WO2013164459A1 - Lubrifiant moteur pour vehicules a motorisation hybride ou micro-hybride - Google Patents

Lubrifiant moteur pour vehicules a motorisation hybride ou micro-hybride Download PDF

Info

Publication number
WO2013164459A1
WO2013164459A1 PCT/EP2013/059274 EP2013059274W WO2013164459A1 WO 2013164459 A1 WO2013164459 A1 WO 2013164459A1 EP 2013059274 W EP2013059274 W EP 2013059274W WO 2013164459 A1 WO2013164459 A1 WO 2013164459A1
Authority
WO
WIPO (PCT)
Prior art keywords
internal combustion
hybrid
use according
polyalkylene glycol
wear
Prior art date
Application number
PCT/EP2013/059274
Other languages
English (en)
Inventor
Olivier Lerasle
Jérôme VALADE
Original Assignee
Total Marketing Services
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Total Marketing Services filed Critical Total Marketing Services
Priority to KR20147030983A priority Critical patent/KR20150020533A/ko
Priority to EP13720405.3A priority patent/EP2844725A1/fr
Priority to JP2015509452A priority patent/JP6190449B2/ja
Priority to CN201380027812.9A priority patent/CN104334697A/zh
Priority to IN9186DEN2014 priority patent/IN2014DN09186A/en
Publication of WO2013164459A1 publication Critical patent/WO2013164459A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M145/00Lubricating compositions characterised by the additive being a macromolecular compound containing oxygen
    • C10M145/18Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M145/24Polyethers
    • C10M145/26Polyoxyalkylenes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M145/00Lubricating compositions characterised by the additive being a macromolecular compound containing oxygen
    • C10M145/18Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M145/24Polyethers
    • C10M145/26Polyoxyalkylenes
    • C10M145/30Polyoxyalkylenes of alkylene oxides containing 3 carbon atoms only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/10Petroleum or coal fractions, e.g. tars, solvents, bitumen
    • C10M2203/102Aliphatic fractions
    • C10M2203/1025Aliphatic fractions used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/04Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing aromatic monomers, e.g. styrene
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/02Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/08Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate type
    • C10M2209/084Acrylate; Methacrylate
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/103Polyethers, i.e. containing di- or higher polyoxyalkylene groups
    • C10M2209/104Polyethers, i.e. containing di- or higher polyoxyalkylene groups of alkylene oxides containing two carbon atoms only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/103Polyethers, i.e. containing di- or higher polyoxyalkylene groups
    • C10M2209/105Polyethers, i.e. containing di- or higher polyoxyalkylene groups of alkylene oxides containing three carbon atoms only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/06Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to carbon atoms of six-membered aromatic rings
    • C10M2215/064Di- and triaryl amines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/02Pour-point; Viscosity index
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/06Oiliness; Film-strength; Anti-wear; Resistance to extreme pressure
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/10Inhibition of oxidation, e.g. anti-oxidants
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines
    • C10N2040/252Diesel engines
    • C10N2040/253Small diesel engines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines
    • C10N2040/255Gasoline engines

Definitions

  • the present invention relates to the lubrication of hybrid motor vehicle engines and micro-hybrid powered vehicles, in particular micro-hybrid powered vehicles equipped with the "Stop-and-Start" system.
  • Hybrid drive systems overcome these disadvantages by implementing an electric motor and a conventional thermal internal combustion engine, in series, in parallel or in combination.
  • a hybrid vehicle starting is provided by the electric motor. Up to a speed of the order of 50 km / h, it is the electric motor that ensures the traction of the vehicle. As soon as a higher speed is reached or a strong acceleration is required, the internal combustion engine takes over. When the speed decreases or when the vehicle stops, the internal combustion engine stops and the electric motor takes over. Thus, the internal combustion engine of hybrid vehicles undergoes a significant number of stops and restarts compared to a conventional combustion engine thermal vehicles.
  • certain vehicles are equipped with the "Stop-and-Start” system, also known as automatic stops and restarts. These vehicles are generally considered “micro-hybrid” vehicles. Indeed these vehicles are equipped with a thermal internal combustion engine and an alternator-starter or a reinforced starter that ensure the stopping and restarting of the internal combustion engine thermal when the vehicle comes to a stop.
  • the thermal internal combustion engines of microhybrid vehicles equipped with the "stop-and-start” system such as the internal combustion engines of hybrid vehicles, undergo a significant number of shutdowns and restarts compared to a thermal internal combustion engine. conventional vehicles.
  • coatings for protecting the surface of hybrid or micro-hybrid engine bearings have been developed, in particular polymeric coatings such as polyamide-imide coatings.
  • polymeric coatings such as polyamide-imide coatings.
  • these technologies can be complex and expensive to implement.
  • EP 2 177 596 discloses a hybrid internal engine lubricating oil comprising a synthetic base oil and an additive package comprising at least one dispersant, at least one detergent and at least one phosphorus antiwear agent.
  • this document does not describe the presence of at least one polyalkylene glycol in the lubricating oil.
  • nothing in this document describes or suggests the specific treatment of the wear of the pads.
  • the Applicant has found that the use, in the internal combustion engines of hybrid and hybridized motor vehicles equipped with the Stop-and-Start system, of polyalkylene glycols, in particular polyalkylene glycols obtained by copolymerization.
  • polyalkylene glycols in particular polyalkylene glycols obtained by copolymerization.
  • ethylene oxides and propylene oxides or polyalkylene glycols obtained by homopolymerization of propylene oxides in lubricating compositions makes it possible to considerably reduce the wear of the bearings present in said engines.
  • This use advantageously makes it possible to increase the life of the engine, and in particular to increase the time interval between engine parts changes.
  • the invention relates to the use of a lubricating composition comprising at least one base oil and at least one polyalkylene glycol obtained by copolymerization of oxides of ethylene and of propylene oxides or obtained by homopolymerization of oxides of propylene, for the lubrication of metal surfaces, polymeric surfaces and / or amorphous carbon surfaces, thermal internal combustion engines of hybrid and / or microhybrid vehicles.
  • the use of such a composition makes it possible to reduce the wear of the bearings, and in particular the wear of the end bearings of the combustion engines of the internal combustion engines of vehicles with hybrid or micro-hybrid engines, without having necessarily need to apply a specific surface treatment to the surface of said pads.
  • vehicles with micro-hybrid powertrain are equipped with an alternator-starter or a reinforced starter.
  • the use makes it possible to reduce the wear of the internal combustion engine, in particular the wear of the bearings of the internal combustion engine, in particular the wear of the connecting rod bearings of the internal combustion engine.
  • the use makes it possible to increase the life of the internal combustion engine, in particular the life of the bearings of the internal combustion engine, in particular the service life of the connecting rod bearings of the combustion engine. internal heat.
  • the use makes it possible to increase the time interval between the parts changes of the thermal internal combustion engine, in particular the time interval between the changes of the pads of the thermal internal combustion engine, in particular particularly the time interval between the changes of the connecting rod bearings of the internal combustion engine thermal.
  • the lubricating composition comprises from 0.1 to 20% by weight, relative to the total weight of the lubricating composition, of polyalkylene glycol, preferably from 0.2 to 15%, more preferably from 0.5 to 10%. more preferably from 1 to 5%, even more preferably from 2 to 4%.
  • the polyalkylene glycol is derived from the homopolymerization of propylene oxides.
  • the polyalkylene glycol is derived from the copolymerization of ethylene oxide and propylene oxide and comprises at least 60% by weight of propylene oxide, relative to the total weight of polyalkylene glycol .
  • the metal surface is an alloy.
  • the alloy is steel.
  • the alloy comprises as base element tin (Sn), lead (Pb), copper (Cu), aluminum (Al), cadmium (Cd), silver ( Ag) or zinc (Zn).
  • the alloy comprises lead (Pb) and copper (Cu).
  • the polymeric surface comprises polytetrafluoroethylene.
  • the kinematic viscosity at 100 ° C of the lubricating composition is between 5.6 and 12.5 cSt.
  • the present invention relates to the field of lubrication of internal combustion engines of hybrid or micro-hybrid motor vehicles.
  • Hybrid motorized vehicles are here understood to mean vehicles using two different energy storages capable of moving said vehicles.
  • hybrid vehicles combine a thermal internal combustion engine and an electric motor, said electric motor participating in the traction of the vehicle.
  • the operating principle of hybrid vehicles is as follows:
  • the kinetic energy is used to recharge the batteries.
  • the thermal internal combustion engine undergoes, during its life, a number of stops and starts much higher than in a conventional vehicle (phenomenon of "Stop-and-Start") .
  • vehicle with micro-hybrid powertrain means vehicles comprising a thermal internal combustion engine, but no electric motor such as hybrid vehicles, the "hybrid” character being provided by the presence of the Stop and Start system provided by an alternator. -starter or a reinforced starter which ensure the stopping and restarting of the engine when the vehicle comes to rest and then restarts.
  • the present invention more preferably relates to the lubrication of internal combustion engines of vehicles equipped with hybrid or micro-hybrid systems circulating in an urban environment, where the Stop-and-Start phenomenon and the resulting wear are increased.
  • a fixed part comprising the engine block, the cylinder head, the cylinder head gasket, the liner and various parts ensuring the assembly and sealing of these different parts.
  • a movable part comprising the crankshaft, the connecting rod and its bearings, the piston and its segments.
  • the role of the connecting rod is to transmit to the crankshaft the forces received by the piston, transforming a reciprocating rectilinear motion into a circular motion in one direction.
  • a connecting rod has two circular bores, one of small diameter, called small end, and the other of large diameter called big end. Between these two bores, is the body of the connecting rod connecting the small end and the small end.
  • the small end is engaged around the axis of the piston, the friction between the small end and the axis of the piston is reduced by the interposition between the two moving parts of a ring circular coated or made of anti-friction metal (bronze, for example), or bearings (usually needle).
  • a ring circular coated or made of anti-friction metal (bronze, for example), or bearings (usually needle).
  • crankpin crankpin The big end, it, encloses the crankpin crankpin.
  • the friction between the crankpin and crankpin assembly is reduced by the existence of an oil film and the interposition between the crankpin and the crankpin, pads. In this case we speak of big-end bearings.
  • crankshaft is a rotating part. Its positioning and maintenance are achieved by a number of bearings, called trunnions. So we have a fixed part, the bearing crankshaft, which encloses a moving part, the crankshaft journal. Lubrication between these two parts is imperative and pads are put in place to resist the forces applied to these bearings. In this case we speak of trunnion bushings (or bearings of shaft line or crankshaft bearings).
  • the role of the bearing in the case of a big end or a trunnion, is to allow a good rotation of the crankshaft.
  • the pads are thin shells in the shape of a half-cylinder. These are parts that are extremely sensitive to lubrication conditions. If there is contact between the bushing and the rotating shaft, crankpin or pin, the energy released systematically leads to significant wear or engine breakage. The generated wear can also play the role of amplifying the phenomenon and the severity of the contact.
  • the bearings are subject to several types of wear in the motors.
  • the different types of wear encountered in the motors are: adhesive wear or metal-metal contact wear, abrasive wear, corrosive wear, fatigue wear, or complex forms of wear ( contact corrosion, cavitation erosion, electrical wear).
  • the pads are subject in particular to adhesive wear, the invention is particularly useful for improving this type of wear but the invention can nevertheless be applied to the other types of wear mentioned above.
  • the metal type surface may be a surface made of a pure metal such as tin (Sn) or lead (Pb). Most of the time, the metal type surface is a metal type alloy, based on a metal and at least one other metal element or not. A frequently used alloy is steel, iron alloy (Fe) and carbon (C).
  • the bearings used in the automotive industry are mostly bearings whose support is made of steel, a support coated or not with another metal alloy.
  • the other metal alloys constituting the metal surfaces according to the invention are alloys comprising as base element tin (Sn), lead (Pb), copper (Cu) or aluminum (Al).
  • Cadmium (Cd), silver (Ag) or zinc (Zn) may also be basic elements of the metal alloys constituting the metal surfaces according to the invention.
  • To these basic elements will be added other elements chosen from antimony (Sb), arsenic (As), chromium (Cr), indium (In), magnesium (Mg), nickel (Ni), platinum (Pt) or silicon (Si).
  • Preferred alloys are based on the following combinations Al / Sn, Al / Sn / Cu, Cu / Sn, Cu / Al, Sn / Sb / Cu, Pb / Sb / Sn, Cu / Pb, PB / Sn / Cu, Al / Pb / Si, Pb / Sn, Pb / In, Al / Si, Al / Pb.
  • the preferred combinations are Sn / Cu, Sn / Al, Pb / Cu or Pb / Al combinations.
  • Copper and lead-based alloys are preferred alloys, and are also known as cupro-lead or white metal alloys.
  • the surfaces affected by wear are polymeric surfaces.
  • the pads are made of steel and additionally comprise this polymeric surface.
  • the polymers that can be used are either thermoplastics such as polyamides, polyethylenes, fluoropolymers such as tetrafluoroethylenes, in particular polytetrafluoroethylenes (PTFE), or thermosetting agents such as polyimides, phenoplasts (or PF phenol-formaldehyde resins).
  • the surfaces concerned by the wear are surfaces of amorphous carbon type.
  • the bearings are made of steel and include in addition this surface type amorphous carbon.
  • the surfaces of amorphous carbon type are also called DLC, or Diamond Like Carbon or Diamond Like Coating, whose carbons are sp 2 and sp 3 hybridizations.
  • the lubricant compositions used in the invention comprise at least one polyalkylene glycol (PAG).
  • PAG polyalkylene glycol
  • This polyalkylene glycol is either obtained by copolymerization of oxides of ethylene and of propylene oxides, or obtained by homopolymerization of propylene oxides.
  • this polyalkylene glycol is called a polypropylene glycol.
  • the polyalkylene glycols of the compositions according to the invention are polymers or copolymers (statistics or blocks) of oxides of ethylene and of propylene oxides, which can be prepared according to the known methods described in the application WO 2009/134716, page 2 line 26 to page 4 line 12, for example by etching an alcohol initiator on the epoxy bond of an ethylene or propylene oxide and propagating the reaction.
  • polyalkylene glycols that can be used according to the invention are commercially available under the name SYNALOX TM.
  • the PAG is a homopolymer of propylene oxides.
  • polyalkylene glycol is a copolymer of oxides of ethylene and of propylene oxides
  • said polyalkylene glycol comprises at least 60% by weight of units derived from propylene oxides, relative to the total weight of polyalkylene glycol, preferably at least 70%, even more preferably at least 80%, even more preferably at least 90%.
  • polyalkylene glycols (PAG) obtained mainly from ethylene oxides do not have a lipophilic character sufficient to be used in engine oil formulations. In particular, they can not be used in combination with other mineral, synthetic or natural base oils.
  • the viscosity index VI (measured according to the ASTM D2270 standard) of
  • PAG according to the invention is greater than or equal to 30, preferably greater than or equal to 65, even more preferably greater than or equal to 150, still more preferably greater than or equal to 300.
  • the viscosity at 40 ° C (KV40) measured according to ASTM D445 is between 20 and 800 cSt, preferably between 30 and 400 cSt, more preferably between 140 and 350 cSt.
  • the viscosity at 100 ° C (KV100) measured according to ASTM D445 is between 5 and 150 cSt, preferably between 10 and 100 cSt, more preferably between 20 and 60 cSt.
  • the weight average molecular weight M w measured according to ASTM D4274 is between 200 and 6000 g / mol, preferably between 400 and 4000 g / mol, more preferably between 1100 and 2600 g / mol.
  • the lubricating compositions according to the invention may comprise between 0.1 and 20% by weight, relative to the total mass of lubricating composition, of polyalkylene glycol, of preferably between 0.2 and 15%, more preferably between 0.5 and 10%, even more preferably between 1 and 5%, even more preferably between 2 and 4%.
  • the lubricating compositions used according to the present invention comprise one or more base oils, generally representing from 50% to 90% by weight, relative to the total mass of the lubricating composition, preferably from 60% to 85%, more preferably from 65 to 80%, even more preferably 70 to 75%.
  • the base oil (s) used in the lubricant compositions according to the present invention may be oils of mineral or synthetic origin of groups I to V according to the classes defined in the API classification (or their equivalents according to the ATIEL classification) as summarized. below, alone or mixed.
  • the base oil (s) used in the lubricant compositions according to the invention may be chosen from the oils of synthetic origin of group VI according to the ATIEL classification.
  • oils can be oils of vegetable, animal or mineral origin.
  • the base oils of mineral origin according to the invention include all types of bases obtained by atmospheric and vacuum distillation of crude oil, followed by refining operations such as extraction. solvent, deasphalting, solvent dewaxing, hydrotreating, hydrocracking and hydroisomerization, hydrofinishing.
  • the base oils of the compositions according to the present invention can also be synthetic oils, such as certain esters of carboxylic acids and alcohols, or polyalphaolefins.
  • the polyalphaolefins used as base oils are, for example, obtained from monomers having from 4 to 32 carbon atoms (for example octene, decene), and a viscosity at 100 ° C. of between 1.5 and 15 cSt (ASTM D). 445). Their weight average molecular weight is typically between 250 and 3000 g / mol (ASTM D5296).
  • Mixtures of synthetic and mineral oils may also be employed, for example when formulating multi-grade lubricating compositions to avoid cold start problems.
  • the lubricating compositions may further comprise viscosity index (VI) improving polymers, such as, for example, polymeric esters, olefin copolymers (OCP), homopolymers or copolymers of styrene, butadiene or isoprene. polymethacrylates (PMA).
  • VI viscosity index
  • PMA polymethacrylates
  • the lubricant compositions according to the present invention may contain from 0 to 20%, or from 5 to 15%, or from 7 to 10% by weight, based on the total weight of the lubricating composition, of improving polymers.
  • the viscosity number for example chosen from polymeric esters, olefins copolymers (OCP), homopolymers or copolymers of styrene, butadiene or isoprene, polymethacrylates (PMA).
  • the lubricant compositions according to the invention preferably have a viscosity index value or VI, measured according to ASTM D2270 greater than 130, preferably greater than 140, preferably greater than 150.
  • the lubricant compositions according to the invention have a kinematic viscosity (KV100) at 100 ° C. according to ASTM D445, of between 3.8 cSt and 26.1 cSt, preferably between 5.6 and 12.5 cSt, which corresponds, according to the SAE J 300 classification, to grades 20 (5.6 to 9.3 cSt) or 30 (9.3 to 12.5 cSt) hot.
  • KV100 kinematic viscosity
  • the lubricant compositions according to the invention are, in particular, lubricant compositions for a multigrade engine of grade 0W or 5W when cold, and 20 or 30 when hot according to the SAE J 300 classification.
  • the lubricant compositions for engines used according to the invention may further contain any type of additives suitable for use as engine oil.
  • additives can be introduced individually and / or included in packages of additives used in commercial lubricant formulations, performance levels as defined by the ACEA (Association of European Automobile Manufacturers) and / or the API. (American Petroleum Institute).
  • ACEA Association of European Automobile Manufacturers
  • API API.
  • These additive packages (or additive compositions) are concentrates comprising about 30% by weight of dilution base oil.
  • the lubricant compositions according to the invention may contain, in particular and without limitation, anti-wear and extreme-pressure additives, antioxidants, overbased or non-overbased detergents, pour point improvers, dispersants, defoamers, thickeners ...
  • the anti-wear and extreme pressure additives protect the friction surfaces by forming a protective film adsorbed on these surfaces.
  • the most commonly used additive is zinc dithiophosphate or ZnDTP. This category also contains various phosphorus, sulfur, nitrogen, chlorine and boron compounds.
  • anti-wear additives there is a wide variety of anti-wear additives, but the most used category in the lubricating compositions used as motor oils is that of phosphosulfur additives such as metal alkylthiophosphates, in particular zinc alkylthiophosphates, and more specifically zinc dialkyldithiophosphates. or ZnDTP.
  • the preferred compounds have the formula Zn ((SP (S) (OR 9 ) (ORio)) 2 , or R 9 and Ri 0 are linear or branched, saturated or unsaturated alkyl groups, preferably containing from 1 to 18 carbon atoms.
  • the ZnDTP is typically present at levels of the order of 0.1 to 2% by weight, based on the total weight of the lubricating composition.
  • Amine phosphates, polysulfides, especially sulfur-containing olefins, are also commonly used anti-wear additives.
  • Anti-wear and extreme-pressure additives are generally present in engine lubricating compositions at contents of between 0.5 and 6% by weight, preferably between 0.7 and 2%, preferably between 1 and 1.5%. relative to the total mass of the lubricating composition.
  • Antioxidants delay the degradation of the oils in use, which degradation can result in the formation of deposits, the presence of sludge, or an increase in the viscosity of the lubricant composition. They act as free radical inhibitors or destroyers of hydroperoxides. Among the commonly used antioxidants are phenolic and / or amine antioxidants.
  • Phenolic antioxidants may be ashless, or may be in the form of neutral or basic metal salts. Typically, these are compounds containing a sterically hindered hydroxyl group, for example when two groups hydroxyls are in the ortho or para position of each other, or that the phenol is substituted by an alkyl group having at least 6 carbon atoms.
  • Amino compounds are another class of antioxidants that can be used alone or possibly in combination with phenolic compounds.
  • Typical examples are aromatic amines, of formula R 11 R 12 R 13 N, where Ru is an aliphatic group, or an optionally substituted aromatic group, R 12 is an optionally substituted aromatic group, R 13 is hydrogen, or a alkyl group or aryl, or a group of formula R 4 S (0) x R 5 where R i4 and R 5 are alkylene, alkenylene, or aralkylene, and x is an integer equal to 0, 1 or 2.
  • Sulfurized alkyl phenols or their alkali and alkaline earth metal salts are also used as antioxidants.
  • antioxidants are that of oil-soluble copper compounds, for example copper thio- or dithiophosphates, copper and carboxylic acid salts, dithiocarbamates, sulphonates, phenates, acetylacetonates of copper.
  • the copper salts I and II, succinic acid or anhydride are used.
  • These compounds are typically present in the engine lubricating compositions in amounts of between 0.1 and 5% by weight, preferably between 0.3 and 2%, even more preferably between 0.5 and 1, 5%, based on the total mass of the lubricating composition.
  • the detergents reduce the formation of deposits on the surface of the metal parts by dissolving the secondary oxidation and combustion products, and allow the neutralization of certain acid impurities from the combustion and found in the lubricant composition.
  • the detergents commonly used in the formulation of lubricating compositions are typically anionic compounds having a long lipophilic hydrocarbon chain and a hydrophilic head.
  • the associated cation is typically a metal cation of an alkali or alkaline earth metal.
  • the detergents are preferably chosen from alkali metal or alkaline earth metal salts of carboxylic acids, sulphonates, salicylates and naphthenates, as well as the salts of phenates, preferably of calcium, magnesium, sodium or barium.
  • metal salts may contain the metal in an approximately stoichiometric amount or in excess (in an amount greater than the stoichiometric amount). In the latter case, we are dealing with so-called detergents.
  • the excess metal providing the overbased detergent character is in the form of metal salts insoluble in the oil, for example carbonate, hydroxide, oxalate, acetate, glutamate, preferentially carbonate, preferably calcium, magnesium, sodium or barium.
  • the lubricant compositions according to the present invention may contain any type of detergent known to those skilled in the art, neutral or overbased.
  • the more or less overbased character of the detergents is characterized by the BN (base number), measured according to the ASTM D2896 standard, and expressed in mg of KOH per gram.
  • Neutral detergents have a BN between about 0 and 80 mg KOH / g.
  • Overbased detergents they, BN values typically of the order of 150 mg KOH / g and more, or 250 mg KOH / g or 450 mg KOH / g or more.
  • the BN of the lubricant composition containing the detergents is measured according to ASTM D2896 and expressed as mg KOH per gram of lubricating composition.
  • the amounts of detergents included in the lubricant compositions according to the invention are adjusted so that the BN of said oils, measured according to ASTM D2896, is between 5 and less than or equal to 20 mg of KOH per gram of lubricating composition, preferably between 8 and 15 mg of KOH per gram of lubricating composition.
  • Pour point depressant additives improve the cold behavior of the lubricating compositions by slowing the formation of paraffin crystals. They are for example alkyl polymethacrylates, polyacrylates, polyarylamides, polyalkylphenols, polyalkylnaphthalenes, alkylated polystyrene. They are generally present in the lubricant compositions according to the invention at contents of between 0.1 and 0.5% by weight, relative to the weight of lubricating composition.
  • Dispersants for example succinimides, PIBs (polyisobutene) succinimides, Mannich bases. They ensure the suspension and evacuation of insoluble solid contaminants consisting of secondary oxidation products that form when the lubricant composition is in use.
  • the dispersant level is typically between 0.5 and 10% by weight, preferably between 1 and 5%, relative to the total weight of the lubricant composition.
  • the lubricant compositions according to the invention may also comprise friction modifiers, for example inorganic friction modifiers chosen from organomolybdenum compounds. These compounds are, as their name indicates, compounds based on molybdenum, carbon and hydrogen, but these compounds also contain sulfur and phosphorus, and also oxygen and nitrogen.
  • friction modifiers for example inorganic friction modifiers chosen from organomolybdenum compounds. These compounds are, as their name indicates, compounds based on molybdenum, carbon and hydrogen, but these compounds also contain sulfur and phosphorus, and also oxygen and nitrogen.
  • the organomolybdenum compounds used in the lubricating compositions according to the invention are, for example, molybdenum dithiophosphates, molybdenum dithiocarbamates, molybdenum dithiophosphinates, molybdenum xanthates, molybdenum thioxanthates, and various organic complexes of molybdenum such as molybdenum carboxylates, molybdenum esters, molybdenum amides, obtainable by reaction of molybdenum oxide or ammonium molybdates with fatty substances, glycerides or fatty acids, or derivatives of fatty acids (esters, amines, amides ).
  • Organomolybdenum compounds used in the lubricating compositions according to the present invention are for example described in application EP2078745, of paragraph [0036] in paragraph [062].
  • Preferred organomolybdenum compounds are molybdenum dithiophosphates and / or molybdenum dithiocarbamates.
  • molybdenum dithiocarbamates have been found to be very effective in combination with polyalkylene glycols to reduce pad wear.
  • These molybdenum dithiocarbamates have the following general formula (I) in which R 1, R 2 , R 3 or R 4 are independently of each other linear or branched alkyl groups, saturated or unsaturated, comprising from 4 to 5 carbon atoms. to 18 carbon atoms, preferably 8 to 13.
  • molybdenum dithiophosphates have the following general formula (II) in which R 5 , R 6 , R 7 or R 8 are independently of each other linear or branched alkyl groups, saturated or unsaturated, comprising 4 to 18 carbon atoms, preferably 8 to 13.
  • the lubricating compositions according to the invention may comprise between 0.1 and 10% by weight, relative to the total mass of lubricating composition, of organomolybdenum compound, preferably between 0.5 and 8%, more preferably between 1 and 5% more preferably between 2 and 4%.
  • the organomolybdenum compounds used in the lubricant compositions according to the invention comprise from 1 to 30% by weight of molybdenum, relative to the total weight of organomolybdenum compound, preferably from 2 to 20%, more preferably from 4 to 10%, more preferably more preferably 8 to 5%.
  • the organomolybdenum compounds used in the lubricant compositions according to the invention comprise from 1 to 30% by weight of sulfur, relative to the total mass of organomolybdenum compound, preferably from 2 to 20%, more preferably from 4 to 10%, more preferably more preferably 8 to 5%.
  • organomolybdenum compounds used in the lubricant compositions according to the invention comprise from 1 to 10% by weight of phosphorus, relative to the total mass of organomolybdenum compound, preferably from 2 to 8%, more preferably from 3 to 6%, more preferably more preferably 4 to 5%.
  • the system tested includes a 4-cylinder diesel engine with a maximum torque of 200 Nm from 1750 to 2500 rpm. It is of the Stop-and-Start type and includes an alternator-starter between the clutch and the gearbox of the vehicle.
  • the engine lubricating composition is maintained at about 100 ° C in these tests.
  • the wear is followed by a conventional technique of radiotracers, consisting of irradiating the surface of the connecting rod bearings whose wear is to be tested, and measuring during the test the increase in the radioactivity of the engine lubricating composition. that is, the rate of loading of the lubricant composition into irradiated metal particles. This speed is directly proportional to the wear speed of the bearings.
  • the results are based on the comparative analysis of these damage rates (reference lubricating composition and lubricating composition to be tested) and are validated by a frame with a reference lubricating composition in order to integrate positive surface adaptation elements or negative at the speed of damage.
  • the damage rates of the lubricating compositions tested are all compared to the rate of damage of the reference lubricant composition and quantified as the speed% ratio named Wear in Table I below.
  • the lubricant composition A is a grade reference lubricant composition
  • the lubricating composition B is a lubricating composition additive with a polyalkylene glycol resulting from the homopolymerization of propylene oxides (100% PO).
  • the molecular weight of this polyakylene glycol is 400 g / mol (ASTM D4274), its viscosity number is 65 (ASTM D2270), its KV40 is 30 cSt (ASTM D445), its KV100 is 5 cSt (ASTM D445 ).
  • the base oil used is a blend of Group III base oils with a viscosity number of 171.
  • the viscosity index improving polymer used is a linear styrene / butadiene polymer of mass M w equal to 139,700 (measured according to ASTM D5296), of mass M n equal to 133,000 (measured according to ASTM D5296), of polydispersity index equal to 1.1, 8% active ingredient in a Group III base oil.
  • the antioxidant is an amine antioxidant of alkylarylamine structure.
  • PPD or Depressant Point or Pour Point Depressant is polymethacrylate type.
  • the additive package used includes conventional anti-wear, anti-oxidant, dispersant and detergent additives. It is found that the use of a polyalkylene glycol in the lubricating composition B reduces the wear compared with the lubricating composition A.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Lubricants (AREA)

Abstract

La présente invention concerne l'utilisation d'au moins au moins un polyalkylène glycol, en particulier d'au moins polyalkylène glycol obtenu par copolymérisation d'oxydes d'éthylène et d'oxydes de propylène ou d'au moins un polyalkylène glycol obtenu par homopolymérisation d'oxydes de propylène dans une composition lubrifiante comprenant au moins une huile de base pour la lubrification des moteurs à combustion interne thermique des véhicules à motorisation hybride et/ou microhybride. L'utilisation de ce type de polyalkylène glycol permet de diminuer l'usure des coussinets de bielle du moteur à combustion interne thermique.

Description

Lubrifiant moteur pour véhicules à motorisation hybride ou microhybride
Domaine technique
La présente invention concerne la lubrification de moteurs de véhicules à motorisation hybride et de véhicules à motorisation micro-hybride, en particulier de véhicules à motorisation micro-hybride équipés du système «Stop-and-Start».
Arrière plan technique
Les préoccupations environnementales et la recherche d'économies sur les ressources en énergies fossiles ont conduit au développement de véhicules à moteurs électriques. Toutefois, ces derniers sont limités en puissance, en autonomie, et nécessitent un très long temps de rechargement des batteries.
Les systèmes de motorisation hybride remédient à ces inconvénients en mettant en œuvre un moteur électrique et un moteur à combustion interne thermique classique, en série, en parallèle ou en combiné.
Dans un véhicule hybride, le démarrage est assuré par le moteur électrique. Jusqu'à une vitesse de l'ordre de 50 km/h, c'est le moteur électrique qui assure la traction du véhicule. Dès lors qu'une vitesse plus élevée est atteinte ou qu'une accélération forte est demandée, le moteur à combustion interne thermique prend le relais. Lorsque la vitesse diminue ou lors des arrêts du véhicule, le moteur à combustion interne thermique s'arrête et le moteur électrique prend le relais. Ainsi le moteur à combustion interne thermique des véhicules hybrides subit un nombre importants d'arrêts et de redémarrages comparativement à un moteur à combustion interne thermique de véhicules conventionnels.
Par ailleurs, certains véhicules sont équipés du système «Stop-and-Start» aussi appelé dispositif d'arrêts et de redémarrages automatiques. Ces véhicules sont généralement considérés comme des véhicules « micro-hybrides ». En effet ces véhicules sont équipés d'un moteur à combustion interne thermique et d'un alterno-démarreur ou d'un démarreur renforcé qui assurent l'arrêt et le redémarrage du moteur à combustion interne thermique lorsque le véhicule s'immobilise. Les moteurs à combustion interne thermique des véhicules microhybrides équipés du système « stop-and-start », comme les moteurs à combustion interne thermique des véhicules hybrides, subissent donc un nombre importants d'arrêts et de redémarrages comparativement à un moteur à combustion interne thermique de véhicules conventionnels.
Ainsi, le moteur à combustion interne thermique des véhicules hybrides ou des véhicules micro-hybrides subit, au cours de sa durée de vie, un nombre d'arrêts et de démarrages beaucoup plus importants que celui d'un véhicule classique, provoquant des ruptures du film d'huile lors de l'arrêt moteur et du redémarrage avant reformation du film d'huile. Au contraire, ces phénomènes sont très rares dans les moteurs à combustion interne thermique de véhicules conventionnels.
Ces phénomènes engendrent ainsi potentiellement, pour les moteurs à combustion interne thermique des véhicules hybrides et micro-hybrides, des problèmes d'usure spécifiques, en particulier sur le long terme. Ces problèmes d'usure spécifiques sont notamment visibles au niveau des coussinets des têtes de bielles, ce qui n'est pas le cas pour les moteurs à combustion interne thermique de véhicules conventionnels.
Ainsi, des revêtements pour protéger la surface des coussinets de moteurs hybrides ou micro-hybrides ont été développés, notamment des revêtements polymériques tels que des revêtements polyamide-imide. Toutefois, ces technologies peuvent s'avérer complexes et coûteuses à mettre en œuvre.
Des huiles pour la lubrification de moteurs internes hybrides ont été décrites. Le document EP 2 177 596 décrit une huile lubrifiante pour moteurs internes hybrides comprenant une huile de base synthétique et un paquet d'additifs comprenant au moins un dispersant, au moins un détergent et au moins un agent anti-usure phosphoré. Toutefois ce document ne décrit pas la présence d'au moins un polyalkylène glycol dans l'huile lubrifiante. De plus, rien dans ce document ne décrit ni ne suggère le traitement spécifique de l'usure des coussinets.
Le document US 2011/0039741 décrit une huile lubrifiante pour moteurs automobiles comprenant au moins une huile de base, au moins un polyakylène glycol et un mélange de plusieurs additifs. Toutefois, ce document ne décrit pas l'utilisation d'une telle huile ni pour la lubrification ni pour réduire l'usure des coussinets des moteurs à combustion interne thermique des véhicules à motorisation hybride ou micro-hybride.
Il existe donc un besoin pour le développement de compositions lubrifiantes permettant un fonctionnement fiable des moteurs à combustion interne thermique des véhicules hybrides et micro-hybrides équipés du système Stop-and-Start, et en particulier susceptibles de réduire l'usure, en particulier l'usure des coussinets, en particulier l'usure des coussinets des têtes de bielle, dans les moteurs à combustion interne thermique desdits véhicules.
De plus, il existe un besoin pour le développement de compositions lubrifiantes permettant un fonctionnement fiable des moteurs à combustion interne thermique des véhicules hybrides et micro-hybrides équipés du système Stop-and-Start, et en particulier susceptibles de réduire l'usure des coussinets, ceci sans avoir nécessairement besoin d'appliquer un traitement de surface spécifique à la surface desdits coussinets.
De façon surprenante, la demanderesse a constaté que l'utilisation, dans les moteurs à combustion interne thermique des véhicules à motorisations hybrides et micro-hybrides équipés du système Stop-and-Start, de polyalkylène glycols, en particulier de polyalkylène glycols obtenus par copolymérisation d'oxydes d'éthylène et d'oxydes de propylène ou de polyalkylène glycols obtenus par homopolymérisation d'oxydes de propylène dans des compositions lubrifiantes permet de diminuer considérablement l'usure des coussinets présents dans lesdits moteurs. Cette utilisation permet avantageusement d'augmenter la durée de vie du moteur, et notamment d'augmenter l'intervalle de temps entre les changements de pièces du moteur.
Brève description
L'invention a pour objet l'utilisation d'une composition lubrifiante comprenant au moins une huile de base et au moins un polyalkylène glycol obtenu par copolymérisation d'oxydes d'éthylène et d'oxydes de propylène ou obtenu par homopolymérisation d'oxydes de propylène, pour la lubrification de surfaces métalliques, de surfaces polymériques et/ou de surfaces de carbone amorphe, des moteurs à combustion interne thermique des véhicules à motorisation hybride et/ou microhybride.
Avantageusement, l'utilisation d'une telle composition permet de réduire l'usure des coussinets, et en particulier l'usure des coussinets des têtes de bielle des moteurs à combustion interne thermique des véhicules à motorisation hybride ou micro-hybride, ceci sans avoir nécessairement besoin d'appliquer un traitement de surface spécifique à la surface desdits coussinets.
De préférence, les véhicules à motorisation micro-hybride sont équipés d'un alterno- démarreur ou d'un démarreur renforcé.
De préférence, l'utilisation permet de réduire l'usure du moteur à combustion interne thermique, en particulier l'usure des coussinets du moteur à combustion interne thermique, en particulier l'usure des coussinets de bielle du moteur à combustion interne thermique.
De préférence, l'utilisation permet d'augmenter la durée de vie du moteur à combustion interne thermique, en particulier la durée de vie des coussinets du moteur à combustion interne thermique, en particulier la durée de vie des coussinets de bielle du moteur à combustion interne thermique.
De préférence, l'utilisation permet d'augmenter l'intervalle de temps entre les changements de pièces du moteur à combustion interne thermique, en particulier l'intervalle de temps entre les changements des coussinets du moteur à combustion interne thermique, en particulier l'intervalle de temps entre les changements des coussinets de bielle du moteur à combustion interne thermique.
De préférence, la composition lubrifiante comprend de 0,1 à 20% en masse, par rapport à la masse totale de composition lubrifiante, de polyalkylène glycol, de préférence de 0,2 à 15%, plus préférentiellement de 0,5 à 10%, encore plus préférentiellement de 1 à 5%, encore plus préférentiellement de 2 à 4%.
Selon un premier mode de réalisation, le polyalkylène glycol est issu de l'homopolymérisation d'oxydes de propylène.
Selon un second mode de réalisation, le polyalkylène glycol est issu de la copolymérisation d'oxyde d'éthylène et d'oxyde de propylène et comprend au moins 60% en masse d'oxyde de propylène, par rapport à la masse totale de polyalkylène glycol.
Selon un premier mode de réalisation, la surface métallique est un alliage.
De préférence, l'alliage est de l'acier.
De préférence, l'alliage comprend comme élément de base de l'étain (Sn), du plomb (Pb), du cuivre (Cu), de l'aluminium (Al), du cadmium (Cd), de l'argent (Ag) ou du zinc (Zn).
De préférence, l'alliage comprend du plomb (Pb) et du cuivre (Cu).
Selon un second mode de réalisation, la surface polymérique comprend du polytétrafluoroéthylène.
De préférence, la viscosité cinématique à 100°C de la composition lubrifiante, mesurée selon la norme ASTM D445, est comprise entre 5,6 et 12,5 cSt.
Description détaillée
La présente invention concerne le domaine de la lubrification des moteurs à combustion interne thermique des véhicules à motorisation hybride ou micro-hybride.
On entend ici par véhicules à motorisation hybride, les véhicules faisant appel à deux stockages d'énergie distincts capables de mouvoir lesdits véhicules. En particulier, les véhicules hybrides associent un moteur à combustion interne thermique et un moteur électrique, ledit moteur électrique participant à la traction du véhicule. Le principe de fonctionnement des véhicules hybrides est le suivant:
lors des phases stationnaires (où le véhicule est immobile), les deux moteurs sont à l'arrêt,
au démarrage, c'est le moteur électrique qui assure la mise en mouvement de la voiture, jusqu'à des vitesses plus élevées (25 ou 30 km/h),
lorsque des vitesses plus élevées sont atteintes, le moteur à combustion interne thermique prend le relais, en cas de grande accélération, on observe la mise en marche des deux moteurs à la fois, qui permet d'avoir des accélérations équivalentes au moteur de même puissance, voire supérieures,
optionnellement, en phase de décélération et de freinage, l'énergie cinétique est utilisée pour recharger les batteries.
Ainsi, dans les véhicules hybrides, le moteur à combustion interne thermique subit, au cours de sa durée de vie, un nombre d'arrêts et de démarrages beaucoup plus importants que dans un véhicule classique (phénomène de «Stop-and-Start»).
On entend ici par véhicule à motorisation micro-hybride, des véhicules comprenant un moteur à combustion interne thermique, mais pas de moteur électrique comme les véhicules hybrides, le caractère « hybride » étant apporté par la présence du système Stop and Start apporté par un alterno-démarreur ou un démarreur renforcé qui assurent l'arrêt et le redémarrage du moteur thermique lorsque le véhicule s'immobilise puis redémarre.
La présente invention concerne plus préférentiellement la lubrification des moteurs à combustion interne thermique des véhicules équipés de système hybrides ou micro-hybrides circulant en milieu urbain, où le phénomène Stop-and-Start et l'usure résultante sont accrus.
L'usure engendrée par ces arrêts et redémarrages fréquents est visible au niveau des différentes pièces en contact avec le lubrifiant : piston, segment, axe de piston, bossage d'axe de piston, pied de bielle, tête de bielle, coussinets de bielle, maneton, tourillon, palier de ligne d'arbre, coussinets de ligne d'arbre ou coussinets de tourillon ou coussinets de vilebrequin, axe de chaîne, denture de pompe à huile, engrenage, arbre à came, palier d'arbre à came, poussoirs de distribution, rouleau de linguet, butée hydraulique pour rattrapage de jeu, axe de turbocompresseur, palier de turbocompresseur.
Dans un moteur automobile, il existe une partie fixe comprenant le bloc-moteur, la culasse, le joint de culasse, la chemise et diverses pièces assurant l'assemblage et l'étanchéité de ces différentes pièces. Il existe aussi une partie mobile comprenant le vilebrequin, la bielle et ses coussinets, le piston et ses segments.
Le rôle de la bielle est de transmettre au vilebrequin les efforts reçus par le piston, en transformant un mouvement rectiligne alternatif en un mouvement circulaire dans un seul sens.
Une bielle comporte deux alésages circulaires, l'un de petit diamètre, appelé pied de bielle, et l'autre de grand diamètre appelé tête de bielle. Entre ces deux alésages, se trouve le corps de la bielle qui relie le pied de bielle et la tête de bielle.
Le pied de bielle est engagé autour de l'axe du piston, la friction entre le pied de bielle et l'axe du piston est réduite par l'interposition entre les deux pièces mobiles d'une bague circulaire recouverte ou constituée de métal anti-friction (bronze, par exemple), ou de roulements (à aiguilles le plus souvent).
La tête de bielle, elle, enserre le maneton du vilebrequin. La friction entre l'ensemble tête de bielle et maneton est réduite par l'existence d'un film d'huile et l'interposition entre la tête de bielle et le maneton, de coussinets. On parle dans ce cas de coussinets de tête de bielle.
Le vilebrequin est une pièce en rotation. Son positionnement et son maintien sont réalisés par un certain nombre de paliers, dits tourillons. On a donc une pièce fixe, le palier de vilebrequin, qui enserre une partie mobile, le tourillon de vilebrequin. Une lubrification entre ces deux pièces est impérative et des coussinets sont mis en place afin de permettre de résister aux efforts appliqués sur ces paliers. On parle dans ce cas de coussinets de tourillon (ou coussinets de ligne d'arbre ou coussinets de vilebrequin).
Le rôle du coussinet dans le cas d'une tête de bielle ou d'un tourillon, est de permettre une bonne rotation de l'arbre du vilebrequin. Les coussinets sont des coquilles minces ayant la forme d'un demi-cylindre. Ce sont des pièces qui sont extrêmement sensibles aux conditions de lubrification. S'il y a un contact entre le coussinet et l'arbre tournant, maneton ou tourillon, l'énergie dégagée entraîne de manière systématique une usure importante ou une casse du moteur. L'usure générée peut en outre jouer le rôle d'amplificateur du phénomène et de la gravité du contact.
Dans le cadre d'arrêts et de redémarrage fréquents, comme c'est le cas pour les véhicules à motorisation hybride ou micro-hybride, les coussinets sont soumis à des ruptures et réamorçages fréquents du film d'huile. Ainsi à chaque arrêt/redémarrage a lieu un contact entre les interfaces métalliques et c'est la fréquence d'occurrence de ces contacts qui est problématique pour les coussinets.
Les coussinets sont soumis à plusieurs types d'usure dans les moteurs. Les différents types d'usure rencontrés dans les moteurs sont : l'usure adhésive ou l'usure par contact métal- métal, l'usure abrasive, l'usure corrosive, l'usure par fatigue, ou les formes complexes d'usure (corrosion de contact, érosion par cavitation, usures d'origine électrique). Les coussinets sont soumis en particulier à l'usure adhésive, l'invention est plus particulièrement utile pour améliorer ce type d'usure mais l'invention peut néanmoins s'appliquer aux autres types d'usure citées ci dessus.
Les surfaces qui sont sensibles à l'usure, en particulier la surface des coussinets, sont des surfaces de type métallique, ou des surfaces de type métalliques revêtues d'une autre couche qui peut être, soit un polymère, soit une couche de carbone amorphe. L'usure se produit à l'interface entre lesdites surfaces qui entrent en contact lorsque le film d'huile devient insuffisant. La surface de type métallique peut être une surface constituée d'un métal pur tel que l'étain (Sn) ou le plomb (Pb). La plupart du temps, la surface de type métallique est un alliage de type métallique, à base d'un métal et d'au moins un autre élément métallique ou non. Un alliage fréquemment utilisé est l'acier, alliage de fer (Fe) et de carbone (C). Les coussinets utilisés dans l'industrie automobile, sont la plupart du temps des coussinets dont le support est en acier, support revêtu ou non d'un autre alliage métallique.
Les autres alliages métalliques constituant les surfaces métalliques selon l'invention, sont des alliages comprenant comme élément de base de l'étain (Sn), du plomb (Pb), du cuivre (Cu) ou de l'aluminium (Al). Le cadmium (Cd), l'argent (Ag) ou le zinc (Zn) peuvent aussi être des éléments de base des alliages métalliques constituant les surfaces métalliques selon l'invention. A ces éléments de base vont s'ajouter d'autres éléments choisis parmi l'antimoine (Sb), l'arsenic (As), le chrome (Cr), l'indium (In), le magnésium (Mg), le nickel (Ni), le platine (Pt) ou le silicium (Si).
Des alliages préférés sont basés sur les combinaisons suivantes Al/Sn, Al/Sn/Cu, Cu/Sn, Cu/AI, Sn/Sb/Cu, Pb/Sb/Sn, Cu/Pb, PB/Sn/Cu, Al/Pb/Si, Pb/Sn, Pb/ln, Ai/Si, Al/Pb. Les combinaisons préférées sont les combinaisons Sn/Cu, Sn/AI, Pb/Cu ou Pb/AI.
Les alliages à base de cuivre et de plomb sont des alliages préférés, ils sont aussi appelés alliages en cupro-plomb ou métal blanc.
Selon un autre mode de réalisation, les surfaces concernées par l'usure sont des surfaces de type polymérique. La plupart du temps, les coussinets sont en acier et comprennent en plus cette surface polymérique. Les polymères utilisables, sont soit des thermoplastiques tels que les polyamides, les polyéthylènes, les fluoropolymères tels que les tétrafluoroéthylènes, en particulier les polytétrafluoroéthylènes (PTFE), soit des thermodurcissables tels que les polyimides, les phénoplastes (ou résines phénol-formaldéhydes PF).
Selon un autre mode de réalisation, les surfaces concernées par l'usure sont des surfaces de type carbone amorphe. La plupart du temps, les coussinets sont en acier et comprennent en plus cette surface de type carbone amorphe. Les surfaces de type carbone amorphe sont aussi appelées DLC, ou Diamond Like Carbon ou Diamond Like Coating, dont les carbones sont d'hybridations sp2et sp3.
Polyalkylène glycols
Les compositions lubrifiantes utilisées dans l'invention comprennent au moins un polyalkylène glycol (PAG). Ce polyalkylène glycol est soit obtenu par copolymérisation d'oxydes d'éthylène et d'oxydes de propylène, soit obtenu par homopolymérisation d'oxydes de propylène. Lorsqu'il s'agit d'un polyalkylène glycol obtenu par homopolymérisation uniquement de motifs oxydes de propylène, on appelle ce polyalkylène glycol, un polypropylène glycol.
Les polyalkylène glycols des compositions selon l'invention sont des polymères ou copolymères (statistiques ou blocs) d'oxydes d'éthylène et d'oxydes de propylène, qui peuvent être préparés selon les méthodes connues décrites dans la demande WO 2009/134716, page 2 ligne 26 à page 4 ligne 12, par exemple par attaque d'un initiateur alcool sur la liaison époxy d'un oxyde d'éthylène ou de propylène et propagation de la réaction.
Les polyalkylène glycols utilisables selon l'invention sont disponibles commercialement sous le nom SYNALOX™.
De manière préférée, le PAG est un homopolymère d'oxydes de propylène.
Lorsque le polyalkylène glycol est un copolymère d'oxydes d'éthylène et d'oxydes de propylène, ledit polyalkylène glycol comprend au moins 60% en masse de motifs issus d'oxydes de propylène, par rapport à la masse totale de polyalkylène glycol, préférentiellement au moins 70%, encore plus préférentiellement au moins 80%, encore plus préférentiellement au moins 90%.
En effet, les polyalkylène glycols (PAG) obtenus en majorité à partir d'oxydes d'éthylène ne présentent pas un caractère lipophile suffisant pour être employés dans des formules d'huile moteur. En particulier, ils ne peuvent être utilisés en combinaison avec d'autres huiles de base minérale, synthétique ou naturelle.
Préférentiellement, l'indice de viscosité VI (mesuré selon la norme ASTM D2270) des
PAG selon l'invention est supérieur ou égal à 30, préférentiellement supérieur ou égal à 65, encore plus préférentiellement supérieur ou égal à 150, encore plus préférentiellement supérieur ou égal à 300.
Préférentiellement, la viscosité à 40°C (KV40) mesurée selon la norme ASTM D445 est comprise entre 20 et 800 cSt, de préférence entre 30 et 400 cSt, plus préférentiellement entre 140 et 350 cSt.
Préférentiellement, la viscosité à 100°C (KV100) mesurée selon la norme ASTM D445 est comprise entre 5 et 150 cSt, de préférence entre 10 et 100 cSt, plus préférentiellement entre 20 et 60 cSt.
Préférentiellement, la masse moléculaire moyenne en poids Mw mesurée selon la norme ASTM D4274 est comprise entre 200 et 6000 g/mol, de préférence entre 400 et 4000 g/mol, plus préférentiellement entre 1100 et 2600 g/mol.
Composition lubrifiante
Les compositions lubrifiantes selon l'invention peuvent comprendre entre 0,1 et 20% en masse, par rapport à la masse totale de composition lubrifiante, de polyalkylène glycol, de préférence entre 0,2 et 15%, plus préférentiellement entre 0,5 et 10%, encore plus préférentiellement entre 1 et 5%, encore plus préférentiellement entre 2 et 4%.
De façon surprenante, la demanderesse a mis en évidence que l'emploi de ces polyalkylène glycols, dans une composition lubrifiante, notamment dans une composition pour moteur, permet de réduire considérablement l'usure des coussinets de bielle des moteurs de véhicules hybrides ou micro-hybrides équipés du système Stop-and-Start, sans modifier la consommation de carburant ou avantageusement en réduisant la consommation de carburant. Huiles de base
Les compositions lubrifiantes utilisées selon la présente invention comprennent une ou plusieurs huiles de base, représentant généralement de 50% à 90% en masse, par rapport à la masse totale de la composition lubrifiante, de préférence de 60% à 85%, plus préférentiellement de 65 à 80%, encore plus préférentiellement de 70 à 75%.
La ou les huiles de base utilisées dans les compositions lubrifiantes selon la présente invention peuvent être des huiles d'origine minérale ou synthétique des groupes I à V selon les classes définies dans la classification API (ou leurs équivalents selon la classification ATIEL) telle que résumée ci-dessous, seules ou en mélange. En outre, la ou les huile de base utilisées dans les compositions lubrifiantes selon l'invention peuvent être choisies parmi les huiles d'origine synthétique du groupe VI selon la classification ATIEL.
Figure imgf000010_0001
* pour la classification ATIEL seulement
Ces huiles peuvent être des huiles d'origine végétale, animale, ou minérale. Les huiles de base d'origine minérale selon l'invention incluent tous types de bases obtenues par distillation atmosphérique et sous vide du pétrole brut, suivies d'opérations de raffinage tels qu'extraction au solvant, désasphaltage, déparaffinage au solvant, hydrotraitement, hydrocraquage et hydroisomérisation, hydrofinition.
Les huiles de base des compositions selon la présente invention peuvent également être des huiles synthétiques, tels certains esters d'acides carboxyliques et d'alcools, ou des polyalphaoléfines. Les polyalphaoléfines utilisées comme huiles de base, sont par exemple obtenues à partir de monomères ayant de 4 à 32 atomes de carbone (par exemple octène, decène), et une viscosité à 100°C comprise entre 1,5 et 15 cSt (ASTM D 445). Leur masse moléculaire moyenne en poids est typiquement comprise entre 250 et 3000 g/mol (ASTM D5296).
Des mélanges d'huiles synthétiques et minérales peuvent également être employés, par exemple lorsqu'on formule des compositions lubrifiantes multigrades permettant d'éviter les problèmes de démarrage à froid.
Autres additifs
Les compositions lubrifiantes peuvent comprendre, en outre, des polymères améliorants l'indice de viscosité (VI), tels que par exemple les esters polymères, les Oléfines Copolymères (OCP), les homopolymères ou copolymères du styrène, du butadiène ou de l'isoprène, les polyméthacrylates (PMA).
Les compositions lubrifiantes selon la présente invention peuvent contenir de l'ordre de 0 à 20 %, ou encore de 5 à 15 % , ou de 7 à 10 % en masse, par rapport à la masse totale de la composition lubrifiante, de polymères améliorants l'indice de viscosité, par exemple choisis parmi les esters polymères, les Oléfines Copolymères (OCP), les homopolymères ou copolymères du styrène, du butadiène ou de l'isoprène, les polyméthacrylates (PMA).
Les compositions lubrifiantes selon l'invention ont préférentiellement une valeur d'indice de viscosité ou VI, mesuré selon ASTM D2270 supérieur à 130, préférentiellement supérieur à 140, préférentiellement supérieur à 150.
Préférentiellement, les compositions lubrifiantes selon l'invention ont une viscosité cinématique (KV100) à 100°C selon la norme ASTM D445, comprise entre 3,8 cSt et 26,1 cSt, de préférence entre 5,6 et 12,5 cSt, ce qui correspond d'après la classification SAE J 300 à des grades 20 (5,6 à 9,3 cSt) ou 30 (9,3 à 12,5 cSt) à chaud.
Préférentiellement, les compositions lubrifiantes selon l'invention sont notamment des compositions lubrifiantes pour moteur multigrades de grade 0W ou 5W à froid, et 20 ou 30 à chaud selon la classification SAE J 300.
Les compositions lubrifiantes pour moteurs utilisées selon l'invention peuvent en outre contenir tous type d'additifs adaptés à une utilisation comme huile moteur. Ces additifs peuvent être introduits isolément et/ou inclus dans des paquets d'additifs utilisés dans les formulations des lubrifiants commerciaux, de niveaux de performance tels que définis par l'ACEA (Association des constructeurs Européens d'Automobiles) et/ou l'API (American Petroleum Institute). Ces paquets d'additifs (ou compositions additives) sont des concentrés comportant environ 30% en poids d'huile de base de dilution.
Ainsi, les compositions lubrifiantes selon l'invention peuvent contenir notamment et non limitativement des additifs anti-usure et extrême-pression, des antioxydants, des détergents surbasés ou non, des améliorants de point d'écoulement, des dispersants, des anti-mousse, des épaississants...
Les additifs anti-usure et extrême-pression protègent les surfaces en frottement par formation d'un film protecteur adsorbé sur ces surfaces. L'additif le plus couramment utilisé est le dithiophosphate de zinc ou ZnDTP. On trouve également dans cette catégorie divers composés phosphorés, soufrés, azotés, chlorés et borés.
Il existe une grande variété d'additifs anti-usure, mais la catégorie la plus utilisée dans les compositions lubrifiantes utilisées comme huiles moteur est celle des additifs phosphosoufrés comme les alkylthiophosphates métalliques, en particulier les alkylthiophosphates de zinc, et plus spécifiquement les dialkyldithiophosphates de zinc ou ZnDTP. Les composés préférés sont de formule Zn((SP(S)(OR9)(ORio))2, ou R9 et Ri0 sont des groupements alkyl, linéaires ou ramifiés, saturés ou insaturés, comportant préférentiellement de 1 à 18 atomes de carbone. Le ZnDTP est typiquement présent à des teneurs de l'ordre de 0,1 à 2% en masse, par rapport à la masse totale de la composition lubrifiante.
Les phosphates d'amines, les polysulfures, notamment oléfines soufrées, sont également des additifs anti-usure couramment employés.
Les additifs anti-usure et extrême-pression sont généralement présents dans les compositions lubrifiantes pour moteur à des teneurs comprises entre 0,5 et 6% en masse, préférentiellement comprises entre 0,7 et 2%, préférentiellement entre 1 et 1,5%, par rapport à la masse totale de la composition lubrifiante.
Les antioxydants retardent la dégradation des huiles en service, dégradation qui peut se traduire par la formation de dépôts, la présence de boues, ou une augmentation de la viscosité de la composition lubrifiante. Ils agissent comme inhibiteurs radicalaires ou destructeurs d'hydropéroxydes. Parmi les antioxydants couramment employés, on trouve les antioxydants de type phénolique et/ou aminés.
Les antioxydants phénoliques peuvent être sans cendre, ou bien être sous forme de sels métalliques neutres ou basiques. Typiquement, ce sont des composés contenant un groupement hydroxyle stériquement encombré, par exemple lorsque deux groupements hydroxyles sont en position ortho ou para l'un de l'autre, ou que le phénol est substitué par un groupe alkyl comportant au moins 6 atomes de carbone.
Les composés aminés sont une autre classe d'antioxydants pouvant être utilisés, seuls ou éventuellement en combinaison avec les composés phénoliques. Des exemples typiques sont les aminés aromatiques, de formule R11R12R13N, où Ru est un groupement aliphatique, ou un groupement aromatique éventuellement substitué, R12 est un groupement aromatique éventuellement substitué, R13 est l'hydrogène, ou un groupement alkyl ou aryl, ou un groupement de formule Ri4S(0)xRi5, où Ri4 et Ri5 sont des groupes alkylène, alkenylène, ou aralkylène, et x est un nombre entier égal à 0, 1 ou 2.
Des alkyl phénols sulphurisés ou leurs sels de métaux alcalins et alcalino-terreux sont également utilisés comme anti-oxydants.
Une autre classe d'antioxydants est celle des composés cuivrés solubles dans l'huile, par exemples les thio- ou dithiophosphates de cuivre, les sels de cuivre et d'acides carboxyliques, les dithiocarbamates, sulphonates, phénates, acétylacétonates de cuivre. Les sels de cuivre I et II, d'acide ou d'anhydride succiniques sont utilisés.
Ces composés, seuls ou en mélange, sont typiquement présents dans les compositions lubrifiantes pour moteur dans des quantités comprises entre 0,1 et 5% en masse, préférentiellement entre 0,3 et 2%, encore plus préférentiellement entre 0,5 et 1,5%, par rapport à la masse totale de la composition lubrifiante.
Les détergents réduisent la formation de dépôts à la surface des pièces métalliques par dissolution des produits secondaires d'oxydation et de combustion, et permettent la neutralisation de certaines impuretés acides provenant de la combustion et se retrouvant dans la composition lubrifiante.
Les détergents communément utilisés dans la formulation de compositions lubrifiantes sont typiquement des composés anioniques comportant une longue chaîne hydrocarbonée lipophile et une tête hydrophile. Le cation associé est typiquement un cation métallique d'un métal alcalin ou alcalino-terreux.
Les détergents sont préférentiellement choisis parmi les sels de métaux alcalins ou alcalino-terreux d'acides carboxyliques, sulfonates, salicylates, naphténates, ainsi que les sels de phénates, préférentiellement de calcium, magnésium, sodium ou baryum.
Ces sels métalliques peuvent contenir le métal en quantité approximativement stoechiométrique ou bien en excès (en quantité supérieure à la quantité stoechiométrique). Dans ce dernier cas, on a affaire à des détergents dits su rbasés.
Le métal en excès apportant le caractère surbasé au détergent se présente sous la forme de sels métalliques insolubles dans l'huile, par exemple carbonate, hydroxyde, oxalate, acétate, glutamate, préférentiellement carbonate, préférentiellement de calcium, magnésium, sodium ou baryum.
Les compositions lubrifiantes selon la présente invention peuvent contenir tous types de détergents connus de l'homme du métier, neutres ou bien surbasés. Le caractère plus ou moins surbasé des détergents est caractérisé par le BN (base number), mesuré selon la norme ASTM D2896, et exprimé en mg de KOH par gramme. Les détergents neutres ont un BN compris environ entre 0 et 80 mg KOH/g. Les détergents surbasés ont, eux, des valeurs de BN typiquement de l'ordre de 150 mg KOH/g et plus, voire 250 mg KOH/g ou 450 mg KOH/g ou plus. Le BN de la composition lubrifiante contenant les détergents est mesuré selon la norme ASTM D2896 et exprimé en mg de KOH par gramme de composition lubrifiante.
Préférentiellement, les quantités de détergents inclus dans les compositions lubrifiantes selon l'invention sont ajustées de manière à ce que le BN desdites huiles, mesuré selon la norme ASTM D2896, soit compris entre 5 et inférieur ou égal à 20 mg de KOH par gramme de composition lubrifiante, préférentiellement entre 8 et 15 mg de KOH par gramme de composition lubrifiante.
Les additifs abaisseurs de point d'écoulement améliorent le comportement à froid des compositions lubrifiantes en ralentissant la formation de cristaux de paraffine. Ce sont par exemple des polyméthacrylates d'alkyle, polyacrylates, polyarylamides, polyalkylphénols, polyalkylnaphtalènes, polystyrène alkylé. Ils sont généralement présents dans les compositions lubrifiantes selon l'invention à des teneurs comprises entre 0,1 et 0,5% en masse, par rapport à la masse de composition lubrifiante.
Les dispersants comme par exemples des succinimides, des PIB (polyisobutène) succinimides, des Bases de Mannich. Ils assurent le maintien en suspension et l'évacuation des contaminants solides insolubles constitués par les produits secondaires d'oxydation qui se forment lorsque la composition lubrifiante est en service. Le taux de dispersant est typiquement compris entre 0,5 et 10% en masse, préférentiellement entre 1 et 5%, par rapport à la masse totale de la composition lubrifiante.
Les compositions lubrifiantes selon l'invention peuvent aussi comprendre des modificateurs de frottement, par exemple des modificateurs de frottement inorganiques choisi parmi les composés organomolybdène. Ces composés sont comme leur nom l'indique des composés à base de molybdène, de carbone et d'hydrogène, mais on trouve aussi dans ces composés du soufre et du phosphore, et aussi de l'oxygène et de l'azote.
Les composés organomolybdène utilisés dans les compositions lubrifiantes selon l'invention sont par exemple, les dithiophosphates de molybdène, les dithiocarbamates de molybdène, les dithiophosphinates de molybdène, les xanthates de molybdène, les thioxanthates de molybdène, et divers complexes organique du molybdène tels que les carboxylates de molybdène, les esters de molybdène, les amides de molybdène, pouvant être obtenu par réaction d'oxyde de molybdène ou de molybdates d'ammonium avec des corps gras, des glycérides ou des acides gras, ou des dérivés d'acides gras (esters, aminés, amides...).
Des composés organomolybdène utilisés dans les compositions lubrifiantes selon la présente invention sont par exemple décrits dans la demande EP2078745, du paragraphe [0036] au paragraphe [062].
Les composés organomolybdène préférés sont les dithiophosphates de molybdène et/ou les dithiocarbamates de molybdène.
En particulier, les dithiocarbamates de molybdène se sont avérés très efficaces en combinaison avec les polyalkylène glycols pour réduire l'usure des coussinets. Ces dithiocarbamates de molybdène ont pour formule générale la formule générale (I) suivante dans laquelle Ri, R2, R3 ou R4 sont indépendamment l'un de l'autre des groupements alkyles linéaires ou ramifiés, saturés ou insaturés, comprenant de 4 à 18 atomes de carbone, préférentiellement de 8 à 13.
Figure imgf000015_0001
De même pour les dithiophosphates de molybdène. Ces dithiophosphates de molybdène ont pour formule générale la formule générale (II) suivante dans laquelle R5, R6, R7 ou R8 sont indépendamment l'un de l'autre des groupements alkyles linéaires ou ramifiés, saturés ou insaturés, comprenant de 4 à 18 atomes de carbone, préférentiellement de 8 à 13.
Figure imgf000015_0002
Les compositions lubrifiantes selon l'invention peuvent comprendre entre 0,1 et 10% en masse, par rapport à la masse totale de composition lubrifiante, de composé organomolybdène, de préférence entre 0,5 et 8%, plus préférentiellement entre 1 et 5%, encore plus préférentiellement entre 2 et 4%.
Les composés organomolybdène utilisés dans les compositions lubrifiantes selon l'invention comprennent de 1 à 30% en masse de molybdène, par rapport à la masse totale de composé organomolybdène, de préférence de 2 à 20%, plus préférentiellement de 4 à 10%, encore plus préférentiellement de 8 à 5%. Les composés organomolybdène utilisés dans les compositions lubrifiantes selon l'invention comprennent de 1 à 30% en masse de soufre, par rapport à la masse totale de composé organomolybdène, de préférence de 2 à 20%, plus préférentiellement de 4 à 10%, encore plus préférentiellement de 8 à 5%.
Les composés organomolybdène utilisés dans les compositions lubrifiantes selon l'invention comprennent de 1 à 10% en masse de phosphore, par rapport à la masse totale de composé organomolybdène, de préférence de 2 à 8%, plus préférentiellement de 3 à 6%, encore plus préférentiellement de 4 à 5%.
Exemples
On a simulé l'aggravation sur l'usure des coussinets d'un moteur muni d'un système Stop-and-Start par un essai consistant en une succession de 12000 cycles arrêt/démarrage pendant 150 heures:
1) Démarrage moteur,
2) Fonctionnement 10 secondes sur point de ralenti,
3) Arrêt moteur,
Reprise de la séquence 1 à 3.
Le système testé comprend un moteur diesel 4 cylindres de couple maximum 200 N.m de 1750 à 2500 tours/min. Il est de type Stop-and-Start et comprend un alterno-démarreur entre l'embrayage et la boite de vitesse du véhicule. La composition lubrifiante pour moteur est maintenue aux environs de 100°C dans ces essais. L'usure est suivie par une technique usuelle de radiotraceurs, consistant à irradier la surface des coussinets de bielle dont on veut tester l'usure, et à mesurer en cours d'essai l'augmentation en radioactivité de la composition lubrifiante pour moteur, c'est-à-dire la vitesse de chargement de la composition lubrifiante en particules métalliques irradiées. Cette vitesse est directement proportionnelle à la vitesse d'usure des coussinets.
Les résultats se basent sur l'analyse comparative de ces vitesses d'endommagement composition lubrifiante de référence et composition lubrifiante à tester) et sont validés par un encadrement avec une composition lubrifiante de référence afin d'intégrer des éléments d'adaptation de surface positifs ou négatifs à la vitesse d'endommagement.
Les vitesses d'endommagement des compositions lubrifiantes testées sont toutes comparées à la vitesse d'endommagement de la composition lubrifiante de référence et quantifiées sous forme de ratio % de vitesse nommé Usure dans le Tableau I ci-dessous.
La composition lubrifiante A est une composition lubrifiante de référence de grade
5W30. La composition lubrifiante B est une composition lubrifiante additivée avec un polyalkylène glycol issu de l'homopolymérisation d'oxydes de propylène (100% PO). La masse moléculaire de ce polyakylène glycol est de 400 g/mol (ASTM D4274), son indice de viscosité est de 65 (ASTM D2270), son KV40 est de 30 cSt (ASTM D445), son KVlOO est de 5 cSt (ASTM D445).
Les compositions massiques et propriétés des compositions lubrifiantes testées sont regroupées dans le tableau I ci-dessous :
Tableau I
Figure imgf000017_0001
* hors huile de base de dilution du paquet d'additifs
L'huile de base utilisée est un mélange d'huiles de base de groupe III, d'indice de viscosité égal à 171.
Le polymère améliorant l'indice de viscosité utilisé est un polymère styrène/butadiène linéaire de masse Mw égale à 139 700 (mesurée selon la norme ASTM D5296), de masse Mn égale à 133 000 (mesurée selon la norme ASTM D5296), d'indice de polydispersité égal à 1,1, à 8% de matière active dans une huile de base de groupe III.
L'anti-oxydant est un anti-oxydant aminé de structure alkylarylamine.
Le PPD ou Pour Point Depressant ou Abaisseur de Point d'Ecoulement est de type polyméthacrylate.
Le paquet d'additifs utilisé comprend des additifs anti-usure, anti-oxydants, dispersants et détergents classiques. On constate que l'utilisation d'un polyalkylène glycol dans la composition lubrifiante B permet de réduire l'usure comparativement à la composition lubrifiante A.

Claims

Revendications :
1. Utilisation d'une composition lubrifiante comprenant au moins une huile de base et au moins un polyalkylène glycol obtenu par copolymérisation d'oxydes d'éthylène et d'oxydes de propylène ou obtenu par homopolymérisation d'oxydes de propylène, pour réduire l'usure des coussinets et pour la lubrification de surfaces métalliques, de surfaces polymériques et/ou de surfaces de carbone amorphe, des moteurs à combustion interne thermique des véhicules à motorisation hybride et/ou microhybride.
2. Utilisation selon la revendication 1 dans laquelle les véhicules à motorisation microhybride sont équipés d'un alterno-démarreur ou d'un démarreur renforcé.
3. Utilisation selon la revendication 1 ou 2 pour réduire l'usure des coussinets de bielle du moteur à combustion interne thermique.
4. Utilisation selon l'une quelconque des revendications 1 à 3 pour augmenter la durée de vie des coussinets du moteur à combustion interne thermique, en particulier la durée de vie des coussinets de bielle du moteur à combustion interne thermique.
5. Utilisation selon l'une quelconque des revendications 1 à 4 pour augmenter l'intervalle de temps entre les changements des coussinets du moteur à combustion interne thermique, en particulier l'intervalle de temps entre les changements des coussinets de bielle du moteur à combustion interne thermique.
6. Utilisation selon l'une quelconque des revendications 1 à 5 dans laquelle la composition lubrifiante comprend de 0,1 à 20% en masse, par rapport à la masse totale de composition lubrifiante, de polyalkylène glycol, de préférence de 0,2 à 15%, plus préférentiellement de 0,5 à 10%, encore plus préférentiellement de 1 à 5%, encore plus préférentiellement de 2 à 4%.
7. Utilisation selon l'une quelconque des revendications 1 à 6 dans laquelle le polyalkylène glycol est issu de l'homopolymérisation d'oxydes de propylène.
8. Utilisation selon l'une quelconque des revendications 1 à 6, dans laquelle le polyalkylène glycol est issu de la copolymérisation d'oxyde d'éthylène et d'oxyde de propylène et comprend au moins 60% en masse d'oxyde de propylène, par rapport à la masse totale de polyalkylène glycol.
9. Utilisation selon l'une quelconque des revendications 1 à 8 dans laquelle la surface métallique est un alliage.
10. Utilisation selon la revendication 9 dans laquelle l'alliage est de l'acier.
11. Utilisation selon la revendication 9 dans laquelle l'alliage comprend comme élément de base de l'étain (Sn), du plomb (Pb), du cuivre (Cu), de l'aluminium (Al), du cadmium (Cd), de l'argent (Ag) ou du zinc (Zn).
12. Utilisation selon la revendication 11 dans laquelle l'alliage comprend du plomb (Pb) et du cuivre (Cu).
13. Utilisation selon l'une quelconque des revendications 1 à 8 dans laquelle la surface polymérique comprend du polytétrafluoroéthylène.
14. Utilisation selon l'une quelconque des revendications 1 à 13 dans laquelle la viscosité cinématique à 100°C de la composition lubrifiante, mesurée selon la norme ASTM D445, est comprise entre 5,6 et 12,5 cSt.
PCT/EP2013/059274 2012-05-04 2013-05-03 Lubrifiant moteur pour vehicules a motorisation hybride ou micro-hybride WO2013164459A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR20147030983A KR20150020533A (ko) 2012-05-04 2013-05-03 하이브리드 엔진 또는 마이크로-하이브리드 엔진을 가진 차량용 엔진 윤활유
EP13720405.3A EP2844725A1 (fr) 2012-05-04 2013-05-03 Lubrifiant moteur pour vehicules a motorisation hybride ou micro-hybride
JP2015509452A JP6190449B2 (ja) 2012-05-04 2013-05-03 ハイブリッドエンジンまたはマイクロハイブリッドエンジンを有する車両のエンジン潤滑剤
CN201380027812.9A CN104334697A (zh) 2012-05-04 2013-05-03 用于具有混合动力或微混合动力发动机的车辆的发动机润滑剂
IN9186DEN2014 IN2014DN09186A (fr) 2012-05-04 2013-05-03

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1254151A FR2990214B1 (fr) 2012-05-04 2012-05-04 Lubrifiant moteur pour vehicules a motorisation hybride ou micro-hybride
FR1254151 2012-05-04

Publications (1)

Publication Number Publication Date
WO2013164459A1 true WO2013164459A1 (fr) 2013-11-07

Family

ID=48289197

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2013/059274 WO2013164459A1 (fr) 2012-05-04 2013-05-03 Lubrifiant moteur pour vehicules a motorisation hybride ou micro-hybride

Country Status (8)

Country Link
EP (1) EP2844725A1 (fr)
JP (1) JP6190449B2 (fr)
KR (1) KR20150020533A (fr)
CN (1) CN104334697A (fr)
AR (1) AR090936A1 (fr)
FR (1) FR2990214B1 (fr)
IN (1) IN2014DN09186A (fr)
WO (1) WO2013164459A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018078290A1 (fr) * 2016-10-27 2018-05-03 Total Marketing Services Composition pour vehicule electrique
EP3430109A1 (fr) * 2016-03-15 2019-01-23 Total Marketing Services Composition lubrifiante a base de polyalkylene glycols

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6605948B2 (ja) * 2015-12-24 2019-11-13 シェルルブリカンツジャパン株式会社 内燃機関用潤滑油組成物
CN108570344A (zh) * 2018-05-28 2018-09-25 湖北三环化学新材料股份有限公司 一种智能机械减速系统专用润滑介质及其制备方法
US11697782B2 (en) * 2020-07-09 2023-07-11 ExxonMobil Technology and Engineering Company Engine oil lubricant compositions and methods for making same with superior engine wear protection and corrosion protection
US11753599B2 (en) 2021-06-04 2023-09-12 Afton Chemical Corporation Lubricating compositions for a hybrid engine

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2078745A1 (fr) 2007-12-20 2009-07-15 Chevron Oronite Company LLC Compositions d'huile de lubrification comportant un composé de molybdène et dialkyldithiophosphate de zinc
WO2009134716A1 (fr) 2008-04-28 2009-11-05 Dow Global Technologies Inc. Composition de lubrifiant à base de polyalkylèneglycol
EP2177596A1 (fr) 2008-10-20 2010-04-21 Castrol Limited Procédé de l'opération d'un moteur hybride

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6088094A (ja) * 1983-10-20 1985-05-17 Nippon Oil & Fats Co Ltd 潤滑油組成物
JP3005280B2 (ja) * 1990-11-16 2000-01-31 東燃株式会社 潤滑油組成物
JPH0826894B2 (ja) * 1992-08-28 1996-03-21 大同メタル工業株式会社 軽合金ハウジング用すべり軸受
US6125808A (en) * 1999-04-07 2000-10-03 Timewell; Richard R. Apparatus and method for starting an internal combustion engine
JP3679312B2 (ja) * 2000-06-15 2005-08-03 大同メタル工業株式会社 複層摺動材料
MX221601B (en) * 2004-05-14 2004-07-22 Basf Ag Functional fluids containing alkylene oxide copolymers having low pulmonary toxicity
JP2007224887A (ja) * 2006-02-27 2007-09-06 Toyota Motor Corp 油圧システム
JP5815520B2 (ja) * 2009-07-23 2015-11-17 ダウ グローバル テクノロジーズ エルエルシー グループi〜ivの炭化水素油のための潤滑添加剤として有用なポリアルキレングリコール
US8455415B2 (en) * 2009-10-23 2013-06-04 Exxonmobil Research And Engineering Company Poly(alpha-olefin/alkylene glycol) copolymer, process for making, and a lubricant formulation therefor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2078745A1 (fr) 2007-12-20 2009-07-15 Chevron Oronite Company LLC Compositions d'huile de lubrification comportant un composé de molybdène et dialkyldithiophosphate de zinc
WO2009134716A1 (fr) 2008-04-28 2009-11-05 Dow Global Technologies Inc. Composition de lubrifiant à base de polyalkylèneglycol
US20110039741A1 (en) 2008-04-28 2011-02-17 Thoen Johan A Polyalkylene glycol lubricant composition
EP2177596A1 (fr) 2008-10-20 2010-04-21 Castrol Limited Procédé de l'opération d'un moteur hybride

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3430109A1 (fr) * 2016-03-15 2019-01-23 Total Marketing Services Composition lubrifiante a base de polyalkylene glycols
WO2018078290A1 (fr) * 2016-10-27 2018-05-03 Total Marketing Services Composition pour vehicule electrique
FR3058156A1 (fr) * 2016-10-27 2018-05-04 Total Marketing Services Composition pour vehicule electrique
US11473029B2 (en) 2016-10-27 2022-10-18 Total Marketing Services Composition for an electric vehicle

Also Published As

Publication number Publication date
AR090936A1 (es) 2014-12-17
JP6190449B2 (ja) 2017-08-30
IN2014DN09186A (fr) 2015-07-10
CN104334697A (zh) 2015-02-04
JP2015516008A (ja) 2015-06-04
KR20150020533A (ko) 2015-02-26
EP2844725A1 (fr) 2015-03-11
FR2990214A1 (fr) 2013-11-08
FR2990214B1 (fr) 2015-04-10

Similar Documents

Publication Publication Date Title
EP2844726B1 (fr) Composition lubrifiante pour moteur
EP3697876B1 (fr) Utilisation d'une composition pour refroidir et lubrifier un système de motorisation d'un véhicule
EP2986693B1 (fr) Composition lubrifiante a base de nanoparticules metalliques
EP2844725A1 (fr) Lubrifiant moteur pour vehicules a motorisation hybride ou micro-hybride
EP3423551A1 (fr) Composition lubrifiante à base d'amines neutralisées et de molybdène
EP2788462B1 (fr) Lubrifiant moteur pour vehicules a motorisation hybride ou micro-hybride
WO2018210829A1 (fr) Utilisation de compositions lubrifiantes pour ameliorer la proprete d'un moteur de vehicule 4-temps
EP2958980A1 (fr) Composition lubrifiante a base de composes amines
EP2488618B1 (fr) Utilisation d'un lubrifiant moteur
WO2019202150A1 (fr) Composition lubrifiante pour moteurs industriels a potentiel fe amplifie
WO2018077780A1 (fr) Composition lubrifiante
WO2024056827A1 (fr) Utilisation d'un monoester dans une composition lubrifiante pour transmissions de
EP4314214A1 (fr) Lubrification de moteur de véhicule hybride rechargeable et véhicule hybride comprenant un prolongateur d'autonomie

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13720405

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2013720405

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2015509452

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20147030983

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE