WO2013166321A1 - Enhanced affinity t cell receptors and methods for making the same - Google Patents
Enhanced affinity t cell receptors and methods for making the same Download PDFInfo
- Publication number
- WO2013166321A1 WO2013166321A1 PCT/US2013/039316 US2013039316W WO2013166321A1 WO 2013166321 A1 WO2013166321 A1 WO 2013166321A1 US 2013039316 W US2013039316 W US 2013039316W WO 2013166321 A1 WO2013166321 A1 WO 2013166321A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cells
- tcr
- cell
- peptide
- antigen
- Prior art date
Links
- 108091008874 T cell receptors Proteins 0.000 title claims abstract description 213
- 102000016266 T-Cell Antigen Receptors Human genes 0.000 title claims abstract description 155
- 238000000034 method Methods 0.000 title claims abstract description 96
- 239000000427 antigen Substances 0.000 claims abstract description 123
- 108091007433 antigens Proteins 0.000 claims abstract description 121
- 102000036639 antigens Human genes 0.000 claims abstract description 121
- 210000003958 hematopoietic stem cell Anatomy 0.000 claims abstract description 51
- 210000002536 stromal cell Anatomy 0.000 claims abstract description 39
- 210000004027 cell Anatomy 0.000 claims description 232
- 210000001744 T-lymphocyte Anatomy 0.000 claims description 114
- 108090000765 processed proteins & peptides Proteins 0.000 claims description 106
- 101150002618 TCRP gene Proteins 0.000 claims description 86
- 150000007523 nucleic acids Chemical group 0.000 claims description 52
- 108090000623 proteins and genes Proteins 0.000 claims description 51
- 241000282414 Homo sapiens Species 0.000 claims description 48
- 239000013598 vector Substances 0.000 claims description 41
- 108091028043 Nucleic acid sequence Proteins 0.000 claims description 36
- 206010028980 Neoplasm Diseases 0.000 claims description 33
- 239000013603 viral vector Substances 0.000 claims description 25
- 238000010186 staining Methods 0.000 claims description 24
- 230000001177 retroviral effect Effects 0.000 claims description 23
- 230000026683 transduction Effects 0.000 claims description 22
- 238000010361 transduction Methods 0.000 claims description 22
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims description 21
- 108090000015 Mesothelin Proteins 0.000 claims description 20
- 230000004069 differentiation Effects 0.000 claims description 20
- 201000010099 disease Diseases 0.000 claims description 18
- 239000003550 marker Substances 0.000 claims description 16
- 208000023275 Autoimmune disease Diseases 0.000 claims description 14
- 210000000130 stem cell Anatomy 0.000 claims description 14
- 201000011510 cancer Diseases 0.000 claims description 13
- 108010043121 Green Fluorescent Proteins Proteins 0.000 claims description 11
- 102000004144 Green Fluorescent Proteins Human genes 0.000 claims description 11
- 239000005090 green fluorescent protein Substances 0.000 claims description 11
- 102000008949 Histocompatibility Antigens Class I Human genes 0.000 claims description 10
- 108010081208 RMFPNAPYL Proteins 0.000 claims description 9
- 210000001185 bone marrow Anatomy 0.000 claims description 9
- 210000001671 embryonic stem cell Anatomy 0.000 claims description 9
- 230000001363 autoimmune Effects 0.000 claims description 7
- 230000003612 virological effect Effects 0.000 claims description 6
- 101100273713 Homo sapiens CD2 gene Proteins 0.000 claims description 5
- 230000001580 bacterial effect Effects 0.000 claims description 5
- 210000004700 fetal blood Anatomy 0.000 claims description 5
- 108010088652 Histocompatibility Antigens Class I Proteins 0.000 claims description 4
- 239000008194 pharmaceutical composition Substances 0.000 claims description 3
- 239000000546 pharmaceutical excipient Substances 0.000 claims description 3
- 210000003289 regulatory T cell Anatomy 0.000 claims description 3
- 231100000433 cytotoxic Toxicity 0.000 claims description 2
- 230000001472 cytotoxic effect Effects 0.000 claims description 2
- 239000003085 diluting agent Substances 0.000 claims description 2
- 239000003937 drug carrier Substances 0.000 claims description 2
- 108020001507 fusion proteins Proteins 0.000 claims description 2
- 102000037865 fusion proteins Human genes 0.000 claims description 2
- 125000003275 alpha amino acid group Chemical group 0.000 claims 2
- 208000035143 Bacterial infection Diseases 0.000 claims 1
- 101000937544 Homo sapiens Beta-2-microglobulin Proteins 0.000 claims 1
- 208000036142 Viral infection Diseases 0.000 claims 1
- 208000022362 bacterial infectious disease Diseases 0.000 claims 1
- 102000047279 human B2M Human genes 0.000 claims 1
- 210000004408 hybridoma Anatomy 0.000 claims 1
- 230000009385 viral infection Effects 0.000 claims 1
- 239000000203 mixture Substances 0.000 abstract description 11
- 239000000556 agonist Substances 0.000 abstract description 7
- 230000009258 tissue cross reactivity Effects 0.000 description 56
- 108700018351 Major Histocompatibility Complex Proteins 0.000 description 54
- 230000020382 suppression by virus of host antigen processing and presentation of peptide antigen via MHC class I Effects 0.000 description 54
- 208000008383 Wilms tumor Diseases 0.000 description 37
- 230000014509 gene expression Effects 0.000 description 36
- 208000026448 Wilms tumor 1 Diseases 0.000 description 32
- 230000027455 binding Effects 0.000 description 31
- 235000018102 proteins Nutrition 0.000 description 25
- 102000004169 proteins and genes Human genes 0.000 description 25
- 241000699670 Mus sp. Species 0.000 description 23
- 241000699666 Mus <mouse, genus> Species 0.000 description 21
- 238000001415 gene therapy Methods 0.000 description 18
- 238000000684 flow cytometry Methods 0.000 description 17
- 108091054437 MHC class I family Proteins 0.000 description 12
- 102000003735 Mesothelin Human genes 0.000 description 12
- 102000004196 processed proteins & peptides Human genes 0.000 description 12
- 108020003175 receptors Proteins 0.000 description 12
- 102000005962 receptors Human genes 0.000 description 12
- 101000884271 Homo sapiens Signal transducer CD24 Proteins 0.000 description 11
- 241000699660 Mus musculus Species 0.000 description 11
- 102100038081 Signal transducer CD24 Human genes 0.000 description 11
- 238000010367 cloning Methods 0.000 description 11
- 238000011161 development Methods 0.000 description 11
- 230000018109 developmental process Effects 0.000 description 11
- 238000000338 in vitro Methods 0.000 description 11
- 230000001965 increasing effect Effects 0.000 description 11
- 150000001413 amino acids Chemical group 0.000 description 10
- 210000001541 thymus gland Anatomy 0.000 description 10
- 108090000695 Cytokines Proteins 0.000 description 9
- 102000004127 Cytokines Human genes 0.000 description 9
- 238000001727 in vivo Methods 0.000 description 9
- 239000003446 ligand Substances 0.000 description 9
- 230000004044 response Effects 0.000 description 9
- 238000011830 transgenic mouse model Methods 0.000 description 9
- 210000001086 DN3 alpha-beta immature T lymphocyte Anatomy 0.000 description 8
- 241000700159 Rattus Species 0.000 description 8
- 208000032839 leukemia Diseases 0.000 description 8
- 210000001519 tissue Anatomy 0.000 description 8
- 230000009261 transgenic effect Effects 0.000 description 8
- 241000124008 Mammalia Species 0.000 description 7
- 241000700605 Viruses Species 0.000 description 7
- 230000011712 cell development Effects 0.000 description 7
- 230000008707 rearrangement Effects 0.000 description 7
- 238000011282 treatment Methods 0.000 description 7
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 description 6
- 208000035473 Communicable disease Diseases 0.000 description 6
- 108020004414 DNA Proteins 0.000 description 6
- 102000043129 MHC class I family Human genes 0.000 description 6
- 241001529936 Murinae Species 0.000 description 6
- 238000004458 analytical method Methods 0.000 description 6
- 210000003317 double-positive, alpha-beta immature T lymphocyte Anatomy 0.000 description 6
- 208000015181 infectious disease Diseases 0.000 description 6
- 208000011580 syndromic disease Diseases 0.000 description 6
- 102000017420 CD3 protein, epsilon/gamma/delta subunit Human genes 0.000 description 5
- 102100032912 CD44 antigen Human genes 0.000 description 5
- 101000868273 Homo sapiens CD44 antigen Proteins 0.000 description 5
- 241000725303 Human immunodeficiency virus Species 0.000 description 5
- 108060003951 Immunoglobulin Proteins 0.000 description 5
- 241000713666 Lentivirus Species 0.000 description 5
- 102000018697 Membrane Proteins Human genes 0.000 description 5
- 108010052285 Membrane Proteins Proteins 0.000 description 5
- 108700019146 Transgenes Proteins 0.000 description 5
- 210000003719 b-lymphocyte Anatomy 0.000 description 5
- 102000015736 beta 2-Microglobulin Human genes 0.000 description 5
- 108010081355 beta 2-Microglobulin Proteins 0.000 description 5
- 210000004369 blood Anatomy 0.000 description 5
- 239000008280 blood Substances 0.000 description 5
- 230000006870 function Effects 0.000 description 5
- 230000036039 immunity Effects 0.000 description 5
- 102000018358 immunoglobulin Human genes 0.000 description 5
- 239000002609 medium Substances 0.000 description 5
- 229920001184 polypeptide Polymers 0.000 description 5
- 239000000047 product Substances 0.000 description 5
- 210000002966 serum Anatomy 0.000 description 5
- 241000894007 species Species 0.000 description 5
- 241001430294 unidentified retrovirus Species 0.000 description 5
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 4
- 108090000144 Human Proteins Proteins 0.000 description 4
- 102000003839 Human Proteins Human genes 0.000 description 4
- 108010002350 Interleukin-2 Proteins 0.000 description 4
- 102000043131 MHC class II family Human genes 0.000 description 4
- 108091054438 MHC class II family Proteins 0.000 description 4
- 108010075205 OVA-8 Proteins 0.000 description 4
- 238000012300 Sequence Analysis Methods 0.000 description 4
- 206010067584 Type 1 diabetes mellitus Diseases 0.000 description 4
- 238000013459 approach Methods 0.000 description 4
- 238000003556 assay Methods 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- 239000003636 conditioned culture medium Substances 0.000 description 4
- 238000010790 dilution Methods 0.000 description 4
- 239000012895 dilution Substances 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 206010025135 lupus erythematosus Diseases 0.000 description 4
- 230000001404 mediated effect Effects 0.000 description 4
- 230000035772 mutation Effects 0.000 description 4
- 239000002243 precursor Substances 0.000 description 4
- 238000005215 recombination Methods 0.000 description 4
- 230000006798 recombination Effects 0.000 description 4
- 238000012216 screening Methods 0.000 description 4
- 230000011664 signaling Effects 0.000 description 4
- 210000004988 splenocyte Anatomy 0.000 description 4
- 239000006228 supernatant Substances 0.000 description 4
- 208000024891 symptom Diseases 0.000 description 4
- 238000012546 transfer Methods 0.000 description 4
- 206010001052 Acute respiratory distress syndrome Diseases 0.000 description 3
- 108091026890 Coding region Proteins 0.000 description 3
- 108020004705 Codon Proteins 0.000 description 3
- 102100030886 Complement receptor type 1 Human genes 0.000 description 3
- 102100036462 Delta-like protein 1 Human genes 0.000 description 3
- 102100033553 Delta-like protein 4 Human genes 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- 241000713800 Feline immunodeficiency virus Species 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- 102000025850 HLA-A2 Antigen Human genes 0.000 description 3
- 108010074032 HLA-A2 Antigen Proteins 0.000 description 3
- 208000017604 Hodgkin disease Diseases 0.000 description 3
- 208000010747 Hodgkins lymphoma Diseases 0.000 description 3
- 101000727061 Homo sapiens Complement receptor type 1 Proteins 0.000 description 3
- 101000928537 Homo sapiens Delta-like protein 1 Proteins 0.000 description 3
- 101000872077 Homo sapiens Delta-like protein 4 Proteins 0.000 description 3
- 208000010159 IgA glomerulonephritis Diseases 0.000 description 3
- 206010021263 IgA nephropathy Diseases 0.000 description 3
- 108020004684 Internal Ribosome Entry Sites Proteins 0.000 description 3
- 241001465754 Metazoa Species 0.000 description 3
- 208000005927 Myosarcoma Diseases 0.000 description 3
- 206010035226 Plasma cell myeloma Diseases 0.000 description 3
- 108020004511 Recombinant DNA Proteins 0.000 description 3
- 208000013616 Respiratory Distress Syndrome Diseases 0.000 description 3
- 241000713311 Simian immunodeficiency virus Species 0.000 description 3
- 208000031981 Thrombocytopenic Idiopathic Purpura Diseases 0.000 description 3
- 206010047115 Vasculitis Diseases 0.000 description 3
- 229960002685 biotin Drugs 0.000 description 3
- 235000020958 biotin Nutrition 0.000 description 3
- 239000011616 biotin Substances 0.000 description 3
- 230000001413 cellular effect Effects 0.000 description 3
- 230000001086 cytosolic effect Effects 0.000 description 3
- 208000035475 disorder Diseases 0.000 description 3
- 238000010494 dissociation reaction Methods 0.000 description 3
- 230000005593 dissociations Effects 0.000 description 3
- 239000001963 growth medium Substances 0.000 description 3
- 230000036541 health Effects 0.000 description 3
- 238000003384 imaging method Methods 0.000 description 3
- 238000009169 immunotherapy Methods 0.000 description 3
- 230000003993 interaction Effects 0.000 description 3
- 230000000670 limiting effect Effects 0.000 description 3
- 210000004072 lung Anatomy 0.000 description 3
- 201000001441 melanoma Diseases 0.000 description 3
- 201000002077 muscle cancer Diseases 0.000 description 3
- 210000000056 organ Anatomy 0.000 description 3
- 201000006292 polyarteritis nodosa Diseases 0.000 description 3
- 230000035755 proliferation Effects 0.000 description 3
- 206010039073 rheumatoid arthritis Diseases 0.000 description 3
- 230000004083 survival effect Effects 0.000 description 3
- 230000001225 therapeutic effect Effects 0.000 description 3
- 238000002560 therapeutic procedure Methods 0.000 description 3
- JVJGCCBAOOWGEO-RUTPOYCXSA-N (2s)-2-[[(2s)-2-[[(2s)-2-[[(2s)-2-[[(2s)-4-amino-2-[[(2s,3s)-2-[[(2s,3s)-2-[[(2s)-2-azaniumyl-3-hydroxypropanoyl]amino]-3-methylpentanoyl]amino]-3-methylpentanoyl]amino]-4-oxobutanoyl]amino]-3-phenylpropanoyl]amino]-4-carboxylatobutanoyl]amino]-6-azaniumy Chemical compound OC[C@H](N)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@H](C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(C)C)C(O)=O)CC1=CC=CC=C1 JVJGCCBAOOWGEO-RUTPOYCXSA-N 0.000 description 2
- 208000024893 Acute lymphoblastic leukemia Diseases 0.000 description 2
- 201000003076 Angiosarcoma Diseases 0.000 description 2
- 208000031212 Autoimmune polyendocrinopathy Diseases 0.000 description 2
- 208000010839 B-cell chronic lymphocytic leukemia Diseases 0.000 description 2
- 241000894006 Bacteria Species 0.000 description 2
- 208000011691 Burkitt lymphomas Diseases 0.000 description 2
- 208000005243 Chondrosarcoma Diseases 0.000 description 2
- 208000015943 Coeliac disease Diseases 0.000 description 2
- 201000004624 Dermatitis Diseases 0.000 description 2
- 239000006144 Dulbecco’s modified Eagle's medium Substances 0.000 description 2
- 102100025137 Early activation antigen CD69 Human genes 0.000 description 2
- 241000713730 Equine infectious anemia virus Species 0.000 description 2
- 201000003542 Factor VIII deficiency Diseases 0.000 description 2
- 201000008808 Fibrosarcoma Diseases 0.000 description 2
- 241001663880 Gammaretrovirus Species 0.000 description 2
- 208000024869 Goodpasture syndrome Diseases 0.000 description 2
- 208000009329 Graft vs Host Disease Diseases 0.000 description 2
- 208000030836 Hashimoto thyroiditis Diseases 0.000 description 2
- 208000001258 Hemangiosarcoma Diseases 0.000 description 2
- 208000035186 Hemolytic Autoimmune Anemia Diseases 0.000 description 2
- 208000009292 Hemophilia A Diseases 0.000 description 2
- 102000018713 Histocompatibility Antigens Class II Human genes 0.000 description 2
- 108010027412 Histocompatibility Antigens Class II Proteins 0.000 description 2
- 101000934374 Homo sapiens Early activation antigen CD69 Proteins 0.000 description 2
- 241000713340 Human immunodeficiency virus 2 Species 0.000 description 2
- 206010021245 Idiopathic thrombocytopenic purpura Diseases 0.000 description 2
- 208000018142 Leiomyosarcoma Diseases 0.000 description 2
- 208000034624 Leukocytoclastic Cutaneous Vasculitis Diseases 0.000 description 2
- 208000032514 Leukocytoclastic vasculitis Diseases 0.000 description 2
- 208000034578 Multiple myelomas Diseases 0.000 description 2
- 241000714177 Murine leukemia virus Species 0.000 description 2
- 206010029260 Neuroblastoma Diseases 0.000 description 2
- 208000015914 Non-Hodgkin lymphomas Diseases 0.000 description 2
- 108010058846 Ovalbumin Proteins 0.000 description 2
- 206010033128 Ovarian cancer Diseases 0.000 description 2
- 206010061332 Paraganglion neoplasm Diseases 0.000 description 2
- 229940122985 Peptide agonist Drugs 0.000 description 2
- 208000007452 Plasmacytoma Diseases 0.000 description 2
- 208000003670 Pure Red-Cell Aplasia Diseases 0.000 description 2
- 206010039491 Sarcoma Diseases 0.000 description 2
- 108010036039 Serrate-Jagged Proteins Proteins 0.000 description 2
- 102000011842 Serrate-Jagged Proteins Human genes 0.000 description 2
- 241000700584 Simplexvirus Species 0.000 description 2
- 206010042033 Stevens-Johnson syndrome Diseases 0.000 description 2
- 108010090804 Streptavidin Proteins 0.000 description 2
- 201000009594 Systemic Scleroderma Diseases 0.000 description 2
- 206010042953 Systemic sclerosis Diseases 0.000 description 2
- 102000036693 Thrombopoietin Human genes 0.000 description 2
- 108010041111 Thrombopoietin Proteins 0.000 description 2
- 230000004913 activation Effects 0.000 description 2
- 208000011341 adult acute respiratory distress syndrome Diseases 0.000 description 2
- 201000000028 adult respiratory distress syndrome Diseases 0.000 description 2
- 206010002026 amyotrophic lateral sclerosis Diseases 0.000 description 2
- 208000010668 atopic eczema Diseases 0.000 description 2
- 201000000448 autoimmune hemolytic anemia Diseases 0.000 description 2
- 201000003710 autoimmune thrombocytopenic purpura Diseases 0.000 description 2
- 210000004271 bone marrow stromal cell Anatomy 0.000 description 2
- 230000024245 cell differentiation Effects 0.000 description 2
- 210000003169 central nervous system Anatomy 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000002299 complementary DNA Substances 0.000 description 2
- 210000001608 connective tissue cell Anatomy 0.000 description 2
- 201000003278 cryoglobulinemia Diseases 0.000 description 2
- 238000012258 culturing Methods 0.000 description 2
- 230000016396 cytokine production Effects 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000002405 diagnostic procedure Methods 0.000 description 2
- 206010012818 diffuse large B-cell lymphoma Diseases 0.000 description 2
- 230000005014 ectopic expression Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 206010014599 encephalitis Diseases 0.000 description 2
- 208000030172 endocrine system disease Diseases 0.000 description 2
- 230000002708 enhancing effect Effects 0.000 description 2
- 230000001605 fetal effect Effects 0.000 description 2
- 210000002950 fibroblast Anatomy 0.000 description 2
- 239000007850 fluorescent dye Substances 0.000 description 2
- 208000024908 graft versus host disease Diseases 0.000 description 2
- 206010073071 hepatocellular carcinoma Diseases 0.000 description 2
- 239000000833 heterodimer Substances 0.000 description 2
- 208000003532 hypothyroidism Diseases 0.000 description 2
- 210000000987 immune system Anatomy 0.000 description 2
- 230000008595 infiltration Effects 0.000 description 2
- 238000001764 infiltration Methods 0.000 description 2
- 238000012417 linear regression Methods 0.000 description 2
- 206010024627 liposarcoma Diseases 0.000 description 2
- 208000012804 lymphangiosarcoma Diseases 0.000 description 2
- 230000003211 malignant effect Effects 0.000 description 2
- 210000003593 megakaryocyte Anatomy 0.000 description 2
- 210000004379 membrane Anatomy 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000001823 molecular biology technique Methods 0.000 description 2
- 238000010172 mouse model Methods 0.000 description 2
- 238000002703 mutagenesis Methods 0.000 description 2
- 231100000350 mutagenesis Toxicity 0.000 description 2
- 208000001611 myxosarcoma Diseases 0.000 description 2
- 108020004707 nucleic acids Proteins 0.000 description 2
- 102000039446 nucleic acids Human genes 0.000 description 2
- 229940092253 ovalbumin Drugs 0.000 description 2
- 238000004806 packaging method and process Methods 0.000 description 2
- 208000003154 papilloma Diseases 0.000 description 2
- 208000007312 paraganglioma Diseases 0.000 description 2
- 108091033319 polynucleotide Proteins 0.000 description 2
- 102000040430 polynucleotide Human genes 0.000 description 2
- 239000002157 polynucleotide Substances 0.000 description 2
- 210000001978 pro-t lymphocyte Anatomy 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000000069 prophylactic effect Effects 0.000 description 2
- 230000009257 reactivity Effects 0.000 description 2
- 230000002441 reversible effect Effects 0.000 description 2
- 201000009410 rhabdomyosarcoma Diseases 0.000 description 2
- 238000002741 site-directed mutagenesis Methods 0.000 description 2
- 230000000638 stimulation Effects 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- 201000000596 systemic lupus erythematosus Diseases 0.000 description 2
- 230000008685 targeting Effects 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 230000002463 transducing effect Effects 0.000 description 2
- 208000035408 type 1 diabetes mellitus 1 Diseases 0.000 description 2
- 241000701161 unidentified adenovirus Species 0.000 description 2
- 102000040650 (ribonucleotides)n+m Human genes 0.000 description 1
- NDMPLJNOPCLANR-UHFFFAOYSA-N 3,4-dihydroxy-15-(4-hydroxy-18-methoxycarbonyl-5,18-seco-ibogamin-18-yl)-16-methoxy-1-methyl-6,7-didehydro-aspidospermidine-3-carboxylic acid methyl ester Natural products C1C(CC)(O)CC(CC2(C(=O)OC)C=3C(=CC4=C(C56C(C(C(O)C7(CC)C=CCN(C67)CC5)(O)C(=O)OC)N4C)C=3)OC)CN1CCC1=C2NC2=CC=CC=C12 NDMPLJNOPCLANR-UHFFFAOYSA-N 0.000 description 1
- UZOVYGYOLBIAJR-UHFFFAOYSA-N 4-isocyanato-4'-methyldiphenylmethane Chemical compound C1=CC(C)=CC=C1CC1=CC=C(N=C=O)C=C1 UZOVYGYOLBIAJR-UHFFFAOYSA-N 0.000 description 1
- 102100033051 40S ribosomal protein S19 Human genes 0.000 description 1
- XGWFJBFNAQHLEF-UHFFFAOYSA-N 9-anthroic acid Chemical compound C1=CC=C2C(C(=O)O)=C(C=CC=C3)C3=CC2=C1 XGWFJBFNAQHLEF-UHFFFAOYSA-N 0.000 description 1
- 208000010400 APUDoma Diseases 0.000 description 1
- 208000007876 Acrospiroma Diseases 0.000 description 1
- 206010000830 Acute leukaemia Diseases 0.000 description 1
- 208000014697 Acute lymphocytic leukaemia Diseases 0.000 description 1
- 208000031261 Acute myeloid leukaemia Diseases 0.000 description 1
- 208000026872 Addison Disease Diseases 0.000 description 1
- 208000003200 Adenoma Diseases 0.000 description 1
- 206010001233 Adenoma benign Diseases 0.000 description 1
- 201000010000 Agranulocytosis Diseases 0.000 description 1
- 206010027654 Allergic conditions Diseases 0.000 description 1
- 241000710929 Alphavirus Species 0.000 description 1
- 108091093088 Amplicon Proteins 0.000 description 1
- 206010002412 Angiocentric lymphomas Diseases 0.000 description 1
- 208000005034 Angiolymphoid Hyperplasia with Eosinophilia Diseases 0.000 description 1
- 206010002556 Ankylosing Spondylitis Diseases 0.000 description 1
- 208000003343 Antiphospholipid Syndrome Diseases 0.000 description 1
- 208000032467 Aplastic anaemia Diseases 0.000 description 1
- 201000001320 Atherosclerosis Diseases 0.000 description 1
- 208000032116 Autoimmune Experimental Encephalomyelitis Diseases 0.000 description 1
- 206010003827 Autoimmune hepatitis Diseases 0.000 description 1
- 206010064539 Autoimmune myocarditis Diseases 0.000 description 1
- 206010055128 Autoimmune neutropenia Diseases 0.000 description 1
- 206010050245 Autoimmune thrombocytopenia Diseases 0.000 description 1
- 208000004736 B-Cell Leukemia Diseases 0.000 description 1
- 208000003950 B-cell lymphoma Diseases 0.000 description 1
- 208000032568 B-cell prolymphocytic leukaemia Diseases 0.000 description 1
- 102100022005 B-lymphocyte antigen CD20 Human genes 0.000 description 1
- 208000032791 BCR-ABL1 positive chronic myelogenous leukemia Diseases 0.000 description 1
- 241000193738 Bacillus anthracis Species 0.000 description 1
- 231100000699 Bacterial toxin Toxicity 0.000 description 1
- 208000027496 Behcet disease Diseases 0.000 description 1
- 208000009137 Behcet syndrome Diseases 0.000 description 1
- 208000035821 Benign schwannoma Diseases 0.000 description 1
- 208000003609 Bile Duct Adenoma Diseases 0.000 description 1
- 208000008439 Biliary Liver Cirrhosis Diseases 0.000 description 1
- 208000033222 Biliary cirrhosis primary Diseases 0.000 description 1
- 208000033932 Blackfan-Diamond anemia Diseases 0.000 description 1
- 241000283690 Bos taurus Species 0.000 description 1
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 1
- 108700031361 Brachyury Proteins 0.000 description 1
- 208000000529 Branchioma Diseases 0.000 description 1
- 206010006187 Breast cancer Diseases 0.000 description 1
- 208000026310 Breast neoplasm Diseases 0.000 description 1
- 208000033386 Buerger disease Diseases 0.000 description 1
- 208000023611 Burkitt leukaemia Diseases 0.000 description 1
- 201000002829 CREST Syndrome Diseases 0.000 description 1
- 206010007270 Carcinoid syndrome Diseases 0.000 description 1
- 201000009030 Carcinoma Diseases 0.000 description 1
- 201000000274 Carcinosarcoma Diseases 0.000 description 1
- 208000007389 Cementoma Diseases 0.000 description 1
- 206010007953 Central nervous system lymphoma Diseases 0.000 description 1
- 206010008263 Cervical dysplasia Diseases 0.000 description 1
- 241000606161 Chlamydia Species 0.000 description 1
- 206010008642 Cholesteatoma Diseases 0.000 description 1
- 201000005262 Chondroma Diseases 0.000 description 1
- 201000009047 Chordoma Diseases 0.000 description 1
- 206010008748 Chorea Diseases 0.000 description 1
- 208000016216 Choristoma Diseases 0.000 description 1
- 208000010833 Chronic myeloid leukaemia Diseases 0.000 description 1
- 241000193163 Clostridioides difficile Species 0.000 description 1
- 241000193155 Clostridium botulinum Species 0.000 description 1
- 241000193468 Clostridium perfringens Species 0.000 description 1
- 102100026735 Coagulation factor VIII Human genes 0.000 description 1
- 108091033380 Coding strand Proteins 0.000 description 1
- 208000010007 Cogan syndrome Diseases 0.000 description 1
- 206010009900 Colitis ulcerative Diseases 0.000 description 1
- 102000008186 Collagen Human genes 0.000 description 1
- 108010035532 Collagen Proteins 0.000 description 1
- 206010009944 Colon cancer Diseases 0.000 description 1
- 206010053138 Congenital aplastic anaemia Diseases 0.000 description 1
- 208000009798 Craniopharyngioma Diseases 0.000 description 1
- 208000011231 Crohn disease Diseases 0.000 description 1
- 201000005171 Cystadenoma Diseases 0.000 description 1
- 230000004568 DNA-binding Effects 0.000 description 1
- 241000702421 Dependoparvovirus Species 0.000 description 1
- 201000004449 Diamond-Blackfan anemia Diseases 0.000 description 1
- 206010051392 Diapedesis Diseases 0.000 description 1
- BWGNESOTFCXPMA-UHFFFAOYSA-N Dihydrogen disulfide Chemical compound SS BWGNESOTFCXPMA-UHFFFAOYSA-N 0.000 description 1
- 206010061818 Disease progression Diseases 0.000 description 1
- 206010059866 Drug resistance Diseases 0.000 description 1
- 208000007033 Dysgerminoma Diseases 0.000 description 1
- 208000003468 Ehrlich Tumor Carcinoma Diseases 0.000 description 1
- 206010014967 Ependymoma Diseases 0.000 description 1
- 241000283073 Equus caballus Species 0.000 description 1
- 241000588724 Escherichia coli Species 0.000 description 1
- 208000000461 Esophageal Neoplasms Diseases 0.000 description 1
- 206010016207 Familial Mediterranean fever Diseases 0.000 description 1
- 241000714165 Feline leukemia virus Species 0.000 description 1
- 241000714174 Feline sarcoma virus Species 0.000 description 1
- 108090000379 Fibroblast growth factor 2 Proteins 0.000 description 1
- 102000003974 Fibroblast growth factor 2 Human genes 0.000 description 1
- 108090000381 Fibroblast growth factor 4 Proteins 0.000 description 1
- 102100028072 Fibroblast growth factor 4 Human genes 0.000 description 1
- 206010053717 Fibrous histiocytoma Diseases 0.000 description 1
- 241000710831 Flavivirus Species 0.000 description 1
- 102100035233 Furin Human genes 0.000 description 1
- 108090001126 Furin Proteins 0.000 description 1
- 208000007569 Giant Cell Tumors Diseases 0.000 description 1
- 208000007465 Giant cell arteritis Diseases 0.000 description 1
- 208000032612 Glial tumor Diseases 0.000 description 1
- 206010018338 Glioma Diseases 0.000 description 1
- 206010018364 Glomerulonephritis Diseases 0.000 description 1
- 201000005618 Glomus Tumor Diseases 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 102000003886 Glycoproteins Human genes 0.000 description 1
- 108090000288 Glycoproteins Proteins 0.000 description 1
- 229920002683 Glycosaminoglycan Polymers 0.000 description 1
- 206010072579 Granulomatosis with polyangiitis Diseases 0.000 description 1
- 208000005234 Granulosa Cell Tumor Diseases 0.000 description 1
- 208000003807 Graves Disease Diseases 0.000 description 1
- 208000015023 Graves' disease Diseases 0.000 description 1
- 208000035895 Guillain-Barré syndrome Diseases 0.000 description 1
- 208000035773 Gynandroblastoma Diseases 0.000 description 1
- 208000031886 HIV Infections Diseases 0.000 description 1
- 208000002927 Hamartoma Diseases 0.000 description 1
- 208000002125 Hemangioendothelioma Diseases 0.000 description 1
- 208000006050 Hemangiopericytoma Diseases 0.000 description 1
- 102100031573 Hematopoietic progenitor cell antigen CD34 Human genes 0.000 description 1
- 201000004331 Henoch-Schoenlein purpura Diseases 0.000 description 1
- 206010019617 Henoch-Schonlein purpura Diseases 0.000 description 1
- 229920002971 Heparan sulfate Polymers 0.000 description 1
- HTTJABKRGRZYRN-UHFFFAOYSA-N Heparin Chemical compound OC1C(NC(=O)C)C(O)OC(COS(O)(=O)=O)C1OC1C(OS(O)(=O)=O)C(O)C(OC2C(C(OS(O)(=O)=O)C(OC3C(C(O)C(O)C(O3)C(O)=O)OS(O)(=O)=O)C(CO)O2)NS(O)(=O)=O)C(C(O)=O)O1 HTTJABKRGRZYRN-UHFFFAOYSA-N 0.000 description 1
- 208000021519 Hodgkin lymphoma Diseases 0.000 description 1
- 101000897405 Homo sapiens B-lymphocyte antigen CD20 Proteins 0.000 description 1
- 101000980898 Homo sapiens Cell division cycle-associated protein 4 Proteins 0.000 description 1
- 101000911390 Homo sapiens Coagulation factor VIII Proteins 0.000 description 1
- 101000777663 Homo sapiens Hematopoietic progenitor cell antigen CD34 Proteins 0.000 description 1
- 101001057504 Homo sapiens Interferon-stimulated gene 20 kDa protein Proteins 0.000 description 1
- 101001055144 Homo sapiens Interleukin-2 receptor subunit alpha Proteins 0.000 description 1
- 101000621309 Homo sapiens Wilms tumor protein Proteins 0.000 description 1
- 206010020751 Hypersensitivity Diseases 0.000 description 1
- 206010021067 Hypopituitarism Diseases 0.000 description 1
- 208000031814 IgA Vasculitis Diseases 0.000 description 1
- 208000022559 Inflammatory bowel disease Diseases 0.000 description 1
- 102100026878 Interleukin-2 receptor subunit alpha Human genes 0.000 description 1
- 108010002586 Interleukin-7 Proteins 0.000 description 1
- 208000029523 Interstitial Lung disease Diseases 0.000 description 1
- 208000009164 Islet Cell Adenoma Diseases 0.000 description 1
- 208000003456 Juvenile Arthritis Diseases 0.000 description 1
- 206010059176 Juvenile idiopathic arthritis Diseases 0.000 description 1
- 208000011200 Kawasaki disease Diseases 0.000 description 1
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 1
- 201000010743 Lambert-Eaton myasthenic syndrome Diseases 0.000 description 1
- 208000031671 Large B-Cell Diffuse Lymphoma Diseases 0.000 description 1
- 201000001779 Leukocyte adhesion deficiency Diseases 0.000 description 1
- 201000004462 Leydig Cell Tumor Diseases 0.000 description 1
- 206010024612 Lipoma Diseases 0.000 description 1
- 241000186781 Listeria Species 0.000 description 1
- 206010058467 Lung neoplasm malignant Diseases 0.000 description 1
- 206010025219 Lymphangioma Diseases 0.000 description 1
- 208000004138 Lymphangiomyoma Diseases 0.000 description 1
- 208000031422 Lymphocytic Chronic B-Cell Leukemia Diseases 0.000 description 1
- 201000003791 MALT lymphoma Diseases 0.000 description 1
- 208000008095 Malignant Carcinoid Syndrome Diseases 0.000 description 1
- 208000025205 Mantle-Cell Lymphoma Diseases 0.000 description 1
- 208000000172 Medulloblastoma Diseases 0.000 description 1
- 201000009906 Meningitis Diseases 0.000 description 1
- 208000010153 Mesonephroma Diseases 0.000 description 1
- 102100025096 Mesothelin Human genes 0.000 description 1
- 206010027406 Mesothelioma Diseases 0.000 description 1
- 206010049567 Miller Fisher syndrome Diseases 0.000 description 1
- 241000713869 Moloney murine leukemia virus Species 0.000 description 1
- 108090000143 Mouse Proteins Proteins 0.000 description 1
- 208000007727 Muscle Tissue Neoplasms Diseases 0.000 description 1
- 206010028424 Myasthenic syndrome Diseases 0.000 description 1
- 208000003926 Myelitis Diseases 0.000 description 1
- 208000033761 Myelogenous Chronic BCR-ABL Positive Leukemia Diseases 0.000 description 1
- 208000033776 Myeloid Acute Leukemia Diseases 0.000 description 1
- 201000002481 Myositis Diseases 0.000 description 1
- 206010029240 Neuritis Diseases 0.000 description 1
- 201000004404 Neurofibroma Diseases 0.000 description 1
- 208000005890 Neuroma Diseases 0.000 description 1
- 206010029461 Nodal marginal zone B-cell lymphomas Diseases 0.000 description 1
- 206010029888 Obliterative bronchiolitis Diseases 0.000 description 1
- 206010030155 Oesophageal carcinoma Diseases 0.000 description 1
- 241000713112 Orthobunyavirus Species 0.000 description 1
- 208000007571 Ovarian Epithelial Carcinoma Diseases 0.000 description 1
- 206010061535 Ovarian neoplasm Diseases 0.000 description 1
- 206010033661 Pancytopenia Diseases 0.000 description 1
- 206010034277 Pemphigoid Diseases 0.000 description 1
- 241000721454 Pemphigus Species 0.000 description 1
- 108010067902 Peptide Library Proteins 0.000 description 1
- 208000031845 Pernicious anaemia Diseases 0.000 description 1
- 208000002163 Phyllodes Tumor Diseases 0.000 description 1
- 206010071776 Phyllodes tumour Diseases 0.000 description 1
- 241000709664 Picornaviridae Species 0.000 description 1
- 208000007641 Pinealoma Diseases 0.000 description 1
- 206010065159 Polychondritis Diseases 0.000 description 1
- 208000007048 Polymyalgia Rheumatica Diseases 0.000 description 1
- 206010036105 Polyneuropathy Diseases 0.000 description 1
- 206010036297 Postpartum hypopituitarism Diseases 0.000 description 1
- 102400000745 Potential peptide Human genes 0.000 description 1
- 101800001357 Potential peptide Proteins 0.000 description 1
- 208000006664 Precursor Cell Lymphoblastic Leukemia-Lymphoma Diseases 0.000 description 1
- 206010065857 Primary Effusion Lymphoma Diseases 0.000 description 1
- 208000012654 Primary biliary cholangitis Diseases 0.000 description 1
- 206010036697 Primary hypothyroidism Diseases 0.000 description 1
- 206010036711 Primary mediastinal large B-cell lymphomas Diseases 0.000 description 1
- 241000288906 Primates Species 0.000 description 1
- ONIBWKKTOPOVIA-UHFFFAOYSA-N Proline Natural products OC(=O)C1CCCN1 ONIBWKKTOPOVIA-UHFFFAOYSA-N 0.000 description 1
- 208000035416 Prolymphocytic B-Cell Leukemia Diseases 0.000 description 1
- 108090000412 Protein-Tyrosine Kinases Proteins 0.000 description 1
- 102000004022 Protein-Tyrosine Kinases Human genes 0.000 description 1
- 208000010362 Protozoan Infections Diseases 0.000 description 1
- 201000004681 Psoriasis Diseases 0.000 description 1
- 201000001263 Psoriatic Arthritis Diseases 0.000 description 1
- 208000036824 Psoriatic arthropathy Diseases 0.000 description 1
- 206010037549 Purpura Diseases 0.000 description 1
- 241001672981 Purpura Species 0.000 description 1
- 206010037742 Rabies Diseases 0.000 description 1
- 208000034541 Rare lymphatic malformation Diseases 0.000 description 1
- 208000033464 Reiter syndrome Diseases 0.000 description 1
- 241000702263 Reovirus sp. Species 0.000 description 1
- 206010038802 Reticuloendothelial system stimulated Diseases 0.000 description 1
- 241000712909 Reticuloendotheliosis virus Species 0.000 description 1
- 241000712907 Retroviridae Species 0.000 description 1
- 208000005678 Rhabdomyoma Diseases 0.000 description 1
- 108010039491 Ricin Proteins 0.000 description 1
- 241000606701 Rickettsia Species 0.000 description 1
- 241000293869 Salmonella enterica subsp. enterica serovar Typhimurium Species 0.000 description 1
- 208000003274 Sertoli cell tumor Diseases 0.000 description 1
- 208000002669 Sex Cord-Gonadal Stromal Tumors Diseases 0.000 description 1
- 201000009895 Sheehan syndrome Diseases 0.000 description 1
- 240000002967 Sium sisarum Species 0.000 description 1
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 1
- 208000021712 Soft tissue sarcoma Diseases 0.000 description 1
- 231100000168 Stevens-Johnson syndrome Toxicity 0.000 description 1
- 206010072148 Stiff-Person syndrome Diseases 0.000 description 1
- 208000027522 Sydenham chorea Diseases 0.000 description 1
- 206010043276 Teratoma Diseases 0.000 description 1
- 206010043540 Thromboangiitis obliterans Diseases 0.000 description 1
- 208000024770 Thyroid neoplasm Diseases 0.000 description 1
- 206010043781 Thyroiditis chronic Diseases 0.000 description 1
- 206010043784 Thyroiditis subacute Diseases 0.000 description 1
- 206010044223 Toxic epidermal necrolysis Diseases 0.000 description 1
- 231100000087 Toxic epidermal necrolysis Toxicity 0.000 description 1
- 108091023040 Transcription factor Proteins 0.000 description 1
- 102000040945 Transcription factor Human genes 0.000 description 1
- 102100023935 Transmembrane glycoprotein NMB Human genes 0.000 description 1
- 206010052779 Transplant rejections Diseases 0.000 description 1
- 201000006704 Ulcerative Colitis Diseases 0.000 description 1
- 206010046851 Uveitis Diseases 0.000 description 1
- 206010046865 Vaccinia virus infection Diseases 0.000 description 1
- 241000713325 Visna/maedi virus Species 0.000 description 1
- 239000004480 active ingredient Substances 0.000 description 1
- 230000001154 acute effect Effects 0.000 description 1
- 208000009956 adenocarcinoma Diseases 0.000 description 1
- 230000001464 adherent effect Effects 0.000 description 1
- 239000002671 adjuvant Substances 0.000 description 1
- 208000026935 allergic disease Diseases 0.000 description 1
- 230000000172 allergic effect Effects 0.000 description 1
- 208000010029 ameloblastoma Diseases 0.000 description 1
- 201000009431 angiokeratoma Diseases 0.000 description 1
- 208000000252 angiomatosis Diseases 0.000 description 1
- 230000003432 anti-folate effect Effects 0.000 description 1
- 230000000692 anti-sense effect Effects 0.000 description 1
- 230000000259 anti-tumor effect Effects 0.000 description 1
- 230000000840 anti-viral effect Effects 0.000 description 1
- 229940127074 antifolate Drugs 0.000 description 1
- 239000002246 antineoplastic agent Substances 0.000 description 1
- 239000003443 antiviral agent Substances 0.000 description 1
- 229940121357 antivirals Drugs 0.000 description 1
- 206010003230 arteritis Diseases 0.000 description 1
- 206010003246 arthritis Diseases 0.000 description 1
- 208000006673 asthma Diseases 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 230000006470 autoimmune attack Effects 0.000 description 1
- 239000000688 bacterial toxin Substances 0.000 description 1
- 210000000270 basal cell Anatomy 0.000 description 1
- 208000021592 benign granular cell tumor Diseases 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- 238000002306 biochemical method Methods 0.000 description 1
- 210000000988 bone and bone Anatomy 0.000 description 1
- 210000002798 bone marrow cell Anatomy 0.000 description 1
- 206010006007 bone sarcoma Diseases 0.000 description 1
- 239000012888 bovine serum Substances 0.000 description 1
- 201000008274 breast adenocarcinoma Diseases 0.000 description 1
- 201000003848 bronchiolitis obliterans Diseases 0.000 description 1
- 208000023367 bronchiolitis obliterans with obstructive pulmonary disease Diseases 0.000 description 1
- 208000003362 bronchogenic carcinoma Diseases 0.000 description 1
- 208000000594 bullous pemphigoid Diseases 0.000 description 1
- 210000004899 c-terminal region Anatomy 0.000 description 1
- 244000309466 calf Species 0.000 description 1
- 208000005761 carcinoid heart disease Diseases 0.000 description 1
- 101150102092 ccdB gene Proteins 0.000 description 1
- 230000021164 cell adhesion Effects 0.000 description 1
- 230000008568 cell cell communication Effects 0.000 description 1
- 238000004113 cell culture Methods 0.000 description 1
- 230000003915 cell function Effects 0.000 description 1
- 230000011748 cell maturation Effects 0.000 description 1
- 201000008191 cerebritis Diseases 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 229940044683 chemotherapy drug Drugs 0.000 description 1
- 108700010039 chimeric receptor Proteins 0.000 description 1
- 201000005217 chondroblastoma Diseases 0.000 description 1
- 208000019069 chronic childhood arthritis Diseases 0.000 description 1
- 230000001684 chronic effect Effects 0.000 description 1
- 230000012085 chronic inflammatory response Effects 0.000 description 1
- 208000025302 chronic primary adrenal insufficiency Diseases 0.000 description 1
- 208000009060 clear cell adenocarcinoma Diseases 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 206010009887 colitis Diseases 0.000 description 1
- 229920001436 collagen Polymers 0.000 description 1
- 210000001072 colon Anatomy 0.000 description 1
- 208000029742 colonic neoplasm Diseases 0.000 description 1
- 230000005757 colony formation Effects 0.000 description 1
- 230000001143 conditioned effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000013256 coordination polymer Substances 0.000 description 1
- 208000029078 coronary artery disease Diseases 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 230000009260 cross reactivity Effects 0.000 description 1
- 238000012136 culture method Methods 0.000 description 1
- 208000018261 cutaneous leukocytoclastic angiitis Diseases 0.000 description 1
- 208000002445 cystadenocarcinoma Diseases 0.000 description 1
- 210000005220 cytoplasmic tail Anatomy 0.000 description 1
- 210000000172 cytosol Anatomy 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 201000001981 dermatomyositis Diseases 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 239000008121 dextrose Substances 0.000 description 1
- 230000003292 diminished effect Effects 0.000 description 1
- 230000005750 disease progression Effects 0.000 description 1
- 241001493065 dsRNA viruses Species 0.000 description 1
- 230000000925 erythroid effect Effects 0.000 description 1
- 210000002304 esc Anatomy 0.000 description 1
- 201000004101 esophageal cancer Diseases 0.000 description 1
- 230000003090 exacerbative effect Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 239000013604 expression vector Substances 0.000 description 1
- 201000006569 extramedullary plasmacytoma Diseases 0.000 description 1
- 239000012091 fetal bovine serum Substances 0.000 description 1
- 210000003754 fetus Anatomy 0.000 description 1
- 206010016629 fibroma Diseases 0.000 description 1
- 108700014844 flt3 ligand Proteins 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000004052 folic acid antagonist Substances 0.000 description 1
- 201000003444 follicular lymphoma Diseases 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- ZZUFCTLCJUWOSV-UHFFFAOYSA-N furosemide Chemical compound C1=C(Cl)C(S(=O)(=O)N)=CC(C(O)=O)=C1NCC1=CC=CO1 ZZUFCTLCJUWOSV-UHFFFAOYSA-N 0.000 description 1
- 201000008361 ganglioneuroma Diseases 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 210000004602 germ cell Anatomy 0.000 description 1
- 201000005626 glomangioma Diseases 0.000 description 1
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 description 1
- 201000009277 hairy cell leukemia Diseases 0.000 description 1
- 201000011066 hemangioma Diseases 0.000 description 1
- 208000007475 hemolytic anemia Diseases 0.000 description 1
- 230000011132 hemopoiesis Effects 0.000 description 1
- 208000006454 hepatitis Diseases 0.000 description 1
- 231100000283 hepatitis Toxicity 0.000 description 1
- 201000005133 hidradenoma Diseases 0.000 description 1
- 201000009379 histiocytoid hemangioma Diseases 0.000 description 1
- 201000000284 histiocytoma Diseases 0.000 description 1
- 201000008298 histiocytosis Diseases 0.000 description 1
- 239000000710 homodimer Substances 0.000 description 1
- 102000044493 human CDCA4 Human genes 0.000 description 1
- 102000046004 human WT1 Human genes 0.000 description 1
- 230000003463 hyperproliferative effect Effects 0.000 description 1
- 230000009610 hypersensitivity Effects 0.000 description 1
- 201000006362 hypersensitivity vasculitis Diseases 0.000 description 1
- 230000002989 hypothyroidism Effects 0.000 description 1
- 210000002865 immune cell Anatomy 0.000 description 1
- 230000001900 immune effect Effects 0.000 description 1
- 239000012642 immune effector Substances 0.000 description 1
- 230000028993 immune response Effects 0.000 description 1
- 208000015446 immunoglobulin a vasculitis Diseases 0.000 description 1
- 229940121354 immunomodulator Drugs 0.000 description 1
- 230000001506 immunosuppresive effect Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 201000008319 inclusion body myositis Diseases 0.000 description 1
- 239000012678 infectious agent Substances 0.000 description 1
- 230000002458 infectious effect Effects 0.000 description 1
- 208000027866 inflammatory disease Diseases 0.000 description 1
- 230000002757 inflammatory effect Effects 0.000 description 1
- 206010022000 influenza Diseases 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 208000026876 intravascular large B-cell lymphoma Diseases 0.000 description 1
- 201000002529 islet cell tumor Diseases 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 201000002215 juvenile rheumatoid arthritis Diseases 0.000 description 1
- 210000003734 kidney Anatomy 0.000 description 1
- 230000002147 killing effect Effects 0.000 description 1
- 210000000265 leukocyte Anatomy 0.000 description 1
- 201000002364 leukopenia Diseases 0.000 description 1
- 231100001022 leukopenia Toxicity 0.000 description 1
- 210000004185 liver Anatomy 0.000 description 1
- 210000005228 liver tissue Anatomy 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 201000005202 lung cancer Diseases 0.000 description 1
- 208000020816 lung neoplasm Diseases 0.000 description 1
- 210000001165 lymph node Anatomy 0.000 description 1
- 210000004698 lymphocyte Anatomy 0.000 description 1
- 210000003563 lymphoid tissue Anatomy 0.000 description 1
- 208000006116 lymphomatoid granulomatosis Diseases 0.000 description 1
- 201000007919 lymphoplasmacytic lymphoma Diseases 0.000 description 1
- 230000002101 lytic effect Effects 0.000 description 1
- 208000014699 malignant epithelioid mesothelioma Diseases 0.000 description 1
- 210000001161 mammalian embryo Anatomy 0.000 description 1
- 238000007726 management method Methods 0.000 description 1
- 230000035800 maturation Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 206010027191 meningioma Diseases 0.000 description 1
- 210000000716 merkel cell Anatomy 0.000 description 1
- 208000004197 mesenchymoma Diseases 0.000 description 1
- 208000011831 mesonephric neoplasm Diseases 0.000 description 1
- 206010063344 microscopic polyangiitis Diseases 0.000 description 1
- 230000000877 morphologic effect Effects 0.000 description 1
- 208000001725 mucocutaneous lymph node syndrome Diseases 0.000 description 1
- 210000004877 mucosa Anatomy 0.000 description 1
- 208000037890 multiple organ injury Diseases 0.000 description 1
- 201000006417 multiple sclerosis Diseases 0.000 description 1
- 206010028417 myasthenia gravis Diseases 0.000 description 1
- 201000000050 myeloid neoplasm Diseases 0.000 description 1
- 201000004130 myoblastoma Diseases 0.000 description 1
- 208000009091 myxoma Diseases 0.000 description 1
- 201000008383 nephritis Diseases 0.000 description 1
- 208000007538 neurilemmoma Diseases 0.000 description 1
- 208000029986 neuroepithelioma Diseases 0.000 description 1
- 208000008795 neuromyelitis optica Diseases 0.000 description 1
- 201000001119 neuropathy Diseases 0.000 description 1
- 230000007823 neuropathy Effects 0.000 description 1
- 208000004128 odontoma Diseases 0.000 description 1
- 230000009437 off-target effect Effects 0.000 description 1
- 208000005963 oophoritis Diseases 0.000 description 1
- 201000005737 orchitis Diseases 0.000 description 1
- 201000008482 osteoarthritis Diseases 0.000 description 1
- 208000008798 osteoma Diseases 0.000 description 1
- 201000008968 osteosarcoma Diseases 0.000 description 1
- GSSMIHQEWAQUPM-AOLPDKKJSA-N ovalbumin peptide Chemical group C([C@H](NC(=O)[C@H](C(C)C)NC(=O)[C@H](C)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CO)NC(=O)[C@@H](N)[C@@H](C)CC)C(=O)N[C@@H](C)C(=O)N[C@@H](C)C(=O)N[C@@H](CC=1NC=NC=1)C(=O)N[C@@H](C)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](C)C(=O)NCC(=O)N[C@@H](CCCNC(N)=N)C(O)=O)C1=CN=CN1 GSSMIHQEWAQUPM-AOLPDKKJSA-N 0.000 description 1
- 210000001672 ovary Anatomy 0.000 description 1
- 208000022102 pancreatic neuroendocrine neoplasm Diseases 0.000 description 1
- 244000045947 parasite Species 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 244000052769 pathogen Species 0.000 description 1
- 230000001717 pathogenic effect Effects 0.000 description 1
- 210000005259 peripheral blood Anatomy 0.000 description 1
- 239000011886 peripheral blood Substances 0.000 description 1
- 208000033808 peripheral neuropathy Diseases 0.000 description 1
- 230000002688 persistence Effects 0.000 description 1
- 208000024724 pineal body neoplasm Diseases 0.000 description 1
- 201000004123 pineal gland cancer Diseases 0.000 description 1
- 239000013612 plasmid Substances 0.000 description 1
- 208000005987 polymyositis Diseases 0.000 description 1
- 230000007824 polyneuropathy Effects 0.000 description 1
- 208000017805 post-transplant lymphoproliferative disease Diseases 0.000 description 1
- 208000016800 primary central nervous system lymphoma Diseases 0.000 description 1
- 210000002307 prostate Anatomy 0.000 description 1
- 201000005825 prostate adenocarcinoma Diseases 0.000 description 1
- 201000008158 rapidly progressive glomerulonephritis Diseases 0.000 description 1
- 208000002574 reactive arthritis Diseases 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000003757 reverse transcription PCR Methods 0.000 description 1
- 201000003068 rheumatic fever Diseases 0.000 description 1
- 206010048628 rheumatoid vasculitis Diseases 0.000 description 1
- 102200058937 rs45581936 Human genes 0.000 description 1
- 201000000306 sarcoidosis Diseases 0.000 description 1
- 206010039667 schwannoma Diseases 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000013207 serial dilution Methods 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 210000000952 spleen Anatomy 0.000 description 1
- 206010062113 splenic marginal zone lymphoma Diseases 0.000 description 1
- 201000005671 spondyloarthropathy Diseases 0.000 description 1
- 206010041823 squamous cell carcinoma Diseases 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 238000007447 staining method Methods 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
- 201000007497 subacute thyroiditis Diseases 0.000 description 1
- 206010043207 temporal arteritis Diseases 0.000 description 1
- 210000001550 testis Anatomy 0.000 description 1
- 208000001644 thecoma Diseases 0.000 description 1
- 230000001732 thrombotic effect Effects 0.000 description 1
- 208000008732 thymoma Diseases 0.000 description 1
- 201000002510 thyroid cancer Diseases 0.000 description 1
- 230000000451 tissue damage Effects 0.000 description 1
- 231100000827 tissue damage Toxicity 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 108091007466 transmembrane glycoproteins Proteins 0.000 description 1
- 238000011269 treatment regimen Methods 0.000 description 1
- 208000029387 trophoblastic neoplasm Diseases 0.000 description 1
- 201000008827 tuberculosis Diseases 0.000 description 1
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 1
- 241000701447 unidentified baculovirus Species 0.000 description 1
- 241001529453 unidentified herpesvirus Species 0.000 description 1
- 208000007089 vaccinia Diseases 0.000 description 1
- 206010055031 vascular neoplasm Diseases 0.000 description 1
- UGGWPQSBPIFKDZ-KOTLKJBCSA-N vindesine Chemical compound C([C@@H](C[C@]1(C(=O)OC)C=2C(=CC3=C([C@]45[C@H]([C@@]([C@H](O)[C@]6(CC)C=CCN([C@H]56)CC4)(O)C(N)=O)N3C)C=2)OC)C[C@@](C2)(O)CC)N2CCC2=C1N=C1[C]2C=CC=C1 UGGWPQSBPIFKDZ-KOTLKJBCSA-N 0.000 description 1
- 229960004355 vindesine Drugs 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/705—Receptors; Cell surface antigens; Cell surface determinants
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/0081—Purging biological preparations of unwanted cells
- C12N5/0087—Purging against subsets of blood cells, e.g. purging alloreactive T cells
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/705—Receptors; Cell surface antigens; Cell surface determinants
- C07K14/70503—Immunoglobulin superfamily
- C07K14/7051—T-cell receptor (TcR)-CD3 complex
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K35/00—Medicinal preparations containing materials or reaction products thereof with undetermined constitution
- A61K35/12—Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/16—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- A61K38/17—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- A61K38/177—Receptors; Cell surface antigens; Cell surface determinants
- A61K38/1774—Immunoglobulin superfamily (e.g. CD2, CD4, CD8, ICAM molecules, B7 molecules, Fc-receptors, MHC-molecules)
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/46—Cellular immunotherapy
- A61K39/461—Cellular immunotherapy characterised by the cell type used
- A61K39/4611—T-cells, e.g. tumor infiltrating lymphocytes [TIL], lymphokine-activated killer cells [LAK] or regulatory T cells [Treg]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/46—Cellular immunotherapy
- A61K39/463—Cellular immunotherapy characterised by recombinant expression
- A61K39/4632—T-cell receptors [TCR]; antibody T-cell receptor constructs
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/46—Cellular immunotherapy
- A61K39/464—Cellular immunotherapy characterised by the antigen targeted or presented
- A61K39/4643—Vertebrate antigens
- A61K39/4644—Cancer antigens
- A61K39/464452—Transcription factors, e.g. SOX or c-MYC
- A61K39/464453—Wilms tumor 1 [WT1]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/04—Antibacterial agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/12—Antivirals
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
- A61P37/02—Immunomodulators
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
- A61P37/02—Immunomodulators
- A61P37/06—Immunosuppressants, e.g. drugs for graft rejection
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K19/00—Hybrid peptides, i.e. peptides covalently bound to nucleic acids, or non-covalently bound protein-protein complexes
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/85—Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
- C12N15/86—Viral vectors
- C12N15/867—Retroviral vectors
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/06—Animal cells or tissues; Human cells or tissues
- C12N5/0602—Vertebrate cells
- C12N5/0634—Cells from the blood or the immune system
- C12N5/0636—T lymphocytes
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/06—Animal cells or tissues; Human cells or tissues
- C12N5/0602—Vertebrate cells
- C12N5/0634—Cells from the blood or the immune system
- C12N5/065—Thymocytes
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/10—Cells modified by introduction of foreign genetic material
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
- G01N33/569—Immunoassay; Biospecific binding assay; Materials therefor for microorganisms, e.g. protozoa, bacteria, viruses
- G01N33/56966—Animal cells
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2501/00—Active agents used in cell culture processes, e.g. differentation
- C12N2501/40—Regulators of development
- C12N2501/42—Notch; Delta; Jagged; Serrate
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2502/00—Coculture with; Conditioned medium produced by
- C12N2502/13—Coculture with; Conditioned medium produced by connective tissue cells; generic mesenchyme cells, e.g. so-called "embryonic fibroblasts"
- C12N2502/1394—Bone marrow stromal cells; whole marrow
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2502/00—Coculture with; Conditioned medium produced by
- C12N2502/99—Coculture with; Conditioned medium produced by genetically modified cells
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2333/00—Assays involving biological materials from specific organisms or of a specific nature
- G01N2333/435—Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
- G01N2333/705—Assays involving receptors, cell surface antigens or cell surface determinants
- G01N2333/70503—Immunoglobulin superfamily, e.g. VCAMs, PECAM, LFA-3
- G01N2333/7051—T-cell receptor (TcR)-CD3 complex
Definitions
- the present disclosure relates to enhanced affinity T cell receptors
- TCRs and, more particularly, to using agonist selection of hematopoietic progenitor cells expressing an antigen specific TCRa to generate enhanced affinity TCRs, and to uses thereof.
- TCR gene therapy is an emerging treatment approach that can overcome many of the obstacles associated with conventional T cell adoptive immunotherapy, such as the extensive time and labor required to isolate, characterize, and expand tumor antigen-specific T cell clones (Schmitt, Ragnarsson, & Greenberg, 2009, Hum. Gene Ther. 20: 1240-1248). Further benefits of gene therapy include the ability to utilize defined populations of T cells capable of long-term persistence in vivo (Berger et al, 2008, J. Clin. Invest. 118:294-305; Hinrichs et al, 2009, Proc. Natl. Acad. Sci. USA 106: 17469-17474).
- T cells can be transduced with genes encoding well- characterized TCRs that have a high affinity for tumor antigens, thereby increasing the likelihood of mediating an antitumor effect.
- a recent report of therapy targeting advanced B cell leukemia with genetically modified T cells expressing a high affinity chimeric receptor targeting a self/tumor-antigen has highlighted the potential of using engineered high avidity T cells for the treatment of leukemia (Kalos et al., 2011, Sci. Transl. Med. 3:95ra73).
- high affinity T cells specific for these antigens are generally subject to negative selection in the thymus. Therefore, one significant limitation of T cell based immunotherapies in general is the limited availability of T cells expressing an endogenous TCR with sufficiently high affinity for non-mutated tumor antigens.
- CDR1 and CDR2 regions predominantly make contact with the MHC molecule, while the hypervariable CDR3 region primarily contacts the peptide (Wucherpfennig et al., 2010, Cold Spring Harbor Perspectives in Biology 2:a005140-a005140).
- Site-directed mutagenesis strategies generally target selected portions of all three of these regions, but still are not always successful in generating a higher affinity variant, and the improvements are limited to changes only in the specifically targeted regions.
- mutations introduced into the MHC contact residues have the risk of potentially increasing the affinity of the TCR for MHC while decreasing the overall specificity of the receptor for its cognate peptide.
- most mutations introduced to enhance the affinity of a TCR would be restricted to the CDR3 region for this reason.
- current methodologies are limited in the capacity to generate CDR3 diversity, because site-directed mutagenesis is constrained by the original length of the CDR3 region.
- the present disclosure provides a method for generating an enhanced affinity TCR comprising: a) contacting hematopoietic progenitor cells with stromal cells and a peptide antigen, under conditions and for a time sufficient to induce differentiation of the hematopoietic progenitor cells into DN TCRaP + thymocytes, wherein the hematopoietic progenitor cells comprise a non-endogenous nucleic acid sequence encoding a TCRa chain from a parent TCR specific for the peptide antigen, and wherein the stromal cells comprise a non-endogenous nucleic acid sequence encoding Delta- like- 1 or Delta-like-4 and a nucleic acid sequence encoding an MHC molecule; b) isolating nucleic acid sequences encoding the various TCRP chains from the DN TCRaP + thymocytes and introducing the nucleic acid sequences encoding the TCRP chains into cells that are
- enhanced affinity TCRs generated by methods disclosed herein are provided, which may be cell-bound or in soluble form, and may further be codon optimized to enhance expression in T cells.
- enhanced affinity TCRs of the present disclosure may be used to treat a disease (such as cancer, infectious disease, or autoimmune disease) in a subject by administering a composition comprising the enhanced affinity TCRs.
- enhanced affinity TCRs of the instant disclosure may be used in diagnostic methods or imaging methods, including these methods used in relation to the indications or conditions identified herein.
- FIGURES 1A-D Thymocytes from OT-1 transgenic mice were sorted for TCRP CRY5 " CD4 " CD8 " CD 117 + CD44 + DN 1 and DN2 progenitor cells and cultured on OP9-DL1 cells expressing MHC Class I H-2Kb molecule for 20 days in the presence of various concentrations of ovalbumin SIINFEKL peptide (SEQ ID NO:l) as indicated.
- A, B, C Cultures were analyzed by flow cytometry at the timepoints indicated.
- D Total cellularity of each culture was determined on day 20 of culture.
- FIGURE 2 CD69 " DP thymocytes that have not yet gone through positive selection sorted from B6 or OT-1 transgenic mice were cultured on OP9-DL1 cells expressing MHC Class I H-2Kb molecule in the presence of ovalbumin
- SIINFEKL peptide SEQ ID NO:l
- FIGURES 3A-C B6 thymocytes were sorted for CD4 CD8 CD 117 + CD44 + DN 1 and DN2 progenitor cells and transduced with the TCRa chain of the affinity enhanced WTl specific TCR 3D clone, and cultured on OP9-DL1 cells expressing MHC Class I H-2Db molecule in the presence or absence of ⁇ ⁇ of WTl peptide RMFPNAPYL (SEQ ID NO:2).
- A On day 16 of culture, transduced (hCD2 + ) and untransduced (hCD2 ⁇ ) cells were analyzed by flow cytometry.
- FIGURES 4A-C The retroviral TCRP library was used to transduce CD8 + 3Da + 58 _/" cells.
- A Transduced cells were initially sorted on GFP expression only (data not shown), followed by two additional sorts on GFP and high MHC-WT1 peptide tetramer expression as indicated. Sorted 58 _/" cells were also analyzed for staining with the non-specific, but MHC H-2Db-peptide tetramer specific for GP33 as a control for non-specific tetramer binding.
- B Sequence analysis of isolated TCRP chains.
- C Four candidate TCRP chains were identified by sequence analysis, and were transferred back into MigRl-attR retroviral vector. Retroviral supernatant was generated, and used to transduce CD8 + 3Da + 58 _/" cells.
- FIGURES 5A-C (A) 58 _/" cells transduced with each of the candidate TCRP chains paired with 3Da were stained with MHC-WT1 peptide specific tetramer, as well as several non-specific MHC H-2Db-peptide tetramers in order to assess potential peptide -independent reactivity towards MHC. (B) The relative affinity of the three highest affinity TCRs was determined by staining each transduced cell line with MHC-peptide tetramer followed by flow cytometry.
- K D measurements were performed using six 2-fold dilutions of PE-conjugated tetramers, and apparent K D values were determined from binding curves by non-linear regression, as the concentration of ligand that yielded half-maximal binding.
- C The highest affinity TCRP chain (clone#l) was codon-optimized, and tetramer binding was compared to the original enhanced affinity 3 ⁇ construct.
- FIGURES 6A-B Analysis of CD4 and CD8 expression of TCRp + thymocytes (A) and splenocytes (B) from 3D-PYYa-IRES-hCD2 and 7431 -IRES- hCD2 retrogenic mice, ⁇ and ⁇ 9 expression of TCRP + thymocytes (A) from 3D- PYYa-IRES-hCD2 and 7431 -IRES-hCD2 retrogenic mice.
- FIGURE 7 Analysis of splenocytes from retrogenic mice after 6 days of WT1 of mesothelin peptide stimulation +IL2 in vitro.
- the instant disclosure provides methods and compositions for generating enhanced or high affinity TCRs, in which the TCRa chain from an antigen-specific TCR is used to select de novo generated TCRP chains that pair with an antigen-specific TCRa chain during T cell development in vitro, to form new, enhanced affinity receptors that can advantageously drive T cell maturation independent of negative selection through a novel selection process in order to target an antigen of interest.
- the present disclosure provides a method for generating an enhanced affinity T cell receptor (TCR) by culturing hematopoietic progenitor cells (containing a non-endogenous nucleic acid sequence encoding an antigen specific TCRa chain) with stromal cells (containing a non-endogenous nucleic acid sequence encoding Delta- like- 1 or Delta-like-4 and a nucleic acid sequence encoding an MHC molecule) in the presence of a peptide antigen, which will induce differentiation of the hematopoietic progenitor cells into DN TCRaP + thymocytes.
- TCR enhanced affinity T cell receptor
- nucleic acid sequences encoding various TCRP chains from the DN TCRaP + thymocytes are isolated and introduced into cells that are capable of expressing a TCR on the cell surface and also express the TCRa chain noted above.
- an enhanced affinity TCR is identified by comparing the binding affinity of candidate TCRaP with the parent TCRap.
- this disclosure provides enhanced affinity TCRs generated using such methods, as well as compositions and methods for using the enhanced affinity TCRs of the present disclosure in various therapeutic applications, including the treatment of a disease in subject ⁇ e.g., cancer, infectious disease, autoimmune disease).
- a disease in subject e.g., cancer, infectious disease, autoimmune disease.
- T cell receptor refers to a molecule found on the surface of T cells (or T lymphocytes) that, in association with CD3, is generally responsible for recognizing antigens bound to major histocompatibility complex (MHC) molecules.
- MHC major histocompatibility complex
- the TCR has a disulfide-linked heterodimer of the highly variable a and ⁇ chains (also known as TCRa and TCR , respectively) in most T cells. In a small subset of T cells, the TCR is made up of a heterodimer of variable ⁇ and ⁇ chains (also known as TCRy and TCR5, respectively).
- Each chain of the TCR is a member of the immunoglobulin superfamily and possesses one N-terminal immunoglobulin variable domain, one immunoglobulin constant domain, a transmembrane region, and a short cytoplasmic tail at the C-terminal end (see Janeway et al., Immunobiology: The Immune System in Health and Disease, 3 rd Ed., Current Biology Publications, p. 4:33, 1997).
- TCR as used in the present disclosure may be from various animal species, including human, mouse, rat, or other mammals.
- a TCR may be cell-bound or in soluble form.
- TCRs and binding domains thereof of this disclosure can be "immunospecific” or capable of binding to a desired degree, including “specifically or selectively binding” a target while not significantly binding other components present in a test sample, if they bind a target molecule with an affinity or Ka (i.e., an equilibrium association constant of a particular binding interaction with units of 1/M) of, for example, greater than or equal to about 10 5 M “1 , 10 6 M “1 , 10 7 M “1 , 10 8 M “1 , 10 9 M “1 , 10 10 M “1 , 10 11 M “1 , 10 12 M “1 , or 10 13 M “1 .
- Ka i.e., an equilibrium association constant of a particular binding interaction with units of 1/M
- “High affinity” binding domains refers to those binding domains with a K a of at least 10 7 M “1 , at least 10 8 M “1 , at least 10 9 M “1 , at least 10 10 M “1 , at least 10 11 M “1 , at least 10 12 M “1 , at least 10 13 M “1 , or greater.
- affinity may be defined as an equilibrium dissociation constant (IQ) of a particular binding interaction with units of M (e.g., 10 "5 M to 10 "13 M).
- IQ equilibrium dissociation constant
- Affinities of TCRs and binding domain polypeptides according to the present disclosure can be readily determined using conventional techniques (see, e.g., Scatchard et al. (1949) Ann. N.Y. Acad. Sci.
- enhanced affinity T cell receptor refers to a selected or engineered TCR with stronger binding to a target antigen than the wild type (or parent) TCR.
- Enhanced affinity may be indicated by a TCR with a Ka (equilibrium association constant) for the target antigen higher than that of the wild type (also called parent or original) TCR, a TCR with a Ka (dissociation constant) for the target antigen less than that of the wild type (also called parent or original) TCR, or with an off-rate (K 0ff ) for the target antigen less than that of the wild type (or parent) TCR.
- Ka Equilibrium association constant
- K 0ff off-rate
- MHC molecules refer to glycoproteins that deliver peptide antigens to a cell surface.
- MHC class I molecules are heterodimers consisting of a membrane spanning a chain (with three a domains) and a non-covalently associated ⁇ 2 microglobulin.
- MHC class II molecules are composed of two transmembrane glycoproteins, a and ⁇ , both of which span the membrane. Each chain has two domains.
- MHC class I molecules deliver peptides originating in the cytosol to the cell surface, where peptide :MHC complex is recognized by CD8 + T cells.
- MHC class II molecules deliver peptides originating in the vesicular system to the cell surface, where they are recognized by CD4 + T cells.
- An MHC molecule may be from various animal species, including human, mouse, rat, or other mammals.
- a “hematopoietic progenitor cell” is a cell derived from hematopoietic stem cells or fetal tissue that is capable of further differentiation into mature cells types (e.g., cells of the T cell lineage).
- CD24 10 Lin CD117 + hematopoietic progenitor cells are used.
- hematopoietic progenitor cells may include embryonic stem cells, which are capable of further differentiation to cells of the T cell lineage.
- Hematopoietic progenitor cells may be from various animal species, including human, mouse, rat, or other mammals.
- thymocyte progenitor cell or "thymocyte” is a hematopoietic progenitor cell present in the thymus.
- Hematopoietic stem cells refer to undifferentiated hematopoietic cells that are capable of essentially unlimited propagation either in vivo or ex vivo and capable of differentiation to other cell types including cells of the T cell lineage. Hematopoietic stem cells may be isolated from, for example, fetal liver, bone marrow, and cord blood.
- Cells of T cell lineage refer to cells that show at least one phenotypic characteristic of a T cell or a precursor or progenitor thereof that distinguishes the cells from other lymphoid cells, and cells of the erythroid or myeloid lineages.
- Such phenotypic characteristics can include expression of one or more proteins specific for T cells (e.g., CD8 + ), or a physiological, morphological, functional, or immunological feature specific for a T cell.
- cells of the T cell lineage may be progenitor or precursor cells committed to the T cell lineage; CD25 + immature and inactivated T cells; cells that have undergone CD4 or CD8 linage commitment; thymocyte progenitor cells that are CD4 + CD8 + double positive; single positive CD4 + or CD8 + ; TCRaP or TCR ⁇ ; or mature and functional or activated T cells.
- stromal cells are connective tissue cells of any organ.
- the stromal cells are bone marrow stromal cells.
- Examples of stromal cell lines that can be engineered to express DLL1 or DLL4 include the mouse stromal cell line MS5 (Itoh, et al, Exp. Hematol. 1989, 17: 145-153) and S 17, and the human stromal cell lines HGS2.1 1 , HGS2.52, HGS.18, HGS3.30, HGS3.65, HGS.3.66, HGS3.103, and HGS3.1 14 (available from Human Genome Sciences Inc., MD, see US Published Application 20020001826).
- OP9 cells Kerdama et al, 1994, Exp.
- DN TCRaP thymocytes refer to a population of thymocytes that do not express the CD4 and CD8 co-receptors, but do express TCRa and ⁇ chains.
- Protein antigen refers to an amino acid sequence, ranging from about 7 amino acids to about 25 amino acids in length that is specifically recognized by a TCR, or binding domains thereof, as an antigen, and which may be derived from or based on a fragment of a longer target biological molecule (e.g., polypeptide, protein) or derivative thereof.
- An antigen may be expressed on a cell surface, within a cell, or as an integral membrane protein.
- An antigen may be a host-derived (e.g., tumor antigen, autoimmune antigen) or have an exogenous origin (e.g., bacterial, viral).
- Nucleic acid sequence may be in the form of RNA or DNA, which includes cDNA, genomic DNA, and synthetic DNA.
- the nucleic acid sequence may be double stranded or single stranded, and if single stranded, may be the coding strand or non-coding (anti-sense strand).
- a coding sequence may be identical to the coding sequence known in the art or may be a different coding sequence, which, as the result of the redundancy or degeneracy of the genetic code, or by splicing, encodes the same polypeptide.
- Non-endogenous refers to a molecule (e.g. , nucleic acid sequence) that is not present in the host cell(s)/sample into which a molecule is introduced, for example, recombinantly introduced.
- a non-endogenous molecule may be from the same species or a different species.
- Notch ligands "Delta-like-1" (DL1 or DLL1) and “Delta-like-4" (DL4 or DLL4) are homologs of the Notch Delta ligand and are members of the
- Delta-like-1 sequences include Genbank Accession No. NM 005618.3 (SEQ ID NO:3) and NP 005609.3 (SEQ ID NO:4) (Homo sapiens transcript and protein sequences, respectively) and Genbank Accession No. NM 007865.3 (SEQ ID NO:5) and
- NP 031891.2 (SEQ ID NO:6) (Mus musculus transcript and protein sequences, respectively).
- Exemplary Delta-like-4 sequences include Genbank Accession No. NM 019074.3 (SEQ ID NO:7) and NP 061947.1 (SEQ ID NO:8) (Homo sapiens transcript and protein sequences, respectively) and Genbank Accession No.
- Notch ligands are commercially available or can be produced by standard recombinant DNA techniques and purified to various degrees.
- Embryonic stem cells or “ES cells” or “ESCs” refer to undifferentiated embryonic stem cells that have the ability to integrate into and become part of the germ line of a developing embryo. Embryonic stem cells are capable of differentiating into hematopoietic progenitor cells. Embryonic stem cells that are suitable for use herein include cells from the Jl ES cell line, 129J ES cell line, murine stem cell line D3 (American Type Culture Collection catalog # CRL 1934), the Rl or E14K cell lines derived from 129/Sv mice, cell lines derived from Balb/c and C57B1/6 mice, and human embryonic stem cells (e.g. from WiCell Research Institute, WI; or ES cell International, Melbourne, Australia).
- WTl refers to Wilm's tumor 1, a transcription factor that contains four zinc-finger motifs at the C-terminus and a proline/glutamine-rich DNA binding domain at the N-terminus. WTl has an essential role in the normal development of the urogential system and is mutated in a small subset of patients with Wilm's tumors.
- WTl has been observed in various cancers, including, breast cancer, ovarian cancer, acute leukemias, vascular neoplasms, melanomas, colon cancer, lung cancer, thyroid cancer, bone and soft tissue sarcoma, and esophageal cancer.
- WTl WTl sequences
- Exemplary WTl sequences include Genbank Accession Nos: NM 000378.4 (SEQ ID NO: 11) (human transcript),
- NP 000369.3 (SEQ ID NO: 12) (human protein); NM 024424.3 (SEQ ID NO: 13) (human transcript), NP_077742.2 (SEQ ID NO: 14) (human protein); NM_024426.4 (SEQ ID NO: 15) (human transcript), NP 077744.3 (SEQ ID NO: 16);
- NM 001198552.1 (SEQ ID NO: 17), NP 001185481.1 (SEQ ID NO: 18) (human protein); NM 001198551.1 (SEQ ID NO: 19) (human transcript), NP 001185480.1
- SEQ ID NO:20 human protein
- NMJ44783.2 SEQ ID NO:21
- NP 659032.3 SEQ ID NO:22
- MSLN Mesothelin
- MSLN refers to a gene that encodes a precursor protein that is cleaved into two products, megakaryocyte potentiating factor and mesothelin.
- Megakaryocyte potentiation factor functions as a cytokine that can stimulate colony formation in bone marrow megakaryocytes.
- Mesothelian is a
- glycosylphosphatidylinositol-anchored cell-surface protein that may function as a cell adhesion protein. This protein is overexpressed in epithelial mesotheliomas, ovarian cancers and in specific squamous cell carcinomas. Alternative splicing results in multiple transcript variants.
- Exemplary mesothelin sequences include Genbank
- NM_001177355.1 (SEQ ID NO:23), NP_001170826.1 (SEQ ID NO:24) (human transcript and pre-protein sequences, respectively); NM_005823.5 (SEQ ID NO:25), NP 005814.2 (SEQ ID NO:26)(human transcript and pre-protein sequences, respectively); NM_013404.4 (SEQ ID NO:27), NP_037536.2 (SEQ ID NO:28) (human transcript and pre-protein sequences, respectively); NM_018857.1 (SEQ ID NO:29), NP 061345.1 (SEQ ID NO:30) (mouse transcript and precursor protein sequences, respectively).
- MHC-peptide tetramer staining refers to an assay used to detect antigen-specific T cells, which features a tetramer of MHC molecules, each comprising an identical peptide having an amino acid sequence that is cognate (e.g., identical or related to) at least one antigen, wherein the complex is capable of binding T cells specific for the cognate antigen.
- Each of the MHC molecules may be tagged with a biotin molecule.
- Biotinylated MHC/peptides are tetramerized by the addition of streptavidin, which is typically fiuorescently labeled. The tetramer may be detected by flow cytometry via the fluorescent label.
- an MHC-peptide tetramer assay is used to detect or select high affinity TCRs of the instant disclosure.
- DN3 cells that produce a successful rearrangement at the Tcrb gene locus can express TCRP protein at the cell surface paired with the invariant pre- ⁇ protein. This receptor is called the Pre-TCR, and it signals in a ligand- independent fashion to promote proliferation, differentiation of ⁇ lineage cells to the CD4/CD8 double positive (DP) stage, and rearrangement at the Tcra gene locus (Boehmer et al, 1999, Curr.
- DP double negative 3
- both the TCRy and - ⁇ loci While the TCRa locus is inactive and closed to TCR gene rearrangements prior to ⁇ -selection, both the TCRy and - ⁇ loci also undergo rearrangements at the DN3 stage of development, and successful rearrangements at both these loci results in the expression of a mature ⁇ - TCR that can provide signals that drive differentiation towards the ⁇ T cell lineage - ⁇ T cells do not differentiate through a DP stage during development, and generally remain DN or CD8aa+.
- the ⁇ / ⁇ cell fate decision is determined by the strength of the TCR signal at this stage of development, as the developing T cell distinguishes between a pre-TCR signal and a ⁇ TCR signal by the stronger signal associated with the mature ⁇ TCR (Pennington, Silva-Santos, & Hayday, 2005, Curr. Opin. Immunol. 17: 108-115).
- ⁇ TCR transgenic mice have a large population of mature CD24 TCRaP positive CD4/CD8 double negative (DN) cells in the thymus, which have been shown to represent " ⁇ warmtha-be" cells that develop as a result of the stronger signal from the mature ⁇ transgenic TCR at the ⁇ -selection checkpoint (Egawa et al, 2000, PLOS One 3: 1512).
- DN CD4/CD8 double negative
- T cells expressing a high affinity TCR for the same antigen when differentiated in the presence of the cognate antigen during in vitro T cell differentiation Using this method, T cells expressing high affinity receptors by-pass negative selection by adopting a DN TCRaP + lineage fate in response to agonist signals at the DN3 stage of T cell development.
- the present disclosure provides a method for generating an enhanced affinity TCR comprising: a) contacting hematopoietic progenitor cells with stromal cells and a peptide antigen, under conditions and for a time sufficient to induce differentiation of hematopoietic progenitor cells into DN TCRaP + thymocytes, wherein the hematopoietic progenitor cells comprise a non- endogenous nucleic acid sequence encoding a TCRa chain from a parent TCR specific for the peptide antigen, and wherein the stromal cells comprise a non-endogenous nucleic acid sequence encoding Delta- like- 1 or Delta- like-4 and a nucleic acid sequence encoding an MHC molecule; b) isolating nucleic acid sequences encoding the various TCRP chains from the DN TCRaP + thymocytes and introducing the nucleic acid sequences encoding the TCRP chains into cells that are
- hematopoietic progenitor cells are derived from fetal liver tissue.
- hematopoietic progenitor cells comprise hematopoietic stem cells that are derived or originate from bone marrow, cord blood, or peripheral blood.
- hematopoietic progenitor cells are derived from human, mouse, rat, or other mammals.
- CD24 10 Lin " CD117 + thymocyte progenitor cells are used.
- the hematopoietic progenitor cells have been modified to comprise a non-endogenous nucleic acid sequence encoding a TCRa chain from a parent TCR specific for the peptide antigen.
- the TCRP chain is also isolated from the parent TCR.
- Cloning of TCRa and ⁇ chains may be performed using standard molecular biology techniques that are known in the art. Methods for cloning TCR chains are known in the art (see, e.g., Walchli et al., 2011, PLoS ONE 6:e27930; Birkholz et al, 2009, J. Immunol. Methods 346:45-54; Kurokawa et al, 2001, Clin. Exp. Immunol. 123:340-345).
- a "stromal cell” is a connective tissue cell of any organ.
- Stromal cells that may be used according to the invention include human and mouse stromal cells.
- Examples of stromal cell lines that can be engineered to express DLl or DL4 include the mouse stromal cell line MS5 (Itoh, et al, Exp. Hematol. 1989, 17: 145-153) and S17, and the human stromal cell lines HGS2.11, HGS2.52, HGS.18, HGS3.30,
- HGS3.65, HGS.3.66, HGS3.103, and HGS3.114 available from Human Genome Sciences Inc., MD, see US Published Application 20020001826.
- stromal cells are bone marrow stromal cells.
- OP9 cells are used.
- stromal cells comprise non-endogenous nucleic acid sequences encoding DLl, such as human DLl .
- Exemplary Delta- like- 1 sequences include Genbank Accession No. NM 005618.3 (SEQ ID NO:3) and NP_005609.3 (SEQ ID NO:4) (Homo sapiens transcript and protein sequences, respectively) and Genbank Accession No. NM 007865.3 (SEQ ID NO:5) and NP_031891.2 (SEQ ID NO:6) (Mus musculus transcript and protein sequences, respectively).
- stromal cells comprise non-endogenous nucleic acid sequences encoding DL4, such as human DL4.
- Exemplary Delta-like -4 sequences include Genbank Accession No. NM O 19074.3 (SEQ ID NO: 7) and NP 061947.1 (SEQ ID NO:8) ⁇ Homo sapiens transcript and protein sequences, respectively) and Genbank Accession No. NM_019454.3 (SEQ ID NO:9) and NP_062327.2 (SEQ ID NO: 10) (Mus musculus transcript and protein sequences, respectively).
- Notch ligands are commercially available or can be produced by standard recombinant DNA techniques and purified to various degrees.
- stromal cells are OP9 cells or a derivative thereof expressing DLl, such as human DLl .
- OP9 cells expressing DLl and DL4 have been previously described (Schmitt et al, 2002, Immunity 17:749-756; U.S. Patent No. 7,575,925).
- stromal cells also comprise a nucleic acid sequence encoding an MHC molecule.
- stromal cells comprise a nucleic acid sequence encoding an MHC Class I molecule, and may optionally also comprise a nucleic acid sequence encoding a ⁇ 2 microglobulin.
- the MHC Class I and ⁇ 2 microglobulin molecules may be derived from human, mouse, rat, or other mammalian species MHC Class I molecules, whose genes and protein sequences are known in the art.
- the stromal cells comprise a nucleic acid sequence encoding an MHC Class II molecule.
- the MHC Class II molecule may be derived from human, mouse, rat, or other mammalian species MHC molecules, whose genes and protein sequences are known in the art.
- a given T cell will recognize a peptide antigen only when it is bound to a host cell's MHC molecule (MHC-restricted antigen recognition).
- MHC-restricted antigen recognition A parent TCR with specificity for a known peptide antigen is selected for enhancement of the TCR affinity using the disclosed methods. Therefore, an MHC molecule that binds the particular peptide antigen is also selected and expressed in the stromal cells to allow MHC- restricted antigen recognition in the disclosed in vitro system.
- Methods for identifying an MHC molecule that binds a peptide antigen are known in the art (see, e.g., Akatsuka et al., 2002, Tissue Antigens 59:502-511).
- an MHC molecule comprises HLA-A2 and beta-2 microglobulin, preferably of human origin, which can bind to, for example, the WT1 peptide RMFPNAPYL (SEQ ID NO:2).
- an MHC molecule comprises mouse H-2D b , which can bind to, for example, the WT1 peptide RMFPNAPYL or various mesothelin peptides as disclosed in Fig. 3A of Hung et al, 2007, Gene Therapy 14:921-929, or H-2K b which can bind to, for example, various mesothelin peptides as disclosed in Fig. 3 A of Hung et al.
- Potential H-2D b restricted mesothelin epitopes disclosed in Hung et al. include:
- H-2Kb restricted mesothelin epitopes disclosed in Hung et al. include: EIPFTYEQL (SEQ ID NO:46) and GIPNGYLVL (SEQ ID NO:47).
- a peptide antigen used in the disclosed methods refers to a peptide sequence of an antigen, or target biological molecule (e.g. , a polypeptide, protein), to which the parent TCR specifically binds.
- a peptide sequence may be derived from an antigen that is expressed on the cell surface, within a cell, or that is an integral membrane protein.
- the antigen may be a host-derived antigen (e.g. , a tumor/cancer antigen, and autoimmune antigen), or an exogenous antigen (e.g., viral, bacterial, protozoan antigen).
- a tumor or cancer antigen may be derived from various cancers, such as those noted herein.
- a cancer antigen comprises a leukemia antigen.
- a peptide antigen is derived from Wilm's tumor 1 (WT1), such as a WT1 peptide comprising the amino acid sequence
- a peptide antigen is derived from mesothelin, such as mesothelin peptides disclosed in Fig. 3 A of Hung et al, 2007, Gene Therapy 14:921-929.
- the mesothelin peptide comprises the amino acid sequence GQKMNAQAl (SEQ ID NO:31).
- the mesothelin peptide comprises an amino acid sequence comprising ISKANVDVL (SEQ ID NO:42), GQKMNAQAl (SEQ ID NO:43), SAFQNVSGL (SEQ ID NO:44), and LLGPNIVDL (SEQ ID NO:45), EIPFTYEQL (SEQ ID NO:46), or GIPNGYLVL (SEQ ID NO:47).
- Autoimmune antigens are antigens that are recognized by autoreactive TCRs specific for self-antigens, with the ensuing immune effector functions causing autoimmune disease, exacerbating autoimmune disease, contributing to progression of autoimmune disease, causing or worsening symptoms associated with autoimmune disease.
- autoreactive TCRs specific for a collagen peptide may be useful for suppressive gene therapy of Tregs in rheumatoid arthritis.
- Autoimmune antigens may also be antigens located on other immune cells that cause autoimmune disease or mediate symptoms of autoimmune disease (e.g. , B cells that produce autoantibodies).
- CD20 peptide antigens may be useful for generating enhanced affinity TCRs that target B cells involved in or associated with rheumatoid arthritis.
- a peptide antigen may be added to a culture system to
- stromal cells comprising a nucleic acid sequence encoding a peptide antigen of interest may be used to express such antigen in the cell culture.
- a peptide antigen whether added as an exogenous peptide antigen to the culture system or expressed by stromal cells, forms a complexe with a MHC molecule expressed by the stromal cells to form an MHC-peptide antigen complex.
- MHC- peptide antigen complex allows for MHC -restricted peptide antigen recognition by TCRs in the culture system.
- OP9 cells are transduced with a nucleic acid sequence to express the WT1 antigen peptide RMFPNAPYL (SEQ ID NO:2). In other embodiments, OP9 cells are transduced with a nucleic acid sequence to express the mesothelin antigen peptide GQKMNAQAI (SEQ ID NO:31).
- Peptides that bind to MHC class I molecules are generally from about 7 to about 10 amino acids in length. Peptides that bind to MHC class II molecules are variable in length, usually about 10-25 amino acids long.
- the parent TCR's peptide antigen specificity is known. In other embodiments, the parent TCR's peptide antigen specificity needs to be determined using methods known in the art (Borras et al, 2002, J. Immunol. Methods 267:79-97; Hiemstra et al, 2000, Cur. Opin. Immunol. 12:80-4). For example, if the target antigen of a parent TCR is known, though not the specific peptide sequence, peptide libraries derived from the target antigen polypeptide sequence may be used for screening and identifying the specific peptide antigen for the parent TCR.
- a “vector” is a nucleic acid molecule that is capable of transporting another nucleic acid.
- Vectors may be, for example, plasmids, cosmids, viruses, or phage.
- An "expression vector” is a vector that is capable of directing the expression of a protein encoded by one or more genes carried by the vector when it is present in the appropriate environment.
- “Retroviruses” are viruses having an RNA genome.
- “Gammaretrovirus” refers to a genus of the retroviridae family.
- Exemplary gammaretroviruses include, but are not limited to, mouse stem cell virus, murine leukemia virus, feline leukemia virus, feline sarcoma virus, and avian reticuloendotheliosis viruses.
- lentivirus refers to a genus of retroviruses that are capable of infecting dividing and non-dividing cells.
- HIV human immunodeficiency virus: including HIV type 1, and HIV type 2
- equine infectious anemia virus feline immunodeficiency virus (FIV); bovine immune deficiency virus (BIV); and simian immunodeficiency virus (SIV).
- a vector that encodes a core virus is also known as a "viral vector.”
- viral vectors There are a large number of available viral vectors that are suitable for use with the invention, including those identified for human gene therapy applications, such as those described by Pfeifer and Verma (Pfeifer, A. and I. M. Verma. 2001. Ann. Rev.
- Suitable viral vectors include vectors based on RNA viruses, such as retrovirus-derived vectors, e.g., Moloney murine leukemia virus (MLV)-derived vectors, and include more complex retrovirus-derived vectors, e.g., lentivirus-derived vectors. HIV- 1 -derived vectors belong to this category. Other examples include lentivirus vectors derived from HIV-2, FIV, equine infectious anemia virus, SIV, and maedi/visna virus.
- retrovirus-derived vectors e.g., Moloney murine leukemia virus (MLV)-derived vectors
- retrovirus-derived vectors e.g., Moloney murine leukemia virus (MLV)-derived vectors
- retrovirus-derived vectors e.g., Moloney murine leukemia virus (MLV)-derived vectors
- retrovirus-derived vectors e.g., Moloney murine leukemia virus (MLV)-derived vectors
- Retroviral and lentiviral viral vectors and packaging cells for transducing mammalian target cells with viral particles containing TCRs transgenes are well known in the art and have been previous described, for example, in U.S. Patent 8,119,772; Walchli et al, 2011, PLoS One 6:327930; Zhao et al, J. Immunol, 2005, 174:4415-4423; Engels et al, 2003, Hum. Gene Ther. 14: 1155-68; Frecha et al, 2010, Mol. Ther. 18: 1748-57; Verhoeyen et al, 2009, Methods Mol. Biol. 506:97-114. Retroviral and lentiviral vector constructs and expression systems are also commercially available.
- a viral vector is used to introduce the non- endogenous nucleic acid sequence encoding TCRa chain specific for the peptide antigen into the hematopoietic progenitor cells.
- a viral vector is used to introduce non-endogenous nucleic acid sequence encoding DL1 or DL4 and a nucleic acid sequence encoding an MHC molecule into stromal cells.
- the viral vector may be a retroviral vector or a lentiviral vector.
- the viral vector may also include a nucleic acid sequence encoding a marker for transduction.
- Transduction markers for viral vectors are known in the art and include selection markers, which may confer drug resistance, or detectable markers, such as fluorescent markers or cell surface proteins that can be detected by methods such as flow cytometry.
- the viral vector further comprises a gene marker for transduction comprising green fluorescent protein or the extracellular domain of human CD2.
- the viral vector genome comprises more than one nucleic acid sequence to be expressed in the host cell as separate transcripts, the viral vector may also comprise additional sequence between the two (or more) transcripts allowing bicistronic or multicistronic expression.
- viral vectors examples include internal ribosome entry sites (IRES), furin cleavage sites, viral 2A peptide.
- IRS internal ribosome entry sites
- furin cleavage sites examples include furin cleavage sites, viral 2A peptide.
- vectors also can be used for polynucleotide delivery including
- DNA viral vectors including, for example adenovirus-based vectors and adeno- associated virus (AAV)-based vectors; vectors derived from herpes simplex viruses (HSVs), including amplicon vectors, replication-defective HSV and attenuated HSV (Krisky et al, 1998, Gene Ther. 5: 1517-30).
- HSVs herpes simplex viruses
- vectors that have recently been developed for gene therapy uses can also be used with the methods of this disclosure.
- Such vectors include those derived from baculoviruses and alpha-viruses. (Jolly D J. 1999. Emerging viral vectors, pp 209-40 in Friedmann T. ed. 1999. The development of human gene therapy. New York: Cold Spring Harbor Lab).
- the hematopoietic progenitor cells are cultured with stromal cells comprising a nucleic acid sequence encoding a non-endogenous DL1 or DL4 and a nucleic acid sequence encoding a MHC molecule under conditions and for a time sufficient to induce differentiation of hematopoietic progenitor cells into DN TCRaP + thymocytes.
- the hematopoietic progenitor cells are cultured in a 6 cm or 10 cm tissue culture-treated dish.
- the concentration of hematopoietic progenitor cells in the culture can be between 1-10 9 , or lxlO 2 to lxlO 6 , or lxlO 3 to lx 10 4 .
- hematopoietic progenitor cells (about 1-5 x 10 4 cells) are cultured on a monolayer of OP9 cells expressing DLL
- cytokines that promote commitment and differentiation of hematopoietic progenitor cells may also be added to the culture.
- the cytokines may be derived from human or other species.
- the concentration of a cytokine in culture can range from about 1 ng/ml to about 50 ng/ml.
- Representative examples of cytokines that may be used include: all members of the FGF family, including FGF-4 and FGF-2; Flt- 3-ligand, stem cell factor (SCF), thrombopoietin (TPO), and IL-7.
- Cytokines may be used in combination with a glycosaminoglycan, such as heparin sulfate. Cytokines are commercially available or can be produced by recombinant DNA techniques and purified to various degrees. Some cytokines may be purified from culture media of cell lines by standard biochemical techniques.
- the hematopoietic progenitor cells may be cultured in culture medium comprising conditioned medium, non-conditioned medium, or embryonic stem cell medium.
- suitable conditioned medium include IMDM, DMEM, or aMEM, conditioned with embryonic fibroblast cells (e.g., human embryonic fibroblast cells), or equivalent medium.
- suitable non-conditioned medium include Iscove's Modified Delbucco's Medium (IDMD), DMEM, or aMEM, or equivalent medium.
- the culture medium may comprise serum (e.g., bovine serum, fetal bovine serum, calf bovine serum, horse serum, human serum, or an artificial serum substitute) or it may be serum free.
- Culture conditions entail culturing the hematopoietic progenitor cells for a sufficient time to induce differentiation of hematopoietic progenitor cells into DN TCRaP + thymocytes.
- the cells are maintained in culture generally for about 4-5 days, preferably about 5 to 20 days. It will be appreciate that the cells may be maintained for the appropriate amount of time required to achieve a desired result, i.e., desired cellular composition.
- the cells may be maintained in culture for about 5 to 20 days.
- Cells may be maintained in culture for 20 to 30 days to generate a cellular composition comprising primarily mature T cells.
- Non-adherent cells may also be collected from culture at various time points, such as from about several days to about 25 days. Culture methods for hematopoietic stem cells on stromal cells lines have been previously described (U.S. Patent #7,575,925; Schmitt et al, 2004, Nat. Immunol. 5:410-417; Schmitt et al, 2002, Immunity 17:749-756).
- Differentiation of hematopoietic progenitor cells into DN TCRaP+ thymocytes may be detected and these cells isolated using standard flow cytometry methods.
- One or more cell sorts may be employed to isolate the DN TCRaP+ thymocytes.
- a first cell sort may identify hematopoietic progenitor cells expressing the transduction marker (i.e., marker for TCRa expression).
- a transduction marker is the extracellular domain of human CD2.
- transduction marker positive cells may be subjected to a second cell sort to screen for cells that are CD4 " and CD8 " .
- a third cell sort on the DN cells may screen for cells expressing TCRp.
- the nucleic acid sequences encoding the various TCRP chains from the DN TCRaP + thymocytes are isolated and introduced into T cells comprising the nucleic acid sequence encoding the TCRa chain from the parent TCR.
- methods of cloning TCRP chains from cells are well known in the art and have been previously described.
- the nucleic acid sequences may be subjected to a further selection process whereby the TCRP chains with the same Vp gene used by the parent TCRP chain are selected for introduction into T cells.
- Parent gene containing TCRP chain may be identified within the sorted cell population using gene specific primers for PCR.
- One concern associated with enhancing the affinity of antigen-specific TCRs in vitro is that some modifications might increase the affinity of the receptor for MHC only, rather than peptide/MHC, thereby increasing the likelihood that the TCR will be autoreactive.
- Restricting the candidate TCRP chains to those containing the parent gene increases the likelihood of retaining the TCR CDR1 and CDR2 domains that contact the MHC, and limiting variability to CDR3.
- viral vectors such as retroviral vectors and lentiviral vectors, are suitable for introducing the nucleic acid sequences encoding the various TCRP chains and/or the parent TCRa into T cells.
- the viral vector further comprises a gene marker for transduction (e.g. green fluorescent protein).
- Cells that are capable of expressing a TCR on the cell surface are used for transformation or transduction with the nucleic acid sequences encoding the various TCRP chains from the DN TCRaP + thymocytes.
- Cells that are capable of expressing a TCR on the cell surface express a CD3 molecule.
- CD3 is a multi-protein complex of six chains that are stably associated with a TCR on the cell surface. In mammals, the complex comprises a CD3y chain, a CD5 chain, two CD3e, and a homodimer of CD3 ⁇ chains.
- the CD3y, CD35, and CD3e are highly related cell surface proteins of the immunoglobulin superfamily containing a single immunoglobulin domain.
- the transmembrane regions of CD3y, CD35, and CD3e are negatively charged, which is a characteristic that allows these chains to associate with the positively charged TCR chains.
- the cytoplasmic domains of the CD3y, CD35, and CD3e chains contain immunoreceptor tyrosine-based activation motifs (ITAMs) that allow them to associate with cytosolic protein tyrosine kinases following receptor stimulation and thereby signal to the cell interior.
- ITAMs immunoreceptor tyrosine-based activation motifs
- CD3 proteins are required for cell-surface expression of the TCR (see Janeway et al., Immunobiology: The Immune System in Health and Disease, 3 rd Ed., Current Biology Publications, p. 4:39, 1997).
- cells that are capable of expressing a TCR on the cell surface are T cells, including primary cells or cell lines derived from human, mouse, rat, or other mammals. If obtained from a mammal, a T cell can be obtained from numerous sources, including blood, bone marrow, lymph node, thymus, or other tissues or fluids. A T cell may be enriched or purified. T cell lines are well known in the art, some of which are described in Sandberg et al., 2000, Leukemia 21 :230-237. In certain embodiments, T cells which lack endogenous expression of TCRa and ⁇ chains are used. Such T cells may naturally lack endogenous expression of TCRa and ⁇ chains or may have been modified to block expression (e.g.
- T cells from a transgenic mouse that does not express TCR a and ⁇ chains or a cell line that has been manipulated to inhibit expression of TCR a and ⁇ chains are used.
- 58 ⁇ " ⁇ " cells a murine T cell line that lacks endogenous TCRa and TCRP chains, is used (Letourneur and Malissen, 1989, Eur. J. Immunol. 19:2269-74).
- H9 T cell line is used (Catalog # HTB-176, ATCC, Manassas, VA).
- cells that capable of expressing a TCR on the cell surface are not T cells or cells of a T cell lineage, but cells that have been modified to express CD3, enabling cell surface expression of a TCR (e.g., 293 cells or 3T3 cells).
- a TCR e.g., 293 cells or 3T3 cells.
- MHC-peptide tetramer staining features a tetramer of MHC molecules, each comprising an identical peptide having an amino acid sequence that is cognate (e.g. , identical or related to) at least one antigen, wherein the complex is capable of binding T cells specific for the cognate antigen.
- MHC molecules may be tagged with a biotin molecule.
- Biotinylated MHC/peptides are tetramerized by the addition of streptavidin, which is typically fluorescently labeled. The tetramer may be detected by flow cytometry via the fluorescent label.
- MHC-peptide tetramer staining methods for detecting antigen specific T cells are well known in the art (e.g., Altaian et al, 1996, Science 274:94-96; Kalergis et al, 2000, J. Immunol. Methods 234:61-70; Xu and Screaton, 2002, J. Immunol. Methods 268:21-8; James et al., J. Vis. Exp.25 : l 167).
- the MHC-peptide tetramer comprises MHC Class I molecules. In other embodiments, the MHC-peptide tetramer comprises MHC Class II molecules. In further embodiments, the same peptide antigen used the culture step of the disclosed method is the same as the peptide incorporated into the MHC-peptide tetramer. In other embodiments, the MHC molecule expressed by the stromal cells in the culture step of the disclosed method is the same as an MHC molecule in the MHC-peptide tetramer. MHC-peptide tetramer stained cells may be sorted by flow cytometry one or more times. A first sort may select for transduced cells expressing a detectable transduction marker (e.g., green fluorescent protein).
- a detectable transduction marker e.g., green fluorescent protein
- the transduction positive cells may also be sorted one or more times for cells that express the same ⁇ chain as the parent TCR. It will be apparent to one skilled in the art that a subset of these sorts, or single or multiple cell sorts can be designed using different combinations of cell surface or transduction markers, in order to identify the desired subpopulation of cells.
- An enhanced affinity TCR is identified by comparing the binding affinity of a candidate TCRaP with the parent TCRap.
- Antigen-specific T cells may then be cloned and sequenced using standard molecular biology techniques.
- Candidate TCRP clones may then be used to transduce T cells comprising the parent TCRa chain and MHC-peptide tetramer staining may be used to compare staining levels with the parent TCRaP, as previously described.
- Increased staining observed with a candidate TCRP may be indicative of enhanced affinity as compared with the parent TCRap.
- Candidate TCRP chains may also be codon optimized for direct comparison with the parent TCRP
- a candidate TCRaP has enhanced affinity compared to a parent TCRaP if it has stronger binding to the peptide antigen than the parent TCRap.
- Enhanced affinity may be indicated by a TCR with a K a (equilibrium association constant) for the target antigen higher than that of the parent TCR, a TCR with a KD (dissociation constant) for the target antigen less than that of the parent TCR, or with an off-rate (K off ) for the target antigen less than that of the wild type (or parent) TCR.
- enhanced affinity TCRs generated by methods disclosed herein are provided.
- An enhanced affinity TCR may be cell-bound (e.g. , expressed on the surface of a mature T cell) or in soluble form.
- enhanced affinity TCRs may be codon optimized to enhance expression in T cells (Scholten et al, 2006, Clin. Immunol. 119: 135-145).
- enhanced affinity TCRs may also be a component of a fusion protein, which may further comprise a cytotoxic component (e.g., chemotherapeutic drugs such as vindesine, antifolates; bacterial toxins, ricin, anti- virals), which is useful for specific killing or disabling of a cancer cell or infected cell or a detectable component (e.g., biotin, fluorescent moiety, radionuclide), which is useful for imaging cancer cells, infected cells, or tissues under autoimmune attack.
- a cytotoxic component e.g., chemotherapeutic drugs such as vindesine, antifolates; bacterial toxins, ricin, anti- virals
- a detectable component e.g., biotin, fluorescent moiety, radionuclide
- compositions comprising an enhanced affinity TCR generated by the methods disclosed herein and a pharmaceutically acceptable carrier, diluents, or excipient.
- Suitable excipients include water, saline, dextrose, glycerol, ethanol, or the like and combinations thereof.
- Enhanced affinity TCRs generated by the methods of the present disclosure may be used to treat a disease (such as cancer, infectious disease, or autoimmune disease) in a subject by administering a composition comprising the enhanced affinity TCRs.
- a disease such as cancer, infectious disease, or autoimmune disease
- TCR gene therapy is a promising treatment for various types of cancer (Morgan et al, 2006, Science 314: 126-129; reviewed in Schmitt et al, 2009, Human Gene Therapy; reviewed in June, 2007, J. Clin. Invest. 117: 1466-1476) and infectious disease (Kitchen et al, 2009, PLoS One 4:38208; Rossi et al, 2007, Nat. Biotechnol. 25: 1444-54; Zhang et al, PLoS Pathog. 6:el001018; Luo et al, 2011, J. Mol. Med.
- Immunosuppressive gene therapy for autoimmune diseases using regulatory T cells comprising autoreactive TCRs is also an emerging treatment (Fujio et al, 2006, J. Immunol. 177:8140-8147; Brusko et al, 2008, Immunol. Rev. 223:371- 390).
- cancers including solid tumors and leukemias are amenable to the compositions and methods disclosed herein.
- Types of cancer that may be treated include: adenocarcinoma of the breast, prostate, and colon; all forms of bronchogenic carcinoma of the lung; myeloid; melanoma; hepatoma; neuroblastoma; papilloma; apudoma; choristoma; branchioma; malignant carcinoid syndrome;
- carcinoma e.g., Walker, basal cell, basosquamous, Brown- Pearce, ductal, Ehrlich tumor, Krebs 2, merkel cell, mucinous, non-small cell lung, oat cell, papillary, scirrhous, bronchiolar, bronchogenic, squamous cell, and transitional cell.
- carcinoma e.g., Walker, basal cell, basosquamous, Brown- Pearce, ductal, Ehrlich tumor, Krebs 2, merkel cell, mucinous, non-small cell lung, oat cell, papillary, scirrhous, bronchiolar, bronchogenic, squamous cell, and transitional cell.
- Additional types of cancers that may be treated include: histiocytic disorders; leukemia; histiocytosis malignant; Hodgkin's disease; immunoproliferative small; non-
- chondroblastoma chondroma; chondrosarcoma; fibroma; fibrosarcoma; giant cell tumors; histiocytoma; lipoma; liposarcoma; mesothelioma; myxoma; myxosarcoma; osteoma; osteosarcoma; chordoma; craniopharyngioma; dysgerminoma; hamartoma; mesenchymoma; mesonephroma; myosarcoma; ameloblastoma; cementoma; odontoma; teratoma; thymoma; trophoblastic tumor.
- cancers are also contemplated as amenable to treatment: adenoma; cholangioma; cholesteatoma; cyclindroma; cystadenocarcinoma; cystadenoma; granulosa cell tumor;
- gynandroblastoma hepatoma; hidradenoma; islet cell tumor; Leydig cell tumor;
- myoblastoma myomma; myosarcoma; rhabdomyoma; rhabdomyosarcoma;
- ependymoma ganglioneuroma; glioma; medulloblastoma; meningioma;
- neurilemmoma neurilemmoma; neuroblastoma; neuroepithelioma; neurofibroma; neuroma;
- the types of cancers that may be treated also include: angiokeratoma; angio lymphoid hyperplasia with eosinophilia; angioma sclerosing; angiomatosis; glomangioma; hemangioendothelioma; hemangioma;
- hemangiopericytoma hemangiosarcoma
- lymphangioma lymphangiomyoma
- lymphangiosarcoma pinealoma; carcinosarcoma; chondrosarcoma; cystosarcoma phyllodes; fibrosarcoma; hemangiosarcoma; leiomyosarcoma; leukosarcoma;
- liposarcoma lymphangiosarcoma; myosarcoma; myxosarcoma; ovarian carcinoma; rhabdomyosarcoma; sarcoma; neoplasms; nerofibromatosis; and cervical dysplasia.
- B-cell cancers including B-cell lymphomas (such as various forms of Hodgkin's disease, non-Hodgkins lymphoma (NHL) or central nervous system lymphomas), leukemias (such as acute lymphoblastic leukemia (ALL), chronic lymphocytic leukemia (CLL), Hairy cell leukemia and chronic myoblastic leukemia) and myelomas (such as multiple myeloma).
- B-cell lymphomas such as various forms of Hodgkin's disease, non-Hodgkins lymphoma (NHL) or central nervous system lymphomas
- leukemias such as acute lymphoblastic leukemia (ALL), chronic lymphocytic leukemia (CLL), Hairy cell leukemia and chronic myoblastic leukemia
- myelomas such as multiple myeloma.
- Additional B cell cancers include small lymphocytic lymphoma, B-cell prolymphocytic leukemia, lymphoplasmacy
- extraosseous plasmacytoma extra-nodal marginal zone B-cell lymphoma of mucosa-associated (MALT) lymphoid tissue, nodal marginal zone B-cell lymphoma, follicular lymphoma, mantle cell lymphoma, diffuse large B-cell lymphoma, mediastinal (thymic) large B-cell lymphoma, intravascular large B-cell lymphoma, primary effusion lymphoma, Burkitt's lymphoma/leukemia, B-cell proliferations of uncertain malignant potential, lymphomatoid granulomatosis, and post- transplant lymphoproliferative disorder.
- MALT mucosa-associated lymphoid tissue
- Autoimmune diseases include: arthritis, rheumatoid arthritis, juvenile rheumatoid arthritis, osteoarthritis, polychondritis, psoriatic arthritis, psoriasis, dermatitis, polymyositis/dermatomyositis, inclusion body myositis, inflammatory myositis, toxic epidermal necrolysis, systemic scleroderma and sclerosis, CREST syndrome, responses associated with inflammatory bowel disease, Crohn's disease, ulcerative colitis, respiratory distress syndrome, adult respiratory distress syndrome (ARDS), meningitis, encephalitis, uveitis, colitis, glomerulonephritis, allergic conditions, eczema, asthma, conditions involving infiltration of T cells and chronic inflammatory responses, atherosclerosis, autoimmune myocarditis, leukocyte adhesion deficiency, systemic lupus erythematosus (SLE), subacute cutaneous l
- erythematosus discoid lupus, lupus myelitis, lupus cerebritis, juvenile onset diabetes, multiple sclerosis, allergic encephalomyelitis, neuromyelitis optica, rheumatic fever, Sydenham's chorea, immune responses associated with acute and delayed
- Guillain-BarreSyndrome large vessel vasculitis (including polymyalgia rheumatica and giant cell (Takayasu's) arteritis), medium vessel vasculitis (including Kawasaki's disease and polyarteritis nodosa), polyarteritis nodosa (PAN) ankylosing spondylitis, Berger's disease (IgA nephropathy), rapidly progressive glomerulonephritis, primary biliary cirrhosis, Celiac sprue (gluten enteropathy), cryoglobulinemia, cryoglobulinemia associated with hepatitis, amyotrophic lateral sclerosis (ALS), coronary artery disease, familial Mediterranean fever, microscopic polyangiitis, Cogan's syndrome, Whiskott- Aldrich syndrome and thromboangiitis obliterans.
- ALS amyotrophic lateral sclerosis
- a method of treating a subject with the enhanced affinity TCRs generated by the methods disclosed herein include a subject with acute myelocytic leukemia, acute lymphocytic leukemia, or chronic myelocytic leukemia.
- Infectious diseases include those associated with infectious agents and include any of a variety of bacteria (e.g., pathogenic E. coli, S. typhimurium, P.
- Infectious viruses include eukaryotic viruses (e.g., adenovirus, bunyavirus, herpesvirus, papovavirus, paramyxovirus, picornavirus, rhabdovirus (e.g., Rabies), orthomyxovirus (e.g., influenza), poxvirus (e.g., Vaccinia), reovirus, retroviruses, lentiviruses (e.g., HIV), flaviviruses (e.g., HCV) and the like).
- infection with cytosolic pathogens whose antigens are processed and displayed with MHC Class I molecules, are treated with the enhanced affinity TCRs of the invention.
- the enhanced affinity TCRs may be administered to a subject in cell- bound form (i.e., gene therapy of target cell population (mature T cells (e.g., CD8 + T cells) or other cells of T cell lineage)).
- the cells of T cell lineage comprising enhanced affinity TCRs administered to the subject are autologous cells.
- the enhanced affinity TCRs may be administered to a subject in soluble form. Soluble TCRs are known in the art (see, e.g., Molloy et al, 2005, Curr. Opin. Pharmacol. 5:438-443; U.S. Patent #6,759,243).
- Treatment refers to medical management of a disease, disorder, or condition of a subject (i.e., individual who may be a human or non-human mammal (e.g., primate, mouse, rat)).
- a subject i.e., individual who may be a human or non-human mammal (e.g., primate, mouse, rat)).
- an appropriate dose and treatment regimen provide the herein described enhanced affinity TCRs, and optionally, an adjuvant, in an amount sufficient to provide therapeutic or prophylactic benefit.
- Therapeutic and prophylactic benefits include improved clinical outcome; lessening or alleviation of symptoms associated with the disease; decreased occurrence of symptoms; improved quality of life; longer disease-free status; diminishment of extent of disease, stabilization of disease state; delay of disease progression; remission; survival; or prolonging survival.
- Pharmaceutical compositions including the enhanced affinity receptors may be administered in a manner appropriate to the disease or condition to be treated (or prevented) as determined by persons skilled in the medical art. An appropriate dose, suitable duration, and frequency of administration of the compositions will be determined by such factors as the condition of the patient, size, type and severity of the disease, particular form of the active ingredient, and the method of administration.
- enhanced affinity TCRs of the instant disclosure may be used in diagnostic methods or imaging methods, including these methods used in relation to the indications or conditions identified herein.
- TCR transgenic thymocytes efficiently differentiate into a " ⁇ like” CD4 " CD8 " CD24TCRP + lineage when exposed to their cognate antigen in OP9- DL1 cultures.
- progenitor thymocytes expressing only the TCRa chain from a T cell clone specific for the tumor antigen WT1 can also differentiate into this mature TCRaP+ lineage in OP9-DL1 culture.
- a library of TCRP chains was generated from a population of DN TCRaP+ cells sorted from these cultures, and screened for WT1 MHC tetramer reactivity when paired with the antigen-specific TCRa chain.
- Example 1 Engagement of peptide agonist during differentiation on OP9-DL1 cells can drive differentiation of mature TCRalH DN cells from T cell progenitors purified from TCR transgenic mice.
- Agonist signals through an ⁇ TCR prior to ⁇ -selection results in the differentiation of " ⁇ like" double negative (DN) TCRaP + cells during T cell development in vivo, and TCR cross-linking at the DN3 stage leads to the differentiation of a similar lineage during in vitro T cell differentiation on OP9-DL1 cells.
- DN double negative
- TCRaP " CD4 " CD8 " CDl 17 + CD44 + DN1 and DN2 progenitor thymocytes were sorted from transgenic OT-1 mice (express TCR specific for ovalbumin peptide sequence SIINFEKL (SEQ ID NO: l) presented on MHC Class I H-2K b ; Stock
- the DN population was analyzed for expression of CD24, a maturation marker that is expressed at high levels on all immature progenitor T cell populations, and TCRp. The majority of cells were found to express high levels of CD24 and to lack TCRP expression at day 5 (Fig.
- TCRaP + DN cells development of some TCRaP + DN cells in cultures without added peptide is due to cross-reactivity with other peptide-MHC ligands in the OP9-DL1 culture system.
- CD69 " DP cells that have not yet been positively selected were sorted from B6 or OT-1 thymus and cultured in the presence or absence of ovalbumin SIINFEKL peptide (SEQ ID NO: 1).
- B6 DP cells were unaffected by the presence of SIINFEKL peptide (SEQ ID NO: l), but when OT-1 DP thymocytes were cultured on OP9-DL1 cells in the presence SIINFEKL (SEQ ID NO:l), all the hallmarks of negative selection were observed, including a massive loss of cellularity and co-receptor down-modulation (Fig. 2). Importantly, the DN cells observed in these cultures were uniformly TCR negative (Fig. 2).
- Example 2 A transgenic TCRa chain pairs with endogenous TCRP chains to drive the development of DN CD24 TCRaB + " ⁇ warmtha-be" cells in the OP9-DL1 culture system
- CD4 CD8 CD 117 + CD44 + DN 1 and DN2 progenitor thymocytes were sorted from B6 mice and transduced with a TCRa chain from the Wilm's tumor antigen (WT1) specific T cell clone 3D that had previously been identified as an affinity enhanced variant isolated from a saturation mutagenesis library of the CDR3 region of the 3Da.
- WT1 Wilm's tumor antigen
- the 3Da expression construct contains an intra-ribosomal entry sequence motif, followed by the extracellular domain of human CD2 (Genbank Accession Nos. NM 001767.3 (SEQ ID NO:48) and NP_001758.2 (SEQ ID NO:49) (transcript and protein sequences for full length CD2, respectively)) (IRES-hCD2) as a marker transduction.
- Transduced progenitor thymocytes were cultured in the presence or absence of ⁇ . ⁇ of the MHC Class I H-2D b restricted WT1 peptide RMFPNAPYL (SEQ ID NO:2) for 14 days, and then analyzed by flow cytometry.
- DN cells within the hCD2 negative fraction contained few TCRaP + cells, regardless of the presence of peptide in the culture conditions.
- the hCD2 positive fraction (which expressed the 3Da gene) from cultures that did not receive peptide contained 6.8% TCRP + cells, and the number of TCRaP + cells increased to 16.6% when ⁇ . ⁇ WT1 peptide was added (Fig. 3A).
- TCRaP + DN population could potentially contain cells that express a TCRP chain that can pair with the introduced 3Da to form a TCR with a higher affinity for the MHC-WT1 peptide tetramer than the original enhanced affinity receptor, and significantly higher than could be isolated from the normal T cell repertoire.
- 3Da-transduced CD4 CD8 CD117 + CD44 + DN1 and DN2 progenitor thymocytes were differentiated on OP9-DL1 cells expressing mouse MHC Class 1 H-2D b and also transduced to express WT1.
- Non-adherent cells were collected at for several days up to day 21 and sorted for hCD2 CD4 ⁇ CD8 CRP + cells into TRIzol reagent (Invitrogen) (Fig. 3B). Cell sorts from individual days were pooled; RNA was purified, and cDNA was generated.
- the parent 3D TCR uses the Vb 10 variable region.
- ⁇ -containing TCRP chains within the sorted cell population were isolated by PCR using a ⁇ specific forward primer, and a Cp2 specific reverse primer (Fig. 3C).
- the VblO-specific forward primer was designed to contain a CACC sequence allowing for directional TOPO-cloning into the pENTRTM/D-TOPO® vector (Invitrogen), followed by transfer using Gateway® technology for recombination (Invitrogen) into the retroviral vector MigRl-attR (a version of the MigRl vector (Pear et al.,1998, Blood 92:3780-3792) that has been modified to contain attR sites and the ccdB gene for Gateway® cloning).
- the MigRl -TCRP library was used to transduce PlatE retroviral packaging cells (Morita et al., 2000, Gene Therapy 7: 1063-1066; Cell Biolabs, Inc.) to generate retroviral supernatant, which was then used to retrovirally transduce 58 ⁇ ' ⁇ " cells, a murine T cell line that lacks endogenous TCRa and TCRP chains, (58 "/_ ) (Letourneur and Malissen, 1989, Eur. J. Immunol. 19:2269-74).
- Retroviral TCRP library supernatant was titrated, and a dilution that resulted in less than 20% transduced cells following transduction was used in order to ensure that most cells contained only one retroviral integration.
- Transduced cells were sorted first for GFP positive cells, and then resorted two more times on ⁇ 10 + cells that also had high levels of MHC-WT1 peptide tetramer staining (Fig. 4A).
- Retroviral inserts were recovered by PCR using MigRl-attR vector specific primers, designed to include AttB Gateway® cloning sites from the vector. Using a two-step approach, inserts were cloned first into the pDONRTM vector (Invitrogen) using Gateway® recombination cloning technology, and then back into MigRl-attR.
- All four candidate clones bound MHC-WT1 peptide tetramer when transduced into 3Da 58 " " cells, although clone#4 bound MHC-WT1 peptide tetramer at significantly lower levels than the others and was not analyzed further.
- the parent 3 ⁇ chain had previously been codon-optimized, and therefore expressed higher levels of TCR at the cell surface, precluding direct comparison of tetramer staining levels between 3 ⁇ and the isolated clones.
- Clone#l was codon-optimized such that the only sequence differences between the original 3DP and Clone#l were in the CDR3 region. Both constructs were transduced into 58 _/" cells and assessed by flow cytometry for MHC-WT1 peptide tetramer staining. When Clone#l was codon-optimized, it was found to bind tetramer at a higher level than the original 3DP as expected (Fig. 5B).
- transduced 58 _/" cells were stained with a panel of MHC H-2D b tetramers (peptides: WT1, GP33, E4, MESN, SQV). All three candidate TCRp chains were stained by the MHC-WT1 peptide tetramer at high levels when paired with 3Da, similar to the original 3DP (Fig. 5C).
- Example 3 Generation of high affinity WTl-specific T cells by ectopic expression of an antigen-specific TCRa chain during early human T cell development in vitro.
- the Wilm's tumor (WTl) antigen is expressed at abnormally high levels on the surface of leukemia cells.
- HLA A2/WT1 -specific T cell clones have been screened for clones with high specific activity.
- a lentiviral vector comprising the C4 TCR and that confers high-level expression is subject of a TCR gene therapy clinical trial scheduled for 2012.
- the in vitro differentiation system described in the previous examples is used with human cord blood progenitor cells expressing the C4 TCRa chain.
- the TCRa chain of the C4 TCR clone is stably transduced into cord blood-derived hematopoietic progenitor cells by retroviral transduction, using a retroviral vector that also encodes green fluorescent protein (GFP) as a transduction marker.
- GFP green fluorescent protein
- Progenitor cells expressing GFP are sorted by flow cytometry and cultured on OP9-DLl-A2/p2M stroma cells in the presence or absence of WTl peptide RMFPNAPYL (SEQ ID NO:2).
- Human hematopoietic progenitor cells readily proliferate and differentiate in OP9-DL1 culture to a stage of human T cell development characterized by the phenotype
- CD34 + CDla + CD4 + (La Motte-Mohs et al, 2005, Blood 105: 1431-1439), at which point they are undergoing TCR gene rearrangements at the ⁇ , ⁇ , and ⁇ loci (Spits, 2002, Nat. Rev. Immunol. 2:760-772).
- TCRa-expressing human T cell progenitors that produce an in-frame rearrangement at the TCRP locus will adapt one of two cell fates: those expressing a TCRP chain that does not pair well with the transgenic TCRa, or that pairs with the transgenic TCRa but does not receive a strong signal through this aPTCR, will differentiate to the DP stage in response to signaling though the pre-TCR; on the other hand, those that generate a TCRP chain that can pair with the transgenic TCRa and receive a sufficiently strong signal through this mature aPTCR will be signaled to differentiate towards a DN TCRaP+ ⁇ -like lineage.
- non-adherent cells that have a DN TCRaP+ ⁇ -like phenotype and are WT1 peptide/ A2 MHC-tetramer positive are collected by cell sorting. It may not be possible to detect WT1 tetramer positive cells, as the continued presence of antigen in the cultures may result in TCR down- modulation that could decrease tetramer staining below detection. Furthermore, since these cells are likely not to express CD8aP, high affinity receptors that are not CD8- independent are undetectable by tetramer staining. Therefore, it may be necessary to screen the TCRP chains from all DN TCRaP+ cells that emerge in the culture (see below). It may also be desirable to restrict candidate T cells to those that use the same VP segment utilized by the original C4 TCRP chain (Vpi7), in order to retain the CDRl and CDR2 MHC contacts of the parent C4 TCR.
- Vpi7 the same VP segment utilized by the original C4 TCRP chain
- the endogenous TCRP chains are cloned by purifying total RNA, performing full-length RACE RT-PCR with C- ⁇ or C-P2 primers, and cloning the PCR products into the pENTRTM/D-TOPO® vector
- Invitrogen which allows directional TOPO-cloning and incorporates attL sites that allow rapid and efficient transfer to the retroviral vector Mig-attR (a variant of MigRl (Pear et al.,1998, Blood 92:3780-3792) that contains attR sites for insertion of gene of interest) using Invitrogen's Gateway® technology recombination system.
- the products of the recombination reaction are electroporated into high efficiency bacteria, and colonies are scraped together and maxiprepped to generate a retroviral library of potentially WT1 -reactive TCRP chains.
- TCRP chains that can pair with the C4 TCRa chain to form a high affinity WT1- specific TCR are identified by transducing the TCRP library into the human T cell line H9 (Catalog # HTB-176, ATCC, Manassas, VA) that has been transduced to express the C4 TCRa chain (H9-C4a). Transduced cells are sorted by flow cytometry for high levels of MHC-WT1 peptide tetramer staining and retroviral inserts will be amplified by PCR from the sorted population.
- Candidate TCRP chains are identified by TOPO- cloning of the PCR product followed by sequence analysis.
- the selected TCRP chains and the parental C4a are transduced into H9-C4a cells and the relative affinities for the MHC-WT1 peptide tetramer will be calculated by staining transduced cells with serial 2-fold dilutions of PE-conjugated tetramers (as described in Example 2). Affinity values are determined by fitting the MFI for each dilution to a binding curve by nonlinear regression and KD defined as tetramer concentration yielding half-maximal binding.
- TCRP chains that can pair with C4 TCRa to generate a TCR with higher affinity by MHC-peptide tetramer staining than the wildtype C4 receptor are further characterized for safety and efficacy.
- Example 4 Characterization of the efficacy and safety of candidate high affinity TCRs using an in vivo mouse model of WTl-targeted TCR gene therapy.
- Enhanced affinity human WT1 -specific TCRs that are identified as in Example 3 are tested for safety and efficacy in an HLA-A2 transgenic mouse model of WT1 targeted gene therapy.
- TCR-transduced T cells Promiscuous activation of high affinity TCRs are assessed by measuring cytokine production by TCR-transduced T cells in response to a panel of A2 expressing target cells in the presence or absence of WT1 peptide. TCRs that exhibit off-target recognition of WT1 negative target cells compared to the parent C4 TCR are not advanced for further study.
- WT1 expression in normal tissue is similar in both mouse and man, and the WT1 peptide recognized by the C4 TCR is identical in mice and known to be processed and presented by mouse cells (Gaiger et al, 2000, Blood 96: 1480-9).
- HLA- A2 transgenic mice have been used to test for recognition of normal tissues by T cells expressing human high affinity WT1 -specific TCRs (Kuball et al., 2009, J. Exp. Med. 206:463-475).
- CD8 + T cells from B6.A2/D b mice which express a transgene encoding l and a2 domains of A2 fused to a3 of D b (for binding mouse CD8) (Newberg et al, 1996, J. Immunol. 156:2473-2480), are transduced to expressed candidate enhanced affinity TCRs.
- the TCRs are modified prior to transduction to contain mouse rather than human Ca and CP domains, which increases expression in mouse T cells (Pouw et al, 2007, J. Gene Med. 9:561-570).
- tissues known to naturally express WT1 e.g., lungs and kidney
- histology for evidence of T cell infiltration and tissue damage
- bone marrow is assessed by flow cytometry for depletion of WT1 -expression hematopoietic progenitor cells.
- Example 5 Generation of high affinity WTl-specific T cells in vivo.
- Retrogenic mice An in vivo mouse model (TCRa retrogenic mice) was used to determine whether TCRP + double negative (DN) cells can develop in the thymus.
- Retrogenic (retrovirally transduced) mice allow for rapid generation, compared with transgenic methods, of mice expressing a specific TCR transgene. Methods of making retrogenic mice are known in the art (see, e.g., Hoist et al., 2006, Nat. Protoc. 1 :406-417; Hoist et al, 2006, Nat. Methods 3: 191-197; Bettini et al, 2012, Immunology 136:265-272).
- hematopoietic progenitor/stem cells were purified from the bone marrow of B6 mice and transduced to express the TCRa chain from either the high affinity WT1 specific 3D-PYY TCR or the low affinity mesothelin specific TCR 7431.
- the 3D-PYY TCR is a higher affinity TCR engineered from the 3D TCR, identified using a T cell display system and selection with WT1/D b Ig DimerX (BD Biosciences) (Stone et al, 2011, J. Immunol. 186:5193-5200; Chervin et al, 2008, J. Immunol. Methods 339:175- 184).
- the retroviral constructs comprising the 3D-PYY TCRa or 7431 a transgenes also include the extracellular domain of human CD2 as a transduction marker, with an IRES between the two transgenes.
- Transduced bone -marrow derived progenitors were transferred into lethally irradiated B6 host mice to generate bone marrow chimeras expressing the introduced TCRa chains.
- mice were sacrificed. Cells from the thymus and spleen were analyzed for CD4 and CD8 expression by flow cytometry ( Figures 6A, 6B).
- FIG. 6A shows that a large population of double negative TCRP + cells can be detected in vivo in the transduced thymocytes that ectopically express a TCRa chain early in development, and that this population is more pronounced in mice expressing a TCRa from a high affinity TCR (e.g., 3D-PYYa).
- DN TCRp + thymocytes from 3D-PYYa and 7431a retrogenic mice were also analyzed for expression of ⁇ and ⁇ 9, respectively ( Figure 6A).
- Splenocytes from 3D-PYYa and 7431 retrogenic mice were stimulated with WTl peptide and Mesothelin peptide, repectively, and cultured in vitro in the presence of IL-2 for 6 days.
- IL-2 was added to the culture in order to potentially expand antigen specific cells so they could be detected by tetramer staining.
- Cultures were analyzed for CD4 and CD8 expression by flow cytometry within the TCRP+ gate, as well as for expression of the parental TCR ⁇ gene ( Figure 7). Again, enrichment for the parental ⁇ gene family is observed, especially for the high affinity 3D-PYY.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Immunology (AREA)
- General Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Cell Biology (AREA)
- Biomedical Technology (AREA)
- Zoology (AREA)
- Genetics & Genomics (AREA)
- Medicinal Chemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Microbiology (AREA)
- Biotechnology (AREA)
- Pharmacology & Pharmacy (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- Wood Science & Technology (AREA)
- Biochemistry (AREA)
- Epidemiology (AREA)
- Mycology (AREA)
- General Engineering & Computer Science (AREA)
- Hematology (AREA)
- Molecular Biology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Oncology (AREA)
- Biophysics (AREA)
- Gastroenterology & Hepatology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Virology (AREA)
- Toxicology (AREA)
- Urology & Nephrology (AREA)
- Physics & Mathematics (AREA)
- Communicable Diseases (AREA)
- Developmental Biology & Embryology (AREA)
- Tropical Medicine & Parasitology (AREA)
Abstract
Description
Claims
Priority Applications (20)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020217000921A KR102276888B1 (en) | 2012-05-03 | 2013-05-02 | Enhanced affinity t cell receptors and methods for making the same |
MX2014013270A MX361760B (en) | 2012-05-03 | 2013-05-02 | Enhanced affinity t cell receptors and methods for making the same. |
KR1020147032747A KR20150009556A (en) | 2012-05-03 | 2013-05-02 | Enhanced affinity t cell receptors and methods for making the same |
ES13784884T ES2858248T3 (en) | 2012-05-03 | 2013-05-02 | Affinity Enhanced T Cell Receptors and Methods for Making Them |
CA2872471A CA2872471C (en) | 2012-05-03 | 2013-05-02 | Enhanced affinity t cell receptors and methods for making the same |
SG11201407175RA SG11201407175RA (en) | 2012-05-03 | 2013-05-02 | Enhanced affinity t cell receptors and methods for making the same |
EP13784884.2A EP2844743B1 (en) | 2012-05-03 | 2013-05-02 | Enhanced affinity t cell receptors and methods for making the same |
CN201380030757.9A CN104395462B (en) | 2012-05-03 | 2013-05-02 | Strengthen φt cell receptor of affinity and preparation method thereof |
RU2014148286A RU2665548C2 (en) | 2012-05-03 | 2013-05-02 | Method for obtaining t-cell receptor expressing cells |
JP2015510462A JP6251734B2 (en) | 2012-05-03 | 2013-05-02 | Affinity enhanced T cell receptor and method for producing the same |
NZ702108A NZ702108A (en) | 2012-05-03 | 2013-05-02 | Enhanced affinity t cell receptors and methods for making the same |
US14/398,206 US9751928B2 (en) | 2012-05-03 | 2013-05-02 | Enhanced affinity T cell receptors and methods for making the same |
AU2013256159A AU2013256159B2 (en) | 2012-05-03 | 2013-05-02 | Enhanced affinity T cell receptors and methods for making the same |
BR112014027374-0A BR112014027374B1 (en) | 2012-05-03 | 2013-05-02 | Method for generating a t-cell receptor (tcr) with increased affinity |
IL23535514A IL235355B (en) | 2012-05-03 | 2014-10-27 | Methid for generating t cell receptors |
PH12014502418A PH12014502418B1 (en) | 2012-05-03 | 2014-10-28 | Enhanced affinity t cell receptors and methods for making the same |
IN9787DEN2014 IN2014DN09787A (en) | 2012-05-03 | 2014-11-19 | |
HK15108593.7A HK1208050A1 (en) | 2012-05-03 | 2015-09-02 | Enhanced affinity cell receptors and methods for making he same |
US15/692,846 US10875904B2 (en) | 2012-05-03 | 2017-08-31 | Enhanced affinity T cell receptors and methods for making the same |
AU2018260963A AU2018260963B2 (en) | 2012-05-03 | 2018-11-09 | Enhanced affinity T cell receptors and methods for making the same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201261642358P | 2012-05-03 | 2012-05-03 | |
US61/642,358 | 2012-05-03 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/398,206 A-371-Of-International US9751928B2 (en) | 2012-05-03 | 2013-05-02 | Enhanced affinity T cell receptors and methods for making the same |
US15/692,846 Division US10875904B2 (en) | 2012-05-03 | 2017-08-31 | Enhanced affinity T cell receptors and methods for making the same |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013166321A1 true WO2013166321A1 (en) | 2013-11-07 |
Family
ID=49514896
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2013/039316 WO2013166321A1 (en) | 2012-05-03 | 2013-05-02 | Enhanced affinity t cell receptors and methods for making the same |
Country Status (18)
Country | Link |
---|---|
US (2) | US9751928B2 (en) |
EP (1) | EP2844743B1 (en) |
JP (2) | JP6251734B2 (en) |
KR (2) | KR102276888B1 (en) |
CN (2) | CN107557334B (en) |
AU (2) | AU2013256159B2 (en) |
BR (1) | BR112014027374B1 (en) |
CA (1) | CA2872471C (en) |
ES (1) | ES2858248T3 (en) |
HK (1) | HK1208050A1 (en) |
IL (1) | IL235355B (en) |
IN (1) | IN2014DN09787A (en) |
MX (1) | MX361760B (en) |
NZ (1) | NZ702108A (en) |
PH (1) | PH12014502418B1 (en) |
RU (2) | RU2665548C2 (en) |
SG (2) | SG10201609210SA (en) |
WO (1) | WO2013166321A1 (en) |
Cited By (249)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016022400A1 (en) * | 2014-08-04 | 2016-02-11 | Fred Hutchinson Cancer Research Center | T cell immunotherapy specific for wt-1 |
WO2016033570A1 (en) | 2014-08-28 | 2016-03-03 | Juno Therapeutics, Inc. | Antibodies and chimeric antigen receptors specific for cd19 |
WO2016064929A1 (en) | 2014-10-20 | 2016-04-28 | Juno Therapeutics, Inc. | Methods and compositions for dosing in adoptive cell therapy |
WO2016073602A2 (en) | 2014-11-05 | 2016-05-12 | Juno Therapeutics, Inc. | Methods for transduction and cell processing |
WO2016090190A1 (en) | 2014-12-03 | 2016-06-09 | Juno Therapeutics, Inc. | Methods and compositions for adoptive cell therapy |
WO2016100977A1 (en) | 2014-12-19 | 2016-06-23 | The Broad Institute Inc. | Methods for profiling the t-cel- receptor repertoire |
WO2016115177A1 (en) | 2015-01-12 | 2016-07-21 | Juno Therapeutics, Inc. | Modified hepatitis post-transcriptional regulatory elements |
WO2016115559A1 (en) | 2015-01-16 | 2016-07-21 | Juno Therapeutics, Inc. | Antibodies and chimeric antigen receptors specific for ror1 |
WO2016166568A1 (en) | 2015-04-16 | 2016-10-20 | Juno Therapeutics Gmbh | Methods, kits and apparatus for expanding a population of cells |
WO2016196388A1 (en) | 2015-05-29 | 2016-12-08 | Juno Therapeutics, Inc. | Composition and methods for regulating inhibitory interactions in genetically engineered cells |
WO2017053906A1 (en) | 2015-09-24 | 2017-03-30 | Abvitro Llc | Hiv antibody compositions and methods of use |
WO2017053902A1 (en) | 2015-09-25 | 2017-03-30 | Abvitro Llc | High throughput process for t cell receptor target identification of natively-paired t cell receptor sequences |
WO2017068425A1 (en) | 2015-10-22 | 2017-04-27 | Juno Therapeutics Gmbh | Methods for culturing cells and kits and apparatus for same |
WO2017069958A2 (en) | 2015-10-09 | 2017-04-27 | The Brigham And Women's Hospital, Inc. | Modulation of novel immune checkpoint targets |
WO2017068421A1 (en) | 2015-10-22 | 2017-04-27 | Juno Therapeutics Gmbh | Methods for culturing cells and kits and apparatus for same |
WO2017068419A2 (en) | 2015-10-22 | 2017-04-27 | Juno Therapeutics Gmbh | Methods, kits, agents and apparatuses for transduction |
WO2017075451A1 (en) | 2015-10-28 | 2017-05-04 | The Broad Institute Inc. | Compositions and methods for evaluating and modulating immune responses by detecting and targeting pou2af1 |
WO2017075478A2 (en) | 2015-10-28 | 2017-05-04 | The Broad Institute Inc. | Compositions and methods for evaluating and modulating immune responses by use of immune cell gene signatures |
WO2017075465A1 (en) | 2015-10-28 | 2017-05-04 | The Broad Institute Inc. | Compositions and methods for evaluating and modulating immune responses by detecting and targeting gata3 |
WO2017079705A1 (en) | 2015-11-05 | 2017-05-11 | Juno Therapeutics, Inc. | Chimeric receptors containing traf-inducing domains and related compositions and methods |
WO2017079703A1 (en) | 2015-11-05 | 2017-05-11 | Juno Therapeutics, Inc. | Vectors and genetically engineered immune cells expressing metabolic pathway modulators and uses in adoptive cell therapy |
WO2017087708A1 (en) | 2015-11-19 | 2017-05-26 | The Brigham And Women's Hospital, Inc. | Lymphocyte antigen cd5-like (cd5l)-interleukin 12b (p40) heterodimers in immunity |
WO2017096329A1 (en) | 2015-12-03 | 2017-06-08 | Juno Therapeutics, Inc. | Modified chimeric receptors and related compositions and methods |
WO2017096327A2 (en) | 2015-12-03 | 2017-06-08 | Juno Therapeutics, Inc. | Compositions and methods for reducing immune responses against cell therapies |
WO2017112944A1 (en) * | 2015-12-23 | 2017-06-29 | Fred Hutchinson Cancer Research Center | High affinity t cell receptors and uses thereof |
WO2017161212A1 (en) | 2016-03-16 | 2017-09-21 | Juno Therapeutics, Inc. | Methods for adaptive design of a treatment regimen and related treatments |
WO2017161208A1 (en) | 2016-03-16 | 2017-09-21 | Juno Therapeutics, Inc. | Methods for determining dosing of a therapeutic agent and related treatments |
WO2017165571A1 (en) | 2016-03-22 | 2017-09-28 | Seattle Children's Hospital (dba Seattle Children's Research Institute) | Early intervention methods to prevent or ameliorate toxicity |
WO2017184590A1 (en) | 2016-04-18 | 2017-10-26 | The Broad Institute Inc. | Improved hla epitope prediction |
WO2017193104A1 (en) | 2016-05-06 | 2017-11-09 | Fred Hutchinson Cancer Research Center | T-cell immunotherapy specific for mart-1 |
WO2017193107A2 (en) | 2016-05-06 | 2017-11-09 | Juno Therapeutics, Inc. | Genetically engineered cells and methods of making the same |
WO2017205846A1 (en) | 2016-05-27 | 2017-11-30 | Aadigen, Llc | Peptides and nanoparticles for intracellular delivery of genome-editing molecules |
WO2017214207A2 (en) | 2016-06-06 | 2017-12-14 | Juno Therapeutics, Inc. | Methods for the treatment of b cell malignancies using adoptive cell therapy |
WO2018005556A1 (en) | 2016-06-27 | 2018-01-04 | Juno Therapeutics, Inc. | Mhc-e restricted epitopes, binding molecules and related methods and uses |
WO2018005559A1 (en) | 2016-06-27 | 2018-01-04 | Juno Therapeutics, Inc. | Method of identifying peptide epitopes, molecules that bind such epitopes and related uses |
WO2018023093A1 (en) | 2016-07-29 | 2018-02-01 | Juno Therapeutics, Inc. | Immunomodulatory polypeptides and related compositions and methods |
WO2018023094A1 (en) | 2016-07-29 | 2018-02-01 | Juno Therapeutics, Inc. | Methods for assessing the presence or absence of replication competent virus |
WO2018023100A2 (en) | 2016-07-29 | 2018-02-01 | Juno Therapeutics, Inc. | Anti-idiotypic antibodies and related methods |
WO2018035364A1 (en) | 2016-08-17 | 2018-02-22 | The Broad Institute Inc. | Product and methods useful for modulating and evaluating immune responses |
WO2018049025A2 (en) | 2016-09-07 | 2018-03-15 | The Broad Institute Inc. | Compositions and methods for evaluating and modulating immune responses |
WO2018049420A1 (en) | 2016-09-12 | 2018-03-15 | Juno Therapeutics, Inc. | Perfusion bioreactor bag assemblies |
WO2018063985A1 (en) | 2016-09-28 | 2018-04-05 | Atossa Genetics Inc. | Methods of adoptive cell therapy |
WO2018067618A1 (en) | 2016-10-03 | 2018-04-12 | Juno Therapeutics, Inc. | Hpv-specific binding molecules |
WO2018067991A1 (en) | 2016-10-07 | 2018-04-12 | The Brigham And Women's Hospital, Inc. | Modulation of novel immune checkpoint targets |
WO2018071873A2 (en) | 2016-10-13 | 2018-04-19 | Juno Therapeutics, Inc. | Immunotherapy methods and compositions involving tryptophan metabolic pathway modulators |
WO2018085731A2 (en) | 2016-11-03 | 2018-05-11 | Juno Therapeutics, Inc. | Combination therapy of a t cell therapy and a btk inhibitor |
WO2018090057A1 (en) * | 2016-11-14 | 2018-05-17 | Fred Hutchinson Cancer Research Center | High affinity merkel cell polyomavirus t antigen-specific tcrs and uses thereof |
WO2018093591A1 (en) | 2016-11-03 | 2018-05-24 | Juno Therapeutics, Inc. | Combination therapy of a cell based therapy and a microglia inhibitor |
WO2018102787A1 (en) | 2016-12-03 | 2018-06-07 | Juno Therapeutics, Inc. | Methods for determining car-t cells dosing |
WO2018102785A2 (en) | 2016-12-03 | 2018-06-07 | Juno Therapeutics, Inc. | Methods and compositions for use of therapeutic t cells in combination with kinase inhibitors |
WO2018102786A1 (en) | 2016-12-03 | 2018-06-07 | Juno Therapeutics, Inc. | Methods for modulation of car-t cells |
WO2018106732A1 (en) | 2016-12-05 | 2018-06-14 | Juno Therapeutics, Inc. | Production of engineered cells for adoptive cell therapy |
WO2018132518A1 (en) | 2017-01-10 | 2018-07-19 | Juno Therapeutics, Inc. | Epigenetic analysis of cell therapy and related methods |
WO2018134691A2 (en) | 2017-01-20 | 2018-07-26 | Juno Therapeutics Gmbh | Cell surface conjugates and related cell compositions and methods |
WO2018148671A1 (en) | 2017-02-12 | 2018-08-16 | Neon Therapeutics, Inc. | Hla-based methods and compositions and uses thereof |
WO2018157171A2 (en) | 2017-02-27 | 2018-08-30 | Juno Therapeutics, Inc. | Compositions, articles of manufacture and methods related to dosing in cell therapy |
WO2018170188A2 (en) | 2017-03-14 | 2018-09-20 | Juno Therapeutics, Inc. | Methods for cryogenic storage |
WO2018187791A1 (en) | 2017-04-07 | 2018-10-11 | Juno Therapeutics, Inc | Engineered cells expressing prostate-specific membrane antigen (psma) or a modified form thereof and related methods |
WO2018191723A1 (en) | 2017-04-14 | 2018-10-18 | Juno Therapeutics, Inc. | Methods for assessing cell surface glycosylation |
WO2018191553A1 (en) | 2017-04-12 | 2018-10-18 | Massachusetts Eye And Ear Infirmary | Tumor signature for metastasis, compositions of matter methods of use thereof |
WO2018195019A1 (en) | 2017-04-18 | 2018-10-25 | The Broad Institute Inc. | Compositions for detecting secretion and methods of use |
WO2018195175A1 (en) | 2017-04-18 | 2018-10-25 | FUJIFILM Cellular Dynamics, Inc. | Antigen-specific immune effector cells |
WO2018197949A1 (en) | 2017-04-27 | 2018-11-01 | Juno Therapeutics Gmbh | Oligomeric particle reagents and methods of use thereof |
WO2018204427A1 (en) | 2017-05-01 | 2018-11-08 | Juno Therapeutics, Inc. | Combination of a cell therapy and an immunomodulatory compound |
WO2018218038A1 (en) | 2017-05-24 | 2018-11-29 | Effector Therapeutics, Inc. | Methods and compositions for cellular immunotherapy |
WO2018223101A1 (en) | 2017-06-02 | 2018-12-06 | Juno Therapeutics, Inc. | Articles of manufacture and methods for treatment using adoptive cell therapy |
WO2018223098A1 (en) | 2017-06-02 | 2018-12-06 | Juno Therapeutics, Inc. | Articles of manufacture and methods related to toxicity associated with cell therapy |
US10149898B2 (en) | 2017-08-03 | 2018-12-11 | Taiga Biotechnologies, Inc. | Methods and compositions for the treatment of melanoma |
WO2018234370A1 (en) | 2017-06-20 | 2018-12-27 | Institut Curie | Immune cells defective for suv39h1 |
WO2019006427A1 (en) | 2017-06-29 | 2019-01-03 | Juno Therapeutics, Inc. | Mouse model for assessing toxicities associated with immunotherapies |
WO2019027850A1 (en) | 2017-07-29 | 2019-02-07 | Juno Therapeutics, Inc. | Reagents for expanding cells expressing recombinant receptors |
WO2019027465A1 (en) | 2017-08-03 | 2019-02-07 | Taiga Biotechnologies, Inc. | Methods and compositions for the treatment of melanoma |
WO2019032929A1 (en) | 2017-08-09 | 2019-02-14 | Juno Therapeutics, Inc. | Methods and compositions for preparing genetically engineered cells |
WO2019032927A1 (en) | 2017-08-09 | 2019-02-14 | Juno Therapeutics, Inc. | Methods for producing genetically engineered cell compositions and related compositions |
WO2019046832A1 (en) | 2017-09-01 | 2019-03-07 | Juno Therapeutics, Inc. | Gene expression and assessment of risk of developing toxicity following cell therapy |
WO2019051335A1 (en) | 2017-09-07 | 2019-03-14 | Juno Therapeutics, Inc. | Methods of identifying cellular attributes related to outcomes associated with cell therapy |
WO2019057102A1 (en) | 2017-09-20 | 2019-03-28 | Tsinghua University | A gRNA TARGETING HPK1 AND A METHOD FOR EDITING HPK1 GENE |
WO2019060746A1 (en) | 2017-09-21 | 2019-03-28 | The Broad Institute, Inc. | Systems, methods, and compositions for targeted nucleic acid editing |
WO2019070541A1 (en) | 2017-10-03 | 2019-04-11 | Juno Therapeutics, Inc. | Hpv-specific binding molecules |
WO2019089848A1 (en) | 2017-11-01 | 2019-05-09 | Juno Therapeutics, Inc. | Methods associated with tumor burden for assessing response to a cell therapy |
WO2019090202A1 (en) | 2017-11-06 | 2019-05-09 | Editas Medicine, Inc. | Methods, compositions and components for crispr-cas9 editing of cblb in t cells for immunotherapy |
WO2019089982A1 (en) | 2017-11-01 | 2019-05-09 | Juno Therapeutics, Inc. | Method of assessing activity of recombinant antigen receptors |
WO2019089855A1 (en) | 2017-11-01 | 2019-05-09 | Juno Therapeutics, Inc. | Process for generating therapeutic compositions of engineered cells |
WO2019090004A1 (en) | 2017-11-01 | 2019-05-09 | Juno Therapeutics, Inc. | Process for producing a t cell composition |
WO2019089884A2 (en) | 2017-11-01 | 2019-05-09 | Editas Medicine, Inc. | Methods, compositions and components for crispr-cas9 editing of tgfbr2 in t cells for immunotherapy |
WO2019089969A2 (en) | 2017-11-01 | 2019-05-09 | Juno Therapeutics, Inc. | Antibodies and chimeric antigen receptors specific for b-cell maturation antigen |
WO2019089858A2 (en) | 2017-11-01 | 2019-05-09 | Juno Therapeutics, Inc. | Methods of assessing or monitoring a response to a cell therapy |
WO2019090003A1 (en) | 2017-11-01 | 2019-05-09 | Juno Therapeutics, Inc. | Chimeric antigen receptors specific for b-cell maturation antigen (bcma) |
WO2019090364A1 (en) | 2017-11-06 | 2019-05-09 | Juno Therapeutics, Inc. | Combination of a cell therapy and a gamma secretase inhibitor |
WO2019094835A1 (en) | 2017-11-10 | 2019-05-16 | Juno Therapeutics, Inc. | Closed-system cryogenic vessels |
WO2019094983A1 (en) | 2017-11-13 | 2019-05-16 | The Broad Institute, Inc. | Methods and compositions for treating cancer by targeting the clec2d-klrb1 pathway |
WO2019109053A1 (en) | 2017-12-01 | 2019-06-06 | Juno Therapeutics, Inc. | Methods for dosing and for modulation of genetically engineered cells |
WO2019113559A2 (en) | 2017-12-08 | 2019-06-13 | Juno Therapeutics, Inc. | Phenotypic markers for cell therapy and related methods |
WO2019113557A1 (en) | 2017-12-08 | 2019-06-13 | Juno Therapeutics, Inc. | Process for producing a composition of engineered t cells |
WO2019113556A1 (en) | 2017-12-08 | 2019-06-13 | Juno Therapeutics, Inc. | Serum-free media formulation for culturing cells and methods of use thereof |
WO2019118937A1 (en) | 2017-12-15 | 2019-06-20 | Juno Therapeutics, Inc. | Anti-cct5 binding molecules and methods of use thereof |
US10344075B2 (en) | 2013-11-22 | 2019-07-09 | The Board Of Trustees Of The University Of Illinois | Engineered high-affinity human t cell receptors |
WO2019152743A1 (en) | 2018-01-31 | 2019-08-08 | Celgene Corporation | Combination therapy using adoptive cell therapy and checkpoint inhibitor |
WO2019152747A1 (en) | 2018-01-31 | 2019-08-08 | Juno Therapeutics, Inc. | Methods and reagents for assessing the presence or absence of replication competent virus |
WO2019170845A1 (en) | 2018-03-09 | 2019-09-12 | Ospedale San Raffaele S.R.L. | Il-1 antagonist and toxicity induced by cell therapy |
WO2019195492A1 (en) | 2018-04-05 | 2019-10-10 | Juno Therapeutics, Inc. | Methods of producing cells expressing a recombinant receptor and related compositions |
WO2019195486A1 (en) | 2018-04-05 | 2019-10-10 | Juno Therapeutics, Inc. | T cell receptors and engineered cells expressing same |
WO2019213184A1 (en) | 2018-05-03 | 2019-11-07 | Juno Therapeutics, Inc. | Combination therapy of a chimeric antigen receptor (car) t cell therapy and a kinase inhibitor |
WO2019232542A2 (en) | 2018-06-01 | 2019-12-05 | Massachusetts Institute Of Technology | Methods and compositions for detecting and modulating microenvironment gene signatures from the csf of metastasis patients |
WO2019241315A1 (en) | 2018-06-12 | 2019-12-19 | Obsidian Therapeutics, Inc. | Pde5 derived regulatory constructs and methods of use in immunotherapy |
WO2020033927A2 (en) | 2018-08-09 | 2020-02-13 | Juno Therapeutics, Inc. | Processes for generating engineered cells and compositions thereof |
WO2020033916A1 (en) | 2018-08-09 | 2020-02-13 | Juno Therapeutics, Inc. | Methods for assessing integrated nucleic acids |
WO2020041384A1 (en) | 2018-08-20 | 2020-02-27 | The Broad Institute, Inc. | 3-phenyl-2-cyano-azetidine derivatives, inhibitors of rna-guided nuclease activity |
WO2020041387A1 (en) | 2018-08-20 | 2020-02-27 | The Brigham And Women's Hospital, Inc. | Degradation domain modifications for spatio-temporal control of rna-guided nucleases |
WO2020056047A1 (en) | 2018-09-11 | 2020-03-19 | Juno Therapeutics, Inc. | Methods for mass spectrometry analysis of engineered cell compositions |
WO2020068304A2 (en) | 2018-08-20 | 2020-04-02 | The Broad Institute, Inc. | Inhibitors of rna-guided nuclease target binding and uses thereof |
WO2020072700A1 (en) | 2018-10-02 | 2020-04-09 | Dana-Farber Cancer Institute, Inc. | Hla single allele lines |
WO2020081730A2 (en) | 2018-10-16 | 2020-04-23 | Massachusetts Institute Of Technology | Methods and compositions for modulating microenvironment |
WO2020092848A2 (en) | 2018-11-01 | 2020-05-07 | Juno Therapeutics, Inc. | Methods for treatment using chimeric antigen receptors specific for b-cell maturation antigen |
WO2020092455A2 (en) | 2018-10-29 | 2020-05-07 | The Broad Institute, Inc. | Car t cell transcriptional atlas |
WO2020089343A1 (en) | 2018-10-31 | 2020-05-07 | Juno Therapeutics Gmbh | Methods for selection and stimulation of cells and apparatus for same |
WO2020097403A1 (en) | 2018-11-08 | 2020-05-14 | Juno Therapeutics, Inc. | Methods and combinations for treatment and t cell modulation |
WO2020097132A1 (en) | 2018-11-06 | 2020-05-14 | Juno Therapeutics, Inc. | Process for producing genetically engineered t cells |
WO2020102770A1 (en) | 2018-11-16 | 2020-05-22 | Juno Therapeutics, Inc. | Methods of dosing engineered t cells for the treatment of b cell malignancies |
WO2020106621A1 (en) | 2018-11-19 | 2020-05-28 | Board Of Regents, The University Of Texas System | A modular, polycistronic vector for car and tcr transduction |
WO2020112493A1 (en) | 2018-11-29 | 2020-06-04 | Board Of Regents, The University Of Texas System | Methods for ex vivo expansion of natural killer cells and use thereof |
WO2020113029A2 (en) | 2018-11-28 | 2020-06-04 | Board Of Regents, The University Of Texas System | Multiplex genome editing of immune cells to enhance functionality and resistance to suppressive environment |
WO2020113188A2 (en) | 2018-11-30 | 2020-06-04 | Juno Therapeutics, Inc. | Methods for dosing and treatment of b cell malignancies in adoptive cell therapy |
WO2020113194A2 (en) | 2018-11-30 | 2020-06-04 | Juno Therapeutics, Inc. | Methods for treatment using adoptive cell therapy |
WO2020131586A2 (en) | 2018-12-17 | 2020-06-25 | The Broad Institute, Inc. | Methods for identifying neoantigens |
WO2020160050A1 (en) | 2019-01-29 | 2020-08-06 | Juno Therapeutics, Inc. | Antibodies and chimeric antigen receptors specific for receptor tyrosine kinase like orphan receptor 1 (ror1) |
US10738278B2 (en) | 2014-07-15 | 2020-08-11 | Juno Therapeutics, Inc. | Engineered cells for adoptive cell therapy |
US10760055B2 (en) | 2005-10-18 | 2020-09-01 | National Jewish Health | Conditionally immortalized long-term stem cells and methods of making and using such cells |
WO2020186101A1 (en) | 2019-03-12 | 2020-09-17 | The Broad Institute, Inc. | Detection means, compositions and methods for modulating synovial sarcoma cells |
WO2020191079A1 (en) | 2019-03-18 | 2020-09-24 | The Broad Institute, Inc. | Compositions and methods for modulating metabolic regulators of t cell pathogenicity |
US10786534B2 (en) | 2013-03-11 | 2020-09-29 | Taiga Biotechnologies, Inc. | Production and use of red blood cells |
US10786533B2 (en) | 2015-07-15 | 2020-09-29 | Juno Therapeutics, Inc. | Engineered cells for adoptive cell therapy |
US10801070B2 (en) | 2013-11-25 | 2020-10-13 | The Broad Institute, Inc. | Compositions and methods for diagnosing, evaluating and treating cancer |
WO2020223535A1 (en) | 2019-05-01 | 2020-11-05 | Juno Therapeutics, Inc. | Cells expressing a recombinant receptor from a modified tgfbr2 locus, related polynucleotides and methods |
WO2020223571A1 (en) | 2019-05-01 | 2020-11-05 | Juno Therapeutics, Inc. | Cells expressing a chimeric receptor from a modified cd247 locus, related polynucleotides and methods |
US10835585B2 (en) | 2015-05-20 | 2020-11-17 | The Broad Institute, Inc. | Shared neoantigens |
WO2020236967A1 (en) | 2019-05-20 | 2020-11-26 | The Broad Institute, Inc. | Random crispr-cas deletion mutant |
WO2020243371A1 (en) | 2019-05-28 | 2020-12-03 | Massachusetts Institute Of Technology | Methods and compositions for modulating immune responses |
WO2020247832A1 (en) | 2019-06-07 | 2020-12-10 | Juno Therapeutics, Inc. | Automated t cell culture |
WO2020252218A1 (en) | 2019-06-12 | 2020-12-17 | Juno Therapeutics, Inc. | Combination therapy of a cell-mediated cytotoxic therapy and an inhibitor of a prosurvival bcl2 family protein |
WO2021013950A1 (en) | 2019-07-23 | 2021-01-28 | Mnemo Therapeutics | Immune cells defective for suv39h1 |
WO2021030627A1 (en) | 2019-08-13 | 2021-02-18 | The General Hospital Corporation | Methods for predicting outcomes of checkpoint inhibition and treatment thereof |
WO2021035194A1 (en) | 2019-08-22 | 2021-02-25 | Juno Therapeutics, Inc. | Combination therapy of a t cell therapy and an enhancer of zeste homolog 2 (ezh2) inhibitor and related methods |
WO2021041922A1 (en) | 2019-08-30 | 2021-03-04 | The Broad Institute, Inc. | Crispr-associated mu transposase systems |
WO2021041994A2 (en) | 2019-08-30 | 2021-03-04 | Juno Therapeutics, Inc. | Machine learning methods for classifying cells |
WO2021043804A1 (en) | 2019-09-02 | 2021-03-11 | Institut Curie | Immunotherapy targeting tumor neoantigenic peptides |
WO2021050601A1 (en) | 2019-09-09 | 2021-03-18 | Scribe Therapeutics Inc. | Compositions and methods for use in immunotherapy |
US10953048B2 (en) | 2012-07-20 | 2021-03-23 | Taiga Biotechnologies, Inc. | Enhanced reconstitution and autoreconstitution of the hematopoietic compartment |
US10975442B2 (en) | 2014-12-19 | 2021-04-13 | Massachusetts Institute Of Technology | Molecular biomarkers for cancer immunotherapy |
WO2021078910A1 (en) | 2019-10-22 | 2021-04-29 | Institut Curie | Immunotherapy targeting tumor neoantigenic peptides |
WO2021084050A1 (en) | 2019-10-30 | 2021-05-06 | Juno Therapeutics Gmbh | Cell selection and/or stimulation devices and methods of use |
WO2021092498A1 (en) | 2019-11-07 | 2021-05-14 | Juno Therapeutics, Inc. | Combination of a t cell therapy and (s)-3-[4-(4-morpholin-4 ylmethyl-benzyloxy)-l-oxo-l,3-dihydro-isoindol-2-yl]- piperidine-2,6-dione |
WO2021113780A1 (en) | 2019-12-06 | 2021-06-10 | Juno Therapeutics, Inc. | Anti-idiotypic antibodies to gprc5d-targeted binding domains and related compositions and methods |
WO2021113776A1 (en) | 2019-12-06 | 2021-06-10 | Juno Therapeutics, Inc. | Anti-idiotypic antibodies to bcma-targeted binding domains and related compositions and methods |
WO2021113770A1 (en) | 2019-12-06 | 2021-06-10 | Juno Therapeutics, Inc. | Methods related to toxicity and response associated with cell therapy for treating b cell malignancies |
WO2021151008A1 (en) | 2020-01-24 | 2021-07-29 | Juno Therapuetics, Inc. | Methods for dosing and treatment of follicular lymphoma and marginal zone lymphoma in adoptive cell therapy |
WO2021154887A1 (en) | 2020-01-28 | 2021-08-05 | Juno Therapeutics, Inc. | Methods for t cell transduction |
WO2021163391A1 (en) | 2020-02-12 | 2021-08-19 | Juno Therapeutics, Inc. | Cd19-directed chimeric antigen receptor t cell compositions and methods and uses thereof |
WO2021163389A1 (en) | 2020-02-12 | 2021-08-19 | Juno Therapeutics, Inc. | Bcma-directed chimeric antigen receptor t cell compositions and methods and uses thereof |
WO2021167908A1 (en) | 2020-02-17 | 2021-08-26 | Board Of Regents, The University Of Texas System | Methods for expansion of tumor infiltrating lymphocytes and use thereof |
US11116796B2 (en) | 2016-12-02 | 2021-09-14 | Taiga Biotechnologies, Inc. | Nanoparticle formulations |
WO2021207689A2 (en) | 2020-04-10 | 2021-10-14 | Juno Therapeutics, Inc. | Methods and uses related to cell therapy engineered with a chimeric antigen receptor targeting b-cell maturation antigen |
WO2021231661A2 (en) | 2020-05-13 | 2021-11-18 | Juno Therapeutics, Inc. | Process for producing donor-batched cells expressing a recombinant receptor |
WO2021231657A1 (en) | 2020-05-13 | 2021-11-18 | Juno Therapeutics, Inc. | Methods of identifying features associated with clinical response and uses thereof |
WO2021228999A1 (en) | 2020-05-12 | 2021-11-18 | Institut Curie | Neoantigenic epitopes associated with sf3b1 mutations |
US11180751B2 (en) | 2015-06-18 | 2021-11-23 | The Broad Institute, Inc. | CRISPR enzymes and systems |
US11183272B2 (en) | 2018-12-21 | 2021-11-23 | Biontech Us Inc. | Method and systems for prediction of HLA class II-specific epitopes and characterization of CD4+ T cells |
WO2021237068A2 (en) | 2020-05-21 | 2021-11-25 | Board Of Regents, The University Of Texas System | T cell receptors with vgll1 specificity and uses thereof |
WO2021260186A1 (en) | 2020-06-26 | 2021-12-30 | Juno Therapeutics Gmbh | Engineered t cells conditionally expressing a recombinant receptor, related polynucleotides and methods |
WO2022023576A1 (en) | 2020-07-30 | 2022-02-03 | Institut Curie | Immune cells defective for socs1 |
WO2022029660A1 (en) | 2020-08-05 | 2022-02-10 | Juno Therapeutics, Inc. | Anti-idiotypic antibodies to ror1-targeted binding domains and related compositions and methods |
WO2022104109A1 (en) | 2020-11-13 | 2022-05-19 | Catamaran Bio, Inc. | Genetically modified natural killer cells and methods of use thereof |
EP4011381A1 (en) | 2016-06-03 | 2022-06-15 | Memorial Sloan-Kettering Cancer Center | Adoptive cell therapies as early treatment options |
EP4012415A2 (en) | 2015-12-04 | 2022-06-15 | Juno Therapeutics, Inc. | Methods and compositions related to toxicity associated with cell therapy |
WO2022133030A1 (en) | 2020-12-16 | 2022-06-23 | Juno Therapeutics, Inc. | Combination therapy of a cell therapy and a bcl2 inhibitor |
US11369678B2 (en) | 2008-08-28 | 2022-06-28 | Taiga Biotechnologies, Inc. | Compositions and methods for modulating immune cells |
WO2022150731A1 (en) | 2021-01-11 | 2022-07-14 | Sana Biotechnology, Inc. | Use of cd8-targeted viral vectors |
WO2022187280A1 (en) | 2021-03-01 | 2022-09-09 | Dana-Farber Cancer Institute, Inc. | Personalized redirection and reprogramming of t cells for precise targeting of tumors |
WO2022187406A1 (en) | 2021-03-03 | 2022-09-09 | Juno Therapeutics, Inc. | Combination of a t cell therapy and a dgk inhibitor |
WO2022189639A1 (en) | 2021-03-11 | 2022-09-15 | Mnemo Therapeutics | Tumor neoantigenic peptides and uses thereof |
WO2022189626A2 (en) | 2021-03-11 | 2022-09-15 | Mnemo Therapeutics | Tumor neoantigenic peptides |
WO2022189620A1 (en) | 2021-03-11 | 2022-09-15 | Institut Curie | Transmembrane neoantigenic peptides |
US11452768B2 (en) | 2013-12-20 | 2022-09-27 | The Broad Institute, Inc. | Combination therapy with neoantigen vaccine |
WO2022204070A1 (en) | 2021-03-22 | 2022-09-29 | Juno Therapeutics, Inc. | Methods of determining potency of a therapeutic cell composition |
WO2022204071A1 (en) | 2021-03-22 | 2022-09-29 | Juno Therapeutics, Inc. | Method to assess potency of viral vector particles |
WO2022212400A1 (en) | 2021-03-29 | 2022-10-06 | Juno Therapeutics, Inc. | Methods for dosing and treatment with a combination of a checkpoint inhibitor therapy and a car t cell therapy |
WO2022212384A1 (en) | 2021-03-29 | 2022-10-06 | Juno Therapeutics, Inc. | Combination of a car t cell therapy and an immunomodulatory compound for treatment of lymphoma |
WO2022234009A2 (en) | 2021-05-06 | 2022-11-10 | Juno Therapeutics Gmbh | Methods for stimulating and transducing t cells |
US11549149B2 (en) | 2017-01-24 | 2023-01-10 | The Broad Institute, Inc. | Compositions and methods for detecting a mutant variant of a polynucleotide |
WO2023015217A1 (en) | 2021-08-04 | 2023-02-09 | Sana Biotechnology, Inc. | Use of cd4-targeted viral vectors |
WO2023014922A1 (en) | 2021-08-04 | 2023-02-09 | The Regents Of The University Of Colorado, A Body Corporate | Lat activating chimeric antigen receptor t cells and methods of use thereof |
US11667695B2 (en) | 2008-05-16 | 2023-06-06 | Taiga Biotechnologies, Inc. | Antibodies and processes for preparing the same |
WO2023105000A1 (en) | 2021-12-09 | 2023-06-15 | Zygosity Limited | Vector |
WO2023115041A1 (en) | 2021-12-17 | 2023-06-22 | Sana Biotechnology, Inc. | Modified paramyxoviridae attachment glycoproteins |
WO2023115039A2 (en) | 2021-12-17 | 2023-06-22 | Sana Biotechnology, Inc. | Modified paramyxoviridae fusion glycoproteins |
WO2023126458A1 (en) | 2021-12-28 | 2023-07-06 | Mnemo Therapeutics | Immune cells with inactivated suv39h1 and modified tcr |
WO2023139269A1 (en) | 2022-01-21 | 2023-07-27 | Mnemo Therapeutics | Modulation of suv39h1 expression by rnas |
WO2023147515A1 (en) | 2022-01-28 | 2023-08-03 | Juno Therapeutics, Inc. | Methods of manufacturing cellular compositions |
WO2023150518A1 (en) | 2022-02-01 | 2023-08-10 | Sana Biotechnology, Inc. | Cd3-targeted lentiviral vectors and uses thereof |
US11725237B2 (en) | 2013-12-05 | 2023-08-15 | The Broad Institute Inc. | Polymorphic gene typing and somatic change detection using sequencing data |
US11732257B2 (en) | 2017-10-23 | 2023-08-22 | Massachusetts Institute Of Technology | Single cell sequencing libraries of genomic transcript regions of interest in proximity to barcodes, and genotyping of said libraries |
US11739156B2 (en) | 2019-01-06 | 2023-08-29 | The Broad Institute, Inc. Massachusetts Institute of Technology | Methods and compositions for overcoming immunosuppression |
US11759480B2 (en) | 2017-02-28 | 2023-09-19 | Endocyte, Inc. | Compositions and methods for CAR T cell therapy |
WO2023178348A1 (en) | 2022-03-18 | 2023-09-21 | The Regents Of The University Of Colorado, A Body Corporate | Genetically engineered t-cell co-receptors and methods of use thereof |
WO2023180552A1 (en) | 2022-03-24 | 2023-09-28 | Institut Curie | Immunotherapy targeting tumor transposable element derived neoantigenic peptides in glioblastoma |
WO2023193015A1 (en) | 2022-04-01 | 2023-10-05 | Sana Biotechnology, Inc. | Cytokine receptor agonist and viral vector combination therapies |
US11779602B2 (en) | 2018-01-22 | 2023-10-10 | Endocyte, Inc. | Methods of use for CAR T cells |
WO2023196921A1 (en) | 2022-04-06 | 2023-10-12 | The Regents Of The University Of Colorado, A Body Corporate | Granzyme expressing t cells and methods of use |
WO2023196933A1 (en) | 2022-04-06 | 2023-10-12 | The Regents Of The University Of Colorado, A Body Corporate | Chimeric antigen receptor t cells and methods of use thereof |
US11793867B2 (en) | 2017-12-18 | 2023-10-24 | Biontech Us Inc. | Neoantigens and uses thereof |
US11793787B2 (en) | 2019-10-07 | 2023-10-24 | The Broad Institute, Inc. | Methods and compositions for enhancing anti-tumor immunity by targeting steroidogenesis |
WO2023211972A1 (en) | 2022-04-28 | 2023-11-02 | Medical University Of South Carolina | Chimeric antigen receptor modified regulatory t cells for treating cancer |
WO2023213969A1 (en) | 2022-05-05 | 2023-11-09 | Juno Therapeutics Gmbh | Viral-binding protein and related reagents, articles, and methods of use |
WO2023220655A1 (en) | 2022-05-11 | 2023-11-16 | Celgene Corporation | Methods to overcome drug resistance by re-sensitizing cancer cells to treatment with a prior therapy via treatment with a t cell therapy |
EP4279085A1 (en) | 2022-05-20 | 2023-11-22 | Mnemo Therapeutics | Compositions and methods for treating a refractory or relapsed cancer or a chronic infectious disease |
WO2023230581A1 (en) | 2022-05-25 | 2023-11-30 | Celgene Corporation | Methods of manufacturing t cell therapies |
US11845803B2 (en) | 2017-02-17 | 2023-12-19 | Fred Hutchinson Cancer Center | Combination therapies for treatment of BCMA-related cancers and autoimmune disorders |
US11844800B2 (en) | 2019-10-30 | 2023-12-19 | Massachusetts Institute Of Technology | Methods and compositions for predicting and preventing relapse of acute lymphoblastic leukemia |
WO2023250400A1 (en) | 2022-06-22 | 2023-12-28 | Juno Therapeutics, Inc. | Treatment methods for second line therapy of cd19-targeted car t cells |
WO2024006960A1 (en) | 2022-06-29 | 2024-01-04 | Juno Therapeutics, Inc. | Lipid nanoparticles for delivery of nucleic acids |
US11865168B2 (en) | 2019-12-30 | 2024-01-09 | Massachusetts Institute Of Technology | Compositions and methods for treating bacterial infections |
EP4302768A2 (en) | 2017-06-22 | 2024-01-10 | Board Of Regents, The University Of Texas System | Methods for producing regulatory immune cells and uses thereof |
US11897953B2 (en) | 2017-06-14 | 2024-02-13 | The Broad Institute, Inc. | Compositions and methods targeting complement component 3 for inhibiting tumor growth |
US11913075B2 (en) | 2017-04-01 | 2024-02-27 | The Broad Institute, Inc. | Methods and compositions for detecting and modulating an immunotherapy resistance gene signature in cancer |
WO2024044779A2 (en) | 2022-08-26 | 2024-02-29 | Juno Therapeutics, Inc. | Antibodies and chimeric antigen receptors specific for delta-like ligand 3 (dll3) |
US11919937B2 (en) | 2018-01-09 | 2024-03-05 | Board Of Regents, The University Of Texas System | T cell receptors for immunotherapy |
WO2024054944A1 (en) | 2022-09-08 | 2024-03-14 | Juno Therapeutics, Inc. | Combination of a t cell therapy and continuous or intermittent dgk inhibitor dosing |
WO2024062138A1 (en) | 2022-09-23 | 2024-03-28 | Mnemo Therapeutics | Immune cells comprising a modified suv39h1 gene |
WO2024077256A1 (en) | 2022-10-07 | 2024-04-11 | The General Hospital Corporation | Methods and compositions for high-throughput discovery ofpeptide-mhc targeting binding proteins |
US11957695B2 (en) | 2018-04-26 | 2024-04-16 | The Broad Institute, Inc. | Methods and compositions targeting glucocorticoid signaling for modulating immune responses |
WO2024081820A1 (en) | 2022-10-13 | 2024-04-18 | Sana Biotechnology, Inc. | Viral particles targeting hematopoietic stem cells |
US11963966B2 (en) | 2017-03-31 | 2024-04-23 | Dana-Farber Cancer Institute, Inc. | Compositions and methods for treating ovarian tumors |
US11981922B2 (en) | 2019-10-03 | 2024-05-14 | Dana-Farber Cancer Institute, Inc. | Methods and compositions for the modulation of cell interactions and signaling in the tumor microenvironment |
WO2024100604A1 (en) | 2022-11-09 | 2024-05-16 | Juno Therapeutics Gmbh | Methods for manufacturing engineered immune cells |
US11994512B2 (en) | 2018-01-04 | 2024-05-28 | Massachusetts Institute Of Technology | Single-cell genomic methods to generate ex vivo cell systems that recapitulate in vivo biology with improved fidelity |
WO2024124044A1 (en) | 2022-12-07 | 2024-06-13 | The Brigham And Women’S Hospital, Inc. | Compositions and methods targeting sat1 for enhancing anti¬ tumor immunity during tumor progression |
WO2024124132A1 (en) | 2022-12-09 | 2024-06-13 | Juno Therapeutics, Inc. | Machine learning methods for predicting cell phenotype using holographic imaging |
US12024559B2 (en) | 2020-10-23 | 2024-07-02 | Asher Biotherapeutics, Inc. | Fusions with CD8 antigen binding molecules for modulating immune cell function |
US12036240B2 (en) | 2018-06-14 | 2024-07-16 | The Broad Institute, Inc. | Compositions and methods targeting complement component 3 for inhibiting tumor growth |
US12043870B2 (en) | 2017-10-02 | 2024-07-23 | The Broad Institute, Inc. | Methods and compositions for detecting and modulating an immunotherapy resistance gene signature in cancer |
US12049643B2 (en) | 2017-07-14 | 2024-07-30 | The Broad Institute, Inc. | Methods and compositions for modulating cytotoxic lymphocyte activity |
WO2024161021A1 (en) | 2023-02-03 | 2024-08-08 | Juno Therapeutics Gmbh | Methods for non-viral manufacturing of engineered immune cells |
WO2024182516A1 (en) | 2023-02-28 | 2024-09-06 | Juno Therapeutics, Inc. | Cell therapy for treating systemic autoimmune diseases |
WO2024192141A1 (en) | 2023-03-13 | 2024-09-19 | Dana-Farber Cancer Institute, Inc. | Treatment of cancers having a drug-resistant mesenchymal cell state |
WO2024220560A1 (en) | 2023-04-18 | 2024-10-24 | Sana Biotechnology, Inc. | Engineered protein g fusogens and related lipid particles and methods thereof |
WO2024220574A1 (en) | 2023-04-18 | 2024-10-24 | Sana Biotechnology, Inc. | Universal protein g fusogens and adapter systems thereof and related lipid particles and uses |
WO2024220598A2 (en) | 2023-04-18 | 2024-10-24 | Sana Biotechnology, Inc. | Lentiviral vectors with two or more genomes |
WO2024220588A1 (en) | 2023-04-18 | 2024-10-24 | Juno Therapeutics, Inc. | Cytotoxicity assay for assessing potency of therapeutic cell compositions |
US12139526B2 (en) | 2016-12-02 | 2024-11-12 | Juno Therapeutics, Inc. | Modified chimeric receptors and related compositions and methods |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8765687B2 (en) | 2005-10-17 | 2014-07-01 | Sloan Kettering Institute For Cancer Research | WT1 HLA class II-binding peptides and compositions and methods comprising same |
EP2010209B1 (en) | 2006-04-10 | 2016-06-15 | Sloan Kettering Institute For Cancer Research | Immunogenic wt-1 peptides and methods of use thereof |
CN104684577B (en) | 2012-01-13 | 2018-05-08 | 纪念斯隆凯特林癌症中心 | Immunogenicity WT-1 peptides and its application method |
US10815273B2 (en) | 2013-01-15 | 2020-10-27 | Memorial Sloan Kettering Cancer Center | Immunogenic WT-1 peptides and methods of use thereof |
DK2945647T3 (en) | 2013-01-15 | 2020-11-16 | Memorial Sloan Kettering Cancer Center | IMMUNOGENIC WT-1 PEPTIDES AND METHODS OF USE THEREOF |
KR102637862B1 (en) * | 2017-12-13 | 2024-02-19 | 이노비오 파마수티컬즈, 인크. | Cancer vaccines targeting mesothelin and uses thereof |
US20210340524A1 (en) | 2020-05-01 | 2021-11-04 | Massachusetts Institute Of Technology | Methods for identifying chimeric antigen receptor-targeting ligands and uses thereof |
CN114106144B (en) * | 2020-08-27 | 2024-01-26 | 溧阳瑅赛生物医药有限公司 | TCR for identifying HLA-A 02/WT1 target and application thereof |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6040177A (en) * | 1994-08-31 | 2000-03-21 | Fred Hutchinson Cancer Research Center | High efficiency transduction of T lymphocytes using rapid expansion methods ("REM") |
US20090217403A1 (en) * | 2005-06-06 | 2009-08-27 | Hergen Spits | Means and methods for generating a t cell against an antigen of interest |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6759243B2 (en) | 1998-01-20 | 2004-07-06 | Board Of Trustees Of The University Of Illinois | High affinity TCR proteins and methods |
GB9823897D0 (en) * | 1998-11-02 | 1998-12-30 | Imp College Innovations Ltd | Immunotherapeutic methods and molecules |
US6541249B2 (en) | 1999-12-22 | 2003-04-01 | Human Genome Sciences, Inc. | Immortalized human stromal cell lines |
EP1118661A1 (en) | 2000-01-13 | 2001-07-25 | Het Nederlands Kanker Instituut | T cell receptor libraries |
US20030232430A1 (en) * | 2001-11-26 | 2003-12-18 | Advanced Cell Technology | Methods for making and using reprogrammed human somatic cell nuclei and autologous and isogenic human stem cells |
US7575925B2 (en) | 2002-12-10 | 2009-08-18 | Sunnybrook Health Sciences Centre | Cell preparations comprising cells of the T cell lineage and methods of making and using them |
GB0511124D0 (en) * | 2005-06-01 | 2005-07-06 | Avidex Ltd | High affinity melan-a t cell receptors |
US8119772B2 (en) | 2006-09-29 | 2012-02-21 | California Institute Of Technology | MART-1 T cell receptors |
US10059923B2 (en) * | 2008-01-30 | 2018-08-28 | Memorial Sloan Kettering Cancer Center | Methods for off-the-shelf tumor immunotherapy using allogeneic T-cell precursors |
US8697854B2 (en) | 2008-11-24 | 2014-04-15 | Helmholtz Zentrum München Deutsches Forschungszentrum Für Gesundheit Und Umwelt Gmbh | High affinity T cell receptor and use thereof |
-
2013
- 2013-05-02 KR KR1020217000921A patent/KR102276888B1/en active IP Right Grant
- 2013-05-02 CN CN201710783710.XA patent/CN107557334B/en active Active
- 2013-05-02 RU RU2014148286A patent/RU2665548C2/en active
- 2013-05-02 MX MX2014013270A patent/MX361760B/en active IP Right Grant
- 2013-05-02 RU RU2018130123A patent/RU2018130123A/en unknown
- 2013-05-02 BR BR112014027374-0A patent/BR112014027374B1/en active IP Right Grant
- 2013-05-02 NZ NZ702108A patent/NZ702108A/en unknown
- 2013-05-02 KR KR1020147032747A patent/KR20150009556A/en not_active IP Right Cessation
- 2013-05-02 ES ES13784884T patent/ES2858248T3/en active Active
- 2013-05-02 AU AU2013256159A patent/AU2013256159B2/en active Active
- 2013-05-02 CN CN201380030757.9A patent/CN104395462B/en active Active
- 2013-05-02 SG SG10201609210SA patent/SG10201609210SA/en unknown
- 2013-05-02 WO PCT/US2013/039316 patent/WO2013166321A1/en active Application Filing
- 2013-05-02 JP JP2015510462A patent/JP6251734B2/en active Active
- 2013-05-02 CA CA2872471A patent/CA2872471C/en active Active
- 2013-05-02 US US14/398,206 patent/US9751928B2/en active Active
- 2013-05-02 SG SG11201407175RA patent/SG11201407175RA/en unknown
- 2013-05-02 EP EP13784884.2A patent/EP2844743B1/en active Active
-
2014
- 2014-10-27 IL IL23535514A patent/IL235355B/en active IP Right Grant
- 2014-10-28 PH PH12014502418A patent/PH12014502418B1/en unknown
- 2014-11-19 IN IN9787DEN2014 patent/IN2014DN09787A/en unknown
-
2015
- 2015-09-02 HK HK15108593.7A patent/HK1208050A1/en unknown
-
2017
- 2017-08-31 US US15/692,846 patent/US10875904B2/en active Active
- 2017-11-27 JP JP2017226759A patent/JP6666323B2/en active Active
-
2018
- 2018-11-09 AU AU2018260963A patent/AU2018260963B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6040177A (en) * | 1994-08-31 | 2000-03-21 | Fred Hutchinson Cancer Research Center | High efficiency transduction of T lymphocytes using rapid expansion methods ("REM") |
US20090217403A1 (en) * | 2005-06-06 | 2009-08-27 | Hergen Spits | Means and methods for generating a t cell against an antigen of interest |
Non-Patent Citations (7)
Title |
---|
ALLI, RAJSHEKHAR ET AL.: "Rational design of T cell receptors with enhanced sensitivity for antigen", PLOS ONE, vol. 6, no. 3, 23 March 2011 (2011-03-23), pages E18027, XP002696784 * |
DOSSETT, MICHELLE L. ET AL.: "Adoptive immunotherapy of disseminated leukemia with TCR-transduced, CD8+ T cells expressing a known endogenous TCR", MOLECULAR THERAPY : THE JOURNAL OF THE AMERICAN SOCIETY OF GENE THERAPY, vol. 17, no. 4, April 2009 (2009-04-01), pages 742 - 749, XP055171340 * |
KIEBACK ELISA ET AL.: "Enhanced T cell receptor gene therapy for cancer", EXPERT OPINION ON BIOLOGICAL THERAPY, vol. 10, no. 5, May 2010 (2010-05-01), pages 749 - 762, XP008175108 * |
LI ET AL., NATURE BIOTECH, vol. 23, no. 3, 2005, pages 349 - 354 |
SCHMITT, THOMAS M. ET AL.: "T cell receptor gene therapy for cancer", HUMAN GENE THERAPY, vol. 20, no. 11, November 2009 (2009-11-01), pages 1240 - 1248, XP055171339 * |
See also references of EP2844743A4 |
WEBER ET AL., PNAS, vol. 102, no. 52, 2005, pages 19033 - 19038 |
Cited By (333)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10760055B2 (en) | 2005-10-18 | 2020-09-01 | National Jewish Health | Conditionally immortalized long-term stem cells and methods of making and using such cells |
US11667695B2 (en) | 2008-05-16 | 2023-06-06 | Taiga Biotechnologies, Inc. | Antibodies and processes for preparing the same |
US11369678B2 (en) | 2008-08-28 | 2022-06-28 | Taiga Biotechnologies, Inc. | Compositions and methods for modulating immune cells |
US10953048B2 (en) | 2012-07-20 | 2021-03-23 | Taiga Biotechnologies, Inc. | Enhanced reconstitution and autoreconstitution of the hematopoietic compartment |
US10786534B2 (en) | 2013-03-11 | 2020-09-29 | Taiga Biotechnologies, Inc. | Production and use of red blood cells |
US10344075B2 (en) | 2013-11-22 | 2019-07-09 | The Board Of Trustees Of The University Of Illinois | Engineered high-affinity human t cell receptors |
US10801070B2 (en) | 2013-11-25 | 2020-10-13 | The Broad Institute, Inc. | Compositions and methods for diagnosing, evaluating and treating cancer |
US11834718B2 (en) | 2013-11-25 | 2023-12-05 | The Broad Institute, Inc. | Compositions and methods for diagnosing, evaluating and treating cancer by means of the DNA methylation status |
US11725237B2 (en) | 2013-12-05 | 2023-08-15 | The Broad Institute Inc. | Polymorphic gene typing and somatic change detection using sequencing data |
US11452768B2 (en) | 2013-12-20 | 2022-09-27 | The Broad Institute, Inc. | Combination therapy with neoantigen vaccine |
US10738278B2 (en) | 2014-07-15 | 2020-08-11 | Juno Therapeutics, Inc. | Engineered cells for adoptive cell therapy |
WO2016022400A1 (en) * | 2014-08-04 | 2016-02-11 | Fred Hutchinson Cancer Research Center | T cell immunotherapy specific for wt-1 |
US10538572B2 (en) | 2014-08-04 | 2020-01-21 | Fred Hutchinson Cancer Research Center | T cell immunotherapy specific for WT-1 |
CN107074970A (en) * | 2014-08-04 | 2017-08-18 | 弗雷德哈钦森癌症研究中心 | Specificity is directed to WT 1 T cell immunotherapy |
JP2017523784A (en) * | 2014-08-04 | 2017-08-24 | フレッド ハッチンソン キャンサー リサーチ センター | T cell immunotherapy specific for WT-1 |
US10533055B2 (en) | 2014-08-28 | 2020-01-14 | Juno Therapeutics, Inc. | Antibodies and chimeric antigen receptors specific for CD19 |
WO2016033570A1 (en) | 2014-08-28 | 2016-03-03 | Juno Therapeutics, Inc. | Antibodies and chimeric antigen receptors specific for cd19 |
EP3805267A1 (en) | 2014-08-28 | 2021-04-14 | Juno Therapeutics, Inc. | Antibodies and chimeric antigen receptors specific for cd19 |
US11827714B2 (en) | 2014-08-28 | 2023-11-28 | Juno Therapeutics, Inc. | Antibodies and chimeric antigen receptors specific for CD19 |
US10507219B2 (en) | 2014-10-20 | 2019-12-17 | Juno Therapeutics, Inc. | Methods and compositions for dosing in adoptive cell therapy |
WO2016064929A1 (en) | 2014-10-20 | 2016-04-28 | Juno Therapeutics, Inc. | Methods and compositions for dosing in adoptive cell therapy |
US11633426B2 (en) | 2014-10-20 | 2023-04-25 | Juno Therapeutics, Inc. | Methods and compositions for dosing in adoptive cell therapy |
EP3932950A1 (en) | 2014-10-20 | 2022-01-05 | Juno Therapeutics, Inc. | Methods and compositions for dosing in adoptive cell therapy |
EP4407036A2 (en) | 2014-11-05 | 2024-07-31 | Juno Therapeutics, Inc. | Methods for transduction and cell processing |
WO2016073602A2 (en) | 2014-11-05 | 2016-05-12 | Juno Therapeutics, Inc. | Methods for transduction and cell processing |
US10428351B2 (en) | 2014-11-05 | 2019-10-01 | Juno Therapeutics, Inc. | Methods for transduction and cell processing |
EP3757206A1 (en) | 2014-11-05 | 2020-12-30 | Juno Therapeutics, Inc. | Methods for transduction and cell processing |
US11802295B2 (en) | 2014-11-05 | 2023-10-31 | Juno Therapeutics, Inc. | Methods for transduction and cell processing |
US11266739B2 (en) | 2014-12-03 | 2022-03-08 | Juno Therapeutics, Inc. | Methods and compositions for adoptive cell therapy |
EP3766895A1 (en) | 2014-12-03 | 2021-01-20 | Juno Therapeutics, Inc. | Methods and compositions for adoptive cell therapy |
WO2016090190A1 (en) | 2014-12-03 | 2016-06-09 | Juno Therapeutics, Inc. | Methods and compositions for adoptive cell therapy |
WO2016100977A1 (en) | 2014-12-19 | 2016-06-23 | The Broad Institute Inc. | Methods for profiling the t-cel- receptor repertoire |
US10993997B2 (en) | 2014-12-19 | 2021-05-04 | The Broad Institute, Inc. | Methods for profiling the t cell repertoire |
US11939637B2 (en) | 2014-12-19 | 2024-03-26 | Massachusetts Institute Of Technology | Molecular biomarkers for cancer immunotherapy |
EP3757211A1 (en) | 2014-12-19 | 2020-12-30 | The Broad Institute, Inc. | Methods for profiling the t-cell-receptor repertoire |
US10975442B2 (en) | 2014-12-19 | 2021-04-13 | Massachusetts Institute Of Technology | Molecular biomarkers for cancer immunotherapy |
US10363269B2 (en) | 2015-01-12 | 2019-07-30 | Juno Therapeutics, Inc. | Modified hepatitis post-transcriptional regulatory elements |
WO2016115177A1 (en) | 2015-01-12 | 2016-07-21 | Juno Therapeutics, Inc. | Modified hepatitis post-transcriptional regulatory elements |
EP3760644A1 (en) | 2015-01-16 | 2021-01-06 | Juno Therapeutics, Inc. | Antibodies and chimeric antigen receptors specific for ror1 |
US10889652B2 (en) | 2015-01-16 | 2021-01-12 | Juno Therapeutics, Inc. | Antibodies and chimeric antigen receptors specific for ROR1 |
US11919970B2 (en) | 2015-01-16 | 2024-03-05 | Juno Therapeutics, Inc. | Antibodies and chimeric antigen receptors specific for ROR1 |
WO2016115559A1 (en) | 2015-01-16 | 2016-07-21 | Juno Therapeutics, Inc. | Antibodies and chimeric antigen receptors specific for ror1 |
WO2016166568A1 (en) | 2015-04-16 | 2016-10-20 | Juno Therapeutics Gmbh | Methods, kits and apparatus for expanding a population of cells |
US10835585B2 (en) | 2015-05-20 | 2020-11-17 | The Broad Institute, Inc. | Shared neoantigens |
WO2016196388A1 (en) | 2015-05-29 | 2016-12-08 | Juno Therapeutics, Inc. | Composition and methods for regulating inhibitory interactions in genetically engineered cells |
US11180751B2 (en) | 2015-06-18 | 2021-11-23 | The Broad Institute, Inc. | CRISPR enzymes and systems |
US10786533B2 (en) | 2015-07-15 | 2020-09-29 | Juno Therapeutics, Inc. | Engineered cells for adoptive cell therapy |
WO2017053906A1 (en) | 2015-09-24 | 2017-03-30 | Abvitro Llc | Hiv antibody compositions and methods of use |
EP3662930A1 (en) | 2015-09-24 | 2020-06-10 | AbVitro LLC | Hiv antibody compositions and methods of use |
WO2017053902A1 (en) | 2015-09-25 | 2017-03-30 | Abvitro Llc | High throughput process for t cell receptor target identification of natively-paired t cell receptor sequences |
WO2017069958A2 (en) | 2015-10-09 | 2017-04-27 | The Brigham And Women's Hospital, Inc. | Modulation of novel immune checkpoint targets |
US12129477B2 (en) | 2015-10-22 | 2024-10-29 | Juno Therapeutics Gmbh | Methods, kits, agents and apparatuses for transduction |
US11248238B2 (en) | 2015-10-22 | 2022-02-15 | Juno Therapeutics Gmbh | Methods, kits, agents and apparatuses for transduction |
US11913024B2 (en) | 2015-10-22 | 2024-02-27 | Juno Therapeutics Gmbh | Methods for culturing cells and kits and apparatus for same |
WO2017068419A2 (en) | 2015-10-22 | 2017-04-27 | Juno Therapeutics Gmbh | Methods, kits, agents and apparatuses for transduction |
WO2017068421A1 (en) | 2015-10-22 | 2017-04-27 | Juno Therapeutics Gmbh | Methods for culturing cells and kits and apparatus for same |
US11466253B2 (en) | 2015-10-22 | 2022-10-11 | Juno Therapeutics Gmbh | Methods for culturing cells and kits and apparatus for same |
WO2017068425A1 (en) | 2015-10-22 | 2017-04-27 | Juno Therapeutics Gmbh | Methods for culturing cells and kits and apparatus for same |
US11186825B2 (en) | 2015-10-28 | 2021-11-30 | The Broad Institute, Inc. | Compositions and methods for evaluating and modulating immune responses by detecting and targeting POU2AF1 |
WO2017075478A2 (en) | 2015-10-28 | 2017-05-04 | The Broad Institute Inc. | Compositions and methods for evaluating and modulating immune responses by use of immune cell gene signatures |
US11180730B2 (en) | 2015-10-28 | 2021-11-23 | The Broad Institute, Inc. | Compositions and methods for evaluating and modulating immune responses by detecting and targeting GATA3 |
WO2017075465A1 (en) | 2015-10-28 | 2017-05-04 | The Broad Institute Inc. | Compositions and methods for evaluating and modulating immune responses by detecting and targeting gata3 |
WO2017075451A1 (en) | 2015-10-28 | 2017-05-04 | The Broad Institute Inc. | Compositions and methods for evaluating and modulating immune responses by detecting and targeting pou2af1 |
WO2017079703A1 (en) | 2015-11-05 | 2017-05-11 | Juno Therapeutics, Inc. | Vectors and genetically engineered immune cells expressing metabolic pathway modulators and uses in adoptive cell therapy |
WO2017079705A1 (en) | 2015-11-05 | 2017-05-11 | Juno Therapeutics, Inc. | Chimeric receptors containing traf-inducing domains and related compositions and methods |
US11020429B2 (en) | 2015-11-05 | 2021-06-01 | Juno Therapeutics, Inc. | Vectors and genetically engineered immune cells expressing metabolic pathway modulators and uses in adoptive cell therapy |
US11001622B2 (en) | 2015-11-19 | 2021-05-11 | The Brigham And Women's Hospital, Inc. | Method of treating autoimmune disease with lymphocyte antigen CD5-like (CD5L) protein |
US11884717B2 (en) | 2015-11-19 | 2024-01-30 | The Brigham And Women's Hospital, Inc. | Method of treating autoimmune disease with lymphocyte antigen CD5-like (CD5L) protein |
WO2017087708A1 (en) | 2015-11-19 | 2017-05-26 | The Brigham And Women's Hospital, Inc. | Lymphocyte antigen cd5-like (cd5l)-interleukin 12b (p40) heterodimers in immunity |
EP4212166A1 (en) | 2015-12-03 | 2023-07-19 | Juno Therapeutics, Inc. | Compositions and methods for reducing immune responses against cell therapies |
WO2017096329A1 (en) | 2015-12-03 | 2017-06-08 | Juno Therapeutics, Inc. | Modified chimeric receptors and related compositions and methods |
WO2017096327A2 (en) | 2015-12-03 | 2017-06-08 | Juno Therapeutics, Inc. | Compositions and methods for reducing immune responses against cell therapies |
EP4212547A1 (en) | 2015-12-03 | 2023-07-19 | Juno Therapeutics, Inc. | Modified chimeric receptors and related compositions and methods |
EP4012415A2 (en) | 2015-12-04 | 2022-06-15 | Juno Therapeutics, Inc. | Methods and compositions related to toxicity associated with cell therapy |
US11815514B2 (en) | 2015-12-04 | 2023-11-14 | Juno Therapeutics, Inc. | Methods and compositions related to toxicity associated with cell therapy |
WO2017112944A1 (en) * | 2015-12-23 | 2017-06-29 | Fred Hutchinson Cancer Research Center | High affinity t cell receptors and uses thereof |
US11026969B2 (en) | 2015-12-23 | 2021-06-08 | Fred Hutchinson Cancer Research Center | High affinity T cell receptors and uses thereof |
WO2017161212A1 (en) | 2016-03-16 | 2017-09-21 | Juno Therapeutics, Inc. | Methods for adaptive design of a treatment regimen and related treatments |
WO2017161208A1 (en) | 2016-03-16 | 2017-09-21 | Juno Therapeutics, Inc. | Methods for determining dosing of a therapeutic agent and related treatments |
US12098208B2 (en) | 2016-03-22 | 2024-09-24 | Seattle Children's Hospital | Early intervention methods to prevent or ameliorate toxicity |
WO2017165571A1 (en) | 2016-03-22 | 2017-09-28 | Seattle Children's Hospital (dba Seattle Children's Research Institute) | Early intervention methods to prevent or ameliorate toxicity |
US11760804B2 (en) | 2016-03-22 | 2023-09-19 | Seattle Children's Hospital | Early intervention methods to prevent or ameliorate toxicity |
EP4015536A1 (en) | 2016-03-22 | 2022-06-22 | Seattle Children's Hospital (DBA Seattle Children's Research Institute) | Early intervention methods to prevent or ameliorate toxicity |
US11518814B2 (en) | 2016-03-22 | 2022-12-06 | Seattle Children's Hospital | Early intervention methods to prevent or ameliorate toxicity |
WO2017184590A1 (en) | 2016-04-18 | 2017-10-26 | The Broad Institute Inc. | Improved hla epitope prediction |
WO2017193104A1 (en) | 2016-05-06 | 2017-11-09 | Fred Hutchinson Cancer Research Center | T-cell immunotherapy specific for mart-1 |
WO2017193107A2 (en) | 2016-05-06 | 2017-11-09 | Juno Therapeutics, Inc. | Genetically engineered cells and methods of making the same |
EP3910059A1 (en) | 2016-05-27 | 2021-11-17 | Aadigen, Llc | Peptides and nanoparticles for intracellular delivery of genome-editing molecules |
WO2017205846A1 (en) | 2016-05-27 | 2017-11-30 | Aadigen, Llc | Peptides and nanoparticles for intracellular delivery of genome-editing molecules |
EP4011381A1 (en) | 2016-06-03 | 2022-06-15 | Memorial Sloan-Kettering Cancer Center | Adoptive cell therapies as early treatment options |
WO2017214207A2 (en) | 2016-06-06 | 2017-12-14 | Juno Therapeutics, Inc. | Methods for the treatment of b cell malignancies using adoptive cell therapy |
WO2018005559A1 (en) | 2016-06-27 | 2018-01-04 | Juno Therapeutics, Inc. | Method of identifying peptide epitopes, molecules that bind such epitopes and related uses |
WO2018005556A1 (en) | 2016-06-27 | 2018-01-04 | Juno Therapeutics, Inc. | Mhc-e restricted epitopes, binding molecules and related methods and uses |
EP3992632A1 (en) | 2016-06-27 | 2022-05-04 | Juno Therapeutics, Inc. | Mhc-e restricted epitopes, binding molecules and related methods and uses |
WO2018023093A1 (en) | 2016-07-29 | 2018-02-01 | Juno Therapeutics, Inc. | Immunomodulatory polypeptides and related compositions and methods |
WO2018023094A1 (en) | 2016-07-29 | 2018-02-01 | Juno Therapeutics, Inc. | Methods for assessing the presence or absence of replication competent virus |
US11421287B2 (en) | 2016-07-29 | 2022-08-23 | Juno Therapeutics, Inc. | Methods for assessing the presence or absence of replication competent virus |
WO2018023100A2 (en) | 2016-07-29 | 2018-02-01 | Juno Therapeutics, Inc. | Anti-idiotypic antibodies and related methods |
WO2018035364A1 (en) | 2016-08-17 | 2018-02-22 | The Broad Institute Inc. | Product and methods useful for modulating and evaluating immune responses |
US11630103B2 (en) | 2016-08-17 | 2023-04-18 | The Broad Institute, Inc. | Product and methods useful for modulating and evaluating immune responses |
WO2018049025A2 (en) | 2016-09-07 | 2018-03-15 | The Broad Institute Inc. | Compositions and methods for evaluating and modulating immune responses |
WO2018049420A1 (en) | 2016-09-12 | 2018-03-15 | Juno Therapeutics, Inc. | Perfusion bioreactor bag assemblies |
EP4353319A2 (en) | 2016-09-28 | 2024-04-17 | Atossa Therapeutics, Inc. | Methods of adoptive cell therapy |
WO2018063985A1 (en) | 2016-09-28 | 2018-04-05 | Atossa Genetics Inc. | Methods of adoptive cell therapy |
US11072660B2 (en) | 2016-10-03 | 2021-07-27 | Juno Therapeutics, Inc. | HPV-specific binding molecules |
WO2018067618A1 (en) | 2016-10-03 | 2018-04-12 | Juno Therapeutics, Inc. | Hpv-specific binding molecules |
WO2018067991A1 (en) | 2016-10-07 | 2018-04-12 | The Brigham And Women's Hospital, Inc. | Modulation of novel immune checkpoint targets |
EP4190335A1 (en) | 2016-10-13 | 2023-06-07 | Juno Therapeutics, Inc. | Immunotherapy methods and compositions involving tryptophan metabolic pathway modulators |
WO2018071873A2 (en) | 2016-10-13 | 2018-04-19 | Juno Therapeutics, Inc. | Immunotherapy methods and compositions involving tryptophan metabolic pathway modulators |
US11896615B2 (en) | 2016-10-13 | 2024-02-13 | Juno Therapeutics, Inc. | Immunotherapy methods and compositions involving tryptophan metabolic pathway modulators |
WO2018093591A1 (en) | 2016-11-03 | 2018-05-24 | Juno Therapeutics, Inc. | Combination therapy of a cell based therapy and a microglia inhibitor |
WO2018085731A2 (en) | 2016-11-03 | 2018-05-11 | Juno Therapeutics, Inc. | Combination therapy of a t cell therapy and a btk inhibitor |
WO2018090057A1 (en) * | 2016-11-14 | 2018-05-17 | Fred Hutchinson Cancer Research Center | High affinity merkel cell polyomavirus t antigen-specific tcrs and uses thereof |
US11534461B2 (en) | 2016-11-14 | 2022-12-27 | Fred Hutchinson Cancer Center | High affinity merkel cell polyomavirus T antigen-specific TCRS and uses thereof |
US12139526B2 (en) | 2016-12-02 | 2024-11-12 | Juno Therapeutics, Inc. | Modified chimeric receptors and related compositions and methods |
US11116796B2 (en) | 2016-12-02 | 2021-09-14 | Taiga Biotechnologies, Inc. | Nanoparticle formulations |
US11590167B2 (en) | 2016-12-03 | 2023-02-28 | Juno Therapeutic, Inc. | Methods and compositions for use of therapeutic T cells in combination with kinase inhibitors |
EP4279136A2 (en) | 2016-12-03 | 2023-11-22 | Juno Therapeutics, Inc. | Methods for determining car-t cells dosing |
WO2018102787A1 (en) | 2016-12-03 | 2018-06-07 | Juno Therapeutics, Inc. | Methods for determining car-t cells dosing |
WO2018102785A2 (en) | 2016-12-03 | 2018-06-07 | Juno Therapeutics, Inc. | Methods and compositions for use of therapeutic t cells in combination with kinase inhibitors |
WO2018102786A1 (en) | 2016-12-03 | 2018-06-07 | Juno Therapeutics, Inc. | Methods for modulation of car-t cells |
WO2018106732A1 (en) | 2016-12-05 | 2018-06-14 | Juno Therapeutics, Inc. | Production of engineered cells for adoptive cell therapy |
US11821027B2 (en) | 2017-01-10 | 2023-11-21 | Juno Therapeutics, Inc. | Epigenetic analysis of cell therapy and related methods |
WO2018132518A1 (en) | 2017-01-10 | 2018-07-19 | Juno Therapeutics, Inc. | Epigenetic analysis of cell therapy and related methods |
US11517627B2 (en) | 2017-01-20 | 2022-12-06 | Juno Therapeutics Gmbh | Cell surface conjugates and related cell compositions and methods |
WO2018134691A2 (en) | 2017-01-20 | 2018-07-26 | Juno Therapeutics Gmbh | Cell surface conjugates and related cell compositions and methods |
US11549149B2 (en) | 2017-01-24 | 2023-01-10 | The Broad Institute, Inc. | Compositions and methods for detecting a mutant variant of a polynucleotide |
EP4287191A2 (en) | 2017-02-12 | 2023-12-06 | BioNTech US Inc. | Hla-based methods and compositions and uses thereof |
WO2018148671A1 (en) | 2017-02-12 | 2018-08-16 | Neon Therapeutics, Inc. | Hla-based methods and compositions and uses thereof |
US11650211B2 (en) | 2017-02-12 | 2023-05-16 | Biontech Us Inc. | HLA-based methods and compositions and uses thereof |
US11845803B2 (en) | 2017-02-17 | 2023-12-19 | Fred Hutchinson Cancer Center | Combination therapies for treatment of BCMA-related cancers and autoimmune disorders |
WO2018157171A2 (en) | 2017-02-27 | 2018-08-30 | Juno Therapeutics, Inc. | Compositions, articles of manufacture and methods related to dosing in cell therapy |
EP4353818A2 (en) | 2017-02-27 | 2024-04-17 | Juno Therapeutics, Inc. | Compositions, articles of manufacture and methods related to dosing in cell therapy |
US11759480B2 (en) | 2017-02-28 | 2023-09-19 | Endocyte, Inc. | Compositions and methods for CAR T cell therapy |
US11850262B2 (en) | 2017-02-28 | 2023-12-26 | Purdue Research Foundation | Compositions and methods for CAR T cell therapy |
WO2018170188A2 (en) | 2017-03-14 | 2018-09-20 | Juno Therapeutics, Inc. | Methods for cryogenic storage |
US11963966B2 (en) | 2017-03-31 | 2024-04-23 | Dana-Farber Cancer Institute, Inc. | Compositions and methods for treating ovarian tumors |
US11913075B2 (en) | 2017-04-01 | 2024-02-27 | The Broad Institute, Inc. | Methods and compositions for detecting and modulating an immunotherapy resistance gene signature in cancer |
WO2018187791A1 (en) | 2017-04-07 | 2018-10-11 | Juno Therapeutics, Inc | Engineered cells expressing prostate-specific membrane antigen (psma) or a modified form thereof and related methods |
WO2018191553A1 (en) | 2017-04-12 | 2018-10-18 | Massachusetts Eye And Ear Infirmary | Tumor signature for metastasis, compositions of matter methods of use thereof |
US11796534B2 (en) | 2017-04-14 | 2023-10-24 | Juno Therapeutics, Inc. | Methods for assessing cell surface glycosylation |
WO2018191723A1 (en) | 2017-04-14 | 2018-10-18 | Juno Therapeutics, Inc. | Methods for assessing cell surface glycosylation |
WO2018195175A1 (en) | 2017-04-18 | 2018-10-25 | FUJIFILM Cellular Dynamics, Inc. | Antigen-specific immune effector cells |
WO2018195019A1 (en) | 2017-04-18 | 2018-10-25 | The Broad Institute Inc. | Compositions for detecting secretion and methods of use |
EP4083063A2 (en) | 2017-04-18 | 2022-11-02 | FUJIFILM Cellular Dynamics, Inc. | Antigen-specific immune effector cells |
WO2018197949A1 (en) | 2017-04-27 | 2018-11-01 | Juno Therapeutics Gmbh | Oligomeric particle reagents and methods of use thereof |
US11866465B2 (en) | 2017-04-27 | 2024-01-09 | Juno Therapeutics Gmbh | Oligomeric particle reagents and methods of use thereof |
WO2018204427A1 (en) | 2017-05-01 | 2018-11-08 | Juno Therapeutics, Inc. | Combination of a cell therapy and an immunomodulatory compound |
EP4327878A2 (en) | 2017-05-01 | 2024-02-28 | Juno Therapeutics, Inc. | Combination of a cell therapy and an immunomodulatory compound |
US11564947B2 (en) | 2017-05-24 | 2023-01-31 | Effector Therapeutics Inc. | Methods and compositions for cellular immunotherapy |
US10780119B2 (en) | 2017-05-24 | 2020-09-22 | Effector Therapeutics Inc. | Methods and compositions for cellular immunotherapy |
WO2018218038A1 (en) | 2017-05-24 | 2018-11-29 | Effector Therapeutics, Inc. | Methods and compositions for cellular immunotherapy |
WO2018223098A1 (en) | 2017-06-02 | 2018-12-06 | Juno Therapeutics, Inc. | Articles of manufacture and methods related to toxicity associated with cell therapy |
US11740231B2 (en) | 2017-06-02 | 2023-08-29 | Juno Therapeutics, Inc. | Articles of manufacture and methods related to toxicity associated with cell therapy |
US11413310B2 (en) | 2017-06-02 | 2022-08-16 | Juno Therapeutics, Inc. | Articles of manufacture and methods for treatment using adoptive cell therapy |
WO2018223101A1 (en) | 2017-06-02 | 2018-12-06 | Juno Therapeutics, Inc. | Articles of manufacture and methods for treatment using adoptive cell therapy |
US11944647B2 (en) | 2017-06-02 | 2024-04-02 | Juno Therapeutics, Inc. | Articles of manufacture and methods for treatment using adoptive cell therapy |
US11897953B2 (en) | 2017-06-14 | 2024-02-13 | The Broad Institute, Inc. | Compositions and methods targeting complement component 3 for inhibiting tumor growth |
WO2018234370A1 (en) | 2017-06-20 | 2018-12-27 | Institut Curie | Immune cells defective for suv39h1 |
EP3828264A1 (en) | 2017-06-20 | 2021-06-02 | Institut Curie | Immune cells defective for suv39h1 |
EP4302768A2 (en) | 2017-06-22 | 2024-01-10 | Board Of Regents, The University Of Texas System | Methods for producing regulatory immune cells and uses thereof |
WO2019006427A1 (en) | 2017-06-29 | 2019-01-03 | Juno Therapeutics, Inc. | Mouse model for assessing toxicities associated with immunotherapies |
US12049643B2 (en) | 2017-07-14 | 2024-07-30 | The Broad Institute, Inc. | Methods and compositions for modulating cytotoxic lymphocyte activity |
WO2019027850A1 (en) | 2017-07-29 | 2019-02-07 | Juno Therapeutics, Inc. | Reagents for expanding cells expressing recombinant receptors |
EP4026554A1 (en) | 2017-08-03 | 2022-07-13 | Taiga Biotechnologies, Inc. | Methods and compositions for the treatment of melanoma |
WO2019027465A1 (en) | 2017-08-03 | 2019-02-07 | Taiga Biotechnologies, Inc. | Methods and compositions for the treatment of melanoma |
US10149898B2 (en) | 2017-08-03 | 2018-12-11 | Taiga Biotechnologies, Inc. | Methods and compositions for the treatment of melanoma |
US10864259B2 (en) | 2017-08-03 | 2020-12-15 | Taiga Biotechnologies, Inc. | Methods and compositions for the treatment of melanoma |
US11851678B2 (en) | 2017-08-09 | 2023-12-26 | Juno Therapeutics, Inc. | Methods for producing genetically engineered cell compositions and related compositions |
WO2019032929A1 (en) | 2017-08-09 | 2019-02-14 | Juno Therapeutics, Inc. | Methods and compositions for preparing genetically engineered cells |
WO2019032927A1 (en) | 2017-08-09 | 2019-02-14 | Juno Therapeutics, Inc. | Methods for producing genetically engineered cell compositions and related compositions |
WO2019046832A1 (en) | 2017-09-01 | 2019-03-07 | Juno Therapeutics, Inc. | Gene expression and assessment of risk of developing toxicity following cell therapy |
WO2019051335A1 (en) | 2017-09-07 | 2019-03-14 | Juno Therapeutics, Inc. | Methods of identifying cellular attributes related to outcomes associated with cell therapy |
WO2019057102A1 (en) | 2017-09-20 | 2019-03-28 | Tsinghua University | A gRNA TARGETING HPK1 AND A METHOD FOR EDITING HPK1 GENE |
WO2019060746A1 (en) | 2017-09-21 | 2019-03-28 | The Broad Institute, Inc. | Systems, methods, and compositions for targeted nucleic acid editing |
US12043870B2 (en) | 2017-10-02 | 2024-07-23 | The Broad Institute, Inc. | Methods and compositions for detecting and modulating an immunotherapy resistance gene signature in cancer |
EP4215543A2 (en) | 2017-10-03 | 2023-07-26 | Juno Therapeutics, Inc. | Hpv-specific binding molecules |
US11952408B2 (en) | 2017-10-03 | 2024-04-09 | Juno Therapeutics, Inc. | HPV-specific binding molecules |
WO2019070541A1 (en) | 2017-10-03 | 2019-04-11 | Juno Therapeutics, Inc. | Hpv-specific binding molecules |
US11732257B2 (en) | 2017-10-23 | 2023-08-22 | Massachusetts Institute Of Technology | Single cell sequencing libraries of genomic transcript regions of interest in proximity to barcodes, and genotyping of said libraries |
WO2019089858A2 (en) | 2017-11-01 | 2019-05-09 | Juno Therapeutics, Inc. | Methods of assessing or monitoring a response to a cell therapy |
US11066475B2 (en) | 2017-11-01 | 2021-07-20 | Juno Therapeutics, Inc. | Chimeric antigen receptors specific for B-cell maturation antigen and encoding polynucleotides |
WO2019090004A1 (en) | 2017-11-01 | 2019-05-09 | Juno Therapeutics, Inc. | Process for producing a t cell composition |
US11564946B2 (en) | 2017-11-01 | 2023-01-31 | Juno Therapeutics, Inc. | Methods associated with tumor burden for assessing response to a cell therapy |
WO2019089848A1 (en) | 2017-11-01 | 2019-05-09 | Juno Therapeutics, Inc. | Methods associated with tumor burden for assessing response to a cell therapy |
WO2019089884A2 (en) | 2017-11-01 | 2019-05-09 | Editas Medicine, Inc. | Methods, compositions and components for crispr-cas9 editing of tgfbr2 in t cells for immunotherapy |
WO2019089982A1 (en) | 2017-11-01 | 2019-05-09 | Juno Therapeutics, Inc. | Method of assessing activity of recombinant antigen receptors |
US11623961B2 (en) | 2017-11-01 | 2023-04-11 | Juno Therapeutics, Inc. | Antibodies and chimeric antigen receptors specific for B-cell maturation antigen |
WO2019089969A2 (en) | 2017-11-01 | 2019-05-09 | Juno Therapeutics, Inc. | Antibodies and chimeric antigen receptors specific for b-cell maturation antigen |
WO2019089855A1 (en) | 2017-11-01 | 2019-05-09 | Juno Therapeutics, Inc. | Process for generating therapeutic compositions of engineered cells |
WO2019090003A1 (en) | 2017-11-01 | 2019-05-09 | Juno Therapeutics, Inc. | Chimeric antigen receptors specific for b-cell maturation antigen (bcma) |
US11851679B2 (en) | 2017-11-01 | 2023-12-26 | Juno Therapeutics, Inc. | Method of assessing activity of recombinant antigen receptors |
US12031975B2 (en) | 2017-11-01 | 2024-07-09 | Juno Therapeutics, Inc. | Methods of assessing or monitoring a response to a cell therapy |
WO2019090202A1 (en) | 2017-11-06 | 2019-05-09 | Editas Medicine, Inc. | Methods, compositions and components for crispr-cas9 editing of cblb in t cells for immunotherapy |
WO2019090364A1 (en) | 2017-11-06 | 2019-05-09 | Juno Therapeutics, Inc. | Combination of a cell therapy and a gamma secretase inhibitor |
WO2019094835A1 (en) | 2017-11-10 | 2019-05-16 | Juno Therapeutics, Inc. | Closed-system cryogenic vessels |
WO2019094983A1 (en) | 2017-11-13 | 2019-05-16 | The Broad Institute, Inc. | Methods and compositions for treating cancer by targeting the clec2d-klrb1 pathway |
WO2019109053A1 (en) | 2017-12-01 | 2019-06-06 | Juno Therapeutics, Inc. | Methods for dosing and for modulation of genetically engineered cells |
WO2019113559A2 (en) | 2017-12-08 | 2019-06-13 | Juno Therapeutics, Inc. | Phenotypic markers for cell therapy and related methods |
WO2019113557A1 (en) | 2017-12-08 | 2019-06-13 | Juno Therapeutics, Inc. | Process for producing a composition of engineered t cells |
WO2019113556A1 (en) | 2017-12-08 | 2019-06-13 | Juno Therapeutics, Inc. | Serum-free media formulation for culturing cells and methods of use thereof |
US12006356B2 (en) | 2017-12-15 | 2024-06-11 | Juno Therapeutics, Inc. | Anti-CCT5 binding molecules and chimeric antigen receptors comprising the same |
WO2019118937A1 (en) | 2017-12-15 | 2019-06-20 | Juno Therapeutics, Inc. | Anti-cct5 binding molecules and methods of use thereof |
US11793867B2 (en) | 2017-12-18 | 2023-10-24 | Biontech Us Inc. | Neoantigens and uses thereof |
US11994512B2 (en) | 2018-01-04 | 2024-05-28 | Massachusetts Institute Of Technology | Single-cell genomic methods to generate ex vivo cell systems that recapitulate in vivo biology with improved fidelity |
US11919937B2 (en) | 2018-01-09 | 2024-03-05 | Board Of Regents, The University Of Texas System | T cell receptors for immunotherapy |
US11779602B2 (en) | 2018-01-22 | 2023-10-10 | Endocyte, Inc. | Methods of use for CAR T cells |
US11535903B2 (en) | 2018-01-31 | 2022-12-27 | Juno Therapeutics, Inc. | Methods and reagents for assessing the presence or absence of replication competent virus |
WO2019152743A1 (en) | 2018-01-31 | 2019-08-08 | Celgene Corporation | Combination therapy using adoptive cell therapy and checkpoint inhibitor |
WO2019152747A1 (en) | 2018-01-31 | 2019-08-08 | Juno Therapeutics, Inc. | Methods and reagents for assessing the presence or absence of replication competent virus |
WO2019170845A1 (en) | 2018-03-09 | 2019-09-12 | Ospedale San Raffaele S.R.L. | Il-1 antagonist and toxicity induced by cell therapy |
WO2019195492A1 (en) | 2018-04-05 | 2019-10-10 | Juno Therapeutics, Inc. | Methods of producing cells expressing a recombinant receptor and related compositions |
US11471489B2 (en) | 2018-04-05 | 2022-10-18 | Juno Therapeutics, Inc. | T cell receptors and engineered cells expressing same |
WO2019195486A1 (en) | 2018-04-05 | 2019-10-10 | Juno Therapeutics, Inc. | T cell receptors and engineered cells expressing same |
US11957695B2 (en) | 2018-04-26 | 2024-04-16 | The Broad Institute, Inc. | Methods and compositions targeting glucocorticoid signaling for modulating immune responses |
WO2019213184A1 (en) | 2018-05-03 | 2019-11-07 | Juno Therapeutics, Inc. | Combination therapy of a chimeric antigen receptor (car) t cell therapy and a kinase inhibitor |
WO2019232542A2 (en) | 2018-06-01 | 2019-12-05 | Massachusetts Institute Of Technology | Methods and compositions for detecting and modulating microenvironment gene signatures from the csf of metastasis patients |
WO2019241315A1 (en) | 2018-06-12 | 2019-12-19 | Obsidian Therapeutics, Inc. | Pde5 derived regulatory constructs and methods of use in immunotherapy |
US12036240B2 (en) | 2018-06-14 | 2024-07-16 | The Broad Institute, Inc. | Compositions and methods targeting complement component 3 for inhibiting tumor growth |
WO2020033916A1 (en) | 2018-08-09 | 2020-02-13 | Juno Therapeutics, Inc. | Methods for assessing integrated nucleic acids |
WO2020033927A2 (en) | 2018-08-09 | 2020-02-13 | Juno Therapeutics, Inc. | Processes for generating engineered cells and compositions thereof |
WO2020041387A1 (en) | 2018-08-20 | 2020-02-27 | The Brigham And Women's Hospital, Inc. | Degradation domain modifications for spatio-temporal control of rna-guided nucleases |
WO2020041384A1 (en) | 2018-08-20 | 2020-02-27 | The Broad Institute, Inc. | 3-phenyl-2-cyano-azetidine derivatives, inhibitors of rna-guided nuclease activity |
WO2020068304A2 (en) | 2018-08-20 | 2020-04-02 | The Broad Institute, Inc. | Inhibitors of rna-guided nuclease target binding and uses thereof |
WO2020056047A1 (en) | 2018-09-11 | 2020-03-19 | Juno Therapeutics, Inc. | Methods for mass spectrometry analysis of engineered cell compositions |
WO2020072700A1 (en) | 2018-10-02 | 2020-04-09 | Dana-Farber Cancer Institute, Inc. | Hla single allele lines |
WO2020081730A2 (en) | 2018-10-16 | 2020-04-23 | Massachusetts Institute Of Technology | Methods and compositions for modulating microenvironment |
WO2020092455A2 (en) | 2018-10-29 | 2020-05-07 | The Broad Institute, Inc. | Car t cell transcriptional atlas |
WO2020089343A1 (en) | 2018-10-31 | 2020-05-07 | Juno Therapeutics Gmbh | Methods for selection and stimulation of cells and apparatus for same |
WO2020092848A2 (en) | 2018-11-01 | 2020-05-07 | Juno Therapeutics, Inc. | Methods for treatment using chimeric antigen receptors specific for b-cell maturation antigen |
WO2020097132A1 (en) | 2018-11-06 | 2020-05-14 | Juno Therapeutics, Inc. | Process for producing genetically engineered t cells |
WO2020097403A1 (en) | 2018-11-08 | 2020-05-14 | Juno Therapeutics, Inc. | Methods and combinations for treatment and t cell modulation |
WO2020102770A1 (en) | 2018-11-16 | 2020-05-22 | Juno Therapeutics, Inc. | Methods of dosing engineered t cells for the treatment of b cell malignancies |
WO2020106621A1 (en) | 2018-11-19 | 2020-05-28 | Board Of Regents, The University Of Texas System | A modular, polycistronic vector for car and tcr transduction |
WO2020113029A2 (en) | 2018-11-28 | 2020-06-04 | Board Of Regents, The University Of Texas System | Multiplex genome editing of immune cells to enhance functionality and resistance to suppressive environment |
WO2020112493A1 (en) | 2018-11-29 | 2020-06-04 | Board Of Regents, The University Of Texas System | Methods for ex vivo expansion of natural killer cells and use thereof |
WO2020113188A2 (en) | 2018-11-30 | 2020-06-04 | Juno Therapeutics, Inc. | Methods for dosing and treatment of b cell malignancies in adoptive cell therapy |
EP4393547A2 (en) | 2018-11-30 | 2024-07-03 | Juno Therapeutics, Inc. | Methods for dosing and treatment of b cell malignancies in adoptive cell therapy |
EP4427810A2 (en) | 2018-11-30 | 2024-09-11 | Juno Therapeutics, Inc. | Methods for treatment using adoptive cell therapy |
WO2020113194A2 (en) | 2018-11-30 | 2020-06-04 | Juno Therapeutics, Inc. | Methods for treatment using adoptive cell therapy |
WO2020131586A2 (en) | 2018-12-17 | 2020-06-25 | The Broad Institute, Inc. | Methods for identifying neoantigens |
US11183272B2 (en) | 2018-12-21 | 2021-11-23 | Biontech Us Inc. | Method and systems for prediction of HLA class II-specific epitopes and characterization of CD4+ T cells |
US11739156B2 (en) | 2019-01-06 | 2023-08-29 | The Broad Institute, Inc. Massachusetts Institute of Technology | Methods and compositions for overcoming immunosuppression |
WO2020160050A1 (en) | 2019-01-29 | 2020-08-06 | Juno Therapeutics, Inc. | Antibodies and chimeric antigen receptors specific for receptor tyrosine kinase like orphan receptor 1 (ror1) |
WO2020186101A1 (en) | 2019-03-12 | 2020-09-17 | The Broad Institute, Inc. | Detection means, compositions and methods for modulating synovial sarcoma cells |
WO2020191079A1 (en) | 2019-03-18 | 2020-09-24 | The Broad Institute, Inc. | Compositions and methods for modulating metabolic regulators of t cell pathogenicity |
WO2020223535A1 (en) | 2019-05-01 | 2020-11-05 | Juno Therapeutics, Inc. | Cells expressing a recombinant receptor from a modified tgfbr2 locus, related polynucleotides and methods |
WO2020223571A1 (en) | 2019-05-01 | 2020-11-05 | Juno Therapeutics, Inc. | Cells expressing a chimeric receptor from a modified cd247 locus, related polynucleotides and methods |
WO2020236967A1 (en) | 2019-05-20 | 2020-11-26 | The Broad Institute, Inc. | Random crispr-cas deletion mutant |
WO2020243371A1 (en) | 2019-05-28 | 2020-12-03 | Massachusetts Institute Of Technology | Methods and compositions for modulating immune responses |
WO2020247832A1 (en) | 2019-06-07 | 2020-12-10 | Juno Therapeutics, Inc. | Automated t cell culture |
WO2020252218A1 (en) | 2019-06-12 | 2020-12-17 | Juno Therapeutics, Inc. | Combination therapy of a cell-mediated cytotoxic therapy and an inhibitor of a prosurvival bcl2 family protein |
WO2021013950A1 (en) | 2019-07-23 | 2021-01-28 | Mnemo Therapeutics | Immune cells defective for suv39h1 |
WO2021030627A1 (en) | 2019-08-13 | 2021-02-18 | The General Hospital Corporation | Methods for predicting outcomes of checkpoint inhibition and treatment thereof |
WO2021035194A1 (en) | 2019-08-22 | 2021-02-25 | Juno Therapeutics, Inc. | Combination therapy of a t cell therapy and an enhancer of zeste homolog 2 (ezh2) inhibitor and related methods |
WO2021041922A1 (en) | 2019-08-30 | 2021-03-04 | The Broad Institute, Inc. | Crispr-associated mu transposase systems |
WO2021041994A2 (en) | 2019-08-30 | 2021-03-04 | Juno Therapeutics, Inc. | Machine learning methods for classifying cells |
WO2021043804A1 (en) | 2019-09-02 | 2021-03-11 | Institut Curie | Immunotherapy targeting tumor neoantigenic peptides |
WO2021050601A1 (en) | 2019-09-09 | 2021-03-18 | Scribe Therapeutics Inc. | Compositions and methods for use in immunotherapy |
US11981922B2 (en) | 2019-10-03 | 2024-05-14 | Dana-Farber Cancer Institute, Inc. | Methods and compositions for the modulation of cell interactions and signaling in the tumor microenvironment |
US11793787B2 (en) | 2019-10-07 | 2023-10-24 | The Broad Institute, Inc. | Methods and compositions for enhancing anti-tumor immunity by targeting steroidogenesis |
WO2021078910A1 (en) | 2019-10-22 | 2021-04-29 | Institut Curie | Immunotherapy targeting tumor neoantigenic peptides |
US11844800B2 (en) | 2019-10-30 | 2023-12-19 | Massachusetts Institute Of Technology | Methods and compositions for predicting and preventing relapse of acute lymphoblastic leukemia |
WO2021084050A1 (en) | 2019-10-30 | 2021-05-06 | Juno Therapeutics Gmbh | Cell selection and/or stimulation devices and methods of use |
WO2021092498A1 (en) | 2019-11-07 | 2021-05-14 | Juno Therapeutics, Inc. | Combination of a t cell therapy and (s)-3-[4-(4-morpholin-4 ylmethyl-benzyloxy)-l-oxo-l,3-dihydro-isoindol-2-yl]- piperidine-2,6-dione |
WO2021113780A1 (en) | 2019-12-06 | 2021-06-10 | Juno Therapeutics, Inc. | Anti-idiotypic antibodies to gprc5d-targeted binding domains and related compositions and methods |
WO2021113776A1 (en) | 2019-12-06 | 2021-06-10 | Juno Therapeutics, Inc. | Anti-idiotypic antibodies to bcma-targeted binding domains and related compositions and methods |
WO2021113770A1 (en) | 2019-12-06 | 2021-06-10 | Juno Therapeutics, Inc. | Methods related to toxicity and response associated with cell therapy for treating b cell malignancies |
US11865168B2 (en) | 2019-12-30 | 2024-01-09 | Massachusetts Institute Of Technology | Compositions and methods for treating bacterial infections |
WO2021151008A1 (en) | 2020-01-24 | 2021-07-29 | Juno Therapuetics, Inc. | Methods for dosing and treatment of follicular lymphoma and marginal zone lymphoma in adoptive cell therapy |
WO2021154887A1 (en) | 2020-01-28 | 2021-08-05 | Juno Therapeutics, Inc. | Methods for t cell transduction |
WO2021163389A1 (en) | 2020-02-12 | 2021-08-19 | Juno Therapeutics, Inc. | Bcma-directed chimeric antigen receptor t cell compositions and methods and uses thereof |
WO2021163391A1 (en) | 2020-02-12 | 2021-08-19 | Juno Therapeutics, Inc. | Cd19-directed chimeric antigen receptor t cell compositions and methods and uses thereof |
WO2021167908A1 (en) | 2020-02-17 | 2021-08-26 | Board Of Regents, The University Of Texas System | Methods for expansion of tumor infiltrating lymphocytes and use thereof |
WO2021207689A2 (en) | 2020-04-10 | 2021-10-14 | Juno Therapeutics, Inc. | Methods and uses related to cell therapy engineered with a chimeric antigen receptor targeting b-cell maturation antigen |
WO2021228999A1 (en) | 2020-05-12 | 2021-11-18 | Institut Curie | Neoantigenic epitopes associated with sf3b1 mutations |
WO2021231661A2 (en) | 2020-05-13 | 2021-11-18 | Juno Therapeutics, Inc. | Process for producing donor-batched cells expressing a recombinant receptor |
WO2021231657A1 (en) | 2020-05-13 | 2021-11-18 | Juno Therapeutics, Inc. | Methods of identifying features associated with clinical response and uses thereof |
WO2021237068A2 (en) | 2020-05-21 | 2021-11-25 | Board Of Regents, The University Of Texas System | T cell receptors with vgll1 specificity and uses thereof |
WO2021260186A1 (en) | 2020-06-26 | 2021-12-30 | Juno Therapeutics Gmbh | Engineered t cells conditionally expressing a recombinant receptor, related polynucleotides and methods |
WO2022023576A1 (en) | 2020-07-30 | 2022-02-03 | Institut Curie | Immune cells defective for socs1 |
WO2022029660A1 (en) | 2020-08-05 | 2022-02-10 | Juno Therapeutics, Inc. | Anti-idiotypic antibodies to ror1-targeted binding domains and related compositions and methods |
US12024559B2 (en) | 2020-10-23 | 2024-07-02 | Asher Biotherapeutics, Inc. | Fusions with CD8 antigen binding molecules for modulating immune cell function |
WO2022104109A1 (en) | 2020-11-13 | 2022-05-19 | Catamaran Bio, Inc. | Genetically modified natural killer cells and methods of use thereof |
WO2022133030A1 (en) | 2020-12-16 | 2022-06-23 | Juno Therapeutics, Inc. | Combination therapy of a cell therapy and a bcl2 inhibitor |
WO2022150731A1 (en) | 2021-01-11 | 2022-07-14 | Sana Biotechnology, Inc. | Use of cd8-targeted viral vectors |
WO2022187280A1 (en) | 2021-03-01 | 2022-09-09 | Dana-Farber Cancer Institute, Inc. | Personalized redirection and reprogramming of t cells for precise targeting of tumors |
WO2022187406A1 (en) | 2021-03-03 | 2022-09-09 | Juno Therapeutics, Inc. | Combination of a t cell therapy and a dgk inhibitor |
WO2022189639A1 (en) | 2021-03-11 | 2022-09-15 | Mnemo Therapeutics | Tumor neoantigenic peptides and uses thereof |
WO2022189620A1 (en) | 2021-03-11 | 2022-09-15 | Institut Curie | Transmembrane neoantigenic peptides |
WO2022189626A2 (en) | 2021-03-11 | 2022-09-15 | Mnemo Therapeutics | Tumor neoantigenic peptides |
WO2022204071A1 (en) | 2021-03-22 | 2022-09-29 | Juno Therapeutics, Inc. | Method to assess potency of viral vector particles |
WO2022204070A1 (en) | 2021-03-22 | 2022-09-29 | Juno Therapeutics, Inc. | Methods of determining potency of a therapeutic cell composition |
WO2022212400A1 (en) | 2021-03-29 | 2022-10-06 | Juno Therapeutics, Inc. | Methods for dosing and treatment with a combination of a checkpoint inhibitor therapy and a car t cell therapy |
WO2022212384A1 (en) | 2021-03-29 | 2022-10-06 | Juno Therapeutics, Inc. | Combination of a car t cell therapy and an immunomodulatory compound for treatment of lymphoma |
WO2022234009A2 (en) | 2021-05-06 | 2022-11-10 | Juno Therapeutics Gmbh | Methods for stimulating and transducing t cells |
WO2023014922A1 (en) | 2021-08-04 | 2023-02-09 | The Regents Of The University Of Colorado, A Body Corporate | Lat activating chimeric antigen receptor t cells and methods of use thereof |
WO2023015217A1 (en) | 2021-08-04 | 2023-02-09 | Sana Biotechnology, Inc. | Use of cd4-targeted viral vectors |
WO2023105000A1 (en) | 2021-12-09 | 2023-06-15 | Zygosity Limited | Vector |
WO2023115039A2 (en) | 2021-12-17 | 2023-06-22 | Sana Biotechnology, Inc. | Modified paramyxoviridae fusion glycoproteins |
WO2023115041A1 (en) | 2021-12-17 | 2023-06-22 | Sana Biotechnology, Inc. | Modified paramyxoviridae attachment glycoproteins |
WO2023126458A1 (en) | 2021-12-28 | 2023-07-06 | Mnemo Therapeutics | Immune cells with inactivated suv39h1 and modified tcr |
WO2023139269A1 (en) | 2022-01-21 | 2023-07-27 | Mnemo Therapeutics | Modulation of suv39h1 expression by rnas |
WO2023147515A1 (en) | 2022-01-28 | 2023-08-03 | Juno Therapeutics, Inc. | Methods of manufacturing cellular compositions |
WO2023150518A1 (en) | 2022-02-01 | 2023-08-10 | Sana Biotechnology, Inc. | Cd3-targeted lentiviral vectors and uses thereof |
WO2023178348A1 (en) | 2022-03-18 | 2023-09-21 | The Regents Of The University Of Colorado, A Body Corporate | Genetically engineered t-cell co-receptors and methods of use thereof |
WO2023180552A1 (en) | 2022-03-24 | 2023-09-28 | Institut Curie | Immunotherapy targeting tumor transposable element derived neoantigenic peptides in glioblastoma |
WO2023193015A1 (en) | 2022-04-01 | 2023-10-05 | Sana Biotechnology, Inc. | Cytokine receptor agonist and viral vector combination therapies |
WO2023196933A1 (en) | 2022-04-06 | 2023-10-12 | The Regents Of The University Of Colorado, A Body Corporate | Chimeric antigen receptor t cells and methods of use thereof |
WO2023196921A1 (en) | 2022-04-06 | 2023-10-12 | The Regents Of The University Of Colorado, A Body Corporate | Granzyme expressing t cells and methods of use |
WO2023211972A1 (en) | 2022-04-28 | 2023-11-02 | Medical University Of South Carolina | Chimeric antigen receptor modified regulatory t cells for treating cancer |
WO2023213969A1 (en) | 2022-05-05 | 2023-11-09 | Juno Therapeutics Gmbh | Viral-binding protein and related reagents, articles, and methods of use |
WO2023220655A1 (en) | 2022-05-11 | 2023-11-16 | Celgene Corporation | Methods to overcome drug resistance by re-sensitizing cancer cells to treatment with a prior therapy via treatment with a t cell therapy |
WO2023222928A2 (en) | 2022-05-20 | 2023-11-23 | Mnemo Therapeutics | Compositions and methods for treating a refractory or relapsed cancer or a chronic infectious disease |
EP4279085A1 (en) | 2022-05-20 | 2023-11-22 | Mnemo Therapeutics | Compositions and methods for treating a refractory or relapsed cancer or a chronic infectious disease |
WO2023230581A1 (en) | 2022-05-25 | 2023-11-30 | Celgene Corporation | Methods of manufacturing t cell therapies |
WO2023250400A1 (en) | 2022-06-22 | 2023-12-28 | Juno Therapeutics, Inc. | Treatment methods for second line therapy of cd19-targeted car t cells |
WO2024006960A1 (en) | 2022-06-29 | 2024-01-04 | Juno Therapeutics, Inc. | Lipid nanoparticles for delivery of nucleic acids |
WO2024044779A2 (en) | 2022-08-26 | 2024-02-29 | Juno Therapeutics, Inc. | Antibodies and chimeric antigen receptors specific for delta-like ligand 3 (dll3) |
WO2024054944A1 (en) | 2022-09-08 | 2024-03-14 | Juno Therapeutics, Inc. | Combination of a t cell therapy and continuous or intermittent dgk inhibitor dosing |
WO2024062138A1 (en) | 2022-09-23 | 2024-03-28 | Mnemo Therapeutics | Immune cells comprising a modified suv39h1 gene |
WO2024077256A1 (en) | 2022-10-07 | 2024-04-11 | The General Hospital Corporation | Methods and compositions for high-throughput discovery ofpeptide-mhc targeting binding proteins |
WO2024081820A1 (en) | 2022-10-13 | 2024-04-18 | Sana Biotechnology, Inc. | Viral particles targeting hematopoietic stem cells |
WO2024100604A1 (en) | 2022-11-09 | 2024-05-16 | Juno Therapeutics Gmbh | Methods for manufacturing engineered immune cells |
WO2024124044A1 (en) | 2022-12-07 | 2024-06-13 | The Brigham And Women’S Hospital, Inc. | Compositions and methods targeting sat1 for enhancing anti¬ tumor immunity during tumor progression |
WO2024124132A1 (en) | 2022-12-09 | 2024-06-13 | Juno Therapeutics, Inc. | Machine learning methods for predicting cell phenotype using holographic imaging |
WO2024161021A1 (en) | 2023-02-03 | 2024-08-08 | Juno Therapeutics Gmbh | Methods for non-viral manufacturing of engineered immune cells |
WO2024182516A1 (en) | 2023-02-28 | 2024-09-06 | Juno Therapeutics, Inc. | Cell therapy for treating systemic autoimmune diseases |
WO2024192141A1 (en) | 2023-03-13 | 2024-09-19 | Dana-Farber Cancer Institute, Inc. | Treatment of cancers having a drug-resistant mesenchymal cell state |
WO2024220560A1 (en) | 2023-04-18 | 2024-10-24 | Sana Biotechnology, Inc. | Engineered protein g fusogens and related lipid particles and methods thereof |
WO2024220574A1 (en) | 2023-04-18 | 2024-10-24 | Sana Biotechnology, Inc. | Universal protein g fusogens and adapter systems thereof and related lipid particles and uses |
WO2024220598A2 (en) | 2023-04-18 | 2024-10-24 | Sana Biotechnology, Inc. | Lentiviral vectors with two or more genomes |
WO2024220588A1 (en) | 2023-04-18 | 2024-10-24 | Juno Therapeutics, Inc. | Cytotoxicity assay for assessing potency of therapeutic cell compositions |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU2018260963B2 (en) | Enhanced affinity T cell receptors and methods for making the same | |
US11993652B2 (en) | Tagged chimeric effector molecules and receptors thereof | |
US11723962B2 (en) | Cell-based neoantigen vaccines and uses thereof | |
US10538572B2 (en) | T cell immunotherapy specific for WT-1 | |
AU2022271411A1 (en) | Immunomodulatory fusion proteins and uses thereof | |
KR20180118783A (en) | For use in immunotherapy for cancer, transduced T cells and T cell receptors | |
JP2023534808A (en) | Receptors that provide targeted co-stimulation for adoptive cell therapy | |
EP3283526B1 (en) | Chimeric protein | |
US20240009235A1 (en) | T cell receptors directed against bob1 and uses thereof | |
EP4353252A1 (en) | Antigen-specific t cells by gene editing of cd3 epsilon | |
WO2023139289A1 (en) | Universal tcr variants for allogeneic immunotherapy | |
EA047914B1 (en) | CHIMERIC ANTIGEN RECEPTORS WITH SPECIFICITY TO MAGE-A4 AND THEIR APPLICATION |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13784884 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2013784884 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2015510462 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2872471 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14398206 Country of ref document: US Ref document number: MX/A/2014/013270 Country of ref document: MX |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2013256159 Country of ref document: AU Date of ref document: 20130502 Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20147032747 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: IDP00201407544 Country of ref document: ID |
|
ENP | Entry into the national phase |
Ref document number: 2014148286 Country of ref document: RU Kind code of ref document: A |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112014027374 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 112014027374 Country of ref document: BR Kind code of ref document: A2 Effective date: 20141031 |