WO2013185694A1 - 一种有源天线系统射频指标及无线指标的测试方法与装置 - Google Patents
一种有源天线系统射频指标及无线指标的测试方法与装置 Download PDFInfo
- Publication number
- WO2013185694A1 WO2013185694A1 PCT/CN2013/080110 CN2013080110W WO2013185694A1 WO 2013185694 A1 WO2013185694 A1 WO 2013185694A1 CN 2013080110 W CN2013080110 W CN 2013080110W WO 2013185694 A1 WO2013185694 A1 WO 2013185694A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- test
- antenna system
- active antenna
- probe
- environment
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B17/00—Monitoring; Testing
- H04B17/10—Monitoring; Testing of transmitters
- H04B17/15—Performance testing
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R35/00—Testing or calibrating of apparatus covered by the other groups of this subclass
- G01R35/005—Calibrating; Standards or reference devices, e.g. voltage or resistance standards, "golden" references
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q3/00—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
- H01Q3/26—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
- H01Q3/267—Phased-array testing or checking devices
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B17/00—Monitoring; Testing
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B17/00—Monitoring; Testing
- H04B17/10—Monitoring; Testing of transmitters
- H04B17/11—Monitoring; Testing of transmitters for calibration
Definitions
- the invention relates to the technical field of testing the radio frequency index and the wireless index of the active antenna system, and particularly relates to a method and a device for testing the radio frequency index and the wireless index of the active antenna system.
- the traditional base station equipment itself has a radio frequency port.
- the radio frequency indicator is usually tested by a conduction test method, and the reference point of the test is at the radio port of the device.
- the Active Antenna System is a base station communication subsystem integrated with a multi-channel transceiver and a base station antenna. It is an integrated device for antennas and multi-channel transceivers. The interface between them is an internal interface. It is difficult to directly perform RF port testing, which poses a challenge to the testing of active antenna systems.
- AAS can be tested using Space Radio (OTA, Over The Air), which fully tests the spatial characteristics and RF performance of AAS.
- OTA testing requires specialized darkroom and synchronization equipment, and requires complex testing procedures and long test cycles.
- R&D and sampling certification testing it is more suitable for R&D and sampling certification testing. It is not necessary to use OTA test for production batch testing, etc.
- it is difficult to carry out OTA test in a closed high and low temperature environment.
- a technical problem to be solved by embodiments of the present invention is to provide a method and apparatus for testing an RF index of an active antenna system, and a probe type test method and apparatus can be used to implement virtual active and active AAS device topology.
- the measurement of the RF performance of the passive matrix test reference plane also referred to herein as the test reference plane.
- a method for testing an RF index of an active antenna system, using a test cover to test an RF indicator of the active antenna system under test includes:
- test cover is calibrated, and the cable loss of each antenna of the test cover is calibrated by a vector network analyzer
- the antenna component has the same structure and composition as the antenna antenna of the active antenna system under test, and the test probe is a standard antenna frame;
- Radio frequency index test placing the tested active antenna system in the environmentally calibrated test cover and fixing a spatial relationship between the corresponding array and the test probe, the test environment and the test cover environment
- the calibrated test environment is the same; after the test environment is compensated according to the calibration result obtained by the calibration, the tested active antenna system is subjected to radio frequency test through the RF port of the test probe, and the quilt is obtained. Measure the RF indicator of the RF port of the active antenna system.
- the step of compensating the test environment according to the calibration result obtained by the calibration comprises:
- test environment is compensated according to the test cover unit calibration table obtained by calibrating the test cover unit and the test environment calibration table obtained by the test cover environment calibration.
- the method further includes:
- the step of fixing a spatial relationship between the corresponding active antenna system and the test probe includes:
- the polarization direction of the test probe is made to be in the same direction as the polarization direction of the corresponding array of the active antenna system under test.
- a method for testing a wireless indicator of an active antenna system comprising the steps of testing a radio frequency indicator as described above, further comprising: The spatial characteristics of the active antenna system under test are tested using an area radio frequency (OTA) test.
- OTA area radio frequency
- the OTA test is performed in a darkroom or simulated free space environment, and the pattern of the active antenna system under test is tested.
- the method further includes:
- the OTA test environment is calibrated.
- the OTA test includes:
- EIRP equivalent isotropic radiated power
- the OTA test includes:
- the uplink spatial characteristic test of the active antenna system under test by compensating the pattern of the active antenna system under test, respectively equivalent omnidirectional receiving sensitivity (EIRS).
- EIRS omnidirectional receiving sensitivity
- test device for an RF indicator of an active antenna system, the test device comprising a shielding box, a positioning bracket, an antenna component, an antenna RF line, a test probe, a probe position adjusting unit, and an openable and absorbing panel, wherein:
- the antenna component has the same array structure and composition as the antenna antenna portion of the active antenna system under test, and is configured for calibration of the test apparatus and antenna array testing of the active antenna system under test;
- the test probe is a standard antenna frame
- the shielding box is configured to: form a spatial electromagnetic environment between the testing device and the active antenna system under test;
- the absorbing plate is located between the positioning bracket and the test probe;
- the positioning bracket is configured to: fix the antenna component or the active antenna system under test, and adjust the orientation of the antenna component or the active antenna system under test.
- the device further includes a probe position adjustment unit,
- the probe position adjustment unit is configured to: fix and adjust an orientation of the test probe.
- the probe position adjusting unit includes a sliding guide rail disposed on the shielding box body.
- the absorbing plate between the test probe and the mate corresponding to the branch opens, and the absorbing plates at other positions are closed.
- a test method and device suitable for the performance of the AAS radio frequency index of the above technical solution can effectively improve the test efficiency and reduce the test cost on the basis of solving the actual problems encountered by the current AAS test method.
- the method and apparatus for testing the performance of the AAS radio frequency index according to the embodiment of the present invention can be applied to the mass production and certification testing of the AAS, and can also be combined with the OTA spatial test, thereby fully testing the characteristics of the AAS.
- Figure 1 is a block diagram showing the basic composition of a probe type test apparatus.
- Figure 2 is a block diagram of the calibration principle of the probe test device.
- Figure 3 is a block diagram of the test principle of the probe test device.
- Figure 4 is a flow chart of the calibration of the probe test device.
- Figure 5 is a flow chart of the test operation of the probe type test device.
- Figure 6 is a block diagram of the OTA test environment calibration working principle
- FIG. 7 is a block diagram showing the working principle of the downlink space characteristic test of the active antenna system
- FIG. 8 is a block diagram showing the working principle of the uplink space characteristic test of the active antenna system
- FIG. 9 is a flow chart of an OTA test environment calibration operation according to an embodiment of the present invention.
- FIG. 10 is a flowchart of a downlink space characteristic test operation of an active antenna system according to an embodiment of the present invention
- FIG. 11 is a flow chart of an uplink space characteristic test of an active antenna system according to an embodiment of the present invention.
- the embodiment of the invention provides a test device for an RF index of an active antenna system, which is equivalent to a test device, as shown in FIG. 1 , and is composed of the following parts.
- the antenna component 101 the antenna array identical to the AAS of the device under test, is used for the calibration of the antenna array test and test device of the AAS;
- An antenna RF line 102 connecting an RF cable between the antenna component port and the external connector, for introducing/extracting the RF signal of each antenna component;
- Test probe 103 a standard antenna element whose structure has a fixed polarization direction, gain and standing wave ratio requirements
- the probe RF line 104 is configured as: a radio frequency cable that introduces/extracts the RF signal of the test probe; a probe position adjustment unit 105, a device that can fix and orient the test probe 103, and the device can be in the cabinet Directional movement on the guide rail 106;
- the guide rail 106 is configured to: define a movement trajectory of the probe position adjustment unit 105, which can be made to move at an equal interval;
- the positioning bracket 107 is configured to: adjust and fix a spatial relationship between the probe position adjusting unit 106 and the tested member;
- the absorbing plate 108 the absorbing material placed between the device under test and the guide rail 106, can reduce interference between reflection and refraction of the internal signal between the test probe 103 and the frame of the device under test.
- the absorbing plate 108 can be automatically opened and closed with the movement of the probe position adjusting unit 105.
- Shielding box 109 the metal housing of the test unit, can shield the internal and external signals, so that it has good space electromagnetic shielding capability.
- the specific connection relationship of the test device is: in the shielding box 109, the device AAS is fixed on one side of the box body through the positioning bracket 107, and the other side is a test probe 103 mounted on the probe position adjusting unit 105.
- the spatial relationship between the device under test AAS and the test probe 103 can be changed by adjusting the relative position between the test probe 103 and the positioning bracket 107; the sliding guide 106 is disposed in the casing, and the probe position adjusting unit 105 is on the guide rail. Sliding, the limit on the guide rail is fixed, and the test is guaranteed.
- the test probe 103 can traverse each branch of the test device AAS.
- the test probe 103 is connected to the test meter externally connected to the probe RF line 104.
- the antenna component 101 is part of the test setup and is identical to the antenna section of the device under test AAS, primarily for the calibration of the antenna array of the AAS and the calibration of the test equipment.
- Embodiments of the present invention provide a method for testing an RF index of an active antenna system, the test method mainly comprising: a test device calibration, a test device test, and an antenna electrical performance test.
- test equipment unit and the near field coupled test environment need to be separately calibrated.
- the test device is calibrated, mainly for the calibration of the antenna RF line 102 of the test device.
- the vector network analyzer is used to calibrate and record the line loss of each antenna RF line to generate a test device single calibration table.
- the test environment calibration is mainly to calibrate the near field coupling test environment of the test device, place the antenna component 101 in the test device, fix the spatial relationship between it and the test probe 103, and make the test probe polarization direction and The polarization direction of the corresponding component is in the same direction; the calibration test of the antenna component 101 and the near-field coupling environment is performed by the positioning and sliding of the test probe 103 on the testing device, and a test environment calibration table is generated.
- the input or output can be used to test the active antenna system of the device under test as a black box and obtain the corresponding measurement results.
- the calibration value is obtained and compensated to the test environment. Together with the measurement results, the radio frequency indicator of the RF port of the active antenna system of the device under test can be derived.
- antenna electrical performance test Since the antenna component 101 of the test device and the antenna array of the active antenna system of the device under test are completely identical, the electrical characteristics of the antenna component of the test device can be characterized by the electrical characteristics of the antenna portion of the active antenna system; the test items can include: Standing wave ratio test, isolation test, calibration circuit parameter test (for antenna with calibration circuit) and intermodulation test, these test items are the same as traditional antenna array test methods, mainly testing the antenna port through vector network analyzer The S-parameter and passive crossover analyzer were used to test the intermodulation products.
- the performance of the antenna array is determined by the mechanical properties of the antenna design, it is guaranteed that the performance is stable in large-volume production and can meet the repeated test requirements, so the antenna electrical performance test can be characterized only once or several times.
- AAS antenna electrical characteristics Since the performance of the antenna array is determined by the mechanical properties of the antenna design, it is guaranteed that the performance is stable in large-volume production and can meet the repeated test requirements, so the antenna electrical performance test can be characterized only once or several times. AAS antenna electrical characteristics.
- an embodiment of the present invention further provides a test method for a spatial characteristic index of an active antenna system.
- the AAS spatial characteristic test can inherit the traditional base station antenna test environment and needs to be performed in an antenna test field such as a dark room. It mainly tests the spatial characteristics of AAS.
- the AAS spatial characteristics mainly include: AAS beam control capability and accuracy, spatial synthesis gain test, half-power beamwidth, front-to-back ratio, cross-polarization ratio, sidelobe level measurement, downtilt test, etc.
- EIRP Effective Isotropic Radiated Power
- EIRS Equivalent Omnidirectional Receive Sensitivity
- test method and apparatus for the RF test of the active antenna system of the present invention will be further described in detail below with reference to specific application examples.
- a near field coupled calibration environment is established as shown in FIG. 2, and the antenna member 101 is placed in the test device, and the spatial relationship between the test probe 103 and the test probe 103 is fixed by the probe position adjusting unit 105 and the positioning bracket 107, and the probe is tested.
- the polarization direction of the 103 is in the same direction as the polarization direction of the corresponding element of the device; the calibration test of the antenna element 101 and the near-field coupling environment is realized by the positioning and sliding of the probe position adjusting unit 105 on the device, and The test can be performed as shown in steps 402 to 404 of Figure 4.
- Step 402 Set a frequency point in a specified frequency band, and test, by using a vector network analyzer, an S parameter between the external test port (a interface) of the probe RF line 104 and the external test port (c interface) of the antenna RF line 102, and obtain each
- Step 403 estimating that the difference between the test port of the test probe 103 and the test port of the antenna array of the test object is G_ab-nm in the test environment.
- G— ab— nm G ac nm - G bc nm
- G—be—nm is the calibration value of the test device unit
- G—ac—nm is the environmental calibration value of the test device.
- Step 404 in the required test frequency band, the steps 401 to 403 may be repeated by selecting three frequency points of high, medium and low, or multi-frequency point calibration may be performed according to the requirements of the test accuracy.
- mathematical calculations such as interpolation are performed on the plurality of sets of calibration data to obtain a two-dimensional table or curve corresponding to the calibration frequency and the calibration value in the test environment of the probe type test device. By looking up the table, the calibration value AGc of any frequency point in the specified frequency band in each branch can be obtained.
- test environment is established.
- the test environment and the calibration process are basically the same.
- the AAS is used to replace the antenna components and antenna RF lines for calibration test.
- step 501 it is first necessary to compensate for the gain of each branch.
- the approximate value AGc of the compensation is found by the calibration table in the calibration section.
- the compensated position can be in the digital domain of the active antenna system. It can also be in the test instrument.
- Step 502 After compensating the test device, according to the requirements of the 3GPP protocol for the AAS BS, test the probe to perform various RF index tests on each channel of the AAS of the device under test.
- the test reference point is equivalent to the RF port of the active antenna system being tested.
- a test environment is established.
- the gain reference antenna 202 is mounted on the antenna turntable 206, and is connected to the vector signal generator 208 via the RF cable 204.
- the receiving antenna 203 is mounted on the antenna mount 207, and the receiving antenna 203 is passed.
- the RF cable 205 is connected to a spectrum analyzer (or power meter) 209.
- the environmental calibration can be performed by referring to the steps shown in FIG. 9, and specifically includes the following main steps: Step 901, adjusting the antenna turntable 206 and the antenna mount 207 to positively align the gain reference antenna 202 with the receive antenna 203.
- Step 902 the vector signal generator 208 is set to transmit a downlink continuous analog signal of the specified frequency band.
- Step 903 Receive the signal through the receiving antenna 203, input it to the spectrum analyzer or the power meter 209, obtain the corresponding received signal power, and record the data.
- the calculation method is as follows:
- Py - Px Lx + (Ly - Gh + Ls) - Gs Equation (1)
- Py is a vector signal generator 208 that outputs a continuous analog signal power value
- Px is the power value of 209 measured by a frequency language instrument or a power meter
- Gh is the gain of the receiving antenna
- Gs is the gain of the gain reference antenna
- Ly is the difference of the RF cable 204;
- Lx is the difference of the RF cable 205
- Ls is the spatial path loss in the OTA environment.
- This calibration parameter ⁇ Pc is the reference parameter for each test of the active antenna system in the test environment.
- the test environment is established as shown in FIG. 7.
- the active antenna system 302 is mounted on the antenna turntable 306, and is connected to the background configuration device 308 through the optical fiber 304.
- the receiving antenna 303 is mounted on the antenna support 307. , connected by a radio frequency cable 305 and a spectrum analyzer or a wireless communication tester 309.
- step 1001 the active antenna system 302 and the background configuration device 308 are activated and functioning normally, and the active antenna system 302 is in a transmit mode by transmitting configuration parameters to the background, and a fixed wireless beam of rated power is transmitted in the designated frequency band.
- Step 1002 Adjust the antenna turret 306 so that the active antenna system 302 and the receiving antenna 303 reach the optimal orientation in the horizontal and vertical directions, so that the measured power value (Pg) of the spectrum analyzer or the wireless communication meter 309 is maximized (using For the main polarization test) or minimum (for the cross polarization test).
- Pg measured power value
- Step 1003 the active antenna system 302 performs azimuth rotation on the antenna turntable 306, and records the power value (Pg) received by the spectrum analyzer as a function of the angle; and adjusts the installation mode of the active antenna system 302 (horizontal or Vertical) and the polarization direction of the receiving antenna 303, different principal planes (horizontal or vertical) and different polarization patterns can be obtained.
- Step 1004 Adjust or reconfigure the configuration parameters of the active antenna system 302 (including the weight of the antenna array element), and repeat steps 1002 and 1003 to obtain a direction pattern of different pointing beams.
- Pg is the power value measured by the frequency analyzer 309
- ⁇ Pc is the calibration parameter
- the test environment is established as shown in FIG. 8.
- the active antenna system 402 is mounted on the antenna turntable 406 and connected to the background configuration device 408 via the optical fiber 404.
- the transmit antenna 403 is mounted on the antenna mount 407. Connected by a radio frequency cable 405 and a vector signal generator 409.
- Step 1101 The active antenna system 402 and the background configuration device 408 are first activated and working normally.
- the active antenna system 402 is in the receiving mode by setting the background configuration parameters, and can receive the fixed-oriented wireless beam in the specified frequency band.
- Step 1102 The vector signal generator 409 is configured to transmit an analog modulation signal of a certain standard (GSM, CDMA, WCDMA or LTE, etc.) in a specified frequency band, and adjust the antenna turntable 406 such that the active antenna system 402 and the transmitting antenna 403 are horizontal and pitched.
- GSM Global System for Mobile communications
- CDMA Code Division Multiple Access
- WCDMA Wideband Code Division Multiple Access
- LTE Long Term Evolution
- the vector signal generator 409 is configured to transmit an analog modulation signal of a certain standard (GSM, CDMA, WCDMA or LTE, etc.) in a specified frequency band, and adjust the antenna turntable 406 such that the active antenna system 402 and the transmitting antenna 403 are horizontal and pitched.
- the best pointing is achieved such that its active antenna system 402 measures the maximum power value (for the primary polarization test) or the minimum (for the cross polarization test).
- the active antenna system 402 performs azimuth rotation on the test turret and records its received power value (Rs) as a function of angle.
- the mounting mode (horizontal or vertical) of the active antenna system 402 and the polarization direction of the transmitting antenna 403 can be separately adjusted to obtain different main planes (horizontal or vertical) and different polarization patterns.
- Step 1104 Adjust the configuration parameters of the active antenna system 402 (including the weight of the antenna array element), and repeat step 1102 and step 1103 to obtain directions of different pointing beams.
- Step 1105 Analyze the uplink spatial characteristic of the AAS according to the test data of the step 1101 1104. Adjust the signal amplitude (Ps) of the vector signal generator 409 to minimize the demodulation sensitivity of the active antenna system 402 to the modulated signal, and obtain the EIRS. :
- Ps is a vector signal generator 409 that outputs a modulated signal power value
- ⁇ Pc is the calibration parameter
- the performance of the antenna array portion of the active antenna system is determined by the mechanical properties of the antenna design, it is guaranteed that the performance is stable in large-volume production and can meet the repeated test requirements, so the spatial characteristic test of the active antenna system is tested.
- the spatial characteristics of AAS can be obtained only once or several times.
- the method and apparatus of the embodiments of the present invention can implement comprehensive testing of the wireless indicators of the active antenna system, including radio frequency indicators and spatial indicators.
- the test efficiency and the test cost brought by the OTA test are well solved.
- the near-field coupling method of the probe test is used to solve the problem that the active antenna system device has no external radio frequency.
- the problem brought by the port can be tested as a black box. It can inherit the test standards, test methods, test tools and test environment of traditional base stations. It is a part of equipment production and product certification.
- An effective and practical test method in short, under the premise of ensuring the test requirements, the test cost is saved, the test efficiency is improved, and the user can easily accept and authenticate.
- modules or steps of the present invention can be implemented by a general-purpose computing device, which can be concentrated on a single computing device or distributed over a network composed of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device, such that they may be stored in the storage device by the computing device and, in some cases, may be different from the order herein.
- the steps shown or described are performed, or they are separately fabricated into individual integrated circuit modules, or a plurality of modules or steps are fabricated as a single integrated circuit module. Thus, the invention is not limited to any particular hardware and software. Combine.
- this near-field coupling method of the probe test solves the problem that the active antenna system device does not have an external RF port, and the device to be tested can be Tested as a black box, it can inherit the test standards, test methods, test tools and test environment of traditional base stations. It is an effective and practical test method in equipment production and product certification. In general, it guarantees testing. Under the premise of the requirement, the test cost is saved, the test efficiency is improved, and the user can easily accept and authenticate. Therefore, the present invention has strong industrial applicability.
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- General Physics & Mathematics (AREA)
- Mobile Radio Communication Systems (AREA)
- Monitoring And Testing Of Transmission In General (AREA)
- Variable-Direction Aerials And Aerial Arrays (AREA)
Abstract
一种有源天线系统射频指标及无线指标的测试方法与装置,釆用基于近场耦合方式的一种探针式的测试罩,对被测有源天线系统的射频指标进行测试,包括:测试罩单体校准;测试罩环境校准;射频指标测试,将被测有源天线系统置于测试罩中,测试环境与校准环境相同,根据校准得到的校准结果对测试环境进行补偿后,通过测试探针的射频端口对被测有源天线系统进行射频测试。还提出了一种综合的测试方法,分别釆用空间射频(OTA)测试对有源天线系统的空间特性进行测试,釆用近场耦合方式对有源天线系统的射频指标进行测试,充分结合了两种测试方法的优点,克服了两者的缺陷和问题,从而在测试效率和测试成本上达到最优化。
Description
一种有源天线系统射频指标及无线指标的测试方法与装置
技术领域
本发明涉及有源天线系统射频指标及无线指标的测试技术领域, 尤其涉 及一种有源天线系统射频指标及无线指标的测试方法与装置。
背景技术
传统基站设备本身具有射频端口, 射频指标的测试通常釆用传导测试方 法, 测试的参考点在设备的射频端口。
有源天线系统(AAS )作为一种多通道收发信机与基站天线集成的基站 通信子系统, 它是天线和多通道收发信机的一体化设备, 相互之间的接口表 现为内部接口, 工程上难以直接进行射频端口测试, 这样对有源天线系统的 测试带来了挑战。
使用传统基站设备的传导测试方法来测试有源天线系统, 需要将有源天 线系统的有源部分和天线阵列部分割裂开。 对于有源天线系统来说, 破坏了 其一体化的拓朴结构, 同时增加了设计的复杂度, 影响了设备集成度。
通常认为,可以釆用空间射频(OTA, Over The Air )对 AAS进行测试, 它可以完全测试 AAS的空间特性和射频性能。 但 OTA测试需要专业的暗室 和同步设备, 并且需要复杂的测试流程和较长的测试周期。 并且, 因其测试 成本高和测试效率低, 所以比较适合于研发和抽样认证测试等。 而对于生产 批量测试等情况使用 OTA测试则没有必要; 同时对于一些 CE认证测试,要 求在密闭的高低温环境下进行, 用 OTA测试实现很困难。
发明内容
本发明实施例解决的一个技术问题是提供一种有源天线系统射频指标的 测试方法与装置,釆用一种探针式测试方法和装置, 能够完成对 AAS设备拓 朴结构中虚拟有源和无源阵子测试参考面(本文中也将测试参考面称为界面) 的射频性能的测量。
为解决上述技术问题, 釆用如下技术方案:
一种有源天线系统射频指标的测试方法, 釆用测试罩对被测有源天线系 统的射频指标进行测试, 所述测试方法包括:
测试罩单体校准, 通过矢量网络分析仪对所述测试罩的各天线射频线进 行线缆差损的校准;
测试罩环境校准, 在单体校准后的所述测试罩内放置天线部件, 并固定 其与测试探针之间的空间关系, 通过移动所述测试探针对所述天线部件的各 阵子与所述测试罩之间的近场耦合环境进行校准; 其中所述天线部件的阵子 结构和组成方式与所述被测有源天线系统天馈部分相同, 所述测试探针为一 个标准的天线阵子;
射频指标测试, 将所述被测有源天线系统置于环境校准后的所述测试罩 中并固定其对应阵子与所述测试探针之间的空间关系, 其测试环境与所述测 试罩环境校准后的测试环境相同; 根据所述校准得到的校准结果对所述测试 环境进行补偿后, 通过所述测试探针的射频端口对所述被测有源天线系统进 行射频测试, 得到所述被测有源天线系统射频端口的射频指标。
可选地, 根据所述校准得到的校准结果对所述测试环境进行补偿的步骤 包括:
根据所述测试罩单体校准得到的测试罩单体校准表, 以及所述测试罩环 境校准得到的测试环境校准表, 对所述测试环境进行补偿。
可选地, 该方法还包括:
釆用所述天线部件对所述被测有源天线系统的天线电气性能进行测试。 可选地, 固定所述被测有源天线系统对应阵子与所述测试探针之间的空 间关系的步骤包括:
使得所述测试探针的极化方向与所述被测有源天线系统对应阵子的极化 方向同向。
一种有源天线系统无线指标的测试方法, 该方法包括如上所述的射频指 标测试步骤, 还包括:
釆用空间射频 (OTA)测试对所述被测有源天线系统的空间特性指标进行 测试。
可选地, 所述 OTA测试在暗室或者模拟自由空间环境中进行, 测试所 述被测有源天线系统的方向图。
可选地, 所述方法还包括:
对所述 OTA测试环境进行校准。
可选地, 所述 OTA测试包括:
所述被测有源天线系统的下行空间特性测试: 通过对所述被测有源天线 系统的方向图进行补偿, 得到等效全向辐射功率 (EIRP ) 。
可选地, 所述 OTA测试包括:
所述被测有源天线系统的上行空间特性测试: 通过对所述被测有源天线 系统的方向图进行补偿, 分别等效全向接收灵敏度(EIRS ) 。
一种有源天线系统射频指标的测试装置, 所述测试装置包括屏蔽箱、 定 位支架、 天线部件、 天线射频线、 测试探针、 探针位置调整单元和可开合吸 波板, 其中:
所述天线部件具有与被测有源天线系统天馈部分相同的阵子结构和组成 方式, 设置成用于所述测试装置的校准和所述被测有源天线系统的天线阵列 测试;
所述测试探针为一个标准的天线阵子;
所述屏蔽箱设置成: 形成所述测试装置与所述被测有源天线系统之间的 空间电磁环境;
所述吸波板位于所述定位支架与所述测试探针之间;
所述定位支架设置成: 固定所述天线部件或者被测有源天线系统, 以及 调整所述天线部件或者被测有源天线系统的方位。
可选地, 所述装置还包括探针位置调整单元,
所述探针位置调整单元设置成: 固定并调整所述测试探针的方位。
可选地, 所述探针位置调整单元包括设在所述屏蔽箱体上的滑动导轨。 可选地, 在测试所述被测有源天线的支路时, 所述测试探针与所述支路 对应的阵子之间的吸波板打开, 其他位置的吸波板闭合。
上述技术方案的一种适用于 AAS射频指标性能的测试方法和装置,在解 决目前 AAS在测试方法遇到的实际问题的基础上, 有效的提高了测试效率, 降低了测试成本。本发明实施例的 AAS射频指标性能的测试方法和装置可以 应用于 AAS的批量生产和认证测试工作, 同时还可与 OTA的空间测试相配 合, 从而能够全面的测试 AAS的特性。 附图概述
此处所说明的附图用来提供对本发明的进一步理解, 构成本申请的一部 分, 本发明的示意性实施例及其说明用于解释本发明, 并不构成对本发明的 不当限定。 在附图中:
图 1是探针式测试装置的基本组成框图。
图 2是探针式测试装置校准原理框图。
图 3是探针式测试装置测试原理框图。
图 4是探针式测试装置校准工作流程图。
图 5是探针式测试装置测试工作流程图。
图 6是 OTA测试环境校准工作原理框图;
图 7是有源天线系统下行空间特性测试工作原理框图;
图 8是有源天线系统上行空间特性测试工作原理框图;
图 9是本发明实施例的 OTA测试环境校准工作流程图;
图 10是本发明实施例的有源天线系统下行空间特性测试工作流程图; 图 11是本发明实施例的有源天线系统上行空间特性测试工作流程图。 本发明的较佳实施方式
为了便于阐述本发明, 以下将结合附图及具体实施例对本发明技术方案 的实施作进一步详细描述。 需要说明的是, 在不冲突的情况下, 本申请中的 实施例及实施例中的特征可以相互任意组合。
本发明实施例提供一种有源天线系统射频指标的测试装置, 该装置相当 于一个测试装置, 如图 1所示, 由以下几部分组成,
天线部件 101 , 和被测件 AAS完全相同的天线阵列, 用于 AAS的天线 阵列测试和测试装置的校准;
天线射频线 102 , 连接天线部件端口和外部连接器之间射频线缆, 用于 引入 /引出天线部件各阵子的射频信号;
测试探针 103 ,一个标准的天线阵子,其阵子结构具有固定的极化方向、 增益和驻波比等要求;
探针射频线 104设置成: 引入 /引出测试探针射频信号的射频线缆; 探针位置调整单元 105 , —个可以对测试探针 103进行固定和定向移动 的装置, 该装置可以在箱体的导轨 106上定向移动;
导轨 106设置成: 限定探针位置调整单元 105的移动轨迹, 可以使其做 等间距的定向移动;
定位支架 107设置成: 调整和固定探针位置调整单元 106和被测试件之 间的空间关系;
吸波板 108, 放置在被测件和导轨 106之间的吸波材料, 可以减少测试 探针 103和被测试件的阵子之间受内部信号的反射、折射等干扰。吸波板 108 可以随探针位置调整单元 105的移动自动开合。
屏蔽箱 109, 测试装置的金属外壳, 可以对其内部和外部的信号进行屏 蔽, 使其具有良好的空间电磁屏蔽能力。
本测试装置的具体连接关系为:在屏蔽箱 109中,被测件 AAS通过定位 支架 107固定在箱体内的一侧, 另一侧是安装在探针位置调整单元 105上的 测试探针 103 ,可以通过调整测试探针 103和定位支架 107之间的相对位置, 改变被测件 AAS和测试探针 103之间的空间关系; 箱体中有滑动导轨 106, 探针位置调整单元 105在导轨上滑动, 导轨上具有限位定距的功能, 保证测
试探针 103可以遍历测试被测件 AAS的每个支路。测试探针 103通过探针射 频线 104外接到的测试仪表。 当测试某支路时, 则测试探针 103和被测件支 路对应阵子之间的吸波板 108会自动打开, 其它阵子的位置会自动遮挡。 这 样可以提供一个良好的测试环境。 天线部件 101作为测试装置的一部分, 是 和被测件 AAS的天线部分完全相同的, 主要用于 AAS的天线阵列的测试和 测试装置的校准。
本发明实施例提供了一种有源天线系统射频指标的测试方法, 该测试方 法主要包括: 测试装置校准、 测试装置测试和天线电气性能测试。
该测试方法的具体测试过程描述如下:
1、 测试装置校准
需要对测试装置单体及近场耦合的测试环境分别校准。
测试装置单体校准, 主要是对测试装置的天线射频线 102的校准, 通过 矢量网络分析仪对各天线射频线进行线损的校准和记录, 产生测试装置单体 校准表。
测试环境校准, 主要是对测试装置的近场耦合测试环境进行校准, 放置 天线部件 101在测试装置中, 固定它与测试探针 103之间的空间关系, 并且 使得测试探针的极化方向和被测件对应阵子的极化方向同向; 通过测试探针 103在测试装置上的定位滑动, 实现对天线部件 101的各阵子及近场耦合环 境的校准测试, 产生测试环境校准表。
2、 测试装置测试
放置被测件有源天线系统在测试装置中, 固定它与测试探针 103之间的 空间关系,测试探针 103在装置上做等间距的定位移动,通过探针射频线 104 可以实现射频信号的输入或输出 ,可以将被测件有源天线系统作为一个黑盒 子进行射频测试, 得到相应的测量结果。
通过查找测试装置单体校准表和测试环境校准表, 得到校准值, 将其补 偿到测试环境中, 和测量结果一起可以推算出被测件有源天线系统的射频端 口的无线射频指标。
3、 天线电气性能测试
由于测试装置的天线部件 101和被测件有源天线系统天线阵列部分完全 相同, 对测试装置的天线部件电气性能的测试, 可以表征有源天线系统天线 部分的电气特性; 测试项可以包括: 电压驻波比测试, 隔离度测试, 校准电 路参数测试(针对带校准电路的天线)和交调测试等, 这些测试项和传统天 线阵列的测试方法相同, 主要通过矢量网络分析仪来测试天线的端口的 S参 数和无源交调分析仪来测试交调产物得到。
由于天线阵列的性能是天线设计的机械性能决定的, 可以保证在大批量 的生产中, 性能是稳定的, 并且可以满足重复测试要求, 所以天线电气性能 测试只须一次或几次, 就可以表征 AAS的天线电气特性。
此外, 本发明实施例还提供了有源天线系统空间特性指标的测试方法,
AAS空间特性测试可以继承传统的基站天线测试环境,需要在暗室等天线测 试场进行。 主要测试 AAS的空间特性, AAS空间特性主要包括: AAS的波 束控制能力和精度, 空间合成增益测试, 半功率波束宽度、 前后比、 交叉极 化比、副瓣电平测量,下倾角测试等,首先通过天线测试场的环境,测试 AAS 的方向图 (相对量) , 然后对测试场的进行校准; 对方向图补偿后就可以得 到表征 AAS空间特性的绝对量, 分别为等效全向辐射功率(EIRP, Effective Isotropic Radiated Power )和等效全向接收灵敏度 ( EIRS , Effective Isotropic Reference Sensitivity ) 。
以下将结合具体应用实例, 对本发明的有源天线系统射频测试的测试方 法及装置的实施作进一步详细描述。
1、 测试装置校准
1)测试装置单体校准
如图 2所示建立测试环境, 并可按照图 4中的步骤 401所示进行测试: 步骤 401 , 在指定频段内设置频点, 用矢量网络分析仪对测试装置的天 线射频线 102的两端 (b界面和 c界面)进行 S参数测试,得到各射频线的差损 为 G— be— nm (其中对于 Ν χ M阵列有源天线系统, n =l , N; m = l , ... ,
M);
2)测试装置环境校准
如图 2所示建立近场耦合的校准环境,放置天线部件 101在测试装置中, 通过探针位置调整单元 105和定位支架 107固定它与测试探针 103之间的空 间关系, 并且测试探针 103的极化方向和被测件对应阵子的极化方向同向; 通过探针位置调整单元 105在装置上的定位滑动, 实现对天线部件 101的各 阵子及近场耦合环境的校准测试,并可按照图 4步骤 402 ~ 404所示进行测试。
步骤 402, 在指定频段内设置频点, 用矢量网络分析仪测试测探针射频 线 104外部测试端口 ( a界面 )和天线射频线 102外部测试端口(c界面)之间 的 S参数, 得到各支路射频端口的差损为 G— ac— nm (其中对于 N χ M阵列 有源天线系统, η=1, ..·, N; m=l, ..., Μ)。
步骤 403, 推算出在该测试环境下, 从测试探针 103的测试端口和被测 件天线阵列的测试端口之间的差损 G— ab— nm为,
G— ab— nm = G ac nm - G bc nm
其中, 对于 NxM阵列有源天线系统, n= l, ..·, N; m= l, ..., Μ;
G— be— nm为测试装置单体校准值;
G— ac— nm为测试装置环境校准值。
步骤 404 ,在要求的测试频段内,可以选择高中低三个频点重复步骤 401〜 403,也可以根据测试精度的要求进行多频点校准。最后对多组校准数据做插 值等数学计算, 得到探针式测试装置的测试环境下对应校准频率和校准值的 二维表格或曲线。 通过查表就可以得到各支路中指定频段内任意频点的校准 值 AGc。
2、 射频指标测试
如图 3建立测试环境,测试环境和校准环节基本相同,和校准测试比较, 是用被测件 AAS替代了校准测试用的天线部件及天线射频线。按照图 5所示 步骤进行测试:
步骤 501, 首先需要对每个支路的增益进行补偿。 补偿的近似值 AGc通 过校准环节中的校准表查得。 补偿的位置可以在有源天线系统的数字域中,
也可以在测试仪表中。
步骤 502, 对测试装置补偿后, 按照 3GPP协议针对 AAS BS的要求, 通过测试探针对被测件的 AAS各通道进行各项射频指标测试。测试参考点相 当于被测有源天线系统的射频端口。
以下将对本发明提出的有源天线系统的 AAS 空间特性的测试方法和装 置的具体实现进行详细描述。
1 ) 测试环境校准
结合图 6所示, 建立测试环境。 在暗室 201环境下, 增益基准天线 202 安装在天线转台 206上, 并通过射频线缆 204和矢量信号发生器 208相连, 另一端, 接收天线 203安装在天线支架 207上, 并将接收天线 203通过射频 线缆 205连接到频谱分析仪 (或功率计) 209上。
环境校准可参照图 9所示的步骤进行, 具体包括如下主要步骤: 步骤 901 , 调整天线转台 206和天线支架 207使得增益基准天线 202与 接收天线 203正向对准。
步骤 902,设置矢量信号发生器 208发射指定频段的下行连续模拟信号。 步骤 903 , 通过接收天线 203接收此信号, 输入给频谱分析仪或功率计 209, 得到相应的接收信号功率并记录数据, 计算方法如下:
Py - Px = Lx + (Ly - Gh + Ls) - Gs 公式 ( 1 ) 其中, Py为矢量信号发生器 208输出连续模拟信号功率值;
Px为频语仪或功率计测量 209的功率值;
Gh为接收天线的增益;
Gs为增益基准天线的增益;
Ly为射频线缆 204的差损;
Lx为射频线缆 205的差损;
Ls为 OTA环境中空间路径损耗。
公式( 1 )中, Py和 Gs已知。 Px和 Lx可以测量得到, 通过公式计算可
以得到测试环境链路(包括空间损耗、 线缆差损、 接收天线增益等) 的校准 参数 A Pc。
△ Pc = (Ly - Gh + Ls) = Py - Px - Lx + Gs 公式 ( 2 ) 此校准参数△ Pc 就是测试环境下进行有源天线系统各项测试的基准参 数。
2 ) 有源天线系统下行空间特性测试
按照图 7所示建立测试环境, 在暗室 301环境下, 有源天线系统 302安 装在天线转台 306上, 并通过光纤 304和后台配置设备 308相连, 另一端, 接收天线 303安装在天线支架 307上, 通过射频线缆 305和频谱分析仪或无 线通信综测仪 309连接。
参照图 10所示的步骤进行, 具体包括如下主要步骤:
步骤 1001 , 有源天线系统 302和后台配置设备 308启动并正常工作, 通 过对后台配置参数使得有源天线系统 302处于发射模式, 在指定频段内发射 额定功率的固定无线波束。
步骤 1002 ,调整天线转台 306使得有源天线系统 302与接收天线 303在 水平和俯仰上达到最佳指向, 使其频谱分析仪或无线通信综测仪 309的测量 功率值(Pg ) 为最大(用于主极化测试)或最小 (用于交叉极化测试) 。
步骤 1003 , 有源天线系统 302在天线转台 306上做方位旋转, 并将频谱 分析仪接收到的功率值(Pg )作为角度的函数记录下来; 同时调整有源天线 系统 302的安装方式(水平或者垂直) 以及接收天线 303的极化方向, 可以 得到不同主平面 (水平或垂直)和不同极化的方向图等。
步骤 1004 , 调整或者重新配置有源天线系统 302配置参数 (包括天线阵 元的权值) , 重复步骤 1002、 步骤 1003可以得到不同指向波束的方向图; 步骤 1005 , 根据步骤 1002〜步骤 1004的测试数据, 分析 AAS的下行空 间特性, 并根据校准过程得到的 A Pc , 可以得到 EIRP:
EIRP = Pt + Gt = Pg + (Ly - Gh + Ls) = Pg +APc 公式 ( 3 ) 其中, Pt为有源天线系统输出额定功率;
Gt为发射天线阵元增益;
Pg为频语分析仪 309测量的功率值;
△ Pc为校准参数。
3 ) 有源天线系统上行空间特性测试
按照图 8所示建立测试环境, 在暗室 401环境下, 有源天线系统 402安 装在天线转台 406上, 并通过光纤 404和后台配置设备 408相连; 另一端, 发射天线 403安装在天线支架 407上, 通过射频线缆 405和矢量信号发生器 409连接。
按照图 11所示步骤进行测试, 具体包括如下主要步骤:
步骤 1101 ,先将有源天线系统 402和后台配置设备 408启动并正常工作, 通过对后台配置参数使得有源天线系统 402处于接收模式, 并可以接收指定 频段固定指向的无线波束。
步骤 1102 ,设置矢量信号发生器 409在指定频段内发射某种制式( GSM, CDMA, WCDMA或 LTE等) 的模拟调制信号, 调整天线转台 406使得有 源天线系统 402与发射天线 403在水平和俯仰上达到最佳指向, 使其有源天 线系统 402测量功率值为最大(用于主极化测试)或最小 (用于交叉极化测 试 ) 。
步骤 1103 , 有源天线系统 402在测试转台上做方位旋转, 并将其接收功 率值(Rs )作为角度的函数记录下来。 可以分别调整有源天线系统 402的安 装方式(水平或者垂直) 以及发射天线 403的极化方向, 可以得到不同主平 面 (水平或垂直)和不同极化的方向图。
步骤 1104, 调整有源天线系统 402配置参数 (包括天线阵元的权值) , 重复步骤 1102、 步骤 1103可以得到不同指向波束的方向图;
步骤 1105 , 根据步骤 1101 1104的测试数据, 分析 AAS的上行空间特 性; 调整矢量信号发生器 409的信号幅度(Ps ) , 使得有源天线系统 402对 调制信号的解调灵敏度达到最小, 可以得到 EIRS:
EIRS = Rs - Gr = Ps - (Ly - Gh + Ls) = Ps - APc 公式( 4 ) 其中, Rs为有源天线系统检测到的接收功率电平;
Gr为接收天线增益;
Ps为矢量信号发生器 409输出调制信号功率值;
△ Pc为校准参数。
由于有源天线系统的天线阵列部分的性能是天线设计的机械性能决定的, 可以保证在大批量的生产中, 性能是稳定的, 并且可以满足重复测试要求, 所以有源天线系统的空间特性测试的只须一次或几次,就可以获得 AAS的空 间特性。
综上所述, 釆用本发明实施例所述方法和装置, 可以实现对有源天线系 统的无线指标, 包括射频指标和空间指标的全面的测试。 与现有技术相比, 很好的解决 OTA测试带来的测试效率和测试成本问题, 同时, 通过这种探 针式测试这种近场耦合的方式, 解决了有源天线系统设备没有外部射频端口 带来的问题, 可以把被测件当作一个黑盒子进行测试, 可以很好的继承传统 基站的测试标准、 测试方法、 测试工具以及测试环境等, 在设备生产和产品 认证等环节是一种有效的实用测试方法; 总之在保证测试要求的前提下, 节 省了测试成本, 提高了测试效率, 同时可以被使用者很容易接受和认证。
以上仅为本发明的优选实施案例而已, 并不用于限制本发明, 本发明还 可有其他多种实施例, 在不背离本发明精神及其实质的情况下, 熟悉本领域 的技术人员可根据本发明做出各种相应的改变和变形, 但这些相应的改变和 变形都应属于本发明所附的权利要求的保护范围。
显然, 本领域的技术人员应该明白, 上述的本发明的各模块或各步骤可 以用通用的计算装置来实现, 它们可以集中在单个的计算装置上, 或者分布 在多个计算装置所组成的网络上, 可选地, 它们可以用计算装置可执行的程 序代码来实现, 从而, 可以将它们存储在存储装置中由计算装置来执行, 并 且在某些情况下, 可以以不同于此处的顺序执行所示出或描述的步骤, 或者 将它们分别制作成各个集成电路模块, 或者将它们中的多个模块或步骤制作 成单个集成电路模块来实现。 这样, 本发明不限制于任何特定的硬件和软件
结合。
工业实用性 釆用本发明实施例所述方法和装置, 可以实现对有源天线系统的无线指 标, 包括射频指标和空间指标的全面的测试。 与现有技术相比, 很好的解决
OTA测试带来的测试效率和测试成本问题, 同时, 通过这种探针式测试这种 近场耦合的方式, 解决了有源天线系统设备没有外部射频端口带来的问题, 可以把被测件当作一个黑盒子进行测试, 可以很好的继承传统基站的测试标 准、 测试方法、 测试工具以及测试环境等, 在设备生产和产品认证等环节是 一种有效的实用测试方法;总之在保证测试要求的前提下,节省了测试成本, 提高了测试效率, 同时可以被使用者很容易接受和认证。 因此本发明具有很 强的工业实用性。
Claims
1、一种有源天线系统射频指标的测试方法,釆用测试罩对被测有源天线 系统的射频指标进行测试, 所述测试方法包括:
测试罩单体校准, 通过矢量网络分析仪对所述测试罩的各天线射频线进 行线缆差损的校准;
测试罩环境校准, 在单体校准后的所述测试罩内放置天线部件, 并固定 其与测试探针之间的空间关系, 通过移动所述测试探针对所述天线部件的各 阵子与所述测试罩之间的近场耦合环境进行校准; 其中所述天线部件的阵子 结构和组成方式与所述被测有源天线系统天馈部分相同, 所述测试探针为一 个标准的天线阵子;
射频指标测试, 将所述被测有源天线系统置于环境校准后的所述测试罩 中并固定其对应阵子与所述测试探针之间的空间关系, 其测试环境与所述测 试罩环境校准后的测试环境相同; 根据所述校准得到的校准结果对所述测试 环境进行补偿后, 通过所述测试探针的射频端口对所述被测有源天线系统进 行射频测试, 得到所述被测有源天线系统射频端口的射频指标。
2、如权利要求 1所述的测试方法, 其中,根据所述校准得到的校准结果 对所述测试环境进行补偿的步骤包括:
根据所述测试罩单体校准得到的测试罩单体校准表, 以及所述测试罩环 境校准得到的测试环境校准表, 对所述测试环境进行补偿。
3、 如权利要求 1所述的测试方法, 该方法还包括:
釆用所述天线部件对所述被测有源天线系统的天线电气性能进行测试。
4、如权利要求 1所述的测试方法, 其中, 固定所述被测有源天线系统对 应阵子与所述测试探针之间的空间关系的步骤包括: 使得所述测试探针的极化方向与所述被测有源天线系统对应阵子的极化 方向同向。
5、 一种有源天线系统无线指标的测试方法, 该方法包括如权利要求 1、 2、 3或 4所述的射频指标测试, 还包括:
釆用空间射频 (OTA)测试对所述被测有源天线系统的空间特性指标进行 测试。
6、 如权利要求 5所述的测试方法, 其中,
所述 OTA测试在暗室或者模拟自由空间环境中进行, 测试所述被测有 源天线系统的方向图。
7、 如权利要求 6所述的测试方法, 其中, 所述方法还包括:
对所述 OTA测试环境进行校准。
8、 如权利要求 5、 6或 7所述的测试方法, 所述 OTA测试包括: 所述被测有源天线系统的下行空间特性测试: 通过对所述被测有源天线 系统的方向图进行补偿, 得到等效全向辐射功率 (EIRP ) 。
9、 如权利要求 5、 6或 7所述的测试方法, 其中, 所述 OTA测试包括: 所述被测有源天线系统的上行空间特性测试: 通过对所述被测有源天线 系统的方向图进行补偿, 分别等效全向接收灵敏度(EIRS ) 。
10、一种有源天线系统射频指标的测试装置,所述测试装置包括屏蔽箱、 定位支架、 天线部件、 天线射频线、 测试探针、 探针位置调整单元和可开合 吸波板, 其中:
所述天线部件具有与被测有源天线系统天馈部分相同的阵子结构和组成 方式, 设置成用于所述测试装置的校准和所述被测有源天线系统的天线阵列 测试;
所述测试探针为一个标准的天线阵子;
所述屏蔽箱设置成: 形成所述测试装置与所述被测有源天线系统之间的 空间电磁环境;
所述吸波板位于所述定位支架与所述测试探针之间;
所述定位支架设置成: 固定所述天线部件或者被测有源天线系统, 以及 调整所述天线部件或者被测有源天线系统的方位。
11、如权利要求 10所述的测试装置, 其中, 所述装置还包括探针位置调 整单元,
所述探针位置调整单元设置成: 固定并调整所述测试探针的方位。
12、 如权利要求 11所述的测试装置, 其中,
所述探针位置调整单元包括设在所述屏蔽箱体上的滑动导轨。
13、 如权利要求 10、 11或 12所述的测试装置, 其中,
在测试所述被测有源天线的支路时, 所述测试探针与所述支路对应的阵 子之间的吸波板打开, 其他位置的吸波板闭合。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP13804308.8A EP2858275B1 (en) | 2012-07-27 | 2013-07-25 | Method and device for testing radio frequency index and wireless index of active antenna system |
US14/409,521 US9596039B2 (en) | 2012-07-27 | 2013-07-25 | Method and device for testing radio frequency index and wireless index of active antenna system |
HK15107926.7A HK1207487A1 (zh) | 2012-07-27 | 2015-08-17 | 種有源天線系統射頻指標及無線指標的測試方法與裝置 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210264184.3 | 2012-07-27 | ||
CN201210264184.3A CN102830298B (zh) | 2012-07-27 | 2012-07-27 | 一种有源天线系统射频指标及无线指标的测试方法与装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013185694A1 true WO2013185694A1 (zh) | 2013-12-19 |
Family
ID=47333503
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2013/080110 WO2013185694A1 (zh) | 2012-07-27 | 2013-07-25 | 一种有源天线系统射频指标及无线指标的测试方法与装置 |
Country Status (5)
Country | Link |
---|---|
US (1) | US9596039B2 (zh) |
EP (1) | EP2858275B1 (zh) |
CN (1) | CN102830298B (zh) |
HK (1) | HK1207487A1 (zh) |
WO (1) | WO2013185694A1 (zh) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103983937A (zh) * | 2014-06-06 | 2014-08-13 | 广州广电计量检测股份有限公司 | 应用于电波暗室的信号检测系统 |
EP2990814A1 (fr) * | 2014-08-26 | 2016-03-02 | Centre National d'Etudes Spatiales ( C.N.E.S.) | Procédé et dispositif de mesure de produits d'intermodulation par réflexion d'ondes électromagnétiques sur un objet |
EP3040727A1 (fr) * | 2014-12-29 | 2016-07-06 | Alcatel- Lucent Shanghai Bell Co., Ltd | Procédé de mesure et de localisation de l'intermodulation passive d'un dispositif en test |
CN112511247A (zh) * | 2020-01-15 | 2021-03-16 | 西安讯昂信息技术有限公司 | 时频域综合汽车测量仪 |
CN112737706A (zh) * | 2021-01-06 | 2021-04-30 | 深圳市精泰达科技有限公司 | 一种测试治具射频校准系统及方法 |
CN113381819A (zh) * | 2020-08-28 | 2021-09-10 | 深圳市顺达成科技有限公司 | 一种5g通讯设备测试支架及其使用方法 |
CN114003453A (zh) * | 2021-10-29 | 2022-02-01 | 哲库科技(北京)有限公司 | 一种测试方法、电子设备、系统及计算机存储介质 |
Families Citing this family (50)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102857309B (zh) | 2012-07-27 | 2016-09-28 | 中兴通讯股份有限公司 | 一种有源天线系统射频指标的测试方法和装置 |
CN102830298B (zh) * | 2012-07-27 | 2017-04-12 | 中兴通讯股份有限公司 | 一种有源天线系统射频指标及无线指标的测试方法与装置 |
CN104038294B (zh) * | 2013-03-06 | 2016-12-28 | 光宝电子(广州)有限公司 | 无线测试系统及应用其的测量方法 |
CN104569635B (zh) * | 2013-10-15 | 2018-06-08 | 深圳市通用测试系统有限公司 | 无线终端天线性能测试系统 |
CN104717025A (zh) * | 2013-12-13 | 2015-06-17 | 中兴通讯股份有限公司 | 一种测试有源天线系统共存共址杂散指标的方法 |
GB2525387B (en) * | 2014-04-16 | 2017-03-15 | Keysight Tech Singapore (Holdings) Pte Ltd | Over-the-air test |
CN106559145A (zh) * | 2015-09-23 | 2017-04-05 | 中国移动通信集团公司 | 一种天线间隔离度测试系统及测试方法 |
CN105245296B (zh) * | 2015-09-25 | 2018-11-06 | 国网天津市电力公司 | 一种集中器gprs通信测试系统及方法 |
CN105141379B (zh) * | 2015-09-25 | 2017-08-29 | 国网天津市电力公司 | 一种专变终端gprs通信测试系统及方法 |
CN105141378B (zh) * | 2015-09-25 | 2017-08-29 | 国网天津市电力公司 | 一种专变终端无线公网通信测试系统及方法 |
CN105704281B (zh) * | 2016-01-21 | 2019-02-19 | 上海煜鹏通讯电子股份有限公司 | 一种适用同一天线的大批量有源测试方法 |
JP6337030B2 (ja) * | 2016-01-29 | 2018-06-06 | アンリツ株式会社 | Massive−MIMOアンテナ測定装置およびその指向性測定方法 |
CN105827340B (zh) * | 2016-03-17 | 2018-05-08 | 北京邮电大学 | 一种吸波暗室的探针位置确定方法及装置 |
CN105911515A (zh) * | 2016-04-01 | 2016-08-31 | 中国电子科技集团公司第三十八研究所 | 反射面干涉仪的测试及校正装置及方法 |
CN106100760A (zh) * | 2016-07-22 | 2016-11-09 | 深圳市新益技术有限公司 | 一种用于mimo测试系统的探头校准方案 |
CN107819530A (zh) * | 2016-09-12 | 2018-03-20 | 深圳市新益技术有限公司 | 用于有源基站天线或基站系统ota性能的测试系统及方法 |
GB2559326B (en) * | 2017-01-25 | 2019-05-15 | Aeroflex Ltd | System for testing wireless communication equipment employing antennas |
WO2018172451A1 (en) * | 2017-03-24 | 2018-09-27 | Telefonaktiebolaget Lm Ericsson (Publ) | Method and node for enabling ota testing of an eut |
US10209284B2 (en) * | 2017-06-29 | 2019-02-19 | Keysight Technologies, Inc. | Advanced antenna performance testing |
CN107613512B (zh) * | 2017-10-12 | 2023-07-04 | 深圳信息通信研究院 | Lte数字移动通信综合测试仪自动校准系统 |
CN108459217B (zh) * | 2018-02-01 | 2021-01-15 | 深圳市共进电子股份有限公司 | 天线测试装置 |
CN108494602B (zh) * | 2018-04-08 | 2020-11-06 | 上海鸿洛通信电子有限公司 | Ota参数的调整方法、装置及智能终端 |
CN108594028B (zh) * | 2018-05-07 | 2019-03-29 | 北京中微普业科技有限公司 | 一种天线近场测试设备及测试系统和方法 |
CN109030960B (zh) * | 2018-05-21 | 2021-03-19 | 广东通宇通讯股份有限公司 | 一种5g天线滤波器一体化单元s参数测试方法 |
CN110632356B (zh) * | 2018-06-25 | 2021-10-22 | 大唐联仪科技有限公司 | 综合测试仪生成阶段快速校准系统及方法 |
CN108964743B (zh) * | 2018-06-28 | 2021-05-21 | 上海卫星工程研究所 | 基于大型高频卫星系统的eirp平面近场测试方法 |
CN109150242B (zh) * | 2018-08-24 | 2021-09-07 | 北京小米移动软件有限公司 | 测试线损的方法及装置 |
CN112956135B (zh) * | 2018-11-05 | 2024-05-31 | 瑞典爱立信有限公司 | 用于天线校准的方法和供天线校准中使用的有源天线系统 |
CN111246507B (zh) * | 2018-11-27 | 2022-11-11 | 中国信息通信研究院 | 一种近场射频测试方法 |
US10788524B2 (en) * | 2019-02-21 | 2020-09-29 | Rohde & Schwarz Gmbh & Co. Kg | System and method for performing a test |
CN110031689A (zh) * | 2019-05-08 | 2019-07-19 | 深圳沸石智能技术有限公司 | 一种天线测试装置和方法 |
CN110210587B (zh) * | 2019-05-24 | 2022-03-22 | 广州佳帆计算机有限公司 | 一种多功能rfid通道机 |
EP3748374B8 (en) * | 2019-06-06 | 2023-02-15 | Rohde & Schwarz GmbH & Co. KG | System and method for calibrating radio frequency test chambers |
CN110374217B (zh) * | 2019-07-23 | 2021-11-02 | 京东方科技集团股份有限公司 | 交互测试装置及系统 |
CN110501667B (zh) * | 2019-08-02 | 2023-07-21 | 西安飞机工业(集团)有限责任公司 | 一种超短波定向仪的测试系统及地面试验方法 |
CN111289809B (zh) * | 2020-02-27 | 2022-07-05 | 佳思科技有限公司 | 量测封装天线的传导及辐射特性的综合系统 |
CN111682910B (zh) * | 2020-04-15 | 2022-04-12 | 广州杰赛科技股份有限公司 | 5g毫米波基站的射频性能测试装置及方法 |
CN111610377A (zh) * | 2020-04-27 | 2020-09-01 | 宁波锐眼电子科技有限公司 | 天线测试系统、方法、毫米波雷达和计算机可读存储介质 |
CN111651310B (zh) * | 2020-05-26 | 2023-04-07 | 惠州Tcl移动通信有限公司 | 射频调试方法、装置、存储介质及电子设备 |
CN113242572A (zh) * | 2020-06-23 | 2021-08-10 | 中兴通讯股份有限公司 | Aau测试方法、装置以及多探头吸波暗箱 |
CN111781431A (zh) * | 2020-07-13 | 2020-10-16 | 芝纶自动化科技(上海)有限公司 | 一种测试装置 |
CN114726456B (zh) * | 2021-01-05 | 2024-05-14 | 中国移动通信有限公司研究院 | 有源天线测试方法、装置、终端、系统、设备和存储介质 |
CN113504419B (zh) * | 2021-09-13 | 2021-11-19 | 中国电子科技集团公司第二十九研究所 | 一种一体化金属槽缝阵列天线的相位测试治具 |
CN114070427B (zh) * | 2021-09-29 | 2024-04-05 | 杭州永谐科技有限公司 | 一种基于混响室环境的终端测试系统 |
CN113809538B (zh) * | 2021-09-30 | 2022-03-08 | 北京航空航天大学 | 一种电磁环境测试中无硬限位的天线方向调节方法与装置 |
CN114205859B (zh) * | 2021-12-30 | 2022-10-21 | 苏州熠品质量技术服务有限公司 | 一种无线通信性能多指标测试系统 |
CN114518493A (zh) * | 2022-01-04 | 2022-05-20 | 中信科移动通信技术股份有限公司 | 基站天线极化方式的检测装置 |
JP7171952B1 (ja) * | 2022-02-16 | 2022-11-15 | 株式会社フジクラ | 無線通信モジュールの出力調整方法、無線通信モジュールの製造方法および無線通信モジュールの出力調整装置 |
CN116760485B (zh) * | 2023-08-16 | 2023-12-01 | 北京华清瑞达科技有限公司 | 一种阵列天线系统射频指标测试方法和系统 |
CN116819186B (zh) * | 2023-08-30 | 2023-11-24 | 福州物联网开放实验室有限公司 | 一种物联网通信终端天线性能调测方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1905422A (zh) * | 2006-08-07 | 2007-01-31 | 信息产业部通信计量中心 | 同时具备空中射频测试与电磁兼容性测试能力的全电波暗室 |
EP2173005A1 (en) * | 2008-10-02 | 2010-04-07 | Nokia Siemens Networks OY | Improved probe calibration for an active antenna |
CN101834678A (zh) * | 2010-03-31 | 2010-09-15 | 华为技术有限公司 | 射频指标测试系统及其控制方法 |
KR20110065817A (ko) * | 2009-12-10 | 2011-06-16 | 대구대학교 산학협력단 | Rfid 태그 안테나의 임피던스 측정장치 및 측정방법 |
CN102830298A (zh) * | 2012-07-27 | 2012-12-19 | 中兴通讯股份有限公司 | 一种有源天线系统射频指标及无线指标的测试方法与装置 |
Family Cites Families (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62237365A (ja) | 1986-04-08 | 1987-10-17 | Mitsubishi Electric Corp | アンテナ試験装置 |
FR2696553B1 (fr) | 1992-10-01 | 1994-11-25 | Alcatel Espace | Méthode de calibration d'antenne en champ proche pour antenne active. |
CA2190258A1 (en) | 1994-06-03 | 1995-12-14 | Bjorn Gunnar Johannisson | Antenna array calibration |
US6900775B2 (en) | 1997-03-03 | 2005-05-31 | Celletra Ltd. | Active antenna array configuration and control for cellular communication systems |
CN1118146C (zh) | 1999-08-10 | 2003-08-13 | 信息产业部电信科学技术研究院 | 一种校准智能天线阵的方法和装置 |
US6448787B1 (en) | 2000-08-30 | 2002-09-10 | Rockwell Collins, Inc. | Apparatus and method for measuring and tuning circularly polarized antennas |
WO2003019722A1 (en) * | 2001-08-23 | 2003-03-06 | Paratek Microwave, Inc. | Nearfield calibration method for phased array containing tunable phase shifters |
CN100403670C (zh) * | 2003-06-25 | 2008-07-16 | 华为技术有限公司 | 射频指标测试方法 |
JP2005017241A (ja) | 2003-06-30 | 2005-01-20 | Japan Radio Co Ltd | 電波暗箱 |
TWI422838B (zh) | 2006-04-05 | 2014-01-11 | Emscan Corp | 多頻道無吸收器之近場測量系統 |
US20070243826A1 (en) * | 2006-04-13 | 2007-10-18 | Accton Technology Corporation | Testing apparatus and method for a multi-paths simulating system |
US8730111B2 (en) | 2009-05-11 | 2014-05-20 | Panasonic Corporation | Antenna evaluation apparatus for evaluating multiple wave of radio waves transmitted from scatterer antennas with function of calibration for the same apparatus |
CN102158291A (zh) | 2010-02-12 | 2011-08-17 | 中兴通讯股份有限公司 | 基于多天线系统的空间射频性能测试方法及系统 |
CN102158873A (zh) * | 2010-02-12 | 2011-08-17 | 中兴通讯股份有限公司 | 基于多天线系统的空间射频性能测试方法及系统 |
JP5171903B2 (ja) * | 2010-08-31 | 2013-03-27 | アンリツ株式会社 | 放射電力測定方法および放射電力測定装置 |
US20120086612A1 (en) * | 2010-10-07 | 2012-04-12 | Kevin Linehan | Systems and methods of testing active digital radio antennas |
ITTO20111108A1 (it) | 2010-12-22 | 2012-06-23 | Selex Sistemi Integrati Spa | Calibrazione di antenne a schiera attive a scansione elettronica del fascio |
CN102158078B (zh) * | 2011-01-21 | 2014-01-01 | 华为终端有限公司 | 一种功放供电电路及终端 |
CN102395226B (zh) | 2011-11-02 | 2014-10-08 | 华为技术有限公司 | 一种有源天线系统、基站和通信系统 |
CN102571239B (zh) * | 2012-01-13 | 2016-12-21 | 中兴通讯股份有限公司 | 一种射频指标的测试系统 |
CN102593570B (zh) | 2012-03-19 | 2018-07-06 | 中兴通讯股份有限公司 | 一种有源天线 |
RU130089U1 (ru) | 2012-07-24 | 2013-07-10 | Федеральное государственное казенное учреждение "Главный научный метрологический центр" Министерства обороны Российской Федерации | Устройство калибровки сверхвысокочастотного антенного измерительного комплекса ближней зоны |
CN102857309B (zh) | 2012-07-27 | 2016-09-28 | 中兴通讯股份有限公司 | 一种有源天线系统射频指标的测试方法和装置 |
CN102857310B (zh) | 2012-07-27 | 2017-10-27 | 中兴通讯股份有限公司 | 一种有源天线系统无线指标的测试方法及装置 |
-
2012
- 2012-07-27 CN CN201210264184.3A patent/CN102830298B/zh active Active
-
2013
- 2013-07-25 WO PCT/CN2013/080110 patent/WO2013185694A1/zh active Application Filing
- 2013-07-25 US US14/409,521 patent/US9596039B2/en active Active
- 2013-07-25 EP EP13804308.8A patent/EP2858275B1/en active Active
-
2015
- 2015-08-17 HK HK15107926.7A patent/HK1207487A1/zh unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1905422A (zh) * | 2006-08-07 | 2007-01-31 | 信息产业部通信计量中心 | 同时具备空中射频测试与电磁兼容性测试能力的全电波暗室 |
EP2173005A1 (en) * | 2008-10-02 | 2010-04-07 | Nokia Siemens Networks OY | Improved probe calibration for an active antenna |
KR20110065817A (ko) * | 2009-12-10 | 2011-06-16 | 대구대학교 산학협력단 | Rfid 태그 안테나의 임피던스 측정장치 및 측정방법 |
CN101834678A (zh) * | 2010-03-31 | 2010-09-15 | 华为技术有限公司 | 射频指标测试系统及其控制方法 |
CN102830298A (zh) * | 2012-07-27 | 2012-12-19 | 中兴通讯股份有限公司 | 一种有源天线系统射频指标及无线指标的测试方法与装置 |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103983937A (zh) * | 2014-06-06 | 2014-08-13 | 广州广电计量检测股份有限公司 | 应用于电波暗室的信号检测系统 |
EP2990814A1 (fr) * | 2014-08-26 | 2016-03-02 | Centre National d'Etudes Spatiales ( C.N.E.S.) | Procédé et dispositif de mesure de produits d'intermodulation par réflexion d'ondes électromagnétiques sur un objet |
EP3040727A1 (fr) * | 2014-12-29 | 2016-07-06 | Alcatel- Lucent Shanghai Bell Co., Ltd | Procédé de mesure et de localisation de l'intermodulation passive d'un dispositif en test |
CN112511247A (zh) * | 2020-01-15 | 2021-03-16 | 西安讯昂信息技术有限公司 | 时频域综合汽车测量仪 |
CN113381819A (zh) * | 2020-08-28 | 2021-09-10 | 深圳市顺达成科技有限公司 | 一种5g通讯设备测试支架及其使用方法 |
CN112737706A (zh) * | 2021-01-06 | 2021-04-30 | 深圳市精泰达科技有限公司 | 一种测试治具射频校准系统及方法 |
CN114003453A (zh) * | 2021-10-29 | 2022-02-01 | 哲库科技(北京)有限公司 | 一种测试方法、电子设备、系统及计算机存储介质 |
Also Published As
Publication number | Publication date |
---|---|
EP2858275A1 (en) | 2015-04-08 |
CN102830298B (zh) | 2017-04-12 |
US20150188647A1 (en) | 2015-07-02 |
CN102830298A (zh) | 2012-12-19 |
US9596039B2 (en) | 2017-03-14 |
EP2858275A4 (en) | 2015-08-05 |
HK1207487A1 (zh) | 2016-01-29 |
EP2858275B1 (en) | 2018-11-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2013185694A1 (zh) | 一种有源天线系统射频指标及无线指标的测试方法与装置 | |
WO2013185697A1 (zh) | 一种有源天线系统无线指标的测试方法及装置 | |
JP5947978B2 (ja) | アクティブアンテナシステム無線周波数インデックスの試験方法及び装置 | |
Remley et al. | Measurement challenges for 5G and beyond: An update from the National Institute of Standards and Technology | |
Kong et al. | Midfield over-the-air test: A new OTA RF performance test method for 5G massive MIMO devices | |
Mbugua et al. | Phase-compensated optical fiber-based ultrawideband channel sounder | |
US11063676B2 (en) | Method and device for enabling testing of a communication node | |
JP6446441B2 (ja) | 無線周波数信号トランシーバ被試験デバイスの無線試験を容易に行う装置と方法 | |
Kyösti et al. | MIMO OTA test concept with experimental and simulated verification | |
Pannala | Feasibility and challenges of over-the-air testing for 5G millimeter wave devices | |
Kildal et al. | Verification of the Random Line-of-Sight Measurement Setup at 1.5-3 GHz Including MIMO Throughput Measurements of a Complete Vehicle | |
Lyu et al. | Enabling long-range large-scale channel sounding at sub-thz bands: Virtual array and radio-over-fiber concepts | |
Fan et al. | Measurement uncertainty investigation in the multi-probe OTA setups | |
CN111866922B (zh) | 相控阵天线协议测试装置及方法 | |
Hu et al. | Over the air testing and error analysis of 5G active antenna system base station in compact antenna test range | |
CN105897348B (zh) | 剩余无源互调测试方法 | |
Scannavini et al. | OTA throughput measurements by using spatial fading emulation technique | |
Berlt et al. | Over-The-Air Testing of Automotive Antennas and Wireless Links in The Installed State on The Basis of LTE Downlink Communication Parameters | |
Loh et al. | Recent Activities of a European Union Joint Research Project on Metrology for Emerging Wireless Standards | |
Chen et al. | A Cost-Effective Over-the-Air Test Verification Method for 5G Active Antennas | |
Hu et al. | Simulation and testing study of the active antenna system for the 5G base station | |
CN115589266A (zh) | 一种宏基站的射频测试系统 | |
Khatun et al. | Research Article Dependence of Error Level on the Number of Probes in Over-the-Air Multiprobe Test Systems | |
MacCartney Jr et al. | 4 Verification Techniques |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13804308 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14409521 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2013804308 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |