WO2013115524A1 - 우수한 내공식성을 가지는 고기능성 고질소 2상 스테인리스강 - Google Patents

우수한 내공식성을 가지는 고기능성 고질소 2상 스테인리스강 Download PDF

Info

Publication number
WO2013115524A1
WO2013115524A1 PCT/KR2013/000619 KR2013000619W WO2013115524A1 WO 2013115524 A1 WO2013115524 A1 WO 2013115524A1 KR 2013000619 W KR2013000619 W KR 2013000619W WO 2013115524 A1 WO2013115524 A1 WO 2013115524A1
Authority
WO
WIPO (PCT)
Prior art keywords
stainless steel
phase
weight
nitrogen
present
Prior art date
Application number
PCT/KR2013/000619
Other languages
English (en)
French (fr)
Inventor
하헌영
이태호
황병철
Original Assignee
한국기계연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020120009794A external-priority patent/KR101306263B1/ko
Priority claimed from KR1020120009787A external-priority patent/KR101306262B1/ko
Application filed by 한국기계연구원 filed Critical 한국기계연구원
Priority to JP2014537011A priority Critical patent/JP5789342B2/ja
Priority to EP13742948.6A priority patent/EP2770078B1/en
Publication of WO2013115524A1 publication Critical patent/WO2013115524A1/ko
Priority to US14/251,349 priority patent/US9663850B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite

Definitions

  • the present invention relates to a highly functional high nitrogen two-phase stainless steel having excellent pitting resistance.
  • Nickel (Ni) -dependent commercial austenitic stainless steel is a stainless steel that is applied to the corrosion-resistant environment, and has the largest market share, accounting for 60% of the total stainless steel usage.
  • nickel (Ni) an essential austenite phase stabilizer, is expensive and unstable, which makes it difficult to supply stable demand for fixed demand.
  • studies are being actively conducted to replace the commercial austenitic stainless steel with low nickel (Ni) or low nickel (NO-free) stainless steel to secure economic feasibility.
  • Duplex stainless steel is a stainless steel in which ferritic and austenite phases are finely bonded in a volume ratio of about 50:50, and have a lower nickel (Ni) content than commercial austenitic stainless steels.
  • Ni nickel
  • the price competitiveness is high, and the performance range that can be realized through the control of alloy composition and microstructure is very wide. Therefore, research is being conducted to use it as a substitute for the existing nickel (Ni) dependent stainless steel.
  • Lean two-phase stainless steel grades include 2 weight 2304 grade stainless steel (UNS S32304) containing 23 weight% Cr (Cr) and nickel (NO 4 weight 3 ⁇ 4>) and 1 weight nickel (Ni) content.
  • LDX210K Cr (Cr) 21% by weight (1% by weight of Nickel (Ni), UNS S32101) has been developed to achieve corrosion resistance equivalent to AISI 316L stainless steel and lower strength and elongation than AISI 316L.
  • the two-phase stainless steel has a high nitrogen (N) content because the ferrite phase with a low nitrogen solubility of 0.04 wt% or less occupies about 50% by volume. This is not easy. Therefore, the nitrogen dissolved in the two-phase stainless steel base metal is preferentially dissolved in the austenite phase, and the chemical composition difference between the austenite phase and the ferrite phase is exhibited by nitrogen (N) over-solubilized in the austenite phase. Nitrogen bonds and precipitated phases create problems of deteriorating the mechanical-chemical properties of stainless steels. Due to this problem, nitrogen (N), and the delay is active is a two-phase high-nitrogen stainless development and commercialization Steel used as, "is the actual circumstances that should be urgently provided a solution for this.
  • the inventors of the present invention by using a manganese (Mn) and nitrogen (N) to stabilize the austenite phase in a two-phase stainless steel consisting of a two-phase structure of ferrite phase and austenite phase, which can extend the range of physical properties (Ni) Reduces the use or excludes the use of nickel.
  • Molybdenum (Mo) and tungsten (W) are used to show corrosion resistance above the levels of commercial austenitic stainless steels and commercial two-phase stainless steels. By combining, a composition of low nickel-nitrogen two-phase stainless steel exhibiting excellent mechanical properties compared to commercially available austenitic stainless steel and two-phase stainless steel was completed.
  • An object of the present invention is to provide a high-functional high nitrogen two-phase stainless steel having excellent pitting resistance.
  • High functional high nitrogen two-phase stainless steel with excellent pitting resistance according to the present invention
  • the two-phase stainless steel according to the present invention includes a small amount of nickel (Ni) in an amount of 0.7 wt 3 ⁇ 4 or less, which has a high price stability of steel materials compared to austenitic stainless steel for general corrosion resistance.
  • the two-phase stainless steel according to the present invention exhibits superior mechanical properties compared to commercial austenitic stainless steels while having equivalent / excellent levels of corrosion resistance compared to austenitic stainless steels for general corrosion resistance environments. It can replace the use of stainless steel for austenitic, and can be used as the frame part of storage containers and transportation equipment. It can be used as a high value-added material in structural materials, steel pipe materials, bioapplications, etc. in the paper, paper, marine, chemical process, oil refining, and power generation industries.
  • the two-phase stainless steel according to the present invention may be made of a tube, wire, strip, rod, sheet, or bar-shaped material or other materials requiring high strength and high elongation properties.
  • EBSD backscattered electron diffract ion
  • FIG. 2 is a graph showing the mechanical properties (tensile strength X elongation) of two-phase stainless steels according to the present invention compared with those of commercial austenitic stainless steels and commercial two-phase stainless steels.
  • Figure 3 shows the commercial resistance level of the official resistance level of two-phase stainless steel according to the present invention Graphs shown in comparison with knight stainless steel and commercial two-phase stainless steel. 25>
  • duplex stainless steels consisting of a ferrite-austenite phase comprising carbon (C) and up to 0.5% by weight of silicon (Si) ol.
  • the two-phase stainless steel according to the present invention is 0.01 to 0.7% by weight of nickel
  • the two-phase stainless steel further contains 0.01 to 0.7% by weight of nickel, thereby making the austenite phase noble and maintaining a high nitrogen content at the time of ingoting.
  • the two-phase stainless steel according to the present invention may not contain nickel.
  • the two-phase stainless steel is 16.5 to 19.5% by weight of chromium (Cr), 2.5 to 3.5% by weight of molybdenum (Mo), 1.0 to 5.5% by weight of tungsten (W), 5.5 to 7.0 Weight% manganese (Mn), 0.35 to 0.45 weight% nitrogen (N), balance iron (Fe) and impurity up to 0.03 weight% carbon (C), and 0.5 weight 3 ⁇ 4> silicon ( Si).
  • the two-phase stainless steel according to the present invention employs nitrogen in a content of 0.35 to 0.45% by weight in order to cause instability of the material and to replace nickel (Ni), which is harmful to the environment and human body, and 5.5% by weight.
  • Manganese (Mn) was added above% to stabilize the austenite phase economically.
  • the chromium (Cr) content can be lowered to 19.5% by weight or less to reduce the unit cost of the material and to form sigma ( ⁇ ) phases that precipitate when the chromium (Cr) content is high. It can be suppressed to stabilize the ferrite phase.
  • Molybdenum (Mo) and tungsten (W) can impart excellent pitting resistance while stabilizing the ferrite phase.
  • tungsten (W) exhibits ferrite stabilization and corrosion resistance enhancement characteristics similar to molybdenum (Mo), and the precipitation activity of sigma ( ⁇ ), which is detrimental to mechanical properties and corrosion resistance, is lower than that of molybdenum (Mo). Can be used as an alternative to Mo).
  • the volume fraction of the ferrite phase is preferably composed of 40 to 60%. If the volume fraction of the ferrite phase is less than 40%, there is a problem that the strength and stress corrosion cracking (SCO resistance) is lowered, and if the volume fraction of the ferrite phase exceeds 60%, the volume fraction of the austenitic phase is lowered. There is a problem that the elongation is lowered.
  • Chromium (Cr) is a ferrite stabilizing element and an essential element that imparts corrosion resistance to stainless steel.
  • chromium (Cr) plays a role of increasing the solubility of nitrogen (N)
  • the two-phase stainless steel according to the present invention is to ensure the corrosion resistance of the steel and to improve the solubility of nitrogen (N) in the steel Chromium (Cr) was added to at least 16.5 weight 3 ⁇ 4.
  • chromium (Cr) is excessively added, the delta ferrite phase remains in excess after solidification of the molten metal, and there is a problem of promoting sigma ( ⁇ ) phase precipitation of two-phase stainless steel.
  • the non-uniformity of the tissue due to the precipitation of the delta ferrite phase and the sigma ( ⁇ ) phase limits the content of the cr (Cr) to 16.5 to 19.5% by weight because it reduces the official resistance of the steel.
  • the two-phase stainless steel of the present invention is molybdenum (Mo) 2.5 By adding more than 3 ⁇ 4 weight to improve the pitting resistance of the alloy.
  • molybdenum (Mo) is a very expensive alloy element, the content of molybdenum (Mo) is limited to not more than 3.5% by weight in order to secure steel economy.
  • Tungsten 0V is an alloying element of stainless steel, and its role (ferritic phase stabilization, corrosion resistance, etc.) is similar to molybdenum (Mo), and it is an alternative to molybdenum (Mo) because it is more competitive in price than molybdenum (Mo). Used.
  • molybdenum (Mo) since the activity of forming a sigma ( ⁇ ) phase is lower than that of molybdenum (Mo), it is possible to prevent a decrease in mechanical properties and corrosion resistance due to secondary phase precipitation.
  • molybdenum (Mo) can be replaced with tungsten (W) to improve the low temperature impact strength of the alloy. Therefore, the two-phase stainless steel according to the present invention may use both molybdenum (Mo) and tungsten (W), and replace some of the content of molybdenum (Mo) with tungsten (W). To 5.5% by weight.
  • Nickel is a typical austenite stabilizing element, but as described above, it is extremely variable in price and harmful to the environment and human body. However, nickel is extremely limited in content. However, nickel improves the hot and hot workability of manufacturing alloys. In the two-phase stainless steel of the present invention, the addition amount of nickel (Ni) is excellent because it provides stress corrosion cracking, SCO resistance and excellent corrosion resistance in acidic solution, and suppresses delta ferrite formation during uncouring of the base material. It is defined as 0.01 to 0.7% by weight or does not contain nickel.
  • Manganese (Mn) is an economical austenitic stabilizing element and is added to replace nickel (Ni), an expensive austenitic stabilizing element.
  • manganese increases the solubility of nitrogen (N) in the steel, and as a result, can improve the strength of stainless steel. Therefore, the two-phase stainless steel according to the present invention contains at least 5.5% by weight of manganese (Mn) in order to increase the economics of the steel and the nitrogen (N) solubility.
  • manganese (Mn) When added excessively, nonmetallic inclusions such as manganese sulfide (MnS) or manganese oxide (MnO) may be formed by combining with impurity elements sulfur (S) or oxygen (0). The non-metallic inclusions have a problem of lowering the official resistance of stainless steel by acting as a site for generating a formula, limiting the content of manganese to 7.0% by weight or less.
  • Nitrogen (N) is a strong austenite-stabilizing element and nickel together with manganese (Mn)
  • the two-phase stainless steel according to the present invention has a solid solution of nitrogen (N) of 0.35 weight 3 ⁇ 4 or more to give the steel an excellent strength-ductility combination (Eco index) and pitting resistance.
  • nitrogen (N) may form nitride, and there is a problem in that voids are formed in embrittlement of steel and cast material.
  • the two-phase stainless steel according to the present invention has limited the content of nitrogen (N) to 0.35 to 0.45 weight 3 ⁇ 4.
  • Carbon (C) is an invasive element having an atomic size similar to that of nitrogen (N), and has an advantage of stabilizing austenite and improving strength of steel.
  • carbon (C) readily combines with cr (Cr), the main alloying element of stainless steel, at high temperatures to form stable cr-carbides (Cr 23 C 6, etc.).
  • the crumb-carbide is precipitated from the grain boundary while consuming the crumb (Cr) of the adjacent base, and the chromium-depletion zone around the precipitated crumb-carbide acts as a source of official corrosion. Therefore, the two-phase stainless steel according to the present invention is limited so that the content of carbon (C) does not exceed 0.03% by weight.
  • silicon (Si) is a ferrite phase forming element, and has a property of easily bonding with oxygen (0) in the base material, and thus is mainly used as a deoxidizer during steelmaking.
  • oxygen (0) oxygen
  • the mechanical properties related to toughness are greatly reduced, and there is a problem of forming an intermetallic compound, so that the two-phase stainless steel according to the present invention has limited the content of silicon to 0.5 weight 3 ⁇ 4 or less.
  • the two-phase stainless steel according to the present invention has a ferrite phase. Keep the volume fraction of at least 40%. However, excessively high ferrite content deteriorates the resistance to low temperature interlaminar toughness and hydrogen embrittlement, so that the volume fraction of the ferrite phase is limited not to exceed 60%.
  • the two-phase stainless steel according to the present invention has a tensile strength (TS) of 826 to 933 MPa, a yield strength (YS) of 574 to 640 MPa and an elongation (%) of 26 to 51%. It exhibits excellent properties with an eco-index of 24,000 MPa ⁇ % or more, which is the product of tensile strength and uniform elongation.
  • the eco-index (or eco-index; performance index) of steel materials is an index that quantifies the excellent sustainability among the eco-fr iendly properties required for future steel materials.
  • the tensile strength (MPa) and elongation (3 ⁇ 4) of the steel material are defined as urgent values.
  • the two-phase stainless steel according to the present invention is equivalent to or better than the commercial 300 series austenite stainless steel (UNS S30400, UNS S31603) and commercial two-phase stainless steel (UNS S32304) for general corrosion resistance. Indicates. Mechanical properties of the two-phase stainless steel according to the present invention exceeds the tensile strength, yield strength and elongation values of conventional commercial austenitic stainless steel and two-phase stainless steel, and also has excellent pitting resistance. It can be seen that the superiority of the two-phase stainless steel according to.
  • the two-phase stainless steels of Examples 1 to 7 according to the present invention satisfy the ferrite and austenite phase fractions of 40:60 to 50:50. have.
  • the commercial austenitic stainless steels of Comparative Examples 1 to 2 are composed of austenitic single-phase microstructure, and Comparative Examples 3 to 4, which are commercial two-phase stainless steels, have a phase ratio of about 50:50 of ferrite and austenite. You can see that.
  • the commercial austenitic stainless steels of Comparative Examples 1 to 2 exhibited a yield strength of 170 to 205 MPa, a tensile strength of 485 to 515 MPa, and an elongation of 40 3 ⁇ 4.
  • the commercial two-phase stainless steels of Comparative Examples 3 to 4 exhibited a yield strength of 630 to 680 MPa and an elongation of 25%.
  • the commercial stainless steels of Comparative Examples 1 to 4 exhibit an Eco-index of 15750 to 2,0600 MPa-% level.
  • the two-phase stainless steels of Examples 1 to 7 according to the present invention have a tensile strength (TS) of 826 to 933 MPa, a yield strength (YS) of 574 to 640 MPa, and 26 to An elongation (%) value of 51% is shown. Therefore, the Eco-index, which is the product of tensile strength and elongation, is 24102 to 43022 MPa-%, which is much higher than the commercial stainless steels used as comparative examples.
  • the two-phase stainless steel according to the present invention is able to secure an appropriate level of austenite base despite the use of nickel ( ⁇ or a small amount compared to commercial two-phase stainless steel and austenitic stainless steel). It can be seen that it has a high strength and elongation and the combination is excellent.
  • the formula of the commercial austenitic stainless steel is generated from 0.1967 to 0.3733 V SCE , the 2205 stainless steel, a commercial two-phase stainless steel, the formula occurs under the conditions of the present experimental example Did not do it.
  • the two-phase stainless steel prepared by Examples 1 to 5 of the present invention can be seen that the formula occurs or the formula does not occur at the potential of 0.2424 V SCE or more under the conditions of the present experimental example.
  • the two-phase stainless steels prepared in Examples 6 and 7 do not generate a formula in the chloride atmosphere of the present experiment.
  • the two-phase stainless steel according to the present invention in a chloride atmosphere has better formula resistance than commercial austenitic stainless steel for general corrosion resistance, and in particular, the corrosion resistance of two-phase stainless steel containing a small amount of nickel. It was confirmed that it was on the same level as the official resistance of commercial two-phase stainless steel.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Treatment Of Steel In Its Molten State (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

본 발명은 우수한 내공식성을 가지는 고기능성 고질소 2상 스테인리스강에 관한 것으로, 상세하게는 16.5 내지 19.5 중량%의 크롬(Cr)과, 2.5 내지 3.5 중량% 의몰리브덴(Mo)과, 1.0 내지 5.5 중량%의 텅스텐(W)과, 5.5 내지 7.0 중량%의 망 간(Mn)과, 0.35 내지 0.45 중량%의 질소(N)와, 잔부인 철(Fe)을 포함하는 페라이트 -오스테나이트 상으로 이루어지는 2상 스테인리스강(duplex stainless steels)을 제공한다. 본 발명에 따른 내공식성이 우수한 고기능성 고질소 2상 스테인리스강은 강재의 가격 불안정 및 환경부담을 가중하는 니켈(Ni)을 배제 또는 저감하고 망간 (Mn)과 질소(N)로 대체함으로써 강의 경제성, 가격 안정성, 및 환경친화성을 향상 시킬 수 있다.

Description

【명세서】
【발명의 명칭】
우수한 내공식성을 가지는 고기능성 고질소 2상 스테인리스강 【기술분야】
<ι> 본 발명은 우수한 내공식성을 가지는 고기능성 고질소 2상 스테인리스강에 관한 것이다.
<2>
【배경기술]
<3> 니켈 (Ni) 의존형 상용 오스테나이트 스테인리스강은 범내식환경에 적용되는 스테인리스강으로 전체 스테인리스강 사용량의 60 %를 차지하는 시장 점유율이 가 장 큰 강종이다. 그러나 오스테나이트 상안정 원소로 필수적인 니켈 (Ni)은 고가이 며 또한 가격이 불안정한 문제를 가지므로 고정 수요에 대한 안정적 공급에 어려움 이 발생하고 있다. 이를 해결하기 위해 상용 오스테나이트 스테인리스강을 니켈 (Ni) 저함유 (low Ni) 또는 니켈 (NO 무함유 (Ni-free) 스테인리스강으로 대체하여 경제성을 확보하고자 하는 연구가 활발히 진행되고 있다.
<4>
<5> 2상 스테인리스강 (duplex stainless steel)은 페라이트상과 오스테나이트상 이 약 50:50의 부피비로 미세하게 결합된 스테인리스강으로, 상용 오스테나이트계 스테인리스강에 비해 니켈 (Ni) 함량이 낮아 가격경쟁력이 높으며, 합금 조성 및 미 세조직의 제어를 통해 구현할 수 있는 성능범위가 매우 넓다는 장점이 있어서 기존 의 니켈 (Ni) 의존형 스테인리스강의 대체재로 활용하기 위한 연구가진행 중이다.
:6> 또한ᅳ 2상 스테인리스강에서도 니켈 (Ni) 함량을 더욱 낮춘 저감형 (lean) 2상 스테인리스강이 연구 ·개발되었고 이중 일부 제품이 상용화되어 기존의 오스테나이 트계 스테인리스강을 대체하여 사용되고 있다. 저감형 (lean) 2상 스테인리스강 종 으로는 크름 (Cr) 23 중량 % 및 니켈 (NO 4중량 ¾>를 포함하는 2304급 2상 스테인리스 강 (UNS S32304)과, 니켈 (Ni) 함량을 1 중량 %까지 낮추면서도 AISI 316L 스테인리스 강과 동등한 내식수준과 AISI 316L보다 뛰어난 강도 및 연신율을 구현한 LDX210K 크름 (Cr) 21 중량 %ᅳ 니켈 (Ni) 1중량 %, UNS S32101)이 개발된 바 있다. 그러나, 2상 스테인리스강은 질소 고용도가 0.04 중량 % 이하로 낮은 페라이 트상이 부피비로 약 50 %를 차지하기 때문에 스테인리스강의 질소 (N) 함유량을 높 이는 것이 용이하지 않다. 따라서 2상 스테인리스강 모재에 고용시킨 질소는 오스 테나이트상에 우선적으로 고용되고, 오스테나이트상에 과고용된 질소 (N)에 의해 오 스테나이트상과 페라이트상의 화학조성 차이가 나타나며, 또한 크롬 -질소 결합 및 석출상 형성으로 인해 스테인리스강의 기계적-화학적 물성을 저하시키는 문제가 발 생한다. 이와 같은 문제들로 인하여, 질소 (N)를 적극적으로 활용한 고질소 2상 스 테인리스강의 개발 및 상용화가 지연되고 있으며, 이에 대한 해결책이 시급히 마련 되어야 하는 '실정이다. 이에 본 발명자들은, 페라이트상과 오스테나이트상의 2상 구조로 구성되어 물성 구현범위 확장이 가능한 2상 스테인리스강을 대상으로ᅳ 망간 (Mn)과 질소 (N)를 활용하여 오스테나이트상을 안정화시킴으로써 니켈 (Ni) 사용량을 저감하거나 또는 니켈 사용량을 배제하고, 몰리브덴 (Mo)과 텅스텐 (W)을 활용하여 상용 오스테나이트 스테인리스강 및 상용 2상 스테인리스강 수준 이상의 내식성을 나타내며, 각각의 합금원소들을 최적으로 조합함으로써 상용 오스테나이트 스테인리스강 및 2상 스테 인리스강 대비 월등히 우수한 기계적 특성을 나타내는 저니켈-고질소 2상 스테인리 스강의 조성을 개발하여 본 발명을 완성하였다.
【발명의 상세한 설명】
【기술적 과제】
본 발명의 목적은 우수한 내공식성을 가지는 고기능성 고질소 2상 스테인리 스강을 제공하는 데 있다.
【기술적 해결방법】
상기 목적을 달성하기 위하여, 본 발명은
16.5 내지 19.5 중량 %의 크름 (Cr)과, 2.5 내지 3.5 중량 %의 몰리브덴 (Mo)과, 1.0 내지 5.5 중량 ¾의 텅스텐 (W)과, 5.5 내지 7.0 중량 %의 망간 (Mn)과, 0.35 내지 0.45 중량 %의 질소 (N)와, 잔부인 철 (Fe) 및 불순물로서 0.03 중량 % 이하의 탄소 (C) 와, 0.5 중량 ¾ 이하의 실리콘 (Si)을 포함하는 페라이트-오스테나이트 상으로 이루 어지는 2상 스테인리스강 (duplex stainless steels)을 제공한다.
【유리한 효과】
본 발명에 따른 내공식성이 우수한 고기능성 고질소 2상 스테인리스강은 망 간 (Mn)과 질소 (N)를 활용하여 강재의 가격 불안정 및 환경부담을 가중하는 니켈 (Ni)을 배제하거나 또는 대부분 대체함으로써 강의 경쎄성, 가격 안정성, 및 환경 친화성을 향상시킬 수 있다.
18> 또한, 질소 (N) 함량을 0.35 내지 0.45 중량 ¾ 범위로 적절히 조절함으로서, 기존 고질소 스테인리스강에 비해 (1) 제조시 질소 (N) 가압의 부담이 적고, (2) 열 간압연 및 용체화 처리 온도를 1100 °C 이하로 낮출 수 있어 제조공정에서 에너지 소모를 저감시킬 수 있으며, (3) 질소 (N) 과고용에 따른 석출물 형성이 억제되므로 기계적 특성과 내식성 향상의 효과를 얻올 수 있고, (4) 질소 (N) .고용도를 높이기 위한 망간 (Mn) 사용을 줄일 수 있으므로 내식성 향상에 효과적이며, (5) 페라이트- 오스테나이트 상간 합금원소 분배의 차이가 감소되어 미세 갈바닉 부식에 의한 공 식성장이 억제되므로 내식성이 추가로 향상되는 효과를 얻을 수 있고, 이와 동시에 (6) 우수한 강도와 연성의 조합을 나타내는 특성을 얻을 수 있다.
d9> 나아가, 본 발명에 따른 2상 스테인리스강은 니켈 (Ni)을 0.7 중량 ¾ 이하로 소량 포함함으로써 범내식환경용 오스테나이트 스테인리스강에 비해 강재의 가격안 정성이 높은 장점이 있다.
:20> 본 발명에 따른 2상 스테인리스강은 범내식 환경용 오스테나이트 스테인리스 강에 비해 동등 /우수한 수준의 내식성을 가지면서도 상용 오스테나이트 스테인리스 강에 비해 월등한 기계적 특성을 나타내므로 범내식 환경용 상용 오스테나이트용 스테인리스강 용도를 대체할 수 있으며 , 저장용기 , 수송기기의 프레임 (frame) 부 . 재, 제지산업, 해양, 화학공정, 정유, 발전 산업 등의 구조재, 강관재료, 생체 적 용 분야 등의 고부가가치 재료로 이용될 수 있다. 또한, 본 발명에 따른 2상 스테 인리스강은 튜브, 선재, 스트립, 봉재, 시트재, 또는 바 형태의 자재 또는 고강도 와 고연신 특성이 요구되는 기타 자재로 제조될 수 있다.
21>
' 【도면의 간단한 설명】
>2> 도 1은 본 발명에 따른 2상 스테인리스강의 미세조직 및 결정립별 결정방위 를 관찰한 후방산란 전자회절 (EBSD: electron backseat tered diffract ion)사진이 고,
•3> 도 2는 본 발명에 따른 2상 스테인리스강의 기계적 특성 (인장강도 X연신율) 을 상용 오스테나이트 스테인리스강 및 상용 2상 스테인리스강의 기계적 특성 수준 과 비교하여 나타낸 그래프이며,
4> 도 3은 본 발명에 따른 2상 스테인리스강의 공식저항성 수준을 상용 오스테 나이트 스테인리스강 및 상용 2상 스테인리스강과 비교하여 나타낸 그래프이다. 25>
【발명의 실시를 위한 최선의 형태】
26> 본 발명은
27> 16.5 내지 19.5 중량 %의 크름 (Cr)과, 2.5 내지 3.5 중량 %의 몰리브덴 (Mo)과,
1.0 내지 5.5 중량 ¾의 텅스텐 (W)과, 5.5 내지 7.0 중량 %의 망간 (Mn)과, 0.35 내지 0.45 중량 )의 질소 (N)와, 잔부인 철 (Fe) 및 불순물로서 0.03 중량 ¾ 이하의 탄소 (C) 와, 0.5 중량 % 이하의 실리콘 (Si)올 포함하는 페라이트-오스테나이트 상으로 이루 어지는 2상 스테인리스강 (duplex stainless steels)을 제공한다.
<28>
<29> 이때, 본 발명에 따른 상기 2상 스테인리스강은 0.01 내지 0.7 중량 %의 니켈
(Ni)을 더 포함할 수 있다.
;30> 상기 2상 스테인리스강은 0.01 내지 0.7 중량 % 의 니켈을 더 포함함으로써, 오스테나이트상을 귀 (noble)하게 하고 잉곳 (ingot)의 넁각시 질소고용량을 높은 수준으로 유지할 수 있다.
:31>
:32> 또한 , 본 발명에 따른 상기 2상 스테인리스강은 니켈을 포함하지 않을 수 있 다.
:33> 나아가, 상기 2상 스테인리스강은 16.5 내지 19.5 중량 %의 크롬 (Cr)과, 2.5 내지 3.5 중량 %의 몰리브덴 (Mo)과, 1.0 내지 5.5 중량 ¾의 텅스텐 (W)과, 5.5 내지 7.0 중량 %의 망간 (Mn)과, 0.35 내지 0.45 중량 %의 질소 (N)와, 잔부인 철 (Fe) 및 불 순물로서 0.03 중량 % 이하의 탄소 (C)와, 0.5 중량 ¾> 이하의 실리콘 (Si)으로 이루어 질 수 있다.
34>
35> 본 발명에 따른 상기 2상 스테인리스강은 재료의 가격불안정을 야기하고 , 환 경 및 인체에 유해한 니켈 (Ni)을 대체하기 위하여 0.35 내지 0.45 중량 %의 함량으 로 질소를 고용하고, 5.5 중량 % 이상으로 망간 (Mn)을 첨가하여 경제적으로 오스테 나이트상을 안정화하였다.
36> 또한 , 니켈의 사용을 저감하여 범내식환경용 오스테나이트 스테인리스강에 비해 강재의 가격안정성을 높이고, 환경부담을 저감할 수 있도록하였다.
|57> 나아가, 크롬 (Cr) 함량을 19.5 중량 % 이하로 낮추어 재료의 단가를 보다 저 감 (lean)시킬 수 있고 크롬 (Cr) 함량이 높은 경우 석출되는 시그마 (σ)상의 형성 을 억제하여 페라이트상을 안정화시킬 수 있다. 몰리브덴 (Mo) 및 텅스텐 (W)은 페라 이트상을 안정화시킴과 동시에 우수한 내공식성을 부여할 수 있다. 특히, 텅스텐 (W)은 몰리브덴 (Mo)과 유사하게 페라이트 안정화 및 내공식성 향상 특성을 나타냄 과 동시에, 기계적 특성 및 내식성에 유해한 시그마 ( σ)상의 석출 활성이 몰리브덴 (Mo)에 비하여 낮으므로 몰리브덴 (Mo)의 대체원소로 사용될 수 있다.
8>
9>
0> *또한, 본 발명에 따른 상기 2상 스테인리스강에 있어서, 페라이트상의 부피 분율은 40 내지 60 % 로 구성되는 것이 바람직하다. 상기 페라이트상의 부피분율이 40 % 미만인 경우에는 강도 및 웅력부식균열 (stress corrosion cracking, SCO 저 항성이 저하되는 문제가 있고, 페라이트상의 부피분율이 60 %를 초과하는 경우에는 오스테나이트상의 부피분율이 낮아져 연신율이 저하되는 문제가 있다.
1>
2> 이하에는 본 발명에 따른 2상 스테인리스강 내의 주요 합금원소에 대하여 자 세히 설명한다.
3>
4> (1) 크롬 (Cr)
5> 크롬 (Cr)은 페라이트 안정화 원소이며 스테인리스강에 내식성을 부여하는 필 수적인 원소이다. 또한, 크롬 (Cr)은 질소 (N)의 고용도를 증가시키는 역할을 수행하 므로, 본 발명에 따른 2상 스테인리스강은 강재의 내식성 확보 및 강재 내 질소 (N) 의 용해도 향상을 도모하기 위하여 크롬 (Cr)을 16.5 중량 ¾ 이상으로 첨가하였다. 그러나 크롬 (Cr)이 과도하게 첨가되는 경우, 용탕의 응고 후에 델타 페라이트상을 과량으로 잔존시키고, 2상 스테인리스강의 시그마 (σ)상 석출을 촉진시키는 문제가 있다. 또한, 델타 페라이트상 및 시그마 ( σ)상의 석출로 인한 조직의 불균일성은 강재의 공식저항성을 감소시키기 때문에 크름 (Cr)의 함량을 16.5 내지 19.5 중량 % 로 제한하였다.
It6>
J7> (2) 몰리브덴 (Mo)
\s> 몰리브덴 (Mo)은 페라이트상을 안정화하며, 환원성 산 용액과 염화물 (C1) 용 액에 대한 모재의 일반부식저항성 및 국부부식저항성을 현저히 향상시킨다. 특히 합금에 질소 (N)와 함께 첨가되는 경우, 공식저항성 향상을 더욱 강화하는 상승효과 (synergy)를 나타낸다. 따라서 본 발명의 2상 스테인리스강은 몰리브덴 (Mo)을 2.5 중량 ¾ 이상으로 첨가하여 합금의 내공식성을 향상시켰다. 그러나, 몰리브덴이 과도 하게 첨가되는 경우, 응고 후 잔존하는 델타 페라이트상의 분율을 증가시키고, 크 롬 (Cr)과 마찬가지로 유해한 시그마 (σ)상 등을 형성하여 강재의 물성이 저하되는 문제가 있다. 또한 몰리브덴 (Mo)은 매우 고가의;합금원소이므로 강재의 경제성 확 보를 위해 그 함량이 3.5 중량 %를 넘지 않도록 제한하였다.
49>
50> (3) 텅스텐 (W)
51> 텅스텐 0V)은 스테인리스강의 합금원소로써 역할 (페라이트상 안정화, 내식성 향상 등)이 몰리브덴 (Mo)과 유사하고, 몰리브덴 (Mo)보다 가격경쟁력이 우수하여 몰 리브덴 (Mo)의 대체 원소로 사용된다. 또한, 몰리브덴 (Mo)에 비하여 시그마 (σ)상을 형성시키는 활성도가 낮기 때문에 이차상 석출에 의한 기계적 특성 및 내식성 저하 를 방지할 수 있다. 나아가 몰리브덴 (Mo)을 텅스텐 (W)으로 대체하여 합금의 저온충 격강도를 향상시킬 수 있다. 따라서 본 발명에 따른 2상 스테인리스강은 몰리브덴 (Mo)과 텅스텐 (W)을 모두 이용하고, 몰리브덴 (Mo)의 함량 중 일부를 텅스텐 (W)으로 대체하여 사용할 수 있으몌 이때 텅스텐의 함량을 1.0 내지 5.5 중량 %로 제한하였 다.
:52> .
53> (4) 니켈 (Ni)
54> 니켈 (NO은 대표적인 오스테나이트상 안정화 원소이지만, 상기한 바와 같이 가격변동성이 크고 환경 및 인체에 유해한 원소이므로 함량을 극히 제한한다. 그러 나 니켈은 제조합금의 열간 및 넁간가공성을 향상시키고 높은 웅력부식균열 (stress corrosion cracking, SCO 저항성과 산성용액에서의 우수한 내식성을 부여하며 , 모 재의 웅고 과정 중에 델타 페라이트 형성을 억제하는 장점이 있으므로 본 발명의 2 상 스테인리스강에서는 니켈 (Ni)의 첨가량은 0.01 내지 0.7 중량 %로 규정하거나 또 는 니켈을 포함하지 않는다.
55>
½> (5) 망간 (Mn)
7> 망간 (Mn)은 경제적인 오스테나이트상 안정화 원소로 고가의 오스테나이트상 안정화 원소인 니켈 (Ni)을 대체하기 위한 목적으로 첨가된다. 또한, 망간은 강재 내 질소 (N)의 고용도를 증가시키기 때문에 결과적으로 스테인리스강의 강도를 향상 시킬 수 있다. 이에 본 발명에 따른 2상 스테인리스강은 강재의 경제성과 질소 (N) 고용도 증가를 위하여 5.5 중량 % 이상의 망간 (Mn)을 포함한다. 그러나, 망간 (Mn)이 과도하게 첨가되는 경우, 불순물 원소인 황 (S) 또는 산소 (0)와 결합하여 망간황화 물 (MnS) 또는 망간산화물 (MnO)과 같은 비금속개재물 (nonmetal 1 ic inclusion)을 형 성할 수 있다. 상기, 비금속 개재물은 공식발생부위로 작용하여 스테인리스강의 공 식저항성을 저하시키는 문제가 있어, 망간의 함량을 7.0 중량 %이하로 제한하였다.58>
59> (6) 질소 (N)
60> 질소 (N)는 강력한 오스테나이트상 안정화 원소로써 망간 (Mn)과 함께 니켈
(Ni)을 효과적으로 대체할 수 있다. 또한, 스테인리스강의 강도를 증가시킴과 동시 에 연성을 높은 수준으로 유지시킬 수 있고, 내공식성을 크게 향상시킬 수 있다. 따라서 본 발명에 따른 2상 스테인리스강은 질소 (N)를 0.35 중량 ¾ 이상 고용시켜서 강재에 우수한 강도 -연성 조합 (Eco index) 및 내공식성을 부여한다. 그러나 과도하 게 첨가되는 경우 질소 (N)가 질화물을 형성할 수 있고, 강재의 취화 및 주조재에 공극이 형성되는 문제가 있다. 이를 방지하기 위하여, 본 발명에 따른 2상 스테인 리스강은 질소 (N)의 함량을 0.35 내지 0.45 중량 ¾로 제한하였다.
;61>
;2> (7) 탄소 (C) 및 실리콘 (Si)
;63> 탄소 (C)는 질소 (N)와 원자 크기가 비슷한 침입형 원소로 오스테나이트상의 안정화 기능을 하몌 철강재의 강도를 향상시키는 장점이 있다. 그러나, 탄소 (C)는 고온에서 스테인리스강의 주요 합금원소인 크름 (Cr)과 쉽게 결합하여 안정한 크름- 탄화물 (Cr23C6 등)을 형성한다. 상기 크름-탄화물은 인접부 기지의 크름 (Cr)을 소모 하면서 결정립계부터 석출되고, 석출된 크름-탄화물 주위의 크롬-고갈영역 (Cr- depletion zone)이 공식부식의 발생처로 작용하는 문제가 있다. 따라서 본 발명에 따른 2상 스테인리스강은 탄소 (C)의 함량이 0.03 중량 %를 넘지 않도록 제한하였다. 64> 한편, 실리콘 (Si)은 페라이트상 형성원소로써, 모재 중의 산소 (0)와 쉽게 결 합하는 특성을 가지므로 제강공정 중 탈산제로 주로 사용된다. 그러나 과잉 첨가되 는 경우, 인성과 관련된 기계적 특성을 크게 감소시키고, 금속간 화합물을 형성하 는 문제가 있어 본 발명에 따른 2상 스테인리스강은 실리콘의 함량을 0.5 중량 ¾ 이 하로 제한하였다.
65>
66> (8) 페라이트상
67> 우수한 강도 및 웅력부식균열 (stress corrosion cracking, SCC)저항성을 확 보하고 용접성을 개선하기 위하여, 본 발명에 따른 2상 스테인리스강은 페라이트상 의 부피 분율을 40 % 이상으로 유지한다. 그러나 과도하게 높은 페라이트 함량은 저온 층격 인성 및 수소 취성에 대한 저항성을 악화시키므로 페라이트상의 부피분 율은 60 %를 초과하지 않도록 제한한다.
68>
69> 본 발명에 따른 2상 스테인리스강은 826 내지 933 MPa의 인장강도 (tensile strength, TS) , 574 내지 640 MPa의 항복강도 (yield strength, YS) 및 26 내지 51 %의 연신율 (elongation, %) 값을 나타내고ᅳ 인장강도와 균일연신율의 곱 (product) 인 에코지수 (Eco-index)가 24,000 MPa · % 이상인 우수한 특성을 나타낸다.
<70> 철강재료의 에코지수 (또는 에코성능지수, Eco-index; ecological index of performance)란 미래형 철강소재에 요구되는 여러 환경친화적 (eco-fr iendly) 특성 중 우수한 내구성 (sustainability)을 정량화한 지수로서 , 철강재료의 인장강도 (MPa)와 연신율 (¾)을 급한 값으로 정의된다.
:71> 또한, 본 발명에 따른 2상 스테인리스강은 범내식환경용 상용 300 계열 오스 테나이트 스테인리스강 (UNS S30400, UNS S31603) 및 상용 2상 스테인리스강 (UNS S32304) 비하여 동등 이상, 우수한 공식저항성을 나타낸다. 본 발명에 따른 2상 스 테인리스강의 기계적 특성들은 기존의 상용 오스테나이트계 스테인리스강 및 2상 스테인리스강의 인장강도, 항복강도 및 연신율 값을 상회하며, 또한 내공식성도 우 수하므로 이를 통해 본 발명에 따른 2상 스테인리스강의 우수성을 알 수 있다.
72>
【발명의 실시를 위한 형태】
73> 이하, 본 발명을 실시예를 통해 보다 구체적으로 설명한다. 그러나, 하기 실 시예는 본 발명을 설명하기 위한 것일 뿐, 하기 실시예에 의하여 본 발명의 권리범 위가 한정되는 것은 아니다. ,
74>
'5> <실시예 1 - 7> 2상스테인리스강의 제조
¾> 전해철, Fe-Cr, Fe-Mn, Fe-Mo 및 Niᅳ W 모합금을 표 1의 실시예 1 내지 실시 예 7에 나타낸 조성으로 구현되도록 조성비율을 맞추어 각각 진공유도용해로 (VIM 4III-P, 독일 ALD사)에 장입하여 완전 용해시킨 후, 질소가스를 주입하여 10 kg의 잉곳을 제조하였다. 제조된 40 瞧 두께의 잉곳을 1300 °C에서 2 시간 동안 균질화 열처리한 후 40 % 이상의 압하율로 1회 이상의 패스를 통해 최종 두께 4 mm 까지 열간압연하였다. 또한, 석출물 형성을 방지하기 위하여 1050 °C 이상의 온도에서 압연을 마무리한 후 수넁함으로써 본 발명에 따른 2상 스테인리스강을 제조하였다. 77>
78> <비교예 1 — 4〉
79> 상용 오스테나이트 스테인리스강인 304 스테인리스강 (UNS S30400), 316L 스 테인리스강 (UNS S31603) 및 상용 2상 스테인리스강인 2304 스테인리스강 (UNS S32304) 및 2205 스테인리스강 (UNS S31803)을 각각 비교예 1 내지 비교예 4로 사용 하였다.
<80>
<8! 상기 실시예 1 내지 7에서 제조된 2상 스테인리스강과 비교예 1 내지 비교예
4의 상용스테인리스강의 조성을 하기 표 1에 나타내었다.
<82>
<83> 【표 1】
Figure imgf000011_0001
<실험예 1>미세조직 및 결정구조 분석 7> 본 발명에 따른 2상 스테인리스강의 미세조직 및 결정구조를 분석하기 위하 여, 후방산란 전자회절 (EBSD: electron backscattered diffraction) 분석을 수행하 였고 그 결과를 하기 표 2, 도 1에 나타내었다.
88>
89> 【표 2】
Figure imgf000012_0001
: 0>
: 1> 상기 표 2의 미세조직에 있어서, bcc는 페라이트상을 나타내고, fee는 오스 테나이트상을 나타낸다.
92>
93> 표 2 및 도 1에 나타낸 바와 같이 , 본 발명에 따른 실시예 1 내지 실시예 7 의 2상 스테인리스강은 페라이트와 오스테나이트 상분율이 40:60 내지 50 :50을 만 족하는 것을 알 수 있다. 또한 비교예 1 내지 2의 상용 오스테나이트 스테인리스 강은 오스테나이트 단상의 미세조직으로 구성되고, 상용 2상 스테인리스강인 비교 예 3 내지 비교예 4는 페라이트와 오스테나이트의 상분율이 약 50:50으로 구성되는 것을 확인할 수 있다.
94>
95> 적절한'분율의 페라이트상은 우수한 강도 및 웅력부식균열 (stress corrosion cracking, SCC)저항성을 부여할 수 있으며, 상기 범위로 페라이트상이 구성됨에 따 라 과도하게 높은 페라이트상이 구성되는 경우 발생하는 저온 충격 인성 및 수소 취성에 대한 저항성 악화문제를 방지할 수 있다.
>
<실험예 2> 기계적 특성 분석
본 발명의 실시예 1 내지 실시예 7의 2상 스테인리스강 및 비교예 1 내지 비 교예 4의 상용화된 스테인리스강의 인장강도, 항복강도 및 연신율을 인장시험기
(model: Instron 5882)를 이용하여 측정하였고, 그 결과를 표 3 및 도 2에 나타내 었다.
【표 3】
Figure imgf000013_0001
2> 표 3 및 도 2에 나타난 바와 같이, 비교예 1 내지 비교예 2의 상용 오스테나 이트 스테인리스강은 170 내지 205 MPa의 항복강도, 485 내지 515 MPa의 인장강도 및 40 ¾인 연신율을 나타내었으며, 비교예 3 내지 비교예 4의 상용 2상 스테인리스 강은 400 내지 450 MPa의 항복강도 630 내지 680 MPa의 인장강도, 그리고 25 %의 연신율을 나타내었다. 따라서, 비교예 1 내지 비교예 4의 상용 스테인리스 강재는 15750 내지 2,0600 MPa - % 수준의 에코지수 (Eco-index)를 나타낸다. 이에 비해 본 발명에 따른 실시예 1 내지 실시예 7의 2상 스테인리스강은 826 내지 933 MPa의 인 장강도 (tensile strength, TS), 574 내지 640 MPa의 항복강도 (yield strength, YS) 및 26 내지 51 %의 연신율 (elongation, %) 값을 나타낸다. 따라서, 인장강도와 연 신율의 곱인 에코지수 (Eco-index)는 24102 내지 43022 MPa - % 수준으로 이는 비교 예로 사용된 상용 스테인리스 강재보다 월등히 높은 수치이다.
3>
μ 이를 통하여 , 본 발명에 따른 2상 스테인리스강은 상용 2상 스테인리스강 및 오스테나이트 스테인리스강과 비교하여 니켈 (ΝΠ을 사용하지 않거나, 소량 사용함 에도 불구하고 적절한 수준의 오스테나이트 기지를 확보할 수 있으며 충분히 높은 강도 및 연신율을 지니고 그 조합이 우수한 것을 알 수 있다. I05>
106> <실험예 3>내공식성 분석
i07> 본 발명의 실시예 1 내지 7에 의해 제조뒤는 2상 스테인리스강 및 비교예 1 내지 비교예 4의 상용 스테인리스강의 내공식성을 측정하기 위하여 실시예와 비교 예의 합금 시편을 상온의 1 M NaCl 용액에 침지하고 전위주사속도 (dV/dt) 3 mV/s 로 전위를 증가시키면서 양극분극거동을 관찰하였고 분극시험 결과를 도 3에 나타 내었다. 또한 분극시험 중 각 합금의 공식이 발생한: 전위 (pitting potential, Epit) 을 표 4에 나타내었다.
108>
109> 【표 4】
Figure imgf000014_0001
도 3 및 표 4에 나타낸 바와 같이, 상용 오스테나이트계 스테인리스강의 공 식은 0.1967 내지 0.3733 VSCE에서 발생하는 것을 알 수 있으며, 상용 2상 스테인리 스강인 2205 스테인리스강은 본 실험예의 조건에서 공식이 발생하지 않았다. 한편, 본 발명의 실시예 1 내지 실시예 5에 의해 제조된 2상 스테인리스강은 본 실험예의 조건에서 0.2424 VSCE이상의 전위에서 공식이 발생하거나 또는 공식이 발생하지 않 는 것을 알 수 있다. 또한 실시예 6 및 실시예 7에서 제조된 2상 스테인리스강은 본 실험의 염화물 분위기에서 공식이 발생하지 않음을 알 수 있다. 이를 통해, 염 화물 분위기에서 본 발명에 따른 2상 스테인리스강이 범내식환경용 상용 오스테나 이트계 스테인리스강에 비해 모두 우수한 공식저항성을 가지며, 특히 소량의 니켈 을 .포함한 2상 스테인리스강의 내공식성은 상용 2상 스테인리스강의 공식저항성과 동등한 수준인 것을 확인하였다.

Claims

【청구의 범위】
【청구항 1】
16.5 내지 19.5 중량 %의 크름 (Cr)과, 2.5 내지 3.5 중량 %의 몰리브덴 (Mo)과, 1.0 내지 5.5 중량 %의 텅스텐 (W)과, 5.5 내지 7.0 중량 %의 망간 (Mn)과, 0.35 내지 0.45 중량 %의 질소 (N)와, 잔부인 철 (Fe) 및 불순물로서 0.03 중량 % 이하의 탄소 (C) 와, 0.5 중량 % 이하의 실리콘 (Si)을 포함하는 페라이트-오스테나이트 상으로 이루 어지는 2상 스테인리스강 (duplex stainless steels).
【청구항 2]
제 1 항에 있어서,
상기 2상 스테인리스강은 0.01 내지 0/7 중량 %의 니켈 (Ni)을 더 포함하는 것 을 특징으로 하는 페라이트-오스테나이트 상으로 이루어지는 2상 스테인리스강.
【청구항 3】
제 1 항에 있어서,
상기 2상 스테인리스강은 니켈을 포함하지 않는 것을 특징으로 하는 페라이 트-오스테나아트 상으로 이루어지는 2상 스테인리스강.
【청구항 4]
겨1 1 항에 있어서,
상기 2상 스테인리스강은 16.5 내지 19.5 중량 %의 크름 (Cr)과, 2.5 내지 3.5 중량 %의 몰리브덴 (Mo)과, 1.0 내지 5.5 중량 %의 텅스텐 (W)과, 5.5 내지 7.0 중량 % 의 망간 (Mn)과, 0.35 내지 0.45 중량 %의 질소 (N)와, 잔부인 철 (Fe) 및 불순물로서 0.03 중량 % 이하의 탄소 (C)와, 0.5 중량 ¾ 이하의 실리콘 (Si)으로 이루어지는 페라 이트-오스테나이트 상으로 이루어지는 2상 스테인리스강 (duplex stainless steels) .
【청구항 5】
제 1 항에 있어서,
상기 2상 스테인리스강은 페라이트상의 부피분율이 40 내지 60 ¾인 것을 특 징으로 하는 페라이트-오스테나이트 상으로 이루어지는 2상 스테인리스강. 【청구항 6]
제 1 항에 있어서,
상기 2상 스테인리스강은 820 MPa 이상의 인장강도, 및 25 % 이상의 연신율 값을 나타내고, 인장강도 및 연신율의 곱 (product)이 24,000 MPa - % 이상인 것을 특징으로 하는 페라이트-오스테나이트 상으로 이루어지는 2상 스테인리스강.
PCT/KR2013/000619 2012-01-31 2013-01-25 우수한 내공식성을 가지는 고기능성 고질소 2상 스테인리스강 WO2013115524A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2014537011A JP5789342B2 (ja) 2012-01-31 2013-01-25 優れた耐孔食性を有する高機能性高窒素2相ステンレス鋼
EP13742948.6A EP2770078B1 (en) 2012-01-31 2013-01-25 High-performance high-nitrogen duplex stainless steels excellent in pitting corrosion resistance
US14/251,349 US9663850B2 (en) 2012-01-31 2014-04-11 High-performance high-nitrogen duplex stainless steels excellent in pitting corrosion resistance

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2012-0009787 2012-01-31
KR1020120009794A KR101306263B1 (ko) 2012-01-31 2012-01-31 우수한 내공식성을 가지는 고기능성 저니켈-고질소 2상 스테인리스강
KR1020120009787A KR101306262B1 (ko) 2012-01-31 2012-01-31 내공식성이 우수한 고기능성 무니켈-고질소 2상 스테인리스강
KR10-2012-0009794 2012-01-31

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/251,349 Continuation US9663850B2 (en) 2012-01-31 2014-04-11 High-performance high-nitrogen duplex stainless steels excellent in pitting corrosion resistance

Publications (1)

Publication Number Publication Date
WO2013115524A1 true WO2013115524A1 (ko) 2013-08-08

Family

ID=48905509

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/000619 WO2013115524A1 (ko) 2012-01-31 2013-01-25 우수한 내공식성을 가지는 고기능성 고질소 2상 스테인리스강

Country Status (4)

Country Link
US (1) US9663850B2 (ko)
EP (1) EP2770078B1 (ko)
JP (1) JP5789342B2 (ko)
WO (1) WO2013115524A1 (ko)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016063974A1 (ja) * 2014-10-24 2016-04-28 新日鐵住金株式会社 二相ステンレス鋼およびその製造方法
KR101742088B1 (ko) 2015-12-23 2017-06-01 주식회사 포스코 친수성 및 접촉저항이 향상된 고분자 연료전지 분리판용 스테인리스강 및 이의 제조 방법
JP6726499B2 (ja) * 2016-03-29 2020-07-22 日鉄ステンレス株式会社 二相ステンレス鋼の溶接継手、二相ステンレス鋼の溶接方法および二相ステンレス鋼の溶接継手の製造方法
KR101903403B1 (ko) * 2016-11-25 2018-10-04 한국기계연구원 내공식성이 향상된 오스테나이트계 스테인리스강

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10183303A (ja) * 1995-04-08 1998-07-14 Vsg Energ & Schmiedetechnik Gmbh オーステナイト系鋼合金及びその製造方法、ならびに該鋼合金を使用した物品
JP3798317B2 (ja) * 1999-06-24 2006-07-19 ビーエーエスエフ アクチェンゲゼルシャフト 低ニッケルオーステナイト鋼
JP2006233308A (ja) * 2005-02-28 2006-09-07 Jfe Steel Kk 耐粒界腐食性に優れるオーステナイト・フェライト系ステンレス鋼
KR20100133487A (ko) * 2008-05-16 2010-12-21 오또꿈뿌 오와이제이 스테인리스 강 제품, 이러한 제품의 사용 및 이의 제조 방법
KR20110006044A (ko) * 2009-07-13 2011-01-20 한국기계연구원 텅스텐 및 몰리브덴이 첨가된 고강도·고내식 탄질소 복합첨가 오스테나이트계 스테인리스강 및 이의 제조방법

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4411296C2 (de) * 1994-01-14 1995-12-21 Castolin Sa Zwei- oder mehrphasige korrosionsfeste Beschichtung, Verfahren zu ihrer Herstellung und Verwendung von Beschichtungswerkstoff
JP2000239799A (ja) * 1999-02-19 2000-09-05 Daido Steel Co Ltd Niを含まない生体用二相ステンレス鋼
JP4760031B2 (ja) * 2004-01-29 2011-08-31 Jfeスチール株式会社 成形性に優れるオーステナイト・フェライト系ステンレス鋼
EP1715073B1 (en) * 2004-01-29 2014-10-22 JFE Steel Corporation Austenitic-ferritic stainless steel
JP5072285B2 (ja) * 2006-08-08 2012-11-14 新日鐵住金ステンレス株式会社 二相ステンレス鋼
CN102251194A (zh) * 2010-05-18 2011-11-23 宝山钢铁股份有限公司 一种表面耐蚀性优良的双相不锈钢冷轧板及其制造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10183303A (ja) * 1995-04-08 1998-07-14 Vsg Energ & Schmiedetechnik Gmbh オーステナイト系鋼合金及びその製造方法、ならびに該鋼合金を使用した物品
JP3798317B2 (ja) * 1999-06-24 2006-07-19 ビーエーエスエフ アクチェンゲゼルシャフト 低ニッケルオーステナイト鋼
JP2006233308A (ja) * 2005-02-28 2006-09-07 Jfe Steel Kk 耐粒界腐食性に優れるオーステナイト・フェライト系ステンレス鋼
KR20100133487A (ko) * 2008-05-16 2010-12-21 오또꿈뿌 오와이제이 스테인리스 강 제품, 이러한 제품의 사용 및 이의 제조 방법
KR20110006044A (ko) * 2009-07-13 2011-01-20 한국기계연구원 텅스텐 및 몰리브덴이 첨가된 고강도·고내식 탄질소 복합첨가 오스테나이트계 스테인리스강 및 이의 제조방법

Also Published As

Publication number Publication date
JP5789342B2 (ja) 2015-10-07
US9663850B2 (en) 2017-05-30
US20140219857A1 (en) 2014-08-07
EP2770078B1 (en) 2018-03-14
JP2014534345A (ja) 2014-12-18
EP2770078A1 (en) 2014-08-27
EP2770078A4 (en) 2015-11-25

Similar Documents

Publication Publication Date Title
JP6693217B2 (ja) 極低温用高Mn鋼材
JP6801236B2 (ja) 低温水素用オーステナイト系ステンレス鋼及びその製造方法
JP5713152B2 (ja) 水素用鋼構造物ならびに水素用蓄圧器および水素用ラインパイプの製造方法
JP4529872B2 (ja) 高Mn鋼材及びその製造方法
JP4907151B2 (ja) 高圧水素ガス用オ−ステナイト系高Mnステンレス鋼
KR101632159B1 (ko) 극저온 인성이 우수한 후강판
JP2016084529A (ja) 高Mn鋼材及びその製造方法
WO2014092129A1 (ja) 極低温靭性に優れた厚鋼板
EP3219820A1 (en) Nickel alloy clad steel sheet and method for producing same
US20130149188A1 (en) C+n austenitic stainless steel having good low-temperature toughness and a fabrication method thereof
JP6426617B2 (ja) フェライト系ステンレス鋼の製造方法
WO2013115524A1 (ko) 우수한 내공식성을 가지는 고기능성 고질소 2상 스테인리스강
CN104726789B (zh) 低镍不锈钢
JP6520617B2 (ja) オーステナイト系ステンレス鋼
JP5973902B2 (ja) 極低温靭性に優れた厚鋼板
JP5973907B2 (ja) 極低温靱性に優れた厚鋼板
JP4184869B2 (ja) 高耐食二相ステンレス鋼
KR101306263B1 (ko) 우수한 내공식성을 가지는 고기능성 저니켈-고질소 2상 스테인리스강
KR101306262B1 (ko) 내공식성이 우수한 고기능성 무니켈-고질소 2상 스테인리스강
KR101267543B1 (ko) 강도와 연성의 조합이 우수한 무니켈-고질소 이상 스테인리스강
JP2022514575A (ja) フェライト系ステンレス鋼
KR20200123831A (ko) 고Mn강 및 그의 제조 방법
JP5222595B2 (ja) フェライト系ステンレス鋼材
JP2021063272A (ja) 高強度鋼板
Rakhshtadt et al. Effect of chemical composition and heat treatment on mechanical and corrosion properties of high-chromium nitrogen steels

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13742948

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014537011

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2013742948

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE