results are shown in Table 2. The sensor output sum obtained from the measured values of the magnetic sensors A, B and C was plotted in FIG.
- Example 12 The same treatment as in Example 5 was performed to obtain a silicone elastomer. Using the obtained silicone elastomer, the degree of uneven distribution and evaluation of bending sensor characteristics were measured in the same manner as in Example 7. The results are shown in Table 2. The sensor output sum obtained from the measured values of the magnetic sensors A, B and C was plotted in FIG.
- Example 13 In the same manner as in Example 6, a silicone elastomer was obtained. Using the obtained silicone elastomer, the degree of uneven distribution and evaluation of bending sensor characteristics were measured in the same manner as in Example 7. The results are shown in Table 2. The sensor output sum obtained from the measured values of the magnetic sensors A, B and C was plotted in FIG.
- Example 14 A silicone elastomer was obtained in the same manner as in Comparative Example 1. Using the obtained silicone elastomer, the degree of uneven distribution and evaluation of bending sensor characteristics were measured in the same manner as in Example 7. The results are shown in Table 2. The sensor output sum obtained from the measured values of the magnetic sensors A, B and C was plotted in FIG.
- Example 15 (Tactile sensor and bending sensor) [Example 15] In the same manner as in Example 1, a urethane magnetic elastomer was obtained. The viscosity of the mixture containing the magnetic elastomer shown in Table 3 below was 1000 mPa ⁇ s.
- Example 16 In the same manner as in Example 3, a silicone magnetic elastomer was obtained.
- the viscosity of the mixture containing the magnetic elastomer shown in Table 3 below was 1200 mPa ⁇ s.
- Example 17 Using the same raw materials as in Example 16, the total amount of toluene was changed from 120 parts by mass to 120 parts by mass to 60 parts by mass in total, and the mixture viscosity was adjusted to 42,000 mPa ⁇ s.
- Example 18 Using the same raw material as in Example 16, the magnetic filler was unevenly distributed at room temperature in a magnetic field of 5 mT (using a neodymium magnet) for 120 minutes.
- Example 15 For the obtained magnetic elastomer, the degree of uneven distribution of the magnetic filler in the magnetic elastomer and the sensor sensitivity were measured in the same manner as in Example 15. The result is shown in Table 4 with the viscosity of the liquid mixture of a magnetic filler and a thermosetting elastomer precursor liquid. Each test method was as follows.
- Tactile sensor characteristic evaluation Hall element Linear Hall IC with a package of Hall element and amplifier circuit that is commercially available from Asahi Kasei Electronics Co., Ltd. under the product name “EQ-430L”
- EQ-430L Magnetic elastomer
- the magnetic elastomer is installed so that the surface on which the magnetic filler is unevenly distributed becomes a contact surface to which pressure is applied.
- the pressure of 30 kPa is applied using a compression tester (Shimadzu Corporation autograph)
- the output voltage of the Hall element is read, and the value of the output voltage change rate ( ⁇ V out ) is used as the sensor sensitivity to measure the tactile sensor characteristics. It was evaluated.
- Tactile sensor As is apparent from Table 1, when the degree of uneven distribution is high as in Examples 1 to 6, the sensor sensitivity is high. On the other hand, as in Comparative Examples 1 and 2, it can be seen that when the uneven distribution is 1 or less, the sensor sensitivity is deteriorated.
- the tactile sensor and the bending sensor obtained by the production methods of Examples 15 to 18 of the present invention were compared with the tactile sensor and the bending sensor of Comparative Examples 4 to 5, and It can be seen that the degree of uneven distribution in the magnetic elastomer is very large and the sensor sensitivity is very high.
- the example 18 in which the magnetic filler is unevenly distributed using magnetic force is particularly used in the magnetic elastomer of the magnetic filler. It can be seen that the degree of uneven distribution is very large and the sensor sensitivity is very high.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Thermal Sciences (AREA)
- Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Description
磁性フィラーが均一に分散したものではなく、一方の面側に偏在しているものを形成することによって、センサー感度が向上した触覚センサーを提供し、エラストマー中に磁性フィラーを分散または偏在させて、それを複数の磁気センサーで検出することにより、柔軟で高感度の曲げセンサーを提供し、
積層を必要としない単層の磁性フィラーを含むエラストマーを形成して、製造工程が複雑化しないため製造コストが低く、製造効率が高い、それらのセンサーの製造方法を提供することを目的とする。
磁性フィラーが均一に分散したものではなく、一方の面側に偏在しているものを形成することによって、センサー感度が向上した触覚センサーを提供し、エラストマー中に磁性フィラーを分散または偏在させて、それを複数の磁気センサーで検出することにより、柔軟で高感度の曲げセンサーを提供し、
磁性フィラーと熱硬化性エラストマー前駆液を混合して混合液を形成し、シート状に成形して、上記磁性フィラーを上記熱硬化性エラストマー前駆液中で偏在させ、上記熱硬化性エラストマー前駆液を加熱して硬化し、上記磁性フィラーを着磁して磁性エラストマーを形成する工程を含む、センサーの製造方法において、上記混合液の粘度を特定範囲内に限定することによって、製造コストが低く、製造効率が高く、センサー感度が高い、センサーの製造方法を提供し得ることを見出し、本発明を完成するに至った。
前記エラストマーの触覚による変形に起因する磁気変化を検出する磁気センサーと、
から構成され、前記磁性フィラーがエラストマー中で偏在しており、その偏在度が1~100であることを特徴とする触覚センサー、に関する。
上記磁性フィラーがエラストマーの片面側に偏在していて、その偏在面を接触面とし;
上記磁性フィラーが希土類系、Fe系、Co系、Ni系、酸化物系であり、平均粒径が0.02~500μmであり;
上記磁性フィラーがエラストマー100質量部に対して1~450質量部の量で添加され;
上記エラストマーがポリウレタンエラストマーまたはシリコーンエラストマーである;ことが望ましい。
前記エラストマーが曲げ変形することで生じた磁気変化を検出する複数個の磁気センサーと、
から構成されることを特徴とする曲げセンサーに関する。
上記磁性フィラーがエラストマー中で偏在しており、その偏在度が1~100であり;
上記磁性フィラーがエラストマーの片面側に偏在していて、その偏在面と反対側に複数の磁気センサーを配置し;
上記磁性フィラーが希土類系、Fe系、Co系、Ni系、酸化物系であり、平均粒径が0.02~500μmであり;
上記磁性フィラーがエラストマー100質量部に対して1~450質量部の量で添加され;
上記エラストマーはポリウレタンエラストマーまたはシリコーンエラストマーである;
ことが望ましい。
(i)磁性フィラーと、熱硬化性エラストマー前駆液とを混合して混合液を形成する工程、
(ii)該混合液をシート状に成形する工程、
(iii)該磁性フィラーを、該熱硬化性エラストマー前駆液中で偏在させる工程、
(iv)該熱硬化性エラストマー前駆液を加熱して硬化し、シート状エラストマーを形成する工程、および
(v)該磁性フィラーを着磁して磁性エラストマーを形成する工程
を含み、
該工程(i)で形成した混合液が粘度100~50,000mPa・sを有し、該工程(iii)で偏在させた磁性フィラーの熱硬化性エラストマー中での偏在度が1~100であることを特徴とする、センサーの製造方法に関するものである。
上記工程(iii)の磁性フィラーを偏在させる工程が、磁束密度1~3000mTの磁場を印加することによって行われ;
上記磁性フィラーがエラストマーの片面側に偏在していて、その偏在面を接触面とし;
上記磁性フィラーが希土類系、Fe系、Co系、Ni系、酸化物系であり、平均粒径が0.02~500μmであり;
上記磁性フィラーがエラストマー100質量部に対して1~450質量部の量で添加され;
上記エラストマーがポリウレタンエラストマーまたはシリコーンエラストマーであり;
上記偏在度が2~90である;
ことが望ましい。
本発明の触覚センサーについて、図1を参照して説明する。図1は、本発明の触覚センサーの断面を表す模式図であって、圧力が無い場合(図1左側)と圧力が加わった場合(図1右側)の変化を模式的に表している。
本発明の曲げセンサーを、図2を参照して説明する。
図2は、本発明の曲げセンサーの断面を表す模式図であって、曲げが無い場合(図2左側)と曲げがある場合(図2右側)を模式的に表している。尚、図3~4については、実施例中で説明する。
磁性フィラーを含む磁性エラストマーと、磁気センサーとから構成される、本発明の触覚センサーおよび曲げセンサーを含むセンサーの製造方法は、
(i)磁性フィラーと、熱硬化性エラストマー前駆液とを混合して混合液を形成する工程、
(ii)該混合液をシート状に成形する工程、
(iii)該磁性フィラーを、該熱硬化性エラストマー前駆液中で偏在させる工程、
(iv)該熱硬化性エラストマー前駆液を加熱して硬化し、シート状エラストマーを形成する工程、および
(v)該磁性フィラーを着磁して磁性エラストマーを形成する工程
を含むことを要件とする。
[実施例1]
反応容器に、旭硝子株式会社から商品名「プレミノール7001」で市販されているポリプロピレングリコール(数平均分子量6000)40質量部、および旭硝子株式会社から商品名「エクセノール3020」で市販されているポリプロピレングリコール(数平均分子量3000)60質量部を入れ、撹拌しながら減圧脱水を1時間行った。その後、反応容器内を窒素置換した。そして、反応容器にトリレンジイソシアネート(三井化学株式会社から商品名「コスモネートT-80」で市販のTDI-80、2,4‐体/2,6‐体=80/20の混合物)10質量部を添加して、反応容器内の温度を80℃に保持しながら5時間反応させてイソシアネート末端プレポリマーを合成した。
磁性フィラーとしてサマリウム系磁性体粉末(住友金属鉱山社製SmFeN合金微粉、平均粒径2.5μm)を用いる以外は実施例1と同様にウレタンエラストマーを得た。
反応容器にシリコーン前駆体として2液性液状シリコーンゴムの主剤(「DY-1106A」:東レ・ダウコーニング社製)50質量部、磁性フィラー100質量部、トルエン60質量部を入れ撹拌し、室温にて60分間減圧脱泡して、予備混合液を得た。別のシリコーン前駆体として2液性液状シリコーンゴムの硬化剤(「DY-1106B」:東レ・ダウコーニング社製)50質量部にトルエン60質量部を入れ撹拌し60分間減圧脱泡を行い、前記予備混合液とハイブリッドミキサーにて混合および脱泡して、混合液を得た。この混合液を離型処理したモールド上に滴下し、その上に離型処理したポリエチレンテレフタレートフィルムを被せ、ニップロールにて厚みを1mmに調整した。その後、磁性フィラー偏在処理として常温にて120分間静置する事で磁性フィラーを沈降させた。その後、モールドを120℃のオーブンに入れ、15分間硬化を行い、さらに200℃で4時間硬化を行うことでシリコーンエラストマーを得た。
実施例3と同様の原料を用いて、トルエン60質量部とし、磁性フィラー偏在処理として常温60分間静置する事で、磁性フィラー偏在度を変更したシリコーンエラストマーを得た。
実施例3と同様の原料を用いて、磁性フィラー偏在処理としての静置は実施せず、磁性フィラー偏在度を低下させた。希釈剤は混合性を向上するために配合した。
ミラブルタイプ(熱加硫型)シリコーンゴム「DY32-1000U」(東レ・ダウコーニング社製)100質量部、架橋剤「RC-4 50P FD」(東レ・ダウコーニング社製2,5-ビス(t-ブチルパーオキシ)-2,5-ジメチルヘキサン)0.8質量部、磁性フィラー100.8質量部をラボプラストミル(東洋精機製作所社製「4C150-01」)にて混練し、磁性フィラーを均一分散させた。
磁性フィラーの量を5質量部に変更する以外は実施例3と同様に処理して、シリコーンエラストマーを得た。
磁性フィラーの量を350質量部に変更する以外は実施例3と同様に処理して、シリコーンエラストマーを得た。
[実施例7]
比較例2と同様にして、シリコーンエラストマーを得た。上記シリコーンエラストマーを用いて、偏在度を下記の偏在度評価にしたがって測定した。また、磁気センサーとしてホール素子を用いて、曲げセンサーの特性を下記の曲げセンサー特性評価に従って行った。結果を表2に示す。偏在度については、偏在処理時間も表2に記載する。尚、実施例7では混練による均一分散をしている為、偏在処理をしておらず、偏在処理時間は0である。
実施例1と同様にして、ポリウレンエラストマーを得た。得られたウレタンエラストマーを用いて、実施例7と同様に、偏在度および曲げセンサー特性評価を測定した。結果を表2に示す。また、各磁気センサーA、BおよびCの測定値から求めたセンサー出力和を図4にプロットした。
実施例2と同様にして、ウレタンエラストマーを得た。得られたウレタンエラストマーを用いて、実施例7と同様に、偏在度および曲げセンサー特性評価を測定した。結果を表2に示す。また、各磁気センサーA、BおよびCの測定値から求めたセンサー出力和を図4にプロットした。
実施例3と同様にして、シリコーンエラストマーを得た。得られたシリコーンエラストマーを用いて、実施例7と同様に、偏在度および曲げセンサー特性評価を測定した。結果を表2に示す。また、各磁気センサーA、BおよびCの測定値から求めたセンサー出力和を図4にプロットした。
実施例4と同様にして、シリコーンエラストマーを得た。得られたシリコーンエラストマーを用いて、実施例7と同様に、偏在度および曲げセンサー特性評価を測定した。結果を表2に示す。また、各磁気センサーA、BおよびCの測定値から求めたセンサー出力和を図4にプロットした。
実施例5と同様に処理して、シリコーンエラストマーを得た。得られたシリコーンエラストマーを用いて、実施例7と同様に、偏在度および曲げセンサー特性評価を測定した。結果を表2に示す。また、各磁気センサーA、BおよびCの測定値から求めたセンサー出力和を図4にプロットした。
実施例6と同様にして、シリコーンエラストマーを得た。得られたシリコーンエラストマーを用いて、実施例7と同様に、偏在度および曲げセンサー特性評価を測定した。結果を表2に示す。また、各磁気センサーA、BおよびCの測定値から求めたセンサー出力和を図4にプロットした。
比較例1と同様にして、シリコーンエラストマーを得た。得られたシリコーンエラストマーを用いて、実施例7と同様に、偏在度および曲げセンサー特性評価を測定した。結果を表2に示す。また、各磁気センサーA、BおよびCの測定値から求めたセンサー出力和を図4にプロットした。
比較例2と同様にして、シリコーンエラストマーを得た。得られたシリコーンエラストマーを用いて、曲げセンサー特性評価を行った。ここで、図3の中の10(磁気センサーA)のみに磁気センサーを設置し、11(磁気センサーB)と12(磁気センサーC)には磁気センサーを設置しなかった。
[実施例15]
実施例1と同様にして、ウレタン磁性エラストマーを得た。尚、以下の表3に示す磁性エラストマー配合の混合物の粘度は1000mPa・sであった。
実施例3と同様にして、シリコーン磁性エラストマーを得た。尚、以下の表3に示す磁性エラストマー配合の混合物の粘度は1200mPa・sであった。
実施例16と同様の原料を用いて、トルエンを各60質量部の合計120質量部から各30質量部の合計60質量部とし、混合液粘度を42,000mPa・sに調整した。
実施例16と同様の原料を用いて、磁性フィラー偏在処理として、常温にて5mTの磁場中(ネオジム磁石使用)で120分間処理した。
実施例16と同様の原料を用いて、トルエンを各5質量部の合計10質量部とし、混合液粘度を60,000mPa・sに調整した。
比較例2と同様にして、シリコーン磁性エラストマーシートを得た。
(注2)旭硝子株式会社から商品名「プレミノール7001」で市販されているポリプロピレングリコール(数平均分子量6000)
(注3)旭硝子株式会社から商品名「エクセノール1020」で市販されているポリプロピレングリコール(数平均分子量1000)
(注4)東栄化工株式会社製のオクチル酸鉛
(注5)東レ・ダウコーニング株式会社から商品名「DY35-1106」で市販されている2液性液状シリコーンゴムの主剤
(注6)東レ・ダウコーニング株式会社から商品名「DY35-1106」で市販されている2液性液状シリコーンゴムの硬化剤
(注7)東レ・ダウコーニング株式会社から商品名「DY32-1000U」で市販されているミラブルタイプ(熱加硫型)シリコーンゴム
(注8)東レ・ダウコーニング株式会社から商品名「RC-4 50P FD」で市販されている2,5-ビス(t-ブチルパーオキシ)-2,5-ジメチルヘキサン(架橋剤)
(注9)愛知製鋼株式会社から商品名「MF-15P」で市販されている平均粒径133μmのネオジム系磁性体粉末(磁性フィラー)
(1)粘度測定
JIS K-7117-1に準拠して測定した。
作製した磁性エラストマーをカミソリ刃で切り出し、サンプル断面をデジタルマイクロスコープにて100倍で観察した。得られた画像を、画像解析ソフト(三谷商事株式会社製「WinROOF」)を用いて、磁性エラストマーの厚み方向に3等分し上段層、中段層、下段層の磁性フィラーの粒子数をカウントした。各層の粒子数と、中段層の粒子数との比率を求めることで、各層の磁性フィラー存在率を求めた。さらに、[(上段層の磁性フィラー存在率)-(下段層の磁性フィラー存在率)]を求めることにより偏在度とした。ここで、上段層とは、図1の触覚センサーにおける接触面側の層であり、図2の曲げセンサーにおける上面側の層である。
基板に磁気センサーとしてホール素子(旭化成エレクトロニクス株式会社から商品名「EQ-430L」で市販のホール素子と増幅回路を1パッケージ化したリニアホールIC)を設置し、基板の磁気センサーと反対の面に磁性エラストマーを、図1のように設置する。このとき、前記磁性エラストマーは磁性フィラーが偏在している面を、圧力を印加される接触面になるように設置する。圧縮試験機(株式会社島津製作所製オートグラフ)を用いて圧力30kPaを印加した時の、ホール素子の出力電圧を読み取り、出力電圧変化率(ΔVout)の値をセンサー感度として、触覚センサー特性の評価とした。
基板に磁気センサーとしてホール素子(旭化成エレクトロニクス社製EQ-430L)を図3のように3個エラストマー上に設置する。図3において、10が磁気センサーAで、11が磁気センサーBで、12が磁気センサーCであり、エラストマー13の端部14を矢印15の方向に上げていき、矢印の各角度16で磁気センサーの出力電圧を読み取ることで曲げセンサーの特性を得た。また、表1には、センサー感度の評価として、曲げ角度90°の時の各ホール素子の出力変化率の値の和を出力和(ΔVout)として指標としたものを記載した。この90°の時のセンサーの出力和の値が高いほどセンサー感度が良好であると考えられる。磁気センサーの各角度での出力和をグラフ化して図4に表した。
(1)触覚センサー
表1から明らかであるが、偏在度が実施例1~6のように高い場合、センサー感度も高いことが解る。一方、比較例1および2のように、偏在度が1以下の場合にはセンサー感度が悪くなることが解る。
表2から明らかであるが、実施例7~14のように磁気センサーが3個設置してある時の出力和が高く曲げセンサー特性は良好である。さらに、偏在度が高い場合、曲げセンサー特性は良好となる。一方、比較例3のように、磁気センサーを1個のみ設置した場合には曲げセンサー特性は悪化することが解る。
2 … 磁気センサー
3 … 磁性フィラー
4 … 基板
5 … 圧力
10 … 磁気センサーA
11 … 磁気センサーB
12 … 磁気センサーC
13 … エラストマー
14 … エラストマーの端部
15 … エラストマーの端部を上げる方向
16 … エラストマーの端部を上げる角度
Claims (17)
- 磁性フィラーを含むエラストマーと、
前記エラストマーの触覚による変形に起因する磁気変化を検出する磁気センサーと、
から構成され、前記磁性フィラーがエラストマー中で偏在しており、その偏在度が1~100であることを特徴とする触覚センサー。 - 前記磁性フィラーがエラストマーの片面側に偏在していて、その偏在面を接触面とする請求項1記載の触覚センサー。
- 前記磁性フィラーが希土類系、Fe系、Co系、Ni系、酸化物系であり、平均粒径が0.02~500μmである請求項1または2に記載の触覚センサー。
- 前記磁性フィラーがエラストマー100質量部に対して1~450質量部の量で添加される請求項1~3のいずれか1項に記載の触覚センサー。
- 前記エラストマーがポリウレタンエラストマーまたはシリコーンエラストマーである請求項1~4のいずれか1項に記載の触覚センサー。
- 磁性フィラーを含むエラストマーと、
前記エラストマーが曲げ変形することで生じた磁気変化を検出する複数個の磁気センサーと、
から構成されることを特徴とする曲げセンサー。 - 前記磁性フィラーがエラストマー中で偏在しており、その偏在度が1~100である請求項6記載の曲げセンサー。
- 前記磁性フィラーがエラストマーの片面側に偏在していて、その偏在面と反対側に複数の磁気センサーを配置する請求項7記載の曲げセンサー。
- 前記磁性フィラーが希土類系、Fe系、Co系、Ni系、酸化物系であり、平均粒径が0.02~500μmである請求項8記載の曲げセンサー。
- 前記磁性フィラーがエラストマー100質量部に対して1~450質量部の量で添加される請求項6~9のいずれか1項に記載の曲げセンサー。
- 前記エラストマーがポリウレタンエラストマーまたはシリコーンエラストマーである請求項6~10のいずれか1項に記載の曲げセンサー。
- 磁性フィラーを含む磁性エラストマーと、磁気センサーとから構成される、センサーの製造方法であって、
(i)磁性フィラーと、熱硬化性エラストマー前駆液とを混合して混合液を形成する工程、
(ii)該混合液をシート状に成形する工程、
(iii)該磁性フィラーを、該熱硬化性エラストマー前駆液中で偏在させる工程、
(iv)該熱硬化性エラストマー前駆液を加熱して硬化し、シート状エラストマーを形成する工程、および
(v)該磁性フィラーを着磁して磁性エラストマーを形成する工程
を含み、
該工程(i)で形成した混合液が粘度100~50,000mPa・sを有し、該工程(iii)で偏在させた磁性フィラーの磁性エラストマー中での偏在度が1~100であることを特徴とする、センサーの製造方法。 - 前記工程(iii)の磁性フィラーを偏在させる工程が、磁束密度1~3000mTの磁場を印加することによって行われる請求項12記載の製造方法。
- 前記磁性フィラーが片面側に偏在していて、その偏在面と反対側に磁気センサーを配置する請求項12または13に記載の製造方法。
- 前記磁性フィラーが希土類系、Fe系、Co系、Ni系、酸化物系であり、平均粒径が0.02~500μmである請求項12~14のいずれか1項に記載の製造方法。
- 前記磁性フィラーがエラストマー100質量部に対して1~450質量部の量で添加される請求項12~15のいずれか1項に記載の製造方法。
- 前記エラストマーがポリウレタンエラストマーまたはシリコーンエラストマーである請求項12~16のいずれか1項に記載の製造方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020157009756A KR101650677B1 (ko) | 2012-10-19 | 2013-10-16 | 센서 및 그의 제조 방법 |
US14/433,215 US9804040B2 (en) | 2012-10-19 | 2013-10-16 | Sensor and a method of making the same |
EP13846523.2A EP2910917B1 (en) | 2012-10-19 | 2013-10-16 | Sensor and manufacturing method for same |
CN201380054470.XA CN104736982B (zh) | 2012-10-19 | 2013-10-16 | 传感器及其制造方法 |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012232009 | 2012-10-19 | ||
JP2012-232006 | 2012-10-19 | ||
JP2012-232009 | 2012-10-19 | ||
JP2012-232012 | 2012-10-19 | ||
JP2012232006 | 2012-10-19 | ||
JP2012232012 | 2012-10-19 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014061684A1 true WO2014061684A1 (ja) | 2014-04-24 |
Family
ID=50488245
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/078020 WO2014061684A1 (ja) | 2012-10-19 | 2013-10-16 | センサーおよびその製造方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US9804040B2 (ja) |
EP (1) | EP2910917B1 (ja) |
KR (1) | KR101650677B1 (ja) |
CN (1) | CN104736982B (ja) |
WO (1) | WO2014061684A1 (ja) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015151332A1 (ja) * | 2014-03-31 | 2015-10-08 | 東洋ゴム工業株式会社 | 密閉型二次電池用変形検知センサ |
WO2016002454A1 (ja) * | 2014-06-30 | 2016-01-07 | 東洋ゴム工業株式会社 | 密閉型二次電池の変形検出センサ、密閉型二次電池、及び、密閉型二次電池の変形検出方法 |
WO2016163179A1 (ja) * | 2015-04-09 | 2016-10-13 | 東洋ゴム工業株式会社 | 変形検出センサおよびその製造方法 |
KR20170009995A (ko) * | 2014-07-10 | 2017-01-25 | 도요 고무 고교 가부시키가이샤 | 밀폐형 2차 전지의 열화 진단 방법 및 열화 진단 시스템 |
CN106463795A (zh) * | 2014-06-27 | 2017-02-22 | 东洋橡胶工业株式会社 | 密闭型二次电池的变形检测传感器、密闭型二次电池、及密闭型二次电池的变形检测方法 |
CN106463796A (zh) * | 2014-06-27 | 2017-02-22 | 东洋橡胶工业株式会社 | 密闭型二次电池的监视传感器、密闭型二次电池、及密闭型二次电池的监视方法 |
CN106716707A (zh) * | 2014-11-25 | 2017-05-24 | 东洋橡胶工业株式会社 | 密闭型二次电池的变形检测传感器 |
KR20170107506A (ko) * | 2015-02-26 | 2017-09-25 | 도요 고무 고교 가부시키가이샤 | 밀폐형 2차 전지의 열화 진단 방법 및 열화 진단 시스템 |
EP3128600A4 (en) * | 2014-03-31 | 2017-10-11 | Toyo Tire & Rubber Co., Ltd. | Deformation-detecting sensor for sealed secondary battery |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015202821A (ja) * | 2014-04-15 | 2015-11-16 | 東洋ゴム工業株式会社 | クッションパッドの変形を検出するシステムおよびその製造方法 |
JP6200880B2 (ja) | 2014-07-08 | 2017-09-20 | 東洋ゴム工業株式会社 | 密閉型二次電池の変形検出方法、及び、密閉型二次電池 |
KR101650630B1 (ko) * | 2014-11-13 | 2016-08-25 | 순천대학교 산학협력단 | 각도 및 휨 검출 센서 제조방법 및 그 센서 |
JP6356583B2 (ja) * | 2014-11-26 | 2018-07-11 | 東洋ゴム工業株式会社 | 密閉型二次電池の監視センサ、密閉型二次電池、及び、密閉型二次電池の監視方法 |
US9766142B1 (en) * | 2015-03-20 | 2017-09-19 | Cory S. Hague | Magnetic force sensor systems and methods |
JP2017168422A (ja) * | 2016-03-15 | 2017-09-21 | 東洋ゴム工業株式会社 | 密閉型二次電池の残容量予測方法及び残容量予測システム |
US20190062523A1 (en) * | 2017-08-31 | 2019-02-28 | Intel Corporation | Carbon / nanotube graphene conductive elastomeric polymer compound |
KR102306386B1 (ko) * | 2019-04-05 | 2021-09-30 | 재단법인대구경북과학기술원 | 유연 압력센서 및 이의 제조방법 |
CN110031143A (zh) * | 2019-05-22 | 2019-07-19 | 浙江大学滨海产业技术研究院 | 一种导电橡胶式多信息触觉传感器 |
US20220349695A1 (en) * | 2019-06-21 | 2022-11-03 | Carnegie Mellon University | Systems and Methods for Sensing Deformation of a Magnetic Material and Fabrication Methods Thereof |
CN111993446A (zh) * | 2020-07-03 | 2020-11-27 | 北京大学 | 基于磁场的柔性触觉传感器 |
KR102708419B1 (ko) * | 2023-01-11 | 2024-09-20 | 부산대학교 산학협력단 | 유연 압력센서의 제작방법 및 그 방법으로 제작된 유연 압력센서 |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5939A (ja) * | 1982-04-21 | 1984-01-05 | ユニバ−シテイ・オブ・ストラスクライド | 変位検出トランスジユ−サ |
JPS6246222A (ja) | 1985-08-26 | 1987-02-28 | Bridgestone Corp | 感圧センサ |
JPH10290094A (ja) * | 1997-04-11 | 1998-10-27 | Nippon Paint Co Ltd | 電磁波吸収材及びその製造方法 |
JP2002148004A (ja) * | 2000-11-08 | 2002-05-22 | Fuji Xerox Co Ltd | 移動体の情報検知装置及びこれを用いた画像形成装置 |
JP2005292070A (ja) * | 2004-04-05 | 2005-10-20 | Sumitomo Electric Ind Ltd | サスペンション用防振ゴム変位測定装置 |
JP2008039659A (ja) | 2006-08-09 | 2008-02-21 | Sony Corp | 検出装置およびその検出方法 |
JP2008102090A (ja) * | 2006-10-20 | 2008-05-01 | Tokai Rubber Ind Ltd | 変形センサシステム |
JP2009019926A (ja) | 2007-07-10 | 2009-01-29 | Tokyo Cosmos Electric Co Ltd | 磁気式角度センサ |
JP2009229453A (ja) | 2008-02-28 | 2009-10-08 | Seiko Epson Corp | 圧力検出装置及び圧力検出方法 |
JP2009258008A (ja) | 2008-04-18 | 2009-11-05 | Kuraray Co Ltd | 透明性を有する可撓性変形センサ |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4425642A (en) * | 1982-01-08 | 1984-01-10 | Applied Spectrum Technologies, Inc. | Simultaneous transmission of two information signals within a band-limited communications channel |
JPS61170003A (ja) * | 1985-01-23 | 1986-07-31 | Hitachi Metals Ltd | 複合磁石およびその製造方法 |
JP2615738B2 (ja) | 1988-01-19 | 1997-06-04 | 日本合成ゴム株式会社 | 角度センサ |
GB9808792D0 (en) * | 1998-04-23 | 1998-06-24 | Effective Torque Technologies | Magnetising arrangements for torque/force sensor |
US20040265150A1 (en) | 2003-05-30 | 2004-12-30 | The Regents Of The University Of California | Magnetic membrane system |
JP2006343650A (ja) | 2005-06-10 | 2006-12-21 | Fuji Xerox Co Ltd | 調光組成物、光学素子、及びその調光方法。 |
JP2007095829A (ja) * | 2005-09-27 | 2007-04-12 | Nitta Ind Corp | 電磁波吸収シートおよび電磁波吸収シートの製造方法 |
DE102009040486B3 (de) * | 2009-09-08 | 2011-04-28 | Carl Freudenberg Kg | Magnetschaumsensor |
-
2013
- 2013-10-16 US US14/433,215 patent/US9804040B2/en not_active Expired - Fee Related
- 2013-10-16 CN CN201380054470.XA patent/CN104736982B/zh not_active Expired - Fee Related
- 2013-10-16 EP EP13846523.2A patent/EP2910917B1/en not_active Not-in-force
- 2013-10-16 WO PCT/JP2013/078020 patent/WO2014061684A1/ja active Application Filing
- 2013-10-16 KR KR1020157009756A patent/KR101650677B1/ko active IP Right Grant
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5939A (ja) * | 1982-04-21 | 1984-01-05 | ユニバ−シテイ・オブ・ストラスクライド | 変位検出トランスジユ−サ |
JPS6246222A (ja) | 1985-08-26 | 1987-02-28 | Bridgestone Corp | 感圧センサ |
JPH10290094A (ja) * | 1997-04-11 | 1998-10-27 | Nippon Paint Co Ltd | 電磁波吸収材及びその製造方法 |
JP2002148004A (ja) * | 2000-11-08 | 2002-05-22 | Fuji Xerox Co Ltd | 移動体の情報検知装置及びこれを用いた画像形成装置 |
JP2005292070A (ja) * | 2004-04-05 | 2005-10-20 | Sumitomo Electric Ind Ltd | サスペンション用防振ゴム変位測定装置 |
JP2008039659A (ja) | 2006-08-09 | 2008-02-21 | Sony Corp | 検出装置およびその検出方法 |
JP2008102090A (ja) * | 2006-10-20 | 2008-05-01 | Tokai Rubber Ind Ltd | 変形センサシステム |
JP2009019926A (ja) | 2007-07-10 | 2009-01-29 | Tokyo Cosmos Electric Co Ltd | 磁気式角度センサ |
JP2009229453A (ja) | 2008-02-28 | 2009-10-08 | Seiko Epson Corp | 圧力検出装置及び圧力検出方法 |
JP2009258008A (ja) | 2008-04-18 | 2009-11-05 | Kuraray Co Ltd | 透明性を有する可撓性変形センサ |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3128600A4 (en) * | 2014-03-31 | 2017-10-11 | Toyo Tire & Rubber Co., Ltd. | Deformation-detecting sensor for sealed secondary battery |
US10312555B2 (en) | 2014-03-31 | 2019-06-04 | Toyo Tire Corporation | Deformation detecting sensor for sealed secondary battery |
WO2015151332A1 (ja) * | 2014-03-31 | 2015-10-08 | 東洋ゴム工業株式会社 | 密閉型二次電池用変形検知センサ |
EP3128573A4 (en) * | 2014-03-31 | 2017-11-22 | Toyo Tire & Rubber Co., Ltd. | Deformation-detecting sensor for sealed secondary battery |
CN106463795A (zh) * | 2014-06-27 | 2017-02-22 | 东洋橡胶工业株式会社 | 密闭型二次电池的变形检测传感器、密闭型二次电池、及密闭型二次电池的变形检测方法 |
CN106463796A (zh) * | 2014-06-27 | 2017-02-22 | 东洋橡胶工业株式会社 | 密闭型二次电池的监视传感器、密闭型二次电池、及密闭型二次电池的监视方法 |
EP3163671A4 (en) * | 2014-06-27 | 2017-06-28 | Toyo Tire & Rubber Co., Ltd. | Monitoring sensor for sealed secondary battery, sealed secondary battery, and monitoring method for sealed secondary battery |
WO2016002454A1 (ja) * | 2014-06-30 | 2016-01-07 | 東洋ゴム工業株式会社 | 密閉型二次電池の変形検出センサ、密閉型二次電池、及び、密閉型二次電池の変形検出方法 |
TWI557965B (zh) * | 2014-06-30 | 2016-11-11 | Toyo Tire & Rubber Co | Deformation detection sensor of closed type secondary battery, closed type secondary battery, and closed type secondary battery deformation detection method |
CN106415880A (zh) * | 2014-06-30 | 2017-02-15 | 东洋橡胶工业株式会社 | 密闭型二次电池的变形检测传感器、密闭型二次电池、及密闭型二次电池的变形检测方法 |
JPWO2016002454A1 (ja) * | 2014-06-30 | 2017-04-27 | 東洋ゴム工業株式会社 | 密閉型二次電池の変形検出センサ、密閉型二次電池、及び、密閉型二次電池の変形検出方法 |
EP3163649A4 (en) * | 2014-06-30 | 2017-05-03 | Toyo Tire & Rubber Co., Ltd. | Sensor for detecting deformation of sealed secondary battery, sealed secondary battery, and method for detecting deformation of sealed secondary battery |
KR20170009995A (ko) * | 2014-07-10 | 2017-01-25 | 도요 고무 고교 가부시키가이샤 | 밀폐형 2차 전지의 열화 진단 방법 및 열화 진단 시스템 |
CN106716707A (zh) * | 2014-11-25 | 2017-05-24 | 东洋橡胶工业株式会社 | 密闭型二次电池的变形检测传感器 |
KR20170107506A (ko) * | 2015-02-26 | 2017-09-25 | 도요 고무 고교 가부시키가이샤 | 밀폐형 2차 전지의 열화 진단 방법 및 열화 진단 시스템 |
EP3264516A4 (en) * | 2015-02-26 | 2018-03-07 | Toyo Tire & Rubber Co., Ltd. | Deterioration assessment method and deterioration assessment system for sealed-type secondary battery |
KR101868588B1 (ko) * | 2015-02-26 | 2018-06-19 | 도요 고무 고교 가부시키가이샤 | 밀폐형 2차 전지의 열화 진단 방법 및 열화 진단 시스템 |
JPWO2016163179A1 (ja) * | 2015-04-09 | 2017-11-30 | 東洋ゴム工業株式会社 | 変形検出センサおよびその製造方法 |
WO2016163179A1 (ja) * | 2015-04-09 | 2016-10-13 | 東洋ゴム工業株式会社 | 変形検出センサおよびその製造方法 |
Also Published As
Publication number | Publication date |
---|---|
KR101650677B1 (ko) | 2016-08-23 |
CN104736982A (zh) | 2015-06-24 |
EP2910917A4 (en) | 2016-10-05 |
US20150253207A1 (en) | 2015-09-10 |
CN104736982B (zh) | 2017-07-14 |
US9804040B2 (en) | 2017-10-31 |
EP2910917B1 (en) | 2018-05-30 |
KR20150055058A (ko) | 2015-05-20 |
EP2910917A1 (en) | 2015-08-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2014061684A1 (ja) | センサーおよびその製造方法 | |
JP6141721B2 (ja) | センサーの製造方法 | |
JP6141720B2 (ja) | 触覚センサー | |
JP6097081B2 (ja) | センサとその製造方法 | |
JP6192436B2 (ja) | 曲げセンサー | |
WO2016002491A1 (ja) | クッションパッドの変形を検出するシステムおよびその製造方法 | |
JP6265847B2 (ja) | 密閉型二次電池の変形検出センサ、密閉型二次電池、及び、密閉型二次電池の変形検出方法 | |
EP3085571A1 (en) | Deformation detection sensor and production of the same | |
WO2015159860A1 (ja) | クッションパッドの変形を検出するシステムおよびその製造方法 | |
US9939337B2 (en) | Deformation detection sensor and production of the same | |
WO2016163180A1 (ja) | 変形検出センサおよびその製造方法 | |
JP6290727B2 (ja) | 密閉型二次電池の変形検出センサ、密閉型二次電池、及び、密閉型二次電池の変形検出方法 | |
JP6310806B2 (ja) | 密閉型二次電池の変形検出センサおよびその製造方法、密閉型二次電池、ならびに密閉型二次電池の変形検出方法 | |
WO2016163179A1 (ja) | 変形検出センサおよびその製造方法 | |
JP6222930B2 (ja) | センサ | |
WO2015159857A1 (ja) | クッションパッドの変形を検出するシステムおよびその製造方法 | |
JP2018060945A (ja) | 可撓性永久磁石の製造方法、可撓性永久磁石、変形検出センサ及び変形検出方法 | |
WO2018066162A1 (ja) | 可撓性永久磁石の製造方法、可撓性永久磁石、変形検出センサ及び変形検出方法 | |
JP6310805B2 (ja) | 密閉型二次電池の変形検出センサおよびその製造方法、密閉型二次電池、ならびに密閉型二次電池の変形検出方法 | |
JP2016200581A (ja) | 変形検出センサおよびその製造方法 | |
JP2016200580A (ja) | 変形検出センサおよびその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13846523 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2013846523 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14433215 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 20157009756 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |