WO2012044638A1 - Low molecular weight cationic lipids for oligonucleotide delivery - Google Patents

Low molecular weight cationic lipids for oligonucleotide delivery Download PDF

Info

Publication number
WO2012044638A1
WO2012044638A1 PCT/US2011/053556 US2011053556W WO2012044638A1 WO 2012044638 A1 WO2012044638 A1 WO 2012044638A1 US 2011053556 W US2011053556 W US 2011053556W WO 2012044638 A1 WO2012044638 A1 WO 2012044638A1
Authority
WO
WIPO (PCT)
Prior art keywords
amine
compound
dien
alkyl
octadeca
Prior art date
Application number
PCT/US2011/053556
Other languages
French (fr)
Inventor
John A. Bawiec, Iii
Zhengwu J. Deng
Original Assignee
Merck Sharp & Dohme Corp.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Merck Sharp & Dohme Corp. filed Critical Merck Sharp & Dohme Corp.
Priority to EP11829806.6A priority Critical patent/EP2621480B1/en
Priority to US13/876,528 priority patent/US9029604B2/en
Priority to CN2011800464797A priority patent/CN103260611A/en
Priority to JP2013531742A priority patent/JP2013545723A/en
Priority to AU2011307277A priority patent/AU2011307277A1/en
Priority to CA2811430A priority patent/CA2811430A1/en
Priority to KR1020137008015A priority patent/KR20130114115A/en
Publication of WO2012044638A1 publication Critical patent/WO2012044638A1/en
Priority to US14/681,641 priority patent/US9458087B2/en
Priority to US15/281,823 priority patent/US9725720B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5107Excipients; Inactive ingredients
    • A61K9/5123Organic compounds, e.g. fats, sugars
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C217/00Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton
    • C07C217/02Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having etherified hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton
    • C07C217/04Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having etherified hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated
    • C07C217/06Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having etherified hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated having only one etherified hydroxy group and one amino group bound to the carbon skeleton, which is not further substituted
    • C07C217/08Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having etherified hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated having only one etherified hydroxy group and one amino group bound to the carbon skeleton, which is not further substituted the oxygen atom of the etherified hydroxy group being further bound to an acyclic carbon atom
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
    • C12N15/88Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation using microencapsulation, e.g. using amphiphile liposome vesicle
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/02Systems containing only non-condensed rings with a three-membered ring
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/14Type of nucleic acid interfering N.A.
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2320/00Applications; Uses
    • C12N2320/30Special therapeutic applications
    • C12N2320/32Special delivery means, e.g. tissue-specific
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/778Nanostructure within specified host or matrix material, e.g. nanocomposite films
    • Y10S977/783Organic host/matrix, e.g. lipid
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/902Specified use of nanostructure
    • Y10S977/904Specified use of nanostructure for medical, immunological, body treatment, or diagnosis
    • Y10S977/915Therapeutic or pharmaceutical composition
    • Y10S977/916Gene therapy

Definitions

  • the present invention relates to novel cationic lipids that can be used in combination with other lipid components such as cholesterol and PEG-lipids to form lipid nanoparticles with oligonucleotides, to facilitate the cellular uptake and endosomal escape, and to knockdown target mRNA both in vitro and in vivo.
  • Cationic lipids and the use of cationic lipids in lipid nanoparticles for the delivery of oligonucleotides, in particular siRNA and miRNA, have been previously disclosed.
  • Lipid nanoparticles and use of lipid nanoparticles for the delivery of oligonucleotides, in particular siRNA and miRNA has been previously disclosed.
  • Oligonucleotides (including siRNA and miRNA) and the synthesis of oligonucleotides has been previously disclosed. (See US patent applications: US 2006/0083780, US 2006/0240554, US 2008/0020058, US
  • cationic lipids such as CLinDMA and DLinDMA have been employed for siRNA delivery to liver but suffer from non-optimal delivery efficiency along with liver toxicity at higher doses. It is an object of the instant invention to provide a cationic lipid scaffold that demonstrates enhanced efficacy along with lower liver toxicity as a result of lower lipid levels in the liver.
  • the present invention employs low molecular weight cationic lipids with one short lipid chain to enhance the efficiency and tolerability of in vivo delivery of siRNA.
  • the instant invention provides for novel cationic lipids that can be used in combination with other lipid components such as cholesterol and PEG-lipids to form lipid nanoparticles with oligonucleotides. It is an object of the instant invention to provide a cationic lipid scaffold that demonstrates enhanced efficacy along with lower liver toxicity as a result of lower lipid levels in the liver.
  • the present invention employs low molecular weight cationic lipids with one short lipid chain to enhance the efficiency and tolerability of in vivo delivery of siRNA.
  • FIGURE 1 LNP (Compound 1) efficacy in mice.
  • FIGURE 2 LNP (Compound 1) efficacy in rat (ApoB siRNA).
  • FIGURE 3 Cationic lipid (Compound 1) levels in rat liver.
  • the various aspects and embodiments of the invention are directed to the utility of novel cationic lipids useful in lipid nanoparticles to deliver oligonucleotides, in particular, siRNA and miRNA, to any target gene.
  • novel cationic lipids useful in lipid nanoparticles to deliver oligonucleotides, in particular, siRNA and miRNA, to any target gene.
  • Rational design of cationic lipids for siRNA delivery Nature Biotechnology, published online 17 January 2010; doi:10.1038/nbt.l602.
  • the cationic lipids of the instant invention are useful components in a lipid nanoparticle for the delivery of oligonucleotides, specifically siRNA and miRNA.
  • R 1 and R 2 are independently selected from H, (C 1 -C 6 )alkyl, heterocyclyl, and polyamine, wherein said alkyl, heterocyclyl and polyamine are optionally substituted with one to three substituents selected from R', or R 1 and R 2 can be taken together with the nitrogen to which they are attached to form a monocyclic heterocycle with 4-7 members optionally containing, in addition to the nitrogen, one or two additional heteroatoms selected from N, O and S, said monocyclic heterocycle is optionally substituted with one to three substituents selected from R';
  • R 3 is selected from H and (C 1 -C 6 )alkyl, said alkyl optionally substituted with one to three substituents selected from R';
  • R' is independently selected from halogen, R", OR", SR", CN, CO 2 R" and
  • R" is independently selected from H and (C 1 -C 6 )alkyl, wherein said alkyl is optionally substituted with halogen and OH;
  • n 0, 1, 2, 3, 4 or 5;
  • Ll and L 2 are independently selected from C 3 -C 24 alkyl and C 3 -C 24 alkenyl, said alkyl and alkenyl are optionally substituted with one or more substituents selected from R';
  • the invention features a compound having Formula A, wherein:
  • R 1 and R 2 are each methyl
  • R 3 is H
  • n 0;
  • L 1 is selected from C 3 -C 24 alkyl and C 3 -C 24 alkenyl
  • L 2 is selected from C 3 -C 9 alkyl and C 3 -C 9 alkenyl
  • the invention features a compound having Formula A, wherein:
  • R 1 and R 2 are each methyl
  • R 3 is H
  • n O
  • L 1 is selected from C 3 -C 9 alkyl and C 3 -C 9 alkenyl
  • L 2 is selected from C 3 -C 24 alkyl and C 3 -C 24 alkenyl
  • the invention features a compound having Formula A, wherein:
  • R 1 and R 2 are each methyl
  • R 3 is H
  • n 1;
  • L 1 is selected from C 3 -C 24 alkyl and C 3 -C 24 alkenyl
  • L 2 is selected from C 3 -C 9 alkyl and C 3 -C 9 alkenyl
  • the invention features a compound having Formula A, wherein:
  • R 1 and R 2 are each methyl
  • R 3 is H
  • n 2;
  • L 1 is selected from C 3 -C 24 alkyl and C 3 -C 24 alkenyl
  • L 2 is selected from C 3 -C 9 alkyl and C 3 -C 9 alkenyl
  • cationic lipids are:
  • the cationic lipids disclosed are useful in the preparation of lipid nanoparticles.
  • the cationic lipids disclosed are useful components in a lipid nanoparticle for the delivery of oligonucleotides.
  • the cationic lipids disclosed are useful components in a lipid nanoparticle for the delivery of siRNA and miRNA.
  • the cationic lipids disclosed are useful components in a lipid nanoparticle for the delivery of siRNA.
  • the cationic lipids of the present invention may have asymmetric centers, chiral axes, and chiral planes (as described in: E.L. Eliel and S.H. Wilen, Stereochemistry of Carbon Compounds, John Wiley & Sons, New York, 1994, pages 1119- 1190), and occur as racemates, racemic mixtures, and as individual diastereomers, with all possible isomers and mixtures thereof, including optical isomers, being included in the present invention.
  • the cationic lipids disclosed herein may exist as tautomers and both tautomeric forms are intended to be encompassed by the scope of the invention, even though only one tautomeric structure is depicted.
  • substituents and substitution patterns on the cationic lipids of the instant invention can be selected by one of ordinary skill in the art to provide cationic lipids that are chemically stable and that can be readily synthesized by techniques known in the art, as well as those methods set forth below, from readily available starting materials. If a substituent is itself substituted with more than one group, it is understood that these multiple groups may be on the same carbon or on different carbons, so long as a stable structure results.
  • Si atoms can be incorporated into the cationic lipids of the instant invention by one of ordinary skill in the art to provide cationic lipids that are chemically stable and that can be readily synthesized by techniques known in the art from readily available starting materials.
  • the atoms may exhibit their natural isotopic abundances, or one or more of the atoms may be artificially enriched in a particular isotope having the same atomic number, but an atomic mass or mass number different from the atomic mass or mass number predominantly found in nature.
  • the present invention is meant to include all suitable isotopic variations of the compounds of Formula A.
  • different isotopic forms of hydrogen (H) include protium ( 1 H) and deuterium ( 2 H).
  • Protium is the predominant hydrogen isotope found in nature. Enriching for deuterium may afford certain therapeutic advantages, such as increasing in vivo half-life or reducing dosage requirements, or may provide a compound useful as a standard for characterization of biological samples.
  • Isotopically-enriched compounds within Formula A can be prepared without undue
  • alkyl means a straight chain, cyclic or branched saturated aliphatic hydrocarbon having the specified number of carbon atoms.
  • alkenyl means a straight chain, cyclic or branched unsaturated aliphatic hydrocarbon having the specified number of carbon atoms including but not limited to diene, triene and tetraene unsaturated aliphatic hydrocarbons.
  • heterocyclyl or “heterocycle” means a 4- to 10-membered aromatic or nonaromatic heterocycle containing from 1 to 4 heteroatoms selected from the group consisting of 0, N and S, and includes bicyclic groups.
  • Heterocyclyl therefore includes, the following: benzoimidazolyl, benzofuranyl, benzofurazanyl, benzopyrazolyl, benzotriazolyl, benzothiophenyl, benzoxazolyl, carbazolyl, carbolinyl, cinnolinyl, furanyl, imidazolyl, indolinyl, indolyl, indolazinyl, indazolyl, isobenzofuranyl, isoindolyl, isoquinolyl, isothiazolyl, isoxazolyl, naphlhpyridinyl, oxadiazolyl, oxazolyl, oxazoline, isoxazoline, oxetanyl, pyranyl, pyrazinyl, pyrazolyl, pyridazinyl, pyridopyridinyl, pyridazinyl, pyridyl, pyr
  • polyamine means compounds having two or more amino groups. Examples include putrescine, cadaverine, spermidine, and spermine.
  • halogen means Br, CI, F and I.
  • R 1 and R 2 are independently selected from H and (C 1 -C 6 )alkyl, wherein said alkyl is optionally substituted with one to three substituents selected from R', or R 1 and R 2 can be taken together with the nitrogen to which they are attached to form a monocyclic heterocycle with 4-7 members optionally containing, in addition to the nitrogen, one or two additional heteroatoms selected from N, O and S, said monocyclic heterocycle is optionally substituted with one to three substituents selected from R * .
  • R 1 and R 2 are independently selected from H, methyl, ethyl and propyl, wherein said methyl, ethyl and propyl are optionally substituted with one to three substituents selected from R 1 , or R 1 and R 2 can be taken together with the nitrogen to which they are attached to form a monocyclic heterocycle with 4-7 members optionally containing, in addition to the nitrogen, one or two additional heteroatoms selected from N, O and S, said monocyclic heterocycle is optionally substituted with one to three substituents selected from R'.
  • R 1 and R 2 are independently selected from H, methyl, ethyl and propyl.
  • R 1 and R 2 are each methyl.
  • R 3 is selected from H and methyl.
  • R 3 is H.
  • R' is R".
  • R" is independently selected from H, methyl, ethyl and propyl, wherein said methyl, ethyl and propyl are optionally substituted with one or more halogen and OH.
  • R" is independently selected from H, methyl, ethyl and propyl.
  • n 0, 1 or 2.
  • n is 0 or 1.
  • n 0.
  • L 1 is selected from C 3 -C 24 alkyl and C 3 -C 24 alkenyl, which are optionally substituted with halogen and OH.
  • L 1 is selected from C 3 -C 24 alkyl and C 3 -C 24 alkenyl.
  • L 1 is selected from C 3 -C 24 alkenyl.
  • L 1 is selected from C12-C24 alkenyl.
  • L 1 is C 18 alkenyl.
  • L 1 is:
  • L 1 is C 8 alkyl.
  • L 2 is selected from C 3 -C 24 alkyl and C 3 -C 24 alkenyl, which are optionally substituted with halogen and OH.
  • L 2 is selected from C 3 -C 24 alkyl and C 3 -C 24 alkenyl.
  • L 2 is selected from C 3 -C 24 alkenyl.
  • L 2 is selected from C 12 -C 24 alkenyl.
  • L 2 is C19 alkenyl.
  • L 2 is:
  • L 2 is selected from C 3 -C 9 alkyl and C 3 -C 9 alkenyl, which are optionally substituted with halogen and OH.
  • L 2 is selected from C 5 -C 9 alkyl and C 5 -C 9 alkenyl, which are optionally substituted with halogen and OH.
  • L 2 is selected from C 7 -C 9 alkyl and C 7 -C 9 alkenyl, which are optionally substituted with halogen and OH.
  • L 2 is selected from C 3 -C 9 alkyl and C 3 -C 9 alkenyl. In an embodiment of Formula A, L 2 is selected from C 5 -C 9 alkyl and C 5 -C 9 alkenyl.
  • L 2 is selected from C 7 -C 9 alkyl and C 7 -C 9 alkenyl.
  • L 2 is C 3 -C 9 alkyl.
  • L 2 is C 5 -C 9 alkyl.
  • L 2 is C 7 -C 9 alkyl.
  • L 2 is C9 alkyl.
  • heterocyclyl is pyrolidine, piperidine, morpholine, imidazole or piperazine.
  • "monocyclic heterocyclyl” is pyrolidine, piperidine, morpholine, imidazole or piperazine.
  • polyamine is putrescine, cadaverine, spermidine or spermine.
  • alkyl is a straight chain saturated aliphatic hydrocarbon having the specified number of carbon atoms.
  • alkenyl is a straight chain unsaturated aliphatic
  • hydrocarbon having the specified number of carbon atoms having the specified number of carbon atoms.
  • cationic lipids of Formula A include the free form of cationic lipids of Formula A, as well as the pharmaceutically acceptable salts and stereoisomers thereof.
  • Some of the isolated specific cationic lipids exemplified herein are the protonated salts of amine cationic lipids.
  • the term "free form" refers to the amine cationic lipids in non-salt form.
  • the encompassed pharmaceutically acceptable salts not only include the isolated salts exemplified for the specific cationic lipids described herein, but also all the typical pharmaceutically acceptable salts of the free form of cationic lipids of Formula A.
  • the free form of the specific salt cationic lipids described may be isolated using techniques known in the art.
  • the free form may be regenerated by treating the salt with a suitable dilute aqueous base solution such as dilute aqueous NaOH, potassium carbonate, ammonia and sodium bicarbonate.
  • a suitable dilute aqueous base solution such as dilute aqueous NaOH, potassium carbonate, ammonia and sodium bicarbonate.
  • the free forms may differ from their respective salt forms somewhat in certain physical properties, such as solubility in polar solvents, but the acid and base salts are otherwise pharmaceutically equivalent to their respective free forms for purposes of the invention.
  • the pharmaceutically acceptable salts of the instant cationic lipids can be synthesized from the cationic lipids of this invention which contain a basic or acidic moiety by conventional chemical methods.
  • the salts of the basic cationic lipids are prepared either by ion exchange chromatography or by reacting the free base with stoichiometric amounts or with an excess of the desired salt-forming inorganic or organic acid in a suitable solvent or various combinations of solvents.
  • the salts of the acidic compounds are formed by reactions with the appropriate inorganic or organic base.
  • pharmaceutically acceptable salts of the cationic lipids of this invention include the conventional non-toxic salts of the cationic lipids of this invention as formed by reacting a basic instant cationic lipids with an inorganic or organic acid.
  • conventional non-toxic salts include those derived from inorganic acids such as hydrochloric, hydrobromic, sulfuric, sulfamic, phosphoric, nitric and the like, as well as salts prepared from organic acids such as acetic, propionic, succinic, glycolic, stearic, lactic, malic, tartaric, citric, ascorbic, pamoic, maleic, hydroxymaleic, phenylacetic, glutamic, benzoic, salicylic, sulfanilic, 2-acetoxy-benzoic, fumaric, toluenesulfonic, methanesulfonic, ethane disulfonic, oxalic, isethionic, trifluoroacetic (
  • salts derived from inorganic bases include aluminum, ammonium, calcium, copper, ferric, ferrous, lithium, magnesium, manganic salts, manganous, potassium, sodium, zinc and the like. Particularly preferred are the ammonium, calcium, magnesium, potassium and sodium salts. Salts derived from
  • organic non-toxic bases include salts of primary, secondary and tertiary amines, substituted amines including naturally occurring substituted amines, cyclic amines and basic ion exchange resins, such as arginine, betaine caffeine, choline, ⁇ , ⁇ 1 - dibenzylethylenediamine, diethylamin, 2-diethylaminoethanol, 2-dimethylaminoethanol, ethanolamine, ethylenediamine, N-ethylmorpholine, N-ethylpiperidine, glucamine,
  • glucosamine histidine, hydrabamine, isopropylamine, lysine, methylglucamine, morpholine, piperazine, piperidine, polyamine resins, procaine, purines, theobromine, triethylamine, trimethylamine tripropylamine, tromethamine and the like.
  • the cationic lipids of the present invention are potentially internal salts or zwitterions, since under physiological conditions a deprotonated acidic moiety in the compound, such as a carboxyl group, may be anionic, and this electronic charge might then be balanced off internally against the cationic charge of a protonated or alkylated basic moiety, such as a quaternary nitrogen atom.
  • Triphenyl phosphine (14.4g, 55mmol) was dissolved in THF and cooled to 0°C under nitrogen.
  • Di-tertbutyl azodicarboxylate (13.7g, 59.5mmol) was added slowly and the reation was stirred for 30 mins. Then the alcohol (20g, 45.8mmol) was added dropwise and allowed to stir for 10 mins, then diphenyl phosphorylazide (15. lg, 55mmol) was added and allowed to stir overnight, warming to ambient temperature.
  • reaction was evaporated to dryness in vacuo and directly loaded onto a silica gel column and eluted with 0-10% ethyl acetate/hexane gradient to provide (2S)-2-azidoundecyl (9Z,12Z)-octadeca-9,12-dien-1-yl ether which was carried directly into the next reaction without characterization.
  • Triphenyl phosphine (4.54g, 17.3mmol) and the azide (8g, 17.3mmol) were dissolved in THF.
  • the reaction mixture was split into 3 ⁇ w tubes and irradiated at 120°c for 1 hour each. Considerable pressure built in each tube so care should be noted. LC indicated
  • the primary amine (3.5g, 8mmol) was dissolved in THF and formaldehyde
  • Compound 20 is DLinKC2DMA as described in Nature Biotechnology, 2010, 28, 172-176, WO 2010/042877 Al, WO 2010/048536 A2, WO 2010/088537 A2, and
  • Compound 21 is MC3 as described in WO 2010/054401, and WO 2010/144740
  • lipid nanoparticle compositions of the instant invention are useful for the delivery of oligonucleotides, specifically siRNA and miRNA:
  • the Lipid Nano-Particles are prepared by an impinging jet process.
  • the particles are formed by mixing lipids dissolved in alcohol with siRNA dissolved in a citrate buffer.
  • the mixing ratio of lipids to siRNA are targeted at 45-55% lipid and 65-45% siRNA.
  • the lipid solution contains a novel cationic lipid of the instant invention, a helper lipid
  • the ratio of the lipids has a mole percent range of 25-98 for the cationic lipid with a target of 35-65, the helper lipid has a mole percent range from 0-75 with a target of 30-50, the PEG lipid has a mole percent range from 1-15 with a target of 1-6, and the DSPC has a mole precent range of 0-15 with a target of 0-12.
  • the siRNA solution contains one or more siRNA sequences at a concentration range from 0.3 to 1 .0 mg/mL with a target of 0.3 -0.9 mg/mL in a sodium citrate buffered salt solution with pH in the range of 3.5-5.
  • the two liquids are heated to a temperature in the range of 15-40°C, targeting 30-40°C, and then mixed in an impinging jet mixer instantly forming the LNP.
  • the teelD has a range from 0.25 to 1.0 mm and a total flow rate from 10 -600 mL/min.
  • the combination of flow rate and tubing ID has effect of controlling the particle size of the LNPs between 30 and 200 nm.
  • the solution is then mixed with a buffered solution at a higher pH with a mixing ratio in the range of 1 :1 to 1 :3 vol: vol but targeting 1 :2 vol: vol.
  • This buffered solution is at a temperature in the range of 15-40°C, targeting 30-40°C.
  • the mixed LNPs are held from 30 minutes to 2 hrs prior to an anion exchange filtration step.
  • the temperature during incubating is in the range of 15-40°C, targeting 30-40°C.
  • After incubating the solution is filtered through a 0.8 urn filter containing an anion exchange separation step. This process uses tubing IDs ranging from 1 mm ID to 5 mm ID and a flow rate from 10 to 2000 mL/min.
  • the LNPs are concentrated and diafiltered via an ultrafiltration process where the alcohol is removed and the citrate buffer is exchanged for the final buffer solution such as phosphate buffered saline.
  • the ultrafiltration process uses a tangential flow filtration format (TFF). This process uses a membrane nominal molecular weight cutoff range from 30 -500 KD.
  • the membrane format can be hollow fiber or flat sheet cassette.
  • the TFF processes with the proper molecular weight cutoff retains the LNP in the retentate and the filtrate or permeate contains the alcohol; citrate buffer; final buffer wastes.
  • the TFF process is a multiple step process with an initial concentration to a siRNA concentration of 1 -3 mg/mL.
  • the LNPs solution is diafiltered against the final buffer for 10 -20 volumes to remove the alcohol and perform buffer exchange. The material is then concentrated an additional 1-3 fold. The final steps of the LNP process are to sterile filter the concentrated LNP solution and vial the product.
  • siRNA duplex concentrations are determined by Strong Anion-Exchange High-Performance Liquid Chromatography (SAX-HPLC) using Waters 2695 Alliance system (Water Corporation, Milford MA) with a 2996 PDA detector.
  • the LNPs otherwise referred to as RNAi Delivery Vehicles (RDVs)
  • RDVs RNAi Delivery Vehicles
  • SAX separation using a Dionex BioLC DNAPac PA 200 (4 x 250 mm) column with UV detection at 254 nm.
  • Mobile phase is composed of A: 25 mM NaC1O 4 , 10 mM Tris, 20% EtOH, pH 7.0 and B: 250 mM NaC1O 4 , 10 mM Tris, 20% EtOH, pH 7.0 with liner gradient from 0-15 min and flow rate of 1 ml/min.
  • the siRNA amount is determined by comparing to the siRNA standard curve.
  • Fluorescence reagent S YBR Gold is employed for RNA quantitation to monitor the encapsulation rate of RDVs.
  • RDVs with or without Triton X-100 are used to determine the free siRNA and total siRNA amount.
  • the assay is performed using a SpectraMax M5e microplate spectrophotometer from Molecular Devices (Sunnyvale, CA). Samples are excited at 485 nm and fluorescence emission was measured at 530 nm. The siRNA amount is determined by comparing to the siRNA standard curve.
  • Encapsulation rate (1- free siRNA total siRNA) *100%
  • RDVs containing 1 ⁇ g siRNA are diluted to a final volume of 3 ml with 1 *
  • the particle size and polydispersity of the samples is measured by a dynamic light scattering method using ZetaPALS instrument (Brookhaven Instruments Corporation,
  • the scattered intensity is measured with He-Ne laser at 25°C with a scattering angle of 90°.
  • RDVs containing 1 ⁇ g siRNA are diluted to a final volume of 2 ml with 1 mM Tris buffer (pH 7.4). Electrophoretic mobility of samples is determined using ZetaPALS instrument (Brookhaven Instruments Corporation, Holtsville, NY) with electrode and He-Ne laser as a light source. The Smoluchowski limit is assumed in the calculation of zeta potentials. 5) Lipid analysis
  • lipid concentrations are determined by Reverse Phase High- Performance Liquid Chromatography (RP-HPLC) using Waters 2695 Alliance system (Water Corporation, Milford MA) with a Corona charged aerosol detector (CAD) (ESA Biosciences, Inc, Chelmsford, MA). Individual lipids in RDVs are analyzed using an Agilent Zorbax SB- C18 (50 x 4.6 mm, 1.8 urn particle size) column with CAD at 60°C. The mobile phase is composed of A: 0.1% TFA in H 2 0 and B: 0.1% TFA in IPA.
  • the gradient changes from 60% mobile phase A and 40% mobile phase B from time 0 to 40% mobile phase A and 60% mobile phase B at 1.00 min; 40% mobile phase A and 60% mobile phase B from 1.00 to 5.00 min; 40% mobile phase A and 60% mobile phase B from 5.00 min to 25% mobile phase A and 75% mobile phase B at 10.00 min; 25% mobile phase A and 75% mobile phase B from 10.00 min to 5% mobile phase A and 95% mobile phase B at 15.00 min; and 5% mobile phase A and 95% mobile phase B from 15.00 to 60% mobile phase A and 40% mobile phase B at 20.00 min with flow rate of 1 ml/min.
  • the individual lipid concentration is determined by comparing to the standard curve with all the lipid components in the RDVs with a quadratic curve fit. The molar percentage of each lipid is calculated based on its molecular weight.
  • the siRNA targets the mRNA transcript for the firefly (Photinus pyralis) luciferase gene (Accession # Ml 5077).
  • the primary sequence and chemical modification pattern of the luciferase siRNA is displayed above.
  • the in vivo luciferase model employs a transgenic mouse in which the firefly luciferase coding sequence is present in all cells.
  • ROSA26- LoxP-Stop-LoxP-Luc (LSL-Luc) transgenic mice licensed from the Dana Farber Cancer Institute are induced to express the Luciferase gene by first removing the LSL sequence with a recombinant Ad-Cre virus (Vector Biolabs). Due to the organo-tropic nature of the virus, expression is limited to the liver when delivered via tail vein injection. Luciferase expression levels in liver are quantitated by measuring light output, using an IVIS imager (Xenogen) following administration of the luciferin substrate (Caliper Life Sciences). Pre-dose luminescence levels are measured prior to administration of the RDVs.
  • Luciferin in PBS 15mg mL is intraperitoneally (IP) injected in a volume of 150 uL. After a four minute incubation period mice are anesthetized with isoflurane and placed in the IVIS imager.
  • the RDVs (containing siRNA) in PBS vehicle were tail vein injected n a volume of
  • OCD octyl-CLinDMA
  • the siRNA targets the mRNA transcript for the ApoB gene (Accession # NM 019287).
  • the primary sequence and chemical modification pattern of the ApoB siRNA is displayed above.
  • RDVs containing siRNA
  • PBS vehicle PBS vehicle
  • Infusion rate is approximately 3 ml/min.
  • Five rats were used in each dosing group.
  • rats are placed in cages with normal diet and water present.
  • Food is removed from the cages.
  • Animal necropsy is performed 24 hours after LNP dosing.
  • Rats are anesthetized under isoflurane for S minutes, then maintained under anesthesia by placing them in nose cones continuing the delivery of isoflurane until ex-sanguination is completed. Blood is collected from the vena cava using a 23 gauge butterfly venipuncture set and aliquoted to serum separator vacutainers for serum chemistry analysis.
  • RNALater (Ambion) for mRNA analysis.
  • Preserved liver tissue was homogenized and total RNA isolated using a Qiagen bead mill and the Qiagen miRNA-Easy RNA isolation kit following the manufacturer's instructions.
  • Liver ApoB mRNA levels were determined by quantitative RT-PCR. Message was amplified from purified RNA utilizing a rat ApoB commercial probe set (Applied Biosystems Cat #
  • RNA sample was analyzed for the following RNA sequence.
  • the PCR reaction was performed on an ABI 7500 instrument with a 96- well Fast Block.
  • the ApoB mRNA level is normalized to the housekeeping PPIB (NM
  • mRNA mRNA.
  • PPIB mRNA levels were determined by RT-PCR using a commercial probe set (Applied Biosytems Cat. No. Mm00478295_ml). Results are expressed as a ratio of ApoB mRNA/ PPIB mRNA. All mRNA data is expressed relative to the PBS control dose. Serum ALT and AST analysis were performed on the Siemens Advia 1800 Clinical Chemistry Analyzer utilizing the Siemens alanine aminotransferase (Cat# 03039631) and aspartate aminotransferase (Cat# 03039631) reagents.
  • Liver tissue was weighed into 20-ml vials and homogenized in 9 v/w of water using a GenoGrinder 2000 (OPS Diagnostics, 1600 strokes/min, 5min). A 50 uL aliquot of each tissue homogenate was mixed with 300 ⁇ , of extraction/protein precipitating solvent (50/50 acetonitrile/methanol containing 500 nM internal standard) and the plate was centrifuged to sediment precipitated protein. A volume of 200 ⁇ L of each supernatant was then transferred to separate wells of a 96-well plate and 10 ⁇ samples were directly analyzed by LC/MS-MS.
  • OPS Diagnostics 1600 strokes/min, 5min.
  • a 50 uL aliquot of each tissue homogenate was mixed with 300 ⁇ , of extraction/protein precipitating solvent (50/50 acetonitrile/methanol containing 500 nM internal standard) and the plate was centrifuged to sediment precipitated protein. A volume of 200 ⁇ L of each supernatant was then
  • Absolute quantification versus standards prepared and extracted from liver homogenate was performed using an Aria LX-2 HPLC system (Thermo Scientific) coupled to an API 4000 triple quadrupole mass spectrometer (Applied Biosystems). For each run, a total of 10 ⁇ L sample was injected onto a BDS Hypersil C8 HPLC column (Thermo, 50 x 2mm, 3 ⁇ ) at ambient temperature.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Molecular Biology (AREA)
  • Epidemiology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicinal Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Nanotechnology (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicinal Preparation (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

The instant invention provides for novel cationic lipids that can be used in combination with other lipid components such as cholesterol and PEG-lipids to form lipid nanoparticles with oligonucleotides. It is an object of the instant invention to provide a cationic lipid scaffold that demonstrates enhanced efficacy along with lower liver toxicity as a result of lower lipid levels in the liver. The present invention employs low molecular weight cationic lipids with one short lipid chain to enhance the efficiency and tolerability of in vivo delivery of siRNA.

Description

TITLE OF THE INVENTION
LOW MOLECULAR WEIGHT CATIONIC LIPIDS FOR OLIGONUCLEOTIDE DELIVERY
BACKGROUND OF THE INVENTION
The present invention relates to novel cationic lipids that can be used in combination with other lipid components such as cholesterol and PEG-lipids to form lipid nanoparticles with oligonucleotides, to facilitate the cellular uptake and endosomal escape, and to knockdown target mRNA both in vitro and in vivo.
Cationic lipids and the use of cationic lipids in lipid nanoparticles for the delivery of oligonucleotides, in particular siRNA and miRNA, have been previously disclosed. Lipid nanoparticles and use of lipid nanoparticles for the delivery of oligonucleotides, in particular siRNA and miRNA, has been previously disclosed. Oligonucleotides (including siRNA and miRNA) and the synthesis of oligonucleotides has been previously disclosed. (See US patent applications: US 2006/0083780, US 2006/0240554, US 2008/0020058, US
2009/0263407 and US 2009/0285881 and PCT patent applications: WO 2009/086558, WO2009/127060, WO2009/132131, WO2010/042877, WO2010/054384, WO2010/054401, WO2010/054405 and WO2010/054406). See also Semple S. C. et al., Rational design of cationic lipids for siRNA delivery, Nature Biotechnology, published online 17 January 2010; doi:10.1038/nbt.l602.
Other cationic lipids are disclosed in US patent applications: US 2009/0263407, US 2009/0285881, US 2010/0055168, US 2010/0055169, US 2010/0063135, US
2010/0076055, US 2010/0099738 and US 2010/0104629.
Traditional cationic lipids such as CLinDMA and DLinDMA have been employed for siRNA delivery to liver but suffer from non-optimal delivery efficiency along with liver toxicity at higher doses. It is an object of the instant invention to provide a cationic lipid scaffold that demonstrates enhanced efficacy along with lower liver toxicity as a result of lower lipid levels in the liver. The present invention employs low molecular weight cationic lipids with one short lipid chain to enhance the efficiency and tolerability of in vivo delivery of siRNA.
SUMMARY OF THE INVENTION
The instant invention provides for novel cationic lipids that can be used in combination with other lipid components such as cholesterol and PEG-lipids to form lipid nanoparticles with oligonucleotides. It is an object of the instant invention to provide a cationic lipid scaffold that demonstrates enhanced efficacy along with lower liver toxicity as a result of lower lipid levels in the liver. The present invention employs low molecular weight cationic lipids with one short lipid chain to enhance the efficiency and tolerability of in vivo delivery of siRNA.
BRIEF DESCRIPTION OF THE FIGURES FIGURE 1 : LNP (Compound 1) efficacy in mice.
FIGURE 2. LNP (Compound 1) efficacy in rat (ApoB siRNA).
FIGURE 3. Cationic lipid (Compound 1) levels in rat liver.
DETAILED DESCRIPTION OF THE INVENTION
The various aspects and embodiments of the invention are directed to the utility of novel cationic lipids useful in lipid nanoparticles to deliver oligonucleotides, in particular, siRNA and miRNA, to any target gene. (See US patent applications: US 2006/0083780, US 2006/0240554, US 2008/0020058, US 2009/0263407 and US 2009/0285881 and PCT patent applications: WO 2009/086558, WO2009/127060, WO2009/132131, WO2010/042877, WO2010/054384, WO2010/054401, WO2010/054405 and WO2010/054406). See also Semple S. C. et al., Rational design of cationic lipids for siRNA delivery, Nature Biotechnology, published online 17 January 2010; doi:10.1038/nbt.l602.
The cationic lipids of the instant invention are useful components in a lipid nanoparticle for the delivery of oligonucleotides, specifically siRNA and miRNA.
In a first embodiment of this invention, the cationic lipids are illustrated by the
Formula A:
Figure imgf000004_0001
wherein:
R1 and R2 are independently selected from H, (C1-C6)alkyl, heterocyclyl, and polyamine, wherein said alkyl, heterocyclyl and polyamine are optionally substituted with one to three substituents selected from R', or R1 and R2 can be taken together with the nitrogen to which they are attached to form a monocyclic heterocycle with 4-7 members optionally containing, in addition to the nitrogen, one or two additional heteroatoms selected from N, O and S, said monocyclic heterocycle is optionally substituted with one to three substituents selected from R';
R3 is selected from H and (C1-C6)alkyl, said alkyl optionally substituted with one to three substituents selected from R';
R' is independently selected from halogen, R", OR", SR", CN, CO2R" and
CON(R")2; R" is independently selected from H and (C1-C6)alkyl, wherein said alkyl is optionally substituted with halogen and OH;
n is 0, 1, 2, 3, 4 or 5; and
Ll and L2 are independently selected from C3-C24 alkyl and C3-C24 alkenyl, said alkyl and alkenyl are optionally substituted with one or more substituents selected from R';
or any pharmaceutically acceptable salt or stereoisomer thereof.
In a second embodiment, the invention features a compound having Formula A, wherein:
R1 and R2 are each methyl;
R3 is H;
n is 0;
L1 is selected from C3-C24 alkyl and C3-C24 alkenyl; and
L2 is selected from C3-C9 alkyl and C3-C9 alkenyl;
or any pharmaceutically acceptable salt or stereoisomer thereof.
In a third embodiment, the invention features a compound having Formula A, wherein:
R1 and R2 are each methyl;
R3 is H;
n is O;
L1 is selected from C3-C9 alkyl and C3-C9 alkenyl; and
L2 is selected from C3-C24 alkyl and C3-C24 alkenyl;
or any pharmaceutically acceptable salt or stereoisomer thereof.
In a fourth embodiment, the invention features a compound having Formula A, wherein:
R1 and R2 are each methyl;
R3 is H;
n is 1;
L1 is selected from C3-C24 alkyl and C3-C24 alkenyl; and
L2 is selected from C3-C9 alkyl and C3-C9 alkenyl;
or any pharmaceutically acceptable salt or stereoisomer thereof.
In a fifth embodiment, the invention features a compound having Formula A, wherein:
R1 and R2 are each methyl;
R3 is H;
n is 2;
L1 is selected from C3-C24 alkyl and C3-C24 alkenyl; and
L2 is selected from C3-C9 alkyl and C3-C9 alkenyl;
or any pharmaceutically acceptable salt or stereoisomer thereof. Specific cationic lipids are:
(2S)-N,N-dimethyl- 1 - [(9Z, 12Z)-octadeca-9, 12-dien- 1 -yloxy]undecan-2-amine (Compound 1 ); (2S)- 1 - [(9Z, 12Z)-octadeca-9 , 12-dien- 1 -yloxy]undecan-2-amine (Compound 2) ;
(2S)-1 -[(9Z, 12Z)-octadeca-9, 12-dien- 1 -yloxy]dodecan-2-amine (Compound 3);
(2R)-l-[(9Z,12Z)-octadeca-9,l 2-dien- 1 -yloxy] dodecan-2-amine (Compound 4);
(2S)-1 -[(9Z, 12Z)-octadeca-9, 12-dien- 1 -yloxy]decan-2-amine (Comound 5);
(2S)- 1 -[(9Z, 12Z)~octadeca-9, 12-dien- 1 -yloxy]nonan-2-amine (Comound 6);
(2S)-N,N-dimethyl- 1 -[(9Z, 12Z)-octadeca-9, 12-dien-1-yloxy]tridecan-2-amine (Compound 7); (2S)-N,N-dimethyl-l -[(9Z,12Z)-octadeca-9, 12-dien- 1 -yloxy]nonan-2-amine (Compound 8); (2R)-N,N-dimethyl-l-[(9Z,12Z)-octadeca-9,12-dien-l-yloxy]dodecan-2-amine (Compound 9);
(2S)-N,N-dimethyl-l - [(9Z, 12Z)-octadeca-9, 12-dien- 1 -yloxy] dodecan-2-amine (Compound 10); (2S)-N,N-dimethyl-l-[(9Z,12Z)-octadeca-9,12-dien-l-yloxy]decan-2-amine (Compound 11); and
(2S , 12Z , 15Z)-N,N-dimethy 1- 1 -(octyloxy)henicosa- 12,15-dien-2-amine (Compound 12);
(2R,12Z,15Z)-l-(decyloxy)-N,N-dimethylhenicosa-12,15-dien-2-amine (Compound 13);
(2R, 12Z , 15Z)- 1 -(hexyloxy)-N,N-dimethy lhenicosa- 12,15 -dien-2 -amine (Compound 14);
(2R, 12Z, 15Z)- 1 -(hexadecy loxy)-N,N-dimethy lhenicosa- 12,15 -dien-2-amine (Compound 15);
(2R, 12Z, 15Z)-N,N-dimethyl- 1 -(undecyloxy)henicosa- 12,15-dien-2-amine (Compound 16);
N,N-dimethyl-2- { [(9Z, 12Z)-octadeca-9, 12-dien- 1 -yloxy] methyl } undecan- 1 -amine (Compound 17);
N,N-dimethyl-3 - { [(9Z, 12Z)-octadeca-9, 12-dien- 1 -yloxy] methyl } dodecan- 1 -amine (Compound 18); and
(2S)-N,N-dimethyl-l-({8-[(lR,2R)-2-{[(lS,2S)-2- pentylcyclopropyl]methyl}cyclopropyl]octyl}oxy)tridecan-2-amine (Compound 19);
or any pharmaceutically acceptable salt or stereoisomer thereof.
In another embodiment, the cationic lipids disclosed are useful in the preparation of lipid nanoparticles.
In another embodiment, the cationic lipids disclosed are useful components in a lipid nanoparticle for the delivery of oligonucleotides.
In another embodiment, the cationic lipids disclosed are useful components in a lipid nanoparticle for the delivery of siRNA and miRNA.
In another embodiment, the cationic lipids disclosed are useful components in a lipid nanoparticle for the delivery of siRNA.
The cationic lipids of the present invention may have asymmetric centers, chiral axes, and chiral planes (as described in: E.L. Eliel and S.H. Wilen, Stereochemistry of Carbon Compounds, John Wiley & Sons, New York, 1994, pages 1119- 1190), and occur as racemates, racemic mixtures, and as individual diastereomers, with all possible isomers and mixtures thereof, including optical isomers, being included in the present invention. In addition, the cationic lipids disclosed herein may exist as tautomers and both tautomeric forms are intended to be encompassed by the scope of the invention, even though only one tautomeric structure is depicted.
It is understood that substituents and substitution patterns on the cationic lipids of the instant invention can be selected by one of ordinary skill in the art to provide cationic lipids that are chemically stable and that can be readily synthesized by techniques known in the art, as well as those methods set forth below, from readily available starting materials. If a substituent is itself substituted with more than one group, it is understood that these multiple groups may be on the same carbon or on different carbons, so long as a stable structure results.
It is understood that one or more Si atoms can be incorporated into the cationic lipids of the instant invention by one of ordinary skill in the art to provide cationic lipids that are chemically stable and that can be readily synthesized by techniques known in the art from readily available starting materials.
In the compounds of Formula A, the atoms may exhibit their natural isotopic abundances, or one or more of the atoms may be artificially enriched in a particular isotope having the same atomic number, but an atomic mass or mass number different from the atomic mass or mass number predominantly found in nature. The present invention is meant to include all suitable isotopic variations of the compounds of Formula A. For example, different isotopic forms of hydrogen (H) include protium (1H) and deuterium (2H). Protium is the predominant hydrogen isotope found in nature. Enriching for deuterium may afford certain therapeutic advantages, such as increasing in vivo half-life or reducing dosage requirements, or may provide a compound useful as a standard for characterization of biological samples.
Isotopically-enriched compounds within Formula A can be prepared without undue
experimentation by conventional techniques well known to those skilled in the art or by processes analogous to those described in the Scheme and Examples herein using appropriate isotopically-enriched reagents and/or intermediates.
As used herein, "alkyl" means a straight chain, cyclic or branched saturated aliphatic hydrocarbon having the specified number of carbon atoms.
As used herein, "alkenyl" means a straight chain, cyclic or branched unsaturated aliphatic hydrocarbon having the specified number of carbon atoms including but not limited to diene, triene and tetraene unsaturated aliphatic hydrocarbons.
Examples of a cyclic "alkyl" or "alkenyl are:
Figure imgf000007_0001
As used herein, "heterocyclyl" or "heterocycle" means a 4- to 10-membered aromatic or nonaromatic heterocycle containing from 1 to 4 heteroatoms selected from the group consisting of 0, N and S, and includes bicyclic groups. "Heterocyclyl" therefore includes, the following: benzoimidazolyl, benzofuranyl, benzofurazanyl, benzopyrazolyl, benzotriazolyl, benzothiophenyl, benzoxazolyl, carbazolyl, carbolinyl, cinnolinyl, furanyl, imidazolyl, indolinyl, indolyl, indolazinyl, indazolyl, isobenzofuranyl, isoindolyl, isoquinolyl, isothiazolyl, isoxazolyl, naphlhpyridinyl, oxadiazolyl, oxazolyl, oxazoline, isoxazoline, oxetanyl, pyranyl, pyrazinyl, pyrazolyl, pyridazinyl, pyridopyridinyl, pyridazinyl, pyridyl, pyrimidyl, pyrrolyl, quinazolinyl, quinolyl, quinoxalinyl, tetrahydropyranyl, tetrazolyl, tetrazolopyridyl, thiadiazolyl, thiazolyl, thienyl, triazolyl, azetidinyl, 1,4-dioxanyl,
hexahydroazepinyl, piperazinyl, piperidinyl, pyrrolidinyl, morpholinyl, thiomorpholinyl, dihydrobenzoimidazolyl, dihydrobenzofuranyl, dihydrobenzothiophenyl, dihydrobenzoxazolyl, dihydrofuranyl, dihydroimidazolyl, dihydroindolyl, dihydroisooxazolyl, dihydroisothiazolyl, dihydrooxadiazolyl, dihydrooxazolyl, dihydropyrazinyl, dihydropyrazolyl, dihydropyridinyl, dihydropyrimidinyl, dihydropyrrolyl, dihydroquinolinyl, dihydrotetrazolyl, dihydrothiadiazolyl, dihydrothiazolyl, dihydrothienyl, dihydrotriazolyl, dihydroazetidinyl, methylenedioxybenzoyl, tetrahydrofuranyl, and tetrahydrothienyl, and N-oxides thereof all of which are optionally substituted with one to three substituents selected from R".
As used herein, "polyamine" means compounds having two or more amino groups. Examples include putrescine, cadaverine, spermidine, and spermine.
As used herein, "halogen" means Br, CI, F and I.
In an embodiment of Formula A, R1 and R2 are independently selected from H and (C1-C6)alkyl, wherein said alkyl is optionally substituted with one to three substituents selected from R', or R1 and R2 can be taken together with the nitrogen to which they are attached to form a monocyclic heterocycle with 4-7 members optionally containing, in addition to the nitrogen, one or two additional heteroatoms selected from N, O and S, said monocyclic heterocycle is optionally substituted with one to three substituents selected from R*.
In an embodiment of Formula A, R1 and R2 are independently selected from H, methyl, ethyl and propyl, wherein said methyl, ethyl and propyl are optionally substituted with one to three substituents selected from R1, or R1 and R2 can be taken together with the nitrogen to which they are attached to form a monocyclic heterocycle with 4-7 members optionally containing, in addition to the nitrogen, one or two additional heteroatoms selected from N, O and S, said monocyclic heterocycle is optionally substituted with one to three substituents selected from R'.
In an embodiment of Formula A, R1 and R2 are independently selected from H, methyl, ethyl and propyl.
In an embodiment of Formula A, R1 and R2 are each methyl.
In an embodiment of Formula A, R3 is selected from H and methyl.
In an embodiment of Formula A, R3 is H.
In an embodiment of Formula A, R' is R". In an embodiment of Formula A, R" is independently selected from H, methyl, ethyl and propyl, wherein said methyl, ethyl and propyl are optionally substituted with one or more halogen and OH.
In an embodiment of Formula A, R" is independently selected from H, methyl, ethyl and propyl.
In an embodiment of Formula A, n is 0, 1 or 2.
In an embodiment of Formula A, n is 0 or 1.
In an embodiment of Formula A, n is 0.
In an embodiment of Formula A, L1 is selected from C3-C24 alkyl and C3-C24 alkenyl, which are optionally substituted with halogen and OH.
In an embodiment of Formula A, L1 is selected from C3-C24 alkyl and C3-C24 alkenyl.
In an embodiment of Formula A, L1 is selected from C3-C24 alkenyl.
In an embodiment of Formula A, L1 is selected from C12-C24 alkenyl.
In an embodiment of Formula A, L1 is C18 alkenyl.
In an embodiment of Formula A, L1 is:
Figure imgf000009_0001
In an embodiment of Formula A, L1 is C8 alkyl.
In an embodiment of Formula A, L2 is selected from C3-C24 alkyl and C3-C24 alkenyl, which are optionally substituted with halogen and OH.
In an embodiment of Formula A, L2 is selected from C3-C24 alkyl and C3-C24 alkenyl.
In an embodiment of Formula A, L2 is selected from C3-C24 alkenyl.
In an embodiment of Formula A, L2 is selected from C12-C24 alkenyl.
In an embodiment of Formula A, L2 is C19 alkenyl.
In an embodiment of Formula A, L2 is:
Figure imgf000009_0002
In an embodiment of Formula A, L2 is selected from C3-C9 alkyl and C3-C9 alkenyl, which are optionally substituted with halogen and OH.
In an embodiment of Formula A, L2 is selected from C5-C9 alkyl and C5-C9 alkenyl, which are optionally substituted with halogen and OH.
In an embodiment of Formula A, L2 is selected from C7-C9 alkyl and C7-C9 alkenyl, which are optionally substituted with halogen and OH.
In an embodiment of Formula A, L2 is selected from C3-C9 alkyl and C3-C9 alkenyl. In an embodiment of Formula A, L2 is selected from C5-C9 alkyl and C5-C9 alkenyl.
In an embodiment of Formula A, L2 is selected from C7-C9 alkyl and C7-C9 alkenyl.
In an embodiment of Formula A, L2 is C3-C9 alkyl.
In an embodiment of Formula A, L2 is C5-C9 alkyl.
In an embodiment of Formula A, L2 is C7-C9 alkyl.
In an embodiment of Formula A, L2 is C9 alkyl.
In an embodiment of Formula A, "heterocyclyl" is pyrolidine, piperidine, morpholine, imidazole or piperazine.
In an embodiment of Formula A, "monocyclic heterocyclyl" is pyrolidine, piperidine, morpholine, imidazole or piperazine.
In an embodiment of Formula A, "polyamine" is putrescine, cadaverine, spermidine or spermine.
In an embodiment, "alkyl" is a straight chain saturated aliphatic hydrocarbon having the specified number of carbon atoms.
In an embodiment, "alkenyl" is a straight chain unsaturated aliphatic
hydrocarbon having the specified number of carbon atoms.
Included in the instant invention is the free form of cationic lipids of Formula A, as well as the pharmaceutically acceptable salts and stereoisomers thereof. Some of the isolated specific cationic lipids exemplified herein are the protonated salts of amine cationic lipids. The term "free form" refers to the amine cationic lipids in non-salt form. The encompassed pharmaceutically acceptable salts not only include the isolated salts exemplified for the specific cationic lipids described herein, but also all the typical pharmaceutically acceptable salts of the free form of cationic lipids of Formula A. The free form of the specific salt cationic lipids described may be isolated using techniques known in the art. For example, the free form may be regenerated by treating the salt with a suitable dilute aqueous base solution such as dilute aqueous NaOH, potassium carbonate, ammonia and sodium bicarbonate. The free forms may differ from their respective salt forms somewhat in certain physical properties, such as solubility in polar solvents, but the acid and base salts are otherwise pharmaceutically equivalent to their respective free forms for purposes of the invention.
The pharmaceutically acceptable salts of the instant cationic lipids can be synthesized from the cationic lipids of this invention which contain a basic or acidic moiety by conventional chemical methods. Generally, the salts of the basic cationic lipids are prepared either by ion exchange chromatography or by reacting the free base with stoichiometric amounts or with an excess of the desired salt-forming inorganic or organic acid in a suitable solvent or various combinations of solvents. Similarly, the salts of the acidic compounds are formed by reactions with the appropriate inorganic or organic base. Thus, pharmaceutically acceptable salts of the cationic lipids of this invention include the conventional non-toxic salts of the cationic lipids of this invention as formed by reacting a basic instant cationic lipids with an inorganic or organic acid. For example, conventional non-toxic salts include those derived from inorganic acids such as hydrochloric, hydrobromic, sulfuric, sulfamic, phosphoric, nitric and the like, as well as salts prepared from organic acids such as acetic, propionic, succinic, glycolic, stearic, lactic, malic, tartaric, citric, ascorbic, pamoic, maleic, hydroxymaleic, phenylacetic, glutamic, benzoic, salicylic, sulfanilic, 2-acetoxy-benzoic, fumaric, toluenesulfonic, methanesulfonic, ethane disulfonic, oxalic, isethionic, trifluoroacetic (TFA) and the like.
When the cationic lipids of the present invention are acidic, suitable
"pharmaceutically acceptable salts" refers to salts prepared form pharmaceutically acceptable non-toxic bases including inorganic bases and organic bases. Salts derived from inorganic bases include aluminum, ammonium, calcium, copper, ferric, ferrous, lithium, magnesium, manganic salts, manganous, potassium, sodium, zinc and the like. Particularly preferred are the ammonium, calcium, magnesium, potassium and sodium salts. Salts derived from
pharmaceutically acceptable organic non-toxic bases include salts of primary, secondary and tertiary amines, substituted amines including naturally occurring substituted amines, cyclic amines and basic ion exchange resins, such as arginine, betaine caffeine, choline, Ν,Ν1- dibenzylethylenediamine, diethylamin, 2-diethylaminoethanol, 2-dimethylaminoethanol, ethanolamine, ethylenediamine, N-ethylmorpholine, N-ethylpiperidine, glucamine,
glucosamine, histidine, hydrabamine, isopropylamine, lysine, methylglucamine, morpholine, piperazine, piperidine, polyamine resins, procaine, purines, theobromine, triethylamine, trimethylamine tripropylamine, tromethamine and the like.
The preparation of the pharmaceutically acceptable salts described above and other typical pharmaceutically acceptable salts is more fully described by Berg et al. ,
"Pharmaceutical Salts," J. Pharm. Set, 1977:66:1-19.
It will also be noted that the cationic lipids of the present invention are potentially internal salts or zwitterions, since under physiological conditions a deprotonated acidic moiety in the compound, such as a carboxyl group, may be anionic, and this electronic charge might then be balanced off internally against the cationic charge of a protonated or alkylated basic moiety, such as a quaternary nitrogen atom.
EXAMPLES
Examples provided are intended to assist in a further understanding of the invention. Particular materials employed, species and conditions are intended to be further illustrative of the invention and not limitative of the reasonable scope thereof. The reagents utilized in synthesizing the cationic lipids are either commercially available or are readily prepared by one of ordinary skill in the art. Synthesis of the novel cationic lipids is a linear process starting from epichlorohydrin (i) (General Scheme 1). Epoxide opening, ring closure with lipid alkoxide delivers epoxy ether intermediate ii. Grignard addition to the epoxide provides secondary alcohol intermediate iii. Mitsinobu inversion with azide followed by reduction yields primary amine intermediates v. Reductive amination provides the tertiary amine derivatives vi.
GENERAL SCHEME 1
Figure imgf000012_0001
An alternative synthesis of the novel cationic lipids starting from epichlorohydrin (i) is depicted in General Scheme 2. Epoxide opening, ring closure with lipid Grignard delivers epoxide intermediate vii. Alkoxide addition to the epoxide provides secondary alcohol intermediate iii. Mitsinobu inversion with azide followed by reduction yields primary amine intermediates v. Reductive amination provides the tertiary amine derivatives vi.
GENERAL SCHEME 2
Figure imgf000012_0002
Synthesis of the homologated cationic lipids x (General Scheme 3) begins with oxidation of intermediate iii to ketone vii using Dess-Martin Periodinane. Conversion of the ketone to the nitrile viii is accomplished with TOSMIC. Reduction of the nitrile with lithium aluminum hydride gives primary amine ix. Reductive amination provides cationic lipids x. GENERAL SCHEME 3
Figure imgf000013_0001
Synthesis of doubly homologated cationic lipids xiii begins with ketone vii. Peterson olefination generates the unsaturated amide xi. Conjugate reduction with L-Selectride gives amide xii. Amide reduction with lithium aluminum hydride gives cationic lipids xiii
GENERAL SCHEME 4
Figure imgf000013_0002
(2SVN.N-dimethyl-l -[(9Z.12ZVoctadeca-9.12-dien-1-yloxy]undecan-2-amine (Compound 1)
Figure imgf000013_0003
A 250 mL rb flask was charged with magnetic stirbar, tetrabutyl ammonium bromide (TBAB, 2.72g, 8.4mmol), linoleyl alcohol (225g, 884mmol), and sodium hydroxide (50.7g, 1.2mol), then cooled in an ice bath. The (S)-epichlorohydrin (156g, 1.69mol) was added slowly over 2 hours and then warmed to ambient temperature and stirred overnight. 259 mL of hexane was added and allowed to stir for 15 mins, then mixture was filtered and organic layer was concentrated in vacuo. The product was purified using 0-10% ethyl acetate hexane gradient on 330g silica column to give (2R)-2-{[(9Z,12Z)-octadeca-9,12-dien-1- yloxy]methyl}oxirane. 1H NMR (CDC13 , 300 mHz) 6 0.90-0.86 (m, 3 H), 1.29 (s, 16 H), 1.55- 1.64 (m, 2 H), 2.00-2.07 (m, 4 H), 2.58-2.61 (m, 1 H), 2.74-2.80 (m, 3 H), 3.12-3.15 (m, 1 H) 3.34-3.52 (m,3 H), 3.67-3.72 (dd, J= 12 Hz, 1 H) 5.30-5.35 (m, 4 H); HRMS (m+1) calc'd 323.2872, found 323.2951.
Figure imgf000014_0001
The epoxide (15g, 46.5mmol) was dissolved in THF and cooled to 0°C under stream of Nitrogen. Octyl Grignard (25.6 mL 2M solution, 51.2 mmol) was added dropwise and then heate in microwave at 120°C for one hour. The precipitate was filtered off and the solvent evaporated in vacuo. The crude oil was directly loaded onto a silica gel column and eluted with 0-10% gradient (hexane-ethyl acetate) to give (2R)-1-[(9Z,12Z)-octadeca-9,12- dien-1-yloxy]undecan-2-ol. LC/MS (m+1) - 437.6.
Figure imgf000014_0002
Triphenyl phosphine (14.4g, 55mmol) was dissolved in THF and cooled to 0°C under nitrogen. Di-tertbutyl azodicarboxylate (13.7g, 59.5mmol) was added slowly and the reation was stirred for 30 mins. Then the alcohol (20g, 45.8mmol) was added dropwise and allowed to stir for 10 mins, then diphenyl phosphorylazide (15. lg, 55mmol) was added and allowed to stir overnight, warming to ambient temperature. The reaction was evaporated to dryness in vacuo and directly loaded onto a silica gel column and eluted with 0-10% ethyl acetate/hexane gradient to provide (2S)-2-azidoundecyl (9Z,12Z)-octadeca-9,12-dien-1-yl ether which was carried directly into the next reaction without characterization.
Figure imgf000014_0003
Triphenyl phosphine (4.54g, 17.3mmol) and the azide (8g, 17.3mmol) were dissolved in THF. The reaction mixture was split into 3 μw tubes and irradiated at 120°c for 1 hour each. Considerable pressure built in each tube so care should be noted. LC indicated
100% conversion to phosphoimine intermediate. To each tube was added ~3mL of water and the reaction irradiated for 10 min at 120°C. The reaction mixtures were combined and concentrated to remove organic solvent. Hexane was added to precipitate phosphine oxides which were filtered through cintered glass funnel. The solvent was then removed in vacuo. The crude product was purified using HPLC with 30 min run and 60-100% water/acetonitrile gradient. The combined HPLC fractions were neutralized with sodium bicarbonate evaoporated in vacuo. The pure product was partitioned between water/hexanes. The organic layer was dried over sodium sulfate, filtered and evaporated in vacuo to afford (25)-1-[(9Z,12Z)-octadeca- 9,12-dien-1-yloxy]undecan-2-amine (2). 1H NMR (CDC13 , 300 mHz) δ 0.88-0.87 (m, 6 H), 1.25-1.29 (s, 32 H), 1.54-1.54 (m, 2 H), 2.03-2.05 (m, 4 H), 2.23 (s, 2 H), 2.75-2.76 (m, 2 H), 2.96 (m, 1 H), 3.13-3.18 (m, 1 H), 3.38-3.45 (m, 3 H), 5.31-5.38 (m, 4 H); LC/MS (m+1) = 436.7.
Figure imgf000015_0001
The primary amine (3.5g, 8mmol) was dissolved in THF and formaldehyde
(3.26g, 40.2mmol) was added, followed by triacetoxy borohydride (5.1g, 24.1mmol). The reaction was stirred at ambient temperature for 15 mins. LC MS indicated 100% conversion to product. Added 1M NaOH untill basic and extracted with hexane and washed with water. Retained organic layer and removed solvent in vacuo. Purified using 60-100%
water/acetonitrile 30 min gradient on C8 HPLC. Combined fractions and added sodium bicarbonate and evaporated organics in vacuo. The product was partitioned between water/hexanes and the organics were dried over sodium sulfate, filtered and evaporated in vacuo to deliver (2S)-N,N-dimethyl-1-[(9Z,12Z)-octadeca-9,12-dien-1-yloxy]undecan-2-amine (1). 1H NMR (CDC13 , 300 mHz) δ 0.88-0.87 (m, 6 H), 1.285(s, 33 H), 1.55(m, 2 H), 1.80(m, 1 H), 2.00-2.05 (s, 4 H), 2.29-2.31 ( 2 H), 2.50(m, 1 H), 2.76-1.77 (m, 2 H), 3.36- 3.51(m, 6 H), 5.34-5.36 (m, 4 H); LC/MS (m+1) = 464.9.
Compounds 3-11 are novel cationic lipids and were prepared according to General Scheme 1 above.
Compound Structure LC MS (m+1)
3 450.4
4 450.6
5 423.6
6 408.6
Figure imgf000015_0002
Figure imgf000016_0003
(2S)-N,N-dimethyl-1-[(9Z,12Z)-octadeca-9,12-dien-1-yloxy]undecan-2-amine (Compound 12)
Figure imgf000016_0001
A round bottomed flask was charged with magnetic stir bar, copper cyanide (1.45g, 16.2mmol), epichlorohydrin (lSg, 162mmol) and purged with nitrogen. THF was added, the solution cooled to -78°C and linoleyl Grignard (68.8g, 195mmol) was added slowly. After addition of Grignard the reaction was allowed to warm to ambient temperature. The reaction was quenched with saturated ammonium chloride solution and extracted with ether. The organics were dried over sodium sulfate, filtered and evaporated in vacuo. The
intermediate chloro-alcohol was purified via flash chromatography (silica, 0-35% ethyl acetate/hexanes). The alcohol was dissolved in THF and allowed to stir with solid NaOH pellets at ambient temperature for 16 hours, then filtered off NaOH and washed organic layer with water. The organics were dried over sodium sulfate, filtered and evaporated in vacuo to provide (2S)-2-[(10Z,13Z)-nonadeca-10,13-dien-1-yl]oxirane. 1H NMR (CDC13 , 300 mHz) δ 0.87-0.90 (m, 3 H), 1.27 - 1.52 (m, 22 H), 2.01 - 2.19 (m, 4 H), 2.40 - 2.46 (m, 1 H), 2.71 - 2.76 (m, 3 H), 2.89 - 2.91 (m, 1 H), 5.30 - 5.36 (m, 4 H); LC/MS (m+H+acetonitrile) = 349.5.
Figure imgf000016_0002
The alcohol (2.55g, 19.6mmol) was dissolved in DCM and cooled to 0 °C. To this solution was added tin chloride (1.63mmol, 1.63mL of a 1M solution). The epoxide (5g, 16.3mmol) was added to the reaction mixture dropwise and the reaction was aged for 1 hour at 0 °C. The reaction was evaporated in vacuo, dissolved in hexanes and purified by flash chromatography (0-20% ethyl acetate/hexanes) to give (2R, 12Z, 15Z)-1 -(octyloxy)henicosa- 12,15-dien-2-ol. LC/MS (m+H) = 437.6.
Figure imgf000017_0001
The alcohol was carried on to final Compound 12 as described for Compound 1. 1H NMR (CDC13 , 300 mHz) δ 0.85-.091 (m, 6 H), 1.272(s, 34 H), 1.46(m, 1 H), 1.57(m, 1
H), 1.65 (s, 4 H), 2.01 - 2.08 ( 3 H), 2.30 (m, 6 H), 2.52 (m, 1 H), 2.75 - 2.79 (m, 2 H), 3.29 - 3.4 (m, 2 H), 3.46 - 3.51 (dd, J= 9.76 Hz, 1 H), 5.30 - 5.39 (m, 4 H); LC/MS (m+H) = 464.7.
Compounds 13-16 are novel cationic lipids and were prepared according to General Scheme 2 above.
Figure imgf000017_0002
N,N-dimethyl-2-{[(9Z.12Z)-octadeca-9,12-dien-1-yloxy]methyl}undecan-1-amine (Compound 17)
Figure imgf000018_0003
To a solution of alcohol iii (15g, 34.3mmol) in dichloromethane (50mL) was added Dess-Martin Periodinane (14.6g, 34.3mmol) and the reaction was stirred at ambient temperature for 16 hours. The solids were filtered and the filtrate partitioned between water/DCM. The organics were dried over sodium sulfate, filtered and evaporated in vacuo. Purification by flash chromatography (silica, 0-15% ethyl acetate/hexanes) gave ketone vii. LC MS (M+H) = 435.6.
Figure imgf000018_0001
To a solution of ketone vii (lOg, 23.0mmol) in DME (40mL) was added TOSMIC (5.8g, 29.9mmol) and the solution was cooled to 0 °C. To the cooled solution was added potassium fert-butoxide (46mmol, 46mL of a 1M solution in iBuOH) dropwise. After 30 minutes the reaction was partitioned between hexanes and water. The organics were dried over sodium sulfate, filtered and evaporated in vacuo. Purification by flash chromatography (silica, 0-10% ethyl acetate/hexanes) gave nitrile viii. LC/MS (M+H) = 446.6.
Figure imgf000018_0002
To a solution of nitrile viii (4.6g, 10.4mmol) in THF (25mL) was added lithium aluminum hydride (0.8g, 20.7mmol) at ambient temperature. The reaction was quenched with sodium sulfate decahydrate solution and the solids were filtered. The filtrate was dried over sodium sulfate, filtered and evaporated in vacuo to give crude amine ix which was carried directly into next reaction. LC/MS (M+H) = 450.6.
Figure imgf000019_0001
A solution of amine ix (4.7g, 10.3mmol) and formaldehyde (2.5g, 31.1mmol) in THF (25mL) was treated with sodium triacetoxyborohydride (6.6g, 31.1mmol) at ambient temperature. After aging for 15 minutes, the reaction was quenched with 1M sodium hydroxide and partitioned between water and hexanes. The organics were dried over sodium sulfate, filtered and evaporated in vacuo. Purification by preparative reverse phase chromatography (C8 column, acetonitrile/water gradient) gave compound 17. LC/MS (M+H) = 479.6. 1H NMR (CDC13 , 400 mHz) δ 5.36 (m, 4H), 3.38 (m, 3H), 3.26 (m, 1H), 2.75 (t, J = 6.4 Hz, 2H), 2.22 (m, 1H), 2.19 (s, 6H), 2.04 (m, 5H), 1.71 (m, 1H), 1.54 (m, 2H), 1.28 (m, 32H), 0.83 (m, 6H).
N,N-dimethyl-3-{[(9Z.12Z)-octadeca-9,12-dien-1-yloxy]methyl}undecan-1-amine (Compound 18)
Figure imgf000019_0002
A solution of silyl amide (12.4g, 78mmol) in THF (50 mL) was cooled to -78 °C and treated with nBuLi (62.4mmol, 25mL of a 2.5M solution) and aged for 10 minutes. To this solution was transferred ketone vii (12g, 27.6mmol) in a small portion of dry THF. The reaction was aged 15 minutes then warmed to ambient temperature, quenched with sodium bicarbonate solution and partitioned between water and hexanes. The organics were dried over sodium sulfate, filtered and evaporated in vacuo to give amide xi. LC/MS (M+H) = 505.6.
Figure imgf000020_0001
Amide xi (7g, 13.9mmol) was treated with L-Selectride (55.6mmol, 55.6mL of a 1M solution) in a microwave vial. The reaction was sealed and irradiated in a microwave reaction set at 70 oC for 16 hours. The reaction was then diluted with dichloromethane and quenched by careful addition of sodium perborate solid until effervescence stopped. The solids were filtered and the filtrate evaporated in vacuo to give xii. LC MS (M+H) = 507.6.
Figure imgf000020_0002
To a solution of amide xii (7g, 13.8mmol) in THF (30 mL) was added lithium aluminum hydride (l.lg, 27.7mmol). The reaction was quenched with sodium sulfate decahydrate solution and the solids filtered. The organics were evaporated in vacuo and the product purified by preparative reverse phase chromatography (C8 column, acetonitrile/water gradient) to give compound 18. LC/MS (M+H) = 493.6. Ή NMR (CDC13 , 400 mHz) 6 5.38 (m, 4H), 3.38 (m, 2H), 3.26 (m, 2H), 2.78 (t, J = 6.4Hz, 2H), 2.25 (m, 8H), 2.04 (m, 4H), 1.56 (m, 4H), 1.29 (m, 32H), 0.89 (m, 6H).
(2S)- N,N-dimethyl-1-[(8-{2-[(2-pentylcyclopropyl)methyl]cyclopropyl}octyl)oxy]tridecan-2- amine (Compound 19)
Figure imgf000021_0004
A solution of diene (24g, 51.6mmol) in dichloromethane (lOOmL) was cooled to -15 °C. To this solution was added diethyl zinc (310mmol, 310mL of a 1M solution) followed by diiodomethane (25mL, 310mmol) and the reaction was aged for 16 hours while slowly warming to ambient temperature. The reaction was quenched with ammonium chloride solution and partitioned between water and dichloromethane. The organics were dried over sodium sulfate, filtered and evaporated in vacuo. Purification by flash chromatography (silica, 0-25% ethyl acetate/hexanes) gave bis-cyclopropane intermediate xiv. LC/MS (M+H) = 493.6.
Figure imgf000021_0001
Compound xiv was carried on to final compound 19 as outlined for compound 1 above.
LC/MS (M+H) = 520.8.
Compound 20 is DLinKC2DMA as described in Nature Biotechnology, 2010, 28, 172-176, WO 2010/042877 Al, WO 2010/048536 A2, WO 2010/088537 A2, and
WO 2009/127060 Al.
Figure imgf000021_0002
Compound 21 is MC3 as described in WO 2010/054401, and WO 2010/144740
Figure imgf000021_0003
LNP COMPOSITIONS
The following lipid nanoparticle compositions (LNPs) of the instant invention are useful for the delivery of oligonucleotides, specifically siRNA and miRNA:
Cationic Lipid / Cholesterol / PEG-DMG 56.6/38/5.4;
Cationic Lipid / Cholesterol / PEG-DMG 60/38/2;
Cationic Lipid/ Cholesterol / PEG-DMG 67.3/29/3.7;
Cationic Lipid / Cholesterol / PEG-DMG 49.3/47/3.7;
Cationic Lipid / Cholesterol / PEG-DMG 50.3/44.3/5.4;
Cationic Lipid / Cholesterol / PEG-C-DMA / DSPC 40/48/2/10;
Cationic Lipid / Cholesterol / PEG-DMG / DSPC 40/48/2/10; and
Cationic Lipid / Cholesterol / PEG-DMG / DSPC 58/30/2/10.
LNP process description:
The Lipid Nano-Particles (LNP) are prepared by an impinging jet process. The particles are formed by mixing lipids dissolved in alcohol with siRNA dissolved in a citrate buffer. The mixing ratio of lipids to siRNA are targeted at 45-55% lipid and 65-45% siRNA. The lipid solution contains a novel cationic lipid of the instant invention, a helper lipid
(cholesterol) , PEG (e.g. PEG-C-DMA, PEG-DMG) lipid, and DSPC at a concentration of 5-15 mg/mL with a target of 9-12 mg/mL in an alcohol (for example ethanol). The ratio of the lipids has a mole percent range of 25-98 for the cationic lipid with a target of 35-65, the helper lipid has a mole percent range from 0-75 with a target of 30-50, the PEG lipid has a mole percent range from 1-15 with a target of 1-6, and the DSPC has a mole precent range of 0-15 with a target of 0-12. The siRNA solution contains one or more siRNA sequences at a concentration range from 0.3 to 1 .0 mg/mL with a target of 0.3 -0.9 mg/mL in a sodium citrate buffered salt solution with pH in the range of 3.5-5. The two liquids are heated to a temperature in the range of 15-40°C, targeting 30-40°C, and then mixed in an impinging jet mixer instantly forming the LNP. The teelD has a range from 0.25 to 1.0 mm and a total flow rate from 10 -600 mL/min. The combination of flow rate and tubing ID has effect of controlling the particle size of the LNPs between 30 and 200 nm. The solution is then mixed with a buffered solution at a higher pH with a mixing ratio in the range of 1 :1 to 1 :3 vol: vol but targeting 1 :2 vol: vol. This buffered solution is at a temperature in the range of 15-40°C, targeting 30-40°C. The mixed LNPs are held from 30 minutes to 2 hrs prior to an anion exchange filtration step. The temperature during incubating is in the range of 15-40°C, targeting 30-40°C. After incubating the solution is filtered through a 0.8 urn filter containing an anion exchange separation step. This process uses tubing IDs ranging from 1 mm ID to 5 mm ID and a flow rate from 10 to 2000 mL/min. The LNPs are concentrated and diafiltered via an ultrafiltration process where the alcohol is removed and the citrate buffer is exchanged for the final buffer solution such as phosphate buffered saline. The ultrafiltration process uses a tangential flow filtration format (TFF). This process uses a membrane nominal molecular weight cutoff range from 30 -500 KD. The membrane format can be hollow fiber or flat sheet cassette. The TFF processes with the proper molecular weight cutoff retains the LNP in the retentate and the filtrate or permeate contains the alcohol; citrate buffer; final buffer wastes. The TFF process is a multiple step process with an initial concentration to a siRNA concentration of 1 -3 mg/mL. Following concentration, the LNPs solution is diafiltered against the final buffer for 10 -20 volumes to remove the alcohol and perform buffer exchange. The material is then concentrated an additional 1-3 fold. The final steps of the LNP process are to sterile filter the concentrated LNP solution and vial the product.
Analytical Procedure:
11 siRNA concentration
The siRNA duplex concentrations are determined by Strong Anion-Exchange High-Performance Liquid Chromatography (SAX-HPLC) using Waters 2695 Alliance system (Water Corporation, Milford MA) with a 2996 PDA detector. The LNPs, otherwise referred to as RNAi Delivery Vehicles (RDVs), are treated with 0.5% Triton X-100 to free total siRNA and analyzed by SAX separation using a Dionex BioLC DNAPac PA 200 (4 x 250 mm) column with UV detection at 254 nm. Mobile phase is composed of A: 25 mM NaC1O4, 10 mM Tris, 20% EtOH, pH 7.0 and B: 250 mM NaC1O4, 10 mM Tris, 20% EtOH, pH 7.0 with liner gradient from 0-15 min and flow rate of 1 ml/min. The siRNA amount is determined by comparing to the siRNA standard curve.
2) Encapsulation rate
Fluorescence reagent S YBR Gold is employed for RNA quantitation to monitor the encapsulation rate of RDVs. RDVs with or without Triton X-100 are used to determine the free siRNA and total siRNA amount. The assay is performed using a SpectraMax M5e microplate spectrophotometer from Molecular Devices (Sunnyvale, CA). Samples are excited at 485 nm and fluorescence emission was measured at 530 nm. The siRNA amount is determined by comparing to the siRNA standard curve.
Encapsulation rate = (1- free siRNA total siRNA) *100%
3^ Particle size and polydispersity
RDVs containing 1 μg siRNA are diluted to a final volume of 3 ml with 1 *
PBS. The particle size and polydispersity of the samples is measured by a dynamic light scattering method using ZetaPALS instrument (Brookhaven Instruments Corporation,
Holtsville, NY). The scattered intensity is measured with He-Ne laser at 25°C with a scattering angle of 90°.
4) Zeta Potential analysis
RDVs containing 1 μg siRNA are diluted to a final volume of 2 ml with 1 mM Tris buffer (pH 7.4). Electrophoretic mobility of samples is determined using ZetaPALS instrument (Brookhaven Instruments Corporation, Holtsville, NY) with electrode and He-Ne laser as a light source. The Smoluchowski limit is assumed in the calculation of zeta potentials. 5) Lipid analysis
Individual lipid concentrations are determined by Reverse Phase High- Performance Liquid Chromatography (RP-HPLC) using Waters 2695 Alliance system (Water Corporation, Milford MA) with a Corona charged aerosol detector (CAD) (ESA Biosciences, Inc, Chelmsford, MA). Individual lipids in RDVs are analyzed using an Agilent Zorbax SB- C18 (50 x 4.6 mm, 1.8 urn particle size) column with CAD at 60°C. The mobile phase is composed of A: 0.1% TFA in H20 and B: 0.1% TFA in IPA. The gradient changes from 60% mobile phase A and 40% mobile phase B from time 0 to 40% mobile phase A and 60% mobile phase B at 1.00 min; 40% mobile phase A and 60% mobile phase B from 1.00 to 5.00 min; 40% mobile phase A and 60% mobile phase B from 5.00 min to 25% mobile phase A and 75% mobile phase B at 10.00 min; 25% mobile phase A and 75% mobile phase B from 10.00 min to 5% mobile phase A and 95% mobile phase B at 15.00 min; and 5% mobile phase A and 95% mobile phase B from 15.00 to 60% mobile phase A and 40% mobile phase B at 20.00 min with flow rate of 1 ml/min. The individual lipid concentration is determined by comparing to the standard curve with all the lipid components in the RDVs with a quadratic curve fit. The molar percentage of each lipid is calculated based on its molecular weight.
Utilizing the above described LNP process, specific LNPs with the following ratios were identified:
Nominal composition:
Cationic Lipid / Cholesterol / PEG-DMG 60/38/2
Cationic Lipid / Cholesterol / PEG-DMG / DSPC 58/30/2/10
Luc siRNA
5'-iB-AUAAGGCUAUGAAGAGAUATT-iB 3' (SEQ.ID.NO.: 1)
3'-UUUAUUCCGAUACUUCUCUAU-5'(SEQ.ID.NO.:2)
AUGC - Ribose
iB - Inverted deoxy abasic
UC- 2' Fluoro
AGT - 2' Deoxy
AGU - 2' OCH3
Nominal composition
Cationic Lipid /Cholesterol/PEG-DMG 60/38/2
Cationic Lipid / Cholesterol / PEG-DMG / DSPC 40/48/2/10
Cationic Lipid / Cholesterol / PEG-DMG / DSPC 58/30/2/10
ApoB siRNA
5'-iB-CUUUAACAAUUCCUGAAAUTsT-iB-3' (SEQ ID NO.:3) 3'-UsUGAAAUUGUUAAGGACUsUsUsA-5' (SEQ ID NO.:4)
AUGC -Ribose
iB - Inverted deoxy abasic
UC- 2' Fluoro
AGT - 2' Deoxy
AGU - 2' OCH3
UsA - phophorothioate linkage
EXAMPLE 1
Mouse In Vivo Evaluation of Efficacy
LNPs utilizing Compounds 1-12, in the nominal compositions described immediately above, were evaluated for in vivo efficacy. The siRNA targets the mRNA transcript for the firefly (Photinus pyralis) luciferase gene (Accession # Ml 5077). The primary sequence and chemical modification pattern of the luciferase siRNA is displayed above. The in vivo luciferase model employs a transgenic mouse in which the firefly luciferase coding sequence is present in all cells. ROSA26- LoxP-Stop-LoxP-Luc (LSL-Luc) transgenic mice licensed from the Dana Farber Cancer Institute are induced to express the Luciferase gene by first removing the LSL sequence with a recombinant Ad-Cre virus (Vector Biolabs). Due to the organo-tropic nature of the virus, expression is limited to the liver when delivered via tail vein injection. Luciferase expression levels in liver are quantitated by measuring light output, using an IVIS imager (Xenogen) following administration of the luciferin substrate (Caliper Life Sciences). Pre-dose luminescence levels are measured prior to administration of the RDVs. Luciferin in PBS (15mg mL) is intraperitoneally (IP) injected in a volume of 150 uL. After a four minute incubation period mice are anesthetized with isoflurane and placed in the IVIS imager. The RDVs (containing siRNA) in PBS vehicle were tail vein injected n a volume of
0.2 mL. Final dose levels ranged from 0.1 to 0.5 mg/kg siRNA. PBS vehicle alone was dosed as a control. Mice were imaged 48 hours post dose using the method described above. Changes in luciferin light output directly correlate with luciferase mRNA levels and represent an indirect measure of luciferase siRNA activity. In vivo efficacy results are expressed as % inhibition of luminescence relative to pre-dose luminescence levels. Systemic administration of the luciferase siRNA RDVs decreased luciferase expression in a dose dependant manner. Greater efficacy was observed in mice dosed with Compound 1 containing RDVs than with the RDV containing the octyl-CLinDMA (OCD) cationic lipid (Figure 1). OCD is known and described in WO2010/021865.
EXAMPLE 2
Rat In Vivo Evaluation of Efficacy and Toxicity LNPs utilizing compounds in the nominal compositions described above, were evaluated for in vivo efficacy and increases in alanine amino transferase and aspartate amino transferase in Sprague-Dawley (Crl:CD(SD) female rats (Charles River Labs). The siRNA targets the mRNA transcript for the ApoB gene (Accession # NM 019287). The primary sequence and chemical modification pattern of the ApoB siRNA is displayed above. The
RDVs (containing siRNA) in PBS vehicle were tail vein injected in a volume of 1 to 1.5 mL. Infusion rate is approximately 3 ml/min. Five rats were used in each dosing group. After LNP administration, rats are placed in cages with normal diet and water present. Six hours post dose, food is removed from the cages. Animal necropsy is performed 24 hours after LNP dosing. Rats are anesthetized under isoflurane for S minutes, then maintained under anesthesia by placing them in nose cones continuing the delivery of isoflurane until ex-sanguination is completed. Blood is collected from the vena cava using a 23 gauge butterfly venipuncture set and aliquoted to serum separator vacutainers for serum chemistry analysis. Punches of the excised caudate liver lobe are taken and placed in RNALater (Ambion) for mRNA analysis. Preserved liver tissue was homogenized and total RNA isolated using a Qiagen bead mill and the Qiagen miRNA-Easy RNA isolation kit following the manufacturer's instructions. Liver ApoB mRNA levels were determined by quantitative RT-PCR. Message was amplified from purified RNA utilizing a rat ApoB commercial probe set (Applied Biosystems Cat #
RN01499054_ml). The PCR reaction was performed on an ABI 7500 instrument with a 96- well Fast Block. The ApoB mRNA level is normalized to the housekeeping PPIB (NM
011149) mRNA. PPIB mRNA levels were determined by RT-PCR using a commercial probe set (Applied Biosytems Cat. No. Mm00478295_ml). Results are expressed as a ratio of ApoB mRNA/ PPIB mRNA. All mRNA data is expressed relative to the PBS control dose. Serum ALT and AST analysis were performed on the Siemens Advia 1800 Clinical Chemistry Analyzer utilizing the Siemens alanine aminotransferase (Cat# 03039631) and aspartate aminotransferase (Cat# 03039631) reagents. Similar efficacy was observed in rats dosed with Compound 1 containing RDV than with the RDV containing the cationic lipid DLinKC2DMA (Compound 20) or MC3 (Compound 21, Figure 2). Additionally, 3 out of 4 rats treated with 3 mg/kg DLinKC2DMA (Compound 20) failed to survive 48 hours and 2 out of 4 rats treated with 3 mg kg MC3 (Compound 21) failed to survive 48 hours. 1 out of 4 rats treated with 10 mg/kg Compound 1 survived at 48 hours post dose.
EXAMPLE 3
Determination of Cationic Lipid Levels in Rat Liver
Liver tissue was weighed into 20-ml vials and homogenized in 9 v/w of water using a GenoGrinder 2000 (OPS Diagnostics, 1600 strokes/min, 5min). A 50 uL aliquot of each tissue homogenate was mixed with 300 μΐ, of extraction/protein precipitating solvent (50/50 acetonitrile/methanol containing 500 nM internal standard) and the plate was centrifuged to sediment precipitated protein. A volume of 200 \L of each supernatant was then transferred to separate wells of a 96-well plate and 10 μΐ samples were directly analyzed by LC/MS-MS.
Standards were prepared by spiking known amounts of a methanol stock solution of ompound into untreated rat liver homogenate (9 vol water/weight liver). Aliquots (50 μL) each standard/liver homogenate was mixed with 300 μL of extraction/protein precipitating solvent (50/50 acetonitrile/methanol containing 500 nM internal standard) and the plate was centrifuged to sediment precipitated protein. A volume of 200 μL of each supernatant was transferred to separate wells of a 96-well plate and 10 μl of each standard was directly analyzed by LC/MS-MS.
Absolute quantification versus standards prepared and extracted from liver homogenate was performed using an Aria LX-2 HPLC system (Thermo Scientific) coupled to an API 4000 triple quadrupole mass spectrometer (Applied Biosystems). For each run, a total of 10 μL sample was injected onto a BDS Hypersil C8 HPLC column (Thermo, 50 x 2mm, 3 μπι) at ambient temperature.
Mobile Phase A: 95% H20/5% methanol/10 mM ammonium
formate/0. l%formic acid Mobile Phase B: 40% methanol/60% n-propanol/10 mM ammonium formate/0. l%formic acid The flow rate was 0.5 mL/min and gradient elution profile was as follows: hold at 80% A for 0.25 min, linear ramp to 100% B over 1.6 min, hold at 100% B for 2.5 min, then return and hold at 80% A for 1.75 min. Total run time was 5.8 min. API 4000 source parameters were CAD: 4, CUR: 15, GS1: 65, GS2: 35, IS: 4000, TEM: 550, CXP: 15, DP: 60, EP: 10. In rats dosed with Compound 1 containing RDV liver levels were lower than with the RDV containing the cationic lipid DLinKC2DMA (Compound 20) or MC3
(Compound 21, Figure 3).

Claims

WHAT IS CLAIMED IS:
1. A cationic lipid of Formula A:
Figure imgf000028_0001
wherein:
R1 and R? are independently selected from H, (C1-C6)alkyl, heterocyclyl, and polyamine, wherein said alkyl, heterocyclyl and polyamine are optionally substituted with one to three substituents selected from R', or R1 and R2 can be taken together with the nitrogen to which they are attached to form a monocyclic heterocycle with 4-7 members optionally containing, in addition to the nitrogen, one or two additional heteroatoms selected from N, O and S, said monocyclic heterocycle is optionally substituted with one to three substituents selected from R'; R3 is selected from H and (C1-C6)alkyl, said alkyl optionally substituted with one to three substituents selected from R';
R' is independently selected from halogen, R", OR", SR", CN, C02R" and CON(R")2;
R" is independently selected from H and (C1-C6)alkyl, wherein said alkyl is optionally substituted with halogen and OH; n is 0, 1, 2, 3, 4 or 5; and
Li and L2 are independently selected from C3-C24 alkyl and C3-C24 alkenyl, said alkyl and alkenyl are optionally substituted with one or more substituents selected from R'; or any pharmaceutically acceptable salt or stereoisomer thereof.
2. A cationic lipid of Formula A according to Claim 1 ,
wherein:
R1 and R2 are each methyl; R3 is H; L1 is selected from C3-C24 alkyl and C3-C24 alkenyl; and
L2 is selected from C3-C9 alkyl and C3-C9 alkenyl; or any pharmaceutically acceptable salt or stereoisomer thereof.
3. A cationic lipid of Formula A according to Claim 1 , wherein:
R1 and R2 are each methyl; R3 is H; n is 0; L1 is selected from C3-C9 alkyl and C3-C9 alkenyl; and
L2 is selected from C3-C24 alkyl and C3-C24 alkenyl; or any pharmaceutically acceptable salt or stereoisomer thereof.
4. A cationic lipid of Formula A according to Claim 1 , wherein:
R1 and R2 are each methyl; R3 is H; n is 1; L1 is selected from C3-C24 alkyl and C3-C24 alkenyl; and
L2 is selected from C3-C9 alkyl and C3-C9 alkenyl; or any pharmaceutically acceptable salt or stereoisomer thereof.
5. A cationic lipid of Formula A according to Claim 1 ,
wherein:
R1 and R? are each methyl; R3 is H; n is 2; L1 is selected from C3-C24 alkyl and C3-C24 alkenyl; and
L2 is selected from C3-C9 alkyl and C3-C9 alkenyl; or any pharmaceutically acceptable salt or stereoisomer thereof.
6. A cationic lipid which is selected from:
(2S)-N,N-dimethyl-1-[(9Z,12Z)-octadeca-9,12-dien-1-yloxy]undecan-2-amine (Compound 1); (2S)-1-[(9Z,12Z)-octadeca-9,12-dien-1-yloxy]undecan-2-amine (Compound 2);
(2S)-1 -[(9Z, 12Z)-octadeca-9, 12-dien-1-yloxy]dodecan-2-amine (Compound 3);
(2R)-1-[(9Z,12Z)-octadeca-9,12-dien-1-yloxy]dodecan-2-amine (Compound 4);
(2S)-1-[(9Z,12Z)-octadeca-9,12-dien-1-yloxy]decan-2-amine (Comound 5);
(2S)-1-[(9Z,12Z)-octadeca-9,12-dien-1-yloxy]nonan-2-amine (Comound 6);
(2S)-N,N-dimethyl-1-[(9Z,12Z)-octadeca-9,12-dien-1-yloxy]tridecan-2-amine (Compound 7);
(2S)-N.N-dimethyl-1-[(9Z,12Z)-octadeca-9,12-dien-1-yloxy]nonan-2-amine (Compound 8);
(2R)-N,N-dimethyl-1-[(9Z,12Z)-octadeca-9,12-dien-1-yloxy]dodecan-2-amine (Compound 9);
(2S)-N,N-dimethyl- 1 -[(9Z, 12Z)-octadeca-9, 12-dien- 1 -yloxy]dodecan-2-amine (Compound 10);
(2S N,N-dimethyl-1-[(9Z,12Z)-octadeca-9,12-dien-1-yloxy]decan-2-amine (Compound 11); and
(2S, 12Z, 15Z)-N,N-dimethyl- 1 -(octyloxy)henicosa- 12, 15-dien-2-amine (Compound 12);
(2R,12Z,15Z)-1 -(decyloxy)-N,N-dimethylhenicosa-l 2, 15-dien-2-amine (Compound 13);
(2R,12Z,15Z)-1-(hexyloxy)-N,N-dimethylhenicosa-12,15-dien-2-amine (Compound 14);
(2R,12Z,15Z)-1-(hexadecyloxy)-N,N-dimethylhenicosa-12,15-dien-2-amine (Compound 15); (2R,12Z,15Z)-N,N-dimethyl-1-(undecyloxy)henicosa-12,15-dien-2-amine (Compound 16);
N,N-dimethyl-2- { [(9Z, 12Z)-octadeca-9, 12-dien- 1 -yloxy]methyl} undecan- 1 -amine (Compound 17); N,N-dimethyl-3- { [(9Z, 12Z)-octadeca-9, 12-dien- 1 -yloxy]methyl } dodecan- 1 -amine (Compound 18); and
(2S)-N,N-dimethyl-1-({8-[(lR,2R)-2-{[(lS,2S)-2- pentylcyclopropyl]methyl}cyclopropyl]octyl}oxy)tridecan-2-amine (Compound 19); or any pharmaceutically acceptable salt or stereoisomer thereof.
7. The use of a cationic lipid according to Claim 1 for the preparation of lipid nanoparticles.
8. The use of a cationic lipid according to Claim 1 as a component in a lipid nanoparticle for the delivery of oligonucleotides.
9. The use according to Claim 5 wherein the oligonucleotides are siRNA or miRNA.
10. The use according to Claim 5 wherein the oligonucleotides are siRNA.
PCT/US2011/053556 2010-09-30 2011-09-28 Low molecular weight cationic lipids for oligonucleotide delivery WO2012044638A1 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
EP11829806.6A EP2621480B1 (en) 2010-09-30 2011-09-28 Low molecular weight cationic lipids for oligonucleotide delivery
US13/876,528 US9029604B2 (en) 2010-09-30 2011-09-28 Low molecular weight cationic lipids for oligonucleotide delivery
CN2011800464797A CN103260611A (en) 2010-09-30 2011-09-28 Low molecular weight cationic lipids for oligonucleotide delivery
JP2013531742A JP2013545723A (en) 2010-09-30 2011-09-28 Low molecular weight cationic lipids for oligonucleotide delivery
AU2011307277A AU2011307277A1 (en) 2010-09-30 2011-09-28 Low molecular weight cationic lipids for oligonucleotide delivery
CA2811430A CA2811430A1 (en) 2010-09-30 2011-09-28 Low molecular weight cationic lipids for oligonucleotide delivery
KR1020137008015A KR20130114115A (en) 2010-09-30 2011-09-28 Low molecular weight cationic lipids for oligonucleotide delivery
US14/681,641 US9458087B2 (en) 2010-09-30 2015-04-08 Low molecular weight cationic lipids for oligonucleotide delivery
US15/281,823 US9725720B2 (en) 2010-09-30 2016-09-30 Low molecular weight cationic lipids for oligonucleotide delivery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US38820110P 2010-09-30 2010-09-30
US61/388,201 2010-09-30

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/876,528 A-371-Of-International US9029604B2 (en) 2010-09-30 2011-09-28 Low molecular weight cationic lipids for oligonucleotide delivery
US14/681,641 Continuation US9458087B2 (en) 2010-09-30 2015-04-08 Low molecular weight cationic lipids for oligonucleotide delivery

Publications (1)

Publication Number Publication Date
WO2012044638A1 true WO2012044638A1 (en) 2012-04-05

Family

ID=45893510

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2011/053556 WO2012044638A1 (en) 2010-09-30 2011-09-28 Low molecular weight cationic lipids for oligonucleotide delivery

Country Status (8)

Country Link
US (3) US9029604B2 (en)
EP (1) EP2621480B1 (en)
JP (1) JP2013545723A (en)
KR (1) KR20130114115A (en)
CN (1) CN103260611A (en)
AU (1) AU2011307277A1 (en)
CA (1) CA2811430A1 (en)
WO (1) WO2012044638A1 (en)

Cited By (103)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013151736A2 (en) 2012-04-02 2013-10-10 modeRNA Therapeutics In vivo production of proteins
WO2013151666A2 (en) 2012-04-02 2013-10-10 modeRNA Therapeutics Modified polynucleotides for the production of biologics and proteins associated with human disease
WO2014152211A1 (en) 2013-03-14 2014-09-25 Moderna Therapeutics, Inc. Formulation and delivery of modified nucleoside, nucleotide, and nucleic acid compositions
WO2014152540A1 (en) 2013-03-15 2014-09-25 Moderna Therapeutics, Inc. Compositions and methods of altering cholesterol levels
WO2015006747A2 (en) 2013-07-11 2015-01-15 Moderna Therapeutics, Inc. Compositions comprising synthetic polynucleotides encoding crispr related proteins and synthetic sgrnas and methods of use.
WO2015034925A1 (en) 2013-09-03 2015-03-12 Moderna Therapeutics, Inc. Circular polynucleotides
WO2015034928A1 (en) 2013-09-03 2015-03-12 Moderna Therapeutics, Inc. Chimeric polynucleotides
WO2015051214A1 (en) 2013-10-03 2015-04-09 Moderna Therapeutics, Inc. Polynucleotides encoding low density lipoprotein receptor
WO2015075557A2 (en) 2013-11-22 2015-05-28 Mina Alpha Limited C/ebp alpha compositions and methods of use
WO2015110957A2 (en) 2014-01-21 2015-07-30 De Beer Joel Hybridosomes, compositions comprising the same, processes for their production and uses thereof
WO2016014846A1 (en) 2014-07-23 2016-01-28 Moderna Therapeutics, Inc. Modified polynucleotides for the production of intrabodies
WO2016065349A2 (en) 2014-10-24 2016-04-28 University Of Maryland, Baltimore Short non-coding protein regulatory rnas (sprrnas) and methods of use
WO2017070613A1 (en) 2015-10-22 2017-04-27 Modernatx, Inc. Human cytomegalovirus vaccine
WO2017112943A1 (en) 2015-12-23 2017-06-29 Modernatx, Inc. Methods of using ox40 ligand encoding polynucleotides
WO2017120612A1 (en) 2016-01-10 2017-07-13 Modernatx, Inc. Therapeutic mrnas encoding anti ctla-4 antibodies
WO2018006052A1 (en) * 2016-06-30 2018-01-04 Protiva Biotherapeutics, Inc. Compositions and methods for delivering messenger rna
US10106490B2 (en) 2014-06-25 2018-10-23 Acuitas Therapeutics, Inc. Lipids and lipid nanoparticle formulations for delivery of nucleic acids
WO2018213731A1 (en) 2017-05-18 2018-11-22 Modernatx, Inc. Polynucleotides encoding tethered interleukin-12 (il12) polypeptides and uses thereof
WO2018232006A1 (en) 2017-06-14 2018-12-20 Modernatx, Inc. Polynucleotides encoding coagulation factor viii
EP3434667A1 (en) * 2012-04-19 2019-01-30 Sirna Therapeutics, Inc. Novel diester and triester based low molecular weight, biodegradable cationic lipids for oligonucleotide delivery
US10221127B2 (en) 2015-06-29 2019-03-05 Acuitas Therapeutics, Inc. Lipids and lipid nanoparticle formulations for delivery of nucleic acids
WO2019048632A1 (en) 2017-09-08 2019-03-14 Mina Therapeutics Limited Stabilized hnf4a sarna compositions and methods of use
WO2019048645A1 (en) 2017-09-08 2019-03-14 Mina Therapeutics Limited Stabilized cebpa sarna compositions and methods of use
WO2019197845A1 (en) 2018-04-12 2019-10-17 Mina Therapeutics Limited Sirt1-sarna compositions and methods of use
WO2019217964A1 (en) 2018-05-11 2019-11-14 Lupagen, Inc. Systems and methods for closed loop, real-time modifications of patient cells
WO2020033791A1 (en) 2018-08-09 2020-02-13 Verseau Therapeutics, Inc. Oligonucleotide compositions for targeting ccr2 and csf1r and uses thereof
WO2020061295A1 (en) 2018-09-19 2020-03-26 Modernatx, Inc. High-purity peg lipids and uses thereof
WO2020061284A1 (en) 2018-09-19 2020-03-26 Modernatx, Inc. Peg lipids and uses thereof
WO2020128031A2 (en) 2018-12-21 2020-06-25 Curevac Ag Rna for malaria vaccines
WO2020161342A1 (en) 2019-02-08 2020-08-13 Curevac Ag Coding rna administered into the suprachoroidal space in the treatment of ophtalmic diseases
WO2020208361A1 (en) 2019-04-12 2020-10-15 Mina Therapeutics Limited Sirt1-sarna compositions and methods of use
WO2020254535A1 (en) 2019-06-18 2020-12-24 Curevac Ag Rotavirus mrna vaccine
WO2021026310A1 (en) 2019-08-06 2021-02-11 L.E.A.F. Holdings Group Llc Processes of preparing polyglutamated antifolates and uses of their compositions
WO2021028439A1 (en) 2019-08-14 2021-02-18 Curevac Ag Rna combinations and compositions with decreased immunostimulatory properties
WO2021061707A1 (en) 2019-09-23 2021-04-01 Omega Therapeutics, Inc. Compositions and methods for modulating apolipoprotein b (apob) gene expression
WO2021061815A1 (en) 2019-09-23 2021-04-01 Omega Therapeutics, Inc. COMPOSITIONS AND METHODS FOR MODULATING HEPATOCYTE NUCLEAR FACTOR 4-ALPHA (HNF4α) GENE EXPRESSION
WO2021156267A1 (en) 2020-02-04 2021-08-12 Curevac Ag Coronavirus vaccine
WO2021183720A1 (en) 2020-03-11 2021-09-16 Omega Therapeutics, Inc. Compositions and methods for modulating forkhead box p3 (foxp3) gene expression
WO2021195214A1 (en) 2020-03-24 2021-09-30 Generation Bio Co. Non-viral dna vectors and uses thereof for expressing factor ix therapeutics
WO2021195218A1 (en) 2020-03-24 2021-09-30 Generation Bio Co. Non-viral dna vectors and uses thereof for expressing gaucher therapeutics
US20210323914A1 (en) * 2017-12-20 2021-10-21 Arcturus Therapeutics, Inc. Ionizable cationic lipid for rna delivery
WO2021239880A1 (en) 2020-05-29 2021-12-02 Curevac Ag Nucleic acid based combination vaccines
WO2022023284A1 (en) 2020-07-27 2022-02-03 Anjarium Biosciences Ag Compositions of dna molecules, methods of making therefor, and methods of use thereof
WO2022023559A1 (en) 2020-07-31 2022-02-03 Curevac Ag Nucleic acid encoded antibody mixtures
WO2022032154A2 (en) 2020-08-06 2022-02-10 Modernatx, Inc. Compositions for the delivery of payload molecules to airway epithelium
WO2022043551A2 (en) 2020-08-31 2022-03-03 Curevac Ag Multivalent nucleic acid based coronavirus vaccines
WO2022122872A1 (en) 2020-12-09 2022-06-16 Ucl Business Ltd Therapeutics for the treatment of neurodegenerative disorders
WO2022137133A1 (en) 2020-12-22 2022-06-30 Curevac Ag Rna vaccine against sars-cov-2 variants
WO2022135993A2 (en) 2020-12-22 2022-06-30 Curevac Ag Pharmaceutical composition comprising lipid-based carriers encapsulating rna for multidose administration
WO2022162027A2 (en) 2021-01-27 2022-08-04 Curevac Ag Method of reducing the immunostimulatory properties of in vitro transcribed rna
US11453639B2 (en) 2019-01-11 2022-09-27 Acuitas Therapeutics, Inc. Lipids for lipid nanoparticle delivery of active agents
WO2022200810A1 (en) 2021-03-26 2022-09-29 Mina Therapeutics Limited Tmem173 sarna compositions and methods of use
WO2022200575A1 (en) 2021-03-26 2022-09-29 Glaxosmithkline Biologicals Sa Immunogenic compositions
WO2022207862A2 (en) 2021-03-31 2022-10-06 Curevac Ag Syringes containing pharmaceutical compositions comprising rna
EP4074834A1 (en) 2012-11-26 2022-10-19 ModernaTX, Inc. Terminally modified rna
WO2022223556A1 (en) 2021-04-20 2022-10-27 Anjarium Biosciences Ag Compositions of dna molecules encoding amylo-alpha-1, 6-glucosidase, 4-alpha-glucanotransferase, methods of making thereof, and methods of use thereof
WO2022232289A1 (en) 2021-04-27 2022-11-03 Generation Bio Co. Non-viral dna vectors expressing therapeutic antibodies and uses thereof
WO2022232286A1 (en) 2021-04-27 2022-11-03 Generation Bio Co. Non-viral dna vectors expressing anti-coronavirus antibodies and uses thereof
WO2022233880A1 (en) 2021-05-03 2022-11-10 Curevac Ag Improved nucleic acid sequence for cell type specific expression
WO2022261394A1 (en) 2021-06-11 2022-12-15 LifeEDIT Therapeutics, Inc. Rna polymerase iii promoters and methods of use
WO2023283359A2 (en) 2021-07-07 2023-01-12 Omega Therapeutics, Inc. Compositions and methods for modulating secreted frizzled receptor protein 1 (sfrp1) gene expression
WO2023014974A1 (en) 2021-08-06 2023-02-09 University Of Iowa Research Foundation Double stranded mrna vaccines
US11590229B2 (en) 2011-12-07 2023-02-28 Alnylam Pharmaceuticals, Inc. Biodegradable lipids for the delivery of active agents
EP4144378A1 (en) 2011-12-16 2023-03-08 ModernaTX, Inc. Modified nucleoside, nucleotide, and nucleic acid compositions
WO2023031392A2 (en) 2021-09-03 2023-03-09 CureVac SE Novel lipid nanoparticles for delivery of nucleic acids comprising phosphatidylserine
WO2023031394A1 (en) 2021-09-03 2023-03-09 CureVac SE Novel lipid nanoparticles for delivery of nucleic acids
EP4159741A1 (en) 2014-07-16 2023-04-05 ModernaTX, Inc. Method for producing a chimeric polynucleotide encoding a polypeptide having a triazole-containing internucleotide linkage
WO2023073228A1 (en) 2021-10-29 2023-05-04 CureVac SE Improved circular rna for expressing therapeutic proteins
WO2023081526A1 (en) 2021-11-08 2023-05-11 Orna Therapeutics, Inc. Lipid nanoparticle compositions for delivering circular polynucleotides
US11648324B2 (en) 2015-10-28 2023-05-16 Acuitas Therapeutics, Inc. Lipids and lipid nanoparticle formulations for delivery of nucleic acids
WO2023086465A1 (en) 2021-11-12 2023-05-19 Modernatx, Inc. Compositions for the delivery of payload molecules to airway epithelium
WO2023099884A1 (en) 2021-12-01 2023-06-08 Mina Therapeutics Limited Pax6 sarna compositions and methods of use
WO2023104964A1 (en) 2021-12-09 2023-06-15 Ucl Business Ltd Therapeutics for the treatment of neurodegenerative disorders
WO2023135273A2 (en) 2022-01-14 2023-07-20 Anjarium Biosciences Ag Compositions of dna molecules encoding factor viii, methods of making thereof, and methods of use thereof
WO2023144330A1 (en) 2022-01-28 2023-08-03 CureVac SE Nucleic acid encoded transcription factor inhibitors
WO2023154818A1 (en) 2022-02-09 2023-08-17 Modernatx, Inc. Mucosal administration methods and formulations
WO2023161350A1 (en) 2022-02-24 2023-08-31 Io Biotech Aps Nucleotide delivery of cancer therapy
WO2023170435A1 (en) 2022-03-07 2023-09-14 Mina Therapeutics Limited Il10 sarna compositions and methods of use
WO2023177655A1 (en) 2022-03-14 2023-09-21 Generation Bio Co. Heterologous prime boost vaccine compositions and methods of use
US11820728B2 (en) 2017-04-28 2023-11-21 Acuitas Therapeutics, Inc. Carbonyl lipids and lipid nanoparticle formulations for delivery of nucleic acids
WO2023227608A1 (en) 2022-05-25 2023-11-30 Glaxosmithkline Biologicals Sa Nucleic acid based vaccine encoding an escherichia coli fimh antigenic polypeptide
WO2023239756A1 (en) 2022-06-07 2023-12-14 Generation Bio Co. Lipid nanoparticle compositions and uses thereof
WO2024033901A1 (en) 2022-08-12 2024-02-15 LifeEDIT Therapeutics, Inc. Rna-guided nucleases and active fragments and variants thereof and methods of use
WO2024040222A1 (en) 2022-08-19 2024-02-22 Generation Bio Co. Cleavable closed-ended dna (cedna) and methods of use thereof
DE202023106198U1 (en) 2022-10-28 2024-03-21 CureVac SE Nucleic acid-based vaccine
EP4342460A1 (en) 2022-09-21 2024-03-27 NovoArc GmbH Lipid nanoparticle with nucleic acid cargo
WO2024068545A1 (en) 2022-09-26 2024-04-04 Glaxosmithkline Biologicals Sa Influenza virus vaccines
US11976019B2 (en) 2020-07-16 2024-05-07 Acuitas Therapeutics, Inc. Cationic lipids for use in lipid nanoparticles
GB202404607D0 (en) 2024-03-29 2024-05-15 Glaxosmithkline Biologicals Sa RNA formulation
WO2024102677A1 (en) 2022-11-08 2024-05-16 Orna Therapeutics, Inc. Circular rna compositions
WO2024102762A1 (en) 2022-11-08 2024-05-16 Orna Therapeutics, Inc. Lipids and lipid nanoparticle compositions for delivering polynucleotides
WO2024102730A1 (en) 2022-11-08 2024-05-16 Orna Therapeutics, Inc. Lipids and nanoparticle compositions for delivering polynucleotides
WO2024119039A2 (en) 2022-12-01 2024-06-06 Generation Bio Co. Stealth lipid nanoparticles and uses thereof
WO2024119051A1 (en) 2022-12-01 2024-06-06 Generation Bio Co. Novel polyglycerol-conjugated lipids and lipid nanoparticle compositions comprising the same
WO2024119074A1 (en) 2022-12-01 2024-06-06 Generation Bio Co. Stealth lipid nanoparticle compositions for cell targeting
WO2024119103A1 (en) 2022-12-01 2024-06-06 Generation Bio Co. Lipid nanoparticles comprising nucleic acids and lipid-anchored polymers
WO2024134199A1 (en) 2022-12-22 2024-06-27 Mina Therapeutics Limited Chemically modified sarna compositions and methods of use
WO2024160936A1 (en) 2023-02-03 2024-08-08 Glaxosmithkline Biologicals Sa Rna formulation
WO2024171052A1 (en) 2023-02-14 2024-08-22 Glaxosmithkline Biologicals Sa Analytical method
WO2024184500A1 (en) 2023-03-08 2024-09-12 CureVac SE Novel lipid nanoparticle formulations for delivery of nucleic acids
WO2024205657A2 (en) 2023-03-29 2024-10-03 Orna Therapeutics, Inc. Lipids and lipid nanoparticle compositions for delivering polynucleotides
US12129223B2 (en) 2021-12-16 2024-10-29 Acuitas Therapeutics, Inc. Lipids for use in lipid nanoparticle formulations
US12133923B2 (en) 2024-01-16 2024-11-05 Recode Therapeutics, Inc. Lipid nanoparticle compositions and uses thereof

Families Citing this family (71)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2807552A1 (en) 2010-08-06 2012-02-09 Moderna Therapeutics, Inc. Engineered nucleic acids and methods of use thereof
WO2012045075A1 (en) 2010-10-01 2012-04-05 Jason Schrum Modified nucleosides, nucleotides, and nucleic acids, and uses thereof
US8710200B2 (en) 2011-03-31 2014-04-29 Moderna Therapeutics, Inc. Engineered nucleic acids encoding a modified erythropoietin and their expression
US9464124B2 (en) 2011-09-12 2016-10-11 Moderna Therapeutics, Inc. Engineered nucleic acids and methods of use thereof
PT3682905T (en) 2011-10-03 2022-04-07 Modernatx Inc Modified nucleosides, nucleotides, and nucleic acids, and uses thereof
US9572897B2 (en) 2012-04-02 2017-02-21 Modernatx, Inc. Modified polynucleotides for the production of cytoplasmic and cytoskeletal proteins
US9303079B2 (en) 2012-04-02 2016-04-05 Moderna Therapeutics, Inc. Modified polynucleotides for the production of cytoplasmic and cytoskeletal proteins
US9283287B2 (en) 2012-04-02 2016-03-15 Moderna Therapeutics, Inc. Modified polynucleotides for the production of nuclear proteins
WO2015048744A2 (en) 2013-09-30 2015-04-02 Moderna Therapeutics, Inc. Polynucleotides encoding immune modulating polypeptides
EP3981437B1 (en) 2014-04-23 2024-10-09 ModernaTX, Inc. Nucleic acid vaccines
JP6570188B2 (en) * 2014-05-20 2019-09-04 国立大学法人北海道大学 Lipid membrane structures for siRNA intracellular delivery
DK3350157T3 (en) 2015-09-17 2022-02-14 Modernatx Inc COMPOUNDS AND COMPOSITIONS FOR INTRACELLUAL DELIVERY OF THERAPEUTIC AGENTS
HRP20220652T1 (en) 2015-12-10 2022-06-24 Modernatx, Inc. Compositions and methods for delivery of therapeutic agents
EP3394030B1 (en) 2015-12-22 2021-12-22 Modernatx, Inc. Compounds and compositions for intracellular delivery of agents
WO2018089540A1 (en) 2016-11-08 2018-05-17 Modernatx, Inc. Stabilized formulations of lipid nanoparticles
EP3596041B1 (en) 2017-03-15 2022-11-02 ModernaTX, Inc. Compound and compositions for intracellular delivery of therapeutic agents
US11203569B2 (en) 2017-03-15 2021-12-21 Modernatx, Inc. Crystal forms of amino lipids
US11969506B2 (en) 2017-03-15 2024-04-30 Modernatx, Inc. Lipid nanoparticle formulation
WO2018232120A1 (en) 2017-06-14 2018-12-20 Modernatx, Inc. Compounds and compositions for intracellular delivery of agents
MA49421A (en) 2017-06-15 2020-04-22 Modernatx Inc RNA FORMULATIONS
JP7275111B2 (en) 2017-08-31 2023-05-17 モデルナティエックス インコーポレイテッド Method for producing lipid nanoparticles
EP3852728B1 (en) 2018-09-20 2024-09-18 ModernaTX, Inc. Preparation of lipid nanoparticles and methods of administration thereof
JP7506670B2 (en) * 2018-11-09 2024-06-26 アルブータス・バイオファーマー・コーポレイション Lipid nanoparticle formulations
SG11202104807YA (en) * 2018-11-09 2021-06-29 Arbutus Biopharma Corp Lipid nanoparticle formulations
JP2022542839A (en) 2019-07-19 2022-10-07 フラッグシップ パイオニアリング イノベーションズ シックス,エルエルシー Recombinase compositions and methods of use
WO2021055833A1 (en) 2019-09-19 2021-03-25 Modernatx, Inc. Branched tail lipid compounds and compositions for intracellular delivery of therapeutic agents
JP2023526422A (en) 2020-05-20 2023-06-21 フラッグシップ パイオニアリング イノベーションズ シックス,エルエルシー Coronavirus antigen compositions and their uses
US20230193311A1 (en) 2020-05-20 2023-06-22 Flagship Pioneering Innovations Vi, Llc Immunogenic compositions and uses thereof
EP4158032A2 (en) 2020-05-29 2023-04-05 Flagship Pioneering Innovations VI, LLC Trem compositions and methods relating thereto
KR20230029685A (en) 2020-05-29 2023-03-03 플래그쉽 파이어니어링 이노베이션스 브이아이, 엘엘씨 TREM compositions and methods related thereto
CN116157148A (en) 2020-09-03 2023-05-23 旗舰创业创新第六有限责任公司 Immunogenic compositions and uses thereof
EP4267732A1 (en) 2020-12-23 2023-11-01 Flagship Pioneering Innovations VI, LLC Compositions of modified trems and uses thereof
US11524023B2 (en) 2021-02-19 2022-12-13 Modernatx, Inc. Lipid nanoparticle compositions and methods of formulating the same
US20220325287A1 (en) 2021-03-31 2022-10-13 Flagship Pioneering Innovations V, Inc. Thanotransmission polypeptides and their use in treating cancer
EP4377457A1 (en) 2021-07-26 2024-06-05 Flagship Pioneering Innovations VI, LLC Trem compositions and uses thereof
AU2022337090A1 (en) 2021-09-03 2024-02-15 Glaxosmithkline Biologicals Sa Substitution of nucleotide bases in self-amplifying messenger ribonucleic acids
CN118234867A (en) 2021-09-17 2024-06-21 旗舰创业创新六公司 Compositions and methods for producing cyclic polyribonucleotides
KR20240126857A (en) 2021-10-18 2024-08-21 플래그쉽 파이어니어링 이노베이션스 브이아이, 엘엘씨 Compositions and methods for purifying polyribonucleotides
CA3238735A1 (en) 2021-11-24 2023-06-01 Jennifer A. Nelson Immunogenic compositions and their uses
IL312799A (en) 2021-11-24 2024-07-01 Flagship Pioneering Innovations Vi Llc Varicella-zoster virus immunogen compositions and their uses
IL313004A (en) 2021-11-24 2024-07-01 Flagship Pioneering Innovations Vi Llc Coronavirus immunogen compositions and their uses
CN118510896A (en) 2021-12-17 2024-08-16 旗舰创业创新六公司 Method for enriching circular RNA under denaturing conditions
KR20240117149A (en) 2021-12-22 2024-07-31 플래그쉽 파이어니어링 이노베이션스 브이아이, 엘엘씨 Compositions and methods for purifying polyribonucleotides
WO2023122789A1 (en) 2021-12-23 2023-06-29 Flagship Pioneering Innovations Vi, Llc Circular polyribonucleotides encoding antifusogenic polypeptides
WO2023183616A1 (en) 2022-03-25 2023-09-28 Senda Biosciences, Inc. Novel ionizable lipids and lipid nanoparticles and methods of using the same
WO2023196634A2 (en) 2022-04-08 2023-10-12 Flagship Pioneering Innovations Vii, Llc Vaccines and related methods
WO2023220083A1 (en) 2022-05-09 2023-11-16 Flagship Pioneering Innovations Vi, Llc Trem compositions and methods of use for treating proliferative disorders
TW202409283A (en) 2022-05-13 2024-03-01 美商旗艦先鋒創新有限責任(Vii)公司 Double stranded dna compositions and related methods
WO2023242817A2 (en) 2022-06-18 2023-12-21 Glaxosmithkline Biologicals Sa Recombinant rna molecules comprising untranslated regions or segments encoding spike protein from the omicron strain of severe acute respiratory coronavirus-2
WO2023250112A1 (en) 2022-06-22 2023-12-28 Flagship Pioneering Innovations Vi, Llc Compositions of modified trems and uses thereof
WO2024030856A2 (en) 2022-08-01 2024-02-08 Flagship Pioneering Innovations Vii, Llc Immunomodulatory proteins and related methods
WO2024035952A1 (en) 2022-08-12 2024-02-15 Remix Therapeutics Inc. Methods and compositions for modulating splicing at alternative splice sites
WO2024049979A2 (en) 2022-08-31 2024-03-07 Senda Biosciences, Inc. Novel ionizable lipids and lipid nanoparticles and methods of using the same
US20240174732A1 (en) 2022-10-05 2024-05-30 Flagship Pioneering Innovations V, Inc. Nucleic acid molecules encoding trif and additional polypeptides and their use in treating cancer
WO2024097664A1 (en) 2022-10-31 2024-05-10 Flagship Pioneering Innovations Vi, Llc Compositions and methods for purifying polyribonucleotides
WO2024102799A1 (en) 2022-11-08 2024-05-16 Flagship Pioneering Innovations Vi, Llc Compositions and methods for producing circular polyribonucleotides
WO2024129988A1 (en) 2022-12-14 2024-06-20 Flagship Pioneering Innovations Vii, Llc Compositions and methods for delivery of therapeutic agents to bone
WO2024133160A1 (en) 2022-12-19 2024-06-27 Glaxosmithkline Biologicals Sa Hepatitis b compositions
WO2024151583A2 (en) 2023-01-09 2024-07-18 Flagship Pioneering Innovations Vii, Llc Vaccines and related methods
WO2024151685A1 (en) 2023-01-09 2024-07-18 Beth Israel Deaconess Medical Center, Inc. Recombinant nucleic acid molecules and their use in wound healing
US20240269251A1 (en) 2023-01-09 2024-08-15 Flagship Pioneering Innovations V, Inc. Genetic switches and their use in treating cancer
US20240238473A1 (en) 2023-01-09 2024-07-18 Beth Israel Deaconess Medical Center, Inc. Recombinant nucleic acid molecules and their use in wound healing
US20240269263A1 (en) 2023-02-06 2024-08-15 Flagship Pioneering Innovations Vii, Llc Immunomodulatory compositions and related methods
US20240293318A1 (en) 2023-02-13 2024-09-05 Flagship Pioneering Innovations Vii, Llc Cleavable linker-containing ionizable lipids and lipid carriers for therapeutic compositions
WO2024173836A2 (en) 2023-02-17 2024-08-22 Flagship Pioneering Innovations Vii, Llc Dna compositions comprising modified cytosine
US20240285805A1 (en) 2023-02-17 2024-08-29 Flagship Pioneering Innovations Vii, Llc Dna compositions comprising modified uracil
WO2024192420A1 (en) 2023-03-15 2024-09-19 Flagship Pioneering Innovations Vi, Llc Compositions comprising polyribonucleotides and uses thereof
WO2024192422A1 (en) 2023-03-15 2024-09-19 Flagship Pioneering Innovations Vi, Llc Immunogenic compositions and uses thereof
WO2024216191A1 (en) 2023-04-12 2024-10-17 Flagship Pioneering Innovations Vi, Llc Modified trems, compositions, and related methods thereof
WO2024216128A1 (en) 2023-04-12 2024-10-17 Flagship Pioneering Innovations Vi, Llc Trems for use in correction of missense mutations
WO2024220746A2 (en) 2023-04-21 2024-10-24 Flagship Pioneering Innovations Vii, Llc Rnai agents targeting fatty acid synthase and related methods

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5614548A (en) * 1988-10-25 1997-03-25 Wake Forest University Quaternary amine containing ether or ester lipid derivatives and therapeutic compositions
US20060083780A1 (en) 2004-06-07 2006-04-20 Protiva Biotherapeutics, Inc. Cationic lipids and methods of use
US20060240554A1 (en) 2005-02-14 2006-10-26 Sirna Therapeutics, Inc. Lipid nanoparticle based compositions and methods for the delivery of biologically active molecules
US20080020058A1 (en) 2005-02-14 2008-01-24 Sirna Therapeutics, Inc. Lipid nanoparticle based compositions and methods for the delivery of biologically active molecules
WO2009086558A1 (en) 2008-01-02 2009-07-09 Tekmira Pharmaceuticals Corporation Improved compositions and methods for the delivery of nucleic acids
WO2009127060A1 (en) 2008-04-15 2009-10-22 Protiva Biotherapeutics, Inc. Novel lipid formulations for nucleic acid delivery
US20090263407A1 (en) 2008-04-16 2009-10-22 Abbott Laboratories Cationic Lipids and Uses Thereof
WO2009132131A1 (en) 2008-04-22 2009-10-29 Alnylam Pharmaceuticals, Inc. Amino lipid based improved lipid formulation
US20090285881A1 (en) 2008-04-16 2009-11-19 Abbott Laboratories Cationic lipids and uses thereof
US20100055169A1 (en) 2008-04-16 2010-03-04 Abbott Laboratories Cationic lipids and uses thereof
US20100055168A1 (en) 2008-04-16 2010-03-04 Abbott Laboratories Cationic lipids and uses thereof
US20100063135A1 (en) 2008-09-10 2010-03-11 Abbott Laboratories Polyethylene glycol lipid conjugates and uses thereof
US20100076055A1 (en) 2008-04-16 2010-03-25 Abbott Laboratories Cationic Lipids and Uses Thereof
WO2010042877A1 (en) 2008-10-09 2010-04-15 Tekmira Pharmaceuticals Corporation Improved amino lipids and methods for the delivery of nucleic acids
US20100099738A1 (en) 2008-09-10 2010-04-22 Abbott Laboratories Polyethylene glycol lipid conjugates and uses thereof
US20100104629A1 (en) 2008-04-16 2010-04-29 Abbott Laboratories Cationic lipids and uses thereof
WO2010054401A1 (en) 2008-11-10 2010-05-14 Alnylam Pharmaceuticals, Inc. Novel lipids and compositions for the delivery of therapeutics
WO2010054384A1 (en) 2008-11-10 2010-05-14 Alnylam Pharmaceuticals, Inc. Lipids and compositions for the delivery of therapeutics

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050042798A (en) * 2002-09-11 2005-05-10 닛뽕 케미파 가부시키가이샤 Amine derivative
WO2010048536A2 (en) * 2008-10-23 2010-04-29 Alnylam Pharmaceuticals, Inc. Processes for preparing lipids
MX2011004490A (en) 2008-11-04 2011-07-20 Chemocentryx Inc Modulators of cxcr7.

Patent Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5614548A (en) * 1988-10-25 1997-03-25 Wake Forest University Quaternary amine containing ether or ester lipid derivatives and therapeutic compositions
US20060083780A1 (en) 2004-06-07 2006-04-20 Protiva Biotherapeutics, Inc. Cationic lipids and methods of use
US20060240554A1 (en) 2005-02-14 2006-10-26 Sirna Therapeutics, Inc. Lipid nanoparticle based compositions and methods for the delivery of biologically active molecules
US20080020058A1 (en) 2005-02-14 2008-01-24 Sirna Therapeutics, Inc. Lipid nanoparticle based compositions and methods for the delivery of biologically active molecules
US20080188675A1 (en) * 2005-02-14 2008-08-07 Sirna Therapeutics Inc. Lipid nanoparticle based compositions and methods for the delivery of biologically active molecules
WO2009086558A1 (en) 2008-01-02 2009-07-09 Tekmira Pharmaceuticals Corporation Improved compositions and methods for the delivery of nucleic acids
WO2009127060A1 (en) 2008-04-15 2009-10-22 Protiva Biotherapeutics, Inc. Novel lipid formulations for nucleic acid delivery
US20100055169A1 (en) 2008-04-16 2010-03-04 Abbott Laboratories Cationic lipids and uses thereof
US20100104629A1 (en) 2008-04-16 2010-04-29 Abbott Laboratories Cationic lipids and uses thereof
US20090285881A1 (en) 2008-04-16 2009-11-19 Abbott Laboratories Cationic lipids and uses thereof
US20090263407A1 (en) 2008-04-16 2009-10-22 Abbott Laboratories Cationic Lipids and Uses Thereof
US20100055168A1 (en) 2008-04-16 2010-03-04 Abbott Laboratories Cationic lipids and uses thereof
US20100076055A1 (en) 2008-04-16 2010-03-25 Abbott Laboratories Cationic Lipids and Uses Thereof
WO2009132131A1 (en) 2008-04-22 2009-10-29 Alnylam Pharmaceuticals, Inc. Amino lipid based improved lipid formulation
US20100063135A1 (en) 2008-09-10 2010-03-11 Abbott Laboratories Polyethylene glycol lipid conjugates and uses thereof
US20100099738A1 (en) 2008-09-10 2010-04-22 Abbott Laboratories Polyethylene glycol lipid conjugates and uses thereof
WO2010042877A1 (en) 2008-10-09 2010-04-15 Tekmira Pharmaceuticals Corporation Improved amino lipids and methods for the delivery of nucleic acids
WO2010054401A1 (en) 2008-11-10 2010-05-14 Alnylam Pharmaceuticals, Inc. Novel lipids and compositions for the delivery of therapeutics
WO2010054406A1 (en) 2008-11-10 2010-05-14 Alnylam Pharmaceuticals, Inc. Novel lipids and compositions for the delivery of therapeutics
WO2010054384A1 (en) 2008-11-10 2010-05-14 Alnylam Pharmaceuticals, Inc. Lipids and compositions for the delivery of therapeutics
WO2010054405A1 (en) 2008-11-10 2010-05-14 Alnylam Pharmaceuticals, Inc. Novel lipids and compositions for the delivery of therapeutics

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
E.L. ELIEL; S.H. WILEN: "Stereochemistry of Carbon Compounds", 1994, JOHN WILEY & SONS, pages: 1119 - 1190
SEMPLE S. C. ET AL.: "Rational design of cationic lipids for siRNA delivery", NATURE BIOTECHNOLOGY, 17 January 2010 (2010-01-17)

Cited By (127)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11679158B2 (en) 2011-12-07 2023-06-20 Alnylam Pharmaceuticals, Inc. Biodegradable lipids for the delivery of active agents
US11633480B2 (en) 2011-12-07 2023-04-25 Alnylam Pharmaceuticals, Inc. Biodegradable lipids for the delivery of active agents
US11590229B2 (en) 2011-12-07 2023-02-28 Alnylam Pharmaceuticals, Inc. Biodegradable lipids for the delivery of active agents
US11612657B2 (en) 2011-12-07 2023-03-28 Alnylam Pharmaceuticals, Inc. Biodegradable lipids for the delivery of active agents
US11633479B2 (en) 2011-12-07 2023-04-25 Alnylam Pharmaceuticals, Inc. Biodegradable lipids for the delivery of active agents
EP4144378A1 (en) 2011-12-16 2023-03-08 ModernaTX, Inc. Modified nucleoside, nucleotide, and nucleic acid compositions
WO2013151666A2 (en) 2012-04-02 2013-10-10 modeRNA Therapeutics Modified polynucleotides for the production of biologics and proteins associated with human disease
WO2013151736A2 (en) 2012-04-02 2013-10-10 modeRNA Therapeutics In vivo production of proteins
EP3434667A1 (en) * 2012-04-19 2019-01-30 Sirna Therapeutics, Inc. Novel diester and triester based low molecular weight, biodegradable cationic lipids for oligonucleotide delivery
EP4074834A1 (en) 2012-11-26 2022-10-19 ModernaTX, Inc. Terminally modified rna
WO2014152211A1 (en) 2013-03-14 2014-09-25 Moderna Therapeutics, Inc. Formulation and delivery of modified nucleoside, nucleotide, and nucleic acid compositions
WO2014152540A1 (en) 2013-03-15 2014-09-25 Moderna Therapeutics, Inc. Compositions and methods of altering cholesterol levels
WO2015006747A2 (en) 2013-07-11 2015-01-15 Moderna Therapeutics, Inc. Compositions comprising synthetic polynucleotides encoding crispr related proteins and synthetic sgrnas and methods of use.
EP3971287A1 (en) 2013-07-11 2022-03-23 ModernaTX, Inc. Compositions comprising synthetic polynucleotides encoding crispr related proteins and synthetic sgrnas and methods of use
WO2015034928A1 (en) 2013-09-03 2015-03-12 Moderna Therapeutics, Inc. Chimeric polynucleotides
WO2015034925A1 (en) 2013-09-03 2015-03-12 Moderna Therapeutics, Inc. Circular polynucleotides
WO2015051214A1 (en) 2013-10-03 2015-04-09 Moderna Therapeutics, Inc. Polynucleotides encoding low density lipoprotein receptor
EP3594348A1 (en) 2013-11-22 2020-01-15 Mina Therapeutics Limited C/ebp alpha short activating rna compositions and methods of use
EP3985118A1 (en) 2013-11-22 2022-04-20 MiNA Therapeutics Limited C/ebp alpha short activating rna compositions and methods of use
WO2015075557A2 (en) 2013-11-22 2015-05-28 Mina Alpha Limited C/ebp alpha compositions and methods of use
US11944706B2 (en) 2014-01-21 2024-04-02 Anjarium Biosciences Ag Hybridosomes, compositions comprising the same, processes for their production and uses thereof
WO2015110957A2 (en) 2014-01-21 2015-07-30 De Beer Joel Hybridosomes, compositions comprising the same, processes for their production and uses thereof
EP3791863A1 (en) 2014-01-21 2021-03-17 Anjarium Biosciences AG Process for the production of hybridosomes
US10106490B2 (en) 2014-06-25 2018-10-23 Acuitas Therapeutics, Inc. Lipids and lipid nanoparticle formulations for delivery of nucleic acids
EP4159741A1 (en) 2014-07-16 2023-04-05 ModernaTX, Inc. Method for producing a chimeric polynucleotide encoding a polypeptide having a triazole-containing internucleotide linkage
WO2016014846A1 (en) 2014-07-23 2016-01-28 Moderna Therapeutics, Inc. Modified polynucleotides for the production of intrabodies
WO2016065349A2 (en) 2014-10-24 2016-04-28 University Of Maryland, Baltimore Short non-coding protein regulatory rnas (sprrnas) and methods of use
US10221127B2 (en) 2015-06-29 2019-03-05 Acuitas Therapeutics, Inc. Lipids and lipid nanoparticle formulations for delivery of nucleic acids
US11168051B2 (en) 2015-06-29 2021-11-09 Acuitas Therapeutics, Inc. Lipids and lipid nanoparticle formulations for delivery of nucleic acids
WO2017070613A1 (en) 2015-10-22 2017-04-27 Modernatx, Inc. Human cytomegalovirus vaccine
US11648324B2 (en) 2015-10-28 2023-05-16 Acuitas Therapeutics, Inc. Lipids and lipid nanoparticle formulations for delivery of nucleic acids
WO2017112943A1 (en) 2015-12-23 2017-06-29 Modernatx, Inc. Methods of using ox40 ligand encoding polynucleotides
EP4039699A1 (en) 2015-12-23 2022-08-10 ModernaTX, Inc. Methods of using ox40 ligand encoding polynucleotides
WO2017120612A1 (en) 2016-01-10 2017-07-13 Modernatx, Inc. Therapeutic mrnas encoding anti ctla-4 antibodies
WO2018006052A1 (en) * 2016-06-30 2018-01-04 Protiva Biotherapeutics, Inc. Compositions and methods for delivering messenger rna
CN109563511A (en) * 2016-06-30 2019-04-02 阿布特斯生物制药公司 For delivering the composition and method of mRNA
US11191849B2 (en) 2016-06-30 2021-12-07 Arbutus Biopharma Corporation Compositions and methods for delivering messenger RNA
US11820728B2 (en) 2017-04-28 2023-11-21 Acuitas Therapeutics, Inc. Carbonyl lipids and lipid nanoparticle formulations for delivery of nucleic acids
WO2018213731A1 (en) 2017-05-18 2018-11-22 Modernatx, Inc. Polynucleotides encoding tethered interleukin-12 (il12) polypeptides and uses thereof
WO2018232006A1 (en) 2017-06-14 2018-12-20 Modernatx, Inc. Polynucleotides encoding coagulation factor viii
WO2019048632A1 (en) 2017-09-08 2019-03-14 Mina Therapeutics Limited Stabilized hnf4a sarna compositions and methods of use
EP4233880A2 (en) 2017-09-08 2023-08-30 MiNA Therapeutics Limited Hnf4a sarna compositions and methods of use
WO2019048645A1 (en) 2017-09-08 2019-03-14 Mina Therapeutics Limited Stabilized cebpa sarna compositions and methods of use
WO2019048631A1 (en) 2017-09-08 2019-03-14 Mina Therapeutics Limited Hnf4a sarna compositions and methods of use
EP4219715A2 (en) 2017-09-08 2023-08-02 MiNA Therapeutics Limited Stabilized cebpa sarna compositions and methods of use
EP4183882A1 (en) 2017-09-08 2023-05-24 MiNA Therapeutics Limited Stabilized hnf4a sarna compositions and methods of use
US20210323914A1 (en) * 2017-12-20 2021-10-21 Arcturus Therapeutics, Inc. Ionizable cationic lipid for rna delivery
WO2019197845A1 (en) 2018-04-12 2019-10-17 Mina Therapeutics Limited Sirt1-sarna compositions and methods of use
EP4242307A2 (en) 2018-04-12 2023-09-13 MiNA Therapeutics Limited Sirt1-sarna compositions and methods of use
WO2019217964A1 (en) 2018-05-11 2019-11-14 Lupagen, Inc. Systems and methods for closed loop, real-time modifications of patient cells
WO2020033791A1 (en) 2018-08-09 2020-02-13 Verseau Therapeutics, Inc. Oligonucleotide compositions for targeting ccr2 and csf1r and uses thereof
WO2020061295A1 (en) 2018-09-19 2020-03-26 Modernatx, Inc. High-purity peg lipids and uses thereof
WO2020061284A1 (en) 2018-09-19 2020-03-26 Modernatx, Inc. Peg lipids and uses thereof
WO2020128031A2 (en) 2018-12-21 2020-06-25 Curevac Ag Rna for malaria vaccines
US11453639B2 (en) 2019-01-11 2022-09-27 Acuitas Therapeutics, Inc. Lipids for lipid nanoparticle delivery of active agents
WO2020161342A1 (en) 2019-02-08 2020-08-13 Curevac Ag Coding rna administered into the suprachoroidal space in the treatment of ophtalmic diseases
WO2020208361A1 (en) 2019-04-12 2020-10-15 Mina Therapeutics Limited Sirt1-sarna compositions and methods of use
WO2020254535A1 (en) 2019-06-18 2020-12-24 Curevac Ag Rotavirus mrna vaccine
WO2021026310A1 (en) 2019-08-06 2021-02-11 L.E.A.F. Holdings Group Llc Processes of preparing polyglutamated antifolates and uses of their compositions
WO2021028439A1 (en) 2019-08-14 2021-02-18 Curevac Ag Rna combinations and compositions with decreased immunostimulatory properties
WO2021061815A1 (en) 2019-09-23 2021-04-01 Omega Therapeutics, Inc. COMPOSITIONS AND METHODS FOR MODULATING HEPATOCYTE NUCLEAR FACTOR 4-ALPHA (HNF4α) GENE EXPRESSION
WO2021061707A1 (en) 2019-09-23 2021-04-01 Omega Therapeutics, Inc. Compositions and methods for modulating apolipoprotein b (apob) gene expression
DE202021004123U1 (en) 2020-02-04 2022-10-26 Curevac Ag Coronavirus Vaccine
DE202021003575U1 (en) 2020-02-04 2022-01-17 Curevac Ag Coronavirus Vaccine
DE202021004130U1 (en) 2020-02-04 2022-10-26 Curevac Ag Coronavirus Vaccine
EP4147717A1 (en) 2020-02-04 2023-03-15 CureVac SE Coronavirus vaccine
DE112021000012T5 (en) 2020-02-04 2021-11-18 Curevac Ag Coronavirus vaccine
WO2021156267A1 (en) 2020-02-04 2021-08-12 Curevac Ag Coronavirus vaccine
WO2021183720A1 (en) 2020-03-11 2021-09-16 Omega Therapeutics, Inc. Compositions and methods for modulating forkhead box p3 (foxp3) gene expression
WO2021195218A1 (en) 2020-03-24 2021-09-30 Generation Bio Co. Non-viral dna vectors and uses thereof for expressing gaucher therapeutics
WO2021195214A1 (en) 2020-03-24 2021-09-30 Generation Bio Co. Non-viral dna vectors and uses thereof for expressing factor ix therapeutics
WO2021239880A1 (en) 2020-05-29 2021-12-02 Curevac Ag Nucleic acid based combination vaccines
US11976019B2 (en) 2020-07-16 2024-05-07 Acuitas Therapeutics, Inc. Cationic lipids for use in lipid nanoparticles
WO2022023284A1 (en) 2020-07-27 2022-02-03 Anjarium Biosciences Ag Compositions of dna molecules, methods of making therefor, and methods of use thereof
WO2022023559A1 (en) 2020-07-31 2022-02-03 Curevac Ag Nucleic acid encoded antibody mixtures
WO2022032154A2 (en) 2020-08-06 2022-02-10 Modernatx, Inc. Compositions for the delivery of payload molecules to airway epithelium
WO2022043551A2 (en) 2020-08-31 2022-03-03 Curevac Ag Multivalent nucleic acid based coronavirus vaccines
WO2022122872A1 (en) 2020-12-09 2022-06-16 Ucl Business Ltd Therapeutics for the treatment of neurodegenerative disorders
WO2022135993A2 (en) 2020-12-22 2022-06-30 Curevac Ag Pharmaceutical composition comprising lipid-based carriers encapsulating rna for multidose administration
WO2022137133A1 (en) 2020-12-22 2022-06-30 Curevac Ag Rna vaccine against sars-cov-2 variants
WO2022162027A2 (en) 2021-01-27 2022-08-04 Curevac Ag Method of reducing the immunostimulatory properties of in vitro transcribed rna
WO2022200810A1 (en) 2021-03-26 2022-09-29 Mina Therapeutics Limited Tmem173 sarna compositions and methods of use
WO2022200575A1 (en) 2021-03-26 2022-09-29 Glaxosmithkline Biologicals Sa Immunogenic compositions
WO2022207862A2 (en) 2021-03-31 2022-10-06 Curevac Ag Syringes containing pharmaceutical compositions comprising rna
WO2022223556A1 (en) 2021-04-20 2022-10-27 Anjarium Biosciences Ag Compositions of dna molecules encoding amylo-alpha-1, 6-glucosidase, 4-alpha-glucanotransferase, methods of making thereof, and methods of use thereof
WO2022232289A1 (en) 2021-04-27 2022-11-03 Generation Bio Co. Non-viral dna vectors expressing therapeutic antibodies and uses thereof
WO2022232286A1 (en) 2021-04-27 2022-11-03 Generation Bio Co. Non-viral dna vectors expressing anti-coronavirus antibodies and uses thereof
WO2022233880A1 (en) 2021-05-03 2022-11-10 Curevac Ag Improved nucleic acid sequence for cell type specific expression
WO2022261394A1 (en) 2021-06-11 2022-12-15 LifeEDIT Therapeutics, Inc. Rna polymerase iii promoters and methods of use
WO2023283359A2 (en) 2021-07-07 2023-01-12 Omega Therapeutics, Inc. Compositions and methods for modulating secreted frizzled receptor protein 1 (sfrp1) gene expression
WO2023014974A1 (en) 2021-08-06 2023-02-09 University Of Iowa Research Foundation Double stranded mrna vaccines
WO2023031392A2 (en) 2021-09-03 2023-03-09 CureVac SE Novel lipid nanoparticles for delivery of nucleic acids comprising phosphatidylserine
WO2023031394A1 (en) 2021-09-03 2023-03-09 CureVac SE Novel lipid nanoparticles for delivery of nucleic acids
WO2023073228A1 (en) 2021-10-29 2023-05-04 CureVac SE Improved circular rna for expressing therapeutic proteins
WO2023081526A1 (en) 2021-11-08 2023-05-11 Orna Therapeutics, Inc. Lipid nanoparticle compositions for delivering circular polynucleotides
WO2023086465A1 (en) 2021-11-12 2023-05-19 Modernatx, Inc. Compositions for the delivery of payload molecules to airway epithelium
WO2023099884A1 (en) 2021-12-01 2023-06-08 Mina Therapeutics Limited Pax6 sarna compositions and methods of use
WO2023104964A1 (en) 2021-12-09 2023-06-15 Ucl Business Ltd Therapeutics for the treatment of neurodegenerative disorders
US12129223B2 (en) 2021-12-16 2024-10-29 Acuitas Therapeutics, Inc. Lipids for use in lipid nanoparticle formulations
WO2023135273A2 (en) 2022-01-14 2023-07-20 Anjarium Biosciences Ag Compositions of dna molecules encoding factor viii, methods of making thereof, and methods of use thereof
WO2023144330A1 (en) 2022-01-28 2023-08-03 CureVac SE Nucleic acid encoded transcription factor inhibitors
WO2023154818A1 (en) 2022-02-09 2023-08-17 Modernatx, Inc. Mucosal administration methods and formulations
WO2023161350A1 (en) 2022-02-24 2023-08-31 Io Biotech Aps Nucleotide delivery of cancer therapy
WO2023170435A1 (en) 2022-03-07 2023-09-14 Mina Therapeutics Limited Il10 sarna compositions and methods of use
WO2023177655A1 (en) 2022-03-14 2023-09-21 Generation Bio Co. Heterologous prime boost vaccine compositions and methods of use
WO2023227608A1 (en) 2022-05-25 2023-11-30 Glaxosmithkline Biologicals Sa Nucleic acid based vaccine encoding an escherichia coli fimh antigenic polypeptide
WO2023239756A1 (en) 2022-06-07 2023-12-14 Generation Bio Co. Lipid nanoparticle compositions and uses thereof
WO2024033901A1 (en) 2022-08-12 2024-02-15 LifeEDIT Therapeutics, Inc. Rna-guided nucleases and active fragments and variants thereof and methods of use
WO2024040222A1 (en) 2022-08-19 2024-02-22 Generation Bio Co. Cleavable closed-ended dna (cedna) and methods of use thereof
WO2024062001A1 (en) 2022-09-21 2024-03-28 Novoarc Gmbh Lipid nanoparticle with nucleic acid cargo
EP4342460A1 (en) 2022-09-21 2024-03-27 NovoArc GmbH Lipid nanoparticle with nucleic acid cargo
WO2024068545A1 (en) 2022-09-26 2024-04-04 Glaxosmithkline Biologicals Sa Influenza virus vaccines
DE202023106198U1 (en) 2022-10-28 2024-03-21 CureVac SE Nucleic acid-based vaccine
WO2024102677A1 (en) 2022-11-08 2024-05-16 Orna Therapeutics, Inc. Circular rna compositions
WO2024102762A1 (en) 2022-11-08 2024-05-16 Orna Therapeutics, Inc. Lipids and lipid nanoparticle compositions for delivering polynucleotides
WO2024102730A1 (en) 2022-11-08 2024-05-16 Orna Therapeutics, Inc. Lipids and nanoparticle compositions for delivering polynucleotides
WO2024119039A2 (en) 2022-12-01 2024-06-06 Generation Bio Co. Stealth lipid nanoparticles and uses thereof
WO2024119051A1 (en) 2022-12-01 2024-06-06 Generation Bio Co. Novel polyglycerol-conjugated lipids and lipid nanoparticle compositions comprising the same
WO2024119074A1 (en) 2022-12-01 2024-06-06 Generation Bio Co. Stealth lipid nanoparticle compositions for cell targeting
WO2024119103A1 (en) 2022-12-01 2024-06-06 Generation Bio Co. Lipid nanoparticles comprising nucleic acids and lipid-anchored polymers
WO2024134199A1 (en) 2022-12-22 2024-06-27 Mina Therapeutics Limited Chemically modified sarna compositions and methods of use
WO2024160936A1 (en) 2023-02-03 2024-08-08 Glaxosmithkline Biologicals Sa Rna formulation
WO2024171052A1 (en) 2023-02-14 2024-08-22 Glaxosmithkline Biologicals Sa Analytical method
WO2024184500A1 (en) 2023-03-08 2024-09-12 CureVac SE Novel lipid nanoparticle formulations for delivery of nucleic acids
WO2024205657A2 (en) 2023-03-29 2024-10-03 Orna Therapeutics, Inc. Lipids and lipid nanoparticle compositions for delivering polynucleotides
US12133923B2 (en) 2024-01-16 2024-11-05 Recode Therapeutics, Inc. Lipid nanoparticle compositions and uses thereof
GB202404607D0 (en) 2024-03-29 2024-05-15 Glaxosmithkline Biologicals Sa RNA formulation

Also Published As

Publication number Publication date
JP2013545723A (en) 2013-12-26
US20130274523A1 (en) 2013-10-17
US20150284316A1 (en) 2015-10-08
CN103260611A (en) 2013-08-21
EP2621480B1 (en) 2018-08-15
AU2011307277A1 (en) 2013-03-07
US9725720B2 (en) 2017-08-08
KR20130114115A (en) 2013-10-16
US9029604B2 (en) 2015-05-12
US20170015998A1 (en) 2017-01-19
EP2621480A4 (en) 2015-12-02
US9458087B2 (en) 2016-10-04
EP2621480A1 (en) 2013-08-07
CA2811430A1 (en) 2012-04-05

Similar Documents

Publication Publication Date Title
EP2621480B1 (en) Low molecular weight cationic lipids for oligonucleotide delivery
EP2575767B1 (en) Novel low molecular weight cationic lipids for oligonucleotide delivery
US9981907B2 (en) Low molecular weight cationic lipids for oligonucleotide delivery
US9796977B2 (en) Low molecular weight cyclic amine containing cationic lipids for oligonucleotide delivery
WO2013016058A1 (en) Novel bis-nitrogen containing cationic lipids for oligonucleotide delivery
WO2011149733A2 (en) Novel amino alcohol cationic lipids for oligonucleotide delivery
KR20180083440A (en) Novel low molecular weight cationic lipids for oligonucleotide delivery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11829806

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2011307277

Country of ref document: AU

Date of ref document: 20110928

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2811430

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2013531742

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13876528

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20137008015

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011829806

Country of ref document: EP