WO2012088734A1 - 颗粒定向排列增强银基氧化物电触头材料的制备方法 - Google Patents
颗粒定向排列增强银基氧化物电触头材料的制备方法 Download PDFInfo
- Publication number
- WO2012088734A1 WO2012088734A1 PCT/CN2011/000632 CN2011000632W WO2012088734A1 WO 2012088734 A1 WO2012088734 A1 WO 2012088734A1 CN 2011000632 W CN2011000632 W CN 2011000632W WO 2012088734 A1 WO2012088734 A1 WO 2012088734A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- powder
- electrical contact
- silver
- contact material
- based oxide
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H1/00—Contacts
- H01H1/02—Contacts characterised by the material thereof
- H01H1/021—Composite material
- H01H1/023—Composite material having a noble metal as the basic material
- H01H1/0237—Composite material having a noble metal as the basic material and containing oxides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/02—Compacting only
- B22F3/04—Compacting only by applying fluid pressure, e.g. by cold isostatic pressing [CIP]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/10—Sintering only
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/12—Both compacting and sintering
- B22F3/14—Both compacting and sintering simultaneously
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/20—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces by extruding
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/04—Making non-ferrous alloys by powder metallurgy
- C22C1/0466—Alloys based on noble metals
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C32/00—Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
- C22C32/001—Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides
- C22C32/0015—Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides with only single oxides as main non-metallic constituents
- C22C32/0021—Matrix based on noble metals, Cu or alloys thereof
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C49/00—Alloys containing metallic or non-metallic fibres or filaments
- C22C49/02—Alloys containing metallic or non-metallic fibres or filaments characterised by the matrix material
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C49/00—Alloys containing metallic or non-metallic fibres or filaments
- C22C49/14—Alloys containing metallic or non-metallic fibres or filaments characterised by the fibres or filaments
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C5/00—Alloys based on noble metals
- C22C5/06—Alloys based on silver
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H1/00—Contacts
- H01H1/02—Contacts characterised by the material thereof
- H01H1/021—Composite material
- H01H1/023—Composite material having a noble metal as the basic material
- H01H1/0237—Composite material having a noble metal as the basic material and containing oxides
- H01H1/02372—Composite material having a noble metal as the basic material and containing oxides containing as major components one or more oxides of the following elements only: Cd, Sn, Zn, In, Bi, Sb or Te
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H1/00—Contacts
- H01H1/02—Contacts characterised by the material thereof
- H01H1/021—Composite material
- H01H1/023—Composite material having a noble metal as the basic material
- H01H1/0237—Composite material having a noble metal as the basic material and containing oxides
- H01H1/02372—Composite material having a noble metal as the basic material and containing oxides containing as major components one or more oxides of the following elements only: Cd, Sn, Zn, In, Bi, Sb or Te
- H01H1/02374—Composite material having a noble metal as the basic material and containing oxides containing as major components one or more oxides of the following elements only: Cd, Sn, Zn, In, Bi, Sb or Te containing as major component CdO
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H1/00—Contacts
- H01H1/02—Contacts characterised by the material thereof
- H01H1/021—Composite material
- H01H1/023—Composite material having a noble metal as the basic material
- H01H1/0237—Composite material having a noble metal as the basic material and containing oxides
- H01H1/02372—Composite material having a noble metal as the basic material and containing oxides containing as major components one or more oxides of the following elements only: Cd, Sn, Zn, In, Bi, Sb or Te
- H01H1/02376—Composite material having a noble metal as the basic material and containing oxides containing as major components one or more oxides of the following elements only: Cd, Sn, Zn, In, Bi, Sb or Te containing as major component SnO2
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/249921—Web or sheet containing structurally defined element or component
Definitions
- This invention relates to a method of preparing a contact material, and more particularly to a method of preparing a particle oriented array reinforced silver-based oxide electrical contact material.
- the electrical contact is the core component of the electrical switch. It is responsible for the connection and disconnection between circuits and the task of load current. It is widely used in various low-voltage and high-voltage electrical appliances such as air switches, relays, AC and DC contactors. It involves civil, industrial, military, aerospace, aviation, information and other fields in modern society. In recent years, with the development of large-capacity and ultra-high voltage of high-voltage transmission and transformation networks, the improvement of automation level and sensitivity requirements of low-voltage power distribution systems and control systems, as well as the modernization of electronic industrial products, The higher the functional requirements and the long life requirements. To this end, new silver-based composite materials and preparation processes have been developed.
- Metal oxide (MeO) particle reinforced silver matrix composites have been extensively studied and applied due to their good thermal conductivity, electrical conductivity, resistance to fusion welding and electrical wear resistance. At the same time, metal oxide (MeO) particles enhance the cost of the silver-based material reinforcement, the preparation process is simple, and it can be processed by the conventional metal processing technology, so that it has a good development prospect.
- Chinese invention patent A method for preparing a particle reinforced metal matrix composite material, application number: 200810018200.4, publication number: CN101285187A.
- the third is to prepare a uniformly distributed composite powder by chemical coprecipitation method [Document 4)], followed by cold pressing, sintering, recompression and extrusion.
- Document 4 chemical coprecipitation method
- methods 2 and 3 can diffuse the reinforcing phase particles in the silver matrix
- studies have shown that when the reinforcing phase (oxide) particles are finer (nanoscale), the dispersion distribution increases the contact area of the reinforcing phase with the Ag matrix. , the electron scattering effect is greatly enhanced, so that the resistance of the contact material is significantly increased, which seriously affects the performance of the product.
- the finely-stretched phase-enhanced phase (oxide) particles although the strength and hardness of the material are improved, have certain significance for improving the mechanical wear resistance of the material, but usually lead to a significant decrease in the elongation of the material and plasticity of the material. It is difficult to process.
- the present invention is directed to the deficiencies and shortcomings of the prior art described above, and provides a method for preparing a particle oriented reinforced silver-based oxide electrical contact material, which can obtain excellent electrical properties when the reinforcing phase (oxide) particles are finer.
- the particles are reinforced with silver-based materials, and the process is simple, the operation is convenient, and there is no special requirement for the equipment.
- the materials prepared by the method of the invention have greatly improved weld resistance, arc ablation resistance and electrical conductivity, and the processing performance is excellent.
- the technical solution adopted by the present invention is that the present invention provides a method for preparing a particle alignment enhanced silver-based oxide electrical contact material, comprising the following steps: First step, first preparing an alloy containing Ag+ and reinforcing phase The salt solution is mixed with ions, and then a coprecipitant is added under stirring, and the precipitate is filtered, and then washed and calcined in order to obtain a uniformly dispersed composite powder.
- the ratio of Ag+ and the reinforcing phase metal ions is calculated according to the composite powder composition prepared;
- the coprecipitant is a precipitate which can be decomposed into metal oxide after the precipitate can be formed by Ag+ and metal ions in the solution and the precipitate is calcined.
- the weight of the coprecipitant is calculated by completely precipitating the Ag+ and the reinforcing phase metal ions in the solution.
- the composite powder obtained in the first step is subjected to high energy ball milling granulation and sieving, and the large particle powder which fails to pass through the sieve is returned to the ball mill for processing, and then sieved.
- the aggregate of the granulated powder obtained in the second step and the matrix silver powder are poured into a mixer for mixing, wherein: the weight ratio of the aggregate of the powder after the granulation and the weight of the matrix silver powder are as required Preparation of material ingredients The required calculations are obtained.
- the powder obtained in the third step is subjected to cold isostatic pressing.
- the body obtained by cold isostatic pressing is sintered.
- the body obtained by sintering is subjected to hot pressing.
- the body obtained by hot pressing is subjected to hot extrusion to obtain a grain oriented alignment enhanced silver-based oxide electrical contact material.
- the method used in the present invention is significantly different from the conventional chemical coprecipitation of conventional materials in combination with powder metallurgy [ie, chemical coprecipitation method for preparing composite precipitates, roasting, cold pressing, sintering, recompression, and extrusion].
- the method adopted is as follows: Firstly, the Ag salt and the reinforcing phase metal salt precipitate are prepared by chemical coprecipitation, and then calcined to obtain a uniformly dispersed silver-based oxide composite powder, which is then subjected to high-energy ball milling granulation and sieving to obtain a composite.
- the aggregate of the powder is then uniformly mixed with the Ag and the matrix Ag powder in the amount required for the formulation of the material composition, followed by cold isostatic pressing, sintering, hot pressing, and hot extrusion.
- the coating body flows along the softened Ag in the Ag matrix. Due to the coating of Ag, the oxide-reinforced phase material is easily pulled apart and aligned and connected to each other along the extrusion direction. Forming a fibrous structure.
- the material obtained by this method has a reinforcing phase in which the particles are connected to each other and aligned, similar to the fibrous structure, and the arc ablation resistance is 10-20% higher than that of the same contact material system enhanced by the simple particle dispersion.
- the conductivity is increased by 5-15% along the extrusion direction, the weld resistance is increased by 10-20%, the electrical life is increased by 10-30%, and the excellent processing performance is suitable for large-scale production.
- the invention provides a preparation method of the above-mentioned particle alignment enhanced silver-based oxide electrical contact material, which is suitable for preparation of a general particle-reinforced silver-based oxide composite material, and the method can also obtain electrical properties when the reinforcing phase particles are fine.
- Excellent particle-reinforced silver-based material simple process, easy operation, no special requirements for equipment.
- the materials prepared by the method of the invention have greatly improved anti-melting property, arc-resistant ablation performance and electrical conductivity, and the processing performance is excellent.
- the reinforcing phase is present in the matrix in such a manner that its particles are interconnected and aligned, and the reinforcing phase material is a material or a mixture of materials.
- the proportion of the material components designed according to actual needs is used.
- the steps of chemical coprecipitation, high energy ball milling granulation and sieving, powder mixing, cold isostatic pressing, sintering, hot pressing and hot extrusion are selected, and the parameters of the specific process operation are optional, for example:
- a mixed salt solution containing Ag+ and a reinforcing phase metal ion is first prepared, and then a coprecipitant is added under stirring, and the precipitate is filtered, and then washed and calcined in order to obtain a composite powder which is uniformly dispersed.
- the parameters can be: Ag+ and the phase of the reinforcing phase metal ions are calculated according to the ratio of the oxide to the total weight of the composite powder between 3/4 and 1/2; the coprecipitant is formed in the solution with Ag+ and metal ions.
- the precipitate and the precipitate can be decomposed into a precipitant of metal oxide after calcination, and the weight of the coprecipitant is calculated according to the Ag+ and the reinforcing phase metal ions which completely precipitate out the solution; the stirring speed is 80 rev / min - 120 rpm / Between the minutes; the reaction time is between 2-4 hours; the calcination temperature is between 300 ° C and 500 ° C, and the time is between 1 and 5 hours.
- the composite powder obtained in the first step is subjected to high-energy ball milling granulation and sieving, and the large-particle powder which fails to pass through the sieve is returned to the ball mill for processing, and then sieved.
- the parameters can be used: ball milling speed between 180 rev / min and 350 rev / min; ball milling time is 5-15 hours; ball to material ratio (ie ball to powder weight ratio) between 10-20; The mesh size of the sieve is between 100 mesh and 400 mesh.
- the composite powder and the silver powder obtained in the second step are poured into a mixer for mixing, and the weight ratio of the composite powder and the matrix silver powder is calculated according to the required preparation of the material composition.
- the parameters can be used: the speed of the mixer is between 20 rpm and 35 rpm; the mixing time is between 2 and 6 hours.
- the powder obtained in the third step is subjected to cold isostatic pressing.
- the parameters can be used: Isostatic pressure is between 100-500Mpa.
- the body obtained by cold isostatic pressing is sintered.
- the parameters can be: sintering temperature between 600 ° C and 800 ° C; sintering time between 8-15 hours.
- the body obtained by sintering is subjected to hot pressing.
- the parameters can be: hot pressing temperature between 500 ° C and 900 ° C; hot pressing pressure between 300 and 700 MPa; hot pressing time between 5 min and 20 min.
- the body obtained by hot pressing is subjected to hot extrusion to obtain a particle oriented reinforced silver-based oxide electrical contact material.
- the parameters can be used: the heating temperature of the blank is between 700-900 ° C; the extrusion ratio is between 100-400, the extrusion speed is between 5-15 cm/min; the pre-heating temperature of the extrusion die is 300-600. Between °C.
- the composite powder obtained in the first step is subjected to high energy ball milling granulation and sieving, and the large particles which fail to pass through the screen are returned to the ball mill for reprocessing, and then sieved.
- the ball milling speed was 180 rpm; the ball milling time was 15 hours; the ball to ball ratio was 15; the meshing number was 200 mesh.
- the granulated aggregate obtained in the second step and 7236 g of the base silver powder are poured into a "V" type mixer to uniformly mix the powder.
- the speed of the powder is 20 rpm, and the time is 6 hours.
- the powder obtained in the third step is placed in a plastic cylinder having a diameter of 9 cm and a length of 20 cm, and subjected to cold isostatic pressing, and a cold isostatic pressing pressure of 100 MPa.
- the cold isostatic compact obtained in the fourth step is sintered, sintered at 600 ° C, and sintered for 15 hours.
- the sintered body obtained in the fifth step is subjected to hot pressing at a temperature of 800 ° C, a hot pressing pressure of 700 MPa, and a hot pressing time of 5 min.
- the hot pressed body is hot extruded, the hot extrusion temperature is 80 CTC, the extrusion ratio is 324, the extrusion speed is 8 cm/min, and the extrusion mold preheating temperature is 600 °C.
- an AgZnO (8) material having a distinct ZnO grain alignment alignment structure that is, a fibrous structure is obtained, wherein the ZnO fibrous structure is oriented by a plurality of fine ZnO particles and connected to each other.
- the obtained material has a tensile strength of 290 MPa; a resistivity of 2.1 ⁇ ⁇ in the extrusion direction; and a hardness of 85 HV.
- the composite powder obtained in the first step is subjected to high energy ball milling granulation and sieving, and the large particles which fail to pass through the screen are returned to the ball mill for reprocessing, and then sieved.
- the ball milling speed was 350 rpm; the ball milling time was 10 hours; the ball to ball ratio was 10; the meshing number was 300 mesh.
- the granulated aggregate obtained in the second step and the base silver powder 3689 g are poured into a "V" type powder mixing machine, and the powder is mixed.
- the speed of mixing is 30 rpm, and the time is 4 hours.
- the powder obtained in the third step is placed in a plastic cylinder having a diameter of 9 cm and a length of 15 cm, and subjected to cold isostatic pressing, and a cold isostatic pressing pressure of 500 MPa.
- the cold isostatic compact obtained in the fourth step is sintered, sintered at 800 Torr, and sintered for 10 hours.
- the sintered body obtained in the fifth step is subjected to hot pressing at a temperature of 800 ° C, a hot pressing pressure of 500 MPa, and a hot pressing time of 10 minutes.
- the hot pressed body is hot extruded, and the hot extrusion temperature is 90 (TC, extrusion ratio 225, extrusion speed 5 cm/min, and extrusion mold preheating temperature 50 CTC.
- an AgSnO 2 (10) material having a distinct Sn0 2 particle alignment enhancement structure that is, a fibrous structure is obtained, wherein the SnO 2 fibrous structure is oriented by a plurality of fine Sn0 2 particles and mutually When connected, the obtained material has a tensile strength of 280 MPa ; the resistivity in the extrusion direction is 2.2 ⁇ ; and the hardness is 88 HV.
- 510 g of AgN0 3 powder and 600 g of Cd(N0 3 ) 2 powder are dissolved in 5 L of deionized water and stirred uniformly, and this solution is labeled as solution A; at the same time, 800 g of the precipitant Na 2 C0 3 is dissolved in 5 L.
- solution B In ionic water, mark this solution as solution B; then slowly add solution B to solution A under agitation, stirring at 100 rpm, reaction time 2 hours, filter out the precipitate; wash; calcination: temperature 500 ⁇ , 3 hours; A uniformly dispersed composite powder was obtained.
- the composite powder obtained in the first step is subjected to high energy ball milling granulation and sieving, and the large particles which fail to pass through the screen are returned to the ball mill for reprocessing, and then sieved.
- Ball mill speed 300 rpm; ball mill The time is 5 hours; the ball to material ratio is 15; the sieved mesh number is 100 mesh.
- the granulated aggregate obtained in the second step and 2062 g of the base silver powder are poured into a "V" type mixer to uniformly mix the powder.
- the speed of mixing is 35 rpm, and the time is 2 hours.
- the powder obtained in the third step is placed in a plastic cylinder having a diameter of 9 cm and a length of 15 cm, and subjected to cold isostatic pressing, and a cold isostatic pressing pressure of 300 MPa.
- the cold isostatic compact obtained in the fourth step is sintered at a sintering temperature of 75 (TC, sintering for 8 hours).
- the sintered body obtained in the fifth step is subjected to hot pressing at a temperature of 500 ° C, a hot pressing pressure of 300 MPa, and a hot pressing time of 20 min.
- the hot pressed body is hot extruded and extruded into a sheet
- the hot extrusion temperature is 700 ° C
- the extrusion ratio is 100
- the extrusion speed is 15 cm/min
- the extrusion mold preheating temperature is 300°. C.
- an AgCd012 material having a distinct CdO grain oriented alignment structure that is, a fibrous structure is obtained, wherein the CdO fibrous structure is formed by arranging and interconnecting a plurality of fine CdO particles.
- the obtained material had a tensile strength of 285 MPa ; a resistivity in the extrusion direction of 2.1 ⁇ ⁇ ; and a hardness of 83 HV.
- 510 g of AgN0 3 powder, 252 g of Zn(N0 3 ) 2 powder, and 400 g of Cd(N0 3 ) 2 powder are dissolved in 10 L of deionized water and stirred uniformly, and this solution is labeled as solution A;
- the solution Na 2 CO 3 was dissolved in 5 L of deionized water, and the solution was labeled as solution B; then, solution B was slowly added to solution A under constant stirring, stirring speed was 80 rpm, reaction time was 2 hours, and filtered.
- the composite powder obtained in the first step is subjected to high energy ball milling granulation and sieving, and the large particles which fail to pass through the screen are returned to the ball mill for reprocessing, and then sieved.
- the ball milling speed was 200 rpm; the ball milling time was 8 hours; the ball to ball ratio was 20; the meshing number was 400 mesh.
- the granulated aggregate obtained in the second step and 2063 g of the base silver powder are poured into a "V" type powder mixing machine to uniformly mix the powder.
- the speed of mixing is 30 rpm, and the time is 4 hours.
- the powder obtained in the third step is placed in a plastic cylinder having a diameter of 9 cm and a length of 15 cm, and subjected to cold isostatic pressing, and a cold isostatic pressing pressure of 500 MPa.
- the cold isostatic compact obtained in the fourth step is sintered, sintered at 800 ° C, and sintered for 12 hours.
- the sintered body obtained in the fifth step is subjected to hot pressing at a temperature of 900 ° C, a hot pressing pressure of 700 MPa, and a hot pressing time of 10 min.
- the hot pressed body is subjected to hot extrusion, the hot extrusion temperature is 900 ° C, the extrusion ratio is 400, the extrusion speed is 5 cm/min, and the extrusion mold preheating temperature is 600 ° C.
- an Ag-4ZnO-8CdO contact material with distinct ZnO and CdO particle orientation enhancement structures that is, a fibrous structure is obtained, wherein the ZnO and CdO fibrous structures are respectively composed of many fine ZnO. And CdO particles are oriented and connected to each other.
- the obtained material has a tensile strength of 260 MPa ; a resistivity in the extrusion direction of 2.4 ⁇ ; and a hardness of 87 HV.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Composite Materials (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Powder Metallurgy (AREA)
- Manufacture Of Alloys Or Alloy Compounds (AREA)
Description
说 明 书 颗粒定向排列增强银基氧化物电触头材料的制备方法 技术领域
本发明涉及一种触头材料的制备方法, 具体地说,涉及的是一种颗粒定向排 列增强银基氧化物电触头材料的制备方法。
背景技术
电触头是电器开关的核心元件,它担负着电路间的接通与断开,及负载电流 的任务, 被广泛应用于各类空气开关, 继电器, 交直流接触器等低压和高压电器 中, 涉及到现代社会中的民用、 工业、 军事、 航天、 航空、 信息等各个领域。 近 年来, 随着高压输变电网大容量、超高压的发展, 低压配电系统与控制系统对自 动化水平、.灵敏程度要求的提高, 以及电子工业产品的现代化, 对电触头提出愈 来愈高的功能要求和长寿命的使用要求。为此,不断有新的银基复合材料及制备 工艺被研发。金属氧化物 (MeO)颗粒增强银基复合材料由于其良好的导热、导电、 抗熔焊及抗电磨损等性能被广泛的研究和应用。 同时, 金属氧化物 (MeO)颗粒增 强银基材料增强体成本低、制备工艺简单、可以采用传统的金属加工工艺进行加 工, 因而具有良好的发展前途。
国内外关于颗粒增强银基电接触材料方面的研究具体如下:
1) 中国发明专利: 碳包覆镍纳米颗粒增强银基复合材料的制备方法, 申请 号: 200810153154.9, 公开号: CN101403105A。
2) 中国发明专利: 金属基复合材料的制备方法, 申请号: 200410064970.4, 公开号: CN1760399A。
3) 中国发明专利: 一种颗粒增强金属基复合材料的制备方法, 申请号: 200810018200.4, 公开号: CN101285187A。
4) 中国发明专利:化学共沉淀制备纳米稀土共混合 AgSn02电接触合金, 申 请号: 200410073547.0, 公开号: CN100481289C。
目前,颗粒增强银基电接触材料的制备方法大致有三类: 一是传统的粉末冶 金烧结法,其工艺流程为混粉一等静压一烧结一热压一挤压、轧制或锻造等二次
加工。此方法在粉体混合时,增强相颗粒容易聚集,造成材料增强相分布不均匀, 影响产品使用性能; 二是在传统方法基础上, 通过特殊工艺对增强相颗粒 [文献
1)]、增强相颗粒 -基体 [文献 2)]、或基体 [文献 3)]进行预处理的方法。三是通过化 学共沉淀方法 [文献 4)], 首先制备均匀分布的复合粉体, 然后再冷压、 烧结、 复 压和挤压等。方法二和方法三虽然可以使得增强相颗粒弥散分布于银基中,但是 研究表明, 当增强相 (氧化物)颗粒较细 (纳米级)时, 弥散分布会增加增强相与 Ag 基体的接触面积, 导致电子散射作用大大增强, 使得触头材料电阻明显升高, 严 重影响产品的使用性能。 同时, 弥散分布的较细增强相 (氧化物)颗粒虽然使材料 强度、硬度得到提高, 对提高材料的耐机械磨损性能有一定的意义, 但通常会导 致材料的延伸率大大下降, 使材料塑性变差, 很难加工。
发明内容
本发明针对上述现有技术存在的不足和缺陷,提供一种颗粒定向排列增强银 基氧化物电触头材料的制备方法, 该方法在增强相 (氧化物)颗粒较细也可以获得 电学性能优良的颗粒增强银基材料,且工艺简单,操作方便,对设备无特殊要求。 本发明方法制备的材料抗熔焊性、耐电弧烧蚀性能及电导率均有较大的提高, 并 且加工性能十分优良。
为实现上述的目的, 本发明采用的技术方案是- 本发明提供一种颗粒定向排列增强银基氧化物电接触材料的制备方法,包括 以下步骤- 第一步, 首先配制含有 Ag+和增强相金属离子的混合盐溶液, 然后在搅拌情 况下加入共沉淀剂, 过滤出沉淀物, 再依次进行洗涤和焙烧, 制取均匀分散的复 合粉体。 其中: Ag+和增强相金属离子比例根据所需制备的复合粉体成份计算获 得;共沉淀剂为一切在溶液能够 Ag+和金属离子形成沉淀物且沉淀物经焙烧后能 分解为金属氧化物的沉淀剂,共沉淀剂的重量按其完全沉淀出溶液中 Ag+和增强 相金属离子计算获得。
第二步,将第一步获得的复合粉体进行高能球磨造粒和过筛,未能通过筛网 的大颗粒粉体再重新返回到球磨机中进行加工, 然后再过筛。
第三步,将第二步获得的造粒后的粉体的聚集体和基体银粉倒入混粉机中进 行混粉,其中:造粒后粉体的聚集体和基体银粉重量比例根据所需制备材料成份
所需计算获得。
第四步, 将第三步获得的粉体进行冷等静压。
第五步, 将冷等静压获得的坯体进行烧结。
第六步, 将烧结获得的坯体进行热压。
第七步,将热压获得的坯体进行热挤压,得到颗粒定向排列增强银基氧化物 电触头材料。
本发明上述方法制备的颗粒定向排列增强的银基氧化物电触头材料,其中增 强相以其颗粒相互连接且定向排列的形式存在于基体中,且增强相材料为一种材 料或多种材料混合物。
本发明所采用方法与以往传统材料的化学共沉淀结合粉末冶金【即: 化学共 沉淀法制备复合沉淀物一焙烧一冷压一烧结一复压一挤压】的制备方法有显著不 同, 本发明采用的方法是: 首先采用化学共沉淀法制备 Ag盐和增强相金属盐沉 淀物, 然后进行焙烧, 获得均匀分散的银基氧化物复合粉体, 再经过高能球磨造 粒和过筛, 得到复合粉体的聚集体, 然后将聚集体和基体 Ag粉按材料成分配方 所需量进行均匀混合, 再依次进行冷等静压, 烧结, 热压, 热挤压。 在挤压过程 中包覆体在 Ag基体中随软化的 Ag—起流动, 由于 Ag的包覆,.使得氧化物增强相 材料很容易被拉开, 并且沿着挤压方向定向排列且相互连接,形成类似纤维状结 构。此方法获得的材料, 其增强相是以颗粒相互连接且定向排列的形式存在, 类 似于纤维状结构,其耐电弧烧蚀能力比单纯的颗粒分散增强的相同触头材料体系 提高 10-20%, 沿挤压方向导电率提高 5-15%, 抗熔焊性提高 10-20%, 电寿命提高 了 10-30%; 并且具有优良的加工性能适用于规模化生产。
具体实施方式
以下对本发明的技术方案作进一步的说明,以下的说明仅为理解本发明技术 方案之用, 不用于限定本发明的范围, 本发明的保护范围以权利要求书为准。
本发明提供的上述颗粒定向排列增强银基氧化物电触头材料的制备方法,适 用于通常的颗粒增强银基氧化物复合材料的制备,该方法在增强相颗粒较细时也 可以获得电学性能优良的颗粒增强银基材料, 且工艺简单, 操作方便, 对设备无 特殊要求。本发明方法制备的材料抗熔悍性、耐电弧烧蚀性能及电导率均有较大 的提高, 并且加工性能十分优良。
根据本发明方法得到的银基氧化物电触头材料,增强相是以其颗粒互连接且 定向排列的形式存在于基体中,且增强相材料为一种材料或多种材料混合物。在 具体制备的时候, 根据实际需要设计的材料成分进行配比。
本发明中, 设计的化学共沉淀、 高能球磨造粒和过筛、 混粉、 冷等静压、 烧 结、 热压以及热挤压等步骤, 具体工艺操作的参数是可以选择的, 比如:
第一步中, 首先配制含有 Ag+和增强相金属离子的混合盐溶液, 然后在搅拌 情况下加入共沉淀剂, 过滤出沉淀物, 再依次进行洗涤和焙烧, 制取均勾分散的 复合粉体。 其中参数可以采用: Ag+和增强相金属离子比例根据氧化物占复合粉 体总重的比例在 3/4— 1/2之间计算获得;共沉淀剂为一切在溶液能够与 Ag+和金 属离子形成沉淀物且沉淀物经焙烧后能分解为金属氧化物的沉淀剂,共沉淀剂重 量按其完全沉淀出溶液中的 Ag+和增强相金属离子计算获得; 搅拌速度在 80转 / 分钟 -120转 /分钟之间;反应时间在 2-4小时之间;焙烧温度在 300°C-500°C之间, 时间在 1-5小时之间。
第二步中,将第一步获得的复合粉体进行高能球磨造粒和过筛,未能通过筛 网的大颗粒粉体再重新返回到球磨机中进行加工,然后再过筛。其中参数可以采 用: 球磨转速在 180转 /分钟一 350转 /分钟之间; 球磨时间在 5-15小时; 球料比 (即球珠和粉体重量比例)在 10-20之间; 所过筛的目数在 100目 -400目之间。
第三步中,将第二步获得的复合粉体和银粉倒入混粉机中进行混粉, 复合粉 体和基体银粉重量比例根据所需制备材料成份所需计算获得。 其中参数可以采 用: 混粉机转速在 20转 /分钟一 35转 /分钟之间; 混粉时间在 2-6小时之间。
第四步中, 将第三步获得的粉体进行冷等静压。其中参数可以采用: 等静压 压强在 100-500Mpa之间。
第五步中, 将冷等静压获得的坯体进行烧结。其中参数可以采用: 烧结温度 在 600°C-800°C之间; 烧结时间在 8-15小时之间。
第六步中, 将烧结获得的坯体进行热压。 其中参数可以采用: 热压温度在 500°C-900°C之间; 热压压强在 300-700MPa之间; 热压时间为 5min-20min之间。
第七步中,将热压获得的坯体进行热挤压,得到颗粒定向排列增强银基氧化 物电触头材料。 其中参数可以采用: 坯体加热温度在 700-900°C之间; 挤压比在 100-400之间,挤压速度在 5-15cm/min之间;挤压模具预热温度在 300-600 °C之间。
以下通过具体应用的实施例来对本发明详细的技术操作进行说明。
实施例一
以制备 AgZnO(8)触头材料为例
第一步, 将 AgN03粉 340g和 Zn(N03)2粉 1512g溶于 10L去离子水中并搅 拌形成均一的溶液, 将此溶液标记为溶液 A; 同时将 1200g的沉淀剂 N¾C03溶 于 5L去离子水中, 将此溶液标记为溶液 B; 然后在勾速搅拌下将溶液 B缓慢加 入到溶液 A中,搅拌速度为 80转 /分钟,反应时间 4小时,过滤出沉淀物;洗涤; 焙烧: 温度 380°C, 5小时; 获得均匀分散的复合粉体。
第二步,将第一步获得的复合粉体进行高能球磨造粒和过筛,未能通过筛网 的大颗粒返回到球磨机中重新加工, 然后再过筛。 球磨转速 180转 /分钟; 球磨 时间 15小时; 球料比为 15; 所过筛的目数 200目。
第三步, 将第二步获得的造粒后的聚集体和基体银粉 7236g—起倒入 "V" 型混粉机中, 进行均匀混粉。 混粉时转速速度 20转 /分钟, 时间 6小时。
第四步, 将第三步获得的粉体装入直径为 9cm, 长度 20cm塑胶筒中, 进行 冷等静压, 冷等静压压强 100MPa。
第五步, 将第四步获得的冷等静压坯体进行烧结, 烧结温度 600°C, 烧结 15 小时。
第六步,将第五步获得的烧结坯体进行热压,温度 800°C,热压压强 700MPa, 热压时间 5min。
第七步, 将热压好的坯体进行热挤压, 热挤压温度 80CTC, 挤压比 324, 挤 压速度 8cm/min, 挤压模具预热温度 600°C。
本实施例最终获得具有明显 ZnO颗粒定向排列增强结构, 即类似于纤维状 组织结构的 AgZnO(8)材料, 其中, ZnO纤维状组织结构是由很多细小的 ZnO颗 粒定向排列且相互连接而成的。 获得的材料抗拉强度为 290Mpa; 沿挤压方向电 阻率为 2.1μΩχιη; 硬度为 85HV。 实施例二
以制备 AgSnO2(10)触头材料为例
第一步,将 AgN03粉 340g和 750g的 SnCl4溶于 8L去离子水中并搅拌均匀, 将此溶液标记为溶液 A;同时将 1500g的沉淀剂 (NH4)2C204溶于 7L去离子水中,
将此溶液标记为溶液 B; 然后在勾速搅拌下将溶液 B缓慢加入到溶液 A中, 搅 拌速度为 120转 /分钟,反应时间 2小时,过滤出沉淀物;洗涤;焙烧:温度 300°C, 1小时; 获得均匀分散的复合粉体。
第二步,将第一步获得的复合粉体进行高能球磨造粒和过筛,未能通过筛网 的大颗粒返回到球磨机中重新加工, 然后再过筛。 球磨转速 350转 /分钟; 球磨 时间 10小时; 球料比为 10; 所过筛的目数 300目。
第三步, 将第二步获得的造粒后的聚集体和基体银粉 3689g—起倒入 "V" 型混粉机中, 进行均勾混粉。 混粉时转速速度 30转 /分钟, 时间 4小时。
第四步, 将第三步获得的粉体装入直径为 9cm, 长度 15cm塑胶筒中, 进行 冷等静压, 冷等静压压强 500MPa。
第五步, 将第四步获得的冷等静压坯体进行烧结, 烧结温度 800Ό, 烧结 10 小时。
第六步,将第五步获得的烧结坯体进行热压,温度 800°C,热压压强 500MPa, 热压时间 10分钟。
第七步, 将热压好的坯体进行热挤压, 热挤压温度 90(TC, 挤压比 225, 挤 压速度 5cm/min, 挤压模具预热温度 50CTC。
本实施例最终获得具有明显 Sn02颗粒定向排列增强结构, 即类似于纤维状 组织结构的 AgSnO2(10)材料, 其中, Sn02纤维状组织结构是由很多细小的 Sn02 颗粒定向排列且相互连接而成的, 获得的材料抗拉强度为 280Mpa; 沿挤压方向 电阻率为 2.2μΩ.αη; 硬度为 88HV。 实施例三
以制备 AgCd012触头材料为例
第一步, 将 AgN03粉 510g和 Cd(N03)2粉 600g溶于 5L去离子水中并搅拌 均匀, 将此溶液标记为溶液 A; 同时将 800g的沉淀剂 Na2C03溶于 5L去离子水 中, 将此溶液标记为溶液 B; 然后在勾速搅拌下将溶液 B缓慢加入到溶液 A中, 搅拌速度为 100转 /分钟, 反应时间 2小时, 过滤出沉淀物; 洗涤; 焙烧: 温度 500Ό, 3小时; 获得均匀分散的复合粉体。
第二步,将第一步获得的复合粉体进行高能球磨造粒和过筛,未能通过筛网 的大颗粒返回到球磨机中重新加工, 然后再过筛。 球磨转速 300转 /分钟; 球磨
时间 5小时; 球料比为 15; 所过筛的目数 100目。
第三步, 将第二步获得的造粒后的聚集体和基体银粉 2062g—起倒入 "V" 型混粉机中, 进行均匀混粉。 混粉时转速速度 35转 /分钟, 时间 2小时。
第四步, 将第三步获得的粉体装入直径为 9cm, 长度 15cm塑胶筒中, 进行 冷等静压, 冷等静压压强 300MPa。
第五步, 将第四步获得的冷等静压坯体进行烧结, 烧结温度 75(TC, 烧结 8 小时。
第六步,将第五步获得的烧结坯体进行热压,温度 500°C,热压压强 300MPa, 热压时间 20min。
第七步, 将热压好的坯体进行热挤压, 挤压成片材, 热挤压温度 700°C, 挤 压比 100, 挤压速度 15cm/min, 挤压模具预热温度 300°C。
本实施例最终获得具有明显 CdO颗粒定向排列增强结构, 即类似于纤维状 组织结构的 AgCd012材料, 其中, CdO纤维状组织结构是由很多细小的 CdO 颗粒定向排列且相互连接而成的。 获得的材料抗拉强度为 285Mpa; 沿挤压方向 电阻率为 2.1μΩχιη; 硬度为 83HV。 实施例四
以制备 Ag-4ZnO-8CdO触头材料为例
第一步, 将 AgN03粉 510g、 Zn(N03)2粉 252g、 Cd(N03)2粉 400g溶于 10L 去离子水中并搅拌均匀, 将此溶液标记为溶液 A; 同时将 800g的沉淀剂 Na2C03 溶于 5L去离子水中, 将此溶液标记为溶液 B; 然后在匀速搅拌下将溶液 B缓慢 加入到溶液 A中, 搅拌速度为 80转 /分钟, 反应时间 2小时, 过滤出沉淀物; 洗 涤; 焙烧: 温度 50(TC, 4小时; 获得均匀分散的复合粉体。
第二步,将第一步获得的复合粉体进行高能球磨造粒和过筛,未能通过筛网 的大颗粒返回到球磨机中重新加工, 然后再过筛。 球磨转速 200转 /分钟; 球磨 时间 8小时; 球料比为 20; 所过筛的目数 400目。
第三步, 将第二步获得的造粒后的聚集体和基体银粉 2063g—起倒入 "V" 型混粉机中, 进行均匀混粉。 混粉时转速速度 30转 /分钟, 时间 4小时。
第四步, 将第三步获得的粉体装入直径为 9cm, 长度 15cm塑胶筒中, 进行 冷等静压, 冷等静压压强 500MPa。
第五步, 将第四步获得的冷等静压坯体进行烧结, 烧结温度 800°C, 烧结 12 小时。
第六步,将第五步获得的烧结坯体进行热压,温度 900°C,热压压强 700MPa, 热压时间 10min。
第七步, 将热压好的坯体进行热挤压, 热挤压温度 900°C, 挤压比 400, 挤 压速度 5cm/min, 挤压模具预热温度 600°C。
本实施例最终获得具有明显 ZnO和 CdO颗粒定向排列增强结构, 即类似于 纤维状组织结构的 Ag-4ZnO-8CdO触头材料材料, 其中, ZnO和 CdO纤维状组 织结构分别是由很多细小的 ZnO和 CdO颗粒定向排列且相互连接而成的。 获得 的材料抗拉强度为 260Mpa; 沿挤压方向电阻率为 2.4μΩ.αη; 硬度为 87HV。 以上所述仅为本发明的部分较佳实施例而已,并非对本发明的技术范围做任 何限制,本发明还可以适用于其他成分配比的颗粒定向排列增强银基氧化物复合 材料的制备。 凡在本发明的精神和原则之内做的任何修改, 等同替换和改进等, 均应包含在本发明的保护范围之内。
Claims
1. 一种颗粒定向排列增强银基氧化物电触头材料的制备方法, 其特征在于 包括以下步骤:
第一步, 首先配制含有 Ag+和增强相金属离子的混合盐溶液, 然后在搅拌情 况下加入共沉淀剂, 获得沉淀物, 再依次进行洗涤和焙烧, 制取均匀分散的复合 粉体;其中: Ag+和增强相金属离子比例根据所需制备的复合粉体成份计算获得; 共沉淀剂为一切在溶液能够 Ag+和金属离子形成沉淀物且沉淀物经焙烧后能分 解为金属氧化物的沉淀剂,共沉淀剂的重量按其完全沉淀出溶液中 Ag+和增强相 金属离子计算获得;
第二步,将第一步获得的复合粉体进行高能球磨造粒和过筛,未能通过筛网 的大颗粒粉体再重新返回到球磨机中进行加工, 然后再过筛;
第三步,将第二步获得的造粒后的粉体的聚集体和基体银粉倒入混粉机中进 行混粉,其中:造粒后粉体的聚集体和基体银粉重量比例根据所需制备材料成份 所需计算获得;
第四步, 将第三步获得的粉体进行冷等静压;
第五步, 将冷等静压获得的坯体进行烧结;
第六步, 将烧结获得的坯体进行热压;
第七步,将热压获得的坯体进行热挤压,得到颗粒定向排列增强银基氧化物 电触头材料。
2. 如权利要求 1所述的颗粒定向排列增强银基氧化物电触头材料的制备方 法, 其特征在于, 第一步中, 所述 Ag+和增强相金属离子比例根据氧化物占复合 粉体总重的比例在 3/4— 1/2之间计算获得。
3. 如权利要求 1所述的颗粒定向排列增强银基氧化物电触头材料的制备方 法, 其特征在于, 第一步中, 所述搅拌速度在 80转 /分钟 -120转 /分钟之间, 反应 时间在 2-4小时之间; 所述焙烧温度在 30(rC-500°C之间, 时间在 1-5小时之间。
4. 如权利要求 1所述的颗粒定向排列增强银基氧化物电触头材料的制备方 法, 其特征在于, 第二步中, 所述高能球磨造粒和过筛, 其中球磨转速在 180转 / 分钟一 350转 /分钟之间; 球磨时间在 5-15小时; 球料比在 10-20之间; 所过筛的目 数在 100目 -400目之间。
5. 如权利要求 1所述的颗粒定向排列增强银基氧化物电触头材料的制备方 法, 其特征在于, 第三步中, 所述混粉机转速在 20转 /分钟一 35转 /分钟之间, 混 粉时间在 2-6小时之间。
6. 如权利要求 1所述的颗粒定向排列增强银基氧化物电触头材料的制备方 法, 其特征在于, 第四步中, 所述等静压压强在 100-500Mpa之间。
7. 如权利要求 1所述的颗粒定向排列增强银基氧化物电触头材料的制备方 法,其特征在于,第五步中,所述烧结温度在 600°C-800°C之间,烧结时间在 8-15 小时之间。
8. 如权利要求 1所述的颗粒定向排列增强银基氧化物电触头材料的制备方 法, 其特征在于, 第六步中, 所述热压温度在 500°C-900°C之间, 热压压强在 300-700MPa之间, 热压时间为 5min-20min之间。
9. 如权利要求 1所述的颗粒定向排列增强银基氧化物电触头材料的制备方 法, 其特征在于, 第七步中, 所述的热挤压, 其中坯体加热温度在 600-900°C之 间, 挤压比在 100-400之间, 挤压速度在 5-15cm/min之间, 挤压模具预热温度在 300-600°C之间。
10. 一种釆用权利要求 1所述方法制备的颗粒定向排列增强银基电触头材 料,其特征在于,所述颗粒定向排列增强的银基氧化物电触头材料, 其增强相以 其颗粒互连接且定向排列的形式存在于基体中,且增强相材料为一种材料或多种 材料混合物。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP11853723.2A EP2538423B1 (en) | 2010-12-30 | 2011-04-11 | Method for preparing silver-based oxide electrical contact material with oriented particles |
US13/577,897 US9293270B2 (en) | 2010-12-30 | 2011-04-11 | Method of preparing Ag-based oxide contact materials with directionally arranged reinforcing particles |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201010620050.1 | 2010-12-30 | ||
CN2010106200501A CN102142325B (zh) | 2010-12-30 | 2010-12-30 | 颗粒定向排列增强银基氧化物电触头材料及其制备方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012088734A1 true WO2012088734A1 (zh) | 2012-07-05 |
Family
ID=44409763
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2011/000632 WO2012088734A1 (zh) | 2010-12-30 | 2011-04-11 | 颗粒定向排列增强银基氧化物电触头材料的制备方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US9293270B2 (zh) |
EP (1) | EP2538423B1 (zh) |
CN (1) | CN102142325B (zh) |
WO (1) | WO2012088734A1 (zh) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102013014915A1 (de) * | 2013-09-11 | 2015-03-12 | Airbus Defence and Space GmbH | Kontaktwerkstoffe für Hochspannungs-Gleichstrombordsysteme |
CN103551575A (zh) * | 2013-10-31 | 2014-02-05 | 福达合金材料股份有限公司 | 一种具有自吹弧特性的软磁电触头材料的制备方法及其产品 |
CN103555987B (zh) * | 2013-11-01 | 2015-05-20 | 四川飞龙电子材料有限公司 | 银氧化镉材料的制造方法及产品 |
CN103700544B (zh) * | 2013-12-18 | 2016-08-17 | 福达合金材料股份有限公司 | 一种组织均匀的银氧化锡电接触材料的制备方法 |
CN103745842B (zh) * | 2013-12-24 | 2016-06-29 | 河南工业大学 | 一种银基电触头材料及其制备方法 |
CN103700532B (zh) * | 2013-12-30 | 2015-10-14 | 桂林电器科学研究院有限公司 | 一种喷雾干燥制备银氧化锡电触头材料的方法 |
CN105728714B (zh) | 2014-12-12 | 2018-12-04 | 施耐德电气工业公司 | 银-金属氧化物电触头材料的制备方法、装置以及应用 |
CN104505191B (zh) * | 2014-12-30 | 2016-08-17 | 桂林电器科学研究院有限公司 | 一种含锡酸铟的银氧化锡电触头材料的制备方法 |
CN104538120B (zh) * | 2014-12-30 | 2016-08-17 | 桂林电器科学研究院有限公司 | 一种含锡酸铟的银氧化锡电触头材料的加工方法 |
CN114000006B (zh) * | 2021-10-15 | 2022-05-10 | 昆明贵研新材料科技有限公司 | 一种银基复合材料及其制备方法 |
CN115852190B (zh) * | 2023-02-28 | 2023-05-16 | 北京理工大学 | 一种定向排布TiB增强钛基复合材料及其制备方法和应用 |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5647529A (en) * | 1979-09-22 | 1981-04-30 | Matsushita Electric Works Ltd | Manufacture of electric contact material |
EP0252492A2 (en) * | 1986-07-08 | 1988-01-13 | Fuji Electric Co., Ltd. | Method of an Ag/metal oxide material for electrical contacts |
CN1281904A (zh) * | 1999-07-26 | 2001-01-31 | 中国人民解放军国防科学技术大学 | 银重稀土金属氧化物电工触点材料及其制备工艺 |
JP2005146412A (ja) * | 2003-10-21 | 2005-06-09 | Mitsubishi Electric Corp | 電気接点材料の製造方法および電気接点材料 |
CN1760399A (zh) | 2004-10-15 | 2006-04-19 | 南京理工大学 | 金属基复合材料的制备方法 |
CN101285187A (zh) | 2008-05-15 | 2008-10-15 | 西北工业大学 | 一种颗粒增强金属基复合材料的制备方法 |
CN101403105A (zh) | 2008-11-19 | 2009-04-08 | 河北工业大学 | 碳包覆镍纳米颗粒增强银基复合材料的制备方法 |
CN100481289C (zh) | 2004-12-31 | 2009-04-22 | 西安工程科技学院 | 化学共沉淀制备纳米稀土共混AgSnO2电接触合金 |
CN101608272A (zh) * | 2009-07-20 | 2009-12-23 | 温州宏丰电工合金有限公司 | AgNi电触头材料及其制备方法 |
CN101649401A (zh) * | 2009-07-20 | 2010-02-17 | 温州宏丰电工合金有限公司 | Ag-Ni-氧化物电触头材料及其制备方法 |
CN101707156A (zh) * | 2009-09-24 | 2010-05-12 | 温州宏丰电工合金有限公司 | 掺杂银氧化锌电接触材料的制备方法 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3501287A (en) * | 1968-07-31 | 1970-03-17 | Mallory & Co Inc P R | Metal-metal oxide compositions |
USRE30052E (en) * | 1972-03-15 | 1979-07-24 | Square D Company | Electrical contact material and process |
US4018630A (en) * | 1975-09-05 | 1977-04-19 | Engelhard Minerals & Chemicals Corporation | Method of preparation of dispersion strengthened silver electrical contacts |
DE3146972A1 (de) * | 1981-11-26 | 1983-06-01 | Siemens AG, 1000 Berlin und 8000 München | Verfahren zum herstellen von formteilen aus cadmiumfreien silber-metalloxid-verbundwerkstoffen fuer elektrische kontaktstuecke |
ES2012293A6 (es) * | 1988-03-26 | 1990-03-01 | Doduco Gmbh Dr Eugen Durrwacht | Semiproducto para contactos electricos, hecho de un material compuesto de trabajo de plata yoxido de estano y procedimiento pulvimetalurgico para su fabricacion. |
US5846288A (en) * | 1995-11-27 | 1998-12-08 | Chemet Corporation | Electrically conductive material and method for making |
DE10017282C2 (de) * | 2000-04-06 | 2002-02-14 | Omg Ag & Co Kg | Verfahren zur Herstellung von Verbundpulver auf Basis Siler-Zinnoxid und deren Verwendung zur Herstellung von Kontaktwerkstoffen |
US7566437B2 (en) * | 2006-03-31 | 2009-07-28 | Umicore Ag & Co. Kg | Process for manufacture of silver-based composite powders for electrical contact materials and composite powders so produced |
CN102074278B (zh) * | 2010-12-09 | 2011-12-28 | 温州宏丰电工合金股份有限公司 | 颗粒定向排列增强银基电触头材料的制备方法 |
-
2010
- 2010-12-30 CN CN2010106200501A patent/CN102142325B/zh active Active
-
2011
- 2011-04-11 US US13/577,897 patent/US9293270B2/en active Active
- 2011-04-11 EP EP11853723.2A patent/EP2538423B1/en active Active
- 2011-04-11 WO PCT/CN2011/000632 patent/WO2012088734A1/zh active Application Filing
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5647529A (en) * | 1979-09-22 | 1981-04-30 | Matsushita Electric Works Ltd | Manufacture of electric contact material |
EP0252492A2 (en) * | 1986-07-08 | 1988-01-13 | Fuji Electric Co., Ltd. | Method of an Ag/metal oxide material for electrical contacts |
CN1281904A (zh) * | 1999-07-26 | 2001-01-31 | 中国人民解放军国防科学技术大学 | 银重稀土金属氧化物电工触点材料及其制备工艺 |
JP2005146412A (ja) * | 2003-10-21 | 2005-06-09 | Mitsubishi Electric Corp | 電気接点材料の製造方法および電気接点材料 |
CN1760399A (zh) | 2004-10-15 | 2006-04-19 | 南京理工大学 | 金属基复合材料的制备方法 |
CN100481289C (zh) | 2004-12-31 | 2009-04-22 | 西安工程科技学院 | 化学共沉淀制备纳米稀土共混AgSnO2电接触合金 |
CN101285187A (zh) | 2008-05-15 | 2008-10-15 | 西北工业大学 | 一种颗粒增强金属基复合材料的制备方法 |
CN101403105A (zh) | 2008-11-19 | 2009-04-08 | 河北工业大学 | 碳包覆镍纳米颗粒增强银基复合材料的制备方法 |
CN101608272A (zh) * | 2009-07-20 | 2009-12-23 | 温州宏丰电工合金有限公司 | AgNi电触头材料及其制备方法 |
CN101649401A (zh) * | 2009-07-20 | 2010-02-17 | 温州宏丰电工合金有限公司 | Ag-Ni-氧化物电触头材料及其制备方法 |
CN101707156A (zh) * | 2009-09-24 | 2010-05-12 | 温州宏丰电工合金有限公司 | 掺杂银氧化锌电接触材料的制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN102142325B (zh) | 2013-04-03 |
US20130266791A1 (en) | 2013-10-10 |
CN102142325A (zh) | 2011-08-03 |
EP2538423B1 (en) | 2018-03-28 |
US9293270B2 (en) | 2016-03-22 |
EP2538423A1 (en) | 2012-12-26 |
EP2538423A4 (en) | 2016-11-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2012088734A1 (zh) | 颗粒定向排列增强银基氧化物电触头材料的制备方法 | |
JP6490253B2 (ja) | グラフェン/銀複合材料の調製方法 | |
CN104711443B (zh) | 一种石墨烯/铜复合材料及其制备方法 | |
CN107794389B (zh) | 一种银氧化锡氧化铟电接触材料及其制备方法 | |
CN102002651B (zh) | 纤维状结构银基电接触材料的制备方法 | |
CN102176336B (zh) | 一种纤维状结构银基氧化物电触头材料的制备方法 | |
CN101649399B (zh) | 银氧化锡电接触材料的制备方法 | |
WO2011003225A1 (zh) | 一种银-金属氧化物电触头材料的制备方法 | |
EP2913413B1 (en) | Preparation method for electrical contact materials | |
CN105200262B (zh) | 一种高氧化锡含量银基片状电触头材料的制备方法 | |
CN101127253B (zh) | 一种银镍导电陶瓷电触头的材料及其制造方法 | |
CN104480335B (zh) | 一种银钨触头材料的制备方法 | |
CN103184384B (zh) | 一种复合银氧化锡电接触材料的制备方法 | |
CN104245976B (zh) | 触点材料 | |
CN102074278B (zh) | 颗粒定向排列增强银基电触头材料的制备方法 | |
WO2012088735A1 (zh) | 纤维状组织结构银基氧化物电触头材料的制备方法 | |
CN102864325A (zh) | 多元稀土银电接点及其制备方法和用途 | |
CN103600087A (zh) | 一种溶胶喷雾—还原法制备超细钨银复合粉末的方法 | |
CN111363947A (zh) | 一种添加镍合金的银碳化钨石墨复合材料及制备方法 | |
CN106653410B (zh) | 一种高性能环保型银氧化锡电触头材料及其制备方法 | |
US9287018B2 (en) | Method of preparing silver-based electrical contact materials with fiber-like arrangement of reinforcing nanoparticles | |
CN103695695A (zh) | 一种含添加剂雾化银氧化锡电触头材料的制备方法 | |
CN104588654A (zh) | 一种片状或铆钉型银镍钨电触头材料的加工方法 | |
CN117646199A (zh) | 一种银镍复合氧化锡电接触材料及其制备方法 | |
CN105506342A (zh) | 一种铆钉型银石墨电触头材料的制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 13577897 Country of ref document: US |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11853723 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011853723 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |