Title
Optimized Cellulase Enzymes
Field of invention
The invention discloses cef!ulase enzymes with optimized properties for processing of cellulose- and lignoceltulose-containing substrates. In particular, cellobiohydrolase enzymes with preferred characteristics are disclosed. The present invention provides fusion, insertion, deletion and/or substitution variants of such enzymes. Enzyme variants have enhanced thermostability, proteolytic stability, specific activity and/or stability at extreme pH. Nucleic acid molecules encoding said enzymes, a composition comprising said enzymes, a method for preparation, and the use for cellulose processing and/or for the production of biofuels are disclosed.
Background of the invention
The development of production processes based on renewable resources is highly desired, for example for the generation of ethanol from celluiosic and lignoceilulosic materials.
Cellulose material in pure form or in combination with hemicellulose and/or iignin is a valuable and readily available raw material for the production of chemicais and fuels. A key step in processing cellulose and iignoceilulose is the hydrolysis of the beta-1 ,4-linked glucose polymer cellulose and the subsequent release of glucose monomers and short glucose oligomers such as cellobiose, cellotriose, etc. Enzymes that catalyze this reaction are found in various organisms, especially filamentous fungi and bacteria, that are capable of degrading and hydrolysing cellulose .
Continuous processes for converting solid lignoceilulosic biomass into combustible fuel products are known. Treatment to make ceilulosic substrates more susceptible to enzymatic degradation comprises milling, chemical processing and/or hydrothermal processing. Examples are wet oxidation and/or steam explosion. Such treatments increase the accessibility of cellulose fibers and separate them from hemice!luiose and iignin.
A number of enzyme mixtures for hydrolysis of treated biomass are known in the literature. Typically a mixture of endoglucanase, exoglucanase and beta-glucosidase enzymes are
required for the degradation of celiulose polymers. Among these cellobiohydrolase (CBH) enzymes, and more specifically cellobiohydrolase I (CBHI) enzymes, play a key role in the hydrolysis step as they provide the most processive enzymatic activity. CBHI enzymes catalyze the progressive hydroiytic release of celiobiose from the reducing end of the cellulose polymers. (Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS. Microbial cellulose utilization: fundamentals and biotechnology. Microbiol ol Biol Rev. 2002 Sep;66(3):506-77).
Hydrolyzed celSuiosic materials contain several valuable carbohydrate molecules which can be isolated from the mixtures. Sugar containing hydrolysates of cellulosic materials can be used for microbial production of a variety of fine chemicals or biopolymers, such as organic acids, ethanol or higher alcohols (also diols or polyols) or polyhydroxyalkanoates (PHAs). One of the major uses of the sugar hydrolysates is in the production of biofuels.
Kurabi et al. (2005) describes preparations of cellulases from Trichoderma reesei and other fungi, such as Penictllium sp. The performance has been analysed on steam-exploded and ethanol organosolv-pretreated Douglas-fir. Better performance of enzyme mixtures appears to be a result of improved properties of singie component enzymes as well as the effect of each compound in the mixture, especially the presence of beta-glucostdase. (Kurabi A, Berlin A, Gilkes N, Ki!bum D, Bura R, Robinson J, Markov A, Skomarovsky A, Gusakov A, Okunev O, Sinitsyn A, Gregg D, Xie D, Saddler J. (2005) Enzymatic hydrolysis of steam- exploded and ethanol organosolv-pretreated Dougias-Fir by novel and commercial fungal cellulases. Appl Biochem Biotechnol.121 -124: 219-30).
Cellobiohydrolase sequences of the glucohydroiase class 7 (cel7) are known to the art from several fungal sources. The Talaromyces emersonii Cel7 cellobiohydrolase is known and expression was reported in Escherichia coli (Grassick A, Murray PG, Thompson R, Collins CM, Byrnes L, Birrane G, Higgins TM, Tuohy MG. Three-dimensional structure of a thermostable native cellobiohydrolase, CBH IB, and molecular characterization of the cel7 gene from the filamentous fungus, Talaromyces emersonii. Eur J Biochem, 2004 Nov;271 (22):4495-506) and Saccharomyces cerevistae (Voutiiainen SP, Murray PG, Tuohy MG, Koivula A. Expression of Talaromyces emersonii cel!obiohydroSase Cel7A in Saccharomyces cerevisiae and rational mutagenesis to improve its thermostability and activity. Protein Eng Des Sel. 2010 Feb;23(2):69-79), however the protein was either produced in inactive form or at rather low yields (less or equal to 5mg/l). Hypocrea jecorina cellobiohydrolase I can be produced from wild type or engineered strains of the genus Hypocrea or Trichoderma at high yields. Improved sequences of Hypocrea jecorina Cel7A are disclosed by US7459299B2, US7452707B2, WO2005/030926, WO01/04284A1 or US2009/0162916 A1.
Positions leading to improvements were deduced from alignments with sequences from reported thermostable enzymes, suggested from structural information and shuffling of identified positions followed by limited screenings. Screening of larger libraries in transformable organisms such as Saccharomyces cerevisiae was reported by application of very sensitive fluorescent substrates, which resembie native substrates in a very restricted way. (Percival Zhang YH, Himmei ME, Mielenz JR. Outlook for cellulase improvement: screening and selection strategies. Biotechnol Adv. 2006 Sep-Oct;24(5):452-81 ).
The production of cellobiohydrolases from other fungal systems such as Thermoascus aurantiacus, Chrysosporium lucknowense or Phanerochaete chrysosporium was reported. Expression of Cel7 cellobiohydrolase from yeasts was reported, but enzymatic yields or enzyme properties remain unsatisfactory. (Penttila ME, Andre L, Lehtovaara P, Bailey M, Teeri TT, Know!es JK. Efficient secretion of two fungal cellobiohydrolases by Saccharomyces cerevisiae. Gene.1988;63(1 ):103-12).
WO03/000941 discloses a number of CBHs and their corresponding gene sequences. Physiological properties and applications however were not disclosed. The fusion of cellulose binding domains to catalytic subunits of cellobiohydrolases is reported to improve the hydrolytic properties of proteins without a native domain.
US 2009042268 (A1 ) discloses fusions of Thermoascus aurantiacus Cel7A with cellulose binding domains from ceiiobiohydrolase I from Chaetomium thermophilum and Hypocrea jecorina.
US5686593 reports the fusion of specially designed Sinker regions and binding domains to cellobiohydrolases.
Hong et ai. (2003) describe the production of Thermoascus aurantiacus CBHI in yeast and its characterization. (Hong J, Tamaki H, Yamamoto K, Kumagai H Cloning of a gene encoding thermostable ceiiobiohydrolase from Thermoascus aurantiacus and its expression in yeast. Appi Microbiol Biotechnol. 2003 Nov;63(1 ):42-50).
Tuohy et aL (2002) report the expression and characterization of Talaromyces emersonii CBH. (Tuohy MG, Walsh DJ, Murray PG, Claeyssens M, Cuffe MM, Savage AV, Cough!an MP.:Kinetic parameters and mode of action of the cellobiohydrolases produced by Talaromyces emersonii. Biochim Biophys Acta. 2002 Apr 29;1596(2):366-80).
Nevoigt et a!. (2008) reports on the expression of cellulolytic enzymes in yeasts. (Nevoigt E. Progress in metabolic engineering of Saccharomyces cerevisiae. Microbiol Mol Biol Rev. 2008 Sep;72(3):379-412).
Fiijita et ai. (2004) reports on a Saccharomyces cervisiae strain expressing a combination of an endoglucanase, a beta - glucosidase and a CBHII displayed on the cell surface. Cellobiohydrolase i (Cel7) was not used in this setup. (Fujita Y, ito J, Ueda M, Fukuda H, Kondo A. Synergistic saccharification, and direct fermentation to ethanol, of amorphous cellulose by use of an engineered yeast strain codisplaying three types of cellulolytic enzyme. Appl Environ Microbiol. 2004 Feb;70(2):1207-12).
Boer H et a!. (2000) describes the expression of GH7 classified enzymes in different yeast hosts but expressed protein levels were iow. (Boer H, Teeri TT, Koivula A. Characterization of Trichoderma reesei cellobiohydrolase Cel7A secreted from Pichia pastoris using two different promoters. Biotechnol Bioeng. 2000 Sep 5;69(5):486-94).
Godbole et at (1999) and Hong et at ( 2003) found that proteins of this enzyme class expressed fom yeast were often misfolded, hyperglycosylated and hydrolytic capabilities decreased compared to the protein expressed from the homologous host. (Godbole S, Decker SR, Nieves RA, Adney WS, Vinzant TB, Baker JO, Thomas SR, Hsmmel ME. Cloning and expression of Trichoderma reesei cellobiohydrolase ! in Pichia pastoris. Biotechnol Prog. 1999 Sep-Oct;15(5):828-33).
Kanokratana et ai (2008), Li et a! (2009) as well as CN01757710 describe the efficient expression of Cel7 CBH I enzymes, however these proteins are lacking celllulose binding domains required for efficient substrate processing. (Kanokratana P, Chantasingh D, Champreda V, Tanapongpipat S, Pootanakit K, Eurwilaichitr L Identification and expression of cellobiohydrolase (CBHI) gene from an endophytic fungus, Fusicoccum sp. (BCC4124) in Pichia pastoris. LProtein Expr Purif. 2008 Mar;58(1 ):T48-53. Epub 2007 Sep 19; Li YL, Li H, Li AN, Li DC. Cloning of a gene encoding thermostable cellobiohydrolase from the thermophilic fungus Chaetomium thermophilum and its expression in Pichia pastoris. J Appl Microbiol. 2009 Jun;106(6):1867-75).
Voutiiainen (2008) and Viikari (2007) disclose Cel7 enzymes comprising thermostable celiobiohydrolases, however with only low to moderate expression levels from Trichoderma reesei. (Voutiiainen SP, Puranen T, Siika-Aho M, Lappalainen A, Alapuranen M, Kallio J, Hooman S, Viikari L, Vehmaanpera J, Koivu!a A. Cioning, expression, and characterization
of novel thermostable family 7 celiobiohydroiases. Biotechnol Bioeng. 2008 Oct 15;101 (3):515-28. Pub ed PMID: 18512263; Viikari L, Alapuranen M, Puranen T, Vehmaanpera J, Siika-Aho M. Thermostable enzymes in lignocellulose hydrolysis. Adv Biochem Eng Biotechnol. 2007;108:121 -45).
Grassick et al. (2004) disclose unfolded expression of Cellobiohydrolase I from Taiaromyces emersonii in Escherichia coli but not in yeast. (Grassick A, Murray PG, Thompson R, Collins CM, Byrnes L, Birrane G, Higgins TM, Tuohy MG. Three-dimensional structure of a thermostable native cellobiohydrolase, CBH IB, and molecular characterization of the cel7 gene from the filamentous fungus, Taiaromyces emersonii. Eur J Biochem. 2004 Nov;271 (22):4495-506).
Therefore, there is a need for cellulase enzymes with improved characteristics for the use in technical processes for celiuiose hydrolysis. In particular there is a need for CBH enzymes with higher catalytic activity and/or higher stability under process conditions. Moreover there is a need for CBH enzymes with higher productivity in fungal and/or yeast expression and secretion systems.
Summary of the invention
The present invention provides a polypeptide having cellobiohydrolase activity. In a preferred embodiment, the invention provides a thermostable polypeptide having cellobiohydrolase activity. That is, in this embodiment, the polypeptide maintains 50 % of its maximum substrate conversion capacity when the conversion is done for 60 minutes at 60 °C or higher, preferably 62 °C or higher, and in a particular embodiment 64 °C or higher, such as 66 °C or higher. This polypeptide comprises an amino acid sequence with at ieast 54 %, preferably at least 56 %, more preferably at Ieast 58 %, particularly preferably at ieast 60 %, such as at Ieast 62 %, particularly at Ieast 64 %, such as at least '66 %, and most preferably preferably at Ieast 68 % sequence identity to SEQ ID N05. The invention also provides a polypeptide which comprises an amino acid sequence with at Ieast 85 % sequence identity to SEQ ID NO: 2.
Furthermore, the present invention discloses a nucleic acid encoding the polypeptide of the present invention, preferably having at Ieast 95 % identity to SEQ ID NO: 1 , a vector comprising this nucleic acid and a host transformed with said vector.
The present invention further provides a method of producing a celiobiohydrolase protein encoded by a vector of the present invention, a method for identifying polypeptides having celiobiohydrolase activity, and a method of preparing such polypeptides having celiobiohydrolase activity. It also provides a method of identifying such polypeptides which maintain 50 % or more of maimum substrate conversion capacity at elevated temperatures, such as at 60 °C or more.
The present invention also provides a polypeptide having celiobiohydrolase activity, wherein the polypeptide comprises an amino acid sequence having at least 85 % sequence identity to SEQ ID NO: 2 wherein one or more specific amino acid residues of the sequence defined by SEQ !D NO: 2 are modified by substitution or deletion, as well as insertion mutants. Examples of such mutants include Q1 , G4, A6, T15, 028, W40, D64, E65, A72, S86, K92, V130, V152, Y155, K159, D181 , E183, N194, D202, P224, T243, Y244, I277, K304, N310, S31 1 , N318, D320, T335, T344, D346, Q349, A358, Y374, A375, T392, T393, D410, Y422, P442, N445, R446, T456, S460, P462, G463, H468 and/or V482 of amino acids 1 to 500 of SEQ ID NO: 2, but the invention is by no means limited to these. Further specific positions are given below.
Moreover, the present invention provides a polypeptide having celiobiohydrolase activity, which is obtainable by the method of preparing a polypeptide having celiobiohydrolase activity according to the present invention, and a polypeptide having celiobiohydrolase activity, wherein the poiypeptide comprises an amino acid sequence having at least 80 % sequence identity to SEQ ID NO: 5, wherein one or more of the following amino acid residues of the sequence defined by SEQ ID NO: 5 are modified by substitution or deletion, as well as insertion mutants. Examples of such mutants include Q1 , G4, A6, T15, Q28, W40, D64, E65, A72, S86, K92, V130, V152, Y155, K159, D181 , E183, N194, D202, P224, T243, Y244, I277, K304, N310, S31 1 , N318, D320, T335, T344, D346, Q349, A358, Y374, A375, T392, T393, D410 and/or Y422 of amino acids 1 to 440 of SEQ ID NO: 5, but the invention is by no means limited to these. Further specific positions are given beiow.
The present invention furthermore provides a poiypeptfde having celiobiohydrolase activity comprising an amino acid sequence having at least 85 % sequence identity to SEQ ID NO: 12 wherein one or more of the following amino acid residues of the sequence defined by SEQ ID NO: 12 are modified by substitution or deletion as well as insertion mutants. Examples of such mutants include Q1 , T15, Q28, W40, C72, V133, V155, Y158, T162, Y247, N307, G308, E317, S341 , D345, Y370, T389, Q406, N441 , R442, T452, S456, P458, G459, H464 and/or V478, but the invention is by no means limited to these. Further specific positions are given below.
The present invention further provides the use of a polypeptide or the composition of the present invention for the enzymatic degradation of lignocellulosic biomass, and/or for textiles processing and/or as ingredient in detergents and/or as ingredient in food or feed compositions.
Brief description of the figures
Figure 1 : Restriction Maps of pV1 for constitutive expression of Proteins in Pichia pastoris: pUC19 - o : Origin of replication in E. coli; KanR: Kanamycine/G418 Resistance with TEF1 and EMZ Promoter sequences for selection in Pichia pastoris and E. coli, respectively; 5'GAP: glyceraldehyde-3- phosphate dehydrogenase Promoter region; 3'-GAP: terminator region; SP MFalpha: Saccharomyces cerevisiae mating factor alpha signal sequence; MCS: multiple cloning site.
Figure 2: Commassie stained SDS-PAGE of 10-fold concentrated supernatants of shake- flask cultures of Pichia pastoris CBS 7435 containing expression plasmids with coding sequences for the mature CBHI proteins of Trichoderma viride (CBH-f; lane 1 ), Humicola grisea (CBH-d; lane 2), Talaromyces emersonii (CBH-b; lane 3), Thermoascus aurantiacus (CBH-e; lane 4), as well as the Talaromyces emersonii CBHI-CBD fusion (CBH-a; lane 6) and the Humicola grisea-CBD fusion (CBH-g; lane 7) in N-terminal fusion to the signal peptide of the Saccharomyces cerevisiae mating factor alpha under control of the Pichia pastoris glyceraldehyde-3-phosphate dehydrogenase promoter
Figure 3: Map of the pV3 expression plasmid for protein expression in Pichia pastoris. Replicons: pUC19 - oh: Origin of replication in E. coli; ZeoR: Zeocine resistance gene with TEF1 and EM7 Promoter promoter sequences for expression in Pichia pastoris and E. coli, respectively; AOX I promoter: Promoter region of the Pichia pastoris alcohol oxidase I gene; AOX 1 transcriptional terminator: terminator region; SP MFalpha: Saccharomyces cerevisiae mating factor alpha signal sequence; MCS: multiple cloning site.
Figure 4: SDS-PAGE analysis of culture supernatant samples taken from the fermentation of a Pichia pastoris strain with a genomic integration of an AOXI-expression cassette, expressing the Talaromyces emersonii CBHI / Trichoderma reesei -CBD fusion peptide (CBH-a) in a 7I bioreactor during methanol induction. Samples P1 - P7 were are taken at the
SU BSTITUTE SH EET (RU LE 26)
beginning of the methanol induction and after 20, 45, 1 19.5, 142.5, 145.5 and 167 hours, respectively.
Figure 5: Figure 5: Map of pV4 expression plasmid for the expression of the Talaromyces emersonii CBHI / Trichoderma reesei -CBD fusion peptide (CBH-ah) in Trichoderma reesei. Replicon: pUC19 for replication in E. coli. cbhl 5': 5' promoter region of the Trichoderma CBHI gene; cbhl signal peptide: Coding sequence for the Trichoderma reesei CBHI leader peptide; CBH-a: Talaromyces emersonii CBHI / Trichoderma reesei -CBD fusion peptide: coding region for SeqID NO. 18; cbhl Terminator: 3' termination region of the Trichoderma reesei CBHI locus; hygromycine resistance: coding region of the hygromycine
phosphotransferase under control of a Trichoderma reesei phosphoglycerate kinase promoter; cbhl 3': homology sequence to the termination region of the Trichoderma reesei CBHI locus for double crossover events.
Figure 6: SDS-Page of Trichoderma reesei culture supernatants. Lane 1 shows the expression pattern of a replacement strain carrying a Talaromyces emersonii CBHI / Trichoderma reesei -CBD fusion (CBH-ah) inplace of the native CBHI gene. In comparison lane 2 shows the pattern for the unmodified strain under same conditions. M: molecular size marker
Figure 7: Determination of IT50 values from Substrate Conversion Capacity vs. temperature graphs after normalization. For the normalization step the maximum and the minimum fluorescence values for the selected temperature are correlated to 1 or 0, respectively. Linear interpolation to F'(T)=0.5 between the nearest two temperature points with normalized values next to 0.5 results in the defined IT50 temperature.
Figure 8: Normalized Conversion Capacity vs. temperature graphs of "wt" Talaromyces emersonii CBHI / Trichoderma reesei -CBD fusions (CBH-ah: SeqID NO. 18 = SeqID NO. 2 + 6x His-Tag) and mutants based on 4-Methylumbelliferyl -β-D-lactoside hydrolysis results evaluated at various temperatures. The fluorescence values were normalized according to figure 8 over the temperature range from 55°C to 75°C
A... wt;
B... G4C.A72C;
C... G4C.A72CQ349K;
D... G4C,A72C,D181 N,Q349K;
E... Q1 L,G4C,A72C,D181 N,E183K,Q349R;
F... Q1 L,G4C,A72C,S86T,D181 N,E183K,D320V,Q349R;
G.. .G4C, A72C.E183K,D202Y,N310D.Q349R;
H.. .Q1 L,G4C,A72C, A145T,H203R,Q349K,T403K;
SU BSTITUTE SH EET (RU LE 26)
I... , Q1 L, G4C, Q28R, E65V, A72C, D181 N, E183M, S192S, P224L, S311 G, D320I,
D346E, Q349K, T393V, Y422F, P442S, N445D, R446G, H468L, V482I
J... , Q1 L, G4C, Q28K, E65K, A72C, L119L, D181 N, E183M, S192S, S31 1G, N318Y,
D320I, T335I, D346E, Q349K, T393V, Y422F, N445D, R446G, H468Q, V482T K... , Q1 L, G4C, Q28K, E65V, A72C, L1 19L, D181 N, E183M, S192S, D202N, P224L,
S31 1 G, T335I, D346E, Q349K, T393V, Y422F, P442S, N445D, R446G, H468Q,
V482I
L... Q1 L, G4C, Q28R, E65V, A72C, G151 GCGRSG, D181 N, E183M, P224L, S311G, D320I, D346E, Q349K, T393V, Y422F, P442S, N445D, R446G, H468L, V482I
M... Q1 L, G4C, Q28R, E65V, A72C, K159KCGRNK, D181 N, E183M, P224L, S311G, D320I, D346E, Q349K, T393V, Y422F, P442S, N445D, R446G, H468L, V482I
Figure 9: Glucose yields of hydrolysis of pretreated straw with wt and mutated Talaromyces emersonii CBHI / Trichoderma reesei -CBD (CBH-ah) fusion protein after hydrolysis for 48 hours in the presence of a β-glycosidase. The variants are characterized by the following mutations with respect to SeqID NO. 18 and were expressed from Pichia pastoris in shake flask cultures and isolated from the supernatant by affinity chomatography using Ni-NTA.
A: wt
B: G4C, A72C
C: G4C, A72C, Q349R
D: Q1 L, G4C, A72C, D181 N, E183K, Q349R
E: Q1 L, G4C, Q28R, E65V, A72C, D181 , E183M, P224L, S311 G, D320I, D346E, Q349K, T393V, Y422F, P442S, N445D, R446G, H468L, V482I
F: Q1 L, G4C, Q28R, E65V, A72C, G151 GCGRSG, D181 N, E183M, P224L, S311 G, D320I, D346E, Q349K, T393V, Y422F, P442S, N445D, R446G, H468L, V482I
Figure 10: Alignment of SeqID. NO 2 with the Trichoderma reesei CBHI. The alignment matrix blosum62mt2 with gap opening penalty of 10 and gap extension penalty of 0.1 was used to create the alignment.
Detailed description of the invention
The present invention provides polypeptides having cellobiohydrolase activity. In a preferred embodiment, the invention provides a thermostable polypeptide having cellobiohydrolase activity. In a preferred aspect, the invention discloses protein variants that show a high activity at high temperature over an extended period of time. Preferably, the polypeptide of the present invention maintains 50 % of its maximum substrate conversion capacity when the conversion is done for 60 minutes at a temperature of 60 °C or higher. The respective temperature is also referred to as the IT50 value. In other words, the IT50 value is preferably 60 °C or higher, but more preferably 62 °C or higher. That is, in this embodiment, the polypeptide maintains 50 % of its maximum substrate conversion capacity when the conversion is done for 60 minutes at 60 °C or higher, preferably preferably 62 °C or higher, and in a particular embodiment 64 °C or higher, such as 66 °C or higher. Furthermore, the
SU BSTITUTE SH EET (RU LE 26)
polypeptides of the present invention have preferably an IT50 value in the range of 62 to 80 °C, more preferably 65 to 75 °C.
"Substrate Conversion Capacity" of an enzyme is herein defined as the degree of substrate conversion catalyzed by an amount of enzyme within a certain time period under defined conditions {Substrate concentration, pH value and buffer concentration, temperature), as can be determined by end-point assaying of the enzymatic reaction under said conditions. "Maximum Substrate Conversion Capacity" of an enzyme is herein defined as the maximum in Substrate Conversion Capacity found for the enzyme within a number of measurements performed as described before, where only one parameter, e.g. the temperature, was varied within a defined range. According to the present invention, the assay described in Example 8 is used to determine these parameters.
This polypeptide comprises an amino acid sequence with at least 54 %, preferably at least 56 %, more preferably at least 58 %, particularly preferably at least 60 %, such as at least 62 %, particularly at least 64 %, such as at least 66 %, and most preferably preferably at least 68 % sequence identity to SEQ ID NO: 5. The term "identity over a sequence length of y residues" (wherein y is any integer, such as, as illustrative example, 200, 255, 256, 300, 400, 437, 500) means that y is a - preferably continuous - portion of the parenteral sequence (in this particular case SEQ ID NO: 5, but the same is true throughout this application, also with respect to other, specifically indicated parenteral sequences which which the sequences of this invention may be compared) which is used as a basis for the comparison of sequence identitiy. Thus, for the comparison of sequence identity (sequence alignment), preferably 200 or more, more preferably 300 or more, even more preferably 400 or more, and most preferably 437 positions of the parental sequence given in SEQ iD NO: 5 are taken into consideration. The details of how the percentages of sequence identities are calculated are given below. It should also be noted, that, unless explicitly otherwise specified in this specification, the entire sequence of the parental sequence (such as, in this particular case, SEQ ID NO:5) (i.e. from the first to the last amino acid residue) shall be used as a parent sequence.
In a preferred embodiment, the polypeptide capable of maintaining 50 % of its maximum substrate conversion capacity when the conversion is done for 60 minutes at 60 °C or higher, preferably preferably 62 °C or higher, is a polypeptide which differs from SEQ ID NO: 5 by at least one mutation, wherebey the mutation may be an insertion, deletion or substitution of one or more amino acid residues. Also preferred are at least two such mutations, such as at least 4, at least 5, at ieat 6, at least 7, at least 10 such mutations with respect to the polypeptide given in SEQ ID NO: 5.
"Cellobiohydrolase" or "CBH'1 refers to enzymes that cleave cellulose from the end of the glucose chain and produce cellobiose as the main product. Alternative names are 1 ,4-beta- D-glucan celiobiohydrolases or cellulose 1 ,4-beta-celiobiosidases. CBHs hydrolyze the 1 ,4- beta-D-giucosidic linkages from the reducing or non-reducing ends of a polymer containing said linkages. "Cellobiohydrolase i" or "CBH Γ act from the reducing end of the cellulose fiber. "Cellobiohydrolase H" or "CBH Ι act from the non-reducing end of the cellulose fiber. Celiobiohydrolases typically have a structure consisting of a catalytic domain and one or more "cellulose-binding domains" or "CBD". Such domains can be located either at the N- or C-terminus of the catalytic domain. CBDs have carbohydrate-binding activity and they mediate the binding of the cellulase to crystalline cellulose and presence or absence of binding domains are known to have a major impact on the processivity of an enzyme especially on polymeric substrates.
In a preferred embodiment, this polypeptide is further characterized by comprising an amino acid sequence having at least 80 % sequence identity to SEQ ID NO:5, more preferably at least 85 % sequence identity to SEQ ID NO:5, such as at least 90 % % sequence identity to SEQ ID NO:5, and most preferably at least 95 % sequence identity to SEQ ID NO.5.
The polypeptide having cellobiohydrolase activity as defined above is, in an even more preferred embodiment, further characterized as follows: It is. the polypeptide as defined above, wherein one or more of the amino acid residues of the sequence defined by SEQ ID NO: 5 are modified by substitution or deletion at one or more positions which are preferably selected from
G1 , Q2, G4, A6, T7, A8, N10, P12, T 5, A21 , G23, S24, T26, T27, Q28, N29, G30, A31 , V32, N37, W40, V41 , G46, Y47, T48, N49, C50, T52, N54, D57, T59, Y60, D64, E65, A68, Q69, A72, V84, S86, S89, S90, K92, S99, Q109, DU O, D1 1 1 , 1116, F117, K1 18, L1 19, L120, D129, V130, G139, A145, 146, V152, K154, Y155, N 57, N158, K159, K163, G167, Q172, F179, 1180, D181 , E183, E187, G188, Q190, S192, S193, N194, I200, D202, H203, D21 1 , V212, A221 , P224, D228, T229, G231 , T233, M234, S236, T243, Y244, S245, N246, D247, G251 , F260, G266, K275, I276, I277, T280, L290, D293, G294, T295, T297, T299, S301 , K304, F306, N310. S31 1 , V313, 1314, N318, D320, 1321 , T325, N327, T335, A340, F341 , D343, T344, D345, D346, Q349, H350, A354, K355, A358, Q361 , Q362, G363, M364, V367, D373, Y374, A375, A376, P386, T387, D390, T392, T393, P394, T400, P402, T403, D404, D410, N417, S418, T421 , Y422 and/or one or more insertions after positions G151 , K159, and in a more preferred embodiment are modified by substitution or deletion at one or more positions selected from Q1 , Q2, G4, A6, T7, A8, N10, A21 , S24, T26, T27, Q28, N29, G30, W40, Y47, D64, E65, A68, Q69, A72, S86, K92, K1 18, Y155, D181 , E183, Q190, S192, N194, D202, H203, P224, T229, G231 , M234, S236, T243, D247, S31 1 , N318, D320, T335, A340, T344, D346, Q349, K355, Y374, A375, T387, D390, T392, T393, Y422 and/or one or more insertion of 1 -8 amino acids after positions G151 , K159 and in an even more preferred embodiment are modified by substitution or deletion at one or more positions selected from 01 , Q2, G4, A6, T7, A8, N10, Q28, E65, A72, S86, D181 , E183, D202, P224, S31 1 , N318, D320, T335, D346, Q349, T392, T393, Y422 and/or insertions at one or more after positions and/or one or more insertion of 5 amino acids after positions G151 , K159 of
of amino acids 1 to 437 of SEQ ID NO: 5,
Also preferred are embodiments wherein the respective mutation(s) given above is (are) introduced into the polypeptide given in SEQ ID NO: 2, as outlined below,
The skilled person will understand that several of these given mutations can be combined with each other, i.e. that a polypeptide having ceilobiohydrolase activity, where, for example Q69 and T232 are substituted for other amino acid residues, is comprised in this embodiment. The term "insertion after position(s) x" is to be understood that the insertion may be at any position which is on the C-terminal side (closer to the C-terminus) of the position x; however, insertions immediately following the position x are strongly preferred (wherein x is any position).
The present invention also discloses a polypeptide having cellobiohydrolase activity, which comprises an amino acid sequence with at least 85 % sequence identity to SEQ !D NO: 2. It is preferred that this polypeptide with at leat 85 % sequence identity to SEQ ID NO: 2 is a polypeptide which has also a degree of identity with SEQ ID NO: 5 as given above, such as having at least 60 % (or more, see above) sequence identity with the polypeptide given in SEQ ID NO: 5, and/or any one or more of the more particular identity embodiments of percentage identity to SEQ ID NO: 5 as given in detail above. Thus, the polypeptide having at least 85 % sequence identity to SEQ ID NO: 2 is an embodiment which is comprised in the invention relating to a polypeptide having at ieast 60 % sequence identity with the polypeptide given in SEQ ID NO: 5. The skilled person will readily recognize the common inventive concept underlying the thermostable variants of SEQ ID NO: 2 and SEQ ID NO: 5.
Equivalent to what has been said above for SEQ ID NO: 5, for the sequence alignment of SEQ ID NO: 2 as defined herein, preferably 200 or more, more preferably 300 or more, even more preferably 400 or more, and most prefearabiy 437 positions of SEQ ID NO: 5 are taken into consideration. The details of how the percentages of sequence identities are calculated are given below. In a more preferred embodiment, the respective polypeptide comprises an amino acid sequence having at ieast 85 % sequence identity to SEQ ID NO: 2 over a sequence length of 500 amino acid residues. Even more preferably, the present invention comprises an amino acid sequence having at Ieast 90 %, or even more preferably of at Ieast Ieast 95% or 98% sequence identity to SEQ ID NO: 2 over a sequence length of 500 amino acid residues.
The parental sequence is given in SEQ ID NO: 2. The sequence derives from the C-terminal fusion of the linker domain and cellulose binding domain of Trichoderma reesei CBHI (SEQ ID NO: 4) to the catalytic domain of Talaromyces emersonii CBHI (SEQ ID NO: 5).The invention further comprises other fusion proteins comprising any cellulose binding domain and a derivative of the catalytic domain of Talaromyces emersonii CBHi (SEQ ID NO: 5), preferably with the temperature stability characteristics given above. The cellulose binding
domain may be from any source. The polypeptides according to the invention may additionally carry a hexahtstidine tag. Thus, by means of illustration, variants of any one of the polypeptides shown in SEQ ID NO: 42, 44, 46, 48 or 50 are included in this invention. The variants are preferably such that the polypeptides exhibit temperature stability, as described and defined above.
The polypeptide of the present invention preferably comprises an amino acid sequence having at least 90 %, preferably at least 95 %, more preferably at least 99 % sequence identity to SEQ ID NO: 2. Furthermore, it is particularly preferred that the amino acid sequence of the polypeptide has the sequence as defined by SEQ !D NO: 2, or a sequence as defined by SEQ ID NO: 2 wherein 1 to 75, more preferably 1 to 35 amino acid residues are substituted, deleted, or inserted.
Particularly preferred are variants of the protein of SEQ !D NO: 2, SEQ ID NO: 5 or SEQ ID NO: 12. "Protein variants" are polypeptides whose amino acid sequence differs in one or more positions from this parental protein, whereby differences might be replacements of one amino acid by another, deletions of single or several. amino acids, or insertion of additional amino acids or stretches of amino acids into the parental sequence. Per definition variants of the parental polypeptide shall be distinguished from other polypeptides by comparison of sequence identity (alignments) using the CiustalW Algorithm (Larkin M.A., Blackshields G., Brown N.P., Chenna R., cGettigan P. A,, cWil!iam H., Valentin F., Wallace I.M., Wiim A., Lopez R., Thompson J.D., Gibson T.J. and Higgins D.G. (2007) CiustalW and ClustalX version 2. Bioinformatics 2007 23(21 ): 2947-2948). Methods for the generation of such protein variants include random or site directed mutagenesis, site-saturation mutagenesis, PCR-based fragment assembly, DNA shuffling, homologous recombination in-vitro or in-vivo, and methods of gene-synthesis.
The nomenclature of amino acids, peptides, nucleotides and nucleic acids is done according to the suggestions of SUPAC. Generally amino acids are named within this document according to the one letter code.
Exchanges of single amino acids are described by naming the single letter code of the original amino acid followed by its position number and the single letter code of the replacing amino acid, i.e. the change of giutamine at position one to a leucine at this position is described as "Q1 L". For deletions of single positions from the sequence the symbol of the replacing amino acid is substituted by the three letter abbreviation "del" thus the deletion of alanine at position 3 would be referred to as "A3del". Inserted additional amino acids receive
the number of the preceding position extended by a small letter in alphabetical order relative to their distance to their point of insertion. Thus, the insertion of two tryptophanes after position 3 is referred to as "3aW, 3bW" or simply as A3AWW (i.e formal replacement of "A" at position 3 by the amino acid residues "AWW"). Introduction of untranslated codons TAA, TGA and TAG into the nucleic acid sequence is indicated as "*" in the amino acid sequence, thus the introduction of a terminating codon at position 4 of the amino acid sequence is referred to as "G4*".
Multiple mutations are separated by a plus sign or a slash or a comma. For example, two mutations in positions 20 and 21 substituting alanine and glutamic acid for glycine and serine, respectively, are indicated as "A20G+E21 S" or "A20G/E21 S" "A20G,E21 S".
When an amino acid residue at a given position is substituted with two or more alternative amino acid residues these residues are separated by a comma or a slash. For example, substitution of alanine at position 30 with either glycine or glutamic acid is indicated as "A20G,E" or "A20G/E", or "A20G, A20E".
When a position suitable for modification is identified herein without any specific modification being suggested, it is to be understood that any amino acid residue may be substituted for the amino acid residue present in the position. Thus, for instance, when a modification of an alanine in position 20 is mentioned but not specified it is to be understood that the alanine may be deleted or substituted for any other amino acid residue (i.e. any one of R, N, D, C, Q, E, G, H, i, L, K, M, F, P, S, T, W, Y and V).
The terms "simiiar mutation" or "similar substitution" refer to an amino acid mutation that a person skilled in the art would consider similar to a first mutation. Similar in this context means an amino acid that has similar chemical characteristics, if, for example, a mutation at a specific position ieads to a substitution of a non-aiiphatic amino acid residue (e.g. Ser) with an aliphatic amino acid residue (e.g. Leu), then' a substitution at the same position with a different aliphatic amino acid (e.g. lie or Val) is referred to as a similar mutation. Further amino acid characteristics include size of the residue, hydrophobicity, poiarity, charge, pK- value, and other amino acid characteristics known in the art. Accordingly, a similar mutation may include substitution such as basic for basic, acidic for acidic, polar for poiar etc. The sets of amino acids thus derived are likely to be conserved for structural reasons. These sets can be described in the form of a Venn diagram (Livingstone CD. and Barton GJ. (1993) "Protein sequence alignments: a strategy for the hierarchical analysis of residue conservation" Comput.Appl Biosci. 9: 745-756; Taylor W. R. (1986) "The classification of amino acid
conservation" J.Theor.Bio!. 1 19; 205-218). Similar substitutions may be made, for example, according to the following grouping of amino acids: Hydrophobic: F W Y H K i L V A G; Aromatic: F W Y H; Aliphatic: I L V; Polar: W Y H K R E D C S T ; Charged H K R E D; Positively charged: H K R; Negatively charged: E D.
As convention for numbering of amino acids and designation of protein variants for the description of protein variants the first glutamine (Q) of the amino acid sequence QQAGTA within the parental protein sequence given in SEQ ID NO: 2 is referred to as position number 1 or Q1 or glutamine 1. The numbering of all amino acids will be according to their position in the parental sequence given in SEQ ID NO: 2 relative to this position number 1.
The present invention furthermore discloses specific variants of the polypeptides of the present invention as given above, such as variants of SEQ !D NO: 2, with changes of their sequence at one or more of the positionsgiven hereafter. I.e., the invention provides, in a particular embodiment, the polypeptide as above, wherein one or more of the foilowing amino acid residues of the sequence defined by SEQ ID NO: 2 are preferably modified by substitution or deletion at positions Q1 , Q2, G4, A6; T7, A8, N10, P12, T15, A21 , G23, S24, T26, T27, Q28, N29, G30, A31 , V32, N37, W40, V41 , G46, Y47, T48, N49, C5G, T52, N54, D57, T59, Y60, D64, E65, A68, Q69, A72, V84, S86, S89, S90, K92, S99, Q109, DU O, D1 1 1 , 11 16, F1 17, K1 18, L1 19, L120, D129, V130, G139. A145, 146. V152, K154, Y155, N157, N158, K159, K153, G167, Q172, F179, 1180, D181 , E183, E187, G188, Q190, S192, S193, N194, 1200. D202, H203, D21 1 , V212, A221 , P224, D228, T229, G231. T233, 234, S236, T243, Y244, S245, N246, D247, G251 , F260, G266, K275, I276, I277, T280, L290, D293, G294, T295, T297, T299, S301 , K304, F306, N310, S31 , V313, 1314, N318, D320, 1321 , T325, N327, T335, A340, F341 , D343, T344, D345, D346, Q349, H350, A354, K355, A358, Q361 , Q362, G363, M364, V367, D373, Y374, A375, A376. P386, T387, D390, T392, T393, P394, T400, P402, T403, D404, D410, N417, S418, T421 , Y422, F427, P429, I430, G431 , T433, G434, N435, P436, S437, G439, N440/ P441 , P442, G443, N445, R446, T448, T449, T450, T451 , R453, P454, A455, T456, T457, G459, S460, S461 , P462, G463, P464, T465, S467, H468, G470, C472, G474, G476, Y477, S478, P480, V482, C483, S485, G486, T488, C489, Q490, V491 , L492, N493, Y495, Y496, Q498,' C499, L500 and/or by one or more insertions after positions G151 , K159, G434, A455 or P464 of amino acids 1 to 500 of SEQ ID NO: 2.
In a more preferred embodiment one or more of the following amino acid residues of the sequence defined by SEQ !D NO: 2 are preferably modified by substitution or deletion at positions selected from Q1 , Q2, G4, A6, T7, A8, N10, A21 , S24, T26, T27, Q28, N29, G30, W40, Y47, D64, E65, A68, Q69, A72, S86, K92, K1 18, Y155, D181 , E183, Q190, S192,
N194, D202, H203, P224, T229, G231 , M234, S236, T243, D247, S31 1 , N318, D320, T335, A340, T344, D346, Q349, K355, Y374, A375, T387, D390, T392, T393, Y422, P436, P442, N445, R446, T448, T451 , R453, P462, G463, H468, P480, V482, S485, and/or by one or more insertion of 1 -8 amino acids after positions G151 , K159, G434, A455 or P464, and in an even more preferred embodiment are modified by substitution or deletion at one or more positions selected from Q1 , Q2, G4, A6, T7, A8, N10, Q28, E65, A72, S86, D181 , E183, D202, P224, S31 1 , N318, D320, T335, D346, Q349, T392, T393, Y422, P442, N445, R446, H468, V482, and/or by insertions at one or more after positions and/or one or more insertion of 5 amino acids after positions G151 , K159, G434, A455 or P464 of amino acids 1 to 500 of SEQ ID NO: 2.
Also comprised in the invention are the respective mutations at any one or more of the specified mutations 1 to 430 of SEQ ID NO: 5. The skilled person will recognize that residues 1 to 430 of SEQ ID NO: 5 are equivalent to positions 1 to 430 of SEQ ID N02, and can therefore readily transfer the detailed teaching given above and below for preferred modifications of SEQ ID NO: 2. for any one or more of positions 1 to 430 to the respective one or more position (1 to 430) of SEQ ID NQ5. As an illustrative and non-limiting example, it is apparent for the skilled person that, since D390 is one .particular position at which a modification in SEQ ID NO: 2 is preferred, D390 is likewise a position at which a modification in SEQ ID NO: 5 is preferred.
In a preferred embodiment, the variant of the polypeptide of the present invention is a polypeptide as described above, wherein specifically one or more of the following amino acid residues of the sequence defined by SEQ ID NO: 2 are modified as shown in Table 1 . Shown are preferred, more preferred and most preferred modification. Any of these mutations may be combined, with each other. However, in a particular embodiment it is preferred that the mutations are selected only among the more preferred and most preferred embodiments shown in Table 1 . Even more preferably, only modifications indicated as most preferred are chosen. The skilled person will be aware that any several such mutations are combineable with each other.
Table 1 ; Preferred exchanges and similar mutations
Most
Position Preferred More Preferred Preferred
Q1 L L L
Q2 P,S P,S S
G4 c c C
A6 G,L,V G,L,V L
T7 Q Q Q
A8 S S s
N10 T,D T,D T,D
P12 Q
T15 S
A21 S,T,C S.T.C
G23 A,D,N
S24 J,C,H Τ,Ο,Ν
T26 l,N Ι,Ν
T27 S,Q S.Q
Q28 L,K,R,N L,K,R,N K,R
N29 T,Y T,Y
G30 A K
A31 S
V32 G
N37 S
W40 R R
V41 J
G46 S
Y47 S,F S,F
T48 A
N49 S
C50 S
T52 D
N54 S
D57 S
T59 M
Y60 H
D64 N N
E65 . V,M,K V. .K V, ,K
A68 T T
Q69 K,R K,R
A72 v,c v,c C
V84 A
S86 T T
S89 N
S90 T,F
K92 R R
S99 T
Q109 R
D110 G,S,N
D111 H,E
1116 V,K,E
F117 Y
K118 A,T,Q A,T,Q
L119 U
L120 P,
D129 N
V130 i
G139 S
A145 T
M146 c
G151 GCGRSG GCGRS GCGRSG
V152 A,E
K154 R
Y155 S,C,H S,C,H
N157 S
N158 D
K159 E, KCGRNK KCGRNK KCGRNK
K163 C
G167 c
Q172 Q
F179 1
1180 N
D181 N N N
E183 V.M.K V,M,K V,M,K
E187 K
G188 C
G190 L,K L,K
S192 L,I,P,T,M L,I,P,T,M
S193 L,P,T
N194 G^KV.S.CKAD Y G^I.V.S.CK.R.D Y
I200 N,F
D202 Gj,V,N,F,Y GJ,V,N,F,Y G.I.V.N.F.Y
H203 R R
D21 1 G
V212 L
i V
P224 L L
D228 N
T229 A,S, A,S,M
G231 D D
T233 S
M234 L,t,V,T,K υ,ν,τ,κ
S236 F,Y F,Y
T243 GAU!,V,P,S,C,M,RtD.Q,F,Y,W GAUrV.P,S,C,M,R,D,Q,F,Y,W
Y244 H,F
S245 T
N246 S,K,D
D247 N N
^5^·5 Ί R
F260 C
G266 S
K275 E
1276 V
[277 V
T280
L290 H
D293 R,H
G294 .A
T295 s
T297 N
T299 i,S
S301 C
K304 R
F306 L,Y
N310 D,E
S31 1 G.D.N G,D,N GTD,N
V313 1
1314
N318 I.HAY !,H,D,Y ,D,Y
D320 [,ν,Ε,Ν Ι ,ν,Ε,Ν ,V,N
1321 N
T325 A,l
N327 Y
T335 I I
A340 G,S,T G,S,T
F341 c
D343 A
T344 M M
D345 E
D346 G,A,V,E GAV.E G,A,V,E
Q349 K,R K,R K,R
H350 Y
A354 T
K355 Q Q
A358 E
Q361 R
Q362 G,R,H
V367 A
D373 E
Y374 A,P,S,C,R,H,D A,P,S,C,R,H,D
A375 G,L,V,T,C, ,R,D,E,NAY G,LV,T,C.M;R,D.E,N.Q.Y
A376 T
P386 L,S
T387 A,S A,S
D390 G,E G,E
T392 S, ,K S,'M,K
T393 A,l,V,S A,I,V,S A,I,V
P394 C
T400 s
P402 s
T403 K
D404 N
D410 G
N417 Y
S418 P
T421 I
Y422 F F
F427 Y
P429 C
i430 L
G431 D
T433 S,E
G434 S, GAAATG GAAATG GAAATG
N435 Q
P436 S S
S437 p
G439 V,D
N440 t
A,L,S
T449 A
T450 I
T451 A,S A,S
R453 G,S,K G,S,K
P454 S
A455 VJ, A AAA PA AAAAPA AAAAPA
T456 A,i
T457 P
G459 D
S460 p
S461 R
P462 L,del L
G463 V,D V,D
P464 L,Q, PTHAAA PTHAAA PTHAAA
T465 l,S
S467 T
H468 L,R,Q LR.Q L.R.Q
G470
C472 R
G474 S
G476 D
Y477 Y
S478 Y
P480 s S
V482 A,! J Α,Ι,Τ Α,Ι ,Τ
C483 R
S485 T T
G486 S,D
T488 i
C489 D r\
G490 L
V491 I
L492 Q
N493 D
Y495 C
Y496
Q498 K
C499 G
1500
The inventors of the present inventions surprisingly found that introduction of these modifications can yield polyppetides having cellobiohydrolase activity with elevated IT50 values, which the skilled person can learn from the examples below, particularly example 8.
Even more preferably, the variant of the polypeptides of the present invention as generally defined above comprises in a particular embodiment an amino acid sequence selected from the sequences with mutations with respect to SEQ ID NO: 2, optionally fused with a C- terminal 6x-His Tag, listed in the following Table 2.
Table 2: Mutations with respect to SEQ ID NO: 2:
Consecutive Number Mutation Pattern with respect to Seq. ID NO:2
G4C, Q28R, E65K, A72C. S86T, D202N, H203R, S3 1 N. D3201, A340G, D346A, Q349K, T393A,
88 Y422F, P442S, R446S, H468L, V482A
89 G4C, A72C, D202N, Q349R
90 G4C, A72C, P224L, Q349R
Q1L, G4C, A72C, D181N, E183K, T229M, A340T,
91 Q349R, V491I
92 Q1L, G4C, A72C, D18 N, Q349R
93 G4C, A72C, D320V, D346V, Q349
94 Q1L, G4C, A72C, V152A, Q349K
95 G1L, G4C, G28R, A72C, Q349K
96 Q1L, G4C, A72C, Q349K, Y422F
97 G4C, A72C, D202V, D320V, Q349K
98 Q1L, G4C, A72C, Y155S, D181 , E183 , G349R
99 Q1L, G4C, A72C, D181 , D247N, Q349K
100 Q1L, G4C, A68T, A72C, Q349K, G439D, R453S
101 G1L, G4C, A72C, Q349K, H468R
102 G1L, G4C, D64N, A72C, Q349K
103 G4C, A72C, E183K, Q349R, P464L
104 G4C, A72C, D181N, P224L, Q349K
105 G4C, A72C, N194I, T243Y, Q349R, Y374P, A375R
106 Q1L, G4C, A72C, G349K, P462L
107 Q1L, G4C, A72C, E183K, Q349R
108 G4C, A72C, S311G, Q349R
109 Q1 L G4C, A72C, S311 N, G349K, G463D
110. Q1L G4C, A72C, S86T, Q349R
111 Q1L-G4C, A72C, D181N, E183K, G231D, G349R
112 G1 L, G4C, A72C, S89N, D181N, E183K, Q349R
113 Q1L, G4C, E65K, A72C, G349K
Q1L, Q2P, G4C, W40R, E65M, A72C, S86T, S192L, D202N, H203R, S311D, D320I, T335!,
114 D346G, G349K, T392M, Y422F, R446G
Q1L, G4C, S24T, T26i, Q28R, N29Y, G30A, E65V, A68T, A72C, Y155C, D181N, E183M, Q190K, P224L, S311G, D320i, D346E, G349K, T393V,
115 Y422F, P442S, N445D, R446G, H468L, V482I
116 G4C, A72C, E183K, D202Y, N310D, Q349R
117 G4C, A72C, N194I, T243D, G349R, Y374P, A375Y
118 Q1L, G4C, A72C, D181N, E183K, G349R, T456I
G4C, G28R, A72C, S86T, E183K, P224L, S311N, N318Y, T335I, D346G, G349R, T393I, P441A,
119 P442S, R446G, H468L, V482f
120 Q1L, G4C, A72C, D181N, Q349K, T451S
Q1L, G4C, A72C, D181N. E183K, T243I, N246D,
121 Q349R, T488!
Q1L, G4C, G23N, A72C, D110G, M16V, L1.19I, D181N, E183K. D211G, D293R, N310D. G349R,
122 Q362R, G363P, M364S
123 G439V, N440E, P441S, P442Q
124 G431D, S431V,T433E, G434S, N435Q
125 Q1L, G4C, Q28R, E65V, A68T, A72C, Y155C,
163 Q1L, G4C, A72C, D181N, E183K, Q349R, A455V
164 Q1 L, G4C, A72C, D181 N, E183K, Q349R, T400S
165 Q1L, G4C.T26I, A72C, D181N, E183K, Q349R
Q1L, G4C, A72C, D181N, E183K, N310D, Q349R,
166 T392S, G463D
G1L, G4C, A72C, D129N, D181N, E183K, G190L,
167 G266S, I276V, Q349R, P386L, F427Y
168 Q1L, G4C, A72C, D181 , E183K, D202N, Q349R
169 Q1L, G4C, A72C, Y155C, D181N, E183K, Q349R
G1L, G4C, Q28R, E65V, A72C, D181 , E183M, P224L, S311G, D3201, D346E, Q349K, T393V, Y422F, P442S, N445D, R446G, P454PATAAA,
170 H468L, V482I
Q1L. G4C, Q28R, E65V, A72C, K159KCGRNK. D181N, E183M, P224L, S311G, D320I, D346E, G349K, T393V, Y422F, P442S, N445D, R446G,
171 H468L, V482I
172 Q1L, G4C, A72C, D18 N, E183K, N246K, Q349R
G4C, W40R, E65V, A72C, S86T, D181N, E183K, D202I, H203R, S311D, D320N, D346V, Q349R, 73 T392M, T393A, Y422F, P442S, H468Q, V482A
174 Q1L, G4C, A72C, Y155C, Q349K
175 Q1L, G4C, A68T, A72C, D181 N, E183K, Q349R
Q1L, G4C, S24T, T26I, Q28R, Ν29Υ» G30A, Y47F, E65V, A68T, A72C, Y155C, D181 N, E183M, Q190K, P224L, T229M, G231D, M234T,S311G, D320I, A340S, D346E, Q349K, D390E, T393V, Y422F, P442S, N445D, R446G, T448A, R453G,
176 H468L, P480S, V482I .
Q1L, G4C, W40R, E65M, A72C, S86T, S192L, D202N, H203R, S311 D, D320!, T3351, D346G,
177 Q349K, T392M, Y422F, R446G
Q1L, G4C, A72C, S86T, D181N, E183 , D320V,
178 G349R
G4C. Q28K, A72C, S86T, E183 , D202N, P224L, S311G, N318Y, D320N, D346A, Q349R, T392M,
179 T393L P442S, H468L, V482I
Q1L, Q2P, G4C, Q28R, W40R, E65K, A72C, D181N, S192L, D202I, H203R, P224L, S311G, D320i, D343A, D346A, Q349K, P442S, N445D,
180 R446G, V482A
G1L, G4C, G28R, E65K, A72C, E183M, D202i, P224L D320N, D346V, Q349 , T392M, T393V,
181 Y422F, N445D, R446G, H468L, V482T
Q1L, G4C, Q28R, E65V, A72C, S86T, E183K, D202V, S311G, N318Y, D320I, D346G, Q349K,
182 T393V, Y422F, N445D, R446S, H468Q, V482T
G1 L, G4C, W40R, E65M, A72C, D181N, E 83K, S192P, D202N, P224L, S311D, N318Y, D320V, D346G, Q349K, T392M, N445D, R446G, H468L,
183 V482T
G1L, G4C, E65V, A72C, D181 , E183K, P224L, S311G, D320N, D346G, Q349R, T392M, T393I,
184 R446G, H468L, V482i
Q1 L, G4C, Q28R, E65V, A72C, G 51GCGRSG, D181 , E183M, P224L, S311G, D320i, D346E, Q349 , T393V, Y422F, P442S, N445D, R446G,
185 H468L, V482!
Q1L, G4C, E65M, A72C, D181N, E183M, D202Y, P224L. S311D, N318Y, D320!, T335I, D346A, Q349K, T392M, T393I, N445D, R446G, T448A,
186 H468Q, V482A
Q1L, G4C, G23A, A72C, D110S, D111H, 1116V, F117Y, 118A, L120M, D181N, E183K, D293H,
187 G294A, N310E, Q349R, Q362G, M364S
Q1L, G4C, A72C, D181N, E183K, Q349R, T421I,
188 G439D
G4C, Q28K, E65M, A72C, S86T, V152A, D181N, E183V, S192L, D202N, S311N, D320N, D346E, Q349R, T387A, T392M, T393I, Y422F, P442S,
189 R446S, H468L, G476D, V482I
Q1L, G4C, W40R, E65V, A72C, S86T, E183V, G188C, S192T, D202Y, H203R, P224L, S311N, D320V, D346E, Q349K, T393V, Y422F, N445D,
190 R446G, H468Q, V482I
Q1L, G4C, E65M, A72C, S86T, E183M, D202N, P224L, T335I, D346G, Q349K, T392M, T393A,
191 P442S, N445D, R446G, H468Q, V482A
Q1L, G4C, Q28R, E65V, A72C, D181N, E 83 , P224L, S311G, D320I. A340S, D346E, Q349K, D390E, T393V, Y422F, P442S, N445D; R446G,
192 H468L, P480S, V482I
193 G4C, W40R, A72C
Q1L, G4C. W40R, E65K, A72C, S86T, E183K, S192L, D202Y, P224L, D320I, D346E, Q349R,
194 P442S, R446G, H468R, V482T
Q1L, G4C, A21T, T26i, Q28R, E65V, A68T, A72C, Y155C, 0181 , E183M. Q190K, D202N, P224L, S311G, N318Y, D320I, D346E, Q349K, T393V, Y422F, N445D, R446G, R453G, H468G, P480S,
195 V482I
Q1L, G4C, Q28R, E65V, A72C, S86T, D181N, D202N, P224L, S311 G, N318Y, D320L T335I, D346E, G349K, T393V, Y422F, N445D, R446G,
196 H468Q, V482!
Q1L, G4C, G28R. E65V, A72C, D181N, E183M, P224L, S311G, D320I, D346E, G349K, T393V, Y422F, P442S, N445D, R446G, P464PTHAAA,
197 H468L, V482I
Q1 L, G4C, G28R, E65V, A72C, E183 . S311 G, D346E, Q349K, T393V, Y422F, P442S, N445D,
198 R446G, H468L, V482!
Q1L, G4C, T7Q, A8S, N10T; S24T, T27Q: G28R, N29T, V41T, G46S, Y47S, T52D, D57S, D64N, E65V, G69 , A72C, D181 , P224L, S311 D, N3 8Y, D320N, D346A, G349 , T392M, T393I,
199 Y422F, N445D, R446G, H468G, V482i
Q1L, G4C, G28R, E65V, A72C, K159KCGRNK, E183 , P224L, S311G, D320I, D346E, Q349K, T393V, Y422F, P442S, N445D, R446G,
200 T457TAAATT, H468L, V482I
Q1L, G4C, G28K, W40R, E65V, A72C, D181 , E183V, S192P, D202V, H203R, S311G, D320N,
201 D346E, G349 , T392M, T393A, Y422F, V482I
Q1L, G4C, Q28R, E65V, A72C, G139S, D181 , E183M, P224L, S311G, D320!, D346E, Q349 , T393V, Y422F. P442S, N445D, R446G, H468L,
Q1L, G4C, Q28R, E65K, A72C, E183V, S192T. D202N, S311G, D320V, D346A, Q349K, P442S,
222 N445D, R446G, H468R, V482A
Q1L, G4C, W40R, E65V, A72C, S86T, E183M, D202N, P224L, S311G, D320V, D346E, Q349R,
223 T393I, P442S, R446G, H468R, V482I
Q1L, G4C, Q28N, E65K, A72C, D181 . E183M, D202N, H203R, S311G, N318Y, D320N, Q349R, T393V, Y422F, P442S, N445D, R446G, H468L, V482I
Q1L, G4C, Q28R, V41T, G46S, Y47S, T52D, E65V, A72C, D181N, P224L, S311D, N318Y, D320N, D346A, G349K, T392M, T393I, Y422F, N445D,
225 R446G, H468Q, V482I
Q1L, G4C, Q28R, E65K, A72C, D181N, E183M, P224L, S311G, D320I, D346E, Q349 , T393V,
226 Y422F, P442S, N445D, R446G, H468L, V482I
Q1L, G4Cf Q28R, W40R, A72C, S86T, D181N, S192T, D202N, P224L, S311G, N318Y, D320V, D346E, Q349K, T392 , T393i, P442S, N445D,
227 R446G, H468Q, V4821
Q1L, G4C, A21T, T26i, Q28R, G30A, E65V, A68T, A72C, Y155C, D181N, Q190K, D202N, P224L, T229 , S311G, N318Y, D320I.T335I, D346E, Q349K, T393V, Y422F, N445D, R446G, R453G,
228 H468Q, V482i
Q1 L, G4C, Q28 , W40R, A72C, S86T, D181 N, E183M, S192I, D202Y, T299S, S311N, N318Y,
229 D320I, D346V, Q349R, T393I, P442S, H468L
Q1L, G4C, Q28R, E65V, A72C, D181N, E183 , P224L, T229M, G23 D, M234T, S311 G, D320I, D346E, Q349K, T393V, Y422F, P442S, N445D,
230 R446G, H468L, V482I
Q1L, G4C, S24T, T26I, G28R, N29Y, G30A, E65V, A68T, A72C, Y155C, D181N, E183M, Q190K, P224L. T229 , G231D, M234T, S311G, D3201, A340S, D346E, Q349K, D390E, T393V, Y422F, P442S, N445D, R446G, T448A, R453G, H468L,
231 P480S, V482I
Q1L, G4C, Q28R, E65V, A72C, D181N, E183 , P224L, S311G, D3201, D346E, Q349K, T393V, Y422F, P442S, N445D, R446G, G463V, H468L,
232 V482I
Q1L, G4C, Q28R, E65K, A72C, E183M, P224L, S311G, D346E, Q349K, T393V, Y422F, P442S,
233 ■N445D, R446G, H468L V482i
Q1L, G4C, Q28R, E65V, A72C, S86T, D181N, E183 , D202N, P224L, S311G, N318Y, D346E, Q349K, T393V, Y422F, P442S, N445D, R446G,
234 H468L, V482T
Q1L, G4C, Q28R, W40R, E65V, A72C, S86T, S192T, D202V, H203R, S311N, N318Y, D346A, Q349K, Ϊ392Μ, T393A, Y422F, P442S, N445D,
235 V482A
Q1L, G4C, Q28R, E65V, A72C, K159KCGRNK, E183 , P224L, S311G, D320I, D346E, Q349K, T393V, Y422F. G434GAAATG, P442S, N445D,
236 R446G, T457TAAATT, H468L, V4821
237 Q1L, G4C, Q28K, E65K, A72C, D181N, H203R,
D320I, D346E, Q349K, T3931, Y422F, P442S, N445D, R446G, H468Q, V482T
Q1L, G4C, T7Q, ASS, N10T, Q28R, D57S, D64N, E65V, Q69K, A72C, D181 , P224L, S311D, N318Y, D320N, D346A, Q349K, T392M, T393I,
256 Y422F, N445D, R446G, H468Q, V4825
Q1L, G4C, Q28R, E65M, A72C, S86T, D181N, E183M, D202N, P224L, S311G, D346A, Q349 , T393I, Y422F, P442S, N445D, R446G, H468Q,
257 V482T
Q1L, G4C, N10D, Q28R, E65V, Q69R, A72C. K92R, K118Q, D181N, E183M, D202N, T280A, S311G, T335I, D346E, Q349K, K355Q, T387S, T393V, D404N, Y422F, N445D, R446G, P462L,
258 G463V, H468Q, V482I, S485T
Q1L, G4C, Q28R, E65M, A72C, E183M, D2G2N, S311G, D320I, T335I, D346E, Q349K, T393I,
259 Y422F, N445D, R446G, H468Q, V482I
Q1L, G4C, Q28K, E65K, A72C, D181N, E183M, D202N, S311D, D320V, T335I, D346G, Q349K,
260 T393I, Y422F, P442S, N445D, H468L, V482I
Q1L, G4C, Q28K, E65K, A72C, S86T, P224L, S311N, D320I, T335I, D346E, Q349K, T393V,
261 Y422F, N445D, R446G, H468Q, V482T
Q1L, G4C, Q28R, E65V, A72C, S86T, D181N, E183M, D202N, P224L, S311 , D320I, D346E, Q349K, T393V, Y422F, P442S, N445D, R446G,
262 H468Q, V482T
G4C, E65K, A72C, S86T, E183M, D2021, P224L, S311 N, N318Y, D320N, T335I, D346V, Q349R,
263 T393V, Y422F, P442S, R446S, H468L
Q1L, G4C, Q28R, E65K, A72C, D202N, S311N, T335I, D346E, Q349K, -T393I, Y422F, P442S,
264 N445D, R446G, H468L, V482T
Q1L, G4C, E65V, A72C, D181N, E183K, D202G,
265 Q349R
Q1 L, G4C, Q28R, E65K, A72C, E183M, P224L, S311G, D320I, D346E, Q349K, T393V, Y422F,
266 P442S, N445D, R446G, H468L, V482!
Q1 L, G4C, Q28R, E65V, A72C, D181 N, E 83M, P224L, F306L, S311G, D320I, D346E, Q349K, T393V, Y422F, P442S, N445D, R446G, H468L,
267 V482I
Q1L, G4C, Q28R, E65V, A72C, S86T, D202N, P224L, S311G, N318Y, D32GI, D346A, Q349K,
268 T393I, Y422F, N445D, R446G, H468Q, V482T
Q1L, G4C, Q28K, E65K, A72C, D18 , E183K, S192P, P224L, S311G, N318Y, D320V, D346E,
269 Q349R, T392 , T393I, Y422F, P442S, H468Q
Q1L, G4C, Q28K, E65M, A72C, S86T, E 83M, H203R, S311D, D320V, T335I, D346E, G349R,
270 T393A, N445D, R446G, H468Q, V482A
Q1L, G4C, Q28R, A72C. D181N, E183V, D202I, H203R, P224L, S311D, D320V, D346V, Q349R,
271 T392 , T393I, N445D, H468L
Q1L, G4C, Q28K, W40R, E65K, A72C, S86T, D181N, E183K, S192L, D202I, H203R, S311N, D320N, D346V, Q349K, T392M, T393A, Y422F,
272 N445D. R446S
273 G4C, E65V, A72C, S86T, Y155H, D181 , E183V,
D181N, P224L, S311D, N318Y, D320N, D346A, Q349K, T392M, T393I, Y422F, N445D, R446G, H468Q, V482I
Q1L, G4C, E65K, A72C, S86T, D202V, S311 , D320V, T335I, D346V, Q349R, T392M, Y422F,
310 N445D, R446G, H468L
Q1L, G4C, Q28R, E65K, A72C, D181N, E183M, P224L, S311G, D346E, Q349 , T393V, Y422F,
311 P442S, N445D, R446G, H468L, V482I
Q1L, G4C, Q28R, D57S, D64N, E65V, Q69K, A72C, D181N, P224L, S311D, N318Y, D320N, D346A, Q349K, T392M, T393I, Y422F, N445D,
312 R446G, H468Q, V482I
Q1L, G4C, Q28R, A72C, S86T, E183M, S192T, D202N, H203R, P224L, S31 , T335I, D346V, Q349R, T392 , T393V, P442S, N445D, R446G,
313 H468Q, V482A
Q1L, G4C, Q28K, E65V, A72C, D181 , D202N, S311N, D346A, Q349K, T393I, Y422F, N445D,
314 R446G, H468Q, V482I
Q1L, G4C, Q28R, E65V, A72C, D181N, E183M, P224L, S311G, D320I, D346E, Q349K, T393V, Y422F, P442S, N445D, R446G, H468L, V482I.
315 S485T
G4C, Q28K, E65 , A72C, S86T, E183M, D202N, P224L, S311G, T335I, D346E, Q349K, T393V,
316 Y422F, P442S, N445D, R446G, H468L V482I
G434GAAATG, T457TAAATT. Q1L, G4C, Q28R, E65V, A72C, E183M, P224L, S311G, D3201, D346E, Q349K, T393V, Y422F, P442S, N445D,
317 R446G, H468L V482I
G4C, Q28R, E65M, A72C, S86T, D181 , E183M, D202Y, P224L, S311N, D346A, G349K, T393I,
318 Y422F, N445D, R446S, H468Q, V482A
Q1L, G4C, Q28K, E65V, A72C, S86T, D181 , E183K, D202N, P224L, S311G, D3201, D346E, Q349K, Τ393Ϊ, Y422F, P442S, N445D, R446G,
319 H468Q, V482T
Q1L, G4C, T27S, G28R, E65V, A72C. D181N, E183M, P224L, S311G, D320I, D346E, Q349K, T393V, Y422F, P442S, N445D, R446G, H468L,
320 V482I
Q1L, G4C, Q28R, E65 , A72C, S86T, D181N, E183M, P224L, S311G, T335i, D346A, Q349K, T393V, Y422F, P442S, N445D, R446G, H468Q,
321 V482T
G2S, G4C, A6L T7Q, A8S, N10T, Q28R, E65V, A72C, D181N, P224L, S311D, N318Y, D320N, D346A. Q349K, T392 , T393L Y422F, N445D,
322 R446G, H468Q, V482I
G1L, G4C, Q28R. E65V, A72C, S86T, D202N, P224L, S311G, D320I, D346E, Q349K.T393V,
323 Y422F, N445D, R446G, H468Q, V482!
Q1L, G4C, G28 , E65V, A72C, E183M, D202N, S311G, D3201, D346E, Q349 , T393V, Y422F,
324 P442S, N445D, R446G, H468L, V482I
Q1 L, G4G, Q28R, E65K, A72C, D181 N, P224L, S311N, N318Y, D320I, D346E, Q349K, T393V,
325 Y422F, N445D, R446G, H468L, V4821
326 Q1L, G4C, Q28R, E65M, A72C, S90F, D181N,
Q1L, G4C, S24T, T26I, Q28R, N29Y, G30A, E65V, A72C, D181N, E183M, P224L, S311G, D320I, D346E, Q349K, T393V, Y422F, P442S, N445D,
360 R446G, H468L, V482!
Q1L, G4C, Q28R, E65M, A72C, E183M, S311G, D320I, D346A, G349K, T393V, Y422F, N445D.
361 R446G, H468Q, V482I
Q1L, G4C, Q28R, E65V, A72C, D181N, E183 , D202N, S311G, D346E; Q349K, T393I, Y422F,
362 N445D, R446G, H468Q, V482!
Q1L, G4C, G28R, E65V, A72C, E183M, P224L, S311G, 0320!. D346E, Q349K, T393V, Y422F,
363 P442S, N445D, R446G, H468L, V482I
Q1L, G4C, Q28K, E65K, A72C, D181N, E183M, S311G, N318Y, D320I, T335I, D346E, Q349K,
364 T393V, Y422F, N445D, R446G, H468Q, V482T
Q1L, G4C, Q28R, E65V, A72C, S311G, N318Y, D320I, T335I, D346E, Q349K, T393V, Y422F,
365 N445D, R446G, H468L, V482T
Q1L, G4C, S24C, Q28R, G30A, E65V, A72C, Y155C, D181N, G190 , D202N, P224L, S311G, T335I, D346E, Q349K, D390E, T393V, Y422F,
366 N445D, R446G, R453G, H468Q, P480S, V482i
Q1L, G4C, Q28R, E65V, A72C, D181N, E183M, P224L, S311G, D3201, D346E, Q349K, T393V, P402S, Y422F, P442S, N445D, R446G, H468L,
367 V482I
Q1L, G4C, G28R, E65K, A72C, E183M, D202N, 'P224L, S311N, N318Y, T336I, D346E, Q349K, T393V, Y422F, P442S, N445D, R446G, H468Q,
368 V482!
Q1L, G4C, A21T, T26!, Q28R, N29Y, E65V, A72C, Y155C, D181 , D202 , P224L, M234T, S311G, D320I, D346E, Q349K, D39QE, T393V, Y422F,
369 N445D, R446G, R453G, H468Q, V482!
Q1L, G4C, Q28R, E65K, A72C, S86T, D202N, P224L, S311D, D320N, T335I, D346V, Q349K,
370 T392M, T393V, Y422F, P442S, R446S, H468L
Q1L, G4C, Q28R, E65V, A72C, S86T, E183K, D202N, S311G, N318Y, D320I, D346A, Q349K, T393V, Y422F, P442S, N445D, R446G, H468Q,
371 V482i
Q1L, G4C, W40R, E65M, A72C, S86T, E183V, S192L, D202I, H203R, P224L, S311G, N318Y, D320V, D346A, G349K, P442S, N445D, R446G,
372 H468R, V482A
Q1L, G4C..G28R, E65V, A72C, D181N, E183M, P224L, S311G, D346E, Q349K, T393V, Y422F,
373 P442S, N445D, R446G, H468L, V482I
Q1L, G4C, Q28R, E65V, A72C, D181N, E183M, P224L, S311G, D320i, D346E, G349K, T393V, Y422F, G434GAAATG.. P442S. N445D, R446G,
374 T457TAAATT, H468L, V482I
Q1L, G4C, Q28R, E65V, A72C, K118Q, D181N, E183M, P224L, D247N: S311G, D320I, D346E, Q349K, T393V, Y422F, P442S, N445D, R446G,
375 H468L, V482I
Q1L, G4C, G28R, E65V. A72C, D181N, E183M, D202N, P224L, S311 , D320I, D346E, Q349K.
376 T393V, Y422F, N445D, R446G, H468G, V482I
Y422F, N445D, R446G, H468Q, V482T
Q1L, G4C, Q28R, G30A, E65V, A72C, Y155C, D181N, E183M, D202N, M234T, S311G. D346E, Q349 , T393V, Y422F, N445D, R446G, T448A,
393 R453G, H468Q, V482T
Q1L, G4C, Q28R, E65V, A72C, D1B1N, E183M, P224L, S311G, D320I, D346E, Q349K, T393V, Y422F, G434GAAATG, P442S, N445D, R446G,
394 H468L, V482I
Q1L, G4C, Q28R, E65V, Q69R, A72C, K92R, D181N, D202N, D247N, i277V, S311G, N318D, T335I, D346E, Q349K, K355G, T387S, T393V,
395 Y422F, N445D, R446G, G463V, H468G, V482I
G1L, G4C, T27S, Q28R, E65V, Q69R, A72C, D181N, D202N, S236F I277V, S311G,T335I, D346E, Q349K, K355Q, T387S, T393V, Y422F,
396 N445D, R446G, G463V, H468Q, V482I
Q1L, G4C, N10D, G28R, E05V, Q69R, A72C, K92R, K118Q, D181N, E183 , D202N, S311G, T335!, D346E, Q349 , T387S, T393V, Y422F,
397 N445D, R446G, P462L, H468Q, V482T, S485T
Q1L, G4C, A21T, Q28R, G30A, E65V, A72C, Y155C, D181 N, E183M, D202N, M234T, S311 G, T335I, D346E, Q349K, T393V, Y422F, N445D,
398 R446G, R453G, H468Q, V482T
Q1L, G4C, G28R, E65V, A72C, D181N, E183 , P224L, S311G, D320I, D346E, Q349K, T393V, Y422F, P442S, N445D, R446G, T457TAAATT,
399 H468L, V4821
Q1L G4C,-T26!, Q28R, E65V, A68T, A72C, Y 55C, D181IXL G190K, D202N, P224L, M234T, S311G, D320i, D346E, Q349K, D390E, T393V, Y422F,
400 N445D, R446G, R453G, H468G, V4821
Q1L. G4C, G28K, E65V. A72C, S86T, E183K, S192L, D202N, D320N, T335S, D346A, Q349R,
401 T393A, Y422F, P442S, R446G, H468R, V482A
Q1 L, G4C, Q28R, E65V, A72C, D181 , E183M, P224L, S236F, S311G, D3201, D346E, Q349K, T393V, Y422F, P442S, N445D, R446G, H468L,
402 V482I
Q1L, G4C, T26i, Q28R, E65V, A68T, A72C, Y 55C, D181N, D202N, M234T, S311G, T335I, D346E, Q349 , T393V, Y422F, N445D, R446G, H468Q,
403 V482T
Q1L, G4C, A21T, T26i, Q28R, N29Y, E65V, A72C, Y155C, D181N, E183M, D202N, P224L, M234T, . S311G, D320I, T335I, A340S, D346E, Q349K, D390E, T393V, Y422F, N445D, R446G, T448A,
404 R453G, H468Q, P480S, V4821
Q1L, G4C, G28R,.E65K, A72C, D202I, P224L, S311G, N318Y, D320V, T335S, D346A, Q349R,
405 T392 , T393A, N445D, R446G, H468L
Q1L, G4C, E65M, A72C, S86T, E183V, D202I, P224L, S311G, N318Y, D320V, D346A, Q349K,
406 P442S, N445D, R446G, H468L, V482A
G1L, G4C, N10D, Q28R, E65V, A72C, K92R, D181N, E183 , 0202N, S311G, D346E, G349K, T387S, T393V, Y422F, N445D. R446G, T451S,
407 P462L, H468Q, V482T
408 Q2S, G4C, A6L, T7Q, A8S, N10T, Q28K, E65M,
A72C, S86T, E183M, D202N. P224L, S31 1 G, D320I, T335I, (De!etionS437-P441 ), D346E, Q349K, T393V, Y422F, N445D, R446G, H468Q, V482T
Q2S, G4C, A6L, T7Q, A8S, N 10T, S24T, T26I, Q28R, N29Y, G30A, E65V, A72C, E183M, P224L S31 1 G, D320I, D346E, Q349 , T393V, Y422F,
409 P442S, 445D, R446G, H468L, V482j
Q1 L, G4C, Q28R, E65V, A72C, K92R, D181 N, E183M, P224L, I277V, S31 1 G, D320I, D346E, Q349K, T393V, Y422F, P442S, N445D, R446G,
410 H468L, V482!
Q2S, G4C, A6L: T7Q, ASS, N 10T, Q28R, E65V, A72C, E183M, P224L, S31 1 G, D320I, D346E, Q349K, T393V, Y422F, P442S, N445D, R446G,
41 1 H468L V482I
Q2S, G4C, A6L, T7Q, ASS, N10T, Q28R, E65V, A72C, E183M, P224L, S31 1 G, D3201, D346E, Q349K, T393V, Y422F, P442S, N445D, R446G,
412 P454PVRPQP, H468L, V482!
Q2S. G4C, A6L, T7Q, A8S, N10T, Q28R, E65V, A72C, E183 , P224L, S31 1 G, D320t, D346E, Q349K, T393V, Y422F, P442S, N445D, R446G,
413 P464THAAA, H468L, V482I
Q2S, G4C, A6L, T7Q, ASS, N10T, Q28R, E65V, A72C, E183 , P224L, S31 1 G, D320I, D346E, G349K, T393V, Y422F, P442S, N445D, R446G,
414 P464PTHAAA, H468L, V482I
Q2S, G4C, A6L, T7Q, ASS, 10T, Q28R, E65V, A72C, G151 GCGRSG, E183M, P224L, S31 1 G, D320I, D346E, Q349K, T393V, Y422F, P442S,
415 N445D, R446G, H468L, V482i
Q2S, G4C, A6L, T7Q. A8S, N10T, G28R, E65V, A72C, K159KCGRNK, E183 . P224L, S31 1 G, D320I, D346E, Q349K, T393V, Y422F, P442S,
416 N445D, R446G, H468L, V482I
Q2S, G4C, A6L, T7Q, ASS, N10T, G28R, E65V. A72C, E183M, P224L, S31 1 G, D320I, D346E, Q349K, T393V. Y422F, P442S, N445D, R446G,
417 P454ATAAA, H468L, V482I
Q2S, G4C, A6L, T7G, ASS, N10T, Q28K, E65K, A72C, E183M, S31 1 G, N318Y, D320I, T3351, D346E, Q349K, T393V, Y422F, N445D, R446G,
418 H468Q, V482T
G2S, G4C, A6L, T7Q, ASS, N10T, Q28K, E65V, A72C, E183M, D202N, P224L, S31 1 G, T335I, D346E, G349K, T393V, Y422F, P442S, N445D,
419 R446G, H468Q, V482I
G2S, G4C, A6L, T7Q, ASS, N10T, Q28R, E65M, A72C, S86T, E183M, S31 1 N, N318Y, T335I, D346E, G349K, T393V, Y422F, N445D, R446G,
420 H468Q, V482I
Q2S, G4C, A6L, T7G, ASS, N10T, Q28R, E65 , A72C, E183M, S31 1 G, N318Y, D346E, Q349 , T393V, Y422F, P442S, N445D, R446G, H468Q,
421 V482i
Q2S, G4C, A6L, T7G, A8S, N10T, Q28R, E65V, A72C, E183M, D202N, P224L, S31 1 G, N318Y, T335I, D346E, Q349K, T393V, Y422F, P442S,
422 N445D, R446G, H468Q, V482I
Q2S, G4C, A6L, T7Q, A8S, N10T, Q28R, E65V, A72C, E183M, P224L, S31 1 G, N318Y, T335I, D346A, Q349K, T393V, Y422F, P442S, N445D,
423 R446G, H468L, V482T
Q2S, G4C, A6L, T7Q, ASS, N10T, Q28R, E65V, A72C, P224L, S31 1 D, N31 8Y, D320N, D346A, Q349K, T392M, T393I, Y422F, N445D, R446G,
424 H468Q, V482I
Q2S, G4C, A6L, T7Q, A8S, N10T, Q28R, E65K, A72C, S31 1 N, N318Y, D346E, Q349K, T393V, Y422F, (DeletionbeiG439-G444), N445D, R446G,
425 H468Q, V482I
G2S, G4C, A6L, T7Q, ASS, N10T, Q28K, N29Y, E65K, A72C, S31 1 G, T335I, D346E, Q349K,
426 T393V, Y422F, N445D, R446G, H468Q, V482T
Q2S, G4C, A6L, T7G\ ASS, N10T, S24T, T26I, Q28R, N29Y, G30A, E65V, A68T, A72C, E183M, Q190K, P224L, S31 1 G, D32GI, D346E, Q349K, T393V, Y422F, P442S, N445D, R446G, H468L,
427 V482I
Q2S, G4C, A6L, T7Q, A8S, N10T, S24T, T26I, Q28R, N29Y, G30A, Y47F, E65V, A68T, A72C, E183M, Q190K, P224L, T229 , G231 D, M234T, S31 1 G, D320I, A340S, D346E, Q349K, D390E, T393V, N445D, R446G, T448A, R453G, H468L,
428 P480S, V482I, Y422F, P442S
Q2S, G4C, A6L, T7Q, A8S, N10T, G28R, E65V, A72C, K159KCGRNK, E1 83M, P224L, S31 1 G, D320I, D346E, Q349K, T393V,. Y422F, P442S,
429 N445D, R446G, T457TAAATT, H468L, V482I
Q2S, G4C.-A6L, T7Q, A8S, N10T, G28R, E65V, A72C, E183M, P224L, S31 1 G, D320I, D346E, Q349K, T393V, Y422F, P442S, N445D, R446G,
430 T457TAAATT, H468L, V482I
Q1 L, G4C, A72C, S86T, D181 N, E183K, D202V, P224L, S31 1 G, D320V, D346E, Q349R, T393A,
431 Y422F, P442S, N445D, R446G, H468L
Q1 L, G4C, Q28R, E65V, A72C,
K159CGRNKE183M, P224L, S3 1 G, D320I, D346E, Q349K, T393V, Y422F, P442S, N445D,
432 R446G, H468L, V482I
Q2S, G4C, A6L, T7Q, ASS, N10T, S24T, Q28R, E65K, A72C, D202N, S31 1 G, T335I, D346E, Q349K, T393i, Y422F, N445D, R446G, H468Q,
433 V482T
Q2S, G4C, A6L, T7Q, A8S, N10T, G28R, E65M, A72C, E183K, D202N, P224L, S31 1 G, B320i, D346E, Q349K, T393V, Y422F, P442S, N445D,
434 R446G, H468Q, V482I
Q1 L, G4C, Q28K, E65M, A72C, S86T, E183M, D202N, P224L, S31 1 G, D320I, T335I, D346E, Q349K, T393V, Y422F, (S437-P441 ), N445D,
435 R446G, H468Q, V482T
Q1 L, G4C, S24T, T26I, Q28R, N29Y, G30A, E65V, A72C, E183M, P224L, S31 1 G, D320I, D346E, Q349K, T393V, Y422F, P442S, N445D, R446G,
436 H468L V482I
Q1 L, G4C, Q28R, E65V, A72C, E183M, P224L, S31 1 G, D320I, D346E, Q349K, T393V, Y422F,
437 P442S, N445D, R446G, T457TAAATT, H468L,
N445D, R446G, T457TAAATT, H468L, V482I
G4C, Q28K, E65M, A72C, S86T, K159KCGRNK, E183M, D202N, P224L, S311G, T335I, D346E, Q349K, T393V, Y422F, G434GAAATG, P442S,
466 N445D, R446G, T457TAAATT, H468L, V482I
G4C, Q28K, E65M, A72C, S86T, G151GCGRSG, K159KCGRNK, E183M, D202N, P224L, S311G, T335I. D346E, Q349K, T393V, Y422F,
G434GAAATG, P442S, N445D, R446G, H468L,
467 V482!, T457TAAATT,
Q1L, G4C, Q28K, E65V, A72C. D181N, E183M, D202N, P224L, S311G, T335I, D346E, Q349K, T393V, Y422F, P442S, N445D, R446G, H468Q,
468 V482I
Q1L, G4C, Q28K, E65V, A72C, S86T, D181N. E183K, S192L, D202V, S311G, D320I, D346V, Q349R, T393A, Y422F, P442S, N445D, R446G,
469 H468Q, V482!
Q1 L, G4C, Q28R, E65V, A72C, S86T, D181N, D202N, P224L, S311N, N318Y, D320I, D346A, G349K, T393V, Y422F, N445D, R446G, H468L,
470 V482T
Q1L..G4C, A21T, T26I, Q28R, G30A, E65V, A68T, A72C, D181N, E183M, D202N, T229M, S311 G, A340S, D346E, Q349K, T393V, Y422F, N445D,
471 R446G, H468Q, V482T
In a further aspect, the present invention discloses a nucleic acid encoding the polypeptide of the present invention. The nucleic acid is a polynucleotide sequence (DNA or RNA) which is, when set under control of an appropriate promoter and transferred into a suitable biological host or chemical environment, processed to the encoded polypeptide, whereby the process also includes all post-translational and post-transcriptional steps necessary. The coding sequence can be easily adapted by variation of degenerated base-triplets, alteration of signal sequences, or by introduction of introns, without affecting the molecular properties of the encoded protein. The nucleic acid of the present invention has preferably at least 95 %, more preferably at least 97 %, and most preferably 100% identity to SEQ ID NO: 1. The present invention also provides a vector comprising this nucleic acid and a host transformed with said vector.
The present invention also discloses methods for the production of polypeptides of the present invention and variants thereof in various host cells, including yeast and fungal hosts. It also discloses the use of the resulting strains for the improvement of protein properties by variation of the sequence. Furthermore, the present invention discloses methods for the application of such polypeptides in the hydrolysis of cellulose.
A further aspect of the invention discloses vectors and methods for the production of protein variants of SEQ ID NO: 2, expressing them in yeast and testing their activity on cellulosic material by measuring the released mono- and/or oiigomeric sugar molecules.
The present invention further relates to a method of producing a cellobiohydrolase protein, comprising the steps: a. obtaining a host cell, which has been transformed with a vector comprising the nucleic acid of the present invention;
b. cultivation of the host cell under conditions under which the cellobiohydrolase protein is expressed; and
c. recovery of the cellobiohydrolase protein.
in a particular embodiment, this method of producing a cellobiohydrolase protein is restricted to a method for the production of a celiobiohydrolase protein as provided by this invention, such as having the 1T50 value given above, and/or being one of the specific variants of SEQ ID N02 or SEQ ID NO: 5 as provided with this application and described in detail elsewhere in this specification.
In a more preferred embodiment, the host cell is derived from the group consisting of Saccharomyces, Schizosaccharomyces, Kluyverornyces, Pichia, Hansenula, Aspergillus, Trichoderma, Penicillium, Candida and Yarrowina. The host cell is preferably capable of producing ethanol, wherein most preferred yeasts include Saccharomyces cerevisiae, Pichia stipitis, Pachysoien tannophilus, or a methylotrophic yeast, preferably derived from the group of host cells comprising Pichia methano!ica, Pichia pasto s, Pichia angusta, Hansenula poiymorpha.
It has surprisingly been found thai the polypeptide according to the present invention and variants thereof can be expressed from yeast at high levels. "Yeast" shall herein refer to all lower eukaryotic organisms showing a unicellular vegetative state in their life cycle. This especially includes organisms of the class Saccharomycetes, in particular of the genus Saccharomyces, Pachysoien, Pichia, Candida, Yarrowina, Debaromyces, Klyveromyces, Zygosaccharomyces.
Thus, one aspect of the invention relates to the expression of the claimed polypeptide and variants thereof in yeast. The efficient expression of this fusion protein (SEQ ID NO: 2) and derivative protein variants of SEQ ID NO: 2 from yeast can be achieved by insertion of the nucleic acid molecule of SEQ ID NO: 1 starting from nucleotide position 1 into an expression vector under control of at least one appropriate promoter sequence and fusion of the nucleotide molecule to an appropriate signal peptide, for example to the signal peptide of the mating factor alpha of Saccharomyces cerevisiae.
In a preferred embodiment, the polypeptide of the present invention and variants thereof are expressed and secreted at a level of more than 100 mg/l, more preferably of more than 200 mg/l, particularly preferably of more than 500 mg/l, or most preferably of more than 1 g/l into the supernatant after introduction of a nucleic acid encoding a polypeptide having an amino acid sequence with at least 85% sequence identity to the SEQ ID NO: 2 into a yeast. To determine the level of expression in yeast, the cultivation and isolation of the supernatant can be carried out as described in Example 3.
A further aspect the invention discloses methods for the production of a polypeptide according to the present invention in a filamentous fungus, preferably in a fungus of the genus Aspergillus or Trichoderma, more preferably in a fungus of the genus Trichoderma, most preferably in Trichoderma reesei "Filamentous fungi" or "fungi" shall herein refer to all lower eukaryotsc organisms showing hypha! growth during at least one state in their life cycle. This especially includes organisms of the phylum Ascomycota and Basidiomycota, in particular of the genus Trichoderma, Talaromyces, Aspergillus, Penicillium, Chrysosporium, Phanerochaete, Thermoascus, Agaricus, Pleutrus, Irpex. The polypeptide is expressed by fusion of the coding region of a compatible signal sequence to the nucleic acid molecule starting with nucleotide position 52 of SEQ ID NO: 3, as it was done in SEQ ID NO: 3 with the signal sequence of the Trichoderma reesei CBH1, and the positioning of the fusion peptide under control of a sufficiently strong promoter followed by transfer of the genetic construct to the host ceil. Examples for such promoters and signal sequences as well as techniques for an efficient transfer have been described in the art.
In a further aspect the present invention further relates to a method for identifying a polypeptide or polypeptides having cellobiohydrolase activity, comprising the steps of: a. Generating a library of mutant genes encoding mutant proteins by mutagenesis of a nucleic acid according to claim 9 or a nucleic acid having the sequence defined by SEQ ID NO: 6 (encoding SEQ !D NO: 5), preferably having the sequence defined by SEQ ID NO: 1 ;
b. Inserting each mutant gene into an expression vector;
c. Transforming yeast cells with each expression vector to provide a library of yeast transformants;
d. Cultivation of each yeast transformant under conditions under which the mutant protein is expressed and secreted;
e. incubating the expressed mutant protein with a substrate;
f. Determining the catalytic activity of the mutant protein;
g. Selecting a mutant protein according to the determined catalytic activity.
Specifically, step d. may be performed by utilizing a well-plate format. This format preferably allows the high-throughput performance of the method for identifying polypeptides having cellobiohydrolase activity.
In a preferred embodiment, this method for identifying polypeptides having cellobiohydrolase activity is restricted to a method, wherein the polypeptide(s) having cellobiohydrolase activity
is one or more polypeptide(s) as provided by this invention, such as having the ΓΓ50 value given above, and/or being one of the specific variants of SEQ ID N02 or SEQ ID NO: 5 as below.
Preferably, the steps e. to g. of the method for identifying polypeptides having celiobiohydrolase activity are performed as follows: e. Incubating the expressed mutant protein with celiuiosic material;
f. Determining the amount of released sugar;
g. Selecting a mutant protein according to the amount of released sugar.
In another embodiment, the method for identifying polypeptides having celiobiohydrolase activity comprises the additional steps of: h. Sequencing the selected mutant gene or protein;
i. identifying the amino acid modification(s) by comparing the sequence of the selected mutant protein with the amino acid sequence of SEQ ID NO: 2.
In a particular embodiment, the method is further characterized by measuring the IT50 value of the obtained polypeptide. The IT50 value may be measured as described in the examples below. Optionally, this may be followed by a step of selction of those polypeptides, which display the a desired IT 50 value, such as at least 60 °C, at least 62 °C and the like, Thus, in this particular embodiment, the method is suitable for identifying polypeptides exhibiting celiobiohydrolase activity and an elevated IT50 value, i.e. thermostable polypeptides with celiobiohydrolase activity.
The present invention further provides a method of preparing a polypeptide having celiobiohydrolase activity, comprising the steps: a. Providing a polypeptide having celiobiohydrolase activity comprising an amino sequence having at ieast 54 % sequence identity to the catalytic domain of SEQ ID NO: 2 (SEQ ID NO: 5) (such as preferably, at ieast 60 %, at Ieast 62 %, at Ieast 64 %, at Ieast 66, %, at Ieast 68 % or at Ieast 70 %, whereby at Ieast 68 % or at Ieast 70 % are the most preferred embodiments);
b. Identifying the amino acids of this polypeptide which correspond to the amino acids which are modified with respect to the amino acid sequence of SEQ ID
NO: 2, as identified in step i. of the method for identifying polypeptides having cellobiohydrolase activity; and
c. Preparing a mutant polypeptide of the polypeptide provided in step a. by carrying out the amino acid modification(s) identified in step b. through site- directed mutagenesis.
In one embodyment, preferably, the polypeptide provided in step a. of the method of preparing a polypeptide having cellobiohydrolase activity is a wild type cellobiohydrolase derived from Trichoderrna reesei.
The present invention further provides polypeptides having cellobiohydrolase activity, which are obtainable by the method of preparing a polypeptide having cellobiohydrolase activity according to the present invention.
Furthermore, the present invention provides a composition comprising a polypeptide and/or variants thereof of the present invention and one or more cellulases, e.g. one or more endoglucanases and/or one or more beta-glucosidases and/or one or more further cellobiohydrolases and/or one or more xylanases. "Cellulases" or "Cellulolytic enzymes" are defined as enzymes capable of hydroiysing celluiosic substrates or derivatives or mixed feedstocks comprising celluiosic polymers. Such enzymes are referred to as having "cellulolytic activity", thus being able to hydrotyze cellulose molecules from such material into smaller oligo- or monosaccharides. Cellulolytic enzymes include cellulases and hemicellulases, in particular they include cellobiohydrolases (CBHs), endoglucanases (EGs) and beta-glucosidases (BGLs).
The present invention further provides a polypeptide having cellobiohydrolase activity, wherein the poiypepttde comprises an amino acid sequence having at least 80 %, preferably at least 95%, more preferably at least 98%, even more, preferably at least 99%, and most preferably 99, 6 % sequence identity to SEQ ID NO: 5,. Particularly, it is preferred that such a polypeptide is a polypeptide wherein one or more of the following amino acid residues of the sequence defined by SEQ ID NO: 5 are modified by substitution or deletion of: Q1 , Q2, G4, A6, T7, A8, N10, P12, T15, A21 , G23, S24, T26, T27, Q28, N29, G30, A31 , V32, N37, W40, V41 , G46, Y47, T48, N49, C50, T52, N54, D57, T59, Y60, D64, E65, A68, Q69, A72, V84, S86, S89, S90, K92, S99, Q109, D1 10, DU1 , 11 16, F1 17, K1 18, L1 19, L120, D129, V130, G139, A145, 146, V152, K154, Y155, N157, N158, K159, K163, G167, Q172, F179, 1180, D181 , E183, E187, G188, Q190, S192, S193, N194, 1200, D202, H203, D21 1 , V212, A221 , P224, D228, T229, G231 , T233, M234, S236, T243, Y244, S245, N246, D247, G251 , F260, G266, K275, I276, I277, T280, L290, D293, G294, T295, T297, T299, S301 , K304,
F306, N310, S31 1 , V313, 1314, N318, D320, 1321 , T325, N327, T335, A340, F341 , D343, T344, D345, D346, Q349, H350, A354, K355, A358, Q361 , Q362, G363, M364, V367, D373, Y374, A375, A376, P386, T387, D390, T392, T393, P394, T400, P402, T403, D404, D410, N417, S418, T421 , Y422 and/or one or more insertions after positions G151 , K159
In a preferred embodiment, the polypeptide having ceilobiohydroiase activity with an amino acid sequence having at least 80 % sequence identity to SEQ ID NO: 5 comprises one or more modified amino acid residues of the sequence defined by SEQ !D NO: 5: Thus, the polypeptide given in SEQ ID NO: 5 may, by means of example, be modified as follows: Q1 L, G4, A6G/V, T15S, Q28Q/R, W40R, D64N, E65K/V, A72V, . S86T, K92K/R, V130I/V, V152A/E, Y155C, K159E, D181 N, E183V/K, 194C/R/Y/D/K/I/L/G/Q/S/V, D202Y/N/G, P224L, T243I/R/Y/A/F/Q/P/D/V/W/L/M, Y244F/H, 1277V, K304R, N310D, S31 1 G/N, N318Y, D320V/E/N, T335i, T344 , D346G/A/E/V, G349R/K, A358E, Y374C/P/R/H/S/A, A375D/N Y/R/Q/L/V/E G T/M, T392C/D/K, T393A, D410G, Y422F.
More preferably, the polypeptide .having ceilobiohydroiase activity comprises one or more modified amino acid residues of the sequence defined by SEQ !D NO: 5 as indicated in the following Table 3. As said above, for the specific modifications of SEQ iD NO: 2, two or more of such specific modifications may be combined with each other, such as preferably two or more of the more preferred or most preferred modifications may be combined with each other, and, which is particularly preferred, two pr more of the most preferred modifications according to Table 3 may be combined with each other.
Table 3: Mutations with respect to SEQ ID NO: 5
Most
Position Preferred More Preferred Preferred
Q1 L L L
Q2 P,S P,S S
G4 C C C
A6 G,L,V G,L,V L
T7 Q Q · Q
A8 S S S
N10 T,D T,D T,D
P12 Q
T15 S
A21 sxc S,T,C
G23 A,D.N
S24 T,CtN T.C.N
T26 l,N i,N
T27 S,Q ■ S,Q ■
Q28 L,K,R,N L,K,R,N K,R
N29 T,Y T,Y
G30 A A
A31 S
V32 G
N37 S
W40 R R
V41 T
G46 S
Y47 S,F S,F
T48 A
N49 S
C50 s
T52 D
N54 S
D57 S
T59 M
Y60 H
D64 N N
E65 V,M,K V,M,K V,M,K
A68 T T
Q69 K,R K,R
A Ύ2. v,c v,c c
V84 A
S86 T T T
S89 N
S90 T.F
K92 R R
S99
Q109 R
D110 G,S,N
D111 H,E
S116 V,K,E
F117 Y
K118 A.T.Q A.T.Q
L119 L,l
L120 P,
D129 N
V130 I
G139 S
A145 T
M146 c
RSG GCGR GCGRSG
K154 R
Y155 SAH S.C.H
N157 S
N158 D
K159 E, KCGRNK KCGRI KCGRNK
K163 C
G167 c
Q172 Q
F179 !
1180 N
D181 N N N
E183 V, ,K V,M;K V, ,K
E 87 K
G188 c
Q190 L,K L,K
S192 L,I,P,T,M L,i,P,T.
S193 L,P,T
N194 G,L,l,V,S,C,K,R,D,G,Y G.U S K.R.D Y
I200 N,F
G,I,V,N,F,
D202 G,i,V,N,F,Y G,l,V,N,F,Y Y
H203 R R
D211 G
V212 L
A221 V
P224 L L
D228 N
T229 A,S, A.S.M
G231 D D
T233 S
M234 υ,ν,τ,κ L,I,V,T,K
S236 F,Y F,Y
GAU,V,P,S,C,M,R,D,Q,F,Y, GALl.V.P.S.C .R.D.Q.F.Y,
T243 W W
Y244 H,F
S245 j
N246 S.K.D
D247 N N
G251 R
F260 C
G266 S
K275 E
I276 V
I277 V
T280 A
L290 H
D293 R,H
G294 A
T295 S
T297 N
T299 l,S
S301 c
K304 R.
F306 L,Y
N310 D,E
S31 1 G,D,N G,D,N G,D,N
V313 I
1314 F
N318 i,H,D,Y l,H,D,Y ,D,Y
D320 Ι,ν,Ε,Ν I.V.E.N ,V,N
1321 N
A, I
N327 Y
T335 I !
A340 G.S.T G,S,T
F341 C
D343 A
T344 M M
D345 E
D346 G.A.V.E GAV.E GAV.E
G349 K,R K,R K,R
H350 Y
A354 T
K355 Q Q
A358 E
Q361 R
Q362 G,R,H
G363 P
M364 L, 3
V367 A
D373 E
Y374 A,P,S,C,R,H,D A,P,S,C,R,H,D
A375 G^VJ M.R E^ Y G,L,V,T,C, ,R,D,E,N,Q,Y
A376 T
P386 L, , S
T387 A,S A.S
D390 G,E G,E
T392 S,M,K S,M,K
T393 A,\,V,S A,!,V,S
P394 C
T400 S
P402 S
T403 K
D404 N
D410 G
N417 Y
S418 p
T421 I
Particularly preferred is a polypeptide as defined above, further characterized by comprising a modification of SEQ !D NO: 5, which is a specific modification as given in the following
Table 3a. Each of these polypeptides defines a mutant version of the polypeptide given in SEQ ID NO: 5.
Table 3a: specific mutants with respect to SEQ ID NO: 5:
98 Q1L, G4C, A72C, S89N, D181N, E183K, Q349R
99 Q1L, G4C, E65K, A72C, Q349K
Q1L, Q2P, G4C, W40R, E65 , A72C, S86T, S192L, D202N, H203R,
100
S311 D, D320I, T335I, D346G, Q349K, T392M, Y422F
Q1L, G4C, S24T, T26I, G28R, N29Y, G30A, E65V, A68T, A72C, Y155C,
101 D181 , E183M, Q190K, P224L, S311G, D3201, D346E, Q349K, T393V,
Y422F
102 G4C, A72C, E183K, D202Y, N310D, G349R
103 G4C, A72C, N194I, T243D, Q349R, Y374P, A375Y
104 Q1L, G4C, A72C, D181N, E183K, Q349R
G4C, G28R, A72C, S86T, E183K, P224L, S311N, N318Y, T335I, D346G,
105
Q349R, T393I
106 Q1L, G4C, A72C, D181N, Q349K
107 Q1L, G4C, A72C, D181 , E183K, T243I, N246D, Q349R
Q1L, G4C, G23N, A72C, D110G, 1116V, L119I, D181N, E183K, D211G,
108
D293R, N310D, Q349R, G362R, G363P, 364S
G1L, G4C. Q28R, E65V, A68T; A72C, Y155C, D181N, E183M, P224L,
109
S311G, D320I, D346E, Q349K, T393V, Y422F
110 Q1L, G4C, A72C, S86T, D181 , E183K, Q349R, T393S
Q1L, G4C, G23N, A72C, V84A, D110G, D111H, I116E, F117Y, K118A,
111
D181N, E183K, D293R, T295S, Q349R, M364L
112 Q1 L, G4C, A72C, A145T, H203R, Q349K, T403K
113 OIL, G4C, A72C, D181N, E183K, 234I, Q349R
114 Q1L, G4C. A72C, D181N, E183K, T297N, G349R
G4C, Q28R, E65M[ A72C, S86T, E183K. S192I, H203R, S311N, D346E,
115
G349K, T392M, T393A. Y422F
116 Q1L G4C, A72C. D202N, G349K
117 G1L, G4C, A72C, S99T, D181N, E183K, Q349R
118 G1L, G4C, A72C, I200F, Q349K
119 Q1L G4C, A31S, A72C, D181N, E183 , Q349R
120 Q1L, G4C, Q28L, A72C, D181N, E183K, Q349R
121 Q1L, G4C, A72C, D181N, E183K, T233S. G349R
122 Q1L, G4C, A21T, A72C. D181 , E183K. G349R
123 Q1L, G4C, A72C, D346V, Q349K
124 Q1L, G4C, Y47F. A72C. D181N. E183K. Q349R
125 Q1L, G4C, A72C, D181 , E183K, M234T, Q349R
126 G1L, G4C, A72C, N157S, D181N, E183K, Q349R
127 G4C, A72C, N194Q, T243V, Q349R, Y374P, A375Y
128 Q1L G4C, A72C, D181N, E183K, I314F. Q349R
129 Q1L, G4C, A72C, G349K, T392K
130 Q1L, G4C, A72C, D181Nt E183K, M234V, Q349R
131 01 L, G4C, A21S, A72C, D181N. E183K, Q349R
Q1L, G4C, Q28R, E65V, A72C, D181N. El 83V, D228N, S311 , N318Y,
132
D346E. Q349R, Y422F
133 G4C, A72CS N194C, Q349R,-Y374C
134 0 L, G4C, A72C. D181N, E183K, Q349R, T400S
135 G1L, G4C, T26I, A72C, D181N, E183K, Q349R
136 Q1L, G4C, A72C, D181N, E183 , N3 0D, G349R, T392S
Q1L, G4C, A72C, D129N, D181 , E183K, Q190L, G266S, I276V, Q349R,
137
P386L
138 Q1L, G4C, A72C, D181N, E183K, D202N, G349R
139 G1L G4C, A72C, Y155C, D181N, E183K, G349R
Q1L, G4C, Q28R, E65V, A72C, D181N, E183M, P224L, S31'1G, D320!,
140
D346E, G349K, T393V, Y422F
Q1L, G4C, Q28R, E65V, A72C, G139S, D181N, E183M, P224L, S311G,
170
D320I, D346E, Q349K, T393V, Y422F
Q1L, G4C, Q28R, E65V, A72C, S86T, D181 , E183M, D202N, P224L,
171
S311G, N318Y, T3351, D346E, Q349K, T393V, Y422F
Q1L, G4C, Q28R, E65K, A72C, D181N, S311N, N318Y, D346E, Q349K,
172
T393V, Y422F
G1L, G4C, W40R, A72C, S192L, D202N, H203R, P224L, S311N, D320I,
173
T335I, D346V, G349R, T393I
Q1L, G4C, Q28K, E65K, A72C, E183M, D202N, P224L, T229S, S311G,
174
D320I, T335I, D346V, Q349R, T393V
Q1L, G4C, G28R, G30A, E65M, A72C, D181N, D202N, P224L, S311D,
175
N318Y, D346E, Q349K, T392M, T393V, Y422F
Q1L, G4C, Q28R, E65V, A72C, S68T, E183M, S311 , T335!, D346E,
176
Q349K, T393V, Y422F
Q1L, G4C, Q28K, E65K, A72C, D181 , D202N, S311N, N318Y, T3351,
177
D346E, G349K, T393V, Y422F
178 T243C, A375C, N194C, Y374G
Q1L. G4C, Q28K. E65K, A72C, S86T, E183 , S31 G, D346V, Q349R,
179
T392M, T393V, Y422F
Q1L, G4C, Q28R, E65V, A72C, D181N, E183 , S311G, D346E, Q349K,
180
T393V, Y422F
Q1L, G4C, G28R, E65V, A72C, S86T, D181N, D202N, S311N, N318Y,
181
D320i, Τ335Ϊ, D346E, Q349K, T393I, Y422F
Q1L, G4C, Q28R, E65K, A72C, S86T, E183K, D202N, P224L, S311G,
182
T335I, D346A, Q349K, T393V, Y422F
G1L, G4C, Q28R, E65V, A72C, L120P, D181N, E183M, P224L, S311G,
183
D3201, D346E, G349K, T393V, Y422F
Q1L. G4C, Q28K, E65V, A72C, S86T, E183M, S311 , N318H, D320V,
184
D346V, Q349K, T392M, T393A
. Q1L. G4C, Q28K, E65V, A72C, D202N, H203R, S311G, T3351, D346V,
185
Q349K. T393A
Q1L, G4C, Q28R, E65V, A72C, E183M. S311G, D320L D346E, G349K,
186
T393V, Y422F
Q1L, G4C, G28R, E65K, A72C, D181 , D202N, H203R, P224L, S311D,
187
D346G, G349K
Q L, G4C, Q28R, E65 , A72C, D181N, E183M, S311G, N318Y, D320I,
188
Τ335ί, D346E, Q349K, D390E, T393V, Y422F
Q1L, G4C, T27S, Q28R, E65V, Q69R, A72C, L120P, D181N, E183M,
189
D202N, D247N, S311G, D346E, Q349K, K355Q, T387S, T393V, Y422F
Q1L, G4C, Q28R, E65K, A72C, El 83V, S192T, D202N, S311G, D320V,
190
D346A, G349K
Q1L, G4C, W40R, E65V, A72C, S86T, E183M, D202N. P224L, S311G,
191
D320V, D346E, Q349R, T393!
Q1L G4C, Q28N, E65K, A72C, D181N. E183 , D202N. H203R, S311G,
192
N318Y, D320N, Q349R, T393V, Y422F
Q1L, G4C, Q28R, V41T, G46S, Y47S, T52D, E65V, A72C, D181N, P224L,
193
S311D, N318Y, D320N, D346A, Q349K, T392M; T393f, Y422F
G1L, G4C, Q28R, E65K, A72C, D181N, E183M, P224L. S311G, D320!, 94
D346E, G349K, T393V, Y422F
QtL, G4C, Q28R, W40R, A72C, S86T, D181N, S192T, D202N. P224L,
195
S311G, N318Y, D320V, D346E, Q349K, T392M, T393I
G1L, G4C, A21T, T26I, Q28R, G30A, E65V, A68T, A72C, Y155C, D181N,
196 Q190K, D202N, P224L, T229M, S311G, N318Y, D320i, T335I, D346E,
Q349K, T393V, Y422F
197 Q1L, G4C, Q28K, W40R, A72C, S86T, D181N, E183 , S192I, D202Y,
Q1L, G4C, Q28K, E65K, A72C, S86T, D181N, D202N, P224L, S311D,
306
N318Y, D320N, D346A, Q349R, T392M, T393I, Y422F
Q1L, G4C, Q28R, E65V, A72C, D181N, D202N, S311 , D320I, T335I,
307
D346E, G349K, T393V, Y422F
Q1L, G4C, Q28K, E65K, A72C, D181N, D202N, P224L, S311G, N318Y,
308
T335i, D346E, Q349K, T393V, Y422F
Q1L, G4C, Q28R, E65V, A72C, D181N, E183M, D202N, P224L, S311G,
309
D320I, D346E, Q349K, T393V, Y422F
Q1L, G4C, Q28R, E65V, A72C, D181N, E183 , D2Q2N, S311N, T335I,
310
D346A, Q349K, T393V, Y422F
Q1L, G4C, Q28K, E65K, A72C, S86T, E183M, P224L, S311G, N318Y,
311
D320I, T335I, D346E, Q349K, T393V, Y422F
Q1L. G4C, A21T, T26l, Q28R, G30A, E65V, A68T, A72C, Y155C, D181 ,
312 Q190K, D202N, T229 , S311G, D320I, T335I, D346E, Q349K, T393V,
Y422F
Q1L, G4C, Q28K, E65M, A72C, D181N, E183M, S311G,T335i, D346E,
313
G349K, T393V, Y422F
Q1 L, G4C, Q28R, E65V, A72C, D181 N, E183M, P224L, S311 G, D320I,
314
D346E, Q349K, T393V, D404N, Y422F
Q1L, G4C, Q28R, E65V, A72C, E183M, D202N, P224L, S311G, N318Y,
315
T335I, D346E, Q349K, T393V, Y422F
Q1L, G4C, Q28R, E65V, A72C, D181N, E183M, P224L, T280A, S311G,
316
D320I, D346E, Q349K, T393V, Y422F
Q1L, G4C, Q28R, E65V, Q69R, A72C, D181 , E183M, P224L, S31 G,
317
D320I, D346E, Q349K, T393V, Y422F
Q1L, G4C, Q28R, E65V, A72C, D181 N,. E183M, P224L, K275E, S311G,
318
D320I. D346E, Q349K, T393V, Y422F
Q L, G4C, Q28K, E65V, A72C, E183K, D202 . P224L, S311N, D320!,
319
D346E, Q349K, T393V, Y422F
Q1L, G4C, Q28K, E65V. A72C, D1S N, E183 . S311G, N318Y, D320I,
320
D346A, Q349K, T393L Y422F
Q1L, G4C. S24T, Τ26Ϊ, Q28R, N29Y, G30A, E65V, A72C, D181N, E183M,
321
P224L. S311G, D320I, D346E, G349K, T393V, Y422F
Q1L, G4C. Q28R, E65 , A72C, E183M, S311G, D320I, D346A, Q349K,
322
T393V, Y422F
Q L, G4C, Q28R, E65V, A72C, D181N, E183M, D202N. S311G, D346E,
323
Q349 , T393I, Y422F
Q1L, G4C, Q28R, E65V, A72C, E183M, P224L, S3 1G, D320I, D346E,
324
Q349K, T393V, Y422F
Q1L, G4C, Q28K, E65K, A72C, D181 , E 83M, S311G, N3 8Y. D320I,
325
T335I, D346E, Q349K, T393V, Y422F .
Q1L, G4C, Q28R, E65V, A72C, S311G, N318Y, D320I, T335I, D346E,
326
Q349K, T393V, Y422F
Q1L, G4G, S24C, Q28R, G30A, E65V, A72C, Y155C, D181 , Q190K,
327
D202N, P224L, S311G, T335i, D346E, G349K, D390E, T393V, Y422F
Q1L, G4C, G28R, E65V, A72C, D181 , E183 , P224L, S31 G, D320I,
328
D346E, Q349K, T393V, P402S, Y422F
Q1L, G4C, Q28R, E65K, A72C, E183 , D202N, P224L, S311N, N318Y,
329
T335I, D346E, Q349K, T393V, Y422F
Q1L. G4C, A21T, T26I, Q28R. N29Y, E65V, A72C, Y155C, D181 , D202N,
330
P224L, 234T, S311G, D320I, D346E, Q349K, D390E, T393V, Y422F
Q1 L, G4C, Q28R, E65K, A72C, S86T, D202N, P224L, S311 D, D320N,
331
T335I, D346V, Q349K, T392M, T393V, Y422F
Q1L, G4C, G28R, E65V, A72C, S86T, E183K, D202N, S311G, N318Y,
33S
D320I, D346A, G349K, T393V, Y422F !
Q1L, G4C, 40R, E65M, A72C, S86T, E183V, S192L, D202I, H203R,
333
P224L, S311G, N318Y, D320V, D346A, Q349K
Q1L, G4C, Q28R, E65V, A72C, D181 , E183 , P224L, S311G, D346E,
334
Q349K, T393V, Y422F
Q1L, G4C, Q28R, E65V, A72C, K118Q, D181N, E183M, P224L, D247N,
335
S311G, D320I, D346E, Q349K, T393V, Y422F
Q1L, G4C, Q28R, E65V, A72C, D181N, E183M, D202N, P224L, S311 ,
336
D3201, D346E, G349K, T393V, Y422F
Q1L, G4C, Q28R, E65V, A72C, S86T, D202N, P224L, S311G, N318Y,
337
T335!, D346E, Q349K, T393V, Y422F
Q1L, G4C, Q28K, E65M, A72C, D181 , E183M, D202N, S311G, N318Y,
338
D346A, G349K, T393V, Y422F
Q1L, G4C, Q28R, E65V, A72C, D181N, E183M, P224L, S311G, D320I,
339
D346E, Q349K, T393V, Y422F, P454PVRPQP
Q1L, G4C, Q28R, A72C, D181N, E183V, S192M, D202N, P224L, S3 1D,
340
N318Y, D320N, D346E, G349R, T393V, Y422F
Q1L, G4C, Q28R, A72C, S86T; D181 , S192L, D202N, P224L, S311G,
341
N318Y, D320V, T335I, D345E, D346A, Q349K, Y422F
Q1L, G4C, Q28R, E65V, A72C, S86T, D181N, E183K, P224L, S311G,
342
N318Y, D320I, D346A, Q349K, T393V, Y422F
Q1L, G4C, Q28R, G30A, E65V, A68T, A72C, D181 , E183M, D202N,
343
P224L. D346E, Q349K, T393V, Y422F
Q1L, G4C, Q28R, E65V, A72C: K92R, L120P, D181 , E183M, D202N,
344 S236F, T280A, S311G, D346E, Q349K. K355Q. T387S, T393V, P402S,
D404N, Y422F
Q1L, G4C, Q28R, E65V, A72C, D181N, D202N, S236F, 33118,1335!,
345
D346E, G349K, T387S, T393V, Y422F
Q1L, G4C, Q28R, E65M. A72C, D181 , E183K, D202N, P224L, S311G,
346
D320I, D346E, Q349K, T393V, Y422F
Q1L, G4C, A21T, T26I, Q28R, G30A. E65V, A68T. A72C, Y155C, D181N,
347
E 83 . Q190 , D202N, S3 1G. D320!. D346E, Q349K, T393V, Y422F
Q1L, G4C, Q28R, E65V, A72C, D181N, D202N. S311G, T335L D346A.
348
Q349K, T393I, Y422F
Q1L, G4G, Q28R, E65V, A72C, D181N, E183M, P224L. D247N, S311G,
349
D320I. D346E, Q349K, T387S, T393V, Y422F
Q1L, G4C, Q28R, E65V, A72C, D181N. D202N, P224L, S311G, D346A,
350
Q349K, T393V. Y422F
G1L, G4C, Q28R, E65V, A72C, K92R, K118G, D181N, E183M, D202N,
351 S236F, S311N, N318I, D346E, Q349K, K355Q, T387S, T393V, D404N,
Y422F
Q1L, G4C, T27S, Q28R. E65V, Q69R, A72C, K118Q, D181 , E183 ,
352 D202N, D247N, 1277V, S311G, T3351, D346E, Q349K, K355Q. T393V,
Y422F
Q1L, G4C.-Q28R, G30A, E65V, A72C, Y155C, D181N, E183M, D202N,
353
234T, S311G, D346E. Q349K, T393V, Y422F
Q1L, G4C, G28R, E65V, Q69R, A72C, K92R, D181N, D202N, D247N,
354 1277V. S311G, N318D, T335I, D346E, Q349K, K355Q, T387S, T393V,
Y422F
Q1 L, G4C, T27S, G28R, E65V, Q69R, A72C, D181 N, D202N, S236F,
355
I277V, S311G, T335I. D346E, Q349K, K355Q, T387S, T393V; Y422F
Q1L, G4C, N10D, Q28R, E65V, G69R, A72C, K92R, K118Q, D181N.
356
■ E183M, D202N, S311G, T335i, D346E, Q349K, T387S, T393V, Y422F
Q1L, G4C, A21T, Q28R, G30A, E65V, A72C, Y155C, D181 , E183M,
357
D202N, M234T, S311G, T335I, D346E, Q349K, T393V, Y422F
358 Q1L, G4C, G28R, E65V, A72C, D181 , E183M, P224L, S311G, D320!,
D346E, Q349K, T393V, Y422F, T457TAAATT
Q1L, G4C, T26I, Q28R, E65V. A68T, A72C, Y155C, D181N, Q190K,
359 D202N, P224L, M234T, S311G, D320I, D346E, Q349K, D390E, T393V,
Y422F
Q1L, G4C, Q28K, E65V, A72C, S86T, E183K, S192L, D202N, D320N,
360
T335I, D346A, Q349R, T393A, Y422F
Q1L, G4C, Q28R, E65V, A72C, D181 , E183M, P224L, S236F, S311G,
361
D320I, D346E, Q349K, T393V, Y422F
Q1L, G4C, T26I, Q28R, E65V, A68T, A72C, Y155C, D181 , D202N,
362
234T, S311G, T335I, D346E, Q349K, T393V, Y422F
G1L, G4C, A21T, T26I, Q28R, N29Y, E65V, A72C, Y155C, D181 , E183M,
363 D202N, P224L, 234T, S311G, D320I, T335I, A340S, D346E, Q349K,
D390E, T393V, Y422F
Q1L, G4C, Q28R, E65K, A72C, D202I, P224L, S311G, N318Y, D320V,
364
T335I, D346A, Q349R, T392M, T393A
Q1L, G4C, E65M, A72C, S86T, E183V, D202I, P224L, S311G, N318Y,
365
D320V, D346A, Q349K
G1L, G4C, N10D, Q28R, E65V, A72C, K92R, D181N, E183 , D202N,
366
S311G, D346E, Q349K, T387S, T393V, Y422F
Q2S, G4C, A6L, T7Q, A8S, N10T, Q28K, E65M, A72C, S86T, E183M,
367
D202N, P224L, S311G, D320I, T335I, D346E, G349K, T393V, Y422F
Q2S, G4C. A6L, T7G, ASS, N10T, S24T, T26I. Q28R, N29Y, G30A, E65V,
368
A72C, E183M, P224L, S311G, D320i, D346E, Q349K, T393V, Y422F
Q1L, G4C, G28R, E65V, A72C, K92K D181.N, E183 , P224L, I277V,
369
S311G, D320I, D346E, Q349K, T393V, Y422F
Q2S, G4C, A6L, T7Q, A8S; N10T, Q28R, E65V, A72C, E183M, P224L,
370
S311G, D320I, D346E. Q349K, T393V, Y422F
Q2S, G4C, A6L, T7G, A8S. N10T, Q28R, E65V, A72C, G151GCGRSG,
371
E183 , P224L, S311G. D320I, D346E, G349K, T393V, Y422F
Q2S, G4C, A6L, T7Q, ASS, N10T, G28R, E65V, A72C, K159KCGRNK,
372
E183M, P224L, S311G, D3201, D346E, G349K, T393V, Y422F
Q2S, G4C, A6L, T7Q, A8S, N10T, G28K, E65K, A72C, E183M, S311G,
373
N318Y, D320I, T335S, D346E, Q349K, T393V, Y422F
Q2S, G4C, A6L, T7Q, A8S, N10T, G28K, E65V. A72C, E183 . D202N,
374
P224L S311G, T335I, D346E, Q349 , T393V, Y422F
Q2S, G4C, A6L, T7Q, A8S, N10T, G28R, E65 , A72C, S86T, E183 ,
375
S311 , N318Y, T335I, D346E, Q349K, T393V, Y422F
Q2S, G4C, A6L, T7Q, A8S, N10T, Q28R, E65M, A72C, E183M, S311G,
376
N318Y, D346E, Q349 , T393V, Y422F
G2S, G4C, A6L, T7Q, ASS, N10T, Q28R, E65V, A72C, E183M, D202N,
377
P224L, S311G, N318Y, T335I, D346E, G349K, T393V, Y422F
Q2S, G4C, A6t, T7Q, A8S, N10T, Q28R, E65V, A72C, E 83M, P224L,
378
S311G, N318Y, T335I, D346A, Q349K, T393V, Y422F
Q2S, G4C, A6L, T7G, A8S, N10T, Q28R, E65V, A72C, P224L, S311D,
379
N318Y, D320N, D346A, G349K, T392M, T393I, Y422F
G2S, G4C, A6L, T7Q, A8S, N10T, Q28R, E65K, A72C, S311N, N318Y,
380
D346E, Q349K, T393V, Y422F
Q2S, G4C, A6L, T7Q, A8S, N10T, Q28K, 29Y, E65K, A72C, S311G,
381
T3351, D346E, Q349K, T393V, Y422F :
G2S, G4C, A6L, T7G, A8S.-N10T, S24T, T26!, Q28R, N29Y, G30A, E65V,
382 A68T, A72C, E183M, Q190K, P224L, S311G, D320I, D346E, Q349K,
T393V, Y422F '
Q2S. G4C, A6L, T7Q, A8S, N10T. S24T, T26I, G28R, N29Y, G30A, Y47F,
383 E65V, A68T, A72C, E183M, Q190K, P224L, T229M, G231D, 234T,
S3 1G, D320I, A340S, D346E, Q349K, D390E, T393V, Y422F
Q1L, G4C, A72C, S86T, D181 , E183K, D202V, P224L, S311G, D320V,
384
D346E, G349R, T393A, Y422F
Q1L, G4C, Q28R, E65V, A72C, K159CGRNKE183M, P224L, S311G, D320I,
385
D346E, Q349K, T393V, Y422F
Q2S, G4C, A6L, T7Q, A8S, N10T, S24T, Q28R, E65K, A72C, D202N,
386
S311G, T335I, D346E, Q349K, Τ393ί, Y422F
G2S, G4C, A6L, T7G, A8S, N10T, Q28R, E65M, A72C, E183K, D202N,
387
P224L, S311G, D320i, D346E, Q349K, T393V, Y422F
Q1L, G4C, Q28K, E65M, A72C, S86T, E 83M, D202N, P224L, S311G,
388
D320I, T335I, D346E, G349K, T393V, Y422F
Q1L, G4C, S24T, T26I, Q28R, N29Y, G30A, E65V, A72C, E183M, P224L,
389
S311G, D320I, D346E, Q349K, T393V, Y422F
Q1L, G4C, Q28R, E65V. A72C, D181N, E183M, P224L, S311G, D320I,
390 D346E, Q349K, T393V, Y422F, Q1L, G4C, G28R. E65V, A72C, E183M,
P224L, S311G, D320i, D346E, Q349K, T393V, Y422F
Q1L, G4C, Q28R, E65V, A72C, G151GCGRSG, E183M, P224L, S311G,
391
D320I, D346E, Q349K, T393V, Y422F
Q1L, G4C, Q28R, E65K, A72C, S311N, N318Y, D346E, G349K, T393V,
Y422F
Q1L, G4C, S24T, T26I, Q28R, N29Y, G30A, E65V, A68T, A72C, E183M,
393
Q190K, P224L, S311G, D3201, D346E, G349K, T393V, Y422F
Q1L, G4C, S24T, T26!, Q28R, N29Y, G30A, Y47F, E65V, A68T, A72C,
394 E183M, G190K, P224L, T229M, G231D, M234T, S311G, D320I, A340S,
D346E, Q349K, D390E, T393V, Y422F
Q1L, G4C, A21T, T26I, Q28R, N29Y, G30A, E65V, A68T, A72C, D181N,
395 G190K, D202N, T229M, M234T, S3 1 G, D320I, A340S, D346E, Q349K.
D390E, T393V, Y422F
Q1L, G4C, N10D, T27S, Q28R, E65V, A72C, K92RS K118Q, D181N,
396 D202N, S236F, I277V, S311G. D346E, Q349K, K355Q, T387S, T393V,
D404N, M417Y, Y422F
G1L, G4C, A21T, T26i, G28R, G30A, E65V, A68T, A72C, Y155C, D181N,
397 Q190K, D202N, P224L, T229M, S311N, D3201, D346E, Q349K, T393V,
Y422F
Q1L G4C, N10D, T27S. G28R, E65V, A72C, K92R, K118Q, D181N,
398 E183M, D202N, D247N, S311G, D320I, T335!. D346E: Q349K, T393V,
Y422F
Q1L, G4C, T26i, Q28R, G30A, E65V, A72C. Y155C, D181N, D202N.
399
T229M, G231D, S311G, T335!, D346E, Q349K, T393V, Y422F
Q1L, G4C, S24R, T26I, Q28R, G30A, E65V, A72C, D181N, E183M, D202N,
400
P224L, S311N, T335I, D346E,-Q349K, D390E, T393V, Y422F
G1L, G4C, N10D,T27S, Q28R, E65V, G69R, A72C, D181N, E183M,
401 D202N, S236F, D247N, I277V, S311 , T335I, D346E, G349K, T387S,
T393V, N417Y, Y422F
Q1L, G4C, A21T, Q28R, E65V, A72C, Y155C, D181 , D202N, P224L,
402
S311G, N318Y, D346E, G349 , D390E, T393V, Y422F
Q1L, G4C, T26l, Q28R, N29Y, E65V, A68T, A72C, Y155C, D181 , E183M,
403
D202N, P224L, M234T, S311N, N318Y, D346E, Q349K, T393V, Y422F
Q1L, G4C, A21T, T26I, Q28R, N29Y, E65V, A68T, A72C, Y155C, D181N,
404 D202N, P224L. T229M, M234T, S311G, N318Y, D346E, Q349K, T393V.
Y422F . .
Q1L, G4C, N10D, Q28R, E65V, A72C, K92R, K118Q, D181N, E183M,
405 D202N, P224L, S236F, D247N, F306L, S311G, D346E, Q349K, K355G,
T393V, D404N, N417Y, Y422F
Q1L, G4C, N10D, Q28R, E65V, A72C, K92R, K118Q, D181N, E183M,
406
D202N, S236F, D247N, S311G, Ν318ί, T335I, D346E, G349K, K355Q,
T393V, Y422F
G4C, Q28K, E65M, A72C, S86T, G151 GCGRSG, E183 , D202N, P224L,
407
S31 1 G, T335I, D346E, Q349K, T393V, Y422F
G4C, Q28K, E65M, A72C, S86T, K159KCGRNK, E183 , D202N, P224L,
408
S31 1 G, T3351, D346E, Q349K, T393V, Y422F
G4C, Q28K, E65 , A72C, S86T, G151 GCGRSG, K159KCGRNK, E183M,
409
D202N, P224L, S31 1 G, T335I, D346E, Q349K, T393V, Y422F
Q1 L, G4C, Q28K, E65V, A72C, D181 N, E183M, D202N, P224L, S31 1 G,
410
T335I, D346E, Q349K, T393V, Y422F
Q1 L, G4C, Q28K, E65V, A72C, S86T, D181 N, E183K, S192L, D202V,
41 1
S31 1 G, D320I, D346V, Q349R, T393A, Y422F
Q1 L, G4C, Q28R, E65V, A72C, S86T, D181 N, D202N, P224L S31 1 ,
412
N318Y, D320I, D346A, Q349K, T393V, Y422F
Q1 L, G4C, A21T, T261, Q28R, G30A, E65V, A68T, A72C, D181 N, E183M,
413
D202N. T229M, S31 1 G, A340S, D346E, Q349K, T393V, Y422F
Furthermore, the present invention provides a polypeptide having celiobiohydro!ase activity comprising an amino acid sequence having at least 85%, preferably at least 95%, more preferably at least 98%, even more preferably at least 99%, and most preferably 100% sequence identity to SEQ ID NO:12 wherein one or more of the following amino acid residues of the sequence defined by SEQ !D NO: 12 are modified by substitution or deletion: Q1 , S2, P12, T15, S21 , G23, T26, Q28, T29, G30, V32, N37, W40, T48, C50, N54, L60, E65, K69, V84: S90, D1 14, E 19, F120. T121 , L122, L123, D132, V133, G142, S148, M149, V155, Y158, N161 , T162, K166, G170, Q175, F182, 1183, G191 , I203, D214, 1215, A224, T231 , G234, I237, S248, G254, W263, G269. L282, T285, G298, Y303, N307, G308, T310, Ξ317, L318, S322, N324, G340, S341 , D345, S357, M360, V363, D369, A372, P382, S388, T389, P390, T399, S400, Q406, N413, F423, P425, !426, G427, T429, P432, G435, N436, P437, G439, N441 , R442, T444, T445, T446, T447, R449, P450, A451 , T452, T453, S456, S457, P458, G463, P464, S467, H459, C468, G470, G472, S474, P476, V478, C479, S481 , G482, T484, V487, L488, N489, Y491 , Y492, Q494, C495, L496. Preferably, this polypeptide comprises an amino acid sequence with at least 54 %, preferably at least 56 %, more preferably at least 58 %, particularly preferably at least- 60 %, such as at least 62 %, particularly at least 64 %, such as at least 66 %, and most preferably preferably at least 68 % sequence identity to SEQ ID NO: 5. This polypeptide also preferably lies within the embodiment as defined above, wherein the polypeptide is temperature stable, i.e. has a high IT50 value, such as defined above, for example 62 °C or more, as described above (for more embodiments, see above, in relation to the definition of variants of SEQ ID NO: 5). The skilled person will recognize that SEQ ID NO 12: has about 68 % identity with SEQ ID NO: 5. Therefore, a polypeptide derived from the polypeptide defned by SEQ ID NO: 12, which is differs from the polypeptide defined by SEQ SD NO: 12 for example by exchange of one amino acid for another, such as Q1A, for example, is a polypeptide which also has a significant degree of identity with SEQ ID: NO: 5, i.e. at least 66 % or more, as defined above. Thus, the skilled person can readily recognize the common inventive concept of this
invention, particular when taking into consideration the temperature stability of the polypeptides of this invention.
In a preferred embodiment, the polypeptide having cellobiohydrolase activity comprises an amino acid sequence having at least 85 % sequence identity to SEQ ID NO: 12, wherein the polypeptide has the amino acid sequence of SEQ ID NO: 12 wherein one or more of the following amino acid residues are modified by substitution or deletion:Q1 , S2, P12, T15, S21 , G23, T26, Q28, T29, G30, V32, N37, W40, T48, C50, N54, L60, E65, K69, V84, S90, D1 14, E1 19, F120, T121, L122, L123, D132, V133, G142, S148, M149, V155, Y158, N161 , T162, K166, G170, Q175, F182, 1183, G191 , I203, D214, 1215, A224, T231 , G234, I237, S248, G254, W263, G269, L282, T285, G298, Y303, N307, G308, T310, E317, L318, S322, N324, G340, S341 , D345, S357, M360, V363, D369, A372, P382, S388, T389, P390, T399, S400, Q406, N413, F423, P425, I426, G427, T429, P432, G435, N436, P437, G439, N441 , R442, T444, T445, T446, T447, R449, P450, A451 , T452, T453, S456, S457, P458, G463, P464, S467, H459, C468, G470, G472, S474, P476, V478, C479, S481 , G482, T484, V487, L488, N489, Y491 , Y492, Q494, C495, L496
74
SH EET I NCORPORATED BY REFERENCE (RU LE 20.6)
invention, particular when taking into consideration the temperature stability of the polypeptides of this invention.
In a preferred embodiment, the polypeptide having cellobiohydrolase activity comprises an amino acid sequence having at least 85 % sequence identity to SEQ ID NO: 12, wherein the polypeptide has the amino acid sequence of SEQ ID NO: 12 wherein one or more of the following amino acid residues are modified by substitution or deletion:Q1 , S2, P12, T15, S21 , G23, T26, Q28, T29, G30, V32, N37, W40, T48, C50, N54, L60, E65, K69, V84, S90, D1 14, E1 19, F120, T121 , L122, L123, D132, V133, G142, S148, M149, V155, Y158, N161 , T162, K166, G170, Q175, F182, 1183, G191 , I203, D214, 1215, A224, T231 , G234, I237, S248, G254, W263, G269, L282, T285, G298, Y303, N307, G308, T310, E317, L318, S322, N324, G340, S341 , D345, S357, M360, V363, D369, A372, P382, S388, T389, P390, T399, S400, Q406, N413, F423, P425, S426, G427, T429, P432, G435, N436, P437, G439, N441 , R442, T444, T445, T446, T447, R449, P450, A451 , T452, T453, S456, S457, P458, G463, P464, S467, H459, C468, G470, G472, S474, P476, V478, C479, S481 , G482, T484, V487, L488, N489, Y491 , Y492, Q494, C495, L496
74bis
Another aspect of the invention relates to the application of the isolated polypeptides and variants thereof of the present invention for the complete or partial hydrolysis of cellulosic material. The celiulosic material can be of natural, processed or artificial nature. "Cellulosic material" herein sha!l be defined as all sorts of pure, non-pure, mixed, blended or otherwise composed material containing at least a fraction of β-Ι -4-linked D-glucosyl polymers of at least 7 consecutive subunits. Prominent examples of cellulosic materials are all sort of cellulose containing plant materials like wood (soft and hard), straw, grains, elephant grass, hey, leaves, cotton and materials processed there from or waste streams derived from such processes. Cellulosic material used in an enzymatic reaction is herein also referred to as cellulosic substrate.
The hydrolysis of the cellulose material can be a sequential process following cellobiohydroiase production or contemporary to the production in the yeast cell (consolidated bioprocess). The expression of ceilulolytic enzymes in yeast is of special interest due to the ability of many yeasts to ferment the released sugars (C6 or C5) to ethanol or other metabolites of interest.
A further embodiment of the invention thus relates to the application of whole cells expressing the polypeptide or variant thereof according to the present invention for the processing of cellulosic materials.
In a particular embodiment, the present invention discloses the use of a polypeptide and variants thereof or the composition of the present invention for the enzymatic degradation of cellulosic material, preferably lignocel!ulosic biomass, and/or for textiles processing and/or as ingredient in detergents and/or as ingredient in food or feed compositions.
Examples
Example 1 : Preparation of Pichia pastoris expression plasmid
Expression plasmids for the constitutive expression of protein from transformed Pichia pastoris hosts are prepared by assembly of an expression cassette consisting of a Pichia pastoris gyceraldehyde phosphate dehydrogenase (GAP) promoter, a . Saccharomyces cerevisiae SPa (mating factor alpha signal peptide), a multiple cloning site (MCS) and the 3'- GAP-terminator sequence. For selection purposes a kanamycine resistance gene is used under control of the EM7 or TEF promoter for bacterial or yeast selection purposes, respectiveiy. The resulting plasmid vectors are designated as pV1 (Figure 1 ) and pV2 (alternative MCS) Transformation and expression cultivation are done essentially as
75
described by Waterham, H. R., Digan, M. E., Koutz, P. J., Lair, S. V., Cregg, J. M. (1997). Isolation of the Pichia pastoris giyceraldehyde-3-phosphate dehydrogenase gene and regulation and use of its promoter. Gene, 186, 37-44 and Cregg, J.M.: Pichia Protocols in Methods in Molecular Biology, Second Edition, Humana Press, Totowa New Jersey 2007.
Example 2: Construction of Pichia pastoris expression constructs for CBHI sequences
CBHI genes of Trichoderma viride (CBH-f), Humicola grisea (CBH-d), Thermoascus aurantiacus (CBH-e), , Talaromyces emersonii (CBH-b), ,and fusions of the celiulose binding domain of Trichoderma reesei CBHI with the Talaromyces emersonii CBHI (CBH-a) or the Humicola grisea CBHI (CBH-g) are amplified using the oiigo nucleotide pairs and templates (obtained by gene synthesis) as given in the Tabie 4. The fusion gene encoding SeqID. NO. 2 is generated by overlap extension PCR using the PCR-Fragments generated from SeqID NO. 5 and 1 1. Phusion DNA polymerase (Finnzymes) is used for the amplification PCR.
Table 4: Primers and templates for the amplification of CBH-a, CBH-b, CBH-d, CBH-e, CBH-f and CBH-g
76
CBH-a Ta!aromyces GAGGCGGAAGCACCC GGAGACGCAGAGCC 5a+5b emersonii CBHI TCTcagcaggccggcacggc CTTAtcattaatggtggtggt SEQ!D fusion protein gacggc gatgatgag NO. 2
CBH-g Humicola grisea aggcggaagcatgctcgcagc ggattacctgttaagcttccaat SEQID parti CBHI fusion aggctggtacaattactgc tggtccgaatctgatgtt NO. 19 fragment parti
CBH-g Trichoderma accaattgg aagcttaacag gta atcttgcaggtcgacttatcatt SEQID part2 reesei CBHI atccttcaggtggtaatcc aatgatgatgaigatggtgtgc NO. 1 1 binding domain a
fusion fragment
part2
CBH-g Humicula grisea aggcggaagcatgctcgcagc atcttg cag gtcgacttatcatt 6a+6b fusion protein aggctggtacaattactgc aatgatgatgaigatggtgtgc SEQID a NO. 15
PCR fragments of expected length are purified from agarose gels after electrophoresis using the Promega® SV PCR and Gel Purification kit. Concentration of DNA fragments are measured on a Spectrophotometer and 0,2pmol of fragments are treated with 9U of T4-DNA polymerase in the presence of 2,5mM dATP for 37,5. min at 22,5°C and treated fragments are annealed with T4-DNA-Polymerase/dTTP treated S ai-linearized pV1 plasmid DNA and afterwards transformed into chemically competent Escherichia coli Top10 ceils. Deviant from the described procedure the product generated by the primer pair according to the table lane 1 1 encoding the Humicula grisea fusion protein fragments are cloned via the introduced Sph\ and SaH site to pV2. Transformants are controlled by sequencing of isolated plasmid DNA.
Example 3: Expression of CBHi Genes in Pichia pastoris
Plasmids of Example 2 are transformed to electro-competent Pichia pastoris CBS 7435 cells and transformants are used to inoculate cultures in YPD medium containing 200mg/l, which are incubated for 5 days at 27°C in a rotary shaker at 250 rpm. Culture supernatants were separated by centrifugation at 5000xg for 30 minutes in a Sorvall Avant centrifuge. Supernatants were concentrated on spin columns with cut-off size of 10kDa. Protein pattern of such concentrated supernatants were analyzed by SDS-PAGE (Laernmii et al.) and gels were stained with colloidal Commassie blue stain. Enzymatic activity was determined by incubation of the supernatant with 2mM solutions of p-nitrophenyl-p-D-iactoside or 200μίνϊ solutions of 4-methy!-umbellsferyi^-D-iactoside in 50 mM sodium acetate buffer {pH 5) for 1
77
hour. The reaction was stopped my addition of equal volumes of 1 sodium carbonate solution and determination of released p-nitrophenol or 4-methyi umbelliferone by measurement of the absorbance at 405 nm or the fluorescence at 360 nm/ 450 nm excitation/emission.
Example 4: Genome integration and expression of the Talaromvces emersonii CBHI- 7". reesei CBHH-CBD fusion sequence in Pichia pastoris
Table 5
The DNA-fragment of the fusion gene are generated by 2 step overlap extension PGR using the oiigo nucleotide pairs and synthetic templates as indicated in the Table 4 (of Example 2). T4-DNA polymerase treated full length fragment was annealed with the linear pV3 vector fragment by slowly reducing the temperature from 75°C to 4°C. The pV3 plasm id contains a fusion of the mating factor alpha signal peptide to a multiple cloning site, situated downstream the of a Pichia pastoris AOXI promoter. Transformation of the annealed solution into chemical competent E. coli ceils yields transformants, which are selected by their Teocine resistance checked for containing expected construct piasmid by restriction analysis and sequencing. pV3-CBH-a piasmid preparations are linearized with SacS and approximately 1 μg of linear DNA-fragments are transformed to Pichia pastoris electrocompetent cells. 94 Transformants from YPD-Zeocin plates are afterwards checked for expression by .cultivation in 500μΙ 96-deepwel! Plate cultures in BMMY-medium containing 1 % methanol and 0.5 % methanol was fed every 24h for 5 days (350 rpm/27°C; humidified orbitai shaker with 2,5 cm amplitude . Supernatants are tested for activity on 4-MUL and clones with highest expression levels are selected and again evaluated under same conditions.
78
For fermentation in an Infors Multifors bioreactor the strain producing the highest enzyme concentration is selected. A YPD-Zeocin (1 OOg/l) pre-culture is chosen for inoculation of Mineral medium consisting of phosphate-buffer, magnesium sulphate and chloride, trace elements/biotin and glycerol, with pH calibration using ammonia and phosphoric acid. After metabolism of the batch glycerol (2%) additional glycerol feed is maintained for 1 day before the feed is changed to methanol to shift to inductive conditions for the AOXi promoter. Under these conditions the fermentation is kept for 5 days. Cells are separated from the fermentation liquid by centrifugation at 5000xg for 30 minutes. -Supernatants are analyzed for total Protein using Bradford Reagent and BSA Standards (Biorad). SDS-PAGE / Coomassie Brilliant blue staining is used to analyze the Protein Pattern on the SDS-PAGE.
Example 5: Trichoderma reesei expression vector construct
Sbfl/Swal digested pSCMBI OO plasmid DNA was transformed into Trichoderma reesei SCF41 essentially as described by Penttiia et al 1997. 1 0pg of linear DNA was used for the transformation of 107 protoplasts. Selection of transformants was done by growth of the protoplasts on andel's Andreotti media plates with overlay agar, containing hygromycine as selective agent (100mg/l). Transformants were further purified by passage over sporolation media plates and re-selection of spores on hygromycin media. From re-grown myce!ia genomic DNA was isolated and the replacement event verified by PCR. Transformants verified in being true replacement strains were further tested for secretion of recombinant protein.
Example 6: Expression of Taiaromyces emersonii CBHi / Trichoderma reesei -CBD fusion (CBH-ah) fusion with 6x His-Taq from Trichoderma reesei
Expression of recombinant CBHI replacement strains of Taiaromyces emersonii CBHI / Trichoderma reesei -CBD fusion with 6x His-Tag in Trichoderma reesei Q6A (ATCC 13631 ) was done in shakeflask cultures containing 40ml Mineral medium containing 2% Avicel in 300ml flasks and cultivation at 30°C/250rpm for 6 days. Supernatants recovered by centrifugation and further analyzed by SDS-PAGE and Bradford Protein assays.
Example 7: Screening fhermo stability variants
Random mutagenesis libraries of the Taiaromyces emersonii CBHI / Trichoderma reesei - CBD fusion (with 6x His-Tag) gene were generated using error prone PCR applying manganese containing bufferers and mbalanced dNTP concentrations in the Tag-DNA polymerase reaction micture, used for PCR-amplification, essentially as described by Craig
79
and Joyce (R.Craig Cadwell and G.F. Joyce, 1995. Mutagenic PCR, in PCR Primer: a laboratory manual, ed. C. W. Dieffenbach and G. S. Dveksler, Cold Spring Harbor Press, Cold Spring Harbor, ME, 583-589). As template the wild type fusion gene (SeqiD. NO. 17) or mutants thereof were chosen. Mutated PCR-Fragments were cloned to the pPKGMe Plasmid using Sph\ and HincAU endonucleases and T4-DNA-iigase.
Libraries of the Talaromyces emersonii CBH! / Trichoderma reesei -CBD fusion (with 6x His- Tag) gene variants were distributed in 1536 well plates with well occupation number close to 1 . Enzyme was expressed over 7 days in a volume of 4μί YPG-G418 medium. For evaluation of the properties of the variants 2μΙ samples of culture supernatants were transferred to plates containing a suspension of milled straw, acetate buffer and beta-glucosidase. After incubation of the sealed reaction plates for 48 hours at defined temperatures the glucose concentration was determined using Amplex red in the presence of GOX and HRP by analyzing the fluorescence level. Best-performing Hits were re-cultivated and re-evaluated. P!asmids of confirmed CBH-ah variants were recovered (Pierce DNAzol Yeast genomic DNA Kit) and sequenced using oligonucleotides alpha-f (5' T ACTATTG CC AG C ATTGCTG C-3' ) and oli740 (5'-TCAGCTATTTCACATACAAATCG-3').
Example 8: Determination of Substrate Conversion Capacity at different temperatures for indication of the thermostability of CBH-ah-Variants using 4-methylumbelli†erv-B-D-lactoside (4-MUU
For precise comparison of the thermal stability culture supernatants containing the secreted cellobiohydrolase variants were diluted tenfold in sodium acetate buffer (50mM, pH 5) and 0μΙ samples were incubated with 90μΙ of 200μΜ 4-MUL (in buffer) in the temperature gradient of an Eppendorff Gradient Thermocycler. A temperature gradient of 20°C reaching from 55°C to 75°C was applied to 12 reaction mixtures for for each sample for one hour. The temperature profile could be recorded after addition of 100μΙ 1 M sodium carbonate solution to each reaction and measurement of the fluorescence intensity at 360nm/454nm in a Tecan Infinite M200 plate reader. For comparison of the thermostability the values were normalized between 1 and 0 for the maximum and minimum fluorescence count (Figure 7).
Table 6: Listing of Mutants of SeqiD NO. 18 with improved IT50 values.
80
81
W40R; D320V, Q349K, P436S, N445D 62,7
G4C, A72C, D181 N, Q349R 62,7
G4C, A72C, Q349K 62,7
G4C, A72C, T344M, Q349K. 62,8
G4C, A72C, T344M, D346G, Q349R 62,8 +/- 0,2
G4C, A72C, D320V, Q349 62,8
G4C, A72C, P224L, F306Y, Q349R 62,9
G4C, A72C 62,9 +/- 0,6
A72V, D346A, T393A 63
G4C, A72C, Q349R, R446S, T456A 63
G4C, W40R, A72C, T344M, Q349 63
A72V, D320V, D346A 63,1
G4C, A72C, N 194Y, T243L, Q349R, Y374S, A375R 63,1
G4C, A72C, Q349 , T448A, T449A 63,2
G4C, E65V, A72C, Y244H, Q349R 63,3
G4C, A72C, D202G, D320N, Q349R, A358E 63,4
G4C, A72C, D320V, Q349R 63,4
G4C, A72C, Q349K, S86T 63,4
A72V, T3351, D346A, T393A, P436S 63,4
G4C, A72C, E 183V, K304R, G349K 63,5
G4C, A72C, T243G, Q349R, Y374P, A375M 63,5
G4C, A72C, Q349R, T465! 63,6
G4C, A72C, Q349R 63,6 +A 0,5
G4C, A72C, N1 B4V, T243 , Q349R, Y374A, A375T 63,6
G4C, D64N, A72C, Q349R, A358E, P464G 63,6
G4C, A72C, G349K, Q28R, S193T, Q490L 63,6
G4C, A72C, E183K, Q349K 63,6
G4C, A72C, S311 N, Q349K, A455T 63,6
G4C, A72C, N194K, Q349R, Y374P, A375Q 63,6
G4C, A72C, D 8 , Q349K 63,6
W40R, D320V, Q349K, T393A, N445D 63,7
W40R, T335I, D346A, T393A 63,7
Q1 L, G4C, A72C, D181 N, E183K, N327Y, Q349R 63,7
A72C, L1 19L, T3351, G349R, G486D 63,7
G4C, A72C, N194K, T243P, G349R, Y374H, A375E 63,7
G4C, A72V, Q349R, P462del 63,8
G4C, A72C, S236Y, G349R 63,8
G4C, A72C, S31 1 G, Q349K 63,8
A72V, D320V, T335L D346A, T393A, 445D 63,8
G4C, A72C, S86T, M234V, Q349K - 63,8
Insertion at position 1 S9{ CGR )undT457( AAATT) , Q1 L, G4C,
Q28R, E65V, A72C, D181 , E183M, P224L S31 1 G, D320!, D346E, 63,9 Q349 , T393V, Y422F, P442S, N445D, R446G, H468L, V482i
G4C, A72C, G251 R, Q349R 63.9
G4C, A72C, Q349K, D320V 63,9 +/- 0,7
A72V, T335I, D346A, T393A 63,9
G4C, A72C, E183K, Q349R 63,9
Q L, G4C, A72C, H203R, Q349K, P442S 63,9
G4C, A72C, Q349K, G434S, G470D 64
G4C, W40R, A72C, Q349K 64
83
84
192 Q1L, G4C, A72C, D181N, E183K, T297N, Q349R 66
193 Q1 L, G4C, A72C, S311 G, Q349 66
G4C, Q28R, E65M, A72C, S86T, E183K, S192I, H203R, S311N,
194 D346E, Q349K, T392M, T393A, Y422F, N445D, R446S 66
195 Q1L, G4C, A72C, D202N, Q349K, G486D 66
196 Q1L, G4C, A72C, S99T, D181N, E183K, Q349R, T450I 66
197 Q1L, G4C, A72C, I200F, Q349K, L500I 66 98 Q1L, G4C, A72C, D181N, E183K, Q349R, G434S 66
199 Q1L, G4C, A31S, A72C, D181N, E183K, Q349R 66
200 Q1L, G4C, G28L, A72C, D181N, E183K, Q349R 66
201 Q1L G4C, A72C, D181N, E183 , Q349R, P436S 66,1
202 Q1L, G4C, A72C, D181N, E183K, T233S, G349R 66,1
203 Q1L, G4C, A72C, D202N, Q349K 66,1 +/- 0,1
204 Q L, G4C, A68T, A72C, Q349K 66,1
205 Q1L, G4C, A21T, A72C, D18 N, ΕΊ83Κ, G349R, P454S 66,1 +/- 0,1
206 Q1L, Q4C, A72C, D346V, Q349K 66,2
207 G1L, G4C, Y47F, A72C, D18 , E183K, Q349R, P436S, S461R 66,2
208 G1L, G4C, A72C, D181N, E183K, M234T, Q349R 66,3
209 Q1L G4C, A72C, N157S, D181N, E183K, G349R 66,3
210 G1L, G4C, A72C, D181N, E183K, G349R 66,3 +/- 0,4
As1-72ausT.reesei, D181N, P224L, S311D, IM318Y, D320N, D346A,
211 Q349K, T392M, T393I, Y422F, N445D, R446G H468G, V482I 66,3
212 G4C, A72C, N194Q, T243V Q349R, Y374P, A375Y 66,3
213 Q L, G4C, A72C, D181N, E183K, 1314F, Q349R, N445D 66,3
214 Q1 L, G4C, A72C, G349 , T392K 66,3
215 Q1L. G4C, A72C, D181N, E183K; Q349R, T451A 66,4
216 Q1L G4C, A72C, D181N, E183K, 234V, Q349R 66,4
217 Q1L, G4C, A21S, A72C, D181N, E183K, Q349R 66,5
218 A21C, P429C 66,5 +/- 0,4
219 Q1L, G4C, A72C, D181N, E183K, Q349R, N493D 66,5
220 Q1L G4C, A72C, S3 UN, Q349K 66,5
Q1 L, G4C, G28R, E65V, A72C, D181 M, E183V, D228N, S311 N,
221 N318Y, D346E, G349R, Y422F, P442S, N445D, R446G, H468L, 66,5 V482T
222 G4C, A72C, N194C, G349R, Y374C 66,5
223 Q1L, G4C, A72C, D181N, E183K, Q349R A455V 66,5 +/- 0,3
224 Q1L, G4C, A72C: D181N, E183K, G349R, T400S 66,6
225 Q1L, G4C, T26i, A72C, D181 , E183K, Q349R 66,6 +/- 0
226 Q1L,,G4C, A72C, D181N, E183K, N310D, Q349R, T392S, G463D 66,7
Q1L, G4C, A72C, D129N. D181N, E183K, Q190L, G266S. I276V,
227 Q349R, P386L, F427Y 66,7 +/- 0,2
228 Q1L, G4C, A72C, D181 , E183K, D202N, G349R 66,7
229 Q1L, G4C, A72G, Y155C, D181 , E183K, Q349R 66,8
Insertion at position P454(ATAAA): Q1L,'G4C, Q28R, E65V, A72C.
230 D181N, E183 , P224L, S311G,D320I, D346E, Q349 , T393V, Y422F, 66,8 P442S, N445D, R446G, H468L, V482I
insertion at position K159(CGRNK), Q1L G4C, Q28R, E65V. A72C,
231 D181N, E183M, P224L, S311G, D320I, D346E, Q349K, T393V, Y422F, 66,8 P442S, N445D, R446G, H468L, V482i
232 Q1L, G4C, A72C, D18 N, E183K, N246K, G349R 67 +/- 0,6
G4C, W40R, E65V. A72C, S86T, D181N, E183K, D202i, H203R,
233 S311D, D320N, D346V, Q349R, T392M, T393A, Y422F, P442S, 67 +/- 0,5 H468Q, V482A
Example 9: Characterization of Variants of the Talaromyces emersonii CBHi / Trichoderma reesei -CBD fusion (with 6x His-Taq
80 mL of fermentation broth were concentrated to a final volume of approx. 1 mL After determination of protein concentration (Bradford reagent, Biorad, Germany, Standard is BSA form Sigma-Aidrich, Germany) 1 .2mg of protein were purified with the Ni-NTA Spin kit (Qiagen, Germany). The purified CBH1 fraction was subsequently assayed by performing a
94
hydrolysis reaction on pretreated (acid pretreatment) wheat straw. 12,5mg (dry mass) of pre- treated wheat straw is mixed with 0,0125mg of purified CBH1 and 40CBU Novo188 (Novozymes, Denmark) per mg of C8H1. SOmSVI sodium acetate (Sigma-Aldrich, Germany) is added up to 500μΙ_. The assay is kept at temperatures ranging from 50°C to 65°C for 48 hours and analysed by HPLC to determine the temperature dependent glucose content.
Example 10: Hydrolysis of Straw with Seq. ID NO:2 Variant Proteins expressed from
Trichoderma reesei
Selected cellobiohydrolase sequences (Table 7) are expressed from Trichoderma reesei as described in Example 5 by replacement of the native CBHI reading frame with the corresponding sequence fusions to the CBHi signal peptide. Samples of the mutant proteins are isolated from the culture supernatant and purified by Ni-NTA affinity chromatography. The characterization of the proteins is done by incubation of the proteins (E) with acid- pretreated straw substrate (S) (2,5% dry matter content and E/S = 0,1 % w/w in the reaction) at temperatures between 50°C and 75°C for 48 hours in the presence of a non-limiting amount of beta-glucosidase followed by determination of the released glucose concentration by HPLC. The results are shown in the Table 7. As indication for the performance the glucose release after 48 hours at 60°C was taken and found significantly increased in comparison to the wild type protein, in the Table 7 the Temperatures where still 50% of the maximum glucose yield is reached are given.
Table 7: Performance of Trichoderma expressed Cellobiohydrolases on straw
95
S , N 445 D , R 446G , H 468L, V4821
,Q1 L,G4C,Q28R,E65V,A72C,E1 8 69,5 3 ,D202N,P224L,S31 1 G.N318Y,
T335I,D346E,Q349K,T393V,Y422
F,N445D,R446G,H468L,V482I
,01 L,G4C,Q28R,E65V,A72C,S86 67,5 T,E183K,D202N,S31 1 G,N318Y,D
320I,D346A,Q349K,T393V,Y422F
,P442S,N445D,R446G,H468Q,V4
821
,Q1 L,G4C,Q28R,E65V,A72C,E18 68,2 3M,P224L,S31 1 G,D320I,D346E,
Q349K,T393V,Y422F,P442S,N44
5D,R446G,H468L,V482i
,Q1 L,G4C,Q28R,E65V,A72C,P22 68,4 4L.S31 1 G,D320I,D346E,Q349 ,T
393V,Y422F,P442S,N445D,R446
G,H468L,V482I
,Q1 L,G4C,Q28R,E65V,A72C,D20 67,8 2NrS31 1 N,D320I,T335I,D346E,Q
349K,T393V,Y422F,N445D,R446
G,H468Q,V482T
,Q1 L,G4C,G28K,E65V,A72C,E18 68,0 3M,D202N,S31 1 G,N318Y,D346E,
Q349K,T393i,Y422F,N445D;R446
G,H468Q,V482]-
,Q2S,G4C,A6L,T7G,A8S,N 10T,Q 72,0 28K,E65K,A72C,E183M,S3 1 G,N
318YfD320l,T335!,D346E,Q349K,
T393V,Y422F,N445D,R446G,H46
8G,V482T
,G2S,G4C,A6L,T7Q,A8S,N1 OT,Q 73,8 28K,E65V,A72C,E183M,D202N,P
224L,S31 1 G,T335]!D346E,Q349K
,T393V,Y422F,P442S,N445D,R44
6G,H468Q,V482!
,Q2S,G4C,A6L,T7Q,A8S,N1 OT,Q 73,6 28R,E65V,A72C,P224L,S31 1 D,
N318Y,D320N,D346A,G349K,T39
2 ,T393I,Y422F,N445D,R446G,
H468G,V4825
,Q2S,G4C,A6L,T7Q,A8S,N 10T,Q 71 ,9 28K,N29Y,E65K,A72C,S31 1 G.T3
35I,D346E,Q349K,T393V,Y422F,
N445D,R446G,H468Q,V482T
,01 L,G4C,G28R,E65V,A72C,K15 70,5 9KCGRNK,E183M,P224L,S31 1 G,
D320I,D346E,Q349K,T393V,Y422
F,T433TGAAAT,P442S, 445D,R
446G,H468L,V482I
96
18 ,Q2S,G4C,A6L,T7G,A8S,N 1 rjT,S 72,2
24T,Q28R,E65K,A72C,D202N,S3
1 1 G,T335I,D346E,G349K,T393I,Y
422F,N445D,R446G,H468Q,V482
T
19 ,Q1 L,G4C,Q28R,E65V, A72C.E18 69, 1
3M,P224L,S31 1 G,D32QI,D346E,
Q349K,T393V,Y422F,P442S,N44
5D,R446G,P454PVRPQP,H468L,
V482I
20 ,Q1 L,G4C,Q28R,E65V,A72C,K15 68,2
9KCGRNK,E183 ,P224L,S31 1 G,
D320l,D346E,Q349K,T393V,Y422
F,P442S,N445D,R446G,H468L,V
4821
21 ,Q1 L,G4C,S24T,T26I,Q28R,N29Y 70,2
,G30A,E65V,A68T,A72C,E183M,
Q190K,P224L,S31 1 G,D320I,D34
6E,Q349K,T393V,Y422F,P442S,
N445D,R446G,H468L,V482I
22 Seq ID No. 12 58,6 ± 0,4
Example 1 1 : Performance of Seq. I D NO: 5 Variants with improved thermostability
PCR-Techniques were user for the transfer of selected mutations into the Seq. ID NO:5 backbone, as deduced from screened Seq. ID NO: 2 Mutants with superior performance. Protein expressed from Pichia pastoris was taken from the culture supernatant and tested for their Substrate Conversion Capacity by the procedure given in example 8. in the table the calculated !T50 values for the 4-MUL Substrate are given. Siightly higher stability of Proteins without CBD compared to the fusion proteins are found under these condiiions. Results are shown in Table 8.
Table 8: Comparison of IT50 Values of SEQ. ID NO:5 and SEQ. ID N02 Mutants
97
3M,D202N,P224L,S311 G,T335I,D346E,
Q349K,T393V,Y422F
Q1 L,G4C,G28R,E65V,A72C,G 151 GCGR 68,2
SG,D181 N,E183M,P224l-,S311 G,D320!, 72,7
D346E,Q349K,T393V!Y422F
98
Example 12: influence of different cellulose binding domains on IT 50 values
To evaluate the inierchangeability of the CBDs a stabilized Seq.lD NO: 5 mutant (Q1 L, G4C, Q28R, E65V, A72C, D181 N, E183 , P224L, S31 1 G, D320I, D346E, Q349K, T393V, Y422F) is connected with a series of cellulose binding domains and linker regions from ceilobiohydrolases from different sources by OE-PCR. The resulting coding sequences (SEQ. IDs NO: 21 , 23, 25, 27 and 29) are cloned to a Pichia pastoris expression vector for the expression of the corresponding fusion proteins according to SEQ. IDs NO: 20, 22, 24, 26 and 28). IT50 values for the variants are evaluated as described before and are listed in the Table 9. Only small influences of different CBD modules on the stability are observed.
Table 9: Performance of different fusions of CBD with their linkers to stabilized and non- stabilized Seq. ID. NO:5 variants in comparison
99
Table 10: Sequence Listings (Overview)
100
with 6x His-TAG
SEQID NO 43 [N] Coding Sequence for Talaromyces emersonii CBHI
with 6x His-TAG Mutant with Chaetmium.
thermophilum cellobiohydrolase I CBD
SEQ1D NO 44 fP] Talaromyces emersonii CBHI Mutant with
Phanerochaete chrysosporium cellobioh dro!ase
CBD with 6x His-TAG
SEQID NO 45 EN] Coding Sequence for Talaromyces emersonii CBHI
Mutant with Phanerochaete chrysosporium
cellobiohydrolase CBD with 6x His-TAG
SEQID NO 46 [P] Talaromyces emersonii CBHI Mutant with Penicillium
jantinellum cellobiohydrolase CBD with 6x His-TAG
SEQID NO 47 [N] Coding Sequence for Talaromyces emersonii CBHI
Mutant with Penicillium jantinellum cellobiohydrolase
CBD with 6x His-TAG
SEQID NO 48 [P] Talaromyces emersonii CBHI Mutant with Irpex
lacteus cellobiohydrolase CBD with 6x His-TAG
SEQID NO 49 EN] Coding Sequence for Talaromyces emersonii CBHI
Mutant with Irpex lacteus cellobiohydrolase CBD
with 6x His-TAG
SEQID NO 50 [P] Talaromyces emersonii CBHI Mutant with mutated
Trichoderma reesei CBD with 6x His-TAG
SEQID N051 [NJ Coding Sequence for Talaromyces emersonii CBHI
Mutant with mutated Trichoderma reesei CBD with
6x His-TAG
SEQID.NO. 01
cagcaggccggcacggcgacggcagagaaccacccgcccctgacatggcaggaatgcaccgcccctgggagctgc accacccagaacggggcggtcgttcttgatgcgaactggcgttgggtgcacgatgtgaacggatacaccaactgc tacacgggcaatacctgggaccccacgtactgccctgacgacgaaacctgcgcccagaac gtgcgctggacggc gcggattacgagggcacctacggcgtgacttcgtcgggcagctccttgaaactcaatttcgtcaccgggtcgaac gtcggatcccgtctctacctgctgcaggacgactcgacctatcagatcttcaagctcctgaaccgcgagttcagc tttgacgtcgatgtctccaatct ccgtgcggattgaacggcgctctgtactttgtcgccatggacgccgacggc ggcgtgtccaagtacccgaacaacaaggctggtgccaagtacggaaccgggtattgcgactcccaatgcccacgg gacct aagttca cgacggcgaggccaacgtcgagggctggcagccgtct cgaacaacgccaacaccggaatt ggcgaccacggctcctgctgtgcggagatggatgtctgggaagcaaacagcatctccaatgcggtcactccgcac ccgtgcgacacgccaggccagacgatgtgctctggagatgactgcggtggcacatactctaacgatcgc acgcg ggaacctgcgatcctgacggctgtgacttcaacccttaccgcatgggcaacacttctttctacgggcctggcaag atcatcgataccaccaagcccttcactgtcgtgacgcagttcctcactgatgatggtacggatactggaac ctc agcgagatcaagcgcttctacatccagaacagcaacgtcat ccgcagcccaactcggacatcagtggcgtgacc ggcaactcgatcacgacggagttctgcactgctcagaagcaggcctttggcgacacggacgacttctctcagcac ggtggcctggccaagatgggagcggccatgcagcagggtatggtcctggtgatgagtttgtgggacgactacgcc gcgcagatgctgtggttggattccgactacccgacggatgcggaccccacgacccctggta tgcccgtggaacg tgtccgacggactcgggcgtccca cggatgtcgagtcgcagagccccaactcctacgtgacct ctcgaacatt aagtttggtccgatcggtagcacaggtaatccttcaggtggtaatcc ccaggtggaaacagaggaacaacgaca
101
actagaagaccagctactacaactggttcaagtccaggtccaactcaa cacactacggtcaatgtggtggtata ggttactctggtcccactgtttgtgcttctggtactacttgccaagttctgaacccttactactcacagtgtcta taatgataa
Coding Sequence for CBH-a (mature)
SEQID.NO. 02
QQAGTATAENHPPLTWQECTAPGSCTTQNGAWLDAN R VHDVNGYTNCYTGNTWDPTYCPDDETCAQNCALDG ADYEGTYGVTSSGSSLKLNFVTGSNVGSRLYLLQDDSTYQIFKLLNREFSFDVDVSNLPCGLNGALYFVAMDADG GVSKYPNN AGA YGTGYCDSQCPRDL FIDGEANVEGWQPSSNNAKTGIGDHGSCCAEMDV EANSISNAVTPH PCDTPGQTMCSGDDCGGTYSNDRYAGTCDPDGCDFNPYRMGNTSFYGPGKIIDTTKPFTWTQFLTDDGTDTGTL SEI RFYIQNSIWIPQPNSDISGVTGKSITTEFCTAQ QAFGDTDDFSQHGGLAKMGAAMQQGMVLVMSLWDDYA AQMLWLDSDYPTDADPTTPGIARGTCPTDSGVPSDVESQSPNSYVTYSWIKFGPIGSTGNPSGGNPPGGNRGTTT TRRPATTTGSSPGPTQSHYGQCGGXGYSGPTVCASGTTCQVLNPYYSQCL
Mature Sequence of CBH-a
SEQID.NO. 03
atgtatcggaagttggccgtcatctcggccttcttggccacagctcgtgctcagcaggccggcacggcgacggca gagaaccacccgcccctgacatggcaggaatgcaccgcccctgggagctgcaccacccagaacggggcggtcg t cttgatgcgaactggcgttgggtgcacgatgtgaacggatacaccaactgctacacgggcaatacctgggacccc acgtactgccctgacgacgaaacctgcgcc agaactgtgcgctggacggcgcggattacgagggcacctacggc gtgacttcgtcgggcagctccttgaaactcaatttcgtcaccgggtcgaacgtcggatcccgtctctacctgctg caggacgactcgacctatcagatcttcaagctcctgaaccgcgagttcagctttgacgtcgatgtctccaatctt ccgtgcggattgaacggcgctctgtactt gtcgccatggacgccgacggcggcgtg ccaagtacccgaacaac aaggctggtgccaagtacggaaccgggtattgcgactcccaatgcccacgggacctcaagttcatcgacggcgag gccaacgtcgagggc ggcagccgtcttcgaacaacgccaacaccggaattggcgaccacggctcctgctgtgcg gagatggatgtctgggaagcaaacagcatctccaatgcggtcactccgcacccgtgcgacacgccaggccagacg atgtgctctggagatgactgcggtggcacatactctaacgatcgctacgcgggaacctgcgatcctgacggctgt gacttcaacccttaccgcatgggcaacacttctttctacgggcctggcaagatcatcgataccaccaagcccttc actgtcgtgacgcagttcctcactgatgatggtacggatactggaactctcagcgagatcaagcgcttctacatc cagaacagcaacgtcattccgcagcccaactcggacatcagtggcgtgaccggcaactcgatcacgacggagttc tgcaccgctcagaagcaggcctttggcgacacggacgac tetctcagcacggtggcctggccaagatgggagcg gccatgcagcagggta ggtcctggtgatgagtttgtgggacgactacgccgcgcagatgctgtggttggattcc gactacccgacggatgcggaccccacgacccctggtattgcccgtggaacgtgtccgacggactcgggcgtccca tcggatgtcgagtcgcagagccccaac cc acgtgacctactcgaacattaagtttggtccgatcggtagcaca ggtaatccttcaggtggtaatcctccaggtggaaacagaggaacaacgacaactagaagaccagctactacaact ggttcaagtccaggtccaactcaatcacactacggtcaatgtggtggtataggttactctggtcccactgtttgt gettctggtactacttgccaagttctgaacccttactactcacagtgtctagcttctgcacatcatcaccaccac cattaa
Coding sequence of the fusion of CBH-a with Trichoderma reesei CBHI Signal peptide
SEQID.NO. 04
GSTGNPSGGNPPGGNRGTTTTRRPATTTGSSPGPTQSHYGQCGGIGYSGPTVCASGTTCQVLNPYYSQCL
Trichoderma reesei CBHI cellulose binding domain and linker sequence
SEQID.NO. 05
QQAGTATAENHPPLT QECTAPGSCTTQNGAWLDANWRWVHDVWGYTNCYTGNT DPTYCPDDETCAQWCALDG ADYEGTYGVTSSGSSL LNFVTGSISrVGSRLYLLQDDSTYQIF LLNREFSFCiVDVSNLPCGLNGALYFVAMDADG GVSKYPNNKAGA YGTGYCDSQCPRDLKFIDGEAWEG QPSSHNANTGIGDHGSCCAEMDViEANSISN VTPH PCDTPGQTMCSGDDCGGTYSNDRYAGTCDPDGCDFNPYRMGTTSFYGPGKI IDTT PFT TQFLTDDGTDTGTL
102
SEIKRFYIQNSNVIPQPNSDISGVTGNSITTEFCTAQKQAFGDTDDFSQHGGLAKMGAAMQQG VLVMSLWDDYA AQ LWLDSDYPTDADPTTPGIARGTCPTDSGVPSDVESQSPNSYVTYSNIKFGPINSTFTAS
Talaromyces emersonii CBHI sequence (CBH-b)
SEQID.NO. 06
atgagatttccttcaatttttactgcagttttattcgcagcatcc ccgcattagctgctccagtcaacactaca acagaagatgaaacggcacaaattccggctgaagctgtcatcggttacttagatttagaaggggatttcgatgtt gctgttttgccattttccaacagcacaaataacgggttattgtttataaatactactattgccagcattgctgct aaagaagaaggggtatctttggataaacgtgaggcggaagcaccc ctcagcaggccggcacggcgacggcagag aaccacccgcccctgacatggcaggaatgcaccgcccctgggagctgcaccacccagaacggggcggtcgttctt gatgcgaactggcgt gggtgcacgatgtgaacggatacaccaactgctacacgggcaatacctgggaccccacg tactgccctgacgacgaaacctgcgcccagaactgtgcgctggacggcgcggattacgagggcacctacggcgtg acttcgtcgggcagctccttgaaactcaatttcgtcaccgggtcgaacgtcggatcccgtctctacctgctgcag gacgactcgacctatcagatcttcaagcttctgaaccgcgagttcagctttgacgtcgatgtctccaatcttccg tgcggattgaacggcgctctgtactttgtcgccatggacgccgacggcggcgtgtccaagtacccgaacaacaag gctggtgccaagtacggaaccgggtattgcgactcccaatgcccacgggacctcaagttcatcgacggcgaggcc aacgtcgagggctggcagccgtcttcgaacaacgccaacaccggaattggcgaccacggctcctgctgtgcggag atggatgtctgggaagcaaacagcatctccaatgcggtcactccgcacccgtgcgacacgccaggccagacgatg tgctctggagatgactgcggtggcacatactctaacgatcgctacgcgggaacctgcgatcctgacggctgtgac ttcaacccttaccgcatgggcaacacttct tctacgggcctggcaagatcatcgataccaccaagcccttcact gtcgtgacgcagttcctcactgatgatggtacggatactggaactctcagcgagatcaagcgcttctacatccag aacagcaacgtcattccgcagcccaactcggacatcagtggcgtgaccggcaactcgatcacgacggagttctgc actgctcagaagcaggcctttggcgacacggacgacttctctcagcacggtggcctggccaagatgggagcggcc atgcagcagggtatggtcctggtgatgagtttgtgggacgactacgccgcgcagatgctgtggttggat ccgac tacccgacggatgcggaccccacgacccctggtattgcccgtggaacgtgtccgacggactcgggcgtcccatcg gatgtcgagtcgcagagccccaactcctacgtgacctactcgaacattaagtttggtccgatcaactcgaccttc accgcttcgtgataa
Coding sequence of Talaromyces emersonii CBHI fused to the alpha factor signal peptide
SEQID.NO. 07
QQAG I AENHPRMTWKRCSGPGNCQ VQGEWIDANWRWLH NGQ CYEGNKWTSQCSSATDC QRCALDGANY QSTYGASTSGDSLTLKFVTKHEYGTNIGSRFYLMANQNKYQMFTLM3STNEFAFDVDLSKVECGINSALYFVAMEED GGMASYPSNRAGAKYGTGYCDAQCARDLKFIGGKANIEGWRPSTKFDPNAGVGPMGACCAEIDVWESNAYAYAFTP HACGSKNRYHICETNNCGGTYSDDRFAGYCDANGCDYNPYRMGNKDFYGKGKTVDTNRKFTWSRFERMRLSQFF VQDGRKIEVPPPTWPGLPNSADITPELCD QFRVFDDRNRF ETGGFDALKEALTIPMVLVMSIWDDHHSNMLWL DSSYPPEKAGLPGGDRGPCPTTSGVPAEVEAQYPDAQWWSNIRFGPIGSTVNV
Humicola grisea CBHI (CBH-d)
SEQID.NO. OS
atgagatttccttcaatttttactgcagttttattcgcagcatcctccgcattagctgctccagtcaacactaca acagaagatgaaacggcacaaattccggctgaagctgtcatcggttacttagatttagaaggggatttcgatgtt gctgttttgccattttccaacagcacaaataacgggttattgtttataaatactactattgccagcattgctgct aaagaagaaggggtatctttggataaacgtgaggcggaagcaccc ctcagcaggctggtactattactgctgag aaccacccaagaatgacctggaagagatgctctggtccaggaaactgtcagactgttcagggcgaggttgtgatt gacgctaattggagatggttgcacaacaacggccagaactgttacgagggtaacaagtggacctctcagtgt ct tctgct ccgactgtgctcagagatgtgctttggacggtgccaactaccagtctacctacggtgcttctacctct ggtgactctctgaccctgaagttcgttaccaagcacgagtacggaaccaacatcggctctagattctacctgatg gccaaccagaacaagtaccagatgt caccctgatgaacaacgagttcgcctttgacgttgacctgtctaaggtg gagtgcggtatcaactctgccctgtacttcgttgctatggaagaggacggtggaatggcttcttacccatctaac agagccggtgctaagtacggtactggttactgtgacgcccagtgtgctagagacctgaagtteateggtggaaag gccaacattgagggttggagaccatctaccaacgacccaaacgctggtgttggtccaatgggagcttgttgtgcc gagattgatgtgtgggagtctaacgcttacgcctacgcttt accccacacgcttgcggttctaagaacagatac cacatctgcgagaccaacaactgtggtggaacctactctgacgacagattcgctggatactgcgacgctaacggt
103
tgtgactacaacccatacagaatgggcaacaaggacttctacggcaagggaaagaccgttgacaccaacagaaag ttcaccgtggtgtcgagattcgagagaaacagactgtcgcagttct tgtgcaggacggcagaaagattgaggtc ccaccaccaacttggccaggattgccaaactctgccgacattaccccagagttgtgtgacgctcagttcagagtg ttcgacgacagaaacagatttgctgagaccggtggttttgacgctttgaacgaggctctgaccattccaatggtg ctggtgatgtctatttgggacgaccaccactctaacatgttgtggctggactcttcttacccaccagagaaggc ggattgccaggtggtgacagaggaccatgtccaactacttcgggtgttccagctgaggttgaggctcagtaccca gacgctcaggttgtgtggtcgaacatcagattcggcccaatcggttctaccgtgaacgtgtaa
Coding sequence of Humicola grisea CBHI fused to the alpha factor signal peptide
SEQID.NO. 09
heagtvtaenhpsltwqqcssggscttqngkvvidanwrwvhttsgytncytgntwdtsicpddvtcaqncaldg adysgtygvttsgnalrlnfvtqssgknigsrlyllqddttyqifkllgqeftfdvdvsnlpcglngalyfvarad adgnlskypgnkagakygtgycdsqcprdlkfingqanvegwqpsandpiiagvgnhgsscaemdvweansistav tphpcdtpgqtmcqgddcggtysstryagtcdtdgcdfnpyqpgnhsfygpgkivdtsskftvvtqf tddgtps gtlteikrfyvqngkvipqsestisgvtgnsitteyctaqkaafdntgffthgglqkisqalaqgmvlvmslwdd haanmlwldstyptdadpdtpgvargtcpttsgvpadvesqnpnsyviysnikvgpinstftan
Th.ermoa.scus auratiacus CEHI (CBH-e
SEQID.NO. 10
atgagatttccttcaatttttactgcagt ttattcgcagcatcctccgcattagctgctccagtcaacactaca acagaagatgaaacggcacaaattccggctgaagctgtcatcggttacttagatttagaaggggatttcgatgtt gctgt ttgccattttccaacagcacaaataacgggttattgtttataaatactactattgccagcattgctgct aaagaagaaggggtatc ttggataaacgtgaggcggaagcaccctc cacgaggccggtaccg aaccgcagag aatcacccttccctgacctggcagcaatgctccagcggcggtagttgtaccacgcagaatggaaaagtcgttatc gatgcgaactggcgttgggtccataccacctctggatacaccaactgc acacgggcaatacgtgggacaccagt atctgtcccgacgacgtgacctgcgctcagaattgtgccttggatggagcggattacagtggcacctatggtgtt acgaccagtggcaacgccctgagactgaactttgtcacccaaagctcagggaagaacattggctcgcgcctgtac ctgctgcaggacgacaccacttatcagatcttcaagctgctgggtcaggagtttaccttcgatgtcgacgtctcc aatctccc tgcgggc gaacggcgccctctactttgtggccatggacgccgacggcaatttgtccaaataccct ggcaacaaggcaggcgctaagtatggcactggttac gcgactctcagtgccc cggga c caagttcatcaac ggtc ggccaacgttgaaggctggcagccgtctgccaacgacccaaatgccggcgttggtaaccacggttcctcg tgcgctgagatggatgtctgggaagccaacagcatctctactgcggtgacgcctcacccatgcgacacccccggc cagaccatgtgccagggagacgactgtggtggaacctactcctccactcgatatgctggtacctgcgacactgat ggctgcgacttcaatccttaccagccaggcaaccactcgttctacggccccgggaagatcgtcgacactagc cc aaattcaccgtcgtcacccagttcatcaccgacgacgggacaccc ccggcaccctgacggagatcaaacgcttc tacgtccagaacggcaaggtgatcccccagtcggagtcgacgatcagcggcgtcaccggcaactcaatcaccacc gagtattgcacggcccagaaggcagccttcgacaacaccggcttcttcacgcacggcgggcttcagaagatcagt caggctctggctcagggcatggtcctcgtcatgagcctgtgggacgatcacgccgccaacatgctctggctggac: agcacctacccgactgatgcggacccggacacccctggcgtcgcgcgcggtacctgccccacgacctccggcgtc ccggccgacgtggagtcgcagaaccccaattcatatgttatctactccaacatcaaggtcggacccatcaactcg accttcaccgccaactaa
Coding sequence of Thermoascus auratiacus CBHI fused to the alpha factor signal peptide
SEQID.NO. 11
atgagatttccttcaatttttactgcagttttattcgcagcatcc ccgcat.tagctgctccagtcaacactaca acagaagatgaaacggcacaaattccggctgaagctgtcatcggttacttagatt agaaggggatttcgatgtt gctgttttgccattttccaacagcacaaataacgggttattgtttataaatactactattgccagcattgctgct aaagaagaaggggtatctttggataaacgtgaggcggaagcaccctcttcagcttgtacactgcaatccgagact catccacctttaacgtggcaaaagtgtagttctggcggaacttgtactcaacagactggtagtgtcgtgatagat gctaactggagatggacacatgcaacgaac cctcaactaactgctacgatggtaacacetggtc tctacattg tgtcctgacaacgaaacctgcgctaagaactgttgtcttgatggagcagcttacgcaagtacatatggtgtgact acc ctggtaacagcctttccattggttttgtaacccagtcggctcagaagaatgttggtgctagattgt cctg
104
atggcttcagacaccacataccaggagtttaccttgttgggaaacgagttctctttcgacgtagatgtgtctcag ctaccatgtggattgaatggagccttgtactttgtctcaatggatgcagacggaggtgtttcaaagtaccctact aacacagctggtgctaagtatggaactggatactgcgattctcaatgcccaagagacctgaagttcatcaacgga caagctaacgttgaaggttgggaaccttctagcaacaacgcaaacactggaattggtggtcatggttcttgctgt tcagagatggacatttgggaagccaactccatcagtgaagctttgactccacatccatgcacaactgttgggcaa gaaatttgcgaaggtgatggttgtggtggcacttactctgataacagatacggcggaacatgtgatccagatgga tgtgat ggaacccatacagactgggtaacacttcgttttacggaccaggttcttccttcactctagacactacg aagaagttgactgtggtcacccaatttgagacttctggtgccattaaccgatactacgtgcagaacggagttact ttccaacagccaaacgctgaattgggtagttactcaggcaacgagcttaacgatgactactgcactgctgaagaa gcagaatt ggtggatcttccttttcggataagggtggattgacgcag tcaagaaagctacctctggtggaatg gttctagtcatgagtctgtgggacgattactacgctaacatgctttggctggactctacttaccctacaaacgag acatcttctactcctggtgctgtaagaggtagctgttctacatcttctggagttccagcccaagttgagagtcaa agtccaaatgccaaggtcaccttctccaacatcaagttcggaccaattggtagcacaggtaatccttcaggtggt aatcctccaggtggaaacagaggaacaacgacaactagaagaccagctactacaactggttcaagtccaggtcca actcaatcacactacggtcaatgtggtggtataggttactctggtcccactgt tgtgcttctggtactacttgc caagttctgaacccttactactcacagtgtctagcttctgcacaccatcatcatcatcattaatgataa
Coding sequence for Trichoderma reesei CBHI (CBH-c) , including the alpha factor signal peptide and a 6x His Tag.
SEQID.NO. 12
QSACTLQSETKPPLT QKCSSGGTCTQQTGSWIDANWR THATNSSTNCYDGNTWSSTLCPDNETCA NCCLDG AAYASTYGVTTSGNSLSIGFVTQSAQ NVGARLYLMASDTTYQEFTLLGNEFSFDVDVSQLPCGLNGALYFVSMD ADGGVSKYPTKTAGAKYGTGYCDSQCPRDLKFINGQANVEGWEPSSNWANTGIGGHGSCCSE DIWEAN'SISEAL TPHPCTTVGQEICEGDGCGGTYSDNRYGGTCDPDGCD KPYRLGNTSFYGPGSSFTLDTTKKLTWTQFETSGAI NRYYVQNGVTFQQPNAELGSYSGNELNDDYCTAEEAEFGGSSFSDKGGLTQFKKATSGGMVLVMSLWDDYYANML WLDSTYPTNETSSTPGAVRGSCSTSSGVPAQVESQSPKA VTFSNIKFGPIGSTGWPSGGNPPGGNRGTTTTRRP ATTTGSSPGPTQSHYGQCGGIGYSGPTVCASGTTCQVLNPYYSQCL
Trichoderma reesei CEHI (CBH-c)
SEQID.NO. 13
atgagatttcct caattt tactgcagttttattcgcagcatcctccgcattagctgctccagtcaacactaca acagaagatgaaacggcacaaa tccggc gaagctgtcatcggttacttagatttagaaggggatttcgatgtt gctgttttgccattttccaacagcacaaataacgggttat g ttataaatactactattgccagcattgctgct aaagaagaaggggtatctttggataaacgtgaggcggaagcaccctctcaatctgcttgcaccttgcagtctgaa actcacccaccattgacc ggcagaagtgttcttctggcggtacttgtactcagcagaccggttctgttg tatc gacgccaactggagatggactcacgctaccaactcttctaccaactgctacgacggtaacacttggtcgtctacc ttgtgtccagacaacgagacctgtgccaagaactgttgtttggacggtgctgcttacgcttctacctacggtgtt accacctctggtaactcgctgtctatcggtt cgttacccagtctgcccagaaaaatgttggtgccagactgtac ttgatggcttctgacaccacctaccaagagtt accctgctgggtaacgagttctc tcgacgtggacgtttct caactgccatgtggactgaacggtgccctgtacttcgt tctatggacgctgacggtggtgtttctaagtaccca accaacaccgctggtgctaaatacggaaccggttactgcgattctcagtgcccaagagacctgaagttcatcaac ggacaggctaacgttgaaggatgggagccatcttctaacaacgccaacaccggtattggtggtcacggttcttgc tgttctgagatggacatctgggaggccaactctatttctgaggctttgaccccacacccatgtactactgtgggt caagagatctgtgagggtgatggttgtggtggtact actcggacaacagatacggtggtacttgtgacccagac ggttgtgat gggacccatacagactgggtaacacctctttctacggtccaggatcttcttttaccctggacacc accaagaagttgaccgttgt acccagtttgagacctctggtgccatcaacagatactacgtgcagaacggtgtt actttccagcagccaaacgctgaactgggatcttactctggtaacggactgaacgacgactactgtactgctgag gaagctgagttcggtggttcttctttctctgacaagggtggactgacccagtttaagaaggctacctctggcgga atggtgctggttatgtctttgtgggacgactactacgctaacatgctgtggcttgactctacctacccaactaac gagacctcttctaccccaggtgctgttagaggatcttgctctacctcttctggtgttccagc caggttgagtct cagtctccaaacgccaaggtgaccttctctaacatcaagttcggtccaatcggttctactggtgacccatctggt ggtaacccaccaggtggaaacccacctggtactaccactaccagaagaccagctaccaccactggttcttctcca ggtccaacccaatctcactacggtcagtgtggtggtattggtt ctctggtccaaccgtttgtgcttctggaacc acctg caggttctgaacccatactactcgcagtgcc gtaa
Coding sequence for Trichoderma viride CBHI, including the alpha factor signal peptide.
105
SEQID.NO. 14
QSACTLQSETHPPLTWQKCSSGGTCTQQTGSWIDAN RWTHATNSSTliCYDGNTWSSTLCPDNETCA NCCLDG AAYASTYGVTTSGNSLSIGFVTQSAQKNVGARLYLMASDTTYQEFTLLGKEFSFDVDVSQLPCGLNGALYFVSMD ADGGVSKYPTNTAGAKYGTGYCDSQCPRDLKFINGQANVEG EPSSNNANTGIGGHGSCCSEMDIWEANSISEAL TPHPCTTVGQEICEGDGCGGTYSDNRYGGTCDPDGCDWDPYRLGNTSFYGPGSSFTLDTTKKLTWTQFETSGAI NRYYVQNGVTFQQPMAELGSYSGNGLNDDYCTAEEAEFGGSSFSDKGGLTQFKKATSGGMVLVMSLWDDYYANML WLDSTYPTNETSSTPGAVRGSCSTSSGVPAQVESQSPNAKVTFSNIKFGPIGSTGDPSGGNPPGGNPPGTTTTRR PATTTGSSPGPTQSHYGQCGGIGYSGPTVCASGTTCQVLNPYYSQCL
Trichoderma viride CBHI (CBH-f)
SEQID.NO. 15
atgagatttccttcaatttt actgcagttttattcgcagcatcctccgcattagctgctccagtcaacactaca acagaagatgaaacggcacaaattccggctgaagctgtcatcggttacttagatttagaaggggatttcgatgtt gctgttttgccattttccaacagcacaaataacgggttattgtttataaatactactattgccagcattgctgct aaagaagaaggggtatctttggataaacgtgaggcggaaqcatgctcgcagcaggctggtacaattactgctgag aaccatccaagaatgacgtggaagagatgtagtggtccaggaaactgtcagactgttcagggtgaggtcgtgata gatgctaactggagatggttgcataacaacggccagaactgctacgagggtaacaagtggacctctcagtgttct tctgctaccgactgcgctcagagatgtgctcttgatggagcaaactaccagagtacatatggtgcttctacctct ggtgacagccttaccctgaagtttgtaaccaagcacgagtacggaaccaatatcggttctagattctacctgatg gctaaccagaacaagtaccagatgtttaccttgatgaacaacgagttcgccttcgacgtagatctgtctaaggtg gagtgtggaatcaattctgccttgtactttgtcgctatggaagaggacggaggtatggcttcttacccttctaac agagctggtgctaagtatggaactggatactgcgatgcccaatgcgctagagacctgaagttcatcggtggaaag gctaaca tgaaggttggagaccttctaccaacgacccaaacgctggagttgg ccaatgggtgcttgctgtgcc gagattgacgtgtgggaatctaacgcttacgcctacgcttttactccacatgcttgcggttctaagaacagatac cacatttgcgaaaccaacaactgtggtggcacttactctgatgacagattcgctggat ctgtgatgctaacgga tgtgattacaaccca acagaatgggtaacaaggacttttacggaaagggtaagactgttgacactaacagaaag ttcactgtggtctcgagatttgagagaaacagactgtcgcagttctttgtgcaggacggaagaaagattgaggtc ccaccaccaacttggccaggattgccaaactctgccgacattaccccagagt gtgcgacgctcagttcagagtg tt gacgacagaaacagatttgctgagaccggtggatttgacgctttgaacgaggctctgaccattccaatggt ctagtcatgagtatttgggacgatcaccactctaacatgctttggctggactcttcttaccctccagagaaggct ggattgcctggtggtgacagaggtccatgtccaacaacttctggagttccagccgagg tgaggctcaataccca gacgcccaggtcgtgtggtccaacatcagattcggaccaattggaagcttaacaggtaatccttcaggtggtaat cc ccaggtggaaacagaggaacaacgacaactagaagaccagctactacaactggttcaagtccaggtccaact caatcacactacggtcaatgtggtggtataggttactctggtcccactgtttgtgcttctggtactacttgccaa gttctgaacccttac actcacagtgtctagcttctgcacaccatcatcatcatcattaa
Coding Sequence for H micola grisea CBHI- Trichoderma reesei CBHI cellulose binding domain fusion protein including the alpha factor signal peptide and a 6x His Tag.
SEQID.NO. 16 ·
qqagtitaenhprmt krcsgpgncqtvqge vidan rwlhnngqncyegnkwtsqcssatdcaqrcaldgany qstygastsgdsltlkfvtkheygtnigsrfylmanqnkyqmftlrnrtnefafdvdlskvecginsalyfvameed ggmasypsnragakygtgycdaqcardlkfiggkaniegwrpstndpnagvgpmgaccaeidvwesnayayaftp hacgsknryhicetnncggtysddrfagycdangcdynpyrmgnkdfygkgktvdtnrkftvvsrfernrlsqff vqdgrkievpppt pglpnsaditpelcdaqfrvfddrnrfaetggfdalnealtipmvlvmsiwddhhsnmlvil dssyppekaglpggdrgpcpttsgvpaeveaqypdaqvvwsnirfgpigsltgnpsggnppggnrgttttrrpat ttgsspgptqshygqcggigysgptvcasg tcq lnpyysqclasahhhhhh
Humicola grisea CBHI- Trichoderma reesei CBHI cellulose binding domain fusion protein including a 6x His Tag (CBH-g)
SEQID.NO. 17
106
atgagatttccttcaatttttactgcagttttattcgcagcatcctccgcattagctgctccagtcaacactaca acagaagatgaaacggcacaaattccggctgaagctgtcatcggtt cttagatttagaaggggatttcgatgtt gctgttttgccattttccaacagcacaaataacgggttattgtttataaatactactattgccagcattgctgct aaagaagaaggggtatctttggataaacgtgaggcggaagcatgctcgcagcaggccggcacggcgacggcagag aaccacccgcccctgacatggcaggaatgcaccgcccctgggagctgcaccacccagaacggggcggtcgttctt gatgcgaactggcgttgggtgcacgatgtgaacggatacaccaactgctacacgggcaatacctgggaccccacg tactgccctgacgacgaaacctgcgcccagaactgtgcgctggacggcgcggattacgagggcacctacggcgtg act cgtcgggcagctccttgaaactcaatttcgtcaccgggtcgaacgtcggatcccgtctctacctgctgcag gacgactcgacctatcagatcttcaagctcctgaaccgcgagttcagctttgacgtcgatgtctccaatcttccg tgcggattgaacggcgctctgtactttgtcgccatggacgccgacggcggcgtgtccaagtacccgaacaacaag gctggtgccaagtacggaaccgggtat gcgactcccaatgcccacgggacctcaagttcatcgacggcgaggcc aacgtcgagggctggcagccgtcttcgaacaacgccaacaccggaattggcgaccacggctcctgctgtgcggag atggatgtctgggaagcaaacagcatctccaatgcggtcactccgcacccgtgcgacacgccaggccagacgatg tgctctggagatgactgcggtggcacatactctaacgatcgctacgcgggaacctgcgatcctgacggctgtgac ttcaacccttaccgcatgggcaacacttctttctacgggcctggcaagatcatcgataccaccaagcccttcact gtcgtgacgcagttcctcactgatgatggtacggatactggaactctcagcgagatcaagcgcttctacatccag aacagcaacgtcattccgcagcccaactcggacatcagtggcgtgaccggcaactcgatcacgacggagttctgc actgctcagaagcaggcctttggcgacacggacgacttctctcagcacggtggcctggccaagatgggagcggcc atgcagcagggtatggtcctggtgatgagtttgtgggacgactacgccgcgcagatgctgtggttggattccgac tacccgacggatgcggaccccacgacccctggtattgcccgtggaacgtgtccgacggactcgggcgtcccatcg gatgtcgagtcgcagagccccaactcctacgtgacctactcgaacattaagtttggtccgatcggtagcacaggt aatcct caggtggtaatcctccaggtggaaacagaggaacaacgacaactagaagaccagctactacaactggt tcaag ccaggtccaactcaatcacactacggtcaatgtggtggtataggttactctggtcccactgtt gtgct tctggtactacttgccaagttctgaacccttactactcacagtgtctagcttctgcacatcatcaccaccaccat taatgataa
Coding sequence for Talaromyces e ersonii CBHI / Trichoderma reesei -CBD fusion including the alpha factor signal peptide and a 6x His Tag.
SEQID.NO. 18
QQAGTATAENHPPLT QECTAPGSCTTQNGAVVLDA WRWVHDVNGYTNCYTGNTWDPTYCPDDETCAQNCALDG ADYEGTYGVTSSGSSLKLNFVTGSNVGSRLYLLQDDSTYQIFKLLNREFSFDVDVSNLPCGLNGALYFVAMDADG GVSKYPNNKAGAKYGTGYCDSQCPRDL FIDGEA VEGWQPSSNWANTGIGDHGSCCAEMDWEANSISNAVTPH PCDTPGQTMCSGDDCGGTYSNDRYAGTCDPDGCDFNPYRMGNTSFYGPGKIIDTTKPFTWTQFLTDDGTDTGTL SEIKRFYIQNSNVIPQPNSDISGVTGNSITTEFCTAQ QAFGDTDDFSQHGGLAKMGAAMQQGMVLVMSLWDDYA AQML LDSDYPTDADPTTPGIARGTCPTDSGVPSDVESQSPNSYVTYSNIKFGPIGSTGNPSGGNPPGGNRGTTT TRR ATTTGSSPGPTQSHYGQCGGIGYSGPTVCASGTTCQVLiNPYYSQCLASAHHHHHH
Mature Sequence of Talaromyces emersonii CBHI / Trichoderma reesei -CBD fusion with 6x-His tag (CBH-ah)
SEQID.NO 19
atggccagcgatctggcacagcaggctggtacaattactgctgagaaccatccaagaatgacgtggaagagatgt agtggtccaggaaactgtcagactgt cagggtgaggtcgtgatagatgctaactggagatggttgcataacaac ggccagaactgctacgagggtaacaagtggacctctcagtgttcttctgctaccgactgcgctcagagatgtgct cttgatggagcaaactaccagagtacatatggtgcttctacctctggtgacagccttaccctgaagtttgtaacc aagcacgagtacggaaccaatatcggttctagattctacctgatggctaaccagaacaagtaccagatgtttacc ttgatgaacaacgagttcgccttcgacgtagatctgtctaaggtggagtgtggaatcaa tctgccttgtacttt gtcgctatggaagaggacggaggtatggcttc tacccttctaacagagctggtgctaagtatggaactggatac tgcgatgcccaatgcgctagagacctgaagttcatcggtggaaaggctaacattgaaggttggagaccttctacc aacgacccaaacgctggagttggtccaatgggtgcttgctgtgccgagattgacgtgtgggaatctaacgcttac gcctacgcttttactccacatgcttgcggttctaagaacagataccacatttgcgaaaccaacaactgtggtggc acttactctgatgacagattcgctggatactgtgatgctaacggatgtgattacaacccatacagaatgggtaac aaggacttttacggaaagggtaagactgttgacactaacagaaagttcactgtggtctcgagatttgagagaaac agactgtcgcagttctttgtgcaggacggaagaaagattgaggtcccaccaccaacttggccaggattgccaaac tctgccgacattacccc gagttgtgcgacgctcagttcagagtgtttgacgacagaaacagatttgctgagacc ggtggatttgacgct tgaacgaggctctgaccattccaatggt ctagtcatgagtatt gggacgatcaccac tctaacatgctttggctggactcttcttaccctccagagaaggctggattgcctggtggtgacagaggtccatgt
107
ccaacaacttctggagttccagccgaggttgaggctcaatacccagacgcccaggtcgtgtggtccaacatcaga ttcggaccaattggtagcacagtgaatgtggcttctgcacaccatcatcatcatcattga
Alternative coding sequence of Hu icola grisea CBHI with signal sequence
SEQID NO 42 [P]
LQACTATAENHPPLTWQECTAPGSCTTRNGAWLDANWRWVHDWGYTNCYTGNTWDPTYCPDDVTCAQNCCLDG ADYEGTYGVTSSGSSLKLNFVTGSNVGSRLYLLQDDSTYQIFKLLNREFSFDVDVSNLPCGLNGALYFVAMDADG GVS YPNNKAGAKYGTGYCDSQCPRDLKFINGMANVEGWQPSSNNANTGIGDHGSCCAEMDVWEANSISNAVTLH PCDTPGQTMCSGDDCGGTYSNDRYAGTCDPDGCDFNPYRMGNTSFYGPGKIIDTTKPFTVVTQFLTDDGTDTGTL SEIKRFYIQNGNVIPQPHSI ISGVTGNSITTEFCTAQKQAFGDTDEFSKHGGLAKMGAAMQQGMVLVMSLWDDYA AQMLWLDSDYPTDADPTVPGIARGTCPTDSGVPSDVESQSPNSYVTFSNIKFGPINSTVPGLDGSTPSNPTATVA PPTSTTTSVRSSTTQISTPTSQPGGCTTQKWGQCGGIGYTGCTNCVAGTTCTELNPWYSQGLASAHHHHHH
Talaromyces emersonii CBHI Mutant with C aetomium thermophiium
cellobiohydrolase I CBD with 6x His-TAG
SEQID NO 43 [ ]
ctgcaggcctgcacggcgacggcagagaaccacccgcccctgacatggcaggaatgcaccgcccctgggagctgc accaccaggaacggggcggtcgttcttgatgcgaactggcgttgggtgcacgatgtgaacggatacaccaactgc tacacgggcaatacctgggaccccacgtactgccctgacgacgtaacctgcgcccagaactgttgcctggacggc gcggattacgagggcacctacggcgtgacttcgtcgggcagctccttgaaactcaat tcgtcaccgggtcgaac gtcggatcccgtctctacctgctgcaggacgactcgacctatcagatcttcaagctcctgaaccgcgagttcagc tttgacgtcgatgtctccaatcttccgtgcggattgaacggcgctctgtactttgtcgccatggacgccgacggc ggcgtgtccaagtacccgaacaacaaggctggtgccaagtacggaaccgggtattgcgactcccaatgcccacgg gacctcaagttcatcaacggcatggccaacgtcgagggctggcagccg catcgaacaacgccaacaccggaatt ggcgaccacggctcctgctgtgcggagatggatgtctgggaagcaaacagc'atctccaatgcggtcactctgcac ccgtgcgacacgccaggccagacgatgtgctctggagatgactgcggtggcacatactctaacgatcgctacgcg ggaacctgcgatcctgacggctgtgacttcaacccttaccgcatgggcaacacttctttctacgggcctggcaag atcatcgataccaccaagcccttcactgtcgtgacgcagttcctcactgatgatggtacggatactggaactctc agcgagatcaagcgcttctacatccagaacggcaacgtcattccgcagcccaactcgatcatcagtggcgtgacc ggcaactcgatcacgacggagttctgcactgctcagaagcaggcc tggcgacacggacgaattctctaagcac ggtggcctggccaagatgggagcggccatgcagcagggtatggtcctggtgatgagtttgtgggacgactacgcc gcgcagatgctgtggttggattccgactacccgacggatgcggaccccacggtccctggtattgcccgtggaacg tgtccgacggactcgggcgtcccatcggatgtcgagtcgcagagccccaactcctacgtgaccttctcgaacatt aagtttggtccgatcaactcgaccgtccctggcctcgacggcagcacccccagcaacccgaccgccaccgttgct cctcccacttctaccaccaccagcgtgagaagcagcactactcagatttccaccccgactagccagcccggcggc tgcaccacccagaagtggggccagtgcggtggtatcggctacaccggctgcactaactgcgttgctggcactacc tgcactgagctcaacccctggtacagccagtgcctggc tc gctcatcatcaccatcaccac
Coding Sequence for Talaromyces emersonii CBHI Mutant with Chaetmium thermophilum cellobiohydrolase X CBD with 6x' His-TAG
SEQID WO 4 '[P]
LQACTATAENHPPLTWQECTAPGSCTTRNGAWLDANWRWVHDVNGYTNCYTGNTWDPTYCPDDVTCAQNCCLDG ADYEGTYGVTSSGSSLKLNFVTGSMVGSRLYLLQDDSTYQIFKLLNREFSFDVDVSNLPCGLNGALYFVAMDADG GVSKYPNNKAGA YGTGYCDSQCPRDLKFINGMANVEGWQPSSNNA TGIGDHGSCCAEMDV EANS SNAVTLH PCDTPGQTMCSGDDCGGTYSNDRYAGTCDPDGCDFNPYRMGNTSFYGPG IIDTTKPFTWTQFLTDDGTDTGTL SEIKRFYIQNGNVIPQPNSIISGVTGNSITTEFCTAQKQAFGDTDEFSKHGGLAKMGAAMQQGMVLV SLWDDYA AQML LDSDYPTDADPTVPGIARGTCPTDSGVPSDVESQSPNSYVTFSNIKFGPINSTYTGTVSSSSVSSSHSST STSSSHSSSSTPPTQPTGVTVPQWGQCGGIGYTGSTTCASPYTCHVLNPYYSQCYASAHHHHHH
Talaromyces emersonii CBHI Mutant with P aneroc aete chrysosporium cellobiohydrolase CBD with 6x His-TAG
SEQID NO 45 [N]
108
ctgcaggcctgcacggcgacggcagagaaccacccgcccctgacatggcaggaatgcaccgcccctgggagctgc accaccaggaacggggcggtcgttcttgatgcgaactggcgttgggtgcacgatgtgaacggatacaccaactgc tacacgggcaatacctgggaccccacgtactgccctgacgacgtaacctgcgcccagaactgttgcctggacggc gcggattacgagggcacctacggcgtgacttcgtcgggcagctcc tgaaactcaatttcgtcaccgggtcgaac gtcggatcccgtctctacctgctgcaggacgactcgacctatcagatcttcaagc cc gaaccgcgagttcagc tttgacgtcgatgtctccaatcttccgtgcggattgaacggcgctctgtactttgtcgccatggacgccgacggc ggcgtgtccaagtacccgaacaacaaggctggtgccaagtacggaaccgggtattgcgactcccaatgcccacgg gacctcaagttcatcaacggcatggccaacgtcgagggctggcagccg catcgaacaacgccaacaccggaatt ggcgaccacggctcctgctgtgcggagatggatgtctgggaagcaaacagcatctccaatgcggtcactctgcac ccgtgcgacacgccaggccagacgatgtgctctggagatgactgcggtggcacatactctaacgatcgctacgcg ggaacctgcgatcctgacggctgtgacttcaacccttaccgcatgggcaacacttctttctacgggcctggcaag atcatcgataccaccaagcccttcactgtcgtgacgcagttcctcac gatgatggtacggatactggaactctc agcgagatcaagcgcttctacatccagaacggcaacgtcattccgcagcccaactcgatcatcagtggcgtgacc ggcaactcgatcacgacggagttctgcactgctcagaagcaggcctttggcgacacggacgaattctctaagcac ggtggcctggccaagatgggagcggcc tgcagcagggtatggtcctggtgatgagtttgtgggacgactacgcc gcgcagatgctgtggttggat ccgac acccgacggatgcggaccccacggtccctggtattgcccgtggaacg tgtccgacggactcgggcgtcccatcggatgtcgagtcgcagagccccaactcctacgtgaccttctcgaacatt aagt tggtccgatcaactcgacct cactggaactgtttcttcatcctccgtttcatcttctcactcctccact tctacttcatcttcccattcctcatcttccactccaccaactcaaccaactggtgttactgttccacaatgggga caatgtggtggtattggttacactggttccac acttgtgcttccccatacacttgtcacgttttgaacccatac tactcccaatgttacgcttctgctcatcatcaccatcaccactaa
Coding Sequence for Talaromyces emersonii CBHI Mutant with Phanerochaete chrysosporium cellobiohydrola.se CBD with 6x His -TAG
SEQID NO 46 [P]
lqactataenhppltwqectapgscttrngavvldan rwvhdviigytncytgntwdptycpddvtcaqnccldg adyegtygvtssgsslklnfvtgsnvgsrlyllqddstyqifkllnrefsfdvdvsnlpcglngalyf amdadg gvskypnnkagakygtgycdsqcprdlkfingmanvegwqpssn antgigdhgsccaemdvweansisnavtIh pcdtpgqtmcsgddcggtysndryagtcdpdgcdfnpyrmgntsf gpgki dttkpftvvtqf1tddgtd gtl seikrfyiqngnvipqpnsiisgvtgnsittefctaqkqafgdtdefskhgglakmgaamqqgmvlvmslwddya aqmlwldsdyptdadptvpgi rgtcptdsgvpsdvesqspnsyv fsnikfgpinstftggttsssstttttsk ststsssskttctsvtt ttssgssgtgaahwaqcggngwtgpttcvspytctkqndwysqclasahhhhhh
Talaromyces emersonii CBHI Mutant with Peniciliium j anthinellum
cellobiohydrolase CBD with 6x His-TAG
SEQID NO 47 [N]
ctgcaggcctgcacggcgacggcagagaaccacccgcccctgacatggcaggaatgcaccgcccctgggagctgc accacc ggaacggggcggtcgttcttgatgcgaactggcgttgggtgcacgatgtgaacggatacaccaac gc tacacgggcaatacctgggaccccacgtactgccctgacgacgtaacctgcgcccagaactgttgcctggacggc gcggattacgagggcacctacggcgtgac egtcgggcagctccttgaaactcaatttcgtcaccgggtcgaac gtcggatcccgtctctacctgctgcaggacgactcgacctatcagatcttcaagctcctgaaccgcgagttcagc tttgacgtcgatgtctccaatc tccgtgcggattgaacggcgctc gtact tgtcgccatggacgccgacggc ggcgtgtccaagtacccgaacaacaaggctggtgccaagtacggaaccgggtat gcgactcccaatgcccacgg gacctcaagttcatcaacggcatggccaacgtcgagggctggcagccgtcatcgaacaacgccaacaccggaatt ggcgaccacggctcctgctgtgcggagatggatgtctgggaagcaaacagcatctccaatgcggtcac ctgcac ccgtgcgacacgccaggccagacgatgtgctctggagatgactgcggtggcacatactctaacgatcgctacgcg ggaacctgcgatcctgacggctgtgac tcaacccttaccgcatgggcaacact c ttctacgggcctggcaag atcatcgataccaccaagcccttcactgtcgtgacgcagttcctcactgatgatggtacggatactggaactctc agcgagatcaagcgcttctacatccagaacggcaacgtcattccgcagcccaactcgatcatcagtggcgtgacc ggcaactcgatcacgacggagttc gcactgctcagaagcaggcctttggcgacacggacgaattctctaagcac ggtggcctggccaagatgggagcggccatgcagcagggtatggtcctggtgatgagtttgtgggacgactacgcc gcgcagatgctgtggttggattccgactacccgacggatgcggaccccacggtccctggta tgcccgtggaacg tgtccgacggactcgggcgtcccatcggatgtcgagtcgcagagccccaactcctacgtgaccttctcgaacatt aagtttggtccgatcaactcgacct cactggtggtactacttcatcctcctcc c ac ctacaacttccaag tccacttccacttcatcttcatccaagactacaactacttccgt acaactactactacttcctctggttct ct ggtactggtgctgctcattgggctcaatgtggtggtaatggatggactggtccaactacttgtgtttccccatac acttgtactaagcagaacgactggtactctcaatgtttggcttctgctcatcatcaccatcaccac
109
Coding Sequence for Talaromyces emersonii CBHI Mutant with Penicillium janthinellum cellobiohydrolase CBD with 6x His-TAG
SEQID NO 48 [P]
lqac ataenhppltwqectapgscttrngavvldanwrwvhdvngytncytgntwdptycpddvtcaqnccldg adyegtygvtssgsslklnfvtgsnvgsrlyllqddstyqifkllnrefsfdvdvsnlpcglngalyfvamdadg gvskypnnkagakygtgycdsqcprdlkfingmanvegwqpssnnantgigdhgsccaemdvweansisnavtlh pcdtpgqtmcsgddcggtysndryagtcdpdgcdfnpyrmgntsfygpgkiidttkpftvvtqfltddgtdtgtl seikrfyiqngnvipqpnsiisgvtgnsittefctaqkqafgdtdefskhgglakmgaamqqgmvlvmslwddya aqml ldsdyptdadptvpgiargtcptdsgvpsdvesqspnsyvtfsnikfgpinstftgtgstspsspagpvs sstsvasqptqpaqgtvaqwgqcggtgftgptvcaspftchvvnpyysqcyas hhhhhh
Talaro yces emersonii CBHI Mutant with Irpex lacteus cellobiohydrolase CBD with 6x His-TAG
SEQID NO 49 [N]
ctgcaggcctgcacggcgacggcagagaaccacccgcccctgacatggcaggaatgcaccgcccctgggagctgc accaccaggaacggggcggtcgttcttgatgcgaac ggcgttgggtgcacgatgtgaacggatacaccaactgc tacacgggcaatacctgggaccccacgtactgccctgacgacgtaacctgcgcccagaactgttgcctggacggc gcggattacgagggcacctacggcgtgacttcgtcgggcagctccttgaaactcaatttcgtcaccgggtcgaac gtcggatcccgtctctacctgctgcaggacgactcgacctatcagatcttcaagctcctgaaccgcgagttcagc tttgacgtcgatgtctccaatcttccgtgcggattgaacggcgctctgtactttgtcgccatggacgccgacggc ggcgtgtccaagtacccgaacaacaaggctggtgccaagtacggaaccgggtattgcgactcccaatgcccacgg gacctcaagttcatcaacggcatggccaacgtcgagggctggcagccgtcatcgaacaacgccaacaccggaatt ggcgaccacggctcctgctgtgcggagatggatgtctgggaageaaacagcatctccaatgcggtcactctgcac ccgtgcgacacgccaggccagacgatgtgctctggagatgactgcggtggcacatactctaacgatcgctacgcg ggaacctgcgatcctgacggctgtgacttcaacccttaccgcatgggcaacacttctttctacgggcctggcaag atcatcgataccaccaagcccttcactgtcgtgacgcagttcctcactgatgatggtacggatactggaactctc agcgagatcaagcgcttctacatccagaacggcaacgtcattccgcagcccaactcgatcatcagtggcgtgacc ggcaactcgatcacgacggagttctgcactgctcagaagcaggcctttggcgacacggacgaattctctaagcac ggtggcctggccaagatgggagcggccatgcagcagggtatggtcctggtgatgagtttgtgggacgactacgcc gcgcagatgctgtggttggattccgactacccgacggatgcggaccccacggtccctggtattgcccgtggaacg tgtccgacggactcgggcgtcccatcggatgtcgagtcgcagagccccaactcctacgtgaccttctcgaacatt aagtttggtccgatcaactcgaccttcactggtactggttctacttctccatcttctccagctggtccagtttct tcttccacttccgttgcttcccaaccaactcaaccagctcaaggtactg tgctcaatggggacaatgtggtggt actggtttcactggtccaactgtttgtgcttccccattcacttgtcacgttgttaacccatactactcccagtgt tacgct ctgctcatcatcatcaccatcac
Coding Sequence for Talaromyces emersonii CBHI Mutant with Irpex lacteus cellobiohydrolase CBD with 6x His-TAG
SEQID NO 50 [P]
lqactataenhppltwqectapgscttrngavvldanwrwvhdvngytncytgntwdptycpddvtcaqnccldg adyegtygvtssgsslklnfvtgsnvgsrlyllqddstyqi£kllnrefsfdvdvsnlpcglngalyfvamdadg gvskypnnkagakygtgycdsqcprdlkfingmanvegwqpssnnantgigdhgsccaemdvweansisnavtlh pcdtpgqtmcsgddcggtysndryagtcdpdgcdfnpyrmgntsfygpgkiidttkpftvvtqfltddgtdtgtl seikrfyiqngnvipqpnsiisgvtgnsittefctaqkqafgdtdefskhgglakmgaamqqgmvlvmslwddya aqmlwldsdyptdadptvpgiargtcptdsgvpsdvesqspnsyvtfsnikfgpigstgnpsggnpsggdggttt trrpatttgsspgptqslygqcggigysgpticasgttcqvlnpyysqciasahhhhhh-
Talaromyces emersonii CBHI Mutant with mutated Trichoderma reesei CBD with 6x His-TAG
SEQID NO 51 [N]
1 10
ctgcaggcctgcacggcgacggcagagaaccacccgcccctgacatggcaggaatgcaccgcccctgggagctgc accaccaggaacggggcggtcgttcttgatgcgaactggcgttgggtgcacgatgtgaacggatacaccaactgc tacacgggcaatacctgggaccccacgtactgccctgacgacgtaacctgcgcccagaactgttgcctggacggc gcggattacgagggcacctacggcgtgacttcgtcgggcagctccttgaaactcaatttcgtcaccgggtcgaac gtcggatcccgtctctacctgctgcaggacgactcgacctatcagatcttcaagctcctgaaccgcgagt cagc tttgacgtcgatgtctccaatcttccgtgcggattgaacggcgctctgtactttgtcgccatggacgccgacggc ggcgtgtccaagtacccgaacaacaaggctggtgccaagtacggaaccgggtattgcgactcccaatgcccacgg gacctcaagttcatcaacggcatggccaacgtcgagggctggcagccgtcatcgaacaacgccaacaccggaatt ggcgaccacggctcctgctgtgcggagatggatgtctgggaagcaaacagcatctccaatgcggtcactctgcac ccgtgcgacacgccaggccagacgatgtgctctggagatgactgcggtggcacatactctaacgatcgctacgcg ggaacctgcgatcctgacggctgtgacttcaacccttaccgcatgggcaacacttctttctacgggcctggcaag a catcgataccaccaagcccttcactgtcgtgacgcagttcctcactgatgatggtacggatactggaactctc agcgagatcaagcgcttctacatccagaaGggcaacgtcattccgcagcccaactcgatcatcagtggcgtgacc ggcaactcgatcacgacggagttc gcactgctcagaagcaggcc ttggcgacacggacgaattc c aagcac ggtggcctggccaagatgggagcggccatgcagcagggtatggtcctggtgatgagtttgtgggacgactacgcc gcgcagatgctgtggttggattccgactacccgacggatgcggaccccacggtccctggtattgcccgtggaacg tgtccgacggactcgggcgtcccatcggatgtcgagtcgcagagccccaactcctacgtgaccttctcgaacatt aagtttggtccgatcggtagcacaggtaatccttcaggtggtaatccttcaggtggagacggcggaacaacgaca actagaagaccagctactacaactggttcaagtccaggtccaactcaatcactatacggtcaatgtggtggtata ggttactctggtcccactatttgtgcttctggtactacttgccaagttctgaacccttactactcacagtgtcta gcttctgcacatcatcaccaccaccat
Coding Sequence for Talaromyces emersonii CBHI Mutant with mutated
Trichoderma reesei CBD with 6x His-TAG
1 1 1