WO2014016865A1 - 空気調和装置 - Google Patents

空気調和装置 Download PDF

Info

Publication number
WO2014016865A1
WO2014016865A1 PCT/JP2012/004708 JP2012004708W WO2014016865A1 WO 2014016865 A1 WO2014016865 A1 WO 2014016865A1 JP 2012004708 W JP2012004708 W JP 2012004708W WO 2014016865 A1 WO2014016865 A1 WO 2014016865A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
temperature
heat
heat medium
heat exchanger
Prior art date
Application number
PCT/JP2012/004708
Other languages
English (en)
French (fr)
Inventor
智一 川越
嶋本 大祐
幸志 東
孝好 本多
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN201280074004.3A priority Critical patent/CN104364590B/zh
Priority to US14/400,458 priority patent/US20150128628A1/en
Priority to EP12881820.0A priority patent/EP2878902B1/en
Priority to PCT/JP2012/004708 priority patent/WO2014016865A1/ja
Priority to JP2014526610A priority patent/JP5774225B2/ja
Publication of WO2014016865A1 publication Critical patent/WO2014016865A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • F24F11/84Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • F24F11/85Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers using variable-flow pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/02Heat pumps of the compression type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • F24F2140/30Condensation of water from cooled air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/003Indoor unit with water as a heat sink or heat source
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/006Compression machines, plants or systems with reversible cycle not otherwise provided for two pipes connecting the outdoor side to the indoor side with multiple indoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0231Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units with simultaneous cooling and heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0233Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02741Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one four-way valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0312Pressure sensors near the indoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0314Temperature sensors near the indoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2116Temperatures of a condenser
    • F25B2700/21161Temperatures of a condenser of the fluid heated by the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide

Definitions

  • the present invention relates to an air conditioner capable of air-conditioning operation using cold water or hot water generated using a heat pump cycle (refrigeration cycle).
  • An air conditioner that is equipped with a heat pump cycle, exchanges heat between the refrigerant and water, transports cold water or hot water and air-conditions indoors, can cope with refrigerant leakage, and can save CFCs. ing.
  • a compressor, an outdoor heat exchanger, an expansion device, an indoor heat exchanger, and an air-conditioning refrigerant system heat exchanger having an accumulator are used as a water heat exchanger, and are generated by a water heat exchanger.
  • a unit having a refrigerant-water heat exchanger and a water-type indoor unit are connected to a heat source unit. It is possible to make air conditioning possible.
  • the present invention has been made to solve the above-described problems, and is an air conditioner capable of individually controlling dew condensation control on a use side unit that may cause dew condensation among a plurality of use side units.
  • the purpose is to provide.
  • An air conditioner includes a compressor that compresses refrigerant, a heat source side unit that includes a heat source side heat exchanger that performs heat exchange between air and the refrigerant, and air and a heat medium.
  • a plurality of usage-side units having usage-side heat exchangers that perform heat exchange, and between the refrigerant and the heat medium that are connected to the heat-source side unit by refrigerant piping and connected to the usage-side unit by heat medium piping A plurality of intermediate heat exchangers that perform heat exchange at each of them, a heat medium flow switching device that switches a combination of connections between each use-side unit and each intermediate heat exchanger, and a dew condensation state in each use-side unit.
  • the temperature detection means for detecting the temperature of the heat medium flowing into the use side unit determined to perform the control control as the heat medium temperature, and the use side unit determined to perform the condensation suppression control by the object determination means include a plurality of Heat medium circuit control means for controlling the heat medium flow switching device to be connected to the adjustment intermediate heat exchanger assigned for dew condensation suppression control among the intermediate heat exchanger, and detected by the temperature detection means And a refrigerant circuit control means for controlling the temperature of the refrigerant flowing into the adjustment intermediate heat exchanger so that the heat medium temperature falls within a predetermined target set temperature range.
  • the present invention when any one or more usage-side units among the plurality of usage-side units is in a state where condensation occurs or there is a possibility that condensation will occur, heat is generated using the adjustment intermediate heat exchanger.
  • the adjustment intermediate heat exchanger In order to suppress condensation by raising the temperature of the medium and flowing the heat medium through the use side heat exchanger, it is possible to suppress condensation on a specific use side unit without stopping normal operation of other use side units. It becomes possible.
  • FIG. 1 is a configuration diagram of an air-conditioning apparatus 100 according to Embodiment 1 of the present invention.
  • the air conditioning apparatus 100 of FIG. 1 is installed in a building, a condominium, a hotel, or the like, and supplies a cooling load and a heating load by using a heat pump cycle (refrigeration cycle) that circulates a refrigerant.
  • the air conditioner 100 employs a method of indirectly using the heat source side refrigerant.
  • the cold or warm heat stored in the heat source side refrigerant is transmitted to a heat medium flowing through a circulation circuit different from that of the heat source side refrigerant, and the air-conditioning target space is cooled or heated by the cold heat or heat stored in the heat medium.
  • the air conditioner 100 includes one heat source unit 1 that is a heat source unit, a plurality of use side units (indoor units) 2a and 2b, and an intermediate unit 3.
  • the heat source unit 1 and the intermediate unit 3 are connected by a refrigerant pipe (a high-pressure main pipe 5a and a low-pressure main pipe 5b), and the use side units 2a and 2b and the intermediate unit 3 are connected by a heat medium pipe.
  • the cold or warm heat generated by the heat source unit 1 is transmitted to the use side units 2a and 2b via the intermediate unit 3.
  • the heat source unit 1 is installed in a space outside a building such as a building (for example, a rooftop or the like), and supplies cold energy or heat to the use side units 2a and 2b via the intermediate unit 3.
  • a building for example, a rooftop or the like
  • the heat source unit 1 has been described as being installed in the outer space, but the present invention is not limited to this.
  • the heat source unit 1 may be installed in an enclosed space such as a machine room with a ventilation opening. If the waste heat can be exhausted outside the building by an exhaust duct, the heat source unit 1 is installed inside the building.
  • the water-cooled heat source unit 1 when used, it may be installed inside a building. Even if the heat source unit 1 is installed in such a place, no particular problem occurs.
  • the use side units 2a and 2b are, for example, ceiling cassette type indoor units, which are arranged at a position where cooling air or heating air can be supplied to the air conditioning target space inside the building, and the cooling air is supplied to the air conditioning target space. Alternatively, heating air is supplied.
  • use side unit 2a, 2b is a ceiling cassette type
  • any type of air may be used.
  • FIG. 1 shows an example in which two usage-side units 2a and 2b are configured, but the configuration is not limited to two, and three or more usage-side units are configured. Also good.
  • the intermediate unit 3 transmits the cold or warm heat supplied from the heat source unit 1 to the use side units 2a and 2b, the refrigerant flowing in the refrigerant circuit A on the heat source unit 1 side, the use side unit 2a, Heat exchange is performed with the heat medium flowing in the heat medium circuit B on the 2b side.
  • the intermediate unit 3 is configured as a separate housing from the heat source unit 1 and the use side units 2a and 2b so that it can be installed at a position different from the outer space and the air-conditioning target space.
  • the intermediate unit 3 is connected to the heat source unit 1 by the high-pressure main pipe 5a and the low-pressure main pipe 5b, and is connected to the use side units 2a and 2b by the heat medium pipes 27 and 28.
  • the heat source unit 1 includes a compressor 10, a first refrigerant flow switching device 11, a heat source side heat exchanger 12, and an accumulator 19, which are connected in series by a refrigerant pipe. Furthermore, the heat source unit 1 includes a heat source unit control means 51 that performs frequency control of the compressor 10, flow path switching control of the first refrigerant flow path switch 11, and the like.
  • the compressor 10 sucks a refrigerant in a gas state and compresses the refrigerant to a high temperature / high pressure state.
  • the compressor 10 may be configured using various types such as a reciprocating, a rotary, a scroll, or a screw type. What is necessary is just to be comprised with the inverter compressor etc. which can control capacity
  • coolant flow path switch 11 is comprised, for example with a four-way valve etc., and switches a refrigerant
  • the heat source side heat exchanger 12 performs heat exchange between the air supplied from the blower 12a and the refrigerant, functions as an evaporator during heating operation, and serves as a radiator (gas cooler) during cooling operation. Function.
  • the heat source side heat exchanger 12 is a pneumatic heat exchanger that performs heat exchange with the air supplied from the blower 12a, but is not limited thereto, and is water or brine. It is good also as what is comprised with the water heat exchanger which uses as a heat source.
  • the accumulator 19 is provided on the suction side of the compressor 10, and surplus refrigerant due to the difference between the heating operation and the cooling operation, and a surplus with respect to a transient operation change (for example, a change in the number of indoor units operated). Stores refrigerant.
  • the heat source unit 1 is provided with a flow path forming part 13 constituted by a first connection pipe 4a, a second connection pipe 4b, and check valves 13a to 13d.
  • the first connection pipe 4 a includes a refrigerant pipe that connects the first refrigerant flow switch 11 and a check valve 13 d described later, a high-pressure main pipe 5 a that causes the refrigerant to flow out of the heat source unit 1, and The refrigerant pipe for connecting the check valve 13a is connected.
  • the second connection pipe 4 b includes a refrigerant pipe that connects a low-pressure main pipe 5 b that allows the refrigerant to flow into the heat source unit 1 and a check valve 13 d described later, a heat source side heat exchanger 12, and a check described later.
  • the refrigerant pipe for connecting the valve 13a is connected.
  • the check valve 13 a is provided in a refrigerant pipe connecting the heat source side heat exchanger 12 and the high pressure main pipe 5 a that causes the refrigerant to flow out of the heat source unit 1, and only in the direction from the heat source side heat exchanger 12 to the intermediate unit 3.
  • a refrigerant is circulated.
  • the check valve 13b is provided in the first connection pipe 4a, and causes the refrigerant discharged from the compressor 10 to flow only in the direction toward the intermediate unit 3 during the heating operation.
  • the check valve 13c is provided in the second connection pipe 4b, and causes the refrigerant returned from the intermediate unit 3 during the heating operation to flow only in the direction toward the heat source side heat exchanger 12.
  • the check valve 13d is provided in a refrigerant pipe that connects the first refrigerant flow switch 11 and the low-pressure main pipe 5b that allows the refrigerant to flow into the heat source unit 1, and the first refrigerant flow switch 11 from the low-pressure main pipe 5b.
  • the refrigerant is circulated only in the direction of
  • the plurality of usage-side units 2a and 2b include usage-side heat exchangers 26a and 26b, suction temperature sensors 32a and 32b, and suction humidity sensors 33a and 33b, respectively. Further, the use side units 2a and 2b receive the suction temperature information detected by the suction temperature sensors 32a and 32b and the suction humidity information detected by the suction humidity sensors 33a and 33b, respectively, and calculate based on each information. Use side unit control means 52a, 52b for carrying out the above.
  • the use side heat exchangers 26a and 26b are connected to a heat medium pipe 27 through which the heat medium flowing out from the intermediate unit 3 flows and a heat medium pipe 28 through which the heat medium flowing out from the use side unit 2, respectively. Further, the use side heat exchangers 26a and 26b function as a radiator (gas cooler) during heating operation, and function as a heat absorber during cooling operation. The use-side heat exchangers 26a and 26b exchange heat between indoor air supplied from a fan (not shown) such as a fan and a heat medium to give cold or hot air to the air-conditioning target space. Heating air or cooling air to be supplied is generated.
  • the use-side heat exchangers 26a and 26b have been described with respect to the case where they are blown by a fan or the like. However, the use-side heat exchangers 26a and 26b are from coil-shaped heat exchangers with a rough fin pitch that are installed on the ceiling using natural convection called so-called chilled beams. It may be.
  • the intermediate unit 3 includes an expansion device 9, a plurality of intermediate heat exchangers 15a and 15b, a plurality of refrigerant expansion devices 16a and 16b, a liquid refrigerant supply valve 17a, a gas refrigerant supply valve 17b, and second refrigerant flow switching devices 18a and 18b. , Pumps 21a and 21b, secondary side water flow path switchers 22a and 22b, primary side water flow path switchers 23a and 23b, and heat medium adjusting valves 25a and 25b.
  • the intermediate heat exchangers 15a and 15b exchange heat between the refrigerant and the heat medium, and the cold or warm heat generated in the heat source unit 1 and stored in the refrigerant is transmitted to the heat medium.
  • the intermediate heat exchanger 15a is provided between the refrigerant expansion device 16a and the second refrigerant flow switching unit 18a in the refrigerant circuit A.
  • the intermediate heat exchanger 15b is provided between the refrigerant expansion device 16b and the second refrigerant flow switching unit 18b in the refrigerant circuit A.
  • the refrigerant throttle devices 16a and 16b are, for example, electronic expansion valves whose opening degree can be variably controlled, have functions as expansion / decompression valves in the refrigerant circulation circuit A, and expand and depressurize the refrigerant. is there.
  • One of the expansion devices 16a is connected to the intermediate heat exchanger 15a, and the other is connected to the liquid refrigerant supply valve 17a.
  • One of the expansion devices 16b is connected to the intermediate heat exchanger 15b, and the other is connected to the liquid refrigerant supply valve 17a.
  • the intermediate heat exchangers 15a and 15b can generate heat media having different temperatures under the control of the expansion devices 16a and 16b.
  • the expansion device 16b on the side of the intermediate heat exchanger 15b Control is performed so as to narrow down the diaphragm device 16a on the exchanger 15a side. Then, the temperature of the refrigerant flowing into the intermediate heat exchanger 15b becomes higher than the temperature of the refrigerant flowing into the intermediate heat exchanger 15a, and the temperature of the heat medium generated by the intermediate heat exchanger 15b is increased.
  • the temperature of the heat medium generated by the intermediate heat exchanger 15b can be made higher than the temperature of the heat medium generated by the intermediate heat exchanger 15a. In this way, it is possible to generate a heat medium having a different temperature even in the same operation state.
  • the liquid refrigerant supply valve 17a and the gas refrigerant supply valve 17b are constituted by two-way valves or the like, and open and close the refrigerant pipe in the refrigerant circulation circuit A.
  • one of the liquid refrigerant supply valves 17a is connected to the high-pressure main pipe 5a that allows the refrigerant to flow into the intermediate unit 3, and the other is connected to the expansion devices 16a and 16b.
  • One of the gas refrigerant supply valves 17b is connected to the high-pressure main pipe 5a that allows the refrigerant to flow into the intermediate unit 3, and the other is connected to the second refrigerant flow switching devices 18a and 18b.
  • the liquid refrigerant supply valve 17a and the gas refrigerant supply valve 17b may be selected in accordance with the flow rate of refrigerant flowing through the valves and the application. For example, if the open / close operations of the valves do not match, a four-way valve is used. May be.
  • the second refrigerant flow switching units 18a and 18b are constituted by four-way valves or the like, and switch the refrigerant flow according to the operation mode. Specifically, when the intermediate heat exchanger 15a functions as a radiator (heat radiation from the refrigerant to the thermal refrigerant), the second refrigerant flow switching unit 18a is a high-temperature and high-pressure refrigerant that has passed through the gas refrigerant supply valve 17b. Is switched to a heating channel that flows into the refrigerant channel of the intermediate heat exchanger 15a.
  • the second refrigerant flow switching unit 18a causes the refrigerant flowing out of the refrigerant flow path of the intermediate heat exchanger 15a to go to the low-pressure main pipe 5b. Can be switched to a new cooling channel.
  • the intermediate heat exchanger 15b functions as a radiator (heat radiation from the refrigerant to the water)
  • the second refrigerant flow switching unit 18b performs intermediate heat exchange with the high-temperature and high-pressure refrigerant that has passed through the liquid refrigerant supply valve 17b. It is switched to a heating flow path that flows into the refrigerant flow path of the vessel 15b.
  • the second refrigerant flow switch 18b is configured such that the refrigerant flowing out of the refrigerant flow path of the intermediate heat exchanger 15b goes to the low-pressure main pipe 5b. It is switched to the cooling channel.
  • the second refrigerant flow switch 18a and the second refrigerant flow switch 18b have a function of switching to different flow paths. That is, when the intermediate heat exchanger 15a side generates a cooled heat medium and the intermediate heat exchanger 15b side generates a heat medium having a higher temperature than the intermediate heat exchanger 15a side, the second refrigerant flow switching device 18a is cooled. While switching the flow path to become a flow path, the second refrigerant flow switching device 18b switches the flow path to become a heating flow path.
  • the temperature of the heat medium generated on the intermediate heat exchanger 15b side can be made higher than the temperature of the heat medium generated on the intermediate heat exchanger 15a side. As described above, by switching the second refrigerant flow switching units 18a and 18b, the two intermediate heat exchangers 15a and 15b can generate heat media having different temperatures.
  • one of the expansion devices 9 is connected to the liquid refrigerant supply valve 17a and the other is connected to the low-pressure main pipe 5b.
  • the expansion device 9 functions as an expansion / decompression valve, and expands and depressurizes the refrigerant. It is something to be made.
  • the pumps 21a and 21b are for pumping and circulating water in the heat medium circulation circuit B.
  • the pump 21 a is provided in a heat medium pipe between the intermediate heat exchanger 15 a and the heat medium flow switching unit 22.
  • the pump 21 b is provided in a heat medium pipe between the intermediate heat exchanger 15 b and the heat medium flow switching unit 22.
  • the pumps 21a and 21b are illustrated as being provided on the suction side of the intermediate heat exchangers 15a and 15b, respectively, but may be configured to be provided on the outlet side of the intermediate heat exchangers 15a and 15b.
  • the heat medium flow switching units 22 and 23 are configured by three-way valves or the like, and switch the combination of connections between the use side units 2a and 2b and the intermediate heat exchangers 15a and 15b.
  • the number of the heat medium flow switching devices 22 and 23 is set according to the number of installed usage-side units 2a and 2b. Of the three heat medium flow switching units 22 and 23, one is connected to the pump 21a, the other is connected to the pump 21b, and the other is connected to the flow rate adjusting means 25.
  • the primary-side water flow path switch 23 is configured by a three-way valve or the like, and switches the water flow path in the heat medium circuit B according to the operation mode. Further, the number of primary side water flow path switching units 23 (two in FIG. 1) corresponding to the number of usage side units 2 installed is provided. The primary side water flow path switch 23 is connected to the intermediate heat exchanger 15a, the other to the intermediate heat exchanger 15b, and the remaining one to the user side heat exchanger 26, respectively. Has been.
  • the flow rate adjusting means 25a, 25b is configured by a two-way valve or the like that can control the opening area, and one is used for the use side heat exchanger 26 of the use side unit 2 and the other is used for the secondary side flow path switch 22. Each is connected.
  • the flow rate adjusting means 25a and 25b control the flow rate of the heat medium flowing through the use side heat exchangers 26a and 26b, respectively.
  • the flow rate adjusting means 25a, 25b are installed in the heat medium piping system on the outlet side of the use side heat exchangers 26a, 26b, but are not limited to this, and the use side heat exchangers 26a, 26b. It is good also as what is installed in the heat-medium piping system (for example, the exit side of the primary side water flow path switch 23a, 23b) of the inlet side.
  • the intermediate unit 3 includes heat medium temperature sensors 31a and 31b, outlet water temperature sensors 34a and 34b, first refrigerant temperature sensors 35a and 35b, pressure sensors 36a and 36b, and second refrigerant temperature sensors 37a and 37b. Furthermore, the intermediate unit 3 includes an intermediate unit control means 53 that performs a calculation based on each information detected by each sensor.
  • the temperature detection means 31a, 31b detects the temperature of water flowing out from the intermediate heat exchangers 15a, 15b, that is, water at the outlet side of the water flow path of the intermediate heat exchanger 15, What is necessary is just to comprise.
  • the temperature detection means 31a is provided in the heat medium piping in the exit side of the water flow path of the intermediate heat exchanger 15a.
  • the temperature detecting means 31b is provided in the heat medium pipe 28 on the outlet side of the water flow path of the intermediate heat exchanger 15b.
  • the outlet water temperature sensor 34a is provided between the use side heat exchanger 26a and the flow rate adjusting means 25a and detects the temperature of the water flowing out from the use side heat exchanger 26a. What should I do? Further, the number of outlet water temperature sensors 34 (two in FIG. 1) according to the number of installed usage-side units 2 is provided.
  • the first refrigerant temperature sensor 35 is installed between the intermediate heat exchanger 15 and the second refrigerant flow switching unit 18 and detects the temperature of the refrigerant flowing in and out of the intermediate heat exchanger 15.
  • a thermistor or the like may be used.
  • the first refrigerant temperature sensor 35a is provided between the intermediate heat exchanger 15a and the second refrigerant flow switching unit 18a.
  • the first refrigerant temperature sensor 35b is provided between the intermediate heat exchanger 15b and the second refrigerant flow switch 18b.
  • the pressure sensor 36 is provided between the intermediate heat exchanger 15 and the second refrigerant flow switching units 18a and 18b, and the intermediate heat exchangers 15a and 15b and the refrigerant.
  • the pressure of the refrigerant flowing between the flow path changers 18a and 18b is detected.
  • the pressure sensor 36a is provided between the intermediate heat exchanger 15a and the refrigerant flow switching device 18a.
  • the pressure sensor 36b is provided between the intermediate heat exchanger 15b and the refrigerant flow switching device 18b.
  • the second refrigerant temperature sensor 37 is installed between the intermediate heat exchanger 15 and the expansion device 16, and detects the temperature of the refrigerant flowing in and out of the intermediate heat exchanger 15.
  • the second refrigerant temperature sensor 37a is provided between the intermediate heat exchanger 15a and the expansion device 16a.
  • the second refrigerant temperature sensor 37b is provided between the intermediate heat exchanger 15b and the expansion device 16b.
  • the refrigerant circulation circuit A and the heat medium circulation circuit B are configured, and the refrigerant and the heat medium circulation circuit B that circulates in the refrigerant circulation circuit A in the intermediate heat exchangers 15a and 15b. Heat is exchanged with the circulating water.
  • the refrigerant circulation circuit A is connected by connecting the refrigerant flow paths of the second refrigerant flow switching units 18a and 18b, the intermediate heat exchangers 15a and 15b, the expansion devices 16a and 16b, and the expansion device 9 with refrigerant piping. It is composed.
  • the refrigerant circulating in the refrigerant circuit A is not particularly limited, but the refrigerant that can be used in the refrigeration cycle of the air-conditioning apparatus 100 according to the present embodiment includes a non-azeotropic refrigerant mixture, a pseudo-common refrigerant. There are boiling mixed refrigerant, single refrigerant, natural refrigerant and the like.
  • the non-azeotropic refrigerant mixture includes R407C (R32 / R125 / R134a) which is an HFC (hydrofluorocarbon) refrigerant.
  • this non-azeotropic refrigerant mixture is a mixture of refrigerants having different boiling points, it has a characteristic that the composition ratio of the liquid-phase refrigerant and the gas-phase refrigerant is different.
  • the pseudo azeotropic refrigerant mixture include R410A (R32 / R125) and R404A (R125 / R143a / R134a) which are HFC refrigerants.
  • This pseudo azeotrope refrigerant has the same characteristic as that of the non-azeotrope refrigerant and has an operating pressure of about 1.6 times that of R22.
  • the single refrigerant includes R22, which is an HCFC (hydrochlorofluorocarbon) refrigerant, R134a, which is an HFC refrigerant, and the like. Since this single refrigerant is not a mixture, it has the property of being easy to handle. Natural refrigerants include carbon dioxide, propane, isobutane and ammonia.
  • R22 is chlorodifluoromethane
  • R32 is difluoromethane
  • R125 is pentafluoromethane
  • R134a is 1,1,1,2-tetrafluoromethane
  • R143a is 1,1,1.
  • -Each represents trifluoroethane. Therefore, it is good to use the refrigerant
  • the water flow paths of the intermediate heat exchangers 15a and 15b, the pumps 21a and 21b, the secondary water flow path switchers 22a and 22b, the flow rate adjusting means 25a and 25b, and the use side heat exchangers 26a and 26b The primary-side water flow switching devices 23a and 23b are connected to each other by a heat medium pipe to constitute a heat medium circulation circuit B.
  • water or brine may be used as the heat medium circulating in the heat medium circuit B.
  • the antifreeze for the antifreeze is not particularly limited, and may be selected according to the use, such as ethylene glycol or propylene glycol.
  • the air conditioning apparatus 100 can perform a cooling operation or a heating operation in the use side units 2a and 2b based on instructions from the use side units 2a and 2b. That is, the air conditioner 100 can perform the same operation for all the usage-side units 2a and 2b, and can also perform different operations for each usage-side unit 2.
  • a cooling only operation mode in which all of the driving use side units 2 perform a cooling operation and a heating operation in which all of the driving use side units 2 perform a heating operation.
  • each operation mode is demonstrated with the flow of a refrigerant
  • the refrigerant flow path is switched so that the refrigerant discharged from the compressor 10 by the first refrigerant flow switch 11 flows into the heat source side heat exchanger 12.
  • the liquid refrigerant supply valve 17a is opened and closed, and the gas refrigerant supply valve 17b is closed.
  • the second refrigerant flow switching units 18a and 18b are switched to cooling channels such that the refrigerant flowing out from the refrigerant flow channels of the intermediate heat exchangers 15a and 15b goes to the low-pressure main pipe 5b.
  • the pumps 21a and 21b are driven, the flow rate adjusting means 25a and 25b are opened, and the intermediate heat exchangers 15a and 15b and the use-side heat exchangers 26a and 26b.
  • the heat medium circulates between the two.
  • the low-temperature and low-pressure gas refrigerant is compressed by the compressor 10 and discharged as a high-temperature and high-pressure refrigerant.
  • the high-temperature and high-pressure refrigerant discharged from the compressor 10 flows into the heat source side heat exchanger 12 that functions as a condenser via the first refrigerant flow switching device 11.
  • the high-temperature and high-pressure gas refrigerant is condensed by heat exchange with the outside air while passing through the heat source side heat exchanger 12, and flows out as a high-pressure liquid refrigerant.
  • the high-temperature and high-pressure refrigerant becomes high-pressure refrigerant while radiating heat to the outdoor air, and flows out of the heat source unit 1 through the check valve 13a. Thereafter, the high-pressure refrigerant flows into the intermediate unit 3 via the high-pressure main pipe 5a.
  • the high-pressure refrigerant flowing into the intermediate unit 3 branches after passing through the liquid refrigerant supply valve 17a, and flows into the expansion devices 16a and 16b, respectively.
  • the high-pressure hot refrigerant is expanded and depressurized to become a low-temperature and low-pressure gas-liquid two-phase refrigerant.
  • This gas-liquid two-phase refrigerant flows into each of the intermediate heat exchangers 15a and 15b acting as an evaporator, and evaporates while cooling the heat medium by absorbing heat from the heat medium circulating in the heat medium circuit B. It becomes a low-temperature and low-pressure gas refrigerant.
  • the gas refrigerant that has flowed out of the intermediate heat exchangers 15a and 15b merges via the second refrigerant flow switching devices 18a and 18b, respectively, and flows out of the intermediate unit 3. Thereafter, the gas refrigerant flows into the heat source unit 1 again via the low-pressure main pipe 5b.
  • the gas refrigerant that has flowed into the heat source unit 1 passes through the check valve 13d, passes through the first refrigerant flow switch 11 and the accumulator 19, and is sucked into the compressor 10 again.
  • the cold heat of the refrigerant is transmitted to the heat medium in the intermediate heat exchangers 15a and 15b, and the cooled water flows through the heat medium circuit B by the pumps 21a and 21b.
  • the heat medium pressurized and discharged by the pumps 21a and 21b flows into the intermediate heat exchangers 15a and 15b, respectively, and is cooled by the refrigerant circulating in the refrigerant circuit A.
  • the heat medium flowing out from the intermediate heat exchanger 15a branches in the middle, flows out from the intermediate unit 3 via the primary side water flow switching devices 23a and 23b, and flows into the use side units 2a and 2b, respectively.
  • the heat medium flowing out from the intermediate heat exchanger 15b also branches in the middle and flows out from the intermediate unit 3 via the primary side water flow switching devices 23a and 23b, respectively, to the use side units 2a and 2b, respectively. Inflow.
  • the heat medium that has flowed into the use side units 2a and 2b flows into the use side heat exchangers 26a and 26b, respectively, and absorbs heat from the air in the air conditioning target space, whereby the air conditioning target space is cooled. And the heat medium which flowed out from use side heat exchanger 26a, 26b flows out from use side unit 2a, 2b, respectively, and flows in into intermediate unit 3 via heat medium piping.
  • the heat medium flowing into the intermediate unit 3 flows into the flow rate adjusting valves 25a and 25b, respectively.
  • the flow rate of the heat medium is controlled to a flow rate required to cover the air conditioning load required in the room by the action of the flow rate adjusting valves 25a and 25b, and flows into the use side heat exchangers 26a and 26b.
  • the heat medium flowing out from the flow rate adjusting valve 25a branches at the secondary side flow path switching unit 22a and is sucked into the pumps 21a and 21b, respectively.
  • the water that flows out from the flow rate adjustment valve 25b branches through the flow rate adjustment valve 25b, branches at the secondary side flow path switching unit 22b, and is sucked into the pumps 21a and 21b, respectively.
  • the refrigerant flow path is switched so that the refrigerant discharged from the compressor 10 by the first refrigerant flow switching device 11 flows into the intermediate unit 3.
  • the liquid refrigerant supply valve 17a is closed and the gas refrigerant supply valve 17b is opened and closed.
  • the second refrigerant flow switching device 18b is switched to a heating flow channel in which the high-temperature and high-pressure refrigerant that has passed through the gas refrigerant supply valve 17b flows into the refrigerant flow channel of the intermediate heat exchanger 15b.
  • the pumps 21a and 21b are driven, the flow rate adjusting means 25a and 25b are opened, and the intermediate heat exchangers 15a and 15b and the use-side heat exchangers 26a and 26b.
  • the heat medium circulates between the two.
  • the low-temperature and low-pressure gas refrigerant is compressed by the compressor 10 and discharged as a high-temperature and high-pressure refrigerant.
  • the high-temperature and high-pressure refrigerant discharged from the compressor 10 flows out of the heat source unit 1 through the check valve 13b in the first connection pipe 4a via the first refrigerant flow switching device 11, and passes through the high-pressure main pipe 5a. And flows into the intermediate unit 3.
  • the high-temperature and high-pressure refrigerant that has flowed into the intermediate unit 3 branches after passing through the gas refrigerant supply valve 17b, and passes through the second refrigerant flow switching units 18a and 18b, respectively, and the intermediate heat exchanger 15a acting as a radiator. , 15b.
  • the high-temperature and high-pressure refrigerant flowing into the intermediate heat exchangers 15a and 15b becomes high-pressure refrigerant while heating water by dissipating heat to the refrigerant circulating in the heat medium circuit B.
  • the high-pressure refrigerant flows out of the intermediate heat exchangers 15a and 15b, flows into the expansion devices 16a and 16b, and is expanded and depressurized to become a low-temperature and low-pressure gas-liquid two-phase refrigerant.
  • This gas-liquid two-phase refrigerant is merged, further expanded and depressurized by the expansion device 9, flows out from the intermediate unit 3, and flows into the heat source unit 1 again through the low-pressure main pipe 5b.
  • the gas-liquid two-phase refrigerant that has flowed into the heat source unit 1 flows into the heat source side heat exchanger 12 through the check valve 13c in the second connection pipe 4b, and is vaporized while absorbing heat from the outdoor air. It becomes a refrigerant and is sucked into the compressor 10 again via the first refrigerant flow switching device 11 and the accumulator 19.
  • the heat of the refrigerant is transmitted to water in both of the intermediate heat exchangers 15a and 15b, and the heated heat medium flows through the heat medium circuit B by the pumps 21a and 21b.
  • the heat medium pressurized and discharged by the pumps 21a and 21b flows into the intermediate heat exchangers 15a and 15b, respectively, and is heated by the refrigerant circulating in the refrigerant circuit A.
  • the heat medium flowing out from the intermediate heat exchanger 15a branches in the middle, flows out from the intermediate unit 3 via the primary side water flow switching devices 23a and 23b, and flows into the use side units 2a and 2b, respectively.
  • the heat medium flowing out from the intermediate heat exchanger 15b also branches in the middle and flows out from the intermediate unit 3 via the primary side water flow switching devices 23a and 23b, respectively, to the use side units 2a and 2b, respectively. Inflow.
  • the heat medium that has flowed into the use-side units 2a and 2b flows into the use-side heat exchangers 26a and 26b, respectively, and dissipates heat to the air in the air-conditioning target space, thereby heating the air-conditioning target space.
  • the heat medium which flowed out from use side heat exchanger 26a, 26b flows out from use side unit 2a, 2b, respectively, and flows in into intermediate unit 3 via heat medium piping.
  • the heat medium flowing into the intermediate unit 3 flows into the flow rate adjusting valves 25a and 25b, respectively.
  • the flow rate of the heat medium is controlled to a flow rate required to cover the air conditioning load required in the room by the action of the flow rate adjusting valves 25a and 25b, and flows into the use side heat exchangers 26a and 26b. ing.
  • the heat medium flowing out from the flow rate adjustment valve 25a branches through the flow rate adjustment valve 25a, branches at the secondary water flow path switch 22a, and is sucked into the pumps 21a and 21b, respectively.
  • the heat medium flowing out from the flow rate adjustment valve 25b branches through the flow rate adjustment valve 25b, branches at the secondary water flow path switch 22b, and is sucked into the pumps 21a and 21b, respectively.
  • the cooling main operation mode In the air-conditioning apparatus 100 shown in FIG. 1, the cooling main operation mode will be described by taking as an example a case where a cooling load is generated in the use side heat exchanger 26a and a heating load is generated in the use side heat exchanger 26b. .
  • the refrigerant flow path is switched so that the refrigerant discharged from the compressor 10 by the first refrigerant flow switch 11 flows into the heat source side heat exchanger 12. Further, the opening / closing control is performed so that the expansion device 16a is fully opened, the liquid refrigerant supply valve 17a is opened, and the gas refrigerant supply valve 17b is opened.
  • the pumps 21a and 21b are driven, the flow rate adjusting means 25a and 25b are opened, and the heat medium is circulated between the intermediate heat exchangers 15a and 15b and the use side heat exchangers 26a and 26b. Like to do.
  • the low-temperature and low-pressure gas refrigerant is compressed by the compressor 10 and discharged as a high-temperature and high-pressure refrigerant.
  • the high-temperature and high-pressure refrigerant discharged from the compressor 10 flows into the heat source side heat exchanger 12 via the first refrigerant flow switching unit 11 and dissipates heat to the outdoor air, while the temperature of the high-pressure refrigerant decreases. It flows out from the heat source unit 1 through the check valve 13a, and flows into the intermediate unit 3 through the high-pressure main pipe 5a.
  • the high-pressure refrigerant that has flowed into the intermediate unit 3 flows into the intermediate heat exchanger 15b that acts as a radiator via the gas refrigerant supply valve 17b and the second refrigerant flow switch 18b.
  • the high-pressure refrigerant radiates heat to the heat medium circulating in the heat medium circuit B through the intermediate heat exchanger 15b.
  • the high-pressure refrigerant heats the heat medium and becomes a high-pressure refrigerant whose temperature is further lowered.
  • the high-pressure refrigerant flowing out of the intermediate heat exchanger 15b is expanded and depressurized by the expansion device 16b to become a low-temperature and low-pressure gas-liquid two-phase refrigerant, and passes through the expansion device 16a to the intermediate heat exchanger 15a acting as an evaporator.
  • the heat medium evaporates while cooling, and becomes a low-temperature and low-pressure gas refrigerant.
  • the gas refrigerant that has flowed out of the intermediate heat exchanger 15a flows out of the intermediate unit 3 via the second refrigerant flow switching device 18a, and flows into the heat source unit 1 again via the low-pressure main pipe 5b.
  • the gas refrigerant flowing into the heat source unit 1 passes through the check valve 13d, passes through the first refrigerant flow switching device 11 and the accumulator 19, and is sucked into the compressor 10 again.
  • the cooling main operation mode the cold heat of the refrigerant is transmitted to the heat medium in the intermediate heat exchanger 15a, and the cooled heat medium flows through the heat medium circuit B by the pump 21a.
  • the warm heat of the refrigerant is transmitted to the heat medium in the intermediate heat exchanger 15b, and the warmed heat medium is circulated in the heat medium circuit B by the pump 21b.
  • the heat medium pressurized and discharged by the pump 21a flows into the intermediate heat exchanger 15a and becomes a heat medium cooled by the refrigerant circulating in the refrigerant circuit A.
  • the heat medium pressurized and discharged by the pump 21b flows into the intermediate heat exchanger 15b and becomes a heat medium heated by the refrigerant circulating in the refrigerant circuit A.
  • the heat medium flowing out from the intermediate heat exchanger 15a flows out from the intermediate unit 3 via the primary side water flow path switch 23a and flows into the use side unit 2a.
  • the heat medium flowing out from the intermediate heat exchanger 15b flows out from the intermediate unit 3 via the primary side water flow path switch 23b and flows into the use side unit 2b.
  • the cooled heat medium flowing into the use side unit 2a flows into the use side heat exchanger 26a, and the warmed heat medium flowing into the use side unit 2b flows into the use side heat exchanger 26b.
  • the heat medium flowing into the use-side heat exchanger 26a absorbs heat from the air in the air-conditioning target space, thereby cooling the air-conditioning target space.
  • the heat medium flowing into the use side heat exchanger 26b dissipates heat to the air in the air-conditioning target space, thereby heating the air-conditioning target space.
  • the heat medium that has flowed out of the use-side heat exchanger 26a and whose temperature has risen flows out of the use-side unit 2a, and flows into the intermediate unit 3 through the heat medium pipes 27 and 28.
  • the heat medium having flowed out of the use side heat exchanger 26b and having a lowered temperature flows out of the use side unit 2b and flows into the intermediate unit 3 through the heat medium pipes 27 and 28.
  • the heat medium flowing into the intermediate unit 3 from the use side heat exchanger 26a flows into the flow rate adjusting means 25a, and the heat medium flowing into the intermediate unit 3 from the use side heat exchanger 26b flows into the flow rate adjusting means 25b.
  • the flow rate of the heat medium is controlled to a flow rate required to cover the air conditioning load required in the room by the action of the flow rate adjusting valves 25a and 25b, and flows into the use side heat exchangers 26a and 26b. ing.
  • the heat medium flowing out from the flow rate adjustment valve 25a is sucked into the pump 21a again via the secondary side water flow path switch 22a.
  • the heat medium flowing out from the flow rate adjusting means 25b is again sucked into the pump 21b via the secondary water flow path switch 22b.
  • the heat medium having different temperatures is not mixed by the action of the primary side water flow path switching unit 23 and the secondary side water flow path switching unit 22, respectively, and the cooling load, It flows into the use side heat exchanger 26 with a thermal load.
  • Heating main operation mode In the air conditioner 100 shown in FIG. 1, the heating main operation mode will be described by taking as an example a case where a heat load is generated in the use side heat exchanger 26a and a heat load is generated in the use side heat exchanger 26b. .
  • the heating main operation mode in the heat source unit 1, the refrigerant discharged from the compressor 10 by the first refrigerant flow switching unit 11 flows into the intermediate unit 3 without passing through the heat source side heat exchanger 12.
  • the refrigerant flow path is switched so that The expansion device 16a is controlled to be fully opened, the liquid refrigerant supply valve 17a is closed, and the gas refrigerant supply valve 17b is opened.
  • the pumps 21a and 21b are driven, the flow rate adjusting valves 25a and 25b are opened, and a heat medium is provided between the intermediate heat exchangers 15a and 15b and the use side heat exchangers 26a and 26b, respectively. I try to circulate.
  • the low-temperature and low-pressure gas refrigerant is compressed by the compressor 10 and discharged as a high-temperature and high-pressure refrigerant.
  • the high-temperature and high-pressure refrigerant discharged from the compressor 10 flows out of the heat source unit 1 through the check valve 13b in the first connection pipe 4a via the first refrigerant flow switching device 11, and passes through the high-pressure main pipe 5a. And flows into the intermediate unit 3.
  • the high-temperature and high-pressure refrigerant that has flowed into the intermediate unit 3 flows into the intermediate heat exchanger 15b that acts as a radiator via the gas refrigerant supply valve 17b and the second refrigerant flow switching unit 18b. By radiating heat to the circulating heat medium, the heat medium is heated and becomes a high-pressure refrigerant.
  • the high-pressure refrigerant flowing out from the intermediate heat exchanger 15b is expanded and depressurized by the expansion device 16b, and becomes a low-temperature and low-pressure gas-liquid two-phase refrigerant.
  • the low-temperature and low-pressure gas-liquid two-phase refrigerant flows into the intermediate heat exchanger 15a acting as an evaporator via the expansion device 16a, and cools the heat medium by absorbing heat from the heat medium circulating in the heat medium circuit B. However, it becomes a refrigerant whose temperature has risen.
  • the refrigerant that has flowed out of the intermediate heat exchanger 15a flows out of the intermediate unit 3 through the second refrigerant flow switching device 18a, and flows into the heat source unit 1 again through the low-pressure main pipe 5b.
  • the refrigerant flowing into the heat source unit 1 passes through the check valve 13c in the second connection pipe 4b, flows into the heat source side heat exchanger 12, vaporizes while absorbing heat from the outdoor air, and becomes a low-temperature and low-pressure gas refrigerant.
  • the refrigerant is sucked again into the compressor 10 via the first refrigerant flow switching device 11 and the accumulator 19.
  • the flow of the heat medium in the heat medium circuit B will be described with reference to FIG.
  • the cold heat of the refrigerant is transmitted to the heat medium in the intermediate heat exchanger 15a, and the cooled heat medium flows through the heat medium circuit B by the pump 21a.
  • the heat of the refrigerant is transmitted to the heat medium in the intermediate heat exchanger 15a, and the heated heat medium is circulated in the heat medium circuit B by the pump 21b.
  • the heat medium pressurized and discharged by the pump 21a flows into the intermediate heat exchanger 15a and becomes a heat medium cooled by the refrigerant circulating in the refrigerant circuit A.
  • the heat medium pressurized and discharged by the pump 21b flows into the intermediate heat exchanger 15b and becomes a heat medium heated by the refrigerant circulating in the refrigerant circuit A.
  • the heat medium flowing out from the intermediate heat exchanger 15a flows out from the intermediate unit 3 via the primary side water flow path switch 23b and flows into the use side unit 2b.
  • the heat medium flowing out from the intermediate heat exchanger 15b flows out from the intermediate unit 3 via the primary side water flow path switch 23a and flows into the use side unit 2a.
  • the heat medium flowing into the use side unit 2a flows into the use side heat exchanger 26a, and the heat medium flowing into the use side unit 2b flows into the use side heat exchanger 26b.
  • the heat medium flowing into the use side heat exchanger 26a dissipates heat to the air in the air conditioning target space, thereby heating the air conditioning target space.
  • the heat medium flowing into the use-side heat exchanger 26b absorbs heat from the air in the air-conditioning target space, thereby cooling the air-conditioning target space.
  • the heat medium having flowed out of the use side heat exchanger 26a and having a lowered temperature flows out of the use side unit 2a and flows into the intermediate unit 3 via the heat medium pipes 27 and 28.
  • the heat medium that has flowed out of the use side heat exchanger 26b and whose temperature has risen flows out of the use side unit 2b and flows into the intermediate unit 3 through the heat medium pipes 27 and 28.
  • the heat medium flowing into the intermediate unit 3 from the use side heat exchanger 26a flows into the flow rate adjusting means 25a, and the heat medium flowing into the intermediate unit 3 from the use side heat exchanger 26b flows into the flow rate adjusting means 25b.
  • the flow rate of the heat medium is controlled to a flow rate necessary to cover the air conditioning load required in the room by the action of the flow rate adjusting means 25a, 25b, and flows into the use side heat exchangers 26a, 26b. ing.
  • the heat medium flowing out from the flow rate adjusting means 25a is sucked into the pump 21b again via the secondary side water flow path switch 22a.
  • the heat medium flowing out from the flow rate adjusting means 25b is sucked into the pump 21a again via the secondary side water flow path switch 22b.
  • the heat mediums having different temperatures are respectively mixed with the cooling load without being mixed by the action of the primary side water flow path switching unit 23 and the secondary side water flow path switching unit 22, and It flows into the use side heat exchanger 26 with a thermal load.
  • the air conditioner 100 of FIG. 1 includes a heat source unit control means 51, usage-side unit control means 52a and 52b, and an intermediate unit control means 53.
  • the heat source unit 1 is provided with a heat source unit control means 51
  • each use side unit 2 is provided with use side unit control means 52 a and 52 b
  • the intermediate unit 3 is provided with an intermediate unit control means 53.
  • the control means 51 to 53 can communicate with each other by communication means (wired or wireless) (not shown), and control each unit while communicating information with the communication means.
  • Each control means 51 to 53 is configured by a microcomputer or a DSP (Digital Signal Processor) or the like, and the whole operation of the air conditioner 100 is controlled by each control means 51 to 53.
  • Each of the control means 51 to 53 may perform self-sustained dispersion emphasis control that performs independent control corresponding to each unit (the heat source unit 1, the use side units 2a and 2b, and the intermediate unit 3).
  • any one of the units may be provided with a control unit, and the control unit may collectively control the actuators of the units.
  • each of the control means 51 to 53 described above has a function of performing condensation suppression control.
  • the dew condensation suppression control refers to whether or not dew condensation occurs in each of the use side units 2a and 2b, and when it is determined that dew condensation occurs or there is a risk of dew condensation, It is control which produces
  • the thermal refrigerants having different temperatures for suppressing condensation are generated by one or more of the adjustment intermediate heat exchangers 15b among the plurality of intermediate heat exchangers 15a and 15b. Note that which intermediate heat exchanger is assigned to the adjusting intermediate heat exchanger is set in advance in each of the control means 51 to 53.
  • the heat source unit control means 51 controls the refrigerant flow path, pressure state, and temperature state in the heat source unit 1. Specifically, the heat source unit control means 51 performs a calculation process on the basis of pressure information and temperature information detected by a pressure sensor and a temperature sensor (not shown respectively), and then controls the frequency of the compressor 10. Control of the fan rotation speed of the blower 12a, flow path switching control of the first refrigerant flow path switch 11, and the like are performed.
  • FIG. 2 is a block diagram showing an example of the usage-side unit control means 52a and 52b.
  • the use side unit control means 52a and 52b are illustrated as having the same configuration.
  • the use side unit control means 52a and 52b mainly perform dew condensation suppression control, operation control, and thermo control.
  • the usage-side unit control means 52a, 52b includes a target model determination means 520, a target determination means 521, and a dew point temperature calculation means 522 for performing dew condensation suppression control.
  • the target model discriminating means 520 stores the model information of the use side units 2a and 2b themselves.
  • the target determination unit 521 determines whether or not the unit is a usage-side unit that is subject to condensation suppression control based on the model information, temperature information, and humidity information. Specifically, the target determination unit 521 determines whether or not to perform dew condensation suppression control from the model information of the usage-side units 2a and 2b. For example, when the use side heat exchangers 26a and 26b are heat exchangers using natural convection such as a chilled beam, the target determination unit 521 is a model in which the use side units 2a and 2b are targets of dew condensation suppression control. Is determined.
  • the target determination unit 521 receives the suction temperature information detected by the suction temperature sensor 32 and the suction humidity information detected by the suction humidity sensor 33.
  • the target determination unit 521 has a preset threshold value, and determines that the model is a target of condensation suppression control when the suction temperature information is smaller than the set temperature threshold value.
  • the target determination unit 521 determines that the model is a target of dew condensation suppression control.
  • the dew point temperature calculation means 522 calculates the dew point temperature based on the suction temperature information detected by the suction temperature sensor 32 and the suction humidity information detected by the suction humidity sensor 33.
  • the dew point temperature calculation means 522 outputs dew point temperature information to the intermediate unit control means 53 when the object determination means 521 determines that the object is the object of the condensation control control.
  • the target determination unit 521 determines whether or not the target device is based on the temperature information and the humidity information. However, the dew point suppression control is performed based on the dew point temperature calculated by the dew point temperature calculation unit 522. You may make it discriminate
  • the usage-side unit control means 52a, 52b includes a comparison calculation means 523, a thermo determination means 524, and an operation signal transmission means 525 in order to perform operation control and thermo control.
  • the operation signal transmission means 525 outputs an operation signal for requesting cold water supply or hot water supply to the intermediate unit control means 53 based on the operation request information transmitted from the control panel 526 (or remote controller) by wired or wireless communication means.
  • the comparison calculation means 523 transmits temperature difference information to the thermo determination means 524 from the suction temperature information detected by the suction temperature sensor 32 and the set temperature information transmitted from the control panel 526.
  • the thermo determination means 524 determines whether to continue the operation (thermo ON) or to interrupt the operation (thermo OFF), and transmits the thermo determination information to the intermediate unit control means 53.
  • FIG. 3 is a block diagram showing an example of the intermediate unit control means 53.
  • the intermediate unit control means 53 of FIG. 3 includes a maximum dew point temperature detection means 53a, a heat medium circuit control means 53b, and a refrigerant circuit control means 53c.
  • the maximum dew point temperature detecting means 53a detects the maximum dew point temperature Tmax which is the highest temperature from the dew point temperature information of the usage side units 2a and 2b acquired from the plurality of usage side unit control means 52a and 52b.
  • the maximum dew point temperature detecting means 53a has a function of determining whether or not the dew point temperature information corresponding to the plurality of usage side units 2a and 2b has been acquired.
  • the maximum dew point temperature detecting means 53a ends the process of receiving the dew point temperature information.
  • the maximum dew point temperature detection means 53a calculates the maximum dew point temperature information having the largest dew point temperature from the dew point temperature information when the dew point temperature information is acquired from any of the use side units 2a and 2b.
  • the heat medium circuit control means 53 b controls the heat medium circuit B side in the refrigerant-intermediate unit 3.
  • the heat medium circuit control means 53b controls the flow rate based on the heat medium temperature T detected by the temperature detection means 31a and 31b and the outlet water temperature information detected by the outlet water temperature sensor 34 in the various operation modes described above.
  • the heat medium circuit control unit 53b connects the heat medium flow paths of all the use side heat exchangers 26b that have received the dew point temperature information to the adjustment intermediate heat exchanger 15b so as to connect the primary side switch 23b. And the secondary side switch 22b is controlled.
  • the refrigerant circuit control means 53c controls the refrigerant circuit A side in the refrigerant-intermediate unit 3.
  • the refrigerant circuit control means 53c receives the refrigerant pressure information detected by the pressure sensors 36a and 36b and the refrigerant temperature information detected by the first refrigerant temperature sensor 35 and the second refrigerant temperature sensors 37a and 37b.
  • the refrigerant circuit control means 53c outputs a throttle device opening command, a refrigerant flow path switching command, a gas refrigerant supply valve command, and a liquid refrigerant supply valve command to each actuator based on the received refrigerant pressure information and refrigerant temperature information. It is.
  • the refrigerant circuit control unit 53c performs intermediate heat exchange based on the maximum dew point temperature Tmax detected by the maximum dew point temperature detection unit 53a and the heat medium temperature T detected by the temperature detection unit 31b. It has a function of controlling the expansion device 26b and the second refrigerant flow switching unit 18b connected to the container 15b.
  • the refrigerant circuit control means 53c acquires the maximum dew point temperature Tmax detected by the maximum dew point temperature detection means 53a.
  • the use-side heat exchanger 26b that has output the dew point temperature information is already connected to the adjustment intermediate heat exchanger 15b under the control of the heat medium circuit control means 53b. Therefore, the refrigerant circuit control means 53c acquires the heat medium temperature T flowing in the adjustment intermediate heat exchanger 15b from the temperature detection means 31b.
  • the target temperature setting means 53x of the refrigerant circuit control means 53c calculates the target water temperature Tt of the heat medium temperature T flowing into the use side heat exchanger 26b by the following formula (1) using the maximum dew point temperature Tmax.
  • Target water temperature Tt Maximum dew point temperature Tmax + ⁇ (1) ( ⁇ : predetermined temperature)
  • is a parameter for determining flow path switching at a temperature higher than the maximum dew point temperature Tmax so that condensation does not occur reliably.
  • the refrigerant circuit control unit 53c sets the target set temperature range Tr to the maximum dew point temperature Tmax ⁇ the heat medium temperature T ⁇ the target water temperature Tt + ⁇ ( ⁇ : predetermined temperature) with reference to the maximum dew point temperature Tmax.
  • the refrigerant circuit control means 53c determines whether or not the expansion device 16b is based on the difference between the heat medium temperature T and the target water temperature Tt. Control the amount of aperture. ⁇ is a parameter for preventing frequent switching operations in the flow path switching unit and preventing problems such as switching failure and unstable refrigerant temperature due to insufficient differential pressure. It is. By controlling the throttle amount, the refrigerant circuit control means 53c performs control so that the heat medium temperature T falls within the target set temperature range Tr.
  • the refrigerant circuit control unit 53c uses the refrigerant circuit A of the adjustment intermediate heat exchanger 15b as a heating flow path.
  • the second refrigerant flow switching device 18b is controlled.
  • the heat medium temperature T of the heat medium exchanged with the refrigerant flowing in the heating flow path rises. Control is performed so that the heat medium temperature T falls within the target set temperature range Tr.
  • the intermediate heat exchanger for adjustment is used to quickly eliminate the condensation that has occurred in the heat exchanger.
  • the control 15b switches to a heating flow path and removes condensation on the use side heat exchanger 26b.
  • the above operation may be continued until the heat medium temperature to be described later ⁇ target water temperature + ⁇ , or switched to the cooling channel again.
  • the control may be switched to the control based on the aperture amount.
  • the refrigerant circuit control means 53c determines whether or not the adjustment intermediate heat exchanger 15b is connected to the heating flow path. When the adjustment intermediate heat exchanger 15b is connected to the heating flow path, the refrigerant circuit control means 53c sets the second refrigerant flow switching device 18b so that the intermediate heat exchanger 15b is connected to the cooling flow path. Control. Then, the refrigerant circuit control means 53c performs control so that the heat medium temperature T falls within the target set temperature range Tr. Then, when it is determined that the dew condensation suppression control is unnecessary on the use side unit control means 52b side, the control of the throttle amount by the dew condensation occurrence control is ended.
  • the heat medium circuit control means 53b performs heat condensation on the heat medium circulation circuit B side in accordance with the dew condensation suppression control.
  • the flow rate may be adjusted. For example, when the inflow heat refrigerant temperature T is greatly deviated from the target set temperature range Tr, the heat medium circuit control means 53b causes the flow rate adjustment means 25a to increase the flow rate of the heat refrigerant flowing from the adjustment intermediate heat exchanger 15b. 25b may be controlled.
  • the heat medium circuit control unit 53b is configured to adjust the flow rate so that the flow rate of the heat refrigerant flowing from the adjustment intermediate heat exchanger 15b becomes small. 25a and 25b may be controlled. As a result, it is possible to increase the speed and optimize the condensation suppression control in which the inflow heat refrigerant temperature T is set to the target set temperature range Tr.
  • (Condensation suppression control method of the air conditioner 100) 4 is a flowchart showing an operation example of the usage-side unit control means 52 in the dew condensation suppression control of the air conditioning apparatus 100.
  • FIG. 5 is a flowchart showing an operation example of the intermediate unit control means 53 in the dew condensation suppression control of the air conditioning apparatus 100. A description will be given of an example of the dew condensation suppression control method with reference to FIGS. First, the control operation of the usage-side unit control means 52 in the dew condensation suppression control will be described with reference to FIG.
  • the usage-side unit control means 52 receives the target indoor unit discrimination information from the target model discrimination means 520, and receives the suction temperature information detected by the suction temperature sensor 32 and the suction humidity information detected by the suction humidity sensor 33. (Step S1). Based on the target indoor unit determination information, the target determination unit 521 is not in a state where the flow rate adjustment unit 25 is not operating due to the closed state and is not a use side unit 2 that is not suitable for dew condensation suppression control. It is determined whether or not it is a control target for the dew condensation suppression control (step S2).
  • the use side unit control means 52 calculates the dew point temperature (step S3) and transmits it to the intermediate unit control means 53 (step S4).
  • the usage-side unit control means 52 ends the condensation suppression control process. In the following, a case where dew point temperature information is output from the usage-side unit control means 52b and not output from the usage-side unit control means 52a will be exemplified.
  • the intermediate unit control means 53 receives the dew point temperature information from the use side unit control means 52b by the processing shown in the following steps S21 to S24 (step S11). Specifically, the intermediate unit control means 53 receives dew point temperature information from the intermediate unit control means 52b (step S21). The intermediate unit control means 53 determines whether or not the dew point temperature information corresponding to the usage side unit 2 has been received from the usage side unit control means 52 (step S22).
  • the intermediate unit control means 53 ends the dew point temperature information reception process (step S23).
  • the intermediate unit control means 53 connects the usage-side heat exchanger 26b of the usage-side unit 2b to the adjustment intermediate heat exchanger 15b ( Step S23).
  • the intermediate unit control means 53 counts the number of usage-side units 2b that have received the dew point temperature information (step S12). As a result, if the count is one or more, the intermediate unit control means 53 calculates the maximum dew point temperature Tmax having the largest dew point temperature from the received dew point temperature information (step S13). In the present embodiment, the dew point temperature on the use side unit 2b side is the maximum dew point temperature Tmax. Thereafter, the intermediate unit control means 53 calculates the target water temperature Tt of the heat medium temperature T flowing into the use side unit 2b corresponding to the maximum dew point temperature Tmax by the above formula (1) (step S14). And the intermediate unit control means 53 performs various switching of a refrigerant circuit with the heat-medium temperature T (step S15).
  • the adjustment intermediate heat exchanger 15b is switched from the cooling channel to the heating channel on the warm water side (step S16). Then, the heat medium whose temperature has increased by the intermediate heat exchanger 15a flows into the use-side heat exchanger 26a, and the occurrence of condensation can be suppressed.
  • the refrigerant circuit control unit 53c determines whether or not the expansion device 16b uses the difference between the heat medium temperature T and the target water temperature Tt.
  • the aperture amount is controlled (step S17).
  • the refrigerant circuit control unit 53c determines whether or not the adjustment intermediate heat exchanger 15b is connected to the heating flow path. Judgment is made (step S18). When the adjustment intermediate heat exchanger 15b is connected to the heating flow path, the refrigerant circuit control means 53c sets the second refrigerant flow switching device 18b so that the intermediate heat exchanger 15b is connected to the cooling flow path. Control (step S19).
  • the control operation of the intermediate unit control means 53 in the dew condensation suppression control as described above is performed on a regular basis, but the execution time interval may be determined optimally according to the system. Further, the predetermined temperature ⁇ necessary for calculating the target water temperature and the predetermined temperature ⁇ used in the comparison calculation of the heat medium temperature T may be determined optimally according to the system.
  • the temperature of the refrigerant flowing in the adjustment intermediate heat exchanger 15b is increased to increase the temperature. Condensation can be removed or condensation can be prevented without interfering with the operation of the use side heat exchanger 26a.
  • a natural convection heat exchanger such as a chilled beam
  • the heat exchange amount of the use side heat exchangers 26a and 26b becomes small. For this reason, when indoor dew point temperature is high, there exists a possibility that use side unit 2a, 2b itself may condense.
  • At least one adjustment intermediate heat exchanger 15b is provided, it is possible to perform dew condensation suppression control of a plurality of usage-side units, so a heat medium having a different temperature is used for each usage-side heat exchanger. Since it is not necessary to generate, dew condensation suppression control can be performed efficiently.
  • FIG. 1 illustrates a case where a plurality of usage-side units 2a and 2b have the same configuration, but usage-side units 2a and 2b having different configurations may be installed. Even in this case, the dew point temperature information is output from the use side units 2a and 2b to the intermediate unit control means 53 (see FIG. 3), and control for preventing condensation is performed.
  • the dew condensation suppression control is performed by using one adjustment intermediate heat exchanger 15b.
  • the intermediate unit 3 includes three or more intermediate heat exchangers. Condensation suppression control may be performed using two or more adjustment intermediate heat exchangers.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Air Conditioning Control Device (AREA)
  • Other Air-Conditioning Systems (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

 空気調和装置100は、冷媒を圧縮する圧縮機10と、空気と冷媒との間で熱交換を行う熱源側熱交換器12とを備えた熱源側ユニット1と、空気と熱媒体との間で熱交換を行う利用側熱交換器26aを備えた複数の利用側ユニット2a、2bと、熱源側ユニット1に冷媒配管により接続されているとともに利用側ユニット2a、2bに熱媒体配管により接続された、冷媒と熱媒体との間で熱交換を行う複数の中間熱交換器15a、15bとを有する。対象判定手段が521、各利用側ユニット2a、2bにおける結露の状態をそれぞれ検出し、結露の状態から各利用側ユニット2a、2bについて結露を抑制する結露抑制制御を行うか否かをそれぞれ判定する。対象判定手段521により結露抑制制御を行うと判定された利用側ユニット2bが、複数の中間熱交換器15a、15bの中の調整用中間熱交換器15bに接続される。そして、冷媒回路制御手段53cは、利用側ユニット2bに流入する熱媒体の熱媒体温度Tが所定の目標設定温度範囲に入るように、調整用中間熱交換器15bに流入する冷媒の温度を制御する。

Description

空気調和装置
 本発明は、ヒートポンプサイクル(冷凍サイクル)を利用して生成された冷水又は温水を用いて、空調運転が可能な空気調和装置に関する。
 ヒートポンプサイクルを搭載し、冷媒と水とを熱交換させ、室内側には、冷水又は温水を搬送し空調することによって、冷媒漏洩に対応可能及び省フロン化を可能とした空気調和機が提案されている。そのようなものとして、圧縮機、室外熱交換器、絞り装置、室内熱交換器、及び、アキュムレーターを有する空調冷媒系統の熱交換器を水熱交換器とし、水熱交換器で生成された冷水又は温水をポンプ及びバルブ等を用いて搬送することによって、冷房運転及び暖房運転を同時に提供することができる空気調和機が存在する(例えば、特許文献1参照)。特許文献1に記載されている空気調和機は、熱源ユニットに対し、冷媒-水熱換器を有したユニット、及び、水式の室内ユニットが接続され、ビル用マルチエアコンでありながら、水によって空調が可能とすることを可能としている。
国際公開第2010/049998号(図3等)
 しかし、特許文献1のように空気と熱交換する搬送流体が水である場合、比熱が大きいため結露が発生しやすいという問題点がある。特に、冷房運転している室内ユニットの一部が自然対流専用の室内ユニット(例えば、チルドビーム)である場合、自然対流による熱交換量が小さいことから、室内ユニット全体が低温状態となるため、結露が発生しやすいという問題点がある。ここで、特許文献1のように複数の室内ユニットが設けられている場合、各室内ユニット毎に結露の抑制を行うことが望ましい。しかし、個別の室内ユニット毎に結露の発生を抑制する制御を行うことは困難であるという問題がある。
 本発明は、上記のような課題を解決するためになされたもので、複数の利用側ユニットのうち、結露が発生するおそれのある利用側ユニットに対し個別に結露抑制制御が可能な空気調和装置を提供することを目的としている。
 本発明に係る空気調和装置は、冷媒を圧縮する圧縮機と、空気と冷媒との間で熱交換を行う熱源側熱交換器とを備えた熱源側ユニットと、空気と熱媒体との間で熱交換を行う利用側熱交換器を備えた複数の利用側ユニットと、熱源側ユニットに冷媒配管により接続されているとともに利用側ユニットに熱媒体配管により接続された、冷媒と熱媒体との間で熱交換を行う複数の中間熱交換器と、各利用側ユニットと各中間熱交換器との接続の組み合わせを切り替える熱媒体流路切替器と、各利用側ユニットにおける結露の状態をそれぞれ検出する結露検出手段と、結露検出手段により検出された結露の状態から各利用側ユニットについて結露を抑制する結露抑制制御を行うか否かをそれぞれ判定する対象判定手段と、対象判定手段により結露抑制制御を行うと判定された利用側ユニットに流入する熱媒体の温度を熱媒体温度として検出する温度検出手段と、対象判定手段により結露抑制制御を行うと判定された利用側ユニットが、複数の中間熱交換器のうち結露抑制制御のために割り当てられた調整用中間熱交換器に接続されるように熱媒体流路切替器を制御する熱媒体回路制御手段と、温度検出手段により検出された熱媒体温度が所定の目標設定温度範囲に入るように、調整用中間熱交換器に流入する冷媒の温度を制御する冷媒回路制御手段とを備えたことを特徴とする。
 本発明によれば、複数の利用側ユニットのうちいずれか1台以上の利用側ユニットに結露が生じているもしくは結露が生じるおそれがある状態にあるとき、調整用中間熱交換器を用いて熱媒体の温度を上げ、当該熱媒体を利用側熱交換器に流して結露を抑制するため、他の利用側ユニットの通常運転を停止させることなく特定の利用側ユニットでの結露を抑制することが可能となる。
本発明の実施の形態1に係る空気調和装置100の構成図である。 図1の利用側ユニット制御手段の一例を示すブロック図である。 図1の中間ユニット制御手段の一例を示すブロック図である。 本発明の実施の形態1に係る空気調和装置100の結露抑制制御における利用側ユニット制御手段の制御フローチャートである。 本発明の実施の形態1に係る空気調和装置100の結露抑制制御における中間ユニット制御手段の制御フローチャートである。
実施の形態1.
(空気調和装置の構成)
 図1は、本発明の実施の形態1に係る空気調和装置100の構成図である。図1の空気調和装置100は、ビル、マンション又はホテル等に設置され、冷媒を循環させるヒートポンプサイクル(冷凍サイクル)を利用することによって冷房負荷及び暖房負荷を供給するものである。空気調和装置100は、熱源側冷媒を間接的に利用する方式を採用している。すなわち、熱源側冷媒に貯えられた冷熱又は温熱を、熱源側冷媒とは異なる循環回路を流れる熱媒体に伝達し、この熱媒体に貯えられた冷熱又は温熱によって空調対象空間を冷房又は暖房する。
 空気調和装置100は、熱源機である1台の熱源ユニット1、複数台の利用側ユニット(室内ユニット)2a、2b、中間ユニット3を備えている。熱源ユニット1と中間ユニット3とは、冷媒配管(高圧主管5a及び低圧主管5b)によって接続され、利用側ユニット2a、2bと中間ユニット3とは熱媒体配管によって接続されている。そして、熱源ユニット1で生成された冷熱又は温熱は、中間ユニット3を介して利用側ユニット2a、2bに伝達されるようになっている。
 熱源ユニット1は、ビル等の建物の外の空間(例えば、屋上等)に設置され、中間ユニット3を介して、利用側ユニット2a、2bに冷熱又は温熱を供給するものである。なお、前述のように、熱源ユニット1が外の空間に設置されるものとして説明したが、これに限定されるものではない。例えば、熱源ユニット1は、換気口付の機械室等の囲まれた空間に設置してもよく、排気ダクトで廃熱を建物の外に排気することができるのであれば、建物の内部に設置してもよく、あるいは、水冷式の熱源ユニット1を用いる場合においては、建物の内部に設置するようにしてもよい。このような場所に、熱源ユニット1を設置するとしても、特段の問題が発生することはない。
 利用側ユニット2a、2bは、例えば、天井カセット型の室内ユニットであり、建物の内部である空調対象空間に冷房用空気又は暖房用空気を供給できる位置に配置され、空調対象空間に冷房用空気又は暖房用空気を供給するものである。
 なお、利用側ユニット2a、2bが天井カセット型である場合を例に説明したが、これに限定されるものではなく、天井埋込型又は天井吊下式等、空調対象空間に直接又はダクト等によって、暖房用空気又は冷房用空気を吹き出せるようになっていればどのような種類のものでもよい。また、図1においては、2台の利用側ユニット2a、2bが構成された例を示しているが、2台に限定されるものではなく、3台以上の利用側ユニットが構成されるものとしてもよい。
 中間ユニット3は、熱源ユニット1から供給される冷熱又は温熱を利用側ユニット2a、2bに伝達するものであって、熱源ユニット1側の冷媒循環回路A内を流れる冷媒と、利用側ユニット2a、2b側の熱媒体循環回路B内を流れる熱媒体との間で熱交換を行うものである。この中間ユニット3は、熱源ユニット1及び利用側ユニット2a、2bとは別筐体として、外の空間及び空調対象空間とは別の位置に設置できるように構成されている。中間ユニット3は、高圧主管5a及び低圧主管5bによって熱源ユニット1に接続されており、熱媒体配管27、28によって利用側ユニット2a、2bに接続されている。
(熱源ユニット1の構成)
 熱源ユニット1は、圧縮機10、第1冷媒流路切替器11、熱源側熱交換器12、アキュムレーター19を備えており、これらは直列に冷媒配管によって接続されている。さらに、熱源ユニット1は、圧縮機10の周波数制御、第1冷媒流路切替器11の流路切替制御等を実施する熱源ユニット制御手段51を備えている。圧縮機10は、ガス状態の冷媒を吸入し、その冷媒を圧縮し高温・高圧の状態にするものであり、例えば、レシプロ、ロータリー、スクロール又はスクリュー型等の各種タイプを利用して構成すればよく、容量制御可能なインバーター圧縮機等で構成されるものとすればよい。
 第1冷媒流路切替器11は、例えば、四方弁等で構成され、要求される運転モードに応じて冷媒流路を切り替えるものである。具体的には、暖房運転(後述する全暖房運転モード及び暖房主体運転モード)時における冷媒流路(暖房流路)と、冷房運転(後述する全冷房運転モード及び冷房主体運転モード)時における冷媒流路(冷房流路)とを切り替えるものである。
 熱源側熱交換器12は、送風機12aから供給される空気と冷媒との間で熱交換を実施するものであって、暖房運転時には蒸発器として機能し、冷房運転時には放熱器(ガスクーラー)として機能する。なお、上記のように、熱源側熱交換器12は、送風機12aからの供給される空気と熱交換を実施する空気式熱交換器としているが、これに限定されるものではなく、水又はブラインを熱源とする水熱交換器によって構成されるものとしてもよい。
 アキュムレーター19は、圧縮機10の吸入側に設けられており、暖房運転と冷房運転との違いによる余剰冷媒、及び、過渡的な運転の変化(例えば、室内機の運転台数の変化)に対する余剰冷媒を貯えるものである。
 また、熱源ユニット1には、第1接続配管4a、第2接続配管4b、及び、逆止弁13a~13dによって構成された流路形成部13が備えられている。第1接続配管4aは、熱源ユニット1内において、第1冷媒流路切替器11と後述する逆止弁13dとを接続する冷媒配管と、冷媒を熱源ユニット1から流出させる高圧主管5aと、後述する逆止弁13aとを接続する冷媒配管と、を接続するものである。第2接続配管4bは、熱源ユニット1内において、冷媒を熱源ユニット1に流入させる低圧主管5bと後述する逆止弁13dとを接続する冷媒配管と、熱源側熱交換器12と後述する逆止弁13aとを接続する冷媒配管とを接続するものである。この流路形成部13を設けることによって、利用側ユニット2a、2bの要求する運転に関わらず、高圧主管5a及び低圧主管5bを介して中間ユニット3に流入させる冷媒の流れを一定方向にすることができる。
 逆止弁13aは、熱源側熱交換器12と、冷媒を熱源ユニット1から流出させる高圧主管5aとを接続する冷媒配管に設けられ、熱源側熱交換器12から中間ユニット3への方向のみに冷媒を流通させるものである。逆止弁13bは、第1接続配管4aに設けられ、暖房運転時において、圧縮機10から吐出された冷媒を中間ユニット3への方向のみに流通させるものである。逆止弁13cは、第2接続配管4bに設けられ、暖房運転時において中間ユニット3から戻ってきた冷媒を熱源側熱交換器12への方向のみに流通させるものである。逆止弁13dは、第1冷媒流路切替器11と、冷媒を熱源ユニット1に流入させる低圧主管5bとを接続する冷媒配管に設けられ、その低圧主管5bから第1冷媒流路切替器11への方向のみに冷媒を流通させるものである。
(利用側ユニット2a、2bの構成)
 複数の利用側ユニット2a、2bは、それぞれ利用側熱交換器26a、26b、吸込温度センサ32a、32b、吸込湿度センサ33a、33bを備えている。さらに、利用側ユニット2a、2bは、それぞれ吸込温度センサ32a、32bによって検出された吸込温度情報、及び、吸込湿度センサ33a、33bによって検出された吸込湿度情報を受信し、各情報に基づいて演算を実施する利用側ユニット制御手段52a、52bを備えている。
 利用側熱交換器26a、26bは、中間ユニット3から流出した熱媒体を流通させる熱媒体配管27および利用側ユニット2から流出する熱媒体を流通させる熱媒体配管28にそれぞれ接続されている。また、利用側熱交換器26a、26bは、暖房運転時には放熱器(ガスクーラー)として機能し、冷房運転時には吸熱器として機能する。利用側熱交換器26a、26bは、ファン等の送風機(図示せず)から供給される室内空気と熱媒体との間で熱交換を実施して空気に冷熱又は温熱を与え、空調対象空間に供給するための暖房用空気又は冷房用空気を生成する。なお、利用側熱交換器26a、26bは、ファン等により送風される場合について説明したが、いわゆるチルドビームと呼ばれる自然対流を利用した天井に設置されるフィンピッチの荒いコイル状の熱交換器からなるものであってもよい。
(中間ユニット3の構成)
 中間ユニット3は、絞り装置9、複数の中間熱交換器15a、15b、複数の冷媒絞り装置16a、16b、液冷媒供給弁17a、ガス冷媒供給弁17b、第2冷媒流路切替器18a、18b、ポンプ21a、21b、二次側水流路切替器22a、22b、一次側水流路切替器23a、23b、熱媒体調整弁25a、25bを備えている。
 中間熱交換器15a、15bは冷媒と熱媒体との間で熱交換を実施するものであって、熱源ユニット1で生成され冷媒に貯えられた冷熱又は温熱が熱媒体に伝達される。中間熱交換器15aは、冷媒循環回路Aにおける冷媒絞り装置16aと第2冷媒流路切替器18aとの間に設けられている。中間熱交換器15bは、冷媒循環回路Aにおける冷媒絞り装置16bと第2冷媒流路切替器18bとの間に設けられている。
 冷媒絞り装置16a、16bは、たとえば開度が可変に制御可能な電子式膨張弁等からなり、冷媒循環回路Aにおいて膨張・減圧弁としての機能を有し、冷媒を膨張して減圧させるものである。絞り装置16aは一方が中間熱交換器15aに接続され、他方が液冷媒供給弁17aに接続されている。絞り装置16bは、一方が中間熱交換器15bに接続され、他方が液冷媒供給弁17aに接続されている。
 ここで、絞り装置16a、16bの制御により中間熱交換器15a、15bは、それぞれ異なる温度の熱媒体を生成することができる。たとえば中間熱交換器15bにより生成される熱媒体の温度が中間熱交換器15aにより生成する熱媒体の温度よりも高くなるようにする場合、中間熱交換器15b側の絞り装置16bが、中間熱交換器15a側の絞り装置16aよりも絞り込むように制御する。すると、中間熱交換器15bに流れ込む冷媒の温度が中間熱交換器15aに流れ込む冷媒の温度よりも高くなり、中間熱交換器15bが生成する熱媒体の温度が高くなる。同様の方法で、中間熱交換器15b側により生成される熱媒体の温度を中間熱交換器15a側により生成される熱媒体の温度よりも高くすることもできる。このように、同一の運転状態であっても異なる温度の熱媒体を生成することが可能になっている。
 液冷媒供給弁17a及びガス冷媒供給弁17bは、二方弁等で構成されており、冷媒循環回路Aにおいて冷媒配管を開閉するものである。このうち、液冷媒供給弁17aは、一方が中間ユニット3に冷媒を流入させる高圧主管5aに接続され、他方が絞り装置16a、16bに接続されている。ガス冷媒供給弁17bは、一方が中間ユニット3に冷媒を流入させる高圧主管5aに接続され、他方が第2冷媒流路切替器18a、18bに接続されている。なお、液冷媒供給弁17a及びガス冷媒供給弁17bは、弁に流れる冷媒流量及び用途に応じて選定すればよく、各弁の開閉動作が一致しない制御であれば、例えば、四方弁によって構成してもよい。
 第2冷媒流路切替器18a、18bは、四方弁等で構成され、運転モードに応じて冷媒の流れを切り替えるものである。具体的には、中間熱交換器15aが放熱器(冷媒から熱冷媒に対して放熱)として機能する場合、第2冷媒流路切替器18aはガス冷媒供給弁17bを経由してきた高温高圧の冷媒を中間熱交換器15aの冷媒流路に流入するような暖房流路に切り替えられる。中間熱交換器15aが蒸発器(冷媒が熱冷媒から吸熱)として機能する場合、第2冷媒流路切替器18aは中間熱交換器15aの冷媒流路から流出した冷媒が低圧主管5bへ向かうような冷房流路に切り替えられる。また、中間熱交換器15bが放熱器(冷媒から水に対して放熱)として機能する場合、第2冷媒流路切替器18bは液冷媒供給弁17bを経由してきた高温高圧の冷媒を中間熱交換器15bの冷媒流路に流入するような暖房流路に切り替えられる。中間熱交換器15bが蒸発器(冷媒が水から吸熱)として機能する場合、第2冷媒流路切替器18bは中間熱交換器15bの冷媒流路から流出した冷媒が低圧主管5bへ向かうような冷房流路に切り替えられる。
 ここで、第2冷媒流路切替器18a及び第2冷媒流路切替器18bは、異なる流路に切り替える機能を有する。つまり、中間熱交換器15a側が冷やされた熱媒体を生成し中間熱交換器15b側が中間熱交換器15a側よりも温度の高い熱媒体を生成する場合、第2冷媒流路切替器18aは冷却流路となるように流路の切り替えを行うとともに、第2冷媒流路切替器18bは暖房流路となるように流路の切り替えを行う。同様の手法により、中間熱交換器15b側が生成する熱媒体の温度を中間熱交換器15a側が生成する熱媒体の温度よりも高くすることもできる。このように、第2冷媒流路切替器18a、18bの切り替えにより、2つの中間熱交換器15a、15bはそれぞれ異なる温度の熱媒体を生成することが可能になる。
 絞り装置9は、冷媒循環回路Aにおいて、一方が液冷媒供給弁17aに接続され、他方が低圧主管5bに接続されており、膨張・減圧弁としての機能を有し、冷媒を膨張して減圧させるものである。
 ポンプ21a、21bは、熱媒体循環回路B内において水を圧送して循環させるものである。ポンプ21aは、中間熱交換器15aと熱媒体流路切替器22との間の熱媒体配管に設けられている。ポンプ21bは、中間熱交換器15bと熱媒体流路切替器22との間における熱媒体配管に設けられている。また、ポンプ21a、21bは、例えば、インバーターによって、あるいは、ポンプ台数によって容量制御可能となるように構成するものとすればよい。なお、ポンプ21a、21bは、それぞれ中間熱交換器15a、15bの吸入側に設けられている場合について例示しているが、中間熱交換器15a、15bの出口側に設ける構成としてもよい。
 熱媒体流路切替器22、23は、三方弁等で構成されており、各利用側ユニット2a、2bと各中間熱交換器15a、15bとの接続の組み合わせを切り替えるものである。熱媒体流路切替器22、23は、利用側ユニット2a、2bの設置台数に応じた個数が設けられるようになっている。また、熱媒体流路切替器22、23は、三方のうち、一方がポンプ21aに、もう一方がポンプ21bに、そして、残りの一方が流量調整手段25に、それぞれ接続されている。
 一次側水流路切替器23は、三方弁等で構成されており、熱媒体循環回路Bにおいて、運転モードに応じて水の流路を切り替えるものである。また、一次側水流路切替器23は、利用側ユニット2の設置台数に応じた個数(図1においては2つ)が設けられるようになっている。また、一次側水流路切替器23は、三方のうち、一方が中間熱交換器15aに、もう一つが中間熱交換器15bに、そして、残りの一つが利用側熱交換器26に、それぞれ接続されている。
 流量調整手段25a、25bは、開口面積を制御できる二方弁等で構成されており、一方が利用側ユニット2の利用側熱交換器26に、他方が二次側流路切替器22に、それぞれ接続されている。流量調整手段25a、25bは、それぞれ利用側熱交換器26a、26bに流れる熱媒体の流量を制御するものである。なお、流量調整手段25a、25bは、利用側熱交換器26a、26bの出口側の熱媒体配管系統に設置されているが、これに限定されるものではなく、利用側熱交換器26a、26bの入口側の熱媒体配管系統(例えば、一次側水流路切替器23a、23bの出口側)に設置されるものとしてよい。
 また、中間ユニット3は、熱媒体温度センサ31a、31b、出口水温センサ34a、34b、第1冷媒温度センサ35a、35b、圧力センサ36a、36b及び第2冷媒温度センサ37a、37bを備えている。さらに、中間ユニット3は、上記の各センサによって検出された各情報に基づいて演算を実施する中間ユニット制御手段53を備えている。
 温度検出手段31a、31bは、中間熱交換器15a、15bから流出した水、すなわち、中間熱交換器15の水流路の出口側における水の温度を検出するものであり、例えば、サーミスター等で構成するものとすればよい。このうち、温度検出手段31aは、中間熱交換器15aの水流路の出口側における熱媒体配管に設けられている。温度検出手段31bは、中間熱交換器15bの水流路の出口側における熱媒体配管28に設けられている。
 出口水温センサ34aは、利用側熱交換器26aと流量調整手段25aとの間に設けられ、利用側熱交換器26aから流出した水の温度を検出するものであり、例えば、サーミスター等で構成するものとすればよい。また、出口水温センサ34は、利用側ユニット2の設置台数に応じた個数(図1においては2つ)が設けられるようになっている。
 第1冷媒温度センサ35は、中間熱交換器15と第2冷媒流路切替器18との間に、それぞれ設置され、中間熱交換器15から流入又流出する冷媒の温度を検出するものであり、例えば、サーミスター等で構成するものとすればよい。このうち、第1冷媒温度センサ35aは、中間熱交換器15aと第2冷媒流路切替器18aとの間に設けられている。また、第1冷媒温度センサ35bは、中間熱交換器15bと第2冷媒流路切替器18bとの間に設けられている。
 圧力センサ36は、第1冷媒温度センサ35の設置位置と同様に、中間熱交換器15と第2冷媒流路切替器18a、18bとの間に設けられ、中間熱交換器15a、15bと冷媒流路切替器18a、18bとの間を流れる冷媒の圧力を検出するものである。このうち、圧力センサ36aは、中間熱交換器15aと冷媒流路切替器18aとの間に設けられている。また、圧力センサ36bは、中間熱交換器15bと冷媒流路切替器18bとの間に設けられている。
 第2冷媒温度センサ37は、中間熱交換器15と絞り装置16との間に、それぞれ設置され、中間熱交換器15から流入又流出する冷媒の温度を検出するものであり、例えば、サーミスター等で構成するものとすればよい。このうち、第2冷媒温度センサ37aは、中間熱交換器15aと絞り装置16aとの間に設けられている。また、第2冷媒温度センサ37bは、中間熱交換器15bと絞り装置16bとの間に設けられている。
 ここで、空気調和装置100においては、冷媒循環回路Aと熱媒体循環回路Bとが構成されており、中間熱交換器15a、15bにおいて冷媒循環回路Aを循環する冷媒と熱媒体循環回路Bを循環する水とが熱交換されるようになっている。
 すなわち、圧縮機10と、第1冷媒流路切替器11と、熱源側熱交換器12と、流路形成部13と、アキュムレーター19、液冷媒供給弁17aと、ガス冷媒供給弁17bと、第2冷媒流路切替器18a、18bと、中間熱交換器15a、15bの冷媒流路と、絞り装置16a、16bと、絞り装置9とが冷媒配管によって接続されることにより冷媒循環回路Aを構成している。
 なお、この冷媒循環回路Aを循環する冷媒としては、特に限定するものではないが、本実施の形態に係る空気調和装置100の冷凍サイクルに使用できる冷媒としては、非共沸混合冷媒、擬似共沸混合冷媒、単一冷媒及び自然冷媒等がある。このうち、非共沸混合冷媒としては、HFC(ハイドロフルオロカーボン)冷媒であるR407C(R32/R125/R134a)等がある。この非共沸混合冷媒は、沸点が異なる冷媒の混合物であるので、液相冷媒と気相冷媒との組成比率が異なるという特性を有している。また、擬似共沸混合冷媒としては、HFC冷媒であるR410A(R32/R125)及びR404A(R125/R143a/R134a)等がある。この擬似共沸混合冷媒は、非共沸混合冷媒と同様の特性の他、R22の約1.6倍の動作圧力という特性を有している。また、単一冷媒としては、HCFC(ハイドロクロロフルオロカーボン)冷媒であるR22、及び、HFC冷媒であるR134a等がある。この単一冷媒は、混合物ではないので、取り扱いが容易であるという特性を有している。そして、自然冷媒としては、二酸化炭素、プロパン、イソブタン及びアンモニア等がある。ここで、R22は、クロロジフルオロメタンを、R32は、ジフルオロメタンを、R125は、ペンタフルオロメタンを、R134aは、1,1,1,2-テトラフルオロメタンを、R143aは、1,1,1-トリフルオロエタンをそれぞれ示している。したがって、空気調和装置100の用途や目的に応じた冷媒を使用するとよい。
 一方で、中間熱交換器15a、15bの水流路と、ポンプ21a、21bと、二次側水流路切替器22a、22bと、流量調整手段25a、25bと、利用側熱交換器26a、26bと、一次側水流路切替器23a、23bとがそれぞれ熱媒体配管によって接続されることにより熱媒体循環回路Bを構成している。
 なお、この熱媒体循環回路Bを循環する熱媒体として例えば水やブライン(不凍液)等を用いてもよい。不凍液の不凍剤は、特に種類を限定するものではなく、エチレングリコール又はプロプレングリコール等、用途に応じて選定すればよい。このような熱媒体を用いることによって、熱媒体が利用側ユニット2a、2bを介して、空調対象空間に漏洩したとしても、熱媒体として安全性の高いものを使用しているため、安全性の向上に寄与することができる。
 次に、図1の空気調和装置100が実施する各運転モードについて説明する。空気調和装置100は、各利用側ユニット2a、2bからの指示に基づいて、その利用側ユニット2a、2bで冷房動作又は暖房動作を実施することが可能になっている。つまり、空気調和装置100は、利用側ユニット2a、2bの全部について同一運転をすることができると共に、各利用側ユニット2で異なる運転をすることもできるようになっている。
 空気調和装置100が実施する運転モードとして、駆動している利用側ユニット2の全てが冷房動作を実施する全冷房運転モード、駆動している利用側ユニット2の全てが暖房動作を実施する全暖房運転モード、冷房負荷の方が大きい冷房主体運転モード、及び、暖房負荷の方が大きい暖房主体運転モードがある。以下に、各運転モードについて、冷媒及び水の流れとともに説明する。
(全冷房運転モード)
 全冷房運転モードの場合、冷媒循環回路A側において、第1冷媒流路切替器11により圧縮機10から吐出された冷媒が熱源側熱交換器12へ流入させるように冷媒流路が切り替えられる。また、中間ユニット3において液冷媒供給弁17aが開状態、ガス冷媒供給弁17bが閉状態に開閉制御する。さらに、第2冷媒流路切替器18a、18bはそれぞれ中間熱交換器15a、15bの冷媒流路から流出した冷媒が低圧主管5bへ向かうような冷房流路に切り替えられている。一方、熱媒体循環回路B側において、中間ユニット3において、ポンプ21a、21bが駆動し、流量調整手段25a、25bが開状態となり、中間熱交換器15a、15bと利用側熱交換器26a、26bとの間をそれぞれ熱媒体が循環するようにしている。
 まず、図1を参照しながら、冷媒循環回路Aにおける冷媒の流れについて説明する。低温低圧のガス冷媒が圧縮機10によって圧縮され、高温高圧冷媒となって吐出される。圧縮機10から吐出された高温高圧冷媒は、第1冷媒流路切替器11を経由して、凝縮器として機能する熱源側熱交換器12に流入する。高温高圧のガス冷媒は、熱源側熱交換器12を通過する間に外気との熱交換により凝縮し、高圧の液冷媒となって流出する。その後、高温高圧冷媒は室外空気に対して放熱しながら高圧冷媒となり、逆止弁13aを通って熱源ユニット1から流出する。その後、高圧冷媒は、高圧主管5aを経由して中間ユニット3に流入する。
 中間ユニット3に流入した高圧冷媒は、液冷媒供給弁17aを経由した後に分岐し、それぞれ絞り装置16a、16bに流入する。絞り装置16a、16bにおいて高圧熱冷媒は膨張及び減圧され、低温低圧の気液二相冷媒となる。この気液二相冷媒は、蒸発器として作用する中間熱交換器15a、15bのそれぞれに流入し、熱媒体循環回路Bを循環する熱媒体から吸熱することによって熱媒体を冷却しながら、蒸発して低温低圧のガス冷媒となる。中間熱交換器15a、15bから流出したガス冷媒は、それぞれ第2冷媒流路切替器18a、18bを経由して合流し、中間ユニット3から流出する。その後、ガス冷媒は低圧主管5bを経由して、再び熱源ユニット1に流入する。熱源ユニット1に流入したガス冷媒は、逆止弁13dを通って第1冷媒流路切替器11及びアキュムレーター19を経由し、圧縮機10へ再度吸入される。
 次に、図1を参照しながら、熱媒体循環回路Bにおける熱媒体の流れについて説明する。全冷房運転モードにおいては、中間熱交換器15a、15bで冷媒の冷熱が熱媒体に伝達され、冷やされた水がポンプ21a、21bによって熱媒体循環回路B内を流通する。ポンプ21a、21bによって加圧されて流出した熱媒体は、それぞれ中間熱交換器15a、15bに流入し、冷媒循環回路Aを循環する冷媒によって冷却される。中間熱交換器15aから流出した熱媒体は、途中で分岐して、それぞれ一次側水流路切替器23a、23bを介して、中間ユニット3から流出し、それぞれ利用側ユニット2a、2bに流入する。中間熱交換器15bから流出した熱媒体も、同様に、途中で分岐して、それぞれ一次側水流路切替器23a、23bを介して、中間ユニット3から流出し、それぞれ利用側ユニット2a、2bに流入する。
 利用側ユニット2a、2bに流入した熱媒体は、それぞれ利用側熱交換器26a、26bに流入し、空調対象空間の空気から吸熱することによって、空調対象空間の冷房動作が実施される。そして、利用側熱交換器26a、26bから流出した熱媒体は、それぞれ利用側ユニット2a、2bから流出し、熱媒体配管を経由して、中間ユニット3に流入する。
 中間ユニット3へ流入した熱媒体は、それぞれ流量調整弁25a、25bへ流入する。このとき、流量調整弁25a、25bの作用によって熱媒体の流量が室内において必要とされる空調負荷を賄うために必要な流量に制御されて利用側熱交換器26a、26bに流入する。流量調整弁25aから流出した熱媒体は、二次側流路切替器22aにおいて分岐して、それぞれポンプ21a、21bへ吸入される。流量調整弁25bから流出した水は、流量調整弁25bを経由し、二次側流路切替器22bにおいて分岐して、それぞれポンプ21a、21bへ吸入される。
(全暖房運転モード)
 全暖房運転モードの場合、冷媒循環回路A側において、第1冷媒流路切替器11により圧縮機10から吐出された冷媒が中間ユニット3へ流入させるように冷媒流路が切り替えられる。また、液冷媒供給弁17aが閉状態、ガス冷媒供給弁17bが開状態に開閉制御される。さらに、第2冷媒流路切替器18bはガス冷媒供給弁17bを経由してきた高温高圧の冷媒を中間熱交換器15bの冷媒流路に流入するような暖房流路に切り替えられる。一方、熱媒体循環回路B側において、中間ユニット3において、ポンプ21a、21bが駆動し、流量調整手段25a、25bが開状態となり、中間熱交換器15a、15bと利用側熱交換器26a、26bとの間をそれぞれ熱媒体が循環するようにしている。
 まず、冷媒循環回路Aにおける冷媒の流れについて説明する。低温低圧のガス冷媒が圧縮機10によって圧縮され、高温高圧冷媒となって吐出される。圧縮機10から吐出された高温高圧冷媒は、第1冷媒流路切替器11を経由し、第1接続配管4aにおける逆止弁13bを通って熱源ユニット1から流出し、高圧主管5aを経由して、中間ユニット3に流入する。
 中間ユニット3に流入した高温高圧冷媒は、ガス冷媒供給弁17bを経由した後、分岐し、それぞれ第2冷媒流路切替器18a、18bを経由して、放熱器として作用する中間熱交換器15a、15bに流入する。中間熱交換器15a、15bに流入した高温高圧冷媒は、熱媒体循環回路Bを循環する冷媒に放熱することによって水を加熱しながら、高圧冷媒となる。高圧冷媒は中間熱交換器15a、15bから流出して、それぞれ絞り装置16a、16bに流入して膨張及び減圧され、低温低圧の気液二相冷媒となる。この気液二相冷媒は、合流し、絞り装置9によって、さらに膨張及び減圧され、中間ユニット3から流出し、低圧主管5bを経由して、再び熱源ユニット1に流入する。
 熱源ユニット1に流入した気液二相冷媒は、第2接続配管4bにおける逆止弁13cを通って、熱源側熱交換器12に流入し、室外空気から吸熱しながら気化し、低温低圧のガス冷媒となって、第1冷媒流路切替器11及びアキュムレーター19を経由して、圧縮機10へ再度吸入される。
 次に、図1を参照しながら、熱媒体循環回路Bにおける熱媒体の流れについて説明する。全暖房運転モードにおいては、中間熱交換器15a、15bの双方で冷媒の温熱が水に伝達され、暖められた熱媒体がポンプ21a、21bによって熱媒体循環回路B内を流通する。ポンプ21a、21bによって加圧されて流出した熱媒体は、それぞれ中間熱交換器15a、15bに流入し、冷媒循環回路Aを循環する冷媒によって加熱される。中間熱交換器15aから流出した熱媒体は、途中で分岐して、それぞれ一次側水流路切替器23a、23bを介して、中間ユニット3から流出し、それぞれ利用側ユニット2a、2bに流入する。中間熱交換器15bから流出した熱媒体も、同様に、途中で分岐して、それぞれ一次側水流路切替器23a、23bを介して、中間ユニット3から流出し、それぞれ利用側ユニット2a、2bに流入する。
 利用側ユニット2a、2bに流入した熱媒体は、それぞれ利用側熱交換器26a、26bに流入し、空調対象空間の空気に放熱することによって、空調対象空間の暖房動作が実施される。そして、利用側熱交換器26a、26bから流出した熱媒体は、それぞれ利用側ユニット2a、2bから流出し、熱媒体配管を経由して中間ユニット3に流入する。
 中間ユニット3へ流入した熱媒体は、それぞれ流量調整弁25a、25bへ流入する。このとき、流量調整弁25a、25bの作用によって熱媒体の流量が室内において必要とされる空調負荷を賄うために必要な流量に制御されて利用側熱交換器26a、26bに流入するようになっている。流量調整弁25aから流出した熱媒体は、流量調整弁25aを経由し、二次側水流路切替器22aにおいて分岐して、それぞれポンプ21a、21bへ吸入される。流量調整弁25bから流出した熱媒体は、流量調整弁25bを経由し、二次側水流路切替器22bにおいて分岐して、それぞれポンプ21a、21bへ吸入される。
(冷房主体運転モード)
 図1で示される空気調和装置100においては、利用側熱交換器26aで冷熱負荷が発生し、利用側熱交換器26bで温熱負荷が発生している場合を例に冷房主体運転モードについて説明する。なお、冷房主体運転モードの場合、第1冷媒流路切替器11により圧縮機10から吐出された冷媒が熱源側熱交換器12へ流入するように冷媒流路が切り替えられる。また、絞り装置16aが全開状態、液冷媒供給弁17aが開状態、及び、ガス冷媒供給弁17bが開状態となるように開閉制御する。そして、中間ユニット3において、ポンプ21a、21bが駆動し、流量調整手段25a、25bが開状態とし、中間熱交換器15a、15bと利用側熱交換器26a、26bとの間を熱媒体が循環するようにしている。
 まず、図1を参照しながら、冷媒循環回路Aにおける冷媒の流れについて説明する。
 低温低圧のガス冷媒が圧縮機10によって圧縮され、高温高圧冷媒となって吐出される。圧縮機10から吐出された高温高圧冷媒は、第1冷媒流路切替器11を経由して、熱源側熱交換器12に流入し、室外空気に対して放熱しながら、温度の低下した高圧冷媒となり、逆止弁13aを通って熱源ユニット1から流出し、高圧主管5aを経由して、中間ユニット3に流入する。
 中間ユニット3に流入した高圧冷媒は、ガス冷媒供給弁17b及び第2冷媒流路切替器18bを経由して、放熱器として作用する中間熱交換器15bに流入する。そして、高圧冷媒は中間熱交換器15bを介して熱媒体循環回路Bを循環する熱媒体に放熱する。これにより高圧冷媒は熱媒体を加熱し、さらに温度が低下した高圧冷媒となる。中間熱交換器15bから流出した高圧冷媒は、絞り装置16bで膨張及び減圧され、低温低圧の気液二相冷媒となり、絞り装置16aを経由して、蒸発器として作用する中間熱交換器15aに流入し、熱媒体循環回路Bを循環する熱媒体から吸熱することによって熱媒体を冷却しながら蒸発して、低温低圧のガス冷媒となる。中間熱交換器15aから流出したガス冷媒は、第2冷媒流路切替器18aを経由して、中間ユニット3から流出し、低圧主管5bを経由して、再び熱源ユニット1へ流入する。熱源ユニット1に流入したガス冷媒は、逆止弁13dを通って、第1冷媒流路切替器11及びアキュムレーター19を経由し、圧縮機10へ再度吸入される。
 次に、図1を参照しながら、熱媒体循環回路Bにおける熱媒体の流れについて説明する。冷房主体運転モードにおいては、中間熱交換器15aにおいて冷媒の冷熱が熱媒体に伝えられ、冷やされた熱媒体がポンプ21aによって熱媒体循環回路B内を流通する。また、冷房主体運転モードにおいては、中間熱交換器15bにおいて冷媒の温熱が熱媒体に伝えられ、暖められた熱媒体がポンプ21bによって熱媒体循環回路B内を流通する。
 ポンプ21aによって加圧されて流出した熱媒体は、中間熱交換器15aに流入し、冷媒循環回路Aを循環する冷媒によって冷却された熱媒体となる。ポンプ21bによって加圧されて流出した熱媒体は、中間熱交換器15bに流入し、冷媒循環回路Aを循環する冷媒によって加熱された熱媒体となる。中間熱交換器15aから流出した熱媒体は、一次側水流路切替器23aを経由して、中間ユニット3から流出し、利用側ユニット2aに流入する。中間熱交換器15bから流出した熱媒体は、一次側水流路切替器23bを経由して、中間ユニット3から流出し、利用側ユニット2bに流入する。
 利用側ユニット2aに流入した冷やされた熱媒体は、利用側熱交換器26aに流入し、そして、利用側ユニット2bに流入した暖められた熱媒体は、利用側熱交換器26bに流入する。利用側熱交換器26aに流入した熱媒体が空調対象空間の空気から吸熱することによって、空調対象空間の冷房が実施される。一方、利用側熱交換器26bに流入した熱媒体が空調対象空間の空気に放熱することによって、空調対象空間の暖房が実施される。そして、利用側熱交換器26aから流出し、温度が上昇した熱媒体は、利用側ユニット2aから流出し、熱媒体配管27、28を経由して、中間ユニット3に流入する。一方、利用側熱交換器26bから流出し、温度が低下した熱媒体は、利用側ユニット2bから流出し、熱媒体配管27、28を経由して、中間ユニット3に流入する。
 利用側熱交換器26aから中間ユニット3に流入した熱媒体は、流量調整手段25aに流入し、利用側熱交換器26bから中間ユニット3に流入した熱媒体は、流量調整手段25bに流入する。このとき、流量調整弁25a、25bの作用によって熱媒体の流量が室内において必要とされる空調負荷を賄うのに必要な流量に制御されて利用側熱交換器26a、26bに流入するようになっている。流量調整弁25aから流出した熱媒体は、二次側水流路切替器22aを経由して、再びポンプ21aへ吸い込まれる。一方、流量調整手段25bから流出した熱媒体は、二次側水流路切替器22bを経由して、再びポンプ21bへ吸い込まれる。上記のように、冷房主体運転モードにおいては、温度の異なる熱媒体は、一次側水流路切替器23及び二次側水流路切替器22の作用によって、混合することなく、それぞれ冷熱負荷、そして、温熱負荷がある利用側熱交換器26へ流入される。
(暖房主体運転モード)
 図1で示される空気調和装置100においては、利用側熱交換器26aで温熱負荷が発生し、利用側熱交換器26bで冷熱負荷が発生している場合を例に暖房主体運転モードについて説明する。なお、暖房主体運転モードの場合、熱源ユニット1において、第1冷媒流路切替器11により、圧縮機10から吐出された冷媒が、熱源側熱交換器12を経由させずに中間ユニット3へ流入させるように冷媒流路が切り替えられる。また、絞り装置16aは全開状態、液冷媒供給弁17aは閉状態、ガス冷媒供給弁17bは開状態となるように開閉制御される。そして、中間ユニット3において、ポンプ21a、21bが駆動し、流量調整弁25a、25bが開状態となり、中間熱交換器15a、15bと利用側熱交換器26a、26bとの間をそれぞれ熱媒体が循環するようにしている。
 まず、図1を参照しながら、冷媒循環回路Aにおける冷媒の流れについて説明する。低温低圧のガス冷媒が圧縮機10によって圧縮され、高温高圧冷媒となって吐出される。圧縮機10から吐出された高温高圧冷媒は、第1冷媒流路切替器11を経由し、第1接続配管4aにおける逆止弁13bを通って熱源ユニット1から流出し、高圧主管5aを経由して、中間ユニット3に流入する。
 中間ユニット3に流入した高温高圧冷媒は、ガス冷媒供給弁17b及び第2冷媒流路切替器18bを経由して、放熱器として作用する中間熱交換器15bに流入し、熱媒体循環回路Bを循環する熱媒体に放熱することによって熱媒体を加熱し、高圧冷媒となる。中間熱交換器15bから流出した高圧冷媒は、絞り装置16bで膨張及び減圧され、低温低圧の気液二相冷媒となる。低温低圧の気液二相冷媒は、絞り装置16aを経由して蒸発器として作用する中間熱交換器15aに流入し、熱媒体循環回路Bを循環する熱媒体から吸熱することによって熱媒体を冷却し、温度の上昇した冷媒となる。中間熱交換器15aから流出した冷媒は、第2冷媒流路切替器18aを経由して、中間ユニット3から流出し、低圧主管5bを経由して、再び熱源ユニット1へ流入する。
 熱源ユニット1に流入した冷媒は、第2接続配管4bにおける逆止弁13cを通って、熱源側熱交換器12に流入し、室外空気から吸熱しながら気化し、低温低圧のガス冷媒となって、第1冷媒流路切替器11及びアキュムレーター19を経由して、圧縮機10へ再度吸入される。
 次に、図1を参照しながら、熱媒体循環回路Bにおける熱媒体の流れについて説明する。暖房主体運転モードにおいては、中間熱交換器15aにおいて冷媒の冷熱が熱媒体に伝えられ、冷やされた熱媒体がポンプ21aによって熱媒体循環回路B内を流通する。また、暖房主体運転モードにおいては、中間熱交換器15aにおいて冷媒の温熱が熱媒体に伝えられ、暖められた熱媒体がポンプ21bによって熱媒体循環回路B内を流通する。
 ポンプ21aによって加圧されて流出した熱媒体は、中間熱交換器15aに流入し、冷媒循環回路Aを循環する冷媒によって冷却された熱媒体となる。ポンプ21bによって加圧されて流出した熱媒体は、中間熱交換器15bに流入し、冷媒循環回路Aを循環する冷媒によって加熱された熱媒体となる。中間熱交換器15aから流出した熱媒体は、一次側水流路切替器23bを経由して、中間ユニット3から流出し、利用側ユニット2bに流入する。中間熱交換器15bから流出した熱媒体は、一次側水流路切替器23aを経由して、中間ユニット3から流出し、利用側ユニット2aに流入する。
 利用側ユニット2aに流入した熱媒体は、利用側熱交換器26aに流入し、そして、利用側ユニット2bに流入した熱媒体は、利用側熱交換器26bに流入する。利用側熱交換器26aに流入した熱媒体が空調対象空間の空気に放熱することによって、空調対象空間の暖房が実施される。一方、利用側熱交換器26bに流入した熱媒体が空調対象空間の空気から吸熱することによって、空調対象空間の冷房が実施される。そして、利用側熱交換器26aから流出し、温度が低下した熱媒体は、利用側ユニット2aから流出し、熱媒体配管27、28を経由して、中間ユニット3に流入する。一方、利用側熱交換器26bから流出し、温度が上昇した熱媒体は、利用側ユニット2bから流出し、熱媒体配管27、28を経由して、中間ユニット3に流入する。
 利用側熱交換器26aから中間ユニット3に流入した熱媒体は、流量調整手段25aに流入し、利用側熱交換器26bから中間ユニット3に流入した熱媒体は、流量調整手段25bに流入する。このとき、流量調整手段25a、25bの作用によって熱媒体の流量が室内において必要とされる空調負荷を賄うのに必要な流量に制御されて利用側熱交換器26a、26bに流入するようになっている。流量調整手段25aから流出した熱媒体は、二次側水流路切替器22aを経由して、再びポンプ21bへ吸い込まれる。一方、流量調整手段25bから流出した熱媒体は、二次側水流路切替器22bを経由して、再びポンプ21aへ吸い込まれる。上記のように、暖房主体運転モードにおいては、温度の異なる熱媒体は、一次側水流路切替器23及び二次側水流路切替器22の作用によって、混合することなく、それぞれ冷熱負荷、そして、温熱負荷がある利用側熱交換器26へ流入される。
 なお、以上の4つの運転モードにおいて、利用側ユニット2a、2bが双方が冷房動作又は暖房動作を実施している場合を示したが、複数の利用側ユニット2a、2bのうち、いずれかの利用側ユニット2a、2bが運転停止状態にある場合には流量調整手段25が閉状態となり冷暖房動作を実施しない。
(制御手段の構成)
 図1の空気調和装置100は、熱源ユニット制御手段51、利用側ユニット制御手段52a、52b、中間ユニット制御手段53を備えている。熱源ユニット1には熱源ユニット制御手段51が備えられ、各利用側ユニット2にはそれぞれ利用側ユニット制御手段52a、52bが備えられ、中間ユニット3には中間ユニット制御手段53が備えられている。各制御手段51~53は、図示しない通信手段(有線又は無線)によって互いに通信可能とし、通信手段によって情報を通信しながらそれぞれのユニットを制御する。
 各制御手段51~53は、マイクロコンピューター又はDSP(Digital Signal Processor)等によって構成されており、各制御手段51~53によって空気調和装置100の動作全体が制御される。各制御手段51~53は、それぞれのユニット(熱源ユニット1、利用側ユニット2a、2b及び中間ユニット3)に対応する独立した制御を実施する自立分散強調制御を実施するものとしてもよい。あるいは、各ユニットのいずれかに制御手段を備えるものとして、この制御手段が各ユニットのアクチュエーター等を一括で制御するものとしてもよい。
 上述した各制御手段51~53は、結露抑制制御を行う機能を有している。ここで結露抑制制御とは、各利用側ユニット2a、2b毎に結露が生じるか否かを判断し、結露が生じるもしくは結露が生じるおそれがあると判断した際に、通常運転時とは温度の異なる熱冷媒を生成し該当する利用側ユニット2a、2bの利用側熱交換器26a、26bに流入する制御である。ここで、結露抑制用の温度の異なる熱冷媒は複数の中間熱交換器15a、15bのうちいずれか1台以上の調整用中間熱交換器15bによって生成される。なお、いずれの中間熱交換器が調整用中間熱交換器に割り当てられるかは、予め各制御手段51~53内において設定されている。
 熱源ユニット制御手段51は、熱源ユニット1における冷媒の流路、圧力状態及び温度状態を制御する。具体的には、熱源ユニット制御手段51は、圧力センサ及び温度センサ(それぞれ図示せず)によって検出された圧力情報及び温度情報に基づいて、演算処理を実施した後、圧縮機10の周波数制御、送風機12aのファン回転数の制御、及び、第1冷媒流路切替器11の流路切替制御等を実施する。
 図2は、利用側ユニット制御手段52a、52bの一例を示すブロック図である。なお、利用側ユニット制御手段52a、52bは同一の構成を有する場合について例示する。利用側ユニット制御手段52a、52bは、主として結露抑制制御、運転制御およびサーモ制御を行うものである。利用側ユニット制御手段52a、52bは、結露抑制制御を行うために、対象機種判別手段520、対象判定手段521、露点温度演算手段522を備えている。
 対象機種判別手段520は、利用側ユニット2a、2b自身の機種情報を記憶したものである。対象判定手段521は、結露抑制制御の対象となる利用側ユニットであるか否かを機種情報、温度情報、湿度情報に基づいて判定するものである。具体的には、対象判定手段521は、利用側ユニット2a、2bの機種情報から結露抑制制御を行うか否かを判別する。たとえば利用側熱交換器26a、26bがチルドビームのような自然対流を利用した熱交換器である場合、対象判定手段521は、利用側ユニット2a、2bが結露抑制制御の対象となる機種であると判定する。
 また、対象判定手段521は、吸込温度センサ32によって検出された吸込温度情報、及び、吸込湿度センサ33によって検出された吸込湿度情報を受信する。対象判定手段521は、たとえば予め設定された閾値を有しており、吸込温度情報が設定された温度閾値よりも小さい場合、結露抑制制御の対象となる機種であると判断する。同様に、対象判定手段521は吸込湿度情報が設定された閾値よりも大きい場合、結露抑制制御の対象となる機種であると判定する。
 露点温度演算手段522は、吸込温度センサ32によって検出された吸込温度情報、及び、吸込湿度センサ33によって検出された吸込湿度情報に基づいて露点温度を算出するものである。なお、露点温度の算出方法は公知の手法を用いることができる。たとえばセンサにより検出された相対湿度(絶対湿度)から水蒸気圧(=飽和水蒸気圧)を求め、水蒸気圧から露点温度を算出する。
 また、露点温度演算手段522は、対象判定手段521において、結露制御制御の対象であると判別した場合に、中間ユニット制御手段53に露点温度情報を出力する。なお、対象判定手段521が、温度情報および湿度情報に基づいて対象機器であるか否かを判別するようにしているが、露点温度演算手段522により算出された露点温度に基づいて結露抑制制御を行うか否かを判別するようにしてもよい。
 さらに、利用側ユニット制御手段52a、52bは、運転制御およびサーモ制御を行うために、比較演算手段523、サーモ判定手段524及び運転信号送信手段525を備えている。運転信号送信手段525は、制御盤526(又はリモコン)から有線又は無線による通信手段によって送信された運転要求情報に基づいて、冷水供給又は温水供給を要求する運転信号を中間ユニット制御手段53に出力するものである。比較演算手段523は、吸込温度センサ32によって検出された吸込温度情報、及び、制御盤526から送信された設定温度情報から差温情報をサーモ判定手段524に送信するものである。サーモ判定手段524は運転継続(サーモON)させるか、運転中断(サーモOFF)させるかを判定し、そのサーモ判定情報を中間ユニット制御手段53に送信するものである。
 図3は中間ユニット制御手段53の一例を示すブロック図である。図3の中間ユニット制御手段53は、最大露点温度検出手段53a、熱媒体回路制御手段53b、冷媒回路制御手段53cを備えている。最大露点温度検出手段53aは、複数の利用側ユニット制御手段52a、52bから取得した各利用側ユニット2a、2bの露点温度情報の中から最も高い温度である最大露点温度Tmaxを検出するものである。さらに、最大露点温度検出手段53aは、複数の利用側ユニット2a、2bに対応する露点温度情報を取得できたか否かを判定する機能を有している。そして、いずれの利用側ユニット2a、2bからも露点温度情報が取得できない場合、最大露点温度検出手段53aは露点温度情報の受信処理を終了する。一方、最大露点温度検出手段53aは、いずれかの利用側ユニット2a、2bから露点温度情報を取得した場合、露点温度情報の中から最も大きい露点温度を有する最大露点温度情報を算出する。
 熱媒体回路制御手段53bは、冷媒-中間ユニット3内の熱媒体循環回路B側を制御するものである。熱媒体回路制御手段53bは、上述した各種運転モードにおいて温度検出手段31a、31bによって検出された熱媒体温度T、出口水温センサ34によって検出された出口水温情報に基づいて流量の制御を行う。結露抑制制御において、熱媒体回路制御手段53bは、露点温度情報を受信したすべての利用側熱交換器26bの熱媒体流路を調整用中間熱交換器15bに接続するように一次側切替器23bおよび二次側切替器22bを制御する。
 冷媒回路制御手段53cは、冷媒-中間ユニット3内の冷媒循環回路A側を制御するものである。冷媒回路制御手段53cは、圧力センサ36a、36bによって検出された冷媒圧力情報、第1冷媒温度センサ35及び第2冷媒温度センサ37a、37bによって検出された冷媒温度情報を受信する。冷媒回路制御手段53cは、受信した冷媒圧力情報及び冷媒温度情報に基づいて、絞り装置開度指令、冷媒流路切替指令、ガス冷媒供給弁指令及び液冷媒供給弁指令を各アクチュエーターに出力するものである。
 また、結露抑制制御時において、冷媒回路制御手段53cは、最大露点温度検出手段53aにより検出された最大露点温度Tmaxと温度検出手段31bにより検出された熱媒体温度Tとに基づいて、中間熱交換器15bに接続された絞り装置26bおよび第2冷媒流路切替器18bを制御する機能を有している。
 具体的には、冷媒回路制御手段53cは、最大露点温度検出手段53aにより検出された最大露点温度Tmaxを取得する。上述の通り、露点温度情報を出力した利用側熱交換器26bは、熱媒体回路制御手段53bの制御により既に調整用中間熱交換器15bに接続された状態になっている。そこで、冷媒回路制御手段53cは、調整用中間熱交換器15bに流れる熱媒体温度Tを温度検出手段31bから取得する。
 冷媒回路制御手段53cの目標温度設定手段53xは、利用側熱交換器26bへ流入する熱媒体温度Tの目標水温Ttを最大露点温度Tmaxを用いて下記の式(1)により算出する。
 目標水温Tt = 最大露点温度Tmax + α  (1)  (α:所定温度)
 なお、αは結露が確実に発生しないように最大露点温度Tmaxよりも高い温度で流路切り替えを判定させるためのパラメータである。そして、冷媒回路制御手段53cは、最大露点温度Tmaxを基準として目標設定温度範囲Trを最大露点温度Tmax≦熱媒体温度T≦目標水温Tt+β(β:所定温度)に設定する。
 ここで、最大露点温度Tmax≦熱媒体温度T≦目標水温Tt+β(β:所定温度)を満たす場合、冷媒回路制御手段53cは熱媒体温度Tと目標水温Ttとの差分に基づいて絞り装置16bの絞り量を制御する。なお、βは、頻繁に流路切替器における切替動作が行われるのを防止し、十分な差圧が取れないことに起因する切り替え不良や冷媒温度が安定しない等の不具合を防止するためのパラメータである。この絞り量の制御によって、冷媒回路制御手段53cは熱媒体温度Tが上記目標設定温度範囲Tr内に収まるように制御する。
 これにより、最大露点温度Tmax≦熱媒体温度Tであって未だ結露は発生していないが結露が発生するおそれのある利用側熱交換器26bにおいて、運転モードを維持しながら結露の発生を未然に抑制することができる。そして、上述したように、利用側ユニット制御手段52b側において、結露抑制制御が不要な状態であると判断されたとき、上記結露発生制御による絞り量の制御は終了する。
 熱媒体温度Tが最大露点温度Tmaxに満たない場合(熱媒体温度T<最大露点温度Tmax)、冷媒回路制御手段53cは、調整用中間熱交換器15bの冷媒循環回路Aを暖房流路となるように第2冷媒流路切替器18bを制御する。すると、暖房流路内を流れる冷媒と熱交換された熱媒体の熱媒体温度Tは上昇する。熱媒体温度Tが上記目標設定温度範囲Trに収まるように制御する。言い換えれば、既に熱媒体温度T<最大露点温度maxになって結露の発生が生じていると判断された場合、熱交換器に生じた結露を早期に解消するために、調整用中間熱交換器15bが暖房流路に切り替えて利用側熱交換器26bの結露を除去する。なお、熱媒体温度Tが上昇して上記目標設定温度範囲Tr内に入ったとき、上記運転を後述する熱媒体温度<目標水温+βになるまで継続してもよいし、再び冷房流路に切り替えて絞り量による制御に切り替えてもよい。
 熱媒体温度>目標水温+βである場合、冷媒回路制御手段53cは調整用中間熱交換器15bが暖房流路に接続されているか否かを判断する。そして、調整用中間熱交換器15bが暖房流路に接続されている場合、冷媒回路制御手段53cは中間熱交換器15bが冷房流路へ接続されるように第2冷媒流路切替器18bを制御する。そして、冷媒回路制御手段53cは熱媒体温度Tが上記目標設定温度範囲Tr内に収まるように制御する。そして、利用側ユニット制御手段52b側において、結露抑制制御が不要な状態であると判断されたとき、上記結露発生制御による絞り量の制御は終了する。
 なお、冷媒回路制御手段53cが冷媒循環回路A側において結露抑制制御を行う場合について例示しているが、熱媒体回路制御手段53bが結露抑制制御に合わせて熱媒体循環回路B側において熱媒体の流量を調整するようにしてもよい。たとえば、流入熱冷媒温度Tが目標設定温度範囲Trから大きく外れている場合、熱媒体回路制御手段53bは、調整用中間熱交換器15bから流れる熱冷媒の流量が大きくなるように流量調整手段25a、25bを制御してもよい。あるいは、流入熱冷媒温度Tが目標設定温度範囲Trからわずかにずれている場合、熱媒体回路制御手段53bは、調整用中間熱交換器15bから流れる熱冷媒の流量が小さくなるように流量調整手段25a、25bを制御してもよい。これにより、流入熱冷媒温度Tを目標設定温度範囲Trにする結露抑制制御の高速化・最適化を図ることができる。
 また、目標設定温度範囲Trが最大露点温度Tmax≦熱媒体温度T≦目標水温Tt+βに設定された場合について例示しているが、最大露点温度Tmaxをそのまま用いて、最大露点温度Tmax≦熱媒体温度T≦Tmax+βに設定してもよい。この場合、熱媒体温度>目標水温+βに代えて熱媒体温度T>最大露点温度Tmax+βである否かが判断されることになる。
(空気調和装置100の結露抑制制御方法)
 図4は、空気調和装置100の結露抑制制御における利用側ユニット制御手段52の動作例を示すフローチャート、図5は空気調和装置100の結露抑制制御における中間ユニット制御手段53の動作例を示すフローチャートであり、図1から図5を参照して結露抑制制御方法の一例について説明する。まず、図4を参照して結露抑制制御における利用側ユニット制御手段52の制御動作について説明する。
 利用側ユニット制御手段52は、対象機種判別手段520から対象室内機判別情報を受信し、吸込温度センサ32によって検出された吸込温度情報、及び、吸込湿度センサ33によって検出された吸込湿度情報を受信する(ステップS1)。対象判定手段521は、対象室内機判別情報から、流量調整手段25が閉状態によって動作していない状態ではなく、かつ、結露抑制制御に適さない利用側ユニット2ではなく、当該利用側ユニット2が結露抑制制御の制御対象であるか否かを判定する(ステップS2)。その判定の結果、当該利用側ユニット2が制御対象である場合、利用側ユニット制御手段52は露点温度を算出するとともに(ステップS3)、中間ユニット制御手段53に送信する(ステップS4)。一方、制御対象でない場合には利用側ユニット制御手段52は結露抑制制御処理を終了する。なお、以下に、利用側ユニット制御手段52bから露点温度情報が出力され、利用側ユニット制御手段52aからは出力されない場合について例示する。
 次に、図5を参照しながら、結露抑制制御における中間ユニット制御手段53の制御動作について説明する。中間ユニット制御手段53は、以下のステップS21~ステップS24で示される処理によって、利用側ユニット制御手段52bから露点温度情報を受信する(ステップS11)。具体的には、中間ユニット制御手段53は露点温度情報を中間ユニット制御手段52bから受信する(ステップS21)。中間ユニット制御手段53は、利用側ユニット2に対応する露点温度情報を利用側ユニット制御手段52から受信できたか否かを判定する(ステップS22)。
 判定の結果、いずれかの利用側ユニット2a、2bに対応する露点温度情報を受信できない場合、中間ユニット制御手段53は、露点温度情報の受信処理を終了する(ステップS23)。一方、いずれかの利用側ユニット2bに対応する露点温度情報を受信した場合、中間ユニット制御手段53は、利用側ユニット2bの利用側熱交換器26bを調整用中間熱交換器15bに接続する(ステップS23)。
 その後、中間ユニット制御手段53は、露点温度情報を受信した利用側ユニット2bの台数をカウントする(ステップS12)。その結果、カウントが1台以上である場合、中間ユニット制御手段53は、受信した露点温度情報の中から最も大きい露点温度を有する最大露点温度Tmaxを算出する(ステップS13)。なお、本実施形態においては利用側ユニット2b側の露点温度が最大露点温度Tmaxになる。その後、中間ユニット制御手段53は、最大露点温度Tmaxに対応する利用側ユニット2bへ流入する熱媒体温度Tの目標水温Ttを上記式(1)によって算出する(ステップS14)。そして、中間ユニット制御手段53は、熱媒体温度Tによって冷媒回路の各種切り替えを行う(ステップS15)。
 具体的には、最大露点温度Tmaxよりも小さいと判断した場合(熱媒体温度<最大露点温度+β)、調整用中間熱交換器15bを冷房流路から温水側の暖房流路に切り替える(ステップS16)。すると、中間熱交換器15aにより温度が上昇した熱媒体が利用側熱交換器26aに流れ込み、結露の発生を抑制することができる。
 最大露点温度Tmax≦熱媒体温度T≦目標水温+β(β:所定温度)であると判断した場合、冷媒回路制御手段53cは熱媒体温度Tと目標水温Ttとの差分に基づいて絞り装置16bの絞り量を制御する(ステップS17)。これにより、未だ結露は発生していないが結露が発生するおそれのある利用側熱交換器26bにおいて、運転モードを維持しながら結露の発生を未然に抑制することができる。
 そして、熱媒体温度>目標水温+βを満たす場合、熱媒体温度T<目標水温Tt+βである場合、冷媒回路制御手段53cは調整用中間熱交換器15bが暖房流路に接続されているか否かを判断する(ステップS18)。そして、調整用中間熱交換器15bが暖房流路に接続されている場合、冷媒回路制御手段53cは中間熱交換器15bが冷房流路へ接続されるように第2冷媒流路切替器18bを制御する(ステップS19)。
 以上のような結露抑制制御における中間ユニット制御手段53の制御動作は、定時に実施されることになるが、その実施時間間隔については、システムに応じて最適なものに決めればよい。また、目標水温の算出に必要な所定温度α、及び、熱媒体温度Tの比較演算で用いる所定温度βに関してもシステムに応じて最適なものに決めればよい。
 上記実施の形態によれば、利用側熱交換器26a、26bに結露が発生したもしくは発生するおそれがある際には、調整用中間熱交換器15bに流れる冷媒の温度を上昇させることにより、他の利用側熱交換器26aの運転を妨げることなく、結露を除去するもしくは結露の発生を防止することができる。特に、チルドビームのような自然対流の熱交換器を利用側熱交換器26a、26bとして使用する場合、利用側熱交換器26a,26bの熱交換量は小さくなってしまう。このため、室内の露点温度が高い場合、利用側ユニット2a、2b自体が結露してしまう恐れがある。そのような場合であっても、調整用中間熱交換器15bに流れる冷媒の温度を上昇させ、結露を除去するもしくは結露の発生を防止することができる。さらに、たとえば室内空気中の水分をできる限り除去しないように温度(顕熱)のみを下げる高顕熱運転をする際であっても、確実に結露を除去するもしくは結露の発生を防止することができる。
 また、図5に示すように、最大露点温度Tmaxに基づいて調整用中間熱交換器15bの動作を制御することにより、結露抑制制御が必要な複数の利用側熱交換器のうち、最も結露による悪影響が出ている利用側熱交換器を基準に結露抑制制御を行うことになるため、結露抑制制御が必要な複数の利用側熱交換器のいずれにおいても確実に結露の発生を抑制することができる。なお、最大露点温度Tmaxを有する利用側熱交換器26b以外の利用側熱交換器において適正な温度になったときには一次側流路切替器23bおよび一次側流路切替器23aにより通常運転に戻るように制御すればよい。さらに、少なくとも1つの調整用中間熱交換器15bを設ければ、複数の利用側ユニットの結露抑制制御を行うことが可能であるため、各利用側熱交換器毎に別々の温度の熱媒体を生成する必要がないため、効率よく結露抑制制御を行うことができる。
 本発明の実施形態は上記実施形態に限定されない。たとえば図1において複数の各利用側ユニット2a、2bが同一の構成を有する場合について例示しているが、異なる構成の利用側ユニット2a、2bを設置してもよい。この場合であっても、各利用側ユニット2a、2bから露点温度情報が中間ユニット制御手段53に出力され(図3参照)、結露を防止する制御が行われることになる。
 また、図1において、中間熱交換器15a、15b毎に温度検出手段34a、34bが設けられている場合について例示しているが、結露抑制制御が不要な利用側熱交換器である場合には温度検出手段は不要である。
 さらに、図1において、2つの中間熱交換器15a、15bが設けられている場合について例示しているが、2つ以上設けられたものであってもよい。上述のように、各中間熱交換器15a、15b毎に熱交換特性を変えることができるため、中間熱交換器毎にそれぞれ異なる温度の熱媒体を生成することができる。したがって、上記実施形態においては、1つの調整用中間熱交換器15bを用いて結露抑制制御を行うようにしているが、中間ユニット3が3つ以上の中間熱交換器を備えている場合には2つ以上の調整用中間熱交換器を用いて結露抑制制御を行うようにしてもよい。
 1 熱源ユニット、2、2a、2b 利用側ユニット、3 中間ユニット、4a 第1接続配管、4b 第2接続配管、5a 高圧主管、5b 低圧主管、9 絞り装置、10 圧縮機、11 第1冷媒流路切替器、12 熱源側熱交換器、12a 送風機、13 流路形成部、13a~13d 逆止弁、15、15a、15b 中間熱交換器、16、16a、16b 絞り装置、17a 液冷媒供給弁、17b ガス冷媒供給弁、18、18a、18b 第2冷媒流路切替器、19 アキュムレーター、21、21a、21b ポンプ、22、22a、22b 二次側水流路切替器、23、23a、23b 一次側水流路切替器、25、25a、25b 流量調整手段、26、26a、26b 利用側熱交換器、27、28 熱媒体配管、31、31a、31b 熱媒体温度センサ、32、32a、32b 吸込温度センサ、33、33a、33b 吸込湿度センサ、34、34a、34b 出口水温センサ、35、35a、35b 第1冷媒温度センサ、36、36a、36b 圧力センサ、37、37a、37b 第2冷媒温度センサ、51 熱源ユニット制御手段、52a、52b 利用側ユニット制御手段、53 中間ユニット制御手段、53a 最大露点温度検出手段、53b 熱媒体回路制御手段、53c 冷媒回路制御手段、53d 演算処理回路、100 空気調和装置、520 対象機種判別手段、521 対象判定手段、522 露点温度演算手段、523 比較演算手段、524 サーモ判定手段、525 運転信号送信手段、526 制御盤、A 冷媒循環回路、B 熱媒体循環回路、T 熱媒体温度、Tr 目標設定温度範囲、Tt 目標水温、Tmax 最大露点温度。

Claims (10)

  1.  冷媒を圧縮する圧縮機と、空気と冷媒との間で熱交換を行う熱源側熱交換器とを備えた熱源側ユニットと、
     空気と熱媒体との間で熱交換を行う利用側熱交換器を備えた複数の利用側ユニットと、
     前記熱源側ユニットに冷媒配管により接続されているとともに前記利用側ユニットに熱媒体配管により接続された、前記冷媒と前記熱媒体との間で熱交換を行う複数の中間熱交換器と、
     前記各利用側ユニットと前記各中間熱交換器との接続の組み合わせを切り替える熱媒体流路切替器と、
     前記各利用側ユニットにおける結露の状態をそれぞれ検出して前記各利用側ユニットについて結露を抑制する結露抑制制御を行うか否かをそれぞれ判定する対象判定手段と、
     前記対象判定手段により結露抑制制御を行うと判定された前記利用側ユニットに流入する前記熱媒体の温度を熱媒体温度として検出する温度検出手段と、
     前記対象判定手段により結露抑制制御を行うと判定された前記利用側ユニットが、前記複数の中間熱交換器のうち結露抑制制御のために割り当てられた調整用中間熱交換器に接続されるように前記熱媒体流路切替器を制御する熱媒体回路制御手段と、
     前記温度検出手段により検出された前記熱媒体温度が所定の目標設定温度範囲に入るように、前記調整用中間熱交換器に流入する冷媒の温度を制御する冷媒回路制御手段と
     を備えたことを特徴とする空気調和装置。
  2.  前記調整用中間熱交換器に流入する前記冷媒を膨張または減圧する冷媒絞り装置をさらに備え、
     前記冷媒回路制御手段が、前記冷媒絞り装置の絞り量を調整することにより前記冷媒の温度を制御することを特徴とする請求項1記載の空気調和装置。
  3.  前記冷媒回路制御手段が、前記熱媒体温度が前記目標設定温度範囲にある場合、前記熱媒体温度が前記目標設定温度範囲内に収まるように前記冷媒絞り装置を制御することを特徴とする請求項2に記載の空気調和装置。
  4.  前記熱源側ユニットが暖房運転と冷房運転とが可能なものであって、
     前記調整用中間熱交換器に流入する冷媒の流路を、暖房運転時の暖房流路と冷房運転時の冷房流路とに切り替える冷媒流路切替器をさらに備え、
     前記冷媒回路制御手段が、前記冷媒流路切替器により前記調整用中間熱交換器の流路の切り替えを行うことにより、前記調整用中間熱交換器に流入する冷媒の温度を制御するものであることを特徴とする請求項1から請求項3のいずれか1項記載の空気調和装置。
  5.  前記冷媒回路制御手段が、前記熱媒体温度が前記目標設定温度範囲よりも低い場合、前記冷媒流路切替器により前記調整用中間熱交換器に流入する前記冷媒の流路を前記暖房流路に設定することを特徴とする請求項4記載の空気調和装置。
  6.  前記冷媒流量制御手段は、前記熱媒体温度が前記目標設定温度範囲よりも高い場合、前記冷媒流路切替器により前記調整用中間熱交換器に流入する前記冷媒の流路を前記冷房流路に設定することを特徴とする請求項4または請求項5記載の空気調和装置。
  7.  前記利用側ユニットに吸い込まれる空気の温度を検出する吸込温度検出手段と、
     前記利用側ユニットに吸い込まれる空気の湿度を検出する吸込湿度検出手段と、
     をさらに備え、
     前記対象判定手段が、前記吸込温度検出手段により検出された前記吸込温度および前記吸込湿度検出手段により検出された前記吸込湿度を用いて前記結露の状態を検出して結露抑制制御を行うか否かを判定するものであることを特徴とする請求項1から請求項6のいずれか1項記載の空気調和装置。
  8.  前記利用側ユニットに吸い込まれる空気の温度を検出する吸込温度検出手段と、
     前記利用側ユニットに吸い込まれる空気の湿度を検出する吸込湿度検出手段と、
     前記吸込温度検出手段により検出された前記吸込温度および前記吸込湿度検出手段により検出された前記吸込湿度を用いて露点温度を算出する露点温度算出手段と
     をさらに備え、
     前記冷媒回路制御手段が、前記露点温度算出手段により算出された前記露点温度を基準として前記所定の目標設定温度範囲を設定するものであることを特徴とする請求項1から請求項7のいずれか1項記載の空気調和装置。
  9.  前記冷媒回路制御手段が、結露抑制制御を行うと判定された前記利用側ユニットにおける前記露点温度の中から最も露点温度が大きい最大露点温度を検出し、検出した前記最大露点温度を基準として前記所定の目標設定温度範囲を設定するものであることを特徴とする請求項7または8記載の空気調和装置。
  10.  前記調整用中間熱交換器および前記利用側ユニットに流れる前記熱媒体の流量を調整する流量調整手段と、
     前記流量調整手段の動作を制御する熱媒体回路制御手段と
     をさらに備え、
     前記熱媒体回路制御手段が、前記熱媒体温度が前記所定の目標設定温度範囲に入るように前記流量調整手段を制御するものであることを特徴とする請求項1から請求項9のいずれか1項記載の空気調和装置。
PCT/JP2012/004708 2012-07-24 2012-07-24 空気調和装置 WO2014016865A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201280074004.3A CN104364590B (zh) 2012-07-24 2012-07-24 空气调节装置
US14/400,458 US20150128628A1 (en) 2012-07-24 2012-07-24 Air-conditioning apparatus
EP12881820.0A EP2878902B1 (en) 2012-07-24 2012-07-24 Air-conditioning device
PCT/JP2012/004708 WO2014016865A1 (ja) 2012-07-24 2012-07-24 空気調和装置
JP2014526610A JP5774225B2 (ja) 2012-07-24 2012-07-24 空気調和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/004708 WO2014016865A1 (ja) 2012-07-24 2012-07-24 空気調和装置

Publications (1)

Publication Number Publication Date
WO2014016865A1 true WO2014016865A1 (ja) 2014-01-30

Family

ID=49996704

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/004708 WO2014016865A1 (ja) 2012-07-24 2012-07-24 空気調和装置

Country Status (5)

Country Link
US (1) US20150128628A1 (ja)
EP (1) EP2878902B1 (ja)
JP (1) JP5774225B2 (ja)
CN (1) CN104364590B (ja)
WO (1) WO2014016865A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3076090A1 (en) * 2015-03-30 2016-10-05 Siemens Schweiz AG Control of heating, ventilation, air conditioning
WO2017005036A1 (zh) * 2015-07-06 2017-01-12 广东美的暖通设备有限公司 多联机系统的冷媒分流控制方法和装置
US11079122B2 (en) 2013-03-04 2021-08-03 Johnson Controls Technology Company Modular liquid based heating and cooling system
WO2023136002A1 (ja) * 2022-01-12 2023-07-20 株式会社デンソー 冷凍サイクル装置
JP7583795B2 (ja) 2019-09-06 2024-11-14 アンドレアス ヘティッヒ ゲーエムベーハー ウント ツェーオー. カーゲー 機器の壁に固定する熱交換器機構

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK2792970T3 (en) * 2011-12-09 2019-02-18 Daikin Ind Ltd CONTAINER COOLING DEVICES
JP5955409B2 (ja) * 2012-11-29 2016-07-20 三菱電機株式会社 空気調和装置
EP3339769B1 (en) 2013-05-03 2024-08-21 Hill Phoenix Inc. Systems and methods for pressure control in a co2 refrigeration system
US9883616B2 (en) * 2014-09-29 2018-01-30 International Business Machines Corporation Manifold heat exchanger
JP6259419B2 (ja) * 2015-06-01 2018-01-10 ファナック株式会社 扉の開放の可否を判定する機能を備えたレーザ装置
US10502461B2 (en) 2015-08-03 2019-12-10 Hill Phoeniz, Inc. CO2 refrigeration system with direct CO2 heat exchange for building temperature control
CN108139106B (zh) * 2015-10-26 2020-10-30 三菱电机株式会社 空气调节装置
JP6053907B1 (ja) * 2015-12-21 2016-12-27 伸和コントロールズ株式会社 チラー装置
KR101704340B1 (ko) * 2016-03-03 2017-02-07 현대자동차주식회사 에어컨 시스템과 통합된 하이브리드형 인터쿨러 시스템 및 그 제어방법
US10216161B2 (en) * 2016-03-31 2019-02-26 Carrier Corporation Systems and methods for generating operational intelligence for heating ventilation and air conditioning (HVAC) devices
US11125483B2 (en) 2016-06-21 2021-09-21 Hill Phoenix, Inc. Refrigeration system with condenser temperature differential setpoint control
CN106642537A (zh) * 2016-11-22 2017-05-10 珠海格力电器股份有限公司 辐射空调系统的控制方法和装置
KR102382721B1 (ko) * 2017-09-27 2022-04-05 한온시스템 주식회사 자동차의 통합 열관리 시스템
US11796227B2 (en) 2018-05-24 2023-10-24 Hill Phoenix, Inc. Refrigeration system with oil control system
US11397032B2 (en) 2018-06-05 2022-07-26 Hill Phoenix, Inc. CO2 refrigeration system with magnetic refrigeration system cooling
US10663201B2 (en) 2018-10-23 2020-05-26 Hill Phoenix, Inc. CO2 refrigeration system with supercritical subcooling control
US11802702B2 (en) * 2019-02-05 2023-10-31 Mitsubishi Electric Corporation Controller of air conditioning apparatus, outdoor unit, relay unit, heat source unit, and air conditioning apparatus
JP6856154B2 (ja) * 2019-04-15 2021-04-07 ダイキン工業株式会社 空気調和システム
JP6624623B1 (ja) * 2019-06-26 2019-12-25 伸和コントロールズ株式会社 温度制御装置及び温調装置
CN111623564B (zh) * 2020-02-20 2021-08-24 上海朗绿建筑科技股份有限公司 多腔体水力模块
CN114001417A (zh) * 2021-12-06 2022-02-01 南通华信中央空调有限公司 一种温湿分控空调系统及其运行方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03113229A (ja) * 1989-09-27 1991-05-14 Matsushita Refrig Co Ltd 多室冷暖房装置
JP2005016858A (ja) * 2003-06-27 2005-01-20 Mitsubishi Electric Corp ヒートポンプ式空調装置、ヒートポンプ式空調装置の運転方法
JP2007212085A (ja) * 2006-02-10 2007-08-23 Ishimoto Kenchiku Jimusho:Kk 輻射パネル用空調システムの制御方法
WO2010049998A1 (ja) 2008-10-29 2010-05-06 三菱電機株式会社 空気調和装置及び中継装置
WO2011052040A1 (ja) * 2009-10-27 2011-05-05 三菱電機株式会社 空気調和装置
JP2011112312A (ja) * 2009-11-30 2011-06-09 Hitachi Ltd 移動体の熱サイクルシステム

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004225948A (ja) * 2003-01-21 2004-08-12 Sanyo Electric Co Ltd 空気調和装置および空気調和装置の制御方法
EP1739366B1 (en) * 2004-03-31 2017-07-05 Daikin Industries, Ltd. Air conditioning system
JP4325641B2 (ja) * 2006-05-24 2009-09-02 トヨタ自動車株式会社 空燃比センサの制御装置
JP2009299986A (ja) * 2008-06-12 2009-12-24 Daikin Ind Ltd 冷凍装置
JP5274572B2 (ja) * 2008-10-29 2013-08-28 三菱電機株式会社 空気調和装置
US9657955B2 (en) * 2008-10-29 2017-05-23 Mitsubishi Electric Corporation Air-conditioning apparatus
US20130055744A1 (en) * 2011-09-07 2013-03-07 Richard H. Travers Auxiliary ambient air refrigeration system for cooling and controlling humidity in an enclosure

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03113229A (ja) * 1989-09-27 1991-05-14 Matsushita Refrig Co Ltd 多室冷暖房装置
JP2005016858A (ja) * 2003-06-27 2005-01-20 Mitsubishi Electric Corp ヒートポンプ式空調装置、ヒートポンプ式空調装置の運転方法
JP2007212085A (ja) * 2006-02-10 2007-08-23 Ishimoto Kenchiku Jimusho:Kk 輻射パネル用空調システムの制御方法
WO2010049998A1 (ja) 2008-10-29 2010-05-06 三菱電機株式会社 空気調和装置及び中継装置
WO2011052040A1 (ja) * 2009-10-27 2011-05-05 三菱電機株式会社 空気調和装置
JP2011112312A (ja) * 2009-11-30 2011-06-09 Hitachi Ltd 移動体の熱サイクルシステム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2878902A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11079122B2 (en) 2013-03-04 2021-08-03 Johnson Controls Technology Company Modular liquid based heating and cooling system
EP3076090A1 (en) * 2015-03-30 2016-10-05 Siemens Schweiz AG Control of heating, ventilation, air conditioning
WO2017005036A1 (zh) * 2015-07-06 2017-01-12 广东美的暖通设备有限公司 多联机系统的冷媒分流控制方法和装置
JP7583795B2 (ja) 2019-09-06 2024-11-14 アンドレアス ヘティッヒ ゲーエムベーハー ウント ツェーオー. カーゲー 機器の壁に固定する熱交換器機構
WO2023136002A1 (ja) * 2022-01-12 2023-07-20 株式会社デンソー 冷凍サイクル装置

Also Published As

Publication number Publication date
EP2878902A1 (en) 2015-06-03
EP2878902A4 (en) 2016-03-23
US20150128628A1 (en) 2015-05-14
JP5774225B2 (ja) 2015-09-09
EP2878902B1 (en) 2020-09-09
JPWO2014016865A1 (ja) 2016-07-07
CN104364590A (zh) 2015-02-18
CN104364590B (zh) 2016-08-17

Similar Documents

Publication Publication Date Title
JP5774225B2 (ja) 空気調和装置
JP6385436B2 (ja) 空気調和装置
JP6141454B2 (ja) 空気調和装置及び空気調和装置の制御方法
JP6192706B2 (ja) 空気調和装置
JP5340406B2 (ja) 空気調和装置
JP6095764B2 (ja) 空気調和装置
JP5511983B2 (ja) 空調給湯複合システム
JP5762427B2 (ja) 空気調和装置
JP5595521B2 (ja) ヒートポンプ装置
JP5855279B2 (ja) 空気調和装置
JP5908183B1 (ja) 空気調和装置
WO2011089652A1 (ja) 空調給湯複合システム
JPWO2011030429A1 (ja) 空気調和装置
JP6120943B2 (ja) 空気調和装置
JP5972397B2 (ja) 空気調和装置、その設計方法
JP5955409B2 (ja) 空気調和装置
WO2014141381A1 (ja) 空気調和装置
WO2015087421A1 (ja) 空気調和装置
JP6062030B2 (ja) 空気調和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12881820

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014526610

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14400458

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2012881820

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE