WO2012176470A1 - ズームレンズおよび撮像装置 - Google Patents
ズームレンズおよび撮像装置 Download PDFInfo
- Publication number
- WO2012176470A1 WO2012176470A1 PCT/JP2012/004058 JP2012004058W WO2012176470A1 WO 2012176470 A1 WO2012176470 A1 WO 2012176470A1 JP 2012004058 W JP2012004058 W JP 2012004058W WO 2012176470 A1 WO2012176470 A1 WO 2012176470A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- lens
- lens group
- zoom
- lenses
- conditional expression
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B15/00—Optical objectives with means for varying the magnification
- G02B15/14—Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
- G02B15/16—Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group
- G02B15/177—Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group having a negative front lens or group of lenses
Definitions
- the present invention relates to a zoom lens and an imaging apparatus, and more particularly, to a zoom lens that can be suitably used for a small camera or a portable terminal apparatus, and an imaging apparatus including such a zoom lens.
- Patent Document 1 shows examples thereof.
- Patent Documents 2 and 3 as an example of a low-cost zoom lens in which a zoom ratio is about 3 times and a simpler two-group type is adopted, there are two first lens groups and two second lens groups.
- Patent Document 4 shows a zoom lens composed of a total of four lenses, two first lens groups and two second lens groups.
- Patent Documents 5 and 6 disclose a zoom lens using a plastic lens, or a zoom lens designed on the assumption that the lens is composed of a plastic lens.
- Patent Document 5 shows an example in which one of the three lenses constituting the first lens group is a plastic lens.
- Patent Document 6 shows an example in which all lenses are made of plastic lenses.
- the zoom lens disclosed in Patent Document 4 is configured with an extremely small number of lenses.
- the number of lenses is small as described above, cost reduction cannot be realized simply. For example, if the number of lenses is small, the power of each lens increases, and the tolerance of manufacturing errors and assembly errors decreases, and the processing difficulty of lenses increases, resulting in lower production costs. There is also the possibility of becoming high.
- the power of the second lens group as shown in Patent Document 4 is distributed to two lenses.
- the configuration of the second group shown in Documents 2 and 3 is considered preferable.
- the power that one positive lens arranged in the second group bears is reduced, so that the lens can be made of plastic.
- the lenses arranged in the first lens group are made of a high refractive index material, leaving room for further cost reduction.
- Examples of zoom lenses using plastic lenses include those described in Patent Documents 5 and 6 as described above, and those first lens groups are zoom lenses disclosed in Patent Documents 2 to 4.
- the number of lenses is one more than that of the first lens group of the lens.
- the power is dispersed by dividing one lens having high power into two lenses, and a lens having a power reduced to a certain extent is applied. There is also. However, if such a configuration is adopted, the retractable length becomes large.
- Patent Document 6 shows an example in which all lenses are made of plastic lenses, but in that case, the zoom ratio is only about twice.
- the present invention has been made in view of the circumstances described above, and achieves cost reduction by adopting a plastic lens while securing a zoom ratio of about 3 to 4 times with a small number of lenses, and each lens.
- An object of the present invention is to provide a two-group zoom lens that can realize good optical performance by optimally setting the power of the zoom lens.
- the first zoom lens according to the present invention comprises: The first lens group having a negative refractive power and a second lens group having a positive refractive power in order from the object side, and a distance between the first lens group and the second lens group at the time of zooming.
- zoom lenses where Each of the first lens group and the second lens group is composed of at least two lenses by applying all plastic lenses,
- M2 the amount of movement of the second lens unit when zooming from the wide-angle end to the telephoto end
- ft the focal length of the entire system at the telephoto end
- “consisting essentially of the first lens group and the second lens group” means an optical element other than the lens group, such as a lens having substantially no power, a diaphragm, a cover glass, etc.
- a mechanism portion such as a lens flange, a lens barrel, an image sensor, a camera shake correction mechanism, or the like is included is also included.
- the first lens group has a negative refractive power substantially in order from the object side and the positive refractive power. The same applies to the description of “consisting of two of the second lenses having”.
- Each lens group in the zoom lens of the present invention may be composed of three or more plastic lenses.
- a cemented lens may be used as a lens constituting each lens group. However, if the cemented lens is configured by bonding of n sheets, it is counted as n lenses.
- the description of “the zoom lens of the present invention” or “the zoom lens of the present invention” refers to both the first zoom lens according to the present invention and the second zoom lens described later unless otherwise specified. Shall be pointed to.
- the surface shape of the lens and the sign of the refractive power are considered in the paraxial region when an aspheric surface is included.
- the focal length of the entire system at the telephoto end is ft and the focal length of the first lens group is f1
- the second zoom lens according to the present invention includes: The first lens group having a negative refractive power and a second lens group having a positive refractive power in order from the object side, and a distance between the first lens group and the second lens group at the time of zooming.
- zoom lenses where Each of the first lens group and the second lens group is composed of at least two lenses by applying all plastic lenses, When the focal length of the entire system at the telephoto end is ft and the focal length of the first lens unit is f1, the following conditional expression 1.5 ⁇
- the first lens group has at least one positive lens and the Abbe number of the positive lens with respect to the d-line is ⁇ d1p
- the second lens group has at least one negative lens
- the Abbe number of the negative lens with respect to the d-line is ⁇ d2n
- the first lens group is composed of two lenses, a first lens having a negative refractive power and a second lens having a positive refractive power, in order from the object side.
- conditional expressions (3) to (6) may satisfy a part (one or more) of them.
- the more desirable ranges of the conditions indicated by the conditional expressions (3), (4), (5) and (6) are as follows.
- the entire second lens group or a part of the lenses arranged in the second lens group is moved along the optical axis when focusing from infinity to a short distance. It is preferable. More specifically, when the second lens group is composed of a third lens having positive refractive power, a fourth lens having negative refractive power, and a fifth lens having positive refractive power in order from the object side, It is preferable that only the fifth lens be moved along the optical axis.
- the zoom lens of the present invention when the first lens group has at least one negative lens, and the refractive index and Abbe number of the negative lens with respect to the d-line are nd1n and ⁇ d1n, respectively, the following conditional expression 1 .48 ⁇ nd1n ⁇ 1.56 (7) 50 ⁇ d1n> 60 (8) Is preferably satisfied.
- the second lens group has at least one positive lens
- the refractive index and Abbe number for the d-line of the positive lens are nd2p and ⁇ d2p, respectively, 48 ⁇ nd2p ⁇ 1.56 (9) 50 ⁇ d2p ⁇ 60 (10) Is preferably satisfied.
- the first lens group includes, in order from the object side, a first lens having a negative refractive power and a second lens having a positive refractive power.
- the lenses satisfy the following conditions: 1.48 ⁇ nd11 ⁇ 1.61 (11) ) 50 ⁇ d11 (12), more preferably 52 ⁇ d11 (12 ′) 1.56 ⁇ nd12 ⁇ 1.66 (13) ⁇ d12 ⁇ 33 (14), more preferably ⁇ d12 ⁇ 29 (14 ′) It is desirable to be formed from a plastic material that satisfies
- the second lens group includes, in order from the object side, a third lens having positive refractive power, a fourth lens having negative refractive power, and a fifth lens having positive refractive power.
- the third lens has a refractive index with respect to the d-line and Abbe numbers of nd21 and ⁇ d21, respectively
- the fourth lens has a refractive index with respect to the d-line and Abbe numbers of nd22 and ⁇ d22, respectively.
- these lenses satisfy the following conditions: 1.48 ⁇ nd21 ⁇ 1.61 (15) 50 ⁇ d21 (16), more preferably 52 ⁇ d21 (16 ′) 1.56 ⁇ nd22 ⁇ 1.68 (17) ⁇ d22 ⁇ 33 (18), more preferably ⁇ d22 ⁇ 29 (18 ′) 1.48 ⁇ nd23 ⁇ 1.61 (19) 50 ⁇ d23 (20), more preferably 52 ⁇ d23 (20 ′) It is desirable to be formed from a plastic material that satisfies
- an imaging apparatus is characterized by including the first or second zoom lens according to the present invention described above.
- the first zoom lens according to the present invention substantially includes, in order from the object side, a first lens group having a negative refractive power and a second lens group having a positive refractive power.
- each of the first lens group and the second lens group is composed of at least two lenses by applying a plastic lens, on which the above-described lens is arranged. Since it is assumed that the conditional expression (1) is satisfied, a plastic lens is used to achieve cost reduction, and each lens is secured while maintaining a zoom ratio of about 3 to 4 times with a small number of lenses. Optimum power can be set to achieve good optical performance.
- Conditional expression (1) defines the relationship between the amount of movement of the second lens unit and the focal length of the entire system at the telephoto end. If the lower limit of the conditional expression is not reached, it is difficult to increase the zoom ratio. Become. In this case, the power of the second lens group must be increased, which is not preferable because the tolerance for manufacturing errors and assembly errors is reduced. Further, in that case, the power of the plastic lens becomes strong, and the change in optical performance and characteristics due to temperature increases, which is not preferable. On the other hand, if the upper limit value of the conditional expression is exceeded, the amount of movement of the second lens group increases and the lens system becomes larger, which is not preferable. When the conditional expression (1) is satisfied, the above-described problems can be prevented and the above effect can be obtained.
- this conditional expression (2) defines the relationship between the focal length of the entire system at the telephoto end and the focal length of the first lens group. This is not preferable because the system becomes large.
- the upper limit value is exceeded, it becomes difficult to correct curvature of field mainly near the wide-angle end. Further, the power of the plastic lens becomes strong, and the optical performance and characteristics change with temperature, which is not preferable.
- the conditional expression (2) is satisfied, the above problems can be prevented, and the above effect can be made more remarkable.
- the second zoom lens according to the present invention substantially comprises, in order from the object side, a first lens group having a negative refractive power and a second lens group having a positive refractive power.
- each of the first lens group and the second lens group is composed of at least two lenses by applying a plastic lens. Since the conditional expression (2) is satisfied, a plastic lens is used to achieve a reduction in cost, and a zoom ratio of about 3 to 4 times is secured with a small number of lenses. By setting the lens power optimally, there is an effect that good optical performance can be realized.
- satisfying the conditional expression (2) causes the problem as described above, that is, the lens system becomes large, and it becomes difficult to correct the curvature of field near the wide-angle end.
- the above effect can be obtained by preventing problems such as a large change in optical performance and characteristics.
- the conditional expression (1) when the conditional expression (1) is satisfied, the same effect as that when the conditional expression (2) is particularly satisfied in the first zoom lens is obtained. be able to.
- Conditional expression (3) prescribes the Abbe number of at least one positive lens arranged in the first lens group, and it is not preferable to deviate from the conditional expression because chromatic aberration of magnification becomes particularly large. When the conditional expression (3) is satisfied, the above problem can be prevented.
- Conditional expression (4) defines the Abbe number of at least one negative lens arranged in the second lens group, and if it falls outside the range of the conditional expression, axial chromatic aberration increases, which is not preferable. . When the conditional expression (4) is satisfied, the above problem can be prevented.
- Conditional expression (5) defines the relationship between the distance between the first lens and the second lens arranged in the first lens group and the focal length of the entire system at the wide-angle end. Although it is advantageous for downsizing, it is not preferable because correction of spherical aberration becomes difficult. On the other hand, if the upper limit value is exceeded, the entire first lens group will be enlarged, which is not preferable. When the conditional expression (5) is satisfied, the above problem can be prevented.
- Conditional expression (6) defines the relationship between the focal lengths at the wide-angle end and the telephoto end, that is, the zoom ratio, and if it is below the lower limit value, the significance as a zoom lens is reduced. On the other hand, if the upper limit is exceeded, the lens system becomes large. In addition, this zoom type is not preferable because the brightness decreases excessively at the telephoto end. Also, if it is attempted to secure a certain level of brightness at the telephoto end, the burden on the second lens group becomes large, and aberration correction with a small number of lenses becomes difficult. When the conditional expression (6) is satisfied, the above problem can be prevented.
- conditional expressions (3), (4), (5) and (6) described above are particularly the conditional expressions (3 ′), (4 ′) and (5), respectively, within the range defined by each conditional expression. If ') and (6') are satisfied, it becomes more prominent.
- the refractive index nd1n of the negative lens arranged in the first lens group is equal to or lower than the lower limit value of the conditional expression (7), the curvature of the lens (approximate curvature) becomes large and it is difficult to correct curvature of field and distortion. become.
- the value exceeds the upper limit it is difficult to balance astigmatism and lateral chromatic aberration correction, which is not preferable.
- the Abbe number ⁇ d1n of the negative lens arranged in the first lens group is out of the range of the conditional expression (8), it is difficult to correct the lateral chromatic aberration particularly near the wide-angle end, but the conditional expression (8) When satisfied, this problem can be prevented.
- the refractive index nd2p of the positive lens arranged in the second lens group is equal to or lower than the lower limit value of the conditional expression (9), the curvature of the lens (approximate curvature) increases and the amount of aberration generated increases.
- the value exceeds the upper limit astigmatism increases, which is not preferable.
- the first lens group includes, in order from the object side, a first lens having a negative refractive power and a second lens having a positive refractive power, and the conditional expression (11 ) To (14), the following effects can be obtained.
- Conditional expression (11) and conditional expression (13) define the refractive index of the first lens and the refractive index of the second lens, respectively, and the occurrence of aberration increases when the conditional expression is below the lower limit of these conditional expressions.
- the curvature of the lens (approximate curvature) increases and the first lens group becomes thick.
- the two lenses arranged in the first lens group are to be composed of plastic lenses for the purpose of cost reduction and weight reduction, they are composed of a material that exceeds the upper limit value of the conditional expressions. Then, it becomes difficult to balance the correction of astigmatism and lateral chromatic aberration, which is not preferable.
- the conditional expression (11) or (13) is satisfied, the above problems can be prevented.
- Conditional expression (12) and conditional expression (14) define the Abbe number of the first lens and the Abbe number of the second lens, respectively, and the first lens and the second lens are out of the range of these conditional expressions. And the Abbe number difference becomes small, and correction of chromatic aberration becomes difficult. If the range of the conditional expression (12) or (14) is exceeded, the Abbe number of the second lens is defined by the other lens (conditional expression (14)) arranged in the first lens group in order to correct chromatic aberration. In this case, the first lens is the “other lens”, and when the Abbe number of the first lens is defined by the conditional expression (12), the power of the second lens is the “other lens”. In particular, it is difficult to correct curvature of field and distortion at the wide-angle end, which is not preferable. When the conditional expression (12) or (14) is satisfied, the above problems can be prevented.
- conditional expressions (12 ') and (14') are satisfied, respectively, within the ranges of conditional expressions (12) and (14).
- the second lens group includes, in order from the object side, a third lens having a positive refractive power, a fourth lens having a negative refractive power, and a fifth lens having a positive refractive power.
- conditional expressions (16 ′), (18 ′), and (20 ′) are satisfied, respectively, within the ranges of conditional expressions (16), (18), and (20). , Become more prominent.
- the zoom lens of the present invention in particular, when focusing from infinity to a short distance, the entire second lens group or a part of the lenses arranged in the second lens group is moved along the optical axis. If so, the following effects can be obtained. That is, when the configuration in which the entire first lens group is extended and focused is adopted, the effective diameter of the first lens group becomes large or the lens having a large outer diameter needs to be moved. Alternatively, when a part of the lenses arranged in the second lens group is moved, such a problem can be avoided.
- the second lens group is composed of a third lens having positive refractive power, a fourth lens having negative refractive power, and a fifth lens having positive refractive power in order from the object side. This is more noticeable when only the lens is moved along the optical axis.
- the image pickup apparatus according to the present invention includes the zoom lens according to the present invention that achieves the above-described effects, it is possible to achieve cost reduction while providing good optical performance.
- Sectional view showing the lens configuration of the zoom lens according to Example 1 of the present invention Sectional drawing which shows the lens structure of the zoom lens concerning Example 2 of this invention. Sectional drawing which shows the lens structure of the zoom lens concerning Example 3 of this invention. Sectional drawing which shows the lens structure of the zoom lens concerning Example 4 of this invention. Sectional drawing which shows the lens structure of the zoom lens concerning Example 5 of this invention. Sectional drawing which shows the lens structure of the zoom lens concerning Example 6 of this invention. Sectional drawing which shows the lens structure of the zoom lens concerning Example 7 of this invention.
- (A) to (H) are aberration diagrams of the zoom lens of Example 1 of the present invention.
- (A) to (H) are aberration diagrams of the zoom lens according to Example 2 of the present invention.
- FIG. 1 is a schematic configuration diagram of an imaging apparatus according to an embodiment of the present invention.
- FIG. 1 is a cross-sectional view illustrating a configuration example of a zoom lens according to an embodiment of the present invention, and corresponds to a zoom lens of Example 1 described later.
- 2 to 7 are cross-sectional views showing other configuration examples according to the embodiment of the present invention, which respectively correspond to zoom lenses of Examples 2 to 7 described later.
- the basic configuration of the example shown in FIGS. 1 to 7 is the same as that of the embodiment shown in FIGS. 2 and 7 except that the second lens group G2 includes two lenses. Therefore, the zoom lens according to the embodiment of the present invention will be described mainly with reference to FIG.
- FIG. 1 the left side is the object side, the right side is the image side, (A) is the infinitely focused state and the optical system arrangement at the wide angle end (shortest focal length state), and (B) is the infinitely focused state. And the arrangement of the optical system at the telephoto end (longest focal length state). The same applies to FIGS. 2 to 7 described later.
- the zoom lens according to the embodiment of the present invention includes, in order from the object side, a first lens group G1 having a negative refractive power and a second lens group G2 having a positive refractive power arranged as a lens group.
- the second lens group G2 includes an aperture stop St.
- the aperture stop St shown here does not necessarily indicate the size or shape, but indicates the position on the optical axis Z.
- FIG. 1 shows an example in which a parallel plate-shaped optical member PP is disposed between the second lens group G2 and the image plane Sim.
- various filters such as a cover glass, an infrared cut filter, and a low-pass filter are arranged between the optical system and the image plane Sim according to the configuration of the camera on which the lens is mounted. It is preferable.
- the optical member PP assumes such cover glass and various filters.
- some image pickup apparatuses employ a 3CCD system that uses a CCD for each color in order to improve image quality.
- a color separation optical system such as a color separation prism is used. It is inserted between the lens system and the image plane Sim. In that case, a color separation optical system may be arranged at the position of the optical member PP.
- the first lens group G1 moves so as to draw a convex locus on the image plane Sim side, and the second lens group G2 monotonously moves toward the object side.
- the aperture stop St is configured to move integrally with the second lens group G2.
- FIG. 1 the movement trajectories of the first lens group G1 and the second lens group G2 when zooming from the wide-angle end to the telephoto end are schematically shown by solid line arrows between (A) and (B). Is shown.
- the first lens group G1 includes a first lens L11 having a negative refractive power and a second lens L12 having a positive refractive power, which are arranged in order from the object side.
- the first lens L11 can be a biconcave lens
- the second lens L12 can be a positive meniscus lens.
- the first lens group G1 is composed of at least two lenses.
- the first lens group G1 is composed of the two lenses L11 and L12 as described above, and Both of them are plastic lenses.
- the second lens group G2 is composed of at least two lenses, but the second lens group G2 in the structure of FIG. 1 has a positive refractive power arranged in order from the object side.
- the third lens L21 includes a fourth lens L22 having a negative refractive power, and a fifth lens L23 having a positive refractive power.
- the third lens L21 can be a biconvex lens
- the fourth lens L22 can be a biconcave lens
- the fifth lens L23 can be a positive meniscus lens. All the lenses L21, L22, and L23 of the second lens group G2 are also plastic lenses.
- the first lens group G1 is composed of the two lenses L11 and L12 and the second lens group G2 is composed of the three lenses L21, L22 and L23, and these lenses are all plastic lenses. Thus, cost reduction can be achieved.
- the second lens group G2 includes two lenses, that is, the third lens L21 and the fourth lens L22.
- the above effect can also be obtained with this configuration.
- the second lens group G2 has one negative lens (fourth lens L22), and the Abbe number of the negative lens with respect to the d-line is ⁇ d2n, the following conditional expression ⁇ d2n ⁇ 29. (4) Is satisfied.
- the first lens group G1 is composed of two lenses, a first lens L11 having a negative refractive power and a second lens L12 having a positive refractive power, in order from the object side.
- the air interval on the optical axis Z of the two lenses is d2
- the focal length of the entire system at the wide angle end is fw
- conditional expressions (3) to (6) need not all be satisfied, and some of them may be satisfied.
- the more desirable ranges of the conditions shown in the conditional expressions (3), (4), (5) and (6) are as follows: ⁇ d1p ⁇ 26 (3 ′) ⁇ d2n ⁇ 26 (4 ′) 0.31 ⁇ d2 / fw ⁇ 0.60 (5 ′) 2.3 ⁇ ft / fw ⁇ 5.0 (6 ′) In this embodiment, all of these conditional expressions are also satisfied.
- the zoom lens has a configuration in which the entire second lens group G2 is moved along the optical axis Z during focusing from infinity to a short distance. It should be noted that some lenses arranged in the second lens group G2 may be moved along the optical axis Z. More specifically, a configuration in which only the fifth lens L23 is moved along the optical axis Z can be employed.
- the first lens group G1 has one negative lens (first lens L11) and the refractive index and Abbe number of the negative lens with respect to the d-line are nd1n and ⁇ d1n, respectively, Conditional expression of 1.48 ⁇ nd1n ⁇ 1.56 (7) 50 ⁇ d1n> 60 (8) Is satisfied.
- the second lens group G2 has two positive lenses (third lens L21 and fifth lens L23), and the refractive index and Abbe number of the positive lens with respect to the d-line are nd2p and ⁇ d2p, respectively. Then, the following conditional expression 1.48 ⁇ nd2p ⁇ 1.56 (9) 50 ⁇ d2p ⁇ 60 (10) Is satisfied.
- the first lens group G1 is composed of a first lens L11 having negative refractive power and a second lens L12 having positive refractive power in order from the object side.
- the refractive index and Abbe number for nd are nd11 and ⁇ d11, respectively
- the refractive index and Abbe number for the d-line of the second lens L12 are nd12 and ⁇ d12, respectively.
- conditional expressions (12) and (14) The range of more desirable values within the conditions defined by the conditional expressions (12) and (14) is 52 ⁇ d11 (12 ′) ⁇ d12 ⁇ 29 (14 ′) However, in this embodiment, these conditional expressions (12 ′) and (14 ′) are also satisfied.
- the second lens group G2 in order from the object side, a third lens L21 having a positive refractive power, a fourth lens L22 having a negative refractive power, and a fifth lens L23 having a positive refractive power.
- the refractive index and Abbe number of the third lens L21 for the d-line are nd21 and ⁇ d21, respectively, and the refractive index and Abbe number of the fourth lens L22 for the d-line are nd22 and ⁇ d22, respectively, and d of the fifth lens L23.
- these lenses have the following conditions: 1.48 ⁇ nd21 ⁇ 1.61 (15) 50 ⁇ d21 (16) 1.56 ⁇ nd22 ⁇ 1.68 (17) ⁇ d22 ⁇ 33 (18) 1.48 ⁇ nd23 ⁇ 1.61 (19) 50 ⁇ d23 (20) It is formed from a plastic material that satisfies the requirements.
- the range of more desirable values within the conditions defined by the conditional expressions (16), (18) and (20) is 52 ⁇ d21 (16 ′) below. ⁇ d22 ⁇ 29 (18 ′) 52 ⁇ d23 (20 ′)
- these conditional expressions (16 ′), (18 ′), and (20 ′) are also satisfied.
- Conditional expression (1) defines the relationship between the amount of movement of the second lens group G2 and the focal length of the entire system at the telephoto end.
- the conditional expression (1) is below the lower limit of the conditional expression, the zoom ratio can be increased. It becomes difficult. In this case, it is not preferable because the power of the second lens group G2 must be increased, and an allowable amount of manufacturing error and assembly error is reduced. Further, in that case, the power of the plastic lens becomes strong, and the change in optical performance and characteristics due to temperature increases, which is not preferable.
- the upper limit of the conditional expression is exceeded, the amount of movement of the second lens group G2 becomes large, and the lens system becomes large, which is not preferable.
- the conditional expression (1) is satisfied, the above-mentioned problems are prevented, and the power of each lens is set optimally while securing a zoom ratio of about 3 to 4 times with a small number of lenses. With this, good optical performance can be realized.
- Conditional expression (2) defines the relationship between the focal length of the entire system at the telephoto end and the focal length of the first lens group G1, and when it becomes less than the lower limit, the amount of movement during zooming increases, and the lens system Is unfavorable because it increases in size.
- the upper limit value is exceeded, it becomes difficult to correct curvature of field mainly near the wide-angle end. Further, the power of the plastic lens becomes strong, and the optical performance and characteristics change with temperature, which is not preferable.
- the conditional expression (2) is satisfied, the above-described problems can be prevented, so that the above-described effect, that is, good optical performance can be obtained while securing a zoom ratio of about 3 to 4 times with a small number of lenses. The effect of being realizable can be made more remarkable.
- Conditional expression (3) defines the Abbe number of the positive lens (second lens L12) disposed in the first lens group G1, and if the range of the conditional expression is outside the range, the chromatic aberration of magnification becomes particularly large. It is not preferable. When the conditional expression (3) is satisfied, the above problem can be prevented.
- Conditional expression (4) prescribes the Abbe number of the negative lens (fourth lens L22) disposed in the second lens group G2, and the axial chromatic aberration becomes particularly large if the conditional expression is outside the range. It is not preferable. When the conditional expression (4) is satisfied, the above problem can be prevented.
- Conditional expression (5) defines the relationship between the distance between the first lens L11 and the second lens L12 arranged in the first lens group G1 and the focal length of the entire system at the wide-angle end, and is below the lower limit value thereof. Then, it is advantageous for downsizing, but it is not preferable because correction of spherical aberration becomes difficult. On the other hand, if the upper limit value is exceeded, the entire first lens group G1 becomes large, which is not preferable. When the conditional expression (5) is satisfied, the above problem can be prevented.
- Conditional expression (6) defines the relationship between the focal lengths at the wide-angle end and the telephoto end, that is, the zoom ratio, and if it is below the lower limit value, the significance as a zoom lens is reduced. On the other hand, if the upper limit is exceeded, the lens system becomes large. In addition, this zoom type is not preferable because the brightness decreases excessively at the telephoto end. Further, if it is attempted to secure a certain level of brightness at the telephoto end, the burden on the second lens group G2 increases, and it becomes difficult to correct aberrations with a small number of lenses. When the conditional expression (6) is satisfied, the above problem can be prevented.
- conditional expressions (3 ′), (4 ′), and (5 ′) are particularly preferable within the ranges defined by the conditional expressions (3), (4), (5), and (6) described above. ) And (6 ′) are satisfied, the above effect becomes more remarkable.
- the refractive index nd1n of the negative lens (first lens L11) arranged in the first lens group G1 is equal to or lower than the lower limit value of the conditional expression (7), the curvature of the lens (approximate curvature) increases and the curvature of field is increased. And it becomes difficult to correct distortion. On the other hand, if the value exceeds the upper limit, it is difficult to balance astigmatism and lateral chromatic aberration correction, which is not preferable. Since this zoom lens satisfies the conditional expression (7), the above-mentioned problem can be prevented.
- the Abbe number ⁇ d1n of the negative lens (first lens L11) arranged in the first lens group G1 is out of the range of the conditional expression (8), it is difficult to correct lateral chromatic aberration particularly near the wide-angle end. Since this zoom lens satisfies the conditional expression (8), this problem can be prevented.
- the lens curvature (approximate curvature) becomes large. As a result, the amount of aberration generated becomes large.
- the value exceeds the upper limit astigmatism increases, which is not preferable. Since this zoom lens satisfies the conditional expression (9), the above-described problem can be prevented.
- the Abbe number ⁇ d2p of the positive lenses (the third lens L21 and the fifth lens L23) arranged in the second lens group G2 is out of the range of the conditional expression (10), it is difficult to correct axial chromatic aberration. Since this zoom lens satisfies the conditional expression (10), this problem can be prevented.
- the first lens group G1 includes, in order from the object side, the first lens L11 having a negative refractive power and the second lens L12 having a positive refractive power, and then the conditional expression (11 ) To (14) are satisfied, the following effects can be obtained. That is, conditional expression (11) and conditional expression (13) define the refractive index of the first lens L11 and the refractive index of the second lens L12, respectively. Is increased, the curvature of the lens (approximate curvature) is increased, and the first lens group G1 is thickened.
- the two lenses L11 and L12 arranged in the first lens group G1 are made of plastic lenses for the purpose of cost reduction and weight reduction, a material that exceeds the upper limit value of these conditional expressions. This is not preferable because it is difficult to balance correction of astigmatism and lateral chromatic aberration. Since this zoom lens satisfies the conditional expressions (11) and (13), the above problems can be prevented.
- Conditional expression (12) and conditional expression (14) define the Abbe number of the first lens L11 and the Abbe number of the second lens L12, respectively. The difference in Abbe number from the second lens L12 becomes small, and correction of chromatic aberration becomes difficult. If the range of the conditional expression (12) or (14) is exceeded, the Abbe number of the second lens L12 in the other lens (conditional expression (14)) arranged in the first lens group G1 is corrected for chromatic aberration correction.
- the first lens L11 is this “other lens” when it is defined
- the second lens L12 is this “other lens” when the Abbe number of the first lens L11 is defined by the conditional expression (12)) Is also not preferable because it is difficult to correct curvature of field and distortion at the wide-angle end. Since this zoom lens satisfies the conditional expressions (12) and (14), the above problems can be prevented.
- conditional expressions (12 ′) and (14 ′) are satisfied particularly within the ranges of conditional expressions (12) and (14), respectively. Become.
- the zoom lens of the present invention in particular, the second lens group G2, in order from the object side, a third lens L21 having a positive refractive power, a fourth lens L22 having a negative refractive power, and a fifth lens having a positive refractive power.
- a third lens L21 having a positive refractive power in order from the object side, a fourth lens L22 having a negative refractive power, and a fifth lens having a positive refractive power.
- conditional expressions (16 ′), (18 ′), and (20 ′) are satisfied particularly within the ranges of the conditional expressions (16), (18), and (20). Becomes more prominent.
- the zoom lens has a configuration in which the entire second lens group G2 is moved along the optical axis Z during focusing from infinity to a short distance, so that the following effects can be obtained. That is, when the configuration in which the entire first lens group G1 is extended and focused is adopted, the effective diameter of the first lens group G1 or the lens having a large outer diameter needs to be moved. Such a problem can be avoided when moving the entire group G2.
- FIG. 1 shows an example in which the optical member PP is disposed between the lens system and the imaging plane, but instead of disposing a low-pass filter, various filters that cut a specific wavelength range, etc. These various filters may be disposed between the lenses, or a coating having the same action as the various filters may be applied to the lens surface of any lens.
- FIGS. 1 to 7 Lens sectional views of the zoom lenses of Examples 1 to 7 are shown in FIGS. 1 to 7, respectively.
- Table 1 shows basic lens data of the zoom lens of Example 1
- Table 2 shows data relating to zooming
- Table 3 shows aspherical data
- Tables 4 to 21 show basic lens data, zoom-related data, and aspherical data of the zoom lenses of Examples 2 to 7, respectively.
- the meaning of the symbols in the table will be described using the example 1 as an example, but the same applies to the examples 2 to 7.
- the i-th (i 1, 2, 3,...) That sequentially increases toward the image side with the object-side surface of the most object-side component as the first.
- the surface number is indicated
- the Ri column indicates the radius of curvature of the i-th surface
- the Di column indicates the surface interval on the optical axis Z between the i-th surface and the i + 1-th surface.
- the sign of the radius of curvature is positive when the surface shape is convex on the object side and negative when the surface shape is convex on the image side.
- the basic lens data also includes the aperture stop St, and ⁇ (aperture stop) is described in the column of the radius of curvature of the surface corresponding to the aperture stop St.
- D4 and D11 in the basic lens data in Table 1 are surface intervals that change during zooming.
- D4 is the distance between the first lens group G1 and the second lens group G2
- D11 is the distance between the second lens group G2 and the optical member PP.
- D9 is used instead of D11.
- the zoom-related data in Table 2 includes the focal length (f), F value (Fno.), Total angle of view (2 ⁇ ), and the distance between each surface that changes during zooming at the wide-angle end and the telephoto end. Is shown.
- the surface number of the aspheric surface is marked with *, and the paraxial radius of curvature is shown as the radius of curvature of the aspheric surface.
- the aspheric data in Table 3 shows the surface number of the aspheric surface and the aspheric coefficient for each aspheric surface.
- the numerical value “E ⁇ n” (n: integer) of the aspherical data in Table 3 means “ ⁇ 10 ⁇ n ”.
- Zd C ⁇ h 2 / ⁇ 1+ (1 ⁇ KA ⁇ C 2 ⁇ h 2 ) 1/2 ⁇ + ⁇ RAm ⁇ h m
- Zd Depth of aspheric surface (length of a perpendicular line drawn from a point on the aspherical surface at height h to a plane perpendicular to the optical axis where the aspherical vertex contacts)
- h Height (distance from the optical axis to the lens surface)
- C Reciprocal number of paraxial radius of curvature KA
- values rounded to a predetermined digit are shown.
- surface described below although the degree is used as a unit of angle and mm is used as a unit of length, an optical system can be used by proportional expansion or proportional reduction. Thus, other suitable units can be used.
- Table 22 shows values corresponding to the conditional expressions (1) to (20) of the zoom lenses of Examples 1 to 7.
- the values in Table 22 relate to the d line.
- FIGS. 8A to 8D show spherical aberration, astigmatism, distortion (distortion aberration) and lateral chromatic aberration (chromatic aberration of magnification) at the wide-angle end of the zoom lens of Example 1
- FIGS. 8E to 8H show spherical aberration, astigmatism, distortion (distortion aberration), and lateral chromatic aberration (chromatic aberration of magnification) at the edges, respectively.
- Each aberration diagram is based on the d-line (wavelength 587.6 nm), but the spherical aberration diagram also shows aberrations relating to wavelengths 460.0 nm and 615.0 nm, and the lateral chromatic aberration diagram shows wavelengths 460.0 nm and 615.0 nm. The aberration about is shown. In the astigmatism diagram, the sagittal direction is indicated by a solid line, and the tangential direction is indicated by a dotted line. Fno. Of spherical aberration diagram. Means F value, and ⁇ in other aberration diagrams means half angle of view.
- FIGS. 9A to 9H the aberration diagrams at the wide-angle end and the telephoto end of the zoom lens of Example 2 are shown in FIGS. 9A to 9H, and the aberration diagrams of Examples 3 to 7 are respectively the same in the same manner. It is shown in FIGS.
- FIG. 15 shows a schematic configuration diagram of an imaging apparatus 10 using the zoom lens 1 of the embodiment of the present invention as an example of the imaging apparatus of the embodiment of the present invention.
- the imaging device include a surveillance camera, a video camera, and an electronic still camera.
- An image pickup apparatus 10 shown in FIG. 15 is arranged on the zoom lens 1, the image side of the zoom lens 1, an image pickup device 2 that picks up an image of a subject imaged by the zoom lens 1, and an output from the image pickup device 2.
- a signal processing unit 4 that performs signal processing, a zooming control unit 5 for zooming the zoom lens 1, and a focus control unit 6 for performing focus adjustment are provided.
- a filter or the like may be appropriately disposed between the zoom lens 1 and the image sensor 2.
- the zoom lens 1 has a negative refractive power, a first lens group G1 that moves so as to draw a convex locus on the image plane side when zooming from the wide angle end to the telephoto end, and a positive refractive power. And a second lens group G2 that moves monotonically toward the object side when zooming from the wide-angle end to the telephoto end, and an aperture stop St that is configured to move integrally with the second lens group G2. is doing.
- FIG. 15 schematically shows each lens group.
- the image pickup device 2 picks up an optical image formed by the zoom lens 1 and outputs an electric signal.
- the image pickup element 2 for example, a CCD or CMOS can be used.
- the imaging device 10 moves a lens having a positive refractive power that constitutes a part of the second lens group G2 in a direction perpendicular to the optical axis Z, for example. You may make it further provide the blurring correction mechanism which correct
- the present invention has been described with reference to the embodiments and examples, the present invention is not limited to the above-described embodiments and examples, and various modifications are possible.
- the values of the radius of curvature, the surface interval, the refractive index, the Abbe number, the aspherical coefficient, etc. of each lens component are not limited to the values shown in the above numerical examples, and can take other values.
Landscapes
- Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Lenses (AREA)
Abstract
【課題】ズームレンズにおいて、低コスト化、良好な光学性能を実現する。 【解決手段】実質的に、物体側より順に、負の屈折力を有する第1レンズ群(G1)と、正の屈折力を有する第2レンズ群(G2)とからなり、変倍に際して第1レンズ群(G1)と第2レンズ群(G2)の間隔が変化するズームレンズにおいて、第1レンズ群(G1)および第2レンズ群(G2)を、それぞれ、全てプラスチックレンズを適用して、少なくとも2枚のレンズから(第1レンズ群(G1)はレンズ(L11、L12)から、第2レンズ群(G2)はレンズ(L21、L22、L23)から)構成する。その上で、広角端から望遠端に変倍するときの第2レンズ群(G2)の移動量をM2、望遠端における全系の焦点距離をftとしたとき、以下の条件式を満足させる。 0.45<M2/ft<0.8 …(1)
Description
本発明は、ズームレンズおよび撮像装置に関し、特に、小型のカメラや携帯端末装置に好適に使用可能なズームレンズおよび、そのようなズームレンズを備えた撮像装置に関するものである。
従来、コンパクトなデジタルカメラやビデオカメラ、携帯端末装置などに搭載されるズームレンズとして、負レンズ群先行(物体側に負レンズ群を配置した構成)の2群あるいは3群タイプのズームレンズが広く知られており、例えば特許文献1にはそれらの例が示されている。また特許文献2および3には、変倍比が3倍程度で、より簡易な2群タイプが採用された低コストのズームレンズの例として、第1レンズ群が2枚、第2レンズ群が3枚の計5枚のレンズで構成されたズームレンズが示されている。一方特許文献4には、第1レンズ群が2枚、第2レンズ群が2枚の計4枚のレンズで構成されたズームレンズが示されている。
他方、特許文献5や6には、プラスチックレンズが採用されたズームレンズや、あるいはプラスチックレンズで構成することも想定して設計されたズームレンズが開示されている。特許文献5には、第1レンズ群を構成する3枚のレンズのうち1枚がプラスチックレンズとされた例が示されている。また特許文献6には、全てのレンズがプラスチックレンズで構成された例が示されている。
特許文献4に示されたズームレンズは、極めて少ないレンズ枚数で構成されているが、このようにレンズ枚数が少ないことにより単純に低コスト化が実現されるものではない。例えば、少ないレンズ枚数で構成すると、レンズ1枚当たりが担うパワーが強くなり、製造誤差や組立誤差の許容量が少なくなったり、レンズの加工難度が高くなったりして、結果的に生産コストが高くなってしまう可能性もある。
レンズをより安価な材料、例えば、プラスチック材料で構成することも低コスト化の1つの手段であるが、少ないレンズ枚数で構成したときには、レンズ1枚当たりのパワーが強いため、コストの安いプラスチックを用いることが難しくなってしまう。それは、製造誤差や組立誤差、あるいは、温度変化に伴う光学諸元や性能の変動が大きくなったり、収差の補正バランスをとることが難しくなったりするためである。ここで、改めて特許文献4に示されているズームレンズの構成について考えると、第1レンズ群に配置された正レンズおよび負レンズ共に高屈折率の材料が用いられていることから分かるように、低コスト化に重点を置いて設計された訳ではなく、そこにも記載があるように、沈胴時の厚みを小さくすることを優先して設計されたものであることがわかる。
逆に言えば、サイズよりも、光学性能やコストをより優先して考える場合には、特許文献4に示されるような第2群の正レンズのパワーを2枚のレンズに分散させた、特許文献2や3に示される第2群の構成の方が好ましいと考えられる。また、そのような構成とすることで、第2群に配置された正レンズ1枚当たりが担うパワーが小さくなるため、レンズをプラスチックから構成することも可能になる。しかし、特許文献2や3に示されたズームレンズも、第1レンズ群に配置されたレンズが高屈折率材料で構成されており、さらなる低コスト化の余地が残されている。
上述のようにプラスチックレンズを採用するためには、各レンズのパワーを最適に設定する必要がある。つまり、特許文献4に示されるズームレンズのように少ないレンズ枚数で構成し、かつ、コストの低いプラスチックレンズを採用する場合には、各レンズへのパワー配分を十分に考慮しなければならない。
プラスチックレンズが採用されたズームレンズの例としては、前述のように特許文献5や6に示されたものがあるが、それらの第1レンズ群は、特許文献2~4に示されているズームレンズの第1レンズ群よりもレンズ枚数が1枚多い構成となっている。このように、プラスチックレンズを用いる場合、前述した通り、パワーの強い1枚のレンズを2枚のレンズに分割することによりパワーを分散させて、ある程度までパワーが小さくなったレンズを適用するという考えもある。しかしそのような構成を採用すると、沈胴長は大きくなってしまう。また特許文献6には、全てのレンズがプラスチックレンズで構成された例が示されているが、その場合は、変倍比が2倍程度にとどまっている。
本発明は上記の事情に鑑みてなされたものであり、少ないレンズ枚数で3倍乃至4倍程度の変倍比を確保しつつ、プラスチックレンズを採用して低コスト化を達成するとともに、各レンズのパワーを最適に設定することで良好な光学性能を実現できる2群ズームレンズを提供することを目的とする。
本発明による第1のズームレンズは、
実質的に、物体側より順に、負の屈折力を有する第1レンズ群と、正の屈折力を有する第2レンズ群とからなり、変倍に際して前記第1レンズ群と第2レンズ群の間隔が変化するズームレンズにおいて、
前記第1レンズ群および第2レンズ群が、それぞれ、全てプラスチックレンズを適用して、少なくとも2枚のレンズから構成され、
広角端から望遠端に変倍するときの第2レンズ群の移動量をM2、望遠端における全系の焦点距離をftとしたとき、以下の条件式
0.45<M2/ft<0.8 …(1)
を満足することを特徴とするものである。
実質的に、物体側より順に、負の屈折力を有する第1レンズ群と、正の屈折力を有する第2レンズ群とからなり、変倍に際して前記第1レンズ群と第2レンズ群の間隔が変化するズームレンズにおいて、
前記第1レンズ群および第2レンズ群が、それぞれ、全てプラスチックレンズを適用して、少なくとも2枚のレンズから構成され、
広角端から望遠端に変倍するときの第2レンズ群の移動量をM2、望遠端における全系の焦点距離をftとしたとき、以下の条件式
0.45<M2/ft<0.8 …(1)
を満足することを特徴とするものである。
ここで、「実質的に第1レンズ群と第2レンズ群とからなる」とは、それらのレンズ群以外に、実質的にパワーを有さないレンズ、絞りやカバーガラス等レンズ以外の光学要素、レンズフランジ、レンズバレル、撮像素子、手振れ補正機構等の機構部分等を持つ場合も含むものとする。この点は、後述する本発明の第2のズームレンズに関する記載や、さらには、「第1レンズ群が実質的に、物体側より順に、負の屈折力を有する第1レンズおよび正の屈折力を有する第2レンズの2枚より構成され」との記載についても同様である。
なお、本発明のズームレンズにおける各レンズ群は、3枚以上のプラスチックレンズから構成されてもよい。また、各レンズ群を構成するレンズには接合レンズが用いられてもよいが、接合レンズはn枚の貼り合わせで構成されていれば、n枚のレンズとして数えるものとする。また、本明細書における「本発明のズームレンズ」あるいは「本発明によるズームレンズ」との記載は、特にことわりがなければ本発明による第1のズームレンズおよび、後述する第2のズームレンズの双方を指すものとする。
また、本発明のズームレンズにおけるレンズの面形状、屈折力の符号は、非球面が含まれているものについては近軸領域で考えるものとする。
ここで、本発明による上記第1のズームレンズは、望遠端における全系の焦点距離をft、前記第1レンズ群の焦点距離をf1としたとき、以下の条件式
1.5<|ft/f1|<2.3 …(2)
を満足するものであることがより望ましい。
1.5<|ft/f1|<2.3 …(2)
を満足するものであることがより望ましい。
また、本発明による第2のズームレンズは、
実質的に、物体側より順に、負の屈折力を有する第1レンズ群と、正の屈折力を有する第2レンズ群とからなり、変倍に際して前記第1レンズ群と第2レンズ群の間隔が変化するズームレンズにおいて、
前記第1レンズ群および第2レンズ群が、それぞれ、全てプラスチックレンズを適用して、少なくとも2枚のレンズから構成され、
望遠端における全系の焦点距離をft、第1レンズ群の焦点距離をf1としたとき、以下の条件式
1.5<|ft/f1|<2.3 …(2)
を満足することを特徴とするものである。
実質的に、物体側より順に、負の屈折力を有する第1レンズ群と、正の屈折力を有する第2レンズ群とからなり、変倍に際して前記第1レンズ群と第2レンズ群の間隔が変化するズームレンズにおいて、
前記第1レンズ群および第2レンズ群が、それぞれ、全てプラスチックレンズを適用して、少なくとも2枚のレンズから構成され、
望遠端における全系の焦点距離をft、第1レンズ群の焦点距離をf1としたとき、以下の条件式
1.5<|ft/f1|<2.3 …(2)
を満足することを特徴とするものである。
なお、本発明による上記第2のズームレンズは、広角端から望遠端に変倍するときの第2レンズ群の移動量をM2、望遠端における全系の焦点距離をftとしたとき、以下の条件式
0.45<M2/ft<0.8 …(1)
を満足するものであることが望ましい。
0.45<M2/ft<0.8 …(1)
を満足するものであることが望ましい。
そして、本発明によるズームレンズは、第1レンズ群が少なくとも1枚の正レンズを有し、該正レンズのd線に対するアッベ数をνd1pとしたとき、以下の条件式
νd1p<29 …(3)
を満足するものであることが望ましい。
νd1p<29 …(3)
を満足するものであることが望ましい。
また本発明によるズームレンズは、第2レンズ群が少なくとも1枚の負レンズを有し、該負レンズのd線に対するアッベ数をνd2nとしたとき、以下の条件式
νd2n<29 …(4)
を満足するものであることが望ましい。
νd2n<29 …(4)
を満足するものであることが望ましい。
さらに本発明によるズームレンズは、第1レンズ群が実質的に、物体側より順に、負の屈折力を有する第1レンズおよび正の屈折力を有する第2レンズの2枚より構成され、該2枚のレンズの光軸上での空気間隔をd2、広角端における全系の焦点距離をfwとしたとき、以下の条件式
0.31<d2/fw<0.70 …(5)
を満足するものであることが望ましい。
0.31<d2/fw<0.70 …(5)
を満足するものであることが望ましい。
また本発明によるズームレンズは、広角端および望遠端の焦点距離をそれぞれfw、ftとしたとき、以下の条件式
2.0<ft/fw<5.0 …(6)
を満足するものであることが望ましい。
2.0<ft/fw<5.0 …(6)
を満足するものであることが望ましい。
なお上記条件式(3)~(6)は、それらの中の一部(1つまたは複数)が満足されてもよい。そしてそれらの条件式(3)、(4)、(5)および(6)で示した各条件のより望ましい範囲は下記の通りである。
νd1p<26 …(3’)
νd2n<26 …(4’)
0.31<d2/fw<0.60 …(5’)
2.3<ft/fw<5.0 …(6’)
また本発明のズームレンズにおいては、無限遠から近距離へのフォーカシングに際して、第2レンズ群全体、または第2レンズ群に配置された一部のレンズを光軸に沿って移動させる構成となっていることが好ましい。より具体的には、第2レンズ群を物体側より順に、正の屈折力を有する第3レンズ、負の屈折力を有する第4レンズ、正の屈折力を有する第5レンズより構成したとき、第5レンズのみを光軸に沿って移動させる構成であることが好ましい。
νd2n<26 …(4’)
0.31<d2/fw<0.60 …(5’)
2.3<ft/fw<5.0 …(6’)
また本発明のズームレンズにおいては、無限遠から近距離へのフォーカシングに際して、第2レンズ群全体、または第2レンズ群に配置された一部のレンズを光軸に沿って移動させる構成となっていることが好ましい。より具体的には、第2レンズ群を物体側より順に、正の屈折力を有する第3レンズ、負の屈折力を有する第4レンズ、正の屈折力を有する第5レンズより構成したとき、第5レンズのみを光軸に沿って移動させる構成であることが好ましい。
さらに本発明のズームレンズは、第1レンズ群が少なくとも1枚の負レンズを有し、該負レンズのd線に対する屈折率およびアッベ数をそれぞれ、nd1n、νd1nとしたとき、以下の条件式
1.48<nd1n<1.56 …(7)
50<νd1n>60 …(8)
を満足するものであることが好ましい。
1.48<nd1n<1.56 …(7)
50<νd1n>60 …(8)
を満足するものであることが好ましい。
また本発明のズームレンズは、第2レンズ群が少なくとも1枚の正レンズを有し、該正レンズのd線に対する屈折率およびアッベ数をそれぞれ、nd2p、νd2pしたとき、以下の条件式
1.48<nd2p<1.56 …(9)
50<νd2p<60 …(10)
を満足するものであることが好ましい。
1.48<nd2p<1.56 …(9)
50<νd2p<60 …(10)
を満足するものであることが好ましい。
また本発明のズームレンズにおいては、第1レンズ群が物体側より順に、負の屈折力を有する第1レンズ、正の屈折力を有する第2レンズから構成され、第1レンズのd線に対する屈折率、アッベ数を各々nd11、νd11とし、第2レンズのd線に対する屈折率、アッベ数を各々nd12、νd12としたとき、それらのレンズが下記条件
1.48<nd11<1.61 …(11)
50<νd11 …(12)より好ましくは 52<νd11 …(12’)
1.56<nd12<1.66 …(13)
νd12<33 …(14)より好ましくは νd12<29 …(14’)
を満足するプラスチック材料から形成されることが望ましい。
1.48<nd11<1.61 …(11)
50<νd11 …(12)より好ましくは 52<νd11 …(12’)
1.56<nd12<1.66 …(13)
νd12<33 …(14)より好ましくは νd12<29 …(14’)
を満足するプラスチック材料から形成されることが望ましい。
また本発明のズームレンズにおいては、第2レンズ群が物体側より順に、正の屈折力を有する第3レンズ、負の屈折力を有する第4レンズ、正の屈折力を有する第5レンズから構成され、第3レンズのd線に対する屈折率、アッベ数を各々nd21、νd21とし、第4レンズのd線に対する屈折率、アッベ数を各々nd22、νd22とし、第5レンズのd線に対する屈折率、アッベ数を各々nd23、νd23としたとき、それらのレンズは下記条件
1.48<nd21<1.61 …(15)
50<νd21 …(16)より好ましくは52<νd21 …(16’)
1.56<nd22<1.68 …(17)
νd22<33 …(18)より好ましくはνd22<29 …(18’)
1.48<nd23<1.61 …(19)
50<νd23 …(20)より好ましくは52<νd23 …(20’)
を満足するプラスチック材料から形成されることが望ましい。
1.48<nd21<1.61 …(15)
50<νd21 …(16)より好ましくは52<νd21 …(16’)
1.56<nd22<1.68 …(17)
νd22<33 …(18)より好ましくはνd22<29 …(18’)
1.48<nd23<1.61 …(19)
50<νd23 …(20)より好ましくは52<νd23 …(20’)
を満足するプラスチック材料から形成されることが望ましい。
他方、本発明による撮像装置は、以上説明した本発明による第1あるいは第2のズームレンズを備えたことを特徴とするものである。
本発明による第1のズームレンズは実質的に、物体側より順に、負の屈折力を有する第1レンズ群と、正の屈折力を有する第2レンズ群とからなり、変倍に際して前記第1レンズ群と第2レンズ群の間隔が変化するズームレンズにおいて、第1レンズ群および第2レンズ群が、それぞれ、全てプラスチックレンズを適用して、少なくとも2枚のレンズから構成され、その上で前記条件式(1)を満足するものとされているので、プラスチックレンズを採用して低コスト化を達成するとともに、少ないレンズ枚数で3倍乃至4倍程度の変倍比を確保しつつ、各レンズのパワーを最適に設定することで良好な光学性能を実現できるものとなる。
以下、上に述べた効果についてさらに詳しく説明する。条件式(1)は、第2レンズ群の移動量と望遠端における全系の焦点距離の関係を規定しており、条件式の下限値以下になると、変倍比を大きくすることが困難になる。またその場合は、第2レンズ群のパワーを強くしなければならず、製造誤差や組立誤差の許容量が少なくなってしまうため好ましくない。さらにその場合は、プラスチックレンズのパワーが強くなり、温度による光学性能や特性の変化が大きくなるため、好ましくない。逆に、条件式の上限値以上になると、第2レンズ群の移動量が大きくなり、レンズ系が大型化するため好ましくない。条件式(1)を満足している場合は、以上の不具合を防止して、上記の効果が得られようになる。
また、本発明による第1のズームレンズにおいて特に、前記条件式(2)を満足している場合は、上記の効果がより顕著なものとなる。すなわちこの条件式(2)は、望遠端における全系の焦点距離と第1レンズ群の焦点距離の関係を規定しており、下限値以下になると、変倍時の移動量が大きくなり、レンズ系が大型化してしまうため好ましくない。逆に上限値以上になると、主に、広角端近傍での像面湾曲の補正が困難になる。また、プラスチックレンズのパワーが強くなり、温度による光学性能や特性の変化が大きくなるため、好ましくない。条件式(2)を満足している場合は、以上の不具合も防止できるので、上記の効果をより顕著なものとすることができる。
他方、本発明による第2のズームレンズは実質的に、物体側より順に、負の屈折力を有する第1レンズ群と、正の屈折力を有する第2レンズ群とからなり、変倍に際して前記第1レンズ群と第2レンズ群の間隔が変化するズームレンズにおいて第1レンズ群および第2レンズ群が、それぞれ、全てプラスチックレンズを適用して、少なくとも2枚のレンズから構成され、その上で前記条件式(2)を満足するものとされているので、プラスチックレンズを採用して低コスト化を達成するとともに、少ないレンズ枚数で3倍乃至4倍程度の変倍比を確保しつつ、各レンズのパワーを最適に設定することで良好な光学性能を実現できるという効果を奏する。すなわち、この場合も条件式(2)を満足することにより、先に述べた通りの問題つまり、レンズ系が大型化してしまう、広角端近傍での像面湾曲の補正が困難になる、温度による光学性能や特性の変化が大きくなるといった問題を防止して、上記効果を得ることができる。
この本発明による第2のズームレンズにおいて特に、前記条件式(1)を満足している場合は、前記第1のズームレンズにおいて特に条件式(2)を満足している場合と同じ効果を得ることができる。
次に条件式(3)~(20)による効果について説明する。
条件式(3)は、第1レンズ群内に配置される少なくとも1枚の正レンズのアッベ数を規定しており、条件式の範囲を外れると、特に倍率色収差が大きくなるため、好ましくない。条件式(3)を満足している場合は、上記の不具合を防止することができる。
条件式(4)は、第2レンズ群内に配置される少なくとも1枚の負レンズのアッベ数を規定しており、条件式の範囲を外れると、特に軸上色収差が大きくなるため、好ましくない。条件式(4)を満足している場合は、上記の不具合を防止することができる。
条件式(5)は、第1レンズ群に配置された第1レンズと第2レンズの間隔と、広角端における全系の焦点距離との関係を規定しており、その下限値以下になると、コンパクト化には有利になるが、球面収差の補正が難しくなるため好ましくない。逆に上限値以上になると、第1レンズ群全体が大型化してしまうため、好ましくない。条件式(5)を満足している場合は、上記の不具合を防止することができる。
条件式(6)は、広角端および望遠端の各焦点距離の関係、つまり変倍比を規定しており、下限値以下になると、ズームレンズとしての有意性が小さくなってしまう。逆に上限値以上になると、レンズ系が大型化してしまう。また、このズームタイプにおいては、望遠端において明るさの低下が大きくなり過ぎてしまい、好ましくない。また、望遠端において、ある程度の明るさを確保しようとすれば、第2レンズ群への負担が大きくなり、少ないレンズ枚数での収差補正が困難になってしまう。条件式(6)を満足している場合は、上記の不具合を防止することができる。
以上述べた条件式(3)、(4)、(5)および(6)による効果は、各条件式が規定する範囲の中で特にそれぞれ条件式(3’)、(4’)、(5’)および(6’)が満足されている場合は、より顕著なものとなる。
また、第1レンズ群に配された負レンズの屈折率nd1nが条件式(7)の下限値以下になると、レンズの曲率(近似曲率)が大きくなって像面湾曲および歪曲収差の補正が困難になる。逆に上限値以上になると、非点収差や倍率色収差の補正のバランスをとることが困難になり、好ましくない。条件式(7)を満足している場合は、上記の不具合を防止することができる。
また、第1レンズ群に配された負レンズのアッベ数νd1nが条件式(8)の範囲を外れると、特に広角端近傍での倍率色収差の補正が困難になるが、条件式(8)を満足している場合はこの不具合を防止することができる。
また、第2レンズ群に配された正レンズの屈折率nd2pが条件式(9)の下限値以下になると、レンズの曲率(近似曲率)が大きくなり、収差発生量が大きくなってしまう。逆に上限値以上になると、非点収差が大きくなるので好ましくない。条件式(9)を満足している場合は、上記の不具合を防止することができる。
また、第2レンズ群に配された正レンズのアッベ数νd2pが条件式(10)の範囲を外れると、軸上色収差の補正が困難になるが、条件式(10)を満足している場合はこの不具合を防止することができる。
また本発明のズームレンズにおいて特に、第1レンズ群が物体側より順に、負の屈折力を有する第1レンズ、正の屈折力を有する第2レンズから構成された上で、前記条件式(11)~(14)を満足している場合は、下記の効果を得ることができる。条件式(11)および条件式(13)はそれぞれ、第1レンズの屈折率、第2レンズの屈折率を規定しており、それらの条件式の下限値以下になると、収差の発生が大きくなってしまうとともに、レンズの曲率(近似曲率)が大きくなって、第1レンズ群が厚くなってしまうため好ましくない。また、低コスト化や軽量化等の目的によって、第1レンズ群に配置された2枚のレンズをプラスチックレンズで構成しようとする場合、それらの条件式の上限値以上となるような材料で構成すると、非点収差や倍率色収差の補正のバランスをとることが困難になり、好ましくない。条件式(11)あるいは(13)を満足している場合は、以上の不具合を防止することができる。
条件式(12)および条件式(14)はそれぞれ、第1レンズのアッベ数、第2レンズのアッベ数を規定しており、それらの条件式の範囲を外れると、第1レンズと第2レンズとのアッベ数の差が小さくなり、色収差の補正が困難になる。また、条件式(12)あるいは(14)の範囲を外れると、色収差補正のために、第1レンズ群に配置された他方のレンズ(条件式(14)で第2レンズのアッベ数を規定する場合は第1レンズがこの「他方のレンズ」であり、条件式(12)で第1レンズのアッベ数を規定する場合は第2レンズがこの「他方のレンズ」である)のパワーも強くする必要があり、特に、広角端において像面湾曲や歪曲収差の補正が困難になるため、好ましくない。条件式(12)あるいは(14)を満足している場合は、以上の不具合を防止することができる。
以上述べた効果は、条件式(12)、(14)の範囲の中で特にそれぞれ、条件式(12’)、(14’)が満足されている場合は、より顕著なものとなる。
また本発明のズームレンズにおいて特に、第2レンズ群が物体側より順に、正の屈折力を有する第3レンズ、負の屈折力を有する第4レンズ、正の屈折力を有する第5レンズより構成された上で、前記条件式(15)~(20)が満足されている場合は、像面湾曲や球面収差をバランス良く補正する上で有利となる。
以上述べた効果は、条件式(16)、(18)、(20)の範囲の中で特にそれぞれ、条件式(16’)、(18’)、(20’)が満足されている場合は、より顕著なものとなる。
また本発明のズームレンズにおいて特に、無限遠から近距離へのフォーカシングに際して、第2レンズ群全体、または、第2レンズ群に配置された一部のレンズを光軸に沿って移動させる構成となっている場合は、下記の効果を得ることができる。すなわち、第1レンズ群全体を繰り出してフォーカスする構成を採用した場合は、第1レンズ群の有効径が大きくなったり、外径の大きなレンズを動かす必要が生じたりするが、第2レンズ群全体、または、第2レンズ群に配置された一部のレンズを移動させる場合は、そのような問題を回避することが可能になる。
以上の効果は、第2レンズ群を物体側より順に、正の屈折力を有する第3レンズ、負の屈折力を有する第4レンズ、正の屈折力を有する第5レンズより構成し、第5レンズのみを光軸に沿って移動させる構成とした場合に、より顕著なものとなる。
他方、本発明による撮像装置は、以上説明した効果を奏する本発明のズームレンズを備えたものであるから、良好な光学性能を備えた上で低コスト化を達成できるものとなる。
以下、本発明の実施形態について図面を参照して詳細に説明する。図1は、本発明の実施形態にかかるズームレンズの構成例を示す断面図であり、後述の実施例1のズームレンズに対応している。また、図2~図7は、本発明の実施形態にかかる別の構成例を示す断面図であり、それぞれ後述の実施例2~7のズームレンズに対応している。図1~図7に示す例の基本的な構成は、図2および図7の実施例では第2レンズ群G2が2枚のレンズからなる点を除いて、その他は互いに同様であり、図示方法も同様であるので、ここでは主に図1を参照しながら、本発明の実施形態にかかるズームレンズについて説明する。
図1では、左側が物体側、右側が像側として、(A)は無限遠合焦状態でかつ広角端(最短焦点距離状態)での光学系配置を、(B)は無限遠合焦状態でかつ望遠端(最長焦点距離状態)での光学系配置を示している。これは、後述する図2~7においても同様である。
本発明の実施形態にかかるズームレンズは、物体側から順に、負の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2とがレンズ群として配列されてなる。また第2レンズ群G2には、開口絞りStが含まれている。ここに示す開口絞りStは必ずしも大きさや形状を表すものではなく、光軸Z上の位置を示すものである。
なお、図1には、第2レンズ群G2と像面Simとの間に、平行平板状の光学部材PPが配置された例を示している。ズームレンズを撮像装置に適用する際には、レンズを装着するカメラ側の構成に応じて、光学系と像面Simの間にカバーガラス、赤外線カットフィルタやローパスフィルタなどの各種フィルタ等を配置することが好ましい。光学部材PPは、これらカバーガラスや各種フィルタ等を想定したものである。また、近年の撮像装置は高画質化のために各色毎にCCDを用いる3CCD方式を採用しているものがあり、この3CCD方式に対応するためには、色分解プリズム等の色分解光学系をレンズ系と像面Simの間に挿入することになる。その場合には、光学部材PPの位置に色分解光学系を配置してもよい。
このズームレンズは、広角端から望遠端に変倍する際に、第1レンズ群G1は像面Sim側に凸状の軌跡を描くように移動し、第2レンズ群G2は物体側に単調移動し、開口絞りStは第2レンズ群G2と一体で移動するように構成されている。図1には、広角端から望遠端へ変倍するときの第1レンズ群G1および第2レンズ群G2の移動軌跡を、(A)と(B)との間に付した実線の矢印で模式的に示している。
第1レンズ群G1は、物体側から順に配置された、負の屈折力を有する第1レンズL11と、正の屈折力を有する第2レンズL12とから構成されている。ここで、例えば図1に示す例のように、第1レンズL11は両凹形状のレンズとし、第2レンズL12は正メニスカス形状のレンズとすることができる。本発明のズームレンズにおいて第1レンズ群G1は、少なくとも2枚のレンズから構成されるが、本ズームレンズにおいては上述の通り2枚のレンズL11、L12から第1レンズ群G1が構成され、そしてそれらの双方がプラスチックレンズとされている。
本発明のズームレンズにおいては、第2レンズ群G2が少なくとも2枚のレンズより構成されるが、図1の構成における第2レンズ群G2は、物体側より順に配置された、正の屈折力を有する第3レンズL21、負の屈折力を有する第4レンズL22、および正の屈折力を有する第5レンズL23より構成されている。例えば図1の例のように上記第3レンズL21は両凸形状のレンズ、上記第4レンズL22は両凹形状のレンズ、第5レンズL23は正メニスカス形状のレンズとすることができる。そして、第2レンズ群G2の全てのレンズL21、L22、およびL23も全てプラスチックレンズとされている。
以上説明のように、第1レンズ群G1を2枚のレンズL11およびL12から、そして第2レンズ群G2を3枚のレンズL21、L22およびL23から構成した上で、それらのレンズを全てプラスチックレンズとすることにより、低コスト化を達成することができる。
なお、図1~7の構成のうち特に図2および図7の構成では、その他の構成と異なって、第2レンズ群G2が2枚のレンズつまり第3レンズL21および第4レンズL22から構成されているが、この構成においても上記の効果を得ることができる。
また本ズームレンズは、広角端から望遠端に変倍するときの第2レンズ群G2の移動量をM2、望遠端における全系の焦点距離をftとして、以下の条件式
0.45<M2/ft<0.8 …(1)
を満足している。また本ズームレンズは、望遠端における全系の焦点距離をft、第1レンズ群G1の焦点距離をf1として、以下の条件式
1.5<|ft/f1|<2.3 …(2)
を満足している。
0.45<M2/ft<0.8 …(1)
を満足している。また本ズームレンズは、望遠端における全系の焦点距離をft、第1レンズ群G1の焦点距離をf1として、以下の条件式
1.5<|ft/f1|<2.3 …(2)
を満足している。
なお、以上の条件式(1)および(2)で規定される各条件の数値例を、実施例毎にまとめて表22に示してある。またこの表22には、後述する条件式(3)~(20)で規定される各条件の数値例も併せて示してある。
そして本ズームレンズでは、第1レンズ群G1が1枚の正レンズ(第2レンズL12)を有し、該正レンズのd線に対するアッベ数をνd1pとしたとき、以下の条件式
νd1p<29 …(3)
を満足している(表22参照。以下、同様)。
νd1p<29 …(3)
を満足している(表22参照。以下、同様)。
また本ズームレンズは、第2レンズ群G2が1枚の負レンズ(第4レンズL22)を有し、該負レンズのd線に対するアッベ数をνd2nとしたとき、以下の条件式
νd2n<29 …(4)
を満足している。
νd2n<29 …(4)
を満足している。
さらに本ズームレンズは、第1レンズ群G1が実質的に、物体側より順に、負の屈折力を有する第1レンズL11および正の屈折力を有する第2レンズL12の2枚より構成され、該2枚のレンズの光軸Z上での空気間隔をd2、広角端における全系の焦点距離をfwとしたとき、以下の条件式
0.31<d2/fw<0.70 …(5)
を満足している。
0.31<d2/fw<0.70 …(5)
を満足している。
また本ズームレンズは、広角端および望遠端の焦点距離をそれぞれfw、ftとしたとき、以下の条件式
2.0<ft/fw<5.0 …(6)
を満足している。
2.0<ft/fw<5.0 …(6)
を満足している。
なお上記条件式(3)~(6)は、全て満足させる必要はなく、それらのうちのいくつかを満足するようにしてもよい。それらの条件式(3)、(4)、(5)および(6)で示した各条件のより望ましい範囲は下記の通りであり、
νd1p<26 …(3’)
νd2n<26 …(4’)
0.31<d2/fw<0.60 …(5’)
2.3<ft/fw<5.0 …(6’)
本実施例では、これらの条件式も全て満足されている。
νd1p<26 …(3’)
νd2n<26 …(4’)
0.31<d2/fw<0.60 …(5’)
2.3<ft/fw<5.0 …(6’)
本実施例では、これらの条件式も全て満足されている。
また本ズームレンズにおいては、無限遠から近距離へのフォーカシングに際して、第2レンズ群G2全体を光軸Zに沿って移動させる構成となっている。なお、第2レンズ群G2に配置された一部のレンズを光軸Zに沿って移動させる構成としても構わない。より具体的には、第5レンズL23のみを光軸Zに沿って移動させる構成等が採用可能である。
さらに本ズームレンズは、第1レンズ群G1が1枚の負レンズ(第1レンズL11)を有し、該負レンズのd線に対する屈折率およびアッベ数をそれぞれ、nd1n、νd1nとしたとき、以下の条件式
1.48<nd1n<1.56 …(7)
50<νd1n>60 …(8)
を満足している。
1.48<nd1n<1.56 …(7)
50<νd1n>60 …(8)
を満足している。
また本ズームレンズは、第2レンズ群G2が2枚の正レンズ(第3レンズL21および第5レンズL23)を有し、該正レンズのd線に対する屈折率およびアッベ数をそれぞれ、nd2p、νd2pしたとき、以下の条件式
1.48<nd2p<1.56 …(9)
50<νd2p<60 …(10)
を満足している。
1.48<nd2p<1.56 …(9)
50<νd2p<60 …(10)
を満足している。
また本ズームレンズにおいては、第1レンズ群G1が物体側より順に、負の屈折力を有する第1レンズL11、正の屈折力を有する第2レンズL12から構成され、第1レンズL11のd線に対する屈折率、アッベ数を各々nd11、νd11とし、第2レンズL12のd線に対する屈折率、アッベ数を各々nd12、νd12としたとき、それらのレンズは下記条件
1.48<nd11<1.61 …(11)
50<νd11 …(12)
1.56<nd12<1.66 …(13)
νd12<33 …(14)
を満足するプラスチック材料から形成されている。
1.48<nd11<1.61 …(11)
50<νd11 …(12)
1.56<nd12<1.66 …(13)
νd12<33 …(14)
を満足するプラスチック材料から形成されている。
なお上記条件式(12)および(14)が規定する条件内でより望ましい値の範囲はそれぞれ下記
52<νd11 …(12’)
νd12<29 …(14’)
の通りであるが、本実施例ではこれらの条件式(12’)および(14’)も満足されている。
52<νd11 …(12’)
νd12<29 …(14’)
の通りであるが、本実施例ではこれらの条件式(12’)および(14’)も満足されている。
また本ズームレンズにおいては、第2レンズ群G2が物体側より順に、正の屈折力を有する第3レンズL21、負の屈折力を有する第4レンズL22、正の屈折力を有する第5レンズL23から構成され、第3レンズL21のd線に対する屈折率、アッベ数を各々nd21、νd21とし、第4レンズL22のd線に対する屈折率、アッベ数を各々nd22、νd22とし、第5レンズL23のd線に対する屈折率、アッベ数を各々nd23、νd23としたとき、それらのレンズは下記条件
1.48<nd21<1.61 …(15)
50<νd21 …(16)
1.56<nd22<1.68 …(17)
νd22<33 …(18)
1.48<nd23<1.61 …(19)
50<νd23 …(20)
を満足するプラスチック材料から形成されている。なお上記条件式(16)、(18)および(20)が規定する条件内でより望ましい値の範囲はそれぞれ下記
52<νd21 …(16’)
νd22<29 …(18’)
52<νd23 …(20’)
の通りであるが、本実施例ではこれらの条件式(16’)、(18’)および(20’)も満足されている。
1.48<nd21<1.61 …(15)
50<νd21 …(16)
1.56<nd22<1.68 …(17)
νd22<33 …(18)
1.48<nd23<1.61 …(19)
50<νd23 …(20)
を満足するプラスチック材料から形成されている。なお上記条件式(16)、(18)および(20)が規定する条件内でより望ましい値の範囲はそれぞれ下記
52<νd21 …(16’)
νd22<29 …(18’)
52<νd23 …(20’)
の通りであるが、本実施例ではこれらの条件式(16’)、(18’)および(20’)も満足されている。
以下、上記各条件式で規定された構成による作用、効果について説明する。
条件式(1)は、第2レンズ群G2の移動量と望遠端における全系の焦点距離との関係を規定しており、条件式の下限値以下になると、変倍比を大きくすることが困難になる。またその場合は、第2レンズ群G2のパワーを強くしなければならず、製造誤差や組立誤差の許容量が少なくなってしまうため好ましくない。さらにその場合は、プラスチックレンズのパワーが強くなり、温度による光学性能や特性の変化が大きくなるため、好ましくない。逆に、条件式の上限値以上になると、第2レンズ群G2の移動量が大きくなり、レンズ系が大型化するため好ましくない。条件式(1)を満足している場合は、以上の不具合を防止して、少ないレンズ枚数で3倍乃至4倍程度の変倍比を確保しつつ、各レンズのパワーを最適に設定することで良好な光学性能を実現可能となる。
条件式(2)は、望遠端における全系の焦点距離と第1レンズ群G1の焦点距離の関係を規定しており、下限値以下になると、変倍時の移動量が大きくなり、レンズ系が大型化してしまうため好ましくない。逆に上限値以上になると、主に、広角端近傍での像面湾曲の補正が困難になる。また、プラスチックレンズのパワーが強くなり、温度による光学性能や特性の変化が大きくなるため、好ましくない。条件式(2)を満足している場合は、以上の不具合も防止できるので、上述の効果すなわち、少ないレンズ枚数で3倍乃至4倍程度の変倍比を確保しつつ、良好な光学性能を実現できるという効果をより顕著なものとすることができる。
条件式(3)は、第1レンズ群G1内に配置される正レンズ(第2レンズL12)のアッベ数を規定しており、条件式の範囲を外れると、特に倍率色収差が大きくなるため、好ましくない。条件式(3)を満足している場合は、上記の不具合を防止することができる。
条件式(4)は、第2レンズ群G2内に配置される負レンズ(第4レンズL22)のアッベ数を規定しており、条件式の範囲を外れると、特に軸上色収差が大きくなるため、好ましくない。条件式(4)を満足している場合は、上記の不具合を防止することができる。
条件式(5)は、第1レンズ群G1に配置される第1レンズL11と第2レンズL12の間隔と、広角端における全系の焦点距離との関係を規定しており、その下限値以下になると、コンパクト化には有利になるが、球面収差の補正が難しくなるため好ましくない。逆に上限値以上になると、第1レンズ群G1全体が大型化してしまうため、好ましくない。条件式(5)を満足している場合は、上記の不具合を防止することができる。
条件式(6)は、広角端および望遠端の各焦点距離の関係、つまり変倍比を規定しており、下限値以下になると、ズームレンズとしての有意性が小さくなってしまう。逆に上限値以上になると、レンズ系が大型化してしまう。また、このズームタイプにおいては、望遠端において明るさの低下が大きくなり過ぎてしまい、好ましくない。また、望遠端において、ある程度の明るさを確保しようとすれば、第2レンズ群G2への負担が大きくなり、少ないレンズ枚数での収差補正が困難になってしまう。条件式(6)を満足している場合は、上記の不具合を防止することができる。
本ズームレンズでは、以上述べた条件式(3)、(4)、(5)および(6)が規定する範囲の中で特にそれぞれ前記条件式(3’)、(4’)、(5’)および(6’)が満足されているので、上記の効果がより顕著なものとなる。
また、第1レンズ群G1に配された負レンズ(第1レンズL11)の屈折率nd1nが条件式(7)の下限値以下になると、レンズの曲率(近似曲率)が大きくなって像面湾曲および歪曲収差の補正が困難になる。逆に上限値以上になると、非点収差や倍率色収差の補正のバランスをとることが困難になり、好ましくない。本ズームレンズでは条件式(7)を満足しているので、上記の不具合を防止することができる。
また、第1レンズ群G1に配された負レンズ(第1レンズL11)のアッベ数νd1nが条件式(8)の範囲を外れると、特に広角端近傍での倍率色収差の補正が困難になるが、本ズームレンズは条件式(8)を満足しているので、この不具合を防止することができる。
また、第2レンズ群G2に配された正レンズ(第3レンズL21および第5レンズL23)の屈折率nd2pが条件式(9)の下限値以下になると、レンズの曲率(近似曲率)が大きくなり、収差発生量が大きくなってしまう。逆に上限値以上になると、非点収差が大きくなるので好ましくない。本ズームレンズは、条件式(9)を満足しているので、上記の不具合を防止することができる。
また、第2レンズ群G2に配された正レンズ(第3レンズL21および第5レンズL23)のアッベ数νd2pが条件式(10)の範囲を外れると、軸上色収差の補正が困難になるが、本ズームレンズは条件式(10)を満足しているので、この不具合を防止することができる。
また本ズームレンズでは、第1レンズ群G1が物体側より順に、負の屈折力を有する第1レンズL11、正の屈折力を有する第2レンズL12から構成された上で、前記条件式(11)~(14)を満足しているので、下記の効果を得ることができる。すなわち条件式(11)および条件式(13)はそれぞれ、第1レンズL11の屈折率、第2レンズL12の屈折率を規定しており、それらの条件式の下限値以下になると、収差の発生が大きくなってしまうとともに、レンズの曲率(近似曲率)が大きくなって、第1レンズ群G1が厚くなってしまうため好ましくない。また、低コスト化や軽量化等の目的によって、第1レンズ群G1に配置された2枚のレンズL11およびL12をプラスチックレンズで構成する場合、それらの条件式の上限値以上となるような材料で構成すると、非点収差や倍率色収差の補正のバランスをとることが困難になり、好ましくない。本ズームレンズは条件式(11)および(13)を満足しているので、以上の不具合を防止することができる。
条件式(12)および条件式(14)はそれぞれ、第1レンズL11のアッベ数、第2レンズL12のアッベ数を規定しており、それらの条件式の範囲を外れると、第1レンズL11と第2レンズL12とのアッベ数の差が小さくなり、色収差の補正が困難になる。また、条件式(12)あるいは(14)の範囲を外れると、色収差補正のために、第1レンズ群G1に配置された他方のレンズ(条件式(14)で第2レンズL12のアッベ数を規定する場合は第1レンズL11がこの「他方のレンズ」であり、条件式(12)で第1レンズL11のアッベ数を規定する場合は第2レンズL12がこの「他方のレンズ」である)のパワーも強くする必要があり、特に、広角端において像面湾曲や歪曲収差の補正が困難になるため、好ましくない。本ズームレンズは条件式(12)および(14)を満足しているので、以上の不具合を防止することができる。
本ズームレンズでは、条件式(12)、(14)の範囲の中で特にそれぞれ、条件式(12’)、(14’)が満足されているので、以上述べた効果がより顕著なものとなる。
また本発明のズームレンズにおいて特に、第2レンズ群G2が物体側より順に、正の屈折力を有する第3レンズL21、負の屈折力を有する第4レンズL22、正の屈折力を有する第5レンズL23より構成された上で、前記条件式(15)~(20)が満足されている場合は、像面湾曲や球面収差をバランス良く補正する上で有利となる。
本ズームレンズでは、条件式(16)、(18)、(20)の範囲の中でも特にそれぞれ、条件式(16’)、(18’)、(20’)が満足されているので、上記効果がより顕著なものとなる。
また本ズームレンズでは、無限遠から近距離へのフォーカシングに際して、第2レンズ群G2全体を光軸Zに沿って移動させる構成となっているので、下記の効果を得ることができる。すなわち、第1レンズ群G1全体を繰り出してフォーカスする構成を採用した場合は、第1レンズ群G1の有効径が大きくなったり、外径の大きなレンズを動かす必要が生じたりするが、第2レンズ群G2全体を移動させる場合は、そのような問題を回避することが可能になる。
なお、第2レンズ群G2全体ではなく、その一部のレンズ、例えば正の屈折力を有する第5レンズL23のみを光軸Zに沿って移動させる構成とした場合も、上記の効果をより顕著なものとして得ることができる。
なお図1には、レンズ系と結像面との間に光学部材PPを配置した例を示したが、ローパスフィルタや特定の波長域をカットするような各種フィルタ等を配置する代わりに、各レンズの間にこれらの各種フィルタを配置してもよく、あるいは、いずれかのレンズのレンズ面に、各種フィルタと同様の作用を有するコートを施してもよい。
次に、本発明のズームレンズの数値実施例について説明する。実施例1~7のズームレンズのレンズ断面図はそれぞれ図1~7に示したものである。
そして、実施例1のズームレンズの基本レンズデータを表1に、ズームに関するデータを表2に、非球面データを表3に示す。同様に、実施例2~7のズームレンズの基本レンズデータ、ズームに関するデータ、非球面データを表4~表21に示す。以下では、表中の記号の意味について、実施例1のものを例に挙げて説明するが、実施例2~7のものについても基本的に同様である。
表1の基本レンズデータにおいて、Siの欄には最も物体側の構成要素の物体側の面を1番目として像側に向かうに従い順次増加するi番目(i=1、2、3、…)の面番号を示し、Riの欄にはi番目の面の曲率半径を示し、Diの欄にはi番目の面とi+1番目の面との光軸Z上の面間隔を示している。なお、曲率半径の符号は、面形状が物体側に凸の場合を正、像側に凸の場合を負としている。
また、基本レンズデータにおいて、Ndjの欄には最も物体側のレンズを1番目として像側に向かうに従い順次増加するj番目(j=1、2、3、…)の構成要素のd線(波長587.6nm)に対する屈折率を示し、νdjの欄にはj番目の構成要素のd線に対するアッベ数を示している。なお、基本レンズデータには、開口絞りStも含めて示しており、開口絞りStに相当する面の曲率半径の欄には、∞(開口絞り)と記載している。
表1の基本レンズデータにおけるD4、D11は、変倍時に変化する面間隔である。D4は第1レンズ群G1と第2レンズ群G2との間隔であり、D11は第2レンズ群G2と光学部材PPとの間隔である。ただし実施例2、7では、上記D11の代わりにD9を用いている。
表2のズームに関するデータには、広角端、望遠端それぞれにおける、全系の焦点距離(f)、F値(Fno.)、全画角(2ω)、変倍時に変化する各面間隔の値を示している。
表1のレンズデータでは、非球面の面番号に*印を付しており、非球面の曲率半径として近軸の曲率半径の数値を示している。表3の非球面データには、非球面の面番号と、各非球面に関する非球面係数を示す。表3の非球面データの数値の「E-n」(n:整数)は、「×10-n」を意味する。なお、非球面係数は、下記非球面式における各係数KA、RAm(m=3、4、5、…12)の値である。
Zd=C・h2/{1+(1-KA・C2・h2)1/2}+ΣRAm・hm
ただし、
Zd:非球面深さ(高さhの非球面上の点から、非球面頂点が接する光軸に垂直な平面に下ろした垂線の長さ)
h:高さ(光軸からのレンズ面までの距離)
C:近軸曲率半径の逆数
KA、RAm:非球面係数(m=3、4、5、…12)
以下に記載する表では、所定の桁で丸めた数値を記載している。また、以下に記載する表のデータにおいて、角度の単位としては度を用い、長さの単位としてはmmを用いているが、光学系は比例拡大又は比例縮小して使用することが可能であるので、他の適当な単位を用いることもできる。
ただし、
Zd:非球面深さ(高さhの非球面上の点から、非球面頂点が接する光軸に垂直な平面に下ろした垂線の長さ)
h:高さ(光軸からのレンズ面までの距離)
C:近軸曲率半径の逆数
KA、RAm:非球面係数(m=3、4、5、…12)
以下に記載する表では、所定の桁で丸めた数値を記載している。また、以下に記載する表のデータにおいて、角度の単位としては度を用い、長さの単位としてはmmを用いているが、光学系は比例拡大又は比例縮小して使用することが可能であるので、他の適当な単位を用いることもできる。
ここで、実施例1のズームレンズの広角端における球面収差、非点収差、ディストーション(歪曲収差)、倍率色収差(倍率の色収差)をそれぞれ図8(A)~図8(D)に示し、望遠端における球面収差、非点収差、ディストーション(歪曲収差)、倍率色収差(倍率の色収差)をそれぞれ図8(E)~図8(H)に示す。
各収差図はd線(波長587.6nm)を基準としたものであるが、球面収差図では波長460.0nmおよび615.0nmに関する収差も示し、倍率色収差図では波長460.0nmおよび615.0nmに関する収差を示す。非点収差図では、サジタル方向については実線で、タンジェンシャル方向については点線で示している。球面収差図のFno.はF値を意味し、その他の収差図のωは半画角を意味する。
同様に、実施例2のズームレンズの広角端、望遠端における各収差図を図9(A)~図9(H)に示し、以下全く同様にして実施例3~7の各収差図をそれぞれ図10~図14に示す。
次に、本発明の実施形態にかかる撮像装置について説明する。図15に、本発明の実施形態の撮像装置の一例として、本発明の実施形態のズームレンズ1を用いた撮像装置10の概略構成図を示す。撮像装置としては、例えば、監視カメラ、ビデオカメラ、電子スチルカメラ等を挙げることができる。
図15に示す撮像装置10は、ズームレンズ1と、ズームレンズ1の像側に配置されて、ズームレンズ1により結像された被写体の像を撮像する撮像素子2と、撮像素子2からの出力信号を演算処理する信号処理部4と、ズームレンズ1の変倍を行うための変倍制御部5と、フォーカス調整を行うためのフォーカス制御部6とを備えている。なお、ズームレンズ1と撮像素子2との間に、適宜フィルタ等が配設されてもよい。
ズームレンズ1は、負の屈折力を有して、広角端から望遠端に変倍する際に像面側に凸状の軌跡を描くように移動する第1レンズ群G1と、正の屈折力を有して、広角端から望遠端に変倍する際に物体側に単調移動する第2レンズ群G2と、第2レンズ群G2と一体で移動するように構成された開口絞りStとを有している。なお、図15では各レンズ群を概略的に示している。
撮像素子2は、ズームレンズ1により形成される光学像を撮像して電気信号を出力するものであり、その撮像面はズームレンズ1の像面に一致するように配置されている。撮像素子2としては例えばCCDやCMOS等からなるものを用いることができる。
なお、図15では図示していないが、撮像装置10は、例えば第2レンズ群G2の一部を構成する正の屈折力を有するレンズを光軸Zに垂直な方向に移動させて、振動や手振れ時の撮影画像のぶれを補正するぶれ補正機構をさらに備えるようにしてもよい。
以上、実施形態および実施例を挙げて本発明を説明したが、本発明は上記実施形態および実施例に限定されるものではなく、種々の変形が可能である。例えば、各レンズ成分の曲率半径、面間隔、屈折率、アッベ数、非球面係数等の値は、上記各数値実施例で示した値に限定されず、他の値をとり得るものである。
Claims (13)
- 実質的に、物体側より順に、負の屈折力を有する第1レンズ群と、正の屈折力を有する第2レンズ群とからなり、変倍に際して前記第1レンズ群と第2レンズ群の間隔が変化するズームレンズにおいて、
前記第1レンズ群および第2レンズ群が、それぞれ、全てプラスチックレンズを適用して、少なくとも2枚のレンズから構成され、
広角端から望遠端に変倍するときの第2レンズ群の移動量をM2、望遠端における全系の焦点距離をftとしたとき、以下の条件式を満足することを特徴とするズームレンズ。
0.45<M2/ft<0.8 …(1) - 望遠端における全系の焦点距離をft、第1レンズ群の焦点距離をf1としたとき、以下の条件式を満足することを特徴とする請求項1に記載のズームレンズ。
1.5<|ft/f1|<2.3 …(2) - 実質的に、物体側より順に、負の屈折力を有する第1レンズ群と、正の屈折力を有する第2レンズ群とからなり、変倍に際して前記第1レンズ群と第2レンズ群の間隔が変化するズームレンズにおいて、
前記第1レンズ群および第2レンズ群が、それぞれ、全てプラスチックレンズを適用して、少なくとも2枚のレンズから構成され、
望遠端における全系の焦点距離をft、第1レンズ群の焦点距離をf1としたとき、以下の条件式を満足することを特徴とするズームレンズ。
1.5<|ft/f1|<2.3 …(2) - 前記第1レンズ群が少なくとも1枚の正レンズを有し、該正レンズのd線に対するアッベ数をνd1pとしたとき、以下の条件式を満足することを特徴とする請求項1から3のいずれか1項に記載のズームレンズ。
νd1p<29 …(3) - 以下の条件式を満足することを特徴とする請求項4に記載のズームレンズ。
νd1p<26 …(3’) - 前記第2レンズ群が少なくとも1枚の負レンズを有し、該負レンズのd線に対するアッベ数をνd2nとしたとき、以下の条件式を満足することを特徴とする請求項1から5のいずれか1項に記載のズームレンズ。
νd2n<29 …(4) - 以下の条件式を満足することを特徴とする請求項6に記載のズームレンズ。
νd2n<26 …(4’) - 前記第1レンズ群が実質的に、物体側より順に、負の屈折力を有する第1レンズおよび正の屈折力を有する第2レンズの2枚より構成され、
該2枚のレンズの光軸上での空気間隔をd2、広角端における全系の焦点距離をfwとしたとき、以下の条件式を満足することを特徴とする請求項1から7のいずれか1項に記載のズームレンズ。
0.31<d2/fw<0.70 …(5) - 以下の条件式を満足することを特徴とする請求項8に記載のズームレンズ。
0.31<d2/fw<0.60 …(5’) - 広角端および望遠端の焦点距離をそれぞれfw、ftとしたとき、以下の条件式を満足することを特徴とする請求項1から9のいずれか1項に記載のズームレンズ。
2.0<ft/fw<5.0 …(6) - 以下の条件式を満足することを特徴とする請求項10に記載のズームレンズ。
2.3<ft/fw<5.0 …(6’) - 前記第1レンズ群が2枚以下のレンズから構成され、前記第2レンズ群が3枚以下のレンズから構成されていることを特徴とする請求項1から11のいずれか1項に記載のズームレンズ。
- 請求項1から12のいずれか1項に記載のズームレンズを備えたことを特徴とする撮像装置。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011-140027 | 2011-06-24 | ||
JP2011140027 | 2011-06-24 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012176470A1 true WO2012176470A1 (ja) | 2012-12-27 |
Family
ID=47422323
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/004058 WO2012176470A1 (ja) | 2011-06-24 | 2012-06-22 | ズームレンズおよび撮像装置 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2012176470A1 (ja) |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01210914A (ja) * | 1988-02-19 | 1989-08-24 | Olympus Optical Co Ltd | 変倍レンズ |
JPH02109009A (ja) * | 1988-10-18 | 1990-04-20 | Nikon Corp | ケプラー式ズームファインダー光学系 |
JPH0446308A (ja) * | 1990-06-14 | 1992-02-17 | Minolta Camera Co Ltd | コンパクトなズームレンズ |
JPH0446310A (ja) * | 1990-06-13 | 1992-02-17 | Minolta Camera Co Ltd | コンパクトなズームレンズ |
JPH0456814A (ja) * | 1990-06-22 | 1992-02-24 | Minolta Camera Co Ltd | コンパクトなズームレンズ |
JPH0467113A (ja) * | 1990-07-06 | 1992-03-03 | Minolta Camera Co Ltd | コンパクトなズームレンズ |
JPH05281470A (ja) * | 1992-03-30 | 1993-10-29 | Olympus Optical Co Ltd | 小型の2群ズームレンズ |
JP2002169089A (ja) * | 2001-12-05 | 2002-06-14 | Olympus Optical Co Ltd | 小型の2群ズームレンズ |
JP2004264638A (ja) * | 2003-03-03 | 2004-09-24 | Fuji Photo Optical Co Ltd | 2群ズームレンズ |
JP2005173542A (ja) * | 2003-11-18 | 2005-06-30 | Nagano Kogaku Kenkyusho:Kk | ズームレンズ |
JP2005208566A (ja) * | 2003-12-22 | 2005-08-04 | Sony Corp | ズームレンズ及び撮像装置 |
JP2005275175A (ja) * | 2004-03-25 | 2005-10-06 | Miyota Kk | 小型ズームレンズ |
-
2012
- 2012-06-22 WO PCT/JP2012/004058 patent/WO2012176470A1/ja active Application Filing
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01210914A (ja) * | 1988-02-19 | 1989-08-24 | Olympus Optical Co Ltd | 変倍レンズ |
JPH02109009A (ja) * | 1988-10-18 | 1990-04-20 | Nikon Corp | ケプラー式ズームファインダー光学系 |
JPH0446310A (ja) * | 1990-06-13 | 1992-02-17 | Minolta Camera Co Ltd | コンパクトなズームレンズ |
JPH0446308A (ja) * | 1990-06-14 | 1992-02-17 | Minolta Camera Co Ltd | コンパクトなズームレンズ |
JPH0456814A (ja) * | 1990-06-22 | 1992-02-24 | Minolta Camera Co Ltd | コンパクトなズームレンズ |
JPH0467113A (ja) * | 1990-07-06 | 1992-03-03 | Minolta Camera Co Ltd | コンパクトなズームレンズ |
JPH05281470A (ja) * | 1992-03-30 | 1993-10-29 | Olympus Optical Co Ltd | 小型の2群ズームレンズ |
JP2002169089A (ja) * | 2001-12-05 | 2002-06-14 | Olympus Optical Co Ltd | 小型の2群ズームレンズ |
JP2004264638A (ja) * | 2003-03-03 | 2004-09-24 | Fuji Photo Optical Co Ltd | 2群ズームレンズ |
JP2005173542A (ja) * | 2003-11-18 | 2005-06-30 | Nagano Kogaku Kenkyusho:Kk | ズームレンズ |
JP2005208566A (ja) * | 2003-12-22 | 2005-08-04 | Sony Corp | ズームレンズ及び撮像装置 |
JP2005275175A (ja) * | 2004-03-25 | 2005-10-06 | Miyota Kk | 小型ズームレンズ |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104024912B (zh) | 变焦透镜和摄像装置 | |
JP5767335B2 (ja) | ズームレンズおよび撮像装置 | |
CN103917911B (zh) | 变焦透镜和摄像装置 | |
WO2013031180A1 (ja) | ズームレンズおよび撮像装置 | |
JP5787999B2 (ja) | ズームレンズおよび撮像装置 | |
JP5905883B2 (ja) | ズームレンズおよび撮像装置 | |
JP5647570B2 (ja) | ズームレンズおよび撮像装置 | |
JP5767330B2 (ja) | ズームレンズおよび撮像装置 | |
WO2013031185A1 (ja) | ズームレンズおよび撮像装置 | |
JP5778276B2 (ja) | ズームレンズおよび撮像装置 | |
WO2013031184A1 (ja) | ズームレンズおよび撮像装置 | |
WO2013031183A1 (ja) | ズームレンズおよび撮像装置 | |
JP5767710B2 (ja) | ズームレンズおよび撮像装置 | |
JP5767333B2 (ja) | ズームレンズおよび撮像装置 | |
JP5767332B2 (ja) | ズームレンズおよび撮像装置 | |
WO2013031187A1 (ja) | ズームレンズおよび撮像装置 | |
WO2013031178A1 (ja) | ズームレンズおよび撮像装置 | |
WO2013031182A1 (ja) | ズームレンズおよび撮像装置 | |
WO2013031179A1 (ja) | ズームレンズおよび撮像装置 | |
WO2013031108A1 (ja) | ズームレンズおよび撮像装置 | |
WO2012176470A1 (ja) | ズームレンズおよび撮像装置 | |
WO2013031109A1 (ja) | ズームレンズおよび撮像装置 | |
WO2013031176A1 (ja) | ズームレンズおよび撮像装置 | |
CN114326064A (zh) | 变焦镜头及摄像装置 | |
WO2013031189A1 (ja) | ズームレンズおよび撮像装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12802826 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12802826 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |