WO2011087194A1 - Solar light collecting device - Google Patents

Solar light collecting device Download PDF

Info

Publication number
WO2011087194A1
WO2011087194A1 PCT/KR2010/005008 KR2010005008W WO2011087194A1 WO 2011087194 A1 WO2011087194 A1 WO 2011087194A1 KR 2010005008 W KR2010005008 W KR 2010005008W WO 2011087194 A1 WO2011087194 A1 WO 2011087194A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
lens
solar
linear
collimator
Prior art date
Application number
PCT/KR2010/005008
Other languages
French (fr)
Korean (ko)
Inventor
정태락
정재헌
Original Assignee
Jung Taerok
Jung Jaeheun
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020100004153A external-priority patent/KR101130765B1/en
Priority claimed from KR1020100006250A external-priority patent/KR101059759B1/en
Priority claimed from KR1020100006756A external-priority patent/KR101059761B1/en
Priority claimed from KR1020100042311A external-priority patent/KR101059760B1/en
Application filed by Jung Taerok, Jung Jaeheun filed Critical Jung Taerok
Publication of WO2011087194A1 publication Critical patent/WO2011087194A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0037Arrays characterized by the distribution or form of lenses
    • G02B3/005Arrays characterized by the distribution or form of lenses arranged along a single direction only, e.g. lenticular sheets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/10Prisms
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers

Definitions

  • the present invention relates to a solar concentrator, and more particularly, to collect sunlight, which is incident on the front surface of a flat plate and a large area, by using a collimation condenser module having a plurality of condenser lenses and a collimator integrated with at least one total reflection guide means.
  • the present invention relates to a solar light collector that can maximize the light collection efficiency of solar energy and at the same time significantly reduce the manufacturing cost.
  • the method of using solar energy absorbs solar heat by using solar power generation, solar heat collecting pipe or heat collecting plate which produces electricity by using solar cell, and solar heat collecting, lighting or plant growth that uses it for hot water production or heating.
  • a solar natural light such as natural light using a solar natural light module or a reflector for use in the photocatalyst.
  • Photovoltaic concentrators include point-focus dish types, point-focus Fresnel lens types, linear-focus Fresnel lens types, and Helios. Tet type (heliostat type), Gregorian / Casegrain condensing system, condensing using holographic prism sheet, etc. There are a myriad of various methods are known, and the condensing lens and the optical system using a condensing mirror are used for condensing.
  • the sealed box-shaped outer box 2 covers the circumference of the plurality of solar panels 6, and the reflective mirror 5 is formed inside the outer box 2.
  • a lens array 8 composed of a plurality of lenses 8a is provided on the outer box 2.
  • holes 12 are drilled on the outer box 2, and the light condensed by the respective convex lenses 8a is incident on the outer box 2, respectively, so that the plurality of convex lenses 8a are in the radial direction. And to form a right angle or an acute angle to the surface direction of each solar cell panel (6).
  • the radial direction of the plurality of convex lenses 8a forms a right angle or an acute angle with each of the surface directions of the plurality of solar panels 6, the light is collected by the convex lens 8a and passes through the hole 12.
  • the optical axis of is parallel or acute with each plane direction of the plurality of solar cell panels 6, and the light axis of the solar cell panel per the same projection area of the sunlight as compared to the case where the optical axis of light is incident perpendicularly to the solar cell panel 6
  • the area can be made high.
  • the outer box 2 covers the circumference
  • the first conventional technique described above is a structure in which one solar cell panel is corresponded by one condenser lens (or a group of lens groups), and since the solar cell panel requires expensive solar cells, two or more solar cells are required.
  • the necessity of further increasing the density of sunlight by condensing lenses (or a group of lenses) in a manner that corresponds to one solar panel has emerged.
  • the solar light 506 is primarily focused on the condenser lens 510, and the light on the condensed light receiving element 530 is transmitted to the light sheet 542, the intermediate sheet 55, and the main light transmission sheet.
  • the solar light 506 is primarily focused on the condenser lens 510, and the light on the condensed light receiving element 530 is transmitted to the light sheet 542, the intermediate sheet 55, and the main light transmission sheet.
  • It is a device for condensing through total reflection through 560.
  • the above-described second prior art focuses light collected from two or more condensing lenses to a single point, but must use complex devices such as multiple light transmission sheets, in particular, using total reflection within several sheets. As a result, a large amount of light is lost, and since total reflection must occur on the entire surface of the sheet, a complicated and expensive design for the critical angle is required. There is a lot. Furthermore, since the collected light is not parallel light, the cross-sectional area collected at one point becomes wider and the condensing degree is limited.
  • Korean Patent No. 932213 as the third prior art is to further solve the problems of the first and second prior art.
  • a plurality of unit condensing lens units 110 having convex round cross-sections are formed on an upper surface thereof, and a unit groove 120 is disposed at a predetermined position corresponding to the unit condensing lens unit 110 on a lower surface thereof.
  • Each of the condensing lens 100 is formed on the lower surface, one surface 121 is formed in a direction so that refracted sunlight is not incident, the other surface 122 is a unit groove formed in a conical curve shape 120 is formed.
  • a plurality of unit grooves 120 are formed in such a manner that an optical focus F1 having a conical curve is placed on the lens axis of the unit condensing lens unit 110, and thus the optical focal line and the cone of the unit condensing lens unit 110 are positioned. Curved optical focal lines are matched in space. Accordingly, the solar light 111 incident on the unit condensing lens unit 110 is gathered at the focal point F1 formed by the unit condensing lens unit 110, and has a surface 122 formed in the shape of a conical curve of the unit groove 120. After being reflected by the light, the light is collected onto the surface of the solar cell 130.
  • the third prior art is also focused by the condenser lens
  • the focused light is not parallel light, and furthermore, the conical curved surface 122 of the unit groove is specified.
  • Manufacturing cost is expensive because it must be designed and manufactured on-demand precisely to meet the design, and when the design is changed or can not be used for other devices, the compatibility is low, there is also a problem in economics.
  • the present applicant manufactures the above-mentioned unit photovoltaic light collecting device in a small size, but uses a plurality of arrays and simultaneously drives the azimuth and altitude angles of the sun to parallel the incident sunlight and solar light.
  • Blinds with Dual Axis Solar Tracing Function (Korean Patent Application No. 10-2009-0129310) and Two Axis Solar Tracing Vertical Euro Blinds (Korean Patent Application No. 10-2009-0129310)
  • a patent application for "side solar collector (Korean Patent Application No. 10-2010-0004153)" and “prism hybrid solar collector (Korean Patent Application No. 10-2010-6250)" the contents of these specifications Is also referred to herein.
  • the first and second applications are a two-axis solar tumbler that allows sunlight to be incident in parallel as an improvement on the basis to increase the light collecting efficiency of the solar light collecting device, and the third application is based on the use of the two-axis solar tumbler,
  • Condensing part is provided in the arrangement of a plurality of lenses and mirror condensing module, and the reflecting part is provided in multiple stages to collect parallel solar light incident on the front surface, and the condensing part is first with one side member on the lower surface or the upper surface of the condenser.
  • the fourth application is provided with a plurality of reflecting parts on the upper and lower sides of the light collecting part.
  • the upper and lower prism sheets can be used to reduce the thickness of the solar light collecting device and to gradually collect the side as well as the light.
  • the present invention was created in view of the above-described problems in the prior art, and is provided with a collimator (collimator) integrally to the light collecting unit so as to focus the solar light effectively to maximize the light condensing efficiency of the solar energy.
  • the aim is to provide a solar concentrator that can further reduce manufacturing costs and increase the economics of investment.
  • the objective is to provide a plurality of one-dimensional arrays of transparent solid unit collimator-type condensing modules (hereinafter referred to as "collimating condensing modules") in which collimators are integrally formed so as to focus incident sunlight and emit parallel condensed light.
  • Condensing unit formed with; and a horizontal reflector for one-to-one correspondence with the collimating condensing module and horizontally reflects the sunlight received from the collimating condensing module horizontally from side to side, and vertically reflecting the vertically vertically reflected sunlight from the horizontal reflecting unit.
  • An aspect of the present invention is characterized by comprising a pair of upper and lower prism sheets arranged above and below the light collecting part, and configured to collect incident light by two or four pairs of unit collimating modules or gradually. Achieved by a light condenser.
  • the light collecting part focuses sunlight transmitted from the vertical reflecting portion of the lower prism sheet to reduce the width of the sunlight transmitted to the horizontal reflecting portion of the upper prism sheet and emits parallel solar light.
  • a child collimation condenser module may be further formed, and the horizontal reflecting portion or the vertical reflecting portion is formed by a right isosceles triangle or a ' ⁇ '-shaped groove, and a hypotenuse and an angle of a right isosceles triangle forming an interface with air.
  • the inclination surface angle of the shape groove is characterized in that 45 degrees.
  • collimating module or child collimating module constituting the light collecting unit is a collimator (collimator); and,
  • Linear convex condensing lens (hereinafter referred to as “convex condensing lens”) or convex condensing lens with convex shape on top, concave convex concave, concave to the bottom, linear concave with no mirror reflecting layer on the back Mirror condenser (hereinafter referred to as “concave mirror condenser”) or linear array of confocal concave mirror condenser, linear fresnel condenser (hereinafter referred to as “fresnel condenser”) or point of focus fresnel condenser Linear Casegrain Condensing Lens (hereinafter referred to as “Casegrain Condensing Lens”), which can focus the sunlight through secondary reflection through the Casegrain main reflecting mirror and the Casegrain sub-reflecting mirror with the reflective layer formed on both sides except the center surface.
  • Convex condensing lens or convex condensing lens with convex
  • the collimator may be one selected from a linear Gregorian condenser lens (hereinafter referred to as a "Gregorian condenser lens”) or a linear array of focus-focused Gregorian condenser lenses capable of focusing sunlight through an annular secondary reflection mirror.
  • a linear Gregorian condenser lens hereinafter referred to as a "Gregorian condenser lens”
  • a linear array of focus-focused Gregorian condenser lenses capable of focusing sunlight through an annular secondary reflection mirror.
  • the collimator may include a linear convex lens; Linear aspherical convex lens; Linear green lens; Linear Fresnel lens; Multiple green lens linear arrays; Linear arrays of multiple focal convex lenses; Linear arrays of multiple focal aspherical convex lenses; It is characterized in that any one selected from the linear arrangement of a plurality of focusing Fresnel lens.
  • the upper and lower prism sheet or the light collecting part is a transparent material having a light refractive index greater than that of air, and is one selected from a plastic having an ultraviolet blocking layer, a plastic made of an ultraviolet blocking monomer, tempered glass, pyrex, and quartz glass.
  • the lower prism sheet may further include a prism sheet provided in a stepped manner to reflect the focused light horizontally again, and to focus the reflected light from the side to the multi-stage, and the vertical reflection formed on the upper prism sheet.
  • the part is formed to correspond to the boundary of the collimating module and totally reflected the incident light downward, or formed to correspond to the first photovoltaic incidence site that the focused light is focused again by the collimating module with the first sunlight. It has a high total reflectance on the outer surface of the horizontal reflector and the vertical reflector.
  • the reflection layer to be formed, the reflection layer include aluminum, silver, gold, nickel, characterized in that the coating is formed by any one selected from stainless steel.
  • the present invention it is possible to maximize the solar energy utilization efficiency by effectively condensing the sunlight incident on a large area, and is simple in structure and easy to manufacture and install, and is flat and thin, not bulky, and the manufacturing cost is further increased. Inexpensive effect can be obtained.
  • FIG. 1 is an exemplary view for explaining the basic concept of a solar collector according to the present invention.
  • a linear collimator comprises a light collecting part using an collimating light collecting module integrally formed in a convex condenser lens, and an upper and lower prism sheet.
  • FIG 3 is a cross-sectional view of a solar light collector according to the first embodiment of the present invention for condensing the wider width by the vertical reflector again.
  • FIG. 4 is a cross-sectional view of a solar collector according to a first embodiment of the present invention for gradually collecting light
  • FIG. 5 is a cross-sectional view showing the structure of a solar light collector according to the second embodiment of the present invention in which a linear collimator (collimator) comprises a light collecting part using an collimating light collecting module integrally formed in a concave mirror light collecting lens and an upper and lower prism sheet.
  • a linear collimator collimator
  • FIG. 6 is a cross-sectional view showing the structure of a solar light collector according to the third embodiment of the present invention in which a linear collimator (collimator) comprises a light collecting part using an collimating light collecting module integrally formed in a Fresnel light collecting lens and an upper and lower prism sheet.
  • a linear collimator comprises a light collecting part using an collimating light collecting module integrally formed in a Fresnel light collecting lens and an upper and lower prism sheet.
  • a linear collimator comprises a light collecting part using an collimating light collecting module integrally formed in a casee grain light collecting lens, and an upper and lower prism sheet.
  • Fig. 8 is a cross-sectional view showing the structure of a solar light collector according to a fifth embodiment of the present invention in which a linear collimator (collimator) comprises a light collecting part using an collimating light collecting module integrally formed in a Gregorian light collecting lens and an upper and lower prism sheet.
  • a linear collimator comprises a light collecting part using an collimating light collecting module integrally formed in a Gregorian light collecting lens and an upper and lower prism sheet.
  • FIG. 9 is a cross-sectional view of a solar collector according to a sixth embodiment of the present invention.
  • FIG. 10 is a cross-sectional view of a solar collector according to a seventh embodiment of the present invention.
  • FIG. 11 is a cross-sectional view of a solar collector according to a modification of the seventh embodiment of the present invention.
  • FIG. 12 is a cross-sectional view of a solar collector according to still another modification of the seventh embodiment of the present invention.
  • FIG. 13 is a cross-sectional view of a solar collector according to a modification of the collimator of the present invention.
  • FIG. 14 is a cross-sectional view of a solar collector according to another modification of the collimator of the present invention.
  • FIG. 15 is a cross-sectional view of a solar collector according to another modification of the collimator of the present invention.
  • FIG. 16 is a cross-sectional view of a solar collector according to another modification of the collimator of the present invention.
  • 17 is a plan view of a solar light collector according to a modification of the light collecting lens of the present invention.
  • FIG. 1 is an exemplary view for explaining the basic concept of a solar collector according to the present invention.
  • the solar light collector 1 focuses unfocused sunlight 11a (hereinafter referred to as “first sunlight”) incident on the front surface and emits parallel focused light.
  • a collimator 20 having a solid solid collimator formed integrally with a collimator 211 so as to correspond to the collimator 20 formed in a plurality of one-dimensional arrays and each collimator concentrator 21,
  • a horizontal reflector (refer to FIG. 2 for more detailed structure) and a horizontal reflector (refer to FIG.
  • the solar light collector 1 is configured to automatically adjust the azimuth and elevation angles of the sun according to the position change of the sun by a sun tracker (not shown).
  • a sun tracker not shown
  • sunlight incident on the upper surface of the solar light collector 1 is direct sunlight in the form of parallel light
  • the collimating light collecting module 21 is continuously arranged in one dimension.
  • a light collecting means (not shown) may be installed on the front side of the collimating light collecting module 21 to be configured to be incident by refracting incident sunlight at a predetermined angle.
  • the refractive indexes of the materials used for the light-converging unit 20 and the upper and lower prism sheets 30a and 30b, respectively, are constant with respect to incident sunlight.
  • FIG. 2 is a cross-sectional view showing the structure of the solar light collector according to the first embodiment of the present invention, in which a linear collimator (collimator) includes a light collecting part using an collimating light collecting module integrally formed in a convex condenser lens, and an upper and lower prism sheet.
  • a linear collimator collimator
  • FIG. 4 is a cross-sectional view of the solar light collector according to the first embodiment of the present invention to gradually collect .
  • the solar light collector 1a is located at the light concentrator 20a and the upper and lower ends of the light concentrator 20a, respectively, from the light concentrator 20a. It consists of upper and lower prism sheets 30a and 30b made of a transparent material which receives light and collects light.
  • the condenser condenser lens 210a having a convex round cross section is formed on an upper surface of the condenser 20a, and a collimating convex lens 211 ′ formed integrally with the convex condenser lens 210a on a lower surface thereof. It consists of a plurality of array of collimation light collecting module (21a) made.
  • the collimating convex lens 211 ′ coincides with the convex condenser lens 210a and the collimating convex lens 211 ′ and the convex condensing lens 210a.
  • the first sunlight 11a incident to the convex condenser lens 210a is integrally formed so that the optical focal point F is positioned, and one elongated linear focal point in the longitudinal direction is provided between the collimating convex lenses 211 'formed in the longitudinal direction.
  • the primary focused solar light 11b which forms a line and is first focused, and has passed through a linear focal line, proceeds to the collimating convex lens 211 'and is refracted in parallel light form by the collimating convex lens 211'. It exits to the bottom.
  • the first sunlight 11a incident to the light collecting part 20a having a large area is divided and collected by each collimating light collecting module 21a, and the collimating convex lens 211 'is formed to correspond to each convex light collecting lens 210a. Since the focused light is focused to the primary focused light in the form of parallel light and proceeds to the lower end, as a result, the parallel light in which the sunlight incident on the large area is primarily focused by the light concentrator 20a in the form of a plurality of linear bands. The light is focused on the light 11b.
  • the horizontal reflecting portion 41h formed on the lower prism sheet 30b is formed to correspond one-to-one with the collimating convex lens 211 ', and totally reflects the incident primary focused sunlight 11b to the left and right sides. Its shape is formed by a right isosceles triangle.
  • the horizontal reflecting portion 41h 'formed on the upper prism sheet 30a is reflected from the lower prism sheet 30b toward the upper prism sheet 30a by the vertical reflecting portion 41v formed on the lower prism sheet 30b. That is, formed at a position corresponding to the boundary 23a of the collimating light concentrating module 21a, the shape is a right-angle isosceles triangle, and reflects the incident primary focusing sunlight 11b to the left and right sides.
  • the lower prism sheet 30b is formed with a vertical reflecting portion 41v having a ' ⁇ ' shape at a position corresponding to the boundary 23a of the adjacent collimating light collecting module 21a, and both ends thereof are formed by a ' ⁇ ' shaped groove.
  • two right isosceles triangular hypotenuses which define a boundary between a dense medium (lower prism sheet) and a small medium (air) are formed as inclined surfaces, respectively, from both horizontal reflecting portions 41h.
  • the transmitted primary focused solar light is diverted 90 ° to the top by the total reflection principle on each inclined plane of each rectangular isosceles triangle shape, and the primary focused solar light 11b that is turned 90 ° to the top is the width thereof.
  • (t) is twice the height (t) of the horizontal reflecting portion 41h formed in the lower prism sheet 30b, and passes through the boundary 23a portion of the collimating light collecting module 21a to allow the upper prism sheet 30a to be formed.
  • Horizontal reflectors (4) 1h ') is totally reflected (see the bottom of FIG. 2 (c)).
  • horizontal reflecting portions 41h are formed on the lower prism sheet 30b so that adjacent primary collimating light concentrating modules 21a are reflected by the reflected primary focused solar light 11b horizontally from side to side, and are collected at the boundary 23a. Is formed oblique in roughly trapezoidal form.
  • the horizontal reflector 41h 'positioned on the upper prism sheet 30a has a vertical reflector 41v adjacent to the right side of the transmitted primary focused sunlight 11b, as shown in FIG. '), And another pair of collimating light collecting modules 21a adjacent to the right side of the vertical reflecting portion 41v' are also focused firstly to the horizontal reflecting portion 41h 'of the upper prism sheet 30a.
  • the total reflected solar light 11b is transmitted and transmitted, but the horizontal reflecting portion 41h 'of the upper prism sheet 30a is totally reflected toward the left, that is, the vertical reflecting portion 41v' of the upper prism sheet 30a.
  • all of the primary light 11b focused at four adjacent collimating light collecting modules 21a are collected at the vertical reflecting portion 41v ', and are turned 90 ° to be totally vertically reflected toward the lower prism sheet 30b. .
  • the vertical reflecting portion 41v formed in the lower prism sheet 30b is formed by the ' ⁇ '-shaped grooves, resulting in 90 ° total reflection prism as a result. Since the incident light is arranged side by side in order to totally reflect to minimize refraction or diffuse reflection loss, the sum of the widths reflected from two orthogonal isosceles triangular slopes is collimated convex lens formed at the bottom of each convex condenser lens 210a. It is twice (2t) of the primary focusing sunlight width t passing through the 211 ', and the height of the horizontal reflecting portion 41h' of the upper prism sheet 30a is two collimating light collecting modules 21a. Since the primary focusing sunlight 11b incident from the left and right sides is simultaneously received and converted to 90 degrees horizontally without loss, the thickness is twice as thick as the height of the horizontal reflecting portion 41h 'of the lower prism sheet 30b. It is desirable to have All.
  • the width of the primary focusing sunlight totally reflected vertically toward the lower prism sheet 30b by the vertical reflecting portion 41v 'of the upper prism sheet 30a is the collimating convex lens 211 of the convex condenser lens 210a. 4 times the width of the primary focused solar light 11b passing through ').
  • the aggregated primary focused solar light passes through the lower prism sheet 30b and aggregates (lights) to a solar cell (not shown) or a solar energy utilizing device (not shown) that is placed at the bottom.
  • Inclined surfaces constituting the horizontal reflecting portions 41h, 41h 'and vertical reflecting portions 41v, 41v' are formed at an angle so that total reflection occurs at an interface when light passes from a dense medium to a small medium. In the first embodiment of the present invention, a 45 ° angle is formed.
  • total reflection refers to a phenomenon in which light is reflected, rather than refracted, when light enters a dense medium from a dense medium.
  • the angle of refraction is 90 °
  • the angle of incidence is a critical angle ⁇ .
  • the incident angle is larger than the critical angle
  • the plurality of collimating light collecting modules 21a constituting the light collecting unit 20a are simultaneously formed in units of two pairs or four pairs, and the first sunlight 11a that is incident is collected at a specific position as shown in FIG. And concentrated solar light 11c.
  • another upper and lower prism sheet 30a (preferably a staircase type) is added to the upper and lower ends of the upper and lower prism sheets 30a and 30b, or the upper and lower prism sheets 30a of the same medium.
  • (30b) can be made high so that the light collected at a specific position can be condensed on the side in multiple stages, and when the cascade is formed, the refractive index between the upper and lower prism sheets 30a and 30b is higher and higher. It can be configured so that solar light which has propagated through the upper and lower prism sheets 30a and 30b is totally reflected by providing a medium layer smaller than the lower prism sheets 30a and 30b.
  • the vertical reflecting portion 41v 'formed in the upper prism sheet 30a has a condensing position of the convex condenser lens 210a instead of the boundary 23a position (for example, as shown in FIG. 3A).
  • the apex of the convex condenser lens, the primary focused solar light 11b can be focused again by the collimating condenser module 21a, so that the vertical reflecting portion 41v 'of the upper prism sheet 30a is formed.
  • the width of the focused condensed light of the collimating condensing module (21a) can be reduced to the original width (t) by converging with the first sunlight.
  • the child collimating light collecting module 22a is further provided at the boundary 23a of the adjacent collimating light collecting module 21a, and the upper prism sheet 30a is provided.
  • the width of the sunlight which is increased by the vertical reflecting portions 41v and 41v ' can be reduced to focus altitude.
  • one child collimation condenser module 22a is further provided for two adjacent collimation condensing modules 21a, and these are continuously set as one set.
  • the primary collimated light converging module 11 is collected by collecting the primary focused solar light 11b incident from a pair of adjacent collimating light concentrating modules 21a which are incident from the lower prism sheet 30b to the left and right.
  • the child collimation condensing module 21a is compared with the collimation condensing module 21a.
  • the module 22a is arranged upside down, and the primary solar focus in each collimating light collecting module 21a is focused on the collimating convex lens 211 'formed at the bottom so that light does not substantially pass from side to side. Since a medium space is formed, the width of the wide child convex condenser lens 220a having a predetermined curvature provided at the lower end of the condenser 20a is largely formed using this area, so that it is appropriately disposed on the upper surface.
  • the width of the boundary surface 23a on which the child collimating convex lens 211 ′′ is formed can be formed in close contact with the width of the child collimating convex lens 211 ′′, and the child collimating convex lens 211 ′′ is wide. Can be formed very small Therefore, the entire collimation light collecting module 21a and the child collimation light collecting module 22a can be compactly formed, thereby minimizing the loss of the sunlight 11a first incident on the child collimating convex lens 211 ′′. .
  • the first sunlight 11a in the form of parallel light incident on the front of the light collecting portion 20a having a large area is each collimating light collecting module 21a or collimating light collecting module 21a and the child collimating light collecting module.
  • (22a) and the upper and lower prism sheets (30a, 30b) are driven to collect a very small linear area of final height and condensed, so that the sun required when installing a solar cell (not shown) at the condensing position
  • the battery area can be significantly reduced, and even when installing a solar natural light module (not shown) that finally injects sunlight into the optical cable, a linear condensing optical system can be used to reduce the manufacturing cost and to provide a flat natural light module. Because it can be manufactured, the operating space can be significantly reduced.
  • This structure is very inexpensive compared to the conventional technique in which the collimator for forming the parallel sunlight required for efficiently concentrating the primary focused sunlight 11b is formed on the upper and lower prism sheets 30a and 30b. Since the alignment of the optical axis with the collimator is precisely aligned in the mold manufacturing step, the condenser 20a and the upper and lower prism sheets 30a and 30b can be easily assembled, and the manufacturing cost can be greatly reduced. In the case of manufacturing the upper and lower prism sheets 30a and 30b, only the vertical reflecting portions 41v and 41v 'and the horizontal reflecting portions 41h and 41h' are required, and the upper and lower prism sheets are very simple in structure. The prism sheets 30a and 30b can also be manufactured inexpensively, so that further cost reduction effects are expected.
  • Optically transparent materials such as plastic, tempered glass, pyrex, and quartz glass are preferable than air, and in the case where the light collecting purpose of the solar light collector 1a of the first embodiment is UV sunlight, even if a UV blocking layer is formed Since plastic deteriorates when exposed to UV for a long time, it is preferable to select tempered glass, pyrex, or quartz glass material.As a plastic material having a UV blocking layer is formed for the production of visible sunlight, natural light, or sunlight Hawk on the side It is preferred.
  • the UV liquid may be coated or UV-blocking monomer to ensure weather resistance.
  • the UV-400 acrylic sheet using the monomer for the UV-blocking plastic lens is used, and the matter regarding the improvement of weather resistance by the solar UV is easily implemented by those skilled in the art, and thus the description thereof will be omitted.
  • acrylic plastics used in optical glass or plastic optical cables have a light attenuation rate of less than 2 to 5% per meter, so almost all light is transmitted and collected. Therefore, maximizing the light collecting efficiency is obvious.
  • the collimating condenser module 21a has a small convex condenser lens (not shown) for concentrating sunlight incident on a small circular plane or a square plane at a focal point when viewed from an image side where sunlight is vertically incident.
  • a gap may be formed between the “point focus” convex condenser lenses (not shown) arranged in a straight line, and the linear collimator may also have a one-to-one correspondence with the “point focus” convex condenser lens.
  • Point focus ”collimator can be formed as a linear array, the corresponding horizontal reflector 41h of the lower prism sheet 30b can also be formed as a point instead of a linear, and instead of the child convex condenser lens 220a A linear array of child convex condensing lenses (not shown) can be formed, and the linear collimator corresponding to the child convex condensing lens 220a is also confronted with the "point focus" convex condensing lens. Corresponding to "focus point” may be formed with a linear arrangement of the collimator.
  • the convex condenser lens 210a and the collimating convex lens 211 ′ of the collimating condenser module 21a may be formed in a concave groove shape, and the child convex condensing lens of the child collimating condenser module 22a ( The same applies to the 220a) and the child collimating convex lens 211 ′, and the collimating convex lens 211 ′ and the child collimating convex lens 211 ′′ may be formed to have a microscopic size.
  • a collimating convex lens 211 'and a child collimating convex lens 211 are used as collimators (collimators), but in addition, linear aspherical convex lenses and linear green lenses;
  • a linear Fresnel lens, a plurality of green lens linear arrays, a plurality of linear focus convex lenses, a linear array of multiple focus-focused aspherical convex lenses, a linear array of a plurality of focus-focused Fresnel lenses are selected This is generally related to lenses, microlens formation or microcollimators (collimators) known in optical communications, optics or micro-optics, and detailed descriptions thereof will be omitted. The method may be easily implemented by those skilled in the art through a wide variety of optical means in addition to the method described above.
  • the lower prism is primarily used to reflect the sunlight horizontally in the form of parallel light in the vertical reflecting portions 41v, 41v 'and horizontal reflecting portions 41h, 41h' without loss of efficiency.
  • the primary focused sunlight 11b reaching the horizontal reflecting portion 41h of the sheet 30b should be parallel light as much as possible, and the narrower the width, the more effective it is.
  • the sunlight is the upper prism sheet 30a. In the process of passing through the vertical reflecting portion 41v (41v ') and the horizontal reflecting portion (41h) (41h') of the parallel light as much as possible, the narrower the width of the narrower no loss of light and the thickness It will be readily understood by those skilled in the art that the reduction will be possible.
  • the primary focused solar light is incident in parallel, and at the same time, the width of contact with the horizontal reflectors 41h and 41h 'is reduced, so that the upper and lower prism sheets 30a are reduced.
  • the thickness of 30b can be reduced, and as the contact width decreases, the upper and lower prism sheets 30a and 30b having the same thickness can be formed in multiple stages, so that the number of arrays of collimating light concentrating modules 21a can be increased.
  • this will reduce the radius of curvature of the collimating light concentrating module 21a, and as a result, the focal length can be reduced, and the overall thickness of the solar light collector 1a can be easily understood.
  • FIG. 5 is a cross-sectional view showing the structure of a solar light collector according to the second embodiment of the present invention in which a linear collimator (collimator) is composed of a light collecting part using an collimating light collecting module integrally formed in a concave mirror light collecting lens and an upper and lower prism sheet. .
  • a linear collimator collimator
  • the solar light collector 1b includes a light collecting part 20b in which a plurality of collimating light collecting modules 21b are arranged in a straight line, and the collimating light collecting module 21b.
  • a plurality of small "point focus” concave mirrors may be formed by linearly arranging a condenser lens (not shown) in a longitudinal direction, and a small "point focus” concave mirror arranged in a straight line.
  • a gap may be formed between the condenser lenses (not shown), and the collimator may also be formed as a linear arrangement of the “point focus” collimator so as to correspond one-to-one to the “point focus” concave mirror condenser lens.
  • the mirror reflective layer formed on the concave mirror condenser lens 210b means a metal material having a reflectance of 90% or more, and aluminum, silver, gold, nickel, stainless steel, or the like may be used. In the present invention, aluminum having a reflectance of 90% or more and having a low cost is used as a reflective material.
  • the primary focusing sunlight 11b reflected from the upper prism sheet 30a may be freely transmitted when the mirror reflective layer is not formed at the boundary 23b between the collimating light collecting modules 21b.
  • FIG. 6 is a cross-sectional view showing the structure of a solar light collector according to the third embodiment of the present invention, in which a linear collimator (collimator) comprises a light collecting part using an collimating light collecting module integrally formed in a Fresnel light collecting lens and an upper and lower prism sheet. .
  • a linear collimator comprises a light collecting part using an collimating light collecting module integrally formed in a Fresnel light collecting lens and an upper and lower prism sheet.
  • the solar light collector 1c enters the light collecting part 20c and the light collecting part 20c in which a plurality of collimating light collecting modules 21c are arranged in a straight line. It consists of the upper and lower prism sheets 30a and 30b made of a transparent material that receives and collects the first sunlight 11a that is primarily focused on the collimation condensing module 21c.
  • the collimating condenser module 21c includes a Fresnel condensing lens 210c and a collimating convex lens 211 '.
  • a plurality of “point focus” small Fresnel condenser lenses 21 ′′ are arranged in a row, focusing incident sunlight such as one collimation condenser module 21c, and then a lower prism sheet. Can be configured to forward to 30b,
  • the collimating condensing module 21c may be formed by linearly arranging a plurality of small "point focus” Fresnel condenser lenses (21 'of FIG. 11) in the longitudinal direction, and the small "point focus” arranged in a straight line.
  • a gap may be formed between the Fresnel condenser lenses 21 ', and the collimator may also be formed in a linear arrangement of the “point focal” collimator so as to have a one-to-one correspondence with the “point focus” Fresnel condenser lens.
  • the linear arrangement of the Fresnel condenser lens 210c and the plurality of small "point focus” Fresnel condenser lenses is already known to those skilled in the art, and instead of the convex condenser lens 210a of the first embodiment of the present invention, the Fresnel condenser lens 210c Alternatively, except that a linear arrangement of a plurality of small “point focus” Fresnel condenser lenses (not shown) is used, the operating relationship is the same as that of the solar concentrator 1a. Detailed description will be omitted below.
  • FIG. 7 is a cross-sectional view illustrating a structure of a solar light collector according to a fourth embodiment of the present invention in which a linear collimator (collimator) includes a light collecting part using an collimating light collecting module integrally formed in a casee grain light collecting lens and an upper and lower prism sheet.
  • a linear collimator collimator
  • the solar light collector 1d has a collimator 20d having a plurality of collimating light collecting modules 21d arranged in a straight line, and a collimating light collecting module 21d. It consists of upper and lower prism sheets 30a, 30b made of a transparent material for condensing and receiving the primary focused solar light, and the collimating condenser module 21d is a collimator collimator 211 as a linear collimator (collimator). ') Is composed of a casee grain condensing lens integrally formed.
  • the casein condensing lens is composed of a linear casee grain main reflecting mirror 210d2 and a linear casee grain minor reflecting mirror 210d1, and a reflective layer is formed on the outer circumferential surface of the linear casee grain main reflecting mirror 210d2 except for the collimating convex lens 211 ′.
  • Sunlight incident in parallel to the linear casee grain reflection mirror 210d2 is focused and reflected by the linear casee grain reflection mirror 210d1 provided at the focal front end of the linear casee grain reflection mirror 210d2, and the linear casee grain reflection mirror 210d1 is reflected.
  • the first focused solar light passing through the collimating convex lens 211 ′ is totally reflected through the lower prism sheet 30b and the upper prism sheet 30a to be concentrated (conceived) to a specific position.
  • the “point focus” small casee grain condensing lens may be formed by being arranged in a straight line in the longitudinal direction, and the “point focus” small casee grain condensing lens (not shown) is arranged in a straight line.
  • a gap may be formed between them, and a linear collimator may also be formed as a linear array of “point focus” collimators so as to have a one-to-one correspondence with a “point focus” casee grain condenser.
  • casein condensing lens and the "point focus" compact caseingrain condensing lens are already known to those skilled in the art in the field of telescopes or radio transmitters, and the casein condensing lens 210a instead of the convex condensing lens 210a of the first embodiment of the present invention.
  • the operation relationship is the same as the solar light collector (1a) except for using a linear arrangement of the "point focus" small casee grain condenser lens (not shown), so a detailed description thereof will be omitted.
  • FIG. 8 is a fifth aspect of the present invention, in which a linear collimator (collimator) comprises a light collecting part and an upper and lower prism sheet using a collimating condenser module integrally formed in a linear Gregorian condenser lens (hereinafter referred to as "Gregorian condenser lens"). It is sectional drawing which shows the structure of the solar collector according to an embodiment.
  • a linear collimator comprises a light collecting part and an upper and lower prism sheet using a collimating condenser module integrally formed in a linear Gregorian condenser lens (hereinafter referred to as "Gregorian condenser lens").
  • Gregorian condenser lens linear Gregorian condenser lens
  • the solar light collector 1e is provided by a light collecting part 20e in which a plurality of collimating light collecting modules 21e are arranged in a straight line, and a collimating light collecting module 21e. It consists of upper and lower prism sheets 30a and 30b made of a transparent material for condensing and receiving primary focused sunlight, and the collimating condenser module 21e is a collimator collimator with collimating lens 211 '. ) Consists of a Gregorian condensing lens integrally formed.
  • the Gregorian condensing lens is composed of a linear Gregorian main reflective mirror 210e2 and a linear Gregorian sub-reflective mirror 210e1 and a reflective layer on the outer circumferential surface of the linear Gregorian main reflective mirror 210d2 except for the collimating convex lens 211 '. Is formed. Sunlight incident in parallel to the linear Gregorian primary reflection mirror 210e2 is focused and reflected by the linear Gregorian secondary reflection mirror 210e1 provided at the rear end of the focal point of the linear Gregorian primary reflection mirror 210e2.
  • the reflecting mirror 210e1 reflects back to the collimating convex lens 211 'formed at the center bottom of the linear Gregorian main reflecting mirror 210e2, and the collimating convex lens 211' is parallel to the lower prism sheet 30b. Let go. Since the progress and focus of the solar light is the same as the fourth embodiment described above.
  • the Gregorian condenser lens is not shown, but the "point focus” small Gregorian condenser lens (not shown) may be formed in a straight line in the longitudinal direction, and the "point focus” compact Gregorian condenser lens (not shown) Not shown) may be formed between the linear collimator and the linear collimator may be formed as a linear array of the "point focus” collimator so as to correspond one-to-one with the "point focus" Gregorian condenser lens.
  • Such Gregorian condensing lenses and small "point focus” Gregorian condensing lenses are already known to those skilled in the art in the field of telescopes or radio transmitters, and the Gregory instead of the convex condensing lens 210a of the first embodiment of the present invention. Since the operational relationship is the same as that of the solar condenser 1a except for using a linear array of an eye condenser lens or a small “point focus” Gregorian condenser lens (not shown), this detailed description will be omitted.
  • FIG. 9 is an embodiment corresponding to FIG. 2, wherein the light collecting lens 21a and the collimating device are the same, but a reflecting mirror is used instead of a prism as a guide device for collimating focused light.
  • the present invention has been described as using the reflection mirror only, but in the second to fifth embodiments, the use of the reflection mirrors 41x and 41y instead of the prism as the guide device may be beyond the scope of the present invention. It doesn't make the content obscure.
  • two condensing lenses are paired, and parallel light focused at each condensing lens is collected as one and incident to a solar device such as a solar cell.
  • Reflective mirrors are not used to prohibit pairing of four condensing lenses.
  • the present embodiment guides the light guide device to focus only one side of the light.
  • the sunlight focused by the plurality of condenser lenses 21 is aligned in parallel light by the collimator 211, which is directed to the side condensing member 30 ′ as a guide device positioned below the condenser 20a. This causes the light to be condensed to the right in the drawing.
  • the side light collecting member 30 ′ has a plurality of focused solar light incident from each of the unit light collecting modules 21 to the side, and a reflector 31 for condensing the light is formed in a stepwise manner, that is, the collimator.
  • the focused parallel light released at 211 is guided to the right by the reflecting portion 31 of the side light collecting member 30 ', and the guided parallel light is collected at the right end of the side light collecting member 30'. It is then incident on a photovoltaic device such as a solar cell.
  • Figure 11 is a modification of the embodiment of Figure 7 replaced with a concave mirror (20b) instead of a convex lens as a condensing means for focusing sunlight primarily.
  • the side light collecting member 30 ' should be located above the light collecting portion, and also the sunlight 11 is reflected by the mirror reflection layer 21b of the concave mirror, and collimated by a collimator 211 such as a convex lens. Parallel light is reflected by the reflecting surface 211 and collected by the solar device (not shown) on the right side.
  • the side light collecting member 30 'in the present embodiment is made of an opaque material, in which case sunlight does not pass through the opaque material. Therefore, the reflective part 31 formed in a stepped manner may be turned upside down to face the linear back light guide part 22 on the bottom surface of the light converging part 20a.
  • FIG. 13 a collimation method using a concave lens surface 211 ′′ is shown in FIG. 13.
  • the concave lens surface is focused. It should be readily understood by one skilled in the art that the distance to be within a reasonable distance should be within the skill of the art.
  • FIG. 14 a method using a Fresnel lens as a collimator is shown in FIG. 14.
  • the configuration in which the Fresnel lens replaces the convex lens is also described in the third embodiment of FIG. 6, and thus further description thereof is omitted. do.
  • FIG. 15 Also shown in FIG. 15 is another collimator, a collimation groove 30b0 is formed under the primary condenser lens, and a linear convex lens 30b1 formed in a hemispherical shape with a linear collimator (collimator) is formed at an inner bottom thereof.
  • a linear convex lens 30b1 formed in a hemispherical shape with a linear collimator (collimator) is formed at an inner bottom thereof.
  • Such a linear collimator includes a linear aspherical convex lens and a linear green lens in addition to the linear convex lens 30b1 formed in the hemispherical shape; Any of linear linear fresnel lens, multiple green lens linear array, multiple focused focal convex lens linear array, multiple focused focal aspherical convex lens linear array, multiple focused focal Fresnel lens linear array, optical guide
  • the optical guide may include a rod lens, a one-dimensional array of optical fibers, a one-dimensional linear honeycomb inserted with optical fibers in a line, a fiber optical taper compressing an optical fiber or a linear honeycomb inserted with optical fibers, and a plurality of balls. It can be produced in a lens linear array.
  • the linear rod lens 30b2 is further included on the top of the linear convex lens 30b1, the focal length can be further reduced, and the linear rod lens 30b2 includes a rod lens (not shown) and a one-dimensional array of optical fibers (not shown).
  • a rod lens (not shown) and a one-dimensional array of optical fibers (not shown).
  • collimator collimator
  • the second light collecting assembly 24 may further include a one-to-one correspondence.
  • the second light collecting assembly 24 receives linear light from the linear second light collecting lens 241 and the linear second light collecting lens 241 to emit parallel light. It consists of a collimator 242 and a housing 240 supporting them, and the linear collimator 242 of the ninth embodiment is a linear convex lens 242a. It is generally known that light passing through a convex lens and passing through a focal line forms parallel light by another convex lens.
  • the focal length may be further reduced.
  • the linear rod lens 242b may select any one of silica-based elongated optical fibers (not shown) and cylindrical rod lenses (not shown).
  • a linear aspherical convex lens (not shown), a linear Fresnel lens (not shown), a linear green lens (not shown), and a plurality of greens.
  • Lens linear array (not shown), linear array of multiple focusing convex lenses (not shown), linear array of multiple focusing aspherical convex lenses (not shown), linear array of multiple focusing fresnel lenses (not shown) ), Any one of the linear light guide 242c can be used.
  • the linear light guide 242c includes a rod lens (not shown), a one-dimensional array of optical fibers (not shown), a one-dimensional linear honeycomb (not shown) with optical fibers inserted in a line, an optical fiber or a linear honeycomb with an optical fiber inserted therein.
  • Compressed fiber optical taper (not shown), a plurality of ball lens linear array (not shown) can be made of any, which is generally related to collimators (collimators) known in optical communication and micro-optics Detailed description will be omitted.
  • the condenser lens 21 is most commonly used with a long rod-shaped convex lens having a parabolic mirror surface on one side as shown in FIG. 1, but as shown in FIG. 17, the hemispherical convex lenses are arranged in a row. It is also possible to use.
  • the focused light 11b emitted toward the unit linear collimator corresponding to the unit light collecting member has a dot shape, condensing the light to the side surface simply by forming a light exiting portion 31 'having a spot size at the corresponding position.
  • the light condensed to the side is not condensed linear linear light, but the condensed light 11b having a predetermined distance apart is condensed to the side in a linear arrangement. do.
  • another second prism light guide 1 ′ is disposed at a corresponding position on the side surface, and the light entering and exiting portion 31 ′ is disposed at a predetermined position of each of the point-shaped focused light 11 b collected at the side surface.
  • the unit linear light collecting member and the unit linear collimator the light is finally collected in the point form 11c.
  • light condensing is highly performed and manufacturing cost can be drastically reduced and will be easily understood by those skilled in the art.
  • the present invention it is possible to maximize the solar energy utilization efficiency by effectively condensing the sunlight incident on a large area, and is simple in structure and easy to manufacture and install, and is flat and thin, not bulky, and the manufacturing cost is further increased. Inexpensive effect can be obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Photovoltaic Devices (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

According to the present invention, a solar light collecting device condenses incident solar light and emits parallel condensed light. The solar light collecting device comprises: a transparent solid light collector wherein a plurality of collimation and collection modules provided with an integrated collimator is formed at a constant interval in a one-dimensional array; a horizontal reflector which corresponds to the collimation and collection modules one to one and performs total horizontal reflection of solar light delivered from the collimation and collection modules right and left; and a vertical reflector which performs total vertical reflection of solar light delivered from the horizontal reflector upward and downward. The solar light collecting device is composed of prism sheets of the upper and lower ends which are installed with the light collector to gradually collect incident solar light by two or four pairs of unit collimation and collection modules. According to the present invention, the solar light collecting device condenses solar light effectively for maximizing the condensing efficiency of solar energy and simultaneously reducing production costs, and consequently, boosts economic effect compared with investment.

Description

태양광 집광장치Solar concentrator
본 발명은 태양광 집광기에 관한 것으로, 보다 상세하게는 평판 형이고 넓은 면적의 전면으로 입사된 태양광을 다수의 집광렌즈와 시준기가 일체로 형성된 시준집광모듈과 적어도 하나 이상의 전반사 가이드 수단으로 집광하여 태양에너지의 집광효율을 극대화시킴과 동시에, 제작원가도 획기적으로 줄일 수 있는 태양광 집광기에 관한 것이다.The present invention relates to a solar concentrator, and more particularly, to collect sunlight, which is incident on the front surface of a flat plate and a large area, by using a collimation condenser module having a plurality of condenser lenses and a collimator integrated with at least one total reflection guide means. The present invention relates to a solar light collector that can maximize the light collection efficiency of solar energy and at the same time significantly reduce the manufacturing cost.
일반적으로, 태양에너지를 이용하는 방법으로는 태양전지를 이용하여 전기를 생산하도록 하는 태양광 발전, 태양열 집열관 또는 집열판을 이용하여 태양열을 흡수하고 이를 온수 생산이나 난방에 이용하는 태양열 집열, 조명이나 식물생장 또는 광촉매에 활용하기 위해 태양광 자연채광 모듈 또는 반사판을 이용하여 자연 채광하는 태양광 자연채광 등이 있다. In general, the method of using solar energy absorbs solar heat by using solar power generation, solar heat collecting pipe or heat collecting plate which produces electricity by using solar cell, and solar heat collecting, lighting or plant growth that uses it for hot water production or heating. Alternatively, there is a solar natural light, such as natural light using a solar natural light module or a reflector for use in the photocatalyst.
주지하다시피, 태양에너지를 최대로 활용하기 위해서는 효율적으로 태양광을 집광하여야 하며 이를 위해 다양한 태양광 집광장치가 사용되는데, 집광장치의 광 집적도는 태양광발전, 태양열 집열, 태양광 자연채광 등 이용방법이 무엇이든지 간에 태양 에너지 효율과 직결된다.As is well known, in order to make full use of solar energy, it is necessary to efficiently collect solar light and various solar light concentrating devices are used for this purpose. The light intensity of the light concentrating device is used for photovoltaic power generation, solar heat collection, solar natural light, etc. Whatever the method, it is directly related to solar energy efficiency.
태양광 집광장치는, 포인트 집중 디쉬 타입(point-focus dish type), 포인트 집중 프레넬 렌즈 타입(point-focus Fresnel lens type), 선형 집중 프레넬 렌즈 타입(linear-focus Fresnel lens type), 그리고 헬리오스테트 타입(heliostat type), 그레고리안 / 카세그레인 집광계, 홀로그래픽 프리즘시트를 이용한 집광 등으로 구분이 되며 여타 무수히 다양한 방법이 공지되어 있으며 집광을 위해 집광렌즈와 집광거울을 이용한 광학계를 이용하고 있다.Photovoltaic concentrators include point-focus dish types, point-focus Fresnel lens types, linear-focus Fresnel lens types, and Helios. Tet type (heliostat type), Gregorian / Casegrain condensing system, condensing using holographic prism sheet, etc. There are a myriad of various methods are known, and the condensing lens and the optical system using a condensing mirror are used for condensing.
전술한 종래 태양광 집광장치는 통상적으로 태양광 발전설비의 발전량/ 태양열 집열/태양광 자연채광 양의 증가를 위해서 태양광 집광장치 구조의 대형화가 불가피한데, 대형으로 제조함에 있어 비용이나 구조적인 면에서 많은 제약이 발생되므로 투자대비 경제성을 기대하기가 매우 곤란한 문제점도 있었다.Conventional photovoltaic concentrators described above typically inevitably increase the size of the photovoltaic concentrator structure in order to increase the amount of power generation / solar heat collection / photovoltaic natural light of the photovoltaic power generation facility. Because of the many constraints in the market, it was very difficult to expect economic feasibility.
예컨대, 이러한 문제를 극복하기 위해서는 태양 에너지 효율을 높이는 한편, 무엇보다도 중요한 투자 대비 경제성을 확보하는 기술적인 대안이 매우 필요하다고 할 수 있다.For example, in order to overcome such a problem, a technical alternative to increase solar energy efficiency and, above all, to secure an important investment economy is required.
이러한 태양광을 집광하기 위한 제1 종래기술로, 일본 특허 공개 제2009-277817호와 같은 것이 있다. As a first conventional technology for condensing such solar light, there is one such as Japanese Patent Laid-Open No. 2009-277817.
이를 도 18을 참조하여 설명하면, 밀폐 상자 모양의 외측 박스(2)는,복수개의 태양전지 패널(6)의 주위를 덮고 있고, 외측 박스(2)의 내측에는 반사 미러(5)가 형성되어 있으며, 외측 박스(2)의 위에는 복수의 렌즈(8a)로부터 구성되는 렌즈 어레이(8)가 마련되어 있다. Referring to FIG. 18, the sealed box-shaped outer box 2 covers the circumference of the plurality of solar panels 6, and the reflective mirror 5 is formed inside the outer box 2. On the outer box 2, a lens array 8 composed of a plurality of lenses 8a is provided.
또한, 외측 박스(2) 상에는, 구멍(12)이 뚫어지고, 각 볼록 렌즈(8a)로 각각 집광 되는 빛을 외측 박스(2) 내에 각각 입사시키는바, 복수 개의 볼록 렌즈(8a)의 지름 방향과 각 태양전지 패널(6)의 면 방향과는 직각 또는 예각을 이루도록 한다.In addition, holes 12 are drilled on the outer box 2, and the light condensed by the respective convex lenses 8a is incident on the outer box 2, respectively, so that the plurality of convex lenses 8a are in the radial direction. And to form a right angle or an acute angle to the surface direction of each solar cell panel (6).
따라서, 복수개의 볼록 렌즈(8a)의 지름 방향이 복수개의 태양전지 패널(6)의 각 면방향과는 직각 또는 예각을 이루기 때문에, 볼록 렌즈(8a)로 집광되고 구멍(12)을 통과한 빛의 광축은 복수개의 태양전지 패널(6)의 각 면방향과 각각 평행 또는 예각을 이루고, 빛의 광축이 태양전지 패널(6)에 수직 입사하는 경우에 비하여 태양광의 동일 투영면적당의 태양전지 패널의 면적을 높게 할 수 있다. Therefore, since the radial direction of the plurality of convex lenses 8a forms a right angle or an acute angle with each of the surface directions of the plurality of solar panels 6, the light is collected by the convex lens 8a and passes through the hole 12. The optical axis of is parallel or acute with each plane direction of the plurality of solar cell panels 6, and the light axis of the solar cell panel per the same projection area of the sunlight as compared to the case where the optical axis of light is incident perpendicularly to the solar cell panel 6 The area can be made high.
또한, 외측 박스(2)는 복수개의 태양전지 패널(6)의 주위를 덮고 있고, 볼록 렌즈(8a)로 집광되고, 구멍(12)을 통과한 빛은 외측 박스(2)의 내면이나 칸막이 부재(3)의 표면에 형성되는 반사 미러(5)의 반사면(5a)과 태양전지 패널(6)과의 사이에서 다중 반사를 되풀이하고, 태양전지 패널(6)로의 광전 변환에 효율적이게 기여하기 때문에, 태양광의 동일 투영면적당의 광전 변환 효율을 향상시킬 수 있다.Moreover, the outer box 2 covers the circumference | surroundings of the some solar cell panel 6, is condensed by the convex lens 8a, and the light which passed through the hole 12 is the inner surface of the outer box 2, or partition member. Repeating multiple reflections between the reflective surface 5a of the reflective mirror 5 formed on the surface of (3) and the solar cell panel 6, and contributing to photoelectric conversion to the solar cell panel 6 efficiently. Therefore, the photoelectric conversion efficiency per same projection area of sunlight can be improved.
그러나, 이상의 제1 종래기술은 결국 하나의 집광렌즈 (혹은 일렬의 렌즈군) 에 의해 하나의 태양전지 패널을 대응시키는 구조이며, 태양전지 패널은 고가의 솔라셀을 필요로 하기 때문에, 2개 이상의 집광렌즈 (혹은 일렬의 렌즈군) 에 의해 하나의 태양전지 패널을 대응시키는 방식으로 태양광의 집적도를 더욱 높여야 하는 필요성이 대두되었다.However, the first conventional technique described above is a structure in which one solar cell panel is corresponded by one condenser lens (or a group of lens groups), and since the solar cell panel requires expensive solar cells, two or more solar cells are required. The necessity of further increasing the density of sunlight by condensing lenses (or a group of lenses) in a manner that corresponds to one solar panel has emerged.
한편, 두 개 이상의 집광렌즈에 의해 집광된 태양광을 일 지점으로 집광하기 위한 제2 종래기술로, 미국 특허공개 제2010/--24805호와 같은 장치가 있다.On the other hand, as a second conventional technique for condensing sunlight collected by two or more condensing lenses to a point, there is a device such as US Patent Publication No. 2010 /-24805.
이는 도 19에서 보는 바와 같이, 태양광(506)을 일차로 집광렌즈(510)에서 집광하고, 집광된 수광소자(530) 상의 광을 광쉬트(542) 및 중간쉬트(55) 그리고 메인 광전송 쉬트(560을 통해 전반사시켜 집광하는 장치이다. As shown in FIG. 19, the solar light 506 is primarily focused on the condenser lens 510, and the light on the condensed light receiving element 530 is transmitted to the light sheet 542, the intermediate sheet 55, and the main light transmission sheet. (It is a device for condensing through total reflection through 560.
그러나, 이상의 제2 종래기술은 두 개 이상의 집광렌즈에서 집광된 광을 하나의 지점으로 집광하기는 하나, 여러 개의 광전송 쉬트라는 복잡한 장치들을 사용하여야 하며, 특히 여러 개의 쉬트 내에서의 전반사를 이용하여야 하므로, 광의 손실도 많이 발생하고, 특히 전반사가 쉬트의 전체 표면에서 일어나야 하므로, 임계각에 대한 복잡하고도 고가의 설계가 들어가야 하므로, 저가의 태양광 장치를 제공한다는 목적과 상충되어, 실용성에 있어 문제가 많이 있다. 더욱이, 집광된 광이 평행광이 아니므로 한 지점으로 모아지는 단면적이 넓어지며 집광도에 한계가 있게 된다.However, the above-described second prior art focuses light collected from two or more condensing lenses to a single point, but must use complex devices such as multiple light transmission sheets, in particular, using total reflection within several sheets. As a result, a large amount of light is lost, and since total reflection must occur on the entire surface of the sheet, a complicated and expensive design for the critical angle is required. There is a lot. Furthermore, since the collected light is not parallel light, the cross-sectional area collected at one point becomes wider and the condensing degree is limited.
마지막으로, 제3 종래기술로서 한국 특허 제933213호는 상기 제1 및 제2 종래기술의 문제점을 더욱 해결하기 위한 것이다.Finally, Korean Patent No. 932213 as the third prior art is to further solve the problems of the first and second prior art.
이를 도 20을 참조하여 설명하면, 상면에 볼록한 라운드 형상의 단면을 가지는 단위 집광 렌즈부(110)가 복수 개 형성되고, 하면에 단위 집광 렌즈부(110)에 대응되는 소정 위치에 단위 홈(120)이 각각 형성되는 집광 렌즈(100)는, 하면에, 어느 한쪽 면(121)은 굴절된 태양광이 입사되지 않도록 하는 방향으로 형성되고, 다른 한쪽 면(122)은 원추곡선 형상으로 형성된 단위 홈(120)이 형성된다. 또한, 단위홈(120)은 단위 집광 렌즈부(110)의 렌즈축 상에 원추곡선 형상의 광학적 초점(F1)이 놓여지도록 각각 복수 개 형성되어, 단위 집광 렌즈부(110)의 광학적 초점선과 원추곡선 형상의 광학적 초점선이 일정공간 내에서 일치하게 한다. 따라서, 단위 집광 렌즈부(110)에 입사된 태양광(111)은, 단위 집광 렌즈부(110)에 의하여 형성된 초점(F1)에 모여 단위홈(120)의 원추곡선 형상으로 형성된 면(122)에 반사된 후, 태양전지(130)의 표면으로 집광된다.Referring to FIG. 20, a plurality of unit condensing lens units 110 having convex round cross-sections are formed on an upper surface thereof, and a unit groove 120 is disposed at a predetermined position corresponding to the unit condensing lens unit 110 on a lower surface thereof. Each of the condensing lens 100 is formed on the lower surface, one surface 121 is formed in a direction so that refracted sunlight is not incident, the other surface 122 is a unit groove formed in a conical curve shape 120 is formed. In addition, a plurality of unit grooves 120 are formed in such a manner that an optical focus F1 having a conical curve is placed on the lens axis of the unit condensing lens unit 110, and thus the optical focal line and the cone of the unit condensing lens unit 110 are positioned. Curved optical focal lines are matched in space. Accordingly, the solar light 111 incident on the unit condensing lens unit 110 is gathered at the focal point F1 formed by the unit condensing lens unit 110, and has a surface 122 formed in the shape of a conical curve of the unit groove 120. After being reflected by the light, the light is collected onto the surface of the solar cell 130.
그러나, 상기 제3 종래기술 역시, 집광렌즈에 의해 집광되기는 하지만, 집광된 광이 평행광이 아니므로 상기 제2 종래기술에서의 문제점들이 존재하며, 더욱이 단위홈의 원추곡선 면(122)이 특정 설계에 맞도록 주문식으로 정밀하게 설계 및 제작되어야 하므로 제작단가가 비싸지며, 설계의 변경이 있을 시나 다른 장치에는 사용될 수 없어 호환성이 낮으므로, 역시 경제성에 문제가 있다.However, although the third prior art is also focused by the condenser lens, there are problems in the second prior art because the focused light is not parallel light, and furthermore, the conical curved surface 122 of the unit groove is specified. Manufacturing cost is expensive because it must be designed and manufactured on-demand precisely to meet the design, and when the design is changed or can not be used for other devices, the compatibility is low, there is also a problem in economics.
본 출원인은 이러한 문제점을 개선하는 대안의 하나로 전술한 단위 태양광 집광장치를 소형으로 제작하되 다수를 배열로 하고 태양의 방위각과 고도각을 동시에 추미 구동하여 입사 태양광을 평행하게 하는 블라인드와 태양광 발전에 응용하는“2축 태양추미기능을 겸한 블라인드(대한민국 특허출원 제10-2009-0129310호)“ 및 “2축 태양추미구동 버티칼 유로블라인드(대한민국 특허출원 제10-2009-0129310호)”, 그리고 “측면 태양광 집광기(대한민국 특허출원 제10-2010-0004153호)”및“프리즘 하이브리드 태양광 집광기(대한민국 특허출원 제10-2010-6250호)" 를 특허출원한 바 있으며, 이들 명세서의 내용은 본 명세서에서도 참조되어 진다.As an alternative to the improvement of this problem, the present applicant manufactures the above-mentioned unit photovoltaic light collecting device in a small size, but uses a plurality of arrays and simultaneously drives the azimuth and altitude angles of the sun to parallel the incident sunlight and solar light. Blinds with Dual Axis Solar Tracing Function (Korean Patent Application No. 10-2009-0129310) and Two Axis Solar Tracing Vertical Euro Blinds (Korean Patent Application No. 10-2009-0129310) And a patent application for "side solar collector (Korean Patent Application No. 10-2010-0004153)" and "prism hybrid solar collector (Korean Patent Application No. 10-2010-6250)", the contents of these specifications Is also referred to herein.
상기 첫번째 및 두번째 출원은 태양광 집광장치의 집광 효율을 높일 수 있는 기반에 대한 개선으로써 태양광이 평행하게 입사되도록 하는 2축 태양추미장치이며, 세번째 출원은 2축 태양 추미장치를 이용전제하에, 전면으로 입사되는 평행한 태양광을 집광하는데 있어 다수의 렌즈 및 거울 집광 모듈의 배열로 구비되는 집광부와, 반사부가 다단으로 구비되고 집광부 하면 또는 상면에 하나의 측면부재를 두고 집광부가 1차 집속한 1차 집속된 태양광을 반사부를 통해 측면으로 반사하여 집광하도록 하여 태양광 집광장치의 집광 효율을 높일 수 있는 개선 대안이며, 네번째 출원은 집광부의 상ㆍ하 양면에 다수의 반사부가 구비되는 상ㆍ하 프리즘 시트를 구비하여 태양광 집광장치의 두께를 줄이고, 측면은 물론 점진적으로 집광할 수 있는 것이다.The first and second applications are a two-axis solar tumbler that allows sunlight to be incident in parallel as an improvement on the basis to increase the light collecting efficiency of the solar light collecting device, and the third application is based on the use of the two-axis solar tumbler, Condensing part is provided in the arrangement of a plurality of lenses and mirror condensing module, and the reflecting part is provided in multiple stages to collect parallel solar light incident on the front surface, and the condensing part is first with one side member on the lower surface or the upper surface of the condenser. It is an improved alternative to increase the condensing efficiency of the solar light collecting device by reflecting the focused primary focused solar light to the side through the reflecting part, and the fourth application is provided with a plurality of reflecting parts on the upper and lower sides of the light collecting part. The upper and lower prism sheets can be used to reduce the thickness of the solar light collecting device and to gradually collect the side as well as the light.
본 발명은 상술한 바와 같은 종래 기술상의 제반 문제점들을 감안하여 이를 해결하고자 창출된 것으로, 태양광을 효과적으로 집광하도록 시준기(콜리메이터)를 집광부에 일체로 구비하여 태양에너지의 집광효율을 극대화시킴과 동시에 제작원가를 더욱 줄일 수 있게 하여 투자대비 경제성을 증대시키는 태양광 집광기를 제공하는데 목적이 있다.The present invention was created in view of the above-described problems in the prior art, and is provided with a collimator (collimator) integrally to the light collecting unit so as to focus the solar light effectively to maximize the light condensing efficiency of the solar energy. The aim is to provide a solar concentrator that can further reduce manufacturing costs and increase the economics of investment.
상기 목적은 입사되는 태양광을 집속하여 평행한 집속광을 출사하도록 시준기(콜리메이터)가 일체로 형성된 투명한 중실체 단위 시준기 일체형 집광모듈(이하 “시준집광모듈”이라 한다.)이 복수 개 1차원 배열로 형성된 집광부;와, 시준 집광모듈과 일대일 대응되고 시준 집광모듈로부터 전달받은 태양광을 좌우로 수평하게 전반사하는 수평 반사부와, 수평 반사부로부터 전달받은 태양광을 상하로 수직하게 전반사하는 수직 반사부를 각각 구비하고; 상기 집광부를 사이에 두고 상하에 설치된 상ㆍ하단 프리즘 시트로 구성되어, 입사된 태양광을 2쌍 혹은 4쌍의 단위 시준 집광모듈별 혹은 점진적으로 집광하도록 구성되는 것을 특징으로 하는 본 발명의 태양광 집광기에 의해 달성된다.The objective is to provide a plurality of one-dimensional arrays of transparent solid unit collimator-type condensing modules (hereinafter referred to as "collimating condensing modules") in which collimators are integrally formed so as to focus incident sunlight and emit parallel condensed light. Condensing unit formed with; and a horizontal reflector for one-to-one correspondence with the collimating condensing module and horizontally reflects the sunlight received from the collimating condensing module horizontally from side to side, and vertically reflecting the vertically vertically reflected sunlight from the horizontal reflecting unit. Each having a reflector; An aspect of the present invention is characterized by comprising a pair of upper and lower prism sheets arranged above and below the light collecting part, and configured to collect incident light by two or four pairs of unit collimating modules or gradually. Achieved by a light condenser.
또한, 상기 집광부에는 하단 프리즘 시트의 수직반사부에서 전달되는 태양광을 집속하여 상단 프리즘 시트의 수평반사부로 전달되는 태양광의 폭을 줄이고 평행한 태양광을 출사하는 시준기 일체형 차일드 집광모듈(이하 “차일드 시준집광모듈“라고 한다.)이 더 형성될 수 있고, 상기 수평 반사부 또는 수직 반사부는 직각이등변 삼각형 또는 ‘∧’형상의 요홈으로 형성되고 공기와의 경계면을 이루는 직각이등변 삼각형의 빗변 및 ∧’형상 요홈의 경사면 각도는 45도인 것을 특징으로 한다.In addition, the light collecting part focuses sunlight transmitted from the vertical reflecting portion of the lower prism sheet to reduce the width of the sunlight transmitted to the horizontal reflecting portion of the upper prism sheet and emits parallel solar light. A child collimation condenser module may be further formed, and the horizontal reflecting portion or the vertical reflecting portion is formed by a right isosceles triangle or a '∧'-shaped groove, and a hypotenuse and an angle of a right isosceles triangle forming an interface with air. 'The inclination surface angle of the shape groove is characterized in that 45 degrees.
그리고 상기 집광부를 구성하는 시준집광모듈 또는 차일드 시준집광모듈은 시준기(콜리메이터);와, And the collimating module or child collimating module constituting the light collecting unit is a collimator (collimator); and,
상부로 볼록한 형태를 갖는 선형 볼록 집광 렌즈(이하 “볼록 집광 렌즈”라 한다.) 또는 점초점 볼록 집광 렌즈의 선형배열, 하부로 오목하고 배면에는 거울 반사층이 형성되되 경계에는 거울 반사층이 없는 선형 오목 거울 집광렌즈(이하 “오목 거울 집광렌즈”라 한다.) 또는 점초점 오목 거울 집광렌즈의 선형배열, 선형 프레넬 집광렌즈(이하 “프레넬 집광렌즈”라 한다.) 또는 점초점 프레넬 집광렌즈의 선형배열, 중앙하면을 제외한 양면에 반사층이 형성된 카세그레인 주 반사거울과 카세그레인 부 반사거울을 통해 2차 반사를 통한 태양광 집속이 가능한 선형 카세그레인 집광렌즈(이하 “카세그레인 집광렌즈”라 한다.) 또는 점초점 카세그레인 집광렌즈의 선형배열, 중앙하면을 제외한 양면에 반사층이 형성된 그레고리안 주 반사거울과 그레고리안 부 반사거울을 통한 태양광 집속이 가능한 선형 그레고리안 집광렌즈(이하 “그레고리안 집광렌즈”라 한다.) 또는 점초점 그레고리안 집광렌즈의 선형배열 중에서 선택된 어느 하나로 이루어지되, 상기 시준기(콜리메이터)와 광축이 일치하는 위치에 일체로 형성되는 것을 특징으로 하며, 시준기(콜리메이터)는 선형 볼록렌즈; 선형 비구면 볼록렌즈; 선형 그린렌즈; 선형 프레넬렌즈; 다수의 그린렌즈 선형배열; 다수의 점초점 볼록렌즈의 선형배열; 다수의 점초점 비구면 볼록렌즈의 선형배열; 다수의 점초점 프레넬렌즈의 선형배열 중 선택된 어느 하나인 것을 특징으로 한다.Linear convex condensing lens (hereinafter referred to as “convex condensing lens”) or convex condensing lens with convex shape on top, concave convex concave, concave to the bottom, linear concave with no mirror reflecting layer on the back Mirror condenser (hereinafter referred to as "concave mirror condenser") or linear array of confocal concave mirror condenser, linear fresnel condenser (hereinafter referred to as "fresnel condenser") or point of focus fresnel condenser Linear Casegrain Condensing Lens (hereinafter referred to as “Casegrain Condensing Lens”), which can focus the sunlight through secondary reflection through the Casegrain main reflecting mirror and the Casegrain sub-reflecting mirror with the reflective layer formed on both sides except the center surface. Linear array of focal casecase grain collecting lens, Gregorian main reflecting mirror with reflecting layer formed on both sides except center plane and its The collimator may be one selected from a linear Gregorian condenser lens (hereinafter referred to as a "Gregorian condenser lens") or a linear array of focus-focused Gregorian condenser lenses capable of focusing sunlight through an annular secondary reflection mirror. ) And an optical axis are integrally formed, and the collimator may include a linear convex lens; Linear aspherical convex lens; Linear green lens; Linear Fresnel lens; Multiple green lens linear arrays; Linear arrays of multiple focal convex lenses; Linear arrays of multiple focal aspherical convex lenses; It is characterized in that any one selected from the linear arrangement of a plurality of focusing Fresnel lens.
또한, 상ㆍ하단 프리즘 시트 또는 집광부는 공기보다 큰 광 굴절률을 갖는 투명소재로써 자외선 차단층이 형성된 플라스틱, 자외선 차단 모노머로 제작된 플라스틱, 강화유리, 파이렉스, 석영유리 중에서 선택된 어느 하나인 것을 특징으로 하고, 하단 프리즘 시트의 하부에는 프리즘 시트가 계단식으로 더 설치되어 집속된 광을 다시 수평으로 반사하고, 반사된 광을 측면에서 다단으로 집속할 수 있도록 구성될 수 있고, 상단 프리즘 시트에 형성된 수직 반사부는 상기 시준집광모듈의 경계면에 대응하게 형성되어 입사된 광을 하방으로 전반사하거나 또는 최초 태양광 입사부위에 대응되게 형성되어 집속된 태양광이 최초 태양광과 함께 시준집광모듈에 의해 다시 집속되는 것을 특징으로 하며, 수평반사부 및 수직반사부의 외측면에는 전반사율을 높이도록 반사층이 형성되되, 상기 반사층은 알루미늄, 은, 금, 니켈, 스테인레스 스틸 중에서 선택된 어느 하나로 코팅 형성된 것을 특징으로 한다.In addition, the upper and lower prism sheet or the light collecting part is a transparent material having a light refractive index greater than that of air, and is one selected from a plastic having an ultraviolet blocking layer, a plastic made of an ultraviolet blocking monomer, tempered glass, pyrex, and quartz glass. The lower prism sheet may further include a prism sheet provided in a stepped manner to reflect the focused light horizontally again, and to focus the reflected light from the side to the multi-stage, and the vertical reflection formed on the upper prism sheet. The part is formed to correspond to the boundary of the collimating module and totally reflected the incident light downward, or formed to correspond to the first photovoltaic incidence site that the focused light is focused again by the collimating module with the first sunlight. It has a high total reflectance on the outer surface of the horizontal reflector and the vertical reflector. The reflection layer to be formed, the reflection layer include aluminum, silver, gold, nickel, characterized in that the coating is formed by any one selected from stainless steel.
본 발명에 따르면, 넓은 면적으로 입사되는 태양광을 효과적으로 집광하여 태양에너지 이용효율을 극대화할 수 있고, 구조가 간단하여 제작과 설치가 용이하며, 평판 형이어서 얇고 부피가 크지 않고, 제조비용도 더욱 저렴한 효과를 얻을 수 있다.According to the present invention, it is possible to maximize the solar energy utilization efficiency by effectively condensing the sunlight incident on a large area, and is simple in structure and easy to manufacture and install, and is flat and thin, not bulky, and the manufacturing cost is further increased. Inexpensive effect can be obtained.
도 1은 본 발명에 따른 태양광 집광기의 기본 개념을 설명하기 위한 예시도.1 is an exemplary view for explaining the basic concept of a solar collector according to the present invention.
도 2는 선형 시준기(콜리메이터)가 볼록 집광 렌즈에 일체로 형성된 시준집광모듈을 사용하는 집광부와 상ㆍ하단 프리즘 시트로 이루어지는 본 발명 제1 실시예에 따른 태양광 집광기의 구조를 나타내는 단면도.2 is a cross-sectional view showing the structure of the solar light collector according to the first embodiment of the present invention, in which a linear collimator (collimator) comprises a light collecting part using an collimating light collecting module integrally formed in a convex condenser lens, and an upper and lower prism sheet.
도 3은 수직 반사부에 의해 커진 광폭을 다시 집광하는 본 발명 제1 실시예에 따른 태양광 집광기의 단면도.3 is a cross-sectional view of a solar light collector according to the first embodiment of the present invention for condensing the wider width by the vertical reflector again.
도 4는 점진적으로 집광하는 본 발명의 제1 실시예에 따른 태양광 집광기의 단면도.4 is a cross-sectional view of a solar collector according to a first embodiment of the present invention for gradually collecting light;
도 5는 선형 시준기(콜리메이터)가 오목 거울 집광렌즈에 일체로 형성된 시준집광모듈을 사용하는 집광부와 상ㆍ하단 프리즘 시트로 이루어지는 본 발명 제2 실시예에 따른 태양광 집광기의 구조를 나타내는 단면도.5 is a cross-sectional view showing the structure of a solar light collector according to the second embodiment of the present invention in which a linear collimator (collimator) comprises a light collecting part using an collimating light collecting module integrally formed in a concave mirror light collecting lens and an upper and lower prism sheet.
도 6은 선형 시준기(콜리메이터)가 프레넬 집광렌즈에 일체로 형성된 시준집광모듈을 사용하는 집광부와 상ㆍ하단 프리즘 시트로 이루어지는 본 발명 제3 실시예에 따른 태양광 집광기의 구조를 나타내는 단면도.6 is a cross-sectional view showing the structure of a solar light collector according to the third embodiment of the present invention in which a linear collimator (collimator) comprises a light collecting part using an collimating light collecting module integrally formed in a Fresnel light collecting lens and an upper and lower prism sheet.
도 7은 선형 시준기(콜리메이터)가 카세그레인 집광렌즈에 일체로 형성된 시준집광모듈을 사용하는 집광부와 상ㆍ하단 프리즘 시트로 이루어지는 본 발명 제4 실시예에 따른 태양광 집광기의 구조를 나타내는 단면도.7 is a cross-sectional view showing the structure of a solar light collector according to the fourth embodiment of the present invention, in which a linear collimator (collimator) comprises a light collecting part using an collimating light collecting module integrally formed in a casee grain light collecting lens, and an upper and lower prism sheet.
도 8 은 선형 시준기(콜리메이터)가 그레고리안 집광렌즈에 일체로 형성된 시준집광모듈을 사용하는 집광부와 상ㆍ하단 프리즘 시트로 이루어지는 본 발명 제5 실시예에 따른 태양광 집광기의 구조를 나타내는 단면도.Fig. 8 is a cross-sectional view showing the structure of a solar light collector according to a fifth embodiment of the present invention in which a linear collimator (collimator) comprises a light collecting part using an collimating light collecting module integrally formed in a Gregorian light collecting lens and an upper and lower prism sheet.
도 9 는 본 발명의 제6 실시예에 따른 태양광 집광기의 단면도.9 is a cross-sectional view of a solar collector according to a sixth embodiment of the present invention.
도 10은 본 발명의 제7 실시예에 따른 태양광 집광기의 단면도.10 is a cross-sectional view of a solar collector according to a seventh embodiment of the present invention.
도 11은 본 발명의 제7 실시예의 변형예에 따른 태양광 집광기의 단면도.11 is a cross-sectional view of a solar collector according to a modification of the seventh embodiment of the present invention.
도 12는 본 발명의 제7 실시예의 또다른 변형예에 따른 태양광 집광기의 단면도.12 is a cross-sectional view of a solar collector according to still another modification of the seventh embodiment of the present invention.
도 13은 본 발명의 시준기의 변형예에 따른 태양광 집광기의 단면도.13 is a cross-sectional view of a solar collector according to a modification of the collimator of the present invention.
도 14는 본 발명의 시준기의 또다른 변형예에 따른 태양광 집광기의 단면도.14 is a cross-sectional view of a solar collector according to another modification of the collimator of the present invention.
도 15는 본 발명의 시준기의 또다른 변형예에 따른 태양광 집광기의 단면도.15 is a cross-sectional view of a solar collector according to another modification of the collimator of the present invention.
도 16은 본 발명의 시준기의 또다른 변형예에 따른 태양광 집광기의 단면도.16 is a cross-sectional view of a solar collector according to another modification of the collimator of the present invention.
도 17은 본 발명의 집광렌즈의 변형예에 따른 태양광 집광기의 평면도.17 is a plan view of a solar light collector according to a modification of the light collecting lens of the present invention.
도 18은 제1 종래기술에 대한 태양광 집광기.18 is a solar concentrator for the first prior art.
도 19는 제2 종래기술에 대한 태양광 집광기.19 shows a solar collector for the second prior art.
도 20은 제3 종래기술에 대한 태양광 집광기.20 shows a solar collector for the third prior art.
이하 본 발명에 따른 태양광 집광기에 대하여 첨부한 도면을 참조하여 상세하게 설명하기로 한다. 다만, 첨부된 도면은 본 발명의 내용을 보다 쉽게 개시하기 위하여 설명되는 것일 뿐, 본 발명의 범위가 첨부된 도면의 범위로 한정되는 것이 아님은 당해 기술 분야의 통상의 지식을 가진 자라면 용이하게 알 수 있을 것이다.Hereinafter, a solar collector according to the present invention will be described in detail with reference to the accompanying drawings. However, the accompanying drawings are only described in order to more easily disclose the contents of the present invention, and the scope of the present invention is not limited to the scope of the accompanying drawings, as long as those skilled in the art. You will know.
도 1은 본 발명에 따른 태양광 집광기의 기본 개념을 설명하기 위한 예시도이다.1 is an exemplary view for explaining the basic concept of a solar collector according to the present invention.
도 1에 도시된 바와 같이, 본 발명에 따른 태양광 집광기(1)는, 전면에 입사되는 집속되지 않은 태양광(11a, 이하 “최초 태양광”이라 한다)을 집속하여 평행한 집속광을 출사하도록 시준기(211, 콜리메이터)가 일체로 형성된 투명한 중실체 시준집광모듈(21)이 복수 개 1차원 배열로 형성된 집광부(20)와, 각각의 시준집광모듈(21)과 일대일 대응되고 시준집광모듈(21)로부터 1차 집속된 태양광(11b)을 전달 받아 재차 좌우측의 수평으로 반사하는 수평 반사부(보다 상세한 구조는 도 2 참조)와 상하로 태양광을 반사시키는 수직 반사부(보다 상세한 구조는 도 2 참조)가 형성되어 있고, 상기 집광부(20)를 사이에 두고 상하면에 위치하여 집광부로부터 광을 전달받아 집광하는 상단 프리즘 시트(30a), 하단 프리즘 시트(30b)로 이루어진다.As shown in FIG. 1, the solar light collector 1 according to the present invention focuses unfocused sunlight 11a (hereinafter referred to as “first sunlight”) incident on the front surface and emits parallel focused light. A collimator 20 having a solid solid collimator formed integrally with a collimator 211 so as to correspond to the collimator 20 formed in a plurality of one-dimensional arrays and each collimator concentrator 21, A horizontal reflector (refer to FIG. 2 for more detailed structure) and a horizontal reflector (refer to FIG. 2 for horizontally reflected) which receive the primary focused sunlight 11b from 21 again and horizontally reflect it again (more detailed structure) 2 is formed, the upper prism sheet 30a and the lower prism sheet 30b which are located on the upper and lower surfaces with the condenser 20 interposed therebetween and receive light from the condenser.
이하, 후술되는 본 발명에 따른 다양한 실시예에서는, 태양광 집광기(1)가 도시하지 않은 태양 추미장치(Sun Tracker)에 의해 태양의 위치변화에 따른 태양의 방위각 및 고도각을 자동으로 조절하도록 구성될 수 있는데, 이는 본 발명 이전에 해당 분야에서 개시된 회전구동수단, 경사각조절수단 등을 통해 당업자가 용이하게 실시 가능한 것이고, 또 선출원 1, 2 에도 자세하게 설명되어 있으므로 이에 대한 설명은 생략하기로 한다. Hereinafter, in various embodiments according to the present invention described below, the solar light collector 1 is configured to automatically adjust the azimuth and elevation angles of the sun according to the position change of the sun by a sun tracker (not shown). This may be easily implemented by those skilled in the art through the rotation driving means, the inclination angle adjusting means, etc. disclosed in the related art before the present invention, and the description thereof will be omitted since it is described in detail in the first and second applications.
또한, 이하 설명되는 본 발명에 따른 다양한 실시예에서는 태양광 집광기(1)의 상면으로 입사되는 태양광이 평행광 형태의 직사광선이고 시준집광모듈(21)이 연속하여 1차원 배열되는 것을 전제로 하되, 시준집광모듈(21)의 전면에는 도시하지 않은 집광수단이 설치되어 입사되는 태양광을 소정 각도로 굴절시켜 입사되게 구성할 수 있다. 아울러, 입사되는 태양광에 대하여 집광부(20)와 상ㆍ하단 프리즘 시트(30a)(30b)에 각각 사용되는 물질의 굴절률이 일정하다는 것을 전제로 한다.In addition, in various embodiments according to the present invention described below, it is assumed that sunlight incident on the upper surface of the solar light collector 1 is direct sunlight in the form of parallel light, and the collimating light collecting module 21 is continuously arranged in one dimension. In addition, a light collecting means (not shown) may be installed on the front side of the collimating light collecting module 21 to be configured to be incident by refracting incident sunlight at a predetermined angle. In addition, it is assumed that the refractive indexes of the materials used for the light-converging unit 20 and the upper and lower prism sheets 30a and 30b, respectively, are constant with respect to incident sunlight.
(제 1 실시예)(First embodiment)
도 2는 선형 시준기(콜리메이터)가 볼록 집광 렌즈에 일체로 형성된 시준집광모듈을 사용하는 집광부와 상ㆍ하단 프리즘 시트로 이루어지는 본 발명 제1 실시예에 따른 태양광 집광기의 구조를 나타내는 단면도이고, 도 3은 수직 반사부에 의해 커진 광폭을 다시 집광하는 본 발명 제1 실시예에 따른 태양광 집광기의 단면도이고, 도 4는 점진적으로 집광하는 본 발명 제1 실시예에 따른 태양광 집광기의 단면도이다.2 is a cross-sectional view showing the structure of the solar light collector according to the first embodiment of the present invention, in which a linear collimator (collimator) includes a light collecting part using an collimating light collecting module integrally formed in a convex condenser lens, and an upper and lower prism sheet. 3 is a cross-sectional view of a solar light collector according to the first embodiment of the present invention for condensing the wider width by the vertical reflector, and FIG. 4 is a cross-sectional view of the solar light collector according to the first embodiment of the present invention to gradually collect .
도 2에 도시된 바와 같이, 본 발명 제 1 실시예에 따른 태양광 집광기(1a)는 집광부(20a)와, 상기 집광부(20a)의 상ㆍ하단에 각각 위치하고 상기 집광부(20a)로부터 광을 전달받아 집광하는 투명한 소재로 제작된 상ㆍ하단 프리즘 시트(30a)(30b)로 구성된다.As shown in FIG. 2, the solar light collector 1a according to the first embodiment of the present invention is located at the light concentrator 20a and the upper and lower ends of the light concentrator 20a, respectively, from the light concentrator 20a. It consists of upper and lower prism sheets 30a and 30b made of a transparent material which receives light and collects light.
이때, 상기 집광부(20a)는 상면에는 볼록한 라운드 형상의 단면을 가지는 볼록 집광 렌즈(210a)가 형성되고, 하면에는 볼록 집광 렌즈(210a)에 대응되어 일체로 형성된 시준 볼록렌즈(211‘)로 이루어진 시준집광모듈(21a)의 다수 배열로 이루어진다.In this case, the condenser condenser lens 210a having a convex round cross section is formed on an upper surface of the condenser 20a, and a collimating convex lens 211 ′ formed integrally with the convex condenser lens 210a on a lower surface thereof. It consists of a plurality of array of collimation light collecting module (21a) made.
이때, 도 2의 (b)에 도시한 바와 같이, 시준 볼록렌즈(211‘)는 볼록 집광 렌즈(210a)와 광축이 일치되고, 시준 볼록렌즈(211’)와 볼록 집광 렌즈(210a) 사이에 광학적 초점(F)이 위치하도록 일체로 형성되며, 볼록 집광 렌즈(210a)에 입사된 최초 태양광(11a)은 길이방향으로 형성된 시준 볼록렌즈(211‘) 사이에 길이방향으로 하나의 기다란 선형 초점선을 형성하며 1차 집속되고, 선형 초점선을 통과한 1차 집속된 태양광(11b)은 시준 볼록렌즈(211’)로 진행하여 시준 볼록렌즈(211‘)에 의해 평행광 형태로 굴절되어 그 하단으로 출사된다.At this time, as shown in FIG. 2B, the collimating convex lens 211 ′ coincides with the convex condenser lens 210a and the collimating convex lens 211 ′ and the convex condensing lens 210a. The first sunlight 11a incident to the convex condenser lens 210a is integrally formed so that the optical focal point F is positioned, and one elongated linear focal point in the longitudinal direction is provided between the collimating convex lenses 211 'formed in the longitudinal direction. The primary focused solar light 11b, which forms a line and is first focused, and has passed through a linear focal line, proceeds to the collimating convex lens 211 'and is refracted in parallel light form by the collimating convex lens 211'. It exits to the bottom.
따라서 넓은 면적의 집광부(20a)로 입사된 최초 태양광(11a)은 각각의 시준집광모듈(21a)에 의해 분할되어 집광되며, 볼록 집광 렌즈(210a) 하나당 대응되게 형성된 시준 볼록렌즈(211‘)에 의해 평행광 형태의 1차 집속광으로 집속되어 하단으로 진행시키므로, 결과적으로는 넓은 면적으로 입사된 태양광이 집광부(20a)에 의해 다수의 선형 띠 형태로 1차 집속된 평행한 태양광(11b)으로 집속된다.Therefore, the first sunlight 11a incident to the light collecting part 20a having a large area is divided and collected by each collimating light collecting module 21a, and the collimating convex lens 211 'is formed to correspond to each convex light collecting lens 210a. Since the focused light is focused to the primary focused light in the form of parallel light and proceeds to the lower end, as a result, the parallel light in which the sunlight incident on the large area is primarily focused by the light concentrator 20a in the form of a plurality of linear bands. The light is focused on the light 11b.
이와 동시에, 하단 프리즘 시트(30b)에 형성되는 수평 반사부(41h)는 시준 볼록렌즈(211‘)와 일대일 대응되도록 형성되고, 입사되는 1차 집속 태양광(11b)을 좌/우 측면으로 전반사시키며 그 형상은 직각이등변 삼각형으로 형성된다.At the same time, the horizontal reflecting portion 41h formed on the lower prism sheet 30b is formed to correspond one-to-one with the collimating convex lens 211 ', and totally reflects the incident primary focused sunlight 11b to the left and right sides. Its shape is formed by a right isosceles triangle.
또한, 상단 프리즘 시트(30a)에 형성되는 수평 반사부(41h‘)는 하단 프리즘 시트(30b)에 형성된 수직 반사부(41v)에 의해 하단 프리즘 시트(30b)에서 상단 프리즘 시트(30a)쪽으로 반사되는 위치 즉, 시준집광모듈(21a)의 경계(23a)에 대응되는 위치에 형성되고 그 형상은 직각이등변 삼각형이며, 입사되는 1차 집속 태양광(11b)을 좌/우 측면으로 반사시킨다. In addition, the horizontal reflecting portion 41h 'formed on the upper prism sheet 30a is reflected from the lower prism sheet 30b toward the upper prism sheet 30a by the vertical reflecting portion 41v formed on the lower prism sheet 30b. That is, formed at a position corresponding to the boundary 23a of the collimating light concentrating module 21a, the shape is a right-angle isosceles triangle, and reflects the incident primary focusing sunlight 11b to the left and right sides.
그리고 하단 프리즘 시트(30b)에는 인접한 시준집광모듈(21a)의 경계(23a)에 대응되는 위치에 ‘∧’형상의 수직 반사부(41v)가 형성되고, ‘∧’형상의 요홈에 의해 양단이 직각이등변 삼각형을 형성함과 동시에, 밀한 매질(하단 프리즘 시트)과 소한 매질(공기)의 경계면을 구획하는 2개의 직각 이등변 삼각형 빗변이 경사면으로 형성되는 것이며, 양쪽의 수평 반사부(41h)로부터 각각 전달된 1차 집속 태양광은 각각의 직각이등변 삼각형 형상의 각개 경사면에서 전반사 원리에 의해 상단으로 90° 방향 전환하게 되고, 상단으로 90° 방향 전환된 1차 집광된 태양광(11b)은 그 폭(t)이 하단 프리즘 시트(30b)에 형성된 수평 반사부(41h)의 높이(t)의 두 배가 되는 것이고, 상기 시준집광모듈(21a)의 경계(23a) 부위를 통과하여 상단 프리즘 시트(30a)에 형성된 수평 반사부(41h')로 전반사하게 된다(도 2의 (c)의 하단 참조).The lower prism sheet 30b is formed with a vertical reflecting portion 41v having a '∧' shape at a position corresponding to the boundary 23a of the adjacent collimating light collecting module 21a, and both ends thereof are formed by a '∧' shaped groove. In addition to forming a right isosceles triangle, two right isosceles triangular hypotenuses which define a boundary between a dense medium (lower prism sheet) and a small medium (air) are formed as inclined surfaces, respectively, from both horizontal reflecting portions 41h. The transmitted primary focused solar light is diverted 90 ° to the top by the total reflection principle on each inclined plane of each rectangular isosceles triangle shape, and the primary focused solar light 11b that is turned 90 ° to the top is the width thereof. (t) is twice the height (t) of the horizontal reflecting portion 41h formed in the lower prism sheet 30b, and passes through the boundary 23a portion of the collimating light collecting module 21a to allow the upper prism sheet 30a to be formed. Horizontal reflectors (4) 1h ') is totally reflected (see the bottom of FIG. 2 (c)).
이때, 인접한 시준집광모듈(21a) 끼리는 반사된 1차 집속 태양광(11b)이 좌우로 수평 반사되어, 경계(23a) 부위로 모이도록 하단 프리즘 시트(30b)에 형성되는 수평 반사부(41h)는 대략 역사다리꼴 형태로 경사 형성된다. At this time, horizontal reflecting portions 41h are formed on the lower prism sheet 30b so that adjacent primary collimating light concentrating modules 21a are reflected by the reflected primary focused solar light 11b horizontally from side to side, and are collected at the boundary 23a. Is formed oblique in roughly trapezoidal form.
한편, 상단 프리즘 시트(30a)에 위치한 수평 반사부(41h')는 도 2의 (a)에 도시한 바와 같이, 전달된 1차 집광된 태양광(11b)을 우측에 인접한 수직 반사부(41v')로 다시 전달하며, 수직 반사부(41v') 우측에 인접한 또 다른 한 쌍의 시준집광모듈(21a)도 동일하게 1차로 집광되어 상단 프리즘 시트(30a)의 수평 반사부(41h')로 집속한 태양광(11b)을 전반사 시켜 전달하되, 상단 프리즘 시트(30a)의 수평 반사부(41h')가 이번에는 좌측 즉, 상단 프리즘 시트(30a)의 수직 반사부(41v')쪽으로 전반사하여 전달하므로 인접한 4개의 시준집광모듈(21a)에서 1차로 집속한 태양광(11b) 모두가 수직 반사부(41v‘)에 모이게 되고, 90° 방향 전환되어 하단 프리즘 시트(30b)쪽으로 수직하게 전반사된다.On the other hand, the horizontal reflector 41h 'positioned on the upper prism sheet 30a has a vertical reflector 41v adjacent to the right side of the transmitted primary focused sunlight 11b, as shown in FIG. '), And another pair of collimating light collecting modules 21a adjacent to the right side of the vertical reflecting portion 41v' are also focused firstly to the horizontal reflecting portion 41h 'of the upper prism sheet 30a. The total reflected solar light 11b is transmitted and transmitted, but the horizontal reflecting portion 41h 'of the upper prism sheet 30a is totally reflected toward the left, that is, the vertical reflecting portion 41v' of the upper prism sheet 30a. As a result, all of the primary light 11b focused at four adjacent collimating light collecting modules 21a are collected at the vertical reflecting portion 41v ', and are turned 90 ° to be totally vertically reflected toward the lower prism sheet 30b. .
이에 따라, 도 2의 (c)에 도시한 바와 같이, 하단 프리즘 시트(30b)에 형성되는 수직 반사부(41v)는 ‘∧’형상의 요홈에 의해 결과적으로 90° 전반사 프리즘과 같이, 양쪽에서 입사되는 태양광을 굴절이나 난반사 손실이 최소화 되도록 전반사하기 위해 나란히 배열된 형상이 되므로, 2개의 각개 직각 이등변삼각형 경사면에서 반사되는 폭의 합은 각각의 볼록 집광 렌즈(210a) 하단에 형성된 시준 볼록렌즈(211‘)를 통과한 1차 집속 태양광 폭(t)의 두 배(2t)가 되는 것이며, 상단 프리즘 시트(30a)의 수평 반사부(41h')의 높이는 두 개의 시준집광모듈(21a)로부터 입사되는 1차 집속 태양광(11b)을 좌우에서 동시에 전달 받아 수평으로 90° 손실 없이 방향전환 하여야 하므로 하단 프리즘 시트(30b)의 수평 반사부(41h')의 높이보다 2배 더 두꺼운 두께를 갖는 것이 바람직하다.Accordingly, as shown in Fig. 2C, the vertical reflecting portion 41v formed in the lower prism sheet 30b is formed by the '∧'-shaped grooves, resulting in 90 ° total reflection prism as a result. Since the incident light is arranged side by side in order to totally reflect to minimize refraction or diffuse reflection loss, the sum of the widths reflected from two orthogonal isosceles triangular slopes is collimated convex lens formed at the bottom of each convex condenser lens 210a. It is twice (2t) of the primary focusing sunlight width t passing through the 211 ', and the height of the horizontal reflecting portion 41h' of the upper prism sheet 30a is two collimating light collecting modules 21a. Since the primary focusing sunlight 11b incident from the left and right sides is simultaneously received and converted to 90 degrees horizontally without loss, the thickness is twice as thick as the height of the horizontal reflecting portion 41h 'of the lower prism sheet 30b. It is desirable to have All.
그리고 동일한 원리로 상단 프리즘 시트(30a)의 수직 반사부(41v‘)에 의해 하단 프리즘 시트(30b)쪽으로 수직하게 전반사되는 1차 집속 태양광의 폭은 볼록 집광 렌즈(210a)의 시준 볼록렌즈(211’)를 통과한 1차 집속 태양광(11b) 폭의 4배가 된다.In the same principle, the width of the primary focusing sunlight totally reflected vertically toward the lower prism sheet 30b by the vertical reflecting portion 41v 'of the upper prism sheet 30a is the collimating convex lens 211 of the convex condenser lens 210a. 4 times the width of the primary focused solar light 11b passing through ').
그리하면, 집합된 1차 집속 태양광은 하단 프리즘 시트(30b)를 통과하여, 하단에 놓이게 되는 태양전지(미도시) 또는 도시하지 않은 태양에너지 이용기기에 집합(광)하여 도달하게 된다.Then, the aggregated primary focused solar light passes through the lower prism sheet 30b and aggregates (lights) to a solar cell (not shown) or a solar energy utilizing device (not shown) that is placed at the bottom.
이러한 수평 반사부(41h)(41h') 및 수직 반사부(41v)(41v‘)를 구성하는 경사면은 밀한 매질에서 소한매질로의 빛이 진행할 때 경계면에서 전반사가 일어나도록 소정각도로 비스듬히 형성되되, 본 발명 제 1 실시예에서는 45° 각도로 형성된다.Inclined surfaces constituting the horizontal reflecting portions 41h, 41h 'and vertical reflecting portions 41v, 41v' are formed at an angle so that total reflection occurs at an interface when light passes from a dense medium to a small medium. In the first embodiment of the present invention, a 45 ° angle is formed.
여기에서, 전반사(total reflection)란 빛이 밀한 매질에서 소한 매질로 입사할 때 빛이 굴절되지 않고 반사되어 진행하는 현상을 말하며, 특히 굴절각이 90°가 될 때의 입사각을 임계각(θ)이라 하면 이 입사각이 임계각보다 클 때 전반사가 일어나며 이를 굴절률(n)과 비교하면 n=1/sinθ과 같은 관계를 갖는다.Herein, total reflection refers to a phenomenon in which light is reflected, rather than refracted, when light enters a dense medium from a dense medium. In particular, when the angle of refraction is 90 °, the angle of incidence is a critical angle θ. When the incident angle is larger than the critical angle, total reflection occurs, and when compared with the refractive index n, n = 1 / sinθ has a relationship.
이와 같이 집광부(20a)를 구성하는 다수의 시준집광모듈(21a)에서 2쌍 또는 4쌍 단위로 동시에 이루어지며 입사하는 최초 태양광(11a)은 도 2의 (a)와 같이 특정 위치로 집합되고 집속된 태양광(11c)이 된다.As described above, the plurality of collimating light collecting modules 21a constituting the light collecting unit 20a are simultaneously formed in units of two pairs or four pairs, and the first sunlight 11a that is incident is collected at a specific position as shown in FIG. And concentrated solar light 11c.
그리고 도시하지는 않았지만, 상ㆍ하단 프리즘 시트(30a)(30b)의 상ㆍ하단에 또 다른 상ㆍ하단 프리즘 시트(30a)(계단식이 바람직함)를 추가하거나 동일 매질의 상ㆍ하단 프리즘 시트(30a)(30b)의 두께를 높게 하여 특정 위치로 집합된 광을 다시 다단으로 측면에 집광하도록 할 수 있고, 계단식으로 구성될 경우, 상ㆍ하단 프리즘 시트(30a)(30b) 사이에 굴절률이 상ㆍ하단 프리즘 시트(30a)(30b)보다 작은 매질층을 두어 상ㆍ하단 프리즘 시트(30a)(30b) 각각을 진행한 태양광이 전반사되도록 구성할 수 있다.Although not shown, another upper and lower prism sheet 30a (preferably a staircase type) is added to the upper and lower ends of the upper and lower prism sheets 30a and 30b, or the upper and lower prism sheets 30a of the same medium. (30b) can be made high so that the light collected at a specific position can be condensed on the side in multiple stages, and when the cascade is formed, the refractive index between the upper and lower prism sheets 30a and 30b is higher and higher. It can be configured so that solar light which has propagated through the upper and lower prism sheets 30a and 30b is totally reflected by providing a medium layer smaller than the lower prism sheets 30a and 30b.
또한, 도 3의 (a)에 도시한 바와 같이, 상단 프리즘 시트(30a)에 형성된 수직 반사부(41v‘)가 경계(23a) 위치 대신에 볼록 집광 렌즈(210a)의 집광 위치(예를 들어, 볼록 집광 렌즈의 정점)에 형성되면, 1차 집광된 태양광(11b)이 시준집광모듈(21a)에 의해 재차 집속되게 할 수 있어, 상단 프리즘 시트(30a)의 수직 반사부(41v’)의 넓어진 집속광의 폭을 다시 시준집광모듈(21a)이 최초 태양광과 함께 집속하는 형태를 통해 광폭(t)을 원래대로 줄일 수 있다.3A, the vertical reflecting portion 41v 'formed in the upper prism sheet 30a has a condensing position of the convex condenser lens 210a instead of the boundary 23a position (for example, as shown in FIG. 3A). , The apex of the convex condenser lens, the primary focused solar light 11b can be focused again by the collimating condenser module 21a, so that the vertical reflecting portion 41v 'of the upper prism sheet 30a is formed. The width of the focused condensed light of the collimating condensing module (21a) can be reduced to the original width (t) by converging with the first sunlight.
이와는 다른 변형된 예로써, 도 3의 (b)에 도시한 바와 같이, 인접한 시준집광모듈(21a)의 경계(23a) 위치에 차일드 시준집광모듈(22a)을 더 구비하여, 상단 프리즘 시트(30a)의 수평 반사부(41h’)로의 광폭을 줄일 수 있으며, 전술한 바와 같이 시준집광모듈(21a)이 1차 집속된 태양광(11b)을 최초 태양광(11a)이 1차 집속하는 것처럼 재차 집속하게 하면, 수직 반사부(41v)(41v‘)에 의해 커진 태양광의 폭을 줄여 고도 집속할 수 있다.As another modified example, as illustrated in FIG. 3B, the child collimating light collecting module 22a is further provided at the boundary 23a of the adjacent collimating light collecting module 21a, and the upper prism sheet 30a is provided. ) Can be reduced to the horizontal reflecting portion (41h '), and as described above, the collimation condensing module 21a is primarily focused on the first light 11b focused on the sunlight 11b. By focusing, the width of the sunlight which is increased by the vertical reflecting portions 41v and 41v 'can be reduced to focus altitude.
한편 또 다른 변형 예로써, 도 4의 (a)에 도시한 바와 같이, 인접한 두 개의 시준집광모듈(21a)당 하나의 차일드 시준집광모듈(22a)을 더 구비하되, 이들을 하나의 세트로 하여 연속된 배열로 하고, 하나의 세트에서는 하단 프리즘 시트(30b)에서 좌우로 입사되는 인접한 한 쌍의 시준집광모듈(21a)로부터 입사되는 1차 집속된 태양광(11b)을 모아서 일단 차일드 시준집광모듈(22a)로 하여금 광폭을 줄여 집속하도록 구비하고, 인접세트에 광을 전달하면서, 전술한 바와 같이 인접한 다른 세트의 수직 반사부(41v‘)가 경계(23a) 위치 대신에 집광 위치(예를 들어, 볼록 집광 렌즈의 정점)에서 재차 고도로 집속하는 과정을 연속된 세트마다 진행시키면, 광 손실이 거의 없이 점진적으로 광밀도가 증가하도록 측면으로 태양광을 몰아가면서 점진적으로 집광할 수 있어 매우 큰 집광효과를 가질 수 있게 되며 이 또한 본 발명의 특징 중 하나이다.Meanwhile, as another modified example, as illustrated in FIG. 4A, one child collimation condenser module 22a is further provided for two adjacent collimation condensing modules 21a, and these are continuously set as one set. In one set, the primary collimated light converging module 11 is collected by collecting the primary focused solar light 11b incident from a pair of adjacent collimating light concentrating modules 21a which are incident from the lower prism sheet 30b to the left and right. 22a) to reduce and widen the width, and transmit light to the adjacent sets, while the other sets of adjacent vertical reflecting portions 41v ', as described above, instead of the position of the boundary 23a If the process of highly condensing again at the apex of the convex condensing lens is performed for each successive set, it can gradually collect the light while driving the sunlight to the side to gradually increase the light density with little light loss. It is possible to have a large light collecting effect, which is also one of the features of the present invention.
이때, 도 4의 (b)에 도시한 바와 같이, 차일드 시준집광모듈(22a)을 인접한 두 개의 시준집광모듈(21a) 사이에 형성한다 하여도, 시준집광모듈(21a)과 비교하여 차일드 시준집광모듈(22a)은 거꾸로 배치된 형상이고 또, 각각의 시준집광모듈(21a)에서의 1차 태양광 집속은 하단에 형성된 시준 볼록렌즈(211‘)로 광이 집중되어 사실상 좌우로 광이 통행하지 않는 매질공간이 형성되어 있으므로, 이 영역을 이용하여 집광부(20a)의 하단에 구비되는 소정 곡률의 넓은 차일드 볼록 집광 렌즈(220a)의 폭이 크게 형성되어도 무리가 없으며, 이에 대응되게 상면에 배치되는 차일드 시준 볼록렌즈(211“)가 형성되는 경계면(23a)의 폭을 차일드 시준 볼록렌즈(211”)의 폭과 거의 일치되도록 밀착하여 형성할 수 있고, 차일드 시준 볼록렌즈(211“)는 폭이 매우 작게 형성 가능하므로 전체적인 시준집광모듈(21a) 및 차일드 시준집광모듈(22a) 배치를 컴팩트 하게 형성할 수 있어, 차일드 시준 볼록렌즈(211”) 부위로 최초 입사되는 태양광(11a)의 손실을 최소화할 수 있다.In this case, as shown in FIG. 4B, even when the child collimation condensing module 22a is formed between two adjacent collimating condensing modules 21a, the child collimation condensing module 21a is compared with the collimation condensing module 21a. The module 22a is arranged upside down, and the primary solar focus in each collimating light collecting module 21a is focused on the collimating convex lens 211 'formed at the bottom so that light does not substantially pass from side to side. Since a medium space is formed, the width of the wide child convex condenser lens 220a having a predetermined curvature provided at the lower end of the condenser 20a is largely formed using this area, so that it is appropriately disposed on the upper surface. The width of the boundary surface 23a on which the child collimating convex lens 211 ″ is formed can be formed in close contact with the width of the child collimating convex lens 211 ″, and the child collimating convex lens 211 ″ is wide. Can be formed very small Therefore, the entire collimation light collecting module 21a and the child collimation light collecting module 22a can be compactly formed, thereby minimizing the loss of the sunlight 11a first incident on the child collimating convex lens 211 ″. .
이와 같이 본 발명에 따르면, 넓은 면적의 집광부(20a) 전면으로 입사되는 평행광 형태의 최초 태양광(11a)이 각각의 시준집광모듈(21a) 또는 시준집광모듈(21a) 및 차일드 시준집광모듈(22a), 상ㆍ하단 프리즘 시트(30a)(30b)에 의해 최종적으로 가느다란 높이의 매우 작은 선형 면적으로 몰아서 집광되도록 하기 때문에, 그 집광 위치에 태양전지(미도시)를 설치할 경우 소요되는 태양전지의 면적을 획기적으로 줄일 수 있으며, 태양광을 최종적으로 광케이블에 입사시키는 태양광 자연채광 모듈(미도시)을 설치할 경우에도 선형 집광 광학계를 사용할 수 있어 제작단가를 줄이고, 평판형 자연채광 모듈을 제작할 수 있기 때문에 작동 공간을 현저하게 줄일 수 있게 된다.Thus, according to the present invention, the first sunlight 11a in the form of parallel light incident on the front of the light collecting portion 20a having a large area is each collimating light collecting module 21a or collimating light collecting module 21a and the child collimating light collecting module. (22a) and the upper and lower prism sheets (30a, 30b) are driven to collect a very small linear area of final height and condensed, so that the sun required when installing a solar cell (not shown) at the condensing position The battery area can be significantly reduced, and even when installing a solar natural light module (not shown) that finally injects sunlight into the optical cable, a linear condensing optical system can be used to reduce the manufacturing cost and to provide a flat natural light module. Because it can be manufactured, the operating space can be significantly reduced.
이러한 구조는, 1차 집속된 태양광(11b)을 효율적으로 집광하기 위해 필요한 평행한 태양광을 형성하는 시준기를 상ㆍ하단 프리즘 시트(30a)(30b)에 형성한 종래의 기술에 비하여 매우 저렴하게 제작할 수 있고, 시준기와의 광축 정렬도 금형제작단계에서 정교하게 미리 정렬되므로, 집광부(20a)와 상ㆍ하단 프리즘 시트(30a)(30b)의 조립이 용이하며, 제작원가 크게 절약할 수 있고, 상ㆍ하단 프리즘 시트(30a)(30b)의 제작 시에도, 수직 반사부(41v)(41v')와 수평 반사부(41h)(41h')만 필요하여 구조적으로 매우 간단하므로 상ㆍ하단 프리즘 시트(30a)(30b)도 값싸게 제작할 수 있어 더욱 큰 원가 절감 효과가 예상된다. 그 이유는 당업자라면 광축이 정렬된 시준집광모듈(21a) 또는 차일드 시준집광모듈(22a)로부터의 평행광을 상ㆍ하단 프리즘 시트(30a)(30b)의 수직 반사부(41v)(41v') 및 수평 반사부(41h)(41h')에 일치시켜 조립할 때에 하단 프리즘 시트(30a)(30b)의 두께를 달리하고 수직 반사부(41v)(41v') 및 수평 반사부(41h)(41h')의 높이와 크기를 조금 확대할 수 있는 여유가 있어 용이하게 조립할 수 있기 때문이며 더 이상의 자세한 설명은 생략하기로 한다.This structure is very inexpensive compared to the conventional technique in which the collimator for forming the parallel sunlight required for efficiently concentrating the primary focused sunlight 11b is formed on the upper and lower prism sheets 30a and 30b. Since the alignment of the optical axis with the collimator is precisely aligned in the mold manufacturing step, the condenser 20a and the upper and lower prism sheets 30a and 30b can be easily assembled, and the manufacturing cost can be greatly reduced. In the case of manufacturing the upper and lower prism sheets 30a and 30b, only the vertical reflecting portions 41v and 41v 'and the horizontal reflecting portions 41h and 41h' are required, and the upper and lower prism sheets are very simple in structure. The prism sheets 30a and 30b can also be manufactured inexpensively, so that further cost reduction effects are expected. The reason for this is that those skilled in the art can receive the parallel light from the collimating light concentrating module 21a or the child collimating light concentrating module 22a whose optical axis is aligned with the vertical reflecting portions 41v and 41v 'of the upper and lower prism sheets 30a and 30b. And the thicknesses of the lower prism sheets 30a and 30b when they are assembled in accordance with the horizontal reflecting portions 41h and 41h ', and the vertical reflecting portions 41v and 41v' and the horizontal reflecting portions 41h and 41h 'are different. The height and size of the) can be easily expanded because there is room to enlarge a little, and further description will be omitted.
한편, 상ㆍ하단 프리즘 시트(30a)(30b)의 재질, 수직 반사부(41v)(41v') 및 수평 반사부(41h)(41h')의 형성방법, 수직 반사부(41v)(41v') 및 수평 반사부(41h)(41h')에 추가로 형성될 수 있는 반사층은 선출원 3과 선출원 4를 참조하면 되므로 자세한 설명은 생략하기로 하며, 집광부(20a)의 소재로는 광 굴절률이 공기보다 크고 플라스틱, 강화유리, 파이렉스, 석영유리와 같이 광학적으로 투명한 소재가 바람직하며, 본 제 1 실시예의 태양광 집광기(1a)의 집광용도가 UV 태양광일 경우에는 UV 차단층이 형성되어 있다하더라도 플라스틱은 UV에 의해 장기간 노출되면 열화되므로 가급적 강화유리, 파이렉스, 석영유리 소재를 선택하는 것이 바람직하고, 가시광선 태양광 자연채광 혹은 태양광에 의한 발전을 위해서는 UV 차단층이 형성된 플라스틱 소재가 제작원가 측면에서 매우 바람직하다.On the other hand, the material of the upper and lower prism sheets 30a and 30b, the method of forming the vertical reflecting portions 41v and 41v ', and the horizontal reflecting portions 41h and 41h', and the vertical reflecting portions 41v and 41v '. ) And the reflective layer, which may be further formed in the horizontal reflecting portions 41h and 41h ', may be omitted by referring to the first and third application sources 3 and 4, and the refractive index of the light collecting part 20a may be omitted. Optically transparent materials such as plastic, tempered glass, pyrex, and quartz glass are preferable than air, and in the case where the light collecting purpose of the solar light collector 1a of the first embodiment is UV sunlight, even if a UV blocking layer is formed Since plastic deteriorates when exposed to UV for a long time, it is preferable to select tempered glass, pyrex, or quartz glass material.As a plastic material having a UV blocking layer is formed for the production of visible sunlight, natural light, or sunlight Hawk on the side It is preferred.
통상적으로 태양 UV에 의해 5년 이내에 플라스틱은 황변현상이 발생하므로, 태양 UV에 의해 발생하는 황변문제를 해결하기 위해 UV액을 코팅 또는 자외선 차단 모노머를 사용하여 내후성을 담보할 수 있도록, 본 발명 제 1 실시예에서는 자외선 차단 플라스틱 렌즈용 모노머를 사용한 UV-400 아크릴계 시트를 이용하고, 이러한 태양광 UV에 의한 내후성 증진에 관한 사항은 당업자가 용이하게 실시 가능한 것이므로 이에 대한 설명도 생략하기로 한다. In general, since plastic yellowing occurs within 5 years by solar UV, in order to solve the yellowing problem caused by solar UV, the UV liquid may be coated or UV-blocking monomer to ensure weather resistance. In the first embodiment, the UV-400 acrylic sheet using the monomer for the UV-blocking plastic lens is used, and the matter regarding the improvement of weather resistance by the solar UV is easily implemented by those skilled in the art, and thus the description thereof will be omitted.
통상적으로 광학유리나 플라스틱 광케이블에 사용되는 아크릴계의 플라스틱은 미터 당 광 감쇄율이 2~ 5% 미만이어서 거의 모든 광이 전달되어 집광된다고 볼 수 있으므로 집광효율의 극대화는 자명한 사실이라 하겠다.In general, acrylic plastics used in optical glass or plastic optical cables have a light attenuation rate of less than 2 to 5% per meter, so almost all light is transmitted and collected. Therefore, maximizing the light collecting efficiency is obvious.
한편, 시준집광모듈(21a)은 태양광이 수직 입사되는 상측에서 바라보았을 때 작은 원형면 혹은 사각형 면에 수직 입사되는 태양광을 하나의 초점에 집속하는 소형 볼록 집광 렌즈(미도시)이 길이 방향으로 일직선으로 배열되어 형성될 수 있고, 일직선으로 배열된 “점 초점”볼록 집광 렌즈(미도시)들의 사이에는 간격이 형성될 수 있고, 선형 시준기 또한 “점 초점”볼록 집광 렌즈에 일대일 대응되도록 “점 초점”시준기의 선형배열로 형성될 수 있으며, 이에 대응하는 하단 프리즘 시트(30b)의 수평 반사부(41h)도 선형 대신 점으로 형성될 수 있으며, 차일드 볼록 집광 렌즈(220a) 대신에 점초점 차일드 볼록 집광 렌즈(미도시)의 선형배열이 형성될 수 있으며, 차일드 볼록 집광 렌즈(220a)에 대응하는 선형 시준기 또한 “점 초점”볼록 집광 렌즈에 일대일 대응되도록 “점 초점”시준기의 선형배열로 형성될 수 있다.On the other hand, the collimating condenser module 21a has a small convex condenser lens (not shown) for concentrating sunlight incident on a small circular plane or a square plane at a focal point when viewed from an image side where sunlight is vertically incident. And a gap may be formed between the “point focus” convex condenser lenses (not shown) arranged in a straight line, and the linear collimator may also have a one-to-one correspondence with the “point focus” convex condenser lens. Point focus ”collimator can be formed as a linear array, the corresponding horizontal reflector 41h of the lower prism sheet 30b can also be formed as a point instead of a linear, and instead of the child convex condenser lens 220a A linear array of child convex condensing lenses (not shown) can be formed, and the linear collimator corresponding to the child convex condensing lens 220a is also confronted with the "point focus" convex condensing lens. Corresponding to "focus point" may be formed with a linear arrangement of the collimator.
아울러 도시하지는 않았지만, 시준집광모듈(21a)의 볼록 집광 렌즈(210a)와 시준 볼록렌즈(211‘)는 요입된 홈 형태로 형성될 수 있으며, 차일드 시준집광모듈(22a)의 차일드 볼록 집광 렌즈(220a)와 차일드 시준 볼록렌즈(211“)도 마찬가지이고, 시준 볼록렌즈(211’)와 차일드 시준 볼록렌즈(211”)는 마이크로스코픽(microscopic) 정도의 크기로도 형성될 수 있다.In addition, although not shown, the convex condenser lens 210a and the collimating convex lens 211 ′ of the collimating condenser module 21a may be formed in a concave groove shape, and the child convex condensing lens of the child collimating condenser module 22a ( The same applies to the 220a) and the child collimating convex lens 211 ′, and the collimating convex lens 211 ′ and the child collimating convex lens 211 ″ may be formed to have a microscopic size.
본 제 1 실시예에서는 시준기(콜리메이터)로 시준 볼록렌즈(211‘)와 차일드 시준 볼록렌즈(211“)를 사용하였으나, 이외에도 선형 비구면 볼록렌즈, 선형 그린렌즈; 선형 프레넬 렌즈, 다수의 그린렌즈 선형배열, 다수의 점초점 볼록렌즈의 선형배열, 다수의 점초점 비구면 볼록렌즈의 선형배열, 다수의 점초점 프레넬렌즈의 선형배열 중 어느 하나가 선택되어 구비될 수 있으며, 이는 통상적으로 광통신, 광학 혹은 미소광학(Micro-optics)에서 공지된 렌즈, 미소렌즈의 형성 또는 미소 시준기(콜리메이터)에 관한 것으로 자세한 설명은 생략하기로 하며, 이러한, 평행광을 만드는 방법은 전술한 방법 외에도 매우 다양한 광학적 수단을 통해 당업자가 용이하게 구현할 수 있을 것이다.In the first embodiment, a collimating convex lens 211 'and a child collimating convex lens 211 "are used as collimators (collimators), but in addition, linear aspherical convex lenses and linear green lenses; A linear Fresnel lens, a plurality of green lens linear arrays, a plurality of linear focus convex lenses, a linear array of multiple focus-focused aspherical convex lenses, a linear array of a plurality of focus-focused Fresnel lenses are selected This is generally related to lenses, microlens formation or microcollimators (collimators) known in optical communications, optics or micro-optics, and detailed descriptions thereof will be omitted. The method may be easily implemented by those skilled in the art through a wide variety of optical means in addition to the method described above.
덧붙여, 본 발명에 따라 태양광을 효율적으로 손실 없이 수직 반사부(41v)(41v') 및 수평 반사부(41h)(41h')에서 평행광 형태로 좌우측 수평으로 반사시키기 위해서는 1차적으로 하단 프리즘 시트(30b)의 수평 반사부(41h) 도달하는 1차 집속 태양광(11b)이 최대한 평행광 이어야 하고 그 폭이 좁으면 좋을수록 효과적이며, 2차적으로는 태양광이 상단 프리즘 시트(30a)의 수직 반사부(41v)(41v') 및 수평 반사부(41h)(41h')를 통해 전달되는 과정에서의 집속에서도 최대한 평행광 이어야 하고, 그 폭이 좁으면 좁을수록 광의 손실이 없고 두께를 줄일 수 있게 된다는 것을 당업자라면 쉽게 이해할 수 있을 것이다. 따라서 선형 시준기(콜리메이터)의 역할을 통해, 1차 집속된 태양광이 평행하게 입사되고, 동시에 수평 반사부(41h)(41h')에 접촉하는 폭을 줄이면 줄일수록 상ㆍ하단 프리즘 시트(30a)(30b)의 두께를 줄일 수 있게 되는 것이며, 접촉 폭이 줄어들면 줄어들수록 동일한 두께의 상ㆍ하단 프리즘 시트(30a)(30b)를 다단으로 형성할 수 있으므로 시준집광모듈(21a)의 배열 개수를 늘리게 되고 이는 시준집광모듈(21a)의 곡률반경을 줄이게 되어, 결과적으로 초점거리가 줄어 전체적으로 태양광 집광기(1a)의 두께를 대폭 줄일 수 있게 되는 것 또한, 쉽게 이해할 수 있을 것이다.In addition, according to the present invention, the lower prism is primarily used to reflect the sunlight horizontally in the form of parallel light in the vertical reflecting portions 41v, 41v 'and horizontal reflecting portions 41h, 41h' without loss of efficiency. The primary focused sunlight 11b reaching the horizontal reflecting portion 41h of the sheet 30b should be parallel light as much as possible, and the narrower the width, the more effective it is. Secondly, the sunlight is the upper prism sheet 30a. In the process of passing through the vertical reflecting portion 41v (41v ') and the horizontal reflecting portion (41h) (41h') of the parallel light as much as possible, the narrower the width of the narrower no loss of light and the thickness It will be readily understood by those skilled in the art that the reduction will be possible. Therefore, through the role of a linear collimator (collimator), the primary focused solar light is incident in parallel, and at the same time, the width of contact with the horizontal reflectors 41h and 41h 'is reduced, so that the upper and lower prism sheets 30a are reduced. The thickness of 30b can be reduced, and as the contact width decreases, the upper and lower prism sheets 30a and 30b having the same thickness can be formed in multiple stages, so that the number of arrays of collimating light concentrating modules 21a can be increased. In addition, this will reduce the radius of curvature of the collimating light concentrating module 21a, and as a result, the focal length can be reduced, and the overall thickness of the solar light collector 1a can be easily understood.
(제 2 실시예)(Second embodiment)
도 5는 선형 시준기(콜리메이터)가 오목 거울 집광렌즈에 일체로 형성된 시준집광모듈을 사용하는 집광부와 상ㆍ하단 프리즘 시트로 이루어지는 본 발명 제2 실시예에 따른 태양광 집광기의 구조를 나타내는 단면도이다.5 is a cross-sectional view showing the structure of a solar light collector according to the second embodiment of the present invention in which a linear collimator (collimator) is composed of a light collecting part using an collimating light collecting module integrally formed in a concave mirror light collecting lens and an upper and lower prism sheet. .
도 5에 도시한 바와 같이, 본 발명 제2 실시예에 따른 태양광 집광기(1b)는 시준집광모듈(21b)이 일직선상에 다수 배열된 집광부(20b)와, 상기 시준집광모듈(21b)에 의해 1차 집속된 태양광을 전달받아 집광하는 투명한 소재로 제작된 상ㆍ하단 프리즘 시트(30a)(30b)로 구성되고, 시준집광모듈(21b)은 선형 시준기(콜리메이터)가 일체로 형성된 오목 거울 집광렌즈(210b)로 이루어진다. As shown in FIG. 5, the solar light collector 1b according to the second exemplary embodiment of the present invention includes a light collecting part 20b in which a plurality of collimating light collecting modules 21b are arranged in a straight line, and the collimating light collecting module 21b. Consists of the upper and lower prism sheets 30a, 30b made of a transparent material for condensing the primary focused sunlight by the light, the collimator module 21b is a concave formed integrally with a linear collimator (collimator) And a mirror condenser lens 210b.
이 경우에는 태양광이 투명한 소재로 형성되는 하단 프리즘 시트(30a) 내부를 1차 통과하여 집광 오목거울(210b)에 형성된 거울 반사층에 반사되어 상면에 거꾸로 위치한 시준 볼록렌즈(211‘)로 태양광을 집속하며, 태양광이 재차 집광되는 과정은 본 발명 제 1 실시예와 동일하다.In this case, sunlight is first reflected through a lower prism sheet 30a formed of a transparent material, reflected by a mirror reflecting layer formed on the condensing concave mirror 210b, and sunlight is collimated with a collimating convex lens 211 ′ positioned upside down on the upper surface. Focusing on, and the process of condensing sunlight again is the same as the first embodiment of the present invention.
한편, 시준집광모듈(21b)은 도시하지는 않았지만 다수의 소형 “점 초점”오목 거울 집광렌즈(미도시)가 길이 방향으로 선형 배열되어 형성될 수 있고, 일직선으로 배열된 소형 “점 초점”오목 거울 집광렌즈(미도시)들의 사이에는 간격이 형성될 수 있으며, 시준기 또한 “점 초점”오목 거울 집광렌즈에 일대일 대응되도록 “점 초점”시준기의 선형배열로 형성될 수 있다.On the other hand, although the collimation concentrating module 21b is not shown, a plurality of small "point focus" concave mirrors may be formed by linearly arranging a condenser lens (not shown) in a longitudinal direction, and a small "point focus" concave mirror arranged in a straight line. A gap may be formed between the condenser lenses (not shown), and the collimator may also be formed as a linear arrangement of the “point focus” collimator so as to correspond one-to-one to the “point focus” concave mirror condenser lens.
또한, 오목 거울 집광렌즈(210b)에 형성된 거울 반사층은 90% 이상의 반사율을 가지는 금속물질을 의미하는 것으로서, 알루미늄, 은, 금, 니켈, 스테인레스 스틸 등이 사용될 수 있다. 본 발명에서는 90% 이상의 반사율을 가지고, 가격이 저렴한 알루미늄을 반사물질로 사용한다.In addition, the mirror reflective layer formed on the concave mirror condenser lens 210b means a metal material having a reflectance of 90% or more, and aluminum, silver, gold, nickel, stainless steel, or the like may be used. In the present invention, aluminum having a reflectance of 90% or more and having a low cost is used as a reflective material.
이때, 상기 시준집광모듈(21b)들 사이의 경계(23b)에는 거울 반사층이 형성되지 않아야 상단 프리즘 시트(30a)로부터 반사된 1차 집속 태양광(11b)이 자유롭게 투과될 수 있다.In this case, the primary focusing sunlight 11b reflected from the upper prism sheet 30a may be freely transmitted when the mirror reflective layer is not formed at the boundary 23b between the collimating light collecting modules 21b.
(제 3 실시예)(Third embodiment)
도 6은 선형 시준기(콜리메이터)가 프레넬 집광렌즈에 일체로 형성된 시준집광모듈을 사용하는 집광부와 상ㆍ하단 프리즘 시트로 이루어지는 본 발명 제3 실시예에 따른 태양광 집광기의 구조를 나타내는 단면도이다.6 is a cross-sectional view showing the structure of a solar light collector according to the third embodiment of the present invention, in which a linear collimator (collimator) comprises a light collecting part using an collimating light collecting module integrally formed in a Fresnel light collecting lens and an upper and lower prism sheet. .
도 6에 도시한 바와 같이, 본 발명 제3 실시예에 따른 태양광 집광기(1c)는 시준집광모듈(21c)이 일직선상에 다수 배열된 집광부(20c)와, 집광부(20c)로 입사되는 최초 태양광(11a)을 시준집광모듈(21c)로 1차 집속한 태양광(11b)을 전달받아 집광하는 투명한 소재로 제작된 상ㆍ하단 프리즘 시트(30a)(30b)로 구성된다.As shown in FIG. 6, the solar light collector 1c according to the third exemplary embodiment of the present invention enters the light collecting part 20c and the light collecting part 20c in which a plurality of collimating light collecting modules 21c are arranged in a straight line. It consists of the upper and lower prism sheets 30a and 30b made of a transparent material that receives and collects the first sunlight 11a that is primarily focused on the collimation condensing module 21c.
또한, 시준집광모듈(21c)은 프레넬 집광렌즈(210c)와 시준 볼록렌즈(211‘)로 구성된다.In addition, the collimating condenser module 21c includes a Fresnel condensing lens 210c and a collimating convex lens 211 '.
(제 3 실시예의 변형예)(Modification of Third Embodiment)
그리고 도 11에 도시된 바와 같이, 다수의 “점 초점”소형 프레넬 집광렌즈(21")를 일렬로 배열하여, 하나의 시준집광모듈(21c)과 같이 입사된 태양광을 집속하여 하단 프리즘 시트(30b)에 전달하도록 구성할 수 있으며, As shown in FIG. 11, a plurality of “point focus” small Fresnel condenser lenses 21 ″ are arranged in a row, focusing incident sunlight such as one collimation condenser module 21c, and then a lower prism sheet. Can be configured to forward to 30b,
한편, 시준집광모듈(21c)은 도시하지는 않았지만 다수의 소형 “점 초점”프레넬 집광렌즈(도 11의 21')가 길이 방향으로 선형 배열되어 형성될 수 있고, 일직선으로 배열된 소형 “점 초점”프레넬 집광렌즈(21')들의 사이에는 간격이 형성될 수 있으며, 시준기 또한 “점 초점”프레넬 집광렌즈에 일대일 대응되도록 “점 초점”시준기의 선형배열로 형성될 수 있다.On the other hand, although not shown, the collimating condensing module 21c may be formed by linearly arranging a plurality of small "point focus" Fresnel condenser lenses (21 'of FIG. 11) in the longitudinal direction, and the small "point focus" arranged in a straight line. A gap may be formed between the Fresnel condenser lenses 21 ', and the collimator may also be formed in a linear arrangement of the “point focal” collimator so as to have a one-to-one correspondence with the “point focus” Fresnel condenser lens.
프레넬 집광렌즈(210c) 및 다수의 소형“점 초점”프레넬 집광렌즈의 선형 배열은 당업자에게 이미 공지된 것이고, 본 발명 제 1 실시예의 볼록 집광 렌즈(210a) 대신 프레넬 집광렌즈(210c) 또는 다수의 소형 “점 초점”프레넬 집광렌즈(미도시)의 선형 배열을 사용하는 것을 제외하고는 태양광 집광기(1a)와 작동 관계는 동일하므로 제3 실시예의 태양광 집광기(1c)에 대한 자세한 설명은 이하 생략하기로 한다.The linear arrangement of the Fresnel condenser lens 210c and the plurality of small "point focus" Fresnel condenser lenses is already known to those skilled in the art, and instead of the convex condenser lens 210a of the first embodiment of the present invention, the Fresnel condenser lens 210c Alternatively, except that a linear arrangement of a plurality of small “point focus” Fresnel condenser lenses (not shown) is used, the operating relationship is the same as that of the solar concentrator 1a. Detailed description will be omitted below.
(제 4 실시예) (Example 4)
도 7은 선형 시준기(콜리메이터)가 카세그레인 집광렌즈에 일체로 형성된 시준집광모듈을 사용하는 집광부와 상ㆍ하단 프리즘 시트로 이루어지는 본 발명 제4 실시예에 따른 태양광 집광기의 구조를 나타내는 단면도이다.FIG. 7 is a cross-sectional view illustrating a structure of a solar light collector according to a fourth embodiment of the present invention in which a linear collimator (collimator) includes a light collecting part using an collimating light collecting module integrally formed in a casee grain light collecting lens and an upper and lower prism sheet.
도 7에 도시한 바와 같이, 본 발명 제 4 실시예에 따른 태양광 집광기(1d)는 시준집광모듈(21d)이 일직선상에 다수 배열된 집광부(20d)와, 시준집광모듈(21d)에 의해 1차 집속된 태양광을 전달받아 집광하는 투명한 소재로 제작된 상ㆍ하단 프리즘 시트(30a)(30b)로 구성되며, 시준집광모듈(21d)은 선형 시준기(콜리메이터)로써 시준 볼록렌즈(211‘)가 일체로 형성된 카세그레인 집광렌즈로 구성된다.As shown in FIG. 7, the solar light collector 1d according to the fourth exemplary embodiment of the present invention has a collimator 20d having a plurality of collimating light collecting modules 21d arranged in a straight line, and a collimating light collecting module 21d. It consists of upper and lower prism sheets 30a, 30b made of a transparent material for condensing and receiving the primary focused solar light, and the collimating condenser module 21d is a collimator collimator 211 as a linear collimator (collimator). ') Is composed of a casee grain condensing lens integrally formed.
상기 카세그레인 집광렌즈는 선형 카세그레인 주 반사거울(210d2)과 선형 카세그레인 부 반사거울(210d1)로 이루어지며 시준 볼록렌즈(211‘)를 제외한 선형 카세그레인 주 반사거울(210d2)의 외주면에는 반사층이 형성된다. 선형 카세그레인 주 반사거울(210d2)에 평행하게 입사된 태양광이 선형 카세그레인 주 반사거울(210d2) 초점 전단에 구비된 선형 카세그레인 부 반사거울(210d1)로 집속하여 반사시키고, 선형 카세그레인 부 반사거울(210d1)은 선형 카세그레인 주 반사거울(210d2)의 중앙하면에 형성된 시준 볼록렌즈(211‘)로 다시 반사시키고 시준 볼록렌즈(211‘)에 의해 평행광으로 출사된다. The casein condensing lens is composed of a linear casee grain main reflecting mirror 210d2 and a linear casee grain minor reflecting mirror 210d1, and a reflective layer is formed on the outer circumferential surface of the linear casee grain main reflecting mirror 210d2 except for the collimating convex lens 211 ′. Sunlight incident in parallel to the linear casee grain reflection mirror 210d2 is focused and reflected by the linear casee grain reflection mirror 210d1 provided at the focal front end of the linear casee grain reflection mirror 210d2, and the linear casee grain reflection mirror 210d1 is reflected. ) Is reflected back to the collimating convex lens 211 'formed at the center surface of the linear casee grain main reflecting mirror 210d2, and is emitted as parallel light by the collimating convex lens 211'.
이후, 시준 볼록렌즈(211‘)를 통과한 1차 집속 태양광은 하단 프리즘 시트(30b)와 상단 프리즘 시트(30a)를 통해 전반사되면서 특정 위치로 집중(속)되게 된다.Subsequently, the first focused solar light passing through the collimating convex lens 211 ′ is totally reflected through the lower prism sheet 30b and the upper prism sheet 30a to be concentrated (conceived) to a specific position.
한편, 카세그레인 집광렌즈는 도시하지 않았지만 “점 초점”소형 카세그레인 집광렌즈(미도시)가 길이 방향으로 일직선으로 배열되어 형성될 수 있고, 일직선으로 배열된 “점 초점”소형 카세그레인 집광렌즈(미도시)들의 사이에는 간격이 형성될 수 있으며, 선형 시준기 또한 “점 초점”카세그레인 집광렌즈에 일대일 대응되도록 “점 초점”시준기의 선형배열로 형성될 수 있다.On the other hand, although the casee condensing lens is not shown, the “point focus” small casee grain condensing lens (not shown) may be formed by being arranged in a straight line in the longitudinal direction, and the “point focus” small casee grain condensing lens (not shown) is arranged in a straight line. A gap may be formed between them, and a linear collimator may also be formed as a linear array of “point focus” collimators so as to have a one-to-one correspondence with a “point focus” casee grain condenser.
이와 같은, 카세그레인 집광렌즈 및 “점 초점”소형 카세그레인 집광렌즈(미도시)는 망원경이나 전파송수신기 분야에서 이미 당업자에게 이미 공지된 것이고, 본 발명 제 1 실시예의 볼록 집광 렌즈(210a) 대신 카세그레인 집광렌즈 또는 “점 초점”소형 카세그레인 집광렌즈(미도시)의 선형 배열을 사용하는 것을 제외하고는 태양광 집광기(1a)와 작동 관계는 동일하므로 자세한 설명은 생략하기로 한다.As such, the casein condensing lens and the "point focus" compact caseingrain condensing lens (not shown) are already known to those skilled in the art in the field of telescopes or radio transmitters, and the casein condensing lens 210a instead of the convex condensing lens 210a of the first embodiment of the present invention. Or the operation relationship is the same as the solar light collector (1a) except for using a linear arrangement of the "point focus" small casee grain condenser lens (not shown), so a detailed description thereof will be omitted.
(제 5 실시예) (Example 5)
도 8 은 선형 시준기(콜리메이터)가 선형 그레고리안 집광렌즈(이하 “그레고리안 집광렌즈”라 한다.)에 일체로 형성된 시준집광모듈을 사용하는 집광부와 상ㆍ하단 프리즘 시트로 이루어지는 본 발명 제5 실시예에 따른 태양광 집광기의 구조를 나타내는 단면도이다.FIG. 8 is a fifth aspect of the present invention, in which a linear collimator (collimator) comprises a light collecting part and an upper and lower prism sheet using a collimating condenser module integrally formed in a linear Gregorian condenser lens (hereinafter referred to as "Gregorian condenser lens"). It is sectional drawing which shows the structure of the solar collector according to an embodiment.
도 8 에 도시한 바와 같이 본 발명 제 5 실시예에 따른 태양광 집광기(1e)는 시준집광모듈(21e)이 일직선상에 다수 배열된 집광부(20e)와, 시준집광모듈(21e)에 의해 1차 집속된 태양광을 전달받아 집광하는 투명한 소재로 제작된 상ㆍ하단 프리즘 시트(30a)(30b)로 구성되고, 시준집광모듈(21e)은 선형 시준기(콜리메이터)로써 시준 볼록렌즈(211‘)가 일체로 형성된 그레고리안 집광렌즈로 이루어진다.As shown in FIG. 8, the solar light collector 1e according to the fifth exemplary embodiment of the present invention is provided by a light collecting part 20e in which a plurality of collimating light collecting modules 21e are arranged in a straight line, and a collimating light collecting module 21e. It consists of upper and lower prism sheets 30a and 30b made of a transparent material for condensing and receiving primary focused sunlight, and the collimating condenser module 21e is a collimator collimator with collimating lens 211 '. ) Consists of a Gregorian condensing lens integrally formed.
상기 그레고리안 집광렌즈는 선형 그레고리안 주 반사거울(210e2)과 선형 그레고리안 부 반사거울(210e1)로 이루어지고 시준 볼록렌즈(211‘)를 제외한 선형 그레고리안 주 반사거울(210d2)의 외주면에는 반사층이 형성된다. 선형 그레고리안 주 반사거울(210e2)에 평행하게 입사된 태양광이 선형 그레고리안 주 반사거울(210e2) 초점 후단에 구비된 선형 그레고리안 부 반사거울(210e1)로 집속하여 반사시키고, 선형 그레고리안 부 반사거울(210e1)은 선형 그레고리안 주 반사거울(210e2)의 중앙하단에 형성된 시준 볼록렌즈(211‘)로 다시 반사시키며 시준 볼록렌즈(211‘)가 평행광 형태로 하단 프리즘 시트(30b)쪽으로 출사시킨다. 이후 태양광의 진행과 집속은 앞서 설명한 제4 실시예와 같다.The Gregorian condensing lens is composed of a linear Gregorian main reflective mirror 210e2 and a linear Gregorian sub-reflective mirror 210e1 and a reflective layer on the outer circumferential surface of the linear Gregorian main reflective mirror 210d2 except for the collimating convex lens 211 '. Is formed. Sunlight incident in parallel to the linear Gregorian primary reflection mirror 210e2 is focused and reflected by the linear Gregorian secondary reflection mirror 210e1 provided at the rear end of the focal point of the linear Gregorian primary reflection mirror 210e2. The reflecting mirror 210e1 reflects back to the collimating convex lens 211 'formed at the center bottom of the linear Gregorian main reflecting mirror 210e2, and the collimating convex lens 211' is parallel to the lower prism sheet 30b. Let go. Since the progress and focus of the solar light is the same as the fourth embodiment described above.
한편, 그레고리안 집광렌즈는 도시하지는 않았지만 “점 초점”소형 그레고리안 집광렌즈(미도시)이 길이 방향으로 일직선으로 배열되어 형성될 수 있고, 일직선으로 배열된 “점 초점”소형 그레고리안 집광렌즈(미도시)들의 사이에는 간격이 형성될 수 있으며, 선형 시준기 또한 “점 초점”그레고리안 집광렌즈에 일대일 대응되도록 “점 초점”시준기의 선형배열로 형성될 수 있다.On the other hand, the Gregorian condenser lens is not shown, but the "point focus" small Gregorian condenser lens (not shown) may be formed in a straight line in the longitudinal direction, and the "point focus" compact Gregorian condenser lens (not shown) Not shown) may be formed between the linear collimator and the linear collimator may be formed as a linear array of the "point focus" collimator so as to correspond one-to-one with the "point focus" Gregorian condenser lens.
이와 같은, 그레고리안 집광렌즈 및 소형“점 초점”그레고리안 집광렌즈(미도시)는 망원경이나 전파송수신기 분야에서 이미 당업자에게 이미 공지된 것이고, 본 발명 제 1 실시예의 볼록 집광 렌즈(210a) 대신 그레고리안 집광렌즈 또는 소형“점 초점”그레고리안 집광렌즈(미도시)의 선형 배열을 사용하는 것을 제외하고는 태양광 집광기(1a)와 작동 관계는 동일하므로 이 또한 자세한 설명은 생략하기로 한다.Such Gregorian condensing lenses and small "point focus" Gregorian condensing lenses (not shown) are already known to those skilled in the art in the field of telescopes or radio transmitters, and the Gregory instead of the convex condensing lens 210a of the first embodiment of the present invention. Since the operational relationship is the same as that of the solar condenser 1a except for using a linear array of an eye condenser lens or a small “point focus” Gregorian condenser lens (not shown), this detailed description will be omitted.
(제 6 실시예)(Example 6)
이제, 도 9를 참조하여 본 발명의 제 6 실시예에 따른 태양광 집광장치를 설명한다.Now, a solar light collecting device according to a sixth embodiment of the present invention will be described with reference to FIG. 9.
도 9의 실시예는 도 2에 대응되는 실시예로서, 집광렌즈(21a) 및 시준장치는 동일하나, 시준 집광된 광의 가이드장치로서 프리즘 대신 반사거울을 사용한다.9 is an embodiment corresponding to FIG. 2, wherein the light collecting lens 21a and the collimating device are the same, but a reflecting mirror is used instead of a prism as a guide device for collimating focused light.
아울러, 본 실시예에서만 반사거울을 사용하는 것으로 설명하였으나, 제2 내지 제5 실시예에서도 가이드장치로서 프리즘 대신 반사거울(41x, 41y)을 사용하는 것은 전혀 본 발명의 범위를 벗어나지도 본 발명의 내용을 불명확하게 하는 것도 아니다.In addition, the present invention has been described as using the reflection mirror only, but in the second to fifth embodiments, the use of the reflection mirrors 41x and 41y instead of the prism as the guide device may be beyond the scope of the present invention. It doesn't make the content obscure.
아울러, 본 실시예에서는 두 개의 집광렌즈가 한 쌍을 이루어 각 집광렌즈에서 집속된 평행광이 하나로 모아져서 솔라셀 등의 태양광 장치로 입사되는 것으로 설명하였으나, 도 2의 제1 실시예에서처럼 추가적인 반사거울을 사용하여 4개의 집광렌즈가 한 쌍을 이루도록 하는 것을 금지하는 것은 아니다.In addition, in the present exemplary embodiment, two condensing lenses are paired, and parallel light focused at each condensing lens is collected as one and incident to a solar device such as a solar cell. However, as in the first embodiment of FIG. Reflective mirrors are not used to prohibit pairing of four condensing lenses.
(제 7 실시예)(Example 7)
다음으로, 도 10을 참조하여 본 발명의 제 7 실시예의 태양광 집광장치를 설명한다.Next, the solar light collecting apparatus of the seventh embodiment of the present invention will be described with reference to FIG.
본 실시예는 제 1 내지 제 6 실시예와는 달리, 광 가이드장치가 좌우 어느 일측 방향으로만 집광하도록 가이드하고 있음을 알 수 있다.Unlike the first to sixth embodiments, the present embodiment guides the light guide device to focus only one side of the light.
즉, 다수개의 집광렌즈(21)에 의해 집속된 태양광이 시준기(211)에 의해 평행광으로 정렬되고, 이는 집광부(20a)의 아래쪽에 위치하는 가이드장치로서의 측면집광부재(30')에 의해 도면에서 우측으로 재 집광되어진다.That is, the sunlight focused by the plurality of condenser lenses 21 is aligned in parallel light by the collimator 211, which is directed to the side condensing member 30 ′ as a guide device positioned below the condenser 20a. This causes the light to be condensed to the right in the drawing.
상기 측면집광부재(30')는 각각의 단위 집광모듈(21)로부터 입사되는 복수의 집속된 태양광을 재차 측면으로 모아서 집광하는 반사부(31)가 계단식으로 형성되어 있는바, 즉, 상기 시준기(211)에서 출시되는 집속된 평행광이 측면집광부재(30')의 반사부(31)에 의해 우측으로 가이드되며, 이들 가이드되는 평행광은 상기 측면집광부재(30')의 우측단에서 모아져서 솔라셀과 같은 태양광 장치로 입사되어 진다.The side light collecting member 30 ′ has a plurality of focused solar light incident from each of the unit light collecting modules 21 to the side, and a reflector 31 for condensing the light is formed in a stepwise manner, that is, the collimator. The focused parallel light released at 211 is guided to the right by the reflecting portion 31 of the side light collecting member 30 ', and the guided parallel light is collected at the right end of the side light collecting member 30'. It is then incident on a photovoltaic device such as a solar cell.
한편, 도 11은 태양광을 1차로 집속하는 집광수단으로 볼록렌즈 대신 오목거울(20b)로 대신한 도 7 실시예의 변형예이다. 당연히 측면집광부재(30')는 집광부의 위쪽에 위치하여야 하며, 역시 태양광(11)이 오목거울의 거울반사층(21b)에 의해 반사되고, 볼록렌즈와 같은 시준기(211)에 의해 시준된 평행광이 반사면(211)에 의해 반사되어 우측의 태양광 장치(미 도시됨)로 집광되어 진다.On the other hand, Figure 11 is a modification of the embodiment of Figure 7 replaced with a concave mirror (20b) instead of a convex lens as a condensing means for focusing sunlight primarily. Naturally, the side light collecting member 30 'should be located above the light collecting portion, and also the sunlight 11 is reflected by the mirror reflection layer 21b of the concave mirror, and collimated by a collimator 211 such as a convex lens. Parallel light is reflected by the reflecting surface 211 and collected by the solar device (not shown) on the right side.
도 12에는 상기 제 7 실시예의 또다른 변형예가 도시되어 있는바, 본 실시예에서의 측면집광부재(30“)는 불투명소재로 제작되는바, 이 경우에는 태양광이 불투명 소재 내부를 통과하지 못하므로 계단식으로 형성된 반사부(31)가 집광부(20a)의 하면의 선형 배면 광 안내부(22)와 대응되도록 뒤집어서 대면하게 할 수 있다.12 shows another modified example of the seventh embodiment, the side light collecting member 30 'in the present embodiment is made of an opaque material, in which case sunlight does not pass through the opaque material. Therefore, the reflective part 31 formed in a stepped manner may be turned upside down to face the linear back light guide part 22 on the bottom surface of the light converging part 20a.
(시준기의 변형예)(Modification of collimator)
이제, 볼록렌즈 외의 여러가지 시준기의 변형예를 도 13 내지 도 16을 참조하여 설명한다.Now, modifications of various collimators other than the convex lens will be described with reference to FIGS. 13 to 16.
먼저, 도 2 (b)의 볼록렌즈면(211') 대신, 도 13에는 오목렌즈면(211")을 사용한 시준방식이 도시되어 있는바, 오목렌즈면을 사용한 시준방식은 오목렌즈면이 촛점거리 이내에 적당한 거리에 들어있어야 함은 본 기술의 당업자에게 쉽게 이해될 것이다. First, instead of the convex lens surface 211 ′ of FIG. 2B, a collimation method using a concave lens surface 211 ″ is shown in FIG. 13. In the collimation method using a concave lens surface, the concave lens surface is focused. It should be readily understood by one skilled in the art that the distance to be within a reasonable distance should be within the skill of the art.
계속해서 도 14에는 시준기로서 프레넬 렌즈를 이용한 방식이 도시되어 있는바, 프레넬 렌즈가 볼록렌즈를 대신하는 구성은 도 6의 제3 실시예에서도 설명되어 있는바, 따라서 이에 대한 추가적인 설명은 생략한다. Subsequently, a method using a Fresnel lens as a collimator is shown in FIG. 14. The configuration in which the Fresnel lens replaces the convex lens is also described in the third embodiment of FIG. 6, and thus further description thereof is omitted. do.
역시 도 15에는 또다른 시준기가 예시되어 있는바, 1차 집광렌즈 아래쪽에 시준 요홈(30b0)이 형성되고, 그 내부 하단에 선형 시준기(콜리메이터)로써 반구형으로 형성된 선형 볼록렌즈(30b1)가 형성되어 이루어지는바, 통상적으로 볼록렌즈를 통과하여 초점선을 통과한 광은 다른 볼록렌즈에 의해 평행광을 형성하는 것은 주지의 사실이다.Also shown in FIG. 15 is another collimator, a collimation groove 30b0 is formed under the primary condenser lens, and a linear convex lens 30b1 formed in a hemispherical shape with a linear collimator (collimator) is formed at an inner bottom thereof. In general, it is well known that light passing through a convex lens and passing through a focal line forms parallel light by another convex lens.
이러한 선형 시준기(콜리메이터)로는 상기 반구형으로 형성된 선형 볼록렌즈(30b1)외에도 선형 비구면 볼록렌즈, 선형 그린렌즈; 선형 프레넬 렌즈, 다수의 그린렌즈 선형배열, 다수의 점초점 볼록렌즈의 선형배열, 다수의 점초점 비구면 볼록렌즈의 선형배열, 다수의 점초점 프레넬렌즈의 선형배열, 광 가이드 중 어느 하나가 선택되어 사용될 수 있으며, 상기 광 가이드로는 막대렌즈, 광섬유의 1차원 배열, 일렬로 광섬유가 삽입된 1차원 선형 허니콤, 광섬유 또는 광섬유 삽입된 선형 허니콤을 압착한 화이버 옵틱 테이퍼, 다수의 볼렌즈 선형배열로 제작될 수 있다.Such a linear collimator (collimator) includes a linear aspherical convex lens and a linear green lens in addition to the linear convex lens 30b1 formed in the hemispherical shape; Any of linear linear fresnel lens, multiple green lens linear array, multiple focused focal convex lens linear array, multiple focused focal aspherical convex lens linear array, multiple focused focal Fresnel lens linear array, optical guide The optical guide may include a rod lens, a one-dimensional array of optical fibers, a one-dimensional linear honeycomb inserted with optical fibers in a line, a fiber optical taper compressing an optical fiber or a linear honeycomb inserted with optical fibers, and a plurality of balls. It can be produced in a lens linear array.
더욱이, 선형 로드렌즈(30b2)를 선형 볼록렌즈(30b1) 상단에 더 포함하면 초점거리를 더욱 줄일 수 있고, 이러한 선형 로드렌즈(30b2)는 막대렌즈(미도시), 광섬유의 1차원 배열(미도시), 일렬로 광섬유가 삽입된 1차원 선형 허니콤(미도시), 광섬유 또는 광섬유 삽입된 선형 허니콤을 압착한 화이버 옵틱 테이퍼(미도시), 다수의 볼렌즈 선형배열(미도시) 중 어느 하나로 제작될 수 있으며, 이는 통상적으로 광통신 및 미소광학(Micro-optics)에서 공지된 시준기(콜리메이터)에 관한 것으로 자세한 설명은 생략하기로 한다.Furthermore, if the linear rod lens 30b2 is further included on the top of the linear convex lens 30b1, the focal length can be further reduced, and the linear rod lens 30b2 includes a rod lens (not shown) and a one-dimensional array of optical fibers (not shown). 1) linear honeycomb (not shown) with optical fibers inserted in a line, fiber optical taper (not shown) with optical fiber or linear honeycomb inserted with optical fibers, and a plurality of ball lens linear arrays (not shown). It may be manufactured as one, and this is generally related to a collimator (collimator) known in optical communication and micro-optics, and a detailed description thereof will be omitted.
마지막으로 도 16의 또다른 변형예를 추가적으로 설명하면, 전술한 볼록 집광 렌즈(21a), 집광 오목 거울(21b), 프레넬 렌즈(21c), 카세그레인/그레고리안 집광모듈(21d)(21e)과 일대일 대응되는 제 2 집광 어셈블리(24)를 더 포함할 수 있다.Finally, another modified example of FIG. 16 is further described with the convex condenser lens 21a, the concave concave mirror 21b, the Fresnel lens 21c, and the casein / gregregian condensing module 21d and 21e. The second light collecting assembly 24 may further include a one-to-one correspondence.
이때, 도 16의 (a)에 도시한 바와 같이 상기 제 2 집광 어셈블리(24)는 선형 제 2 집광렌즈(241), 선형 제 2 집광렌즈(241)로부터 광을 전달받아 평행광을 출사시키는 선형 시준기(242) 및 이들을 지지하는 하우징(240)으로 구성되며, 본 제 9 실시예의 선형 시준기(242)는 선형 볼록렌즈(242a)이다. 통상적으로 볼록렌즈를 통과하여 초점선을 통과한 광은 다른 볼록렌즈에 의해 평행광을 형성하는 것은 주지의 사실이다.In this case, as illustrated in FIG. 16A, the second light collecting assembly 24 receives linear light from the linear second light collecting lens 241 and the linear second light collecting lens 241 to emit parallel light. It consists of a collimator 242 and a housing 240 supporting them, and the linear collimator 242 of the ninth embodiment is a linear convex lens 242a. It is generally known that light passing through a convex lens and passing through a focal line forms parallel light by another convex lens.
또한, 도 16의 (b)에 도시한 바와 같이, 선형 볼록렌즈(242a)의 상단에 선형 로드렌즈(242b)를 더 포함하여 선형 시준기(242)를 구성하면 초점거리를 더욱 줄일 수 있고, 이러한 선형 로드렌즈(242b)는 실리카 계열의 기다란 광섬유(미도시), 원통형 로드렌즈(미도시) 중에서 어느 하나를 선택하여 사용할 수 있다.In addition, as illustrated in FIG. 16B, when the linear collimator 242 is configured by further including a linear rod lens 242b at the top of the linear convex lens 242a, the focal length may be further reduced. The linear rod lens 242b may select any one of silica-based elongated optical fibers (not shown) and cylindrical rod lenses (not shown).
또한, 도 16의 (c)에 도시한 바와 같이 선형 볼록렌즈(242a) 대신에 선형 비구면 볼록렌즈(미도시), 선형 프레넬렌즈(미도시), 선형 그린렌즈(미도시), 다수의 그린렌즈 선형배열(미도시), 다수의 점초점 볼록렌즈의 선형배열(미도시), 다수의 점초점 비구면 볼록렌즈의 선형배열(미도시), 다수의 점초점 프레넬렌즈의 선형배열(미도시), 선형 광가이드(242c) 중에서 어느 하나를 사용할 수 있다.In addition, as shown in FIG. 16C, instead of the linear convex lens 242a, a linear aspherical convex lens (not shown), a linear Fresnel lens (not shown), a linear green lens (not shown), and a plurality of greens. Lens linear array (not shown), linear array of multiple focusing convex lenses (not shown), linear array of multiple focusing aspherical convex lenses (not shown), linear array of multiple focusing fresnel lenses (not shown) ), Any one of the linear light guide 242c can be used.
상기 선형 광가이드(242c)는 막대렌즈(미도시), 광섬유의 1차원 배열(미도시), 일렬로 광섬유가 삽입된 1차원 선형 허니콤(미도시), 광섬유 또는 광섬유 삽입된 선형 허니콤을 압착한 화이버 옵틱 테이퍼(미도시), 다수의 볼렌즈 선형배열(미도시) 중 어느 하나로 제작될 수 있으며, 이는 통상적으로 광통신 및 미소광학(Micro-optics)에서 공지된 시준기(콜리메이터)에 관한 것으로 자세한 설명은 생략하기로 한다.The linear light guide 242c includes a rod lens (not shown), a one-dimensional array of optical fibers (not shown), a one-dimensional linear honeycomb (not shown) with optical fibers inserted in a line, an optical fiber or a linear honeycomb with an optical fiber inserted therein. Compressed fiber optical taper (not shown), a plurality of ball lens linear array (not shown) can be made of any, which is generally related to collimators (collimators) known in optical communication and micro-optics Detailed description will be omitted.
(집광렌즈의 변형예)(Modification example of condenser lens)
마지막으로 집광렌즈(21)는, 도 1에서 보는 바와 같은 일측에 포물경면을 갖는 기다란 막대모양의 볼록렌즈를 사용하는 것이 가장 일반적이나, 도 17에서 보는 바와 같이, 반구형 볼록렌즈를 일렬로 배열하여 사용하는 것도 가능하다.Finally, the condenser lens 21 is most commonly used with a long rod-shaped convex lens having a parabolic mirror surface on one side as shown in FIG. 1, but as shown in FIG. 17, the hemispherical convex lenses are arranged in a row. It is also possible to use.
이러한 경우 단위 집광부재에 대응하는 단위 선형 시준기 쪽으로 출사되는 집속광(11b)은 점 형태이므로 그 해당 위치에 점 크기의 광 입출부(31')를 형성하는 것만으로도 측면으로 광을 집광하는 것이 가능하고, 이때 도 17에 도시한 바와 같이, 측면으로 집광된 광은 이어진 선형 직선 형태의 광이 아니라 일정거리가 이격된 점 형태의 집속광(11b)이 선형배열로 된 상태로 측면에 집광되게 된다. In this case, since the focused light 11b emitted toward the unit linear collimator corresponding to the unit light collecting member has a dot shape, condensing the light to the side surface simply by forming a light exiting portion 31 'having a spot size at the corresponding position. In this case, as shown in FIG. 17, the light condensed to the side is not condensed linear linear light, but the condensed light 11b having a predetermined distance apart is condensed to the side in a linear arrangement. do.
이에 따라, 도 17에서와 같이 측면의 해당 위치에 또 하나의 제 2 프리즘 광 가이드(1‘)를 배치하고 측면에 모인 점 형태의 집속광(11b) 각각의 소정 위치에 광 입출부(31’)를 형성하고 제 1 프리즘 광 가이드(1)의 끝단에서 제 2 프리즘 광 가이드(1‘)의 광 입출부(31’)로 입사되도록 수직으로 꺾어 주면 제 2 프리즘 광 가이드(1‘)의 전단에 단위 선형 집광부재 및 단위 선형 시준기 없이도 다시 최종적으로 점 형태(11c)로 집광되는 것이고, 이러한 구조에서는 광의 집광이 고도로 수행되게 되는 것이며 제작원가를 획기적으로 줄일 수 있으며 당업자라면 쉽게 이해할 수 있을 것이다.Accordingly, as shown in FIG. 17, another second prism light guide 1 ′ is disposed at a corresponding position on the side surface, and the light entering and exiting portion 31 ′ is disposed at a predetermined position of each of the point-shaped focused light 11 b collected at the side surface. ) And bend vertically so as to be incident from the end of the first prism light guide 1 to the light entering part 31 'of the second prism light guide 1', the front end of the second prism light guide 1 '. Without the unit linear light collecting member and the unit linear collimator, the light is finally collected in the point form 11c. In this structure, light condensing is highly performed and manufacturing cost can be drastically reduced and will be easily understood by those skilled in the art.
이에 따라, 이러한 구조를 광의 일 종류인 태양광 집광에 사용할 경우 전면으로 입사하는 태양광을 집속하는 하나의 단위 볼록렌즈(혹은 프레넬 렌즈)에 일대일 대응되도록 태양전지를 설치할 필요 없이, 점 형태의 고도로 집속한 태양광(11c) 위치에 고효율 태양전지를 하나 설치하면 그 발전효율을 매우 높일 수 있음은 물론 태양전지의 숫자 및 소요면적을 획기적으로 줄일 수 있고, 고효율 태양전지는 물론 자연채광 모듈에도 동시에 활용 가능하고, 그 끝단에 전동식 회전 미러를 더 포함할 경우에는 자연채광과 고효율 태양전지를 선택적으로 이용할 수 있어 매우 편리하고 적용성이 높으며, 거꾸로 LED등 자연광을 2차원 전면에 확산시키는 데에도 동시에 활용이 가능한 혁신적인 구조이며 이 또한 당업자라면 쉽게 이해할 수 있을 것이다.Accordingly, when such a structure is used for solar condensation, which is a kind of light, it is not necessary to install a solar cell so as to correspond to one unit convex lens (or Fresnel lens) that focuses the sunlight incident to the front, without having to install a solar cell. Installing a high-efficiency solar cell at a highly concentrated photovoltaic (11c) location can greatly increase its power generation efficiency, and dramatically reduce the number and required area of solar cells. It can be used at the same time, and if it includes an electric rotating mirror at the end, it can use natural light and high efficiency solar cell selectively, and it is very convenient and applicable. It is an innovative structure that can be used at the same time, which will be easily understood by those skilled in the art.
특히, 본 도 17의 실시예에서는 집광렌즈를 태양광 채광 렌즈로 하게 되면, 태양의 방위각이나 고도에 관계없이 태양광이 집광되어지므로, 본 발명에 관한 태양광 집광장치를 태양의 방위각과 고도에 맞추어 주는 별도의 추미장치를 사용하지 않더라도 효율적인 채광이 가능하다는 추가적인 장점이 있다.Particularly, in the embodiment of FIG. 17, when the condenser lens is a solar light lens, sunlight is condensed regardless of the azimuth or altitude of the sun. There is an additional advantage that efficient mining is possible without using a separate chase.
이처럼, 앞에서 설명된 본 발명의 일 실시예는 본 발명의 기술적 사상을 한정하는 것으로 해석되어서는 안 된다. 본 발명의 보호범위는 청구범위에 기재된 사항에 의하여만 제한되고, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자는 본 발명의 기술적 사상을 다양한 형태로 개량 변경하는 것이 가능하다. 따라서 이러한 개량 및 변경은 통상의 지식을 가진 자에게 자명한 것인 한 본 발명의 보호범위에 속하게 될 것이다.As such, one embodiment of the present invention described above should not be construed as limiting the technical spirit of the present invention. The scope of protection of the present invention is limited only by the matters described in the claims, and those skilled in the art can change and change the technical idea of the present invention in various forms. Therefore, such improvements and modifications will fall within the protection scope of the present invention, as will be apparent to those skilled in the art.
본 발명에 따르면, 넓은 면적으로 입사되는 태양광을 효과적으로 집광하여 태양에너지 이용효율을 극대화할 수 있고, 구조가 간단하여 제작과 설치가 용이하며, 평판 형이어서 얇고 부피가 크지 않고, 제조비용도 더욱 저렴한 효과를 얻을 수 있다.According to the present invention, it is possible to maximize the solar energy utilization efficiency by effectively condensing the sunlight incident on a large area, and is simple in structure and easy to manufacture and install, and is flat and thin, not bulky, and the manufacturing cost is further increased. Inexpensive effect can be obtained.

Claims (20)

  1. 입사되는 태양광을 집광하도록 구성되는 태양광 집광기에 있어서;A solar collector configured to focus incident sunlight;
    입사되는 태양광을 1차로 집속하는 2개 이상의 집광부;Two or more light concentrators that focus incident sunlight;
    상기 2개 이상의 집광부의 각각의 집광부에서 집광된 집속광을 각각 평행광으로 출사하는 2개 이상의 시준기; 및Two or more collimators which emit focused light condensed at each condenser of the two or more condensers as parallel light; And
    상기 2개 이상의 시준기에서 출사된 집속된 평행광을 가이드하는 가이드부;A guide unit for guiding focused parallel light emitted from the two or more collimators;
    를 포함하며, Including;
    상기 가이드부는 상기 2개 이상의 시준기에서 출사된 집속된 평행광을 가이드하는 가이드부의 단부가 만나서, 2개 이상의 집광부로부터의 1차 집속된 평행광을 2차로 집광하는 것을 특징으로 하는 태양광 집광기.And the guide part meets an end portion of the guide part for guiding the focused parallel light emitted from the two or more collimators, and condenses the primary focused parallel light from the two or more light collecting parts in a secondary manner.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 가이드부는, 상기 시준기로부터 전달받은 1차 집속된 평행광을 좌우로 수평하게 가이드하여 수직방향으로 출사하는 전반사 프리즘으로 이루어지는 것을 특징으로 하는 태양광 집광기.The guide unit is a solar light collector, characterized in that consisting of a total reflection prism for guiding the primary focused parallel light transmitted from the collimator horizontally to the left and right to emit in the vertical direction.
  3. 제 2 항에 있어서,The method of claim 2,
    상기 가이드부는, 상기 수평 가이드부로부터 전달받은 태양광을 상하로 수직하게 전달하는 수직 가이드부를 더 포함하여, 4개 이상의 집광부로부터의 1차 집속된 평행광을 2차로 집광하는 것을 특징으로 하는 태양광 집광기.The guide unit may further include a vertical guide unit configured to vertically transmit vertically the sunlight transmitted from the horizontal guide unit, to collect the primary focused parallel light from four or more condensing units in a secondary manner. Light condenser.
  4. 제 1 항에 있어서,The method of claim 1,
    각각 대응되는 상기 집광부와 상기 시준기가 일체로 형성된 투명한 중실체 시준 집광모듈을 이루는 것을 특징으로 하는 태양광 집광기.And a corresponding solid concentrator collimating condensing module in which the condenser and the collimator are integrally formed, respectively.
  5. 제 3 항에 있어서,The method of claim 3, wherein
    상기 집광부에는 상기 수직가이드부에서 전달되는 태양광을 집속하여 상단 프리즘 시트의 수평가이드부로 전달되는 태양광의 폭을 줄이고 평행한 태양광을 출사하는 차일드 시준집광모듈이 더 형성되는 것을 특징으로 하는 태양광 집광기.The light collecting unit further comprises a child collimation condensing module for condensing sunlight transmitted from the vertical guide portion to reduce the width of the sunlight transmitted to the horizontal guide portion of the upper prism sheet and emitting parallel sunlight. Light condenser.
  6. 제 1 항에 있어서,The method of claim 1,
    상기 집광부는 오목거울로 형성되며, 상기 시준기가 상기 오목거울의 촛점 근처에 위치하여 1차 집속된 광을 평행광으로 출사하는 것을 특징으로 하는 태양광 집광기.The condenser is formed of a concave mirror, and the collimator is located near the focal point of the concave mirror, the solar concentrator, characterized in that to output the first focused light as parallel light.
  7. 제 1 항에 있어서,The method of claim 1,
    상기 가이드부는 2개 이상의 반사거울로 형성되는 것을 특징으로 하는 태양광 집광기.The guide part is a solar light collector, characterized in that formed by two or more reflective mirrors.
  8. 제 1 항에 있어서,The method of claim 1,
    상기 가이드부의 반사부는 직각이등변 삼각형 또는 역 브이자 형상의 요홈으로 형성되는 것을 특징으로 태양광 집광기.The reflector of the guide unit is a solar light collector, characterized in that formed in the groove of a right isosceles triangle or inverted V-shape.
  9. 제 1 항에 있어서,The method of claim 1,
    상기 가이드부는, 상기 시준기로부터 전달받은 1차 집속된 평행광을 좌우로 수평하게 반사하는 2 이상의 반사부를 단차를 두어 구비하는 측면집광부재로 이루어지는 것을 특징으로 하는 태양광 집광기.The guide part is a solar light collector, characterized in that consisting of a side light collecting member having a step of two or more reflecting portions for horizontally reflecting the horizontally focused first and second parallel light received from the collimator.
  10. 제 1 항에 있어서,The method of claim 1,
    상기 시준기는, 상부로 볼록한 형태를 갖는 볼록 집광 렌즈 또는 점초점 볼록 집광 렌즈의 선형배열, 하부로 오목하고 배면에는 거울 반사층이 형성되되 경계에는 거울 반사층이 없는 오목 거울 집광렌즈 또는 점초점 오목 거울 집광렌즈의 선형배열, 프레넬 집광렌즈 또는 점초점 프레넬 집광렌즈의 선형배열, 중앙하면을 제외한 양면에 반사층이 형성된 카세그레인 주 반사거울과 카세그레인 부 반사거울을 통해 2차 반사를 통한 태양광 집속이 가능한 카세그레인 집광렌즈 또는 점초점 카세그레인 집광렌즈의 선형배열, 중앙하면을 제외한 양면에 반사층이 형성된 그레고리안 주 반사거울과 그레고리안 부 반사거울을 통한 태양광 집속이 가능한 그레고리안 집광렌즈 또는 점초점 그레고리안 집광렌즈의 선형배열로 이루어지는 군으로부터 선택된 어느 하나인 것을 특징으로 하는 태양광 집광기.The collimator is a linear array of a convex condenser lens or a focal convex condenser lens having a convex shape on the upper side, concave to the bottom and a mirror reflective layer is formed on the back side, but no concave mirror condenser lens or a focus concave mirror condenser on the back Linear array of lens, Fresnel condenser lens or focal focus Fresnel condenser lens, and the case of primary case mirror and casee side mirror with reflection layer formed on both sides except the center surface. Linear array of casein condensing lens or focal focus lens, or Gregorian condensing lens or focusing Gregorian condensing which can focus the sun through Gregorian main mirror and Gregorian sub-reflecting mirror with reflective layers on both sides except center Words selected from the group consisting of linear arrays of lenses Solar light collector, characterized in that one.
  11. 제 1 항에 있어서,The method of claim 1,
    상기 시준기는, 선형 볼록렌즈; 선형 비구면 볼록렌즈; 선형 그린렌즈; 선형 프레넬렌즈; 다수의 그린렌즈 선형배열; 다수의 점초점 볼록렌즈의 선형배열; 다수의 점초점 비구면 볼록렌즈의 선형배열; 다수의 점초점 프레넬렌즈의 선형배열로 이루어지는 군으로부터 선택된 어느 하나인 것을 특징으로 하는 태양광 집광기.The collimator may include a linear convex lens; Linear aspherical convex lens; Linear green lens; Linear Fresnel lens; Multiple green lens linear arrays; Linear arrays of multiple focal convex lenses; Linear arrays of multiple focal aspherical convex lenses; A solar light collector, characterized in that any one selected from the group consisting of a linear array of a plurality of focus-focus Fresnel lens.
  12. 제 1 항에 있어서,The method of claim 1,
    상기 가이드부재로서의 프리즘 또는 집광부는 공기보다 큰 광 굴절률을 갖는 투명소재로써 자외선 차단층이 형성된 플라스틱, 자외선 차단 모노머로 제작된 플라스틱, 강화유리, 파이렉스, 석영유리로 이루어지는 군으로부터 선택된 어느 하나인 것을 특징으로 하는 태양광 집광기.The prism or the light collecting portion as the guide member is any one selected from the group consisting of a plastic material having an ultraviolet blocking layer, a plastic made of an ultraviolet blocking monomer, tempered glass, pyrex, and quartz glass as a transparent material having a greater refractive index than air. Solar collector.
  13. 제 3 항에 있어서,The method of claim 3, wherein
    상기 수직 가이드부는 상기 시준기의 경계면에 대응하게 형성되어 입사된 광을 하방으로 전반사하거나 또는 최초 태양광 입사부위에 대응되게 형성되어 집속된 태양광이 최초 태양광과 함께 시준기에 의해 다시 집속되는 것을 특징으로 하는 태양광 집광기.The vertical guide portion is formed to correspond to the interface of the collimator to totally reflect the incident light downward, or formed to correspond to the initial photovoltaic incidence site, the focused solar light is focused again by the collimator together with the original sunlight. Solar collector.
  14. 제 1 항에 있어서,The method of claim 1,
    상기 수평가이드부 및 수직가이드부의 반사면에는 전반사율을 높이도록 반사층이 형성되되, 상기 반사층은 알루미늄, 은, 금, 니켈, 스테인레스 스틸 중에서 선택된 어느 하나로 코팅 형성된 것을 특징으로 하는 태양광 집광기Reflecting layer is formed on the reflecting surface of the horizontal guide portion and the vertical guide portion to increase the total reflectance, the reflecting layer is a solar light collector characterized in that the coating is formed of any one selected from aluminum, silver, gold, nickel, stainless steel
  15. 제 1 항에 있어서,The method of claim 1,
    상기 시준기는, 상기 집광부 아래쪽에 시준 요홈(30b0)이 형성되고, 그 내부 하단에 선형 시준기로써 반구형으로 형성된 선형 볼록렌즈(30b1)가 형성되어 이루어지는 것을 특징으로 하는 태양광 집광기.The collimator is a solar light collector, characterized in that the collimation groove (30b0) is formed in the lower portion of the light collecting portion, and the linear convex lens (30b1) formed in a hemispherical shape as a linear collimator at the lower end thereof.
  16. 제 15 항에 있어서,The method of claim 15,
    선형 볼록렌즈(30b1) 상단에 선형 로드렌즈(30b2)를 더 포함하는 것을 특징으로 하는 태양광 집광기.Solar condenser further comprises a linear rod lens (30b2) on the top of the linear convex lens (30b1).
  17. 제 1 항에 있어서,The method of claim 1,
    2차 집광된 광을 추가로 집광 및 시준하는 제 2 집광 어셈블리를 더 포함하는 것을 특징으로 하는 태양광 집광기.And a second condensing assembly for further condensing and collimating secondary condensed light.
  18. 제 1 항에 있어서,The method of claim 1,
    상기 집광부는, 반구형 볼록렌즈를 일렬로 배열하여 이루어지는 것을 특징으로 하는 태양광 집광기.And said light collecting portion is arranged by arranging hemispherical convex lenses in a row.
  19. 제 18 항에 있어서,The method of claim 18,
    상기 반구형 볼록렌즈의 상부에는 태양광 채광렌즈로 이루어져서, 태양의 방위각이나 고도가 달라지더라도 추미장치 없이 집광이 가능한 것을 특징으로 하는 태양광 집광기.The solar concentrator of the hemispherical convex lens is made of a solar light lens, so that the light can be collected without a chase device even if the azimuth and altitude of the sun are changed.
  20. 제 1 항에 있어서,The method of claim 1,
    상기 가이드부로부터 2차 집속된 선형 평행광을 다시 집속하여 점광원으로 3차 집광하는 것을 특징으로 하는 태양광 집광기.The solar light collector of claim 2, wherein the linear parallel light focused from the guide unit to focus again to focus on a third point as a point light source.
PCT/KR2010/005008 2010-01-18 2010-07-29 Solar light collecting device WO2011087194A1 (en)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
KR1020100004153A KR101130765B1 (en) 2010-01-18 2010-01-18 Side solar concentrator
KR10-2010-0004153 2010-01-18
KR1020100006250A KR101059759B1 (en) 2010-01-24 2010-01-24 Prism Hybrid Solar Concentrator
KR10-2010-0006250 2010-01-24
KR10-2010-0006756 2010-01-26
KR1020100006756A KR101059761B1 (en) 2010-01-26 2010-01-26 Prism Solar Concentrator
KR10-2010-0042311 2010-05-06
KR1020100042311A KR101059760B1 (en) 2010-05-06 2010-05-06 Lens integrated prism light guide and method for using that

Publications (1)

Publication Number Publication Date
WO2011087194A1 true WO2011087194A1 (en) 2011-07-21

Family

ID=44304445

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/005008 WO2011087194A1 (en) 2010-01-18 2010-07-29 Solar light collecting device

Country Status (1)

Country Link
WO (1) WO2011087194A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110585904A (en) * 2019-08-30 2019-12-20 浙江工业大学 Device for photo-thermal catalytic degradation of indoor volatile organic compounds
CN115451371A (en) * 2022-10-13 2022-12-09 哈尔滨工业大学 Natural light homogenization lighting device based on combination of plano-convex lens and semi-plano-convex lens
CN116961565A (en) * 2023-07-26 2023-10-27 上海交通大学 Device and method for regulating sunlight utilization rate

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5404869A (en) * 1992-04-16 1995-04-11 Tir Technologies, Inc. Faceted totally internally reflecting lens with individually curved faces on facets
US6840636B1 (en) * 2003-05-08 2005-01-11 Carl R Colvin Solar diffusion loss compensator and collimator

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5404869A (en) * 1992-04-16 1995-04-11 Tir Technologies, Inc. Faceted totally internally reflecting lens with individually curved faces on facets
US5577492A (en) * 1992-04-16 1996-11-26 Tir Technologies, Inc. Collimating TIR lens with focusing filter lens
US6840636B1 (en) * 2003-05-08 2005-01-11 Carl R Colvin Solar diffusion loss compensator and collimator

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110585904A (en) * 2019-08-30 2019-12-20 浙江工业大学 Device for photo-thermal catalytic degradation of indoor volatile organic compounds
CN115451371A (en) * 2022-10-13 2022-12-09 哈尔滨工业大学 Natural light homogenization lighting device based on combination of plano-convex lens and semi-plano-convex lens
CN116961565A (en) * 2023-07-26 2023-10-27 上海交通大学 Device and method for regulating sunlight utilization rate
CN116961565B (en) * 2023-07-26 2024-05-07 上海交通大学 Device and method for regulating sunlight utilization rate

Similar Documents

Publication Publication Date Title
KR101487896B1 (en) Light-guide solar panel and method of fabrication thereof
US9274266B2 (en) System and method for solar energy capture and related method of manufacturing
JP5944400B2 (en) Compact optical components for heat collection and lighting systems
KR101455892B1 (en) Compact Optics for Concentration, Aggregation and Illumination of Light Energy
WO2011153633A1 (en) Monolithic photovoltaic solar concentrator
US7915523B2 (en) Compact solar apparatus for producing electricity and method of producing electricity using a compact solar apparatus
WO2012070799A2 (en) Sunlight collection structure, multi light collection method, and sunlight transmission device
US20200076362A1 (en) Light collection and redirection to a solar panel
US20150009568A1 (en) Light collection system and method
US6840636B1 (en) Solar diffusion loss compensator and collimator
WO2011087194A1 (en) Solar light collecting device
CN101978225B (en) Concentrator for solar radiation and use thereof
WO2011083907A2 (en) Light guide device having plurality of channels
KR101722514B1 (en) Transmission Device Of Solar Light
KR101059759B1 (en) Prism Hybrid Solar Concentrator
RU2442082C2 (en) Method for concentrating solar energy
WO2011129489A1 (en) Light-guiding apparatus, and light-collecting and -diffusing apparatus using same
KR101130765B1 (en) Side solar concentrator
CN118041223B (en) Wide-angle high-power condensation system
WO2023175034A1 (en) Light collecting assembly
WO2024079731A1 (en) Lightguide concentrating device
KR101059761B1 (en) Prism Solar Concentrator
KR200287814Y1 (en) Device for collectiong and distributing sunlight in sunlight illumination system
KR20030090316A (en) Device for collectiong and distributing sunlight in sunlight illumination system
JPH02208448A (en) Sun light converging device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10843260

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205N DATED 23/11/2012)

122 Ep: pct application non-entry in european phase

Ref document number: 10843260

Country of ref document: EP

Kind code of ref document: A1