WO2010144740A1 - Improved lipid formulation - Google Patents

Improved lipid formulation Download PDF

Info

Publication number
WO2010144740A1
WO2010144740A1 PCT/US2010/038224 US2010038224W WO2010144740A1 WO 2010144740 A1 WO2010144740 A1 WO 2010144740A1 US 2010038224 W US2010038224 W US 2010038224W WO 2010144740 A1 WO2010144740 A1 WO 2010144740A1
Authority
WO
WIPO (PCT)
Prior art keywords
lipid
peg
gene
formulation
nucleic acid
Prior art date
Application number
PCT/US2010/038224
Other languages
French (fr)
Inventor
Jianxin Chen
Steven Ansell
Akin Akinc
Joseph R. Dorkin
Xiaojun Qin
William Cantley
Muthiah Manoharan
Kallanthottathil G. Rajeev
Jayaprakash K. Narayanannair
Muthusamy Jayaraman
Original Assignee
Alnylam Pharmaceuticals, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to MX2011013320A priority Critical patent/MX2011013320A/en
Priority to KR1020217001355A priority patent/KR102374518B1/en
Priority to KR1020237021486A priority patent/KR20230098713A/en
Application filed by Alnylam Pharmaceuticals, Inc. filed Critical Alnylam Pharmaceuticals, Inc.
Priority to PL10786869T priority patent/PL2440183T3/en
Priority to NZ596958A priority patent/NZ596958A/en
Priority to KR1020127000749A priority patent/KR101766408B1/en
Priority to MX2016013324A priority patent/MX367665B/en
Priority to SG2011091543A priority patent/SG176786A1/en
Priority to KR1020177021633A priority patent/KR101987962B1/en
Priority to DK10786869.7T priority patent/DK2440183T3/en
Priority to KR1020197015933A priority patent/KR102066189B1/en
Priority to CA2764609A priority patent/CA2764609C/en
Priority to SI201031754T priority patent/SI2440183T1/en
Priority to JP2012515160A priority patent/JP5819291B2/en
Priority to EP10786869.7A priority patent/EP2440183B1/en
Priority to EA201190306A priority patent/EA024960B1/en
Priority to ES10786869.7T priority patent/ES2689168T3/en
Priority to KR1020227007948A priority patent/KR20220038506A/en
Priority to LTEP10786869.7T priority patent/LT2440183T/en
Priority to MX2015003232A priority patent/MX342785B/en
Priority to CN201080026228.8A priority patent/CN102625696B/en
Priority to PL18174274T priority patent/PL3431076T3/en
Priority to AU2010259984A priority patent/AU2010259984B2/en
Priority to KR1020207000445A priority patent/KR102205886B1/en
Priority to EP18174274.3A priority patent/EP3431076B1/en
Publication of WO2010144740A1 publication Critical patent/WO2010144740A1/en
Priority to IL216876A priority patent/IL216876A/en
Priority to IL244945A priority patent/IL244945B/en
Priority to AU2017202702A priority patent/AU2017202702B2/en
Priority to HRP20181221TT priority patent/HRP20181221T1/en
Priority to CY181100865T priority patent/CY1120641T1/en
Priority to AU2019204984A priority patent/AU2019204984B2/en
Priority to IL274826A priority patent/IL274826A/en
Priority to AU2021201228A priority patent/AU2021201228B2/en
Priority to CY20211101066T priority patent/CY1124769T1/en
Priority to IL290077A priority patent/IL290077A/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/127Liposomes
    • A61K9/1271Non-conventional liposomes, e.g. PEGylated liposomes, liposomes coated with polymers
    • A61K9/1272Non-conventional liposomes, e.g. PEGylated liposomes, liposomes coated with polymers with substantial amounts of non-phosphatidyl, i.e. non-acylglycerophosphate, surfactants as bilayer-forming substances, e.g. cationic lipids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/21Esters, e.g. nitroglycerine, selenocyanates
    • A61K31/215Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids
    • A61K31/22Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids of acyclic acids, e.g. pravastatin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • A61K31/7105Natural ribonucleic acids, i.e. containing only riboses attached to adenine, guanine, cytosine or uracil and having 3'-5' phosphodiester links
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • A61K31/712Nucleic acids or oligonucleotides having modified sugars, i.e. other than ribose or 2'-deoxyribose
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • A61K31/713Double-stranded nucleic acids or oligonucleotides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/1703Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • A61K38/1709Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/43Enzymes; Proenzymes; Derivatives thereof
    • A61K38/46Hydrolases (3)
    • A61K38/48Hydrolases (3) acting on peptide bonds (3.4)
    • A61K38/482Serine endopeptidases (3.4.21)
    • A61K38/4846Factor VII (3.4.21.21); Factor IX (3.4.21.22); Factor Xa (3.4.21.6); Factor XI (3.4.21.27); Factor XII (3.4.21.38)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/08Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing oxygen, e.g. ethers, acetals, ketones, quinones, aldehydes, peroxides
    • A61K47/14Esters of carboxylic acids, e.g. fatty acid monoglycerides, medium-chain triglycerides, parabens or PEG fatty acid esters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/54Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound
    • A61K47/549Sugars, nucleosides, nucleotides or nucleic acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/54Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound
    • A61K47/55Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound the modifying agent being also a pharmacologically or therapeutically active agent, i.e. the entire conjugate being a codrug, i.e. a dimer, oligomer or polymer of pharmacologically or therapeutically active compounds
    • A61K47/551Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound the modifying agent being also a pharmacologically or therapeutically active agent, i.e. the entire conjugate being a codrug, i.e. a dimer, oligomer or polymer of pharmacologically or therapeutically active compounds one of the codrug's components being a vitamin, e.g. niacinamide, vitamin B3, cobalamin, vitamin B12, folate, vitamin A or retinoic acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/69Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
    • A61K47/6905Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a colloid or an emulsion
    • A61K47/6911Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a colloid or an emulsion the form being a liposome
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • A61K48/0008Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy characterised by an aspect of the 'non-active' part of the composition delivered, e.g. wherein such 'non-active' part is not delivered simultaneously with the 'active' part of the composition
    • A61K48/0025Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy characterised by an aspect of the 'non-active' part of the composition delivered, e.g. wherein such 'non-active' part is not delivered simultaneously with the 'active' part of the composition wherein the non-active part clearly interacts with the delivered nucleic acid
    • A61K48/0033Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy characterised by an aspect of the 'non-active' part of the composition delivered, e.g. wherein such 'non-active' part is not delivered simultaneously with the 'active' part of the composition wherein the non-active part clearly interacts with the delivered nucleic acid the non-active part being non-polymeric
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/127Liposomes
    • A61K9/1277Processes for preparing; Proliposomes
    • A61K9/1278Post-loading, e.g. by ion or pH gradient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C227/00Preparation of compounds containing amino and carboxyl groups bound to the same carbon skeleton
    • C07C227/14Preparation of compounds containing amino and carboxyl groups bound to the same carbon skeleton from compounds containing already amino and carboxyl groups or derivatives thereof
    • C07C227/18Preparation of compounds containing amino and carboxyl groups bound to the same carbon skeleton from compounds containing already amino and carboxyl groups or derivatives thereof by reactions involving amino or carboxyl groups, e.g. hydrolysis of esters or amides, by formation of halides, salts or esters
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C227/00Preparation of compounds containing amino and carboxyl groups bound to the same carbon skeleton
    • C07C227/38Separation; Purification; Stabilisation; Use of additives
    • C07C227/40Separation; Purification
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C229/00Compounds containing amino and carboxyl groups bound to the same carbon skeleton
    • C07C229/02Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton
    • C07C229/04Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated
    • C07C229/06Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated having only one amino and one carboxyl group bound to the carbon skeleton
    • C07C229/10Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated having only one amino and one carboxyl group bound to the carbon skeleton the nitrogen atom of the amino group being further bound to acyclic carbon atoms or to carbon atoms of rings other than six-membered aromatic rings
    • C07C229/12Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated having only one amino and one carboxyl group bound to the carbon skeleton the nitrogen atom of the amino group being further bound to acyclic carbon atoms or to carbon atoms of rings other than six-membered aromatic rings to carbon atoms of acyclic carbon skeletons
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/58Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by elimination of halogen, e.g. by hydrogenolysis, splitting-off
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D475/00Heterocyclic compounds containing pteridine ring systems
    • C07D475/02Heterocyclic compounds containing pteridine ring systems with an oxygen atom directly attached in position 4
    • C07D475/04Heterocyclic compounds containing pteridine ring systems with an oxygen atom directly attached in position 4 with a nitrogen atom directly attached in position 2
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • C12N15/1137Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing against enzymes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2300/00Mixtures or combinations of active ingredients, wherein at least one active ingredient is fully defined in groups A61K31/00 - A61K41/00
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/14Type of nucleic acid interfering N.A.
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/31Chemical structure of the backbone
    • C12N2310/315Phosphorothioates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/32Chemical structure of the sugar
    • C12N2310/3212'-O-R Modification
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/32Chemical structure of the sugar
    • C12N2310/3222'-R Modification
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/34Spatial arrangement of the modifications
    • C12N2310/341Gapmers, i.e. of the type ===---===
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/34Spatial arrangement of the modifications
    • C12N2310/346Spatial arrangement of the modifications having a combination of backbone and sugar modifications
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/35Nature of the modification
    • C12N2310/351Conjugate
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/35Nature of the modification
    • C12N2310/351Conjugate
    • C12N2310/3515Lipophilic moiety, e.g. cholesterol
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/35Nature of the modification
    • C12N2310/352Nature of the modification linked to the nucleic acid via a carbon atom
    • C12N2310/3521Methyl
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/35Nature of the modification
    • C12N2310/353Nature of the modification linked to the nucleic acid via an atom other than carbon
    • C12N2310/3533Halogen
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2320/00Applications; Uses
    • C12N2320/30Special therapeutic applications
    • C12N2320/32Special delivery means, e.g. tissue-specific
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Definitions

  • the invention relates to the field of therapeutic agent delivery using lipid particles.
  • the invention provides cationic lipids and lipid particles comprising these lipids, which are advantageous for the in vivo delivery of nucleic acids, as well as nucleic acid-lipid particle compositions suitable for in vivo therapeutic use.
  • the invention provides methods of preparing these compositions, as well as methods of introducing nucleic acids into cells using these compositions, e.g., for the treatment of various disease conditions.
  • Therapeutic nucleic acids include, e.g., small interfering RNA (siRNA), micro RNA (miRNA), antisense oligonucleotides, ribozymes, plasmids, and immune stimulating nucleic acids. These nucleic acids act via a variety of mechanisms. In the case of siRNA or miRNA, these nucleic acids can down-regulate intracellular levels of specific proteins through a process termed RNA interference (RNAi). Following introduction of siRNA or miRNA into the cell cytoplasm, these double- stranded RNA constructs can bind to a protein termed RISC.
  • siRNA small interfering RNA
  • miRNA micro RNA
  • RNAi RNA interference
  • RNAi can provide down- regulation of specific proteins by targeting specific destruction of the corresponding mRNA that encodes for protein synthesis.
  • the therapeutic applications of RNAi are extremely broad, since siRNA and miRNA constructs can be synthesized with any nucleotide sequence directed against a target protein. To date, siRNA constructs have shown the ability to specifically down-regulate target proteins in both in vitro and in vivo models. In addition, siRNA constructs are currently being evaluated in clinical studies.
  • siRNA or miRNA constructs Two problems currently faced by siRNA or miRNA constructs are, first, their susceptibility to nuclease digestion in plasma and, second, their limited ability to gain access to the intracellular compartment where they can bind RISC when administered systemically as the free siRNA or miRNA.
  • These double- stranded constructs can be stabilized by incorporation of chemically modified nucleotide linkers within the molecule, for example, phosphothioate groups.
  • these chemical modifications provide only limited protection from nuclease digestion and may decrease the activity of the construct.
  • Intracellular delivery of siRNA or miRNA can be facilitated by use of carrier systems such as polymers, cationic liposomes or by chemical modification of the construct, for example by the covalent attachment of cholesterol molecules.
  • carrier systems such as polymers, cationic liposomes or by chemical modification of the construct, for example by the covalent attachment of cholesterol molecules.
  • improved delivery systems are required to increase the potency of siRNA and miRNA molecules and reduce or eliminate the requirement for
  • Antisense oligonucleotides and ribozymes can also inhibit mRNA translation into protein.
  • these single stranded deoxynucleic acids have a complementary sequence to that of the target protein mRNA and can bind to the mRNA by Watson-Crick base pairing. This binding either prevents translation of the target mRNA and/or triggers RNase H degradation of the mRNA transcripts. Consequently, antisense oligonucleotides have tremendous potential for specificity of action (i.e., down-regulation of a specific disease -related protein).
  • Antisense can also affect cellular activity by hybridizing specifically with chromosomal DNA. Advanced human clinical assessments of several antisense drugs are currently underway. Targets for these drugs include the bcl2 and apolipoprotein B genes and mRNA products.
  • Immune- stimulating nucleic acids include deoxyribonucleic acids and ribonucleic acids. In the case of deoxyribonucleic acids, certain sequences or motifs have been shown to illicit immune stimulation in mammals.
  • sequences or motifs include the CpG motif, pyrimidine-rich sequences and palindromic sequences. It is believed that the CpG motif in deoxyribonucleic acids is specifically recognized by an endosomal receptor, toll-like receptor 9 (TLR-9), which then triggers both the innate and acquired immune stimulation pathway. Certain immune stimulating ribonucleic acid sequences have also been reported. It is believed that these RNA sequences trigger immune activation by binding to toll-like receptors 6 and 7 (TLR-6 and TLR-7).
  • RNA double-stranded RNA is also reported to be immune stimulating and is believe to activate via binding to TLR-3.
  • One well known problem with the use of therapeutic nucleic acids relates to the stability of the phosphodiester internucleotide linkage and the susceptibility of this linker to nucleases. The presence of exonucleases and endonucleases in serum results in the rapid digestion of nucleic acids possessing phosphodiester linkers and, hence, therapeutic nucleic acids can have very short half-lives in the presence of serum or within cells. (Zelphati, O., et al., Antisense. Res. Dev.
  • lipid-based carrier systems to deliver chemically modified or unmodified therapeutic nucleic acids.
  • the authors refer to the use of anionic (conventional) liposomes, pH sensitive liposomes, immunoliposomes, fusogenic liposomes, and cationic lipid/antisense aggregates.
  • siRNA has been administered systemically in cationic liposomes, and these nucleic acid- lipid particles have been reported to provide improved down-regulation of target proteins in mammals including non-human primates (Zimmermann et al., Nature 441: 111-114 (2006)).
  • these compositions would encapsulate nucleic acids with high-efficiency, have high drug:lipid ratios, protect the encapsulated nucleic acid from degradation and clearance in serum, be suitable for systemic delivery, and provide intracellular delivery of the encapsulated nucleic acid.
  • these lipid-nucleic acid particles should be well-tolerated and provide an adequate therapeutic index, such that patient treatment at an effective dose of the nucleic acid is not associated with significant toxicity and/or risk to the patient.
  • the invention provides such compositions, methods of making the compositions, and methods of using the compositions to introduce nucleic acids into cells, including for the treatment of diseases. Summary of Invention
  • the present invention provides novel cationic lipids, as well as lipid particles comprising the same. These lipid particles may further comprise an active agent and be used according to related methods of the invention to deliver the active agent to a cell.
  • the lipids of this invention may contain one or more isomeric forms. All such isomeric forms of these compounds are expressly included in the present invention.
  • the compounds of this invention may also contain linkages (e.g., carbon-carbon bonds) or substituents that can restrict bond rotation, e.g. restriction resulting from the presence of a double bond. Accordingly, all cis/trans and EfZ isomers are expressly included in the present invention.
  • the invention provides improved lipid formulations comprising a cationic lipid of formula I, wherein formula I is:
  • Formula I can also be referred to as DLin-M-C3-DMA, MC3 or M-C3.
  • Each of Formula I, DLin-M-C3-DMA, MC3 and M-C3 have the formula as provided directly above.
  • Lipid formulations typically also comprise a neutral lipid, a sterol and a PEG or PEG-modified lipid.
  • the improved lipid formulation also includes a targeting lipid (e.g., a GaINAc and/or folate containing lipid).
  • a targeting lipid e.g., a GaINAc and/or folate containing lipid
  • the invention provides preparation for the improved lipid formulations via an extrusion or an in-line mixing method.
  • the invention further provides a method of administering the improved lipid formulations containing RNA-based construct to an animal, and evaluating the expression of the target gene.
  • a lipid formulation featured in the invention such as a lipid formulation complexed with an oligonucleotide, such as a double stranded RNA (dsRNA), can be used to modify (e.g., decrease) target gene expression in a tumor cell in vivo or in vitro.
  • a lipid formulation featured in the invention can be used to modify target gene expression in a tumor cell line, including but not limited to HeLa, HCTl 16, A375, MCF7, B16F10, Hep3b, HUH7, HepG2, Skov3, U87, and PC3 cell lines.
  • the invention provides a lipid particle comprising the lipid of the present invention.
  • the lipid particle further comprises a neutral lipid and a lipid capable of reducing particle aggregation.
  • the lipid particle consists essentially of (i) at least one lipid of the present invention; (ii) a neutral lipid selected from DSPC, DPPC, POPC, DOPE and SM; (iii) sterol, e.g. cholesterol; and (iv) peg-lipid, e.g. PEG-DMG or PEG-cDMA, in a molar ratio of about 20-60% cationic lipid: 5-25% neutral lipid: 25-55% sterol; 0.5- 15% PEG-lipid.
  • the lipid of the present invention is optically pure.
  • the present invention includes lipid particles of the invention that further comprise therapeutic agent.
  • the therapeutic agent is a nucleic acid.
  • the nucleic acid is a plasmid, an immunostimulatory oligonucleotide, a single stranded oligonucleotide, e.g. an antisense oligonucleotide, an antagomir; a double stranded oligonucleotide, e.g. a siRNA; an aptamer or a ribozyme.
  • the present invention includes a pharmaceutical composition
  • a pharmaceutical composition comprising a lipid particle of the present invention and a pharmaceutically acceptable excipient, carrier of diluent.
  • the present invention further includes, in other related embodiments, a method of modulating the expression of a target gene in a cell, the method comprising providing to a cell a lipid particle or pharmaceutical composition of the present invention.
  • the target gene can be a wild type gene.
  • the target gene contains one or more mutations.
  • the method comprises specifically modulating expression of a target gene containing one or more mutations.
  • the lipid particle comprises a therapeutic agent selected from an immunostimulatory oligonucleotide, a single stranded oligonucleotide, e.g.
  • the nucleic acid is plasmid that encodes a siRNA, an antisense oligonucleotide, an aptamer or a ribozyme.
  • the target gene is selected from the group consisting of Factor VII, Eg5, PCSK9, TPX2, apoB, SAA, TTR, RSV, PDGF beta gene, Erb-B gene, Src gene, CRK gene, GRB2 gene, RAS gene, MEKK gene, JNK gene, RAF gene, Erkl/2 gene, PCNA(p21) gene, MYB gene, JUN gene, FOS gene, BCL-2 gene, Cyclin D gene, VEGF gene, EGFR gene, Cyclin A gene, Cyclin E gene, WNT-I gene, beta-catenin gene, c-MET gene, PKC gene, NFKB gene, STAT3 gene, survivin gene, Her2/Neu gene, topoisomerase I gene, topoisomerase II alpha gene, p73 gene, p21(WAFl/CIPl) gene, p27(KIPl) gene, PPMlD gene, RAS gene, caveolin I gene, MIB I gene
  • the nucleic acid is a plasmid that encodes a polypeptide or a functional variant or fragment thereof, such that expression of the polypeptide or the functional variant or fragment thereof is increased.
  • the present invention includes a method of treating a disease or disorder characterized by overexpression of a polypeptide in a subject, comprising providing to the subject a lipid particle or pharmaceutical composition of the present invention, wherein the therapeutic agent is selected from an siRNA, a microRNA, an antisense oligonucleotide, and a plasmid capable of expressing an siRNA, a microRNA, or an antisense oligonucleotide, and wherein the siRNA, microRNA, or antisense RNA comprises a polynucleotide that specifically binds to a polynucleotide that encodes the polypeptide, or a complement thereof.
  • the therapeutic agent is selected from an siRNA, a microRNA, an antisense oligonucleotide, and a plasmid capable of expressing an siRNA, a microRNA, or an antisense oligonucleotide
  • the siRNA, microRNA, or antisense RNA comprises a polynucleo
  • the present invention includes a method of treating a disease or disorder characterized by underexpression of a polypeptide in a subject, comprising providing to the subject the pharmaceutical composition of the present invention, wherein the therapeutic agent is a plasmid that encodes the polypeptide or a functional variant or fragment thereof.
  • the present invention includes a method of inducing an immune response in a subject, comprising providing to the subject a pharmaceutical composition of the present invention, wherein the therapeutic agent is an immunostimulatory oligonucleotide.
  • the pharmaceutical composition is provided to the patient in combination with a vaccine or antigen.
  • the present invention includes a vaccine comprising the lipid particle of the present invention and an antigen associated with a disease or pathogen.
  • the lipid particle comprises an immunostimulatory nucleic acid or oligonucleotide.
  • the antigen is a tumor antigen.
  • the antigen is a viral antigen, a bacterial antigen, or a parasitic antigen.
  • the present invention further includes methods of preparing the lipid particles and pharmaceutical compositions of the present invention, as well as kits useful in the preparation of these lipid particle and pharmaceutical compositions.
  • the invention provides a method of evaluating a composition that includes an agent, e.g. a therapeutic agent or diagnostic agent, and a lipid of the present invention.
  • FIG. 1 is a bar graph depicting the effect of lipid formulations including DLin- M-C3-DMA on the silencing of FVII in a mouse model.
  • FIG. 2 is a bar graph depicting the dose response of MC3 in rats with various liposomal compositions.
  • FIG. 3 is a bar graph that shows the ApoE dependence of efficacy of formulations comprising MC3. Wildtype but not ApoE knockout mice showed dose- dependent reduction in FVII protein levels.
  • FIG. 2 also depicts a graph that demonstrates that ApoE dependence of the MC3 liposomal formulation and the lack of silencing in ApoE KO mice using MC3 can be effectively rescued by premixing with ApoE.
  • FIG. 4 is a bar graph that shows the effects of variations in the mole percentage of MC3 in a liposomal formulation and also the effects of variations in the neutral lipid (e.g., varying the neutral lipid with DSPC, DMPC, and DLPC).
  • FIG. 5 is a bar graph showing that increasing PEG-shielding decreases non- GalNAc-mediated silencing in mice.
  • FIG. 6 is a bar graph showing that increasing PEG-shielding decreases non- GalNAc-mediated silencing in rats.
  • FIG. 7 is a bar graph showing the efficacy of liposomal formulations having different mol% of MC3, with and without GaINAc.
  • FIG. 8 is a bar graph showing that the activity of GaINAc -targeted liposomes is abolished in Asialoglycoprotein Receptor (ASGPR) knockout mice.
  • FIG. 9 is a dose response curve of % residual FVII and dose (mg/kg) for the formulation prepared in Example 17.
  • FIG. 10 is the pKa titration curve of a cationic lipid of formula I as determined in Example 18.
  • an improved lipid formulation which can be used, for example, as a delivering an agent, e.g., a nucleic acid-based agent, such as an RNA- based construct, to a cell or subject. Also described herein are methods of administering the improved lipid formulations containing an RNA-based construct to an animal, and in some embodiments, evaluating the expression of the target gene.
  • the improved lipid formulation includes a targeting lipid (e.g., a targeting lipid described herein such as a GaINAc or folate containing lipid).
  • the invention provides improved lipid formulations comprising a cationic lipid of formula I, a neutral lipid, a sterol and a PEG or PEG-modified lipid, wherein
  • formula I is In one embodiment, the lipid is a racemic mixture.
  • the lipid is enriched in one diastereomer, e.g. the lipid has at least 95%, at least 90%, at least 80% or at least 70% diastereomeric execess.
  • the lipid is chirally pure, e.g. is a single isomer.
  • the lipid is enriched for one isomer.
  • the formulations of the invention are entrapped by at least 75%, at least 80% or at least 90%.
  • the formulation include from about 25% to about 75% on a molar basis of cationic lipid of formula I e.g., from about 35 to about 65%, from about 45 to about 65%, about 60%, about 57.5%, about 50% or about 40% on a molar basis.
  • the formulation includes from about 0.5% to about 15% on a molar basis of the neutral lipid e.g., from about 3 to about 12%, from about 5 to about 10% or about 15%, about 10%, or about 7.5% on a molar basis.
  • the formulation includes from about 5% to about 50% on a molar basis of the sterol (e.g., about 15 to about 45%, about 20 to about 40%, about 40%, about 38.5%, about 35%, or about 31% on a molar basis.
  • the sterol is cholesterol.
  • the formulation includes from about 0.5% to about 20% on a molar basis of the PEG or PEG-modified lipid (e.g., about 0.5 to about 10%, about 0.5 to about 5%, about 1.5%, about 0.5%, about 1.5%, about 3.5%, or about 5% on a molar basis.
  • a molar basis of the PEG or PEG-modified lipid e.g., about 0.5 to about 10%, about 0.5 to about 5%, about 1.5%, about 0.5%, about 1.5%, about 3.5%, or about 5% on a molar basis.
  • the formulations of the inventions include 25-75% of cationic lipid of formula I, 0.5-15% of the neutral lipid, 5-50% of the sterol, and 0.5- 20% of the PEG or PEG-modified lipid on a molar basis.
  • the formulations of the inventions include 35-65% of cationic lipid of formula I, 3-12% of the neutral lipid, 15-45% of the sterol, and 0.5- 10% of the PEG or PEG-modified lipid on a molar basis.
  • the formulations of the inventions include 45-65% of cationic lipid of formula I, 5-10% of the neutral lipid, 25-40% of the sterol, and 0.5- 10% of the PEG or PEG-modified lipid on a molar basis. In one embodiment, the formulations of the inventions include about 60% of cationic lipid of formula I, about 7.5% of the neutral lipid, about 31 % of the sterol, and about 1.5% of the PEG or PEG-modified lipid on a molar basis.
  • the cationic lipid is the compound of formula I, the neutral lipid is DSPC, the sterol is cholesterol and the PEG lipid is PEG-DMG (also referred herein as PEG-C14 or C14-PEG).
  • the PEG or PEG modified lipid comprises a PEG molecule of an average molecular weight of 2,000 Da.
  • the PEG or PEG modified lipid comprises a PEG molecule of an average molecular weight of less than 2,000, for example around 1,500 Da, around 1,000 Da, or around 500 Da.
  • the PEG or PEG modified lipid is a compound of the following Formula VI: , with a PEG molecule of an average molecular weight of 2,000 Da.
  • the PEG or PEG modified lipid is PEG-distearoyl glycerol (PEG-DSG, also referred herein as PEG- C18 or C18-PEG).
  • the formulations of the inventions include about 50% of cationic lipid of formula I, about 10% of the neutral lipid, about 38.5 % of the sterol, and about 1.5% of the PEG or PEG-modified lipid on a molar basis.
  • the cationic lipid is the compound of formula I
  • the neutral lipid is DSPC
  • the sterol is cholesterol
  • the PEG lipid is PEG-DMG (also referred herein as PEG-C14 or C14-PEG).
  • the PEG or PEG modified lipid is PEG-distyryl glycerol (PEG-DSG, also referred herein as PEG-C18 or C18-PEG).
  • the PEG or PEG modified lipid is PEG-DPG (PEG- dipalmitoylglycerol). In one embodiment, the PEG or PEG modified lipid comprises a PEG molecule of an average molecular weight of 2,000 Da.
  • the formulations of the inventions include about 50% of cationic lipid of formula I, about 10% of the neutral lipid, about 35 % of the sterol, about 4.5% of the PEG or PEG-modified lipid, and about 0.5% of the targeting lipid on a molar basis.
  • the cationic lipid is the compound of formula I
  • the neutral lipid is DSPC
  • the sterol is cholesterol
  • the PEG lipid is PEG- distearoyl glycerol (PEG-DSG, also referred herein as PEG-C 18 or C18-PEG)
  • the targeting lipid is GalNAc3-PEG-DSG.
  • the formulations of the inventions include about 50% of cationic lipid of formula I, about 10% of the neutral lipid, about 35 % of the sterol, about 4.5% of the PEG or PEG-modified lipid, and about 0.5% of the targeting lipid on a molar basis.
  • the cationic lipid is the compound of formula I
  • the neutral lipid is DSPC
  • the sterol is cholesterol
  • the PEG lipid is PEG- DMG (also referred herein as PEG-C14 or C14-PEG).
  • the formulations of the inventions include about 40% of cationic lipid of formula I, about 15% of the neutral lipid, about 40% of the sterol, and about 5% of the PEG or PEG-modified lipid on a molar basis.
  • the cationic lipid is the compound of formula I
  • the neutral lipid is DSPC
  • the sterol is cholesterol
  • the PEG lipid is PEG-DMG (also referred herein as PEG-C14 or C14-PEG).
  • the formulations of the inventions include about 50% of cationic lipid of formula I, about 10% of the neutral lipid, about 35% of the sterol, and about 5% of the PEG or PEG-modified lipid on a molar basis.
  • the cationic lipid is the compound of formula I
  • the neutral lipid is DSPC
  • the sterol is cholesterol
  • the PEG lipid is PEG-DMG (also referred herein as PEG-C14 or C14-PEG).
  • the formulations of the inventions include about 57.2% of cationic lipid of formula I, about 7.1% of the neutral lipid, about 34.3% of the sterol, and about 1.4% of the PEG or PEG-modified lipid on a molar basis.
  • the cationic lipid is the compound of formula I
  • the neutral lipid is DPPC
  • the sterol is cholesterol
  • the PEG lipid is PEG-cDMA (PEG-cDMA is further discussed in Heyes et al. (/. Controlled Release, 107, 276-287 (2005)).
  • the PEG or PEG modified lipid is a compound of the Formula VI or PEG-DSG, wherein the PEG molecule has an average molecular weight of 2,000 Da.
  • the formulations of the inventions include about 57.5% of cationic lipid of formula I, about 7.5% of the neutral lipid, about 31.5 % of the sterol, and about 3.5% of the PEG or PEG-modified lipid on a molar basis.
  • the cationic lipid is the compound of formula I
  • the neutral lipid is DSPC
  • the sterol is cholesterol
  • the PEG lipid is PEG-DMG.
  • the ratio of lipid:siRNA is at least about 0.5:1, at least about 1: 1, at least about 2:1, at least about 3:1, at least about 4:1, at least about 5:1, at least about 6:1, at least about 7:1, at least about 8:1, at least about 10: 1, at least about 11:1, at least about 12:1, to at least about 15:1 .
  • the ratio of lipid:siRNA ratio is between about 1:1 to about 20:1, about 3:1 to about 15:1, about 4:1 to about 15: 1, about 5:1 to about 13:1.
  • the ratio of lipid:siRNA ratio is between about 0.5: 1 to about 15: 1.
  • the improved lipid formulation also includes a targeting lipid.
  • the targeting lipid includes a GaINAc moiety (i.e., an N- galactosamine moiety).
  • a targeting lipid including a GaINAc moiety can include those disclosed in USSN 12/328,669, filed 12/4/2008, which is incorporated herein by reference in its entirety.
  • a targeting lipid can also include any other lipid (e.g., targeting lipid) known in the art, for example, as described in USSN 12/328,669, or International Publication No. WO 2008/042973, the contents of each of which are incorporated herein by reference in their entirety.
  • the targeting lipid includes a plurality of GaINAc moieties, e.g., two or three GaINAc moieties. In some embodiments, the targeting lipid contains a plurality, e.g., two or three N- acetylgalactosamine (GaINAc) moieties. In some embodiments, the lipid in the targeting lipid is l,2-Di-0-hexadecyl-,m-glyceride (i.e., DSG).
  • the targeting lipid includes a PEG moiety (e.g., a PEG moiety having a molecular weight of at least about 500 Da, such as about 1000 Da, 1500 Da, 2000 Da or greater), for example, the targeting moiety is connected to the lipid via a PEG moiety.
  • a PEG moiety e.g., a PEG moiety having a molecular weight of at least about 500 Da, such as about 1000 Da, 1500 Da, 2000 Da or greater
  • the targeting lipid includes a folate moiety.
  • a targeting lipid including a folate moiety can include those disclosed in USSN 12/328,669, filed 12/4/2008, which is incorporated herein by reference in its entirety.
  • a targeting lipid including a folate moiety can include the compound of Formula V.
  • Exemplary targeting lipids are represented by formula L below: (Targeting group) n -L-Lipid formula L wherein
  • Targeting group is any targeting group that known by one skilled in the art and/or described herein (e.g., a cell surface receptor); n is an integer from 1 to 5, (e.g., 3)
  • L is a linking group
  • Lipid is a lipid such as a lipid described herein (e.g., a neutral lipid such as DSG).
  • the linking group includes a PEG moiety.
  • the targeting lipid is compound 2, 3, 4 or 5 as provided below:
  • the targeting lipid is present in the formulation in an amount of from about 0.001% to about 5% (e.g., about 0.005%, 0.15%, 0.3%, 0.5%, 1.5%, 2%, 2.5%, 3%, 4%, or 5%) on a molar basis. In some embodiments, the targeting lipid is present in the formulation in an amount from about 0.005% to about 1.5%. In some embodiments, the targeting lipid is included in a formulation described herein.
  • the lipid formulation also included an antioxidant (e.g., a radical scavenger).
  • the antioxidant can be present in the formulation, for example, at an amound from about 0.01% to about 5%.
  • the antioxidant can be hydrophobic or hydrophilic (e.g., soluble in lipids or soluble in water).
  • the antioxidant is a phenolic compound, for example, butylhydroxytoluene, resveratrol, coenzyme QlO, or other flavinoids, or a vitamin, for example, vitamin E or vitamin C.
  • Other exemplary antioxidants include lipoic acid, uric acid, a carotene such as beta- carotene or retinol (vitamin A), glutathione, melatonin, selenium, and ubiquinol.
  • the receptor for the targeting lipid e.g., a GaINAc containing lipid
  • the receptor for the targeting lipid is the asialoglycoprotein receptor (i.e., ASGPR).
  • the formulations of the invention are produced via an extrusion method or an in-line mixing method.
  • the extrusion method (also refer to as preformed method or batch process) is a method where the empty liposomes (i.e. no nucleic acid) are prepared first, followed by the the addition of nucleic acid to the empty liposome.
  • Extrusion of liposome compositions through a small-pore polycarbonate membrane or an asymmetric ceramic membrane results in a relatively well-defined size distribution.
  • the suspension is cycled through the membrane one or more times until the desired liposome complex size distribution is achieved.
  • the liposomes may be extruded through successively smaller-pore membranes, to achieve a gradual reduction in liposome size.
  • the lipid-nucleic acid compositions which are formed can be used without any sizing.
  • the in-line mixing method is a method wherein both the lipids and the nucleic acid are added in parallel into a mixing chamber.
  • the mixing chamber can be a simple T-connector or any other mixing chamber that is known to one skill in the art. These methods are disclosed in US patent nos. 6,534,018 and US 6,855,277; US publication 2007/0042031 and Pharmaceuticals Research, Vol. 22, No. 3, Mar. 2005, p. 362-372, which are hereby incorporated by reference in their entirety.
  • formulations of the invention can be prepared by any methods known to one of ordinary skill in the art.
  • the formulations of the invention are entrapped by at least 75%, at least 80% or at least 90%.
  • the formulations of the invention further comprise an apolipoprotein.
  • apolipoprotein or “lipoprotein” refers to apolipoproteins known to those of skill in the art and variants and fragments thereof and to apolipoprotein agonists, analogues or fragments thereof described below.
  • Suitable apolipoproteins include, but are not limited to, ApoA-I, ApoA-II, ApoA-IV, ApoA-V and ApoE, and active polymorphic forms, isoforms, variants and mutants as well as fragments or truncated forms thereof.
  • the apolipoprotein is a thiol containing apolipoprotein.
  • Thiol containing apolipoprotein refers to an apolipoprotein, variant, fragment or isoform that contains at least one cysteine residue.
  • thiol containing apolipoproteins are ApoA-I Milano (ApoA-I M ) and ApoA-I Paris (ApoA-I P ) which contain one cysteine residue (Jia et al., 2002, Biochem. Biophys. Res. Comm. 297: 206-13; Bielicki and Oda, 2002, Biochemistry 41: 2089-96).
  • ApoA-II, ApoE2 and ApoE3 are also thiol containing apolipoproteins. Isolated ApoE and/or active fragments and polypeptide analogues thereof, including recombinantly produced forms thereof, are described in U.S. Pat. Nos.
  • the apolipoprotein can be in its mature form, in its preproapolipoprotein form or in its proapolipoprotein form. Homo- and heterodimers (where feasible) of pro- and mature ApoA-I (Duverger et al., 1996, Arterioscler. Thromb. Vase. Biol. 16(12): 1424-29), ApoA-I Milano (Klon et al., 2000, Biophys. J. 79:(3)1679-87; Franceschini et al., 1985, J. Biol. Chem. 260: 1632-35), ApoA-I Paris (Daum et al., 1999, J. MoI. Med.
  • the apolipoprotein can be a fragment, variant or isoform of the apolipoprotein.
  • fragment refers to any apolipoprotein having an amino acid sequence shorter than that of a native apolipoprotein and which fragment retains the activity of native apolipoprotein, including lipid binding properties.
  • variant is meant substitutions or alterations in the amino acid sequences of the apolipoprotein, which substitutions or alterations, e.g., additions and deletions of amino acid residues, do not abolish the activity of native apolipoprotein, including lipid binding properties.
  • a variant can comprise a protein or peptide having a substantially identical amino acid sequence to a native apolipoprotein provided herein in which one or more amino acid residues have been conservatively substituted with chemically similar amino acids.
  • conservative substitutions include the substitution of at least one hydrophobic residue such as isoleucine, valine, leucine or methionine for another.
  • the present invention contemplates, for example, the substitution of at least one hydrophilic residue such as, for example, between arginine and lysine, between glutamine and asparagine, and between glycine and serine (see U.S. Pat. Nos. 6,004,925, 6,037,323 and 6,046,166).
  • isoform refers to a protein having the same, greater or partial function and similar, identical or partial sequence, and may or may not be the product of the same gene and usually tissue specific (see Weisgraber 1990, J. Lipid Res. 31(8): 1503-11; Hixson and Powers 1991, J. Lipid Res. 32(9): 1529-35; Lackner et al., 1985, J. Biol. Chem. 260(2):703-6; Hoeg et al., 1986, J. Biol. Chem. 261(9):3911-4; Gordon et al.,
  • the methods and compositions of the present invention include the use of a chimeric construction of an apolipoprotein.
  • a chimeric construction of an apolipoprotein can be comprised of an apolipoprotein domain with high lipid binding capacity associated with an apolipoprotein domain containing ischemia reperfusion protective properties.
  • a chimeric construction of an apolipoprotein can be a construction that includes separate regions within an apolipoprotein (i.e., homologous construction) or a chimeric construction can be a construction that includes separate regions between different apolipoproteins (i.e., heterologous constructions).
  • compositions comprising a chimeric construction can also include segments that are apolipoprotein variants or segments designed to have a specific character (e.g., lipid binding, receptor binding, enzymatic, enzyme activating, antioxidant or reduction-oxidation property) (see Weisgraber 1990, J. Lipid Res. 31(8):1503-l l; Hixson and Powers 1991, J. Lipid Res. 32(9):1529-35; Lackner et al., 1985, J. Biol. Chem. 260(2):703-6; Hoeg et al, 1986, J. Biol. Chem. 261(9):3911-4; Gordon et al., 1984, J. Biol. Chem.
  • a specific character e.g., lipid binding, receptor binding, enzymatic, enzyme activating, antioxidant or reduction-oxidation property
  • Apolipoproteins utilized in the invention also include recombinant, synthetic, semi- synthetic or purified apolipoproteins. Methods for obtaining apolipoproteins or equivalents thereof, utilized by the invention are well-known in the art.
  • apolipoproteins can be separated from plasma or natural products by, for example, density gradient centrifugation or immunoaffinity chromatography, or produced synthetically, semi-synthetically or using recombinant DNA techniques known to those of the art (see, e.g., Mulugeta et al., 1998, J. Chromatogr. 798(1-2): 83-90; Chung et al., 1980, J. Lipid Res.
  • Apolipoproteins utilized in the invention further include apolipoprotein agonists such as peptides and peptide analogues that mimic the activity of ApoA-I, ApoA-I Milano (ApoA-I M ), ApoA-I Paris (ApoA-I P ), ApoA-II, ApoA-IV, and ApoE.
  • apolipoprotein can be any of those described in U.S. Pat. Nos. 6,004,925, 6,037,323, 6,046,166, and 5,840,688, the contents of which are incorporated herein by reference in their entireties.
  • Apolipoprotein agonist peptides or peptide analogues can be synthesized or manufactured using any technique for peptide synthesis known in the art including, e.g., the techniques described in U.S. Pat. Nos. 6,004,925, 6,037,323 and 6,046,166.
  • the peptides may be prepared using the solid-phase synthetic technique initially described by Merrifield (1963, J. Am. Chem. Soc. 85:2149-2154).
  • Other peptide synthesis techniques may be found in Bodanszky et al., Peptide Synthesis, John Wiley & Sons, 2d Ed., (1976) and other references readily available to those skilled in the art.
  • Peptides may also be synthesized by solution methods as described in The Proteins, Vol. II, 3d Ed., Neurath et. al., Eds., p. 105-237, Academic Press, New York, N. Y. (1976). Appropriate protective groups for use in different peptide syntheses are described in the above-mentioned texts as well as in McOmie, Protective Groups in Organic Chemistry, Plenum Press, New York, N. Y. (1973).
  • the peptides of the present invention might also be prepared by chemical or enzymatic cleavage from larger portions of, for example, apolipoprotein A-I.
  • the apolipoprotein can be a mixture of apolipoproteins.
  • the apolipoprotein can be a homogeneous mixture, that is, a single type of apolipoprotein.
  • the apolipoprotein can be a heterogeneous mixture of apolipoproteins, that is, a mixture of two or more different apolipoproteins.
  • Embodiments of heterogenous mixtures of apolipoproteins can comprise, for example, a mixture of an apolipoprotein from an animal source and an apolipoprotein from a semi-synthetic source.
  • a heterogenous mixture can comprise, for example, a mixture of ApoA- I and ApoA-I Milano.
  • a heterogeneous mixture can comprise, for example, a mixture of ApoA-I Milano and ApoA-I Paris. Suitable mixtures for use in the methods and compositions of the invention will be apparent to one of skill in the art.
  • the apolipoprotein is obtained from natural sources, it can be obtained from a plant or animal source. If the apolipoprotein is obtained from an animal source, the apolipoprotein can be from any species. In certain embodiments, the apolipoprotien can be obtained from an animal source. In certain embodiments, the apolipoprotein can be obtained from a human source. In preferred embodiments of the invention, the apolipoprotein is derived from the same species as the individual to which the apolipoprotein is administered.
  • the target gene is selected from the group consisting of Factor VII, Eg5, PCSK9, TPX2, apoB, SAA, TTR, RSV, PDGF beta gene, Erb-B gene, Src gene, CRK gene, GRB2 gene, RAS gene, MEKK gene, JNK gene, RAF gene, Erkl/2 gene, PCNA(p21) gene, MYB gene, JUN gene, FOS gene, BCL-2 gene, Cyclin D gene, VEGF gene, EGFR gene, Cyclin A gene, Cyclin E gene, WNT-I gene, beta-catenin gene, c-MET gene, PKC gene, NFKB gene, STAT3 gene, survivin gene, Her2/Neu gene, topoisomerase I gene, topoisomerase II alpha gene, p73 gene, p21(WAFl/CIPl) gene, p27(KIPl) gene, PPMlD gene, RAS gene, caveolin I gene, MIB I gene, MT
  • the target gene is a gene expressed in the liver, e.g., the Factor VII (FVII) gene.
  • the effect of the expression of the target gene, e.g., FVII is evaluated by measuring FVII levels in a biological sample, such as a serum or tissue sample.
  • a biological sample such as a serum or tissue sample.
  • the level of FVII e.g., as measured by assay of FVII activity
  • the level of mRNA in the liver can be evaluated.
  • at least two types of evaluation are made, e.g., an evaluation of protein level (e.g., in blood), and a measure of mRNA level (e.g., in the liver) are both made.
  • the agent is a nucleic acid, such as a double- stranded RNA (dsRNA).
  • the nucleic acid agent is a single-stranded DNA or RNA, or double-stranded DNA or RNA, or DNA-RNA hybrid.
  • a double- stranded DNA can be a structural gene, a gene including control and termination regions, or a self-replicating system such as a viral or plasmid DNA.
  • a double- stranded RNA can be, e.g., a dsRNA or another RNA interference reagent.
  • a single- stranded nucleic acid can be, e.g., an antisense oligonucleotide, ribozyme, microRNA, or triplex-forming oligonucleotide.
  • a biological sample such as a fluid sample, e.g., blood, plasma, or serum, or a tissue sample, such as a liver sample, is taken from the test subject and tested for an effect of the agent on target protein or mRNA expression levels.
  • the candidate agent is a dsRNA that targets FVII
  • the biological sample is tested for an effect on Factor VII protein or mRNA levels.
  • plasma levels of FVII protein are assayed, such as by using an immunohistochemistry assay or a chromogenic assay.
  • levels of FVII mRNA in the liver are tested by an assay, such as a branched DNA assay, or a Northern blot or RT-PCR assay.
  • the agent e.g., a composition including the improved lipid formulation
  • the model subject can be monitored for physical effects, such as by a change in weight or cageside behavior.
  • the method further includes subjecting the agent, e.g., a composition comprising the improved lipid formulation, to a further evaluation.
  • the further evaluation can include, for example, (i) a repetition of the evaluation described above, (ii) a repetition of the evaluation described above with a different number of animals or with different doses, or (iii) by a different method, e.g., evaluation in another animal model, e.g., a non-human primate.
  • the invention features a method of evaluating the improved lipid formulation for its suitability for delivering a therapeutic agent to a cell.
  • the invention features a method of evaluating the improved lipid formulation for its suitability for delivering an RNA-based construct, e.g., a dsRNA that targets FVII.
  • the method includes providing a composition that includes a dsRNA that targets FVII and a candidate amino lipid, administering the composition to a rodent, e.g., a mouse, evaluating the expression of FVII as a function of at least one of the level of FVII in the blood or the level of FVII mRNA in the liver, thereby evaluating the candidate amino lipid.
  • the method further comprises comparing expression of the target gene with a preselected reference value.
  • compositions that include lipid containing components, such as a liposome, and these are described in greater detail below.
  • lipid containing components such as a liposome
  • exemplary nucleic acid-based agents include dsRNAs, antisense oligonucleotides, ribozymes, microRNAs, immunostimulatory oligonucleotides, or triplex-forming oligonucleotides. These agents are also described in greater detail below.
  • Alkyl means a straight chain or branched, noncyclic or cyclic, saturated aliphatic hydrocarbon containing from 1 to 24 carbon atoms.
  • Representative saturated straight chain alkyls include methyl, ethyl, n-propyl, n-butyl, n-pentyl, n-hexyl, and the like; while saturated branched alkyls include isopropyl, sec-butyl, isobutyl, tert- butyl, isopentyl, and the like.
  • saturated cyclic alkyls include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, and the like; while unsaturated cyclic alkyls include cyclopentenyl and cyclohexenyl, and the like.
  • Alkenyl means an alkyl, as defined above, containing at least one double bond between adjacent carbon atoms. Alkenyls include both cis and trans isomers. Representative straight chain and branched alkenyls include ethylenyl, propylenyl, 1- butenyl, 2-butenyl, isobutylenyl, 1-pentenyl, 2-pentenyl, 3-methyl-l-butenyl, 2- methyl-2-butenyl, 2,3-dimethyl-2-butenyl, and the like.
  • Alkynyl means any alkyl or alkenyl, as defined above, which additionally contains at least one triple bond between adjacent carbons.
  • Representative straight chain and branched alkynyls include acetylenyl, propynyl, 1-butynyl, 2-butynyl, 1- pentynyl, 2-pentynyl, 3-methyl-l butynyl, and the like.
  • Acyl means any alkyl, alkenyl, or alkynyl wherein the carbon at the point of attachment is substituted with an oxo group, as defined below.
  • aryl refers to an aromatic monocyclic, bicyclic, or tricyclic hydrocarbon ring system, wherein any ring atom can be substituted.
  • aryl moieties include, but are not limited to, phenyl, naphthyl, anthracenyl, and pyrenyl.
  • Heterocycle means a 5- to 7-membered monocyclic, or 7- to 10-membered bicyclic, heterocyclic ring which is either saturated, unsaturated, or aromatic, and which contains from 1 or 2 heteroatoms independently selected from nitrogen, oxygen and sulfur, and wherein the nitrogen and sulfur heteroatoms may be optionally oxidized, and the nitrogen heteroatom may be optionally quaternized, including bicyclic rings in which any of the above heterocycles are fused to a benzene ring.
  • the heterocycle may be attached via any heteroatom or carbon atom.
  • Heterocycles include heteroaryls as defined below.
  • Heterocycles include morpholinyl, pyrrolidinonyl, pyrrolidinyl, piperidinyl, piperizynyl, hydantoinyl, valerolactamyl, oxiranyl, oxetanyl, tetrahydrofuranyl, tetrahydropyranyl, tetrahydropyridinyl, tetrahydroprimidinyl, tetrahydrothiophenyl, tetrahydrothiopyranyl, tetrahydropyrimidinyl, tetrahydrothiophenyl, tetrahydrothiopyranyl, and the like.
  • heteroaryl refers to an aromatic 5-8 membered monocyclic, 8-12 membered bicyclic, or 11-14 membered tricyclic ring system having 1-3 heteroatoms if monocyclic, 1-6 heteroatoms if bicyclic, or 1-9 heteroatoms if tricyclic, said heteroatoms selected from O, N, or S (e.g., carbon atoms and 1-3, 1-6, or 1-9 heteroatoms of N, O, or S if monocyclic, bicyclic, or tricyclic, respectively), wherein any ring atom can be substituted.
  • the heteroaryl groups herein described may also contain fused rings that share a common carbon-carbon bond.
  • alkylheterocyle refers to a heteroaryl wherein at least one of the ring atoms is substituted with alkyl, alkenyl or alkynyl
  • substituted refers to the replacement of one or more hydrogen radicals in a given structure with the radical of a specified substituent including, but not limited to: halo, alkyl, alkenyl, alkynyl, aryl, heterocyclyl, thiol, alkylthio, oxo, thioxy, arylthio, alkylthioalkyl, arylthioalkyl, alkylsulfonyl, alkylsulfonylalkyl, arylsulfonylalkyl, alkoxy, aryloxy, aralkoxy, aminocarbonyl, alkylaminocarbonyl, arylaminocarbonyl, alkoxycarbonyl, aryloxycarbonyl, haloalkyl, amino, trifluoromethyl, cyano, nitro, alkylamino, arylamino, alkylaminoalkyl, arylaminoalkyl, amino, trifluoro
  • Halogen means fluoro, chloro, bromo and iodo.
  • alkylphosphate refers to -0-P(Q')(Q")-0-R, wherein Q' and Q" are each independently 0, S, N(R) 2 , optionally substituted alkyl or alkoxy; and R is optionally substituted alkyl, ⁇ -aminoalkyl or ⁇ -(substituted)aminoalkyl.
  • alkylphosphorothioate refers to an alkylphosphate wherein at least one of Q' or Q" is S.
  • alkylphosphonate refers to an alkylphosphate wherein at least one of Q' or Q" is alkyl.
  • hydroxyalkyl means -O-alkyl radical.
  • alkylheterocycle refers to an alkyl where at least one methylene has been replaced by a heterocycle.
  • ⁇ -aminoalkyl refers to -alkyl-NH 2 radical.
  • ⁇ - (substituted)aminoalkyl refers to an ⁇ -aminoalkyl wherein at least one of the H on N has been replaced with alkyl.
  • ⁇ -phosphoalkyl refers to -alkyl-O-P(Q')(Q")-O-R, wherein Q' and Q" are each independently O or S and R optionally substituted alkyl.
  • ⁇ -thiophosphoalkyl refers to ⁇ -phosphoalkyl wherein at least one of Q' or Q" is S.
  • the methods of the invention may require the use of protecting groups.
  • protecting group methodology is well known to those skilled in the art (see, for example, PROTECTIVE GROUPS IN ORGANIC SYNTHESIS, Green, T.W. et. al., Wiley-Interscience, New York City, 1999).
  • protecting groups within the context of this invention are any group that reduces or eliminates unwanted reactivity of a functional group.
  • a protecting group can be added to a functional group to mask its reactivity during certain reactions and then removed to reveal the original functional group.
  • an "alcohol protecting group” is used.
  • An “alcohol protecting group” is any group which decreases or eliminates unwanted reactivity of an alcohol functional group.
  • Protecting groups can be added and removed using techniques well known in the art.
  • lipid particles include, but are not limited to, liposomes.
  • a liposome is a structure having lipid- containing membranes enclosing an aqueous interior. Liposomes may have one or more lipid membranes.
  • the invention contemplates both single-layered liposomes, which are referred to as unilamellar, and multi-layered liposomes, which are referred to as multilamellar.
  • lipid particles may also be lipoplexes, which are composed of cationic lipid bilayers sandwiched between DNA layers, as described, e.g., in Feigner, Scientific American.
  • Lipid particles may further include one or more additional lipids and/or other components such as cholesterol.
  • Other lipids may be included in the liposome compositions for a variety of purposes, such as to prevent lipid oxidation or to attach ligands onto the liposome surface. Any of a number of lipids may be present, including amphipathic, neutral, cationic, and anionic lipids. Such lipids can be used alone or in combination. Specific examples of additional lipid components that may be present are described below. Additional components that may be present in a lipid particle include bilayer stabilizing components such as polyamide oligomers (see, e.g., U.S. Patent No.
  • the lipid particle includes a targeting agent such as a targeting lipid described herein.
  • a lipid particle can include one or more of a second amino lipid or cationic lipid, a neutral lipid, a sterol, and a lipid selected to reduce aggregation of lipid particles during formation, which may result from steric stabilization of particles which prevents charge-induced aggregation during formation.
  • cationic lipid is meant to include those lipids having one or two fatty acid or fatty alkyl chains and an amino head group (including an alkylamino or dialkylamino group) that may be protonated to form a cationic lipid at physiological pH.
  • a cationic lipid is referred to as an "amino lipid.”
  • cationic lipids would include those having alternative fatty acid groups and other dialkylamino groups, including those in which the alkyl substituents are different (e.g., N-ethyl-N-methylamino-, N-propyl-N-ethylamino- and the like).
  • lipids e.g., a cationic lipid
  • Cationic lipids containing unsaturated fatty acids with carbon chain lengths in the range of Cio to C 20 are preferred.
  • Other scaffolds can also be used to separate the amino group (e.g., the amino group of the cationic lipid) and the fatty acid or fatty alkyl portion of the cationic lipid. Suitable scaffolds are known to those of skill in the art.
  • cationic lipids have at least one protonatable or deprotonatable group, such that the lipid is positively charged at a pH at or below physiological pH (e.g. pH 7.4), and neutral at a second pH, preferably at or above physiological pH.
  • a pH at or below physiological pH e.g. pH 7.4
  • a second pH preferably at or above physiological pH.
  • Such lipids are also referred to as cationic lipids.
  • the addition or removal of protons as a function of pH is an equilibrium process, and that the reference to a charged or a neutral lipid refers to the nature of the predominant species and does not require that all of the lipid be present in the charged or neutral form.
  • Lipids that have more than one protonatable or deprotonatable group, or which are zwiterrionic, are not excluded from use in the invention.
  • protonatable lipids i.e., cationic lipids
  • pKa of the protonatable group in the range of about 4 to about 11.
  • pKa of this lipids will be cationic at a lower pH formulation stage, while particles will be largely (though not completely) surface neutralized at physiological pH around pH 7.4.
  • One of the benefits of this pKa is that at least some nucleic acid associated with the outside surface of the particle will lose its electrostatic interaction at physiological pH and be removed by simple dialysis; thus greatly reducing the particle's susceptibility to clearance.
  • lipids that reduce aggregation of particles during formation include polyethylene glycol (PEG) -modified lipids, monosialoganglioside GmI, and polyamide oligomers ("PAO") such as (described in US Pat. No. 6,320,017).
  • PEG polyethylene glycol
  • PAO polyamide oligomers
  • ATTA-lipids are described, e.g., in U.S. Patent No. 6,320,017
  • PEG-lipid conjugates are described, e.g., in U.S. Patent Nos. 5,820,873, 5,534,499 and 5,885,613.
  • the concentration of the lipid component selected to reduce aggregation is about 1 to 15% (by mole percent of lipids
  • PEG polyethylene glycol
  • PAO polyamide oligomers
  • ATTA-lipids are described, e.g., in U.S. Patent No.
  • the concentration of the lipid component selected to reduce aggregation is about 1 to 15% (by mole percent of lipids).
  • PEG-modified lipids or lipid-polyoxyethylene conjugates
  • lipid-polyoxyethylene conjugates can have a variety of “anchoring" lipid portions to secure the PEG portion to the surface of the lipid vesicle.
  • suitable PEG-modified lipids include PEG-modified phosphatidylethanolamine and phosphatidic acid, PEG-ceramide conjugates (e.g., PEG-CerC14 or PEG-CerC20) which are described in co-pending USSN 08/486,214, incorporated herein by reference, PEG-modified dialkylamines and PEG-modified l,2-diacyloxypropan-3- amines.
  • the total mol% of PEG lipids within a particle is about 1.5 mol%.
  • the particle includes a plurality of PEG lipids described herein such as a PEG-modified lipid as described above and a targeting lipid containing a PEG, the total amount of the PEG containing lipids when taken together is about 1.5 mol%.
  • a sterically-large moiety such as PEG or ATTA are conjugated to a lipid anchor
  • the selection of the lipid anchor depends on what type of association the conjugate is to have with the lipid particle. It is well known that mePEG (mw2000)-diastearoylphosphatidylethanolamine (PEG-DSPE) will remain associated with a liposome until the particle is cleared from the circulation, possibly a matter of days.
  • Other conjugates, such as PEG-CerC20 have similar staying capacity.
  • PEG-CerC14 rapidly exchanges out of the formulation upon exposure to serum, with a T 1/2 less than 60 mins. in some assays. As illustrated in US Pat.
  • Exemplary lipid anchors include those having lengths of from about Ci 4 to about C 22 , preferably from about Ci 4 to about C 1 6.
  • a PEG moiety for example an mPEG-NH 2 , has a size of about 1000, 2000, 5000, 10,000, 15,000 or 20,000 daltons.
  • aggregation preventing compounds do not necessarily require lipid conjugation to function properly. Free PEG or free ATTA in solution may be sufficient to prevent aggregation. If the particles are stable after formulation, the PEG or ATTA can be dialyzed away before administration to a subject.
  • Neutral lipids when present in the lipid particle, can be any of a number of lipid species which exist either in an uncharged or neutral zwitterionic form at physiological pH.
  • Such lipids include, for example diacylphosphatidylcholine, diacylphosphatidylethanolamine, ceramide, sphingomyelin, dihydrosphingomyelin, cephalin, and cerebrosides.
  • the selection of neutral lipids for use in the particles described herein is generally guided by consideration of, e.g., liposome size and stability of the liposomes in the bloodstream.
  • the neutral lipid component is a lipid having two acyl groups, (i.e., diacylphosphatidylcholine and diacylphosphatidylethanolamine).
  • Lipids having a variety of acyl chain groups of varying chain length and degree of saturation are available or may be isolated or synthesized by well-known techniques.
  • lipids containing saturated fatty acids with carbon chain lengths in the range of C 14 to C 22 are preferred.
  • lipids with mono or diunsaturated fatty acids with carbon chain lengths in the range of Ci 4 to C 22 are used.
  • lipids having mixtures of saturated and unsaturated fatty acid chains can be used.
  • the neutral lipids used in the invention are DOPE, DSPC, DPPC, POPC, or any related phosphatidylcholine.
  • the neutral lipids useful in the invention may also be composed of sphingomyelin, dihydrosphingomyeline, or phospholipids with other head groups, such as serine and inositol.
  • the sterol component of the lipid mixture when present, can be any of those sterols conventionally used in the field of liposome, lipid vesicle or lipid particle preparation.
  • a preferred sterol is cholesterol.
  • cationic lipids which carry a net positive charge at about physiological pH, in addition to those specifically described above, may also be included in lipid particles of the invention.
  • cationic lipids include, but are not limited to, N,N- dioleyl-N,N-dimethylammonium chloride ("DODAC”); N-(2,3-dioleyloxy)propyl- N,N-N-triethylammonium chloride (“DOTMA”); N,N-distearyl-N,N- dimethylammonium bromide (“DDAB”); N-(2,3-dioleoyloxy)propyl)-N,N,N- trimethylammonium chloride (“DOTAP”); l,2-Dioleyloxy-3-trimethylaminopropane chloride salt (“D0TAP.C1"); 3 ⁇ -(N-(N',N'-dimethylaminoethane)- carbamoyl)cholesterol (“DC-Chol
  • cationic lipids can be used, such as, e.g., LIPOFECTIN (including DOTMA and DOPE, available from GIBCO/BRL), and LIPOFECTAMINE (comprising DOSPA and DOPE, available from GIBCO/BRL).
  • LIPOFECTIN including DOTMA and DOPE, available from GIBCO/BRL
  • LIPOFECTAMINE comprising DOSPA and DOPE, available from GIBCO/BRL
  • a cationic lipid is an amino lipid.
  • Anionic lipids suitable for use in lipid particles of the invention include, but are not limited to, phosphatidylglycerol, cardiolipin, diacylphosphatidylserine, diacylphosphatidic acid, N-dodecanoyl phosphatidylethanoloamine, N-succinyl phosphatidylethanolamine, N-glutaryl phosphatidylethanolamine, lysylphosphatidylglycerol, and other anionic modifying groups joined to neutral lipids.
  • amphipathic lipids are included in lipid particles of the invention.
  • Amphipathic lipids refer to any suitable material, wherein the hydrophobic portion of the lipid material orients into a hydrophobic phase, while the hydrophilic portion orients toward the aqueous phase.
  • Such compounds include, but are not limited to, phospholipids, aminolipids, and sphingolipids.
  • Representative phospholipids include sphingomyelin, phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, phosphatidylinositol, phosphatidic acid, palmitoyloleoyl phosphatdylcholine, lysophosphatidylcholine, lysophosphatidylethanolamine, dipalmitoylphosphatidylcholine (DPPC), dioleoylphosphatidylcholine (DOPC), distearoylphosphatidylcholine (DSPC), dimyristoylphosphatidyl choline (DMPC), or dilinoleylphosphatidylcholine (DLPC).
  • DPPC dipalmitoylphosphatidylcholine
  • DOPC dioleoylphosphatidylcholine
  • DSPC distearoylphosphatidylcholine
  • DMPC dimyristoylphosphatid
  • phosphorus-lacking compounds such as sphingolipids, glycosphingolipid families, diacylglycerols, and ⁇ -acyloxyacids, can also be used. Additionally, such amphipathic lipids can be readily mixed with other lipids, such as triglycerides and sterols.
  • lipid particles of the invention are programmable fusion lipids.
  • Such lipid particles have little tendency to fuse with cell membranes and deliver their payload until a given signal event occurs. This allows the lipid particle to distribute more evenly after injection into an organism or disease site before it starts fusing with cells.
  • the signal event can be, for example, a change in pH, temperature, ionic environment, or time.
  • a fusion delaying or "cloaking" component such as an ATTA-lipid conjugate or a PEG-lipid conjugate, can simply exchange out of the lipid particle membrane over time.
  • Exemplary lipid anchors include those having lengths of from about C 14 to about C 22 , preferably from about Ci 4 to about Ci 6 .
  • a PEG moiety for example an mPEG- NH 2 , has a size of about 1000, 2000, 5000, 10,000, 15,000 or 20,000 daltons.
  • the lipid particle By the time the lipid particle is suitably distributed in the body, it has lost sufficient cloaking agent so as to be fusogenic. With other signal events, it is desirable to choose a signal that is associated with the disease site or target cell, such as increased temperature at a site of inflammation.
  • a lipid particle conjugated to a nucleic acid agent can also include a targeting moiety, e.g., a targeting moiety that is specific to a cell type or tissue.
  • a targeting moiety e.g., a targeting moiety that is specific to a cell type or tissue.
  • Targeting of lipid particles using a variety of targeting moieties, such as ligands, cell surface receptors, glycoproteins, vitamins (e.g., riboflavin) and monoclonal antibodies, has been previously described (see, e.g., U.S. Patent Nos. A, 951 ,113 and 4,603,044).
  • Exexmplary targeting moieties include a targeting lipid such as a targeting lipid described herein.
  • the targeting lipid is a GaINAc containing targeting lipid such as GalNAc3-DSG and GalNAc3-PEG-DSG as described herein.
  • the targeting moieties can include the entire protein or fragments thereof.
  • Targeting mechanisms generally require that the targeting agents be positioned on the surface of the lipid particle in such a manner that the targeting moiety is available for interaction with the target, for example, a cell surface receptor.
  • a variety of different targeting agents and methods are known and available in the art, including those described, e.g., in Sapra, P. and Allen, TM, Prog. Lipid Res. 42(5):439-62 (2003); and Abra, RM et al, J. Liposome Res. 12:1-3, (2002).
  • lipid particles i.e. , liposomes
  • hydrophilic polymer chains such as polyethylene glycol (PEG) chains
  • a ligand such as an antibody, for targeting the lipid particle is linked to the polar head group of lipids forming the lipid particle.
  • the targeting ligand is attached to the distal ends of the PEG chains forming the hydrophilic polymer coating (Klibanov, et al , Journal of Liposome Research 2: 321-334 (1992); Kirpotin et al, FEBS Letters 388: 115-118
  • Standard methods for coupling the target agents can be used.
  • phosphatidylethanolamine which can be activated for attachment of target agents
  • derivatized lipophilic compounds such as lipid-derivatized bleomycin
  • Antibody-targeted liposomes can be constructed using, for instance, liposomes that incorporate protein A (see, Renneisen, et al, J. Bio. Chem., 265:16337-16342 (1990) and Leonetti, et al, Proc. Natl Acad. ScL (USA), 87:2448-2451 (1990).
  • Other examples of antibody conjugation are disclosed in U.S. Patent No. 6,027,726, the teachings of which are incorporated herein by reference.
  • targeting moieties can also include other proteins, specific to cellular components, including antigens associated with neoplasms or tumors. Proteins used as targeting moieties can be attached to the liposomes via covalent bonds (see, Heath, Covalent Attachment of Proteins to Liposomes, 149 Methods in Enzymology 111-119 (Academic Press, Inc. 1987)). Other targeting methods include the biotin-avidin system.
  • the lipid particle comprises a mixture of a cationic lipid of the present invention, neutral lipids (other than a cationic lipid), a sterol (e.g., cholesterol) and a PEG-modified lipid (e.g., a PEG-DMG or PEG- cDMA).
  • the lipid mixture consists of or consists essentially of a cationic lipid of the present invention, a neutral lipid, cholesterol, and a PEG- modified lipid.
  • the lipid particle consists of or consists essentially of the above lipid mixture in molar ratios of about 20-70% DLin- M-C3-DMA: 5-45% neutral lipid:20-55% cholesterol:0.5-15% PEG-modified lipid.
  • the lipid particle consists of or consists essentially of DLin-M-C3-DMA, DSPC, Choi, and either PEG-DMG or PEG-cDMA, e.g., in a molar ratio of about 20-60% DLin-M-C3-DMA: 5-25% DSPC :25-55% Chol:0.5- 15% PEG-DMG or PEG-cDMA.
  • the molar lipid ratio is approximately 40/10/40/10 (mol% DLin-M-C3-DMA /DSPC/Chol/PEG-DMG or PEG-cDMA), 35/15/40/10 (mol% DLin-M-C3-DMA /DSPC/Chol/PEG-DMG or PEG-cDMA) or 52/13/30/5 (mol% DLin-M-C3-DMA /DSPC/Chol/PEG-DMG or PEG-cDMA).
  • the neutral lipid, DSPC, in these compositions is replaced with POPC, DPPC, DOPE or SM.
  • compositions comprising a lipid particle of the invention and an active agent, wherein the active agent is associated with the lipid particle.
  • the active agent is a therapeutic agent.
  • the active agent is encapsulated within an aqueous interior of the lipid particle.
  • the active agent is present within one or more lipid layers of the lipid particle.
  • the active agent is bound to the exterior or interior lipid surface of a lipid particle.
  • “Fully encapsulated” as used herein indicates that the nucleic acid in the particles is not significantly degraded after exposure to serum or a nuclease assay that would significantly degrade free DNA.
  • a fully encapsulated system preferably less than 25% of particle nucleic acid is degraded in a treatment that would normally degrade 100% of free nucleic acid, more preferably less than 10% and most preferably less than 5% of the particle nucleic acid is degraded.
  • full encapsulation may be determined by an Oligreen ® assay. Oligreen ® is an ultrasensitive fluorescent nucleic acid stain for quantitating oligonucleotides and single- stranded DNA in solution (available from Invitrogen Corporation, Carlsbad, CA). Fully encapsulated also suggests that the particles are serum stable, that is, that they do not rapidly decompose into their component parts upon in vivo administration.
  • Active agents include any molecule or compound capable of exerting a desired effect on a cell, tissue, organ, or subject. Such effects may be biological, physiological, or cosmetic, for example. Active agents may be any type of molecule or compound, including e.g., nucleic acids, peptides and polypeptides, including, e.g., antibodies, such as, e.g., polyclonal antibodies, monoclonal antibodies, antibody fragments; humanized antibodies, recombinant antibodies, recombinant human antibodies, and PrimatizedTM antibodies, cytokines, growth factors, apoptotic factors, differentiation- inducing factors, cell surface receptors and their ligands; hormones; and small molecules, including small organic molecules or compounds.
  • nucleic acids e.g., nucleic acids, peptides and polypeptides
  • antibodies such as, e.g., polyclonal antibodies, monoclonal antibodies, antibody fragments
  • the active agent is a therapeutic agent, or a salt or derivative thereof.
  • Therapeutic agent derivatives may be therapeutically active themselves or they may be prodrugs, which become active upon further modification.
  • a therapeutic agent derivative retains some or all of the therapeutic activity as compared to the unmodified agent, while in another embodiment, a therapeutic agent derivative lacks therapeutic activity.
  • therapeutic agents include any therapeutically effective agent or drug, such as anti-inflammatory compounds, anti-depressants, stimulants, analgesics, antibiotics, birth control medication, antipyretics, vasodilators, anti-angiogenics, cytovascular agents, signal transduction inhibitors, cardiovascular drugs, e.g., anti-arrhythmic agents, vasoconstrictors, hormones, and steroids.
  • therapeutically effective agent or drug such as anti-inflammatory compounds, anti-depressants, stimulants, analgesics, antibiotics, birth control medication, antipyretics, vasodilators, anti-angiogenics, cytovascular agents, signal transduction inhibitors, cardiovascular drugs, e.g., anti-arrhythmic agents, vasoconstrictors, hormones, and steroids.
  • the therapeutic agent is an oncology drug, which may also be referred to as an anti-tumor drug, an anti-cancer drug, a tumor drug, an antineoplastic agent, or the like.
  • oncology drugs that may be used according to the invention include, but are not limited to, adriamycin, alkeran, allopurinol, altretamine, amifostine, anastrozole, araC, arsenic trioxide, azathioprine, bexarotene, biCNU, bleomycin, busulfan intravenous, busulfan oral, capecitabine (Xeloda), carboplatin, carmustine, CCNU, celecoxib, chlorambucil, cisplatin, cladribine, cyclosporin A, cytarabine, cytosine arabinoside, daunorubicin, Cytoxan, daunorubicin, dexamethasone, de
  • lipid particles of the invention are associated with a nucleic acid, resulting in a nucleic acid-lipid particle.
  • the nucleic acid is fully encapsulated in the lipid particle.
  • nucleic acid is meant to include any oligonucleotide or polynucleotide. Fragments containing up to 50 nucleotides are generally termed oligonucleotides, and longer fragments are called polynucleotides. In particular embodiments, oligonucletoides of the invention are 20-50 nucleotides in length.
  • polynucleotide and “oligonucleotide” refer to a polymer or oligomer of nucleotide or nucleoside monomers consisting of naturally occurring bases, sugars and intersugar (backbone) linkages.
  • polynucleotide and oligonucleotide also includes polymers or oligomers comprising non-naturally occurring monomers, or portions thereof, which function similarly. Such modified or substituted oligonucleotides are often preferred over native forms because of properties such as, for example, enhanced cellular uptake and increased stability in the presence of nucleases.
  • Oligonucleotides are classified as deoxyribooligonucleotides or ribooligonucleotides.
  • a deoxyribooligonucleotide consists of a 5-carbon sugar called deoxyribose joined covalently to phosphate at the 5' and 3' carbons of this sugar to form an alternating, unbranched polymer.
  • a ribooligonucleotide consists of a similar repeating structure where the 5-carbon sugar is ribose.
  • the nucleic acid that is present in a lipid-nucleic acid particle according to this invention includes any form of nucleic acid that is known.
  • the nucleic acids used herein can be single-stranded DNA or RNA, or double-stranded DNA or RNA, or DNA-RNA hybrids.
  • double-stranded DNA include structural genes, genes including control and termination regions, and self -replicating systems such as viral or plasmid DNA.
  • double-stranded RNA include siRNA and other RNA interference reagents.
  • Single-stranded nucleic acids include, e.g., antisense oligonucleotides, ribozymes, microRNA, and triplex-forming oligonucleotides.
  • Nucleic acids of the invention may be of various lengths, generally dependent upon the particular form of nucleic acid.
  • plasmids or genes may be from about 1,000 to 100,000 nucleotide residues in length.
  • oligonucleotides may range from about 10 to 100 nucleotides in length.
  • oligonucleotides, both single- stranded, double-stranded, and triple-stranded may range in length from about 10 to about 50 nucleotides, from about 20 o about 50 nucleotides, from about 15 to about 30 nucleotides, from about 20 to about 30 nucleotides in length.
  • an oligonucleotide (or a strand thereof) of the invention specifically hybridizes to or is complementary to a target polynucleotide.
  • “Specifically hybridizable” and “complementary” are terms which are used to indicate a sufficient degree of complementarity such that stable and specific binding occurs between the DNA or RNA target and the oligonucleotide. It is understood that an oligonucleotide need not be 100% complementary to its target nucleic acid sequence to be specifically hybridizable.
  • an oligonucleotide is specifically hybridizable when binding of the oligonucleotide to the target interferes with the normal function of the target molecule to cause a loss of utility or expression therefrom, and there is a sufficient degree of complementarity to avoid non-specific binding of the oligonucleotide to non-target sequences under conditions in which specific binding is desired, i.e., under physiological conditions in the case of in vivo assays or therapeutic treatment, or, in the case of in vitro assays, under conditions in which the assays are conducted.
  • this oligonucleotide includes 1, 2, or 3 base substitutions as compared to the region of a gene or mRNA sequence that it is targeting or to which it specifically hybridizes.
  • nucleic acid-lipid particles of the invention are associated with RNA interference (RNAi) molecules.
  • RNA interference methods using RNAi molecules may be used to disrupt the expression of a gene or polynucleotide of interest.
  • small interfering RNA siRNA
  • SiRNAs are RNA duplexes normally 21- 30 nucleotides long that can associate with a cytoplasmic multi-protein complex known as RNAi-induced silencing complex (RISC).
  • RISC RNAi-induced silencing complex
  • siRNA can be designed to knock down protein expression with high specificity. Unlike other antisense technologies, siRNA function through a natural mechanism evolved to control gene expression through non-coding RNA. This is generally considered to be the reason why their activity is more potent in vitro and in vivo than either antisense ODN or ribozymes.
  • RNAi reagents including siRNAs targeting clinically relevant targets, are currently under pharmaceutical development, as described, e.g., in de Fougerolles, A. et al, Nature Reviews 6:443-453 (2007).
  • RNAi molecules While the first described RNAi molecules were RNA: RNA hybrids comprising both an RNA sense and an RNA antisense strand, it has now been demonstrated that DNA sense:RNA antisense hybrids, RNA sense:DNA antisense hybrids, and DNA:DNA hybrids are capable of mediating RNAi (Lamberton, J.S. and Christian, A.T., (2003) Molecular Biotechnology 24:111-119). Thus, the invention includes the use of RNAi molecules comprising any of these different types of double-stranded molecules. In addition, it is understood that RNAi molecules may be used and introduced to cells in a variety of forms.
  • RNAi molecules encompasses any and all molecules capable of inducing an RNAi response in cells, including, but not limited to, double-stranded polynucleotides comprising two separate strands, i.e. a sense strand and an antisense strand, e.g., small interfering RNA (siRNA); polynucleotides comprising a hairpin loop of complementary sequences, which forms a double-stranded region, e.g., shRNAi molecules, and expression vectors that express one or more polynucleotides capable of forming a double-stranded polynucleotide alone or in combination with another polynucleotide.
  • siRNA small interfering RNA
  • a "single strand siRNA compound” as used herein, is an siRNA compound which is made up of a single molecule. It may include a duplexed region, formed by intra-strand pairing, e.g., it may be, or include, a hairpin or pan-handle structure. Single strand siRNA compounds may be antisense with regard to the target molecule
  • a single strand siRNA compound may be sufficiently long that it can enter the RISC and participate in RISC mediated cleavage of a target mRNA.
  • a single strand siRNA compound is at least 14, and in other embodiments at least 15, 20, 25, 29, 35, 40, or 50 nucleotides in length. In certain embodiments, it is less than 200, 100, or 60 nucleotides in length.
  • Hairpin siRNA compounds will have a duplex region equal to or at least 17, 18, 19, 29, 21, 22, 23, 24, or 25 nucleotide pairs.
  • the duplex region will may be equal to or less than 200, 100, or 50, in length. In certain embodiments, ranges for the duplex region are 15-30, 17 to 23, 19 to 23, and 19 to 21 nucleotides pairs in length.
  • the hairpin may have a single strand overhang or terminal unpaired region. In certain embodiments, the overhangs are 2-3 nucleotides in length. In some embodiments, the overhang is at the sense side of the hairpin and in some embodiments on the antisense side of the hairpin.
  • a "double stranded siRNA compound” as used herein, is an siRNA compound which includes more than one, and in some cases two, strands in which interchain hybridization can form a region of duplex structure.
  • the antisense strand of a double stranded siRNA compound may be equal to or at least, 14, 15, 16 17, 18, 19, 25, 29, 40, or 60 nucleotides in length. It may be equal to or less than 200, 100, or 50, nucleotides in length. Ranges may be 17 to 25, 19 to 23, and 19 to21 nucleotides in length.
  • antisense strand means the strand of an siRNA compound that is sufficiently complementary to a target molecule, e.g. a target RNA.
  • the sense strand of a double stranded siRNA compound may be equal to or at least 14, 15, 16 17, 18, 19, 25, 29, 40, or 60 nucleotides in length. It may be equal to or less than 200, 100, or 50, nucleotides in length. Ranges may be 17 to 25, 19 to 23, and 19 to 21 nucleotides in length.
  • the double strand portion of a double stranded siRNA compound may be equal to or at least, 14, 15, 16 17, 18, 19, 20, 21, 22, 23, 24, 25, 29, 40, or 60 nucleotide pairs in length. It may be equal to or less than 200, 100, or 50, nucleotides pairs in length. Ranges may be 15-30, 17 to 23, 19 to 23, and 19 to 21 nucleotides pairs in length.
  • the siRNA compound is sufficiently large that it can be cleaved by an endogenous molecule, e.g., by Dicer, to produce smaller siRNA compounds, e.g., siRNAs agents
  • the sense and antisense strands may be chosen such that the double- stranded siRNA compound includes a single strand or unpaired region at one or both ends of the molecule.
  • a double- stranded siRNA compound may contain sense and antisense strands, paired to contain an overhang, e.g., one or two 5' or 3' overhangs, or a 3' overhang of 1 - 3 nucleotides.
  • the overhangs can be the result of one strand being longer than the other, or the result of two strands of the same length being staggered. Some embodiments will have at least one 3' overhang. In one embodiment, both ends of an siRNA molecule will have a 3' overhang. In some embodiments, the overhang is 2 nucleotides.
  • the length for the duplexed region is between 15 and 30, or 18, 19, 20, 21, 22, and 23 nucleotides in length, e.g., in the ssiRNA compound range discussed above.
  • ssiRNA compounds can resemble in length and structure the natural Dicer processed products from long dsiRNAs.
  • Embodiments in which the two strands of the ssiRNA compound are linked, e.g., covalently linked are also included. Hairpin, or other single strand structures which provide the required double stranded region, and a 3' overhang are also within the invention.
  • the siRNA compounds described herein, including double- stranded siRNA compounds and single-stranded siRNA compounds can mediate silencing of a target RNA, e.g., mRNA, e.g., a transcript of a gene that encodes a protein.
  • mRNA e.g., a transcript of a gene that encodes a protein.
  • mRNA to be silenced e.g., a transcript of a gene that encodes a protein.
  • mRNA to be silenced e.g., a transcript of a gene that encodes a protein.
  • mRNA to be silenced e.g., a transcript of a gene that encodes a protein.
  • mRNA to be silenced e.g., a transcript of a gene that encodes a protein.
  • a gene e.g., a gene that encodes a protein.
  • the RNA to be silenced is an endogenous gene or a pathogen gene
  • RNAi refers to the ability to silence, in a sequence specific manner, a target RNA. While not wishing to be bound by theory, it is believed that silencing uses the RNAi machinery or process and a guide RNA, e.g., an ssiRNA compound of 21 to 23 nucleotides.
  • an siRNA compound is "sufficiently complementary" to a target RNA, e.g., a target mRNA, such that the siRNA compound silences production of protein encoded by the target mRNA.
  • the siRNA compound is "exactly complementary" to a target RNA, e.g., the target RNA and the siRNA compound anneal, for example to form a hybrid made exclusively of Watson- Crick base pairs in the region of exact complementarity.
  • a "sufficiently complementary" target RNA can include an internal region (e.g., of at least 10 nucleotides) that is exactly complementary to a target RNA.
  • the siRNA compound specifically discriminates a single-nucleotide difference. In this case, the siRNA compound only mediates RNAi if exact complementary is found in the region (e.g., within 7 nucleotides of) the single- nucleotide difference.
  • RNA interference may be used to specifically inhibit expression of target polynucleotides. Double- stranded RNA-mediated suppression of gene and nucleic acid expression may be accomplished according to the invention by introducing dsRNA, siRNA or shRNA into cells or organisms. SiRNA may be double-stranded RNA, or a hybrid molecule comprising both RNA and DNA, e.g., one RNA strand and one DNA strand. It has been demonstrated that the direct introduction of siRNAs to a cell can trigger RNAi in mammalian cells (Elshabir, S. M., et al. Nature 411:494-498 (2001)).
  • RNA silencing occurred at the RNA level and was specific for the targeted genes, with a strong correlation between RNA and protein suppression (Caplen, N. et al., Proc. Natl. Acad. Sci. USA 98:9746-9747 (2001)).
  • cell lines including HeLa S3, COS7, 293, NIH/3T3, A549, HT-29, CHO-KI and MCF-7 cells, are susceptible to some level of siRNA silencing (Brown, D. et al. TechNotes 9(1): 1-7, available on the worldwide web at www.dot.ambion.dot.com/techlib/tn/91/912.html (9/1/02)).
  • RNAi molecules targeting specific polynucleotides can be readily prepared according to procedures known in the art. Structural characteristics of effective siRNA molecules have been identified. Elshabir, S. M. et al. (2001) Nature 411:494- 498 and Elshabir, S.M. et al. (2001), EMBO 20:6877-6888. Accordingly, one of skill in the art would understand that a wide variety of different siRNA molecules may be used to target a specific gene or transcript.
  • siRNA molecules according to the invention are double- stranded and 16 - 30 or 18 - 25 nucleotides in length, including each integer in between. In one embodiment, an siRNA is 21 nucleotides in length.
  • siRNAs have 0-7 nucleotide 3' overhangs or 0-4 nucleotide 5' overhangs. In one embodiment, an siRNA molecule has a two nucleotide 3' overhang. In one embodiment, an siRNA is 21 nucleotides in length with two nucleotide 3' overhangs ⁇ i.e. they contain a 19 nucleotide complementary region between the sense and antisense strands). In certain embodiments, the overhangs are UU or dTdT 3' overhangs.
  • siRNA molecules are completely complementary to one strand of a target DNA molecule, since even single base pair mismatches have been shown to reduce silencing.
  • siRNAs may have a modified backbone composition, such as, for example, 2'-deoxy- or 2'-O-methyl modifications.
  • the entire strand of the siRNA is not made with either 2' deoxy or 2'-O-modified bases.
  • the invention provides a cell including a vector for inhibiting the expression of a gene in a cell.
  • the vector includes a regulatory sequence operably linked to a nucleotide sequence that encodes at least one strand of one of the dsRNA of the invention.
  • siRNA target sites are selected by scanning the target mRNA transcript sequence for the occurrence of AA dinucleotide sequences. Each AA dinucleotide sequence in combination with the 3' adjacent approximately 19 nucleotides are potential siRNA target sites.
  • siRNA target sites are preferentially not located within the 5' and 3' untranslated regions (UTRs) or regions near the start codon (within approximately 75 bases), since proteins that bind regulatory regions may interfere with the binding of the siRNP endonuclease complex (Elshabir, S. et al Nature 411:494-498 (2001); Elshabir, S. et al EMBO J. 20:6877- 6888 (2001)).
  • potential target sites may be compared to an appropriate genome database, such as BLASTN 2.0.5, available on the NCBI server at www.ncbi.nlm, and potential target sequences with significant homology to other coding sequences eliminated.
  • short hairpin RNAs constitute the nucleic acid component of nucleic acid-lipid particles of the invention.
  • Short Hairpin RNA is a form of hairpin RNA capable of sequence-specifically reducing expression of a target gene.
  • Short hairpin RNAs may offer an advantage over siRNAs in suppressing gene expression, as they are generally more stable and less susceptible to degradation in the cellular environment. It has been established that such short hairpin RNA-mediated gene silencing works in a variety of normal and cancer cell lines, and in mammalian cells, including mouse and human cells. Paddison, P. et al, Genes Dev. 16(8):948-58 (2002).
  • transgenic cell lines bearing chromosomal genes that code for engineered shRNAs have been generated. These cells are able to constitutively synthesize shRNAs, thereby facilitating long-lasting or constitutive gene silencing that may be passed on to progeny cells.
  • ShRNAs contain a stem loop structure. In certain embodiments, they may contain variable stem lengths, typically from 19 to 29 nucleotides in length, or any number in between. In certain embodiments, hairpins contain 19 to 21 nucleotide stems, while in other embodiments, hairpins contain 27 to 29 nucleotide stems. In certain embodiments, loop size is between 4 to 23 nucleotides in length, although the loop size may be larger than 23 nucleotides without significantly affecting silencing activity. ShRNA molecules may contain mismatches, for example G-U mismatches between the two strands of the shRNA stem without decreasing potency.
  • shRNAs are designed to include one or several G-U pairings in the hairpin stem to stabilize hairpins during propagation in bacteria, for example.
  • complementarity between the portion of the stem that binds to the target mRNA (antisense strand) and the mRNA is typically required, and even a single base pair mismatch is this region may abolish silencing.
  • 5' and 3' overhangs are not required, since they do not appear to be critical for shRNA function, although they may be present (Paddison et al. (2002) Genes & Dev. 16(8):948-58).
  • miRNAs are a highly conserved class of small RNA molecules that are transcribed from DNA in the genomes of plants and animals, but are not translated into protein.
  • Processed miRNAs are single stranded -17-25 nucleotide (nt) RNA molecules that become incorporated into the RNA-induced silencing complex (RISC) and have been identified as key regulators of development, cell proliferation, apoptosis and differentiation. They are believed to play a role in regulation of gene expression by binding to the 3 '-untranslated region of specific mRNAs.
  • RISC mediates down-regulation of gene expression through translational inhibition, transcript cleavage, or both. RISC is also implicated in transcriptional silencing in the nucleus of a wide range of eukaryotes.
  • miRNA sequences identified to date is large and growing, illustrative examples of which can be found, for example, in: "miRBase: microRNA sequences, targets and gene nomenclature” Griffiths-Jones S, Grocock RJ, van Dongen S, Bateman A, Enright AJ. NAR, 2006, 34, Database Issue, D140-D144; "The microRNA Registry” Griffiths -Jones S. NAR, 2004, 32, Database Issue, D109- Dl Il; and also on the worldwide web at microrna.dot.sanger.dot.ac. dot.uk/sequences/.
  • a nucleic acid is an antisense oligonucleotide directed to a target polynucleotide.
  • antisense oligonucleotide or simply “antisense” is meant to include oligonucleotides that are complementary to a targeted polynucleotide sequence.
  • Antisense oligonucleotides are single strands of DNA or RNA that are complementary to a chosen sequence. In the case of antisense RNA, they prevent translation of complementary RNA strands by binding to it.
  • Antisense DNA can be used to target a specific, complementary (coding or non-coding) RNA. If binding takes places this DNA/RNA hybrid can be degraded by the enzyme RNase H.
  • antisense oligonucleotides contain from about 10 to about 50 nucleotides, more preferably about 15 to about 30 nucleotides.
  • the term also encompasses antisense oligonucleotides that may not be exactly complementary to the desired target gene.
  • the invention can be utilized in instances where non-target specific-activities are found with antisense, or where an antisense sequence containing one or more mismatches with the target sequence is the most preferred for a particular use.
  • Antisense oligonucleotides have been demonstrated to be effective and targeted inhibitors of protein synthesis, and, consequently, can be used to specifically inhibit protein synthesis by a targeted gene.
  • the efficacy of antisense oligonucleotides for inhibiting protein synthesis is well established. For example, the synthesis of polygalactauronase and the muscarine type 2 acetylcholine receptor are inhibited by antisense oligonucleotides directed to their respective mRNA sequences (U. S. Patent 5,739,119 and U. S. Patent 5,759,829).
  • antisense constructs have also been described that inhibit and can be used to treat a variety of abnormal cellular proliferations, e.g. cancer (U. S. Patent 5,747,470; U. S. Patent 5,591,317 and U. S. Patent 5,783,683).
  • antisense oligonucleotides are known in the art and can be readily adapted to produce an antisense oligonucleotide that targets any polynucleotide sequence. Selection of antisense oligonucleotide sequences specific for a given target sequence is based upon analysis of the chosen target sequence and determination of secondary structure, T 1n , binding energy, and relative stability. Antisense oligonucleotides may be selected based upon their relative inability to form dimers, hairpins, or other secondary structures that would reduce or prohibit specific binding to the target mRNA in a host cell.
  • Highly preferred target regions of the mRNA include those regions at or near the AUG translation initiation codon and those sequences that are substantially complementary to 5 ' regions of the mRNA.
  • These secondary structure analyses and target site selection considerations can be performed, for example, using v.4 of the OLIGO primer analysis software (Molecular Biology Insights) and/or the BLASTN 2.0.5 algorithm software (Altschul et al, Nucleic Acids Res. 1997, 25(17) :3389-402).
  • Antagomirs are RNA-like oligonucleotides that harbor various modifications for RNAse protection and pharmacologic properties, such as enhanced tissue and cellular uptake. They differ from normal RNA by, for example, complete 2'-O- methylation of sugar, phosphorothioate backbone and, for example, a cholesterol- moiety at 3'-end. Antagomirs may be used to efficiently silence endogenous miRNAs by forming duplexes comprising the antagomir and endogenous miRNA, thereby preventing miRNA-induced gene silencing.
  • antagomir-mediated miRNA silencing is the silencing of miR-122, described in Krutzfeldt et al, Nature, 2005, 438: 685-689, which is expressly incorporated by reference herein in its entirety.
  • Antagomir RNAs may be synthesized using standard solid phase oligonucleotide synthesis protocols. See US Patent Application Ser. Nos. 11/502,158 and 11/657,341 (the disclosure of each of which are incorporated herein by reference).
  • An antagomir can include ligand-conjugated monomer subunits and monomers for oligonucleotide synthesis. Exemplary monomers are described in U.S. Application No. 10/916,185, filed on August 10, 2004.
  • An antagomir can have a ZXY structure, such as is described in PCT Application No. PCT/US2004/07070 filed on March 8, 2004.
  • An antagomir can be complexed with an amphipathic moiety. Exemplary amphipathic moieties for use with oligonucleotide agents are described in PCT Application No. PCT/US2004/07070, filed on March 8, 2004.
  • Aptamers are nucleic acid or peptide molecules that bind to a particular molecule of interest with high affinity and specificity (Tuerk and Gold, Science 249:505 (1990); Ellington and Szostak, Nature 346:818 (1990)).
  • DNA or RNA aptamers have been successfully produced which bind many different entities from large proteins to small organic molecules. See Eaton, Curr. Opin. Chem. Biol. 1: 10-16 (1997), Famulok, Curr. Opin. Struct. Biol. 9:324-9(1999), and Hermann and Patel, Science 287:820-5 (2000).
  • Aptamers may be RNA or DNA based, and may include a riboswitch.
  • a riboswitch is a part of an mRNA molecule that can directly bind a small target molecule, and whose binding of the target affects the gene's activity.
  • an mRNA that contains a riboswitch is directly involved in regulating its own activity, depending on the presence or absence of its target molecule.
  • aptamers are engineered through repeated rounds of in vitro selection or equivalently, SELEX (systematic evolution of ligands by exponential enrichment) to bind to various molecular targets such as small molecules, proteins, nucleic acids, and even cells, tissues and organisms.
  • the aptamer may be prepared by any known method, including synthetic, recombinant, and purification methods, and may be used alone or in combination with other aptamers specific for the same target. Further, as described more fully herein, the term “aptamer” specifically includes "secondary aptamers” containing a consensus sequence derived from comparing two or more known aptamers to a given target.
  • nucleic acid-lipid particles are associated with ribozymes.
  • Ribozymes are RNA-protein complexes having specific catalytic domains that possess endonuclease activity (Kim and Cech, Proc Natl Acad Sci U S A. 1987 Dec;84(24):8788-92; Forster and Symons, Cell. 1987 Apr 24;49(2):211-20).
  • a large number of ribozymes accelerate phosphoester transfer reactions with a high degree of specificity, often cleaving only one of several phosphoesters in an oligonucleotide substrate (Cech et ah, Cell.
  • enzymatic nucleic acids act by first binding to a target RNA. Such binding occurs through the target binding portion of a enzymatic nucleic acid which is held in close proximity to an enzymatic portion of the molecule that acts to cleave the target RNA. Thus, the enzymatic nucleic acid first recognizes and then binds a target RNA through complementary base-pairing, and once bound to the correct site, acts enzymatically to cut the target RNA.
  • RNA RNA binds to a target RNA
  • the enzymatic nucleic acid molecule may be formed in a hammerhead, hairpin, a hepatitis ⁇ virus, group I intron or RNaseP RNA (in association with an RNA guide sequence) or Neurospora VS RNA motif, for example.
  • hammerhead motifs are described by Rossi et al Nucleic Acids Res. 1992 Sep 11;20(17):4559-65.
  • hairpin motifs are described by Hampel et al (Eur. Pat. Appl. Publ. No. EP 0360257), Hampel and Tritz, Biochemistry 1989 Jun 13;28(12):4929-33; Hampel et al, Nucleic Acids Res. 1990 Jan 25;18(2):299-304 and U. S. Patent 5,631,359.
  • An example of the hepatitis ⁇ virus motif is described by Perrotta and Been, Biochemistry. 1992 Dec l;31(47): 11843-52; an example of the RNaseP motif is described by Guerrier-Takada et al, Cell.
  • enzymatic nucleic acid molecules used according to the invention have a specific substrate binding site which is complementary to one or more of the target gene DNA or RNA regions, and that they have nucleotide sequences within or surrounding that substrate binding site which impart an RNA cleaving activity to the molecule.
  • the ribozyme constructs need not be limited to specific motifs mentioned herein.
  • Ribozymes may be designed as described in Int. Pat. Appl. Publ. No. WO 93/23569 and Int. Pat. Appl. Publ. No. WO 94/02595, each specifically incorporated herein by reference, and synthesized to be tested in vitro and in vivo, as described therein.
  • Ribozyme activity can be optimized by altering the length of the ribozyme binding arms or chemically synthesizing ribozymes with modifications that prevent their degradation by serum ribonucleases (see e.g., Int. Pat. Appl. Publ. No. WO 92/07065; Int. Pat. Appl. Publ. No. WO 93/15187; Int. Pat. Appl. Publ. No. WO 91/03162; Eur. Pat. Appl. Publ. No. 92110298.4; U. S. Patent 5,334,711; and Int. Pat. Appl. Publ. No. WO 94/13688, which describe various chemical modifications that can be made to the sugar moieties of enzymatic RNA molecules), modifications which enhance their efficacy in cells, and removal of stem II bases to shorten RNA synthesis times and reduce chemical requirements.
  • ODNs oligonucleotides
  • ODNs used in the compositions and methods of the invention have a phosphodiester ("PO”) backbone or a phosphorothioate (“PS”) backbone, and/or at least one methylated cytosine residue in a CpG motif.
  • PO phosphodiester
  • PS phosphorothioate
  • DNA-based antisense oligodeoxynucleotides (ODN) and ribozymes (RNA) represented an exciting new paradigm for drug design and development, but their application in vivo was prevented by endo- and exo- nuclease activity as well as a lack of successful intracellular delivery.
  • ODN oligonucleotide
  • RNA ribozymes
  • the degradation issue was effectively overcome following extensive research into chemical modifications that prevented the oligonucleotide (oligo) drugs from being recognized by nuclease enzymes but did not inhibit their mechanism of action.
  • This research was so successful that antisense ODN drugs in development today remain intact in vivo for days compared to minutes for unmodified molecules (Kurreck, J. 2003. Antisense technologies. Improvement through novel chemical modifications. Eur J Biochem 270:1628-44).
  • intracellular delivery and mechanism of action issues have so far limited antisense ODN and ribozymes from becoming clinical products.
  • RNA duplexes are inherently more stable to nucleases than single stranded DNA or RNA, and unlike antisense ODN, unmodified siRNA show good activity once they access the cytoplasm. Even so, the chemical modifications developed to stabilize antisense ODN and ribozymes have also been systematically applied to siRNA to determine how much chemical modification can be tolerated and if pharmacokinetic and pharmacodynamic activity can be enhanced.
  • RNA interference by siRNA duplexes requires an antisense and sense strand, which have different functions. Both are necessary to enable the siRNA to enter RISC, but once loaded the two strands separate and the sense strand is degraded whereas the antisense strand remains to guide RISC to the target mRNA.
  • nucleoside is a base-sugar combination.
  • Nucleotides are nucleosides that further include a phosphate group covalently linked to the sugar portion of the nucleoside.
  • the phosphate group can be linked to either the 2', 3' or 5' hydroxyl moiety of the sugar.
  • the phosphate groups covalently link adjacent nucleosides to one another to form a linear polymeric compound. In turn the respective ends of this linear polymeric structure can be further joined to form a circular structure.
  • the phosphate groups are commonly referred to as forming the internucleoside backbone of the oligonucleotide.
  • the normal linkage or backbone of RNA and DNA is a 3' to 5' phosphodiester linkage.
  • the nucleic acid that is used in a lipid-nucleic acid particle according to this invention includes any form of nucleic acid that is known.
  • the nucleic acid may be a modified nucleic acid of the type used previously to enhance nuclease resistance and serum stability.
  • acceptable therapeutic products can also be prepared using the method of the invention to formulate lipid-nucleic acid particles from nucleic acids that have no modification to the phosphodiester linkages of natural nucleic acid polymers, and the use of unmodified phosphodiester nucleic acids (i.e., nucleic acids in which all of the linkages are phosphodiester linkages) is a preferred embodiment of the invention.
  • Antisense, siRNA and other oligonucleotides useful in this invention include, but are not limited to, oligonucleotides containing modified backbones or non-natural internucleoside linkages. Oligonucleotides having modified backbones include those that retain a phosphorus atom in the backbone and those that do not have a phosphorus atom in the backbone. Modified oligonucleotides that do not have a phosphorus atom in their internucleoside backbone can also be considered to be oligonucleosides.
  • Modified oligonucleotide backbones include, for example, phosphorothioates, chiral phosphorothioates, phosphorodithioates, phosphotriesters, aminoalkylphosphotri-esters, methyl and other alkyl phosphonates including 3'- alkylene phosphonates and chiral phosphonates, phosphinates, phosphoramidates including 3'-amino phosphoramidate and aminoalkylphosphoramidates, thionophosphoramidates, thionoalkylphosphonates, thionoalkylphosphotriesters, phosphoroselenate, methylphosphonate, or O-alkyl phosphotriester linkages, and boranophosphates having normal 3'-5' linkages, 2'-5' linked analogs of these, and those having inverted polarity wherein the adjacent pairs of nucleoside units are linked 3'-5' to 5'-3' or 2'-5' to 5'-2'.
  • modified oligonucleotide backbones that do not include a phosphorus atom therein have backbones that are formed by short chain alkyl or cycloalkyl internucleoside linkages, mixed heteroatom and alkyl or cycloalkyl internucleoside linkages, or one or more short chain heteroatomic or heterocyclic internucleoside linkages.
  • These include, e.g., those having morpholino linkages (formed in part from the sugar portion of a nucleoside); siloxane backbones; sulfide, sulfoxide and sulfone backbones; formacetyl and thioformacetyl backbones; methylene formacetyl and thioformacetyl backbones; alkene containing backbones; sulfamate backbones; methyleneimino and methylenehydrazino backbones; sulfonate and sulfonamide backbones; amide backbones; and others having mixed N, O, S and CH 2 component parts.
  • siloxane backbones e.g., those having morpholino linkages (formed in part from the sugar portion of a nucleoside); siloxane backbones; sulfide, sulfoxide and sulfone backbones; formacetyl and thioformacety
  • oligonucleosides include, but are not limited to, U.S. Pat. Nos. 5,034,506; 5,166,315; 5,185,444; 5,214,134; 5,216,141; 5,235,033; 5,264,562; 5,264,564; 5,405,938; 5,434,257; 5,466,677; 5,470,967; 5,489,677; 5,541,307; 5,561,225; 5,596,086; 5,602,240; 5,610,289; 5,602,240; 5,608,046; 5,610,289; 5,618,704; 5,623,070; 5,663,312; 5,633,360; 5,677,437; and 5,677,439.
  • the phosphorothioate backbone modification (Table 3, #1), where a non- bridging oxygen in the phosphodiester bond is replaced by sulfur, is one of the earliest and most common means deployed to stabilize nucleic acid drugs against nuclease degradation.
  • PS modifications can be made extensively to both siRNA strands without much impact on activity (Kurreck, J., Eur. J. Biochem. 270:1628-44, 2003).
  • PS oligos are known to avidly associate non- specifically with proteins resulting in toxicity, especially upon i.v. administration. Therefore, the PS modification is usually restricted to one or two bases at the 3 ' and 5' ends.
  • the boranophosphate linker (Table 3, #2) is a recent modification that is apparently more stable than PS, enhances siRNA activity and has low toxicity (Hall et al, Nucleic Acids Res. 32:5991-6000, 2004).
  • nucleic acids derivatives include those nucleic acids molecules in which the bridging oxygen atoms (those forming the phosphoester linkages) have been replaced with -S-, -NH-, -CH2- and the like.
  • the alterations to the antisense, siRNA, or other nucleic acids used will not completely affect the negative charges associated with the nucleic acids.
  • the invention contemplates the use of antisense, siRNA, and other nucleic acids in which a portion of the linkages are replaced with, for example, the neutral methyl phosphonate or phosphoramidate linkages. When neutral linkages are used, in certain embodiments, less than 80% of the nucleic acid linkages are so substituted, or less than 50% of the linkages are so substituted.
  • oligonucleotides may also include nucleobase (often referred to in the art simply as “base”) modifications or substitutions.
  • nucleobases include the purine bases adenine (A) and guanine (G), and the pyrimidine bases thymine (T), cytosine (C) and uracil (U).
  • Modified nucleobases include other synthetic and natural nucleobases such as 5- methylcytosine (5-me-C or m5c), 5-hydroxymethyl cytosine, xanthine, hypoxanthine, 2-aminoadenine, 6-methyl and other alkyl derivatives of adenine and guanine, 2- propyl and other alkyl derivatives of adenine and guanine, 2-thiouracil, 2-thiothymine and 2-thiocytosine, 5-halouracil and cytosine, 5-propynyl uracil and cytosine, 6-azo uracil, cytosine and thymine, 5-uracil (pseudouracil), 4-thiouracil, 8-halo, 8-amino, 8- thiol, 8-thioalkyl, 8-hydroxyl and other 8-substituted adenines and guanines, 5-halo particularly 5-bromo, 5-trifluoromethyl
  • nucleobases are particularly useful for increasing the binding affinity of the oligomeric compounds of the invention, including 5-substituted pyrimidines, 6- azapyrimidines and N-2, N-6 and 0-6 substituted purines, including 2- aminopropyladenine, 5-propynyluracil and 5-propynylcytosine. 5-methylcytosine substitutions have been shown to increase nucleic acid duplex stability by 0.6-1.2° C. (Sanghvi, Y. S., Crooke, S. T. and Lebleu, B., eds., Antisense Research and Applications 1993, CRC Press, Boca Raton, pages 276-278).
  • RNA interference and chemically modified small interfering RNAs occur at the 2'-OH of the RNA sugar ring, which provides a convenient chemically reactive site (Manoharan, M. 2004. RNA interference and chemically modified small interfering RNAs. Curr Opin Chem Biol 8:570-9; Zhang, H. Y., Du, Q., Wahlestedt, C, Liang, Z. 2006. RNA Interference with chemically modified siRNA. Curr Top Med Chem 6:893-900).
  • the 2'-F and T- OME are common and both increase stability, the 2'-OME modification does not reduce activity as long as it is restricted to less than 4 nucleotides per strand (Holen, T., Amarzguioui, M., Babaie, E., Prydz, H. 2003. Similar behaviour of single- strand and double-strand siRNAs suggests they act through a common RNAi pathway. Nucleic Acids Res 31:2401-7).
  • the 2'-0-MOE (0.9) is most effective in siRNA when modified bases are restricted to the middle region of the molecule ( Prakash, T.P., Allerson, C.
  • Modified oligonucleotides may also contain one or more substituted sugar moieties.
  • the invention includes oligonucleotides that comprise one of the following at the 2' position: OH; F; O-, S-, or N-alkyl, O-alkyl-0-alkyl, O-, S-, or N-alkenyl, or O-, S- or N-alkynyl, wherein the alkyl, alkenyl and alkynyl may be substituted or unsubstituted Ci to Cio alkyl or C2 to ClO alkenyl and alkynyl.
  • oligonucleotides comprise one of the following at the 2' position: Ci to Cio lower alkyl, substituted lower alkyl, alkaryl, aralkyl, O-alkaryl or O-aralkyl, SH, SCH 3 , OCN, Cl, Br, CN, CF 3 , OCF 3 , SOCH 3 , SO 2 CH 3 , ONO 2 , NO 2 , N 3 , NH 2 , heterocycloalkyl, heterocycloalkaryl, aminoalkylamino, polyalkylamino, substituted silyl, an RNA cleaving group, a reporter group, an intercalator, a group for improving the pharmacokinetic properties of an oligonucleotide, or a group for improving the pharmacodynamic properties of an oligonucleotide, and other substituents having similar properties.
  • One modification includes 2'-methoxyethoxy (2'-0-CH 2 CH 2 OCH 3 , also known as 2'-O-(2- methoxyethyl) or 2'-MOE) (Martin et al, HeIv. Chim. Acta 1995, 78, 486-504), i.e., an alkoxyalkoxy group.
  • Other modifications include 2'-dimethylaminooxyethoxy, i.e., a O(CH 2 ) 2 ⁇ N(CH 3 ) 2 group, also known as 2'-DMAOE, and T- dimethylaminoethoxyethoxy (2'-DMAEOE).
  • Additional modifications include 2'-methoxy (2'-0-CH 3 ), 2'-aminopropoxy (2'-OCH 2 CH 2 CH 2 NH 2 ) and 2'-fluoro (2'-F). Similar modifications may also be made at other positions on the oligonucleotide, particularly the 3' position of the sugar on the 3' terminal nucleotide or in 2'-5' linked oligonucleotides and the 5' position of 5' terminal nucleotide. Oligonucleotides may also have sugar mimetics such as cyclobutyl moieties in place of the pentofuranosyl sugar. Representative United States patents that teach the preparation of such modified sugars structures include, but are not limited to, U.S. Pat. Nos.
  • both the sugar and the internucleoside linkage, i.e., the backbone, of the nucleotide units are replaced with novel groups, although the base units are maintained for hybridization with an appropriate nucleic acid target compound.
  • One such oligomeric compound, an oligonucleotide mimetic that has been shown to have excellent hybridization properties is referred to as a peptide nucleic acid (PNA).
  • PNA peptide nucleic acid
  • the sugar-backbone of an oligonucleotide is replaced with an amide containing backbone, in particular an aminoethylglycine backbone.
  • nucleobases are retained and are bound directly or indirectly to aza nitrogen atoms of the amide portion of the backbone.
  • Representative United States patents that teach the preparation of PNA compounds include, but are not limited to, U.S. Pat. Nos. 5,539,082; 5,714,331; and 5,719,262. Further teaching of PNA compounds can be found in Nielsen et al. (Science, 1991, 254, 1497-1500).
  • Particular embodiments of the invention are oligonucleotides with phosphorothioate backbones and oligonucleosides with heteroatom backbones, and in particular -CH 2 -NH-O-CH 2 -, -CH 2 -N(CH 3 ) -0-CH 2 - (referred to as a methylene (methylimino) or MMI backbone) -CH 2 -O-N(CH 3 ) -CH 2 -, -CH 2 - N(CH 3 )-N(CH 3 ) -CH 2 - and -0-N(CH 3 ) -CH 2 -CH 2 - (wherein the native phosphodiester backbone is represented as -0-P-O-CH 2 --) of the above referenced U.S.
  • an oligonucleotide can include nucleotides containing e.g., arabinose, as the sugar.
  • the monomer can have an alpha linkage at the 1' position on the sugar, e.g., alpha-nucleosides.
  • Oligonucleotides can also include "abasic" sugars, which lack a nucleobase at C-I'. These abasic sugars can also be further containing modifications at one or more of the constituent sugar atoms.
  • Oligonucleotides can also contain one or more sugars that are in the L form, e.g. L- nucleosides.
  • oligonucleotides of this invention are chimeric oligonucleotides.
  • "Chimeric oligonucleotides” or “chimeras,” in the context of this invention, are oligonucleotides that contain two or more chemically distinct regions, each made up of at least one nucleotide.
  • oligonucleotides typically contain at least one region of modified nucleotides that confers one or more beneficial properties (such as, e,g., increased nuclease resistance, increased uptake into cells, increased binding affinity for the RNA target) and a region that is a substrate for RNase H cleavage.
  • a chimeric oligonucleotide comprises at least one region modified to increase target binding affinity.
  • Affinity of an oligonucleotide for its target is routinely determined by measuring the Tm of an oligonucleotide/target pair, which is the temperature at which the oligonucleotide and target dissociate; dissociation is detected spectrophotometrically. The higher the Tm, the greater the affinity of the oligonucleotide for the target.
  • the region of the oligonucleotide which is modified to increase target mRNA binding affinity comprises at least one nucleotide modified at the 2' position of the sugar, most preferably a 2'-O-alkyl, 2'-O-alkyl-O-alkyl or 2'-fluoro-modified nucleotide.
  • modifications are routinely incorporated into oligonucleotides and these oligonucleotides have been shown to have a higher Tm (i.e., higher target binding affinity) than 2'-deoxyoligonucleotides against a given target. The effect of such increased affinity is to greatly enhance oligonucleotide inhibition of target gene expression.
  • a chimeric oligonucletoide comprises a region that acts as a substrate for RNAse H.
  • oligonucleotides may include any combination of the various modifications described herein.
  • Another modification of the oligonucleotides of the invention involves chemically linking to the oligonucleotide one or more moieties or conjugates which enhance the activity, cellular distribution or cellular uptake of the oligonucleotide.
  • Such conjugates and methods of preparing the same are known in the art.
  • oligonucleotides used in accordance with this invention may be conveniently and routinely made through the well-known technique of solid phase synthesis. Equipment for such synthesis is sold by several vendors including Applied Biosystems. Any other means for such synthesis may also be employed; the actual synthesis of the oligonucleotides is well within the talents of the routineer. It is also well known to use similar techniques to prepare other oligonucleotides such as the phosphorothioates and alkylated derivatives.
  • Nucleic acids associated with lipid particles of the present invention may be immunostimulatory, including immunostimulatory oligonucleotides (ISS; single-or double-stranded) capable of inducing an immune response when administered to a subject, which may be a mammal or other patient.
  • ISS immunostimulatory oligonucleotides
  • ISS include, e.g., certain palindromes leading to hairpin secondary structures (see Yamamoto S., et al. (1992) J. Immunol. 148: 4072-4076), or CpG motifs, as well as other known ISS features (such as multi-G domains, see WO 96/11266).
  • the immune response may be an innate or an adaptive immune response.
  • the immune system is divided into a more innate immune system, and acquired adaptive immune system of vertebrates, the latter of which is further divided into humoral cellular components.
  • the immune response may be mucosal.
  • an immunostimulatory nucleic acid is only immunostimulatory when administered in combination with a lipid particle, and is not immunostimulatory when administered in its "free form.” According to the present invention, such an oligonucleotide is considered to be immunostimulatory.
  • Immunostimulatory nucleic acids are considered to be non-sequence specific when it is not required that they specifically bind to and reduce the expression of a target polynucleotide in order to provoke an immune response.
  • certain immunostimulatory nucleic acids may comprise a seuqence correspondign to a region of a naturally occurring gene or mRNA, but they may still be considered non- sequence specific immunostimulatory nucleic acids.
  • the immunostimulatory nucleic acid or oligonucleotide comprises at least one CpG dinucleotide.
  • the oligonucleotide or CpG dinucleotide may be unmethylated or methylated.
  • the immunostimulatory nucleic acid comprises at least one CpG dinucleotide having a methylated cytosine.
  • the nucleic acid comprises a single CpG dinucleotide, wherein the cytosine in said CpG dinucleotide is methylated.
  • the nucleic acid comprises the sequence 5' TAACGTTGAGGGGCAT 3'.
  • the nucleic acid comprises at least two CpG dinucleotides, wherein at least one cytosine in the CpG dinucleotides is methylated.
  • each cytosine in the CpG dinucleotides present in the sequence is methylated.
  • the nucleic acid comprises a plurality of CpG dinucleotides, wherein at least one of said CpG dinucleotides comprises a methylated cytosine.
  • the nucleic acid comprises the sequence 5' TTCCATGACGTTCCTGACGT 3'.
  • the nucleic acid sequence comprises the sequence 5' TCCATGACGTTCCTGACGT 3', wherein the two cytosines indicated in bold are methylated.
  • the ODN is selected from a group of ODNs consisting of ODN #1, ODN #2, ODN #3, ODN #4, ODN #5, ODN #6, ODN #7, ODN #8, and ODN #9, as shown below.
  • ODNs oligonucleotides
  • oligonucleotides bearing the consensus binding sequence of a specific transcription factor can be used as tools for manipulating gene expression in living cells.
  • This strategy involves the intracellular delivery of such "decoy oligonucleotides", which are then recognized and bound by the target factor. Occupation of the transcription factor's DNA-binding site by the decoy renders the transcription factor incapable of subsequently binding to the promoter regions of target genes. Decoys can be used as therapeutic agents, either to inhibit the expression of genes that are activated by a transcription factor, or to upregulate genes that are suppressed by the binding of a transcription factor. Examples of the utilization of decoy oligonucleotides may be found in Mann et al., J. Clin. Invest., 2000, 106: 1071-1075, which is expressly incorporated by reference herein, in its entirety
  • a supermir refers to a single stranded, double stranded or partially double stranded oligomer or polymer of ribonucleic acid (RNA) or deoxyribonucleic acid (DNA) or both or modifications thereof, which has a nucleotide sequence that is substantially identical to an miRNA and that is antisense with respect to its target.
  • This term includes oligonucleotides composed of naturally-occurring nucleobases, sugars and covalent internucleoside (backbone) linkages and which contain at least one non-naturally-occurring portion which functions similarly.
  • modified or substituted oligonucleotides are preferred over native forms because of desirable properties such as, for example, enhanced cellular uptake, enhanced affinity for nucleic acid target and increased stability in the presence of nucleases.
  • the supermir does not include a sense strand, and in another preferred embodiment, the supermir does not self-hybridize to a significant extent.
  • An supermir featured in the invention can have secondary structure, but it is substantially single- stranded under physiological conditions.
  • An supermir that is substantially single- stranded is single- stranded to the extent that less than about 50% (e.g., less than about 40%, 30%, 20%, 10%, or 5%) of the supermir is duplexed with itself.
  • the supermir can include a hairpin segment, e.g., sequence, preferably at the 3' end can self hybridize and form a duplex region, e.g., a duplex region of at least 1, 2, 3, or 4 and preferably less than 8, 7, 6, or n nucleotides, e.g., 5 nuclotides.
  • the duplexed region can be connected by a linker, e.g., a nucleotide linker, e.g., 3, 4, 5, or 6 dTs, e.g., modified dTs.
  • the supermir is duplexed with a shorter oligo, e.g., of 5, 6, 7, 8, 9, or 10 nucleotides in length, e.g., at one or both of the 3' and 5' end or at one end and in the non-terminal or middle of the supermir.
  • a shorter oligo e.g., of 5, 6, 7, 8, 9, or 10 nucleotides in length, e.g., at one or both of the 3' and 5' end or at one end and in the non-terminal or middle of the supermir.
  • miRNA mimics represent a class of molecules that can be used to imitate the gene silencing ability of one or more miRNAs.
  • miRNA mimic refers to synthetic non-coding RNAs (i.e. the miRNA is not obtained by purification from a source of the endogenous miRNA) that are capable of entering the RNAi pathway and regulating gene expression.
  • miRNA mimics can be designed as mature molecules (e.g. single stranded) or mimic precursors (e.g., pri- or pre-miRNAs).
  • miRNA mimics can be comprised of nucleic acid (modified or modified nucleic acids) including oligonucleotides comprising, without limitation, RNA, modified RNA, DNA, modified DNA, locked nucleic acids, or 2'-O,4'-C-ethylene-bridged nucleic acids (ENA), or any combination of the above (including DNA-RNA hybrids).
  • miRNA mimics can comprise conjugates that can affect delivery, intracellular compartmentalization, stability, specificity, functionality, strand usage, and/or potency.
  • miRNA mimics are double stranded molecules (e.g., with a duplex region of between about 16 and about 31 nucleotides in length) and contain one or more sequences that have identity with the mature strand of a given miRNA.
  • Modifications can comprise 2' modifications (including 2'-0 methyl modifications and 2' F modifications) on one or both strands of the molecule and internucleotide modifications (e.g. phorphorthioate modifications) that enhance nucleic acid stability and/or specificity.
  • miRNA mimics can include overhangs. The overhangs can consist of 1-6 nucleotides on either the 3' or 5' end of either strand and can be modified to enhance stability or functionality.
  • a miRNA mimic comprises a duplex region of between 16 and 31 nucleotides and one or more of the following chemical modification patterns: the sense strand contains 2'-O-methyl modifications of nucleotides 1 and 2 (counting from the 5' end of the sense oligonucleotide), and all of the Cs and Us; the antisense strand modifications can comprise 2' F modification of all of the Cs and Us, phosphorylation of the 5' end of the oligonucleotide, and stabilized internucleotide linkages associated with a 2 nucleotide 3 ' overhang.
  • Antimir or miRNA inhibitor are antimir or miRNA inhibitor.
  • antimir microRNA inhibitor
  • miR inhibitor miR inhibitor
  • inhibitor refers to oligonucleotides or modified oligonucleotides that interfere with the ability of specific miRNAs.
  • the inhibitors are nucleic acid or modified nucleic acids in nature including oligonucleotides comprising RNA, modified RNA, DNA, modified DNA, locked nucleic acids (LNAs), or any combination of the above.
  • Modifications include 2' modifications (including 2'-0 alkyl modifications and 2' F modifications) and internucleotide modifications (e.g. phosphorothioate modifications) that can affect delivery, stability, specificity, intracellular compartmentalization, or potency.
  • miRNA inhibitors can comprise conjugates that can affect delivery, intracellular compartmentalization, stability, and/or potency.
  • Inhibitors can adopt a variety of configurations including single stranded, double stranded (RNA/RNA or RNA/DNA duplexes), and hairpin designs, in general, microRNA inhibitors comprise contain one or more sequences or portions of sequences that are complementary or partially complementary with the mature strand (or strands) of the miRNA to be targeted, in addition, the miRNA inhibitor may also comprise additional sequences located 5' and 3' to the sequence that is the reverse complement of the mature miRNA.
  • the additional sequences may be the reverse complements of the sequences that are adjacent to the mature miRNA in the pri-miRNA from which the mature miRNA is derived, or the additional sequences may be arbitrary sequences (having a mixture of A, G, C, or U). In some embodiments, one or both of the additional sequences are arbitrary sequences capable of forming hairpins. Thus, in some embodiments, the sequence that is the reverse complement of the miRNA is flanked on the 5' side and on the 3' side by hairpin structures.
  • Micro-RNA inhibitors when double stranded, may include mismatches between nucleotides on opposite strands. Furthermore, micro-RNA inhibitors may be linked to conjugate moieties in order to facilitate uptake of the inhibitor into a cell.
  • a micro-RNA inhibitor may be linked to cholesteryl 5-(bis(4- methoxyphenyl)(phenyl)methoxy)-3 hydroxypentylcarbamate) which allows passive uptake of a micro-RNA inhibitor into a cell.
  • Micro-RNA inhibitors including hairpin miRNA inhibitors, are described in detail in Vermeulen et al., "Double-Stranded Regions Are Essential Design Components Of Potent Inhibitors of RISC Function," RNA 13: 723-730 (2007) and in WO2007/095387 and WO 2008/036825 each of which is incorporated herein by reference in its entirety.
  • a person of ordinary skill in the art can select a sequence from the database for a desired miRNA and design an inhibitor useful for the methods disclosed herein.
  • Ul adaptor inhibit polyA sites and are bifunctional oligonucleotides with a target domain complementary to a site in the target gene's terminal exon and a 'Ul domain' that binds to the Ul smaller nuclear RNA component of the Ul snRNP (Goraczniak, et al., 2008, Nature Biotechnology, 27(3), 257-263, which is expressly incorporated by reference herein, in its entirety).
  • Ul snRNP is a ribonucleoprotein complex that functions primarily to direct early steps in spliceosome formation by binding to the pre-mRNA exon- intron boundary (Brown and Simpson, 1998, Annu Rev Plant Physiol Plant MoI Biol 49:77-95).
  • oligonucleotides of the invention are Ul adaptors. In one embodiment, the Ul adaptor can be administered in combination with at least one other iRNA agent. Oligonucleotide modifications
  • Unmodified oligonucleotides may be less than optimal in some applications, e.g., unmodified oligonucleotides can be prone to degradation by e.g., cellular nucleases. Nucleases can hydrolyze nucleic acid phosphodiester bonds. However, chemical modifications of oligonucleotides can confer improved properties, and, e.g., can render oligonucleotides more stable to nucleases.
  • oligonucleotides are polymers of subunits or monomers, many of the modifications described below occur at a position which is repeated within an oligonucleotide, e.g., a modification of a base, a sugar, a phosphate moiety, or the non-bridging oxygen of a phosphate moiety. It is not necessary for all positions in a given oligonucleotide to be uniformly modified, and in fact more than one of the aforementioned modifications may be incorporated in a single oligonucleotide or even at a single nucleoside within an oligonucleotide.
  • the modification will occur at all of the subject positions in the oligonucleotide but in many, and in fact in most cases it will not.
  • a modification may only occur at a 3' or 5' terminal position, may only occur in the internal region, may only occur in a terminal regions, e.g. at a position on a terminal nucleotide or in the last 2, 3, 4, 5, or 10 nucleotides of an oligonucleotide.
  • a modification may occur in a double strand region, a single strand region, or in both.
  • a modification may occur only in the double strand region of a double- stranded oligonucleotide or may only occur in a single strand region of a double- stranded oligonucleotide.
  • a phosphorothioate modification at a non-bridging oxygen position may only occur at one or both termini, may only occur in a terminal regions, e.g., at a position on a terminal nucleotide or in the last 2, 3, 4, 5, or 10 nucleotides of a strand, or may occur in double strand and single strand regions, particularly at termini.
  • the 5' end or ends can be phosphorylated.
  • a modification described herein may be the sole modification, or the sole type of modification included on multiple nucleotides, or a modification can be combined with one or more other modifications described herein.
  • the modifications described herein can also be combined onto an oligonucleotide, e.g. different nucleotides of an oligonucleotide have different modifications described herein.
  • the bases in a 3' or 5' overhang will be modified, e.g., with a modification described herein.
  • Modifications can include, e.g., the use of modifications at the 2' OH group of the ribose sugar, e.g., the use of deoxyribonucleotides, e.g., deoxythymidine, instead of ribonucleotides, and modifications in the phosphate group, e.g., phosphothioate modifications.
  • Overhangs need not be homologous with the target sequence.
  • the phosphate group is a negatively charged species. The charge is distributed equally over the two non-bridging oxygen atoms. However, the phosphate group can be modified by replacing one of the oxygens with a different substituent. One result of this modification to RNA phosphate backbones can be increased resistance of the oligoribonucleotide to nucleolytic breakdown. Thus while not wishing to be bound by theory, it can be desirable in some embodiments to introduce alterations which result in either an uncharged linker or a charged linker with unsymmetrical charge distribution.
  • modified phosphate groups include phosphorothioate, phosphoroselenates, borano phosphates, borano phosphate esters, hydrogen phosphonates, phosphoroamidates, alkyl or aryl phosphonates and phosphotriesters.
  • one of the non-bridging phosphate oxygen atoms in the phosphate backbone moiety can be replaced by any of the following: S, Se, BR 3 (R is hydrogen, alkyl, aryl), C (i.e. an alkyl group, an aryl group, etc...), H, NR 2 (R is hydrogen, alkyl, aryl), or OR (R is alkyl or aryl).
  • the phosphorous atom in an unmodified phosphate group is achiral. However, replacement of one of the non- bridging oxygens with one of the above atoms or groups of atoms renders the phosphorous atom chiral; in other words a phosphorous atom in a phosphate group modified in this way is a stereogenic center.
  • the stereogenic phosphorous atom can possess either the "R" configuration (herein Rp) or the "S" configuration (herein Sp).
  • Phosphorodithioates have both non-bridging oxygens replaced by sulfur.
  • the phosphorus center in the phosphorodithioates is achiral which precludes the formation of oligoribonucleotides diastereomers.
  • modifications to both non-bridging oxygens, which eliminate the chiral center, e.g. phosphorodithioate formation may be desirable in that they cannot produce diastereomer mixtures.
  • the non-bridging oxygens can be independently any one of S, Se, B, C, H, N, or OR (R is alkyl or aryl).
  • the phosphate linker can also be modified by replacement of bridging oxygen, (i.e. oxgen that links the phosphate to the nucleoside), with nitrogen (bridged phosphoroamidates), sulfur (bridged phosphorothioates) and carbon (bridged methylenephosphonates).
  • bridging oxygen i.e. oxgen that links the phosphate to the nucleoside
  • nitrogen bridged phosphoroamidates
  • sulfur bridged phosphorothioates
  • carbon bridged methylenephosphonates
  • the phosphate group can be replaced by non-phosphorus containing connectors. While not wishing to be bound by theory, it is believed that since the charged phosphodiester group is the reaction center in nucleolytic degradation, its replacement with neutral structural mimics should impart enhanced nuclease stability. Again, while not wishing to be bound by theory, it can be desirable, in some embodiment, to introduce alterations in which the charged phosphate group is replaced by a neutral moiety.
  • moieties which can replace the phosphate group include methyl phosphonate, hydroxylamino, siloxane, carbonate, carboxymethyl, carbamate, amide, thioether, ethylene oxide linker, sulfonate, sulfonamide, thioformacetal, formacetal, oxime, methyleneimino, methylenemethylimino, methylenehydrazo, methylenedimethylhydrazo and methyleneoxymethylimino.
  • Preferred replacements include the methylenecarbonylamino and methylenemethylimino groups.
  • Modified phosphate linkages where at least one of the oxygens linked to the phosphate has been replaced or the phosphate group has been replaced by a non- phosphorous group are also referred to as "non phosphodiester backbone linkage.”
  • Oligonucleotide- mimicking scaffolds can also be constructed wherein the phosphate linker and ribose sugar are replaced by nuclease resistant nucleoside or nucleotide surrogates. While not wishing to be bound by theory, it is believed that the absence of a repetitively charged backbone diminishes binding to proteins that recognize poly anions (e.g. nucleases). Again, while not wishing to be bound by theory, it can be desirable in some embodiment, to introduce alterations in which the bases are tethered by a neutral surrogate backbone. Examples include the mophilino, cyclobutyl, pyrrolidine and peptide nucleic acid (PNA) nucleoside surrogates. A preferred surrogate is a PNA surrogate.
  • the 3' and 5' ends of an oligonucleotide can be modified. Such modifications can be at the 3' end, 5' end or both ends of the molecule. They can include modification or replacement of an entire terminal phosphate or of one or more of the atoms of the phosphate group.
  • the 3' and 5' ends of an oligonucleotide can be conjugated to other functional molecular entities such as labeling moieties, e.g., fluorophores (e.g., pyrene, TAMRA, fluorescein, Cy3 or Cy5 dyes) or protecting groups (based e.g., on sulfur, silicon, boron or ester).
  • labeling moieties e.g., fluorophores (e.g., pyrene, TAMRA, fluorescein, Cy3 or Cy5 dyes) or protecting groups (based e.g., on sulfur, silicon, boron or ester).
  • the functional molecular entities can be attached to the sugar through a phosphate group and/or a linker.
  • the terminal atom of the linker can connect to or replace the linking atom of the phosphate group or the C-3' or C-5' O, N, S or C group of the sugar.
  • the linker can connect to or replace the terminal atom of a nucleotide surrogate (e.g., PNAs).
  • terminal modifications useful for modulating activity include modification of the 5' end with phosphate or phosphate analogs.
  • antisense strands of dsRNAs are 5' phosphorylated or include a phosphoryl analog at the 5' prime terminus.
  • 5'-phosphate modifications include those which are compatible with RISC mediated gene silencing.
  • Suitable modifications include: 5'- monophosphate ((HO) 2 (O)P-O-5'); 5 '-diphosphate ((HO) 2 (O)P-O-P(HO)(O)-O-S'); 5'- triphosphate ((HO) 2 (O)P-O-(HO)(O)P-O-P(HO)(O)-O-S'); 5'-guanosine cap (7- methylated or non-methylated) (7m-G-O-5'-(HO)(O)P-O-(HO)(O)P-O-P(HO)(O)-O- 5'); 5'-adenosine cap (Appp), and any modified or unmodified nucleotide cap structure (N-O-5'-(HO)(O)P-O-(HO)(O)P-O-P(HO)(O)-O-5'); 5'-monothiophosphate (phosphorothioate; (HO) 2 (S)P-O-5
  • Terminal modifications can also be useful for monitoring distribution, and in such cases the preferred groups to be added include fluorophores, e.g., fluorscein or an Alexa dye, e.g., Alexa 488. Terminal modifications can also be useful for enhancing uptake, useful modifications for this include cholesterol. Terminal modifications can also be useful for cross-linking an RNA agent to another moiety; modifications useful for this include mitomycin C.
  • Adenine, guanine, cytosine and uracil are the most common bases found in
  • RNA RNA
  • bases can be modified or replaced to provide RNA' s having improved properties.
  • nuclease resistant oligoribonucleotides can be prepared with these bases or with synthetic and natural nucleobases (e.g., inosine, thymine, xanthine, hypoxanthine, nubularine, isoguanisine, or tubercidine) and any one of the above modifications.
  • nucleobases e.g., inosine, thymine, xanthine, hypoxanthine, nubularine, isoguanisine, or tubercidine
  • substituted or modified analogs of any of the above bases e.g., "unusual bases", “modified bases”, “non-natual bases” and “universal bases” described herein, can be employed.
  • Examples include without limitation 2- aminoadenine, 6-methyl and other alkyl derivatives of adenine and guanine, 2-propyl and other alkyl derivatives of adenine and guanine, 5-halouracil and cytosine, 5- propynyl uracil and cytosine, 6-azo uracil, cytosine and thymine, 5-uracil (pseudouracil), 4-thiouracil, 5-halouracil, 5-(2-aminopropyl)uracil, 5-amino allyl uracil, 8-halo, amino, thiol, thioalkyl, hydroxyl and other 8-substituted adenines and guanines, 5-trifluoromethyl and other 5-substituted uracils and cytosines, 7- methylguanine, 5-substituted pyrimidines, 6-azapyrimidines and N-2, N-6 and 0-6 substituted purines,
  • Modifications to oligonucleotides can also include attachment of one or more cationic groups to the sugar, base, and/or the phosphorus atom of a phosphate or modified phosphate backbone moiety.
  • a cationic group can be attached to any atom capable of substitution on a natural, unusual or universal base.
  • a preferred position is one that does not interfere with hybridization, i.e., does not interfere with the hydrogen bonding interactions needed for base pairing.
  • a cationic group can be attached e.g., through the C2' position of a sugar or analogous position in a cyclic or acyclic sugar surrogate.
  • modifications may preferably be included on an oligonucleotide at a particular location, e.g., at an internal position of a strand, or on the 5' or 3' end of an oligonucleotide.
  • a preferred location of a modification on an oligonucleotide may confer preferred properties on the agent.
  • preferred locations of particular modifications may confer optimum gene silencing properties, or increased resistance to endonuclease or exonuclease activity.
  • One or more nucleotides of an oligonucleotide may have a 2'-5' linkage.
  • One or more nucleotides of an oligonucleotide may have inverted linkages, e.g. 3'-3', 5'- 5', 2' -2' or 2' -3 ' linkages.
  • a double- stranded oligonucleotide may include at least one 5'-uridine- adenine-3' (5'-UA-3') dinucleotide wherein the uridine is a 2'-modified nucleotide, or a terminal 5'-uridine-guanine-3' (5'-UG-3') dinucleotide, wherein the 5'-uridine is a 2'-modified nucleotide, or a terminal 5'-cytidine-adenine-3' (5'-CA-3') dinucleotide, wherein the 5'-cytidine is a 2 '-modified nucleotide, or a terminal 5'-uridine-uridine-3' (5'-UU-3') dinucleotide, wherein the 5'-uridine is a 2'-modified nucleotide, or a terminal 5'-cytidine-cytidine-3' (5'-CC-3') dinucleotide
  • oligoribonucleotides and oligoribonucleosides used in accordance with this invention may be synthesized with solid phase synthesis, see for example "Oligonucleotide synthesis, a practical approach”, Ed. M. J. Gait, IRL Press, 1984; “Oligonucleotides and Analogues, A Practical Approach”, Ed. F.
  • phosphinate oligoribonucleotides The preparation of phosphinate oligoribonucleotides is described in U.S. Pat. No. 5,508,270. The preparation of alkyl phosphonate oligoribonucleotides is described in U.S. Pat. No. 4,469,863. The preparation of phosphoramidite oligoribonucleotides is described in U.S. Pat. No. 5,256,775 or U.S. Pat. No. 5,366,878. The preparation of phosphotriester oligoribonucleotides is described in U.S. Pat. No. 5,023,243. The preparation of borano phosphate oligoribonucleotide is described in U.S. Pat. Nos. 5,130,302 and 5,177,198.
  • MMI linked oligoribonucleosides also identified herein as MMI linked oligoribonucleosides, methylenedimethylhydrazo linked oligoribonucleosides, also identified herein as MDH linked oligoribonucleosides, and methylenecarbonylamino linked oligonucleosides, also identified herein as amide-3 linked oligoribonucleosides, and methyleneaminocarbonyl linked oligonucleosides, also identified herein as amide-4 linked oligoribonucleosides as well as mixed backbone compounds having, as for instance, alternating MMI and PO or PS linkages can be prepared as is described in U.S. Pat. Nos.
  • Formacetal and thioformacetal linked oligoribonucleosides can be prepared as is described in U.S. Pat. Nos. 5,264,562 and 5,264,564.
  • Ethylene oxide linked oligoribonucleosides can be prepared as is described in U.S. Pat. No. 5,223,618.
  • Siloxane replacements are described in CormierJ.F. et al. Nucleic Acids Res. 1988, 16, 4583. Carbonate replacements are described in Tittensor, J.R.
  • Cyclobutyl sugar surrogate compounds can be prepared as is described in U.S. Pat. No. 5,359,044. Pyrrolidine sugar surrogate can be prepared as is described in U.S. Pat. No. 5,519,134. Morpholino sugar surrogates can be prepared as is described in U.S. Pat. Nos. 5,142,047 and 5,235,033, and other related patent disclosures.
  • PNAs Peptide Nucleic Acids
  • PNA Peptide Nucleic Acids
  • N-2 substitued purine nucleoside amidites can be prepared as is described in U.S. Pat. No. 5,459,255.
  • 3-Deaza purine nucleoside amidites can be prepared as is described in U.S. Pat. No. 5,457,191.
  • 5,6-Substituted pyrimidine nucleoside amidites can be prepared as is described in U.S. Pat. No. 5,614,617.
  • 5-Propynyl pyrimidine nucleoside amidites can be prepared as is described in U.S. Pat. No. 5,484,908.
  • linker means an organic moiety that connects two parts of a compound.
  • Linkers typically comprise a direct bond or an atom such as oxygen or sulfur, a unit such as NR 1 , C(O), C(O)NH, SO, SO 2 , SO 2 NH or a chain of atoms, such as substituted or unsubstituted alkyl, substituted or unsubstituted alkenyl, substituted or unsubstituted alkynyl, arylalkyl, arylalkenyl, arylalkynyl, heteroarylalkyl, heteroarylalkenyl, heteroarylalkynyl, heterocyclylalkyl, heterocyclylalkenyl, heterocyclylalkynyl, aryl, heteroaryl, heterocyclyl, cycloalkyl, cycloalkenyl, alkylarylalkyl, alkylarylalkenyl, alkylarylalkynyl, alkenyl
  • the linker is -[(P-Q-R) q -X-(P'-Q'-R') q ] q "-T-, wherein: P, R, T, P', R' and T are each independently for each occurrence absent, CO, NH, O, S, OC(O), NHC(O), CH 2 , CH 2 NH, CH 2 O; NHCH(R a )C(0), -C(0)-CH(R a > or heterocyclyl ;
  • Q and Q' are each independently for each occurrence absent, -(CH 2 ) n -, - C(R 1 )(R 2 )(CH 2 ) n -, -(CH 2 ) n C(R 1 )(R 2 )-, -(CH 2 CH 2 O) 1n CH 2 CH 2 -, or - (CH 2 CH 2 O) 1n CH 2 CH 2 NH- ;
  • X is absent or a cleavable linking group
  • R a is H or an amino acid side chain
  • R 1 and R 2 are each independently for each occurrence H, CH 3 , OH, SH or N(R N ) 2 ;
  • R N is independently for each occurrence H, methyl, ethyl, propyl, isopropyl, butyl or benzyl;
  • q, q' and q" are each independently for each occurrence 0-20 and wherein the repeating unit can be the same or different;
  • n is independently for each occurrence 1-20; and m is independently for each occurrence 0-50.
  • the linker comprises at least one cleavable linking group.
  • the linker is a branched linker.
  • the branchpoint of the branched linker may be at least trivalent, but may be a tetravalent, pentavalent or hexavalent atom, or a group presenting such multiple valencies.
  • the branchpoint is , -N, -N(Q)-C, -O-C, -S-C, -SS-C, -C(O)N(Q)-C, - OC(O)N(Q)-C, -N(Q)C(O)-C, or -N(Q)C(O)O-C; wherein Q is independently for each occurrence H or optionally substituted alkyl.
  • the branchpoint is glycerol or glycerol derivative.
  • a cleavable linking group is one which is sufficiently stable outside the cell, but which upon entry into a target cell is cleaved to release the two parts the linker is holding together.
  • the cleavable linking group is cleaved at least 10 times or more, preferably at least 100 times faster in the target cell or under a first reference condition (which can, e.g., be selected to mimic or represent intracellular conditions) than in the blood of a subject, or under a second reference condition (which can, e.g., be selected to mimic or represent conditions found in the blood or serum).
  • Cleavable linking groups are susceptible to cleavage agents, e.g., pH, redox potential or the presence of degradative molecules. Generally, cleavage agents are more prevalent or found at higher levels or activities inside cells than in serum or blood. Examples of such degradative agents include: redox agents which are selected for particular substrates or which have no substrate specificity, including, e.g., oxidative or reductive enzymes or reductive agents such as mercaptans, present in cells, that can degrade a redox cleavable linking group by reduction; esterases; endosomes or agents that can create an acidic environment, e.g., those that result in a pH of five or lower; enzymes that can hydrolyze or degrade an acid cleavable linking group by acting as a general acid, peptidases (which can be substrate specific), and phosphatases.
  • redox agents which are selected for particular substrates or which have no substrate specificity, including, e.g.,
  • a cleavable linkage group such as a disulfide bond can be susceptible to pH.
  • the pH of human serum is 7.4, while the average intracellular pH is slightly lower, ranging from about 7.1-7.3.
  • Endosomes have a more acidic pH, in the range of 5.5- 6.0, and lysosomes have an even more acidic pH at around 5.0.
  • Some linkers will have a cleavable linking group that is cleaved at a preferred pH, thereby releasing the cationic lipid from the ligand inside the cell, or into the desired compartment of the cell.
  • a linker can include a cleavable linking group that is cleavable by a particular enzyme.
  • the type of cleavable linking group incorporated into a linker can depend on the cell to be targeted. For example, liver targeting ligands can be linked to the cationic lipids through a linker that includes an ester group. Liver cells are rich in esterases, and therefore the linker will be cleaved more efficiently in liver cells than in cell types that are not esterase -rich. Other cell-types rich in esterases include cells of the lung, renal cortex, and testis.
  • Linkers that contain peptide bonds can be used when targeting cell types rich in peptidases, such as liver cells and synoviocytes.
  • the suitability of a candidate cleavable linking group can be evaluated by testing the ability of a degradative agent (or condition) to cleave the candidate linking group. It will also be desirable to also test the candidate cleavable linking group for the ability to resist cleavage in the blood or when in contact with other non-target tissue.
  • a degradative agent or condition
  • the candidate cleavable linking group for the ability to resist cleavage in the blood or when in contact with other non-target tissue.
  • the evaluations can be carried out in cell free systems, in cells, in cell culture, in organ or tissue culture, or in whole animals.
  • useful candidate compounds are cleaved at least 2, 4, 10 or 100 times faster in the cell (or under in vitro conditions selected to mimic intracellular conditions) as compared to blood or serum (or under in vitro conditions selected to mimic extracellular conditions).
  • cleavable linking groups are redox cleavable linking groups that are cleaved upon reduction or oxidation.
  • An example of reductively cleavable linking group is a disulphide linking group (-S-S-).
  • a candidate cleavable linking group is a suitable "reductively cleavable linking group," or for example is suitable for use with a particular iRNA moiety and particular targeting agent one can look to methods described herein.
  • a candidate can be evaluated by incubation with dithiothreitol (DTT), or other reducing agent using reagents know in the art, which mimic the rate of cleavage which would be observed in a cell, e.g., a target cell.
  • the candidates can also be evaluated under conditions which are selected to mimic blood or serum conditions.
  • candidate compounds are cleaved by at most 10% in the blood.
  • useful candidate compounds are degraded at least 2, 4, 10 or 100 times faster in the cell (or under in vitro conditions selected to mimic intracellular conditions) as compared to blood (or under in vitro conditions selected to mimic extracellular conditions).
  • the rate of cleavage of candidate compounds can be determined using standard enzyme kinetics assays under conditions chosen to mimic intracellular media and compared to conditions chosen to mimic extracellular media.
  • Phosphate-based cleavable linking groups are cleaved by agents that degrade or hydrolyze the phosphate group.
  • An example of an agent that cleaves phosphate groups in cells are enzymes such as phosphatases in cells.
  • Examples of phosphate- based linking groups are -0-P(O)(ORk)-O-, -0-P(S)(ORk)-O-, -0-P(S)(SRk)-O-, -S- P(O)(ORk)-O-, -0-P(O)(ORk)-S-, -S-P(O)(ORk)-S-, -0-P(S)(ORk)-S-, -S- P(S)(ORk)-O-, -0-P(O)(Rk)-O-, -0-P(S)(Rk)-O-, -S-P(O)(Rk)-O-, -S-P(S)
  • Preferred embodiments are -0-P(O)(OH)-O-, -O- P(S)(OH)-O-, -0-P(S)(SH)-O-, -S-P(O)(OH)-O-, -0-P(O)(OH)-S-, -S-P(O)(OH)-S-, - 0-P(S)(OH)-S-, -S-P(S)(OH)-O-, -0-P(O)(H)-O-, -0-P(S)(H)-O-, -S-P(O)(H)-O-, -S- P(S)(H)-O-, -S-P(O)(H)-S-, -0-P(S)(H)-S-.
  • a preferred embodiment is -O- P(O)(OH)-O-.
  • Acid cleavable linking groups are linking groups that are cleaved under acidic conditions.
  • acid cleavable linking groups are cleaved in an acidic environment with a pH of about 6.5 or lower (e.g., about 6.0, 5.5, 5.0, or lower), or by agents such as enzymes that can act as a general acid.
  • specific low pH organelles such as endosomes and lysosomes can provide a cleaving environment for acid cleavable linking groups.
  • acid cleavable linking groups include but are not limited to hydrazones, esters, and esters of amino acids.
  • a preferred embodiment is when the carbon attached to the oxygen of the ester (the alkoxy group) is an aryl group, substituted alkyl group, or tertiary alkyl group such as dimethyl pentyl or t-butyl.
  • Ester-based cleavable linking groups are cleaved by enzymes such as esterases and amidases in cells.
  • Examples of ester-based cleavable linking groups include but are not limited to esters of alkylene, alkenylene and alkynylene groups.
  • Ester cleavable linking groups have the general formula -C(O)O-, or -OC(O)-. These candidates can be evaluated using methods analogous to those described above.
  • Peptide-based cleavable linking groups are cleaved by enzymes such as peptidases and proteases in cells.
  • Peptide-based cleavable linking groups are peptide bonds formed between amino acids to yield oligopeptides (e.g., dipeptides, tripeptides etc.) and polypeptides.
  • Peptide-based cleavable groups do not include the amide group (-C(O)NH-).
  • the amide group can be formed between any alkylene, alkenylene or alkynelene.
  • a peptide bond is a special type of amide bond formed between amino acids to yield peptides and proteins.
  • the peptide based cleavage group is generally limited to the peptide bond (i.e., the amide bond) formed between amino acids yielding peptides and proteins and does not include the entire amide functional group.
  • Peptide-based cleavable linking groups have the general formula - NHCHR A C(O)NHCHR B C(O)-, where R A and R B are the R groups of the two adjacent amino acids. These candidates can be evaluated using methods analogous to those described above.
  • moieties are ligands, which are coupled, preferably covalently, either directly or indirectly via an intervening tether.
  • a ligand alters the distribution, targeting or lifetime of the molecule into which it is incorporated.
  • a ligand provides an enhanced affinity for a selected target, e.g., molecule, cell or cell type, compartment, e.g., a. cellular or organ compartment, tissue, organ or region of the body, as, e.g., compared to a species absent such a ligand.
  • Ligands providing enhanced affinity for a selected target are also termed targeting ligands.
  • Preferred ligands for conjugation to the lipids of the present invention are targeting ligands.
  • Some ligands can have endosomolytic properties.
  • the endosomolytic ligands promote the lysis of the endosome and/or transport of the composition of the invention, or its components, from the endosome to the cytoplasm of the cell.
  • the endosomolytic ligand may be a polyanionic peptide or peptidomimetic which shows pH-dependent membrane activity and fusogenicity.
  • the endosomolytic ligand assumes its active conformation at endosomal pH.
  • the "active" conformation is that conformation in which the endosomolytic ligand promotes lysis of the endosome and/or transport of the composition of the invention, or its components, from the endosome to the cytoplasm of the cell.
  • Exemplary endosomolytic ligands include the GALA peptide (Subbarao et al., Biochemistry, 1987, 26: 2964-2972), the EALA peptide (Vogel et al., J. Am. Chem. Soc, 1996, 118: 1581-1586), and their derivatives (Turk et al., Biochem. Biophys. Acta, 2002, 1559: 56-68).
  • the endosomolytic component may contain a chemical group (e.g., an amino acid) which will undergo a change in charge or protonation in response to a change in pH.
  • the endosomolytic component may be linear or branched. Exemplary primary sequences of peptide based endosomolytic ligands are shown in Table 5.
  • Table 5 List of peptides with endosomolytic activity.
  • Preferred ligands can improve transport, hybridization, and specificity properties and may also improve nuclease resistance of the resultant natural or modified oligoribonucleotide, or a polymeric molecule comprising any combination of monomers described herein and/or natural or modified ribonucleotides.
  • Ligands in general can include therapeutic modifiers, e.g., for enhancing uptake; diagnostic compounds or reporter groups e.g., for monitoring distribution; cross-linking agents; and nuclease-resistance conferring moieties.
  • therapeutic modifiers e.g., for enhancing uptake
  • diagnostic compounds or reporter groups e.g., for monitoring distribution
  • cross-linking agents e.g., for monitoring distribution
  • nuclease-resistance conferring moieties lipids, steroids, vitamins, sugars, proteins, peptides, poly amines, and peptide mimics.
  • Ligands can include a naturally occurring substance, such as a protein (e.g., human serum albumin (HSA), low-density lipoprotein (LDL), high-density lipoprotein (HDL), or globulin); an carbohydrate (e.g., a dextran, pullulan, chitin, chitosan, inulin, cyclodextrin or hyaluronic acid); or a lipid.
  • the ligand may also be a recombinant or synthetic molecule, such as a synthetic polymer, e.g., a synthetic polyamino acid, an oligonucleotide (e.g. an aptamer).
  • polyamino acids examples include polyamino acid is a poly lysine (PLL), poly L-aspartic acid, poly L- glutamic acid, styrene-maleic acid anhydride copolymer, poly(L-lactide-co-glycolied) copolymer, divinyl ether-maleic anhydride copolymer, N-(2- hydroxypropyl)methacrylamide copolymer (HMPA), polyethylene glycol (PEG), polyvinyl alcohol (PVA), polyurethane, poly(2-ethylacryllic acid), N- isopropylacrylamide polymers, or polyphosphazine.
  • PLL poly lysine
  • poly L-aspartic acid poly L- glutamic acid
  • styrene-maleic acid anhydride copolymer poly(L-lactide-co-glycolied) copolymer
  • divinyl ether-maleic anhydride copolymer divinyl
  • polyamines include: polyethylenimine, poly lysine (PLL), spermine, spermidine, polyamine, pseudopeptide-polyamine, peptidomimetic polyamine, dendrimer polyamine, arginine, amidine, protamine, cationic lipid, cationic porphyrin, quaternary salt of a polyamine, or an alpha helical peptide.
  • Ligands can also include targeting groups, e.g., a cell or tissue targeting agent, e.g., a lectin, glycoprotein, lipid or protein, e.g., an antibody, that binds to a specified cell type such as a kidney cell.
  • a cell or tissue targeting agent e.g., a lectin, glycoprotein, lipid or protein, e.g., an antibody, that binds to a specified cell type such as a kidney cell.
  • a targeting group can be a thyrotropin, melanotropin, lectin, glycoprotein, surfactant protein A, Mucin carbohydrate, multivalent lactose, multivalent galactose, N-acetyl-galactosamine, N-acetyl-gulucosamine multivalent mannose, multivalent fucose, glycosylated polyaminoacids, multivalent galactose, transferrin, bisphosphonate, polyglutamate, polyaspartate, a lipid, cholesterol, a steroid, bile acid, folate, vitamin B 12, biotin, an RGD peptide, an RGD peptide mimetic or an aptamer.
  • Table 6 shows some examples of targeting ligands and their associated receptors.
  • ligands include dyes, intercalating agents (e.g. acridines), cross-linkers (e.g. psoralene, mitomycin C), porphyrins (TPPC4, texaphyrin, Sapphyrin), polycyclic aromatic hydrocarbons (e.g., phenazine, dihydrophenazine), artificial endonucleases (e.g.
  • intercalating agents e.g. acridines
  • cross-linkers e.g. psoralene, mitomycin C
  • porphyrins TPPC4, texaphyrin, Sapphyrin
  • polycyclic aromatic hydrocarbons e.g., phenazine, dihydrophenazine
  • artificial endonucleases e.g.
  • EDTA lipophilic molecules, e.g, cholesterol, cholic acid, adamantane acetic acid, 1-pyrene butyric acid, dihydrotestosterone, 1,3-Bis- O(hexadecyl)glycerol, geranyloxyhexyl group, hexadecylglycerol, borneol, menthol, 1,3-propanediol, heptadecyl group, palmitic acid, myristic acid,O3-(oleoyl)lithocholic acid, O3-(oleoyl)cholenic acid, dimethoxytrityl, or phenoxazine)and peptide conjugates (e.g., antennapedia peptide, Tat peptide), alkylating agents, phosphate, amino, mercapto, PEG (e.g., PEG-40K), MPEG, [MPEG] 2 , polyamino, alkyl, substitute
  • biotin e.g., aspirin, vitamin E, folic acid
  • transport/absorption facilitators e.g., aspirin, vitamin E, folic acid
  • synthetic ribonucleases e.g., imidazole, bisimidazole, histamine, imidazole clusters, acridine- imidazole conjugates, Eu3+ complexes of tetraazamacrocycles), dinitrophenyl, HRP, or AP.
  • Ligands can be proteins, e.g., glycoproteins, or peptides, e.g., molecules having a specific affinity for a co-ligand, or antibodies e.g., an antibody, that binds to a specified cell type such as a cancer cell, endothelial cell, or bone cell.
  • Ligands may also include hormones and hormone receptors. They can also include non-peptidic species, such as lipids, lectins, carbohydrates, vitamins, cofactors, multivalent lactose, multivalent galactose, N-acetyl-galactosamine, N-acetyl-gulucosamine multivalent mannose, multivalent fucose, or aptamers.
  • the ligand can be, for example, a lipopolysaccharide, an activator of p38 MAP kinase, or an activator of NF- ⁇ B.
  • the ligand can be a substance, e.g, a drug, which can increase the uptake of the iRNA agent into the cell, for example, by disrupting the cell's cytoskeleton, e.g., by disrupting the cell's microtubules, microfilaments, and/or intermediate filaments.
  • the drug can be, for example, taxon, vincristine, vinblastine, cytochalasin, nocodazole, japlakinolide, latrunculin A, phalloidin, swinholide A, indanocine, or myoservin.
  • the ligand can increase the uptake of the iRNA agent into the cell by activating an inflammatory response, for example.
  • exemplary ligands that would have such an effect include tumor necrosis factor alpha (TNFalpha), interleukin- 1 beta, or gamma interferon.
  • the ligand is a lipid or lipid-based molecule.
  • a lipid or lipid-based molecule preferably binds a serum protein, e.g., human serum albumin (HSA).
  • HSA binding ligand allows for distribution of the conjugate to a target tissue, e.g., a non-kidney target tissue of the body.
  • the target tissue can be the liver, including parenchymal cells of the liver.
  • Other molecules that can bind HSA can also be used as ligands. For example, neproxin or aspirin can be used.
  • a lipid or lipid-based ligand can (a) increase resistance to degradation of the conjugate, (b) increase targeting or transport into a target cell or cell membrane, and/or (c) can be used to adjust binding to a serum protein, e.g., HSA.
  • a serum protein e.g., HSA.
  • a lipid based ligand can be used to modulate, e.g., control the binding of the conjugate to a target tissue.
  • a lipid or lipid-based ligand that binds to HSA more strongly will be less likely to be targeted to the kidney and therefore less likely to be cleared from the body.
  • a lipid or lipid-based ligand that binds to HSA less strongly can be used to target the conjugate to the kidney.
  • the lipid based ligand binds HSA.
  • it binds HSA with a sufficient affinity such that the conjugate will be preferably distributed to a non-kidney tissue.
  • the affinity it is preferred that the affinity not be so strong that the HSA-ligand binding cannot be reversed.
  • the lipid based ligand binds HSA weakly or not at all, such that the conjugate will be preferably distributed to the kidney.
  • Other moieties that target to kidney cells can also be used in place of or in addition to the lipid based ligand.
  • the ligand is a moiety, e.g., a vitamin, which is taken up by a target cell, e.g., a proliferating cell.
  • a target cell e.g., a proliferating cell.
  • vitamins include vitamin A, E, and K.
  • B vitamin e.g., folic acid, B 12, riboflavin, biotin, pyridoxal or other vitamins or nutrients taken up by cancer cells.
  • HAS low density lipoprotein
  • HDL high-density lipoprotein
  • the ligand is a cell-permeation agent, preferably a helical cell-permeation agent.
  • the agent is amphipathic.
  • An exemplary agent is a peptide such as tat or antennopedia. If the agent is a peptide, it can be modified, including a peptidylmimetic, invertomers, non-peptide or pseudo-peptide linkages, and use of D-amino acids.
  • the helical agent is preferably an alpha-helical agent, which preferably has a lipophilic and a lipophobic phase.
  • the ligand can be a peptide or peptidomimetic.
  • a peptidomimetic also referred to herein as an oligopeptidomimetic is a molecule capable of folding into a defined three-dimensional structure similar to a natural peptide.
  • the peptide or peptidomimetic moiety can be about 5-50 amino acids long, e.g., about 5, 10, 15, 20, 25, 30, 35, 40, 45, or 50 amino acids long (see Table 7, for example).
  • a peptide or peptidomimetic can be, for example, a cell permeation peptide, cationic peptide, amphipathic peptide, or hydrophobic peptide (e.g., consisting primarily of Tyr, Trp or Phe).
  • the peptide moiety can be a dendrimer peptide, constrained peptide or crosslinked peptide.
  • the peptide moiety can include a hydrophobic membrane translocation sequence (MTS).
  • An exemplary hydrophobic MTS-containing peptide is RFGF having the amino acid sequence AAVALLPAVLLALLAP.
  • An RFGF analogue e.g., amino acid sequence AALLPVLLAAP
  • a hydrophobic MTS can also be a targeting moiety.
  • the peptide moiety can be a "delivery" peptide, which can carry large polar molecules including peptides, oligonucleotides, and protein across cell membranes.
  • sequences from the HIV Tat protein GRKKRRQRRRPPQ
  • the Drosophila Antennapedia protein RQIKIWFQNRRMKWKK
  • a peptide or peptidomimetic can be encoded by a random sequence of DNA, such as a peptide identified from a phage- display library, or one-bead-one-compound (OBOC) combinatorial library (Lam et al., Nature, 354:82-84, 1991).
  • OBOC one-bead-one-compound
  • the peptide or peptidomimetic tethered to an iRNA agent via an incorporated monomer unit is a cell targeting peptide such as an arginine-glycine-aspartic acid (RGD)-peptide, or RGD mimic.
  • RGD arginine-glycine-aspartic acid
  • a peptide moiety can range in length from about 5 amino acids to about 40 amino acids.
  • the peptide moieties can have a structural modification, such as to increase stability or direct conformational properties. Any of the structural modifications described below can be utilized.
  • An RGD peptide moiety can be used to target a tumor cell, such as an endothelial tumor cell or a breast cancer tumor cell (Zitzmann et al., Cancer Res., 62:5139-43, 2002).
  • An RGD peptide can facilitate targeting of an iRNA agent to tumors of a variety of other tissues, including the lung, kidney, spleen, or liver (Aoki et al., Cancer Gene Therapy 8:783-787, 2001).
  • the RGD peptide will facilitate targeting of an iRNA agent to the kidney.
  • the RGD peptide can be linear or cyclic, and can be modified, e.g., glycosylated or methylated to facilitate targeting to specific tissues.
  • a glycosylated RGD peptide can deliver an iRNA agent to a tumor cell expressing ⁇ B3 (Haubner et al., Jour. Nucl. Med., 42:326-336, 2001).
  • RGD containing peptides and peptidomimetics can target cancer cells, in particular cells that exhibit an ⁇ v ⁇ 3 integrin.
  • RGD one can use other moieties that target the ⁇ v ⁇ 3 integrin ligand.
  • such ligands can be used to control proliferating cells and angiogeneis.
  • Preferred conjugates of this type lignads that targets PECAM-I, VEGF, or other cancer gene e.g., a cancer gene described herein.
  • a "cell permeation peptide” is capable of permeating a cell, e.g., a microbial cell, such as a bacterial or fungal cell, or a mammalian cell, such as a human cell.
  • a microbial cell-permeating peptide can be, for example, an ⁇ -helical linear peptide (e.g., LL-37 or Ceropin Pl), a disulfide bond-containing peptide (e.g., ⁇ -defensin, ⁇ - defensin or bactenecin), or a peptide containing only one or two dominating amino acids (e.g., PR-39 or indolicidin).
  • a cell permeation peptide can also include a nuclear localization signal (NLS).
  • NLS nuclear localization signal
  • a cell permeation peptide can be a bipartite amphipathic peptide, such as MPG, which is derived from the fusion peptide domain of HIV-I gp41 and the NLS of SV40 large T antigen (Simeoni et al., Nucl. Acids Res. 31:2717-2724, 2003).
  • a targeting peptide tethered to an iRNA agent and/or the carrier oligomer can be an amphipathic ⁇ -helical peptide.
  • amphipathic ⁇ - helical peptides include, but are not limited to, cecropins, lycotoxins, paradaxins, buforin, CPF, bombinin-like peptide (BLP), cathelicidins, ceratotoxins, S.
  • clava peptides hagfish intestinal antimicrobial peptides (HFIAPs), magainines, brevinins-2, dermaseptins, melittins, pleurocidin, H 2 A peptides, Xenopus peptides, esculentinis-1, and caerins.
  • HFIAPs hagfish intestinal antimicrobial peptides
  • magainines brevinins-2, dermaseptins, melittins, pleurocidin
  • H 2 A peptides Xenopus peptides, esculentinis-1, and caerins.
  • H 2 A peptides Xenopus peptides
  • esculentinis-1 esculentinis-1
  • caerins a number of factors will preferably be considered to maintain the integrity of helix stability.
  • a maximum number of helix stabilization residues will be utilized (e.g., leu, ala, or lys)
  • the capping residue will be considered (for example GIy is an exemplary N-capping residue and/or C-terminal amidation can be used to provide an extra H-bond to stabilize the helix.
  • Formation of salt bridges between residues with opposite charges, separated by i ⁇ 3, or i ⁇ 4 positions can provide stability.
  • cationic residues such as lysine, arginine, homo-arginine, ornithine or histidine can form salt bridges with the anionic residues glutamate or aspartate.
  • Peptide and peptidomimetic ligands include those having naturally occurring or modified peptides, e.g., D or L peptides; ⁇ , ⁇ , or ⁇ peptides; N-methyl peptides; azapeptides; peptides having one or more amide, i.e., peptide, linkages replaced with one or more urea, thiourea, carbamate, or sulfonyl urea linkages; or cyclic peptides.
  • D or L peptides e.g., D or L peptides
  • ⁇ , ⁇ , or ⁇ peptides N-methyl peptides
  • azapeptides peptides having one or more amide, i.e., peptide, linkages replaced with one or more urea, thiourea, carbamate, or sulfonyl urea linkages
  • cyclic peptides include those having naturally occurring or
  • the targeting ligand can be any ligand that is capable of targeting a specific receptor. Examples are: folate, GaINAc, galactose, mannose, mannose-6P, clusters of sugars such as GaINAc cluster, mannose cluster, galactose cluster, or an apatamer. A cluster is a combination of two or more sugar units.
  • the targeting ligands also include integrin receptor ligands, Chemokine receptor ligands, transferrin, biotin, serotonin receptor ligands, PSMA, endothelin, GCPII, somatostatin, LDL and HDL ligands.
  • the ligands can also be based on nucleic acid, e.g., an aptamer.
  • the aptamer can be unmodified or have any combination of modifications disclosed herein.
  • Endosomal release agents include imidazoles, poly or oligoimidazoles, PEIs, peptides, fusogenic peptides, polycaboxylates, polyacations, masked oligo or poly cations or anions, acetals, polyacetals, ketals/polyketyals, orthoesters, polymers with masked or unmasked cationic or anionic charges, dendrimers with masked or unmasked cationic or anionic charges.
  • PK modulator stands for pharmacokinetic modulator.
  • PK modulator include lipophiles, bile acids, steroids, phospholipid analogues, peptides, protein binding agents, PEG, vitamins etc.
  • Examplary PK modulator include, but are not limited to, cholesterol, fatty acids, cholic acid, lithocholic acid, dialkylglycerides, diacylglyceride, phospholipids, sphingolipids, naproxen, ibuprofen, vitamin E, biotin etc.
  • Oligonucleotides that comprise a number of phosphorothioate linkages are also known to bind to serum protein, thus short oligonucleotides, e.g.
  • oligonucleotides of about 5 bases, 10 bases, 15 bases or 20 bases, comprising multiple of phosphorothioate linkages in the backbaone are also amenable to the present invention as ligands (e.g. as PK modulating ligands).
  • aptamers that bind serum components are also amenable to the present invention as PK modulating ligands.
  • the ligands can all have same properties, all have different properties or some ligands have the same properties while others have different properties.
  • a ligand can have targeting properties, have endosomolytic activity or have PK modulating properties.
  • all the ligands have different properties.
  • Ligands can be coupled to the oligonucleotides various places, for example, 3 '-end, 5 '-end, and/or at an internal position.
  • the ligand is attached to the oligonucleotides via an intervening tether.
  • the ligand or tethered ligand may be present on a monomer when said monomer is incorporated into the growing strand.
  • the ligand may be incorporated via coupling to a "precursor" monomer after said "precursor" monomer has been incorporated into the growing strand.
  • a monomer having, e.g., an amino-terminated tether (i.e., having no associated ligand), e.g., TAP-(CH 2 ) n NH 2 may be incorporated into a growing sense or antisense strand.
  • a ligand having an electrophilic group e.g., a pentafluorophenyl ester or aldehyde group, can subsequently be attached to the precursor monomer by coupling the electrophilic group of the ligand with the terminal nucleophilic group of the precursor monomer's tether.
  • ligands can be attached to one or both strands.
  • a double- stranded iRNA agent contains a ligand conjugated to the sense strand.
  • a double-stranded iRNA agent contains a ligand conjugated to the antisense strand.
  • lignad can be conjugated to nucleobases, sugar moieties, or internucleosidic linkages of nucleic acid molecules. Conjugation to purine nucleobases or derivatives thereof can occur at any position including, endocyclic and exocyclic atoms. In some embodiments, the 2-, 6-, 7-, or 8-positions of a purine nucleobase are attached to a conjugate moiety. Conjugation to pyrimidine nucleobases or derivatives thereof can also occur at any position. In some embodiments, the 2-, 5-, and 6-positions of a pyrimidine nucleobase can be substituted with a conjugate moiety.
  • Conjugation to sugar moieties of nucleosides can occur at any carbon atom.
  • Example carbon atoms of a sugar moiety that can be attached to a conjugate moiety include the 2', 3', and 5' carbon atoms. The 1' position can also be attached to a conjugate moiety, such as in an abasic residue.
  • Internucleosidic linkages can also bear conjugate moieties.
  • the conjugate moiety can be attached directly to the phosphorus atom or to an O, N, or S atom bound to the phosphorus atom.
  • amine- or amide-containing internucleosidic linkages e.g., PNA
  • the conjugate moiety can be attached to the nitrogen atom of the amine or amide or to an adjacent carbon atom.
  • an oligomeric compound is attached to a conjugate moiety by contacting a reactive group (e.g., OH, SH, amine, carboxyl, aldehyde, and the like) on the oligomeric compound with a reactive group on the conjugate moiety.
  • a reactive group e.g., OH, SH, amine, carboxyl, aldehyde, and the like
  • one reactive group is electrophilic and the other is nucleophilic.
  • an electrophilic group can be a carbonyl-containing functionality and a nucleophilic group can be an amine or thiol.
  • Methods for conjugation of nucleic acids and related oligomeric compounds with and without linking groups are well described in the literature such as, for example, in Manoharan in Antisense Research and Applications, Crooke and LeBleu, eds., CRC Press, Boca Raton, FIa., 1993, Chapter 17, which is incorporated herein by reference in its entirety.
  • G,” “C,” “A” and “U” each generally stand for a nucleotide that contains guanine, cytosine, adenine, and uracil as a base, respectively.
  • ribonucleotide or “nucleotide” can also refer to a modified nucleotide, as further detailed below, or a surrogate replacement moiety.
  • guanine, cytosine, adenine, and uracil may be replaced by other moieties without substantially altering the base pairing properties of an oligonucleotide including a nucleotide bearing such replacement moiety.
  • nucleotide including inosine as its base may base pair with nucleotides containing adenine, cytosine, or uracil.
  • nucleotides containing uracil, guanine, or adenine may be replaced in the nucleotide sequences of the invention by a nucleotide containing, for example, inosine. Sequences including such replacement moieties are embodiments of the invention.
  • Fractor VII as used herein is meant a Factor VII mRNA, protein, peptide, or polypeptide.
  • the term “Factor VII” is also known in the art as AI132620, Cf7, Coagulation factor VII precursor, coagulation factor VII, FVII, Serum prothrombin conversion accelerator, FVII coagulation protein, and eptacog alfa.
  • target sequence refers to a contiguous portion of the nucleotide sequence of an mRNA molecule formed during the transcription of the gene, including mRNA that is a product of RNA processing of a primary transcription product.
  • strand including a sequence refers to an oligonucleotide including a chain of nucleotides that is described by the sequence referred to using the standard nucleotide nomenclature.
  • the term "complementary,” when used in the context of a nucleotide pair, means a classic Watson-Crick pair, i.e., GC, AT, or AU. It also extends to classic Watson-Crick pairings where one or both of the nuclotides has been modified as decribed herein, e.g., by a rbose modification or a phosphate backpone modification. It can also include pairing with an inosine or other entity that does not substantially alter the base pairing properties.
  • the term "complementary,” when used to describe a first nucleotide sequence in relation to a second nucleotide sequence, refers to the ability of an oligonucleotide or polynucleotide including the first nucleotide sequence to hybridize and form a duplex structure under certain conditions with an oligonucleotide or polynucleotide including the second nucleotide sequence, as will be understood by the skilled person.
  • Complementarity can include, full complementarity, substantial complementarity, and sufficient complementarity to allow hybridization under physiological conditions, e.g, under physiologically relevant conditions as may be encountered inside an organism.
  • Full complementarity refers to complementarity, as defined above for an individual pair, at all of the pairs of the first and second sequence.
  • sequence is “substantially complementary” with respect to a second sequence herein, the two sequences can be fully complementary, or they may form one or more, but generally not more than 4, 3 or 2 mismatched base pairs upon hybridization, while retaining the ability to hybridize under the conditions most relevant to their ultimate application.
  • Substantial complementarity can also be defined as hybridization under stringent conditions, where stringent conditions may include: 400 mM NaCl, 40 mM PIPES pH 6.4, 1 mM EDTA, 50 0 C or 70 0 C for 12-16 hours followed by washing. The skilled person will be able to determine the set of conditions most appropriate for a test of complementarity of two sequences in accordance with the ultimate application of the hybridized nucleotides.
  • a dsRNA including one oligonucleotide 21 nucleotides in length and another oligonucleotide 23 nucleotides in length wherein the longer oligonucleotide includes a sequence of 21 nucleotides that is fully complementary to the shorter oligonucleotide, may yet be referred to as "fully complementary" for the purposes of the invention.
  • “Complementary” sequences may also include, or be formed entirely from, non- Watson-Crick base pairs and/or base pairs formed from non-natural and modified nucleotides, in as far as the above requirements with respect to their ability to hybridize are fulfilled.
  • a polynucleotide which is "complementary, e.g., substantially complementary to at least part of a messenger RNA (mRNA) refers to a polynucleotide which is complementary, e.g., substantially complementary, to a contiguous portion of the mRNA of interest (e.g., encoding Factor VII).
  • mRNA messenger RNA
  • a polynucleotide is complementary to at least a part of a Factor VII mRNA if the sequence is substantially complementary to a non-interrupted portion of an mRNA encoding Factor VII.
  • double-stranded RNA refers to a ribonucleic acid molecule, or complex of ribonucleic acid molecules, having a duplex structure including two anti-parallel and substantially complementary, as defined above, nucleic acid strands.
  • the two strands forming the duplex structure may be different portions of one larger RNA molecule, or they may be separate RNA molecules. Where the two strands are part of one larger molecule, and therefore are connected by an uninterrupted chain of nucleotides between the 3 '-end of one strand and the 5 'end of the respective other strand forming the duplex structure, the connecting RNA chain is referred to as a "hairpin loop".
  • RNA strands may have the same or a different number of nucleotides. The maximum number of base pairs is the number of nucleotides in the shortest strand of the dsRNA.
  • a dsRNA may comprise one or more nucleotide overhangs.
  • a dsRNA as used herein is also refered to as a "small inhibitory RNA,” “siRNA,” “siRNA agent,” “iRNA agent” or "RNAi agent.”
  • nucleotide overhang refers to the unpaired nucleotide or nucleotides that protrude from the duplex structure of a dsRNA when a 3 '-end of one strand of the dsRNA extends beyond the 5'-end of the other strand, or vice versa.
  • Bount or “blunt end” means that there are no unpaired nucleotides at that end of the dsRNA, i.e., no nucleotide overhang.
  • a “blunt ended" dsRNA is a dsRNA that is double- stranded over its entire length, i.e., no nucleotide overhang at either end of the molecule.
  • antisense strand refers to the strand of a dsRNA which includes a region that is substantially complementary to a target sequence.
  • region of complementarity refers to the region on the antisense strand that is substantially complementary to a sequence, for example a target sequence, as defined herein. Where the region of complementarity is not fully complementary to the target sequence, the mismatches are most tolerated in the terminal regions and, if present, are generally in a terminal region or regions, e.g., within 6, 5, 4, 3, or 2 nucleotides of the 5' and/or 3' terminus.
  • sense strand refers to the strand of a dsRNA that includes a region that is substantially complementary to a region of the antisense strand.
  • identity is the relationship between two or more polynucleotide sequences, as determined by comparing the sequences. Identity also means the degree of sequence relatedness between polynucleotide sequences, as determined by the match between strings of such sequences. While there exist a number of methods to measure identity between two polynucleotide sequences, the term is well known to skilled artisans (see, e.g., Sequence Analysis in Molecular Biology, von Heinje, G., Academic Press (1987); and Sequence Analysis Primer, Gribskov., M. and Devereux, J., eds., M. Stockton Press, New York (1991)).
  • substantially identical means there is a very high degree of homology (preferably 100% sequence identity) between the sense strand of the dsRNA and the corresponding part of the target gene.
  • dsRNA having greater than 90%, or 95% sequence identity may be used in the invention, and thus sequence variations that might be expected due to genetic mutation, strain polymorphism, or evolutionary divergence can be tolerated.
  • 100% identity is preferred, the dsRNA may contain single or multiple base- pair random mismatches between the RNA and the target gene.
  • dsRNA "Introducing into a cell", when referring to a dsRNA, means facilitating uptake or absorption into the cell, as is understood by those skilled in the art. Absorption or uptake of dsRNA can occur through unaided diffusive or active cellular processes, or by auxiliary agents or devices. The meaning of this term is not limited to cells in vitro; a dsRNA may also be “introduced into a cell," wherein the cell is part of a living organism. In such instance, introduction into the cell will include the delivery to the organism. For example, for in vivo delivery, dsRNA can be injected into a tissue site or administered systemically. In vitro introduction into a cell includes methods known in the art such as electroporation and lipofection.
  • the degree of inhibition is usually expressed in terms of
  • the degree of inhibition may be given in terms of a reduction of a parameter that is functionally linked to Factor VII gene transcription, e.g. the amount of protein encoded by the Factor VII gene which is secreted by a cell, or the number of cells displaying a certain phenotype, e.g apoptosis.
  • Factor VII gene silencing may be determined in any cell expressing the target, either constitutively or by genomic engineering, and by any appropriate assay.
  • the assays provided in the Examples below shall serve as such reference.
  • expression of the Factor VII gene is suppressed by at least about 20%, 25%, 35%, 40% or 50% by administration of the double- stranded oligonucleotide of the invention.
  • the Factor VII gene is suppressed by at least about 60%, 70%, or 80% by administration of the double- stranded oligonucleotide of the invention.
  • the Factor VII gene is suppressed by at least about 85%, 90%, or 95% by administration of the double-stranded oligonucleotide of the invention.
  • treat refers to relief from or alleviation of a disease or disorder.
  • the terms “treat,” “treatment,” and the like mean to relieve or alleviate at least one symptom associated with such condition, or to slow or reverse the progression of such condition.
  • a "therapeutically relevant" composition can alleviate a disease or disorder, or a symptom of a disease or disorder when administered at an appropriate dose.
  • Factor VII -mediated condition or disease refers to a condition or disorder characterized by inappropriate, e.g., greater than normal, Factor VII activity. Inappropriate Factor VII functional activity might arise as the result of Factor VII expression in cells which normally do not express Factor VII, or increased Factor VII expression (leading to, e.g., a symptom of a viral hemorrhagic fever, or a thrombus).
  • a Factor VII-mediated condition or disease may be completely or partially mediated by inappropriate Factor VII functional activity.
  • a Factor VII-mediated condition or disease is one in which modulation of Factor VII results in some effect on the underlying condition or disorder (e.g., a Factor VII inhibitor results in some improvement in patient well- being in at least some patients).
  • a "hemorrhagic fever” includes a combination of illnesses caused by a viral infection. Fever and gastrointestinal symptoms are typically followed by capillary hemorrhaging.
  • a "coagulopathy” is any defect in the blood clotting mechanism of a subject.
  • a "thrombotic disorder” is any disorder, preferably resulting from unwanted FVII expression, including any disorder characterized by unwanted blood coagulation.
  • the phrases “therapeutically effective amount” and “prophylactically effective amount” refer to an amount that provides a therapeutic benefit in the treatment, prevention, or management of a viral hemorrhagic fever, or an overt symptom of such disorder, e.g., hemorraging, fever, weakness, muscle pain, headache, inflammation, or circulatory shock.
  • the specific amount that is therapeutically effective can be readily determined by ordinary medical practitioner, and may vary depending on factors known in the art, such as, e.g. the type of thrombotic disorder, the patient's history and age, the stage of the disease, and the administration of other agents.
  • a “pharmaceutical composition” includes a pharmacologically effective amount of a dsRNA and a pharmaceutically acceptable carrier.
  • pharmaceutically effective amount refers to that amount of an RNA effective to produce the intended pharmacological, therapeutic or preventive result. For example, if a given clinical treatment is considered effective when there is at least a 25% reduction in a measurable parameter associated with a disease or disorder, a therapeutically effective amount of a drug for the treatment of that disease or disorder is the amount necessary to effect at least a 25% reduction in that parameter.
  • pharmaceutically acceptable carrier refers to a carrier for administration of a therapeutic agent.
  • Such carriers include, but are not limited to, saline, buffered saline, dextrose, water, glycerol, ethanol, and combinations thereof.
  • the term specifically excludes cell culture medium.
  • pharmaceutically acceptable carriers include, but are not limited to pharmaceutically acceptable excipients such as inert diluents, disintegrating agents, binding agents, lubricating agents, sweetening agents, flavoring agents, coloring agents and preservatives.
  • suitable inert diluents include sodium and calcium carbonate, sodium and calcium phosphate, and lactose, while corn starch and alginic acid are suitable disintegrating agents.
  • Binding agents may include starch and gelatin, while the lubricating agent, if present, will generally be magnesium stearate, stearic acid or talc. If desired, the tablets may be coated with a material such as glyceryl monostearate or glyceryl distearate, to delay absorption in the gastrointestinal tract.
  • a "transformed cell” is a cell into which a vector has been introduced from which a dsRNA molecule may be expressed.
  • the invention relates to methods and compositions for producing lipid-encapsulated nucleic acid particles in which nucleic acids are encapsulated within a lipid layer.
  • nucleic acid-lipid particles incorporating siRNA oligonucleotides, are characterized using a variety of biophysical parameters including: (1) drug to lipid ratio; (2) encapsulation efficiency; and (3) particle size.
  • High drug to lipid rations, high encapsulation efficiency, good nuclease resistance and serum stability and controllable particle size, generally less than 200 nm in diameter are desirable.
  • nucleic acid polymer is of significance, since the modification of nucleic acids in an effort to impart nuclease resistance adds to the cost of therapeutics while in many cases providing only limited resistance. Unless stated otherwise, these criteria are calculated in this specification as follows:
  • Nucleic acid to lipid ratio is the amount of nucleic acid in a defined volume of preparation divided by the amount of lipid in the same volume. This may be on a mole per mole basis or on a weight per weight basis, or on a weight per mole basis.
  • the nucleic acid:lipid ratio is calculated after dialysis, chromatography and/or enzyme (e.g., nuclease) digestion has been employed to remove as much of the external nucleic acid as possible;
  • Encapsulation efficiency refers to the drug to lipid ratio of the starting mixture divided by the drug to lipid ratio of the final, administration competent formulation. This is a measure of relative efficiency.
  • Encapsulation efficiency refers to the drug to lipid ratio of the starting mixture divided by the drug to lipid ratio of the final, administration competent formulation. This is a measure of relative efficiency.
  • absolute efficiency the total amount of nucleic acid added to the starting mixture that ends up in the administration competent formulation, can also be calculated. The amount of lipid lost during the formulation process may also be calculated. Efficiency is a measure of the wastage and expense of the formulation; and
  • Size indicates the size (diameter) of the particles formed. Size distribution may be determined using quasi-elastic light scattering (QELS) on a Nicomp Model 370 sub-micron particle sizer. Particles under 200 nm are preferred for distribution to neo- vascularized (leaky) tissues, such as neoplasms and sites of inflammation.
  • QELS quasi-elastic light scattering
  • the methods and compositions of the invention make use of certain cationic lipids, the synthesis, preparation and characterization of which is described below and in the accompanying Examples.
  • the present invention provides methods of preparing lipid particles, including those associated with a therapeutic agent, e.g., a nucleic acid.
  • a mixture of lipids is combined with a buffered aqueous solution of nucleic acid to produce an intermediate mixture containing nucleic acid encapsulated in lipid particles wherein the encapsulated nucleic acids are present in a nucleic acid/lipid ratio of about 3 wt% to about 25 wt%, preferably 5 to 15 wt%.
  • the intermediate mixture may optionally be sized to obtain lipid-encapsulated nucleic acid particles wherein the lipid portions are unilamellar vesicles, preferably having a diameter of 30 to 150 nm, more preferably about 40 to 90 nm.
  • the pH is then raised to neutralize at least a portion of the surface charges on the lipid-nucleic acid particles, thus providing an at least partially surface-neutralized lipid-encapsulated nucleic acid composition.
  • lipid vesicles can be formed at the lower pH with titratable cationic lipids and other vesicle components in the presence of nucleic acids. In this manner, the vesicles will encapsulate and entrap the nucleic acids.
  • the surface charge of the newly formed vesicles can be neutralized by increasing the pH of the medium to a level above the pK a of the titratable cationic lipids present, i.e., to physiological pH or higher.
  • Particularly advantageous aspects of this process include both the facile removal of any surface adsorbed nucleic acid and a resultant nucleic acid delivery vehicle which has a neutral surface. Liposomes or lipid particles having a neutral surface are expected to avoid rapid clearance from circulation and to avoid certain toxicities which are associated with cationic liposome preparations. Additional details concerning these uses of such titratable cationic lipids in the formulation of nucleic acid-lipid particles are provided in US Patent 6,287,591 and US Patent 6,858,225, incorporated herein by reference.
  • the vesicles formed in this manner provide formulations of uniform vesicle size with high content of nucleic acids. Additionally, the vesicles have a size range of from about 30 to about 150 nm, more preferably about 30 to about 90 nm.
  • nucleic acid encapsulation is a result of electrostatic interaction at low pH.
  • acidic pH e.g. pH 4.0
  • the vesicle surface is charged and binds a portion of the nucleic acids through electrostatic interactions.
  • a more neutral buffer e.g. pH 7.5
  • the surface of the lipid particle or liposome is neutralized, allowing any external nucleic acid to be removed.
  • the present invention provides methods of preparing lipid/nucleic acid formulations.
  • a mixture of lipids is combined with a buffered aqueous solution of nucleic acid to produce an intermediate mixture containing nucleic acid encapsulated in lipid particles, e.g., wherein the encapsulated nucleic acids are present in a nucleic acid/lipid ratio of about 10 wt% to about 20 wt%.
  • the intermediate mixture may optionally be sized to obtain lipid- encapsulated nucleic acid particles wherein the lipid portions are unilamellar vesicles, preferably having a diameter of 30 to 150 nm, more preferably about 40 to 90 nm.
  • the pH is then raised to neutralize at least a portion of the surface charges on the lipid-nucleic acid particles, thus providing an at least partially surface-neutralized lipid-encapsulated nucleic acid composition.
  • the mixture of lipids includes at least two lipid components: a first amino lipid component of the present invention that is selected from among lipids which have a pKa such that the lipid is cationic at pH below the pKa and neutral at pH above the pKa, and a second lipid component that is selected from among lipids that prevent particle aggregation during lipid-nucleic acid particle formation.
  • the amino lipid is a novel cationic lipid of the present invention.
  • the mixture of lipids is typically a solution of lipids in an organic solvent.
  • This mixture of lipids can then be dried to form a thin film or lyophilized to form a powder before being hydrated with an aqueous buffer to form liposomes.
  • the lipid mixture can be solubilized in a water miscible alcohol, such as ethanol, and this ethanolic solution added to an aqueous buffer resulting in spontaneous liposome formation.
  • the alcohol is used in the form in which it is commercially available.
  • ethanol can be used as absolute ethanol (100%), or as 95% ethanol, the remainder being water. This method is described in more detail in US Patent 5,976,567).
  • the mixture of lipids is a mixture of cationic lipids, neutral lipids (other than a cationic lipid), a sterol (e.g., cholesterol) and a PEG- modified lipid (e.g., a PEG-DMG or PEG-cDMA) in an alcohol solvent.
  • the lipid mixture consists essentially of a cationic lipid, a neutral lipid, cholesterol and a PEG-modified lipid in alcohol, more preferably ethanol.
  • the first solution consists of the above lipid mixture in molar ratios of about 20-70% cationic lipid: 5-45% neutral lipid:20-55% cholesterol:0.5- 15% PEG-modified lipid.
  • the first solution consists essentially of a lipid chosen from Table 1, DSPC, Choi and PEG-DMG or PEG-cDMA, more preferably in a molar ratio of about 20-60% cationic lipid: 5-25% DSPC:25-55% Chol:0.5-15% PEG-DMG or PEG-DMA.
  • the molar lipid ratio is approximately 50/10/38.5/1.5 (mol% cationic lipid/DSPC/Chol/PEG-DMG, PEG-DSG or PEG-DPG), 57.2/7.1/34.3/1.4 (mol% cationic lipid/DPPC/Chol/PEG-cDMA), 40/15/40/5 (mol% cationic lipid/DSPC/Chol/PEG-DMG), 50/10/35/4.5/0.5 (mol% cationic lipid/DSPC/Chol/PEG-DSG or GalNAc3-PEG-DSG), 50/10/35/5 (cationic lipid/DSPC/Chol/PEG-DMG), 40/10/40/10 (mol% cationic lipid/DSPC/Chol/PEG- DMG or PEG-cDMA), 35/15/40/10 (mol% cationic lipid/DSPC/Chol/PEG-DMG or PEG-cDMA) or 52/13/30/5 (mol% cationic lipid/DSPC
  • the neutral lipid in these compositions is replaced with POPC, DPPC, DOPE or SM.
  • the lipid mixture is combined with a buffered aqueous solution that may contain the nucleic acids.
  • the buffered aqueous solution of is typically a solution in which the buffer has a pH of less than the pK a of the protonatable lipid in the lipid mixture.
  • suitable buffers include citrate, phosphate, acetate, and MES.
  • a particularly preferred buffer is citrate buffer.
  • Preferred buffers will be in the range of 1-1000 mM of the anion, depending on the chemistry of the nucleic acid being encapsulated, and optimization of buffer concentration may be significant to achieving high loading levels ⁇ see, e.g., US Patent 6,287,591 and US Patent 6,858,225).
  • pure water acidified to pH 5-6 with chloride, sulfate or the like may be useful.
  • it may be suitable to add 5% glucose, or another non- ionic solute which will balance the osmotic potential across the particle membrane when the particles are dialyzed to remove ethanol, increase the pH, or mixed with a pharmaceutically acceptable carrier such as normal saline.
  • the amount of nucleic acid in buffer can vary, but will typically be from about 0.01 mg/mL to about 200 mg/mL, more preferably from about 0.5 mg/mL to about 50 mg/mL.
  • the mixture of lipids and the buffered aqueous solution of therapeutic nucleic acids is combined to provide an intermediate mixture.
  • the intermediate mixture is typically a mixture of lipid particles having encapsulated nucleic acids. Additionally, the intermediate mixture may also contain some portion of nucleic acids which are attached to the surface of the lipid particles (liposomes or lipid vesicles) due to the ionic attraction of the negatively-charged nucleic acids and positively-charged lipids on the lipid particle surface (the amino lipids or other lipid making up the protonatable first lipid component are positively charged in a buffer having a pH of less than the pK a of the protonatable group on the lipid).
  • the mixture of lipids is an alcohol solution of lipids and the volumes of each of the solutions is adjusted so that upon combination, the resulting alcohol content is from about 20% by volume to about 45% by volume.
  • the method of combining the mixtures can include any of a variety of processes, often depending upon the scale of formulation produced. For example, when the total volume is about 10-20 mL or less, the solutions can be combined in a test tube and stirred together using a vortex mixer. Large-scale processes can be carried out in suitable production scale glassware.
  • the lipid-encapsulated therapeutic agent e.g., nucleic acid
  • the compositions provided herein will be sized to a mean diameter of from about 70 to about 200 nm, more preferably about 90 to about 130 nm.
  • Several techniques are available for sizing liposomes to a desired size. One sizing method is described in U.S. Pat. No. 4,737,323, incorporated herein by reference.
  • Sonicating a liposome suspension either by bath or probe sonication produces a progressive size reduction down to small unilamellar vesicles (SUVs) less than about 0.05 microns in size.
  • Homogenization is another method which relies on shearing energy to fragment large liposomes into smaller ones.
  • multilamellar vesicles are recirculated through a standard emulsion homogenizer until selected liposome sizes, typically between about 0.1 and 0.5 microns, are observed.
  • the particle size distribution can be monitored by conventional laser-beam particle size determination.
  • extrusion is used to obtain a uniform vesicle size.
  • Extrusion of liposome compositions through a small-pore polycarbonate membrane or an asymmetric ceramic membrane results in a relatively well-defined size distribution.
  • the suspension is cycled through the membrane one or more times until the desired liposome complex size distribution is achieved.
  • the liposomes may be extruded through successively smaller-pore membranes, to achieve a gradual reduction in liposome size.
  • the lipid-nucleic acid compositions which are formed can be used without any sizing.
  • methods of the present invention further comprise a step of neutralizing at least some of the surface charges on the lipid portions of the lipid-nucleic acid compositions.
  • unencapsulated nucleic acid is freed from the lipid particle surface and can be removed from the composition using conventional techniques.
  • unencapsulated and surface adsorbed nucleic acids are removed from the resulting compositions through exchange of buffer solutions.
  • buffer solutions For example, replacement of a citrate buffer (pH about 4.0, used for forming the compositions) with a HEPES- buffered saline (HBS pH about 7.5) solution, results in the neutralization of liposome surface and nucleic acid release from the surface.
  • the released nucleic acid can then be removed via chromatography using standard methods, and then switched into a buffer with a pH above the pKa of the lipid used.
  • the lipid vesicles can be formed by hydration in an aqueous buffer and sized using any of the methods described above prior to addition of the nucleic acid.
  • the aqueous buffer should be of a pH below the pKa of the amino lipid.
  • a solution of the nucleic acids can then be added to these sized, preformed vesicles.
  • the mixture should contain an alcohol, such as ethanol. In the case of ethanol, it should be present at a concentration of about 20% (w/w) to about 45% (w/w).
  • nucleic acid encapsulation process it may be necessary to warm the mixture of pre-formed vesicles and nucleic acid in the aqueous buffer-ethanol mixture to a temperature of about 25° C to about 50° C depending on the composition of the lipid vesicles and the nature of the nucleic acid. It will be apparent to one of ordinary skill in the art that optimization of the encapsulation process to achieve a desired level of nucleic acid in the lipid vesicles will require manipulation of variable such as ethanol concentration and temperature. Examples of suitable conditions for nucleic acid encapsulation are provided in the Examples. Once the nucleic acids are encapsulated within the prefromed vesicles, the external pH can be increased to at least partially neutralize the surface charge. Unencapsulated and surface adsorbed nucleic acids can then be removed as described above.
  • the lipid particles of the invention may be used to deliver a therapeutic agent to a cell, in vitro or in vivo.
  • the therapeutic agent is a nucleic acid, which is delivered to a cell using a nucleic acid- lipid particles of the invention. While the following description o various methodsof using the lipid particles and related pharmaceutical compositions of the invention are exemplified by description related to nucleic acid-lipid particles, it is understood that these methods and compositions may be readily adapted for the delivery of any therapeutic agent for the treatment of any disease or disorder that would benefit from such treatment.
  • the invention provides methods for introducing a nucleic acid into a cell.
  • Preferred nucleic acids for introduction into cells are siRNA, immune-stimulating oligonucleotides, plasmids, antisense and ribozymes. These methods may be carried out by contacting the particles or compositions of the invention with the cells for a period of time sufficient for intracellular delivery to occur.
  • compositions of the invention can be adsorbed to almost any cell type, e.g., tumor cell lines, including but not limited to HeLa, HCTl 16, A375, MCF7, B16F10, Hep3b, HUH7, HepG2, Skov3, U87, and PC3 cell lines.
  • tumor cell lines including but not limited to HeLa, HCTl 16, A375, MCF7, B16F10, Hep3b, HUH7, HepG2, Skov3, U87, and PC3 cell lines.
  • the nucleic acid-lipid particles can either be endocytosed by a portion of the cells, exchange lipids with cell membranes, or fuse with the cells. Transfer or incorporation of the nucleic acid portion of the complex can take place via any one of these pathways.
  • the concentration of compositions can vary widely depending on the particular application, but is generally between about 1 ⁇ mol and about 10 mmol.
  • treatment of the cells with the lipid- nucleic acid compositions will generally be carried out at physiological temperatures (about 37°C) for periods of time from about 1 to 24 hours, preferably from about 2 to 8 hours.
  • the delivery of nucleic acids can be to any cell grown in culture, whether of plant or animal origin, vertebrate or invertebrate, and of any tissue or type.
  • the cells will be animal cells, more preferably mammalian cells, and most preferably human cells.
  • a lipid-nucleic acid particle suspension is added to 60-80% confluent plated cells having a cell density of from about 10 3 to about 10 cells/mL, more preferably about 2 x 10 4 cells/mL.
  • the concentration of the suspension added to the cells is preferably of from about 0.01 to 20 ⁇ g/mL, more preferably about 1 ⁇ g/mL.
  • Typical applications include using well known procedures to provide intracellular delivery of siRNA to knock down or silence specific cellular targets.
  • Alternatively applications include delivery of DNA or mRNA sequences that code for therapeutically useful polypeptides.
  • therapy is provided for genetic diseases by supplying deficient or absent gene products (i.e., for Duchenne's dystrophy, see Kunkel, et al, Brit. Med. Bull. 45(3):630-643 (1989), and for cystic fibrosis, see Goodfellow, Nature 341:102-103 (1989)).
  • Other uses for the compositions of the invention include introduction of antisense oligonucleotides in cells (see, Bennett, et al, MoI. Pharm. 41:1023-1033 (1992)).
  • compositions of the invention can also be used for deliver of nucleic acids to cells in vivo, using methods which are known to those of skill in the art.
  • CMV cytomegalovirus
  • CAT chloramphenicol acetyltransferase
  • Hyde et al., Nature 362:250-256 (1993), incorporated herein by reference, describes the delivery of the cystic fibrosis transmembrane conductance regulator (CFTR) gene to epithelia of the airway and to alveoli in the lung of mice, using liposomes.
  • CTR cystic fibrosis transmembrane conductance regulator
  • Brigham, et al., Am. J. Med. ScL 298:278-281 (1989), incorporated herein by reference describes the in vivo transfection of lungs of mice with a functioning prokaryotic gene encoding the intracellular enzyme, chloramphenicol acety transferase (CAT).
  • CAT chloramphenicol acety transferase
  • the formulations of the invention can be used to silence or modulate a target gene such as but not limited to FVII, Eg5, PCSK9, TPX2, apoB, SAA, TTR, RSV, PDGF beta gene, Erb-B gene, Src gene, CRK gene, GRB2 gene, RAS gene, MEKK gene, JNK gene, RAF gene, Erkl/2 gene, PCNA(p21) gene, MYB gene, JUN gene, FOS gene, BCL-2 gene, Cyclin D gene, VEGF gene, EGFR gene, Cyclin A gene, Cyclin E gene, WNT-I gene, beta-catenin gene, c-MET gene, PKC gene, NFKB gene, STAT3 gene, survivin gene, Her2/Neu gene, topoisomerase I gene, topoisomerase II alpha gene, p73 gene, p21(WAFl/CIPl) gene, p27(KIPl) gene, PPMlD gene, R
  • Louis Encephalitis gene a gene that is required for St. Louis Encephalitis replication, Tick- borne encephalitis virus gene, a gene that is required for Tick-borne encephalitis virus replication, Murray Valley encephalitis virus gene, a gene that is required for Murray Valley encephalitis virus replication, dengue virus gene, a gene that is required for dengue virus gene replication, Simian Virus 40 gene, a gene that is required for Simian Virus 40 replication, Human T Cell Lymphotropic Virus gene, a gene that is required for Human T Cell Lymphotropic Virus replication, Moloney-Murine Leukemia Virus gene, a gene that is required for Moloney-Murine Leukemia Virus replication, encephalomyocarditis virus gene, a gene that is required for encephalomyocarditis virus replication, measles virus gene, a gene that is required for measles virus replication, Vericella zoster virus gene, a gene that is required for Vericella
  • the pharmaceutical compositions are preferably administered parenterally, i.e., intraarticular ⁇ , intravenously, intraperitoneally, subcutaneously, or intramuscularly.
  • the pharmaceutical compositions are administered intravenously or intraperitoneally by a bolus injection.
  • a bolus injection see Stadler, et al, U.S. Patent No. 5,286,634, which is incorporated herein by reference. Intracellular nucleic acid delivery has also been discussed in Straubringer, et al, METHODS IN ENZYMOLOGY, Academic Press, New York.
  • the pharmaceutical preparations may be contacted with the target tissue by direct application of the preparation to the tissue.
  • the application may be made by topical, "open” or “closed” procedures.
  • topical it is meant the direct application of the pharmaceutical preparation to a tissue exposed to the environment, such as the skin, oropharynx, external auditory canal, and the like.
  • Open procedures are those procedures which include incising the skin of a patient and directly visualizing the underlying tissue to which the pharmaceutical preparations are applied. This is generally accomplished by a surgical procedure, such as a thoracotomy to access the lungs, abdominal laparotomy to access abdominal viscera, or other direct surgical approach to the target tissue.
  • “Closed” procedures are invasive procedures in which the internal target tissues are not directly visualized, but accessed via inserting instruments through small wounds in the skin.
  • the preparations may be administered to the peritoneum by needle lavage.
  • the pharmaceutical preparations may be administered to the meninges or spinal cord by infusion during a lumbar puncture followed by appropriate positioning of the patient as commonly practiced for spinal anesthesia or metrazamide imaging of the spinal cord.
  • the preparations may be administered through endoscopic devices.
  • lipid-nucleic acid compositions can also be administered in an aerosol inhaled into the lungs (see, Brigham, et al, Am. J. ScL 298(4):278-281 (1989)) or by direct injection at the site of disease (Culver, Human Gene Therapy, Mary Ann Liebert, Inc., Publishers, New York, pp.70-71 (1994)).
  • the methods of the invention may be practiced in a variety of hosts.
  • Preferred hosts include mammalian species, such as humans, non-human primates, dogs, cats, cattle, horses, sheep, and the like.
  • Dosages for the lipid-therapeutic agent particles of the invention will depend on the ratio of therapeutic agent to lipid and the administrating physician's opinion based on age, weight, and condition of the patient.
  • the invention provides a method of modulating the expression of a target polynucleotide or polypeptide. These methods generally comprise contacting a cell with a lipid particle of the invention that is associated with a nucleic acid capable of modulating the expression of a target polynucleotide or polypeptide.
  • modulating refers to altering the expression of a target polynucleotide or polypeptide. In different embodiments, modulating can mean increasing or enhancing, or it can mean decreasing or reducing.
  • the level of expression of a target polynucleotide or polypeptide is increased or reduced by at least 10%, 20%, 30%, 40%, 50%, or greater than 50% as compared to an appropriate control value.
  • the nucleic acid may be an expression vector that includes a polynucleotide that encodes the desired polypeptide.
  • the nucleic acid may be, e.g., an antisense oligonucleotide, siRNA, or microRNA that comprises a polynucleotide sequence that specifically hybridizes to a polnucleotide that encodes the target polypeptide, thereby disrupting expression of the target polynucleotide or polypeptide.
  • the nucleic acid may be a plasmid that expresses such an antisense oligonucletoide, siRNA, or microRNA.
  • the invention provides a method of modulating the expression of a polypeptide by a cell, comprising providing to a cell a lipid particle that consists of or consists essentially of a cationic lipid of formula I, a neutral lipid, a sterol, a PEG of PEG-modified lipid, e.g., in a molar ratio of about 20-65% of cationic lipid of formula I, 3-25% of the neutral lipid, 15-55% of the sterol, and 0.5- 15% of the PEG or PEG-modified lipid, wherein the lipid particle is associated with a nucleic acid capable of modulating the expression of the polypeptide.
  • the molar lipid ratio is approximately 60/7.5/31/1.5, 57.5/7.5/31.5/3.5, 57.2/7.1/34.3/1.4, 52/13/30/5, 50/10/38.5/1.5, 50/10/35/5, 40/10/40/10, 40/15/40/5, or 35/15/40/10 (mol% cationic lipid of formula I/DSPC or DPPC/Chol/PEG-DMG or PEG-cDMA).
  • the lipid particle also includes a targeting moiety such as a targeting lipid described herein (e.g., the lipid particle consists essentially of a cationic lipid of formula I, a neutral lipid, a sterol, a PEG or PEG- modified lipid and a targeting moiety).
  • a targeting lipid described herein e.g., the lipid particle consists essentially of a cationic lipid of formula I, a neutral lipid, a sterol, a PEG or PEG- modified lipid and a targeting moiety.
  • the neutral lipid in these compositions is replaced with DPPC, POPC, DOPE or SM.
  • the PEG or PEG-modified lipid is replaced with PEG-DSG, PEG-DMG or PEG-DPG.
  • the therapeutic agent is selected from an siRNA, a microRNA, an antisense oligonucleotide, and a plasmid capable of expressing an siRNA, a microRNA, or an antisense oligonucleotide, and wherein the siRNA, microRNA, or antisense RNA comprises a polynucleotide that specifically binds to a polynucleotide that encodes the polypeptide, or a complement thereof, such that the expression of the polypeptide is reduced.
  • the nucleic acid is a plasmid that encodes the polypeptide or a functional variant or fragment thereof, such that expression of the polypeptide or the functional variant or fragment thereof is increased.
  • the invention provides reagents useful for transfection of cells in culture.
  • the lipid formulations described herein can be used to deliver nucleic acids to cultured cells (e.g., adherent cells, suspension cells, etc.).
  • the invention provides a method of treating a disease or disorder characterized by overexpression of a polypeptide in a subject, comprising providing to the subject a pharmaceutical composition of the invention, wherein the therapeutic agent is selected from an siRNA, a microRNA, an antisense oligonucleotide, and a plasmid capable of expressing an siRNA, a microRNA, or an antisense oligonucleotide, and wherein the siRNA, microRNA, or antisense RNA comprises a polynucleotide that specifically binds to a polynucleotide that encodes the polypeptide, or a complement thereof.
  • the therapeutic agent is selected from an siRNA, a microRNA, an antisense oligonucleotide, and a plasmid capable of expressing an siRNA, a microRNA, or an antisense oligonucleotide
  • the siRNA, microRNA, or antisense RNA comprises a polynucleotide that specifically bind
  • the pharmaceutical composition comprises a lipid particle that consists of or consists essentially of a cationic lipid of formula I, DSPC, Choi and PEG-DMG, PEG-C-DOMG or PEG-cDMA, e.g., in a molar ratio of about 20-65% of cationic lipid of formula I, 3-25% of the neutral lipid, 15-55% of the sterol, and 0.5- 15% of the PEG or PEG-modified lipid PEG-DMG, PEG-C-DOMG or PEG-cDMA, wherein the lipid particle is assocated with the therapeutic nucleic acid.
  • the molar lipid ratio is approximately 60/7.5/31/1.5, 57.5/7.5/31.5/3.5, 57.2/7.1/34.3/1.4, 52/13/30/5, 50/10/38.5/1.5, 50/10/35/5, 40/10/40/10, 35/15/40/10 or 40/15/40/5 (mol% cationic lipid of formula I/DSPC/Chol/PEG-DMG or PEG- cDMA).
  • the lipid particle also includes a targeting lipid described herein (e.g., the lipid particle consists essentially of a cationic lipid of formula I, a neutral lipid, a sterol, a PEG or PEG-modified lipid and a targeting moiety (e.g., GalNAc3-PEG-DSG)).
  • a targeting lipid described herein e.g., the lipid particle consists essentially of a cationic lipid of formula I, a neutral lipid, a sterol, a PEG or PEG-modified lipid and a targeting moiety (e.g., GalNAc3-PEG-DSG)).
  • the amount of PEG-modified lipid is reduced such that the total amount of PEG-moidfied lipid (i.e., PEG-modified lipid, for example PEG-DMG, and the PEG-containing targeting lipid) is kept at a constant mol percentage (e.g., 0.3%, 1.5 mol%, or 3.5 mol%).
  • the neutral lipid in these compositions is replaced with DPPC, POPC, DOPE or SM.
  • the PEG or PEG-modified lipid is replaced with PEG-DSG or PEG-DPG.
  • the invention includes a method of treating a disease or disorder characterized by underexpression of a polypeptide in a subject, comprising providing to the subject a pharmaceutical composition of the invention, wherein the therapeutic agent is a plasmid that encodes the polypeptide or a functional variant or fragment thereof.
  • the invention further provides a method of inducing an immune response in a subject, comprising providing to the subject the pharmaceutical composition of the invention, wherein the therapeutic agent is an immunostimulatory oligonucleotide.
  • the immune response is a humoral or mucosal immune response consists of or consists essentially of a cationic lipid of formula I, DSPC, Choi and PEG-DMG, PEG-C-DOMG or PEG-cDMA, e.g., in a molar ratio of about 20-65% of cationic lipid of formula I, 3-25% of the neutral lipid, 15-55% of the sterol, and 0.5- 15% of the PEG or PEG-modified lipid PEG-DMG, PEG-C-DOMG or PEG-cDMA, wherein the lipid particle is assocated with the therapeutic nucleic acid.
  • the molar lipid ratio is approximately 60/7.5/31/1.5, 57.5/7.5/31.5/3.5, 57.2/7.1/34.3/1.4, 52/13/30/5, 50/10/38.5/1.5, 50/10/35/5, 40/10/40/10, 35/15/40/10 or 40/15/40/5 (mol% cationic lipid of formula I/DSPC/Chol/PEG-DMG or PEG- cDMA).
  • the lipid particle also includes a targeting lipid described herein (e.g., the lipid particle consists essentially of a cationic lipid of formula I, a neutral lipid, a sterol, a PEG or PEG-modified lipid and a targeting moiety).
  • the amount of PEG-modified lipid is reduced such that the total amount of PEG-moidfied lipid (i.e., PEG-modified lipid, for example PEG-DMG, and the PEG-containing targeting lipid) is kept at a constant mol percentage (e.g., 0.3%, 1.5 mol%, or 3.5 mol%).
  • the neutral lipid in these compositions is replaced with DPPC, POPC, DOPE or SM.
  • the PEG or PEG-modified lipid is replaced with PEG-DSG or PEG-DPG.
  • the pharmaceutical composition is provided to the subject in combination with a vaccine or antigen.
  • the invention itself provides vaccines comprising a lipid particle of the invention, which comprises an immunostimulatory oligonucleotide, and is also associated with an antigen to which an immune response is desired.
  • the antigen is a tumor antigen or is associated with an infective agent, such as, e.g., a virus, bacteria, or parasiste.
  • antigens suitable for use in the invention include, but are not limited to, polypeptide antigens and DNA antigens.
  • Specific examples of antigens are Hepatitis A, Hepatitis B, small pox, polio, anthrax, influenza, typhus, tetanus, measles, rotavirus, diphtheria, pertussis, tuberculosis, and rubella antigens.
  • the antigen is a Hepatitis B recombinant antigen.
  • the antigen is a Hepatitis A recombinant antigen.
  • the antigen is a tumor antigen. Examples of such tumor-associated antigens are MUC-I, EBV antigen and antigens associated with Burkitt's lymphoma.
  • the antigen is a tyrosinase-related protein tumor antigen recombinant antigen. Those of skill in the art will know of other antigens suitable for use in the invention.
  • Tumor-associated antigens suitable for use in the subject invention include both mutated and non-mutated molecules that may be indicative of single tumor type, shared among several types of tumors, and/or exclusively expressed or overexpressed in tumor cells in comparison with normal cells.
  • tumor-specific patterns of expression of carbohydrates, gangliosides, glycolipids and mucins have also been documented.
  • Exemplary tumor-associated antigens for use in the subject cancer vaccines include protein products of oncogenes, tumor suppressor genes and other genes with mutations or rearrangements unique to tumor cells, reactivated embryonic gene products, oncofetal antigens, tissue-specific (but not tumor-specific) differentiation antigens, growth factor receptors, cell surface carbohydrate residues, foreign viral proteins and a number of other self proteins.
  • tumor-associated antigens include, e.g., mutated antigens such as the protein products of the Ras p21 protooncogenes, tumor suppressor p53 and BCR-abl oncogenes, as well as CDK4, MUMl, Caspase 8, and Beta catenin; overexpressed antigens such as galectin 4, galectin 9, carbonic anhydrase, Aldolase A, PRAME, Her2/neu, ErbB-2 and KSA, oncofetal antigens such as alpha fetoprotein (AFP), human chorionic gonadotropin (hCG); self antigens such as carcinoembryonic antigen (CEA) and melanocyte differentiation antigens such as Mart 1/Melan A, gplOO, gp75, Tyrosinase, TRPl and TRP2; prostate associated antigens such as PSA, PAP, PSMA, PSM-Pl and PSM- P2; reactivated embryonic gene products
  • Pathogens include, but are not limited to, infectious agents, e.g., viruses, that infect mammals, and more particularly humans.
  • infectious virus include, but are not limited to: Retroviridae ⁇ e.g., human immunodeficiency viruses, such as HIV-I (also referred to as HTLV-III, LAV or HTLV-III/LAV, or HIV-III; and other isolates, such as HIV-LP; Picornaviridae ⁇ e.g., polio viruses, hepatitis A virus; enteroviruses, human Coxsackie viruses, rhinoviruses, echoviruses); Calciviridae ⁇ e.g., strains that cause gastroenteritis); Togaviridae ⁇ e.g., equine encephalitis viruses, rubella viruses); Flaviridae ⁇ e.g., dengue viruses, encephalitis viruses, yellow fever viruses); Coronoviridae ⁇ e.g., coronaviruses);
  • gram negative and gram positive bacteria serve as antigens in vertebrate animals.
  • Such gram positive bacteria include, but are not limited to Pasteurella species, Staphylococci species, and Streptococcus species.
  • Gram negative bacteria include, but are not limited to, Escherichia coli, Pseudomonas species, and Salmonella species.
  • infectious bacteria include but are not limited to: Helicobacterpyloris, Borelia burgdorferi, Legionella pneumophilia, Mycobacteria sps (e.g., M. tuberculosis, M. avium, M. intracellulare, M. kansaii, M.
  • Streptococcus pyogenes Group A Streptococcus
  • Streptococcus agalactiae Group B Streptococcus
  • Streptococcus viridans group
  • Streptococcusfaecalis Streptococcus bovis
  • Streptococcus anaerobic sps.
  • Streptococcus pneumoniae pathogenic Campylobacter sp., Enterococcus sp., Haemophilus infuenzae, Bacillus antracis, corynebacterium diphtheriae, corynebacterium sp., Erysipelothrix rhusiopathiae, Clostridium perfringers, Clostridium tet
  • infectious fungi examples include, but are not limited to, infectious fungi that infect mammals, and more particularly humans.
  • infectious fingi include, but are not limited to: Cryptococcus neoformans, Histoplasma capsulatum, Coccidioides immitis, Blastomyces dermatitidis, Chlamydia trachomatis, Candida albicans.
  • infectious parasites include Plasmodium such as Plasmodium falciparum, Plasmodium malariae, Plasmodium ovale, and Plasmodium vivax.
  • Other infectious organisms i.e., protists
  • Other infectious organisms include Toxoplasma gondii.
  • the invention provides pharmaceutical compositions comprising a nucleic acid agent identified by the liver screening model described herein.
  • the composition includes the agent, e.g., a dsRNA, and a pharmaceutically acceptable carrier.
  • the pharmaceutical composition is useful for treating a disease or disorder associated with the expression or activity of the gene.
  • Such pharmaceutical compositions are formulated based on the mode of delivery.
  • One example is compositions that are formulated for systemic administration via parenteral delivery.Pharmaceutical compositions including the identified agent are administered in dosages sufficient to inhibit expression of the target gene, e.g., the Factor VII gene.
  • a suitable dose of dsRNA agent will be in the range of 0.01 to 5.0 milligrams per kilogram body weight of the recipient per day, generally in the range of 1 microgram to 1 mg per kilogram body weight per day.
  • the pharmaceutical composition may be administered once daily, or the dsRNA may be administered as two, three, or more sub-doses at appropriate intervals throughout the day or even using continuous infusion or delivery through a controlled release formulation. In that case, the dsRNA contained in each sub-dose must be correspondingly smaller in order to achieve the total daily dosage.
  • the dosage unit can also be compounded for delivery over several days, e.g., using a conventional sustained release formulation which provides sustained release of the dsRNA over a several day period. Sustained release formulations are well known in the art and are particularly useful for vaginal delivery of agents, such as could be used with the agents of the invention. In this embodiment, the dosage unit contains a corresponding multiple of the daily dose.
  • treatment of a subject with a therapeutically effective amount of a composition can include a single treatment or a series of treatments.
  • Estimates of effective dosages and in vivo half- lives for the individual dsRNAs encompassed by the invention can be made using conventional methodologies or on the basis of in vivo testing using an appropriate animal model, as described elsewhere herein.
  • compositions comprising the lipid- nucleic acid particles of the invention are prepared according to standard techniques and further comprise a pharmaceutically acceptable carrier.
  • a pharmaceutically acceptable carrier e.g., normal saline will be employed as the pharmaceutically acceptable carrier.
  • suitable carriers include, e.g., water, buffered water, 0.9% saline, 0.3% glycine, and the like, including glycoproteins for enhanced stability, such as albumin, lipoprotein, globulin, etc.
  • the carrier is preferably added following lipid particle formation.
  • the compositions can be diluted into pharmaceutically acceptable carriers such as normal saline.
  • the resulting pharmaceutical preparations may be sterilized by conventional, well known sterilization techniques.
  • the aqueous solutions can then be packaged for use or filtered under aseptic conditions and lyophilized, the lyophilized preparation being combined with a sterile aqueous solution prior to administration.
  • the compositions may contain pharmaceutically acceptable auxiliary substances as required to approximate physiological conditions, such as pH adjusting and buffering agents, tonicity adjusting agents and the like, for example, sodium acetate, sodium lactate, sodium chloride, potassium chloride, calcium chloride, etc.
  • the lipidic suspension may include lipid-protective agents which protect lipids against free-radical and lipid-peroxidative damages on storage. Lipophilic free -radical quenchers, such as ⁇ -tocopherol and water-soluble iron-specific chelators, such as ferrioxamine, are suitable.
  • the concentration of lipid particle or lipid-nucleic acid particle in the pharmaceutical formulations can vary widely, i.e., from less than about 0.01%, usually at or at least about 0.05-5% to as much as 10 to 30% by weight and will be selected primarily by fluid volumes, viscosities, etc., in accordance with the particular mode of administration selected.
  • the concentration may be increased to lower the fluid load associated with treatment. This may be particularly desirable in patients having atherosclerosis-associated congestive heart failure or severe hypertension.
  • complexes composed of irritating lipids may be diluted to low concentrations to lessen inflammation at the site of administration.
  • the nucleic acid will have an attached label and will be used for diagnosis (by indicating the presence of complementary nucleic acid).
  • the amount of complexes administered will depend upon the particular label used, the disease state being diagnosed and the judgement of the clinician but will generally be between about 0.01 and about 50 mg per kilogram of body weight (e.g., of the nucleic acid agent), preferably between about 0.1 and about 5 mg/kg of body weight.
  • a complex administered includes from about 0.004 and about 50 mg per kilogram of body weight of neucleic acid agent (e.g., from about 0.006 mg/kg to about 0.2 mg/kg).
  • the lipid- therapeutic agent e.g., nucleic acid
  • the lipid- therapeutic agent may include polyethylene glycol (PEG)-modified phospholipids, PEG- ceramide, or ganglioside G MI -modified lipids or other lipids effective to prevent or limit aggregation. Addition of such components does not merely prevent complex aggregation. Rather, it may also provide a means for increasing circulation lifetime and increasing the delivery of the lipid-nucleic acid composition to the target tissues.
  • the invention also provides lipid-therapeutic agent compositions in kit form.
  • the kit will typically be comprised of a container that is compartmentalized for holding the various elements of the kit.
  • the kit will contain the particles or pharmaceutical compositions of the invention, preferably in dehydrated or concentrated form, with instructions for their rehydration or dilution and administration.
  • the particles comprise the active agent, while in other embodiments, they do not.
  • compositions containing an agent identified by the liver screening model may be administered in a number of ways depending upon whether local or systemic treatment is desired and upon the area to be treated.
  • Administration may be topical, pulmonary, e.g., by inhalation or insufflation of powders or aerosols, including by nebulizer; intratracheal, intranasal, epidermal and transdermal), oral or parenteral.
  • Admininstration may also be designed to result in preferential localization to particular tissues through local delivery, e.g. by direct intraarticular injection into joints, by rectal administration for direct delivery to the gut and intestines, by intravaginal administration for delivery to the cervix and vagina, by intravitreal administration for delivery to the eye.
  • Parenteral administration includes intravenous, intraarterial, intraarticular, subcutaneous, intraperitoneal or intramuscular injection or infusion; or intracranial, e.g., intrathecal or intraventricular, administration.
  • compositions and formulations for topical administration may include transdermal patches, ointments, lotions, creams, gels, drops, suppositories, sprays, liquids and powders.
  • Conventional pharmaceutical carriers, aqueous, powder or oily bases, thickeners and the like may be necessary or desirable.
  • Coated condoms, gloves and the like may also be useful.
  • Preferred topical formulations include those in which the dsRNAs of the invention are in admixture with a topical delivery component, such as a lipid, liposome, fatty acid, fatty acid ester, steroid, chelating agent or surfactant.
  • Preferred lipids and liposomes include neutral (e.g.
  • DsRNAs of the invention may be encapsulated within liposomes or may form complexes thereto, in particular to cationic liposomes. Alternatively, dsRNAs may be complexed to lipids, in particular to cationic lipids.
  • Preferred fatty acids and esters include but are not limited arachidonic acid, oleic acid, eicosanoic acid, lauric acid, caprylic acid, capric acid, myristic acid, palmitic acid, stearic acid, linoleic acid, linolenic acid, dicaprate, tricaprate, monoolein, dilaurin, glyceryl 1-monocaprate, l-dodecylazacycloheptan-2- one, an acylcarnitine, an acylcholine, or a Ci_io alkyl ester (e.g. isopropylmyristate IPM), monoglyceride, diglyceride or pharmaceutically acceptable salt thereof.
  • Ci_io alkyl ester e.g. isopropylmyristate IPM
  • compositions and formulations for oral administration include powders or granules, microparticulates, nanoparticulates, suspensions or solutions in water or non-aqueous media, capsules, gel capsules, sachets, tablets or minitablets. Thickeners, flavoring agents, diluents, emulsifiers, dispersing aids or binders may be desirable.
  • Preferred oral formulations are those in which dsRNAs of the invention are administered in conjunction with one or more penetration enhancers surfactants and chelators.
  • Preferred surfactants include fatty acids and/or esters or salts thereof, bile acids and/or salts thereof.
  • Preferred bile acids/salts include chenodeoxycholic acid (CDCA) and ursodeoxychenodeoxycholic acid (UDCA), cholic acid, dehydrocholic acid, deoxycholic acid, glucholic acid, glycholic acid, glycodeoxycholic acid, taurocholic acid, taurodeoxycholic acid, sodium tauro-24,25-dihydro-fusidate and sodium glycodihydrofusidate.
  • Preferred fatty acids include arachidonic acid, undecanoic acid, oleic acid, lauric acid, caprylic acid, capric acid, myristic acid, palmitic acid, stearic acid, linoleic acid, linolenic acid, dicaprate, tricaprate, monoolein, dilaurin, glyceryl 1-monocaprate, l-dodecylazacycloheptan-2-one, an acylcarnitine, an acylcholine, or a monoglyceride, a diglyceride or a pharmaceutically acceptable salt thereof (e.g. sodium).
  • arachidonic acid arachidonic acid, undecanoic acid, oleic acid, lauric acid, caprylic acid, capric acid, myristic acid, palmitic acid, stearic acid, linoleic acid, linolenic acid, dicaprate, tricaprate, monoolein, dilaurin, g
  • penetration enhancers for example, fatty acids/salts in combination with bile acids/salts.
  • a particularly preferred combination is the sodium salt of lauric acid, capric acid and UDCA.
  • Further penetration enhancers include polyoxyethylene-9-lauryl ether, polyoxyethylene-20-cetyl ether. DsRNAs of the invention may be delivered orally, in granular form including sprayed dried particles, or complexed to form micro or nanoparticles.
  • DsRNA complexing agents include poly-amino acids; polyimines; polyacrylates; polyalkylacrylates, polyoxe thanes, poly alky Icy anoacrylates; cationized gelatins, albumins, starches, acrylates, polyethyleneglycols (PEG) and starches; poly alkylcy anoacrylates; DEAE-derivatized polyimines, pollulans, celluloses and starches.
  • Particularly preferred complexing agents include chitosan, N- trimethylchitosan, poly-L-lysine, polyhistidine, polyornithine, poly spermines, protamine, polyvinylpyridine, polythiodiethylaminomethylethylene P(TDAE), polyaminostyrene (e.g.
  • compositions and formulations for parenteral, intrathecal or intraventricular administration may include sterile aqueous solutions which may also contain buffers, diluents and other suitable additives such as, but not limited to, penetration enhancers, carrier compounds and other pharmaceutically acceptable carriers or excipients.
  • compositions include, but are not limited to, solutions, emulsions, and liposome-containing formulations. These compositions may be generated from a variety of components that include, but are not limited to, preformed liquids, self-emulsifying solids and self-emulsifying semisolids.
  • the pharmaceutical formulations may be prepared according to conventional techniques well known in the pharmaceutical industry. Such techniques include the step of bringing into association the active ingredients with the pharmaceutical carrier(s) or excipient(s). In general, the formulations are prepared by uniformly and intimately bringing into association the active ingredients with liquid carriers or finely divided solid carriers or both, and then, if necessary, shaping the product.
  • compositions may be formulated into any of many possible dosage forms such as, but not limited to, tablets, capsules, gel capsules, liquid syrups, soft gels, suppositories, and enemas.
  • the compositions of the invention may also be formulated as suspensions in aqueous, non-aqueous or mixed media.
  • Aqueous suspensions may further contain substances which increase the viscosity of the suspension including, for example, sodium carboxymethylcellulose, sorbitol and/or dextran.
  • the suspension may also contain stabilizers.
  • the pharmaceutical compositions may be formulated and used as foams.
  • Pharmaceutical foams include formulations such as, but not limited to, emulsions, microemulsions, creams, jellies and liposomes. While basically similar in nature these formulations vary in the components and the consistency of the final product.
  • the preparation of such compositions and formulations is generally known to those skilled in the pharmaceutical and formulation arts and may be applied to the formulation of the compositions of the invention
  • ApoE refers to ApoE3 unless otherwise identified.
  • Example 1 siRNA duplexes for Luc and FVII targeting.
  • Table 8 below provides exemplary sequences for the targeting of Luc and FVII.
  • L8 lowercase is 2'-O-methyl modified nucleotide
  • * is phosphorothioate backbone linkages
  • fN is a 2'-fluoro nucleotide
  • dN is 2'-deoxy nucleotide.
  • Example 2 FVII in vivo evaluation using the cationic lipid derived liposomes
  • liver mRNA levels were assessed, at various time points post- administration, animals were sacrificed and livers were harvested and snap frozen in liquid nitrogen. Frozen liver tissue was ground into powder. Tissue lysates were prepared and liver mRNA levels of Factor VII and apoB were determined using a branched DNA assay (QuantiGene Assay, Panomics, CA).
  • FVII FVII targeting Factor VII
  • hepatocytes a prominent protein in the coagulation cascade
  • FVII levels in plasma can be determined by a simple, plate-based colorimetric assay.
  • FVII represents a convenient model for determining sirna-mediated downregulation of hepatocyte-derived proteins, as well as monitoring plasma concentrations and tissue distribution of the nucleic acid lipid particles and siRNA.
  • FVII activity was evaluated in FVII siRNA-treated animals at 24 hours after intravenous (bolus) injection in C57BL/6 mice.
  • FVII was measured using a commercially available kit for determining protein levels in serum or tissue, following the manufacturer's instructions at a microplate scale.
  • FVII reduction was determined against untreated control mice, and the results were expressed as % Residual FVII.
  • Four dose levels (2, 5, 12.5, 25 mg/kg FVII siRNA) were used in the initial screen of each novel liposome composition, and this dosing was expanded in subsequent studies based on the results obtained in the initial screen.
  • each novel liposomal siRNA formulation was evaluated by monitoring weight change, cageside observations, clinical chemistry and, in some instances, hematology. Animal weights were recorded prior to treatment and at 24 hours after treatment. Data was recorded as % Change in Body Weight. In addition to body weight measurements, a full clinical chemistry panel, including liver function markers, was obtained at each dose level (2, 5, 12.5 and 25 mg/kg siRNA) at 24 hours post-injection using an aliquot of the serum collected for FVII analysis. Samples were sent to the Central Laboratory for Veterinarians (Langley, BC) for analysis. In some instances, additional mice were included in the treatment group to allow collection of whole blood for hematology analysis. Determination of Therapeutic Index
  • Therapeutic index is an arbitrary parameter generated by comparing measures of toxicity and activity. For these studies, TI was determined as:
  • TI MTD (maximum tolerated dose) / ED 50 (dose for 50% FVII knockdown)
  • the MTD for these studies was set as the lowest dose causing >7% decrease in body weight and a >200-fold increase in alanine aminotransferase (ALT), a clinical chemistry marker with good specificity for liver damage in rodents.
  • ALT alanine aminotransferase
  • the ED 50 was determined from FVII dose-activity curves.
  • AD 1661 siRNA as provided in Example 1 was administered in formulations comprising the following molar ratio of DLin-M-C3-DMA:DSPC:Chol:PEG-DMG, which were prepared and tested in the methods as described in Example 2: 60:7.5:31:1.5; 50:10:38:.5:1.5; and 40:20:38.5:1.5.
  • the results of these in vivo experiments are provided in FIG. 1, demonstrating the silencing ability of the formulations as tested.
  • the reaction mixture was diluted with DCM (400 mL) and the organic layer was washed with water (2X500 mL), aqueous NaHCO 3 solution (500 mL) followed by standard work-up. The residue obtained was dried at ambient temperature under high vacuum overnight. After drying the crude carbonate Ha thus obtained was dissolved in dichloromethane (500 mL) and stirred over an ice bath. To the stirring solution InPEG 20 OO-NH 2 (III, 103.00 g, 47.20 mmol, purchased from NOF Corporation, Japan) and anhydrous pyridine (Py, 80 mL, excess) were added under argon. The reaction mixture was then allowed to stir at ambient temperature overnight.
  • 1,2-Di-O-hexadecyl-OT-glyceride Ib (1.00 g, 1.848 mmol) and DSC (0.710 g, 1.5eq) were taken together in dichloromethane (20 mL) and cooled down to 0 0 C in an ice water mixture. Triethylamine (1.00 mL, 3eq) was added and the reaction was stirred overnight. The reaction was followed by TLC, diluted with DCM, washed with water (2 times), NaHCO 3 solution and dried over sodium sulfate. Solvents were removed under reduced pressure and the resulting residue of Hb was maintained under high vacuum overnight. This compound was directly used for the next reaction without further purification.
  • Example 5 Preparation of DLin-M-C3-DMA (i.e., (6Z,9Z,28Z,31Z)- heptatriaconta-6,9,28,31-tetraen-19-yl 4-(dimethylamino)butanoate)
  • Example 6 Efficacy of MC3 liposomes having various liposomal compositions in rats.
  • MC3 containing liposomal formulations were prepared essentially as described in Example 2. As provided in the table below, the components, included are indicated as follows: MC3-DSPC-Cholesterol. -PEG-C 14. Table 9 below provides exemplary formulations as tested. Animals Sprague-Dawley
  • the liposomal formulation having 50 mol% MC3 showed a dosage response curve with efficacy at slightly lower siRNA concentrations than that of the liposomal formulation having 40 mol% MC3.
  • Example 7 Efficacy of MC3 liposomes show ApoE dependence of in mice.
  • wildtype and ApoE knockout mice were administered MC3 liposomes containing the AD-1661 siRNA composition, at 0.1, 0.03, and 0.01 mg/kg essentially as described in Example 2.
  • Half of the liposome formulations were premixed with recombinant ApoE protein in order to determine whether exogenous addition of ApoE can overcome the absence of the protein in mice.
  • Table 10 shows exemplary formulations as tested. Table 10
  • FIG. 3 shows dose-dependent attenuation of FVII protein levels in wild type (right bars) but not ApoE deficient knockout mice (left bars) when administered with the MC3 -formulated liposomes, suggesting a role of ApoE in cellular uptake and/or delivery to the liver.
  • MC3 liposomes formulated as described above with the 1661 siRNA were administered at concentrations of 0.1, 0.03, and 0.01 mg/kg by itself or premixed with ApoE lipoprotein. At much higher doses (e.g., - 1.0 mg/kg or above), however, MC3 -formulated formulations were found to mediate silencing of the FVII mRNA and protein (not shown). As shown in FIG.
  • MC3 formulated liposomal formulations tested are unable to mediate silencing of FVII in ApoE knockout mice, unless pre-mixed with recombinant ApoE. Thus, activity could be rescued in ApoE knockout mice by premixing MC3 (an MC3 -containing liposome) with ApoE.
  • Example 8 Efficacy of MC3 containing liposomal formulations varying in mole percentage and tail length of phosphocholines.
  • FIG. 4 shows the effects of changes in the mole percentage of the MC3, e.g., comparing 50 and 40 mole percent, and for the case of DMPC containing formulation, 50, 40, and 30 mole percent.
  • FIG. 4 also shows the effect of changes in the neutral lipid, showing the differing results for MC3 liposomal formulations comprising DSPC, DMPC, and DLPC.
  • Example 9 Incorporation of GaINAc lipids into liposome formulations.
  • GaINAc N-acetyl galactosamine conjugated lipids.
  • GaINAc was chosen as a possible targeting ligand as it is known that the GaINAc receptor is thought to be highly expressed in the liver. Studies were therefore performed in mice and rats to test the efficacy of the MC3 containing liposomal formulations further comprising the GalNAc3-PEG-DSG lipid of Formula III essentially as described in Example 2.
  • the total amount of PEG- conjugated lipids was kept constant (e.g., where 0.5% mol of GalNAc3-PEG is added, the corresponding amount of PEG-DSG was decreased by 0.5 % mol).
  • Four animals were used for each of the nine groups per genotype in the experiment.
  • Table 12 below provides experimental detail for the methods including MC3 containing liposomes having 5% PEG lipid concentration, where the formulations were tested in C57BL6 mice.
  • the liposomes comprising the following relative molar amounts: 50/10/35/5 of MC3/DSPC/Chol/PEG-DSG. Where 0.5% GalNAc3-PEG is added, the corresponding amount of PEG-DSG is reduced to 4.5%.
  • Table 13 below provides experimental detail for the methods including MC3 containing liposomes having 10 mol % concentration of PEG-DSG lipid, where the formulations were tested in C57BL6 mice.
  • the liposomes comprised the following relative molar amounts: 50/10/30/10 of MC3/DSPC/Chol/PEG-DSG. Where 0.5% GalNAc3-PEG is added, the corresponding amount of PEG-DSG is reduced to 9.5%.
  • FIG. 5 shows the effects where increasing PEG-shielding decreases non-GalNAc mediated silences in C57BL6 mice. This is demonstrated with PEG concentrations of both 5% and 10% in C57BL6 mice. Inclusion of C18-PEG (i.e., PEG-DSG) at 10 mol% effectively inhibits silencing, which can be overcome by substituting 0.5 mol% of the PEG lipid with an equimolar amount GalNAc-lipid (i.e., GalNAc3-PEG-DSG of Formula III). Therefore, increasing PEG-shielding (e.g., from 5 mol% to 10 mol%) appears to decrease non-GalNAc-mediated silencing, but also overall potency.
  • C18-PEG i.e., PEG-DSG
  • Table 15 provides experimental detail for the methods including MC3 containing liposomes having 10% PEG lipid concentration, where the formulations were tested in rats.
  • the liposomes comprising the following relative molar amounts: 50/10/30/10 of MC3/DSPC/Chol/PEG-DSG. Where 0.5% GalNAc3-PEG is added, the corresponding amount of PEG-DSG is reduced to 9.5%.
  • FIG. 6 shows results of MC3 formulations containing C18 PEG at 5 mol % and 10 mol% administered to rats at the indicated dosages.
  • Formulations containing 10 mol% of PEG-DSG shows little silencing at the concentrations tested (0.625 - 5 mg/kg) in rats.
  • inclusion of 0.5 mol% GalNAc3-PEG-DSG of Formula III i.e., replacing 0.5 mol% of the C18-PEG
  • restores knockdown of FVII restores knockdown of FVII. Therefore, when compared with mice, in the rat, more highly shielded formulation generally better retains potency as shown in the differences between concentrations of 5 mol% and 10 mol% PEG.
  • Example 10 Evaluation of variations of mol % of components in MC3 containing liposomal formulations with and without inclusion of 0.5 mol% GalNAc3-PEG-DSG
  • GIaNAc As shown in FIG. 7, addition of the GIaNAc to the liposomal formulations improves silencing of FVII in each formulation, i.e., wherein the MC3 is present at 50, 40, and 30 mol%.
  • Example 11 Efficacy of MC3 and GaINAc containing liposomes in WT and ASGPR KO mice.
  • MC3 liposomes containing the AD- 1661 siRNA composition were administered MC3 liposomes containing the AD- 1661 siRNA composition, at 3, 1, and 0.3 mg/kg as described in Example 1.
  • the components, as depicted in the table, are provided in the order as follows: MC3/DSPC/Chol./PEG-DSG. Where 0.5% GalNAc3-PEG is added, the corresponding amount of PEG-DSG is reduced to 9.5%, as shown in Table 17 below.
  • FIG. 8 shows the results of these experiments, demonstrating that restoration of FVII knockdown in formulations containing Cl 8 PEG by inclusion of the GalNAc3-PEG-DSG lipid is abolished when administered in a mouse strain deficient in the Asialoglycoprotein Receptor (ASGPR), which is the expected receptor for GaINAc targeting moiety.
  • ASGPR Asialoglycoprotein Receptor
  • oligonucleotides are synthesized on an AKTAoligopilot synthesizer.
  • Commercially available controlled pore glass solid support (dT-CPG, 500A, Prime Synthesis) and RNA phosphoramidites with standard protecting groups, 5'-O- dimethoxytrityl N6-benzoyl-2'-f-butyldimethylsilyl-adenosine-3'-O-N,N'- diisopropyl-2-cyanoethylphosphoramidite, 5'-O-dimethoxytrityl-N4-acetyl-2'-f- butyldimethylsilyl-cytidine-3 ' - O-N,N' -diisopropyl-2-cyanoethylphosphoramidite, 5 ' - O-dimethoxytrityl-N2-isobutryl-2'-f-butyldimethylsilyl-guanosine-3'-O-N,
  • the 2'-F phosphoramidites, 5'-O-dimethoxytrityl-N4-acetyl-2'-fluro-cytidine-3'-O-N,N'- diisopropyl-2-cyanoethyl-phosphoramidite and 5'-O-dimethoxytrityl-2'-fluro-uridine- 3'-O-N,N'-diisopropyl-2-cyanoethyl-phosphoramidite are purchased from (Promega). All phosphoramidites are used at a concentration of 0.2M in acetonitrile (CH 3 CN) except for guanosine which is used at 0.2M concentration in 10% THF/ ANC (v/v).
  • Coupling/recycling time of 16 minutes is used.
  • the activator is 5-ethyl thiotetrazole (0.75M, American International Chemicals); for the PO-oxidation iodine/water/pyridine is used and for the PS-oxidation PADS (2%) in 2,6- lutidine/ACN (1: 1 v/v) is used.
  • 3'-ligand conjugated strands are synthesized using solid support containing the corresponding ligand.
  • the introduction of cholesterol unit in the sequence is performed from a hydroxyprolinol-cholesterol phosphoramidite.
  • Cholesterol is tethered to Zr ⁇ Hs-4-hydroxyprolinol via a 6-aminohexanoate linkage to obtain a hydroxyprolinol-cholesterol moiety.
  • 5 '-end Cy-3 and Cy-5.5 (fluorophore) labeled siRNAs are synthesized from the corresponding Quasar-570 (Cy-3) phosphoramidite are purchased from Biosearch Technologies.
  • Conjugation of ligands to 5 '-end and or internal position is achieved by using appropriately protected ligand- phosphoramidite building block.
  • Oxidation of the internucleotide phosphite to the phosphate is carried out using standard iodine- water as reported (1) or by treatment with tert-buty ⁇ hydroperoxide/acetonitrile/water (10: 87: 3) with 10 min oxidation wait time conjugated oligonucleotide.
  • Phosphorothioate is introduced by the oxidation of phosphite to phosphorothioate by using a sulfur transfer reagent such as DDTT (purchased from AM Chemicals), PADS and or Beaucage reagent.
  • DDTT purchased from AM Chemicals
  • PADS PADS
  • Beaucage reagent The cholesterol phosphoramidite is synthesized in house and used at a concentration of 0.1 M in dichloromethane. Coupling time for the cholesterol phosphoramidite is 16 minutes.
  • the support is transferred to a 100 mL glass bottle (VWR).
  • the oligonucleotide is cleaved from the support with simultaneous deprotection of base and phosphate groups with 80 mL of a mixture of ethanolic ammonia [ammonia: ethanol (3: 1)] for 6.5 h at 55°C.
  • the bottle is cooled briefly on ice and then the ethanolic ammonia mixture is filtered into a new 250-mL bottle.
  • the CPG is washed with 2 x 40 mL portions of ethanol/water (1:1 v/v).
  • the volume of the mixture is then reduced to ⁇ 30 mL by roto-vap.
  • the mixture is then frozen on dry ice and dried under vacuum on a speed vac.
  • the dried residue is resuspended in 26 mL of triethylamine, triethylamine trihydrofluoride (TEA»3HF) or pyridine-HF and DMSO (3:4:6) and heated at 60 0 C for 90 minutes to remove the ferf-butyldimethylsilyl (TBDMS) groups at the 2' position.
  • TDA triethylamine trihydrofluoride
  • pyridine-HF and DMSO 3:4:6
  • DMS ferf-butyldimethylsilyl
  • the oligonucleotides are analyzed by high-performance liquid chromatography (HPLC) prior to purification and selection of buffer and column depends on nature of the sequence and or conjugated ligand.
  • HPLC high-performance liquid chromatography
  • the ligand-conjugated oligonucleotides are purified by reverse-phase preparative HPLC.
  • the unconjugated oligonucleotides are purified by anion-exchange HPLC on a TSK gel column packed in house.
  • the buffers are 20 mM sodium phosphate (pH 8.5) in 10% CH 3 CN (buffer A) and 20 mM sodium phosphate (pH 8.5) in 10% CH 3 CN, IM NaBr (buffer B). Fractions containing full-length oligonucleotides are pooled, desalted, and lyophilized.
  • oligonucleotides s are diluted in water to 150 ⁇ L and then pipetted into special vials for CGE and LC/MS analysis. Compounds are then analyzed by LC-ESMS and CGE.
  • siRNA For the preparation of siRNA, equimolar amounts of sense and antisense strand are heated in IxPBS at 95°C for 5 min and slowly cooled to room temperature. Integrity of the duplex is confirmed by HPLC analysis.
  • Nf is a 2'F modified nucleobase
  • dT is deoxy thymidine
  • s is phosphothioate
  • Example 13 Synthesis of mPEG2000-l,2-Di-0-alkyl-,m3-carbomoylglyceride
  • PEG-lipids such as mPEG2000-l,2-Di-0-alkyl-,m3-carbomoylglyceride were synthesized using the following procedures:
  • the reaction mixture was diluted with DCM (400 mL) and the organic layer was washed with water (2X500 mL), aqueous NaHCO 3 solution (500 mL) followed by standard work-up. Residue obtained was dried at ambient temperature under high vacuum overnight. After drying the crude carbonate 2a thus obtained was dissolved in dichloromethane (500 mL) and stirred over an ice bath. To the stirring solution mPEG 2 ooo-NH 2 (3, 103.00 g, 47.20 mmol, purchased from NOF Corporation, Japan) and anhydrous pyridine (80 mL, excess) were added under argon.
  • the reaction mixture was then allowed stir at ambient temperature overnight. Solvents and volatiles were removed under vacuum and the residue was dissolved in DCM (200 mL) and charged on a column of silica gel packed in ethyl acetate. The column was initially eluted with ethyl acetate and subsequently with gradient of 5-10 % methanol in dichloromethane to afford the desired PEG-Lipid 4a as a white solid (105.30g, 83%).
  • Lipids (cationic lipid of formula I, DSPC, cholesterol, DMG-PEG) are solubilized and mixed in ethanol according to the desired molar ratio. Liposomes are formed by an ethanol injection method where mixed lipids are added to sodium acetate buffer at pH 5.2. This results in the spontaneous formation of liposomes in 35 % ethanol. The liposomes are extruded through a 0.08 ⁇ m polycarbonate membrane at least 2 times. A stock siRNA solution was prepared in sodium acetate and 35% ethanol and was added to the liposome to load. The siRNA-liposome solution was incubated at 37°C for 30 min and, subsequently, diluted. Ethanol was removed and exchanged to PBS buffer by dialysis or tangential flow filtration.
  • Lipid stock containing cationic lipid of formula I, DSPC, cholesterol and PEG lipid is prepared by solubilized in 90% ethanol. The remaining 10% is low pH citrate buffer. The concentration of the lipid stock is 4 mg/mL. The pH of this citrate buffer can range between pH 3-5, depending on the type of fusogenic lipid employed.
  • the siRNA is also solubilized in citrate buffer at a concentration of 4 mg/mL. For small scale, 5 mL of each stock solution is prepared.
  • siRNAs used in the process may be unmodified oligonucleotides or modified and may be conjugated with lipophilic moieties such as cholesterol.
  • the individual stocks are combined by pumping each solution to a T-junction.
  • a dual-head Watson-Marlow pump is used to simultaneously control the start and stop of the two streams.
  • a 1.6 mm polypropylene tubing is further downsized to a 0.8 mm tubing in order to increase the linear flow rate.
  • the polypropylene T has a linear edge of 1.6 mm for a resultant volume of 4.1 mm 3 .
  • Each of the large ends (1.6 mm) of polypropylene line is placed into test tubes containing either solubilized lipid stock or solubilized siRNA. After the T-junction a single tubing is placed where the combined stream will emit.
  • the tubing is then extending into a container with 2x volume of PBS.
  • the PBS is rapidly stirring.
  • the flow rate for the pump is at a setting of 300 rpm or 110 mL/min.
  • Ethanol is removed and exchanged for PBS by dialysis.
  • the lipid formulations are then concentrated using centrifugation or diafiltration to an appropriate working concentration.
  • Example 16 Synthesis of [6Z,9Z,28Z,31Z)-heptatriaconta-6,9,28,31-tetraen-19-yl-4- (dimethylamino) butanoate] (a cationic lipid of formula I or MC3)
  • reaction mixture was stirred at 0 0 C for 1 h after which the TLC (5% EtOAc in DCM; PMA stain) of the reaction mixture showed complete disappearance of starting alcohol.
  • TLC 5% EtOAc in DCM; PMA stain
  • 17 L of ice-cold water was added and the layers were separated.
  • the top aqueous layer was again washed with 10 L of DCM and the layers were separated.
  • the combined organic layers were washed with 2 X 10 L of dilute hydrochloric acid (prepared by mixing 2 L of Con. HCl with 18 L of RO water), 2 X 7.5 L of water and 10 L of brine (prepared by dissolving 11 Kg of NaCl in 10 L of RO water).
  • the reaction mixture was diluted with 70 L of water and extracted with 57 L of hexanes.
  • the aqueous layer was further extracted with 2 X 10 L of hexanes and the combined organic layers (approximately 120 L) were washed again with 2 X 10 L of water and 1 X 10 L of brine (prepared by dissolving 14 Kg of sodium chloride in 10 L of water).
  • the obtained organic layer (120 L) was dried over sodium sulfate (4 Kg) and concentrated under reduced pressure to obtain the crude product (6.5 Kg).
  • the crude product was purified by column chromatography using 60-120 mesh silica gel using hexanes as eluent.
  • a clean, dry 20 L all glass reactor fitted with argon inlet, reflux condenser and thermowell was degassed and purged with argon.
  • the reactor was charged with 277 g (11.3 mol) of activated magnesium followed by 1.5 L of anhydrous ether.
  • the reactor was again degassed three times and purged with argon.
  • the bromide 4 (2.5 Kg, 7.6 mol) was dissolved in 5 L of anhydrous ether under argon and IL of this solution was added to the reactor followed by 25 mL (0.35 mol) of dibromomethane.
  • the contents of the reactor were heated to 40 0 C using a water bath (effervescence was observed followed by reflux indicating the initiation of Grignard reagent formation).
  • reaction mixture was cooled below 10 0 C using an ice bath and a solution of ethyl formate (275 mL in 4 L of ether) in ether was added over a period of 2 hr 30 min and after completion of the addition the reaction mixture was warmed to room temperature and stirred for 1 hr.
  • the reaction mixture was cooled back to 10 0 C and acetone (1.15 L) was added slowly to the mixture followed by the addition of 7 L of ice-cold water and a solution of 10% sulfuric acid (prepared by diluting 3.4 L of sulfuric acid with 34 L of ice-cold water).
  • the product was extracted with 3 X 10 L of ether and the combined organic layers were washed with 10 L of brine and dried over sodium sulfate (2 Kg). Concentration of the organic layer over reduced pressure provided the crude product (2 Kg) as a mixture of required dilinoleyl alcohol along with minor amounts of O- formylated product. This crude product was redissoloved in THF (4L) and charged into the 2OL glass reactor.
  • the dilinoleyl methanol 6 (144 g, 272 mmol) was dissolved in 1 L of dichloromethane and to it the hydrochloride salt of dimethylaminobutyric acid 7 (55 g, 328 mmol) was added followed by diisopropylethylamine (70 mL) and DMAP (4 g). After stirring for 5 min. at ambient temperature, EDCI (80 g, 417 mmol) was added and the reaction mixture was stirred at room temperature overnight after which the TLC (silica gel, 5% MeOH in CH 2 Cl 2 ) analysis showed complete disappearance of the starting alcohol.
  • TLC sica gel, 5% MeOH in CH 2 Cl 2
  • reaction mixture was diluted with CH 2 Cl 2 (500 mL) and washed with saturated NaHCO 3 (400 mL), water (400 mL) and brine (500 mL). The combined organic layers were dried over anhyd. Na 2 SO 4 and solvents were removed in vacuo.
  • the crude product (180 g) thus obtained was purified by Flash column chromatography [2.5 Kg silica gel, Using the following eluents i) column packed with 6L of 0.1% NEt 3 in DCM; after loading ii) 4 L of 0.1% NEt 3 in DCM; iii) 16L of 2% MeOH - 98% of 0.1% NEt 3 in DCM; iv) 4L of 2.5% MeOH - 97.5% of 0.1% NEt 3 in DCM; v) 12L of 3% MeOH - 97% of 0.1% NEt 3 in DCM] to isolate the pure product 8 (MC3, 159 g, 91%) as a colorless oil.
  • Cationic lipid containing particles were made using the preformed vesicle method.
  • Cationic lipid, DSPC, cholesterol and PEG-lipid were solubilised in ethanol at a molar ratio of 40/10/40/10, respectively.
  • the lipid mixture was added to an aqueous buffer (5OmM citrate, pH 4) with mixing to a final ethanol and lipid concentration of 30% (vol/vol) and 6.1 mg/mL respectively and allowed to equilibrate at room temperature for 2 min before extrusion.
  • the hydrated lipids were extruded through two stacked 80 nm pore- sized filters (Nuclepore) at 22°C using a Lipex Extruder (Northern Lipids, Vancouver, BC) until a vesicle diameter of 70-90 nm, as determined by Nicomp analysis, was obtained. This generally required 1-3 passes. For some cationic lipid mixtures which did not form small vesicles hydrating the lipid mixture with a lower pH buffer (5OmM citrate, pH 3) to protonate the phosphate group on the DSPC headgroup helped form stable 70-90 nm vesicles.
  • a lower pH buffer (5OmM citrate, pH 3)
  • the FVII siRNA (solubilised in a 5OmM citrate, pH 4 aqueous solution containing 30% ethanol) was added to the vesicles, pre-equilibrated to 35°C, at a rate of ⁇ 5mL/min with mixing. After a final target siRNA/lipid ratio of 0.06 (wt/wt) was achieved, the mixture was incubated for a further 30 min at 35°C to allow vesicle reorganization and encapsulation of the FVII siRNA. The ethanol was then removed and the external buffer replaced with PBS (155mM NaCl, 3mM Na 2 HPO 4 , ImM KH 2 PO 4 , pH 7.5) by either dialysis or tangential flow diafiltration.
  • PBS 155mM NaCl, 3mM Na 2 HPO 4 , ImM KH 2 PO 4 , pH 7.5
  • the final encapsulated siRNA-to-lipid ratio was determined after removal of unencapsulated siRNA using size-exclusion spin columns or ion exchange spin columns.
  • the dose response curve illustrating the % residual FVII again the dose (mg/kg) is illustrated in figure 9.
  • the pKa of the cationic lipid of formula I was determined essentially as described (Eastman et al 1992 Biochemistry 31:4262-4268) using the fluorescent probe 2-(p- toluidino)-6-naphthalenesulfonic acid (TNS), which is non-fluorescent in water but becomes appreciably fluorescent when bound to membranes.
  • TMS 2-(p- toluidino)-6-naphthalenesulfonic acid
  • the pKa of the cationic lipid-containing vesicles was determined by plotting the measured fluorescence against the pH of the solutions and fitting the data to a Sigmodial curve using the commercial graphing program IgorPro. The pKa titration curve for the cationic lipid of formula I is shown in figure 10.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicinal Chemistry (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Molecular Biology (AREA)
  • Genetics & Genomics (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Dispersion Chemistry (AREA)
  • Biophysics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Microbiology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Immunology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Neurology (AREA)
  • Neurosurgery (AREA)
  • Emergency Medicine (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Virology (AREA)
  • Marine Sciences & Fisheries (AREA)
  • Psychiatry (AREA)
  • Hospice & Palliative Care (AREA)

Abstract

The invention features a cationic lipid of formula (I), an improved lipid formulation comprising a cationic lipid of formula I and corresponding methods of use. Also disclosed are targeting lipids, and specific lipid formulations comprising such targeting lipids.

Description

IMPROVED LIPID FORMULATION
Claim of Priority
This application claims priority to U.S.S.N. 61/185,800, filed June 10, 2009 and U.S.S.N. 61/244,834, filed September 22, 2009, the contents of each of which is incorporated by reference in its entirety.
Technical Field
The invention relates to the field of therapeutic agent delivery using lipid particles. In particular, the invention provides cationic lipids and lipid particles comprising these lipids, which are advantageous for the in vivo delivery of nucleic acids, as well as nucleic acid-lipid particle compositions suitable for in vivo therapeutic use. Additionally, the invention provides methods of preparing these compositions, as well as methods of introducing nucleic acids into cells using these compositions, e.g., for the treatment of various disease conditions.
Description of the Related Art
Therapeutic nucleic acids include, e.g., small interfering RNA (siRNA), micro RNA (miRNA), antisense oligonucleotides, ribozymes, plasmids, and immune stimulating nucleic acids. These nucleic acids act via a variety of mechanisms. In the case of siRNA or miRNA, these nucleic acids can down-regulate intracellular levels of specific proteins through a process termed RNA interference (RNAi). Following introduction of siRNA or miRNA into the cell cytoplasm, these double- stranded RNA constructs can bind to a protein termed RISC. The sense strand of the siRNA or miRNA is displaced from the RISC complex providing a template within RISC that can recognize and bind mRNA with a complementary sequence to that of the bound siRNA or miRNA. Having bound the complementary mRNA the RISC complex cleaves the mRNA and releases the cleaved strands. RNAi can provide down- regulation of specific proteins by targeting specific destruction of the corresponding mRNA that encodes for protein synthesis. The therapeutic applications of RNAi are extremely broad, since siRNA and miRNA constructs can be synthesized with any nucleotide sequence directed against a target protein. To date, siRNA constructs have shown the ability to specifically down-regulate target proteins in both in vitro and in vivo models. In addition, siRNA constructs are currently being evaluated in clinical studies.
However, two problems currently faced by siRNA or miRNA constructs are, first, their susceptibility to nuclease digestion in plasma and, second, their limited ability to gain access to the intracellular compartment where they can bind RISC when administered systemically as the free siRNA or miRNA. These double- stranded constructs can be stabilized by incorporation of chemically modified nucleotide linkers within the molecule, for example, phosphothioate groups. However, these chemical modifications provide only limited protection from nuclease digestion and may decrease the activity of the construct. Intracellular delivery of siRNA or miRNA can be facilitated by use of carrier systems such as polymers, cationic liposomes or by chemical modification of the construct, for example by the covalent attachment of cholesterol molecules. However, improved delivery systems are required to increase the potency of siRNA and miRNA molecules and reduce or eliminate the requirement for chemical modification.
Antisense oligonucleotides and ribozymes can also inhibit mRNA translation into protein. In the case of antisense constructs, these single stranded deoxynucleic acids have a complementary sequence to that of the target protein mRNA and can bind to the mRNA by Watson-Crick base pairing. This binding either prevents translation of the target mRNA and/or triggers RNase H degradation of the mRNA transcripts. Consequently, antisense oligonucleotides have tremendous potential for specificity of action (i.e., down-regulation of a specific disease -related protein). To date, these compounds have shown promise in several in vitro and in vivo models, including models of inflammatory disease, cancer, and HIV (reviewed in Agrawal, Trends in Biotech. 14:376-387 (1996)). Antisense can also affect cellular activity by hybridizing specifically with chromosomal DNA. Advanced human clinical assessments of several antisense drugs are currently underway. Targets for these drugs include the bcl2 and apolipoprotein B genes and mRNA products. Immune- stimulating nucleic acids include deoxyribonucleic acids and ribonucleic acids. In the case of deoxyribonucleic acids, certain sequences or motifs have been shown to illicit immune stimulation in mammals. These sequences or motifs include the CpG motif, pyrimidine-rich sequences and palindromic sequences. It is believed that the CpG motif in deoxyribonucleic acids is specifically recognized by an endosomal receptor, toll-like receptor 9 (TLR-9), which then triggers both the innate and acquired immune stimulation pathway. Certain immune stimulating ribonucleic acid sequences have also been reported. It is believed that these RNA sequences trigger immune activation by binding to toll-like receptors 6 and 7 (TLR-6 and TLR-7). In addition, double-stranded RNA is also reported to be immune stimulating and is believe to activate via binding to TLR-3.One well known problem with the use of therapeutic nucleic acids relates to the stability of the phosphodiester internucleotide linkage and the susceptibility of this linker to nucleases. The presence of exonucleases and endonucleases in serum results in the rapid digestion of nucleic acids possessing phosphodiester linkers and, hence, therapeutic nucleic acids can have very short half-lives in the presence of serum or within cells. (Zelphati, O., et al., Antisense. Res. Dev. 3:323-338 (1993); and Thierry, A.R., et al, ppl47-161 in Gene Regulation: Biology of Antisense RNA and DNA (Eds. Erickson, RP and Izant, JG; Raven Press, NY (1992)). Therapeutic nucleic acid being currently being developed do not employ the basic phosphodiester chemistry found in natural nucleic acids, because of these and other known problems.
This problem has been partially overcome by chemical modifications that reduce serum or intracellular degradation. Modifications have been tested at the internucleotide phosphodiester bridge {e.g., using phosphorothioate, methylphosphonate or phosphoramidate linkages), at the nucleotide base {e.g., 5- propynyl-pyrimidines), or at the sugar {e.g., 2'-modified sugars) (Uhlmann E., et al. Antisense: Chemical Modifications. Encyclopedia of Cancer, Vol. X., pp 64-81 Academic Press Inc. (1997)). Others have attempted to improve stability using 2'-5' sugar linkages {see, e.g., US Pat. No. 5,532,130). Other changes have been attempted. However, none of these solutions have proven entirely satisfactory, and in vivo free therapeutic nucleic acids still have only limited efficacy. In addition, as noted above relating to siRNA and miRNA, problems remain with the limited ability of therapeutic nucleic acids to cross cellular membranes (see, Vlassov, et al, Biochim. Biophys. Acta 1197:95-1082 (1994)) and in the problems associated with systemic toxicity, such as complement-mediated anaphylaxis, altered coagulatory properties, and cytopenia (Galbraith, et al, Antisense Nucl. Acid Drug Des. 4:201-206 (1994)).
To attempt to improve efficacy, investigators have also employed lipid-based carrier systems to deliver chemically modified or unmodified therapeutic nucleic acids. In Zelphati, O and Szoka, F.C., /. Contr. ReI. 41:99-119 (1996), the authors refer to the use of anionic (conventional) liposomes, pH sensitive liposomes, immunoliposomes, fusogenic liposomes, and cationic lipid/antisense aggregates. Similarly siRNA has been administered systemically in cationic liposomes, and these nucleic acid- lipid particles have been reported to provide improved down-regulation of target proteins in mammals including non-human primates (Zimmermann et al., Nature 441: 111-114 (2006)). In spite of recent progress, there remains a need in the art for improved lipid-therapeutic nucleic acid compositions that are suitable for general therapeutic use. Preferably, these compositions would encapsulate nucleic acids with high-efficiency, have high drug:lipid ratios, protect the encapsulated nucleic acid from degradation and clearance in serum, be suitable for systemic delivery, and provide intracellular delivery of the encapsulated nucleic acid. In addition, these lipid-nucleic acid particles should be well-tolerated and provide an adequate therapeutic index, such that patient treatment at an effective dose of the nucleic acid is not associated with significant toxicity and/or risk to the patient. The invention provides such compositions, methods of making the compositions, and methods of using the compositions to introduce nucleic acids into cells, including for the treatment of diseases. Summary of Invention
The present invention provides novel cationic lipids, as well as lipid particles comprising the same. These lipid particles may further comprise an active agent and be used according to related methods of the invention to deliver the active agent to a cell.
The lipids of this invention may contain one or more isomeric forms. All such isomeric forms of these compounds are expressly included in the present invention. The compounds of this invention may also contain linkages (e.g., carbon-carbon bonds) or substituents that can restrict bond rotation, e.g. restriction resulting from the presence of a double bond. Accordingly, all cis/trans and EfZ isomers are expressly included in the present invention.
In one aspect, the invention provides improved lipid formulations comprising a cationic lipid of formula I, wherein formula I is:
Figure imgf000006_0001
Formula I can also be referred to as DLin-M-C3-DMA, MC3 or M-C3. Each of Formula I, DLin-M-C3-DMA, MC3 and M-C3 have the formula as provided directly above.
Lipid formulations typically also comprise a neutral lipid, a sterol and a PEG or PEG-modified lipid.
In one aspect, the improved lipid formulation also includes a targeting lipid (e.g., a GaINAc and/or folate containing lipid).
In one aspect, the invention provides preparation for the improved lipid formulations via an extrusion or an in-line mixing method.
In one aspect, the invention further provides a method of administering the improved lipid formulations containing RNA-based construct to an animal, and evaluating the expression of the target gene.
In one aspect, a lipid formulation featured in the invention, such as a lipid formulation complexed with an oligonucleotide, such as a double stranded RNA (dsRNA), can be used to modify (e.g., decrease) target gene expression in a tumor cell in vivo or in vitro. In some embodiments, a lipid formulation featured in the invention can be used to modify target gene expression in a tumor cell line, including but not limited to HeLa, HCTl 16, A375, MCF7, B16F10, Hep3b, HUH7, HepG2, Skov3, U87, and PC3 cell lines.
In another aspect, the invention provides a lipid particle comprising the lipid of the present invention. In certain embodiments, the lipid particle further comprises a neutral lipid and a lipid capable of reducing particle aggregation. In one embodiment, the lipid particle consists essentially of (i) at least one lipid of the present invention; (ii) a neutral lipid selected from DSPC, DPPC, POPC, DOPE and SM; (iii) sterol, e.g. cholesterol; and (iv) peg-lipid, e.g. PEG-DMG or PEG-cDMA, in a molar ratio of about 20-60% cationic lipid: 5-25% neutral lipid: 25-55% sterol; 0.5- 15% PEG-lipid. In one embodiment, the lipid of the present invention is optically pure.
In additional related embodiments, the present invention includes lipid particles of the invention that further comprise therapeutic agent. In one embodiment, the therapeutic agent is a nucleic acid. In one embodiment, the nucleic acid is a plasmid, an immunostimulatory oligonucleotide, a single stranded oligonucleotide, e.g. an antisense oligonucleotide, an antagomir; a double stranded oligonucleotide, e.g. a siRNA; an aptamer or a ribozyme.
In yet another related embodiment, the present invention includes a pharmaceutical composition comprising a lipid particle of the present invention and a pharmaceutically acceptable excipient, carrier of diluent.
The present invention further includes, in other related embodiments, a method of modulating the expression of a target gene in a cell, the method comprising providing to a cell a lipid particle or pharmaceutical composition of the present invention. The target gene can be a wild type gene. In another embodiment, the target gene contains one or more mutations. In a particular embodiment, the method comprises specifically modulating expression of a target gene containing one or more mutations. In particular embodiments, the lipid particle comprises a therapeutic agent selected from an immunostimulatory oligonucleotide, a single stranded oligonucleotide, e.g. an antisense oligonucleotide, an antagomir; a double stranded oligonucleotide, e.g. a siRNA, an aptamer, a ribozyme. In one embodiment, the nucleic acid is plasmid that encodes a siRNA, an antisense oligonucleotide, an aptamer or a ribozyme.
In one aspect of the invention, the target gene is selected from the group consisting of Factor VII, Eg5, PCSK9, TPX2, apoB, SAA, TTR, RSV, PDGF beta gene, Erb-B gene, Src gene, CRK gene, GRB2 gene, RAS gene, MEKK gene, JNK gene, RAF gene, Erkl/2 gene, PCNA(p21) gene, MYB gene, JUN gene, FOS gene, BCL-2 gene, Cyclin D gene, VEGF gene, EGFR gene, Cyclin A gene, Cyclin E gene, WNT-I gene, beta-catenin gene, c-MET gene, PKC gene, NFKB gene, STAT3 gene, survivin gene, Her2/Neu gene, topoisomerase I gene, topoisomerase II alpha gene, p73 gene, p21(WAFl/CIPl) gene, p27(KIPl) gene, PPMlD gene, RAS gene, caveolin I gene, MIB I gene, MTAI gene, M68 gene, SORTl gene, XBPl gene, mutations in tumor suppressor genes, p53 tumor suppressor gene, and combinations thereof.
In another embodiment, the nucleic acid is a plasmid that encodes a polypeptide or a functional variant or fragment thereof, such that expression of the polypeptide or the functional variant or fragment thereof is increased.
In yet a further related embodiment, the present invention includes a method of treating a disease or disorder characterized by overexpression of a polypeptide in a subject, comprising providing to the subject a lipid particle or pharmaceutical composition of the present invention, wherein the therapeutic agent is selected from an siRNA, a microRNA, an antisense oligonucleotide, and a plasmid capable of expressing an siRNA, a microRNA, or an antisense oligonucleotide, and wherein the siRNA, microRNA, or antisense RNA comprises a polynucleotide that specifically binds to a polynucleotide that encodes the polypeptide, or a complement thereof.
In another related embodiment, the present invention includes a method of treating a disease or disorder characterized by underexpression of a polypeptide in a subject, comprising providing to the subject the pharmaceutical composition of the present invention, wherein the therapeutic agent is a plasmid that encodes the polypeptide or a functional variant or fragment thereof. In a further embodiment, the present invention includes a method of inducing an immune response in a subject, comprising providing to the subject a pharmaceutical composition of the present invention, wherein the therapeutic agent is an immunostimulatory oligonucleotide. In particular embodiments, the pharmaceutical composition is provided to the patient in combination with a vaccine or antigen.
In a related embodiment, the present invention includes a vaccine comprising the lipid particle of the present invention and an antigen associated with a disease or pathogen. In one embodiment, the lipid particle comprises an immunostimulatory nucleic acid or oligonucleotide. In a particular embodiment, the antigen is a tumor antigen. In another embodiment, the antigen is a viral antigen, a bacterial antigen, or a parasitic antigen.
The present invention further includes methods of preparing the lipid particles and pharmaceutical compositions of the present invention, as well as kits useful in the preparation of these lipid particle and pharmaceutical compositions.
In another aspect, the invention provides a method of evaluating a composition that includes an agent, e.g. a therapeutic agent or diagnostic agent, and a lipid of the present invention.
Brief Description of the Figures
FIG. 1 is a bar graph depicting the effect of lipid formulations including DLin- M-C3-DMA on the silencing of FVII in a mouse model.
FIG. 2 is a bar graph depicting the dose response of MC3 in rats with various liposomal compositions.
FIG. 3 is a bar graph that shows the ApoE dependence of efficacy of formulations comprising MC3. Wildtype but not ApoE knockout mice showed dose- dependent reduction in FVII protein levels. FIG. 2 also depicts a graph that demonstrates that ApoE dependence of the MC3 liposomal formulation and the lack of silencing in ApoE KO mice using MC3 can be effectively rescued by premixing with ApoE. FIG. 4 is a bar graph that shows the effects of variations in the mole percentage of MC3 in a liposomal formulation and also the effects of variations in the neutral lipid (e.g., varying the neutral lipid with DSPC, DMPC, and DLPC).
FIG. 5 is a bar graph showing that increasing PEG-shielding decreases non- GalNAc-mediated silencing in mice.
FIG. 6 is a bar graph showing that increasing PEG-shielding decreases non- GalNAc-mediated silencing in rats.
FIG. 7 is a bar graph showing the efficacy of liposomal formulations having different mol% of MC3, with and without GaINAc.
FIG. 8 is a bar graph showing that the activity of GaINAc -targeted liposomes is abolished in Asialoglycoprotein Receptor (ASGPR) knockout mice.
FIG. 9 is a dose response curve of % residual FVII and dose (mg/kg) for the formulation prepared in Example 17.
FIG. 10 is the pKa titration curve of a cationic lipid of formula I as determined in Example 18.
Detailed Description
Described herein is an improved lipid formulation, which can be used, for example, as a delivering an agent, e.g., a nucleic acid-based agent, such as an RNA- based construct, to a cell or subject. Also described herein are methods of administering the improved lipid formulations containing an RNA-based construct to an animal, and in some embodiments, evaluating the expression of the target gene. In some embodiments the improved lipid formulation includes a targeting lipid (e.g., a targeting lipid described herein such as a GaINAc or folate containing lipid).
LIPIDS
The invention provides improved lipid formulations comprising a cationic lipid of formula I, a neutral lipid, a sterol and a PEG or PEG-modified lipid, wherein
formula I is
Figure imgf000010_0001
In one embodiment, the lipid is a racemic mixture.
In one embodiment, the lipid is enriched in one diastereomer, e.g. the lipid has at least 95%, at least 90%, at least 80% or at least 70% diastereomeric execess.
In one embodiment, the lipid is chirally pure, e.g. is a single isomer.
In one embodiment, the lipid is enriched for one isomer.
In one embodiment, the formulations of the invention are entrapped by at least 75%, at least 80% or at least 90%. In one embodiment, the formulation include from about 25% to about 75% on a molar basis of cationic lipid of formula I e.g., from about 35 to about 65%, from about 45 to about 65%, about 60%, about 57.5%, about 50% or about 40% on a molar basis.
In one embodiment, the formulation includes from about 0.5% to about 15% on a molar basis of the neutral lipid e.g., from about 3 to about 12%, from about 5 to about 10% or about 15%, about 10%, or about 7.5% on a molar basis.
In one embodiment, the formulation includes from about 5% to about 50% on a molar basis of the sterol (e.g., about 15 to about 45%, about 20 to about 40%, about 40%, about 38.5%, about 35%, or about 31% on a molar basis. In one embodiment, the sterol is cholesterol.
In one embodiment, the formulation includes from about 0.5% to about 20% on a molar basis of the PEG or PEG-modified lipid (e.g., about 0.5 to about 10%, about 0.5 to about 5%, about 1.5%, about 0.5%, about 1.5%, about 3.5%, or about 5% on a molar basis.
In one embodiment, the formulations of the inventions include 25-75% of cationic lipid of formula I, 0.5-15% of the neutral lipid, 5-50% of the sterol, and 0.5- 20% of the PEG or PEG-modified lipid on a molar basis.
In one embodiment, the formulations of the inventions include 35-65% of cationic lipid of formula I, 3-12% of the neutral lipid, 15-45% of the sterol, and 0.5- 10% of the PEG or PEG-modified lipid on a molar basis.
In one embodiment, the formulations of the inventions include 45-65% of cationic lipid of formula I, 5-10% of the neutral lipid, 25-40% of the sterol, and 0.5- 10% of the PEG or PEG-modified lipid on a molar basis. In one embodiment, the formulations of the inventions include about 60% of cationic lipid of formula I, about 7.5% of the neutral lipid, about 31 % of the sterol, and about 1.5% of the PEG or PEG-modified lipid on a molar basis. In one preferred embodiment, the cationic lipid is the compound of formula I, the neutral lipid is DSPC, the sterol is cholesterol and the PEG lipid is PEG-DMG (also referred herein as PEG-C14 or C14-PEG). In one embodiment, the PEG or PEG modified lipid comprises a PEG molecule of an average molecular weight of 2,000 Da. In other embodiments, the PEG or PEG modified lipid comprises a PEG molecule of an average molecular weight of less than 2,000, for example around 1,500 Da, around 1,000 Da, or around 500 Da. In one embodiment, the PEG or PEG modified lipid is a compound of the following Formula VI:
Figure imgf000012_0001
, with a PEG molecule of an average molecular weight of 2,000 Da. In one embodiment, the PEG or PEG modified lipid is PEG-distearoyl glycerol (PEG-DSG, also referred herein as PEG- C18 or C18-PEG).
In one embodiment, the formulations of the inventions include about 50% of cationic lipid of formula I, about 10% of the neutral lipid, about 38.5 % of the sterol, and about 1.5% of the PEG or PEG-modified lipid on a molar basis. In one preferred embodiment, the cationic lipid is the compound of formula I, the neutral lipid is DSPC, the sterol is cholesterol and the PEG lipid is PEG-DMG (also referred herein as PEG-C14 or C14-PEG). In one embodiment, the PEG or PEG modified lipid is PEG-distyryl glycerol (PEG-DSG, also referred herein as PEG-C18 or C18-PEG). In one embodiment, the PEG or PEG modified lipid is PEG-DPG (PEG- dipalmitoylglycerol). In one embodiment, the PEG or PEG modified lipid comprises a PEG molecule of an average molecular weight of 2,000 Da.
In one embodiment, the formulations of the inventions include about 50% of cationic lipid of formula I, about 10% of the neutral lipid, about 35 % of the sterol, about 4.5% of the PEG or PEG-modified lipid, and about 0.5% of the targeting lipid on a molar basis. In one preferred embodiment, the cationic lipid is the compound of formula I, the neutral lipid is DSPC, the sterol is cholesterol, the PEG lipid is PEG- distearoyl glycerol (PEG-DSG, also referred herein as PEG-C 18 or C18-PEG), and the targeting lipid is GalNAc3-PEG-DSG.
In one embodiment, the formulations of the inventions include about 50% of cationic lipid of formula I, about 10% of the neutral lipid, about 35 % of the sterol, about 4.5% of the PEG or PEG-modified lipid, and about 0.5% of the targeting lipid on a molar basis. In one preferred embodiment, the cationic lipid is the compound of formula I, the neutral lipid is DSPC, the sterol is cholesterol, the PEG lipid is PEG- DMG (also referred herein as PEG-C14 or C14-PEG).
In one embodiment, the formulations of the inventions include about 40% of cationic lipid of formula I, about 15% of the neutral lipid, about 40% of the sterol, and about 5% of the PEG or PEG-modified lipid on a molar basis. In one preferred embodiment, the cationic lipid is the compound of formula I, the neutral lipid is DSPC, the sterol is cholesterol, the PEG lipid is PEG-DMG (also referred herein as PEG-C14 or C14-PEG).
In one embodiment, the formulations of the inventions include about 50% of cationic lipid of formula I, about 10% of the neutral lipid, about 35% of the sterol, and about 5% of the PEG or PEG-modified lipid on a molar basis. In one preferred embodiment, the cationic lipid is the compound of formula I, the neutral lipid is DSPC, the sterol is cholesterol, the PEG lipid is PEG-DMG (also referred herein as PEG-C14 or C14-PEG).
In one embodiment, the formulations of the inventions include about 57.2% of cationic lipid of formula I, about 7.1% of the neutral lipid, about 34.3% of the sterol, and about 1.4% of the PEG or PEG-modified lipid on a molar basis. In one preferred embodiment, the cationic lipid is the compound of formula I, the neutral lipid is DPPC, the sterol is cholesterol, the PEG lipid is PEG-cDMA (PEG-cDMA is further discussed in Heyes et al. (/. Controlled Release, 107, 276-287 (2005)).
GalNAc3-PEG-DSGIn one embodiment, the PEG or PEG modified lipid is a compound of the Formula VI or PEG-DSG, wherein the PEG molecule has an average molecular weight of 2,000 Da.
In one embodiment, the formulations of the inventions include about 57.5% of cationic lipid of formula I, about 7.5% of the neutral lipid, about 31.5 % of the sterol, and about 3.5% of the PEG or PEG-modified lipid on a molar basis. In one preferred embodiment, the cationic lipid is the compound of formula I, the neutral lipid is DSPC, the sterol is cholesterol and the PEG lipid is PEG-DMG.
In one embodiment, the ratio of lipid:siRNA is at least about 0.5:1, at least about 1: 1, at least about 2:1, at least about 3:1, at least about 4:1, at least about 5:1, at least about 6:1, at least about 7:1, at least about 8:1, at least about 10: 1, at least about 11:1, at least about 12:1, to at least about 15:1 . In one embodiment, the ratio of lipid:siRNA ratio is between about 1:1 to about 20:1, about 3:1 to about 15:1, about 4:1 to about 15: 1, about 5:1 to about 13:1. In one embodiment, the ratio of lipid:siRNA ratio is between about 0.5: 1 to about 15: 1.
In one aspect, the improved lipid formulation also includes a targeting lipid. In some embodiments, the targeting lipid includes a GaINAc moiety (i.e., an N- galactosamine moiety). For example, a targeting lipid including a GaINAc moiety can include those disclosed in USSN 12/328,669, filed 12/4/2008, which is incorporated herein by reference in its entirety. A targeting lipid can also include any other lipid (e.g., targeting lipid) known in the art, for example, as described in USSN 12/328,669, or International Publication No. WO 2008/042973, the contents of each of which are incorporated herein by reference in their entirety. In some embodiments, the targeting lipid includes a plurality of GaINAc moieties, e.g., two or three GaINAc moieties. In some embodiments, the targeting lipid contains a plurality, e.g., two or three N- acetylgalactosamine (GaINAc) moieties. In some embodiments, the lipid in the targeting lipid is l,2-Di-0-hexadecyl-,m-glyceride (i.e., DSG). In some embodiments, the targeting lipid includes a PEG moiety (e.g., a PEG moiety having a molecular weight of at least about 500 Da, such as about 1000 Da, 1500 Da, 2000 Da or greater), for example, the targeting moiety is connected to the lipid via a PEG moiety.
In some embodiments, the targeting lipid includes a folate moiety. For example, a targeting lipid including a folate moiety can include those disclosed in USSN 12/328,669, filed 12/4/2008, which is incorporated herein by reference in its entirety. In another embodiment, a targeting lipid including a folate moiety can include the compound of Formula V.
Exemplary targeting lipids are represented by formula L below: (Targeting group)n-L-Lipid formula L wherein
Targeting group is any targeting group that known by one skilled in the art and/or described herein (e.g., a cell surface receptor); n is an integer from 1 to 5, (e.g., 3)
L is a linking group; and
Lipid is a lipid such as a lipid described herein (e.g., a neutral lipid such as DSG).
In some embodiments, the linking group includes a PEG moiety.
In some embodiments, the targeting lipid is compound 2, 3, 4 or 5 as provided below:
Figure imgf000015_0001
Figure imgf000016_0001
In some embodiments, the targeting lipid is present in the formulation in an amount of from about 0.001% to about 5% (e.g., about 0.005%, 0.15%, 0.3%, 0.5%, 1.5%, 2%, 2.5%, 3%, 4%, or 5%) on a molar basis. In some embodiments, the targeting lipid is present in the formulation in an amount from about 0.005% to about 1.5%. In some embodiments, the targeting lipid is included in a formulation described herein.
In some embodiments, the lipid formulation also included an antioxidant (e.g., a radical scavenger). The antioxidant can be present in the formulation, for example, at an amound from about 0.01% to about 5%. The antioxidant can be hydrophobic or hydrophilic (e.g., soluble in lipids or soluble in water). In some embodiments, the antioxidant is a phenolic compound, for example, butylhydroxytoluene, resveratrol, coenzyme QlO, or other flavinoids, or a vitamin, for example, vitamin E or vitamin C. Other exemplary antioxidants include lipoic acid, uric acid, a carotene such as beta- carotene or retinol (vitamin A), glutathione, melatonin, selenium, and ubiquinol.
In some embodiments, the receptor for the targeting lipid (e.g., a GaINAc containing lipid) is the asialoglycoprotein receptor (i.e., ASGPR).
In one embodiment, the formulations of the invention are produced via an extrusion method or an in-line mixing method.
The extrusion method (also refer to as preformed method or batch process) is a method where the empty liposomes (i.e. no nucleic acid) are prepared first, followed by the the addition of nucleic acid to the empty liposome. Extrusion of liposome compositions through a small-pore polycarbonate membrane or an asymmetric ceramic membrane results in a relatively well-defined size distribution. Typically, the suspension is cycled through the membrane one or more times until the desired liposome complex size distribution is achieved. The liposomes may be extruded through successively smaller-pore membranes, to achieve a gradual reduction in liposome size. In some instances, the lipid-nucleic acid compositions which are formed can be used without any sizing. These methods are disclosed in the US 5,008,050; US 4,927,637; US 4,737,323; Biochim Biophys Acta. 1979 Oct 19;557(l):9-23; Biochim Biophys Acta. 1980 Oct 2;601(3):559-7; Biochim Biophys Acta. 1986 Jun 13;858(1): 161-8; and Biochim. Biophys. Acta 1985 812, 55-65, which are hereby incorporated by reference in their entirety.
The in-line mixing method is a method wherein both the lipids and the nucleic acid are added in parallel into a mixing chamber. The mixing chamber can be a simple T-connector or any other mixing chamber that is known to one skill in the art. These methods are disclosed in US patent nos. 6,534,018 and US 6,855,277; US publication 2007/0042031 and Pharmaceuticals Research, Vol. 22, No. 3, Mar. 2005, p. 362-372, which are hereby incorporated by reference in their entirety.
It is further understood that the formulations of the invention can be prepared by any methods known to one of ordinary skill in the art.
In a further embodiment, representative formulations comprising the compound of formula I, are delineated in Table 1.
Figure imgf000018_0001
In one embodiment, specific formulations comprising the compound of formula I are described as follows: Ratio of lipids (in molar percentage) Lipid: siRNA ratio
50/10/38.5/1.5 (MC3 : DSPC : Cholesterol : PEG-DMG) Lipid: siRNA - 11
40/15/40/5 (MC3 : DSPC : Cholesterol : PEG-DMG) Lipid: siRNA ratio - 11
50/10/35/4.5/0.5% (MC3 : DSPC : Cholesterol : PEG-DSG (C18-
PEG): GalNAc3-PEG-DSG)
Lipid: siRNA ratio - 11
50/10/30/9.5/0.5% (MC3 : DSPC : Cholesterol : PEG-DSG:
GalNAc3-PEG-DSG)
Lipid: siRNA ratio - 11
50/10/35/5% (MC3 : DSPC : Cholesterol : PEG-DSG
Lipid: siRNA ratio - 11
50/10/38.5/1.5 (MC3 : DPPC : Cholesterol : PEG-DMG) Lipid:siRNA ~ 11
40/15/40/5 (MC3 : DPPC : Cholesterol : PEG-DMG) Lipid: siRNA ratio - 11
50/10/35/4.5/0.5% (MC3 : DPPC : Cholesterol : PEG-DSG: GalNAc3-PEG-DSG) Lipid: siRNA ratio - 11 50/10/30/9.5/0.5% (MC3 : DPPC : Cholesterol : PEG-DSG: GalNAc3-PEG-DSG) Lipid: siRNA ratio - 11 50/10/35/5% (MC3 : DPPC : Cholesterol : PEG-DSG Lipid: siRNA ratio - 11 50/10/38.5/1.5 (MC3 : DSPC : Cholesterol : PEG-DMG) Lipid:siRNA - 7 50/10/38.5/1.5 (MC3 : DSPC : Cholesterol : PEG-DSG) Lipid:siRNA - 10 50/10/38.5/1.5 (MC3 : DSPC : Cholesterol : PEG-DMG) Lipid:siRNA - 12 50/10/35/5% (MC3 : DSPC : Cholesterol : PEG-DMG Lipid: siRNA ratio - 8 50/10/35/5% (MC3 : DSPC : Cholesterol : PEG-DMG Lipid:siRNA ratio - 10
In one embodiment, the formulations of the invention are entrapped by at least 75%, at least 80% or at least 90%. In one embodiment, the formulations of the invention further comprise an apolipoprotein. As used herein, the term "apolipoprotein" or "lipoprotein" refers to apolipoproteins known to those of skill in the art and variants and fragments thereof and to apolipoprotein agonists, analogues or fragments thereof described below.
Suitable apolipoproteins include, but are not limited to, ApoA-I, ApoA-II, ApoA-IV, ApoA-V and ApoE, and active polymorphic forms, isoforms, variants and mutants as well as fragments or truncated forms thereof. In certain embodiments, the apolipoprotein is a thiol containing apolipoprotein. "Thiol containing apolipoprotein" refers to an apolipoprotein, variant, fragment or isoform that contains at least one cysteine residue. The most common thiol containing apolipoproteins are ApoA-I Milano (ApoA-IM) and ApoA-I Paris (ApoA-IP) which contain one cysteine residue (Jia et al., 2002, Biochem. Biophys. Res. Comm. 297: 206-13; Bielicki and Oda, 2002, Biochemistry 41: 2089-96). ApoA-II, ApoE2 and ApoE3 are also thiol containing apolipoproteins. Isolated ApoE and/or active fragments and polypeptide analogues thereof, including recombinantly produced forms thereof, are described in U.S. Pat. Nos. 5,672,685; 5,525,472; 5,473,039; 5,182,364; 5,177,189; 5,168,045; 5,116,739; the disclosures of which are herein incorporated by reference. ApoE3 is disclosed in Weisgraber, et al., "Human E apoprotein heterogeneity: cysteine-arginine interchanges in the amino acid sequence of the apo-E isoforms," J. Biol. Chem. (1981) 256: 9077-9083; and Rail, et al., "Structural basis for receptor binding heterogeneity of apolipoprotein E from type III hyperlipoproteinemic subjects," Proc. Nat. Acad. Sci. (1982) 79: 4696-4700. See also GenBank accession number K00396.
In certain embodiments, the apolipoprotein can be in its mature form, in its preproapolipoprotein form or in its proapolipoprotein form. Homo- and heterodimers (where feasible) of pro- and mature ApoA-I (Duverger et al., 1996, Arterioscler. Thromb. Vase. Biol. 16(12): 1424-29), ApoA-I Milano (Klon et al., 2000, Biophys. J. 79:(3)1679-87; Franceschini et al., 1985, J. Biol. Chem. 260: 1632-35), ApoA-I Paris (Daum et al., 1999, J. MoI. Med. 77:614-22), ApoA-II (Shelness et al., 1985, J. Biol. Chem. 260(14):8637-46; Shelness et al., 1984, J. Biol. Chem. 259(15):9929-35), ApoA-IV (Duverger et al., 1991, Euro. J. Biochem. 201(2):373-83), and ApoE (McLean et al., 1983, J. Biol. Chem. 258(14):8993-9000) can also be utilized within the scope of the invention.
In certain embodiments, the apolipoprotein can be a fragment, variant or isoform of the apolipoprotein. The term "fragment" refers to any apolipoprotein having an amino acid sequence shorter than that of a native apolipoprotein and which fragment retains the activity of native apolipoprotein, including lipid binding properties. By "variant" is meant substitutions or alterations in the amino acid sequences of the apolipoprotein, which substitutions or alterations, e.g., additions and deletions of amino acid residues, do not abolish the activity of native apolipoprotein, including lipid binding properties. Thus, a variant can comprise a protein or peptide having a substantially identical amino acid sequence to a native apolipoprotein provided herein in which one or more amino acid residues have been conservatively substituted with chemically similar amino acids. Examples of conservative substitutions include the substitution of at least one hydrophobic residue such as isoleucine, valine, leucine or methionine for another. Likewise, the present invention contemplates, for example, the substitution of at least one hydrophilic residue such as, for example, between arginine and lysine, between glutamine and asparagine, and between glycine and serine (see U.S. Pat. Nos. 6,004,925, 6,037,323 and 6,046,166). The term "isoform" refers to a protein having the same, greater or partial function and similar, identical or partial sequence, and may or may not be the product of the same gene and usually tissue specific (see Weisgraber 1990, J. Lipid Res. 31(8): 1503-11; Hixson and Powers 1991, J. Lipid Res. 32(9): 1529-35; Lackner et al., 1985, J. Biol. Chem. 260(2):703-6; Hoeg et al., 1986, J. Biol. Chem. 261(9):3911-4; Gordon et al.,
1984, J. Biol. Chem. 259(l):468-74; Powell et al., 1987, Cell 50(6):831-40; Aviram et al., 1998, Arterioscler. Thromb. Vase. Biol. 18(10):1617-24; Aviram et al., 1998, J. Clin. Invest. 101(8): 1581-90; Billecke et al., 2000, Drug Metab. Dispos. 28(11): 1335- 42; Draganov et al., 2000, J. Biol. Chem. 275(43):33435-42; Steinmetz and Utermann
1985, J. Biol. Chem. 260(4):2258-64; Widler et al., 1980, J. Biol. Chem. 255(21):10464-71; Dyer et al., 1995, J. Lipid Res. 36(l):80-8; Sacre et al., 2003, FEBS Lett. 540(l-3):181-7; Weers, et al., 2003, Biophys. Chem. 100(l-3):481-92; Gong et al., 2002, J. Biol. Chem. 277(33):29919-26; Ohta et al., 1984, J. Biol. Chem. 259(23): 14888-93 and U.S. Pat. No. 6,372,886). In certain embodiments, the methods and compositions of the present invention include the use of a chimeric construction of an apolipoprotein. For example, a chimeric construction of an apolipoprotein can be comprised of an apolipoprotein domain with high lipid binding capacity associated with an apolipoprotein domain containing ischemia reperfusion protective properties. A chimeric construction of an apolipoprotein can be a construction that includes separate regions within an apolipoprotein (i.e., homologous construction) or a chimeric construction can be a construction that includes separate regions between different apolipoproteins (i.e., heterologous constructions). Compositions comprising a chimeric construction can also include segments that are apolipoprotein variants or segments designed to have a specific character (e.g., lipid binding, receptor binding, enzymatic, enzyme activating, antioxidant or reduction-oxidation property) (see Weisgraber 1990, J. Lipid Res. 31(8):1503-l l; Hixson and Powers 1991, J. Lipid Res. 32(9):1529-35; Lackner et al., 1985, J. Biol. Chem. 260(2):703-6; Hoeg et al, 1986, J. Biol. Chem. 261(9):3911-4; Gordon et al., 1984, J. Biol. Chem. 259(l):468-74; Powell et al., 1987, Cell 50(6): 831-40; Aviram et al., 1998, Arterioscler. Thromb. Vase. Biol. 18(10):1617-24; Aviram et al., 1998, J. Clin. Invest. 101(8):1581-90; Billecke et al., 2000, Drug Metab. Dispos. 28(11): 1335-42; Draganov et al., 2000, J. Biol. Chem. 275(43):33435-42; Steinmetz and Utermann 1985, J. Biol. Chem. 260(4):2258-64; Widler et al., 1980, J. Biol. Chem. 255(21): 10464-71; Dyer et al., 1995, J. Lipid Res. 36(l):80-8; Sorenson et al., 1999, Arterioscler. Thromb. Vase. Biol. 19(9):2214-25; Palgunachari 1996, Arterioscler. Throb. Vase. Biol. 16(2):328- 38: Thurberg et al., J. Biol. Chem. 271(11):6062-70; Dyer 1991, J. Biol. Chem. 266(23):150009-15; Hill 1998, J. Biol. Chem. 273(47):30979-84).
Apolipoproteins utilized in the invention also include recombinant, synthetic, semi- synthetic or purified apolipoproteins. Methods for obtaining apolipoproteins or equivalents thereof, utilized by the invention are well-known in the art. For example, apolipoproteins can be separated from plasma or natural products by, for example, density gradient centrifugation or immunoaffinity chromatography, or produced synthetically, semi-synthetically or using recombinant DNA techniques known to those of the art (see, e.g., Mulugeta et al., 1998, J. Chromatogr. 798(1-2): 83-90; Chung et al., 1980, J. Lipid Res. 21(3):284-91; Cheung et al., 1987, J. Lipid Res. 28(8):913-29; Persson, et al., 1998, J. Chromatogr. 711:97-109; U.S. Pat. Nos. 5,059,528, 5,834,596, 5,876,968 and 5,721,114; and PCT Publications WO 86/04920 and WO 87/02062).
Apolipoproteins utilized in the invention further include apolipoprotein agonists such as peptides and peptide analogues that mimic the activity of ApoA-I, ApoA-I Milano (ApoA-IM), ApoA-I Paris (ApoA-IP), ApoA-II, ApoA-IV, and ApoE. For example, the apolipoprotein can be any of those described in U.S. Pat. Nos. 6,004,925, 6,037,323, 6,046,166, and 5,840,688, the contents of which are incorporated herein by reference in their entireties.
Apolipoprotein agonist peptides or peptide analogues can be synthesized or manufactured using any technique for peptide synthesis known in the art including, e.g., the techniques described in U.S. Pat. Nos. 6,004,925, 6,037,323 and 6,046,166. For example, the peptides may be prepared using the solid-phase synthetic technique initially described by Merrifield (1963, J. Am. Chem. Soc. 85:2149-2154). Other peptide synthesis techniques may be found in Bodanszky et al., Peptide Synthesis, John Wiley & Sons, 2d Ed., (1976) and other references readily available to those skilled in the art. A summary of polypeptide synthesis techniques can be found in Stuart and Young, Solid Phase Peptide. Synthesis, Pierce Chemical Company, Rockford, 111., (1984). Peptides may also be synthesized by solution methods as described in The Proteins, Vol. II, 3d Ed., Neurath et. al., Eds., p. 105-237, Academic Press, New York, N. Y. (1976). Appropriate protective groups for use in different peptide syntheses are described in the above-mentioned texts as well as in McOmie, Protective Groups in Organic Chemistry, Plenum Press, New York, N. Y. (1973). The peptides of the present invention might also be prepared by chemical or enzymatic cleavage from larger portions of, for example, apolipoprotein A-I.
In certain embodiments, the apolipoprotein can be a mixture of apolipoproteins. In one embodiment, the apolipoprotein can be a homogeneous mixture, that is, a single type of apolipoprotein. In another embodiment, the apolipoprotein can be a heterogeneous mixture of apolipoproteins, that is, a mixture of two or more different apolipoproteins. Embodiments of heterogenous mixtures of apolipoproteins can comprise, for example, a mixture of an apolipoprotein from an animal source and an apolipoprotein from a semi-synthetic source. In certain embodiments, a heterogenous mixture can comprise, for example, a mixture of ApoA- I and ApoA-I Milano. In certain embodiments, a heterogeneous mixture can comprise, for example, a mixture of ApoA-I Milano and ApoA-I Paris. Suitable mixtures for use in the methods and compositions of the invention will be apparent to one of skill in the art.
If the apolipoprotein is obtained from natural sources, it can be obtained from a plant or animal source. If the apolipoprotein is obtained from an animal source, the apolipoprotein can be from any species. In certain embodiments, the apolipoprotien can be obtained from an animal source. In certain embodiments, the apolipoprotein can be obtained from a human source. In preferred embodiments of the invention, the apolipoprotein is derived from the same species as the individual to which the apolipoprotein is administered.
In one embodiment, the target gene is selected from the group consisting of Factor VII, Eg5, PCSK9, TPX2, apoB, SAA, TTR, RSV, PDGF beta gene, Erb-B gene, Src gene, CRK gene, GRB2 gene, RAS gene, MEKK gene, JNK gene, RAF gene, Erkl/2 gene, PCNA(p21) gene, MYB gene, JUN gene, FOS gene, BCL-2 gene, Cyclin D gene, VEGF gene, EGFR gene, Cyclin A gene, Cyclin E gene, WNT-I gene, beta-catenin gene, c-MET gene, PKC gene, NFKB gene, STAT3 gene, survivin gene, Her2/Neu gene, topoisomerase I gene, topoisomerase II alpha gene, p73 gene, p21(WAFl/CIPl) gene, p27(KIPl) gene, PPMlD gene, RAS gene, caveolin I gene, MIB I gene, MTAI gene, M68 gene, mutations in tumor suppressor genes, p53 tumor suppressor gene, and combinations thereof. In one embodiment the target gene is a gene expressed in the liver, e.g., the Factor VII (FVII) gene. The effect of the expression of the target gene, e.g., FVII, is evaluated by measuring FVII levels in a biological sample, such as a serum or tissue sample. For example, the level of FVII, e.g., as measured by assay of FVII activity, in blood can be determined. In one embodiment, the level of mRNA in the liver can be evaluated. In another preferred embodiment, at least two types of evaluation are made, e.g., an evaluation of protein level (e.g., in blood), and a measure of mRNA level (e.g., in the liver) are both made. In one embodiment, the agent is a nucleic acid, such as a double- stranded RNA (dsRNA).
In another embodiment, the nucleic acid agent is a single-stranded DNA or RNA, or double-stranded DNA or RNA, or DNA-RNA hybrid. For example, a double- stranded DNA can be a structural gene, a gene including control and termination regions, or a self-replicating system such as a viral or plasmid DNA. A double- stranded RNA can be, e.g., a dsRNA or another RNA interference reagent. A single- stranded nucleic acid can be, e.g., an antisense oligonucleotide, ribozyme, microRNA, or triplex-forming oligonucleotide.
In yet another embodiment, at various time points after administration of a candidate agent, a biological sample, such as a fluid sample, e.g., blood, plasma, or serum, or a tissue sample, such as a liver sample, is taken from the test subject and tested for an effect of the agent on target protein or mRNA expression levels. In one particularly preferred embodiment, the candidate agent is a dsRNA that targets FVII, and the biological sample is tested for an effect on Factor VII protein or mRNA levels. In one embodiment, plasma levels of FVII protein are assayed, such as by using an immunohistochemistry assay or a chromogenic assay. In another embodiment, levels of FVII mRNA in the liver are tested by an assay, such as a branched DNA assay, or a Northern blot or RT-PCR assay.
In one embodiment, the agent, e.g., a composition including the improved lipid formulation, is evaluated for toxicity. In yet another embodiment, the model subject can be monitored for physical effects, such as by a change in weight or cageside behavior.
In one embodiment, the method further includes subjecting the agent, e.g., a composition comprising the improved lipid formulation, to a further evaluation. The further evaluation can include, for example, (i) a repetition of the evaluation described above, (ii) a repetition of the evaluation described above with a different number of animals or with different doses, or (iii) by a different method, e.g., evaluation in another animal model, e.g., a non-human primate.
In another embodiment, a decision is made regarding whether or not to include the agent and the improved lipid formulation in further studies, such as in a clinical trial, depending on the observed effect of the candidate agent on liver protein or mRNA levels. For example, if a candidate dsRNA is observed to decrease protein or mRNA levels by at least 20%, 30%, 40%, 50%, or more, then the agent can be considered for a clinical trial.
In yet another embodiment, a decision is made regarding whether or not to include the agent and the improved lipid formulation in a pharmaceutical composition, depending on the observed effect of the candidate agent and amino lipid on liver protein or mRNA levels. For example, if a candidate dsRNA is observed to decrease protein or mRNA levels by at least 20%, 30%, 40%, 50%, or more, then the agent can be considered for a clinical trial.
In another aspect, the invention features a method of evaluating the improved lipid formulation for its suitability for delivering a therapeutic agent to a cell. In some embodiments, the invention features a method of evaluating the improved lipid formulation for its suitability for delivering an RNA-based construct, e.g., a dsRNA that targets FVII. The method includes providing a composition that includes a dsRNA that targets FVII and a candidate amino lipid, administering the composition to a rodent, e.g., a mouse, evaluating the expression of FVII as a function of at least one of the level of FVII in the blood or the level of FVII mRNA in the liver, thereby evaluating the candidate amino lipid. In some embodiments, the method further comprises comparing expression of the target gene with a preselected reference value.
Compositions that include lipid containing components, such as a liposome, and these are described in greater detail below. Exemplary nucleic acid-based agents include dsRNAs, antisense oligonucleotides, ribozymes, microRNAs, immunostimulatory oligonucleotides, or triplex-forming oligonucleotides. These agents are also described in greater detail below.
"Alkyl" means a straight chain or branched, noncyclic or cyclic, saturated aliphatic hydrocarbon containing from 1 to 24 carbon atoms. Representative saturated straight chain alkyls include methyl, ethyl, n-propyl, n-butyl, n-pentyl, n-hexyl, and the like; while saturated branched alkyls include isopropyl, sec-butyl, isobutyl, tert- butyl, isopentyl, and the like. Representative saturated cyclic alkyls include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, and the like; while unsaturated cyclic alkyls include cyclopentenyl and cyclohexenyl, and the like.
"Alkenyl" means an alkyl, as defined above, containing at least one double bond between adjacent carbon atoms. Alkenyls include both cis and trans isomers. Representative straight chain and branched alkenyls include ethylenyl, propylenyl, 1- butenyl, 2-butenyl, isobutylenyl, 1-pentenyl, 2-pentenyl, 3-methyl-l-butenyl, 2- methyl-2-butenyl, 2,3-dimethyl-2-butenyl, and the like.
"Alkynyl" means any alkyl or alkenyl, as defined above, which additionally contains at least one triple bond between adjacent carbons. Representative straight chain and branched alkynyls include acetylenyl, propynyl, 1-butynyl, 2-butynyl, 1- pentynyl, 2-pentynyl, 3-methyl-l butynyl, and the like.
"Acyl" means any alkyl, alkenyl, or alkynyl wherein the carbon at the point of attachment is substituted with an oxo group, as defined below. For example, -C(=O)alkyl, -C(=O)alkenyl, and -C(=O)alkynyl are acyl groups.
The term "aryl" refers to an aromatic monocyclic, bicyclic, or tricyclic hydrocarbon ring system, wherein any ring atom can be substituted. Examples of aryl moieties include, but are not limited to, phenyl, naphthyl, anthracenyl, and pyrenyl.
"Heterocycle" means a 5- to 7-membered monocyclic, or 7- to 10-membered bicyclic, heterocyclic ring which is either saturated, unsaturated, or aromatic, and which contains from 1 or 2 heteroatoms independently selected from nitrogen, oxygen and sulfur, and wherein the nitrogen and sulfur heteroatoms may be optionally oxidized, and the nitrogen heteroatom may be optionally quaternized, including bicyclic rings in which any of the above heterocycles are fused to a benzene ring. The heterocycle may be attached via any heteroatom or carbon atom. Heterocycles include heteroaryls as defined below. Heterocycles include morpholinyl, pyrrolidinonyl, pyrrolidinyl, piperidinyl, piperizynyl, hydantoinyl, valerolactamyl, oxiranyl, oxetanyl, tetrahydrofuranyl, tetrahydropyranyl, tetrahydropyridinyl, tetrahydroprimidinyl, tetrahydrothiophenyl, tetrahydrothiopyranyl, tetrahydropyrimidinyl, tetrahydrothiophenyl, tetrahydrothiopyranyl, and the like.
The terms "optionally substituted alkyl", "optionally substituted alkenyl", "optionally substituted alkynyl", "optionally substituted acyl", and "optionally substituted heterocycle" means that, when substituted, at least one hydrogen atom is replaced with a substituent. In the case of an oxo substituent (=0) two hydrogen atoms are replaced. In this regard, substituents include oxo, halogen, heterocycle, - CN, -ORX, -NRxRy, -NRxC(=O)Ry -NRxSO2Ry, -C(=O)RX, -C(=O)ORX, -C(=O)NRxRy, -SOnRx and -SOnNRxRy, wherein n is 0, 1 or 2, Rx and Ry are the same or different and independently hydrogen, alkyl or heterocycle, and each of said alkyl and heterocycle substituents may be further substituted with one or more of oxo, halogen, -OH, -CN, alkyl, -ORX, heterocycle, -NRxRy, -NRxC(=0)Ry -NRxSO2Ry, -C(=O)RX, -C(=O)ORX, -C(=0)NRxRy, -SOnRx and -SOnNRxRy.
The term "heteroaryl" refers to an aromatic 5-8 membered monocyclic, 8-12 membered bicyclic, or 11-14 membered tricyclic ring system having 1-3 heteroatoms if monocyclic, 1-6 heteroatoms if bicyclic, or 1-9 heteroatoms if tricyclic, said heteroatoms selected from O, N, or S (e.g., carbon atoms and 1-3, 1-6, or 1-9 heteroatoms of N, O, or S if monocyclic, bicyclic, or tricyclic, respectively), wherein any ring atom can be substituted. The heteroaryl groups herein described may also contain fused rings that share a common carbon-carbon bond. The term "alkylheterocyle" refers to a heteroaryl wherein at least one of the ring atoms is substituted with alkyl, alkenyl or alkynyl
The term "substituted" refers to the replacement of one or more hydrogen radicals in a given structure with the radical of a specified substituent including, but not limited to: halo, alkyl, alkenyl, alkynyl, aryl, heterocyclyl, thiol, alkylthio, oxo, thioxy, arylthio, alkylthioalkyl, arylthioalkyl, alkylsulfonyl, alkylsulfonylalkyl, arylsulfonylalkyl, alkoxy, aryloxy, aralkoxy, aminocarbonyl, alkylaminocarbonyl, arylaminocarbonyl, alkoxycarbonyl, aryloxycarbonyl, haloalkyl, amino, trifluoromethyl, cyano, nitro, alkylamino, arylamino, alkylaminoalkyl, arylaminoalkyl, aminoalkylamino, hydroxy, alkoxyalkyl, carboxyalkyl, alkoxycarbonylalkyl, aminocarbonylalkyl, acyl, aralkoxycarbonyl, carboxylic acid, sulfonic acid, sulfonyl, phosphonic acid, aryl, heteroaryl, heterocyclic, and aliphatic. It is understood that the substituent may be further substituted. "Halogen" means fluoro, chloro, bromo and iodo. The terms "alkylamine" and "dialkylamine" refer to -NH(alkyl) and -N (alkyl)2 radicals respectively.
The term "alkylphosphate" refers to -0-P(Q')(Q")-0-R, wherein Q' and Q" are each independently 0, S, N(R)2, optionally substituted alkyl or alkoxy; and R is optionally substituted alkyl, ω-aminoalkyl or ω-(substituted)aminoalkyl.
The term "alkylphosphorothioate" refers to an alkylphosphate wherein at least one of Q' or Q" is S.
The term "alkylphosphonate" refers to an alkylphosphate wherein at least one of Q' or Q" is alkyl.
The terem "hydroxyalkyl" means -O-alkyl radical.
The term "alkylheterocycle" refers to an alkyl where at least one methylene has been replaced by a heterocycle.
The term "ω-aminoalkyl" refers to -alkyl-NH2 radical. And the term "ω- (substituted)aminoalkyl refers to an ω-aminoalkyl wherein at least one of the H on N has been replaced with alkyl.
The term "ω-phosphoalkyl" refers to -alkyl-O-P(Q')(Q")-O-R, wherein Q' and Q" are each independently O or S and R optionally substituted alkyl.
The term "ω-thiophosphoalkyl refers to ω-phosphoalkyl wherein at least one of Q' or Q" is S.
In some embodiments, the methods of the invention may require the use of protecting groups. Protecting group methodology is well known to those skilled in the art (see, for example, PROTECTIVE GROUPS IN ORGANIC SYNTHESIS, Green, T.W. et. al., Wiley-Interscience, New York City, 1999). Briefly, protecting groups within the context of this invention are any group that reduces or eliminates unwanted reactivity of a functional group. A protecting group can be added to a functional group to mask its reactivity during certain reactions and then removed to reveal the original functional group. In some embodiments an "alcohol protecting group" is used. An "alcohol protecting group" is any group which decreases or eliminates unwanted reactivity of an alcohol functional group. Protecting groups can be added and removed using techniques well known in the art.
Lipid Particles
The agents and/or amino lipids for testing in the liver screening model featured herein can be formulated in lipid particles. Lipid particles include, but are not limited to, liposomes. As used herein, a liposome is a structure having lipid- containing membranes enclosing an aqueous interior. Liposomes may have one or more lipid membranes. The invention contemplates both single-layered liposomes, which are referred to as unilamellar, and multi-layered liposomes, which are referred to as multilamellar. When complexed with nucleic acids, lipid particles may also be lipoplexes, which are composed of cationic lipid bilayers sandwiched between DNA layers, as described, e.g., in Feigner, Scientific American.
Lipid particles may further include one or more additional lipids and/or other components such as cholesterol. Other lipids may be included in the liposome compositions for a variety of purposes, such as to prevent lipid oxidation or to attach ligands onto the liposome surface. Any of a number of lipids may be present, including amphipathic, neutral, cationic, and anionic lipids. Such lipids can be used alone or in combination. Specific examples of additional lipid components that may be present are described below. Additional components that may be present in a lipid particle include bilayer stabilizing components such as polyamide oligomers (see, e.g., U.S. Patent No. 6,320,017), peptides, proteins, detergents, lipid-derivatives, such as PEG coupled to phosphatidylethanolamine and PEG conjugated to ceramides (see, U.S. Patent No. 5,885,613). In some embodiments, the lipid particle includes a targeting agent such as a targeting lipid described herein.
A lipid particle can include one or more of a second amino lipid or cationic lipid, a neutral lipid, a sterol, and a lipid selected to reduce aggregation of lipid particles during formation, which may result from steric stabilization of particles which prevents charge-induced aggregation during formation.
As used herein, the term "cationic lipid" is meant to include those lipids having one or two fatty acid or fatty alkyl chains and an amino head group (including an alkylamino or dialkylamino group) that may be protonated to form a cationic lipid at physiological pH. In some embodiments, a cationic lipid is referred to as an "amino lipid."
Other cationic lipids would include those having alternative fatty acid groups and other dialkylamino groups, including those in which the alkyl substituents are different (e.g., N-ethyl-N-methylamino-, N-propyl-N-ethylamino- and the like). In general, lipids (e.g., a cationic lipid) having less saturated acyl chains are more easily sized, particularly when the complexes are sized below about 0.3 microns, for purposes of filter sterilization. Cationic lipids containing unsaturated fatty acids with carbon chain lengths in the range of Cio to C20 are preferred. Other scaffolds can also be used to separate the amino group (e.g., the amino group of the cationic lipid) and the fatty acid or fatty alkyl portion of the cationic lipid. Suitable scaffolds are known to those of skill in the art.
In certain embodiments, cationic lipids have at least one protonatable or deprotonatable group, such that the lipid is positively charged at a pH at or below physiological pH (e.g. pH 7.4), and neutral at a second pH, preferably at or above physiological pH. Such lipids are also referred to as cationic lipids. It will, of course, be understood that the addition or removal of protons as a function of pH is an equilibrium process, and that the reference to a charged or a neutral lipid refers to the nature of the predominant species and does not require that all of the lipid be present in the charged or neutral form. Lipids that have more than one protonatable or deprotonatable group, or which are zwiterrionic, are not excluded from use in the invention.
In certain embodiments, protonatable lipids (i.e., cationic lipids) have a pKa of the protonatable group in the range of about 4 to about 11. Most preferred is pKa of about 4 to about 7, because these lipids will be cationic at a lower pH formulation stage, while particles will be largely (though not completely) surface neutralized at physiological pH around pH 7.4. One of the benefits of this pKa is that at least some nucleic acid associated with the outside surface of the particle will lose its electrostatic interaction at physiological pH and be removed by simple dialysis; thus greatly reducing the particle's susceptibility to clearance.
Examples of lipids that reduce aggregation of particles during formation include polyethylene glycol (PEG) -modified lipids, monosialoganglioside GmI, and polyamide oligomers ("PAO") such as (described in US Pat. No. 6,320,017). Other compounds with uncharged, hydrophilic, steric-barrier moieties, which prevent aggregation during formulation, like PEG, GmI or ATTA, can also be coupled to lipids for use as in the methods and compositions of the invention. ATTA-lipids are described, e.g., in U.S. Patent No. 6,320,017, and PEG-lipid conjugates are described, e.g., in U.S. Patent Nos. 5,820,873, 5,534,499 and 5,885,613. Typically, the concentration of the lipid component selected to reduce aggregation is about 1 to 15% (by mole percent of lipids).
Examples of lipids that reduce aggregation and/or are suitable for conjugation to nucleic acid agents that can be used in the liver screening model are polyethylene glycol (PEG) -modified lipids, monosialoganglioside GmI, and polyamide oligomers ("PAO") such as (described in US Pat. No. 6,320,017). Other compounds with uncharged, hydrophilic, steric-barrier moieties, which prevent aggregation during formulation, like PEG, GmI or ATTA, can also be coupled to lipids for use as in the methods and compositions of the invention. ATTA-lipids are described, e.g., in U.S. Patent No. 6,320,017, and PEG-lipid conjugates are described, e.g., in U.S. Patent Nos. 5,820,873, 5,534,499 and 5,885,613. Typically, the concentration of the lipid component selected to reduce aggregation is about 1 to 15% (by mole percent of lipids).
Specific examples of PEG-modified lipids (or lipid-polyoxyethylene conjugates) that are useful in the invention can have a variety of "anchoring" lipid portions to secure the PEG portion to the surface of the lipid vesicle. Examples of suitable PEG-modified lipids include PEG-modified phosphatidylethanolamine and phosphatidic acid, PEG-ceramide conjugates (e.g., PEG-CerC14 or PEG-CerC20) which are described in co-pending USSN 08/486,214, incorporated herein by reference, PEG-modified dialkylamines and PEG-modified l,2-diacyloxypropan-3- amines. Particularly preferred are PEG-modified diacylglycerols and dialkylglycerols. In some embodiments, the total mol% of PEG lipids within a particle is about 1.5 mol%. For example, when the particle includes a plurality of PEG lipids described herein such as a PEG-modified lipid as described above and a targeting lipid containing a PEG, the total amount of the PEG containing lipids when taken together is about 1.5 mol%.
In embodiments where a sterically-large moiety such as PEG or ATTA are conjugated to a lipid anchor, the selection of the lipid anchor depends on what type of association the conjugate is to have with the lipid particle. It is well known that mePEG (mw2000)-diastearoylphosphatidylethanolamine (PEG-DSPE) will remain associated with a liposome until the particle is cleared from the circulation, possibly a matter of days. Other conjugates, such as PEG-CerC20 have similar staying capacity. PEG-CerC14, however, rapidly exchanges out of the formulation upon exposure to serum, with a T1/2 less than 60 mins. in some assays. As illustrated in US Pat. Application SN 08/486,214, at least three characteristics influence the rate of exchange: length of acyl chain, saturation of acyl chain, and size of the steric-barrier head group. Compounds having suitable variations of these features may be useful for the invention. For some therapeutic applications it may be preferable for the PEG- modified lipid to be rapidly lost from the nucleic acid-lipid particle in vivo and hence the PEG-modified lipid will possess relatively short lipid anchors. In other therapeutic applications it may be preferable for the nucleic acid-lipid particle to exhibit a longer plasma circulation lifetime and hence the PEG-modified lipid will possess relatively longer lipid anchors. Exemplary lipid anchors include those having lengths of from about Ci4 to about C22, preferably from about Ci4 to about C16. In some embodiments, a PEG moiety, for example an mPEG-NH2, has a size of about 1000, 2000, 5000, 10,000, 15,000 or 20,000 daltons.
It should be noted that aggregation preventing compounds do not necessarily require lipid conjugation to function properly. Free PEG or free ATTA in solution may be sufficient to prevent aggregation. If the particles are stable after formulation, the PEG or ATTA can be dialyzed away before administration to a subject.
Neutral lipids, when present in the lipid particle, can be any of a number of lipid species which exist either in an uncharged or neutral zwitterionic form at physiological pH. Such lipids include, for example diacylphosphatidylcholine, diacylphosphatidylethanolamine, ceramide, sphingomyelin, dihydrosphingomyelin, cephalin, and cerebrosides. The selection of neutral lipids for use in the particles described herein is generally guided by consideration of, e.g., liposome size and stability of the liposomes in the bloodstream. Preferably, the neutral lipid component is a lipid having two acyl groups, (i.e., diacylphosphatidylcholine and diacylphosphatidylethanolamine). Lipids having a variety of acyl chain groups of varying chain length and degree of saturation are available or may be isolated or synthesized by well-known techniques. In one group of embodiments, lipids containing saturated fatty acids with carbon chain lengths in the range of C14 to C22 are preferred. In another group of embodiments, lipids with mono or diunsaturated fatty acids with carbon chain lengths in the range of Ci4 to C22 are used. Additionally, lipids having mixtures of saturated and unsaturated fatty acid chains can be used. Preferably, the neutral lipids used in the invention are DOPE, DSPC, DPPC, POPC, or any related phosphatidylcholine. The neutral lipids useful in the invention may also be composed of sphingomyelin, dihydrosphingomyeline, or phospholipids with other head groups, such as serine and inositol.
The sterol component of the lipid mixture, when present, can be any of those sterols conventionally used in the field of liposome, lipid vesicle or lipid particle preparation. A preferred sterol is cholesterol.
Other cationic lipids, which carry a net positive charge at about physiological pH, in addition to those specifically described above, may also be included in lipid particles of the invention. Such cationic lipids include, but are not limited to, N,N- dioleyl-N,N-dimethylammonium chloride ("DODAC"); N-(2,3-dioleyloxy)propyl- N,N-N-triethylammonium chloride ("DOTMA"); N,N-distearyl-N,N- dimethylammonium bromide ("DDAB"); N-(2,3-dioleoyloxy)propyl)-N,N,N- trimethylammonium chloride ("DOTAP"); l,2-Dioleyloxy-3-trimethylaminopropane chloride salt ("D0TAP.C1"); 3β-(N-(N',N'-dimethylaminoethane)- carbamoyl)cholesterol ("DC-Chol"), N-(l-(2,3-dioleyloxy)propyl)-N-2- (sperminecarboxamido)ethyl)-N,N-dimethylammonium trifluoracetate ("DOSPA"), dioctadecylamidoglycyl carboxyspermine ("DOGS"), l,2-dileoyl-sn-3- phosphoethanolamine ("DOPE"), l,2-dioleoyl-3-dimethylammonium propane ("DODAP"), N, N-dimethyl-2,3-dioleyloxy)propylamine ("DODMA"), and N-(1, 2- dimyristyloxyprop-3-yl)-N,N-dimethyl-N-hydroxyethyl ammonium bromide ("DMRIE"). Additionally, a number of commercial preparations of cationic lipids can be used, such as, e.g., LIPOFECTIN (including DOTMA and DOPE, available from GIBCO/BRL), and LIPOFECTAMINE (comprising DOSPA and DOPE, available from GIBCO/BRL). In particular embodiments, a cationic lipid is an amino lipid.
Anionic lipids suitable for use in lipid particles of the invention include, but are not limited to, phosphatidylglycerol, cardiolipin, diacylphosphatidylserine, diacylphosphatidic acid, N-dodecanoyl phosphatidylethanoloamine, N-succinyl phosphatidylethanolamine, N-glutaryl phosphatidylethanolamine, lysylphosphatidylglycerol, and other anionic modifying groups joined to neutral lipids. In numerous embodiments, amphipathic lipids are included in lipid particles of the invention. "Amphipathic lipids" refer to any suitable material, wherein the hydrophobic portion of the lipid material orients into a hydrophobic phase, while the hydrophilic portion orients toward the aqueous phase. Such compounds include, but are not limited to, phospholipids, aminolipids, and sphingolipids. Representative phospholipids include sphingomyelin, phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, phosphatidylinositol, phosphatidic acid, palmitoyloleoyl phosphatdylcholine, lysophosphatidylcholine, lysophosphatidylethanolamine, dipalmitoylphosphatidylcholine (DPPC), dioleoylphosphatidylcholine (DOPC), distearoylphosphatidylcholine (DSPC), dimyristoylphosphatidyl choline (DMPC), or dilinoleylphosphatidylcholine (DLPC). Other phosphorus-lacking compounds, such as sphingolipids, glycosphingolipid families, diacylglycerols, and β-acyloxyacids, can also be used. Additionally, such amphipathic lipids can be readily mixed with other lipids, such as triglycerides and sterols.
Also suitable for inclusion in the lipid particles of the invention are programmable fusion lipids. Such lipid particles have little tendency to fuse with cell membranes and deliver their payload until a given signal event occurs. This allows the lipid particle to distribute more evenly after injection into an organism or disease site before it starts fusing with cells. The signal event can be, for example, a change in pH, temperature, ionic environment, or time. In the latter case, a fusion delaying or "cloaking" component, such as an ATTA-lipid conjugate or a PEG-lipid conjugate, can simply exchange out of the lipid particle membrane over time. Exemplary lipid anchors include those having lengths of from about C14 to about C22, preferably from about Ci4 to about Ci6. In some embodiments, a PEG moiety, for example an mPEG- NH2, has a size of about 1000, 2000, 5000, 10,000, 15,000 or 20,000 daltons.
By the time the lipid particle is suitably distributed in the body, it has lost sufficient cloaking agent so as to be fusogenic. With other signal events, it is desirable to choose a signal that is associated with the disease site or target cell, such as increased temperature at a site of inflammation.
A lipid particle conjugated to a nucleic acid agent can also include a targeting moiety, e.g., a targeting moiety that is specific to a cell type or tissue. Targeting of lipid particles using a variety of targeting moieties, such as ligands, cell surface receptors, glycoproteins, vitamins (e.g., riboflavin) and monoclonal antibodies, has been previously described (see, e.g., U.S. Patent Nos. A, 951 ,113 and 4,603,044). Exexmplary targeting moieties include a targeting lipid such as a targeting lipid described herein. In some embodiments, the targeting lipid is a GaINAc containing targeting lipid such as GalNAc3-DSG and GalNAc3-PEG-DSG as described herein. The targeting moieties can include the entire protein or fragments thereof. Targeting mechanisms generally require that the targeting agents be positioned on the surface of the lipid particle in such a manner that the targeting moiety is available for interaction with the target, for example, a cell surface receptor. A variety of different targeting agents and methods are known and available in the art, including those described, e.g., in Sapra, P. and Allen, TM, Prog. Lipid Res. 42(5):439-62 (2003); and Abra, RM et al, J. Liposome Res. 12:1-3, (2002).
The use of lipid particles, i.e. , liposomes, with a surface coating of hydrophilic polymer chains, such as polyethylene glycol (PEG) chains, for targeting has been proposed (Allen, et al, Biochimica et Biophysica Acta 1237: 99-108 (1995); DeFrees, et al., Journal of the American Chemistry Society 118: 6101-6104 (1996); Blume, et al, Biochimica et Biophysica Acta 1149: 180-184 (1993); Klibanov, et al, Journal of Liposome Research 2: 321-334 (1992); U.S. Patent No. 5,013556; Zalipsky, Bioconjugate Chemistry 4: 296-299 (1993); Zalipsky, FEBS Letters 353: 71-74 (1994); Zalipsky, in Stealth Liposomes Chapter 9 (Lasic and Martin, Eds) CRC Press, Boca Raton Fl (1995). In one approach, a ligand, such as an antibody, for targeting the lipid particle is linked to the polar head group of lipids forming the lipid particle. In another approach, the targeting ligand is attached to the distal ends of the PEG chains forming the hydrophilic polymer coating (Klibanov, et al , Journal of Liposome Research 2: 321-334 (1992); Kirpotin et al, FEBS Letters 388: 115-118
(1996)).
Standard methods for coupling the target agents can be used. For example, phosphatidylethanolamine, which can be activated for attachment of target agents, or derivatized lipophilic compounds, such as lipid-derivatized bleomycin, can be used. Antibody-targeted liposomes can be constructed using, for instance, liposomes that incorporate protein A (see, Renneisen, et al, J. Bio. Chem., 265:16337-16342 (1990) and Leonetti, et al, Proc. Natl Acad. ScL (USA), 87:2448-2451 (1990). Other examples of antibody conjugation are disclosed in U.S. Patent No. 6,027,726, the teachings of which are incorporated herein by reference. Examples of targeting moieties can also include other proteins, specific to cellular components, including antigens associated with neoplasms or tumors. Proteins used as targeting moieties can be attached to the liposomes via covalent bonds (see, Heath, Covalent Attachment of Proteins to Liposomes, 149 Methods in Enzymology 111-119 (Academic Press, Inc. 1987)). Other targeting methods include the biotin-avidin system.
In one exemplary embodiment, the lipid particle comprises a mixture of a cationic lipid of the present invention, neutral lipids (other than a cationic lipid), a sterol (e.g., cholesterol) and a PEG-modified lipid (e.g., a PEG-DMG or PEG- cDMA). In certain embodiments, the lipid mixture consists of or consists essentially of a cationic lipid of the present invention, a neutral lipid, cholesterol, and a PEG- modified lipid. In further preferred embodiments, the lipid particle consists of or consists essentially of the above lipid mixture in molar ratios of about 20-70% DLin- M-C3-DMA: 5-45% neutral lipid:20-55% cholesterol:0.5-15% PEG-modified lipid.
In particular embodiments, the lipid particle consists of or consists essentially of DLin-M-C3-DMA, DSPC, Choi, and either PEG-DMG or PEG-cDMA, e.g., in a molar ratio of about 20-60% DLin-M-C3-DMA: 5-25% DSPC :25-55% Chol:0.5- 15% PEG-DMG or PEG-cDMA. In particular embodiments, the molar lipid ratio is approximately 40/10/40/10 (mol% DLin-M-C3-DMA /DSPC/Chol/PEG-DMG or PEG-cDMA), 35/15/40/10 (mol% DLin-M-C3-DMA /DSPC/Chol/PEG-DMG or PEG-cDMA) or 52/13/30/5 (mol% DLin-M-C3-DMA /DSPC/Chol/PEG-DMG or PEG-cDMA). In another group of embodiments, the neutral lipid, DSPC, in these compositions is replaced with POPC, DPPC, DOPE or SM. Therapeutic Agent-Lipid Particle Compositions and Formulations
The invention includes compositions comprising a lipid particle of the invention and an active agent, wherein the active agent is associated with the lipid particle. In particular embodiments, the active agent is a therapeutic agent. In particular embodiments, the active agent is encapsulated within an aqueous interior of the lipid particle. In other embodiments, the active agent is present within one or more lipid layers of the lipid particle. In other embodiments, the active agent is bound to the exterior or interior lipid surface of a lipid particle.
"Fully encapsulated" as used herein indicates that the nucleic acid in the particles is not significantly degraded after exposure to serum or a nuclease assay that would significantly degrade free DNA. In a fully encapsulated system, preferably less than 25% of particle nucleic acid is degraded in a treatment that would normally degrade 100% of free nucleic acid, more preferably less than 10% and most preferably less than 5% of the particle nucleic acid is degraded. Alternatively, full encapsulation may be determined by an Oligreen® assay. Oligreen® is an ultrasensitive fluorescent nucleic acid stain for quantitating oligonucleotides and single- stranded DNA in solution (available from Invitrogen Corporation, Carlsbad, CA). Fully encapsulated also suggests that the particles are serum stable, that is, that they do not rapidly decompose into their component parts upon in vivo administration.
Active agents, as used herein, include any molecule or compound capable of exerting a desired effect on a cell, tissue, organ, or subject. Such effects may be biological, physiological, or cosmetic, for example. Active agents may be any type of molecule or compound, including e.g., nucleic acids, peptides and polypeptides, including, e.g., antibodies, such as, e.g., polyclonal antibodies, monoclonal antibodies, antibody fragments; humanized antibodies, recombinant antibodies, recombinant human antibodies, and Primatized™ antibodies, cytokines, growth factors, apoptotic factors, differentiation- inducing factors, cell surface receptors and their ligands; hormones; and small molecules, including small organic molecules or compounds. In one embodiment, the active agent is a therapeutic agent, or a salt or derivative thereof. Therapeutic agent derivatives may be therapeutically active themselves or they may be prodrugs, which become active upon further modification. Thus, in one embodiment, a therapeutic agent derivative retains some or all of the therapeutic activity as compared to the unmodified agent, while in another embodiment, a therapeutic agent derivative lacks therapeutic activity.
In various embodiments, therapeutic agents include any therapeutically effective agent or drug, such as anti-inflammatory compounds, anti-depressants, stimulants, analgesics, antibiotics, birth control medication, antipyretics, vasodilators, anti-angiogenics, cytovascular agents, signal transduction inhibitors, cardiovascular drugs, e.g., anti-arrhythmic agents, vasoconstrictors, hormones, and steroids.
In certain embodiments, the therapeutic agent is an oncology drug, which may also be referred to as an anti-tumor drug, an anti-cancer drug, a tumor drug, an antineoplastic agent, or the like. Examples of oncology drugs that may be used according to the invention include, but are not limited to, adriamycin, alkeran, allopurinol, altretamine, amifostine, anastrozole, araC, arsenic trioxide, azathioprine, bexarotene, biCNU, bleomycin, busulfan intravenous, busulfan oral, capecitabine (Xeloda), carboplatin, carmustine, CCNU, celecoxib, chlorambucil, cisplatin, cladribine, cyclosporin A, cytarabine, cytosine arabinoside, daunorubicin, Cytoxan, daunorubicin, dexamethasone, dexrazoxane, dodetaxel, doxorubicin, doxorubicin, DTIC, epirubicin, estramustine, etoposide phosphate, etoposide and VP- 16, exemestane, FK506, fludarabine, fluorouracil, 5-FU, gemcitabine (Gemzar), gemtuzumab-ozogamicin, goserelin acetate, hydrea, hydroxyurea, idarubicin, ifosfamide, imatinib mesylate, interferon, irinotecan (Camptostar, CPT- 111), letrozole, leucovorin, leustatin, leuprolide, levamisole, litretinoin, megastrol, melphalan, L-PAM, mesna, methotrexate, methoxsalen, mithramycin, mitomycin, mitoxantrone, nitrogen mustard, paclitaxel, pamidronate, Pegademase, pentostatin, porfimer sodium, prednisone, rituxan, streptozocin, STI-571, tamoxifen, taxotere, temozolamide, teniposide, VM-26, topotecan (Hycamtin), toremifene, tretinoin, ATRA, valrubicin, velban, vinblastine, vincristine, VP 16, and vinorelbine. Other examples of oncology drugs that may be used according to the invention are ellipticin and ellipticin analogs or derivatives, epothilones, intracellular kinase inhibitors and camptothecins.
Nucleic Acid-Lipid Particles
In certain embodiments, lipid particles of the invention are associated with a nucleic acid, resulting in a nucleic acid-lipid particle. In particular embodiments, the nucleic acid is fully encapsulated in the lipid particle. As used herein, the term "nucleic acid" is meant to include any oligonucleotide or polynucleotide. Fragments containing up to 50 nucleotides are generally termed oligonucleotides, and longer fragments are called polynucleotides. In particular embodiments, oligonucletoides of the invention are 20-50 nucleotides in length.
In the context of this invention, the terms "polynucleotide" and "oligonucleotide" refer to a polymer or oligomer of nucleotide or nucleoside monomers consisting of naturally occurring bases, sugars and intersugar (backbone) linkages. The terms "polynucleotide" and "oligonucleotide" also includes polymers or oligomers comprising non-naturally occurring monomers, or portions thereof, which function similarly. Such modified or substituted oligonucleotides are often preferred over native forms because of properties such as, for example, enhanced cellular uptake and increased stability in the presence of nucleases.
Oligonucleotides are classified as deoxyribooligonucleotides or ribooligonucleotides. A deoxyribooligonucleotide consists of a 5-carbon sugar called deoxyribose joined covalently to phosphate at the 5' and 3' carbons of this sugar to form an alternating, unbranched polymer. A ribooligonucleotide consists of a similar repeating structure where the 5-carbon sugar is ribose.
The nucleic acid that is present in a lipid-nucleic acid particle according to this invention includes any form of nucleic acid that is known. The nucleic acids used herein can be single-stranded DNA or RNA, or double-stranded DNA or RNA, or DNA-RNA hybrids. Examples of double-stranded DNA include structural genes, genes including control and termination regions, and self -replicating systems such as viral or plasmid DNA. Examples of double-stranded RNA include siRNA and other RNA interference reagents. Single-stranded nucleic acids include, e.g., antisense oligonucleotides, ribozymes, microRNA, and triplex-forming oligonucleotides.
Nucleic acids of the invention may be of various lengths, generally dependent upon the particular form of nucleic acid. For example, in particular embodiments, plasmids or genes may be from about 1,000 to 100,000 nucleotide residues in length. In particular embodiments, oligonucleotides may range from about 10 to 100 nucleotides in length. In various related embodiments, oligonucleotides, both single- stranded, double-stranded, and triple-stranded, may range in length from about 10 to about 50 nucleotides, from about 20 o about 50 nucleotides, from about 15 to about 30 nucleotides, from about 20 to about 30 nucleotides in length.
In particular embodiments, an oligonucleotide (or a strand thereof) of the invention specifically hybridizes to or is complementary to a target polynucleotide. "Specifically hybridizable" and "complementary" are terms which are used to indicate a sufficient degree of complementarity such that stable and specific binding occurs between the DNA or RNA target and the oligonucleotide. It is understood that an oligonucleotide need not be 100% complementary to its target nucleic acid sequence to be specifically hybridizable. An oligonucleotide is specifically hybridizable when binding of the oligonucleotide to the target interferes with the normal function of the target molecule to cause a loss of utility or expression therefrom, and there is a sufficient degree of complementarity to avoid non-specific binding of the oligonucleotide to non-target sequences under conditions in which specific binding is desired, i.e., under physiological conditions in the case of in vivo assays or therapeutic treatment, or, in the case of in vitro assays, under conditions in which the assays are conducted. Thus, in other embodiments, this oligonucleotide includes 1, 2, or 3 base substitutions as compared to the region of a gene or mRNA sequence that it is targeting or to which it specifically hybridizes. RNA Interference Nucleic Acids
In particular embodiments, nucleic acid-lipid particles of the invention are associated with RNA interference (RNAi) molecules. RNA interference methods using RNAi molecules may be used to disrupt the expression of a gene or polynucleotide of interest. In the last 5 years small interfering RNA (siRNA) has essentially replaced antisense ODN and ribozymes as the next generation of targeted oligonucleotide drugs under development. SiRNAs are RNA duplexes normally 21- 30 nucleotides long that can associate with a cytoplasmic multi-protein complex known as RNAi-induced silencing complex (RISC). RISC loaded with siRNA mediates the degradation of homologous mRNA transcripts, therefore siRNA can be designed to knock down protein expression with high specificity. Unlike other antisense technologies, siRNA function through a natural mechanism evolved to control gene expression through non-coding RNA. This is generally considered to be the reason why their activity is more potent in vitro and in vivo than either antisense ODN or ribozymes. A variety of RNAi reagents, including siRNAs targeting clinically relevant targets, are currently under pharmaceutical development, as described, e.g., in de Fougerolles, A. et al, Nature Reviews 6:443-453 (2007).
While the first described RNAi molecules were RNA: RNA hybrids comprising both an RNA sense and an RNA antisense strand, it has now been demonstrated that DNA sense:RNA antisense hybrids, RNA sense:DNA antisense hybrids, and DNA:DNA hybrids are capable of mediating RNAi (Lamberton, J.S. and Christian, A.T., (2003) Molecular Biotechnology 24:111-119). Thus, the invention includes the use of RNAi molecules comprising any of these different types of double-stranded molecules. In addition, it is understood that RNAi molecules may be used and introduced to cells in a variety of forms. Accordingly, as used herein, RNAi molecules encompasses any and all molecules capable of inducing an RNAi response in cells, including, but not limited to, double-stranded polynucleotides comprising two separate strands, i.e. a sense strand and an antisense strand, e.g., small interfering RNA (siRNA); polynucleotides comprising a hairpin loop of complementary sequences, which forms a double-stranded region, e.g., shRNAi molecules, and expression vectors that express one or more polynucleotides capable of forming a double-stranded polynucleotide alone or in combination with another polynucleotide. A "single strand siRNA compound" as used herein, is an siRNA compound which is made up of a single molecule. It may include a duplexed region, formed by intra-strand pairing, e.g., it may be, or include, a hairpin or pan-handle structure. Single strand siRNA compounds may be antisense with regard to the target molecule
A single strand siRNA compound may be sufficiently long that it can enter the RISC and participate in RISC mediated cleavage of a target mRNA. A single strand siRNA compound is at least 14, and in other embodiments at least 15, 20, 25, 29, 35, 40, or 50 nucleotides in length. In certain embodiments, it is less than 200, 100, or 60 nucleotides in length.
Hairpin siRNA compounds will have a duplex region equal to or at least 17, 18, 19, 29, 21, 22, 23, 24, or 25 nucleotide pairs. The duplex region will may be equal to or less than 200, 100, or 50, in length. In certain embodiments, ranges for the duplex region are 15-30, 17 to 23, 19 to 23, and 19 to 21 nucleotides pairs in length. The hairpin may have a single strand overhang or terminal unpaired region. In certain embodiments, the overhangs are 2-3 nucleotides in length. In some embodiments, the overhang is at the sense side of the hairpin and in some embodiments on the antisense side of the hairpin.
A "double stranded siRNA compound" as used herein, is an siRNA compound which includes more than one, and in some cases two, strands in which interchain hybridization can form a region of duplex structure.
The antisense strand of a double stranded siRNA compound may be equal to or at least, 14, 15, 16 17, 18, 19, 25, 29, 40, or 60 nucleotides in length. It may be equal to or less than 200, 100, or 50, nucleotides in length. Ranges may be 17 to 25, 19 to 23, and 19 to21 nucleotides in length. As used herein, term "antisense strand" means the strand of an siRNA compound that is sufficiently complementary to a target molecule, e.g. a target RNA. The sense strand of a double stranded siRNA compound may be equal to or at least 14, 15, 16 17, 18, 19, 25, 29, 40, or 60 nucleotides in length. It may be equal to or less than 200, 100, or 50, nucleotides in length. Ranges may be 17 to 25, 19 to 23, and 19 to 21 nucleotides in length.
The double strand portion of a double stranded siRNA compound may be equal to or at least, 14, 15, 16 17, 18, 19, 20, 21, 22, 23, 24, 25, 29, 40, or 60 nucleotide pairs in length. It may be equal to or less than 200, 100, or 50, nucleotides pairs in length. Ranges may be 15-30, 17 to 23, 19 to 23, and 19 to 21 nucleotides pairs in length.
In many embodiments, the siRNA compound is sufficiently large that it can be cleaved by an endogenous molecule, e.g., by Dicer, to produce smaller siRNA compounds, e.g., siRNAs agents
The sense and antisense strands may be chosen such that the double- stranded siRNA compound includes a single strand or unpaired region at one or both ends of the molecule. Thus, a double- stranded siRNA compound may contain sense and antisense strands, paired to contain an overhang, e.g., one or two 5' or 3' overhangs, or a 3' overhang of 1 - 3 nucleotides. The overhangs can be the result of one strand being longer than the other, or the result of two strands of the same length being staggered. Some embodiments will have at least one 3' overhang. In one embodiment, both ends of an siRNA molecule will have a 3' overhang. In some embodiments, the overhang is 2 nucleotides.
In certain embodiments, the length for the duplexed region is between 15 and 30, or 18, 19, 20, 21, 22, and 23 nucleotides in length, e.g., in the ssiRNA compound range discussed above. ssiRNA compounds can resemble in length and structure the natural Dicer processed products from long dsiRNAs. Embodiments in which the two strands of the ssiRNA compound are linked, e.g., covalently linked are also included. Hairpin, or other single strand structures which provide the required double stranded region, and a 3' overhang are also within the invention. The siRNA compounds described herein, including double- stranded siRNA compounds and single-stranded siRNA compounds can mediate silencing of a target RNA, e.g., mRNA, e.g., a transcript of a gene that encodes a protein. For convenience, such mRNA is also referred to herein as mRNA to be silenced. Such a gene is also referred to as a target gene. In general, the RNA to be silenced is an endogenous gene or a pathogen gene. In addition, RNAs other than mRNA, e.g., tRNAs, and viral RNAs, can also be targeted.
As used herein, the phrase "mediates RNAi" refers to the ability to silence, in a sequence specific manner, a target RNA. While not wishing to be bound by theory, it is believed that silencing uses the RNAi machinery or process and a guide RNA, e.g., an ssiRNA compound of 21 to 23 nucleotides.
In one embodiment, an siRNA compound is "sufficiently complementary" to a target RNA, e.g., a target mRNA, such that the siRNA compound silences production of protein encoded by the target mRNA. In another embodiment, the siRNA compound is "exactly complementary" to a target RNA, e.g., the target RNA and the siRNA compound anneal, for example to form a hybrid made exclusively of Watson- Crick base pairs in the region of exact complementarity. A "sufficiently complementary" target RNA can include an internal region (e.g., of at least 10 nucleotides) that is exactly complementary to a target RNA. Moreover, in certain embodiments, the siRNA compound specifically discriminates a single-nucleotide difference. In this case, the siRNA compound only mediates RNAi if exact complementary is found in the region (e.g., within 7 nucleotides of) the single- nucleotide difference.
RNA interference (RNAi) may be used to specifically inhibit expression of target polynucleotides. Double- stranded RNA-mediated suppression of gene and nucleic acid expression may be accomplished according to the invention by introducing dsRNA, siRNA or shRNA into cells or organisms. SiRNA may be double-stranded RNA, or a hybrid molecule comprising both RNA and DNA, e.g., one RNA strand and one DNA strand. It has been demonstrated that the direct introduction of siRNAs to a cell can trigger RNAi in mammalian cells (Elshabir, S. M., et al. Nature 411:494-498 (2001)). Furthermore, suppression in mammalian cells occurred at the RNA level and was specific for the targeted genes, with a strong correlation between RNA and protein suppression (Caplen, N. et al., Proc. Natl. Acad. Sci. USA 98:9746-9747 (2001)). In addition, it was shown that a wide variety of cell lines, including HeLa S3, COS7, 293, NIH/3T3, A549, HT-29, CHO-KI and MCF-7 cells, are susceptible to some level of siRNA silencing (Brown, D. et al. TechNotes 9(1): 1-7, available on the worldwide web at www.dot.ambion.dot.com/techlib/tn/91/912.html (9/1/02)).
RNAi molecules targeting specific polynucleotides can be readily prepared according to procedures known in the art. Structural characteristics of effective siRNA molecules have been identified. Elshabir, S. M. et al. (2001) Nature 411:494- 498 and Elshabir, S.M. et al. (2001), EMBO 20:6877-6888. Accordingly, one of skill in the art would understand that a wide variety of different siRNA molecules may be used to target a specific gene or transcript. In certain embodiments, siRNA molecules according to the invention are double- stranded and 16 - 30 or 18 - 25 nucleotides in length, including each integer in between. In one embodiment, an siRNA is 21 nucleotides in length. In certain embodiments, siRNAs have 0-7 nucleotide 3' overhangs or 0-4 nucleotide 5' overhangs. In one embodiment, an siRNA molecule has a two nucleotide 3' overhang. In one embodiment, an siRNA is 21 nucleotides in length with two nucleotide 3' overhangs {i.e. they contain a 19 nucleotide complementary region between the sense and antisense strands). In certain embodiments, the overhangs are UU or dTdT 3' overhangs.
Generally, siRNA molecules are completely complementary to one strand of a target DNA molecule, since even single base pair mismatches have been shown to reduce silencing. In other embodiments, siRNAs may have a modified backbone composition, such as, for example, 2'-deoxy- or 2'-O-methyl modifications. However, in preferred embodiments, the entire strand of the siRNA is not made with either 2' deoxy or 2'-O-modified bases.
In another embodiment, the invention provides a cell including a vector for inhibiting the expression of a gene in a cell. The vector includes a regulatory sequence operably linked to a nucleotide sequence that encodes at least one strand of one of the dsRNA of the invention.
In one embodiment, siRNA target sites are selected by scanning the target mRNA transcript sequence for the occurrence of AA dinucleotide sequences. Each AA dinucleotide sequence in combination with the 3' adjacent approximately 19 nucleotides are potential siRNA target sites. In one embodiment, siRNA target sites are preferentially not located within the 5' and 3' untranslated regions (UTRs) or regions near the start codon (within approximately 75 bases), since proteins that bind regulatory regions may interfere with the binding of the siRNP endonuclease complex (Elshabir, S. et al Nature 411:494-498 (2001); Elshabir, S. et al EMBO J. 20:6877- 6888 (2001)). In addition, potential target sites may be compared to an appropriate genome database, such as BLASTN 2.0.5, available on the NCBI server at www.ncbi.nlm, and potential target sequences with significant homology to other coding sequences eliminated.
In particular embodiments, short hairpin RNAs constitute the nucleic acid component of nucleic acid-lipid particles of the invention. Short Hairpin RNA (shRNA) is a form of hairpin RNA capable of sequence-specifically reducing expression of a target gene. Short hairpin RNAs may offer an advantage over siRNAs in suppressing gene expression, as they are generally more stable and less susceptible to degradation in the cellular environment. It has been established that such short hairpin RNA-mediated gene silencing works in a variety of normal and cancer cell lines, and in mammalian cells, including mouse and human cells. Paddison, P. et al, Genes Dev. 16(8):948-58 (2002). Furthermore, transgenic cell lines bearing chromosomal genes that code for engineered shRNAs have been generated. These cells are able to constitutively synthesize shRNAs, thereby facilitating long-lasting or constitutive gene silencing that may be passed on to progeny cells. Paddison, P. et al, Proc. Natl. Acad. Sci. USA 99(3): 1443- 1448 (2002).
ShRNAs contain a stem loop structure. In certain embodiments, they may contain variable stem lengths, typically from 19 to 29 nucleotides in length, or any number in between. In certain embodiments, hairpins contain 19 to 21 nucleotide stems, while in other embodiments, hairpins contain 27 to 29 nucleotide stems. In certain embodiments, loop size is between 4 to 23 nucleotides in length, although the loop size may be larger than 23 nucleotides without significantly affecting silencing activity. ShRNA molecules may contain mismatches, for example G-U mismatches between the two strands of the shRNA stem without decreasing potency. In fact, in certain embodiments, shRNAs are designed to include one or several G-U pairings in the hairpin stem to stabilize hairpins during propagation in bacteria, for example. However, complementarity between the portion of the stem that binds to the target mRNA (antisense strand) and the mRNA is typically required, and even a single base pair mismatch is this region may abolish silencing. 5' and 3' overhangs are not required, since they do not appear to be critical for shRNA function, although they may be present (Paddison et al. (2002) Genes & Dev. 16(8):948-58).
MicroRNAs
Micro RNAs (miRNAs) are a highly conserved class of small RNA molecules that are transcribed from DNA in the genomes of plants and animals, but are not translated into protein. Processed miRNAs are single stranded -17-25 nucleotide (nt) RNA molecules that become incorporated into the RNA-induced silencing complex (RISC) and have been identified as key regulators of development, cell proliferation, apoptosis and differentiation. They are believed to play a role in regulation of gene expression by binding to the 3 '-untranslated region of specific mRNAs.RISC mediates down-regulation of gene expression through translational inhibition, transcript cleavage, or both. RISC is also implicated in transcriptional silencing in the nucleus of a wide range of eukaryotes.
The number of miRNA sequences identified to date is large and growing, illustrative examples of which can be found, for example, in: "miRBase: microRNA sequences, targets and gene nomenclature" Griffiths-Jones S, Grocock RJ, van Dongen S, Bateman A, Enright AJ. NAR, 2006, 34, Database Issue, D140-D144; "The microRNA Registry" Griffiths -Jones S. NAR, 2004, 32, Database Issue, D109- Dl Il; and also on the worldwide web at microrna.dot.sanger.dot.ac. dot.uk/sequences/.
Antisense Oligonucleotides
In one embodiment, a nucleic acid is an antisense oligonucleotide directed to a target polynucleotide. The term "antisense oligonucleotide" or simply "antisense" is meant to include oligonucleotides that are complementary to a targeted polynucleotide sequence. Antisense oligonucleotides are single strands of DNA or RNA that are complementary to a chosen sequence. In the case of antisense RNA, they prevent translation of complementary RNA strands by binding to it. Antisense DNA can be used to target a specific, complementary (coding or non-coding) RNA. If binding takes places this DNA/RNA hybrid can be degraded by the enzyme RNase H. In particular embodiment, antisense oligonucleotides contain from about 10 to about 50 nucleotides, more preferably about 15 to about 30 nucleotides. The term also encompasses antisense oligonucleotides that may not be exactly complementary to the desired target gene. Thus, the invention can be utilized in instances where non-target specific-activities are found with antisense, or where an antisense sequence containing one or more mismatches with the target sequence is the most preferred for a particular use.
Antisense oligonucleotides have been demonstrated to be effective and targeted inhibitors of protein synthesis, and, consequently, can be used to specifically inhibit protein synthesis by a targeted gene. The efficacy of antisense oligonucleotides for inhibiting protein synthesis is well established. For example, the synthesis of polygalactauronase and the muscarine type 2 acetylcholine receptor are inhibited by antisense oligonucleotides directed to their respective mRNA sequences (U. S. Patent 5,739,119 and U. S. Patent 5,759,829). Further, examples of antisense inhibition have been demonstrated with the nuclear protein cyclin, the multiple drug resistance gene (MDGl), ICAM-I, E-selectin, STK-I, striatal GABAA receptor and human EGF (Jaskulski et al, Science. 1988 Jun 10;240(4858): 1544-6; Vasanthakumar and Ahmed, Cancer Commun. 1989;l(4):225-32; Peris et al, Brain Res MoI Brain Res. 1998 Jun 15;57(2):310-20; U. S. Patent 5,801,154; U.S. Patent 5,789,573; U. S. Patent 5,718,709 and U.S. Patent 5,610,288). Furthermore, antisense constructs have also been described that inhibit and can be used to treat a variety of abnormal cellular proliferations, e.g. cancer (U. S. Patent 5,747,470; U. S. Patent 5,591,317 and U. S. Patent 5,783,683).
Methods of producing antisense oligonucleotides are known in the art and can be readily adapted to produce an antisense oligonucleotide that targets any polynucleotide sequence. Selection of antisense oligonucleotide sequences specific for a given target sequence is based upon analysis of the chosen target sequence and determination of secondary structure, T1n, binding energy, and relative stability. Antisense oligonucleotides may be selected based upon their relative inability to form dimers, hairpins, or other secondary structures that would reduce or prohibit specific binding to the target mRNA in a host cell. Highly preferred target regions of the mRNA include those regions at or near the AUG translation initiation codon and those sequences that are substantially complementary to 5 ' regions of the mRNA. These secondary structure analyses and target site selection considerations can be performed, for example, using v.4 of the OLIGO primer analysis software (Molecular Biology Insights) and/or the BLASTN 2.0.5 algorithm software (Altschul et al, Nucleic Acids Res. 1997, 25(17) :3389-402).
Antagomirs
Antagomirs are RNA-like oligonucleotides that harbor various modifications for RNAse protection and pharmacologic properties, such as enhanced tissue and cellular uptake. They differ from normal RNA by, for example, complete 2'-O- methylation of sugar, phosphorothioate backbone and, for example, a cholesterol- moiety at 3'-end. Antagomirs may be used to efficiently silence endogenous miRNAs by forming duplexes comprising the antagomir and endogenous miRNA, thereby preventing miRNA-induced gene silencing. An example of antagomir-mediated miRNA silencing is the silencing of miR-122, described in Krutzfeldt et al, Nature, 2005, 438: 685-689, which is expressly incorporated by reference herein in its entirety. Antagomir RNAs may be synthesized using standard solid phase oligonucleotide synthesis protocols. See US Patent Application Ser. Nos. 11/502,158 and 11/657,341 (the disclosure of each of which are incorporated herein by reference).
An antagomir can include ligand-conjugated monomer subunits and monomers for oligonucleotide synthesis. Exemplary monomers are described in U.S. Application No. 10/916,185, filed on August 10, 2004. An antagomir can have a ZXY structure, such as is described in PCT Application No. PCT/US2004/07070 filed on March 8, 2004. An antagomir can be complexed with an amphipathic moiety. Exemplary amphipathic moieties for use with oligonucleotide agents are described in PCT Application No. PCT/US2004/07070, filed on March 8, 2004.
Aptamers
Aptamers are nucleic acid or peptide molecules that bind to a particular molecule of interest with high affinity and specificity (Tuerk and Gold, Science 249:505 (1990); Ellington and Szostak, Nature 346:818 (1990)). DNA or RNA aptamers have been successfully produced which bind many different entities from large proteins to small organic molecules. See Eaton, Curr. Opin. Chem. Biol. 1: 10-16 (1997), Famulok, Curr. Opin. Struct. Biol. 9:324-9(1999), and Hermann and Patel, Science 287:820-5 (2000). Aptamers may be RNA or DNA based, and may include a riboswitch. A riboswitch is a part of an mRNA molecule that can directly bind a small target molecule, and whose binding of the target affects the gene's activity. Thus, an mRNA that contains a riboswitch is directly involved in regulating its own activity, depending on the presence or absence of its target molecule. Generally, aptamers are engineered through repeated rounds of in vitro selection or equivalently, SELEX (systematic evolution of ligands by exponential enrichment) to bind to various molecular targets such as small molecules, proteins, nucleic acids, and even cells, tissues and organisms. The aptamer may be prepared by any known method, including synthetic, recombinant, and purification methods, and may be used alone or in combination with other aptamers specific for the same target. Further, as described more fully herein, the term "aptamer" specifically includes "secondary aptamers" containing a consensus sequence derived from comparing two or more known aptamers to a given target.
Ribozymes
According to another embodiment of the invention, nucleic acid-lipid particles are associated with ribozymes. Ribozymes are RNA-protein complexes having specific catalytic domains that possess endonuclease activity (Kim and Cech, Proc Natl Acad Sci U S A. 1987 Dec;84(24):8788-92; Forster and Symons, Cell. 1987 Apr 24;49(2):211-20). For example, a large number of ribozymes accelerate phosphoester transfer reactions with a high degree of specificity, often cleaving only one of several phosphoesters in an oligonucleotide substrate (Cech et ah, Cell. 1981 Dec;27(3 Pt 2):487-96; Michel and Westhof, J MoI Biol. 1990 Dec 5;216(3):585-610; Reinhold- Hurek and Shub, Nature. 1992 May 14;357(6374): 173-6). This specificity has been attributed to the requirement that the substrate bind via specific base-pairing interactions to the internal guide sequence ("IGS") of the ribozyme prior to chemical reaction.
At least six basic varieties of naturally-occurring enzymatic RNAs are known presently. Each can catalyze the hydrolysis of RNA phosphodiester bonds in trans (and thus can cleave other RNA molecules) under physiological conditions. In general, enzymatic nucleic acids act by first binding to a target RNA. Such binding occurs through the target binding portion of a enzymatic nucleic acid which is held in close proximity to an enzymatic portion of the molecule that acts to cleave the target RNA. Thus, the enzymatic nucleic acid first recognizes and then binds a target RNA through complementary base-pairing, and once bound to the correct site, acts enzymatically to cut the target RNA. Strategic cleavage of such a target RNA will destroy its ability to direct synthesis of an encoded protein. After an enzymatic nucleic acid has bound and cleaved its RNA target, it is released from that RNA to search for another target and can repeatedly bind and cleave new targets. The enzymatic nucleic acid molecule may be formed in a hammerhead, hairpin, a hepatitis δ virus, group I intron or RNaseP RNA (in association with an RNA guide sequence) or Neurospora VS RNA motif, for example. Specific examples of hammerhead motifs are described by Rossi et al Nucleic Acids Res. 1992 Sep 11;20(17):4559-65. Examples of hairpin motifs are described by Hampel et al (Eur. Pat. Appl. Publ. No. EP 0360257), Hampel and Tritz, Biochemistry 1989 Jun 13;28(12):4929-33; Hampel et al, Nucleic Acids Res. 1990 Jan 25;18(2):299-304 and U. S. Patent 5,631,359. An example of the hepatitis δ virus motif is described by Perrotta and Been, Biochemistry. 1992 Dec l;31(47): 11843-52; an example of the RNaseP motif is described by Guerrier-Takada et al, Cell. 1983 Dec;35(3 Pt 2):849- 57; Neurospora VS RNA ribozyme motif is described by Collins (Saville and Collins, Cell. 1990 May 18;61(4):685-96; Saville and Collins, Proc Natl Acad Sci U S A. 1991 Oct l;88(19):8826-30; Collins and Olive, Biochemistry. 1993 Mar 23;32(11):2795-9); and an example of the Group I intron is described in U. S. Patent 4,987,071. Important characteristics of enzymatic nucleic acid molecules used according to the invention are that they have a specific substrate binding site which is complementary to one or more of the target gene DNA or RNA regions, and that they have nucleotide sequences within or surrounding that substrate binding site which impart an RNA cleaving activity to the molecule. Thus the ribozyme constructs need not be limited to specific motifs mentioned herein.
Methods of producing a ribozyme targeted to any polynucleotide sequence are known in the art. Ribozymes may be designed as described in Int. Pat. Appl. Publ. No. WO 93/23569 and Int. Pat. Appl. Publ. No. WO 94/02595, each specifically incorporated herein by reference, and synthesized to be tested in vitro and in vivo, as described therein.
Ribozyme activity can be optimized by altering the length of the ribozyme binding arms or chemically synthesizing ribozymes with modifications that prevent their degradation by serum ribonucleases (see e.g., Int. Pat. Appl. Publ. No. WO 92/07065; Int. Pat. Appl. Publ. No. WO 93/15187; Int. Pat. Appl. Publ. No. WO 91/03162; Eur. Pat. Appl. Publ. No. 92110298.4; U. S. Patent 5,334,711; and Int. Pat. Appl. Publ. No. WO 94/13688, which describe various chemical modifications that can be made to the sugar moieties of enzymatic RNA molecules), modifications which enhance their efficacy in cells, and removal of stem II bases to shorten RNA synthesis times and reduce chemical requirements.
Additional specific nucleic acid sequences of oligonucleotides (ODNs) suitable for use in the compositions and methods of the invention are described in U.S. Patent Appln. 60/379,343, U.S. patent application Ser. No. 09/649,527, Int. Publ. WO 02/069369, Int. Publ. No. WO 01/15726, U.S. Pat. No. 6,406,705, and Raney et al, Journal of Pharmacology and Experimental Therapeutics, 298:1185-1192 (2001). In certain embodiments, ODNs used in the compositions and methods of the invention have a phosphodiester ("PO") backbone or a phosphorothioate ("PS") backbone, and/or at least one methylated cytosine residue in a CpG motif.
Nucleic Acid Modifications
In the 1990' s DNA-based antisense oligodeoxynucleotides (ODN) and ribozymes (RNA) represented an exciting new paradigm for drug design and development, but their application in vivo was prevented by endo- and exo- nuclease activity as well as a lack of successful intracellular delivery. The degradation issue was effectively overcome following extensive research into chemical modifications that prevented the oligonucleotide (oligo) drugs from being recognized by nuclease enzymes but did not inhibit their mechanism of action. This research was so successful that antisense ODN drugs in development today remain intact in vivo for days compared to minutes for unmodified molecules (Kurreck, J. 2003. Antisense technologies. Improvement through novel chemical modifications. Eur J Biochem 270:1628-44). However, intracellular delivery and mechanism of action issues have so far limited antisense ODN and ribozymes from becoming clinical products.
RNA duplexes are inherently more stable to nucleases than single stranded DNA or RNA, and unlike antisense ODN, unmodified siRNA show good activity once they access the cytoplasm. Even so, the chemical modifications developed to stabilize antisense ODN and ribozymes have also been systematically applied to siRNA to determine how much chemical modification can be tolerated and if pharmacokinetic and pharmacodynamic activity can be enhanced. RNA interference by siRNA duplexes requires an antisense and sense strand, which have different functions. Both are necessary to enable the siRNA to enter RISC, but once loaded the two strands separate and the sense strand is degraded whereas the antisense strand remains to guide RISC to the target mRNA. Entry into RISC is a process that is structurally less stringent than the recognition and cleavage of the target mRNA. Consequently, many different chemical modifications of the sense strand are possible, but only limited changes are tolerated by the antisense strand (Zhang et al., 2006).
As is known in the art, a nucleoside is a base-sugar combination. Nucleotides are nucleosides that further include a phosphate group covalently linked to the sugar portion of the nucleoside. For those nucleosides that include a pentofuranosyl sugar, the phosphate group can be linked to either the 2', 3' or 5' hydroxyl moiety of the sugar. In forming oligonucleotides, the phosphate groups covalently link adjacent nucleosides to one another to form a linear polymeric compound. In turn the respective ends of this linear polymeric structure can be further joined to form a circular structure. Within the oligonucleotide structure, the phosphate groups are commonly referred to as forming the internucleoside backbone of the oligonucleotide. The normal linkage or backbone of RNA and DNA is a 3' to 5' phosphodiester linkage.
The nucleic acid that is used in a lipid-nucleic acid particle according to this invention includes any form of nucleic acid that is known. Thus, the nucleic acid may be a modified nucleic acid of the type used previously to enhance nuclease resistance and serum stability. Surprisingly, however, acceptable therapeutic products can also be prepared using the method of the invention to formulate lipid-nucleic acid particles from nucleic acids that have no modification to the phosphodiester linkages of natural nucleic acid polymers, and the use of unmodified phosphodiester nucleic acids (i.e., nucleic acids in which all of the linkages are phosphodiester linkages) is a preferred embodiment of the invention.
Backbone Modifications
Antisense, siRNA and other oligonucleotides useful in this invention include, but are not limited to, oligonucleotides containing modified backbones or non-natural internucleoside linkages. Oligonucleotides having modified backbones include those that retain a phosphorus atom in the backbone and those that do not have a phosphorus atom in the backbone. Modified oligonucleotides that do not have a phosphorus atom in their internucleoside backbone can also be considered to be oligonucleosides. Modified oligonucleotide backbones include, for example, phosphorothioates, chiral phosphorothioates, phosphorodithioates, phosphotriesters, aminoalkylphosphotri-esters, methyl and other alkyl phosphonates including 3'- alkylene phosphonates and chiral phosphonates, phosphinates, phosphoramidates including 3'-amino phosphoramidate and aminoalkylphosphoramidates, thionophosphoramidates, thionoalkylphosphonates, thionoalkylphosphotriesters, phosphoroselenate, methylphosphonate, or O-alkyl phosphotriester linkages, and boranophosphates having normal 3'-5' linkages, 2'-5' linked analogs of these, and those having inverted polarity wherein the adjacent pairs of nucleoside units are linked 3'-5' to 5'-3' or 2'-5' to 5'-2'. Particular non-limiting examples of particular modifications that may be present in a nucleic acid according to the invention are shown in Table 2.
Various salts, mixed salts and free acid forms are also included. Representative United States patents that teach the preparation of the above linkages include, but are not limited to, U.S. Patent Nos. 3,687,808; 4,469,863; 4,476,301; 5,023,243; 5,177,196; 5,188,897; 5,264,423; 5,276,019; 5,278,302; 5,286,717; 5,321,131; 5,399,676; 5,405,939; 5,453,496; 5,455,233; 5,466,677; 5,476,925; 5,519,126; 5,536,821; 5,541,306; 5,550,111; 5,563,253; 5,571,799; 5,587,361; and 5,625,050. In certain embodiments, modified oligonucleotide backbones that do not include a phosphorus atom therein have backbones that are formed by short chain alkyl or cycloalkyl internucleoside linkages, mixed heteroatom and alkyl or cycloalkyl internucleoside linkages, or one or more short chain heteroatomic or heterocyclic internucleoside linkages. These include, e.g., those having morpholino linkages (formed in part from the sugar portion of a nucleoside); siloxane backbones; sulfide, sulfoxide and sulfone backbones; formacetyl and thioformacetyl backbones; methylene formacetyl and thioformacetyl backbones; alkene containing backbones; sulfamate backbones; methyleneimino and methylenehydrazino backbones; sulfonate and sulfonamide backbones; amide backbones; and others having mixed N, O, S and CH2 component parts. Representative United States patents that describe the above oligonucleosides include, but are not limited to, U.S. Pat. Nos. 5,034,506; 5,166,315; 5,185,444; 5,214,134; 5,216,141; 5,235,033; 5,264,562; 5,264,564; 5,405,938; 5,434,257; 5,466,677; 5,470,967; 5,489,677; 5,541,307; 5,561,225; 5,596,086; 5,602,240; 5,610,289; 5,602,240; 5,608,046; 5,610,289; 5,618,704; 5,623,070; 5,663,312; 5,633,360; 5,677,437; and 5,677,439.
The phosphorothioate backbone modification (Table 3, #1), where a non- bridging oxygen in the phosphodiester bond is replaced by sulfur, is one of the earliest and most common means deployed to stabilize nucleic acid drugs against nuclease degradation. In general, it appears that PS modifications can be made extensively to both siRNA strands without much impact on activity (Kurreck, J., Eur. J. Biochem. 270:1628-44, 2003). However, PS oligos are known to avidly associate non- specifically with proteins resulting in toxicity, especially upon i.v. administration. Therefore, the PS modification is usually restricted to one or two bases at the 3 ' and 5' ends. The boranophosphate linker (Table 3, #2) is a recent modification that is apparently more stable than PS, enhances siRNA activity and has low toxicity (Hall et al, Nucleic Acids Res. 32:5991-6000, 2004).
Figure imgf000059_0001
Figure imgf000060_0001
Figure imgf000061_0001
Other useful nucleic acids derivatives include those nucleic acids molecules in which the bridging oxygen atoms (those forming the phosphoester linkages) have been replaced with -S-, -NH-, -CH2- and the like. In certain embodiments, the alterations to the antisense, siRNA, or other nucleic acids used will not completely affect the negative charges associated with the nucleic acids. Thus, the invention contemplates the use of antisense, siRNA, and other nucleic acids in which a portion of the linkages are replaced with, for example, the neutral methyl phosphonate or phosphoramidate linkages. When neutral linkages are used, in certain embodiments, less than 80% of the nucleic acid linkages are so substituted, or less than 50% of the linkages are so substituted.
Base Modifications
Base modifications are less common than those to the backbone and sugar. The modifications shown in 0.3-6 all appear to stabilize siRNA against nucleases and have little effect on activity ( Zhang, H. Y., Du, Q., Wahlestedt, C, Liang, Z. 2006. RNA Interference with chemically modified siRNA. Curr Top Med Chem 6:893-900).
Accordingly, oligonucleotides may also include nucleobase (often referred to in the art simply as "base") modifications or substitutions. As used herein, "unmodified" or "natural" nucleobases include the purine bases adenine (A) and guanine (G), and the pyrimidine bases thymine (T), cytosine (C) and uracil (U). Modified nucleobases include other synthetic and natural nucleobases such as 5- methylcytosine (5-me-C or m5c), 5-hydroxymethyl cytosine, xanthine, hypoxanthine, 2-aminoadenine, 6-methyl and other alkyl derivatives of adenine and guanine, 2- propyl and other alkyl derivatives of adenine and guanine, 2-thiouracil, 2-thiothymine and 2-thiocytosine, 5-halouracil and cytosine, 5-propynyl uracil and cytosine, 6-azo uracil, cytosine and thymine, 5-uracil (pseudouracil), 4-thiouracil, 8-halo, 8-amino, 8- thiol, 8-thioalkyl, 8-hydroxyl and other 8-substituted adenines and guanines, 5-halo particularly 5-bromo, 5-trifluoromethyl and other 5-substituted uracils and cytosines, 7-methylguanine and 7-methyladenine, 8-azaguanine and 8-azaadenine, 7- deazaguanine and 7-deazaadenine and 3-deazaguanine and 3-deazaadenine.
Certain nucleobases are particularly useful for increasing the binding affinity of the oligomeric compounds of the invention, including 5-substituted pyrimidines, 6- azapyrimidines and N-2, N-6 and 0-6 substituted purines, including 2- aminopropyladenine, 5-propynyluracil and 5-propynylcytosine. 5-methylcytosine substitutions have been shown to increase nucleic acid duplex stability by 0.6-1.2° C. (Sanghvi, Y. S., Crooke, S. T. and Lebleu, B., eds., Antisense Research and Applications 1993, CRC Press, Boca Raton, pages 276-278). These may be combined, in particular embodiments, with 2'-O-methoxyethyl sugar modifications. United States patents that teach the preparation of certain of these modified nucleobases as well as other modified nucleobases include, but are not limited to, the above noted U.S. Pat. No. 3,687,808, as well as U.S. Pat. Nos. 4,845,205; 5,130,302; 5,134,066; 5,175,273; 5,367,066; 5,432,272; 5,457,187; 5,459,255; 5,484,908; 5,502,177; 5,525,711; 5,552,540; 5,587,469; 5,594,121, 5,596,091; 5,614,617; and 5,681,941.
Sugar Modifications
Most modifications on the sugar group occur at the 2'-OH of the RNA sugar ring, which provides a convenient chemically reactive site (Manoharan, M. 2004. RNA interference and chemically modified small interfering RNAs. Curr Opin Chem Biol 8:570-9; Zhang, H. Y., Du, Q., Wahlestedt, C, Liang, Z. 2006. RNA Interference with chemically modified siRNA. Curr Top Med Chem 6:893-900). The 2'-F and T- OME (0.7 and 8) are common and both increase stability, the 2'-OME modification does not reduce activity as long as it is restricted to less than 4 nucleotides per strand (Holen, T., Amarzguioui, M., Babaie, E., Prydz, H. 2003. Similar behaviour of single- strand and double-strand siRNAs suggests they act through a common RNAi pathway. Nucleic Acids Res 31:2401-7). The 2'-0-MOE (0.9) is most effective in siRNA when modified bases are restricted to the middle region of the molecule ( Prakash, T.P., Allerson, C. R., Dande, P., Vickers, T.A., Sioufi, N., Jarres, R., Baker, B.F., Swayze, E.E., Griffey, R.H., Bhat, B. 2005. Positional effect of chemical modifications on short interference RNA activity in mammalian cells. J Med Chem 48:4247-53). Other modifications found to stabilize siRNA without loss of activity are shown in 0.10-14.
Modified oligonucleotides may also contain one or more substituted sugar moieties. For example, the invention includes oligonucleotides that comprise one of the following at the 2' position: OH; F; O-, S-, or N-alkyl, O-alkyl-0-alkyl, O-, S-, or N-alkenyl, or O-, S- or N-alkynyl, wherein the alkyl, alkenyl and alkynyl may be substituted or unsubstituted Ci to Cio alkyl or C2 to ClO alkenyl and alkynyl. Particularly preferred are O[(CH2)nO]mCH3, O(CH2)nOCH3, O(CH2)2θN(CH3)2, O(CH2)nNH2, O(CH2)nCH3, O(CH2)nONH2, and O(CH2)nON[(CH2)nCH3)]2, where n and m are from 1 to about 10. Other preferred oligonucleotides comprise one of the following at the 2' position: Ci to Cio lower alkyl, substituted lower alkyl, alkaryl, aralkyl, O-alkaryl or O-aralkyl, SH, SCH3, OCN, Cl, Br, CN, CF3, OCF3, SOCH3, SO2CH3, ONO2, NO2, N3, NH2, heterocycloalkyl, heterocycloalkaryl, aminoalkylamino, polyalkylamino, substituted silyl, an RNA cleaving group, a reporter group, an intercalator, a group for improving the pharmacokinetic properties of an oligonucleotide, or a group for improving the pharmacodynamic properties of an oligonucleotide, and other substituents having similar properties. One modification includes 2'-methoxyethoxy (2'-0-CH2CH2OCH3, also known as 2'-O-(2- methoxyethyl) or 2'-MOE) (Martin et al, HeIv. Chim. Acta 1995, 78, 486-504), i.e., an alkoxyalkoxy group. Other modifications include 2'-dimethylaminooxyethoxy, i.e., a O(CH2)2θN(CH3)2 group, also known as 2'-DMAOE, and T- dimethylaminoethoxyethoxy (2'-DMAEOE).
Additional modifications include 2'-methoxy (2'-0-CH3), 2'-aminopropoxy (2'-OCH2CH2CH2NH2) and 2'-fluoro (2'-F). Similar modifications may also be made at other positions on the oligonucleotide, particularly the 3' position of the sugar on the 3' terminal nucleotide or in 2'-5' linked oligonucleotides and the 5' position of 5' terminal nucleotide. Oligonucleotides may also have sugar mimetics such as cyclobutyl moieties in place of the pentofuranosyl sugar. Representative United States patents that teach the preparation of such modified sugars structures include, but are not limited to, U.S. Pat. Nos. 4,981,957; 5,118,800; 5,319,080; 5,359,044; 5,393,878; 5,446,137; 5,466,786; 5,514,785; 5,519,134; 5,567,811; 5,576,427; 5,591,722; 5,597,909; 5,610,300; 5,627,053; 5,639,873; 5,646,265; 5,658,873; 5,670,633; and 5,700,920.
In other oligonucleotide mimetics, both the sugar and the internucleoside linkage, i.e., the backbone, of the nucleotide units are replaced with novel groups, although the base units are maintained for hybridization with an appropriate nucleic acid target compound. One such oligomeric compound, an oligonucleotide mimetic that has been shown to have excellent hybridization properties, is referred to as a peptide nucleic acid (PNA). In PNA compounds, the sugar-backbone of an oligonucleotide is replaced with an amide containing backbone, in particular an aminoethylglycine backbone. The nucleobases are retained and are bound directly or indirectly to aza nitrogen atoms of the amide portion of the backbone. Representative United States patents that teach the preparation of PNA compounds include, but are not limited to, U.S. Pat. Nos. 5,539,082; 5,714,331; and 5,719,262. Further teaching of PNA compounds can be found in Nielsen et al. (Science, 1991, 254, 1497-1500).
Particular embodiments of the invention are oligonucleotides with phosphorothioate backbones and oligonucleosides with heteroatom backbones, and in particular -CH2-NH-O-CH2-, -CH2-N(CH3) -0-CH2- (referred to as a methylene (methylimino) or MMI backbone) -CH2-O-N(CH3) -CH2-, -CH2- N(CH3)-N(CH3) -CH2- and -0-N(CH3) -CH2-CH2- (wherein the native phosphodiester backbone is represented as -0-P-O-CH2 --) of the above referenced U.S. Pat. No. 5,489,677, and the amide backbones of the above referenced U.S. Pat. No. 5,602,240. Also preferred are oligonucleotides having morpholino backbone structures of the above -referenced U.S. Pat. No. 5,034,506.
The sugar group can also contain one or more carbons that possess the opposite stereochemical configuration than that of the corresponding carbon in ribose. Thus, an oligonucleotide can include nucleotides containing e.g., arabinose, as the sugar. The monomer can have an alpha linkage at the 1' position on the sugar, e.g., alpha-nucleosides. Oligonucleotides can also include "abasic" sugars, which lack a nucleobase at C-I'. These abasic sugars can also be further containing modifications at one or more of the constituent sugar atoms. Oligonucleotides can also contain one or more sugars that are in the L form, e.g. L- nucleosides.
Chimeric Oligonucleotides
It is not necessary for all positions in a given compound to be uniformly modified, and in fact more than one of the aforementioned modifications may be incorporated in a single compound or even at a single nucleoside within an oligonucleotide. Certain preferred oligonucleotides of this invention are chimeric oligonucleotides. "Chimeric oligonucleotides" or "chimeras," in the context of this invention, are oligonucleotides that contain two or more chemically distinct regions, each made up of at least one nucleotide. These oligonucleotides typically contain at least one region of modified nucleotides that confers one or more beneficial properties (such as, e,g., increased nuclease resistance, increased uptake into cells, increased binding affinity for the RNA target) and a region that is a substrate for RNase H cleavage.
In one embodiment, a chimeric oligonucleotide comprises at least one region modified to increase target binding affinity. Affinity of an oligonucleotide for its target is routinely determined by measuring the Tm of an oligonucleotide/target pair, which is the temperature at which the oligonucleotide and target dissociate; dissociation is detected spectrophotometrically. The higher the Tm, the greater the affinity of the oligonucleotide for the target. In one embodiment, the region of the oligonucleotide which is modified to increase target mRNA binding affinity comprises at least one nucleotide modified at the 2' position of the sugar, most preferably a 2'-O-alkyl, 2'-O-alkyl-O-alkyl or 2'-fluoro-modified nucleotide. Such modifications are routinely incorporated into oligonucleotides and these oligonucleotides have been shown to have a higher Tm (i.e., higher target binding affinity) than 2'-deoxyoligonucleotides against a given target. The effect of such increased affinity is to greatly enhance oligonucleotide inhibition of target gene expression.
In another embodiment, a chimeric oligonucletoide comprises a region that acts as a substrate for RNAse H. Of course, it is understood that oligonucleotides may include any combination of the various modifications described herein.
Another modification of the oligonucleotides of the invention involves chemically linking to the oligonucleotide one or more moieties or conjugates which enhance the activity, cellular distribution or cellular uptake of the oligonucleotide. Such conjugates and methods of preparing the same are known in the art.
Those skilled in the art will realize that for in vivo utility, such as therapeutic efficacy, a reasonable rule of thumb is that if a thioated version of the sequence works in the free form, that encapsulated particles of the same sequence, of any chemistry, will also be efficacious. Encapsulated particles may also have a broader range of in vivo utilities, showing efficacy in conditions and models not known to be otherwise responsive to antisense therapy. Those skilled in the art know that applying this invention they may find old models which now respond to antisense therapy. Further, they may revisit discarded antisense sequences or chemistries and find efficacy by employing the invention.
The oligonucleotides used in accordance with this invention may be conveniently and routinely made through the well-known technique of solid phase synthesis. Equipment for such synthesis is sold by several vendors including Applied Biosystems. Any other means for such synthesis may also be employed; the actual synthesis of the oligonucleotides is well within the talents of the routineer. It is also well known to use similar techniques to prepare other oligonucleotides such as the phosphorothioates and alkylated derivatives.
Immunostimulatory Oligonucleotides
Nucleic acids associated with lipid particles of the present invention may be immunostimulatory, including immunostimulatory oligonucleotides (ISS; single-or double-stranded) capable of inducing an immune response when administered to a subject, which may be a mammal or other patient. ISS include, e.g., certain palindromes leading to hairpin secondary structures (see Yamamoto S., et al. (1992) J. Immunol. 148: 4072-4076), or CpG motifs, as well as other known ISS features (such as multi-G domains, see WO 96/11266).
The immune response may be an innate or an adaptive immune response. The immune system is divided into a more innate immune system, and acquired adaptive immune system of vertebrates, the latter of which is further divided into humoral cellular components. In particular embodiments, the immune response may be mucosal.
In particular embodiments, an immunostimulatory nucleic acid is only immunostimulatory when administered in combination with a lipid particle, and is not immunostimulatory when administered in its "free form." According to the present invention, such an oligonucleotide is considered to be immunostimulatory.
Immunostimulatory nucleic acids are considered to be non-sequence specific when it is not required that they specifically bind to and reduce the expression of a target polynucleotide in order to provoke an immune response. Thus, certain immunostimulatory nucleic acids may comprise a seuqence correspondign to a region of a naturally occurring gene or mRNA, but they may still be considered non- sequence specific immunostimulatory nucleic acids. In one embodiment, the immunostimulatory nucleic acid or oligonucleotide comprises at least one CpG dinucleotide. The oligonucleotide or CpG dinucleotide may be unmethylated or methylated. In another embodiment, the immunostimulatory nucleic acid comprises at least one CpG dinucleotide having a methylated cytosine. In one embodiment, the nucleic acid comprises a single CpG dinucleotide, wherein the cytosine in said CpG dinucleotide is methylated. In a specific embodiment, the nucleic acid comprises the sequence 5' TAACGTTGAGGGGCAT 3'. In an alternative embodiment, the nucleic acid comprises at least two CpG dinucleotides, wherein at least one cytosine in the CpG dinucleotides is methylated. In a further embodiment, each cytosine in the CpG dinucleotides present in the sequence is methylated. In another embodiment, the nucleic acid comprises a plurality of CpG dinucleotides, wherein at least one of said CpG dinucleotides comprises a methylated cytosine.
In one specific embodiment, the nucleic acid comprises the sequence 5' TTCCATGACGTTCCTGACGT 3'. In another specific embodiment, the nucleic acid sequence comprises the sequence 5' TCCATGACGTTCCTGACGT 3', wherein the two cytosines indicated in bold are methylated. In particular embodiments, the ODN is selected from a group of ODNs consisting of ODN #1, ODN #2, ODN #3, ODN #4, ODN #5, ODN #6, ODN #7, ODN #8, and ODN #9, as shown below.
Table 4. Exemplary Immunostimulatory Oligonucleotides (ODNs)
Figure imgf000068_0001
Figure imgf000069_0001
Additional specific nucleic acid sequences of oligonucleotides (ODNs) suitable for use in the compositions and methods of the invention are described in Raney et al, Journal of Pharmacology and Experimental Therapeutics, 298:1185- 1192 (2001). In certain embodiments, ODNs used in the compositions and methods of the present invention have a phosphodiester ("PO") backbone or a phosphorothioate ("PS") backbone, and/or at least one methylated cytosine residue in a CpG motif.
Decoy Oligonucleotides
Because transcription factors recognize their relatively short binding sequences, even in the absence of surrounding genomic DNA, short oligonucleotides bearing the consensus binding sequence of a specific transcription factor can be used as tools for manipulating gene expression in living cells. This strategy involves the intracellular delivery of such "decoy oligonucleotides", which are then recognized and bound by the target factor. Occupation of the transcription factor's DNA-binding site by the decoy renders the transcription factor incapable of subsequently binding to the promoter regions of target genes. Decoys can be used as therapeutic agents, either to inhibit the expression of genes that are activated by a transcription factor, or to upregulate genes that are suppressed by the binding of a transcription factor. Examples of the utilization of decoy oligonucleotides may be found in Mann et al., J. Clin. Invest., 2000, 106: 1071-1075, which is expressly incorporated by reference herein, in its entirety
Supermir
A supermir refers to a single stranded, double stranded or partially double stranded oligomer or polymer of ribonucleic acid (RNA) or deoxyribonucleic acid (DNA) or both or modifications thereof, which has a nucleotide sequence that is substantially identical to an miRNA and that is antisense with respect to its target. This term includes oligonucleotides composed of naturally-occurring nucleobases, sugars and covalent internucleoside (backbone) linkages and which contain at least one non-naturally-occurring portion which functions similarly. Such modified or substituted oligonucleotides are preferred over native forms because of desirable properties such as, for example, enhanced cellular uptake, enhanced affinity for nucleic acid target and increased stability in the presence of nucleases. In a preferred embodiment, the supermir does not include a sense strand, and in another preferred embodiment, the supermir does not self-hybridize to a significant extent. An supermir featured in the invention can have secondary structure, but it is substantially single- stranded under physiological conditions. An supermir that is substantially single- stranded is single- stranded to the extent that less than about 50% (e.g., less than about 40%, 30%, 20%, 10%, or 5%) of the supermir is duplexed with itself. The supermir can include a hairpin segment, e.g., sequence, preferably at the 3' end can self hybridize and form a duplex region, e.g., a duplex region of at least 1, 2, 3, or 4 and preferably less than 8, 7, 6, or n nucleotides, e.g., 5 nuclotides. The duplexed region can be connected by a linker, e.g., a nucleotide linker, e.g., 3, 4, 5, or 6 dTs, e.g., modified dTs. In another embodiment the supermir is duplexed with a shorter oligo, e.g., of 5, 6, 7, 8, 9, or 10 nucleotides in length, e.g., at one or both of the 3' and 5' end or at one end and in the non-terminal or middle of the supermir.
miRNA mimics miRNA mimics represent a class of molecules that can be used to imitate the gene silencing ability of one or more miRNAs. Thus, the term "microRNA mimic" refers to synthetic non-coding RNAs (i.e. the miRNA is not obtained by purification from a source of the endogenous miRNA) that are capable of entering the RNAi pathway and regulating gene expression. miRNA mimics can be designed as mature molecules (e.g. single stranded) or mimic precursors (e.g., pri- or pre-miRNAs). miRNA mimics can be comprised of nucleic acid (modified or modified nucleic acids) including oligonucleotides comprising, without limitation, RNA, modified RNA, DNA, modified DNA, locked nucleic acids, or 2'-O,4'-C-ethylene-bridged nucleic acids (ENA), or any combination of the above (including DNA-RNA hybrids). In addition, miRNA mimics can comprise conjugates that can affect delivery, intracellular compartmentalization, stability, specificity, functionality, strand usage, and/or potency. In one design, miRNA mimics are double stranded molecules (e.g., with a duplex region of between about 16 and about 31 nucleotides in length) and contain one or more sequences that have identity with the mature strand of a given miRNA. Modifications can comprise 2' modifications (including 2'-0 methyl modifications and 2' F modifications) on one or both strands of the molecule and internucleotide modifications (e.g. phorphorthioate modifications) that enhance nucleic acid stability and/or specificity. In addition, miRNA mimics can include overhangs. The overhangs can consist of 1-6 nucleotides on either the 3' or 5' end of either strand and can be modified to enhance stability or functionality. In one embodiment, a miRNA mimic comprises a duplex region of between 16 and 31 nucleotides and one or more of the following chemical modification patterns: the sense strand contains 2'-O-methyl modifications of nucleotides 1 and 2 (counting from the 5' end of the sense oligonucleotide), and all of the Cs and Us; the antisense strand modifications can comprise 2' F modification of all of the Cs and Us, phosphorylation of the 5' end of the oligonucleotide, and stabilized internucleotide linkages associated with a 2 nucleotide 3 ' overhang.
Antimir or miRNA inhibitor.
The terms " antimir" "microRNA inhibitor", "miR inhibitor", or "inhibitor" are synonymous and refer to oligonucleotides or modified oligonucleotides that interfere with the ability of specific miRNAs. In general, the inhibitors are nucleic acid or modified nucleic acids in nature including oligonucleotides comprising RNA, modified RNA, DNA, modified DNA, locked nucleic acids (LNAs), or any combination of the above. Modifications include 2' modifications (including 2'-0 alkyl modifications and 2' F modifications) and internucleotide modifications (e.g. phosphorothioate modifications) that can affect delivery, stability, specificity, intracellular compartmentalization, or potency. In addition, miRNA inhibitors can comprise conjugates that can affect delivery, intracellular compartmentalization, stability, and/or potency. Inhibitors can adopt a variety of configurations including single stranded, double stranded (RNA/RNA or RNA/DNA duplexes), and hairpin designs, in general, microRNA inhibitors comprise contain one or more sequences or portions of sequences that are complementary or partially complementary with the mature strand (or strands) of the miRNA to be targeted, in addition, the miRNA inhibitor may also comprise additional sequences located 5' and 3' to the sequence that is the reverse complement of the mature miRNA. The additional sequences may be the reverse complements of the sequences that are adjacent to the mature miRNA in the pri-miRNA from which the mature miRNA is derived, or the additional sequences may be arbitrary sequences (having a mixture of A, G, C, or U). In some embodiments, one or both of the additional sequences are arbitrary sequences capable of forming hairpins. Thus, in some embodiments, the sequence that is the reverse complement of the miRNA is flanked on the 5' side and on the 3' side by hairpin structures. Micro-RNA inhibitors, when double stranded, may include mismatches between nucleotides on opposite strands. Furthermore, micro-RNA inhibitors may be linked to conjugate moieties in order to facilitate uptake of the inhibitor into a cell. For example, a micro-RNA inhibitor may be linked to cholesteryl 5-(bis(4- methoxyphenyl)(phenyl)methoxy)-3 hydroxypentylcarbamate) which allows passive uptake of a micro-RNA inhibitor into a cell. Micro-RNA inhibitors, including hairpin miRNA inhibitors, are described in detail in Vermeulen et al., "Double-Stranded Regions Are Essential Design Components Of Potent Inhibitors of RISC Function," RNA 13: 723-730 (2007) and in WO2007/095387 and WO 2008/036825 each of which is incorporated herein by reference in its entirety. A person of ordinary skill in the art can select a sequence from the database for a desired miRNA and design an inhibitor useful for the methods disclosed herein.
Ul adaptor
Ul adaptor inhibit polyA sites and are bifunctional oligonucleotides with a target domain complementary to a site in the target gene's terminal exon and a 'Ul domain' that binds to the Ul smaller nuclear RNA component of the Ul snRNP (Goraczniak, et al., 2008, Nature Biotechnology, 27(3), 257-263, which is expressly incorporated by reference herein, in its entirety). Ul snRNP is a ribonucleoprotein complex that functions primarily to direct early steps in spliceosome formation by binding to the pre-mRNA exon- intron boundary (Brown and Simpson, 1998, Annu Rev Plant Physiol Plant MoI Biol 49:77-95). Nucleotides 2-11 of the 5'end of Ul snRNA base pair bind with the 5'ss of the pre mRNA. In one embodiment, oligonucleotides of the invention are Ul adaptors. In one embodiment, the Ul adaptor can be administered in combination with at least one other iRNA agent. Oligonucleotide modifications
Unmodified oligonucleotides may be less than optimal in some applications, e.g., unmodified oligonucleotides can be prone to degradation by e.g., cellular nucleases. Nucleases can hydrolyze nucleic acid phosphodiester bonds. However, chemical modifications of oligonucleotides can confer improved properties, and, e.g., can render oligonucleotides more stable to nucleases.
As oligonucleotides are polymers of subunits or monomers, many of the modifications described below occur at a position which is repeated within an oligonucleotide, e.g., a modification of a base, a sugar, a phosphate moiety, or the non-bridging oxygen of a phosphate moiety. It is not necessary for all positions in a given oligonucleotide to be uniformly modified, and in fact more than one of the aforementioned modifications may be incorporated in a single oligonucleotide or even at a single nucleoside within an oligonucleotide.
In some cases the modification will occur at all of the subject positions in the oligonucleotide but in many, and in fact in most cases it will not. By way of example, a modification may only occur at a 3' or 5' terminal position, may only occur in the internal region, may only occur in a terminal regions, e.g. at a position on a terminal nucleotide or in the last 2, 3, 4, 5, or 10 nucleotides of an oligonucleotide. A modification may occur in a double strand region, a single strand region, or in both.
A modification may occur only in the double strand region of a double- stranded oligonucleotide or may only occur in a single strand region of a double- stranded oligonucleotide. E.g., a phosphorothioate modification at a non-bridging oxygen position may only occur at one or both termini, may only occur in a terminal regions, e.g., at a position on a terminal nucleotide or in the last 2, 3, 4, 5, or 10 nucleotides of a strand, or may occur in double strand and single strand regions, particularly at termini. The 5' end or ends can be phosphorylated.
A modification described herein may be the sole modification, or the sole type of modification included on multiple nucleotides, or a modification can be combined with one or more other modifications described herein. The modifications described herein can also be combined onto an oligonucleotide, e.g. different nucleotides of an oligonucleotide have different modifications described herein. In some embodiments it is particularly preferred, e.g., to enhance stability, to include particular nucleobases in overhangs, or to include modified nucleotides or nucleotide surrogates, in single strand overhangs, e.g., in a 5' or 3' overhang, or in both. E.g., it can be desirable to include purine nucleotides in overhangs. In some embodiments all or some of the bases in a 3' or 5' overhang will be modified, e.g., with a modification described herein. Modifications can include, e.g., the use of modifications at the 2' OH group of the ribose sugar, e.g., the use of deoxyribonucleotides, e.g., deoxythymidine, instead of ribonucleotides, and modifications in the phosphate group, e.g., phosphothioate modifications. Overhangs need not be homologous with the target sequence.
Specific modifications are discussed in more detail below.
The Phosphate Group
The phosphate group is a negatively charged species. The charge is distributed equally over the two non-bridging oxygen atoms. However, the phosphate group can be modified by replacing one of the oxygens with a different substituent. One result of this modification to RNA phosphate backbones can be increased resistance of the oligoribonucleotide to nucleolytic breakdown. Thus while not wishing to be bound by theory, it can be desirable in some embodiments to introduce alterations which result in either an uncharged linker or a charged linker with unsymmetrical charge distribution.
Examples of modified phosphate groups include phosphorothioate, phosphoroselenates, borano phosphates, borano phosphate esters, hydrogen phosphonates, phosphoroamidates, alkyl or aryl phosphonates and phosphotriesters. In certain embodiments, one of the non-bridging phosphate oxygen atoms in the phosphate backbone moiety can be replaced by any of the following: S, Se, BR3 (R is hydrogen, alkyl, aryl), C (i.e. an alkyl group, an aryl group, etc...), H, NR2 (R is hydrogen, alkyl, aryl), or OR (R is alkyl or aryl). The phosphorous atom in an unmodified phosphate group is achiral. However, replacement of one of the non- bridging oxygens with one of the above atoms or groups of atoms renders the phosphorous atom chiral; in other words a phosphorous atom in a phosphate group modified in this way is a stereogenic center. The stereogenic phosphorous atom can possess either the "R" configuration (herein Rp) or the "S" configuration (herein Sp).
Phosphorodithioates have both non-bridging oxygens replaced by sulfur. The phosphorus center in the phosphorodithioates is achiral which precludes the formation of oligoribonucleotides diastereomers. Thus, while not wishing to be bound by theory, modifications to both non-bridging oxygens, which eliminate the chiral center, e.g. phosphorodithioate formation, may be desirable in that they cannot produce diastereomer mixtures. Thus, the non-bridging oxygens can be independently any one of S, Se, B, C, H, N, or OR (R is alkyl or aryl).
The phosphate linker can also be modified by replacement of bridging oxygen, (i.e. oxgen that links the phosphate to the nucleoside), with nitrogen (bridged phosphoroamidates), sulfur (bridged phosphorothioates) and carbon (bridged methylenephosphonates). The replacement can occur at the either linking oxygen or at both the linking oxygens. When the bridging oxygen is the 3 '-oxygen of a nucleoside, replcament with carbon is preferred. When the bridging oxygen is the 5'- oxygen of a nucleoside, replacment with nitrogen is preferred.
Replacement of the Phosphate Group
The phosphate group can be replaced by non-phosphorus containing connectors. While not wishing to be bound by theory, it is believed that since the charged phosphodiester group is the reaction center in nucleolytic degradation, its replacement with neutral structural mimics should impart enhanced nuclease stability. Again, while not wishing to be bound by theory, it can be desirable, in some embodiment, to introduce alterations in which the charged phosphate group is replaced by a neutral moiety.
Examples of moieties which can replace the phosphate group include methyl phosphonate, hydroxylamino, siloxane, carbonate, carboxymethyl, carbamate, amide, thioether, ethylene oxide linker, sulfonate, sulfonamide, thioformacetal, formacetal, oxime, methyleneimino, methylenemethylimino, methylenehydrazo, methylenedimethylhydrazo and methyleneoxymethylimino. Preferred replacements include the methylenecarbonylamino and methylenemethylimino groups. Modified phosphate linkages where at least one of the oxygens linked to the phosphate has been replaced or the phosphate group has been replaced by a non- phosphorous group, are also referred to as "non phosphodiester backbone linkage."
Replacement of Ribophosphate Backbone
Oligonucleotide- mimicking scaffolds can also be constructed wherein the phosphate linker and ribose sugar are replaced by nuclease resistant nucleoside or nucleotide surrogates. While not wishing to be bound by theory, it is believed that the absence of a repetitively charged backbone diminishes binding to proteins that recognize poly anions (e.g. nucleases). Again, while not wishing to be bound by theory, it can be desirable in some embodiment, to introduce alterations in which the bases are tethered by a neutral surrogate backbone. Examples include the mophilino, cyclobutyl, pyrrolidine and peptide nucleic acid (PNA) nucleoside surrogates. A preferred surrogate is a PNA surrogate.
Terminal Modifications
The 3' and 5' ends of an oligonucleotide can be modified. Such modifications can be at the 3' end, 5' end or both ends of the molecule. They can include modification or replacement of an entire terminal phosphate or of one or more of the atoms of the phosphate group. E.g., the 3' and 5' ends of an oligonucleotide can be conjugated to other functional molecular entities such as labeling moieties, e.g., fluorophores (e.g., pyrene, TAMRA, fluorescein, Cy3 or Cy5 dyes) or protecting groups (based e.g., on sulfur, silicon, boron or ester). The functional molecular entities can be attached to the sugar through a phosphate group and/or a linker. The terminal atom of the linker can connect to or replace the linking atom of the phosphate group or the C-3' or C-5' O, N, S or C group of the sugar. Alternatively, the linker can connect to or replace the terminal atom of a nucleotide surrogate (e.g., PNAs).
When a linker/phosphate-functional molecular entity-linker/phosphate array is interposed between two strands of a dsRNA, this array can substitute for a hairpin RNA loop in a hairpin-type RNA agent. Terminal modifications useful for modulating activity include modification of the 5' end with phosphate or phosphate analogs. E.g., in preferred embodiments antisense strands of dsRNAs, are 5' phosphorylated or include a phosphoryl analog at the 5' prime terminus. 5'-phosphate modifications include those which are compatible with RISC mediated gene silencing. Suitable modifications include: 5'- monophosphate ((HO)2(O)P-O-5'); 5 '-diphosphate ((HO)2(O)P-O-P(HO)(O)-O-S'); 5'- triphosphate ((HO)2(O)P-O-(HO)(O)P-O-P(HO)(O)-O-S'); 5'-guanosine cap (7- methylated or non-methylated) (7m-G-O-5'-(HO)(O)P-O-(HO)(O)P-O-P(HO)(O)-O- 5'); 5'-adenosine cap (Appp), and any modified or unmodified nucleotide cap structure (N-O-5'-(HO)(O)P-O-(HO)(O)P-O-P(HO)(O)-O-5'); 5'-monothiophosphate (phosphorothioate; (HO)2(S)P-O-5'); 5'-monodithiophosphate (phosphorodithioate; (H0)(HS)(S)P-0-5'), 5'-phosphorothiolate ((HO)2(O)P-S-5'); any additional combination of oxgen/sulfur replaced monophosphate, diphosphate and triphosphates (e.g. 5'-alpha-thiotriphosphate, 5'-gamma-thiotriphosphate, etc.), 5'-phosphoramidates ((HO)2(O)P-NH-5', (HO)(NH2)(O)P-O-5'), 5'-alkylphosphonates (R=alkyl=methyl, ethyl, isopropyl, propyl, etc., e.g. RP(0H)(0)-0-5'-, (OH)2(O)P-5'-CH2-), 5'- alkyletherphosphonates (R=alkylether=methoxymethyl (MeOCH2-), ethoxymethyl, etc., e.g. RP(0H)(0)-0-5'-).
Terminal modifications can also be useful for monitoring distribution, and in such cases the preferred groups to be added include fluorophores, e.g., fluorscein or an Alexa dye, e.g., Alexa 488. Terminal modifications can also be useful for enhancing uptake, useful modifications for this include cholesterol. Terminal modifications can also be useful for cross-linking an RNA agent to another moiety; modifications useful for this include mitomycin C.
Nucleobases
Adenine, guanine, cytosine and uracil are the most common bases found in
RNA. These bases can be modified or replaced to provide RNA' s having improved properties. E.g., nuclease resistant oligoribonucleotides can be prepared with these bases or with synthetic and natural nucleobases (e.g., inosine, thymine, xanthine, hypoxanthine, nubularine, isoguanisine, or tubercidine) and any one of the above modifications. Alternatively, substituted or modified analogs of any of the above bases, e.g., "unusual bases", "modified bases", "non-natual bases" and "universal bases" described herein, can be employed. Examples include without limitation 2- aminoadenine, 6-methyl and other alkyl derivatives of adenine and guanine, 2-propyl and other alkyl derivatives of adenine and guanine, 5-halouracil and cytosine, 5- propynyl uracil and cytosine, 6-azo uracil, cytosine and thymine, 5-uracil (pseudouracil), 4-thiouracil, 5-halouracil, 5-(2-aminopropyl)uracil, 5-amino allyl uracil, 8-halo, amino, thiol, thioalkyl, hydroxyl and other 8-substituted adenines and guanines, 5-trifluoromethyl and other 5-substituted uracils and cytosines, 7- methylguanine, 5-substituted pyrimidines, 6-azapyrimidines and N-2, N-6 and 0-6 substituted purines, including 2-aminopropyladenine, 5-propynyluracil and 5- propynylcytosine, dihydrouracil, 3-deaza-5-azacytosine, 2-aminopurine, 5-alkyluracil, 7-alkylguanine, 5-alkyl cytosine,7-deazaadenine, N6, N6-dimethyladenine, 2,6- diaminopurine, 5-amino-allyl-uracil, N3-methyluracil, substituted 1,2,4-triazoles, 2- pyridinone, 5-nitroindole, 3-nitropyrrole, 5-methoxyuracil, uracil-5-oxyacetic acid, 5- methoxycarbonylmethyluracil, 5-methyl-2-thiouracil, 5-methoxycarbonylmethyl-2- thiouracil, 5-methylaminomethyl-2-thiouracil, 3-(3-amino-3carboxypropyl)uracil, 3- methylcytosine, 5-methylcytosine, N4-acetyl cytosine, 2-thiocytosine, N6- methyladenine, N6-isopentyladenine, 2-methylthio-N6-isopentenyladenine, N- methylguanines, or O-alkylated bases. Further purines and pyrimidines include those disclosed in U.S. Pat. No. 3,687,808, those disclosed in the Concise Encyclopedia Of Polymer Science And Engineering, pages 858-859, Kroschwitz, J. I., ed. John Wiley & Sons, 1990, and those disclosed by Englisch et al., Angewandte Chemie, International Edition, 1991, 30, 613.
Cationic Groups
Modifications to oligonucleotides can also include attachment of one or more cationic groups to the sugar, base, and/or the phosphorus atom of a phosphate or modified phosphate backbone moiety. A cationic group can be attached to any atom capable of substitution on a natural, unusual or universal base. A preferred position is one that does not interfere with hybridization, i.e., does not interfere with the hydrogen bonding interactions needed for base pairing. A cationic group can be attached e.g., through the C2' position of a sugar or analogous position in a cyclic or acyclic sugar surrogate. Cationic groups can include e.g., protonated amino groups, derived from e.g., 0-AMINE (AMINE = NH2; alkylamino, dialkylamino, heterocyclyl, arylamino, diaryl amino, heteroaryl amino, or diheteroaryl amino, ethylene diamine, polyamino); aminoalkoxy, e.g., 0(CH2)nAMINE, (e.g., AMINE = NH2; alkylamino, dialkylamino, heterocyclyl, arylamino, diaryl amino, heteroaryl amino, or diheteroaryl amino, ethylene diamine, polyamino); amino (e.g. NH2; alkylamino, dialkylamino, heterocyclyl, arylamino, diaryl amino, heteroaryl amino, diheteroaryl amino, or amino acid); or NH(CH2CH2NH)nCH2CH2-AMINE (AMINE = NH2; alkylamino, dialkylamino, heterocyclyl, arylamino, diaryl amino, heteroaryl amino, or diheteroaryl amino).
Placement within an oligonucleotide
Some modifications may preferably be included on an oligonucleotide at a particular location, e.g., at an internal position of a strand, or on the 5' or 3' end of an oligonucleotide. A preferred location of a modification on an oligonucleotide, may confer preferred properties on the agent. For example, preferred locations of particular modifications may confer optimum gene silencing properties, or increased resistance to endonuclease or exonuclease activity.
One or more nucleotides of an oligonucleotide may have a 2'-5' linkage. One or more nucleotides of an oligonucleotide may have inverted linkages, e.g. 3'-3', 5'- 5', 2' -2' or 2' -3 ' linkages.
A double- stranded oligonucleotide may include at least one 5'-uridine- adenine-3' (5'-UA-3') dinucleotide wherein the uridine is a 2'-modified nucleotide, or a terminal 5'-uridine-guanine-3' (5'-UG-3') dinucleotide, wherein the 5'-uridine is a 2'-modified nucleotide, or a terminal 5'-cytidine-adenine-3' (5'-CA-3') dinucleotide, wherein the 5'-cytidine is a 2 '-modified nucleotide, or a terminal 5'-uridine-uridine-3' (5'-UU-3') dinucleotide, wherein the 5'-uridine is a 2'-modified nucleotide, or a terminal 5'-cytidine-cytidine-3' (5'-CC-3') dinucleotide, wherein the 5'-cytidine is a 2'-modified nucleotide, or a terminal 5'-cytidine-uridine-3' (5'-CU-3') dinucleotide, wherein the 5'-cytidine is a 2' -modified nucleotide, or a terminal 5 ' -uridine-cytidine- 3' (5'-UC-3') dinucleotide, wherein the 5'-uridine is a 2'-modified nucleotide. Double- stranded oligonucleotides including these modifications are particularly stabilized against endonuclease activity.
General References
The oligoribonucleotides and oligoribonucleosides used in accordance with this invention may be synthesized with solid phase synthesis, see for example "Oligonucleotide synthesis, a practical approach", Ed. M. J. Gait, IRL Press, 1984; "Oligonucleotides and Analogues, A Practical Approach", Ed. F. Eckstein, IRL Press, 1991 (especially Chapter 1, Modern machine-aided methods of oligodeoxyribonucleotide synthesis, Chapter 2, Oligoribonucleotide synthesis, Chapter 3, 2'-O-Methyloligoribonucleotide- s: synthesis and applications, Chapter 4, Phosphorothioate oligonucleotides, Chapter 5, Synthesis of oligonucleotide phosphorodithioates, Chapter 6, Synthesis of oligo-2'-deoxyribonucleoside methylphosphonates, and. Chapter 7, Oligodeoxynucleotides containing modified bases. Other particularly useful synthetic procedures, reagents, blocking groups and reaction conditions are described in Martin, P., HeIv. CMm. Acta, 1995, 78, 486-504; Beaucage, S. L. and Iyer, R. P., Tetrahedron, 1992, 48, 2223-2311 and Beaucage, S. L. and Iyer, R. P., Tetrahedron, 1993, 49, 6123-6194, or references referred to therein. Modification described in WO 00/44895, WO01/75164, or WO02/44321 can be used herein. The disclosure of all publications, patents, and published patent applications listed herein are hereby incorporated by reference.
Phosphate Group References
The preparation of phosphinate oligoribonucleotides is described in U.S. Pat. No. 5,508,270. The preparation of alkyl phosphonate oligoribonucleotides is described in U.S. Pat. No. 4,469,863. The preparation of phosphoramidite oligoribonucleotides is described in U.S. Pat. No. 5,256,775 or U.S. Pat. No. 5,366,878. The preparation of phosphotriester oligoribonucleotides is described in U.S. Pat. No. 5,023,243. The preparation of borano phosphate oligoribonucleotide is described in U.S. Pat. Nos. 5,130,302 and 5,177,198. The preparation of 3'-Deoxy-3'- amino phosphoramidate oligoribonucleotides is described in U.S. Pat. No. 5,476,925. 3'-Deoxy-3'-methylenephosphonate oligoribonucleotides is described in An, H, et al. J. Org. Chem. 2001, 66, 2789-2801. Preparation of sulfur bridged nucleotides is described in Sproat et al. Nucleosides Nucleotides 1988, 7,651 and Crosstick et al. Tetrahedron Lett. 1989, 30, 4693.
Sugar Group References
Modifications to the 2' modifications can be found in Verma, S. et al. Annu. Rev. Biochem. 1998, 67, 99-134 and all references therein. Specific modifications to the ribose can be found in the following references: 2'-fluoro (Kawasaki et. al., /. Med. Chem., 1993, 36, 831-841), 2'-MOE (Martin, P. HeIv. CMm. Acta 1996, 79, 1930-1938), "LNA" (Wengel, J. Ace. Chem. Res. 1999, 32, 301-310).
Replacement of the Phosphate Group References
Methylenemethylimino linked oligoribonucleosides, also identified herein as MMI linked oligoribonucleosides, methylenedimethylhydrazo linked oligoribonucleosides, also identified herein as MDH linked oligoribonucleosides, and methylenecarbonylamino linked oligonucleosides, also identified herein as amide-3 linked oligoribonucleosides, and methyleneaminocarbonyl linked oligonucleosides, also identified herein as amide-4 linked oligoribonucleosides as well as mixed backbone compounds having, as for instance, alternating MMI and PO or PS linkages can be prepared as is described in U.S. Pat. Nos. 5,378,825, 5,386,023, 5,489,677 and in published PCT applications PCT/US92/04294 and PCT/US92/04305 (published as WO 92/20822 WO and 92/20823, respectively). Formacetal and thioformacetal linked oligoribonucleosides can be prepared as is described in U.S. Pat. Nos. 5,264,562 and 5,264,564. Ethylene oxide linked oligoribonucleosides can be prepared as is described in U.S. Pat. No. 5,223,618. Siloxane replacements are described in CormierJ.F. et al. Nucleic Acids Res. 1988, 16, 4583. Carbonate replacements are described in Tittensor, J.R. /. Chem. Soc. C 1971, 1933. Carboxymethyl replacements are described in Edge, M.D. et al. J. Chem. Soc. Perkin Trans. 1 1972, 1991. Carbamate replacements are described in Stirchak, E.P. Nucleic Acids Res. 1989, 17, 6129.
Replacement of the Phosphate-Ribose Backbone References Cyclobutyl sugar surrogate compounds can be prepared as is described in U.S. Pat. No. 5,359,044. Pyrrolidine sugar surrogate can be prepared as is described in U.S. Pat. No. 5,519,134. Morpholino sugar surrogates can be prepared as is described in U.S. Pat. Nos. 5,142,047 and 5,235,033, and other related patent disclosures. Peptide Nucleic Acids (PNAs) are known per se and can be prepared in accordance with any of the various procedures referred to in Peptide Nucleic Acids (PNA): Synthesis, Properties and Potential Applications, Bioorganic & Medicinal Chemistry, 1996, 4, 5- 23. They may also be prepared in accordance with U.S. Pat. No. 5,539,083.
Terminal Modification References
Terminal modifications are described in Manoharan, M. et al. Antisense and Nucleic Acid Drug Development 12, 103-128 (2002) and references therein.
Nucleobases References
N-2 substitued purine nucleoside amidites can be prepared as is described in U.S. Pat. No. 5,459,255. 3-Deaza purine nucleoside amidites can be prepared as is described in U.S. Pat. No. 5,457,191. 5,6-Substituted pyrimidine nucleoside amidites can be prepared as is described in U.S. Pat. No. 5,614,617. 5-Propynyl pyrimidine nucleoside amidites can be prepared as is described in U.S. Pat. No. 5,484,908.
Linkers
The term "linker" means an organic moiety that connects two parts of a compound. Linkers typically comprise a direct bond or an atom such as oxygen or sulfur, a unit such as NR1, C(O), C(O)NH, SO, SO2, SO2NH or a chain of atoms, such as substituted or unsubstituted alkyl, substituted or unsubstituted alkenyl, substituted or unsubstituted alkynyl, arylalkyl, arylalkenyl, arylalkynyl, heteroarylalkyl, heteroarylalkenyl, heteroarylalkynyl, heterocyclylalkyl, heterocyclylalkenyl, heterocyclylalkynyl, aryl, heteroaryl, heterocyclyl, cycloalkyl, cycloalkenyl, alkylarylalkyl, alkylarylalkenyl, alkylarylalkynyl, alkenylarylalkyl, alkenylarylalkenyl, alkenylarylalkynyl, alkynylarylalkyl, alkynylarylalkenyl, alkynylarylalkynyl, alkylheteroarylalkyl, alkylheteroarylalkenyl, alkylheteroarylalkynyl, alkenylheteroarylalkyl, alkenylheteroarylalkenyl, alkenylheteroarylalkynyl, alkynylheteroarylalkyl, alkynylheteroarylalkenyl, alkynylheteroarylalkynyl, alkylheterocyclylalkyl, alkylheterocyclylalkenyl, alkylhererocyclylalkynyl, alkenylheterocyclylalkyl, alkenylheterocyclylalkenyl, alkenylheterocyclylalkynyl, alkynylheterocyclylalkyl, alkynylheterocyclylalkenyl, alkynylheterocyclylalkynyl, alkylaryl, alkenylaryl, alkynylaryl, alkylheteroaryl, alkenylheteroaryl, alkynylhereroaryl, where one or more methylenes can be interrupted or terminated by O, S, S(O), SO2, N(R:)2, C(O), cleavable linking group, substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl, substituted or unsubstituted heterocyclic; where R1 is hydrogen, acyl, aliphatic or substituted aliphatic.
In one embodiment, the linker is -[(P-Q-R)q-X-(P'-Q'-R')q ]q"-T-, wherein: P, R, T, P', R' and T are each independently for each occurrence absent, CO, NH, O, S, OC(O), NHC(O), CH2, CH2NH, CH2O; NHCH(Ra)C(0), -C(0)-CH(Ra>
Figure imgf000084_0001
Figure imgf000084_0002
or heterocyclyl ;
Q and Q' are each independently for each occurrence absent, -(CH2)n-, - C(R1)(R2)(CH2)n-, -(CH2)nC(R1)(R2)-, -(CH2CH2O)1nCH2CH2-, or - (CH2CH2O)1nCH2CH2NH- ;
X is absent or a cleavable linking group;
Ra is H or an amino acid side chain;
R1 and R2 are each independently for each occurrence H, CH3, OH, SH or N(RN)2; RN is independently for each occurrence H, methyl, ethyl, propyl, isopropyl, butyl or benzyl; q, q' and q" are each independently for each occurrence 0-20 and wherein the repeating unit can be the same or different; n is independently for each occurrence 1-20; and m is independently for each occurrence 0-50.
In one embodiment, the linker comprises at least one cleavable linking group.
In certain embodiments, the linker is a branched linker. The branchpoint of the branched linker may be at least trivalent, but may be a tetravalent, pentavalent or hexavalent atom, or a group presenting such multiple valencies. In certain embodiments, the branchpoint is , -N, -N(Q)-C, -O-C, -S-C, -SS-C, -C(O)N(Q)-C, - OC(O)N(Q)-C, -N(Q)C(O)-C, or -N(Q)C(O)O-C; wherein Q is independently for each occurrence H or optionally substituted alkyl. In other embodiment, the branchpoint is glycerol or glycerol derivative.
Cleavable Linking Groups
A cleavable linking group is one which is sufficiently stable outside the cell, but which upon entry into a target cell is cleaved to release the two parts the linker is holding together. In a preferred embodiment, the cleavable linking group is cleaved at least 10 times or more, preferably at least 100 times faster in the target cell or under a first reference condition (which can, e.g., be selected to mimic or represent intracellular conditions) than in the blood of a subject, or under a second reference condition (which can, e.g., be selected to mimic or represent conditions found in the blood or serum).
Cleavable linking groups are susceptible to cleavage agents, e.g., pH, redox potential or the presence of degradative molecules. Generally, cleavage agents are more prevalent or found at higher levels or activities inside cells than in serum or blood. Examples of such degradative agents include: redox agents which are selected for particular substrates or which have no substrate specificity, including, e.g., oxidative or reductive enzymes or reductive agents such as mercaptans, present in cells, that can degrade a redox cleavable linking group by reduction; esterases; endosomes or agents that can create an acidic environment, e.g., those that result in a pH of five or lower; enzymes that can hydrolyze or degrade an acid cleavable linking group by acting as a general acid, peptidases (which can be substrate specific), and phosphatases.
A cleavable linkage group, such as a disulfide bond can be susceptible to pH. The pH of human serum is 7.4, while the average intracellular pH is slightly lower, ranging from about 7.1-7.3. Endosomes have a more acidic pH, in the range of 5.5- 6.0, and lysosomes have an even more acidic pH at around 5.0. Some linkers will have a cleavable linking group that is cleaved at a preferred pH, thereby releasing the cationic lipid from the ligand inside the cell, or into the desired compartment of the cell.
A linker can include a cleavable linking group that is cleavable by a particular enzyme. The type of cleavable linking group incorporated into a linker can depend on the cell to be targeted. For example, liver targeting ligands can be linked to the cationic lipids through a linker that includes an ester group. Liver cells are rich in esterases, and therefore the linker will be cleaved more efficiently in liver cells than in cell types that are not esterase -rich. Other cell-types rich in esterases include cells of the lung, renal cortex, and testis.
Linkers that contain peptide bonds can be used when targeting cell types rich in peptidases, such as liver cells and synoviocytes.
In general, the suitability of a candidate cleavable linking group can be evaluated by testing the ability of a degradative agent (or condition) to cleave the candidate linking group. It will also be desirable to also test the candidate cleavable linking group for the ability to resist cleavage in the blood or when in contact with other non-target tissue. Thus one can determine the relative susceptibility to cleavage between a first and a second condition, where the first is selected to be indicative of cleavage in a target cell and the second is selected to be indicative of cleavage in other tissues or biological fluids, e.g., blood or serum. The evaluations can be carried out in cell free systems, in cells, in cell culture, in organ or tissue culture, or in whole animals. It may be useful to make initial evaluations in cell-free or culture conditions and to confirm by further evaluations in whole animals. In preferred embodiments, useful candidate compounds are cleaved at least 2, 4, 10 or 100 times faster in the cell (or under in vitro conditions selected to mimic intracellular conditions) as compared to blood or serum (or under in vitro conditions selected to mimic extracellular conditions).
Redox cleavable linking groups
One class of cleavable linking groups are redox cleavable linking groups that are cleaved upon reduction or oxidation. An example of reductively cleavable linking group is a disulphide linking group (-S-S-). To determine if a candidate cleavable linking group is a suitable "reductively cleavable linking group," or for example is suitable for use with a particular iRNA moiety and particular targeting agent one can look to methods described herein. For example, a candidate can be evaluated by incubation with dithiothreitol (DTT), or other reducing agent using reagents know in the art, which mimic the rate of cleavage which would be observed in a cell, e.g., a target cell. The candidates can also be evaluated under conditions which are selected to mimic blood or serum conditions. In a preferred embodiment, candidate compounds are cleaved by at most 10% in the blood. In preferred embodiments, useful candidate compounds are degraded at least 2, 4, 10 or 100 times faster in the cell (or under in vitro conditions selected to mimic intracellular conditions) as compared to blood (or under in vitro conditions selected to mimic extracellular conditions). The rate of cleavage of candidate compounds can be determined using standard enzyme kinetics assays under conditions chosen to mimic intracellular media and compared to conditions chosen to mimic extracellular media.
Phosphate-based cleavable linking groups
Phosphate-based cleavable linking groups are cleaved by agents that degrade or hydrolyze the phosphate group. An example of an agent that cleaves phosphate groups in cells are enzymes such as phosphatases in cells. Examples of phosphate- based linking groups are -0-P(O)(ORk)-O-, -0-P(S)(ORk)-O-, -0-P(S)(SRk)-O-, -S- P(O)(ORk)-O-, -0-P(O)(ORk)-S-, -S-P(O)(ORk)-S-, -0-P(S)(ORk)-S-, -S- P(S)(ORk)-O-, -0-P(O)(Rk)-O-, -0-P(S)(Rk)-O-, -S-P(O)(Rk)-O-, -S-P(S)(Rk)-O-, - S-P(O)(Rk)-S-, -O-P(S)( Rk)-S-. Preferred embodiments are -0-P(O)(OH)-O-, -O- P(S)(OH)-O-, -0-P(S)(SH)-O-, -S-P(O)(OH)-O-, -0-P(O)(OH)-S-, -S-P(O)(OH)-S-, - 0-P(S)(OH)-S-, -S-P(S)(OH)-O-, -0-P(O)(H)-O-, -0-P(S)(H)-O-, -S-P(O)(H)-O-, -S- P(S)(H)-O-, -S-P(O)(H)-S-, -0-P(S)(H)-S-. A preferred embodiment is -O- P(O)(OH)-O-. These candidates can be evaluated using methods analogous to those described above.
Acid cleavable linking groups
Acid cleavable linking groups are linking groups that are cleaved under acidic conditions. In preferred embodiments acid cleavable linking groups are cleaved in an acidic environment with a pH of about 6.5 or lower (e.g., about 6.0, 5.5, 5.0, or lower), or by agents such as enzymes that can act as a general acid. In a cell, specific low pH organelles, such as endosomes and lysosomes can provide a cleaving environment for acid cleavable linking groups. Examples of acid cleavable linking groups include but are not limited to hydrazones, esters, and esters of amino acids. Acid cleavable groups can have the general formula -C=NN-, C(O)O, or -OC(O). A preferred embodiment is when the carbon attached to the oxygen of the ester (the alkoxy group) is an aryl group, substituted alkyl group, or tertiary alkyl group such as dimethyl pentyl or t-butyl. These candidates can be evaluated using methods analogous to those described above.
Ester-based linking groups
Ester-based cleavable linking groups are cleaved by enzymes such as esterases and amidases in cells. Examples of ester-based cleavable linking groups include but are not limited to esters of alkylene, alkenylene and alkynylene groups. Ester cleavable linking groups have the general formula -C(O)O-, or -OC(O)-. These candidates can be evaluated using methods analogous to those described above.
Peptide-based cleaving groups
Peptide-based cleavable linking groups are cleaved by enzymes such as peptidases and proteases in cells. Peptide-based cleavable linking groups are peptide bonds formed between amino acids to yield oligopeptides (e.g., dipeptides, tripeptides etc.) and polypeptides. Peptide-based cleavable groups do not include the amide group (-C(O)NH-). The amide group can be formed between any alkylene, alkenylene or alkynelene. A peptide bond is a special type of amide bond formed between amino acids to yield peptides and proteins. The peptide based cleavage group is generally limited to the peptide bond (i.e., the amide bond) formed between amino acids yielding peptides and proteins and does not include the entire amide functional group. Peptide-based cleavable linking groups have the general formula - NHCHRAC(O)NHCHRBC(O)-, where RA and RB are the R groups of the two adjacent amino acids. These candidates can be evaluated using methods analogous to those described above.
Lisands
A wide variety of entities can be coupled to the oligonucleotides and lipids of the present invention. Preferred moieties are ligands, which are coupled, preferably covalently, either directly or indirectly via an intervening tether.
In preferred embodiments, a ligand alters the distribution, targeting or lifetime of the molecule into which it is incorporated. In preferred embodiments a ligand provides an enhanced affinity for a selected target, e.g., molecule, cell or cell type, compartment, e.g., a. cellular or organ compartment, tissue, organ or region of the body, as, e.g., compared to a species absent such a ligand. Ligands providing enhanced affinity for a selected target are also termed targeting ligands. Preferred ligands for conjugation to the lipids of the present invention are targeting ligands.
Some ligands can have endosomolytic properties. The endosomolytic ligands promote the lysis of the endosome and/or transport of the composition of the invention, or its components, from the endosome to the cytoplasm of the cell. The endosomolytic ligand may be a polyanionic peptide or peptidomimetic which shows pH-dependent membrane activity and fusogenicity. In certain embodiments, the endosomolytic ligand assumes its active conformation at endosomal pH. The "active" conformation is that conformation in which the endosomolytic ligand promotes lysis of the endosome and/or transport of the composition of the invention, or its components, from the endosome to the cytoplasm of the cell. Exemplary endosomolytic ligands include the GALA peptide (Subbarao et al., Biochemistry, 1987, 26: 2964-2972), the EALA peptide (Vogel et al., J. Am. Chem. Soc, 1996, 118: 1581-1586), and their derivatives (Turk et al., Biochem. Biophys. Acta, 2002, 1559: 56-68). In certain embodiments, the endosomolytic component may contain a chemical group (e.g., an amino acid) which will undergo a change in charge or protonation in response to a change in pH. The endosomolytic component may be linear or branched. Exemplary primary sequences of peptide based endosomolytic ligands are shown in Table 5.
Table 5: List of peptides with endosomolytic activity.
Figure imgf000090_0001
n, norleucine
References
1 Subbarao et al , Biochemistry, 1987, 26 2964-2972
2 Vogel et al , J Am Chem Soc , 1996, 118 1581-1586
3 Turk, M J , Reddy, J A et al (2002) Characterization of a novel pH-sensitive peptide that enhances drug release from folate-targeted liposomes at endosomal pHs Biochim Biophys Acta 1559, 56-68
4 Plank, C Oberhauser, B Mechtler, K Koch, C Wagner, E (1994) The influence of endosome-disruptive peptides on gene transfer using synthetic virus-like gene transfer systems, J Biol Chem 269 12918—12924 5 Mastrobattista, E , Koning, G A et al (2002) Functional characterization of an endosome-disruptive peptide and its application in cytosolic delivery of immunoliposome-entrapped proteins / BwI Chem 277, 27135-43
6 Oberhauser, B , Plank, C et al (1995) Enhancing endosomal exit of nucleic acids using pH-sensitive viral fusion peptides Deliv Strategies Antisense Oligonucleotide Ther 247-66
Preferred ligands can improve transport, hybridization, and specificity properties and may also improve nuclease resistance of the resultant natural or modified oligoribonucleotide, or a polymeric molecule comprising any combination of monomers described herein and/or natural or modified ribonucleotides.
Ligands in general can include therapeutic modifiers, e.g., for enhancing uptake; diagnostic compounds or reporter groups e.g., for monitoring distribution; cross-linking agents; and nuclease-resistance conferring moieties. General examples include lipids, steroids, vitamins, sugars, proteins, peptides, poly amines, and peptide mimics.
Ligands can include a naturally occurring substance, such as a protein (e.g., human serum albumin (HSA), low-density lipoprotein (LDL), high-density lipoprotein (HDL), or globulin); an carbohydrate (e.g., a dextran, pullulan, chitin, chitosan, inulin, cyclodextrin or hyaluronic acid); or a lipid. The ligand may also be a recombinant or synthetic molecule, such as a synthetic polymer, e.g., a synthetic polyamino acid, an oligonucleotide (e.g. an aptamer). Examples of polyamino acids include polyamino acid is a poly lysine (PLL), poly L-aspartic acid, poly L- glutamic acid, styrene-maleic acid anhydride copolymer, poly(L-lactide-co-glycolied) copolymer, divinyl ether-maleic anhydride copolymer, N-(2- hydroxypropyl)methacrylamide copolymer (HMPA), polyethylene glycol (PEG), polyvinyl alcohol (PVA), polyurethane, poly(2-ethylacryllic acid), N- isopropylacrylamide polymers, or polyphosphazine. Example of polyamines include: polyethylenimine, poly lysine (PLL), spermine, spermidine, polyamine, pseudopeptide-polyamine, peptidomimetic polyamine, dendrimer polyamine, arginine, amidine, protamine, cationic lipid, cationic porphyrin, quaternary salt of a polyamine, or an alpha helical peptide.
Ligands can also include targeting groups, e.g., a cell or tissue targeting agent, e.g., a lectin, glycoprotein, lipid or protein, e.g., an antibody, that binds to a specified cell type such as a kidney cell. A targeting group can be a thyrotropin, melanotropin, lectin, glycoprotein, surfactant protein A, Mucin carbohydrate, multivalent lactose, multivalent galactose, N-acetyl-galactosamine, N-acetyl-gulucosamine multivalent mannose, multivalent fucose, glycosylated polyaminoacids, multivalent galactose, transferrin, bisphosphonate, polyglutamate, polyaspartate, a lipid, cholesterol, a steroid, bile acid, folate, vitamin B 12, biotin, an RGD peptide, an RGD peptide mimetic or an aptamer. Table 6 shows some examples of targeting ligands and their associated receptors.
Table 6: Targeting Ligands and their associated receptors
Figure imgf000092_0001
Other examples of ligands include dyes, intercalating agents (e.g. acridines), cross-linkers (e.g. psoralene, mitomycin C), porphyrins (TPPC4, texaphyrin, Sapphyrin), polycyclic aromatic hydrocarbons (e.g., phenazine, dihydrophenazine), artificial endonucleases (e.g. EDTA), lipophilic molecules, e.g, cholesterol, cholic acid, adamantane acetic acid, 1-pyrene butyric acid, dihydrotestosterone, 1,3-Bis- O(hexadecyl)glycerol, geranyloxyhexyl group, hexadecylglycerol, borneol, menthol, 1,3-propanediol, heptadecyl group, palmitic acid, myristic acid,O3-(oleoyl)lithocholic acid, O3-(oleoyl)cholenic acid, dimethoxytrityl, or phenoxazine)and peptide conjugates (e.g., antennapedia peptide, Tat peptide), alkylating agents, phosphate, amino, mercapto, PEG (e.g., PEG-40K), MPEG, [MPEG]2, polyamino, alkyl, substituted alkyl, radiolabeled markers, enzymes, haptens (e.g. biotin), transport/absorption facilitators (e.g., aspirin, vitamin E, folic acid), synthetic ribonucleases (e.g., imidazole, bisimidazole, histamine, imidazole clusters, acridine- imidazole conjugates, Eu3+ complexes of tetraazamacrocycles), dinitrophenyl, HRP, or AP.
Ligands can be proteins, e.g., glycoproteins, or peptides, e.g., molecules having a specific affinity for a co-ligand, or antibodies e.g., an antibody, that binds to a specified cell type such as a cancer cell, endothelial cell, or bone cell. Ligands may also include hormones and hormone receptors. They can also include non-peptidic species, such as lipids, lectins, carbohydrates, vitamins, cofactors, multivalent lactose, multivalent galactose, N-acetyl-galactosamine, N-acetyl-gulucosamine multivalent mannose, multivalent fucose, or aptamers. The ligand can be, for example, a lipopolysaccharide, an activator of p38 MAP kinase, or an activator of NF-κB.
The ligand can be a substance, e.g, a drug, which can increase the uptake of the iRNA agent into the cell, for example, by disrupting the cell's cytoskeleton, e.g., by disrupting the cell's microtubules, microfilaments, and/or intermediate filaments. The drug can be, for example, taxon, vincristine, vinblastine, cytochalasin, nocodazole, japlakinolide, latrunculin A, phalloidin, swinholide A, indanocine, or myoservin.
The ligand can increase the uptake of the iRNA agent into the cell by activating an inflammatory response, for example. Exemplary ligands that would have such an effect include tumor necrosis factor alpha (TNFalpha), interleukin- 1 beta, or gamma interferon.
In one aspect, the ligand is a lipid or lipid-based molecule. Such a lipid or lipid-based molecule preferably binds a serum protein, e.g., human serum albumin (HSA). An HSA binding ligand allows for distribution of the conjugate to a target tissue, e.g., a non-kidney target tissue of the body. For example, the target tissue can be the liver, including parenchymal cells of the liver. Other molecules that can bind HSA can also be used as ligands. For example, neproxin or aspirin can be used. A lipid or lipid-based ligand can (a) increase resistance to degradation of the conjugate, (b) increase targeting or transport into a target cell or cell membrane, and/or (c) can be used to adjust binding to a serum protein, e.g., HSA.
A lipid based ligand can be used to modulate, e.g., control the binding of the conjugate to a target tissue. For example, a lipid or lipid-based ligand that binds to HSA more strongly will be less likely to be targeted to the kidney and therefore less likely to be cleared from the body. A lipid or lipid-based ligand that binds to HSA less strongly can be used to target the conjugate to the kidney.
In a preferred embodiment, the lipid based ligand binds HSA. Preferably, it binds HSA with a sufficient affinity such that the conjugate will be preferably distributed to a non-kidney tissue. However, it is preferred that the affinity not be so strong that the HSA-ligand binding cannot be reversed.
In another preferred embodiment, the lipid based ligand binds HSA weakly or not at all, such that the conjugate will be preferably distributed to the kidney. Other moieties that target to kidney cells can also be used in place of or in addition to the lipid based ligand.
In another aspect, the ligand is a moiety, e.g., a vitamin, which is taken up by a target cell, e.g., a proliferating cell. These are particularly useful for treating disorders characterized by unwanted cell proliferation, e.g., of the malignant or non-malignant type, e.g., cancer cells. Exemplary vitamins include vitamin A, E, and K. Other exemplary vitamins include are B vitamin, e.g., folic acid, B 12, riboflavin, biotin, pyridoxal or other vitamins or nutrients taken up by cancer cells. Also included are HAS, low density lipoprotein (LDL) and high-density lipoprotein (HDL). In another aspect, the ligand is a cell-permeation agent, preferably a helical cell-permeation agent. Preferably, the agent is amphipathic. An exemplary agent is a peptide such as tat or antennopedia. If the agent is a peptide, it can be modified, including a peptidylmimetic, invertomers, non-peptide or pseudo-peptide linkages, and use of D-amino acids. The helical agent is preferably an alpha-helical agent, which preferably has a lipophilic and a lipophobic phase.
The ligand can be a peptide or peptidomimetic. A peptidomimetic (also referred to herein as an oligopeptidomimetic) is a molecule capable of folding into a defined three-dimensional structure similar to a natural peptide. The peptide or peptidomimetic moiety can be about 5-50 amino acids long, e.g., about 5, 10, 15, 20, 25, 30, 35, 40, 45, or 50 amino acids long (see Table 7, for example).
Table 7. Exemplary Cell Permeation Peptides.
Figure imgf000095_0001
Figure imgf000096_0001
A peptide or peptidomimetic can be, for example, a cell permeation peptide, cationic peptide, amphipathic peptide, or hydrophobic peptide (e.g., consisting primarily of Tyr, Trp or Phe). The peptide moiety can be a dendrimer peptide, constrained peptide or crosslinked peptide. In another alternative, the peptide moiety can include a hydrophobic membrane translocation sequence (MTS). An exemplary hydrophobic MTS-containing peptide is RFGF having the amino acid sequence AAVALLPAVLLALLAP. An RFGF analogue (e.g., amino acid sequence AALLPVLLAAP) containing a hydrophobic MTS can also be a targeting moiety. The peptide moiety can be a "delivery" peptide, which can carry large polar molecules including peptides, oligonucleotides, and protein across cell membranes. For example, sequences from the HIV Tat protein (GRKKRRQRRRPPQ) and the Drosophila Antennapedia protein (RQIKIWFQNRRMKWKK) have been found to be capable of functioning as delivery peptides. A peptide or peptidomimetic can be encoded by a random sequence of DNA, such as a peptide identified from a phage- display library, or one-bead-one-compound (OBOC) combinatorial library (Lam et al., Nature, 354:82-84, 1991). Preferably the peptide or peptidomimetic tethered to an iRNA agent via an incorporated monomer unit is a cell targeting peptide such as an arginine-glycine-aspartic acid (RGD)-peptide, or RGD mimic. A peptide moiety can range in length from about 5 amino acids to about 40 amino acids. The peptide moieties can have a structural modification, such as to increase stability or direct conformational properties. Any of the structural modifications described below can be utilized. An RGD peptide moiety can be used to target a tumor cell, such as an endothelial tumor cell or a breast cancer tumor cell (Zitzmann et al., Cancer Res., 62:5139-43, 2002). An RGD peptide can facilitate targeting of an iRNA agent to tumors of a variety of other tissues, including the lung, kidney, spleen, or liver (Aoki et al., Cancer Gene Therapy 8:783-787, 2001). Preferably, the RGD peptide will facilitate targeting of an iRNA agent to the kidney. The RGD peptide can be linear or cyclic, and can be modified, e.g., glycosylated or methylated to facilitate targeting to specific tissues. For example, a glycosylated RGD peptide can deliver an iRNA agent to a tumor cell expressing αγB3 (Haubner et al., Jour. Nucl. Med., 42:326-336, 2001).
Peptides that target markers enriched in proliferating cells can be used. E.g., RGD containing peptides and peptidomimetics can target cancer cells, in particular cells that exhibit an αvβ3 integrin. Thus, one could use RGD peptides, cyclic peptides containing RGD, RGD peptides that include D- amino acids, as well as synthetic RGD mimics. In addition to RGD, one can use other moieties that target the αvβ3 integrin ligand. Generally, such ligands can be used to control proliferating cells and angiogeneis. Preferred conjugates of this type lignads that targets PECAM-I, VEGF, or other cancer gene, e.g., a cancer gene described herein.
A "cell permeation peptide" is capable of permeating a cell, e.g., a microbial cell, such as a bacterial or fungal cell, or a mammalian cell, such as a human cell. A microbial cell-permeating peptide can be, for example, an α-helical linear peptide (e.g., LL-37 or Ceropin Pl), a disulfide bond-containing peptide (e.g., α -defensin, β- defensin or bactenecin), or a peptide containing only one or two dominating amino acids (e.g., PR-39 or indolicidin). A cell permeation peptide can also include a nuclear localization signal (NLS). For example, a cell permeation peptide can be a bipartite amphipathic peptide, such as MPG, which is derived from the fusion peptide domain of HIV-I gp41 and the NLS of SV40 large T antigen (Simeoni et al., Nucl. Acids Res. 31:2717-2724, 2003).
In one embodiment, a targeting peptide tethered to an iRNA agent and/or the carrier oligomer can be an amphipathic α-helical peptide. Exemplary amphipathic α- helical peptides include, but are not limited to, cecropins, lycotoxins, paradaxins, buforin, CPF, bombinin-like peptide (BLP), cathelicidins, ceratotoxins, S. clava peptides, hagfish intestinal antimicrobial peptides (HFIAPs), magainines, brevinins-2, dermaseptins, melittins, pleurocidin, H2A peptides, Xenopus peptides, esculentinis-1, and caerins. A number of factors will preferably be considered to maintain the integrity of helix stability. For example, a maximum number of helix stabilization residues will be utilized (e.g., leu, ala, or lys), and a minimum number helix destabilization residues will be utilized (e.g., proline, or cyclic monomeric units. The capping residue will be considered (for example GIy is an exemplary N-capping residue and/or C-terminal amidation can be used to provide an extra H-bond to stabilize the helix. Formation of salt bridges between residues with opposite charges, separated by i ± 3, or i ± 4 positions can provide stability. For example, cationic residues such as lysine, arginine, homo-arginine, ornithine or histidine can form salt bridges with the anionic residues glutamate or aspartate.
Peptide and peptidomimetic ligands include those having naturally occurring or modified peptides, e.g., D or L peptides; α, β, or γ peptides; N-methyl peptides; azapeptides; peptides having one or more amide, i.e., peptide, linkages replaced with one or more urea, thiourea, carbamate, or sulfonyl urea linkages; or cyclic peptides.
The targeting ligand can be any ligand that is capable of targeting a specific receptor. Examples are: folate, GaINAc, galactose, mannose, mannose-6P, clusters of sugars such as GaINAc cluster, mannose cluster, galactose cluster, or an apatamer. A cluster is a combination of two or more sugar units. The targeting ligands also include integrin receptor ligands, Chemokine receptor ligands, transferrin, biotin, serotonin receptor ligands, PSMA, endothelin, GCPII, somatostatin, LDL and HDL ligands. The ligands can also be based on nucleic acid, e.g., an aptamer. The aptamer can be unmodified or have any combination of modifications disclosed herein.
Endosomal release agents include imidazoles, poly or oligoimidazoles, PEIs, peptides, fusogenic peptides, polycaboxylates, polyacations, masked oligo or poly cations or anions, acetals, polyacetals, ketals/polyketyals, orthoesters, polymers with masked or unmasked cationic or anionic charges, dendrimers with masked or unmasked cationic or anionic charges.
PK modulator stands for pharmacokinetic modulator. PK modulator include lipophiles, bile acids, steroids, phospholipid analogues, peptides, protein binding agents, PEG, vitamins etc. Examplary PK modulator include, but are not limited to, cholesterol, fatty acids, cholic acid, lithocholic acid, dialkylglycerides, diacylglyceride, phospholipids, sphingolipids, naproxen, ibuprofen, vitamin E, biotin etc. Oligonucleotides that comprise a number of phosphorothioate linkages are also known to bind to serum protein, thus short oligonucleotides, e.g. oligonucleotides of about 5 bases, 10 bases, 15 bases or 20 bases, comprising multiple of phosphorothioate linkages in the backbaone are also amenable to the present invention as ligands (e.g. as PK modulating ligands).
In addition, aptamers that bind serum components (e.g. serum proteins) are also amenable to the present invention as PK modulating ligands.
Other ligands amenable to the invention are described in copending applications USSN: 10/916,185, filed August 10, 2004; USSN: 10/946,873, filed September 21, 2004; USSN: 10/833,934, filed August 3, 2007; USSN: 11/115,989 filed April 27, 2005 and USSN: 11/944,227 filed November 21, 2007, which are incorporated by reference in their entireties for all purposes.
When two or more ligands are present, the ligands can all have same properties, all have different properties or some ligands have the same properties while others have different properties. For example, a ligand can have targeting properties, have endosomolytic activity or have PK modulating properties. In a preferred embodiment, all the ligands have different properties.
Ligands can be coupled to the oligonucleotides various places, for example, 3 '-end, 5 '-end, and/or at an internal position. In preferred embodiments, the ligand is attached to the oligonucleotides via an intervening tether. The ligand or tethered ligand may be present on a monomer when said monomer is incorporated into the growing strand. In some embodiments, the ligand may be incorporated via coupling to a "precursor" monomer after said "precursor" monomer has been incorporated into the growing strand. For example, a monomer having, e.g., an amino-terminated tether (i.e., having no associated ligand), e.g., TAP-(CH2)nNH2 may be incorporated into a growing sense or antisense strand. In a subsequent operation, i.e., after incorporation of the precursor monomer into the strand, a ligand having an electrophilic group, e.g., a pentafluorophenyl ester or aldehyde group, can subsequently be attached to the precursor monomer by coupling the electrophilic group of the ligand with the terminal nucleophilic group of the precursor monomer's tether.
For double- stranded oligonucleotides, ligands can be attached to one or both strands. In some embodiments, a double- stranded iRNA agent contains a ligand conjugated to the sense strand. In other embodiments, a double-stranded iRNA agent contains a ligand conjugated to the antisense strand.
In some embodiments, lignad can be conjugated to nucleobases, sugar moieties, or internucleosidic linkages of nucleic acid molecules. Conjugation to purine nucleobases or derivatives thereof can occur at any position including, endocyclic and exocyclic atoms. In some embodiments, the 2-, 6-, 7-, or 8-positions of a purine nucleobase are attached to a conjugate moiety. Conjugation to pyrimidine nucleobases or derivatives thereof can also occur at any position. In some embodiments, the 2-, 5-, and 6-positions of a pyrimidine nucleobase can be substituted with a conjugate moiety. Conjugation to sugar moieties of nucleosides can occur at any carbon atom. Example carbon atoms of a sugar moiety that can be attached to a conjugate moiety include the 2', 3', and 5' carbon atoms. The 1' position can also be attached to a conjugate moiety, such as in an abasic residue. Internucleosidic linkages can also bear conjugate moieties. For phosphorus-containing linkages (e.g., phosphodiester, phosphorothioate, phosphorodithiotate, phosphoroamidate, and the like), the conjugate moiety can be attached directly to the phosphorus atom or to an O, N, or S atom bound to the phosphorus atom. For amine- or amide-containing internucleosidic linkages (e.g., PNA), the conjugate moiety can be attached to the nitrogen atom of the amine or amide or to an adjacent carbon atom.
There are numerous methods for preparing conjugates of oligomeric compounds. Generally, an oligomeric compound is attached to a conjugate moiety by contacting a reactive group (e.g., OH, SH, amine, carboxyl, aldehyde, and the like) on the oligomeric compound with a reactive group on the conjugate moiety. In some embodiments, one reactive group is electrophilic and the other is nucleophilic.
For example, an electrophilic group can be a carbonyl-containing functionality and a nucleophilic group can be an amine or thiol. Methods for conjugation of nucleic acids and related oligomeric compounds with and without linking groups are well described in the literature such as, for example, in Manoharan in Antisense Research and Applications, Crooke and LeBleu, eds., CRC Press, Boca Raton, FIa., 1993, Chapter 17, which is incorporated herein by reference in its entirety.
Representative United States patents that teach the preparation of oligonucleotide conjugates include, but are not limited to, U.S. Pat. Nos. 4,828,979; 4,948,882; 5,218, 105; 5,525,465; 5,541,313; 5,545,730; 5,552,538; 5,578, 717, 5,580,731; 5,580,731; 5,591,584; 5,109,124; 5,118, 802; 5,138,045; 5,414,077; 5,486,603; 5,512,439; 5,578, 718; 5,608,046; 4,587,044; 4,605,735; 4,667,025; 4,762, 779; 4,789,737; 4,824,941; 4,835,263; 4,876,335; 4,904, 582; 4,958,013; 5,082,830; 5,112,963; 5,214,136; 5,082, 830; 5,112,963; 5,149,782; 5,214,136; 5,245,022; 5,254, 469; 5,258,506; 5,262,536; 5,272,250; 5,292,873; 5,317, 098; 5,371,241, 5,391,723; 5,416,203, 5,451,463; 5,510, 475; 5,512,667; 5,514,785; 5,565,552; 5,567,810; 5,574, 142; 5,585,481; 5,587,371; 5,595,726; 5,597,696; 5,599, 923; 5,599,928; 5,672,662; 5,688,941; 5,714,166; 6,153, 737; 6,172,208; 6,300,319; 6,335,434; 6,335,437; 6,395, 437; 6,444,806; 6,486,308; 6,525,031; 6,528,631; 6,559, 279; each of which is herein incorporated by reference.
Definitions
For convenience, the meaning of certain terms and phrases used in the specification, examples, and appended claims, are provided below. If there is an apparent discrepancy between the usage of a term in other parts of this specification and its definition provided in this section, the definition in this section shall prevail.
"G," "C," "A" and "U" each generally stand for a nucleotide that contains guanine, cytosine, adenine, and uracil as a base, respectively. However, it will be understood that the term "ribonucleotide" or "nucleotide" can also refer to a modified nucleotide, as further detailed below, or a surrogate replacement moiety. The skilled person is well aware that guanine, cytosine, adenine, and uracil may be replaced by other moieties without substantially altering the base pairing properties of an oligonucleotide including a nucleotide bearing such replacement moiety. For example, without limitation, a nucleotide including inosine as its base may base pair with nucleotides containing adenine, cytosine, or uracil. Hence, nucleotides containing uracil, guanine, or adenine may be replaced in the nucleotide sequences of the invention by a nucleotide containing, for example, inosine. Sequences including such replacement moieties are embodiments of the invention.
By "Factor VII" as used herein is meant a Factor VII mRNA, protein, peptide, or polypeptide. The term "Factor VII" is also known in the art as AI132620, Cf7, Coagulation factor VII precursor, coagulation factor VII, FVII, Serum prothrombin conversion accelerator, FVII coagulation protein, and eptacog alfa.
As used herein, "target sequence" refers to a contiguous portion of the nucleotide sequence of an mRNA molecule formed during the transcription of the gene, including mRNA that is a product of RNA processing of a primary transcription product.
As used herein, the term "strand including a sequence" refers to an oligonucleotide including a chain of nucleotides that is described by the sequence referred to using the standard nucleotide nomenclature.
As used herein, and unless otherwise indicated, the term "complementary," when used in the context of a nucleotide pair, means a classic Watson-Crick pair, i.e., GC, AT, or AU. It also extends to classic Watson-Crick pairings where one or both of the nuclotides has been modified as decribed herein, e.g., by a rbose modification or a phosphate backpone modification. It can also include pairing with an inosine or other entity that does not substantially alter the base pairing properties.
As used herein, and unless otherwise indicated, the term "complementary," when used to describe a first nucleotide sequence in relation to a second nucleotide sequence, refers to the ability of an oligonucleotide or polynucleotide including the first nucleotide sequence to hybridize and form a duplex structure under certain conditions with an oligonucleotide or polynucleotide including the second nucleotide sequence, as will be understood by the skilled person. Complementarity can include, full complementarity, substantial complementarity, and sufficient complementarity to allow hybridization under physiological conditions, e.g, under physiologically relevant conditions as may be encountered inside an organism. Full complementarity refers to complementarity, as defined above for an individual pair, at all of the pairs of the first and second sequence. When a sequence is "substantially complementary" with respect to a second sequence herein, the two sequences can be fully complementary, or they may form one or more, but generally not more than 4, 3 or 2 mismatched base pairs upon hybridization, while retaining the ability to hybridize under the conditions most relevant to their ultimate application. Substantial complementarity can also be defined as hybridization under stringent conditions, where stringent conditions may include: 400 mM NaCl, 40 mM PIPES pH 6.4, 1 mM EDTA, 500C or 700C for 12-16 hours followed by washing. The skilled person will be able to determine the set of conditions most appropriate for a test of complementarity of two sequences in accordance with the ultimate application of the hybridized nucleotides.
However, where two oligonucleotides are designed to form, upon hybridization, one or more single stranded overhangs, such overhangs shall not be regarded as mismatches with regard to the determination of complementarity. For example, a dsRNA including one oligonucleotide 21 nucleotides in length and another oligonucleotide 23 nucleotides in length, wherein the longer oligonucleotide includes a sequence of 21 nucleotides that is fully complementary to the shorter oligonucleotide, may yet be referred to as "fully complementary" for the purposes of the invention.
"Complementary" sequences, as used herein, may also include, or be formed entirely from, non- Watson-Crick base pairs and/or base pairs formed from non-natural and modified nucleotides, in as far as the above requirements with respect to their ability to hybridize are fulfilled.
The terms "complementary", "fully complementary", "substantially complementary" and sufficient complementarity to allow hybridization under physiological conditions, e.g, under physiologically relevant conditions as may be encountered inside an organism, may be used hereinwith respect to the base matching between the sense strand and the antisense strand of a dsRNA, or between the antisense strand of a dsRNA and a target sequence, as will be understood from the context of their use. As used herein, a polynucleotide which is "complementary, e.g., substantially complementary to at least part of a messenger RNA (mRNA) refers to a polynucleotide which is complementary, e.g., substantially complementary, to a contiguous portion of the mRNA of interest (e.g., encoding Factor VII). For example, a polynucleotide is complementary to at least a part of a Factor VII mRNA if the sequence is substantially complementary to a non-interrupted portion of an mRNA encoding Factor VII.
The term "double-stranded RNA" or "dsRNA", as used herein, refers to a ribonucleic acid molecule, or complex of ribonucleic acid molecules, having a duplex structure including two anti-parallel and substantially complementary, as defined above, nucleic acid strands. The two strands forming the duplex structure may be different portions of one larger RNA molecule, or they may be separate RNA molecules. Where the two strands are part of one larger molecule, and therefore are connected by an uninterrupted chain of nucleotides between the 3 '-end of one strand and the 5 'end of the respective other strand forming the duplex structure, the connecting RNA chain is referred to as a "hairpin loop". Where the two strands are connected covalently by means other than an uninterrupted chain of nucleotides between the 3 '-end of one strand and the 5 'end of the respective other strand forming the duplex structure, the connecting structure is referred to as a "linker." The RNA strands may have the same or a different number of nucleotides. The maximum number of base pairs is the number of nucleotides in the shortest strand of the dsRNA. In addition to the duplex structure, a dsRNA may comprise one or more nucleotide overhangs. A dsRNA as used herein is also refered to as a "small inhibitory RNA," "siRNA," "siRNA agent," "iRNA agent" or "RNAi agent."
As used herein, a "nucleotide overhang" refers to the unpaired nucleotide or nucleotides that protrude from the duplex structure of a dsRNA when a 3 '-end of one strand of the dsRNA extends beyond the 5'-end of the other strand, or vice versa. "Blunt" or "blunt end" means that there are no unpaired nucleotides at that end of the dsRNA, i.e., no nucleotide overhang. A "blunt ended" dsRNA is a dsRNA that is double- stranded over its entire length, i.e., no nucleotide overhang at either end of the molecule.
The term "antisense strand" refers to the strand of a dsRNA which includes a region that is substantially complementary to a target sequence. As used herein, the term "region of complementarity" refers to the region on the antisense strand that is substantially complementary to a sequence, for example a target sequence, as defined herein. Where the region of complementarity is not fully complementary to the target sequence, the mismatches are most tolerated in the terminal regions and, if present, are generally in a terminal region or regions, e.g., within 6, 5, 4, 3, or 2 nucleotides of the 5' and/or 3' terminus.
The term "sense strand," as used herein, refers to the strand of a dsRNA that includes a region that is substantially complementary to a region of the antisense strand.
The term "identity" is the relationship between two or more polynucleotide sequences, as determined by comparing the sequences. Identity also means the degree of sequence relatedness between polynucleotide sequences, as determined by the match between strings of such sequences. While there exist a number of methods to measure identity between two polynucleotide sequences, the term is well known to skilled artisans (see, e.g., Sequence Analysis in Molecular Biology, von Heinje, G., Academic Press (1987); and Sequence Analysis Primer, Gribskov., M. and Devereux, J., eds., M. Stockton Press, New York (1991)). "Substantially identical," as used herein, means there is a very high degree of homology (preferably 100% sequence identity) between the sense strand of the dsRNA and the corresponding part of the target gene. However, dsRNA having greater than 90%, or 95% sequence identity may be used in the invention, and thus sequence variations that might be expected due to genetic mutation, strain polymorphism, or evolutionary divergence can be tolerated. Although 100% identity is preferred, the dsRNA may contain single or multiple base- pair random mismatches between the RNA and the target gene.
"Introducing into a cell", when referring to a dsRNA, means facilitating uptake or absorption into the cell, as is understood by those skilled in the art. Absorption or uptake of dsRNA can occur through unaided diffusive or active cellular processes, or by auxiliary agents or devices. The meaning of this term is not limited to cells in vitro; a dsRNA may also be "introduced into a cell," wherein the cell is part of a living organism. In such instance, introduction into the cell will include the delivery to the organism. For example, for in vivo delivery, dsRNA can be injected into a tissue site or administered systemically. In vitro introduction into a cell includes methods known in the art such as electroporation and lipofection.
The terms "silence" and "inhibit the expression of," in as far as they refer to the Factor VII gene, herein refer to the at least partial suppression of the expression of the Factor VII gene, as manifested by a reduction of the amount of mRNA from the Factor VII gene which may be isolated from a first cell or group of cells in which the Factor VII gene is transcribed and which has or have been treated such that the expression of the Factor VII gene is inhibited, as compared to a second cell or group of cells substantially identical to the first cell or group of cells but which has or have not been so treated (control cells). The degree of inhibition is usually expressed in terms of
Figure imgf000106_0001
Alternatively, the degree of inhibition may be given in terms of a reduction of a parameter that is functionally linked to Factor VII gene transcription, e.g. the amount of protein encoded by the Factor VII gene which is secreted by a cell, or the number of cells displaying a certain phenotype, e.g apoptosis. In principle, Factor VII gene silencing may be determined in any cell expressing the target, either constitutively or by genomic engineering, and by any appropriate assay. However, when a reference is needed in order to determine whether a given siRNA inhibits the expression of the Factor VII gene by a certain degree and therefore is encompassed by the instant invention, the assays provided in the Examples below shall serve as such reference.
For example, in certain instances, expression of the Factor VII gene is suppressed by at least about 20%, 25%, 35%, 40% or 50% by administration of the double- stranded oligonucleotide of the invention. In one embodiment, the Factor VII gene is suppressed by at least about 60%, 70%, or 80% by administration of the double- stranded oligonucleotide of the invention. In a more preferred embodiment, the Factor VII gene is suppressed by at least about 85%, 90%, or 95% by administration of the double-stranded oligonucleotide of the invention.
The terms "treat," "treatment," and the like, refer to relief from or alleviation of a disease or disorder. In the context of the invention insofar as it relates to any of the other conditions recited herein below (e.g., a Factor VII -mediated condition other than a thrombotic disorder), the terms "treat," "treatment," and the like mean to relieve or alleviate at least one symptom associated with such condition, or to slow or reverse the progression of such condition.
A "therapeutically relevant" composition can alleviate a disease or disorder, or a symptom of a disease or disorder when administered at an appropriate dose.
As used herein, the term "Factor VII -mediated condition or disease" and related terms and phrases refer to a condition or disorder characterized by inappropriate, e.g., greater than normal, Factor VII activity. Inappropriate Factor VII functional activity might arise as the result of Factor VII expression in cells which normally do not express Factor VII, or increased Factor VII expression (leading to, e.g., a symptom of a viral hemorrhagic fever, or a thrombus). A Factor VII-mediated condition or disease may be completely or partially mediated by inappropriate Factor VII functional activity. However, a Factor VII-mediated condition or disease is one in which modulation of Factor VII results in some effect on the underlying condition or disorder (e.g., a Factor VII inhibitor results in some improvement in patient well- being in at least some patients).
A "hemorrhagic fever" includes a combination of illnesses caused by a viral infection. Fever and gastrointestinal symptoms are typically followed by capillary hemorrhaging.
A "coagulopathy" is any defect in the blood clotting mechanism of a subject.
As used herein, a "thrombotic disorder" is any disorder, preferably resulting from unwanted FVII expression, including any disorder characterized by unwanted blood coagulation. As used herein, the phrases "therapeutically effective amount" and "prophylactically effective amount" refer to an amount that provides a therapeutic benefit in the treatment, prevention, or management of a viral hemorrhagic fever, or an overt symptom of such disorder, e.g., hemorraging, fever, weakness, muscle pain, headache, inflammation, or circulatory shock. The specific amount that is therapeutically effective can be readily determined by ordinary medical practitioner, and may vary depending on factors known in the art, such as, e.g. the type of thrombotic disorder, the patient's history and age, the stage of the disease, and the administration of other agents.
As used herein, a "pharmaceutical composition" includes a pharmacologically effective amount of a dsRNA and a pharmaceutically acceptable carrier. As used herein, "pharmacologically effective amount," "therapeutically effective amount" or simply "effective amount" refers to that amount of an RNA effective to produce the intended pharmacological, therapeutic or preventive result. For example, if a given clinical treatment is considered effective when there is at least a 25% reduction in a measurable parameter associated with a disease or disorder, a therapeutically effective amount of a drug for the treatment of that disease or disorder is the amount necessary to effect at least a 25% reduction in that parameter.
The term "pharmaceutically acceptable carrier" refers to a carrier for administration of a therapeutic agent. Such carriers include, but are not limited to, saline, buffered saline, dextrose, water, glycerol, ethanol, and combinations thereof. The term specifically excludes cell culture medium. For drugs administered orally, pharmaceutically acceptable carriers include, but are not limited to pharmaceutically acceptable excipients such as inert diluents, disintegrating agents, binding agents, lubricating agents, sweetening agents, flavoring agents, coloring agents and preservatives. Suitable inert diluents include sodium and calcium carbonate, sodium and calcium phosphate, and lactose, while corn starch and alginic acid are suitable disintegrating agents. Binding agents may include starch and gelatin, while the lubricating agent, if present, will generally be magnesium stearate, stearic acid or talc. If desired, the tablets may be coated with a material such as glyceryl monostearate or glyceryl distearate, to delay absorption in the gastrointestinal tract. As used herein, a "transformed cell" is a cell into which a vector has been introduced from which a dsRNA molecule may be expressed.
Characteristic of Nucleic Acid- Lipid Particles
In certain embodiments, the invention relates to methods and compositions for producing lipid-encapsulated nucleic acid particles in which nucleic acids are encapsulated within a lipid layer. Such nucleic acid-lipid particles, incorporating siRNA oligonucleotides, are characterized using a variety of biophysical parameters including: (1) drug to lipid ratio; (2) encapsulation efficiency; and (3) particle size. High drug to lipid rations, high encapsulation efficiency, good nuclease resistance and serum stability and controllable particle size, generally less than 200 nm in diameter are desirable. In addition, the nature of the nucleic acid polymer is of significance, since the modification of nucleic acids in an effort to impart nuclease resistance adds to the cost of therapeutics while in many cases providing only limited resistance. Unless stated otherwise, these criteria are calculated in this specification as follows:
Nucleic acid to lipid ratio is the amount of nucleic acid in a defined volume of preparation divided by the amount of lipid in the same volume. This may be on a mole per mole basis or on a weight per weight basis, or on a weight per mole basis. For final, administration-ready formulations, the nucleic acid:lipid ratio is calculated after dialysis, chromatography and/or enzyme (e.g., nuclease) digestion has been employed to remove as much of the external nucleic acid as possible;
Encapsulation efficiency refers to the drug to lipid ratio of the starting mixture divided by the drug to lipid ratio of the final, administration competent formulation. This is a measure of relative efficiency. For a measure of absolute efficiency, the total amount of nucleic acid added to the starting mixture that ends up in the administration competent formulation, can also be calculated. The amount of lipid lost during the formulation process may also be calculated. Efficiency is a measure of the wastage and expense of the formulation; and
Size indicates the size (diameter) of the particles formed. Size distribution may be determined using quasi-elastic light scattering (QELS) on a Nicomp Model 370 sub-micron particle sizer. Particles under 200 nm are preferred for distribution to neo- vascularized (leaky) tissues, such as neoplasms and sites of inflammation.
Methods of preparing lipid particles
The methods and compositions of the invention make use of certain cationic lipids, the synthesis, preparation and characterization of which is described below and in the accompanying Examples. In addition, the present invention provides methods of preparing lipid particles, including those associated with a therapeutic agent, e.g., a nucleic acid. In the methods described herein, a mixture of lipids is combined with a buffered aqueous solution of nucleic acid to produce an intermediate mixture containing nucleic acid encapsulated in lipid particles wherein the encapsulated nucleic acids are present in a nucleic acid/lipid ratio of about 3 wt% to about 25 wt%, preferably 5 to 15 wt%. The intermediate mixture may optionally be sized to obtain lipid-encapsulated nucleic acid particles wherein the lipid portions are unilamellar vesicles, preferably having a diameter of 30 to 150 nm, more preferably about 40 to 90 nm. The pH is then raised to neutralize at least a portion of the surface charges on the lipid-nucleic acid particles, thus providing an at least partially surface-neutralized lipid-encapsulated nucleic acid composition.
As described above, several of these cationic lipids are amino lipids that are charged at a pH below the pKa of the amino group and substantially neutral at a pH above the pKa. These cationic lipids are termed titratable cationic lipids and can be used in the formulations of the invention using a two-step process. First, lipid vesicles can be formed at the lower pH with titratable cationic lipids and other vesicle components in the presence of nucleic acids. In this manner, the vesicles will encapsulate and entrap the nucleic acids. Second, the surface charge of the newly formed vesicles can be neutralized by increasing the pH of the medium to a level above the pKa of the titratable cationic lipids present, i.e., to physiological pH or higher. Particularly advantageous aspects of this process include both the facile removal of any surface adsorbed nucleic acid and a resultant nucleic acid delivery vehicle which has a neutral surface. Liposomes or lipid particles having a neutral surface are expected to avoid rapid clearance from circulation and to avoid certain toxicities which are associated with cationic liposome preparations. Additional details concerning these uses of such titratable cationic lipids in the formulation of nucleic acid-lipid particles are provided in US Patent 6,287,591 and US Patent 6,858,225, incorporated herein by reference.
It is further noted that the vesicles formed in this manner provide formulations of uniform vesicle size with high content of nucleic acids. Additionally, the vesicles have a size range of from about 30 to about 150 nm, more preferably about 30 to about 90 nm.
Without intending to be bound by any particular theory, it is believed that the very high efficiency of nucleic acid encapsulation is a result of electrostatic interaction at low pH. At acidic pH (e.g. pH 4.0) the vesicle surface is charged and binds a portion of the nucleic acids through electrostatic interactions. When the external acidic buffer is exchanged for a more neutral buffer (e.g.. pH 7.5) the surface of the lipid particle or liposome is neutralized, allowing any external nucleic acid to be removed. More detailed information on the formulation process is provided in various publications (e.g., US Patent 6,287,591 and US Patent 6,858,225).
In view of the above, the present invention provides methods of preparing lipid/nucleic acid formulations. In the methods described herein, a mixture of lipids is combined with a buffered aqueous solution of nucleic acid to produce an intermediate mixture containing nucleic acid encapsulated in lipid particles, e.g., wherein the encapsulated nucleic acids are present in a nucleic acid/lipid ratio of about 10 wt% to about 20 wt%. The intermediate mixture may optionally be sized to obtain lipid- encapsulated nucleic acid particles wherein the lipid portions are unilamellar vesicles, preferably having a diameter of 30 to 150 nm, more preferably about 40 to 90 nm. The pH is then raised to neutralize at least a portion of the surface charges on the lipid-nucleic acid particles, thus providing an at least partially surface-neutralized lipid-encapsulated nucleic acid composition.
In certain embodiments, the mixture of lipids includes at least two lipid components: a first amino lipid component of the present invention that is selected from among lipids which have a pKa such that the lipid is cationic at pH below the pKa and neutral at pH above the pKa, and a second lipid component that is selected from among lipids that prevent particle aggregation during lipid-nucleic acid particle formation. In particular embodiments, the amino lipid is a novel cationic lipid of the present invention.
In preparing the nucleic acid-lipid particles of the invention, the mixture of lipids is typically a solution of lipids in an organic solvent. This mixture of lipids can then be dried to form a thin film or lyophilized to form a powder before being hydrated with an aqueous buffer to form liposomes. Alternatively, in a preferred method, the lipid mixture can be solubilized in a water miscible alcohol, such as ethanol, and this ethanolic solution added to an aqueous buffer resulting in spontaneous liposome formation. In most embodiments, the alcohol is used in the form in which it is commercially available. For example, ethanol can be used as absolute ethanol (100%), or as 95% ethanol, the remainder being water. This method is described in more detail in US Patent 5,976,567).
In one exemplary embodiment, the mixture of lipids is a mixture of cationic lipids, neutral lipids (other than a cationic lipid), a sterol (e.g., cholesterol) and a PEG- modified lipid (e.g., a PEG-DMG or PEG-cDMA) in an alcohol solvent. In preferred embodiments, the lipid mixture consists essentially of a cationic lipid, a neutral lipid, cholesterol and a PEG-modified lipid in alcohol, more preferably ethanol. In further preferred embodiments, the first solution consists of the above lipid mixture in molar ratios of about 20-70% cationic lipid: 5-45% neutral lipid:20-55% cholesterol:0.5- 15% PEG-modified lipid. In still further preferred embodiments, the first solution consists essentially of a lipid chosen from Table 1, DSPC, Choi and PEG-DMG or PEG-cDMA, more preferably in a molar ratio of about 20-60% cationic lipid: 5-25% DSPC:25-55% Chol:0.5-15% PEG-DMG or PEG-DMA. In particular embodiments, the molar lipid ratio is approximately 50/10/38.5/1.5 (mol% cationic lipid/DSPC/Chol/PEG-DMG, PEG-DSG or PEG-DPG), 57.2/7.1/34.3/1.4 (mol% cationic lipid/DPPC/Chol/PEG-cDMA), 40/15/40/5 (mol% cationic lipid/DSPC/Chol/PEG-DMG), 50/10/35/4.5/0.5 (mol% cationic lipid/DSPC/Chol/PEG-DSG or GalNAc3-PEG-DSG), 50/10/35/5 (cationic lipid/DSPC/Chol/PEG-DMG), 40/10/40/10 (mol% cationic lipid/DSPC/Chol/PEG- DMG or PEG-cDMA), 35/15/40/10 (mol% cationic lipid/DSPC/Chol/PEG-DMG or PEG-cDMA) or 52/13/30/5 (mol% cationic lipid/DSPC/Chol/PEG-DMG or PEG- cDMA). In another group of preferred embodiments, the neutral lipid in these compositions is replaced with POPC, DPPC, DOPE or SM.In accordance with the invention, the lipid mixture is combined with a buffered aqueous solution that may contain the nucleic acids. The buffered aqueous solution of is typically a solution in which the buffer has a pH of less than the pKa of the protonatable lipid in the lipid mixture. Examples of suitable buffers include citrate, phosphate, acetate, and MES. A particularly preferred buffer is citrate buffer. Preferred buffers will be in the range of 1-1000 mM of the anion, depending on the chemistry of the nucleic acid being encapsulated, and optimization of buffer concentration may be significant to achieving high loading levels {see, e.g., US Patent 6,287,591 and US Patent 6,858,225). Alternatively, pure water acidified to pH 5-6 with chloride, sulfate or the like may be useful. In this case, it may be suitable to add 5% glucose, or another non- ionic solute which will balance the osmotic potential across the particle membrane when the particles are dialyzed to remove ethanol, increase the pH, or mixed with a pharmaceutically acceptable carrier such as normal saline. The amount of nucleic acid in buffer can vary, but will typically be from about 0.01 mg/mL to about 200 mg/mL, more preferably from about 0.5 mg/mL to about 50 mg/mL.
The mixture of lipids and the buffered aqueous solution of therapeutic nucleic acids is combined to provide an intermediate mixture. The intermediate mixture is typically a mixture of lipid particles having encapsulated nucleic acids. Additionally, the intermediate mixture may also contain some portion of nucleic acids which are attached to the surface of the lipid particles (liposomes or lipid vesicles) due to the ionic attraction of the negatively-charged nucleic acids and positively-charged lipids on the lipid particle surface (the amino lipids or other lipid making up the protonatable first lipid component are positively charged in a buffer having a pH of less than the pKa of the protonatable group on the lipid). In one group of preferred embodiments, the mixture of lipids is an alcohol solution of lipids and the volumes of each of the solutions is adjusted so that upon combination, the resulting alcohol content is from about 20% by volume to about 45% by volume. The method of combining the mixtures can include any of a variety of processes, often depending upon the scale of formulation produced. For example, when the total volume is about 10-20 mL or less, the solutions can be combined in a test tube and stirred together using a vortex mixer. Large-scale processes can be carried out in suitable production scale glassware.
Optionally, the lipid-encapsulated therapeutic agent (e.g., nucleic acid) complexes which are produced by combining the lipid mixture and the buffered aqueous solution of therapeutic agents (nucleic acids) can be sized to achieve a desired size range and relatively narrow distribution of lipid particle sizes. Preferably, the compositions provided herein will be sized to a mean diameter of from about 70 to about 200 nm, more preferably about 90 to about 130 nm. Several techniques are available for sizing liposomes to a desired size. One sizing method is described in U.S. Pat. No. 4,737,323, incorporated herein by reference. Sonicating a liposome suspension either by bath or probe sonication produces a progressive size reduction down to small unilamellar vesicles (SUVs) less than about 0.05 microns in size. Homogenization is another method which relies on shearing energy to fragment large liposomes into smaller ones. In a typical homogenization procedure, multilamellar vesicles are recirculated through a standard emulsion homogenizer until selected liposome sizes, typically between about 0.1 and 0.5 microns, are observed. In both methods, the particle size distribution can be monitored by conventional laser-beam particle size determination. For certain methods herein, extrusion is used to obtain a uniform vesicle size.
Extrusion of liposome compositions through a small-pore polycarbonate membrane or an asymmetric ceramic membrane results in a relatively well-defined size distribution. Typically, the suspension is cycled through the membrane one or more times until the desired liposome complex size distribution is achieved. The liposomes may be extruded through successively smaller-pore membranes, to achieve a gradual reduction in liposome size. In some instances, the lipid-nucleic acid compositions which are formed can be used without any sizing.
In particular embodiments, methods of the present invention further comprise a step of neutralizing at least some of the surface charges on the lipid portions of the lipid-nucleic acid compositions. By at least partially neutralizing the surface charges, unencapsulated nucleic acid is freed from the lipid particle surface and can be removed from the composition using conventional techniques. Preferably, unencapsulated and surface adsorbed nucleic acids are removed from the resulting compositions through exchange of buffer solutions. For example, replacement of a citrate buffer (pH about 4.0, used for forming the compositions) with a HEPES- buffered saline (HBS pH about 7.5) solution, results in the neutralization of liposome surface and nucleic acid release from the surface. The released nucleic acid can then be removed via chromatography using standard methods, and then switched into a buffer with a pH above the pKa of the lipid used.
Optionally the lipid vesicles (i.e., lipid particles) can be formed by hydration in an aqueous buffer and sized using any of the methods described above prior to addition of the nucleic acid. As described above, the aqueous buffer should be of a pH below the pKa of the amino lipid. A solution of the nucleic acids can then be added to these sized, preformed vesicles. To allow encapsulation of nucleic acids into such "pre-formed" vesicles the mixture should contain an alcohol, such as ethanol. In the case of ethanol, it should be present at a concentration of about 20% (w/w) to about 45% (w/w). In addition, it may be necessary to warm the mixture of pre-formed vesicles and nucleic acid in the aqueous buffer-ethanol mixture to a temperature of about 25° C to about 50° C depending on the composition of the lipid vesicles and the nature of the nucleic acid. It will be apparent to one of ordinary skill in the art that optimization of the encapsulation process to achieve a desired level of nucleic acid in the lipid vesicles will require manipulation of variable such as ethanol concentration and temperature. Examples of suitable conditions for nucleic acid encapsulation are provided in the Examples. Once the nucleic acids are encapsulated within the prefromed vesicles, the external pH can be increased to at least partially neutralize the surface charge. Unencapsulated and surface adsorbed nucleic acids can then be removed as described above.
Method of Use
The lipid particles of the invention may be used to deliver a therapeutic agent to a cell, in vitro or in vivo. In particular embodiments, the therapeutic agent is a nucleic acid, which is delivered to a cell using a nucleic acid- lipid particles of the invention. While the following description o various methodsof using the lipid particles and related pharmaceutical compositions of the invention are exemplified by description related to nucleic acid-lipid particles, it is understood that these methods and compositions may be readily adapted for the delivery of any therapeutic agent for the treatment of any disease or disorder that would benefit from such treatment.
In certain embodiments, the invention provides methods for introducing a nucleic acid into a cell. Preferred nucleic acids for introduction into cells are siRNA, immune-stimulating oligonucleotides, plasmids, antisense and ribozymes. These methods may be carried out by contacting the particles or compositions of the invention with the cells for a period of time sufficient for intracellular delivery to occur.
The compositions of the invention can be adsorbed to almost any cell type, e.g., tumor cell lines, including but not limited to HeLa, HCTl 16, A375, MCF7, B16F10, Hep3b, HUH7, HepG2, Skov3, U87, and PC3 cell lines. Once adsorbed, the nucleic acid-lipid particles can either be endocytosed by a portion of the cells, exchange lipids with cell membranes, or fuse with the cells. Transfer or incorporation of the nucleic acid portion of the complex can take place via any one of these pathways. Without intending to be limited with respect to the scope of the invention, it is believed that in the case of particles taken up into the cell by endocytosis the particles then interact with the endosomal membrane, resulting in destabilization of the endosomal membrane, possibly by the formation of non-bilayer phases, resulting in introduction of the encapsulated nucleic acid into the cell cytoplasm. Similarly in the case of direct fusion of the particles with the cell plasma membrane, when fusion takes place, the liposome membrane is integrated into the cell membrane and the contents of the liposome combine with the intracellular fluid. Contact between the cells and the lipid-nucleic acid compositions, when carried out in vitro, will take place in a biologically compatible medium. The concentration of compositions can vary widely depending on the particular application, but is generally between about 1 μmol and about 10 mmol. In certain embodiments, treatment of the cells with the lipid- nucleic acid compositions will generally be carried out at physiological temperatures (about 37°C) for periods of time from about 1 to 24 hours, preferably from about 2 to 8 hours. For in vitro applications, the delivery of nucleic acids can be to any cell grown in culture, whether of plant or animal origin, vertebrate or invertebrate, and of any tissue or type. In preferred embodiments, the cells will be animal cells, more preferably mammalian cells, and most preferably human cells.
In one group of embodiments, a lipid-nucleic acid particle suspension is added to 60-80% confluent plated cells having a cell density of from about 103 to about 10 cells/mL, more preferably about 2 x 104 cells/mL. The concentration of the suspension added to the cells is preferably of from about 0.01 to 20 μg/mL, more preferably about 1 μg/mL.
Typical applications include using well known procedures to provide intracellular delivery of siRNA to knock down or silence specific cellular targets. Alternatively applications include delivery of DNA or mRNA sequences that code for therapeutically useful polypeptides. In this manner, therapy is provided for genetic diseases by supplying deficient or absent gene products (i.e., for Duchenne's dystrophy, see Kunkel, et al, Brit. Med. Bull. 45(3):630-643 (1989), and for cystic fibrosis, see Goodfellow, Nature 341:102-103 (1989)). Other uses for the compositions of the invention include introduction of antisense oligonucleotides in cells (see, Bennett, et al, MoI. Pharm. 41:1023-1033 (1992)).
Alternatively, the compositions of the invention can also be used for deliver of nucleic acids to cells in vivo, using methods which are known to those of skill in the art. With respect to application of the invention for delivery of DNA or mRNA sequences, Zhu, et al., Science 261:209-211 (1993), incorporated herein by reference, describes the intravenous delivery of cytomegalovirus (CMV)-chloramphenicol acetyltransferase (CAT) expression plasmid using DOTMA-DOPE complexes. Hyde, et al., Nature 362:250-256 (1993), incorporated herein by reference, describes the delivery of the cystic fibrosis transmembrane conductance regulator (CFTR) gene to epithelia of the airway and to alveoli in the lung of mice, using liposomes. Brigham, et al., Am. J. Med. ScL 298:278-281 (1989), incorporated herein by reference, describes the in vivo transfection of lungs of mice with a functioning prokaryotic gene encoding the intracellular enzyme, chloramphenicol acety transferase (CAT). Thus, the compositions of the invention can be used in the treatment of infectious diseases. Therefore, in another aspect, the formulations of the invention can be used to silence or modulate a target gene such as but not limited to FVII, Eg5, PCSK9, TPX2, apoB, SAA, TTR, RSV, PDGF beta gene, Erb-B gene, Src gene, CRK gene, GRB2 gene, RAS gene, MEKK gene, JNK gene, RAF gene, Erkl/2 gene, PCNA(p21) gene, MYB gene, JUN gene, FOS gene, BCL-2 gene, Cyclin D gene, VEGF gene, EGFR gene, Cyclin A gene, Cyclin E gene, WNT-I gene, beta-catenin gene, c-MET gene, PKC gene, NFKB gene, STAT3 gene, survivin gene, Her2/Neu gene, topoisomerase I gene, topoisomerase II alpha gene, p73 gene, p21(WAFl/CIPl) gene, p27(KIPl) gene, PPMlD gene, RAS gene, caveolin I gene, MIB I gene, MTAI gene, M68 gene, tumor suppressor genes, p53 tumor suppressor gene, p53 family member DN- p63, pRb tumor suppressor gene, APCl tumor suppressor gene, BRCAl tumor suppressor gene, PTEN tumor suppressor gene, mLL fusion gene, BCR/ ABL fusion gene, TEL/AML1 fusion gene, EWS/FLI1 fusion gene, TLS/FUS1 fusion gene, PAX3/FKHR fusion gene, AML1/ET0 fusion gene, alpha v-integrin gene, FIt-I receptor gene, tubulin gene, Human Papilloma Virus gene, a gene required for Human Papilloma Virus replication, Human Immunodeficiency Virus gene, a gene required for Human Immunodeficiency Virus replication, Hepatitis A Virus gene, a gene required for Hepatitis A Virus replication, Hepatitis B Virus gene, a gene required for Hepatitis B Virus replication, Hepatitis C Virus gene, a gene required for Hepatitis C Virus replication, Hepatitis D Virus gene, a gene required for Hepatitis D Virus replication, Hepatitis E Virus gene, a gene required for Hepatitis E Virus replication, Hepatitis F Virus gene, a gene required for Hepatitis F Virus replication, Hepatitis G Virus gene, a gene required for Hepatitis G Virus replication, Hepatitis H Virus gene, a gene required for Hepatitis H Virus replication, Respiratory Syncytial Virus gene, a gene that is required for Respiratory Syncytial Virus replication, Herpes Simplex Virus gene, a gene that is required for Herpes Simplex Virus replication, herpes Cytomegalovirus gene, a gene that is required for herpes Cytomegalovirus replication, herpes Epstein Barr Virus gene, a gene that is required for herpes Epstein Barr Virus replication, Kaposi's Sarcoma-associated Herpes Virus gene, a gene that is required for Kaposi's Sarcoma-associated Herpes Virus replication, JC Virus gene, human gene that is required for JC Virus replication, myxovirus gene, a gene that is required for myxovirus gene replication, rhinovirus gene, a gene that is required for rhinovirus replication, coronavirus gene, a gene that is required for coronavirus replication, West Nile Virus gene, a gene that is required for West Nile Virus replication, St. Louis Encephalitis gene, a gene that is required for St. Louis Encephalitis replication, Tick- borne encephalitis virus gene, a gene that is required for Tick-borne encephalitis virus replication, Murray Valley encephalitis virus gene, a gene that is required for Murray Valley encephalitis virus replication, dengue virus gene, a gene that is required for dengue virus gene replication, Simian Virus 40 gene, a gene that is required for Simian Virus 40 replication, Human T Cell Lymphotropic Virus gene, a gene that is required for Human T Cell Lymphotropic Virus replication, Moloney-Murine Leukemia Virus gene, a gene that is required for Moloney-Murine Leukemia Virus replication, encephalomyocarditis virus gene, a gene that is required for encephalomyocarditis virus replication, measles virus gene, a gene that is required for measles virus replication, Vericella zoster virus gene, a gene that is required for Vericella zoster virus replication, adenovirus gene, a gene that is required for adenovirus replication, yellow fever virus gene, a gene that is required for yellow fever virus replication, poliovirus gene, a gene that is required for poliovirus replication, poxvirus gene, a gene that is required for poxvirus replication, Plasmodium gene, a gene that is required for Plasmodium gene replication, Mycobacterium ulcerans gene, a gene that is required for Mycobacterium ulcerans replication, Mycobacterium tuberculosis gene, a gene that is required for Mycobacterium tuberculosis replication, Mycobacterium leprae gene, a gene that is required for Mycobacterium leprae replication, Staphylococcus aureus gene, a gene that is required for Staphylococcus aureus replication, Streptococcus pneumoniae gene, a gene that is required for Streptococcus pneumoniae replication, Streptococcus pyogenes gene, a gene that is required for Streptococcus pyogenes replication, Chlamydia pneumoniae gene, a gene that is required for Chlamydia pneumoniae replication, Mycoplasma pneumoniae gene, a gene that is required for Mycoplasma pneumoniae replication, an integrin gene, a selectin gene, complement system gene, chemokine gene, chemokine receptor gene, GCSF gene, Grol gene, Gro2 gene, Gro3 gene, PF4 gene, MIG gene, Pro-Platelet Basic Protein gene, MIP-II gene, MIP-IJ gene, RANTES gene, MCP-I gene, MCP-2 gene, MCP-3 gene, CMBKRl gene, CMB KR2 gene, CMB KR3 gene, CMBKR5v, AIF-I gene, 1-309 gene, a gene to a component of an ion channel, a gene to a neurotransmitter receptor, a gene to a neurotransmitter ligand, amyloid-family gene, presenilin gene, HD gene, DRPLA gene, SCAl gene, SCA2 gene, MJDl gene, CACNL1A4 gene, SCA7 gene, SCA8 gene, allele gene found in LOH cells, or one allele gene of a polymorphic gene.
For in vivo administration, the pharmaceutical compositions are preferably administered parenterally, i.e., intraarticular^, intravenously, intraperitoneally, subcutaneously, or intramuscularly. In particular embodiments, the pharmaceutical compositions are administered intravenously or intraperitoneally by a bolus injection. For one example, see Stadler, et al, U.S. Patent No. 5,286,634, which is incorporated herein by reference. Intracellular nucleic acid delivery has also been discussed in Straubringer, et al, METHODS IN ENZYMOLOGY, Academic Press, New York. 101:512-527 (1983); Mannino, et al, Biotechniques 6:682-690 (1988); Nicolau, et al, Cut. Rev. Ther. Drug Carrier Syst. 6:239-271 (1989), and Behr, Ace. Chem. Res. 26:274-278 (1993). Still other methods of administering lipid-based therapeutics are described in, for example, Rahman et al, U.S. Patent No. 3,993,754; Sears, U.S. Patent No. 4,145,410; Papahadjopoulos et al, U.S. Patent No. 4,235,871; Schneider, U.S. Patent No. 4,224,179; Lenk et al, U.S. Patent No. 4,522,803; and Fountain et al, U.S. Patent No. 4,588,578.
In other methods, the pharmaceutical preparations may be contacted with the target tissue by direct application of the preparation to the tissue. The application may be made by topical, "open" or "closed" procedures. By "topical," it is meant the direct application of the pharmaceutical preparation to a tissue exposed to the environment, such as the skin, oropharynx, external auditory canal, and the like. "Open" procedures are those procedures which include incising the skin of a patient and directly visualizing the underlying tissue to which the pharmaceutical preparations are applied. This is generally accomplished by a surgical procedure, such as a thoracotomy to access the lungs, abdominal laparotomy to access abdominal viscera, or other direct surgical approach to the target tissue. "Closed" procedures are invasive procedures in which the internal target tissues are not directly visualized, but accessed via inserting instruments through small wounds in the skin. For example, the preparations may be administered to the peritoneum by needle lavage. Likewise, the pharmaceutical preparations may be administered to the meninges or spinal cord by infusion during a lumbar puncture followed by appropriate positioning of the patient as commonly practiced for spinal anesthesia or metrazamide imaging of the spinal cord. Alternatively, the preparations may be administered through endoscopic devices.
The lipid-nucleic acid compositions can also be administered in an aerosol inhaled into the lungs (see, Brigham, et al, Am. J. ScL 298(4):278-281 (1989)) or by direct injection at the site of disease (Culver, Human Gene Therapy, Mary Ann Liebert, Inc., Publishers, New York, pp.70-71 (1994)).
The methods of the invention may be practiced in a variety of hosts. Preferred hosts include mammalian species, such as humans, non-human primates, dogs, cats, cattle, horses, sheep, and the like.
Dosages for the lipid-therapeutic agent particles of the invention will depend on the ratio of therapeutic agent to lipid and the administrating physician's opinion based on age, weight, and condition of the patient.
In one embodiment, the invention provides a method of modulating the expression of a target polynucleotide or polypeptide. These methods generally comprise contacting a cell with a lipid particle of the invention that is associated with a nucleic acid capable of modulating the expression of a target polynucleotide or polypeptide. As used herein, the term "modulating" refers to altering the expression of a target polynucleotide or polypeptide. In different embodiments, modulating can mean increasing or enhancing, or it can mean decreasing or reducing. Methods of measuring the level of expression of a target polynucleotide or polypeptide are known and available in the arts and include, e.g., methods employing reverse transcription- polymerase chain reaction (RT-PCR) and immunohistochemical techniques. In particular embodiments, the level of expression of a target polynucleotide or polypeptide is increased or reduced by at least 10%, 20%, 30%, 40%, 50%, or greater than 50% as compared to an appropriate control value. For example, if increased expression of a polypeptide desired, the nucleic acid may be an expression vector that includes a polynucleotide that encodes the desired polypeptide. On the other hand, if reduced expression of a polynucleotide or polypeptide is desired, then the nucleic acid may be, e.g., an antisense oligonucleotide, siRNA, or microRNA that comprises a polynucleotide sequence that specifically hybridizes to a polnucleotide that encodes the target polypeptide, thereby disrupting expression of the target polynucleotide or polypeptide. Alternatively, the nucleic acid may be a plasmid that expresses such an antisense oligonucletoide, siRNA, or microRNA.
In one particular embodiment, the invention provides a method of modulating the expression of a polypeptide by a cell, comprising providing to a cell a lipid particle that consists of or consists essentially of a cationic lipid of formula I, a neutral lipid, a sterol, a PEG of PEG-modified lipid, e.g., in a molar ratio of about 20-65% of cationic lipid of formula I, 3-25% of the neutral lipid, 15-55% of the sterol, and 0.5- 15% of the PEG or PEG-modified lipid, wherein the lipid particle is associated with a nucleic acid capable of modulating the expression of the polypeptide. In particular embodiments, the molar lipid ratio is approximately 60/7.5/31/1.5, 57.5/7.5/31.5/3.5, 57.2/7.1/34.3/1.4, 52/13/30/5, 50/10/38.5/1.5, 50/10/35/5, 40/10/40/10, 40/15/40/5, or 35/15/40/10 (mol% cationic lipid of formula I/DSPC or DPPC/Chol/PEG-DMG or PEG-cDMA). In some embodiments, the lipid particle also includes a targeting moiety such as a targeting lipid described herein (e.g., the lipid particle consists essentially of a cationic lipid of formula I, a neutral lipid, a sterol, a PEG or PEG- modified lipid and a targeting moiety). In another group of embodiments, the neutral lipid in these compositions is replaced with DPPC, POPC, DOPE or SM. In another group of embodiments, the PEG or PEG-modified lipid is replaced with PEG-DSG, PEG-DMG or PEG-DPG.
In particular embodiments, the therapeutic agent is selected from an siRNA, a microRNA, an antisense oligonucleotide, and a plasmid capable of expressing an siRNA, a microRNA, or an antisense oligonucleotide, and wherein the siRNA, microRNA, or antisense RNA comprises a polynucleotide that specifically binds to a polynucleotide that encodes the polypeptide, or a complement thereof, such that the expression of the polypeptide is reduced.
In other embodiments, the nucleic acid is a plasmid that encodes the polypeptide or a functional variant or fragment thereof, such that expression of the polypeptide or the functional variant or fragment thereof is increased.
In related embodiments, the invention provides reagents useful for transfection of cells in culture. For example, the lipid formulations described herein can be used to deliver nucleic acids to cultured cells (e.g., adherent cells, suspension cells, etc.).
In related embodiments, the invention provides a method of treating a disease or disorder characterized by overexpression of a polypeptide in a subject, comprising providing to the subject a pharmaceutical composition of the invention, wherein the therapeutic agent is selected from an siRNA, a microRNA, an antisense oligonucleotide, and a plasmid capable of expressing an siRNA, a microRNA, or an antisense oligonucleotide, and wherein the siRNA, microRNA, or antisense RNA comprises a polynucleotide that specifically binds to a polynucleotide that encodes the polypeptide, or a complement thereof.
In one embodiment, the pharmaceutical composition comprises a lipid particle that consists of or consists essentially of a cationic lipid of formula I, DSPC, Choi and PEG-DMG, PEG-C-DOMG or PEG-cDMA, e.g., in a molar ratio of about 20-65% of cationic lipid of formula I, 3-25% of the neutral lipid, 15-55% of the sterol, and 0.5- 15% of the PEG or PEG-modified lipid PEG-DMG, PEG-C-DOMG or PEG-cDMA, wherein the lipid particle is assocated with the therapeutic nucleic acid. In particular embodiments, the molar lipid ratio is approximately 60/7.5/31/1.5, 57.5/7.5/31.5/3.5, 57.2/7.1/34.3/1.4, 52/13/30/5, 50/10/38.5/1.5, 50/10/35/5, 40/10/40/10, 35/15/40/10 or 40/15/40/5 (mol% cationic lipid of formula I/DSPC/Chol/PEG-DMG or PEG- cDMA). In some embodiments, the lipid particle also includes a targeting lipid described herein (e.g., the lipid particle consists essentially of a cationic lipid of formula I, a neutral lipid, a sterol, a PEG or PEG-modified lipid and a targeting moiety (e.g., GalNAc3-PEG-DSG)). In some embodiments, when the targeting lipid includes a PEG moiety and is added to an existing liposomal formulation, the amount of PEG-modified lipid is reduced such that the total amount of PEG-moidfied lipid (i.e., PEG-modified lipid, for example PEG-DMG, and the PEG-containing targeting lipid) is kept at a constant mol percentage (e.g., 0.3%, 1.5 mol%, or 3.5 mol%). In another group of embodiments, the neutral lipid in these compositions is replaced with DPPC, POPC, DOPE or SM. In another group of embodiments, the PEG or PEG-modified lipid is replaced with PEG-DSG or PEG-DPG.In another related embodiment, the invention includes a method of treating a disease or disorder characterized by underexpression of a polypeptide in a subject, comprising providing to the subject a pharmaceutical composition of the invention, wherein the therapeutic agent is a plasmid that encodes the polypeptide or a functional variant or fragment thereof.
The invention further provides a method of inducing an immune response in a subject, comprising providing to the subject the pharmaceutical composition of the invention, wherein the therapeutic agent is an immunostimulatory oligonucleotide. In certain embodiments, the immune response is a humoral or mucosal immune response consists of or consists essentially of a cationic lipid of formula I, DSPC, Choi and PEG-DMG, PEG-C-DOMG or PEG-cDMA, e.g., in a molar ratio of about 20-65% of cationic lipid of formula I, 3-25% of the neutral lipid, 15-55% of the sterol, and 0.5- 15% of the PEG or PEG-modified lipid PEG-DMG, PEG-C-DOMG or PEG-cDMA, wherein the lipid particle is assocated with the therapeutic nucleic acid. In particular embodiments, the molar lipid ratio is approximately 60/7.5/31/1.5, 57.5/7.5/31.5/3.5, 57.2/7.1/34.3/1.4, 52/13/30/5, 50/10/38.5/1.5, 50/10/35/5, 40/10/40/10, 35/15/40/10 or 40/15/40/5 (mol% cationic lipid of formula I/DSPC/Chol/PEG-DMG or PEG- cDMA). In some embodiments, the lipid particle also includes a targeting lipid described herein (e.g., the lipid particle consists essentially of a cationic lipid of formula I, a neutral lipid, a sterol, a PEG or PEG-modified lipid and a targeting moiety). In some embodiments, when the targeting lipid includes a PEG moiety and is added to an existing liposomal formulation, the amount of PEG-modified lipid is reduced such that the total amount of PEG-moidfied lipid (i.e., PEG-modified lipid, for example PEG-DMG, and the PEG-containing targeting lipid) is kept at a constant mol percentage (e.g., 0.3%, 1.5 mol%, or 3.5 mol%). In another group of embodiments, the neutral lipid in these compositions is replaced with DPPC, POPC, DOPE or SM. In another group of embodiments, the PEG or PEG-modified lipid is replaced with PEG-DSG or PEG-DPG.In further embodiments, the pharmaceutical composition is provided to the subject in combination with a vaccine or antigen. Thus, the invention itself provides vaccines comprising a lipid particle of the invention, which comprises an immunostimulatory oligonucleotide, and is also associated with an antigen to which an immune response is desired. In particular embodiments, the antigen is a tumor antigen or is associated with an infective agent, such as, e.g., a virus, bacteria, or parasiste.
A variety of tumor antigens, infections agent antigens, and antigens associated with other disease are well known in the art and examples of these are described in references cited herein. Examples of antigens suitable for use in the invention include, but are not limited to, polypeptide antigens and DNA antigens. Specific examples of antigens are Hepatitis A, Hepatitis B, small pox, polio, anthrax, influenza, typhus, tetanus, measles, rotavirus, diphtheria, pertussis, tuberculosis, and rubella antigens. In one embodiment, the antigen is a Hepatitis B recombinant antigen. In other aspects, the antigen is a Hepatitis A recombinant antigen. In another aspect, the antigen is a tumor antigen. Examples of such tumor-associated antigens are MUC-I, EBV antigen and antigens associated with Burkitt's lymphoma. In a further aspect, the antigen is a tyrosinase-related protein tumor antigen recombinant antigen. Those of skill in the art will know of other antigens suitable for use in the invention.
Tumor-associated antigens suitable for use in the subject invention include both mutated and non-mutated molecules that may be indicative of single tumor type, shared among several types of tumors, and/or exclusively expressed or overexpressed in tumor cells in comparison with normal cells. In addition to proteins and glycoproteins, tumor-specific patterns of expression of carbohydrates, gangliosides, glycolipids and mucins have also been documented. Exemplary tumor-associated antigens for use in the subject cancer vaccines include protein products of oncogenes, tumor suppressor genes and other genes with mutations or rearrangements unique to tumor cells, reactivated embryonic gene products, oncofetal antigens, tissue-specific (but not tumor-specific) differentiation antigens, growth factor receptors, cell surface carbohydrate residues, foreign viral proteins and a number of other self proteins. Specific embodiments of tumor-associated antigens include, e.g., mutated antigens such as the protein products of the Ras p21 protooncogenes, tumor suppressor p53 and BCR-abl oncogenes, as well as CDK4, MUMl, Caspase 8, and Beta catenin; overexpressed antigens such as galectin 4, galectin 9, carbonic anhydrase, Aldolase A, PRAME, Her2/neu, ErbB-2 and KSA, oncofetal antigens such as alpha fetoprotein (AFP), human chorionic gonadotropin (hCG); self antigens such as carcinoembryonic antigen (CEA) and melanocyte differentiation antigens such as Mart 1/Melan A, gplOO, gp75, Tyrosinase, TRPl and TRP2; prostate associated antigens such as PSA, PAP, PSMA, PSM-Pl and PSM- P2; reactivated embryonic gene products such as MAGE 1, MAGE 3, MAGE 4, GAGE 1, GAGE 2, BAGE, RAGE, and other cancer testis antigens such as NY-ESOl, SSX2 and SCPl; mucins such as Muc-1 and Muc-2; gangliosides such as GM2, GD2 and GD3, neutral glycolipids and glycoproteins such as Lewis (y) and globo-H; and glycoproteins such as Tn, Thompson-Freidenreich antigen (TF) and sTn. Also included as tumor- associated antigens herein are whole cell and tumor cell Iy sates as well as immunogenic portions thereof, as well as immunoglobulin idiotypes expressed on monoclonal proliferations of B lymphocytes for use against B cell lymphomas.
Pathogens include, but are not limited to, infectious agents, e.g., viruses, that infect mammals, and more particularly humans. Examples of infectious virus include, but are not limited to: Retroviridae {e.g., human immunodeficiency viruses, such as HIV-I (also referred to as HTLV-III, LAV or HTLV-III/LAV, or HIV-III; and other isolates, such as HIV-LP; Picornaviridae {e.g., polio viruses, hepatitis A virus; enteroviruses, human Coxsackie viruses, rhinoviruses, echoviruses); Calciviridae {e.g., strains that cause gastroenteritis); Togaviridae {e.g., equine encephalitis viruses, rubella viruses); Flaviridae {e.g., dengue viruses, encephalitis viruses, yellow fever viruses); Coronoviridae {e.g., coronaviruses); Rhabdoviradae {e.g., vesicular stomatitis viruses, rabies viruses); Corona viridae {e.g., coronaviruses); Rhabdoviridae {e.g., vesicular stomatitis viruses, rabies viruses); Filoviridae {e.g., ebola viruses); Paramyxoviridae {e.g., parainfluenza viruses, mumps virus, measles virus, respiratory syncytial virus); Orthomyxoviridae (e.g., influenza viruses); Bungaviridae {e.g., Hantaan viruses, bunga viruses, phleboviruses and Nairo viruses); Arena viridae (hemorrhagic fever viruses); Reoviridae (e.g., reoviruses, orbiviurses and rotaviruses); Birnaviridae; Hepadnaviridae (Hepatitis B virus); Parvovirida (parvoviruses); Papovaviridae (papilloma viruses, polyoma viruses); Adenoviridae (most adenoviruses); Herpesviridae herpes simplex virus (HSV) 1 and 2, varicella zoster virus, cytomegalovirus (CMV), herpes virus; Poxviridae (variola viruses, vaccinia viruses, pox viruses); and Iridoviridae (e.g., African swine fever virus); and unclassified viruses (e.g., the etiological agents of Spongiform encephalopathies, the agent of delta hepatitis (thought to be a defective satellite of hepatitis B virus), the agents of non-A, non-B hepatitis (class l=internally transmitted; class 2=parenterally transmitted (i.e., Hepatitis C); Norwalk and related viruses, and astroviruses).
Also, gram negative and gram positive bacteria serve as antigens in vertebrate animals. Such gram positive bacteria include, but are not limited to Pasteurella species, Staphylococci species, and Streptococcus species. Gram negative bacteria include, but are not limited to, Escherichia coli, Pseudomonas species, and Salmonella species. Specific examples of infectious bacteria include but are not limited to: Helicobacterpyloris, Borelia burgdorferi, Legionella pneumophilia, Mycobacteria sps (e.g., M. tuberculosis, M. avium, M. intracellulare, M. kansaii, M. gordonae), Staphylococcus aureus, Neisseria gonorrhoeae, Neisseria meningitidis, Listeria monocytogenes, Streptococcus pyogenes (Group A Streptococcus), Streptococcus agalactiae (Group B Streptococcus), Streptococcus (viridans group), Streptococcusfaecalis, Streptococcus bovis, Streptococcus (anaerobic sps.), Streptococcus pneumoniae, pathogenic Campylobacter sp., Enterococcus sp., Haemophilus infuenzae, Bacillus antracis, corynebacterium diphtheriae, corynebacterium sp., Erysipelothrix rhusiopathiae, Clostridium perfringers, Clostridium tetani, Enterobacter aerogenes, Klebsiella pneumoniae, Pasturella multocida, Bacteroides sp., Fusobacterium nucleatum, Streptobacillus moniliformis, Treponema pallidium, Treponema pertenue, Leptospira, Rickettsia, and Actinomyces israelii.
Additional examples of pathogens include, but are not limited to, infectious fungi that infect mammals, and more particularly humans. Examples of infectious fingi include, but are not limited to: Cryptococcus neoformans, Histoplasma capsulatum, Coccidioides immitis, Blastomyces dermatitidis, Chlamydia trachomatis, Candida albicans. Examples of infectious parasites include Plasmodium such as Plasmodium falciparum, Plasmodium malariae, Plasmodium ovale, and Plasmodium vivax. Other infectious organisms (i.e., protists) include Toxoplasma gondii.
Pharmaceutical compositions
In one embodiment, the invention provides pharmaceutical compositions comprising a nucleic acid agent identified by the liver screening model described herein. The composition includes the agent, e.g., a dsRNA, and a pharmaceutically acceptable carrier. The pharmaceutical composition is useful for treating a disease or disorder associated with the expression or activity of the gene. Such pharmaceutical compositions are formulated based on the mode of delivery. One example is compositions that are formulated for systemic administration via parenteral delivery.Pharmaceutical compositions including the identified agent are administered in dosages sufficient to inhibit expression of the target gene, e.g., the Factor VII gene. In general, a suitable dose of dsRNA agent will be in the range of 0.01 to 5.0 milligrams per kilogram body weight of the recipient per day, generally in the range of 1 microgram to 1 mg per kilogram body weight per day. The pharmaceutical composition may be administered once daily, or the dsRNA may be administered as two, three, or more sub-doses at appropriate intervals throughout the day or even using continuous infusion or delivery through a controlled release formulation. In that case, the dsRNA contained in each sub-dose must be correspondingly smaller in order to achieve the total daily dosage. The dosage unit can also be compounded for delivery over several days, e.g., using a conventional sustained release formulation which provides sustained release of the dsRNA over a several day period. Sustained release formulations are well known in the art and are particularly useful for vaginal delivery of agents, such as could be used with the agents of the invention. In this embodiment, the dosage unit contains a corresponding multiple of the daily dose.
The skilled artisan will appreciate that certain factors may influence the dosage and timing required to effectively treat a subject, including but not limited to the severity of the disease or disorder, previous treatments, the general health and/or age of the subject, and other diseases present. Moreover, treatment of a subject with a therapeutically effective amount of a composition can include a single treatment or a series of treatments. Estimates of effective dosages and in vivo half- lives for the individual dsRNAs encompassed by the invention can be made using conventional methodologies or on the basis of in vivo testing using an appropriate animal model, as described elsewhere herein.
In particular embodiments, pharmaceutical compositions comprising the lipid- nucleic acid particles of the invention are prepared according to standard techniques and further comprise a pharmaceutically acceptable carrier. Generally, normal saline will be employed as the pharmaceutically acceptable carrier. Other suitable carriers include, e.g., water, buffered water, 0.9% saline, 0.3% glycine, and the like, including glycoproteins for enhanced stability, such as albumin, lipoprotein, globulin, etc. In compositions comprising saline or other salt containing carriers, the carrier is preferably added following lipid particle formation. Thus, after the lipid-nucleic acid compositions are formed, the compositions can be diluted into pharmaceutically acceptable carriers such as normal saline.
The resulting pharmaceutical preparations may be sterilized by conventional, well known sterilization techniques. The aqueous solutions can then be packaged for use or filtered under aseptic conditions and lyophilized, the lyophilized preparation being combined with a sterile aqueous solution prior to administration. The compositions may contain pharmaceutically acceptable auxiliary substances as required to approximate physiological conditions, such as pH adjusting and buffering agents, tonicity adjusting agents and the like, for example, sodium acetate, sodium lactate, sodium chloride, potassium chloride, calcium chloride, etc. Additionally, the lipidic suspension may include lipid-protective agents which protect lipids against free-radical and lipid-peroxidative damages on storage. Lipophilic free -radical quenchers, such as α-tocopherol and water-soluble iron-specific chelators, such as ferrioxamine, are suitable.
The concentration of lipid particle or lipid-nucleic acid particle in the pharmaceutical formulations can vary widely, i.e., from less than about 0.01%, usually at or at least about 0.05-5% to as much as 10 to 30% by weight and will be selected primarily by fluid volumes, viscosities, etc., in accordance with the particular mode of administration selected. For example, the concentration may be increased to lower the fluid load associated with treatment. This may be particularly desirable in patients having atherosclerosis-associated congestive heart failure or severe hypertension. Alternatively, complexes composed of irritating lipids may be diluted to low concentrations to lessen inflammation at the site of administration. In one group of embodiments, the nucleic acid will have an attached label and will be used for diagnosis (by indicating the presence of complementary nucleic acid). In this instance, the amount of complexes administered will depend upon the particular label used, the disease state being diagnosed and the judgement of the clinician but will generally be between about 0.01 and about 50 mg per kilogram of body weight (e.g., of the nucleic acid agent), preferably between about 0.1 and about 5 mg/kg of body weight. In some embodiments a complex administered includes from about 0.004 and about 50 mg per kilogram of body weight of neucleic acid agent (e.g., from about 0.006 mg/kg to about 0.2 mg/kg).
As noted above, the lipid- therapeutic agent (e.g., nucleic acid) particels of the invention may include polyethylene glycol (PEG)-modified phospholipids, PEG- ceramide, or ganglioside GMI -modified lipids or other lipids effective to prevent or limit aggregation. Addition of such components does not merely prevent complex aggregation. Rather, it may also provide a means for increasing circulation lifetime and increasing the delivery of the lipid-nucleic acid composition to the target tissues.
The invention also provides lipid-therapeutic agent compositions in kit form. The kit will typically be comprised of a container that is compartmentalized for holding the various elements of the kit. The kit will contain the particles or pharmaceutical compositions of the invention, preferably in dehydrated or concentrated form, with instructions for their rehydration or dilution and administration. In certain embodiments, the particles comprise the active agent, while in other embodiments, they do not.
The pharmaceutical compositions containing an agent identified by the liver screening model may be administered in a number of ways depending upon whether local or systemic treatment is desired and upon the area to be treated. Administration may be topical, pulmonary, e.g., by inhalation or insufflation of powders or aerosols, including by nebulizer; intratracheal, intranasal, epidermal and transdermal), oral or parenteral. Admininstration may also be designed to result in preferential localization to particular tissues through local delivery, e.g. by direct intraarticular injection into joints, by rectal administration for direct delivery to the gut and intestines, by intravaginal administration for delivery to the cervix and vagina, by intravitreal administration for delivery to the eye. Parenteral administration includes intravenous, intraarterial, intraarticular, subcutaneous, intraperitoneal or intramuscular injection or infusion; or intracranial, e.g., intrathecal or intraventricular, administration.
Pharmaceutical compositions and formulations for topical administration may include transdermal patches, ointments, lotions, creams, gels, drops, suppositories, sprays, liquids and powders. Conventional pharmaceutical carriers, aqueous, powder or oily bases, thickeners and the like may be necessary or desirable. Coated condoms, gloves and the like may also be useful. Preferred topical formulations include those in which the dsRNAs of the invention are in admixture with a topical delivery component, such as a lipid, liposome, fatty acid, fatty acid ester, steroid, chelating agent or surfactant. Preferred lipids and liposomes include neutral (e.g. dioleoylphosphatidyl ethanolamine (DOPE), dimyristoylphosphatidyl choline (DMPC), distearolyphosphatidyl choline) negative (e.g. dimyristoylphosphatidyl glycerol, or DMPG) and cationic (e.g. dioleoyltetramethylaminopropyl DOTAP and dioleoylphosphatidyl ethanolamine DOTMA). DsRNAs of the invention may be encapsulated within liposomes or may form complexes thereto, in particular to cationic liposomes. Alternatively, dsRNAs may be complexed to lipids, in particular to cationic lipids. Preferred fatty acids and esters include but are not limited arachidonic acid, oleic acid, eicosanoic acid, lauric acid, caprylic acid, capric acid, myristic acid, palmitic acid, stearic acid, linoleic acid, linolenic acid, dicaprate, tricaprate, monoolein, dilaurin, glyceryl 1-monocaprate, l-dodecylazacycloheptan-2- one, an acylcarnitine, an acylcholine, or a Ci_io alkyl ester (e.g. isopropylmyristate IPM), monoglyceride, diglyceride or pharmaceutically acceptable salt thereof. Topical formulations are described in detail in U.S. patent application Ser. No. 09/315,298 filed on May 20, 1999 which is incorporated herein by reference in its entirety. Compositions and formulations for oral administration include powders or granules, microparticulates, nanoparticulates, suspensions or solutions in water or non-aqueous media, capsules, gel capsules, sachets, tablets or minitablets. Thickeners, flavoring agents, diluents, emulsifiers, dispersing aids or binders may be desirable. Preferred oral formulations are those in which dsRNAs of the invention are administered in conjunction with one or more penetration enhancers surfactants and chelators. Preferred surfactants include fatty acids and/or esters or salts thereof, bile acids and/or salts thereof. Preferred bile acids/salts include chenodeoxycholic acid (CDCA) and ursodeoxychenodeoxycholic acid (UDCA), cholic acid, dehydrocholic acid, deoxycholic acid, glucholic acid, glycholic acid, glycodeoxycholic acid, taurocholic acid, taurodeoxycholic acid, sodium tauro-24,25-dihydro-fusidate and sodium glycodihydrofusidate. Preferred fatty acids include arachidonic acid, undecanoic acid, oleic acid, lauric acid, caprylic acid, capric acid, myristic acid, palmitic acid, stearic acid, linoleic acid, linolenic acid, dicaprate, tricaprate, monoolein, dilaurin, glyceryl 1-monocaprate, l-dodecylazacycloheptan-2-one, an acylcarnitine, an acylcholine, or a monoglyceride, a diglyceride or a pharmaceutically acceptable salt thereof (e.g. sodium). Also preferred are combinations of penetration enhancers, for example, fatty acids/salts in combination with bile acids/salts. A particularly preferred combination is the sodium salt of lauric acid, capric acid and UDCA. Further penetration enhancers include polyoxyethylene-9-lauryl ether, polyoxyethylene-20-cetyl ether. DsRNAs of the invention may be delivered orally, in granular form including sprayed dried particles, or complexed to form micro or nanoparticles. DsRNA complexing agents include poly-amino acids; polyimines; polyacrylates; polyalkylacrylates, polyoxe thanes, poly alky Icy anoacrylates; cationized gelatins, albumins, starches, acrylates, polyethyleneglycols (PEG) and starches; poly alkylcy anoacrylates; DEAE-derivatized polyimines, pollulans, celluloses and starches. Particularly preferred complexing agents include chitosan, N- trimethylchitosan, poly-L-lysine, polyhistidine, polyornithine, poly spermines, protamine, polyvinylpyridine, polythiodiethylaminomethylethylene P(TDAE), polyaminostyrene (e.g. p-amino), poly(methylcyanoacrylate), poly(ethylcyanoacrylate) , poly(butylcy anoacrylate) , poly(isobutylcyanoacrylate) , poly(isohexylcynaoacrylate), DEAE-methacrylate, DEAE-hexylacrylate, DEAE- acrylamide, DEAE-albumin and DEAE-dextran, polymethylacrylate, polyhexylacrylate, poly(D,L-lactic acid), poly(DL-lactic-co-glycolic acid (PLGA), alginate, and polyethyleneglycol (PEG). Oral formulations for dsRNAs and their preparation are described in detail in U.S. application. Ser. No. 08/886,829 (filed JuI. 1, 1997), Ser. No. 09/108,673 (filed M. 1, 1998), Ser. No. 09/256,515 (filed Feb. 23, 1999), Ser. No. 09/082,624 (filed May 21, 1998) and Ser. No. 09/315,298 (filed May 20, 1999), each of which is incorporated herein by reference in their entirety.
Compositions and formulations for parenteral, intrathecal or intraventricular administration may include sterile aqueous solutions which may also contain buffers, diluents and other suitable additives such as, but not limited to, penetration enhancers, carrier compounds and other pharmaceutically acceptable carriers or excipients.
Pharmaceutical compositions include, but are not limited to, solutions, emulsions, and liposome-containing formulations. These compositions may be generated from a variety of components that include, but are not limited to, preformed liquids, self-emulsifying solids and self-emulsifying semisolids.
The pharmaceutical formulations, which may conveniently be presented in unit dosage form, may be prepared according to conventional techniques well known in the pharmaceutical industry. Such techniques include the step of bringing into association the active ingredients with the pharmaceutical carrier(s) or excipient(s). In general, the formulations are prepared by uniformly and intimately bringing into association the active ingredients with liquid carriers or finely divided solid carriers or both, and then, if necessary, shaping the product.
The compositions may be formulated into any of many possible dosage forms such as, but not limited to, tablets, capsules, gel capsules, liquid syrups, soft gels, suppositories, and enemas. The compositions of the invention may also be formulated as suspensions in aqueous, non-aqueous or mixed media. Aqueous suspensions may further contain substances which increase the viscosity of the suspension including, for example, sodium carboxymethylcellulose, sorbitol and/or dextran. The suspension may also contain stabilizers. In one embodiment of the invention the pharmaceutical compositions may be formulated and used as foams. Pharmaceutical foams include formulations such as, but not limited to, emulsions, microemulsions, creams, jellies and liposomes. While basically similar in nature these formulations vary in the components and the consistency of the final product. The preparation of such compositions and formulations is generally known to those skilled in the pharmaceutical and formulation arts and may be applied to the formulation of the compositions of the invention
This invention is not limited in its application to the details of construction and the arrangement of components set forth in the following description. The invention is capable of other embodiments and of being practiced or of being carried out in various ways. Also, the phraseology and terminology used herein is for the purpose of description and should not be regarded as limiting. The use of "including," "comprising," or "having," "containing", "involving", and variations thereof herein, is meant to encompass the items listed thereafter and equivalents thereof as well as additional items.
EXAMPLES
The following examples are offered to illustrate, but not to limit the claimed invention.
As used in the Examples provided herein, the term "ApoE" refers to ApoE3 unless otherwise identified.
Example 1: siRNA duplexes for Luc and FVII targeting.
Table 8 below provides exemplary sequences for the targeting of Luc and FVII.
Table 8.
Figure imgf000134_0001
Figure imgf000135_0002
Note: L8
Figure imgf000135_0001
lowercase is 2'-O-methyl modified nucleotide, * is phosphorothioate backbone linkages, fN is a 2'-fluoro nucleotide, dN is 2'-deoxy nucleotide.
Example 2: FVII in vivo evaluation using the cationic lipid derived liposomes
In vivo rodent Factor VII and ApoB silencing experiments. C57BL/6 mice (Charles River Labs, MA) and Sprague-Dawley rats (Charles River Labs, MA) received either saline or siRNA in desired formulations via tail vein injection at a volume of 0.01 mL/g. At various time points post-administration, animals were anesthesized by isofluorane inhalation and blood was collected into serum separator tubes by retro orbital bleed. Serum levels of Factor VII protein were determined in samples using a chromogenic assay (Coaset Factor VII, DiaPharma Group, OH or Biophen FVII, Aniara Corporation, OH) according to manufacturer protocols. A standard curve was generated using serum collected from saline treated animals. In experiments where liver mRNA levels were assessed, at various time points post- administration, animals were sacrificed and livers were harvested and snap frozen in liquid nitrogen. Frozen liver tissue was ground into powder. Tissue lysates were prepared and liver mRNA levels of Factor VII and apoB were determined using a branched DNA assay (QuantiGene Assay, Panomics, CA).
Example 3. Liposome Formulations for FVII targeting Factor VII (FVII), a prominent protein in the coagulation cascade, is synthesized in the liver (hepatocytes) and secreted into the plasma. FVII levels in plasma can be determined by a simple, plate-based colorimetric assay. As such, FVII represents a convenient model for determining sirna-mediated downregulation of hepatocyte-derived proteins, as well as monitoring plasma concentrations and tissue distribution of the nucleic acid lipid particles and siRNA.
Factor VII Knockdown in Mice
FVII activity was evaluated in FVII siRNA-treated animals at 24 hours after intravenous (bolus) injection in C57BL/6 mice. FVII was measured using a commercially available kit for determining protein levels in serum or tissue, following the manufacturer's instructions at a microplate scale. FVII reduction was determined against untreated control mice, and the results were expressed as % Residual FVII. Four dose levels (2, 5, 12.5, 25 mg/kg FVII siRNA) were used in the initial screen of each novel liposome composition, and this dosing was expanded in subsequent studies based on the results obtained in the initial screen.
Determination of Tolerability
The tolerability of each novel liposomal siRNA formulation was evaluated by monitoring weight change, cageside observations, clinical chemistry and, in some instances, hematology. Animal weights were recorded prior to treatment and at 24 hours after treatment. Data was recorded as % Change in Body Weight. In addition to body weight measurements, a full clinical chemistry panel, including liver function markers, was obtained at each dose level (2, 5, 12.5 and 25 mg/kg siRNA) at 24 hours post-injection using an aliquot of the serum collected for FVII analysis. Samples were sent to the Central Laboratory for Veterinarians (Langley, BC) for analysis. In some instances, additional mice were included in the treatment group to allow collection of whole blood for hematology analysis. Determination of Therapeutic Index
Therapeutic index (TI) is an arbitrary parameter generated by comparing measures of toxicity and activity. For these studies, TI was determined as:
TI = MTD (maximum tolerated dose) / ED50 (dose for 50% FVII knockdown)
The MTD for these studies was set as the lowest dose causing >7% decrease in body weight and a >200-fold increase in alanine aminotransferase (ALT), a clinical chemistry marker with good specificity for liver damage in rodents. The ED50 was determined from FVII dose-activity curves.
AD 1661 siRNA as provided in Example 1 was administered in formulations comprising the following molar ratio of DLin-M-C3-DMA:DSPC:Chol:PEG-DMG, which were prepared and tested in the methods as described in Example 2: 60:7.5:31:1.5; 50:10:38:.5:1.5; and 40:20:38.5:1.5. The results of these in vivo experiments are provided in FIG. 1, demonstrating the silencing ability of the formulations as tested.
Example 4. Preparation of l,2-Di-O-alkyl-sn3-Carbomoylglyceride (PEG-DMG)
Figure imgf000137_0001
Preparation of IVa l,2-Di-O-tetradecyl-5H-glyceride Ia (30 g, 61.80 mmol) and NN- succinimidylcarboante (DSC, 23.76 g, 1.5eq) were taken in dichloromethane (DCM, 500 mL) and stirred over an ice water mixture. Triethylamine (TEA, 25.30 mL, 3 eq) was added to the stirring solution and subsequently the reaction mixture was allowed to stir overnight at ambient temperature. Progress of the reaction was monitored by TLC. The reaction mixture was diluted with DCM (400 mL) and the organic layer was washed with water (2X500 mL), aqueous NaHCO3 solution (500 mL) followed by standard work-up. The residue obtained was dried at ambient temperature under high vacuum overnight. After drying the crude carbonate Ha thus obtained was dissolved in dichloromethane (500 mL) and stirred over an ice bath. To the stirring solution InPEG20OO-NH2 (III, 103.00 g, 47.20 mmol, purchased from NOF Corporation, Japan) and anhydrous pyridine (Py, 80 mL, excess) were added under argon. The reaction mixture was then allowed to stir at ambient temperature overnight. Solvents and volatiles were removed under vacuum and the residue was dissolved in DCM (200 mL) and charged on a column of silica gel packed in ethyl acetate. The column was initially eluted with ethyl acetate and subsequently with gradient of 5-10 % methanol in dichloromethane to afford the desired PEG-Lipid IVa as a white solid (105.30g, 83%). 1H NMR (CDCl3, 400 MHz) δ = 5.20-5.12(m, IH), 4.18-4.01(m, 2H), 3.80-3.70(m, 2H), 3.70-3.20(m, -0-CH2-CH2-O-, PEG-CH2), 2.10- 2.01(m, 2H), 1.70-1.60 (m, 2H), 1.56-1.45(m, 4H), 1.31-1.15(m, 48H), 0.84(t, J= 6.5Hz, 6H). MS range found: 2660-2836. Preparation of IVb
1,2-Di-O-hexadecyl-OT-glyceride Ib (1.00 g, 1.848 mmol) and DSC (0.710 g, 1.5eq) were taken together in dichloromethane (20 mL) and cooled down to 00C in an ice water mixture. Triethylamine (1.00 mL, 3eq) was added and the reaction was stirred overnight. The reaction was followed by TLC, diluted with DCM, washed with water (2 times), NaHCO3 solution and dried over sodium sulfate. Solvents were removed under reduced pressure and the resulting residue of Hb was maintained under high vacuum overnight. This compound was directly used for the next reaction without further purification. MPEG2ooo-NH2 III (1.50g, 0.687 mmol, purchased from NOF Corporation, Japan) and Hb (0.702g, 1.5eq) were dissolved in dichloromethane (20 mL) under argon. The reaction was cooled to 00C. Pyridine (1 mL, excess) was added and the reaction stirred overnight. The reaction was monitored by TLC. Solvents and volatiles were removed under vacuum and the residue was purified by chromatography (first ethyl acetate followed by 5-10% MeOH/DCM as a gradient elution) to obtain the required compound IVb as a white solid (1.46 g, 76 %). 1H NMR (CDCl3, 400 MHz) δ = 5.17(t, J= 5.5Hz, IH), 4.13(dd, J= 4.00Hz, 11.00 Hz, IH), 4.05(dd, J= 5.00Hz, 11.00 Hz, IH), 3.82-3.75(m, 2H), 3.70-3.20(m, -0-CH2- CH2-O-, PEG-CH2), 2.05-1.90(m, 2H), 1.80-1.70 (m, 2H), 1.61-1.45(m, 6H), 1.35- 1.17(m, 56H), 0.85(t, J= 6.5Hz, 6H). MS range found: 2716-2892. Preparation of IVc l^-Di-O-octadecyl-OT-glyceride Ic (4.00 g, 6.70 mmol) and DSC (2.58 g, 1.5eq) were taken together in dichloromethane (60 mL) and cooled down to 00C in an ice water mixture. Triethylamine (2.75 mL, 3eq) was added and the reaction was stirred overnight. The reaction was followed by TLC, diluted with DCM, washed with water (2 times), NaHCO3 solution, and dried over sodium sulfate. Solvents were removed under reduced pressure and the residue was maintained under high vacuum overnight. This compound was directly used for the next reaction without further purification. MPEG2Ooo-NH2 III (1.50g, 0.687 mmol, purchased from NOF Corporation, Japan) and Hc (0.76Og, 1.5eq) were dissolved in dichloromethane (20 mL) under argon. The reaction was cooled to 00C. Pyridine (1 mL, excess) was added and the reaction was stirred overnight. The reaction was monitored by TLC. Solvents and volatiles were removed under vacuum and the residue was purified by chromatography (ethyl acetate followed by 5-10% MeOH/DCM as a gradient elution) to obtain the desired compound IVc as a white solid (0.92 g, 48 %). 1H NMR (CDCl3, 400 MHz) δ = 5.22-5.15(m, IH), 4.16(dd, J= 4.00Hz, 11.00 Hz, IH), 4.06(dd, J= 5.00Hz, 11.00 Hz, IH), 3.81-3.75(m, 2H), 3.70-3.20(m, -0-CH2-CH2-O-, PEG-CH2), 1.80-1.70 (m, 2H), 1.60-1.48(m, 4H), 1.31-1.15(m, 64H), 0.85(t, J= 6.5Hz, 6H). MS range found: 2774-2948. Example 5: Preparation of DLin-M-C3-DMA (i.e., (6Z,9Z,28Z,31Z)- heptatriaconta-6,9,28,31-tetraen-19-yl 4-(dimethylamino)butanoate)
A solution of (6Z,9Z,28Z,31Z)-heptatriaconta-6,9,28,31-tetraen-19-ol (0.53 g), 4-N,N-dimethylaminobutyric acid hydrochloride (0.51 g), 4-N,N- dimethylaminopyridine (0.6Ig) and l-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (0.53 g) in dichloromethane (5 mL) was stirred at room temperature overnight. The solution was washed with dilute hydrochloric acid followed by dilute aqueous sodium bicarbonate. The organic fractions were dried over anhydrous magnesium sulphate, filtered and the solvent removed on a rotovap. The residue was passed down a silica gel column (20 g) using a 1-5% methanol/dichloromethane elution gradient. Fractions containing the purified product were combined and the solvent removed, yielding a colorless oil (0.54 g).
Compounds of the present invention can be synthesized by the procedures described in the following papers, which are hereby incorporated by their entirety:
1. Schlueter, Urs; Lu, Jun; Fraser-Reid, Bert. Synthetic Approaches To Heavily Lipidated Phosphoglyceroinositides. Organic Letters (2003), 5(3), 255- 257.
2. King, J. F.; Allbutt, A. D. Can. J. Chem. 1970, 48, 1754-1769
3. Mach, Mateusz; Schlueter, Urs; Mathew, Felix; Fraser-Reid, Bert; Hazen, Kevin C. Comparing n-pentenyl orthoesters and n-pentenyl glycosides as alternative glycosyl donors. Tetrahedron (2002), 58(36), 7345-7354.
Example 6: Efficacy of MC3 liposomes having various liposomal compositions in rats.
To examine the dose response of MC3 containing liposomal formulations in rats, the following liposomal formulations were prepared essentially as described in Example 2. As provided in the table below, the components, included are indicated as follows: MC3-DSPC-Cholesterol. -PEG-C 14. Table 9 below provides exemplary formulations as tested. Animals Sprague-Dawley
Total 27
In.j Vol. (uL) 5 ul/g injection
Figure imgf000141_0001
As shown in FIG. 2, the liposomal formulation having 50 mol% MC3 showed a dosage response curve with efficacy at slightly lower siRNA concentrations than that of the liposomal formulation having 40 mol% MC3.
Example 7: Efficacy of MC3 liposomes show ApoE dependence of in mice. To further examine the role of ApoE in efficacy of various liposome formulations, wildtype and ApoE knockout mice were administered MC3 liposomes containing the AD-1661 siRNA composition, at 0.1, 0.03, and 0.01 mg/kg essentially as described in Example 2. Half of the liposome formulations were premixed with recombinant ApoE protein in order to determine whether exogenous addition of ApoE can overcome the absence of the protein in mice. Table 10 below shows exemplary formulations as tested. Table 10
Experimental Plan
Animals C57BL/6 and ApoE knockout
Total 42 Inj Vol. (uL) variable based on weight
Figure imgf000141_0002
Figure imgf000142_0001
FIG. 3 shows dose-dependent attenuation of FVII protein levels in wild type (right bars) but not ApoE deficient knockout mice (left bars) when administered with the MC3 -formulated liposomes, suggesting a role of ApoE in cellular uptake and/or delivery to the liver. MC3 liposomes formulated as described above with the 1661 siRNA were administered at concentrations of 0.1, 0.03, and 0.01 mg/kg by itself or premixed with ApoE lipoprotein. At much higher doses (e.g., - 1.0 mg/kg or above), however, MC3 -formulated formulations were found to mediate silencing of the FVII mRNA and protein (not shown). As shown in FIG. 3, MC3 formulated liposomal formulations tested are unable to mediate silencing of FVII in ApoE knockout mice, unless pre-mixed with recombinant ApoE. Thus, activity could be rescued in ApoE knockout mice by premixing MC3 (an MC3 -containing liposome) with ApoE.
Example 8: Efficacy of MC3 containing liposomal formulations varying in mole percentage and tail length of phosphocholines.
To examine the effect of variations on the mole percentage and tail length of phosphocholines on efficacy of various liposome formulations, various formulations comprising DSPC, DMPC and DLPC were tested for efficacy of FVII silencing at 0.01 or 0.03 mg/kg. Table 11 below shows exemplary formulations as tested: Experimental Plan
Animals C57BL/6
Total 45
Inj Vol. (uL) variable based on weight
Figure imgf000143_0001
FIG. 4 shows the effects of changes in the mole percentage of the MC3, e.g., comparing 50 and 40 mole percent, and for the case of DMPC containing formulation, 50, 40, and 30 mole percent. FIG. 4 also shows the effect of changes in the neutral lipid, showing the differing results for MC3 liposomal formulations comprising DSPC, DMPC, and DLPC.
Example 9: Incorporation of GaINAc lipids into liposome formulations.
To explore potential alternate delivery mechanisms, in vivo experiments were performed using liposome formulations comprising N-acetyl galactosamine (GaINAc) conjugated lipids. GaINAc was chosen as a possible targeting ligand as it is known that the GaINAc receptor is thought to be highly expressed in the liver. Studies were therefore performed in mice and rats to test the efficacy of the MC3 containing liposomal formulations further comprising the GalNAc3-PEG-DSG lipid of Formula III essentially as described in Example 2. In all experiments, the total amount of PEG- conjugated lipids was kept constant (e.g., where 0.5% mol of GalNAc3-PEG is added, the corresponding amount of PEG-DSG was decreased by 0.5 % mol). Four animals were used for each of the nine groups per genotype in the experiment.
Table 12 below provides experimental detail for the methods including MC3 containing liposomes having 5% PEG lipid concentration, where the formulations were tested in C57BL6 mice. The liposomes comprising the following relative molar amounts: 50/10/35/5 of MC3/DSPC/Chol/PEG-DSG. Where 0.5% GalNAc3-PEG is added, the corresponding amount of PEG-DSG is reduced to 4.5%. Table 12
Experimental Plan
Animals C57BL6
Total 36
Inj Vol. (uL) variable based on weight
Figure imgf000144_0001
Table 13 below provides experimental detail for the methods including MC3 containing liposomes having 10 mol % concentration of PEG-DSG lipid, where the formulations were tested in C57BL6 mice. The liposomes comprised the following relative molar amounts: 50/10/30/10 of MC3/DSPC/Chol/PEG-DSG. Where 0.5% GalNAc3-PEG is added, the corresponding amount of PEG-DSG is reduced to 9.5%. Table 13 Experimental Plan
Animals C57BL6
Total 36
Inj Vol. (uL) variable based on weight
Figure imgf000145_0001
FIG. 5, shows the effects where increasing PEG-shielding decreases non-GalNAc mediated silences in C57BL6 mice. This is demonstrated with PEG concentrations of both 5% and 10% in C57BL6 mice. Inclusion of C18-PEG (i.e., PEG-DSG) at 10 mol% effectively inhibits silencing, which can be overcome by substituting 0.5 mol% of the PEG lipid with an equimolar amount GalNAc-lipid (i.e., GalNAc3-PEG-DSG of Formula III). Therefore, increasing PEG-shielding (e.g., from 5 mol% to 10 mol%) appears to decrease non-GalNAc-mediated silencing, but also overall potency.
Similar experiments were also performed in rats, wherein the PEG lipid (also PEG-DSG) was included in the liposomes at both 5 and 10 mole %. Table 14 below provides experimental detail for the methods including MC3 containing liposomes having 5% PEG lipid concentration, where the formulations were tested in rats. The liposomes comprising the following relative molar amounts: 50/10/35/5 of MC3/DSPC/Chol/PEG-DSG. Where 0.5% GalNAc3-PEG is added, the corresponding amount of PEG-DSG is reduced to 4.5%. Table 14
Experimental Plan
Animals Sprague-Dawley Rats
Total 36
Inj Vol. (uL) Bolus injection
Figure imgf000146_0001
Table 15 below provides experimental detail for the methods including MC3 containing liposomes having 10% PEG lipid concentration, where the formulations were tested in rats. The liposomes comprising the following relative molar amounts: 50/10/30/10 of MC3/DSPC/Chol/PEG-DSG. Where 0.5% GalNAc3-PEG is added, the corresponding amount of PEG-DSG is reduced to 9.5%.
Table 15
Experimental Plan
Animals Sprague-Dawley
Total 36
Inj Vol. (uL) Bolus injection
Figure imgf000146_0002
Figure imgf000147_0001
FIG. 6 shows results of MC3 formulations containing C18 PEG at 5 mol % and 10 mol% administered to rats at the indicated dosages. Formulations containing 10 mol% of PEG-DSG shows little silencing at the concentrations tested (0.625 - 5 mg/kg) in rats. However, inclusion of 0.5 mol% GalNAc3-PEG-DSG of Formula III (i.e., replacing 0.5 mol% of the C18-PEG), restores knockdown of FVII. Therefore, when compared with mice, in the rat, more highly shielded formulation generally better retains potency as shown in the differences between concentrations of 5 mol% and 10 mol% PEG.
Example 10: Evaluation of variations of mol % of components in MC3 containing liposomal formulations with and without inclusion of 0.5 mol% GalNAc3-PEG-DSG
In order to determine the efficacy of MC3 containing liposomes having different mole percentage of components, with and without GalNAc3-PEG-DSG, the following liposomal formulations were prepared and tested in C57BL6 mice, substantially as described in Example 2 above. The components, as depicted in the table, are provided in the order as follows: MC3/DSPC/Chol./PEG-DSG. Where 0.5% GalNAc3-PEG is added, the corresponding amount of PEG-DSG is reduced to 4.5%, as shown in Table 16 below.
Table 16
Animals C57BL6 Total 33
Inj Vol. (uL) variable based on weight
Figure imgf000148_0001
As shown in FIG. 7, addition of the GIaNAc to the liposomal formulations improves silencing of FVII in each formulation, i.e., wherein the MC3 is present at 50, 40, and 30 mol%.
Example 11: Efficacy of MC3 and GaINAc containing liposomes in WT and ASGPR KO mice.
To examine the role of ASGPR in efficacy of various liposome formulations, wildtype and ASGPR knockout mice were administered MC3 liposomes containing the AD- 1661 siRNA composition, at 3, 1, and 0.3 mg/kg as described in Example 1. The components, as depicted in the table, are provided in the order as follows: MC3/DSPC/Chol./PEG-DSG. Where 0.5% GalNAc3-PEG is added, the corresponding amount of PEG-DSG is reduced to 9.5%, as shown in Table 17 below.
Table 17
Experimental Plan
Animals C57BL6 and ASGPr KO
Total 25 + 15
Inj Vol. (uL) variable based on weight
Figure imgf000149_0001
FIG. 8 shows the results of these experiments, demonstrating that restoration of FVII knockdown in formulations containing Cl 8 PEG by inclusion of the GalNAc3-PEG-DSG lipid is abolished when administered in a mouse strain deficient in the Asialoglycoprotein Receptor (ASGPR), which is the expected receptor for GaINAc targeting moiety. Example 12: Oligonucleotide Synthesis Synthesis
All oligonucleotides are synthesized on an AKTAoligopilot synthesizer. Commercially available controlled pore glass solid support (dT-CPG, 500A, Prime Synthesis) and RNA phosphoramidites with standard protecting groups, 5'-O- dimethoxytrityl N6-benzoyl-2'-f-butyldimethylsilyl-adenosine-3'-O-N,N'- diisopropyl-2-cyanoethylphosphoramidite, 5'-O-dimethoxytrityl-N4-acetyl-2'-f- butyldimethylsilyl-cytidine-3 ' - O-N,N' -diisopropyl-2-cyanoethylphosphoramidite, 5 ' - O-dimethoxytrityl-N2-isobutryl-2'-f-butyldimethylsilyl-guanosine-3'-O-N,N'- diisopropyl-2-cyanoethylphosphoramidite, and 5 ' -O-dimethoxytrityl-2' -t- butyldimethylsilyl-uridine-3 ' -O-N,N' -diisopropyl-2-cyanoethylphosphoramidite (Pierce Nucleic Acids Technologies) were used for the oligonucleotide synthesis. The 2'-F phosphoramidites, 5'-O-dimethoxytrityl-N4-acetyl-2'-fluro-cytidine-3'-O-N,N'- diisopropyl-2-cyanoethyl-phosphoramidite and 5'-O-dimethoxytrityl-2'-fluro-uridine- 3'-O-N,N'-diisopropyl-2-cyanoethyl-phosphoramidite are purchased from (Promega). All phosphoramidites are used at a concentration of 0.2M in acetonitrile (CH3CN) except for guanosine which is used at 0.2M concentration in 10% THF/ ANC (v/v). Coupling/recycling time of 16 minutes is used. The activator is 5-ethyl thiotetrazole (0.75M, American International Chemicals); for the PO-oxidation iodine/water/pyridine is used and for the PS-oxidation PADS (2%) in 2,6- lutidine/ACN (1: 1 v/v) is used.
3'-ligand conjugated strands are synthesized using solid support containing the corresponding ligand. For example, the introduction of cholesterol unit in the sequence is performed from a hydroxyprolinol-cholesterol phosphoramidite. Cholesterol is tethered to ZrαHs-4-hydroxyprolinol via a 6-aminohexanoate linkage to obtain a hydroxyprolinol-cholesterol moiety. 5 '-end Cy-3 and Cy-5.5 (fluorophore) labeled siRNAs are synthesized from the corresponding Quasar-570 (Cy-3) phosphoramidite are purchased from Biosearch Technologies. Conjugation of ligands to 5 '-end and or internal position is achieved by using appropriately protected ligand- phosphoramidite building block. An extended 15 min coupling of 0.1 M solution of phosphoramidite in anhydrous CH3CN in the presence of 5-(ethylthio)-lH-tetrazole activator to a solid-support-bound oligonucleotide. Oxidation of the internucleotide phosphite to the phosphate is carried out using standard iodine- water as reported (1) or by treatment with tert-buty\ hydroperoxide/acetonitrile/water (10: 87: 3) with 10 min oxidation wait time conjugated oligonucleotide. Phosphorothioate is introduced by the oxidation of phosphite to phosphorothioate by using a sulfur transfer reagent such as DDTT (purchased from AM Chemicals), PADS and or Beaucage reagent. The cholesterol phosphoramidite is synthesized in house and used at a concentration of 0.1 M in dichloromethane. Coupling time for the cholesterol phosphoramidite is 16 minutes.
Deprotection I (Nucleobase Deprotection)
After completion of synthesis, the support is transferred to a 100 mL glass bottle (VWR). The oligonucleotide is cleaved from the support with simultaneous deprotection of base and phosphate groups with 80 mL of a mixture of ethanolic ammonia [ammonia: ethanol (3: 1)] for 6.5 h at 55°C. The bottle is cooled briefly on ice and then the ethanolic ammonia mixture is filtered into a new 250-mL bottle. The CPG is washed with 2 x 40 mL portions of ethanol/water (1:1 v/v). The volume of the mixture is then reduced to ~ 30 mL by roto-vap. The mixture is then frozen on dry ice and dried under vacuum on a speed vac.
Deprotection II (Removal of 2'-TBDMS group)
The dried residue is resuspended in 26 mL of triethylamine, triethylamine trihydrofluoride (TEA»3HF) or pyridine-HF and DMSO (3:4:6) and heated at 600C for 90 minutes to remove the ferf-butyldimethylsilyl (TBDMS) groups at the 2' position. The reaction is then quenched with 50 mL of 20 mM sodium acetate and the pH is adjusted to 6.5. Oligonucleotide is stored in a freezer until purification.
Analysis
The oligonucleotides are analyzed by high-performance liquid chromatography (HPLC) prior to purification and selection of buffer and column depends on nature of the sequence and or conjugated ligand.
HPLC Purification
The ligand-conjugated oligonucleotides are purified by reverse-phase preparative HPLC. The unconjugated oligonucleotides are purified by anion-exchange HPLC on a TSK gel column packed in house. The buffers are 20 mM sodium phosphate (pH 8.5) in 10% CH3CN (buffer A) and 20 mM sodium phosphate (pH 8.5) in 10% CH3CN, IM NaBr (buffer B). Fractions containing full-length oligonucleotides are pooled, desalted, and lyophilized. Approximately 0.15 OD of desalted oligonucleotides s are diluted in water to 150 μL and then pipetted into special vials for CGE and LC/MS analysis. Compounds are then analyzed by LC-ESMS and CGE.
siRNA preparation
For the preparation of siRNA, equimolar amounts of sense and antisense strand are heated in IxPBS at 95°C for 5 min and slowly cooled to room temperature. Integrity of the duplex is confirmed by HPLC analysis.
Figure imgf000152_0002
Lower case is 2'0Me modification and Nf is a 2'F modified nucleobase, dT is deoxy thymidine, s is phosphothioate
Example 13: Synthesis of mPEG2000-l,2-Di-0-alkyl-,m3-carbomoylglyceride
The PEG-lipids, such as mPEG2000-l,2-Di-0-alkyl-,m3-carbomoylglyceride were synthesized using the following procedures:
Figure imgf000152_0001
Preparation of compound 4a (PEG-DMG): 1,2-Di-O-tetradecyl-OT- glyceride Ia (30 g, 61.80 mmol) and N.N'-succinimidylcarboante (DSC, 23.76 g, 1.5eq) were taken in dichloromethane (DCM, 500 mL) and stirred over an ice water mixture. Triethylamine (25.30 mL, 3eq) was added to stirring solution and subsequently the reaction mixture was allowed to stir overnight at ambient temperature. Progress of the reaction was monitored by TLC. The reaction mixture was diluted with DCM (400 mL) and the organic layer was washed with water (2X500 mL), aqueous NaHCO3 solution (500 mL) followed by standard work-up. Residue obtained was dried at ambient temperature under high vacuum overnight. After drying the crude carbonate 2a thus obtained was dissolved in dichloromethane (500 mL) and stirred over an ice bath. To the stirring solution mPEG2ooo-NH2 (3, 103.00 g, 47.20 mmol, purchased from NOF Corporation, Japan) and anhydrous pyridine (80 mL, excess) were added under argon. In some embodiments, the methoxy-(PEG)x-amine has an x= from 45-49, preferably 47-49, and more preferably 49. The reaction mixture was then allowed stir at ambient temperature overnight. Solvents and volatiles were removed under vacuum and the residue was dissolved in DCM (200 mL) and charged on a column of silica gel packed in ethyl acetate. The column was initially eluted with ethyl acetate and subsequently with gradient of 5-10 % methanol in dichloromethane to afford the desired PEG-Lipid 4a as a white solid (105.30g, 83%). 1H NMR (CDCl3, 400 MHz) δ = 5.20-5.12(m, IH), 4.18-4.01(m, 2H), 3.80-3.70(m, 2H), 3.70-3.20(m, -0-CH2-CH2-O-, PEG-CH2), 2.10-2.01(m, 2H), 1.70-1.60 (m, 2H), 1.56-1.45(m, 4H), 1.31-1.15(m, 48H), 0.84(t, J= 6.5Hz, 6H). MS range found: 2660-2836.
Preparation of 4b: l,2-Di-0-hexadecyl-,m-glyceride Ib (1.00 g, 1.848 mmol) and DSC (0.710 g, 1.5eq) were taken together in dichloromethane (20 mL) and cooled down to 00C in an ice water mixture. Triethylamine (1.00 mL, 3eq) was added to that and stirred overnight. The reaction was followed by TLC, diluted with DCM, washed with water (2 times), NaHCO3 solution and dried over sodium sulfate. Solvents were removed under reduced pressure and the residue 2b under high vacuum overnight. This compound was directly used for the next reaction without further purification. MPEG2OOo-NH2 3 (1.50g, 0.687 mmol, purchased from NOF Corporation, Japan) and compound from previous step 2b (0.702g, 1.5eq) were dissolved in dichloromethane (20 mL) under argon. The reaction was cooled to 00C. Pyridine (1 mL, excess) was added to that and stirred overnight. The reaction was monitored by TLC. Solvents and volatiles were removed under vacuum and the residue was purified by chromatography (first Ethyl acetate then 5-10% MeOH/DCM as a gradient elution) to get the required compound 4b as white solid (1.46 g, 76 %). 1H NMR (CDCl3, 400 MHz) δ = 5.17(t, J= 5.5Hz, IH), 4.13(dd, J= 4.00Hz, 11.00 Hz, IH), 4.05(dd, J= 5.00Hz, 11.00 Hz, IH), 3.82-3.75(m, 2H), 3.70-3.20(m, -0-CH2-CH2-O-, PEG- CH2), 2.05-1.90(m, 2H), 1.80-1.70 (m, 2H), 1.61-1.45(m, 6H), 1.35-1.17(m, 56H), 0.85(t, J= 6.5Hz, 6H). MS range found: 2716-2892.
Preparation of 4c: l^-Di-O-octadecyl-sH-glyceride Ic (4.00 g, 6.70 mmol) and DSC (2.58 g, 1.5eq) were taken together in dichloromethane (60 mL) and cooled down to 00C in an ice water mixture. Triethylamine (2.75 mL, 3eq) was added to that and stirred overnight. The reaction was followed by TLC, diluted with DCM, washed with water (2 times), NaHCO3 solution and dried over sodium sulfate. Solvents were removed under reduced pressure and the residue under high vacuum overnight. This compound was directly used for the next reaction with further purification. MPEG2ooo- NH2 3 (1.50g, 0.687 mmol, purchased from NOF Corporation, Japan) and compound from previous step 2c (0.76Og, 1.5eq) were dissolved in dichloromethane (20 mL) under argon. The reaction was cooled to 00C. Pyridine (1 mL, excess) was added to that and stirred overnight. The reaction was monitored by TLC. Solvents and volatiles were removed under vacuum and the residue was purified by chromatography (first Ethyl acetate then 5-10% MeOH/DCM as a gradient elution) to get the required compound 4 c as white solid (0.92 g, 48 %). 1H NMR (CDCl3, 400 MHz) δ = 5.22- 5.15(m, IH), 4.16(dd, J= 4.00Hz, 11.00 Hz, IH), 4.06(dd, J= 5.00Hz, 11.00 Hz, IH), 3.81-3.75(m, 2H), 3.70-3.20(m, -0-CH2-CH2-O-, PEG-CH2), 1.80-1.70 (m, 2H), 1.60- 1.48(m, 4H), 1.31-1.15(m, 64H), 0.85(t, J= 6.5Hz, 6H). MS range found: 2774-2948.
Example 14: General protocol for the extrusion method
Lipids (cationic lipid of formula I, DSPC, cholesterol, DMG-PEG) are solubilized and mixed in ethanol according to the desired molar ratio. Liposomes are formed by an ethanol injection method where mixed lipids are added to sodium acetate buffer at pH 5.2. This results in the spontaneous formation of liposomes in 35 % ethanol. The liposomes are extruded through a 0.08 μm polycarbonate membrane at least 2 times. A stock siRNA solution was prepared in sodium acetate and 35% ethanol and was added to the liposome to load. The siRNA-liposome solution was incubated at 37°C for 30 min and, subsequently, diluted. Ethanol was removed and exchanged to PBS buffer by dialysis or tangential flow filtration.
Example 15: General protocol for the in-line mixing method
Individual and separate stock solutions are prepared - one containing lipid and the other siRNA. Lipid stock containing cationic lipid of formula I, DSPC, cholesterol and PEG lipid is prepared by solubilized in 90% ethanol. The remaining 10% is low pH citrate buffer. The concentration of the lipid stock is 4 mg/mL. The pH of this citrate buffer can range between pH 3-5, depending on the type of fusogenic lipid employed. The siRNA is also solubilized in citrate buffer at a concentration of 4 mg/mL. For small scale, 5 mL of each stock solution is prepared.
Stock solutions are completely clear and lipids must be completely solubilized before combining with siRNA. Therefore stock solutions may be heated to completely solubilize the lipids. The siRNAs used in the process may be unmodified oligonucleotides or modified and may be conjugated with lipophilic moieties such as cholesterol.
The individual stocks are combined by pumping each solution to a T-junction. A dual-head Watson-Marlow pump is used to simultaneously control the start and stop of the two streams. A 1.6 mm polypropylene tubing is further downsized to a 0.8 mm tubing in order to increase the linear flow rate. The polypropylene line (ID = 0.8 mm) are attached to either side of a T-junction. The polypropylene T has a linear edge of 1.6 mm for a resultant volume of 4.1 mm3. Each of the large ends (1.6 mm) of polypropylene line is placed into test tubes containing either solubilized lipid stock or solubilized siRNA. After the T-junction a single tubing is placed where the combined stream will emit. The tubing is then extending into a container with 2x volume of PBS. The PBS is rapidly stirring. The flow rate for the pump is at a setting of 300 rpm or 110 mL/min. Ethanol is removed and exchanged for PBS by dialysis. The lipid formulations are then concentrated using centrifugation or diafiltration to an appropriate working concentration.
Example 16: Synthesis of [6Z,9Z,28Z,31Z)-heptatriaconta-6,9,28,31-tetraen-19-yl-4- (dimethylamino) butanoate] (a cationic lipid of formula I or MC3)
Figure imgf000156_0001
Preparation of alcohol 2
A clean, dry 200L glass reactor fitted with an argon inlet and thermowell was charged with 60 L of THF and 5.73 Kg (20.4 mol) of linoleic acid. The contents of the reactor were cooled below 0 0C using an acetone-dry ice bath. To this cold solution 13.8 L of Vitride (60% wt/vol) in toluene was added slowly maintaining the internal temperature of the reaction mixture below 0 0C (Note: Initial addition of vitride was exothermic and frothing was observed. The frothing ceased after 15 minutes of addition). The addition of vitride took 3 hr and 45 minutes. After completion of the addition, the reaction mixture was stirred at ambient temperature for 2 hr. An aliquot was taken and quenched with sat. Na2SO4 and the thus obtained crude product was analyzed by TLC for the presence of the starting acid. The TLC showed completion of the reaction and the reaction mixture was again cooled below 0 0C in about 45 minutes. A saturated solution of sodium sulfate (prepared by dissolving 1.1 Kg of sodium sulfate in 1.5 L of water) was slowly added to the reaction mixture over 45 min. After completion of the addition, 25 L of ethyl acetate was added over a period of 30 min with stirring. The obtained reaction mixture was filtered through a celite bed over a period of 45 min and the celite bed was washed with an additional 17 L of ethyl acetate to remove all product from the residue. The combined organics were concentrated under reduced pressure. The residue was dissolved in 15 L of ethyl acetate and the organic layer was washed with water (2 X 7 L) and dried over sodium sulfate (1.1 Kg). After filtration the organic layer was concentrated under reduced pressure and dried under high vacuum to obtain the product linoleyl alcohol as an oil. Crude yield = 5.5 Kg (theoretical yield = 5.43 Kg). This product was used without further purification in the next step.
Process for preparing linoleyl mesylate 3
A clean, dry 200 L all glass reactor fitted with argon inlet and thermowell was charged with 45 L of DCM and 5.5 Kg of the crude product from step 1. To this solution 11.5 L triethylamine was added followed by 0.252 Kg (2.0 mol) of DMAP. The solution was cooled to -10 0C using a dry-ice acetone mixture and to this cold reaction mass, a solution of mesyl chloride (3.2 L, 41.3 mol) in DCM (10 L) was added drop wise over a period of 3 hrs while maintaining the temperature below 0 0C. After completion of the addition, the reaction mixture was stirred at 0 0C for 1 h after which the TLC (5% EtOAc in DCM; PMA stain) of the reaction mixture showed complete disappearance of starting alcohol. To the reaction mixture, 17 L of ice-cold water was added and the layers were separated. The top aqueous layer was again washed with 10 L of DCM and the layers were separated. The combined organic layers were washed with 2 X 10 L of dilute hydrochloric acid (prepared by mixing 2 L of Con. HCl with 18 L of RO water), 2 X 7.5 L of water and 10 L of brine (prepared by dissolving 11 Kg of NaCl in 10 L of RO water). The organic layer was separated, dried over Na2SO4 (2.75 Kg) and filtered. The organic layer was evaporated under reduced pressure and vacuum dried to obtain the crude mesylate as a light yellow oil. Crude yield = 7.1 Kg (theoretical yield = 7.1 Kg). This material was used without further purification in the next step. 1H NMR (CDCl3, 400 MHz) δ = 5.42-5.21 (m, 4H), 4.20 (t, 2H), 3.06 (s, 3H), 2.79 (t, 2H), 2.19-2.00 (m, 4H), 1.90-1.70 (m, 2H), 1.06-1.18 (m, 18H), 0.88 (t, 3H). 13C NMR (CDCl3) δ = 130.76, 130.54, 128.6, 128.4, 70.67, 37.9, 32.05, 30.12, 29.87, 29.85, 29.68, 29.65, 29.53, 27.72, 27.71, 26.15, 25.94, 23.09, 14.60. MS. Molecular weight calculated for C19H36O3S, CaI. 344.53, Found 343.52 (M-H").
Preparation of linoleyl bromide 4
A clean, dry 200 L all glass reactor fitted with argon inlet and thermowell was charged with 25 L of DMF and 7.1 Kg of the crude product from step 2. This mixture was cooled to -100C with acetone-dry-ice mixture. To this stirred mixture, a solution of lithium bromide (2.7 Kg, 31.0 mol) in 25L of DMF was added over a period of 1.5 hrs while maintaining the reaction temperature below 0 0C. After completion of the addition, the reaction mixture was stirred at 45 0C for 18 - 20 h until TLC (10 % EtOAc in hexanes, PMA stain) of an aliquot showed complete disappearance of the starting mesylate. The reaction mixture was diluted with 70 L of water and extracted with 57 L of hexanes. The aqueous layer was further extracted with 2 X 10 L of hexanes and the combined organic layers (approximately 120 L) were washed again with 2 X 10 L of water and 1 X 10 L of brine (prepared by dissolving 14 Kg of sodium chloride in 10 L of water). The obtained organic layer (120 L) was dried over sodium sulfate (4 Kg) and concentrated under reduced pressure to obtain the crude product (6.5 Kg). The crude product was purified by column chromatography using 60-120 mesh silica gel using hexanes as eluent. Concentration of the pure product provided 5.5 Kg (81%, three steps) of the bromide 4 as a colorless liquid. 1H NMR (CDCl3, 400 MHz) δ = 5.41-5.29 (m, 4H), 4.20 (d, 2H), 3.40 (X, J = I Hz, 2H), 2.77 (t, / = 6.6 Hz, 2H), 2.09-2.02 (m, 4H), 1.88-1.00 (m, 2H), 1.46-1.27 (m, 18H), 0.88 (t, / = 3.9 Hz, 3H). 13C NMR (CDCl3) δ = 130.41, 130.25, 128.26, 128.12, 34.17, 33.05, 31.75, 29.82, 29.57, 29.54, 29.39, 28.95, 28.38, 27.42, 27.40, 25.84, 22.79, 14.28.
Preparation of dilinoleylmethanol 6
A clean, dry 20 L all glass reactor fitted with argon inlet, reflux condenser and thermowell was degassed and purged with argon. The reactor was charged with 277 g (11.3 mol) of activated magnesium followed by 1.5 L of anhydrous ether. The reactor was again degassed three times and purged with argon. The bromide 4 (2.5 Kg, 7.6 mol) was dissolved in 5 L of anhydrous ether under argon and IL of this solution was added to the reactor followed by 25 mL (0.35 mol) of dibromomethane. The contents of the reactor were heated to 40 0C using a water bath (effervescence was observed followed by reflux indicating the initiation of Grignard reagent formation). After the initiation of the reaction, the heating was removed from the reactor and the remaining 4L of the bromide was slowly added over a period of 2 hr 30 min maintaining a gentle reflux of the mixture. After completion of the addition, the reaction mixture was again heated to reflux (bath temperature 45 0C) for 1 hr after which an aliquot of the reaction mixture was quenched with water and analyzed by TLC (Hexanes, PMA stain) which showed complete consumption of starting bromide. The reaction mixture was cooled below 10 0C using an ice bath and a solution of ethyl formate (275 mL in 4 L of ether) in ether was added over a period of 2 hr 30 min and after completion of the addition the reaction mixture was warmed to room temperature and stirred for 1 hr. The reaction mixture was cooled back to 10 0C and acetone (1.15 L) was added slowly to the mixture followed by the addition of 7 L of ice-cold water and a solution of 10% sulfuric acid (prepared by diluting 3.4 L of sulfuric acid with 34 L of ice-cold water). The product was extracted with 3 X 10 L of ether and the combined organic layers were washed with 10 L of brine and dried over sodium sulfate (2 Kg). Concentration of the organic layer over reduced pressure provided the crude product (2 Kg) as a mixture of required dilinoleyl alcohol along with minor amounts of O- formylated product. This crude product was redissoloved in THF (4L) and charged into the 2OL glass reactor. To this a solution of NaOH (0.934 Kg dissolved in 8 L of ice-cold water) was added and the contents were heated at 65 0C for 18 h after which the TLC (10% ether in hexanes) showed complete conversion of the 0-formylated product to the required dilinoleylmethanol. The reaction mixture was cooled and was extracted with ether (3 X 4 L) and the combined organic layers were washed with 5 L of brine and dried over sodium sulfate (4 Kg). Filtration followed by concentration of the organic layer provided the crude product. The thus obtained crude product was purified by column chromatography using 60-120 mesh silica gel using 4% ether in hexanes. Concentration of the pure product fractions provided the pure 6 (1.45 Kg, 80%) as a colorless liquid. NMR (400 MHz5CDCl3) δ 5.47-5.24 (m, 8H), 3.56 (dd, / = 6.8, 4.2, IH), 2.85-2.66 (m, 4H), 2.12-1.91 (m, 9H), 1.50-1.17 (m, 46H), 0.98-0.76 (m, 6H). 13C NMR (101 MHz, CDCl3) δ 130.41, 130.37, 128.18, 128.15, 77.54, 77.22, 76.91, 72.25, 37.73, 31.75, 29.94, 29.89, 29.83, 29.73, 29.58, 29.53, 27.46, 27.43, 25.89, 25.86, 22.80, 14.30.
Preparation of [6Z,9Z,28Z,31Z)-heptatriaconta-6,9,28,31-tetraen-19-yl-4- (dimethylamino) butanoate] MC3 (8):
The dilinoleyl methanol 6 (144 g, 272 mmol) was dissolved in 1 L of dichloromethane and to it the hydrochloride salt of dimethylaminobutyric acid 7 (55 g, 328 mmol) was added followed by diisopropylethylamine (70 mL) and DMAP (4 g). After stirring for 5 min. at ambient temperature, EDCI (80 g, 417 mmol) was added and the reaction mixture was stirred at room temperature overnight after which the TLC (silica gel, 5% MeOH in CH2Cl2) analysis showed complete disappearance of the starting alcohol. The reaction mixture was diluted with CH2Cl2 (500 mL) and washed with saturated NaHCO3 (400 mL), water (400 mL) and brine (500 mL). The combined organic layers were dried over anhyd. Na2SO4 and solvents were removed in vacuo. The crude product (180 g) thus obtained was purified by Flash column chromatography [2.5 Kg silica gel, Using the following eluents i) column packed with 6L of 0.1% NEt3 in DCM; after loading ii) 4 L of 0.1% NEt3 in DCM; iii) 16L of 2% MeOH - 98% of 0.1% NEt3 in DCM; iv) 4L of 2.5% MeOH - 97.5% of 0.1% NEt3 in DCM; v) 12L of 3% MeOH - 97% of 0.1% NEt3 in DCM] to isolate the pure product 8 (MC3, 159 g, 91%) as a colorless oil. 1H NMR (400 MHz, CDCl3): δ 5.46-5.23 (m, 8H), 4.93-4.77 (m, IH), 2.83-2.66 (m, 4H), 2.37-2.22 (m, 4H), 2.20 (s, 6H), 2.10- 1.96 (m, 9H), 1.85-1.69 (m, 2H), 1.49 (d, / = 5.4, 4H), 1.39-1.15 (m, 39H), 0.95- 0.75 (m, 6H). 13C NMR (101 MHz, CDCl3): δ 173.56, 130.38, 130.33, 128.17, 128.14, 77.54, 77.22, 76.90, 74.44, 59.17, 45.64, 34.36, 32.69, 31.73, 29.87, 29.76, 29.74, 29.70, 29.56, 29.50, 27.44, 27.41, 25.84, 25.55, 23.38, 22.78, 14.27. EI-MS (+ve): MW calc. for C43H79NO2 (M+ H)+: 642.6, found: 642.6. Example 17. siRNA Formulation Using Preformed Vesicles
Cationic lipid containing particles were made using the preformed vesicle method. Cationic lipid, DSPC, cholesterol and PEG-lipid were solubilised in ethanol at a molar ratio of 40/10/40/10, respectively. The lipid mixture was added to an aqueous buffer (5OmM citrate, pH 4) with mixing to a final ethanol and lipid concentration of 30% (vol/vol) and 6.1 mg/mL respectively and allowed to equilibrate at room temperature for 2 min before extrusion. The hydrated lipids were extruded through two stacked 80 nm pore- sized filters (Nuclepore) at 22°C using a Lipex Extruder (Northern Lipids, Vancouver, BC) until a vesicle diameter of 70-90 nm, as determined by Nicomp analysis, was obtained. This generally required 1-3 passes. For some cationic lipid mixtures which did not form small vesicles hydrating the lipid mixture with a lower pH buffer (5OmM citrate, pH 3) to protonate the phosphate group on the DSPC headgroup helped form stable 70-90 nm vesicles.
The FVII siRNA (solubilised in a 5OmM citrate, pH 4 aqueous solution containing 30% ethanol) was added to the vesicles, pre-equilibrated to 35°C, at a rate of ~5mL/min with mixing. After a final target siRNA/lipid ratio of 0.06 (wt/wt) was achieved, the mixture was incubated for a further 30 min at 35°C to allow vesicle reorganization and encapsulation of the FVII siRNA. The ethanol was then removed and the external buffer replaced with PBS (155mM NaCl, 3mM Na2HPO4, ImM KH2PO4, pH 7.5) by either dialysis or tangential flow diafiltration. The final encapsulated siRNA-to-lipid ratio was determined after removal of unencapsulated siRNA using size-exclusion spin columns or ion exchange spin columns. The dose response curve illustrating the % residual FVII again the dose (mg/kg) is illustrated in figure 9.
Example 18. pKa Determination of a Cationic Lipid of Formula I
The pKa of the cationic lipid of formula I was determined essentially as described (Eastman et al 1992 Biochemistry 31:4262-4268) using the fluorescent probe 2-(p- toluidino)-6-naphthalenesulfonic acid (TNS), which is non-fluorescent in water but becomes appreciably fluorescent when bound to membranes. Vesicles composed of cationic lipid/DSPC/CH/PEG-c-DOMG (40:10:40:10 mole ratio) were diluted to 0.ImM in buffers (13OmM NaCl, 1OmM CH3COONH4, 1OmM MES, 1OmM HEPES) of various pH's, ranging from 2 to 11. An aliquot of the TNS aqueous solution (1 μM final) was added to the diluted vesicles and after a 30 second equilibration period the fluorescent of the TNS-containing solution was measured at excitation and emission wavelengths of 321nm and 445nm, respectively. The pKa of the cationic lipid-containing vesicles was determined by plotting the measured fluorescence against the pH of the solutions and fitting the data to a Sigmodial curve using the commercial graphing program IgorPro. The pKa titration curve for the cationic lipid of formula I is shown in figure 10.

Claims

WHAT IS CLAIMED IS:
1. A cationic lipid of formula I:
Figure imgf000163_0001
or a pharmaceutically acceptable salt thereof.
2. A lipid formulation comprising a cationic lipid of claim 1.
3. The lipid formulation of claim 2, comprising 40-65% of cationic lipid of formula I, 5-10% of the neutral lipid, 25-40% of the sterol, and 0.5-10% of the PEG or PEG- modified lipid.
4. The lipid formulation of claim 2, wherein the neutral lipid is selected from DSPC, DPPC, DMPC, POPC, DOPE and SM.
5. The lipid formulation of claim 2, wherein the sterol is cholesterol.
6. The lipid formulation of claim 2, wherein the PEG lipid is PEG-Ci4 to PEG-C22, PEG-Cer14 to PEG-C20, or PEG-DSPE.
7. The lipid formulation of claim 2, wherein the formulation is prepared by an in-line mixing method.
8. The lipid formulation of claim 2, comprising about 57.5% of cationic lipid of formula I, about 7.5% of the neutral lipid, about 31.5 % of the sterol, and about 3.5% of the PEG or PEG-modified lipid.
9. The lipid formulation of claim 8, wherein the formulation is prepared by an extrusion method.
10. The lipid formulation of claim 2, further comprising a therapeutic agent.
11. The lipid formulation of claim 10, wherein the therapeutic agent comprises a nucleic acid.
12. The lipid formulation of claim 11, wherein the nucleic acid is selected from the group consisting of an siRNA, antisense nucleic acid, a microRNA, an antimicroRNA, an antagomir, a microRNA inhibitor, a microRNA activator, an immune stimulatory nucleic acid or a Ul adaptor.
13. The lipid formulation of claim 12, wherein the ratio of lipid:nucleic acid is about 3 to about 15.
14. The lipid formulation of claim 13, wherein the ratio of lipid:nucleic acid about 5 to about 13.
15. The lipid formulation of claim 2, further comprising at least one apolipoprotein.
16. The lipid formulation of claim 15, wherein the apolipotprotein is ApoE, active polymorphic forms, isoforms, variants and mutants, and fragments or truncated forms thereof.
17. The lipid formulation of claim 2, further comprising a targeting lipid..
18. The formulation of claim 17, wherein the targeting lipid comprises N-acetyl galactosamine.
19. The formulation of claim 18, wherein the N-acetyl galactosamine comprises at least a mono-, bi- or a triantennary sugar unit
20. The formulation of claim 17, wherein said targeting lipid is present in the formulation in a molar amount of from about 0.001% to about 5%.
21. The formulation of claim 17, wherein said targeting lipid is the compound selected from the group consisting of Formula II, Formula III, Formula VI and
Figure imgf000165_0001
Figure imgf000166_0001
22. The lipid formulation of claim 2, comprising about 50% of cationic lipid of formula I, about 10% of the neutral lipid, about 38.5 % of the sterol, and about 1.5% of the PEG or PEG-modified lipid.
23. The lipid formulation of claim 2, comprising about 50% of cationic lipid of formula I, about 10% of the neutral lipid, about 35% of the sterol, and about 5% of the PEG or PEG-modified lipid.
24. The lipid formulation of claim 2, comprising about 57.2% of cationic lipid of formula I, about 7.1% of the neutral lipid, about 34.3% of the sterol, and about 1.4% of the PEG or PEG-modified lipid.
25. A method of delivering a therapeutic agent to a cell comprising administering to a subject the lipid formulation of claim 10.
26. The method of claim 25, wherein the therapeutic agent is a dsRNA.
27. The method of claim 26, wherein the target gene is Factor VII.
28. The method of claim 26, further comprising comparing expression of the target gene with a preselected reference value.
29. The method of claim 26, wherein the therapeutic agent is an antisense, siRNA, ribozyme or microRNA.
30. A method of modulating the expression of a target gene in a cell, the method comprising providing to a cell the lipid formulation of claim 10.
PCT/US2010/038224 2009-06-10 2010-06-10 Improved lipid formulation WO2010144740A1 (en)

Priority Applications (35)

Application Number Priority Date Filing Date Title
LTEP10786869.7T LT2440183T (en) 2009-06-10 2010-06-10 Improved lipid formulation
KR1020237021486A KR20230098713A (en) 2009-06-10 2010-06-10 Improved lipid formulation
KR1020227007948A KR20220038506A (en) 2009-06-10 2010-06-10 Improved lipid formulation
PL10786869T PL2440183T3 (en) 2009-06-10 2010-06-10 Improved lipid formulation
NZ596958A NZ596958A (en) 2009-06-10 2010-06-10 Improved lipid formulation
KR1020127000749A KR101766408B1 (en) 2009-06-10 2010-06-10 Improved lipid formulation
MX2016013324A MX367665B (en) 2009-06-10 2010-06-10 Improved lipid formulation.
SG2011091543A SG176786A1 (en) 2009-06-10 2010-06-10 Improved lipid formulation
KR1020177021633A KR101987962B1 (en) 2009-06-10 2010-06-10 Improved lipid formulation
DK10786869.7T DK2440183T3 (en) 2009-06-10 2010-06-10 Improved lipid formulation
KR1020197015933A KR102066189B1 (en) 2009-06-10 2010-06-10 Improved lipid formulation
CA2764609A CA2764609C (en) 2009-06-10 2010-06-10 Improved cationic lipid of formula i
SI201031754T SI2440183T1 (en) 2009-06-10 2010-06-10 Improved lipid formulation
JP2012515160A JP5819291B2 (en) 2009-06-10 2010-06-10 Improved lipid formulation
KR1020217001355A KR102374518B1 (en) 2009-06-10 2010-06-10 Improved lipid formulation
EA201190306A EA024960B1 (en) 2009-06-10 2010-06-10 Improved lipid formulation
ES10786869.7T ES2689168T3 (en) 2009-06-10 2010-06-10 Enhanced Lipid Formulation
MX2011013320A MX2011013320A (en) 2009-06-10 2010-06-10 Improved lipid formulation.
EP10786869.7A EP2440183B1 (en) 2009-06-10 2010-06-10 Improved lipid formulation
CN201080026228.8A CN102625696B (en) 2009-06-10 2010-06-10 Improved lipid formulation
MX2015003232A MX342785B (en) 2009-06-10 2010-06-10 Improved lipid formulation.
PL18174274T PL3431076T3 (en) 2009-06-10 2010-06-10 Improved lipid formulation
AU2010259984A AU2010259984B2 (en) 2009-06-10 2010-06-10 Improved lipid formulation
KR1020207000445A KR102205886B1 (en) 2009-06-10 2010-06-10 Improved lipid formulation
EP18174274.3A EP3431076B1 (en) 2009-06-10 2010-06-10 Improved lipid formulation
IL216876A IL216876A (en) 2009-06-10 2011-12-08 Cationic lipid, lipid formulations comprising same and use thereof in the preparation of therapeutic agents for delivering to cells
IL244945A IL244945B (en) 2009-06-10 2016-04-06 Cationic lipid, lipid formulations comprising same and use thereof in the preparation of therapeutic agents for delivering to cells
AU2017202702A AU2017202702B2 (en) 2009-06-10 2017-04-24 Improved lipid formulation
HRP20181221TT HRP20181221T1 (en) 2009-06-10 2018-08-01 Improved lipid formulation
CY181100865T CY1120641T1 (en) 2009-06-10 2018-08-17 IMPROVED LIPID FORMULATION
AU2019204984A AU2019204984B2 (en) 2009-06-10 2019-07-11 Improved lipid formulation
IL274826A IL274826A (en) 2009-06-10 2020-05-21 Improved lipid formulation
AU2021201228A AU2021201228B2 (en) 2009-06-10 2021-02-25 Improved lipid formulation
CY20211101066T CY1124769T1 (en) 2009-06-10 2021-12-06 IMPROVED LIPID FORMULATION
IL290077A IL290077A (en) 2009-06-10 2022-01-24 Improved lipid formulation

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US18580009P 2009-06-10 2009-06-10
US61/185,800 2009-06-10
US24483409P 2009-09-22 2009-09-22
US61/244,834 2009-09-22

Publications (1)

Publication Number Publication Date
WO2010144740A1 true WO2010144740A1 (en) 2010-12-16

Family

ID=43309230

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2010/038224 WO2010144740A1 (en) 2009-06-10 2010-06-10 Improved lipid formulation

Country Status (24)

Country Link
US (4) US8158601B2 (en)
EP (2) EP2440183B1 (en)
JP (4) JP5819291B2 (en)
KR (7) KR102205886B1 (en)
CN (2) CN104873464B (en)
AU (4) AU2010259984B2 (en)
CA (2) CA2764609C (en)
CY (2) CY1120641T1 (en)
DK (2) DK3431076T3 (en)
EA (3) EA024960B1 (en)
ES (2) ES2901627T3 (en)
HK (1) HK1212620A1 (en)
HR (2) HRP20211619T1 (en)
HU (2) HUE038796T2 (en)
IL (4) IL216876A (en)
LT (2) LT2440183T (en)
MX (4) MX367665B (en)
NZ (3) NZ596958A (en)
PL (2) PL2440183T3 (en)
PT (2) PT2440183T (en)
SG (3) SG10201403054SA (en)
SI (2) SI3431076T1 (en)
TR (1) TR201811076T4 (en)
WO (1) WO2010144740A1 (en)

Cited By (243)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011141704A1 (en) 2010-05-12 2011-11-17 Protiva Biotherapeutics, Inc Novel cyclic cationic lipids and methods of use
WO2011141705A1 (en) 2010-05-12 2011-11-17 Protiva Biotherapeutics, Inc. Novel cationic lipids and methods of use thereof
WO2012000104A1 (en) * 2010-06-30 2012-01-05 Protiva Biotherapeutics, Inc. Non-liposomal systems for nucleic acid delivery
WO2012024170A2 (en) 2010-08-17 2012-02-23 Merck Sharp & Dohme Corp. RNA INTERFERENCE MEDIATED INHIBITION OF HEPATITIS B VIRUS (HBV) GENE EXPRESSION USING SHORT INTERFERING NUCLEIC ACID (siNA)
WO2012027467A1 (en) 2010-08-26 2012-03-01 Merck Sharp & Dohme Corp. RNA INTERFERENCE MEDIATED INHIBITION OF PROLYL HYDROXYLASE DOMAIN 2 (PHD2) GENE EXPRESSION USING SHORT INTERFERING NUCLEIC ACID (siNA)
WO2012040184A2 (en) 2010-09-20 2012-03-29 Merck Sharp & Dohme Corp. Novel low molecular weight cationic lipids for oligonucleotide delivery
WO2012016188A3 (en) * 2010-07-30 2012-04-12 Alnylam Pharmaceuticals, Inc. Methods and compositions for delivery of active agents
WO2012054365A2 (en) 2010-10-21 2012-04-26 Merck Sharp & Dohme Corp. Novel low molecular weight cationic lipids for oligonucleotide delivery
US8168775B2 (en) 2008-10-20 2012-05-01 Alnylam Pharmaceuticals, Inc. Compositions and methods for inhibiting expression of transthyretin
WO2012061259A2 (en) 2010-11-05 2012-05-10 Merck Sharp & Dohme Corp. Novel low molecular weight cyclic amine containing cationic lipids for oligonucleotide delivery
US8273869B2 (en) 2009-06-15 2012-09-25 Alnylam Pharmaceuticals, Inc. Lipid formulated dsRNA targeting the PCSK9 gene
US8293719B2 (en) 2004-03-12 2012-10-23 Alnylam Pharmaceuticals, Inc. iRNA agents targeting VEGF
US8466122B2 (en) 2010-09-17 2013-06-18 Protiva Biotherapeutics, Inc. Trialkyl cationic lipids and methods of use thereof
US20130245107A1 (en) * 2011-12-16 2013-09-19 modeRNA Therapeutics Dlin-mc3-dma lipid nanoparticle delivery of modified polynucleotides
WO2014008334A1 (en) 2012-07-06 2014-01-09 Alnylam Pharmaceuticals, Inc. Stable non-aggregating nucleic acid lipid particle formulations
US20140010861A1 (en) * 2012-04-02 2014-01-09 modeRNA Therapeutics Modified polynucleotides for the production of proteins associated with human disease
KR20140039298A (en) * 2011-06-21 2014-04-01 알닐람 파마슈티칼스 인코포레이티드 Compositions and methods for inhibition of expression of apolipoprotein c-iii(apoc3) genes
EP2714971A1 (en) * 2011-05-23 2014-04-09 Phylogica Limited Method of determining, identifying or isolating cell-penetrating peptides
EP2723758A2 (en) * 2011-06-21 2014-04-30 Alnylam Pharmaceuticals Angiopoietin-like 3 (angptl3) irna compostions and methods of use thereof
US8809292B2 (en) 2006-05-11 2014-08-19 Alnylam Pharmaceuticals, Inc Compositions and methods for inhibiting expression of the PCSK9 gene
US8822663B2 (en) 2010-08-06 2014-09-02 Moderna Therapeutics, Inc. Engineered nucleic acids and methods of use thereof
US8853377B2 (en) 2010-11-30 2014-10-07 Shire Human Genetic Therapies, Inc. mRNA for use in treatment of human genetic diseases
WO2014179627A2 (en) 2013-05-01 2014-11-06 Isis Pharmaceuticals, Inc. Compositions and methods for modulating hbv and ttr expression
US8980864B2 (en) 2013-03-15 2015-03-17 Moderna Therapeutics, Inc. Compositions and methods of altering cholesterol levels
US9029338B2 (en) 2009-08-14 2015-05-12 Alnylam Pharmaceuticals, Inc. Lipid formulated compositions and methods for inhibiting expression of a gene from the ebola virus
US9035039B2 (en) 2011-12-22 2015-05-19 Protiva Biotherapeutics, Inc. Compositions and methods for silencing SMAD4
WO2015075557A2 (en) 2013-11-22 2015-05-28 Mina Alpha Limited C/ebp alpha compositions and methods of use
US9051567B2 (en) 2009-06-15 2015-06-09 Tekmira Pharmaceuticals Corporation Methods for increasing efficacy of lipid formulated siRNA
JP2015518705A (en) * 2012-04-02 2015-07-06 モデルナ セラピューティクス インコーポレイテッドModerna Therapeutics,Inc. Modified polynucleotides for the production of biologics and proteins associated with human diseases
JP2015519047A (en) * 2012-04-26 2015-07-09 アルナイラム ファーマシューティカルズ, インコーポレイテッドAlnylam Pharmaceuticals, Inc. Serpin1 iRNA compositions and methods of use thereof
US9101643B2 (en) 2009-11-03 2015-08-11 Alnylam Pharmaceuticals, Inc. Lipid formulated compositions and methods for inhibiting expression of transthyretin (TTR)
US9107886B2 (en) 2012-04-02 2015-08-18 Moderna Therapeutics, Inc. Modified polynucleotides encoding basic helix-loop-helix family member E41
WO2015168172A1 (en) 2014-04-28 2015-11-05 Isis Pharmaceuticals, Inc. Linkage modified oligomeric compounds
WO2015168589A2 (en) 2014-05-01 2015-11-05 Isis Pharmaceuticals, Inc. Compositions and methods for modulating angiopoietin-like 3 expression
WO2015168618A2 (en) 2014-05-01 2015-11-05 Isis Pharmaceuticals, Inc. Compositions and methods for modulating growth hormone receptor expression
US9181321B2 (en) 2013-03-14 2015-11-10 Shire Human Genetic Therapies, Inc. CFTR mRNA compositions and related methods and uses
US9187746B2 (en) 2009-09-22 2015-11-17 Alnylam Pharmaceuticals, Inc. Dual targeting siRNA agents
US9206421B2 (en) 2008-09-25 2015-12-08 Alnylam Pharmaceuticals, Inc. Lipid formulated compositions and methods for inhibiting expression of serum amyloid A gene
US9228186B2 (en) 2002-11-14 2016-01-05 Thermo Fisher Scientific Inc. Methods and compositions for selecting siRNA of improved functionality
US9283287B2 (en) 2012-04-02 2016-03-15 Moderna Therapeutics, Inc. Modified polynucleotides for the production of nuclear proteins
US9308281B2 (en) 2011-06-08 2016-04-12 Shire Human Genetic Therapies, Inc. MRNA therapy for Fabry disease
US9334328B2 (en) 2010-10-01 2016-05-10 Moderna Therapeutics, Inc. Modified nucleosides, nucleotides, and nucleic acids, and uses thereof
WO2016069694A3 (en) * 2014-10-30 2016-06-23 Alnylam Pharmaceuticals, Inc. Polynucleotide agents targeting serpinc1 (at3) and methods of use thereof
US9399775B2 (en) 2011-11-18 2016-07-26 Alnylam Pharmaceuticals, Inc. RNAi agents, compositions and methods of use thereof for treating transthyretin (TTR) associated diseases
US9428535B2 (en) 2011-10-03 2016-08-30 Moderna Therapeutics, Inc. Modified nucleosides, nucleotides, and nucleic acids, and uses thereof
US9464124B2 (en) 2011-09-12 2016-10-11 Moderna Therapeutics, Inc. Engineered nucleic acids and methods of use thereof
US9522176B2 (en) 2013-10-22 2016-12-20 Shire Human Genetic Therapies, Inc. MRNA therapy for phenylketonuria
US9533047B2 (en) 2011-03-31 2017-01-03 Modernatx, Inc. Delivery and formulation of engineered nucleic acids
US9566295B2 (en) 2008-12-10 2017-02-14 Alnylam Pharmaceuticals, Inc. GNAQ targeted dsRNA compositions and methods for inhibiting expression
US9572897B2 (en) 2012-04-02 2017-02-21 Modernatx, Inc. Modified polynucleotides for the production of cytoplasmic and cytoskeletal proteins
US9597380B2 (en) 2012-11-26 2017-03-21 Modernatx, Inc. Terminally modified RNA
WO2017053722A1 (en) 2015-09-24 2017-03-30 Ionis Pharmaceuticals, Inc. Modulators of kras expression
WO2017079745A1 (en) 2015-11-06 2017-05-11 Ionis Pharmaceuticals, Inc. Conjugated antisense compounds for use in therapy
WO2017099823A1 (en) * 2015-12-10 2017-06-15 Modernatx, Inc. Compositions and methods for delivery of therapeutic agents
US9850269B2 (en) 2014-04-25 2017-12-26 Translate Bio, Inc. Methods for purification of messenger RNA
WO2017222016A1 (en) 2016-06-24 2017-12-28 エーザイ・アール・アンド・ディー・マネジメント株式会社 Cationic lipid
US20180002393A1 (en) * 2012-04-02 2018-01-04 Modernatx, Inc. Modified polynucleotides for the production of oncology-related proteins and peptides
WO2018014041A2 (en) 2016-07-15 2018-01-18 Ionis Pharmaceuticals, Inc. Compounds and methods for modulation of smn2
US9872900B2 (en) 2014-04-23 2018-01-23 Modernatx, Inc. Nucleic acid vaccines
US9873669B2 (en) 2014-01-09 2018-01-23 Eisai R&D Management Co., Ltd. Cationic lipid
EP3151839A4 (en) * 2014-06-06 2018-02-28 Ionis Pharmaceuticals, Inc. Compositions and methods for enhanced intestinal absorption of conjugated oligomeric compounds
US20180086816A1 (en) * 2013-03-13 2018-03-29 Modernatx, Inc. Long-lived polynucleotide molecules
US9957499B2 (en) 2013-03-14 2018-05-01 Translate Bio, Inc. Methods for purification of messenger RNA
EP3327125A1 (en) 2010-10-29 2018-05-30 Sirna Therapeutics, Inc. Rna interference mediated inhibition of gene expression using short interfering nucleic acids (sina)
US10023861B2 (en) 2011-08-29 2018-07-17 Ionis Pharmaceuticals, Inc. Oligomer-conjugate complexes and their use
WO2018146506A1 (en) * 2017-02-10 2018-08-16 Universitat Politècnica De València Therapeutic derivatives
US10060921B2 (en) 2014-08-29 2018-08-28 Alnylam Pharmaceuticals, Inc. Methods of treating transthyretin (TTR) mediated amyloidosis
US10081598B2 (en) 2014-12-26 2018-09-25 Eisai R&D Management Co., Ltd. Cationic lipid
WO2018213476A1 (en) 2017-05-16 2018-11-22 Translate Bio, Inc. Treatment of cystic fibrosis by delivery of codon-optimized mrna encoding cftr
US10143758B2 (en) 2009-12-01 2018-12-04 Translate Bio, Inc. Liver specific delivery of messenger RNA
WO2018236849A1 (en) 2017-06-19 2018-12-27 Translate Bio, Inc. Messenger rna therapy for the treatment of friedreich's ataxia
EP3434667A1 (en) 2012-04-19 2019-01-30 Sirna Therapeutics, Inc. Novel diester and triester based low molecular weight, biodegradable cationic lipids for oligonucleotide delivery
WO2018033883A3 (en) * 2016-08-18 2019-01-31 University Of Kwazulu Natal Ph-responsive lipids
US10208307B2 (en) 2015-07-31 2019-02-19 Alnylam Pharmaceuticals, Inc. Transthyretin (TTR) iRNA compositions and methods of use thereof for treating or preventing TTR-associated diseases
WO2019048631A1 (en) 2017-09-08 2019-03-14 Mina Therapeutics Limited Hnf4a sarna compositions and methods of use
WO2019048645A1 (en) 2017-09-08 2019-03-14 Mina Therapeutics Limited Stabilized cebpa sarna compositions and methods of use
US10280423B2 (en) 2014-05-01 2019-05-07 Ionis Pharmaceuticals, Inc. Compositions and methods for modulating complement factor B expression
US10323076B2 (en) 2013-10-03 2019-06-18 Modernatx, Inc. Polynucleotides encoding low density lipoprotein receptor
WO2019126593A1 (en) 2017-12-20 2019-06-27 Translate Bio, Inc. Improved composition and methods for treatment of ornithine transcarbamylase deficiency
WO2019131580A1 (en) 2017-12-27 2019-07-04 エーザイ・アール・アンド・ディー・マネジメント株式会社 Cationic lipid
WO2019140452A1 (en) 2018-01-15 2019-07-18 Ionis Pharmaceuticals, Inc. Modulators of dnm2 expression
US10385088B2 (en) 2013-10-02 2019-08-20 Modernatx, Inc. Polynucleotide molecules and uses thereof
WO2019198068A1 (en) * 2018-04-09 2019-10-17 Sabina Glozman Bioxomes particles, redoxomes, method and composition
WO2019197845A1 (en) 2018-04-12 2019-10-17 Mina Therapeutics Limited Sirt1-sarna compositions and methods of use
WO2019217527A1 (en) 2018-05-09 2019-11-14 Ionis Pharmaceuticals, Inc. Compounds and methods for reducing fxi expression
WO2019226925A1 (en) 2018-05-24 2019-11-28 Translate Bio, Inc. Thioester cationic lipids
WO2019232095A1 (en) 2018-05-30 2019-12-05 Translate Bio, Inc. Vitamin cationic lipids
WO2019232103A1 (en) 2018-05-30 2019-12-05 Translate Bio, Inc. Messenger rna vaccines and uses thereof
WO2019232208A1 (en) 2018-05-30 2019-12-05 Translate Bio, Inc. Cationic lipids comprising a steroidal moiety
WO2019232097A1 (en) 2018-05-30 2019-12-05 Translate Bio, Inc. Phosphoester cationic lipids
WO2019235635A1 (en) 2018-06-08 2019-12-12 富士フイルム株式会社 Compound, salt thereof and lipid particles
WO2020023533A1 (en) 2018-07-23 2020-01-30 Translate Bio, Inc. Dry power formulations for messenger rna
US10557137B2 (en) 2015-11-06 2020-02-11 Ionis Pharmaceuticals, Inc. Modulating apolipoprotein (a) expression
WO2020033748A1 (en) 2018-08-08 2020-02-13 Arcturus Therapeutics, Inc. Compositions and agents against nonalcoholic steatohepatitis
US10570169B2 (en) 2014-05-22 2020-02-25 Ionis Pharmaceuticals, Inc. Conjugated antisense compounds and their use
WO2020047061A1 (en) 2018-08-29 2020-03-05 Translate Bio, Inc. Improved process of preparing mrna-loaded lipid nanoparticles
US10590161B2 (en) 2013-03-15 2020-03-17 Modernatx, Inc. Ion exchange purification of mRNA
WO2020056294A1 (en) 2018-09-14 2020-03-19 Translate Bio, Inc. Composition and methods for treatment of methylmalonic acidemia
WO2020061200A1 (en) 2018-09-19 2020-03-26 Ionis Pharmaceuticals, Inc. Modulators of pnpla3 expression
WO2020081933A1 (en) 2018-10-19 2020-04-23 Translate Bio, Inc. Pumpless encapsulation of messenger rna
WO2020097379A2 (en) 2018-11-09 2020-05-14 Translate Bio, Inc. Peg lipidoid compounds
WO2020097511A2 (en) 2018-11-09 2020-05-14 Translate Bio, Inc. Messenger rna therapy for treatment of ocular diseases
WO2020097376A1 (en) 2018-11-09 2020-05-14 Translate Bio, Inc. Multi-peg lipid compounds
WO2020097384A1 (en) 2018-11-09 2020-05-14 Translate Bio, Inc. 2,5-dioxopiperazine lipids with intercalated ester, thioester, disulfide and anhydride moieities
WO2020102172A2 (en) 2018-11-12 2020-05-22 Translate Bio, Inc. Methods for inducing immune tolerance
WO2020106903A1 (en) 2018-11-21 2020-05-28 Translate Bio, Inc. Cationic lipid compounds and compositions thereof for use in the delivery of messenger rna
WO2020146344A1 (en) 2019-01-07 2020-07-16 Translate Bio, Inc. Composition and methods for treatment of primary ciliary dyskinesia
US10730924B2 (en) 2016-05-18 2020-08-04 Modernatx, Inc. Polynucleotides encoding relaxin
WO2020206231A1 (en) 2019-04-05 2020-10-08 Precision Biosciences, Inc. Methods of preparing populations of genetically-modified immune cells
WO2020208361A1 (en) 2019-04-12 2020-10-15 Mina Therapeutics Limited Sirt1-sarna compositions and methods of use
WO2020214946A1 (en) 2019-04-18 2020-10-22 Translate Bio, Inc. Cystine cationic lipids
US10815291B2 (en) 2013-09-30 2020-10-27 Modernatx, Inc. Polynucleotides encoding immune modulating polypeptides
WO2020219427A1 (en) 2019-04-22 2020-10-29 Translate Bio, Inc. Thioester cationic lipids
US10821175B2 (en) 2014-02-25 2020-11-03 Merck Sharp & Dohme Corp. Lipid nanoparticle vaccine adjuvants and antigen delivery systems
WO2020227085A1 (en) 2019-05-03 2020-11-12 Translate Bio, Inc. Di-thioester cationic lipids
WO2020243540A1 (en) 2019-05-31 2020-12-03 Translate Bio, Inc. Macrocyclic lipids
WO2020246581A1 (en) 2019-06-07 2020-12-10 富士フイルム株式会社 Lipid composition
WO2020257611A1 (en) 2019-06-21 2020-12-24 Translate Bio, Inc. Cationic lipids comprising an hydroxy moiety
WO2020257716A1 (en) 2019-06-21 2020-12-24 Translate Bio, Inc. Tricine and citric acid lipids
WO2021007278A1 (en) 2019-07-08 2021-01-14 Translate Bio, Inc. Improved mrna-loaded lipid nanoparticles and processes of making the same
WO2021016430A1 (en) 2019-07-23 2021-01-28 Translate Bio, Inc. Stable compositions of mrna-loaded lipid nanoparticles and processes of making
WO2021030701A1 (en) 2019-08-14 2021-02-18 Acuitas Therapeutics, Inc. Improved lipid nanoparticles for delivery of nucleic acids
WO2021055609A1 (en) 2019-09-20 2021-03-25 Translate Bio, Inc. Mrna encoding engineered cftr
WO2021052470A1 (en) 2019-09-20 2021-03-25 中美瑞康核酸技术(南通)研究院有限公司 Nucleic acid molecule for treating immune thrombocytopenia and application thereof
WO2021074772A1 (en) 2019-10-14 2021-04-22 Astrazeneca Ab Modulators of pnpla3 expression
WO2021081058A1 (en) 2019-10-21 2021-04-29 Translate Bio, Inc. Compositions, methods and uses of messenger rna
WO2021095876A1 (en) 2019-11-15 2021-05-20 富士フイルム株式会社 Lipid composition
US11027025B2 (en) * 2013-07-11 2021-06-08 Modernatx, Inc. Compositions comprising synthetic polynucleotides encoding CRISPR related proteins and synthetic sgRNAs and methods of use
WO2021127394A2 (en) 2019-12-20 2021-06-24 Translate Bio, Inc. Rectal delivery of messenger rna
WO2021127641A1 (en) 2019-12-20 2021-06-24 Translate Bio, Inc. Improved process of preparing mrna-loaded lipid nanoparticles
WO2021142245A1 (en) 2020-01-10 2021-07-15 Translate Bio, Inc. Compounds, pharmaceutical compositions and methods for modulating expression of muc5b in lung cells and tissues
US11077197B2 (en) 2008-11-10 2021-08-03 Arbutus Biopharma Corporation Lipids and compositions for the delivery of therapeutics
EP3862362A2 (en) 2014-05-01 2021-08-11 Ionis Pharmaceuticals, Inc. Conjugates of modified antisense oligonucleotides and their use for modulating pkk expression
US11091759B2 (en) 2015-12-07 2021-08-17 Genzyme Corporation Methods and compositions for treating a Serpinc1-associated disorder
WO2021173840A1 (en) 2020-02-25 2021-09-02 Translate Bio, Inc. Improved processes of preparing mrna-loaded lipid nanoparticles
WO2021195214A1 (en) 2020-03-24 2021-09-30 Generation Bio Co. Non-viral dna vectors and uses thereof for expressing factor ix therapeutics
WO2021195218A1 (en) 2020-03-24 2021-09-30 Generation Bio Co. Non-viral dna vectors and uses thereof for expressing gaucher therapeutics
US11149264B2 (en) 2018-02-12 2021-10-19 Ionis Pharmaceuticals, Inc. Modified compounds and uses thereof
CN113546180A (en) * 2021-05-25 2021-10-26 重庆医科大学 Gene delivery vector with myocardial targeting and preparation method thereof
WO2021226463A1 (en) 2020-05-07 2021-11-11 Translate Bio, Inc. Composition and methods for treatment of primary ciliary dyskinesia
WO2021226436A1 (en) 2020-05-07 2021-11-11 Translate Bio, Inc. Optimized nucleotide sequences encoding sars-cov-2 antigens
WO2021226468A1 (en) 2020-05-07 2021-11-11 Translate Bio, Inc. Improved compositions for cftr mrna therapy
US11174500B2 (en) 2018-08-24 2021-11-16 Translate Bio, Inc. Methods for purification of messenger RNA
WO2021231901A1 (en) 2020-05-15 2021-11-18 Translate Bio, Inc. Lipid nanoparticle formulations for mrna delivery
WO2021231697A1 (en) 2020-05-14 2021-11-18 Translate Bio, Inc. Peg lipidoid compounds
US11198872B2 (en) 2015-04-13 2021-12-14 Alnylam Pharmaceuticals, Inc. Angiopoietin-like 3 (ANGPTL3) iRNA compositions and methods of use thereof
WO2022006527A1 (en) 2020-07-02 2022-01-06 Maritime Therapeutics, Inc. Compositions and methods for reverse gene therapy
US11224642B2 (en) 2013-10-22 2022-01-18 Translate Bio, Inc. MRNA therapy for argininosuccinate synthetase deficiency
WO2022023284A1 (en) 2020-07-27 2022-02-03 Anjarium Biosciences Ag Compositions of dna molecules, methods of making therefor, and methods of use thereof
US11253605B2 (en) 2017-02-27 2022-02-22 Translate Bio, Inc. Codon-optimized CFTR MRNA
US11254936B2 (en) 2012-06-08 2022-02-22 Translate Bio, Inc. Nuclease resistant polynucleotides and uses thereof
WO2022054955A1 (en) 2020-09-14 2022-03-17 富士フイルム株式会社 Lipid composition
WO2022066678A1 (en) 2020-09-23 2022-03-31 Translate Bio, Inc. Tes-based cationic lipids
WO2022066916A1 (en) 2020-09-23 2022-03-31 Translate Bio, Inc. Piperazine-based cationic lipids
US11299737B1 (en) 2020-02-28 2022-04-12 Ionis Pharmaceuticals, Inc. Compounds and methods for modulating SMN2
WO2022076547A1 (en) 2020-10-07 2022-04-14 Precision Biosciences, Inc. Lipid nanoparticle compositions
WO2022076562A1 (en) 2020-10-06 2022-04-14 Translate Bio, Inc. Improved process and formulation of lipid nanoparticles
WO2022081548A1 (en) 2020-10-12 2022-04-21 Translate Bio, Inc. Improved process of preparing ice-based lipid nanoparticles
WO2022081544A1 (en) 2020-10-12 2022-04-21 Translate Bio, Inc. Improved process of preparing mrna-loaded lipid nanoparticles
US20220125723A1 (en) 2010-07-06 2022-04-28 Glaxosmithkline Biologicals Sa Lipid formulations with viral immunogens
WO2022099194A1 (en) 2020-11-09 2022-05-12 Translate Bio, Inc. Improved compositions for delivery of codon-optimized mrna
WO2022112855A1 (en) 2020-11-27 2022-06-02 Guangzhou Ribobio Co., Ltd Lipid compound and the composition thereof
WO2022115547A1 (en) 2020-11-25 2022-06-02 Translate Bio, Inc. Stable liquid lipid nanoparticle formulations
WO2022122872A1 (en) 2020-12-09 2022-06-16 Ucl Business Ltd Therapeutics for the treatment of neurodegenerative disorders
US11377470B2 (en) 2013-03-15 2022-07-05 Modernatx, Inc. Ribonucleic acid purification
WO2022155404A1 (en) 2021-01-14 2022-07-21 Translate Bio, Inc. Methods and compositions for delivering mrna coded antibodies
US11400161B2 (en) 2016-10-06 2022-08-02 Ionis Pharmaceuticals, Inc. Method of conjugating oligomeric compounds
WO2022169508A1 (en) 2021-02-08 2022-08-11 The Board Of Regents Of The University Of Texas System Unsaturated dendrimers compositions,related formulations, and methods of use thereof
WO2022168884A1 (en) 2021-02-04 2022-08-11 塩野義製薬株式会社 Cationic lipid
US11447521B2 (en) 2020-11-18 2022-09-20 Ionis Pharmaceuticals, Inc. Compounds and methods for modulating angiotensinogen expression
WO2022204549A1 (en) 2021-03-25 2022-09-29 Translate Bio, Inc. Optimized nucleotide sequences encoding the extracellular domain of human ace2 protein or a portion thereof
WO2022200810A1 (en) 2021-03-26 2022-09-29 Mina Therapeutics Limited Tmem173 sarna compositions and methods of use
US11458106B2 (en) 2016-05-09 2022-10-04 Astrazeneca Ab Lipid nanoparticles comprising lipophilic anti-inflammatory agents and methods of use thereof
WO2022221688A1 (en) 2021-04-15 2022-10-20 Translate Bio, Inc. "good"buffer-based cationic lipids
WO2022223556A1 (en) 2021-04-20 2022-10-27 Anjarium Biosciences Ag Compositions of dna molecules encoding amylo-alpha-1, 6-glucosidase, 4-alpha-glucanotransferase, methods of making thereof, and methods of use thereof
WO2022225918A1 (en) 2021-04-19 2022-10-27 Translate Bio, Inc. Improved compositions for delivery of mrna
WO2022232286A1 (en) 2021-04-27 2022-11-03 Generation Bio Co. Non-viral dna vectors expressing anti-coronavirus antibodies and uses thereof
WO2022232289A1 (en) 2021-04-27 2022-11-03 Generation Bio Co. Non-viral dna vectors expressing therapeutic antibodies and uses thereof
EP4092119A2 (en) 2015-07-10 2022-11-23 Ionis Pharmaceuticals, Inc. Modulators of diacyglycerol acyltransferase 2 (dgat2)
WO2022246571A1 (en) * 2021-05-28 2022-12-01 Nanovation Therapeutics Inc. Mc3-type lipids and use thereof in the preparation of lipid nanoparticles
WO2023278754A1 (en) 2021-07-01 2023-01-05 Translate Bio, Inc. Compositions for delivery of mrna
WO2023278811A1 (en) 2021-07-01 2023-01-05 Indapta Therapeutics, Inc. Engineered natural killer (nk) cells and related methods
US11555050B2 (en) 2015-10-02 2023-01-17 Roche Innovation Center Copenhagen A/S Oligonucleotide conjugation process
WO2023010135A1 (en) 2021-07-30 2023-02-02 Tune Therapeutics, Inc. Compositions and methods for modulating expression of methyl-cpg binding protein 2 (mecp2)
WO2023010133A2 (en) 2021-07-30 2023-02-02 Tune Therapeutics, Inc. Compositions and methods for modulating expression of frataxin (fxn)
US11590229B2 (en) 2011-12-07 2023-02-28 Alnylam Pharmaceuticals, Inc. Biodegradable lipids for the delivery of active agents
US11596645B2 (en) 2010-07-06 2023-03-07 Glaxosmithkline Biologicals Sa Delivery of RNA to trigger multiple immune pathways
US11613751B2 (en) 2021-03-04 2023-03-28 Alnylam Pharmaceuticals, Inc. Angiopoietin-like 3 (ANGPTL3) iRNA compositions and methods of use thereof
WO2023056440A1 (en) 2021-10-01 2023-04-06 Adarx Pharmaceuticals, Inc. Prekallikrein-modulating compositions and methods of use thereof
US11639370B2 (en) 2010-10-11 2023-05-02 Glaxosmithkline Biologicals Sa Antigen delivery platforms
WO2023081526A1 (en) 2021-11-08 2023-05-11 Orna Therapeutics, Inc. Lipid nanoparticle compositions for delivering circular polynucleotides
KR20230068047A (en) 2021-11-10 2023-05-17 주식회사 에스엠엘바이오팜 A pharmaceutical composition of lipid nano particle for delivering nucleic acid drug comprising trehalose derivitive and novel structural lipid compound
WO2023086893A1 (en) 2021-11-10 2023-05-19 Translate Bio, Inc. Composition and methods for treatment of primary ciliary dyskinesia
US11655475B2 (en) 2010-07-06 2023-05-23 Glaxosmithkline Biologicals Sa Immunisation of large mammals with low doses of RNA
WO2023089522A1 (en) 2021-11-18 2023-05-25 Astrazeneca Ab Novel lipids for delivery of nucleic acid segments
WO2023099884A1 (en) 2021-12-01 2023-06-08 Mina Therapeutics Limited Pax6 sarna compositions and methods of use
WO2023104964A1 (en) 2021-12-09 2023-06-15 Ucl Business Ltd Therapeutics for the treatment of neurodegenerative disorders
WO2023133595A2 (en) 2022-01-10 2023-07-13 Sana Biotechnology, Inc. Methods of ex vivo dosing and administration of lipid particles or viral vectors and related systems and uses
WO2023135273A2 (en) 2022-01-14 2023-07-20 Anjarium Biosciences Ag Compositions of dna molecules encoding factor viii, methods of making thereof, and methods of use thereof
WO2023150647A1 (en) 2022-02-02 2023-08-10 Sana Biotechnology, Inc. Methods of repeat dosing and administration of lipid particles or viral vectors and related systems and uses
WO2023170435A1 (en) 2022-03-07 2023-09-14 Mina Therapeutics Limited Il10 sarna compositions and methods of use
US11759422B2 (en) 2010-08-31 2023-09-19 Glaxosmithkline Biologicals Sa Pegylated liposomes for delivery of immunogen-encoding RNA
WO2023178167A1 (en) 2022-03-16 2023-09-21 Translate Bio, Inc. Asymmetric piperazine-based cationic lipids
WO2023176821A1 (en) 2022-03-15 2023-09-21 富士フイルム株式会社 Lipid composition
WO2023177655A1 (en) 2022-03-14 2023-09-21 Generation Bio Co. Heterologous prime boost vaccine compositions and methods of use
WO2023198857A1 (en) 2022-04-13 2023-10-19 Sanofi "good" buffer-based cationic lipids
US11806360B2 (en) 2017-09-19 2023-11-07 Alnylam Pharmaceuticals, Inc. Compositions and methods for treating transthyretin (TTR) mediated amyloidosis
WO2023239756A1 (en) 2022-06-07 2023-12-14 Generation Bio Co. Lipid nanoparticle compositions and uses thereof
WO2023250511A2 (en) 2022-06-24 2023-12-28 Tune Therapeutics, Inc. Compositions, systems, and methods for reducing low-density lipoprotein through targeted gene repression
WO2024007020A1 (en) 2022-06-30 2024-01-04 Indapta Therapeutics, Inc. Combination of engineered natural killer (nk) cells and antibody therapy and related methods
WO2024015881A2 (en) 2022-07-12 2024-01-18 Tune Therapeutics, Inc. Compositions, systems, and methods for targeted transcriptional activation
EP4309732A2 (en) 2017-03-24 2024-01-24 Ionis Pharmaceuticals, Inc. Modulators of pcsk9 expression
US11896636B2 (en) 2011-07-06 2024-02-13 Glaxosmithkline Biologicals Sa Immunogenic combination compositions and uses thereof
WO2024040222A1 (en) 2022-08-19 2024-02-22 Generation Bio Co. Cleavable closed-ended dna (cedna) and methods of use thereof
WO2024040254A2 (en) 2022-08-19 2024-02-22 Tune Therapeutics, Inc. Compositions, systems, and methods for regulation of hepatitis b virus through targeted gene repression
WO2024064642A2 (en) 2022-09-19 2024-03-28 Tune Therapeutics, Inc. Compositions, systems, and methods for modulating t cell function
US11959081B2 (en) 2021-08-03 2024-04-16 Alnylam Pharmaceuticals, Inc. Transthyretin (TTR) iRNA compositions and methods of use thereof
US11970710B2 (en) 2015-10-13 2024-04-30 Duke University Genome engineering with Type I CRISPR systems in eukaryotic cells
US11976307B2 (en) 2012-04-27 2024-05-07 Duke University Genetic correction of mutated genes
WO2024102762A1 (en) 2022-11-08 2024-05-16 Orna Therapeutics, Inc. Lipids and lipid nanoparticle compositions for delivering polynucleotides
WO2024102730A1 (en) 2022-11-08 2024-05-16 Orna Therapeutics, Inc. Lipids and nanoparticle compositions for delivering polynucleotides
WO2024102677A1 (en) 2022-11-08 2024-05-16 Orna Therapeutics, Inc. Circular rna compositions
WO2024112652A1 (en) 2022-11-21 2024-05-30 Translate Bio, Inc. Compositions of dry powder formulations of messenger rna and methods of use thereof
WO2024119074A1 (en) 2022-12-01 2024-06-06 Generation Bio Co. Stealth lipid nanoparticle compositions for cell targeting
WO2024119039A2 (en) 2022-12-01 2024-06-06 Generation Bio Co. Stealth lipid nanoparticles and uses thereof
WO2024119103A1 (en) 2022-12-01 2024-06-06 Generation Bio Co. Lipid nanoparticles comprising nucleic acids and lipid-anchored polymers
WO2024119051A1 (en) 2022-12-01 2024-06-06 Generation Bio Co. Novel polyglycerol-conjugated lipids and lipid nanoparticle compositions comprising the same
US12013403B2 (en) 2014-09-12 2024-06-18 Biogen Ma Inc. Compositions and methods for detection of SMN protein in a subject and treatment of a subject
EP4385523A1 (en) 2022-12-14 2024-06-19 Beijing Jitai Pharmaceutical Technology Co., Ltd. Lipid-based topical injection formulations
WO2024126809A1 (en) 2022-12-15 2024-06-20 Sanofi Mrna encoding influenza virus-like particle
WO2024134199A1 (en) 2022-12-22 2024-06-27 Mina Therapeutics Limited Chemically modified sarna compositions and methods of use
WO2024133515A1 (en) 2022-12-20 2024-06-27 Sanofi Rhinovirus mrna vaccine
WO2024131810A1 (en) * 2022-12-21 2024-06-27 Suzhou Abogen Biosciences Co., Ltd. Lipid nanoparticles comprising sterol-modified phospholipids
WO2024141784A2 (en) 2022-12-29 2024-07-04 Popvax Private Limited Broadly protective betacoronavirus vaccines and compositions
WO2024141786A2 (en) 2022-12-29 2024-07-04 Popvax Private Limited Multitarget vaccines and therapeutics
WO2024163683A2 (en) 2023-02-01 2024-08-08 Tune Therapeutics, Inc. Systems, compositions, and methods for modulating expression of methyl-cpg binding protein 2 (mecp2) and x-inactive specific transcript (xist)
WO2024163678A2 (en) 2023-02-01 2024-08-08 Tune Therapeutics, Inc. Fusion proteins and systems for targeted activation of frataxin (fxn) and related methods
WO2024205657A2 (en) 2023-03-29 2024-10-03 Orna Therapeutics, Inc. Lipids and lipid nanoparticle compositions for delivering polynucleotides
US12109274B2 (en) 2015-09-17 2024-10-08 Modernatx, Inc. Polynucleotides containing a stabilizing tail region
US12121610B2 (en) 2021-03-22 2024-10-22 Recode Therapeutics, Inc. Compositions and methods for targeted delivery to cells
WO2024218166A1 (en) 2023-04-17 2024-10-24 Sanofi Reconstitutable dry powder formulations and methods of use thereof
WO2024220930A2 (en) 2023-04-20 2024-10-24 Adarx Pharmaceuticals, Inc. Mapt-modulating compositions and methods of use thereof
US12133923B2 (en) 2024-01-16 2024-11-05 Recode Therapeutics, Inc. Lipid nanoparticle compositions and uses thereof

Families Citing this family (492)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8598333B2 (en) * 2006-05-26 2013-12-03 Alnylam Pharmaceuticals, Inc. SiRNA silencing of genes expressed in cancer
EP2245039A4 (en) * 2008-01-31 2012-06-06 Alnylam Pharmaceuticals Inc Optimized methods for delivery of dsrna targeting the pcsk9 gene
WO2009111658A2 (en) * 2008-03-05 2009-09-11 Alnylam Pharmaceuticals, Inc. Compositions and methods for inhibiting expression of eg5 and vegf genes
DK2279254T3 (en) 2008-04-15 2017-09-18 Protiva Biotherapeutics Inc PRESENT UNKNOWN LIPID FORMS FOR NUCLEIC ACID ADMINISTRATION
CA2754043A1 (en) * 2009-03-12 2010-09-16 Alnylam Pharmaceuticals, Inc. Lipid formulated compositions and methods for inhibiting expression of eg5 and vegf genes
EP2416652B1 (en) * 2009-05-05 2018-11-07 Arbutus Biopharma Corporation Methods of delivering oligonucleotides to immune cells
MX367665B (en) * 2009-06-10 2019-08-30 Alnylam Pharmaceuticals Inc Improved lipid formulation.
WO2011000107A1 (en) 2009-07-01 2011-01-06 Protiva Biotherapeutics, Inc. Novel lipid formulations for delivery of therapeutic agents to solid tumors
CN107519133A (en) 2009-09-15 2017-12-29 阿尔尼拉姆医药品有限公司 The method of the expression of composition and suppression Eg5 and VEGF genes that lipid is prepared
HUE036776T2 (en) 2009-09-22 2018-07-30 Medicago Inc Method of preparing plant-derived vlps
ES2749426T3 (en) * 2009-12-18 2020-03-20 Univ British Columbia Nucleic Acid Administration Methods and Compositions
WO2011088309A1 (en) 2010-01-14 2011-07-21 Regulus Therapeutics Inc. Microrna compositions and methods
TWI620816B (en) 2011-03-23 2018-04-11 苜蓿股份有限公司 Method of recovering plant-derived proteins
US9687529B2 (en) * 2011-05-05 2017-06-27 Duke University Method of controlling coagulation
US9068184B2 (en) 2011-06-21 2015-06-30 Alnylam Pharmaceuticals, Inc. Compositions and methods for inhibition of expression of protein C (PROC) genes
JP6305343B2 (en) * 2011-12-07 2018-04-04 アルニラム・ファーマシューティカルズ・インコーポレーテッド Branched alkyl and cycloalkyl terminated biodegradable lipids for the delivery of active agents
AU2013222179B2 (en) 2012-02-24 2017-08-24 Arbutus Biopharma Corporat ion Trialkyl cationic lipids and methods of use thereof
US9334498B2 (en) 2012-05-10 2016-05-10 Uab Research Foundation Methods and compositions for modulating MIR-204 activity
EP2858679B2 (en) 2012-06-08 2024-06-05 Translate Bio, Inc. Pulmonary delivery of mrna to non-lung target cells
WO2014028429A2 (en) 2012-08-14 2014-02-20 Moderna Therapeutics, Inc. Enzymes and polymerases for the synthesis of rna
US20140120157A1 (en) * 2012-09-19 2014-05-01 Georgetown University Targeted liposomes
EP4083209A1 (en) 2012-12-05 2022-11-02 Alnylam Pharmaceuticals, Inc. Pcsk9 irna compositions and methods of use thereof
AU2013355258A1 (en) * 2012-12-07 2015-06-11 Alnylam Pharmaceuticals, Inc. Improved nucleic acid lipid particle formulations
EP2946014A2 (en) 2013-01-17 2015-11-25 Moderna Therapeutics, Inc. Signal-sensor polynucleotides for the alteration of cellular phenotypes
US9820942B2 (en) * 2013-03-06 2017-11-21 Biomics Biotechnologies Co., Ltd. Lipidosome preparation, preparation method and application thereof
WO2014152774A1 (en) 2013-03-14 2014-09-25 Shire Human Genetic Therapies, Inc. Methods and compositions for delivering mrna coded antibodies
US10258698B2 (en) 2013-03-14 2019-04-16 Modernatx, Inc. Formulation and delivery of modified nucleoside, nucleotide, and nucleic acid compositions
SG10201912286TA (en) 2013-03-14 2020-02-27 Alnylam Pharmaceuticals Inc COMPLEMENT COMPONENT C5 iRNA COMPOSITIONS AND METHODS OF USE THEREOF
CN105143456A (en) * 2013-03-15 2015-12-09 不列颠哥伦比亚大学 Lipid nanoparticles for transfection and related methods
WO2014143806A1 (en) * 2013-03-15 2014-09-18 The Penn State Research Foundation Acid stable liposomal compositions
ES2967701T3 (en) 2013-03-15 2024-05-03 Translate Bio Inc Synergistic enhancement of nucleic acid delivery via blended formulations
EP2994167B1 (en) 2013-05-06 2020-05-06 Alnylam Pharmaceuticals, Inc. Dosages and methods for delivering lipid formulated nucleic acid molecules
RU2015154738A (en) 2013-05-22 2017-06-27 Элнилэм Фармасьютикалз, Инк. COMPOSITIONS BASED ON iRNA TMPRSS6 AND WAYS OF THEIR APPLICATION
HUE038146T2 (en) 2013-05-22 2018-09-28 Alnylam Pharmaceuticals Inc Serpina1 irna compositions and methods of use thereof
CN110974981A (en) 2013-07-23 2020-04-10 野草莓树生物制药公司 Compositions and methods for delivering messenger RNA
EP3041934A1 (en) 2013-09-03 2016-07-13 Moderna Therapeutics, Inc. Chimeric polynucleotides
EP3041938A1 (en) 2013-09-03 2016-07-13 Moderna Therapeutics, Inc. Circular polynucleotides
US10195291B2 (en) * 2013-09-24 2019-02-05 Alnylam Pharmaceuticals, Inc. Compositions and methods for the manufacture of lipid nanoparticles
EP3871696A1 (en) 2013-10-22 2021-09-01 Translate Bio MA, Inc. Lipid formulations for delivery of messenger rna
MX2016005236A (en) 2013-10-22 2016-08-12 Shire Human Genetic Therapies Cns delivery of mrna and uses thereof.
EP3071547B1 (en) 2013-11-18 2024-07-10 Arcturus Therapeutics, Inc. Ionizable cationic lipid for rna delivery
CA3107872A1 (en) 2013-12-12 2015-06-18 Alnylam Pharmaceuticals, Inc. Complement component irna compositions and methods of use thereof
EA201691587A1 (en) 2014-02-11 2017-01-30 Элнилэм Фармасьютикалз, Инк. COMPOSITIONS BASED ON iRNA FOR KETOGEXOKINASE (KHK) AND METHODS OF THEIR APPLICATION
US20150316566A1 (en) 2014-05-02 2015-11-05 Cerenis Therapeutics Holding Sa Hdl therapy markers
CA3215908A1 (en) 2014-05-22 2015-11-26 Alnylam Pharmaceuticals, Inc. Angiotensinogen (agt) irna compositions and methods of use thereof
JP6557722B2 (en) 2014-05-30 2019-08-07 シャイアー ヒューマン ジェネティック セラピーズ インコーポレイテッド Biodegradable lipids for delivery of nucleic acids
CA2952824C (en) 2014-06-24 2023-02-21 Shire Human Genetic Therapies, Inc. Stereochemically enriched compositions for delivery of nucleic acids
ES2931832T3 (en) 2014-06-25 2023-01-03 Acuitas Therapeutics Inc Novel lipids and lipid nanoparticle formulations for nucleic acid delivery
AU2015283954B2 (en) 2014-07-02 2020-11-12 Translate Bio, Inc. Encapsulation of messenger RNA
WO2016011226A1 (en) 2014-07-16 2016-01-21 Moderna Therapeutics, Inc. Chimeric polynucleotides
WO2016014846A1 (en) 2014-07-23 2016-01-28 Moderna Therapeutics, Inc. Modified polynucleotides for the production of intrabodies
EP3191591A1 (en) 2014-09-12 2017-07-19 Alnylam Pharmaceuticals, Inc. Polynucleotide agents targeting complement component c5 and methods of use thereof
JOP20200115A1 (en) 2014-10-10 2017-06-16 Alnylam Pharmaceuticals Inc Compositions And Methods For Inhibition Of HAO1 (Hydroxyacid Oxidase 1 (Glycolate Oxidase)) Gene Expression
WO2016061487A1 (en) 2014-10-17 2016-04-21 Alnylam Pharmaceuticals, Inc. Polynucleotide agents targeting aminolevulinic acid synthase-1 (alas1) and uses thereof
WO2016065349A2 (en) 2014-10-24 2016-04-28 University Of Maryland, Baltimore Short non-coding protein regulatory rnas (sprrnas) and methods of use
JOP20200092A1 (en) 2014-11-10 2017-06-16 Alnylam Pharmaceuticals Inc HEPATITIS B VIRUS (HBV) iRNA COMPOSITIONS AND METHODS OF USE THEREOF
JP2017535552A (en) 2014-11-17 2017-11-30 アルナイラム ファーマシューティカルズ, インコーポレイテッドAlnylam Pharmaceuticals, Inc. Apolipoprotein C3 (APOC3) iRNA composition and methods of use thereof
EP3226912B1 (en) 2014-12-05 2021-01-20 Translate Bio, Inc. Messenger rna therapy for treatment of articular disease
WO2016100716A1 (en) 2014-12-18 2016-06-23 Vasant Jadhav Reversirtm compounds
WO2016130806A2 (en) 2015-02-13 2016-08-18 Alnylam Pharmaceuticals, Inc. Patatin-like phospholipase domain containing 3 (pnpla3) irna compositions and methods of use thereof
US10172924B2 (en) 2015-03-19 2019-01-08 Translate Bio, Inc. MRNA therapy for pompe disease
MX2017012610A (en) 2015-04-08 2018-03-16 Alnylam Pharmaceuticals Inc Compositions and methods for inhibiting expression of the lect2 gene.
US10660973B2 (en) 2015-04-28 2020-05-26 Duke University Thrombus imaging aptamers and methods of using same
KR20180002688A (en) 2015-05-06 2018-01-08 알닐람 파마슈티칼스 인코포레이티드 (F12), calichein B, plasma (Fletcher factor) 1 (KLKB1) and kininogen 1 (KNG1) iRNA compositions and methods for their use
EP3307316A1 (en) 2015-06-12 2018-04-18 Alnylam Pharmaceuticals, Inc. Complement component c5 irna compositions and methods of use thereof
WO2016205323A1 (en) 2015-06-18 2016-12-22 Alnylam Pharmaceuticals, Inc. Polynucleotde agents targeting hydroxyacid oxidase (glycolate oxidase, hao1) and methods of use thereof
WO2016209862A1 (en) 2015-06-23 2016-12-29 Alnylam Pharmaceuticals, Inc. Glucokinase (gck) irna compositions and methods of use thereof
IL283545B2 (en) 2015-06-29 2023-09-01 Acuitas Therapeutics Inc Lipids and lipid nanoparticle formulations for delivery of nucleic acids
WO2017011286A1 (en) 2015-07-10 2017-01-19 Alnylam Pharmaceuticals, Inc. Insulin-like growth factor binding protein, acid labile subunit (igfals) and insulin-like growth factor 1 (igf-1) irna compositions and methods of use thereof
KR20180031025A (en) 2015-07-31 2018-03-27 아크투루스 쎄라퓨틱스, 인크. Multiple ligand agents for drug delivery
WO2017031232A1 (en) 2015-08-17 2017-02-23 Modernatx, Inc. Methods for preparing particles and related compositions
EP3344769B1 (en) 2015-09-02 2024-04-17 Alnylam Pharmaceuticals, Inc. Programmed cell death 1 ligand 1 (pd-l1) irna compositions and methods of use thereof
EP3350328A1 (en) 2015-09-14 2018-07-25 Alnylam Pharmaceuticals, Inc. Polynucleotide agents targeting patatin-like phospholipase domain containing 3 (pnpla3) and methods of use thereof
DK3350157T3 (en) 2015-09-17 2022-02-14 Modernatx Inc COMPOUNDS AND COMPOSITIONS FOR INTRACELLUAL DELIVERY OF THERAPEUTIC AGENTS
WO2017062513A1 (en) 2015-10-05 2017-04-13 Modernatx, Inc. Methods for therapeutic administration of messenger ribonucleic acid drugs
MA56219A (en) 2015-10-14 2022-04-20 Translate Bio Inc MODIFICATION OF RNA-RELATED ENZYMES FOR ENHANCED PRODUCTION
MA47016A (en) 2015-10-22 2018-08-29 Modernatx Inc RESPIRATORY VIRUS VACCINES
PT3368507T (en) 2015-10-28 2023-02-07 Acuitas Therapeutics Inc Novel lipids and lipid nanoparticle formulations for delivery of nucleic acids
JP6737885B2 (en) 2015-11-18 2020-08-12 プロヴィヴィ インコーポレイテッド Microorganisms and related compounds for the production of insect pheromones
EP3387129A1 (en) 2015-12-10 2018-10-17 Alnylam Pharmaceuticals, Inc. STEROL REGULATORY ELEMENT BINDING PROTEIN (SREBP) CHAPERONE (SCAP) iRNA COMPOSITIONS AND METHODS OF USE THEREOF
EP3394030B1 (en) 2015-12-22 2021-12-22 Modernatx, Inc. Compounds and compositions for intracellular delivery of agents
DK3394093T3 (en) 2015-12-23 2022-04-19 Modernatx Inc PROCEDURES FOR USING OX40 LIGAND CODING POLYNUCLEOTIDES
EP3400023A1 (en) 2016-01-10 2018-11-14 ModernaTX, Inc. Therapeutic mrnas encoding anti ctla-4 antibodies
EP3405579A1 (en) 2016-01-22 2018-11-28 Modernatx, Inc. Messenger ribonucleic acids for the production of intracellular binding polypeptides and methods of use thereof
SG11201806663TA (en) 2016-03-03 2018-09-27 Univ Massachusetts Closed-ended linear duplex dna for non-viral gene transfer
TWI842117B (en) 2016-03-07 2024-05-11 美商愛羅海德製藥公司 Targeting ligands for therapeutic compounds
KR102475301B1 (en) 2016-04-08 2022-12-09 트랜슬레이트 바이오 인코포레이티드 Multimeric coding nucleic acid and uses thereof
EP3442590A2 (en) 2016-04-13 2019-02-20 Modernatx, Inc. Lipid compositions and their uses for intratumoral polynucleotide delivery
MA45295A (en) 2016-04-19 2019-02-27 Alnylam Pharmaceuticals Inc HIGH DENSITY LIPOPROTEIN BINDING PROTEIN (HDLBP / VIGILINE) RNA COMPOSITION AND METHODS FOR USING THEM
WO2017201332A1 (en) 2016-05-18 2017-11-23 Modernatx, Inc. Polynucleotides encoding acyl-coa dehydrogenase, very long-chain for the treatment of very long-chain acyl-coa dehydrogenase deficiency
AU2017268396B2 (en) 2016-05-18 2023-05-18 Modernatx, Inc. Polynucleotides encoding citrin for the treatment of citrullinemia type 2
AU2017266932B2 (en) 2016-05-18 2023-04-20 Modernatx, Inc. Polynucleotides encoding alpha-galactosidase A for the treatment of Fabry disease
RS63912B1 (en) 2016-05-18 2023-02-28 Modernatx Inc Polynucleotides encoding interleukin-12 (il12) and uses thereof
WO2017214133A2 (en) * 2016-06-06 2017-12-14 Provivi, Inc. Semi-biosynthetic production of fatty alcohols and fatty aldehydes
US20190256845A1 (en) 2016-06-10 2019-08-22 Alnylam Pharmaceuticals, Inc. COMPLEMENT COMPONENT C5 iRNA COMPOSITIONS AND METHODS OF USE THEREOF FOR TREATING PAROXYSMAL NOCTURNAL HEMOGLOBINURIA (PNH)
AU2017283479B2 (en) 2016-06-13 2023-08-17 Translate Bio, Inc. Messenger RNA therapy for the treatment of ornithine transcarbamylase deficiency
MX2018016389A (en) 2016-06-30 2019-08-16 Arbutus Biopharma Corp Compositions and methods for delivering messenger rna.
MX2019001920A (en) 2016-08-19 2019-07-01 Curevac Ag Rna for cancer therapy.
WO2018041921A1 (en) 2016-08-31 2018-03-08 Curevac Ag Mixing device for the production of a liquid nucleic acid composition
KR102350647B1 (en) 2016-09-02 2022-01-14 다이서나 파마수이티컬, 인크. 4'-phosphate analogs and oligonucleotides comprising the same
CN116942841A (en) 2016-09-02 2023-10-27 箭头药业股份有限公司 Targeting ligands
EP3626259A1 (en) 2016-09-13 2020-03-25 Allergan, Inc. Stabilized non-protein clostridial toxin compositions
WO2018053427A1 (en) 2016-09-16 2018-03-22 Duke University Von willebrand factor (vwf)-targeting agents and methods of using the same
WO2018064755A1 (en) 2016-10-03 2018-04-12 Precision Nanosystems Inc. Compositions for transfecting resistant cell types
KR20190086681A (en) 2016-10-26 2019-07-23 모더나티엑스, 인크. Messenger ribonucleic acid and method of use thereof for improving immune response
WO2018089540A1 (en) 2016-11-08 2018-05-17 Modernatx, Inc. Stabilized formulations of lipid nanoparticles
TW202313978A (en) 2016-11-23 2023-04-01 美商阿尼拉製藥公司 Serpina1 irna compositions and methods of use thereof
WO2018104540A1 (en) 2016-12-08 2018-06-14 Curevac Ag Rnas for wound healing
CN110582304A (en) 2016-12-08 2019-12-17 库尔维科公司 RNA for treating or preventing liver disease
WO2018112320A1 (en) 2016-12-16 2018-06-21 Alnylam Pharmaceuticals, Inc. Methods for treating or preventing ttr-associated diseases using transthyretin (ttr) irna compositions
US10526284B2 (en) 2016-12-21 2020-01-07 Arcturus Therapeutics, Inc. Ionizable cationic lipid for RNA delivery
US10383952B2 (en) 2016-12-21 2019-08-20 Arcturus Therapeutics, Inc. Ionizable cationic lipid for RNA delivery
WO2018115525A1 (en) 2016-12-23 2018-06-28 Curevac Ag Lassa virus vaccine
WO2018115507A2 (en) 2016-12-23 2018-06-28 Curevac Ag Henipavirus vaccine
EP3558356A2 (en) 2016-12-23 2019-10-30 CureVac AG Mers coronavirus vaccine
KR20190110612A (en) 2017-02-01 2019-09-30 모더나티엑스, 인크. Immunomodulatory Therapeutic MRNA Compositions Encoding Activating Oncogene Mutant Peptides
EP3596041B1 (en) 2017-03-15 2022-11-02 ModernaTX, Inc. Compound and compositions for intracellular delivery of therapeutic agents
US11969506B2 (en) 2017-03-15 2024-04-30 Modernatx, Inc. Lipid nanoparticle formulation
US11203569B2 (en) 2017-03-15 2021-12-21 Modernatx, Inc. Crystal forms of amino lipids
CN110392577A (en) 2017-03-17 2019-10-29 库尔维科公司 For combining the RNA vaccine and immunologic test point inhibitor of anti-cancer therapies
KR20190133699A (en) 2017-03-24 2019-12-03 큐어백 아게 Nucleic acid encoding CRISPR-associated protein and uses thereof
EP3607074A4 (en) 2017-04-05 2021-07-07 Modernatx, Inc. Reduction or elimination of immune responses to non-intravenous, e.g., subcutaneously administered therapeutic proteins
WO2018191657A1 (en) 2017-04-13 2018-10-18 Acuitas Therapeutics, Inc. Lipids for delivery of active agents
CA3059446A1 (en) 2017-04-18 2018-10-25 Alnylam Pharmaceuticals, Inc. Methods for the treatment of subjects having a hepatitis b virus (hbv) infection
WO2018200943A1 (en) 2017-04-28 2018-11-01 Acuitas Therapeutics, Inc. Novel carbonyl lipids and lipid nanoparticle formulations for delivery of nucleic acids
BR112019024258A2 (en) 2017-05-17 2020-08-18 Provivi, Inc. YARROWIA LIPOLYTICA RECOMBINANT MICROORGANISMS AND METHOD TO PRODUCE A C6-C24 MONO- OR POLYINSATURATED FAT ALCOHOL FROM AN ENDOGENOUS OR EXOGENOUS SOURCE OF C6-C24 SATURATED ACIDOGRAX
EP3625363A1 (en) 2017-05-17 2020-03-25 CureVac Real Estate GmbH Method for determining at least one quality parameter of an rna sample
WO2018213789A1 (en) 2017-05-18 2018-11-22 Modernatx, Inc. Modified messenger rna comprising functional rna elements
EP3625246A1 (en) 2017-05-18 2020-03-25 ModernaTX, Inc. Polynucleotides encoding tethered interleukin-12 (il12) polypeptides and uses thereof
WO2018222890A1 (en) 2017-05-31 2018-12-06 Arcturus Therapeutics, Inc. Synthesis and structure of high potency rna therapeutics
WO2018222925A1 (en) 2017-05-31 2018-12-06 Ultragenyx Pharmaceutical Inc. Therapeutics for phenylketonuria
JP7284101B2 (en) 2017-05-31 2023-05-30 ウルトラジェニクス ファーマシューティカル インク. Therapeutic agents for glycogen storage disease type III
WO2018226854A2 (en) * 2017-06-06 2018-12-13 Wayne State University Antifouling polymer coatings and reverse coating method
CN109030429B (en) * 2017-06-09 2022-06-21 南京大学 Nano-amplification self-reference probe capable of carrying out in-situ imaging on microRNA21 in living cells
WO2018231990A2 (en) 2017-06-14 2018-12-20 Modernatx, Inc. Polynucleotides encoding methylmalonyl-coa mutase
MA49395A (en) 2017-06-14 2020-04-22 Modernatx Inc POLYNUCLEOTIDES COAGULATION FACTOR VIII CODING
WO2018232120A1 (en) 2017-06-14 2018-12-20 Modernatx, Inc. Compounds and compositions for intracellular delivery of agents
MA49421A (en) 2017-06-15 2020-04-22 Modernatx Inc RNA FORMULATIONS
EP3648791A1 (en) 2017-07-04 2020-05-13 CureVac AG Novel nucleic acid molecules
WO2019014530A1 (en) 2017-07-13 2019-01-17 Alnylam Pharmaceuticals Inc. Lactate dehydrogenase a (ldha) irna compositions and methods of use thereof
JP7355731B2 (en) 2017-08-16 2023-10-03 アクイタス セラピューティクス インコーポレイテッド Lipids for use in lipid nanoparticle formulations
EP3668834B1 (en) 2017-08-17 2024-10-02 Acuitas Therapeutics, Inc. Lipids for use in lipid nanoparticle formulations
US11524932B2 (en) 2017-08-17 2022-12-13 Acuitas Therapeutics, Inc. Lipids for use in lipid nanoparticle formulations
US11542225B2 (en) 2017-08-17 2023-01-03 Acuitas Therapeutics, Inc. Lipids for use in lipid nanoparticle formulations
US20200254086A1 (en) 2017-08-18 2020-08-13 Moderna TX, Inc. Efficacious mrna vaccines
WO2019038332A1 (en) 2017-08-22 2019-02-28 Curevac Ag Bunyavirales vaccine
JP7275111B2 (en) 2017-08-31 2023-05-17 モデルナティエックス インコーポレイテッド Method for producing lipid nanoparticles
JP2021501572A (en) 2017-10-19 2021-01-21 キュアバック アーゲー New artificial nucleic acid molecule
CA3078971A1 (en) 2017-11-01 2019-05-09 Alnylam Pharmaceuticals, Inc. Complement component c3 irna compositions and methods of use thereof
JP2021502079A (en) 2017-11-08 2021-01-28 キュアバック アーゲー RNA sequence adaptation (Adaptation)
US20210236644A1 (en) 2017-11-10 2021-08-05 Cocoon Biotech Inc. Ocular applications of silk-based products
EP3710587A1 (en) 2017-11-16 2020-09-23 Alnylam Pharmaceuticals, Inc. Kisspeptin 1 (kiss1) irna compositions and methods of use thereof
EP3714054A1 (en) 2017-11-20 2020-09-30 Alnylam Pharmaceuticals, Inc. Serum amyloid p component (apcs) irna compositions and methods of use thereof
WO2019104198A2 (en) 2017-11-22 2019-05-31 Beckman Coulter, Inc. Diluent preparation modules and units
CA3079543A1 (en) 2017-11-22 2019-05-31 Modernatx, Inc. Polynucleotides encoding propionyl-coa carboxylase alpha and beta subunits for the treatment of propionic acidemia
US11939601B2 (en) 2017-11-22 2024-03-26 Modernatx, Inc. Polynucleotides encoding phenylalanine hydroxylase for the treatment of phenylketonuria
MA50803A (en) 2017-11-22 2020-09-30 Modernatx Inc POLYNUCLEOTIDES CODING ORNITHINE TRANSCARBAMYLASE FOR THE TREATMENT OF UREA CYCLE DISORDERS
WO2019115635A1 (en) 2017-12-13 2019-06-20 Curevac Ag Flavivirus vaccine
EP3728593A1 (en) 2017-12-18 2020-10-28 Alnylam Pharmaceuticals, Inc. High mobility group box-1 (hmgb1) irna compositions and methods of use thereof
EP3735270A1 (en) 2018-01-05 2020-11-11 Modernatx, Inc. Polynucleotides encoding anti-chikungunya virus antibodies
EP3746052A1 (en) 2018-01-30 2020-12-09 Modernatx, Inc. Compositions and methods for delivery of agents to immune cells
WO2019193183A2 (en) 2018-04-05 2019-10-10 Curevac Ag Novel yellow fever nucleic acid molecules for vaccination
EP3773745A1 (en) 2018-04-11 2021-02-17 ModernaTX, Inc. Messenger rna comprising functional rna elements
EP3781591A1 (en) 2018-04-17 2021-02-24 CureVac AG Novel rsv rna molecules and compositions for vaccination
EP3790607B1 (en) 2018-05-11 2023-12-27 Lupagen, Inc. Systems for closed loop, real-time modifications of patient cells
LT3794122T (en) 2018-05-14 2023-11-27 Alnylam Pharmaceuticals, Inc. Angiotensinogen (agt) irna compositions and methods of use thereof
EP3796893A1 (en) 2018-05-23 2021-03-31 Modernatx, Inc. Delivery of dna
EP3813874A1 (en) 2018-06-27 2021-05-05 CureVac AG Novel lassa virus rna molecules and compositions for vaccination
CN112543629A (en) 2018-06-28 2021-03-23 阿斯利康(瑞典)有限公司 Exosome extracellular vesicles and methods of use thereof
US20220184185A1 (en) 2018-07-25 2022-06-16 Modernatx, Inc. Mrna based enzyme replacement therapy combined with a pharmacological chaperone for the treatment of lysosomal storage disorders
US20210317461A1 (en) 2018-08-09 2021-10-14 Verseau Therapeutics, Inc. Oligonucleotide compositions for targeting ccr2 and csf1r and uses thereof
EP3836964A1 (en) 2018-08-15 2021-06-23 University of Florida Research Foundation, Inc. Methods of sensitizing tumors to treatment with immune checkpoint inhibitors
US20220110966A1 (en) 2018-09-02 2022-04-14 Modernatx, Inc. Polynucleotides encoding very long-chain acyl-coa dehydrogenase for the treatment of very long-chain acyl-coa dehydrogenase deficiency
EP3849597A1 (en) 2018-09-12 2021-07-21 University of Florida Research Foundation, Inc. Slow-cycling cell-rna based nanoparticle vaccine to treat cancer
CA3112208A1 (en) 2018-09-13 2020-03-19 Modernatx, Inc. Polynucleotides encoding glucose-6-phosphatase for the treatment of glycogen storage disease
MA53608A (en) 2018-09-13 2021-07-21 Modernatx Inc POLYNUCLEOTIDES ENCODED FOR THE E1-ALPHA, E1-BETA AND E2 SUBUNITS OF THE BRANCHED-CHAIN ALPHA-KETOACID DEHYDROGENASE COMPLEX FOR THE TREATMENT OF LEUCINOSIS
CA3112398A1 (en) 2018-09-14 2020-03-19 Modernatx, Inc. Polynucleotides encoding uridine diphosphate glycosyltransferase 1 family, polypeptide a1 for the treatment of crigler-najjar syndrome
WO2020056304A1 (en) 2018-09-14 2020-03-19 Modernatx, Inc. Methods and compositions for treating cancer using mrna therapeutics
EP3853364A1 (en) 2018-09-18 2021-07-28 Alnylam Pharmaceuticals, Inc. Ketohexokinase (khk) irna compositions and methods of use thereof
EP3852728B1 (en) 2018-09-20 2024-09-18 ModernaTX, Inc. Preparation of lipid nanoparticles and methods of administration thereof
MA53734A (en) 2018-09-27 2021-08-04 Modernatx Inc POLYNUCLEOTIDES ENCODED ARGINASE 1 FOR THE TREATMENT OF ARGINASE DEFICIENCY
US20220370356A1 (en) * 2018-10-01 2022-11-24 Alnylam Pharmaceuticals, Inc. Biodegradable lipids for the delivery of active agents
US11980673B2 (en) 2018-10-09 2024-05-14 The University Of British Columbia Compositions and systems comprising transfection-competent vesicles free of organic-solvents and detergents and methods related thereto
US10913951B2 (en) 2018-10-31 2021-02-09 University of Pittsburgh—of the Commonwealth System of Higher Education Silencing of HNF4A-P2 isoforms with siRNA to improve hepatocyte function in liver failure
US20220001026A1 (en) 2018-11-08 2022-01-06 Modernatx, Inc. Use of mrna encoding ox40l to treat cancer in human patients
CA3121191A1 (en) 2018-11-28 2020-06-04 Crispr Therapeutics Ag Optimized mrna encoding cas9 for use in lnps
AU2019394996A1 (en) 2018-12-06 2021-07-29 Arcturus Therapeutics, Inc. Compositions and methods for treating ornithine transcarbamylase deficiency
TW202039534A (en) 2018-12-14 2020-11-01 美商美國禮來大藥廠 Kras variant mrna molecules
CA3123617A1 (en) 2018-12-20 2020-06-25 Praxis Precision Medicines, Inc. Compositions and methods for the treatment of kcnt1 related disorders
BR112021009422A2 (en) 2018-12-21 2021-10-26 Curevac Ag RNA FOR VACCINES AGAINST MALARIA
BR112021013654A2 (en) 2019-01-11 2021-09-14 Acuitas Therapeutics, Inc. LIPIDS FOR RELEASE OF LIPID NANOPARTICLES FROM ACTIVE AGENTS
CA3128215A1 (en) 2019-01-31 2020-08-06 Modernatx, Inc. Methods of preparing lipid nanoparticles
SG11202108098QA (en) 2019-01-31 2021-08-30 Modernatx Inc Vortex mixers and associated methods, systems, and apparatuses thereof
WO2020161342A1 (en) 2019-02-08 2020-08-13 Curevac Ag Coding rna administered into the suprachoroidal space in the treatment of ophtalmic diseases
WO2020190750A1 (en) 2019-03-15 2020-09-24 Modernatx, Inc. Hiv rna vaccines
CA3134486A1 (en) 2019-03-29 2020-10-08 Dicerna Pharmaceuticals, Inc. Compositions and methods for the treatment of kras associated diseases or disorders
WO2020242720A1 (en) 2019-05-02 2020-12-03 University Of Florida Research Foundation, Inc. Compositions for treatment of diffuse intrinsic pontine glioma
SG11202111077RA (en) 2019-05-03 2021-11-29 Dicerna Pharmaceuticals Inc Double-stranded nucleic acid inhibitor molecules with shortened sense strands
MA55896A (en) 2019-05-07 2022-03-16 Modernatx Inc POLYNUCLEOTIDES FOR DISRUPTING IMMUNE CELL ACTIVITY AND METHODS OF USING THEM
EP3965830A1 (en) 2019-05-07 2022-03-16 ModernaTX, Inc. Differentially expressed immune cell micrornas for regulation of protein expression
US20220226438A1 (en) 2019-05-08 2022-07-21 Astrazeneca Ab Compositions for skin and wounds and methods of use thereof
US20220370354A1 (en) 2019-05-08 2022-11-24 Modernatx, Inc. Polynucleotides encoding methylmalonyl-coa mutase for the treatment of methylmalonic acidemia
EP3972653A1 (en) 2019-05-22 2022-03-30 Massachusetts Institute of Technology Circular rna compositions and methods
US20240352079A1 (en) 2019-06-04 2024-10-24 Cocoon Biotech Inc. Silk-Based Products, Formulations, and Methods of Use
EP3986452A1 (en) 2019-06-18 2022-04-27 CureVac AG Rotavirus mrna vaccine
EP3987027A1 (en) 2019-06-24 2022-04-27 ModernaTX, Inc. Endonuclease-resistant messenger rna and uses thereof
WO2020263985A1 (en) 2019-06-24 2020-12-30 Modernatx, Inc. Messenger rna comprising functional rna elements and uses thereof
JP2022541445A (en) 2019-07-18 2022-09-26 アンスティチュ ナショナル ドゥ ラ サンテ エ ドゥ ラ ルシェルシュ メディカル Methods for inducing complete ablation of hematopoiesis
JP2022542839A (en) 2019-07-19 2022-10-07 フラッグシップ パイオニアリング イノベーションズ シックス,エルエルシー Recombinase compositions and methods of use
WO2021022173A1 (en) 2019-07-31 2021-02-04 Modernatx, Inc. Compositions and methods for delivery of rna interference agents to immune cells
EP4007812A1 (en) 2019-08-01 2022-06-08 Alnylam Pharmaceuticals, Inc. Serpin family f member 2 (serpinf2) irna compositions and methods of use thereof
EP4007811A2 (en) 2019-08-01 2022-06-08 Alnylam Pharmaceuticals, Inc. Carboxypeptidase b2 (cpb2) irna compositions and methods of use thereof
JP2022543467A (en) 2019-08-07 2022-10-12 モデルナティエックス インコーポレイテッド Compositions and methods for enhanced drug delivery
WO2021030522A1 (en) 2019-08-13 2021-02-18 Alnylam Pharmaceuticals, Inc. SMALL RIBOSOMAL PROTEIN SUBUNIT 25 (RPS25) iRNA AGENT COMPOSITIONS AND METHODS OF USE THEREOF
WO2021028439A1 (en) 2019-08-14 2021-02-18 Curevac Ag Rna combinations and compositions with decreased immunostimulatory properties
MX2022001896A (en) 2019-08-16 2022-06-02 Regeneron Pharma High concentration anti-c5 formulations.
JP2022546597A (en) 2019-09-06 2022-11-04 ジェネレーション バイオ カンパニー Lipid nanoparticle compositions comprising closed-end DNA and cleavable lipids and methods of their use
WO2021055833A1 (en) 2019-09-19 2021-03-25 Modernatx, Inc. Branched tail lipid compounds and compositions for intracellular delivery of therapeutic agents
JP2022548320A (en) 2019-09-23 2022-11-17 オメガ セラピューティクス, インコーポレイテッド Compositions and methods for modulating apolipoprotein B (APOB) gene expression
CN114729376A (en) 2019-09-23 2022-07-08 欧米茄治疗公司 Compositions and methods for modulating hepatocyte nuclear factor 4 alpha (HNF4 alpha) gene expression
EP4045076A1 (en) 2019-10-15 2022-08-24 ModernaTX, Inc. Mrnas encoding granulocyte-macrophage colony stimulating factor for treating parkinson's disease
US20240141358A1 (en) 2019-10-18 2024-05-02 Alnylam Pharmaceuticals, Inc. Solute carrier family member irna compositions and methods of use thereof
JP2022553348A (en) 2019-10-22 2022-12-22 アルナイラム ファーマシューティカルズ, インコーポレイテッド COMPLEMENT COMPONENT C3 iRNA COMPOSITIONS AND METHODS OF USE THEREOF
CN110903998B (en) * 2019-10-23 2021-09-21 上海市第十人民医院 Intestinal tract separated fusobacterium nucleatum Wenzeri strain and application thereof
CN111205994B (en) * 2019-10-23 2021-09-21 上海市第十人民医院 Fusobacterium nucleatum subspecies animal strain and application thereof
CN111004738B (en) * 2019-10-23 2021-09-21 上海市第十人民医院 Fusobacterium nucleatum subspecies pleomorphus isolate and application thereof
EP4048691A1 (en) 2019-10-25 2022-08-31 Regeneron Pharmaceuticals, Inc. Dosing regimens for treating or preventing c5-associated diseases
CN114728018B (en) 2019-11-01 2024-07-19 阿尔尼拉姆医药品有限公司 Huntington (HTT) iRNA pharmaceutical compositions and methods of use thereof
KR20220115946A (en) 2019-11-13 2022-08-19 알닐람 파마슈티칼스 인코포레이티드 Methods and compositions for treating angiotensinogen (AGT) related disorders
EP4061945A1 (en) 2019-11-22 2022-09-28 Alnylam Pharmaceuticals, Inc. Ataxin3 (atxn3) rnai agent compositions and methods of use thereof
WO2021117770A1 (en) * 2019-12-10 2021-06-17 富士フイルム株式会社 Pharmaceutical composition and treatment agent
WO2021117769A1 (en) * 2019-12-10 2021-06-17 富士フイルム株式会社 Pharmaceutical composition and treatment agent
JP2023506181A (en) 2019-12-13 2023-02-15 アルナイラム ファーマシューティカルズ, インコーポレイテッド Human chromosome 9 open reading frame 72 (C9ORF72) iRNA agent compositions and methods of use thereof
WO2021126734A1 (en) 2019-12-16 2021-06-24 Alnylam Pharmaceuticals, Inc. Patatin-like phospholipase domain containing 3 (pnpla3) irna compositions and methods of use thereof
KR20220121246A (en) 2019-12-20 2022-08-31 큐어백 아게 Novel Lipid Nanoparticles for Nucleic Acid Delivery
CN110974954B (en) * 2019-12-24 2021-03-16 珠海丽凡达生物技术有限公司 Lipid nanoparticle for enhancing immune effect of nucleic acid vaccine and preparation method thereof
EP4087544A1 (en) 2020-01-10 2022-11-16 ModernaTX, Inc. Methods of making tolerogenic dendritic cells
KR20220142445A (en) 2020-01-15 2022-10-21 다이서나 파마수이티컬, 인크. 4'-O-methylene phosphonate nucleic acids and analogs thereof
CN116133652A (en) 2020-01-31 2023-05-16 摩登纳特斯有限公司 Method for preparing lipid nanoparticles
WO2021154941A1 (en) 2020-01-31 2021-08-05 Alnylam Pharmaceuticals, Inc. Complement component c5 irna compositions for use in the treatment of amyotrophic lateral sclerosis (als)
JP2023513502A (en) 2020-02-04 2023-03-31 キュアバック エスイー coronavirus vaccine
CA3170377A1 (en) 2020-02-10 2021-08-19 Alnylam Pharmaceuticals, Inc. Compositions and methods for silencing vegf-a expression
WO2021167841A1 (en) 2020-02-18 2021-08-26 Alnylam Pharmaceuticals, Inc. Apolipoprotein c3 (apoc3) irna compositions and methods of use thereof
EP4114360A4 (en) * 2020-03-04 2024-06-26 Verve Therapeutics, Inc. Compositions and methods for targeted rna delivery
WO2021178607A1 (en) 2020-03-05 2021-09-10 Alnylam Pharmaceuticals, Inc. Complement component c3 irna compositions and methods of use thereof for treating or preventing complement component c3-associated diseases
WO2021178736A1 (en) 2020-03-06 2021-09-10 Alnylam Pharmaceuticals, Inc. KETOHEXOKINASE (KHK) iRNA COMPOSITIONS AND METHODS OF USE THEREOF
US11759515B2 (en) 2020-03-09 2023-09-19 Arcturus Therapeutics, Inc. Compositions and methods for inducing immune responses
CA3173528A1 (en) 2020-03-11 2021-09-16 Omega Therapeutics, Inc. Compositions and methods for modulating forkhead box p3 (foxp3) gene expression
EP4127168A1 (en) 2020-03-26 2023-02-08 Alnylam Pharmaceuticals, Inc. Coronavirus irna compositions and methods of use thereof
JP2023520506A (en) 2020-04-01 2023-05-17 ユニバーシティ オブ フロリダ リサーチ ファンデーション インコーポレーティッド Multilayered RNA nanoparticle vaccine against SARS-COV-2
EP4133078A1 (en) 2020-04-06 2023-02-15 Alnylam Pharmaceuticals, Inc. Compositions and methods for silencing myoc expression
EP4133077A1 (en) 2020-04-07 2023-02-15 Alnylam Pharmaceuticals, Inc. Transmembrane serine protease 2 (tmprss2) irna compositions and methods of use thereof
KR20230008078A (en) 2020-04-07 2023-01-13 알닐람 파마슈티칼스 인코포레이티드 Compositions and methods for silencing SCN9A expression
WO2021206917A1 (en) 2020-04-07 2021-10-14 Alnylam Pharmaceuticals, Inc. ANGIOTENSIN-CONVERTING ENZYME 2 (ACE2) iRNA COMPOSITIONS AND METHODS OF USE THEREOF
CA3181400A1 (en) 2020-04-27 2021-11-04 Alnylam Pharmaceuticals, Inc. Apolipoprotein e (apoe) irna agent compositions and methods of use thereof
KR20230017789A (en) 2020-04-30 2023-02-06 알닐람 파마슈티칼스 인코포레이티드 Complement Factor B (CFB) iRNA Compositions and Methods of Use Thereof
WO2021222801A2 (en) 2020-05-01 2021-11-04 Arcturus Therapeutics, Inc. Nucleic acids and methods of treatment for cystic fibrosis
CA3182920A1 (en) 2020-05-14 2021-11-18 Modernatx, Inc. Lnp compositions comprising an mrna therapeutic and an effector molecule
WO2021231679A1 (en) 2020-05-15 2021-11-18 Korro Bio, Inc. Methods and compositions for the adar-mediated editing of gap junction protein beta 2 (gjb2)
WO2021231691A1 (en) 2020-05-15 2021-11-18 Korro Bio, Inc. Methods and compositions for the adar-mediated editing of retinoschisin 1 (rsi)
CA3162416C (en) 2020-05-15 2023-07-04 Korro Bio, Inc. Methods and compositions for the adar-mediated editing of argininosuccinate synthetase (ass1)
EP4150078A1 (en) 2020-05-15 2023-03-22 Korro Bio, Inc. Methods and compositions for the adar-mediated editing of argininosuccinate lyase (asl)
WO2021231673A1 (en) 2020-05-15 2021-11-18 Korro Bio, Inc. Methods and compositions for the adar-mediated editing of leucine rich repeat kinase 2 (lrrk2)
EP4150077A1 (en) 2020-05-15 2023-03-22 Korro Bio, Inc. Methods and compositions for the adar-mediated editing of transmembrane channel-like protein 1 (tmc1)
EP4150090A1 (en) 2020-05-15 2023-03-22 Korro Bio, Inc. Methods and compositions for the adar-mediated editing of otoferlin (otof)
EP4150076A1 (en) 2020-05-15 2023-03-22 Korro Bio, Inc. Methods and compositions for the adar-mediated editing of methyl-cpg binding protein 2 (mecp2)
CA3183163A1 (en) 2020-05-18 2021-11-25 Max Biology Co. Ltd. Lipid-polymer compositions and methods of use
JP2023526422A (en) 2020-05-20 2023-06-21 フラッグシップ パイオニアリング イノベーションズ シックス,エルエルシー Coronavirus antigen compositions and their uses
US20230193311A1 (en) 2020-05-20 2023-06-22 Flagship Pioneering Innovations Vi, Llc Immunogenic compositions and uses thereof
US20230233474A1 (en) 2020-05-28 2023-07-27 Modernatx, Inc. Use of mrnas encoding ox40l, il-23 and il-36gamma for treating cancer
KR20230029685A (en) 2020-05-29 2023-03-03 플래그쉽 파이어니어링 이노베이션스 브이아이, 엘엘씨 TREM compositions and methods related thereto
EP4158032A2 (en) 2020-05-29 2023-04-05 Flagship Pioneering Innovations VI, LLC Trem compositions and methods relating thereto
JP2023530229A (en) 2020-05-29 2023-07-14 キュアバック エスイー Nucleic acid-based combination vaccine
AU2021285812A1 (en) 2020-06-01 2023-01-05 Modernatx, Inc. Phenylalanine hydroxylase variants and uses thereof
WO2021247535A1 (en) 2020-06-01 2021-12-09 Modernatx, Inc. Lipid nanoparticles containing polynucleotides encoding glucose-6-phosphatase and uses thereof
US11408000B2 (en) 2020-06-03 2022-08-09 Triplet Therapeutics, Inc. Oligonucleotides for the treatment of nucleotide repeat expansion disorders associated with MSH3 activity
WO2021252557A1 (en) 2020-06-09 2021-12-16 Alnylam Pharmaceuticals, Inc. Rnai compositions and methods of use thereof for delivery by inhalation
CA3184289A1 (en) 2020-06-18 2021-12-23 Alnylam Pharmaceuticals, Inc. Xanthine dehydrogenase (xdh) irna compositions and methods of use thereof
BR112022025991A2 (en) 2020-06-23 2023-03-14 Modernatx Inc LNP COMPOSITIONS COMPRISING MRNA THERAPY WITH EXTENDED HALF-LIFE
CN116367854A (en) 2020-07-08 2023-06-30 杨森科学爱尔兰无限公司 RNA replicon vaccine against HBV
JP2023540429A (en) 2020-07-10 2023-09-25 アンセルム(アンスティチュート・ナシオナル・ドゥ・ラ・サンテ・エ・ドゥ・ラ・ルシェルシュ・メディカル) Methods and compositions for treating epilepsy
CN116096702A (en) 2020-07-16 2023-05-09 爱康泰生治疗公司 Cationic lipids for lipid nanoparticles
WO2022016077A1 (en) 2020-07-17 2022-01-20 Greenlight Biosciences, Inc. Nucleic acid therapeutics for genetic disorders
EP4172194A1 (en) 2020-07-31 2023-05-03 CureVac SE Nucleic acid encoded antibody mixtures
KR20230061389A (en) 2020-08-04 2023-05-08 다이서나 파마수이티컬, 인크. Systemic Delivery of Oligonucleotides
WO2022032087A1 (en) 2020-08-06 2022-02-10 Modernatx, Inc. Methods of preparing lipid nanoparticles
WO2022043551A2 (en) 2020-08-31 2022-03-03 Curevac Ag Multivalent nucleic acid based coronavirus vaccines
CN116157148A (en) 2020-09-03 2023-05-23 旗舰创业创新第六有限责任公司 Immunogenic compositions and uses thereof
EP4217489A1 (en) 2020-09-24 2023-08-02 Alnylam Pharmaceuticals, Inc. Dipeptidyl peptidase 4 (dpp4) irna compositions and methods of use thereof
IL300776A (en) * 2020-09-25 2023-04-01 DNARx Systems and methods for expressing biomolecules in a subject
WO2022074541A1 (en) 2020-10-05 2022-04-14 Max Biology Co. Ltd. Cannabinoid-containing compositions and use for treating and preventing diseases
TW202229552A (en) 2020-10-05 2022-08-01 美商艾拉倫製藥股份有限公司 G protein-coupled receptor 75 (gpr75) irna compositions and methods of use thereof
AU2021365822A1 (en) 2020-10-21 2023-06-08 Alnylam Pharmaceuticals, Inc. Methods and compositions for treating primary hyperoxaluria
WO2022087329A1 (en) 2020-10-23 2022-04-28 Alnylam Pharmaceuticals, Inc. Mucin 5b (muc5b) irna compositions and methods of use thereof
EP4243776A1 (en) 2020-11-13 2023-09-20 Modernatx, Inc. Polynucleotides encoding cystic fibrosis transmembrane conductance regulator for the treatment of cystic fibrosis
CA3200595A1 (en) 2020-11-13 2022-05-19 Alnylam Pharmaceuticals, Inc. Coagulation factor v (f5) irna compositions and methods of use thereof
BR112021021361A2 (en) * 2020-11-27 2023-10-10 Guangzhou Ribobio Co Ltd LIPID COMPOUND AND COMPOSITION THEREOF
WO2022110099A1 (en) 2020-11-30 2022-06-02 Guangzhou Argorna Biopharmaceuticals Co., Ltd. Coronavirus vaccines and uses thereof
CA3201452A1 (en) 2020-12-01 2022-06-09 Alnylam Pharmaceuticals, Inc. Methods and compositions for inhibition of hao1 (hydroxyacid oxidase 1 (glycolate oxidase)) gene expression
WO2022125490A1 (en) 2020-12-08 2022-06-16 Alnylam Pharmaceuticals, Inc. Coagulation factor x (f10) irna compositions and methods of use thereof
US20240299309A1 (en) 2020-12-22 2024-09-12 CureVac SE Pharmaceutical composition comprising lipid-based carriers encapsulating rna for multidose administration
WO2022137133A1 (en) 2020-12-22 2022-06-30 Curevac Ag Rna vaccine against sars-cov-2 variants
EP4267732A1 (en) 2020-12-23 2023-11-01 Flagship Pioneering Innovations VI, LLC Compositions of modified trems and uses thereof
CA3203442A1 (en) 2020-12-28 2022-07-07 Arcturus Therapeutics, Inc. Transcription activator-like effector nucleases (talens) targeting hbv
EP4274896A1 (en) 2021-01-05 2023-11-15 Alnylam Pharmaceuticals, Inc. Complement component 9 (c9) irna compositions and methods of use thereof
CA3170747A1 (en) 2021-01-27 2022-08-04 Moritz THRAN Method of reducing the immunostimulatory properties of in vitro transcribed rna
EP4291165A1 (en) 2021-02-12 2023-12-20 ModernaTX, Inc. Lnp compositions comprising payloads for in vivo therapy
KR20230146048A (en) 2021-02-12 2023-10-18 알닐람 파마슈티칼스 인코포레이티드 Superoxide dismutase 1 (SOD1) IRNA compositions and methods of using them to treat or prevent superoxide dismutase 1- (SOD1-)-related neurodegenerative diseases
US11524023B2 (en) 2021-02-19 2022-12-13 Modernatx, Inc. Lipid nanoparticle compositions and methods of formulating the same
WO2022182864A1 (en) 2021-02-25 2022-09-01 Alnylam Pharmaceuticals, Inc. Prion protein (prnp) irna compositions and methods and methods of use thereof
KR20230152014A (en) 2021-02-26 2023-11-02 에트리스 게엠베하 Formulations for aerosol formation and aerosols for nucleic acid delivery
CA3211059A1 (en) 2021-02-26 2022-09-01 Alnylam Pharmaceuticals, Inc. Ketohexokinase (khk) irna compositions and methods of use thereof
WO2022192519A1 (en) 2021-03-12 2022-09-15 Alnylam Pharmaceuticals, Inc. Glycogen synthase kinase 3 alpha (gsk3a) irna compositions and methods of use thereof
US20240226025A1 (en) 2021-03-24 2024-07-11 Modernatx, Inc. Polynucleotides encoding methylmalonyl-coa mutase for the treatment of methylmalonic acidemia
US20240189449A1 (en) 2021-03-24 2024-06-13 Modernatx, Inc. Lipid nanoparticles and polynucleotides encoding ornithine transcarbamylase for the treatment of ornithine transcarbamylase deficiency
US20240207374A1 (en) 2021-03-24 2024-06-27 Modernatx, Inc. Lipid nanoparticles containing polynucleotides encoding glucose-6-phosphatase and uses thereof
WO2022204390A1 (en) 2021-03-24 2022-09-29 Modernatx, Inc. Lipid nanoparticles containing polynucleotides encoding phenylalanine hydroxylase and uses thereof
WO2022204380A1 (en) 2021-03-24 2022-09-29 Modernatx, Inc. Lipid nanoparticles containing polynucleotides encoding propionyl-coa carboxylase alpha and beta subunits and uses thereof
US20240181038A1 (en) 2021-03-26 2024-06-06 Glaxosmithkline Biologicals Sa Immunogenic compositions
AR125230A1 (en) 2021-03-29 2023-06-28 Alnylam Pharmaceuticals Inc COMPOSITIONS OF ANTI-HUNTINGTIN (HTT) RNAi AGENTS AND THEIR METHODS OF USE
CA3171429A1 (en) 2021-03-31 2022-09-30 Alexander SCHWENGER Syringes containing pharmaceutical compositions comprising rna
US20220325287A1 (en) 2021-03-31 2022-10-13 Flagship Pioneering Innovations V, Inc. Thanotransmission polypeptides and their use in treating cancer
WO2022212711A2 (en) 2021-04-01 2022-10-06 Modernatx, Inc. Methods for identification and ratio determination of rna species in multivalent rna compositions
WO2022212153A1 (en) 2021-04-01 2022-10-06 Alnylam Pharmaceuticals, Inc. Proline dehydrogenase 2 (prodh2) irna compositions and methods of use thereof
US20240238211A1 (en) 2021-04-23 2024-07-18 Modernatx, Inc. Isoquinoline-stabilized lipid nanoparticle formulations
WO2022226277A1 (en) 2021-04-23 2022-10-27 Modernatx, Inc. Stabilized formulations
IL307926A (en) 2021-04-26 2023-12-01 Alnylam Pharmaceuticals Inc Transmembrane protease, serine 6 (tmprss6) irna compositions and methods of use thereof
WO2022232585A1 (en) 2021-04-29 2022-11-03 Modernatx, Inc. Lyophilization methods for preparing lipid formulated therapeutics
JP2024519293A (en) 2021-04-29 2024-05-10 アルナイラム ファーマシューティカルズ, インコーポレイテッド Signal Transducer and Activator of Transcription 6 (STAT6) iRNA Compositions and Methods of Use Thereof
EP4334446A1 (en) 2021-05-03 2024-03-13 CureVac SE Improved nucleic acid sequence for cell type specific expression
WO2022240806A1 (en) 2021-05-11 2022-11-17 Modernatx, Inc. Non-viral delivery of dna for prolonged polypeptide expression in vivo
JP2024522068A (en) 2021-05-18 2024-06-11 アルナイラム ファーマシューティカルズ, インコーポレイテッド Sodium-glucose cotransporter 2 (SGLT2) IRNA compositions and methods of use thereof
WO2022246020A1 (en) 2021-05-19 2022-11-24 Modernatx, Inc. Polynucleotides encoding methylmalonyl-coa mutase for the treatment of methylmalonic acidemia
EP4341405A1 (en) 2021-05-20 2024-03-27 Korro Bio, Inc. Methods and compositions for adar-mediated editing
WO2022256283A2 (en) 2021-06-01 2022-12-08 Korro Bio, Inc. Methods for restoring protein function using adar
JP2024522996A (en) 2021-06-02 2024-06-25 アルナイラム ファーマシューティカルズ, インコーポレイテッド Patatin-like phospholipase domain-containing 3 (PNPLA3) iRNA compositions and methods of use thereof
AR126000A1 (en) 2021-06-04 2023-08-30 Alnylam Pharmaceuticals Inc ARNI AGENTS OF OPEN READING FRAME 72 OF HUMAN CHROMOSOME 9 (C9ORF72), COMPOSITIONS AND METHODS OF USE THEREOF
EP4351541A2 (en) 2021-06-08 2024-04-17 Alnylam Pharmaceuticals, Inc. Compositions and methods for treating or preventing stargardt's disease and/or retinal binding protein 4 (rbp4)-associated disorders
WO2022260772A1 (en) * 2021-06-09 2022-12-15 Carnegie Mellon University Lipid nanoparticle formulations for gastrointestinal delivery
EP4355882A2 (en) 2021-06-15 2024-04-24 Modernatx, Inc. Engineered polynucleotides for cell-type or microenvironment-specific expression
WO2022271776A1 (en) 2021-06-22 2022-12-29 Modernatx, Inc. Polynucleotides encoding uridine diphosphate glycosyltransferase 1 family, polypeptide a1 for the treatment of crigler-najjar syndrome
US20240299301A1 (en) * 2021-06-24 2024-09-12 Therna Therapeutics Lipid nanoparticles and method for preparing same
KR102516680B1 (en) * 2021-06-24 2023-04-03 주식회사 테르나테라퓨틱스 Lipid Nano-particles and Method of Preparing the Same
US20230194709A9 (en) 2021-06-29 2023-06-22 Seagate Technology Llc Range information detection using coherent pulse sets with selected waveform characteristics
WO2023278410A1 (en) 2021-06-29 2023-01-05 Korro Bio, Inc. Methods and compositions for adar-mediated editing
CA3225469A1 (en) 2021-06-30 2023-01-05 Alnylam Pharmaceuticals, Inc. Methods and compositions for treating an angiotensinogen- (agt-) associated disorder
EP4367242A2 (en) 2021-07-07 2024-05-15 Omega Therapeutics, Inc. Compositions and methods for modulating secreted frizzled receptor protein 1 (sfrp1) gene expression
JP2024527584A (en) 2021-07-09 2024-07-25 アルナイラム ファーマシューティカルズ, インコーポレイテッド Bis-RNAi Compounds for CNS Delivery
WO2023287751A1 (en) 2021-07-12 2023-01-19 Modernatx, Inc. Polynucleotides encoding propionyl-coa carboxylase alpha and beta subunits for the treatment of propionic acidemia
IL309897A (en) 2021-07-21 2024-03-01 Alnylam Pharmaceuticals Inc Metabolic disorder-associated target gene irna compositions and methods of use thereof
JP2024528701A (en) 2021-07-23 2024-07-30 アルナイラム ファーマシューティカルズ, インコーポレイテッド Beta-catenin (CTNNB1) iRNA compositions and methods of use thereof
EP4377457A1 (en) 2021-07-26 2024-06-05 Flagship Pioneering Innovations VI, LLC Trem compositions and uses thereof
EP4379054A1 (en) 2021-07-27 2024-06-05 Stand Therapeutics Co., Ltd. Peptide tag and nucleic acid encoding same
WO2023009499A1 (en) 2021-07-27 2023-02-02 Modernatx, Inc. Polynucleotides encoding glucose-6-phosphatase for the treatment of glycogen storage disease type 1a (gsd1a)
JP2024529437A (en) 2021-07-29 2024-08-06 アルナイラム ファーマシューティカルズ, インコーポレイテッド 3-hydroxy-3-methylglutaric-coa reductase (hmgcr) iRNA compositions and methods of use thereof
EP4377331A2 (en) 2021-07-30 2024-06-05 CureVac SE Mrnas for treatment or prophylaxis of liver diseases
WO2023014649A1 (en) 2021-08-02 2023-02-09 Modernatx, Inc. Extraction-less reverse phase (rp) chromatography of mrna encapsulated in lipid nanoparticles for mrna purity assessment
MX2024001445A (en) 2021-08-04 2024-02-27 Alnylam Pharmaceuticals Inc iRNA COMPOSITIONS AND METHODS FOR SILENCING ANGIOTENSINOGEN (AGT).
EP4381084A1 (en) 2021-08-04 2024-06-12 Modernatx, Inc. Mrnas encoding chimeric metabolic reprogramming polypeptides and uses thereof
WO2023014974A1 (en) 2021-08-06 2023-02-09 University Of Iowa Research Foundation Double stranded mrna vaccines
WO2023018773A1 (en) 2021-08-11 2023-02-16 Modernatx, Inc. Lipid nanoparticle formulations and methods of synthesis thereof
WO2023019181A1 (en) 2021-08-11 2023-02-16 Modernatx, Inc. Sars-cov-2 lipid nanoparticle vaccine formulations
AR126771A1 (en) 2021-08-13 2023-11-15 Alnylam Pharmaceuticals Inc RNAi COMPOSITIONS AGAINST FACTOR XII (F12) AND THEIR METHODS OF USE
JP2024538489A (en) 2021-09-03 2024-10-23 キュアバック エスイー Novel lipid nanoparticles for delivery of nucleic acids
AU2022337090A1 (en) 2021-09-03 2024-02-15 Glaxosmithkline Biologicals Sa Substitution of nucleotide bases in self-amplifying messenger ribonucleic acids
WO2023031392A2 (en) 2021-09-03 2023-03-09 CureVac SE Novel lipid nanoparticles for delivery of nucleic acids comprising phosphatidylserine
JP2024533311A (en) 2021-09-08 2024-09-12 フラッグシップ パイオニアリング イノベーションズ シックス,エルエルシー Methods and compositions for regulating the genome
WO2023044370A2 (en) 2021-09-17 2023-03-23 Alnylam Pharmaceuticals, Inc. Irna compositions and methods for silencing complement component 3 (c3)
CN118234867A (en) 2021-09-17 2024-06-21 旗舰创业创新六公司 Compositions and methods for producing cyclic polyribonucleotides
IL311454A (en) 2021-09-20 2024-05-01 Alnylam Pharmaceuticals Inc Inhibin subunit beta e (inhbe) modulator compositions and methods of use thereof
WO2023056044A1 (en) 2021-10-01 2023-04-06 Modernatx, Inc. Polynucleotides encoding relaxin for the treatment of fibrosis and/or cardiovascular disease
WO2023056401A1 (en) 2021-10-01 2023-04-06 Modernatx, Inc. Rna formulations for high volume distribution, and methods of using the same for treating a disease or condition caused by or associated with human cytomegalovirus
WO2023064469A1 (en) 2021-10-13 2023-04-20 Modernatx, Inc. Compositions of mrna-encoded il15 fusion proteins and methods of use thereof
IL311864A (en) 2021-10-15 2024-06-01 Alnylam Pharmaceuticals Inc Extra-hepatic delivery irna compositions and methods of use thereof
WO2023069895A1 (en) 2021-10-18 2023-04-27 Modernatx, Inc. Markerless dna production
KR20240126857A (en) 2021-10-18 2024-08-21 플래그쉽 파이어니어링 이노베이션스 브이아이, 엘엘씨 Compositions and methods for purifying polyribonucleotides
EP4419683A1 (en) 2021-10-22 2024-08-28 Korro Bio, Inc. Methods and compositions for disrupting nrf2-keap1 protein interaction by adar mediated rna editing
KR20240090876A (en) 2021-10-26 2024-06-21 아스트라제네카 아베 Novel lipids for delivery of nucleic acid segments
EP4423272A2 (en) 2021-10-29 2024-09-04 Alnylam Pharmaceuticals, Inc. Huntingtin (htt) irna agent compositions and methods of use thereof
EP4422698A1 (en) 2021-10-29 2024-09-04 CureVac SE Improved circular rna for expressing therapeutic proteins
CA3234636A1 (en) 2021-10-29 2023-05-04 Alnylam Pharmaceuticals, Inc. Complement factor b (cfb) irna compositions and methods of use thereof
EP4426340A1 (en) 2021-11-01 2024-09-11 ModernaTX, Inc. Polynucleotides encoding integrin beta-6 and methods of use thereof
AU2022391744A1 (en) 2021-11-18 2024-06-27 Cornell University Microrna-dependent mrna switches for tissue-specific mrna-based therapies
WO2023092151A1 (en) * 2021-11-22 2023-05-25 Ohio State Innovation Foundation Compositions and methods for the treatment of neurodegenerative disorders
IL313004A (en) 2021-11-24 2024-07-01 Flagship Pioneering Innovations Vi Llc Coronavirus immunogen compositions and their uses
CA3238735A1 (en) 2021-11-24 2023-06-01 Jennifer A. Nelson Immunogenic compositions and their uses
IL312799A (en) 2021-11-24 2024-07-01 Flagship Pioneering Innovations Vi Llc Varicella-zoster virus immunogen compositions and their uses
EP4444345A2 (en) 2021-12-08 2024-10-16 ModernaTX, Inc. Herpes simplex virus mrna vaccines
EP4448777A1 (en) 2021-12-15 2024-10-23 ModernaTX, Inc. Determination of encapsulation efficiency of lipid nanoparticles
CA3242402A1 (en) 2021-12-16 2023-06-22 Acuitas Therapeutics, Inc. Lipids for use in lipid nanoparticle formulations
WO2023114889A1 (en) 2021-12-16 2023-06-22 Modernatx, Inc. Processes for preparing lipid nanoparticles
KR20240117149A (en) 2021-12-22 2024-07-31 플래그쉽 파이어니어링 이노베이션스 브이아이, 엘엘씨 Compositions and methods for purifying polyribonucleotides
KR20240126870A (en) 2021-12-22 2024-08-21 캠프4 테라퓨틱스 코포레이션 Modulation of gene transcription using antisense oligonucleotides targeting regulatory RNAs
WO2023122789A1 (en) 2021-12-23 2023-06-29 Flagship Pioneering Innovations Vi, Llc Circular polyribonucleotides encoding antifusogenic polypeptides
CN114957027B (en) 2022-01-13 2023-05-19 北京悦康科创医药科技股份有限公司 Cationic lipid compound, composition containing cationic lipid compound and application of cationic lipid compound
WO2023135298A1 (en) 2022-01-17 2023-07-20 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods of inducing cell death of a population of solid tumor cells
WO2023141314A2 (en) 2022-01-24 2023-07-27 Alnylam Pharmaceuticals, Inc. Heparin sulfate biosynthesis pathway enzyme irna agent compositions and methods of use thereof
WO2023144193A1 (en) 2022-01-25 2023-08-03 CureVac SE Mrnas for treatment of hereditary tyrosinemia type i
AU2023212857A1 (en) 2022-01-27 2024-07-04 BioNTech SE Pharmaceutical compositions for delivery of herpes simplex virus antigens and related methods
WO2023144330A1 (en) 2022-01-28 2023-08-03 CureVac SE Nucleic acid encoded transcription factor inhibitors
WO2023152365A1 (en) 2022-02-14 2023-08-17 INSERM (Institut National de la Santé et de la Recherche Médicale) Use of the 15-lipoxygenase for the treatment of lymphedema
TW202345864A (en) 2022-02-18 2023-12-01 美商現代公司 Mrnas encoding checkpoint cancer vaccines and uses thereof
WO2023161350A1 (en) 2022-02-24 2023-08-31 Io Biotech Aps Nucleotide delivery of cancer therapy
WO2023177904A1 (en) 2022-03-18 2023-09-21 Modernatx, Inc. Sterile filtration of lipid nanoparticles and filtration analysis thereof for biological applications
WO2023183909A2 (en) 2022-03-25 2023-09-28 Modernatx, Inc. Polynucleotides encoding fanconi anemia, complementation group proteins for the treatment of fanconi anemia
WO2023193002A1 (en) 2022-04-01 2023-10-05 Modernatx, Inc. Cross mixers for lipid nanoparticle production, and methods of operating the same
WO2023196399A1 (en) 2022-04-06 2023-10-12 Modernatx, Inc. Lipid nanoparticles and polynucleotides encoding argininosuccinate lyase for the treatment of argininosuccinic aciduria
WO2023196988A1 (en) 2022-04-07 2023-10-12 Modernatx, Inc. Methods of use of mrnas encoding il-12
WO2023196634A2 (en) 2022-04-08 2023-10-12 Flagship Pioneering Innovations Vii, Llc Vaccines and related methods
WO2023200893A1 (en) * 2022-04-13 2023-10-19 Oregon State University Small molecule enhancers of antisense oligo activity
WO2023201296A1 (en) 2022-04-15 2023-10-19 Modernatx, Inc. Ribosomal engagement potency assay
WO2023212696A1 (en) 2022-04-29 2023-11-02 Modernatx, Inc. Lyophilized human cytomegalovirus vaccines
WO2023215498A2 (en) 2022-05-05 2023-11-09 Modernatx, Inc. Compositions and methods for cd28 antagonism
WO2023220083A1 (en) 2022-05-09 2023-11-16 Flagship Pioneering Innovations Vi, Llc Trem compositions and methods of use for treating proliferative disorders
WO2023218420A1 (en) 2022-05-13 2023-11-16 Janssen Pharmaceuticals, Inc. Mrna compositions for inducing latent hiv-1 reversal
WO2023220734A2 (en) * 2022-05-13 2023-11-16 The Trustees Of The University Of Pennsylvania Bisphosphonate lipids, lipid nanoparticle compositions comprising the same, and methods of use thereof for targeted delivery
TW202409283A (en) 2022-05-13 2024-03-01 美商旗艦先鋒創新有限責任(Vii)公司 Double stranded dna compositions and related methods
WO2023227608A1 (en) 2022-05-25 2023-11-30 Glaxosmithkline Biologicals Sa Nucleic acid based vaccine encoding an escherichia coli fimh antigenic polypeptide
WO2023230601A1 (en) 2022-05-27 2023-11-30 Beam Therapeutics Inc. Identification of nanoparticles for preferential tissue or cell targeting
WO2023240277A2 (en) 2022-06-10 2023-12-14 Camp4 Therapeutics Corporation Methods of modulating progranulin expression using antisense oligonucleotides targeting regulatory rnas
CN117263818A (en) * 2022-06-14 2023-12-22 杭州高田生物医药有限公司 Cationic lipid compound, and preparation method and application thereof
WO2023242817A2 (en) 2022-06-18 2023-12-21 Glaxosmithkline Biologicals Sa Recombinant rna molecules comprising untranslated regions or segments encoding spike protein from the omicron strain of severe acute respiratory coronavirus-2
WO2023250112A1 (en) 2022-06-22 2023-12-28 Flagship Pioneering Innovations Vi, Llc Compositions of modified trems and uses thereof
WO2024015890A1 (en) 2022-07-13 2024-01-18 Modernatx, Inc. Norovirus mrna vaccines
WO2024023034A1 (en) 2022-07-25 2024-02-01 Institut National de la Santé et de la Recherche Médicale Use of apelin for the treatment of lymphedema
WO2024026254A1 (en) 2022-07-26 2024-02-01 Modernatx, Inc. Engineered polynucleotides for temporal control of expression
WO2024026475A1 (en) 2022-07-29 2024-02-01 Modernatx, Inc. Compositions for delivery to hematopoietic stem and progenitor cells (hspcs) and related uses
WO2024026482A1 (en) 2022-07-29 2024-02-01 Modernatx, Inc. Lipid nanoparticle compositions comprising surface lipid derivatives and related uses
WO2024026487A1 (en) 2022-07-29 2024-02-01 Modernatx, Inc. Lipid nanoparticle compositions comprising phospholipid derivatives and related uses
WO2024030856A2 (en) 2022-08-01 2024-02-08 Flagship Pioneering Innovations Vii, Llc Immunomodulatory proteins and related methods
WO2024030369A1 (en) 2022-08-01 2024-02-08 Modernatx, Inc. Extraction-less reverse phase (rp) chromatography for mrna purity assessment
WO2024035952A1 (en) 2022-08-12 2024-02-15 Remix Therapeutics Inc. Methods and compositions for modulating splicing at alternative splice sites
WO2024039776A2 (en) 2022-08-18 2024-02-22 Alnylam Pharmaceuticals, Inc. Universal non-targeting sirna compositions and methods of use thereof
WO2024044147A1 (en) 2022-08-23 2024-02-29 Modernatx, Inc. Methods for purification of ionizable lipids
WO2024042236A1 (en) 2022-08-26 2024-02-29 Ethris Gmbh Stable lipid or lipidoid nanoparticle suspensions
EP4327829A1 (en) 2022-08-26 2024-02-28 Ethris GmbH Stabilization of lipid or lipidoid nanoparticle suspensions
WO2024050483A1 (en) 2022-08-31 2024-03-07 Modernatx, Inc. Variant strain-based coronavirus vaccines and uses thereof
WO2024047247A1 (en) 2022-09-02 2024-03-07 Institut National de la Santé et de la Recherche Médicale Base editing approaches for the treatment of amyotrophic lateral sclerosis
TW202424193A (en) 2022-09-15 2024-06-16 美商艾拉倫製藥股份有限公司 17β-HYDROXYSTEROID DEHYDROGENASE TYPE 13 (HSD17B13) IRNA COMPOSITIONS AND METHODS OF USE THEREOF
WO2024063788A1 (en) 2022-09-23 2024-03-28 BioNTech SE Compositions for delivery of malaria antigens and related methods
WO2024064931A1 (en) 2022-09-23 2024-03-28 BioNTech SE Compositions for delivery of liver stage antigens and related methods
WO2024064934A1 (en) 2022-09-23 2024-03-28 BioNTech SE Compositions for delivery of plasmodium csp antigens and related methods
WO2024063789A1 (en) 2022-09-23 2024-03-28 BioNTech SE Compositions for delivery of malaria antigens and related methods
WO2024068545A1 (en) 2022-09-26 2024-04-04 Glaxosmithkline Biologicals Sa Influenza virus vaccines
US20240174732A1 (en) 2022-10-05 2024-05-30 Flagship Pioneering Innovations V, Inc. Nucleic acid molecules encoding trif and additional polypeptides and their use in treating cancer
WO2024091918A2 (en) 2022-10-25 2024-05-02 Modernatx, Inc. Methods of lipid nanoparticle production in cross-mixers
WO2024089638A1 (en) 2022-10-28 2024-05-02 Glaxosmithkline Biologicals Sa Nucleic acid based vaccine
WO2024097639A1 (en) 2022-10-31 2024-05-10 Modernatx, Inc. Hsa-binding antibodies and binding proteins and uses thereof
WO2024097664A1 (en) 2022-10-31 2024-05-10 Flagship Pioneering Innovations Vi, Llc Compositions and methods for purifying polyribonucleotides
WO2024097874A1 (en) 2022-11-03 2024-05-10 Modernatx, Inc. Chemical stability of mrna
WO2024102799A1 (en) 2022-11-08 2024-05-16 Flagship Pioneering Innovations Vi, Llc Compositions and methods for producing circular polyribonucleotides
WO2024118866A1 (en) 2022-12-01 2024-06-06 Modernatx, Inc. Gpc3-specific antibodies, binding domains, and related proteins and uses thereof
WO2024119145A1 (en) 2022-12-01 2024-06-06 Camp4 Therapeutics Corporation Modulation of syngap1 gene transcription using antisense oligonucleotides targeting regulatory rnas
WO2024121378A1 (en) 2022-12-09 2024-06-13 Institut National de la Santé et de la Recherche Médicale Novel human antiviral genes related to the eleos and lamassu prokaryotic systems
WO2024129988A1 (en) 2022-12-14 2024-06-20 Flagship Pioneering Innovations Vii, Llc Compositions and methods for delivery of therapeutic agents to bone
WO2024129982A2 (en) 2022-12-15 2024-06-20 Orna Therapeutics, Inc. Circular rna compositions and methods
WO2024130158A1 (en) 2022-12-16 2024-06-20 Modernatx, Inc. Lipid nanoparticles and polynucleotides encoding extended serum half-life interleukin-22 for the treatment of metabolic disease
WO2024133160A1 (en) 2022-12-19 2024-06-27 Glaxosmithkline Biologicals Sa Hepatitis b compositions
WO2024151685A1 (en) 2023-01-09 2024-07-18 Beth Israel Deaconess Medical Center, Inc. Recombinant nucleic acid molecules and their use in wound healing
US20240269251A1 (en) 2023-01-09 2024-08-15 Flagship Pioneering Innovations V, Inc. Genetic switches and their use in treating cancer
WO2024148428A1 (en) * 2023-01-09 2024-07-18 Northmirs, Inc. Microrna-based particle for the treatment of dysregulated immune response
WO2024149697A1 (en) 2023-01-09 2024-07-18 Institut National de la Santé et de la Recherche Médicale Use of the recombinant fibrinogen-like domain of angiopoietin-like 4 for treating adverse post-ischemic cardiac remodeling in a patient who experienced a myocardial infarction
US20240238473A1 (en) 2023-01-09 2024-07-18 Beth Israel Deaconess Medical Center, Inc. Recombinant nucleic acid molecules and their use in wound healing
WO2024151811A1 (en) 2023-01-11 2024-07-18 Modernatx, Inc. Personalized cancer vaccines
WO2024153636A1 (en) 2023-01-17 2024-07-25 Institut National de la Santé et de la Recherche Médicale Vasorin as a biomarker and biotarget in nephrology
WO2024155957A1 (en) 2023-01-19 2024-07-25 Altos Labs, Inc. Use of regeneration factors in organ transplantation
WO2024156835A1 (en) 2023-01-27 2024-08-02 Institut National de la Santé et de la Recherche Médicale Use of amphiregulin (areg) in methods of treating vascular hyperpermeability
WO2024157221A1 (en) 2023-01-27 2024-08-02 BioNTech SE Pharmaceutical compositions for delivery of herpes simplex virus glycoprotein c, glycoprotein d, and glycoprotein e antigens and related methods
WO2024163465A1 (en) 2023-01-30 2024-08-08 Modernatx, Inc. Epstein-barr virus mrna vaccines
WO2024160901A1 (en) 2023-02-02 2024-08-08 Glaxosmithkline Biologicals Sa Immunogenic composition
WO2024160936A1 (en) 2023-02-03 2024-08-08 Glaxosmithkline Biologicals Sa Rna formulation
WO2024168010A2 (en) 2023-02-09 2024-08-15 Alnylam Pharmaceuticals, Inc. Reversir molecules and methods of use thereof
US20240293318A1 (en) 2023-02-13 2024-09-05 Flagship Pioneering Innovations Vii, Llc Cleavable linker-containing ionizable lipids and lipid carriers for therapeutic compositions
GB202302092D0 (en) 2023-02-14 2023-03-29 Glaxosmithkline Biologicals Sa Analytical method
WO2024173836A2 (en) 2023-02-17 2024-08-22 Flagship Pioneering Innovations Vii, Llc Dna compositions comprising modified cytosine
US20240285805A1 (en) 2023-02-17 2024-08-29 Flagship Pioneering Innovations Vii, Llc Dna compositions comprising modified uracil
WO2024178305A1 (en) 2023-02-24 2024-08-29 Modernatx, Inc. Compositions of mrna-encoded il-15 fusion proteins and methods of use thereof for treating cancer
WO2024182301A2 (en) 2023-02-27 2024-09-06 Modernatx, Inc. Lipid nanoparticles and polynucleotides encoding galactose-1-phosphate uridylyltransferase (galt) for the treatment of galactosemia
GB202303019D0 (en) 2023-03-01 2023-04-12 Glaxosmithkline Biologicals Sa Method of lyophilisation
WO2024184500A1 (en) 2023-03-08 2024-09-12 CureVac SE Novel lipid nanoparticle formulations for delivery of nucleic acids
WO2024191860A2 (en) 2023-03-10 2024-09-19 Modernatx, Inc. Nucleic acid influenza vaccines and respiratory virus combination vaccines
WO2024192422A1 (en) 2023-03-15 2024-09-19 Flagship Pioneering Innovations Vi, Llc Immunogenic compositions and uses thereof
WO2024192420A1 (en) 2023-03-15 2024-09-19 Flagship Pioneering Innovations Vi, Llc Compositions comprising polyribonucleotides and uses thereof
WO2024197033A1 (en) 2023-03-21 2024-09-26 Modernatx, Inc. Polynucleotides encoding relaxin for the treatment of heart failure
WO2024194484A1 (en) 2023-03-23 2024-09-26 Institut National de la Santé et de la Recherche Médicale Modulating the expression and/or activity of gas7 for modulating viral replication
WO2024206126A1 (en) 2023-03-27 2024-10-03 Modernatx, Inc. Cd16-binding antibodies and uses thereof
WO2024206329A1 (en) 2023-03-27 2024-10-03 Modernatx, Inc. Nucleic acid molecules encoding bi-specific secreted engagers and uses thereof
WO2024206835A1 (en) 2023-03-30 2024-10-03 Modernatx, Inc. Circular mrna and production thereof
WO2024211518A1 (en) 2023-04-07 2024-10-10 Astrazeneca Ab Fluidic mixer unit device for nanoparticle production
WO2024215721A1 (en) 2023-04-10 2024-10-17 Modernatx, Inc. Lyme disease vaccines
WO2024216128A1 (en) 2023-04-12 2024-10-17 Flagship Pioneering Innovations Vi, Llc Trems for use in correction of missense mutations
GB202404607D0 (en) 2024-03-29 2024-05-15 Glaxosmithkline Biologicals Sa RNA formulation

Citations (223)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3687808A (en) 1969-08-14 1972-08-29 Univ Leland Stanford Junior Synthetic polynucleotides
US3993754A (en) 1974-10-09 1976-11-23 The United States Of America As Represented By The United States Energy Research And Development Administration Liposome-encapsulated actinomycin for cancer chemotherapy
US4145410A (en) 1976-10-12 1979-03-20 Sears Barry D Method of preparing a controlled-release pharmaceutical preparation, and resulting composition
US4224179A (en) 1977-08-05 1980-09-23 Battelle Memorial Institute Process for the preparation of liposomes in aqueous solution
US4235871A (en) 1978-02-24 1980-11-25 Papahadjopoulos Demetrios P Method of encapsulating biologically active materials in lipid vesicles
US4469863A (en) 1980-11-12 1984-09-04 Ts O Paul O P Nonionic nucleic acid alkyl and aryl phosphonates and processes for manufacture and use thereof
US4476301A (en) 1982-04-29 1984-10-09 Centre National De La Recherche Scientifique Oligonucleotides, a process for preparing the same and their application as mediators of the action of interferon
US4522803A (en) 1983-02-04 1985-06-11 The Liposome Company, Inc. Stable plurilamellar vesicles, their preparation and use
US4587044A (en) 1983-09-01 1986-05-06 The Johns Hopkins University Linkage of proteins to nucleic acids
US4588578A (en) 1983-08-08 1986-05-13 The Liposome Company, Inc. Lipid vesicles prepared in a monophase
US4603044A (en) 1983-01-06 1986-07-29 Technology Unlimited, Inc. Hepatocyte Directed Vesicle delivery system
US4605735A (en) 1983-02-14 1986-08-12 Wakunaga Seiyaku Kabushiki Kaisha Oligonucleotide derivatives
WO1986004920A1 (en) 1985-02-13 1986-08-28 Biotechnology Research Partners, Limited Human metallothionein-ii promoter in mammalian expression system
WO1987002062A1 (en) 1985-10-04 1987-04-09 Biotechnology Research Partners, Ltd. Recombinant apolipoproteins and methods
US4667025A (en) 1982-08-09 1987-05-19 Wakunaga Seiyaku Kabushiki Kaisha Oligonucleotide derivatives
US4737323A (en) 1986-02-13 1988-04-12 Liposome Technology, Inc. Liposome extrusion method
US4762779A (en) 1985-06-13 1988-08-09 Amgen Inc. Compositions and methods for functionalizing nucleic acids
US4824941A (en) 1983-03-10 1989-04-25 Julian Gordon Specific antibody to the native form of 2'5'-oligonucleotides, the method of preparation and the use as reagents in immunoassays or for binding 2'5'-oligonucleotides in biological systems
US4828979A (en) 1984-11-08 1989-05-09 Life Technologies, Inc. Nucleotide analogs for nucleic acid labeling and detection
US4835263A (en) 1983-01-27 1989-05-30 Centre National De La Recherche Scientifique Novel compounds containing an oligonucleotide sequence bonded to an intercalating agent, a process for their synthesis and their use
US4845205A (en) 1985-01-08 1989-07-04 Institut Pasteur 2,N6 -disubstituted and 2,N6 -trisubstituted adenosine-3'-phosphoramidites
US4876335A (en) 1986-06-30 1989-10-24 Wakunaga Seiyaku Kabushiki Kaisha Poly-labelled oligonucleotide derivative
US4904582A (en) 1987-06-11 1990-02-27 Synthetic Genetics Novel amphiphilic nucleic acid conjugates
EP0360257A2 (en) 1988-09-20 1990-03-28 The Board Of Regents For Northern Illinois University RNA catalyst for cleaving specific RNA sequences
US4927637A (en) 1989-01-17 1990-05-22 Liposome Technology, Inc. Liposome extrusion method
US4948882A (en) 1983-02-22 1990-08-14 Syngene, Inc. Single-stranded labelled oligonucleotides, reactive monomers and methods of synthesis
US4957773A (en) 1989-02-13 1990-09-18 Syracuse University Deposition of boron-containing films from decaborane
US4958013A (en) 1989-06-06 1990-09-18 Northwestern University Cholesteryl modified oligonucleotides
US4981957A (en) 1984-07-19 1991-01-01 Centre National De La Recherche Scientifique Oligonucleotides with modified phosphate and modified carbohydrate moieties at the respective chain termini
US4987071A (en) 1986-12-03 1991-01-22 University Patents, Inc. RNA ribozyme polymerases, dephosphorylases, restriction endoribonucleases and methods
WO1991003162A1 (en) 1989-08-31 1991-03-21 City Of Hope Chimeric dna-rna catalytic sequences
US5008050A (en) 1984-06-20 1991-04-16 The Liposome Company, Inc. Extrusion technique for producing unilamellar vesicles
US5013556A (en) 1989-10-20 1991-05-07 Liposome Technology, Inc. Liposomes with enhanced circulation time
US5023243A (en) 1981-10-23 1991-06-11 Molecular Biosystems, Inc. Oligonucleotide therapeutic agent and method of making same
US5034506A (en) 1985-03-15 1991-07-23 Anti-Gene Development Group Uncharged morpholino-based polymers having achiral intersubunit linkages
US5059528A (en) 1987-05-28 1991-10-22 Ucb, S.A. Expression of human proapolipoprotein a-i
US5082830A (en) 1988-02-26 1992-01-21 Enzo Biochem, Inc. End labeled nucleotide probe
US5109124A (en) 1988-06-01 1992-04-28 Biogen, Inc. Nucleic acid probe linked to a label having a terminal cysteine
WO1992007065A1 (en) 1990-10-12 1992-04-30 MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. Modified ribozymes
US5112963A (en) 1987-11-12 1992-05-12 Max-Planck-Gesellschaft Zur Foerderung Der Wissenschaften E.V. Modified oligonucleotides
US5116739A (en) 1984-10-16 1992-05-26 Mitsubishi Chemical Industries Limited Process for the production of human apolipoprotein e, and transformed hosts and products thereof
US5118800A (en) 1983-12-20 1992-06-02 California Institute Of Technology Oligonucleotides possessing a primary amino group in the terminal nucleotide
US5118802A (en) 1983-12-20 1992-06-02 California Institute Of Technology DNA-reporter conjugates linked via the 2' or 5'-primary amino group of the 5'-terminal nucleoside
US5130302A (en) 1989-12-20 1992-07-14 Boron Bilogicals, Inc. Boronated nucleoside, nucleotide and oligonucleotide compounds, compositions and methods for using same
US5134066A (en) 1989-08-29 1992-07-28 Monsanto Company Improved probes using nucleosides containing 3-dezauracil analogs
US5138045A (en) 1990-07-27 1992-08-11 Isis Pharmaceuticals Polyamine conjugated oligonucleotides
US5142047A (en) 1985-03-15 1992-08-25 Anti-Gene Development Group Uncharged polynucleotide-binding polymers
US5149782A (en) 1988-08-19 1992-09-22 Tanox Biosystems, Inc. Molecular conjugates containing cell membrane-blending agents
US5166315A (en) 1989-12-20 1992-11-24 Anti-Gene Development Group Sequence-specific binding polymers for duplex nucleic acids
WO1992020822A1 (en) 1991-05-21 1992-11-26 Isis Pharmaceuticals, Inc. Backbone modified oligonucleotide analogues
US5168045A (en) 1989-08-18 1992-12-01 The Scripps Research Institute Diagnostic systems and methods using polypeptide analogs of apolipoprotein e
US5175273A (en) 1988-07-01 1992-12-29 Genentech, Inc. Nucleic acid intercalating agents
US5177189A (en) 1989-08-18 1993-01-05 The Scripps Research Institute Polypeptide analogs of Apolipoprotein E
US5177196A (en) 1990-08-16 1993-01-05 Microprobe Corporation Oligo (α-arabinofuranosyl nucleotides) and α-arabinofuranosyl precursors thereof
US5177198A (en) 1989-11-30 1993-01-05 University Of N.C. At Chapel Hill Process for preparing oligoribonucleoside and oligodeoxyribonucleoside boranophosphates
US5182364A (en) 1990-02-26 1993-01-26 The Scripps Research Institute Polypeptide analogs of apolipoprotein E
US5185444A (en) 1985-03-15 1993-02-09 Anti-Gene Deveopment Group Uncharged morpolino-based polymers having phosphorous containing chiral intersubunit linkages
US5188897A (en) 1987-10-22 1993-02-23 Temple University Of The Commonwealth System Of Higher Education Encapsulated 2',5'-phosphorothioate oligoadenylates
US5214136A (en) 1990-02-20 1993-05-25 Gilead Sciences, Inc. Anthraquinone-derivatives oligonucleotides
US5214134A (en) 1990-09-12 1993-05-25 Sterling Winthrop Inc. Process of linking nucleosides with a siloxane bridge
US5216141A (en) 1988-06-06 1993-06-01 Benner Steven A Oligonucleotide analogs containing sulfur linkages
US5218105A (en) 1990-07-27 1993-06-08 Isis Pharmaceuticals Polyamine conjugated oligonucleotides
US5223618A (en) 1990-08-13 1993-06-29 Isis Pharmaceuticals, Inc. 4'-desmethyl nucleoside analog compounds
WO1993015187A1 (en) 1992-01-31 1993-08-05 Massachusetts Institute Of Technology Nucleozymes
US5235033A (en) 1985-03-15 1993-08-10 Anti-Gene Development Group Alpha-morpholino ribonucleoside derivatives and polymers thereof
US5245022A (en) 1990-08-03 1993-09-14 Sterling Drug, Inc. Exonuclease resistant terminally substituted oligonucleotides
US5254469A (en) 1989-09-12 1993-10-19 Eastman Kodak Company Oligonucleotide-enzyme conjugate that can be used as a probe in hybridization assays and polymerase chain reaction procedures
US5256775A (en) 1989-06-05 1993-10-26 Gilead Sciences, Inc. Exonuclease-resistant oligonucleotides
US5258506A (en) 1984-10-16 1993-11-02 Chiron Corporation Photolabile reagents for incorporation into oligonucleotide chains
US5262536A (en) 1988-09-15 1993-11-16 E. I. Du Pont De Nemours And Company Reagents for the preparation of 5'-tagged oligonucleotides
US5264423A (en) 1987-03-25 1993-11-23 The United States Of America As Represented By The Department Of Health And Human Services Inhibitors for replication of retroviruses and for the expression of oncogene products
US5264562A (en) 1989-10-24 1993-11-23 Gilead Sciences, Inc. Oligonucleotide analogs with novel linkages
US5264564A (en) 1989-10-24 1993-11-23 Gilead Sciences Oligonucleotide analogs with novel linkages
WO1993023569A1 (en) 1992-05-11 1993-11-25 Ribozyme Pharmaceuticals, Inc. Method and reagent for inhibiting viral replication
US5272250A (en) 1992-07-10 1993-12-21 Spielvogel Bernard F Boronated phosphoramidate compounds
US5276019A (en) 1987-03-25 1994-01-04 The United States Of America As Represented By The Department Of Health And Human Services Inhibitors for replication of retroviruses and for the expression of oncogene products
US5278302A (en) 1988-05-26 1994-01-11 University Patents, Inc. Polynucleotide phosphorodithioates
WO1994002595A1 (en) 1992-07-17 1994-02-03 Ribozyme Pharmaceuticals, Inc. Method and reagent for treatment of animal diseases
US5286634A (en) 1989-09-28 1994-02-15 Stadler Joan K Synergistic method for host cell transformation
US5292873A (en) 1989-11-29 1994-03-08 The Research Foundation Of State University Of New York Nucleic acids labeled with naphthoquinone probe
US5317098A (en) 1986-03-17 1994-05-31 Hiroaki Shizuya Non-radioisotope tagging of fragments
US5319080A (en) 1991-10-17 1994-06-07 Ciba-Geigy Corporation Bicyclic nucleosides, oligonucleotides, process for their preparation and intermediates
US5321131A (en) 1990-03-08 1994-06-14 Hybridon, Inc. Site-specific functionalization of oligodeoxynucleotides for non-radioactive labelling
WO1994013688A1 (en) 1992-12-08 1994-06-23 Gene Shears Pty. Limited Dna-armed ribozymes and minizymes
US5334711A (en) 1991-06-20 1994-08-02 Europaisches Laboratorium Fur Molekularbiologie (Embl) Synthetic catalytic oligonucleotide structures
US5359044A (en) 1991-12-13 1994-10-25 Isis Pharmaceuticals Cyclobutyl oligonucleotide surrogates
US5367066A (en) 1984-10-16 1994-11-22 Chiron Corporation Oligonucleotides with selectably cleavable and/or abasic sites
US5366878A (en) 1990-02-15 1994-11-22 The Worcester Foundation For Experimental Biology Method of site-specific alteration of RNA and production of encoded polypeptides
US5371241A (en) 1991-07-19 1994-12-06 Pharmacia P-L Biochemicals Inc. Fluorescein labelled phosphoramidites
US5386023A (en) 1990-07-27 1995-01-31 Isis Pharmaceuticals Backbone modified oligonucleotide analogs and preparation thereof through reductive coupling
US5391723A (en) 1989-05-31 1995-02-21 Neorx Corporation Oligonucleotide conjugates
US5399676A (en) 1989-10-23 1995-03-21 Gilead Sciences Oligonucleotides with inverted polarity
US5405938A (en) 1989-12-20 1995-04-11 Anti-Gene Development Group Sequence-specific binding polymers for duplex nucleic acids
US5405939A (en) 1987-10-22 1995-04-11 Temple University Of The Commonwealth System Of Higher Education 2',5'-phosphorothioate oligoadenylates and their covalent conjugates with polylysine
US5414077A (en) 1990-02-20 1995-05-09 Gilead Sciences Non-nucleoside linkers for convenient attachment of labels to oligonucleotides using standard synthetic methods
US5432272A (en) 1990-10-09 1995-07-11 Benner; Steven A. Method for incorporating into a DNA or RNA oligonucleotide using nucleotides bearing heterocyclic bases
US5434257A (en) 1992-06-01 1995-07-18 Gilead Sciences, Inc. Binding compentent oligomers containing unsaturated 3',5' and 2',5' linkages
US5446137A (en) 1993-12-09 1995-08-29 Syntex (U.S.A.) Inc. Oligonucleotides containing 4'-substituted nucleotides
US5451463A (en) 1989-08-28 1995-09-19 Clontech Laboratories, Inc. Non-nucleoside 1,3-diol reagents for labeling synthetic oligonucleotides
US5457187A (en) 1993-12-08 1995-10-10 Board Of Regents University Of Nebraska Oligonucleotides containing 5-fluorouracil
US5457191A (en) 1990-01-11 1995-10-10 Isis Pharmaceuticals, Inc. 3-deazapurines
US5459255A (en) 1990-01-11 1995-10-17 Isis Pharmaceuticals, Inc. N-2 substituted purines
US5466677A (en) 1993-03-06 1995-11-14 Ciba-Geigy Corporation Dinucleoside phosphinates and their pharmaceutical compositions
US5466786A (en) 1989-10-24 1995-11-14 Gilead Sciences 2'modified nucleoside and nucleotide compounds
US5470967A (en) 1990-04-10 1995-11-28 The Dupont Merck Pharmaceutical Company Oligonucleotide analogs with sulfamate linkages
US5473039A (en) 1989-08-18 1995-12-05 The Scripps Research Institute Polypeptide analogs of apolipoprotein E, diagnostic systems and methods using the analogs
US5476925A (en) 1993-02-01 1995-12-19 Northwestern University Oligodeoxyribonucleotides including 3'-aminonucleoside-phosphoramidate linkages and terminal 3'-amino groups
US5484908A (en) 1991-11-26 1996-01-16 Gilead Sciences, Inc. Oligonucleotides containing 5-propynyl pyrimidines
US5486603A (en) 1990-01-08 1996-01-23 Gilead Sciences, Inc. Oligonucleotide having enhanced binding affinity
US5489677A (en) 1990-07-27 1996-02-06 Isis Pharmaceuticals, Inc. Oligonucleoside linkages containing adjacent oxygen and nitrogen atoms
US5502177A (en) 1993-09-17 1996-03-26 Gilead Sciences, Inc. Pyrimidine derivatives for labeled binding partners
US5508270A (en) 1993-03-06 1996-04-16 Ciba-Geigy Corporation Nucleoside phosphinate compounds and compositions
WO1996011266A2 (en) 1994-10-05 1996-04-18 Amgen Inc. Method for inhibiting smooth muscle cell proliferation and oligonucleotides for use therein
US5510475A (en) 1990-11-08 1996-04-23 Hybridon, Inc. Oligonucleotide multiple reporter precursors
US5512667A (en) 1990-08-28 1996-04-30 Reed; Michael W. Trifunctional intermediates for preparing 3'-tailed oligonucleotides
US5512439A (en) 1988-11-21 1996-04-30 Dynal As Oligonucleotide-linked magnetic particles and uses thereof
US5514785A (en) 1990-05-11 1996-05-07 Becton Dickinson And Company Solid supports for nucleic acid hybridization assays
US5519134A (en) 1994-01-11 1996-05-21 Isis Pharmaceuticals, Inc. Pyrrolidine-containing monomers and oligomers
US5519126A (en) 1988-03-25 1996-05-21 University Of Virginia Alumni Patents Foundation Oligonucleotide N-alkylphosphoramidates
US5525711A (en) 1994-05-18 1996-06-11 The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services Pteridine nucleotide analogs as fluorescent DNA probes
US5525472A (en) 1991-06-26 1996-06-11 Bio-Technology General Corp. Method for production and purification or recombinant Apolipoprotein E from bacteria
US5525465A (en) 1987-10-28 1996-06-11 Howard Florey Institute Of Experimental Physiology And Medicine Oligonucleotide-polyamide conjugates and methods of production and applications of the same
US5532130A (en) 1993-07-20 1996-07-02 Dyad Pharmaceutical Corporation Methods and compositions for sequence-specific hybridization of RNA by 2'-5' oligonucleotides
US5534499A (en) 1994-05-19 1996-07-09 The University Of British Columbia Lipophilic drug derivatives for use in liposomes
US5539083A (en) 1994-02-23 1996-07-23 Isis Pharmaceuticals, Inc. Peptide nucleic acid combinatorial libraries and improved methods of synthesis
US5539082A (en) 1993-04-26 1996-07-23 Nielsen; Peter E. Peptide nucleic acids
US5541307A (en) 1990-07-27 1996-07-30 Isis Pharmaceuticals, Inc. Backbone modified oligonucleotide analogs and solid phase synthesis thereof
US5545730A (en) 1984-10-16 1996-08-13 Chiron Corporation Multifunctional nucleic acid monomer
US5550111A (en) 1984-07-11 1996-08-27 Temple University-Of The Commonwealth System Of Higher Education Dual action 2',5'-oligoadenylate antiviral derivatives and uses thereof
US5552540A (en) 1987-06-24 1996-09-03 Howard Florey Institute Of Experimental Physiology And Medicine Nucleoside derivatives
US5561225A (en) 1990-09-19 1996-10-01 Southern Research Institute Polynucleotide analogs containing sulfonate and sulfonamide internucleoside linkages
US5565552A (en) 1992-01-21 1996-10-15 Pharmacyclics, Inc. Method of expanded porphyrin-oligonucleotide conjugate synthesis
US5567811A (en) 1990-05-03 1996-10-22 Amersham International Plc Phosphoramidite derivatives, their preparation and the use thereof in the incorporation of reporter groups on synthetic oligonucleotides
US5571799A (en) 1991-08-12 1996-11-05 Basco, Ltd. (2'-5') oligoadenylate analogues useful as inhibitors of host-v5.-graft response
US5574142A (en) 1992-12-15 1996-11-12 Microprobe Corporation Peptide linkers for improved oligonucleotide delivery
US5576427A (en) 1993-03-30 1996-11-19 Sterling Winthrop, Inc. Acyclic nucleoside analogs and oligonucleotide sequences containing them
US5578718A (en) 1990-01-11 1996-11-26 Isis Pharmaceuticals, Inc. Thiol-derivatized nucleosides
US5580731A (en) 1994-08-25 1996-12-03 Chiron Corporation N-4 modified pyrimidine deoxynucleotides and oligonucleotide probes synthesized therewith
US5585481A (en) 1987-09-21 1996-12-17 Gen-Probe Incorporated Linking reagents for nucleotide probes
US5587371A (en) 1992-01-21 1996-12-24 Pharmacyclics, Inc. Texaphyrin-oligonucleotide conjugates
US5587361A (en) 1991-10-15 1996-12-24 Isis Pharmaceuticals, Inc. Oligonucleotides having phosphorothioate linkages of high chiral purity
US5591722A (en) 1989-09-15 1997-01-07 Southern Research Institute 2'-deoxy-4'-thioribonucleosides and their antiviral activity
US5591317A (en) 1994-02-16 1997-01-07 Pitts, Jr.; M. Michael Electrostatic device for water treatment
US5594121A (en) 1991-11-07 1997-01-14 Gilead Sciences, Inc. Enhanced triple-helix and double-helix formation with oligomers containing modified purines
US5595726A (en) 1992-01-21 1997-01-21 Pharmacyclics, Inc. Chromophore probe for detection of nucleic acid
US5596086A (en) 1990-09-20 1997-01-21 Gilead Sciences, Inc. Modified internucleoside linkages having one nitrogen and two carbon atoms
US5596091A (en) 1994-03-18 1997-01-21 The Regents Of The University Of California Antisense oligonucleotides comprising 5-aminoalkyl pyrimidine nucleotides
US5597696A (en) 1994-07-18 1997-01-28 Becton Dickinson And Company Covalent cyanine dye oligonucleotide conjugates
US5597909A (en) 1994-08-25 1997-01-28 Chiron Corporation Polynucleotide reagents containing modified deoxyribose moieties, and associated methods of synthesis and use
US5599923A (en) 1989-03-06 1997-02-04 Board Of Regents, University Of Tx Texaphyrin metal complexes having improved functionalization
US5602240A (en) 1990-07-27 1997-02-11 Ciba Geigy Ag. Backbone modified oligonucleotide analogs
US5608046A (en) 1990-07-27 1997-03-04 Isis Pharmaceuticals, Inc. Conjugated 4'-desmethyl nucleoside analog compounds
US5610288A (en) 1993-01-27 1997-03-11 Hekton Institute For Medical Research Antisense polynucleotide inhibition of epidermal human growth factor receptor expression
US5610300A (en) 1992-07-01 1997-03-11 Ciba-Geigy Corporation Carbocyclic nucleosides containing bicyclic rings, oligonucleotides therefrom, process for their preparation, their use and intermediates
US5610289A (en) 1990-07-27 1997-03-11 Isis Pharmaceuticals, Inc. Backbone modified oligonucleotide analogues
US5614617A (en) 1990-07-27 1997-03-25 Isis Pharmaceuticals, Inc. Nuclease resistant, pyrimidine modified oligonucleotides that detect and modulate gene expression
US5618704A (en) 1990-07-27 1997-04-08 Isis Pharmacueticals, Inc. Backbone-modified oligonucleotide analogs and preparation thereof through radical coupling
US5623070A (en) 1990-07-27 1997-04-22 Isis Pharmaceuticals, Inc. Heteroatomic oligonucleoside linkages
US5625050A (en) 1994-03-31 1997-04-29 Amgen Inc. Modified oligonucleotides and intermediates useful in nucleic acid therapeutics
US5627053A (en) 1994-03-29 1997-05-06 Ribozyme Pharmaceuticals, Inc. 2'deoxy-2'-alkylnucleotide containing nucleic acid
US5631359A (en) 1994-10-11 1997-05-20 Ribozyme Pharmaceuticals, Inc. Hairpin ribozymes
US5633360A (en) 1992-04-14 1997-05-27 Gilead Sciences, Inc. Oligonucleotide analogs capable of passive cell membrane permeation
US5639873A (en) 1992-02-05 1997-06-17 Centre National De La Recherche Scientifique (Cnrs) Oligothionucleotides
US5646265A (en) 1990-01-11 1997-07-08 Isis Pharmceuticals, Inc. Process for the preparation of 2'-O-alkyl purine phosphoramidites
US5658873A (en) 1993-04-10 1997-08-19 Degussa Aktiengesellschaft Coated sodium percarbonate particles, a process for their production and detergent, cleaning and bleaching compositions containing them
US5663312A (en) 1993-03-31 1997-09-02 Sanofi Oligonucleotide dimers with amide linkages replacing phosphodiester linkages
US5670633A (en) 1990-01-11 1997-09-23 Isis Pharmaceuticals, Inc. Sugar modified oligonucleotides that detect and modulate gene expression
US5672662A (en) 1995-07-07 1997-09-30 Shearwater Polymers, Inc. Poly(ethylene glycol) and related polymers monosubstituted with propionic or butanoic acids and functional derivatives thereof for biotechnical applications
US5672685A (en) 1995-10-04 1997-09-30 Duke University Source of apolipoprotein E and method of isolating apolipoprotein E
US5677437A (en) 1990-07-27 1997-10-14 Isis Pharmaceuticals, Inc. Heteroatomic oligonucleoside linkages
US5677439A (en) 1990-08-03 1997-10-14 Sanofi Oligonucleotide analogues containing phosphate diester linkage substitutes, compositions thereof, and precursor dinucleotide analogues
US5681941A (en) 1990-01-11 1997-10-28 Isis Pharmaceuticals, Inc. Substituted purines and oligonucleotide cross-linking
US5688941A (en) 1990-07-27 1997-11-18 Isis Pharmaceuticals, Inc. Methods of making conjugated 4' desmethyl nucleoside analog compounds
US5714166A (en) 1986-08-18 1998-02-03 The Dow Chemical Company Bioactive and/or targeted dendrimer conjugates
US5714331A (en) 1991-05-24 1998-02-03 Buchardt, Deceased; Ole Peptide nucleic acids having enhanced binding affinity, sequence specificity and solubility
US5719262A (en) 1993-11-22 1998-02-17 Buchardt, Deceased; Ole Peptide nucleic acids having amino acid side chains
US5718709A (en) 1988-09-24 1998-02-17 Considine; John Apparatus for removing tumours from hollow organs of the body
US5721114A (en) 1992-12-11 1998-02-24 Pharmacia & Upjohn Aktiebolag Expression system for producing apolipoprotein AI-M
US5739119A (en) 1996-11-15 1998-04-14 Galli; Rachel L. Antisense oligonucleotides specific for the muscarinic type 2 acetylcholine receptor MRNA
US5747470A (en) 1995-06-07 1998-05-05 Gen-Probe Incorporated Method for inhibiting cellular proliferation using antisense oligonucleotides to gp130 mRNA
US5759829A (en) 1986-03-28 1998-06-02 Calgene, Inc. Antisense regulation of gene expression in plant cells
US5783683A (en) 1995-01-10 1998-07-21 Genta Inc. Antisense oligonucleotides which reduce expression of the FGFRI gene
US5789573A (en) 1990-08-14 1998-08-04 Isis Pharmaceuticals, Inc. Antisense inhibition of ICAM-1, E-selectin, and CMV IE1/IE2
US5801154A (en) 1993-10-18 1998-09-01 Isis Pharmaceuticals, Inc. Antisense oligonucleotide modulation of multidrug resistance-associated protein
US5820873A (en) 1994-09-30 1998-10-13 The University Of British Columbia Polyethylene glycol modified ceramide lipids and liposome uses thereof
US5834596A (en) 1995-03-03 1998-11-10 Pharmacia & Upjohn Ab Process for purifying ApoA or ApoE
US5840688A (en) 1994-03-22 1998-11-24 Research Corporation Technologies, Inc. Eating suppressant peptides
US5876968A (en) 1991-12-13 1999-03-02 Pharmacia & Upjohn Aktiebolag Dimer of molecular variant of apolipoprotein and processes for the production thereof
US5885613A (en) 1994-09-30 1999-03-23 The University Of British Columbia Bilayer stabilizing components and their use in forming programmable fusogenic liposomes
US5976567A (en) 1995-06-07 1999-11-02 Inex Pharmaceuticals Corp. Lipid-nucleic acid particles prepared via a hydrophobic lipid-nucleic acid complex intermediate and use for gene transfer
US6004925A (en) 1997-09-29 1999-12-21 J. L. Dasseux Apolipoprotein A-I agonists and their use to treat dyslipidemic disorders
US6027726A (en) 1994-09-30 2000-02-22 Inex Phamaceuticals Corp. Glycosylated protein-liposome conjugates and methods for their preparation
US6037323A (en) 1997-09-29 2000-03-14 Jean-Louis Dasseux Apolipoprotein A-I agonists and their use to treat dyslipidemic disorders
US6046166A (en) 1997-09-29 2000-04-04 Jean-Louis Dasseux Apolipoprotein A-I agonists and their use to treat dyslipidemic disorders
WO2000044895A1 (en) 1999-01-30 2000-08-03 Roland Kreutzer Method and medicament for inhibiting the expression of a defined gene
US6153737A (en) 1990-01-11 2000-11-28 Isis Pharmaceuticals, Inc. Derivatized oligonucleotides having improved uptake and other properties
US6172208B1 (en) 1992-07-06 2001-01-09 Genzyme Corporation Oligonucleotides modified with conjugate groups
WO2001015726A2 (en) 1999-08-27 2001-03-08 Inex Pharmaceuticals Corp. Compositions for stimulating cytokine secretion and inducing an immune response
US6287591B1 (en) 1997-05-14 2001-09-11 Inex Pharmaceuticals Corp. Charged therapeutic agents encapsulated in lipid particles containing four lipid components
US6300319B1 (en) 1998-06-16 2001-10-09 Isis Pharmaceuticals, Inc. Targeted oligonucleotide conjugates
WO2001075164A2 (en) 2000-03-30 2001-10-11 Whitehead Institute For Biomedical Research Rna sequence-specific mediators of rna interference
US6320017B1 (en) 1997-12-23 2001-11-20 Inex Pharmaceuticals Corp. Polyamide oligomers
US6335434B1 (en) 1998-06-16 2002-01-01 Isis Pharmaceuticals, Inc., Nucleosidic and non-nucleosidic folate conjugates
US6335437B1 (en) 1998-09-07 2002-01-01 Isis Pharmaceuticals, Inc. Methods for the preparation of conjugated oligomers
US6372886B1 (en) 1992-06-23 2002-04-16 Arch Development Corp. Expression and purification of kringle domains of human apolipoprotein (a) in E. coli
US6395437B1 (en) 1999-10-29 2002-05-28 Advanced Micro Devices, Inc. Junction profiling using a scanning voltage micrograph
WO2002044321A2 (en) 2000-12-01 2002-06-06 MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. Rna interference mediating small rna molecules
US6406705B1 (en) 1997-03-10 2002-06-18 University Of Iowa Research Foundation Use of nucleic acids containing unmethylated CpG dinucleotide as an adjuvant
US6444806B1 (en) 1996-04-30 2002-09-03 Hisamitsu Pharmaceutical Co., Inc. Conjugates and methods of forming conjugates of oligonucleotides and carbohydrates
WO2002069369A2 (en) 2000-12-08 2002-09-06 Coley Pharmaceutical Gmbh Cpg-like nucleic acids and methods of use thereof
US6486308B2 (en) 1995-04-03 2002-11-26 Epoch Biosciences, Inc. Covalently linked oligonucleotide minor groove binder conjugates
US6528631B1 (en) 1993-09-03 2003-03-04 Isis Pharmaceuticals, Inc. Oligonucleotide-folate conjugates
US6534018B1 (en) 1998-11-13 2003-03-18 Optime Therapeutics, Inc. Method and apparatus for liposome production
US6559279B1 (en) 2000-09-08 2003-05-06 Isis Pharmaceuticals, Inc. Process for preparing peptide derivatized oligomeric compounds
US20030229037A1 (en) 2000-02-07 2003-12-11 Ulrich Massing Novel cationic amphiphiles
US20040009216A1 (en) * 2002-04-05 2004-01-15 Rodrigueza Wendi V. Compositions and methods for dosing liposomes of certain sizes to treat or prevent disease
US20050170508A1 (en) * 1999-04-23 2005-08-04 Shi-Kun Huang Gene delivery mediated by liposome-DNA complex with cleavable PEG surface modification
US20070042031A1 (en) 2005-07-27 2007-02-22 Protiva Biotherapeutics, Inc. Systems and methods for manufacturing liposomes
WO2007095387A2 (en) 2006-02-17 2007-08-23 Dharmacon, Inc. Compositions and methods for inhibiting gene silencing by rna interference
WO2008036825A2 (en) 2006-09-22 2008-03-27 Dharmacon, Inc. Duplex oligonucleotide complexes and methods for gene silencing by rna interference
WO2008042973A2 (en) 2006-10-03 2008-04-10 Alnylam Pharmaceuticals, Inc. Lipid containing formulations
US8262498B2 (en) 2008-05-16 2012-09-11 Taylor Made Golf Company, Inc. Golf club
US10867398B2 (en) 2017-11-21 2020-12-15 Reliance Core Consulting LLC Methods, systems, apparatuses and devices for facilitating motion analysis in an environment

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US105A (en) 1836-12-15 knight
US5218A (en) 1847-08-07 Improvement in plows
AU1830200A (en) * 1998-11-25 2000-06-13 Vanderbilt University Cationic liposomes for gene transfer
EP1781593B1 (en) * 2004-06-07 2011-12-14 Protiva Biotherapeutics Inc. Cationic lipids and methods of use
CA3044134A1 (en) 2008-01-02 2009-07-09 Arbutus Biopharma Corporation Improved compositions and methods for the delivery of nucleic acids
WO2009132131A1 (en) * 2008-04-22 2009-10-29 Alnylam Pharmaceuticals, Inc. Amino lipid based improved lipid formulation
US9139554B2 (en) * 2008-10-09 2015-09-22 Tekmira Pharmaceuticals Corporation Amino lipids and methods for the delivery of nucleic acids
HUE026604T2 (en) * 2008-10-20 2016-06-28 Alnylam Pharmaceuticals Inc Compositions and methods for inhibiting expression of transthyretin
MX359674B (en) * 2008-11-10 2018-10-05 Alnylam Pharmaceuticals Inc Novel lipids and compositions for the delivery of therapeutics.
EP2389386A4 (en) * 2009-01-12 2013-11-06 Ge Healthcare Bio Sciences Ab Affinity chromatography matrix
EP2416652B1 (en) * 2009-05-05 2018-11-07 Arbutus Biopharma Corporation Methods of delivering oligonucleotides to immune cells
MX367665B (en) 2009-06-10 2019-08-30 Alnylam Pharmaceuticals Inc Improved lipid formulation.
DE102009039097B3 (en) 2009-08-27 2010-11-25 Siemens Aktiengesellschaft Method for transmitting data in a sensor network, sensor nodes and central computer
US10077232B2 (en) * 2010-05-12 2018-09-18 Arbutus Biopharma Corporation Cyclic cationic lipids and methods of use
WO2012005769A1 (en) 2010-07-09 2012-01-12 Telecommunication Systems, Inc. Location privacy selector
KR102318555B1 (en) 2020-03-19 2021-10-29 한국과학기술연구원 Inverted nano-cone structure for photonic device and the method for manufacturing the same

Patent Citations (248)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3687808A (en) 1969-08-14 1972-08-29 Univ Leland Stanford Junior Synthetic polynucleotides
US3993754A (en) 1974-10-09 1976-11-23 The United States Of America As Represented By The United States Energy Research And Development Administration Liposome-encapsulated actinomycin for cancer chemotherapy
US4145410A (en) 1976-10-12 1979-03-20 Sears Barry D Method of preparing a controlled-release pharmaceutical preparation, and resulting composition
US4224179A (en) 1977-08-05 1980-09-23 Battelle Memorial Institute Process for the preparation of liposomes in aqueous solution
US4235871A (en) 1978-02-24 1980-11-25 Papahadjopoulos Demetrios P Method of encapsulating biologically active materials in lipid vesicles
US4469863A (en) 1980-11-12 1984-09-04 Ts O Paul O P Nonionic nucleic acid alkyl and aryl phosphonates and processes for manufacture and use thereof
US5023243A (en) 1981-10-23 1991-06-11 Molecular Biosystems, Inc. Oligonucleotide therapeutic agent and method of making same
US4476301A (en) 1982-04-29 1984-10-09 Centre National De La Recherche Scientifique Oligonucleotides, a process for preparing the same and their application as mediators of the action of interferon
US4667025A (en) 1982-08-09 1987-05-19 Wakunaga Seiyaku Kabushiki Kaisha Oligonucleotide derivatives
US4789737A (en) 1982-08-09 1988-12-06 Wakunaga Seiyaku Kabushiki Kaisha Oligonucleotide derivatives and production thereof
US4603044A (en) 1983-01-06 1986-07-29 Technology Unlimited, Inc. Hepatocyte Directed Vesicle delivery system
US4835263A (en) 1983-01-27 1989-05-30 Centre National De La Recherche Scientifique Novel compounds containing an oligonucleotide sequence bonded to an intercalating agent, a process for their synthesis and their use
US4522803A (en) 1983-02-04 1985-06-11 The Liposome Company, Inc. Stable plurilamellar vesicles, their preparation and use
US4605735A (en) 1983-02-14 1986-08-12 Wakunaga Seiyaku Kabushiki Kaisha Oligonucleotide derivatives
US4948882A (en) 1983-02-22 1990-08-14 Syngene, Inc. Single-stranded labelled oligonucleotides, reactive monomers and methods of synthesis
US5541313A (en) 1983-02-22 1996-07-30 Molecular Biosystems, Inc. Single-stranded labelled oligonucleotides of preselected sequence
US4824941A (en) 1983-03-10 1989-04-25 Julian Gordon Specific antibody to the native form of 2'5'-oligonucleotides, the method of preparation and the use as reagents in immunoassays or for binding 2'5'-oligonucleotides in biological systems
US4588578A (en) 1983-08-08 1986-05-13 The Liposome Company, Inc. Lipid vesicles prepared in a monophase
US4587044A (en) 1983-09-01 1986-05-06 The Johns Hopkins University Linkage of proteins to nucleic acids
US5118802A (en) 1983-12-20 1992-06-02 California Institute Of Technology DNA-reporter conjugates linked via the 2' or 5'-primary amino group of the 5'-terminal nucleoside
US5118800A (en) 1983-12-20 1992-06-02 California Institute Of Technology Oligonucleotides possessing a primary amino group in the terminal nucleotide
US5008050A (en) 1984-06-20 1991-04-16 The Liposome Company, Inc. Extrusion technique for producing unilamellar vesicles
US5550111A (en) 1984-07-11 1996-08-27 Temple University-Of The Commonwealth System Of Higher Education Dual action 2',5'-oligoadenylate antiviral derivatives and uses thereof
US4981957A (en) 1984-07-19 1991-01-01 Centre National De La Recherche Scientifique Oligonucleotides with modified phosphate and modified carbohydrate moieties at the respective chain termini
US5116739A (en) 1984-10-16 1992-05-26 Mitsubishi Chemical Industries Limited Process for the production of human apolipoprotein e, and transformed hosts and products thereof
US5545730A (en) 1984-10-16 1996-08-13 Chiron Corporation Multifunctional nucleic acid monomer
US5258506A (en) 1984-10-16 1993-11-02 Chiron Corporation Photolabile reagents for incorporation into oligonucleotide chains
US5578717A (en) 1984-10-16 1996-11-26 Chiron Corporation Nucleotides for introducing selectably cleavable and/or abasic sites into oligonucleotides
US5367066A (en) 1984-10-16 1994-11-22 Chiron Corporation Oligonucleotides with selectably cleavable and/or abasic sites
US5552538A (en) 1984-10-16 1996-09-03 Chiron Corporation Oligonucleotides with cleavable sites
US4828979A (en) 1984-11-08 1989-05-09 Life Technologies, Inc. Nucleotide analogs for nucleic acid labeling and detection
US4845205A (en) 1985-01-08 1989-07-04 Institut Pasteur 2,N6 -disubstituted and 2,N6 -trisubstituted adenosine-3'-phosphoramidites
WO1986004920A1 (en) 1985-02-13 1986-08-28 Biotechnology Research Partners, Limited Human metallothionein-ii promoter in mammalian expression system
US5185444A (en) 1985-03-15 1993-02-09 Anti-Gene Deveopment Group Uncharged morpolino-based polymers having phosphorous containing chiral intersubunit linkages
US5034506A (en) 1985-03-15 1991-07-23 Anti-Gene Development Group Uncharged morpholino-based polymers having achiral intersubunit linkages
US5235033A (en) 1985-03-15 1993-08-10 Anti-Gene Development Group Alpha-morpholino ribonucleoside derivatives and polymers thereof
US5142047A (en) 1985-03-15 1992-08-25 Anti-Gene Development Group Uncharged polynucleotide-binding polymers
US4762779A (en) 1985-06-13 1988-08-09 Amgen Inc. Compositions and methods for functionalizing nucleic acids
WO1987002062A1 (en) 1985-10-04 1987-04-09 Biotechnology Research Partners, Ltd. Recombinant apolipoproteins and methods
US4737323A (en) 1986-02-13 1988-04-12 Liposome Technology, Inc. Liposome extrusion method
US5317098A (en) 1986-03-17 1994-05-31 Hiroaki Shizuya Non-radioisotope tagging of fragments
US5759829A (en) 1986-03-28 1998-06-02 Calgene, Inc. Antisense regulation of gene expression in plant cells
US4876335A (en) 1986-06-30 1989-10-24 Wakunaga Seiyaku Kabushiki Kaisha Poly-labelled oligonucleotide derivative
US5714166A (en) 1986-08-18 1998-02-03 The Dow Chemical Company Bioactive and/or targeted dendrimer conjugates
US4987071A (en) 1986-12-03 1991-01-22 University Patents, Inc. RNA ribozyme polymerases, dephosphorylases, restriction endoribonucleases and methods
US5264423A (en) 1987-03-25 1993-11-23 The United States Of America As Represented By The Department Of Health And Human Services Inhibitors for replication of retroviruses and for the expression of oncogene products
US5276019A (en) 1987-03-25 1994-01-04 The United States Of America As Represented By The Department Of Health And Human Services Inhibitors for replication of retroviruses and for the expression of oncogene products
US5286717A (en) 1987-03-25 1994-02-15 The United States Of America As Represented By The Department Of Health And Human Services Inhibitors for replication of retroviruses and for the expression of oncogene products
US5059528A (en) 1987-05-28 1991-10-22 Ucb, S.A. Expression of human proapolipoprotein a-i
US4904582A (en) 1987-06-11 1990-02-27 Synthetic Genetics Novel amphiphilic nucleic acid conjugates
US5552540A (en) 1987-06-24 1996-09-03 Howard Florey Institute Of Experimental Physiology And Medicine Nucleoside derivatives
US5585481A (en) 1987-09-21 1996-12-17 Gen-Probe Incorporated Linking reagents for nucleotide probes
US5188897A (en) 1987-10-22 1993-02-23 Temple University Of The Commonwealth System Of Higher Education Encapsulated 2',5'-phosphorothioate oligoadenylates
US5405939A (en) 1987-10-22 1995-04-11 Temple University Of The Commonwealth System Of Higher Education 2',5'-phosphorothioate oligoadenylates and their covalent conjugates with polylysine
US5525465A (en) 1987-10-28 1996-06-11 Howard Florey Institute Of Experimental Physiology And Medicine Oligonucleotide-polyamide conjugates and methods of production and applications of the same
US5112963A (en) 1987-11-12 1992-05-12 Max-Planck-Gesellschaft Zur Foerderung Der Wissenschaften E.V. Modified oligonucleotides
US5082830A (en) 1988-02-26 1992-01-21 Enzo Biochem, Inc. End labeled nucleotide probe
US5519126A (en) 1988-03-25 1996-05-21 University Of Virginia Alumni Patents Foundation Oligonucleotide N-alkylphosphoramidates
US5453496A (en) 1988-05-26 1995-09-26 University Patents, Inc. Polynucleotide phosphorodithioate
US5278302A (en) 1988-05-26 1994-01-11 University Patents, Inc. Polynucleotide phosphorodithioates
US5109124A (en) 1988-06-01 1992-04-28 Biogen, Inc. Nucleic acid probe linked to a label having a terminal cysteine
US5216141A (en) 1988-06-06 1993-06-01 Benner Steven A Oligonucleotide analogs containing sulfur linkages
US5175273A (en) 1988-07-01 1992-12-29 Genentech, Inc. Nucleic acid intercalating agents
US5149782A (en) 1988-08-19 1992-09-22 Tanox Biosystems, Inc. Molecular conjugates containing cell membrane-blending agents
US5262536A (en) 1988-09-15 1993-11-16 E. I. Du Pont De Nemours And Company Reagents for the preparation of 5'-tagged oligonucleotides
EP0360257A2 (en) 1988-09-20 1990-03-28 The Board Of Regents For Northern Illinois University RNA catalyst for cleaving specific RNA sequences
US5718709A (en) 1988-09-24 1998-02-17 Considine; John Apparatus for removing tumours from hollow organs of the body
US5512439A (en) 1988-11-21 1996-04-30 Dynal As Oligonucleotide-linked magnetic particles and uses thereof
US4927637A (en) 1989-01-17 1990-05-22 Liposome Technology, Inc. Liposome extrusion method
US4957773A (en) 1989-02-13 1990-09-18 Syracuse University Deposition of boron-containing films from decaborane
US5599923A (en) 1989-03-06 1997-02-04 Board Of Regents, University Of Tx Texaphyrin metal complexes having improved functionalization
US5391723A (en) 1989-05-31 1995-02-21 Neorx Corporation Oligonucleotide conjugates
US5256775A (en) 1989-06-05 1993-10-26 Gilead Sciences, Inc. Exonuclease-resistant oligonucleotides
US4958013A (en) 1989-06-06 1990-09-18 Northwestern University Cholesteryl modified oligonucleotides
US5416203A (en) 1989-06-06 1995-05-16 Northwestern University Steroid modified oligonucleotides
US5177189A (en) 1989-08-18 1993-01-05 The Scripps Research Institute Polypeptide analogs of Apolipoprotein E
US5168045A (en) 1989-08-18 1992-12-01 The Scripps Research Institute Diagnostic systems and methods using polypeptide analogs of apolipoprotein e
US5473039A (en) 1989-08-18 1995-12-05 The Scripps Research Institute Polypeptide analogs of apolipoprotein E, diagnostic systems and methods using the analogs
US5451463A (en) 1989-08-28 1995-09-19 Clontech Laboratories, Inc. Non-nucleoside 1,3-diol reagents for labeling synthetic oligonucleotides
US5134066A (en) 1989-08-29 1992-07-28 Monsanto Company Improved probes using nucleosides containing 3-dezauracil analogs
WO1991003162A1 (en) 1989-08-31 1991-03-21 City Of Hope Chimeric dna-rna catalytic sequences
US5254469A (en) 1989-09-12 1993-10-19 Eastman Kodak Company Oligonucleotide-enzyme conjugate that can be used as a probe in hybridization assays and polymerase chain reaction procedures
US5591722A (en) 1989-09-15 1997-01-07 Southern Research Institute 2'-deoxy-4'-thioribonucleosides and their antiviral activity
US5286634A (en) 1989-09-28 1994-02-15 Stadler Joan K Synergistic method for host cell transformation
US5013556A (en) 1989-10-20 1991-05-07 Liposome Technology, Inc. Liposomes with enhanced circulation time
US5399676A (en) 1989-10-23 1995-03-21 Gilead Sciences Oligonucleotides with inverted polarity
US5466786A (en) 1989-10-24 1995-11-14 Gilead Sciences 2'modified nucleoside and nucleotide compounds
US5264564A (en) 1989-10-24 1993-11-23 Gilead Sciences Oligonucleotide analogs with novel linkages
US5264562A (en) 1989-10-24 1993-11-23 Gilead Sciences, Inc. Oligonucleotide analogs with novel linkages
US5466786B1 (en) 1989-10-24 1998-04-07 Gilead Sciences 2' Modified nucleoside and nucleotide compounds
US5292873A (en) 1989-11-29 1994-03-08 The Research Foundation Of State University Of New York Nucleic acids labeled with naphthoquinone probe
US5177198A (en) 1989-11-30 1993-01-05 University Of N.C. At Chapel Hill Process for preparing oligoribonucleoside and oligodeoxyribonucleoside boranophosphates
US5455233A (en) 1989-11-30 1995-10-03 University Of North Carolina Oligoribonucleoside and oligodeoxyribonucleoside boranophosphates
US5405938A (en) 1989-12-20 1995-04-11 Anti-Gene Development Group Sequence-specific binding polymers for duplex nucleic acids
US5166315A (en) 1989-12-20 1992-11-24 Anti-Gene Development Group Sequence-specific binding polymers for duplex nucleic acids
US5130302A (en) 1989-12-20 1992-07-14 Boron Bilogicals, Inc. Boronated nucleoside, nucleotide and oligonucleotide compounds, compositions and methods for using same
US5486603A (en) 1990-01-08 1996-01-23 Gilead Sciences, Inc. Oligonucleotide having enhanced binding affinity
US5459255A (en) 1990-01-11 1995-10-17 Isis Pharmaceuticals, Inc. N-2 substituted purines
US5681941A (en) 1990-01-11 1997-10-28 Isis Pharmaceuticals, Inc. Substituted purines and oligonucleotide cross-linking
US6153737A (en) 1990-01-11 2000-11-28 Isis Pharmaceuticals, Inc. Derivatized oligonucleotides having improved uptake and other properties
US5587469A (en) 1990-01-11 1996-12-24 Isis Pharmaceuticals, Inc. Oligonucleotides containing N-2 substituted purines
US5578718A (en) 1990-01-11 1996-11-26 Isis Pharmaceuticals, Inc. Thiol-derivatized nucleosides
US5457191A (en) 1990-01-11 1995-10-10 Isis Pharmaceuticals, Inc. 3-deazapurines
US5646265A (en) 1990-01-11 1997-07-08 Isis Pharmceuticals, Inc. Process for the preparation of 2'-O-alkyl purine phosphoramidites
US5670633A (en) 1990-01-11 1997-09-23 Isis Pharmaceuticals, Inc. Sugar modified oligonucleotides that detect and modulate gene expression
US5366878A (en) 1990-02-15 1994-11-22 The Worcester Foundation For Experimental Biology Method of site-specific alteration of RNA and production of encoded polypeptides
US5214136A (en) 1990-02-20 1993-05-25 Gilead Sciences, Inc. Anthraquinone-derivatives oligonucleotides
US5414077A (en) 1990-02-20 1995-05-09 Gilead Sciences Non-nucleoside linkers for convenient attachment of labels to oligonucleotides using standard synthetic methods
US5182364A (en) 1990-02-26 1993-01-26 The Scripps Research Institute Polypeptide analogs of apolipoprotein E
US5321131A (en) 1990-03-08 1994-06-14 Hybridon, Inc. Site-specific functionalization of oligodeoxynucleotides for non-radioactive labelling
US5536821A (en) 1990-03-08 1996-07-16 Worcester Foundation For Biomedical Research Aminoalkylphosphorothioamidate oligonucleotide deratives
US5541306A (en) 1990-03-08 1996-07-30 Worcester Foundation For Biomedical Research Aminoalkylphosphotriester oligonucleotide derivatives
US5563253A (en) 1990-03-08 1996-10-08 Worcester Foundation For Biomedical Research Linear aminoalkylphosphoramidate oligonucleotide derivatives
US5470967A (en) 1990-04-10 1995-11-28 The Dupont Merck Pharmaceutical Company Oligonucleotide analogs with sulfamate linkages
US5567811A (en) 1990-05-03 1996-10-22 Amersham International Plc Phosphoramidite derivatives, their preparation and the use thereof in the incorporation of reporter groups on synthetic oligonucleotides
US5514785A (en) 1990-05-11 1996-05-07 Becton Dickinson And Company Solid supports for nucleic acid hybridization assays
US5218105A (en) 1990-07-27 1993-06-08 Isis Pharmaceuticals Polyamine conjugated oligonucleotides
US5541307A (en) 1990-07-27 1996-07-30 Isis Pharmaceuticals, Inc. Backbone modified oligonucleotide analogs and solid phase synthesis thereof
US5610289A (en) 1990-07-27 1997-03-11 Isis Pharmaceuticals, Inc. Backbone modified oligonucleotide analogues
US5618704A (en) 1990-07-27 1997-04-08 Isis Pharmacueticals, Inc. Backbone-modified oligonucleotide analogs and preparation thereof through radical coupling
US5489677A (en) 1990-07-27 1996-02-06 Isis Pharmaceuticals, Inc. Oligonucleoside linkages containing adjacent oxygen and nitrogen atoms
US5378825A (en) 1990-07-27 1995-01-03 Isis Pharmaceuticals, Inc. Backbone modified oligonucleotide analogs
US5386023A (en) 1990-07-27 1995-01-31 Isis Pharmaceuticals Backbone modified oligonucleotide analogs and preparation thereof through reductive coupling
US5608046A (en) 1990-07-27 1997-03-04 Isis Pharmaceuticals, Inc. Conjugated 4'-desmethyl nucleoside analog compounds
US5602240A (en) 1990-07-27 1997-02-11 Ciba Geigy Ag. Backbone modified oligonucleotide analogs
US5688941A (en) 1990-07-27 1997-11-18 Isis Pharmaceuticals, Inc. Methods of making conjugated 4' desmethyl nucleoside analog compounds
US5138045A (en) 1990-07-27 1992-08-11 Isis Pharmaceuticals Polyamine conjugated oligonucleotides
US5623070A (en) 1990-07-27 1997-04-22 Isis Pharmaceuticals, Inc. Heteroatomic oligonucleoside linkages
US5677437A (en) 1990-07-27 1997-10-14 Isis Pharmaceuticals, Inc. Heteroatomic oligonucleoside linkages
US5614617A (en) 1990-07-27 1997-03-25 Isis Pharmaceuticals, Inc. Nuclease resistant, pyrimidine modified oligonucleotides that detect and modulate gene expression
US5677439A (en) 1990-08-03 1997-10-14 Sanofi Oligonucleotide analogues containing phosphate diester linkage substitutes, compositions thereof, and precursor dinucleotide analogues
US5245022A (en) 1990-08-03 1993-09-14 Sterling Drug, Inc. Exonuclease resistant terminally substituted oligonucleotides
US5567810A (en) 1990-08-03 1996-10-22 Sterling Drug, Inc. Nuclease resistant compounds
US5223618A (en) 1990-08-13 1993-06-29 Isis Pharmaceuticals, Inc. 4'-desmethyl nucleoside analog compounds
US5789573A (en) 1990-08-14 1998-08-04 Isis Pharmaceuticals, Inc. Antisense inhibition of ICAM-1, E-selectin, and CMV IE1/IE2
US5177196A (en) 1990-08-16 1993-01-05 Microprobe Corporation Oligo (α-arabinofuranosyl nucleotides) and α-arabinofuranosyl precursors thereof
US5512667A (en) 1990-08-28 1996-04-30 Reed; Michael W. Trifunctional intermediates for preparing 3'-tailed oligonucleotides
US5214134A (en) 1990-09-12 1993-05-25 Sterling Winthrop Inc. Process of linking nucleosides with a siloxane bridge
US5561225A (en) 1990-09-19 1996-10-01 Southern Research Institute Polynucleotide analogs containing sulfonate and sulfonamide internucleoside linkages
US5596086A (en) 1990-09-20 1997-01-21 Gilead Sciences, Inc. Modified internucleoside linkages having one nitrogen and two carbon atoms
US5432272A (en) 1990-10-09 1995-07-11 Benner; Steven A. Method for incorporating into a DNA or RNA oligonucleotide using nucleotides bearing heterocyclic bases
WO1992007065A1 (en) 1990-10-12 1992-04-30 MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. Modified ribozymes
US5510475A (en) 1990-11-08 1996-04-23 Hybridon, Inc. Oligonucleotide multiple reporter precursors
WO1992020823A1 (en) 1991-05-21 1992-11-26 Isis Pharmaceuticals, Inc. Backbone modified oligonucleotide analogs
WO1992020822A1 (en) 1991-05-21 1992-11-26 Isis Pharmaceuticals, Inc. Backbone modified oligonucleotide analogues
US5714331A (en) 1991-05-24 1998-02-03 Buchardt, Deceased; Ole Peptide nucleic acids having enhanced binding affinity, sequence specificity and solubility
US5334711A (en) 1991-06-20 1994-08-02 Europaisches Laboratorium Fur Molekularbiologie (Embl) Synthetic catalytic oligonucleotide structures
US5525472A (en) 1991-06-26 1996-06-11 Bio-Technology General Corp. Method for production and purification or recombinant Apolipoprotein E from bacteria
US5371241A (en) 1991-07-19 1994-12-06 Pharmacia P-L Biochemicals Inc. Fluorescein labelled phosphoramidites
US5571799A (en) 1991-08-12 1996-11-05 Basco, Ltd. (2'-5') oligoadenylate analogues useful as inhibitors of host-v5.-graft response
US5587361A (en) 1991-10-15 1996-12-24 Isis Pharmaceuticals, Inc. Oligonucleotides having phosphorothioate linkages of high chiral purity
US5319080A (en) 1991-10-17 1994-06-07 Ciba-Geigy Corporation Bicyclic nucleosides, oligonucleotides, process for their preparation and intermediates
US5393878A (en) 1991-10-17 1995-02-28 Ciba-Geigy Corporation Bicyclic nucleosides, oligonucleotides, process for their preparation and intermediates
US5594121A (en) 1991-11-07 1997-01-14 Gilead Sciences, Inc. Enhanced triple-helix and double-helix formation with oligomers containing modified purines
US5484908A (en) 1991-11-26 1996-01-16 Gilead Sciences, Inc. Oligonucleotides containing 5-propynyl pyrimidines
US5876968A (en) 1991-12-13 1999-03-02 Pharmacia & Upjohn Aktiebolag Dimer of molecular variant of apolipoprotein and processes for the production thereof
US5359044A (en) 1991-12-13 1994-10-25 Isis Pharmaceuticals Cyclobutyl oligonucleotide surrogates
US5587371A (en) 1992-01-21 1996-12-24 Pharmacyclics, Inc. Texaphyrin-oligonucleotide conjugates
US5565552A (en) 1992-01-21 1996-10-15 Pharmacyclics, Inc. Method of expanded porphyrin-oligonucleotide conjugate synthesis
US5595726A (en) 1992-01-21 1997-01-21 Pharmacyclics, Inc. Chromophore probe for detection of nucleic acid
WO1993015187A1 (en) 1992-01-31 1993-08-05 Massachusetts Institute Of Technology Nucleozymes
US5639873A (en) 1992-02-05 1997-06-17 Centre National De La Recherche Scientifique (Cnrs) Oligothionucleotides
US5633360A (en) 1992-04-14 1997-05-27 Gilead Sciences, Inc. Oligonucleotide analogs capable of passive cell membrane permeation
WO1993023569A1 (en) 1992-05-11 1993-11-25 Ribozyme Pharmaceuticals, Inc. Method and reagent for inhibiting viral replication
US5434257A (en) 1992-06-01 1995-07-18 Gilead Sciences, Inc. Binding compentent oligomers containing unsaturated 3',5' and 2',5' linkages
US6372886B1 (en) 1992-06-23 2002-04-16 Arch Development Corp. Expression and purification of kringle domains of human apolipoprotein (a) in E. coli
US5700920A (en) 1992-07-01 1997-12-23 Novartis Corporation Carbocyclic nucleosides containing bicyclic rings, oligonucleotides therefrom, process for their preparation, their use and intermediates
US5610300A (en) 1992-07-01 1997-03-11 Ciba-Geigy Corporation Carbocyclic nucleosides containing bicyclic rings, oligonucleotides therefrom, process for their preparation, their use and intermediates
US6172208B1 (en) 1992-07-06 2001-01-09 Genzyme Corporation Oligonucleotides modified with conjugate groups
US5272250A (en) 1992-07-10 1993-12-21 Spielvogel Bernard F Boronated phosphoramidate compounds
WO1994002595A1 (en) 1992-07-17 1994-02-03 Ribozyme Pharmaceuticals, Inc. Method and reagent for treatment of animal diseases
WO1994013688A1 (en) 1992-12-08 1994-06-23 Gene Shears Pty. Limited Dna-armed ribozymes and minizymes
US5721114A (en) 1992-12-11 1998-02-24 Pharmacia & Upjohn Aktiebolag Expression system for producing apolipoprotein AI-M
US5574142A (en) 1992-12-15 1996-11-12 Microprobe Corporation Peptide linkers for improved oligonucleotide delivery
US5610288A (en) 1993-01-27 1997-03-11 Hekton Institute For Medical Research Antisense polynucleotide inhibition of epidermal human growth factor receptor expression
US5476925A (en) 1993-02-01 1995-12-19 Northwestern University Oligodeoxyribonucleotides including 3'-aminonucleoside-phosphoramidate linkages and terminal 3'-amino groups
US5466677A (en) 1993-03-06 1995-11-14 Ciba-Geigy Corporation Dinucleoside phosphinates and their pharmaceutical compositions
US5508270A (en) 1993-03-06 1996-04-16 Ciba-Geigy Corporation Nucleoside phosphinate compounds and compositions
US5576427A (en) 1993-03-30 1996-11-19 Sterling Winthrop, Inc. Acyclic nucleoside analogs and oligonucleotide sequences containing them
US5663312A (en) 1993-03-31 1997-09-02 Sanofi Oligonucleotide dimers with amide linkages replacing phosphodiester linkages
US5658873A (en) 1993-04-10 1997-08-19 Degussa Aktiengesellschaft Coated sodium percarbonate particles, a process for their production and detergent, cleaning and bleaching compositions containing them
US5539082A (en) 1993-04-26 1996-07-23 Nielsen; Peter E. Peptide nucleic acids
US5532130A (en) 1993-07-20 1996-07-02 Dyad Pharmaceutical Corporation Methods and compositions for sequence-specific hybridization of RNA by 2'-5' oligonucleotides
US6528631B1 (en) 1993-09-03 2003-03-04 Isis Pharmaceuticals, Inc. Oligonucleotide-folate conjugates
US5502177A (en) 1993-09-17 1996-03-26 Gilead Sciences, Inc. Pyrimidine derivatives for labeled binding partners
US5801154A (en) 1993-10-18 1998-09-01 Isis Pharmaceuticals, Inc. Antisense oligonucleotide modulation of multidrug resistance-associated protein
US5719262A (en) 1993-11-22 1998-02-17 Buchardt, Deceased; Ole Peptide nucleic acids having amino acid side chains
US5457187A (en) 1993-12-08 1995-10-10 Board Of Regents University Of Nebraska Oligonucleotides containing 5-fluorouracil
US5446137A (en) 1993-12-09 1995-08-29 Syntex (U.S.A.) Inc. Oligonucleotides containing 4'-substituted nucleotides
US5446137B1 (en) 1993-12-09 1998-10-06 Behringwerke Ag Oligonucleotides containing 4'-substituted nucleotides
US5519134A (en) 1994-01-11 1996-05-21 Isis Pharmaceuticals, Inc. Pyrrolidine-containing monomers and oligomers
US5599928A (en) 1994-02-15 1997-02-04 Pharmacyclics, Inc. Texaphyrin compounds having improved functionalization
US5591317A (en) 1994-02-16 1997-01-07 Pitts, Jr.; M. Michael Electrostatic device for water treatment
US5539083A (en) 1994-02-23 1996-07-23 Isis Pharmaceuticals, Inc. Peptide nucleic acid combinatorial libraries and improved methods of synthesis
US5596091A (en) 1994-03-18 1997-01-21 The Regents Of The University Of California Antisense oligonucleotides comprising 5-aminoalkyl pyrimidine nucleotides
US5840688A (en) 1994-03-22 1998-11-24 Research Corporation Technologies, Inc. Eating suppressant peptides
US5627053A (en) 1994-03-29 1997-05-06 Ribozyme Pharmaceuticals, Inc. 2'deoxy-2'-alkylnucleotide containing nucleic acid
US5625050A (en) 1994-03-31 1997-04-29 Amgen Inc. Modified oligonucleotides and intermediates useful in nucleic acid therapeutics
US5525711A (en) 1994-05-18 1996-06-11 The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services Pteridine nucleotide analogs as fluorescent DNA probes
US5534499A (en) 1994-05-19 1996-07-09 The University Of British Columbia Lipophilic drug derivatives for use in liposomes
US5597696A (en) 1994-07-18 1997-01-28 Becton Dickinson And Company Covalent cyanine dye oligonucleotide conjugates
US5597909A (en) 1994-08-25 1997-01-28 Chiron Corporation Polynucleotide reagents containing modified deoxyribose moieties, and associated methods of synthesis and use
US5580731A (en) 1994-08-25 1996-12-03 Chiron Corporation N-4 modified pyrimidine deoxynucleotides and oligonucleotide probes synthesized therewith
US5591584A (en) 1994-08-25 1997-01-07 Chiron Corporation N-4 modified pyrimidine deoxynucleotides and oligonucleotide probes synthesized therewith
US5820873A (en) 1994-09-30 1998-10-13 The University Of British Columbia Polyethylene glycol modified ceramide lipids and liposome uses thereof
US5885613A (en) 1994-09-30 1999-03-23 The University Of British Columbia Bilayer stabilizing components and their use in forming programmable fusogenic liposomes
US6027726A (en) 1994-09-30 2000-02-22 Inex Phamaceuticals Corp. Glycosylated protein-liposome conjugates and methods for their preparation
WO1996011266A2 (en) 1994-10-05 1996-04-18 Amgen Inc. Method for inhibiting smooth muscle cell proliferation and oligonucleotides for use therein
US5631359A (en) 1994-10-11 1997-05-20 Ribozyme Pharmaceuticals, Inc. Hairpin ribozymes
US5783683A (en) 1995-01-10 1998-07-21 Genta Inc. Antisense oligonucleotides which reduce expression of the FGFRI gene
US5834596A (en) 1995-03-03 1998-11-10 Pharmacia & Upjohn Ab Process for purifying ApoA or ApoE
US6486308B2 (en) 1995-04-03 2002-11-26 Epoch Biosciences, Inc. Covalently linked oligonucleotide minor groove binder conjugates
US5976567A (en) 1995-06-07 1999-11-02 Inex Pharmaceuticals Corp. Lipid-nucleic acid particles prepared via a hydrophobic lipid-nucleic acid complex intermediate and use for gene transfer
US5747470A (en) 1995-06-07 1998-05-05 Gen-Probe Incorporated Method for inhibiting cellular proliferation using antisense oligonucleotides to gp130 mRNA
US5672662A (en) 1995-07-07 1997-09-30 Shearwater Polymers, Inc. Poly(ethylene glycol) and related polymers monosubstituted with propionic or butanoic acids and functional derivatives thereof for biotechnical applications
US5672685A (en) 1995-10-04 1997-09-30 Duke University Source of apolipoprotein E and method of isolating apolipoprotein E
US6444806B1 (en) 1996-04-30 2002-09-03 Hisamitsu Pharmaceutical Co., Inc. Conjugates and methods of forming conjugates of oligonucleotides and carbohydrates
US5739119A (en) 1996-11-15 1998-04-14 Galli; Rachel L. Antisense oligonucleotides specific for the muscarinic type 2 acetylcholine receptor MRNA
US6406705B1 (en) 1997-03-10 2002-06-18 University Of Iowa Research Foundation Use of nucleic acids containing unmethylated CpG dinucleotide as an adjuvant
US6287591B1 (en) 1997-05-14 2001-09-11 Inex Pharmaceuticals Corp. Charged therapeutic agents encapsulated in lipid particles containing four lipid components
US6858225B2 (en) 1997-05-14 2005-02-22 Inex Pharmaceuticals Corporation Lipid-encapsulated polyanionic nucleic acid
US6046166A (en) 1997-09-29 2000-04-04 Jean-Louis Dasseux Apolipoprotein A-I agonists and their use to treat dyslipidemic disorders
US6004925A (en) 1997-09-29 1999-12-21 J. L. Dasseux Apolipoprotein A-I agonists and their use to treat dyslipidemic disorders
US6037323A (en) 1997-09-29 2000-03-14 Jean-Louis Dasseux Apolipoprotein A-I agonists and their use to treat dyslipidemic disorders
US6320017B1 (en) 1997-12-23 2001-11-20 Inex Pharmaceuticals Corp. Polyamide oligomers
US6335434B1 (en) 1998-06-16 2002-01-01 Isis Pharmaceuticals, Inc., Nucleosidic and non-nucleosidic folate conjugates
US6300319B1 (en) 1998-06-16 2001-10-09 Isis Pharmaceuticals, Inc. Targeted oligonucleotide conjugates
US6525031B2 (en) 1998-06-16 2003-02-25 Isis Pharmaceuticals, Inc. Targeted Oligonucleotide conjugates
US6335437B1 (en) 1998-09-07 2002-01-01 Isis Pharmaceuticals, Inc. Methods for the preparation of conjugated oligomers
US6534018B1 (en) 1998-11-13 2003-03-18 Optime Therapeutics, Inc. Method and apparatus for liposome production
US6855277B2 (en) 1998-11-13 2005-02-15 Optime Therapeutics, Inc. Method and apparatus for liposome production
WO2000044895A1 (en) 1999-01-30 2000-08-03 Roland Kreutzer Method and medicament for inhibiting the expression of a defined gene
US20050170508A1 (en) * 1999-04-23 2005-08-04 Shi-Kun Huang Gene delivery mediated by liposome-DNA complex with cleavable PEG surface modification
WO2001015726A2 (en) 1999-08-27 2001-03-08 Inex Pharmaceuticals Corp. Compositions for stimulating cytokine secretion and inducing an immune response
US6395437B1 (en) 1999-10-29 2002-05-28 Advanced Micro Devices, Inc. Junction profiling using a scanning voltage micrograph
US20030229037A1 (en) 2000-02-07 2003-12-11 Ulrich Massing Novel cationic amphiphiles
WO2001075164A2 (en) 2000-03-30 2001-10-11 Whitehead Institute For Biomedical Research Rna sequence-specific mediators of rna interference
US6559279B1 (en) 2000-09-08 2003-05-06 Isis Pharmaceuticals, Inc. Process for preparing peptide derivatized oligomeric compounds
WO2002044321A2 (en) 2000-12-01 2002-06-06 MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. Rna interference mediating small rna molecules
WO2002069369A2 (en) 2000-12-08 2002-09-06 Coley Pharmaceutical Gmbh Cpg-like nucleic acids and methods of use thereof
US20040009216A1 (en) * 2002-04-05 2004-01-15 Rodrigueza Wendi V. Compositions and methods for dosing liposomes of certain sizes to treat or prevent disease
US20070042031A1 (en) 2005-07-27 2007-02-22 Protiva Biotherapeutics, Inc. Systems and methods for manufacturing liposomes
WO2007095387A2 (en) 2006-02-17 2007-08-23 Dharmacon, Inc. Compositions and methods for inhibiting gene silencing by rna interference
WO2008036825A2 (en) 2006-09-22 2008-03-27 Dharmacon, Inc. Duplex oligonucleotide complexes and methods for gene silencing by rna interference
WO2008042973A2 (en) 2006-10-03 2008-04-10 Alnylam Pharmaceuticals, Inc. Lipid containing formulations
US20090023673A1 (en) 2006-10-03 2009-01-22 Muthiah Manoharan Lipid containing formulations
US8262498B2 (en) 2008-05-16 2012-09-11 Taylor Made Golf Company, Inc. Golf club
US10867398B2 (en) 2017-11-21 2020-12-15 Reliance Core Consulting LLC Methods, systems, apparatuses and devices for facilitating motion analysis in an environment

Non-Patent Citations (178)

* Cited by examiner, † Cited by third party
Title
"Peptide Nucleic Acids (PNA): Synthesis", PROPERTIES AND POTENTIAL APPLICATIONS, BIOORGANIC & MEDICINAL CHEMISTRY, vol. 4, 1996, pages 5 - 23
ABRA, RM ET AL., J. LIPOSOME RES., vol. 12, 2002, pages 1 - 3
AGRAWAL, TRENDS IN BIOTECH., vol. 14, 1996, pages 376 - 387
ALLEN ET AL., BIOCHIMICA ET BIOPHYSICA ACTA, vol. 1237, 1995, pages 99 - 108
ALTSCHUL ET AL., NUCLEIC ACIDS RES., vol. 25, no. 17, 1997, pages 3389 - 402
AN, H ET AL., J. ORG. CHEM., vol. 66, 2001, pages 2789 - 2801
AOKI ET AL., CANCER GENE THERAPY, vol. 8, 2001, pages 783 - 787
AVIRAM ET AL., ARTERIOSCLER. THROMB. VASE. BIOL., vol. 18, no. 10, 1998, pages 1617 - 24
AVIRAM ET AL., J. CLIN. INVEST., vol. 101, no. 8, 1998, pages 1581 - 90
BEAUCAGE, S. L.; IYER, R. P., TETRAHEDRON, vol. 48, 1992, pages 2223 - 2311
BEAUCAGE, S. L.; IYER, R. P., TETRAHEDRON, vol. 49, 1993, pages 6123 - 6194
BEHR, ACC. CHEM. RES., vol. 26, 1993, pages 274 - 278
BENNETT ET AL., MOL. PHARM., vol. 41, 1992, pages 1023 - 1033
BIELICKI; ODA, BIOCHEMISTRY, vol. 41, 2002, pages 2089 - 96
BILLECKE ET AL., DRUG METAB. DISPOS, vol. 28, no. 11, 2000, pages 1335 - 42
BILLECKE ET AL., DRUG METAB. DISPOS., vol. 28, no. 11, 2000, pages 1335 - 42
BIOCHEMISTRY, vol. 26, 1987, pages 2964 - 2972
BIOCHIM BIOPHYS ACTA, vol. 557, no. L, 19 October 1979 (1979-10-19), pages 9 - 23
BIOCHIM BIOPHYS ACTA, vol. 601, no. 3, 2 October 1980 (1980-10-02), pages 559 - 7
BIOCHIM BIOPHYS ACTA, vol. 858, no. L, 13 June 1986 (1986-06-13), pages 161 - 8
BIOCHIM. BIOPHYS. ACTA, vol. 812, 1985, pages 55 - 65
BLUME ET AL., BIOCHIMICA ET BIOPHYSICA ACTA, vol. 1149, 1993, pages 180 - 184
BODANSZKY ET AL.: "Peptide Synthesis, 2nd ed.", 1976, JOHN WILEY & SONS
BRIGHAM ET AL., AM. J. MED. SCI., vol. 298, 1989, pages 278 - 281
BRIGHAM ET AL., AM. J. SCI., vol. 298, no. 4, 1989, pages 278 - 281
BROWN, D. ET AL., TECHNOTES, vol. 9, no. 1, pages 1 - 7
BROWN; SIMPSON, ANNU REV PLANT PHYSIOL PLANT MOI BIOL, vol. 49, 1998, pages 77 - 95
CAPLEN, N ET AL., PROC. NATL. ACAD. SCI. USA, vol. 98, 2001, pages 9746 - 9747
CECH ET AL., CELL, vol. 27, no. 3, December 1981 (1981-12-01), pages 487 - 96
CHEUNG ET AL., J. LIPID RES., vol. 28, no. 8, 1987, pages 913 - 29
CHUNG ET AL., J. LIPID RES., vol. 21, no. 3, 1980, pages 284 - 91
COLLINS; OLIVE, BIOCHEMISTRY, vol. 32, no. 11, 23 March 1993 (1993-03-23), pages 2795 - 9
CORMIER,J.F. ET AL., NUCLEIC ACIDS RES., vol. 16, 1988, pages 4583
CROSSTICK ET AL., TETRAHEDRON LETT., vol. 30, 1989, pages 4693
CULVER: "Human Gene Therapy", 1994, MARYANN LIEBERT, INC., pages: 70 - 71
DAUM ET AL., J. MOL. MED., vol. 77, 1999, pages 614 - 22
DE FOUGEROLLES, A. ET AL., NATURE REVIEWS, vol. 6, 2007, pages 443 - 453
DEFREES ET AL., JOURNAL OF THE AMERICAN CHEMISTRY SOCIETY, vol. 118, 1996, pages 6101 - 6104
DRAGANOV ET AL., J. BIOL. CHEM., vol. 275, no. 43, 2000, pages 33435 - 42
DUVERGER ET AL., ARTERIOSCLER. THROMB. VASE. BIOL., vol. 16, no. 12, 1996, pages 1424 - 29
DUVERGER ET AL., EURO. J. BIOCHEM., vol. 201, no. 2, 1991, pages 373 - 83
DYER ET AL., J. LIPID RES., vol. 36, no. 1, 1995, pages 80 - 8
DYER, J. BIOL. CHEM., vol. 266, no. 23, 1991, pages 150009 - 15
EASTMAN ET AL., BIOCHEMISTRY, vol. 31, 1992, pages 4262,4268
EATON, CURR. OPIN. CHEM. BIOL., vol. 1, 1997, pages 10 - 16
EDGE, M.D. ET AL., J. CHEM. SOC. PERKIN TRANS., 1972, pages 1991
ELLINGTON; SZOSTAK, NATURE, vol. 346, 1990, pages 818
ELSHABIR, S. ET AL., EMBO J., vol. 20, 2001, pages 6877 - 6888
ELSHABIR, S. ET AL., NATURE, vol. 411, 2001, pages 494 - 498
ELSHABIR, S.M. ET AL., EMBO, vol. 20, 2001, pages 6877 - 6888
ELSHABIR, S.M. ET AL., NATURE, vol. 411, 2001, pages 494 - 498
ENGLISCH ET AL., ANGEWANDTE CHEMIE, INTERNATIONAL EDITION, vol. 30, 1991, pages 613
F. ECKSTEIN: "Oligonucleotides and Analogues, A Practical Approach", 1991, IRL PRESS
FAMULOK, CURR. OPIN. STRUCT. BIOL., vol. 9, 1999, pages 324 - 9
FEIGNER, SCIENTIFIC AMERICAN
FORSTER; SYMONS, CELL, vol. 49, no. 2, 24 April 1987 (1987-04-24), pages 211 - 20
FRANCESCHINI ET AL., J. BIOL. CHEM., vol. 260, 1985, pages 1632 - 35
GALBRAITH ET AL., ANTISENSE NUCL. ACID DRUG DES., vol. 4, 1994, pages 201 - 206
GONG ET AL., J. BIOL. CHEM., vol. 277, no. 33, 2002, pages 29919 - 26
GOODFELLOW, NATURE, vol. 341, 1989, pages 102 - 103
GORACZNIAK ET AL., NATURE BIOTECHNOLOGY, vol. 27, no. 3, 2008, pages 257 - 263
GORDON ET AL., J. BIOL. CHEM., vol. 259, no. 1, 1984, pages 468 - 74
GREEN, T.W.: "PROTECTIVE GROUPS IN ORGANIC SYNTHESIS", 1999, WILEY-INTERSCIENCE
GRIBSKOV., M. AND DEVEREUX, J.: "Sequence Analysis Primer", 1991, M. STOCKTON PRESS
GRIFFITHS-JONES S.: "The microRNA Registry", NAR, vol. 32, 2004, pages D109 - D111, XP002392427, DOI: doi:10.1093/nar/gkh023
GRIFFITHS-JONES S; GROCOCK RJ; VAN DONGEN S; BATEMAN A; ENRIGHT AJ.: "miRBase: microRNA sequences, targets and gene nomenclature", NAR, vol. 34, 2006, pages D 140 - D 144
GUERRIER-TAKADA ET AL., CELL, vol. 35, no. 3, December 1983 (1983-12-01), pages 849 - 57
HALL ET AL., NUCLEIC ACIDS RES., vol. 32, 2004, pages 5991 - 6000
HAMPEL ET AL., NUCLEIC ACIDS RES., vol. 18, no. 2, 25 January 1990 (1990-01-25), pages 299 - 304
HAMPEL; TRITZ, BIOCHEMISTRY, vol. 28, no. 12, 13 June 1989 (1989-06-13), pages 4929 - 33
HAUBNER ET AL., JOUR. NUCL. MED., vol. 42, 2001, pages 326 - 336
HAYES ET AL.: "Genospheres: self-assembling nucleic acid-lipid nanoparticles suitable for targeted gene delivery.", GENE THERAPY, vol. 13, 2005, pages 646 - 651, XP008148697 *
HEATH: "Methods in Enzymology", vol. 149, 1987, ACADEMIC PRESS, INC, article "Covalent Attachment of Proteins to Liposomes", pages: 111 - 119
HERMANN; PATEL, SCIENCE, vol. 287, 2000, pages 820 - 5
HEYES ET AL., J. CONTROLLED RELEASE, vol. 107, 2005, pages 276 - 287
HILL, J. BIOL. CHEM., vol. 273, no. 47, 1998, pages 30979 - 84
HIXSON; POWERS, J. LIPID RES., vol. 32, no. 9, 1991, pages 1529 - 35
HOEG ET AL., J. BIOL. CHEM., vol. 261, no. 9, 1986, pages 3911 - 4
HOLEN, T.; AMARZGUIOUI, M.; BABAIE, E.; PRYDZ, H: "Similar behaviour of single-strand and double-strand siRNAs suggests they act through a common RNAi pathway", NUCLEIC ACIDS RES, vol. 31, 2003, pages 2401 - 7
HYDE ET AL., NATURE, vol. 362, 1993, pages 250 - 256
JASKULSKI ET AL., SCIENCE, vol. 240, no. 4858, 10 June 1988 (1988-06-10), pages 1544 - 6
JIA ET AL., BIOCHEM. BIOPHYS. RES. COMM., vol. 297, 2002, pages 206 - 13
KAWASAKI, J. MED. CHEM., vol. 36, 1993, pages 831 - 841
KIM; CECH, PROC NATL ACAD SCI USA., vol. 84, no. 24, December 1987 (1987-12-01), pages 8788 - 92
KING, J. F.; ALLBUTT, A. D., CAN. J. CHEM., vol. 48, 1970, pages 1754 - 1769
KIRPOTIN ET AL., FEBSLETTERS, vol. 388, 1996, pages 115 - 118
KLIBANOV ET AL., JOURNAL OF LIPOSOME RESEARCH, vol. 2, 1992, pages 321 - 334
KLON ET AL., BIOPHYS. J., vol. 79, no. 3, 2000, pages 1679 - 87
KROSCHWITZ, J. I.: "Concise Encyclopedia Of Polymer Science And Engineering", 1990, JOHN WILEY & SONS, pages: 858 - 859
KRUTZFELDT ET AL., NATURE, vol. 438, 2005, pages 685 - 689
KUNKEL ET AL., BRIT. MED. BULL., vol. 45, no. 3, 1989, pages 630 - 643
KURRECK, J., EUR. J. BIOCHEM., vol. 270, 2003, pages 1628 - 44
KURRECK, J.: "Antisense technologies. Improvement through novel chemical modifications", EUR JBIOCHEM, vol. 270, 2003, pages 1628 - 44, XP009045309, DOI: doi:10.1046/j.1432-1033.2003.03555.x
LACKNER ET AL., J. BIOL. CHEM., vol. 260, no. 2, 1985, pages 703 - 6
LAMBERTON, J.S.; CHRISTIAN, A.T., MOLECULAR BIOTECHNOLOGY, vol. 24, 2003, pages 111 - 119
LEONETTI ET AL., PROC. NATL. ACAD. SCI. (USA), vol. 87, 1990, pages 2448 - 2451
M. J. GAIT: "Oligonucleotide synthesis, a practical approach", 1984, IRL PRESS
MACH, MATEUSZ; SCHLUETER, URS; MATHEW, FELIX; FRASER-REID, BERT; HAZEN, KEVIN C.: "Comparing n-pentenyl orthoesters and n-pentenyl glycosides as alternative glycosyl donors", TETRAHEDRON, vol. 58, no. 36, 2002, pages 7345 - 7354, XP004379367, DOI: doi:10.1016/S0040-4020(02)00671-3
MANN ET AL., J. CLIN. INVEST., vol. 106, 2000, pages 1071 - 1075
MANNINO ET AL., BIOTECHNIQUES, vol. 6, 1988, pages 682 - 690
MANOHARAN, M ET AL., ANTISENSE AND NUCLEIC ACID DRUG DEVELOPMENT, vol. 12, 2002, pages 103 - 128
MANOHARAN, M.: "RNA interference and chemically modified small interfering RNAs", CURR OPIN CHEM BIOL, vol. 8, 2004, pages 570 - 9, XP004649493, DOI: doi:10.1016/j.cbpa.2004.10.007
MARTIN ET AL., HELV. CHIM. ACTA, vol. 78, 1995, pages 486 - 504
MARTIN, P., HELV. CHIM. ACTA, vol. 78, 1995, pages 486 - 504
MARTIN, P., HELV. CHIM. ACTA, vol. 79, 1996, pages 1930 - 1938
MASTROBATTISTA, E.; KONING, G. A ET AL.: "Functional characterization of an endosome-disruptive peptide and its application in cytosolic delivery of immunoliposome-entrapped proteins", J. BIOL. CHEM., vol. 277, 2002, pages 27135 - 43, XP001187533, DOI: doi:10.1074/jbc.M200429200
MCLEAN ET AL., J. BIOL. CHEM., vol. 258, no. 14, 1983, pages 8993 - 9000
MCOMIE: "Protective Groups in Organic Chemistry", 1973, PLENUM PRESS
MERRIFIELD, J. AM. CHEM. SOC., vol. 85, 1963, pages 2149 - 2154
MICHEL; WESTHOF, J MOL BIOL., vol. 216, no. 3, 5 December 1990 (1990-12-05), pages 585 - 610
MULUGETA ET AL., J. CHROMATOGR., vol. 798, no. 1-2, 1998, pages 83 - 90
NATURE, vol. 354, 1991, pages 82 - 84
NEURATH ET. AL.: "The Proteins, 3rd ed.", vol. II, 1976, ACADEMIC PRESS, pages: 105 - 237
NICOLAU ET AL., CRIT. REV. THER. DRUG CARRIER SYST., vol. 6, 1989, pages 239 - 271
NIELSEN ET AL., SCIENCE, vol. 254, 1991, pages 1497 - 1500
OBERHAUSER, B.; PLANK, C ET AL.: "Enhancing endosomal exit of nucleic acids using pH-sensitive viral fusion peptides", DELIV. STRATEGIES ANTISENSE OLIGONUCLEOTIDE THER., 1995, pages 247 - 66
OHTA ET AL., J. BIOL. CHEM., vol. 259, no. 23, 1984, pages 14888 - 93
PADDISON ET AL., GENES & DEV., vol. 16, no. 8, 2002, pages 948 - 58
PADDISON, P. ET AL., GENES DEV., vol. 16, no. 8, 2002, pages 948 - 58
PADDISON, P. ET AL., PROC. NATL. ACAD. SCI. USA, vol. 99, no. 3, 2002, pages 1443 - 1448
PALGUNACHARI, ARTERIOSCLER. THROB. VASE. BIOL., vol. 16, no. 2, 1996, pages 328 - 38
PERIS ET AL., BRAIN RES MOL BRAIN RES., vol. 57, no. 2, 15 June 1998 (1998-06-15), pages 310 - 20
PERROTTA; BEEN, BIOCHEMISTRY, vol. 31, no. 47, 1 December 1992 (1992-12-01), pages 11843 - 52
PERSSON ET AL., J. CHROMATOGR., vol. 711, 1998, pages 97 - 109
PHARMACEUTICALS RESEARCH, vol. 22, no. 3, March 2005 (2005-03-01), pages 362 - 372
PLANK, C; OBERHAUSER, B; MECHTLER, K; KOCH, C; WAGNER, E.: "The influence of endosome-disruptive peptides on gene transfer using synthetic virus-like gene transfer systems", J. BIOL. CHEM., vol. 269, 1994, pages 12918 - 12924, XP000615488
POWELL ET AL., CELL, vol. 50, no. 6, 1987, pages 831 - 40
PRAKASH, T.P.; ALLERSON, C.R.; DANDE, P; VICKERS, T.A.; SIOUFI, N.; JARRES, R.; BAKER, B.F.; SWAYZE, E.E.; GRIFFEY, R.H.; BHAT, B: "Positional effect of chemical modifications on short interference RNA activity in mammalian cells", J MED CHEM, vol. 48, 2005, pages 4247 - 53, XP008155072, DOI: doi:10.1021/jm050044o
RAIL ET AL.: "Structural basis for receptor binding heterogeneity of apolipoprotein E from type III hyperlipoproteinemic subjects", PROC. NAT. ACAD. SCI., vol. 79, 1982, pages 4696 - 4700
RANEY ET AL., JOURNAL OF PHARMACOLOGY AND EXPERIMENTAL THERAPEUTICS, vol. 298, 2001, pages 1185 - 1192
REINHOLD-HUREK; SHUB, NATURE, vol. 357, no. 6374, 14 May 1992 (1992-05-14), pages 173 - 6
RENNEISEN ET AL., J. BIO. CHEM., vol. 265, 1990, pages 16337 - 16342
ROSSI ET AL., NUCLEIC ACIDS RES., vol. 20, no. 17, 11 September 1992 (1992-09-11), pages 4559 - 65
SACRE ET AL., FEBS LETT., vol. 540, no. 1-3, 2003, pages 181 - 7
SANGHVI, Y. S., CROOKE, S. T. AND LEBLEU, B.: "Antisense Research and Applications", 1993, CRC PRESS, pages: 276 - 278
SAPRA, P.; ALLEN, TM, PROG. LIPID RES., vol. 42, no. 5, 2003, pages 439 - 62
SAVILLE; COLLINS, CELL, vol. 61, no. 4, 18 May 1990 (1990-05-18), pages 685 - 96
SAVILLE; COLLINS, PROC NATL ACAD SCI USA., vol. 88, no. 19, 1 October 1991 (1991-10-01), pages 8826 - 30
SCHLUETER, URS; LU, JUN; FRASER-REID, BERT: "Synthetic Approaches To Heavily Lipidated Phosphoglyceroinositides", ORGANIC LETTERS, vol. 5, no. 3, 2003, pages 255 - 257
SHELNESS ET AL., J. BIOL. CHEM., vol. 259, no. 15, 1984, pages 9929 - 35
SHELNESS ET AL., J. BIOL. CHEM., vol. 260, no. 14, 1985, pages 8637 - 46
SIMEONI ET AL., NUCL. ACIDS RES., vol. 31, 2003, pages 2717 - 2724
SORENSON ET AL., ARTERIOSCLER. THROMB. VASE. BIOL, vol. 19, no. 9, 1999, pages 2214 - 25
SPROAT ET AL., NUCLEOSIDES NUCLEOTIDES, vol. 7, 1988, pages 651
STEINMETZ; UTERMANN, J. BIOL. CHEM., vol. 260, no. 4, 1985, pages 2258 - 64
STIRCHAK, E.P, NUCLEIC ACIDS RES., vol. 17, 1989, pages 6129
STRAUBRINGER ET AL.: "METHODS IN ENZYMOLOGY", vol. 101, 1983, ACADEMIC PRESS, pages: 512 - 527
STUART; YOUNG: "Solid Phase Peptide. Synthesis", 1984, PIERCE CHEMICAL COMPANY
SUBBARAO ET AL., BIOCHEMISTRY, vol. 26, 1987, pages 2964 - 2972
THIERRY, A.R. ET AL.: "Gene Regulation: Biology of Antisense RNA and DNA", 1992, RAVEN PRESS, pages: 147 - 161
THURBERG ET AL., J. BIOL. CHEM., vol. 271, no. 11, pages 6062 - 70
TITTENSOR, J.R, J. CHEM. SOC. C, 1971, pages 1933
TUERK; GOLD, SCIENCE, vol. 249, 1990, pages 505
TURK ET AL., BIOCHEM. BIOPHYS. ACTA, vol. 1559, 2002, pages 56 - 68
TURK, M. J.; REDDY, J. A ET AL.: "Characterization of a novel pH-sensitive peptide that enhances drug release from folate-targeted liposomes at endosomal pHs", BIOCHIM. BIOPHYS. ACTA, vol. 1559, 2002, pages 56 - 68, XP004334733, DOI: doi:10.1016/S0005-2736(01)00441-2
UHLMANN E. ET AL.: "Antisense: Chemical Modifications. Encyclopedia of Cancer", vol. X, 1997, ACADEMIC PRESS INC, pages: 64 - 81
VASANTHAKUMAR; AHMED, CANCER COMMUN., vol. 1, no. 4, 1989, pages 225 - 32
VERMA, S. ET AL., ANNU. REV. BIOCHEM., vol. 67, 1998, pages 99 - 134
VERMEULEN ET AL.: "Double-Stranded Regions Are Essential Design Components Of Potent Inhibitors of RISC Function", RNA, vol. 13, 2007, pages 723 - 730, XP002659375, DOI: doi:10.1261/RNA.448107
VLASSOV ET AL., BIOCHIM. BIOPHYS. ACTA, vol. 1197, 1994, pages 95 - 1082
VOGEL ET AL., J. AM. CHEM. SOC., vol. 118, 1996, pages 1581 - 1586
VON HEINJE, G.: "Sequence Analysis in Molecular Biology", 1987, ACADEMIC PRESS
WEERS ET AL., BIOPHYS. CHEM., vol. 100, no. 1-3, 2003, pages 481 - 92
WEISGRABER ET AL.: "Human E apoprotein heterogeneity: cysteine-arginine interchanges in the amino acid sequence of the apo-E isoforms", J. BIOL. CHEM., vol. 256, 1981, pages 9077 - 9083, XP055343671
WEISGRABER, J. LIPID RES, vol. 31, no. 8, 1990, pages 1503 - 11
WEISGRABER, J. LIPID RES., vol. 31, no. 8, 1990, pages 1503 - 11
WENGEL, J. ACC. CHEM. RES., vol. 32, 1999, pages 301 - 310
WIDLER ET AL., J. BIOL. CHEM., vol. 255, no. 21, 1980, pages 10464 - 71
YAMAMOTO S. ET AL., J. IMMUNOL., vol. 148, 1992, pages 4072 - 4076
ZALIPSKY, BIOCONJUGATE CHEMISTRY, vol. 4, 1993, pages 296 - 299
ZALIPSKY, FEBS LETTERS, vol. 353, 1994, pages 71 - 74
ZALIPSKY: "Stealth Liposomes", 1995, CRC PRESS, article "chapter 9"
ZELPHATI, O. ET AL., ANTISENSE. RES. DEV., vol. 3, 1993, pages 323 - 338
ZELPHATI, O; SZOKA, F.C., J. CONTR. REL., vol. 41, 1996, pages 99 - 119
ZHANG, H.Y.; DU, Q.; WAHLESTEDT, C.; LIANG, Z.: "RNA Interference with chemically modified siRNA", CURR TOP MED CHEM, vol. 6, 2006, pages 893 - 900, XP009083177, DOI: doi:10.2174/156802606777303676
ZHU ET AL., SCIENCE, vol. 261, 1993, pages 209 - 211
ZIMMERMANN ET AL., NATURE, vol. 441, 2006, pages 111 - 114
ZITZMANN ET AL., CANCER RES., vol. 62, 2002, pages 5139 - 43

Cited By (500)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9777270B2 (en) 2002-11-14 2017-10-03 Thermo Fisher Scientific Inc. Methods and compositions for selecting siRNA of improved functionality
US11198870B2 (en) 2002-11-14 2021-12-14 Thermo Fisher Scientific Inc. Methods and compositions for selecting siRNA of improved functionality
US10233449B2 (en) 2002-11-14 2019-03-19 Thermo Fisher Scientific Inc. Methods and compositions for selecting siRNA of improved functionality
US9228186B2 (en) 2002-11-14 2016-01-05 Thermo Fisher Scientific Inc. Methods and compositions for selecting siRNA of improved functionality
US8293719B2 (en) 2004-03-12 2012-10-23 Alnylam Pharmaceuticals, Inc. iRNA agents targeting VEGF
US9260718B2 (en) 2006-05-11 2016-02-16 Alnylam Pharmaceuticals, Inc. Compositions and methods for inhibiting expression of the PCSK9 gene
US10501742B2 (en) 2006-05-11 2019-12-10 Alnylam Pharmaceuticals, Inc. Compositions and methods for inhibiting expression of the PCSK9 gene
US9822365B2 (en) 2006-05-11 2017-11-21 Alnylam Pharmaceuticals, Inc. Compositions and methods for inhibiting expression of the PCSK9 gene
US8809292B2 (en) 2006-05-11 2014-08-19 Alnylam Pharmaceuticals, Inc Compositions and methods for inhibiting expression of the PCSK9 gene
US9868950B2 (en) 2008-09-25 2018-01-16 Alnylam Pharmaceuticals, Inc. Lipid formulated compositions and methods for inhibiting expression of serum amyloid A gene
US10472628B2 (en) 2008-09-25 2019-11-12 Alnylam Pharmaceuticals, Inc. Lipid formulated compositions and methods for inhibiting expression of Serum Amyloid A gene
US11884919B2 (en) 2008-09-25 2024-01-30 Alnylam Pharmaceuticals, Inc. Lipid formulated compositions and methods for inhibiting expression of serum amyloid a gene
US9206421B2 (en) 2008-09-25 2015-12-08 Alnylam Pharmaceuticals, Inc. Lipid formulated compositions and methods for inhibiting expression of serum amyloid A gene
US11149273B2 (en) 2008-09-25 2021-10-19 Alnylam Pharmaceuticals, Inc. Lipid formulated compositions and methods for inhibiting expression of serum amyloid A gene
US10240152B2 (en) 2008-10-20 2019-03-26 Alnylam Pharmaceuticals, Inc. Compositions and methods for inhibiting expression of transthyretin
US8168775B2 (en) 2008-10-20 2012-05-01 Alnylam Pharmaceuticals, Inc. Compositions and methods for inhibiting expression of transthyretin
US9234196B2 (en) 2008-10-20 2016-01-12 Alnylam Pharmaceuticals, Inc. Compositions and methods for inhibiting expression of transthyretin
US8741866B2 (en) 2008-10-20 2014-06-03 Alnylam Pharmaceuticals, Inc. Compositions and methods for inhibiting expression of transthyretin
US12042541B2 (en) 2008-11-10 2024-07-23 Arbutus Biopharma Corporation Lipids and compositions for the delivery of therapeutics
US11712476B2 (en) 2008-11-10 2023-08-01 Arbutus Biopharma Corporation Lipids and compositions for the delivery of therapeutics
US11077197B2 (en) 2008-11-10 2021-08-03 Arbutus Biopharma Corporation Lipids and compositions for the delivery of therapeutics
US12031133B2 (en) 2008-12-10 2024-07-09 Alnylam Pharmaceuticals, Inc. GNAQ targeted dsRNA compositions and methods for inhibiting expression
US9963700B2 (en) 2008-12-10 2018-05-08 Alnylam Pharmaceuticals, Inc. GNAQ targeted dsRNA compositions and methods for inhibiting expression
US9566295B2 (en) 2008-12-10 2017-02-14 Alnylam Pharmaceuticals, Inc. GNAQ targeted dsRNA compositions and methods for inhibiting expression
US10954516B2 (en) 2008-12-10 2021-03-23 Alnylam Pharmaceuticals, Inc. GNAQ targeted dsRNA compositions and methods for inhibiting expression
US9051567B2 (en) 2009-06-15 2015-06-09 Tekmira Pharmaceuticals Corporation Methods for increasing efficacy of lipid formulated siRNA
US8598139B2 (en) 2009-06-15 2013-12-03 Alnylam Pharmaceuticals, Inc. Lipid formulated dsRNA targeting the PCSK9 gene
US10053689B2 (en) 2009-06-15 2018-08-21 Arbutus Biopharma Corporation Methods for increasing efficacy of lipid formulated siRNA
US8273869B2 (en) 2009-06-15 2012-09-25 Alnylam Pharmaceuticals, Inc. Lipid formulated dsRNA targeting the PCSK9 gene
US9029338B2 (en) 2009-08-14 2015-05-12 Alnylam Pharmaceuticals, Inc. Lipid formulated compositions and methods for inhibiting expression of a gene from the ebola virus
US9187746B2 (en) 2009-09-22 2015-11-17 Alnylam Pharmaceuticals, Inc. Dual targeting siRNA agents
US9101643B2 (en) 2009-11-03 2015-08-11 Alnylam Pharmaceuticals, Inc. Lipid formulated compositions and methods for inhibiting expression of transthyretin (TTR)
US10576166B2 (en) 2009-12-01 2020-03-03 Translate Bio, Inc. Liver specific delivery of messenger RNA
US10143758B2 (en) 2009-12-01 2018-12-04 Translate Bio, Inc. Liver specific delivery of messenger RNA
WO2011141705A1 (en) 2010-05-12 2011-11-17 Protiva Biotherapeutics, Inc. Novel cationic lipids and methods of use thereof
WO2011141704A1 (en) 2010-05-12 2011-11-17 Protiva Biotherapeutics, Inc Novel cyclic cationic lipids and methods of use
US12129467B2 (en) 2010-06-30 2024-10-29 Arbutus Biopharma Corporation Non-liposomal systems for nucleic acid delivery
US9518272B2 (en) 2010-06-30 2016-12-13 Protiva Biotherapeutics, Inc. Non-liposomal systems for nucleic acid delivery
US9006417B2 (en) 2010-06-30 2015-04-14 Protiva Biotherapeutics, Inc. Non-liposomal systems for nucleic acid delivery
US11718852B2 (en) 2010-06-30 2023-08-08 Arbutus Biopharma Corporation Non-liposomal systems for nucleic acid delivery
WO2012000104A1 (en) * 2010-06-30 2012-01-05 Protiva Biotherapeutics, Inc. Non-liposomal systems for nucleic acid delivery
US9404127B2 (en) 2010-06-30 2016-08-02 Protiva Biotherapeutics, Inc. Non-liposomal systems for nucleic acid delivery
US11690865B2 (en) 2010-07-06 2023-07-04 Glaxosmithkline Biologicals Sa Delivery of RNA to trigger multiple immune pathways
US11891608B2 (en) 2010-07-06 2024-02-06 Glaxosmithkline Biologicals Sa Immunization of large mammals with low doses of RNA
US11865080B2 (en) 2010-07-06 2024-01-09 Glaxosmithkline Biologicals Sa Delivery of RNA to trigger multiple immune pathways
US11690864B2 (en) 2010-07-06 2023-07-04 Glaxosmithkline Biologicals Sa Delivery of RNA to trigger multiple immune pathways
US11666534B2 (en) 2010-07-06 2023-06-06 Glaxosmithkline Biologicals Sa Methods of administering lipid formulations with viral immunogens
US11655475B2 (en) 2010-07-06 2023-05-23 Glaxosmithkline Biologicals Sa Immunisation of large mammals with low doses of RNA
US11883534B2 (en) 2010-07-06 2024-01-30 Glaxosmithkline Biologicals Sa Immunisation with lipid formulations with RNA encoding immunogens
US11690863B2 (en) 2010-07-06 2023-07-04 Glaxosmithkline Biologicals Sa Delivery of RNA to trigger multiple immune pathways
US11857681B2 (en) 2010-07-06 2024-01-02 Glaxosmithkline Biologicals Sa Lipid formulations with RNA encoding immunogens
US11690862B1 (en) 2010-07-06 2023-07-04 Glaxosmithkline Biologicals Sa Delivery of RNA to trigger multiple immune pathways
US11690861B2 (en) 2010-07-06 2023-07-04 Glaxosmithkline Biologicals Sa Delivery of RNA to trigger multiple immune pathways
US11696923B2 (en) 2010-07-06 2023-07-11 Glaxosmithkline Biologicals, Sa Delivery of RNA to trigger multiple immune pathways
US11707482B2 (en) 2010-07-06 2023-07-25 Glaxosmithkline Biologicals Sa Delivery of RNA to trigger multiple immune pathways
US11638694B2 (en) 2010-07-06 2023-05-02 Glaxosmithkline Biologicals Sa Vaccine for eliciting immune response comprising lipid formulations and RNA encoding multiple immunogens
US11717529B2 (en) 2010-07-06 2023-08-08 Glaxosmithkline Biologicals Sa Delivery of RNA to trigger multiple immune pathways
US11638693B2 (en) 2010-07-06 2023-05-02 Glaxosmithkline Biologicals Sa Vaccine for eliciting immune response comprising RNA encoding an immunogen and lipid formulations comprising mole percentage of lipids
US11596645B2 (en) 2010-07-06 2023-03-07 Glaxosmithkline Biologicals Sa Delivery of RNA to trigger multiple immune pathways
US11730754B2 (en) 2010-07-06 2023-08-22 Glaxosmithkline Biologicals Sa Delivery of RNA to trigger multiple immune pathways
US11913001B2 (en) 2010-07-06 2024-02-27 Glaxosmithkline Biologicals Sa Immunisation of large mammals with low doses of RNA
US11905514B2 (en) 2010-07-06 2024-02-20 Glaxosmithkline Biological Sa Immunisation of large mammals with low doses of RNA
US11857562B2 (en) 2010-07-06 2024-01-02 Glaxosmithkline Biologicals Sa Delivery of RNA to trigger multiple immune pathways
US11739334B2 (en) 2010-07-06 2023-08-29 Glaxosmithkline Biologicals Sa Immunisation of large mammals with low doses of RNA
US11851660B2 (en) 2010-07-06 2023-12-26 Glaxosmithkline Biologicals Sa Immunisation of large mammals with low doses of RNA
US11850305B2 (en) 2010-07-06 2023-12-26 Glaxosmithkline Biologicals Sa Method of making lipid formulations with RNA encoding immunogens
US20220125723A1 (en) 2010-07-06 2022-04-28 Glaxosmithkline Biologicals Sa Lipid formulations with viral immunogens
US11759475B2 (en) 2010-07-06 2023-09-19 Glaxosmithkline Biologicals Sa Delivery of RNA to trigger multiple immune pathways
US11845925B2 (en) 2010-07-06 2023-12-19 Glaxosmithkline Biologicals Sa Immunisation of large mammals with low doses of RNA
US11839686B2 (en) 2010-07-06 2023-12-12 Glaxosmithkline Biologicals Sa Lipid formulations with viral immunogens
US11766401B2 (en) 2010-07-06 2023-09-26 Glaxosmithkline Biologicals Sa Methods of administering lipid formulations with immunogens
US11786467B2 (en) 2010-07-06 2023-10-17 Glaxosmithkline Biologicals Sa Lipid formulations with immunogens
US11773395B1 (en) 2010-07-06 2023-10-03 Glaxosmithkline Biologicals Sa Immunization of large mammals with low doses of RNA
WO2012016188A3 (en) * 2010-07-30 2012-04-12 Alnylam Pharmaceuticals, Inc. Methods and compositions for delivery of active agents
US9181319B2 (en) 2010-08-06 2015-11-10 Moderna Therapeutics, Inc. Engineered nucleic acids and methods of use thereof
US9937233B2 (en) 2010-08-06 2018-04-10 Modernatx, Inc. Engineered nucleic acids and methods of use thereof
US9447164B2 (en) 2010-08-06 2016-09-20 Moderna Therapeutics, Inc. Engineered nucleic acids and methods of use thereof
US8822663B2 (en) 2010-08-06 2014-09-02 Moderna Therapeutics, Inc. Engineered nucleic acids and methods of use thereof
WO2012024170A2 (en) 2010-08-17 2012-02-23 Merck Sharp & Dohme Corp. RNA INTERFERENCE MEDIATED INHIBITION OF HEPATITIS B VIRUS (HBV) GENE EXPRESSION USING SHORT INTERFERING NUCLEIC ACID (siNA)
EP4079856A1 (en) 2010-08-17 2022-10-26 Sirna Therapeutics, Inc. Rna interference mediated inhibition of hepatitis b virus (hbv) gene expression using short interfering nucleic acid (sina)
WO2012027467A1 (en) 2010-08-26 2012-03-01 Merck Sharp & Dohme Corp. RNA INTERFERENCE MEDIATED INHIBITION OF PROLYL HYDROXYLASE DOMAIN 2 (PHD2) GENE EXPRESSION USING SHORT INTERFERING NUCLEIC ACID (siNA)
US11759422B2 (en) 2010-08-31 2023-09-19 Glaxosmithkline Biologicals Sa Pegylated liposomes for delivery of immunogen-encoding RNA
US8466122B2 (en) 2010-09-17 2013-06-18 Protiva Biotherapeutics, Inc. Trialkyl cationic lipids and methods of use thereof
EP3144015A2 (en) 2010-09-20 2017-03-22 Sirna Therapeutics, Inc. Novel low molecular weight cationic lipids for oligonucleotide delivery
EP3943114A1 (en) 2010-09-20 2022-01-26 Sirna Therapeutics, Inc. Novel low molecular weight cationic lipids for oligonucleotide delivery
WO2012040184A2 (en) 2010-09-20 2012-03-29 Merck Sharp & Dohme Corp. Novel low molecular weight cationic lipids for oligonucleotide delivery
US10064959B2 (en) 2010-10-01 2018-09-04 Modernatx, Inc. Modified nucleosides, nucleotides, and nucleic acids, and uses thereof
US9334328B2 (en) 2010-10-01 2016-05-10 Moderna Therapeutics, Inc. Modified nucleosides, nucleotides, and nucleic acids, and uses thereof
US9657295B2 (en) 2010-10-01 2017-05-23 Modernatx, Inc. Modified nucleosides, nucleotides, and nucleic acids, and uses thereof
US11639370B2 (en) 2010-10-11 2023-05-02 Glaxosmithkline Biologicals Sa Antigen delivery platforms
WO2012054365A2 (en) 2010-10-21 2012-04-26 Merck Sharp & Dohme Corp. Novel low molecular weight cationic lipids for oligonucleotide delivery
EP3485913A1 (en) 2010-10-21 2019-05-22 Sirna Therapeutics, Inc. Low molecular weight cationic lipids for oligonucleotide delivery
EP3327125A1 (en) 2010-10-29 2018-05-30 Sirna Therapeutics, Inc. Rna interference mediated inhibition of gene expression using short interfering nucleic acids (sina)
EP3766975A1 (en) 2010-10-29 2021-01-20 Sirna Therapeutics, Inc. Rna interference mediated inhibition of gene expression using short interfering nucleic acid (sina)
WO2012061259A2 (en) 2010-11-05 2012-05-10 Merck Sharp & Dohme Corp. Novel low molecular weight cyclic amine containing cationic lipids for oligonucleotide delivery
US8853377B2 (en) 2010-11-30 2014-10-07 Shire Human Genetic Therapies, Inc. mRNA for use in treatment of human genetic diseases
US9956271B2 (en) 2010-11-30 2018-05-01 Translate Bio, Inc. mRNA for use in treatment of human genetic diseases
US9061021B2 (en) 2010-11-30 2015-06-23 Shire Human Genetic Therapies, Inc. mRNA for use in treatment of human genetic diseases
US11135274B2 (en) 2010-11-30 2021-10-05 Translate Bio, Inc. MRNA for use in treatment of human genetic diseases
US11911474B2 (en) 2011-03-31 2024-02-27 Modernatx, Inc. Delivery and formulation of engineered nucleic acids
US9533047B2 (en) 2011-03-31 2017-01-03 Modernatx, Inc. Delivery and formulation of engineered nucleic acids
US9950068B2 (en) 2011-03-31 2018-04-24 Modernatx, Inc. Delivery and formulation of engineered nucleic acids
US10898574B2 (en) 2011-03-31 2021-01-26 Modernatx, Inc. Delivery and formulation of engineered nucleic acids
EP2714971A1 (en) * 2011-05-23 2014-04-09 Phylogica Limited Method of determining, identifying or isolating cell-penetrating peptides
EP2714971A4 (en) * 2011-05-23 2015-01-21 Phylogica Ltd Method of determining, identifying or isolating cell-penetrating peptides
US11547764B2 (en) 2011-06-08 2023-01-10 Translate Bio, Inc. Lipid nanoparticle compositions and methods for MRNA delivery
US11338044B2 (en) 2011-06-08 2022-05-24 Translate Bio, Inc. Lipid nanoparticle compositions and methods for mRNA delivery
US11951179B2 (en) 2011-06-08 2024-04-09 Translate Bio, Inc. Lipid nanoparticle compositions and methods for MRNA delivery
US11951180B2 (en) 2011-06-08 2024-04-09 Translate Bio, Inc. Lipid nanoparticle compositions and methods for MRNA delivery
US11951181B2 (en) 2011-06-08 2024-04-09 Translate Bio, Inc. Lipid nanoparticle compositions and methods for mRNA delivery
US11185595B2 (en) 2011-06-08 2021-11-30 Translate Bio, Inc. Lipid nanoparticle compositions and methods for mRNA delivery
US11730825B2 (en) 2011-06-08 2023-08-22 Translate Bio, Inc. Lipid nanoparticle compositions and methods for mRNA delivery
US10507249B2 (en) 2011-06-08 2019-12-17 Translate Bio, Inc. Lipid nanoparticle compositions and methods for mRNA delivery
US10888626B2 (en) 2011-06-08 2021-01-12 Translate Bio, Inc. Lipid nanoparticle compositions and methods for mRNA delivery
US10413618B2 (en) 2011-06-08 2019-09-17 Translate Bio, Inc. Lipid nanoparticle compositions and methods for mRNA delivery
US11052159B2 (en) 2011-06-08 2021-07-06 Translate Bio, Inc. Lipid nanoparticle compositions and methods for mRNA delivery
US12121592B2 (en) 2011-06-08 2024-10-22 Translate Bio, Inc. Lipid nanoparticle compositions and methods for mRNA delivery
US9597413B2 (en) 2011-06-08 2017-03-21 Shire Human Genetic Therapies, Inc. Pulmonary delivery of mRNA
US10238754B2 (en) 2011-06-08 2019-03-26 Translate Bio, Inc. Lipid nanoparticle compositions and methods for MRNA delivery
US9308281B2 (en) 2011-06-08 2016-04-12 Shire Human Genetic Therapies, Inc. MRNA therapy for Fabry disease
US11291734B2 (en) 2011-06-08 2022-04-05 Translate Bio, Inc. Lipid nanoparticle compositions and methods for mRNA delivery
US10350303B1 (en) 2011-06-08 2019-07-16 Translate Bio, Inc. Lipid nanoparticle compositions and methods for mRNA delivery
US11306316B2 (en) 2011-06-21 2022-04-19 Alnylam Pharmaceuticals, Inc. Angiopoietin-like 3 (ANGPTL3) iRNA compositions and methods of use thereof
EP2723758A4 (en) * 2011-06-21 2015-04-15 Alnylam Pharmaceuticals Angiopoietin-like 3 (angptl3) irna compostions and methods of use thereof
CN103890000A (en) * 2011-06-21 2014-06-25 阿尔尼拉姆医药品有限公司 Angiopoietin-like 3 (ANGPTL3) irna compostions and methods of use thereof
US11866709B2 (en) 2011-06-21 2024-01-09 Alnylam Pharmaceuticals, Inc. Angiopoietin-like 3 (ANGPTL3) iRNA compositions and methods of use thereof
JP2014525737A (en) * 2011-06-21 2014-10-02 アルナイラム ファーマシューティカルズ, インコーポレイテッド Compositions and methods for inhibiting the expression of apolipoprotein C-III (APOC3)
EP3444348A1 (en) * 2011-06-21 2019-02-20 Alnylam Pharmaceuticals, Inc. Angiopoietin-like 3 (angptl3) irna compositions and methods of use thereof
US11840692B2 (en) 2011-06-21 2023-12-12 Alnylam Pharmaceuticals, Inc. Angiopoietin-like 3 (ANGPTL3) iRNA compositions and methods of use thereof
US11834662B2 (en) 2011-06-21 2023-12-05 Alnylam Pharmaceuticals, Inc. Angiopoietin-like 3 (ANGPTL3) iRNA compositions and methods of use thereof
EP3656860A1 (en) * 2011-06-21 2020-05-27 Alnylam Pharmaceuticals, Inc. Angiopoietin-like 3 (angptl3) irna compositions and methods of use thereof
US11306315B2 (en) 2011-06-21 2022-04-19 Alnylam Pharmaceuticals, Inc. Angiopoietin-like 3 (ANGPTL3) iRNA compositions and methods of use thereof
KR102028028B1 (en) 2011-06-21 2019-10-07 알닐람 파마슈티칼스 인코포레이티드 Compositions and methods for inhibition of expression of apolipoprotein c-iii(apoc3) genes
US11130953B2 (en) 2011-06-21 2021-09-28 Alnylam Pharmaceuticals, Inc. Angiopoietin-like 3 (ANGPTL3) iRNA compositions and methods of use thereof
KR20140039298A (en) * 2011-06-21 2014-04-01 알닐람 파마슈티칼스 인코포레이티드 Compositions and methods for inhibition of expression of apolipoprotein c-iii(apoc3) genes
US11525138B2 (en) 2011-06-21 2022-12-13 Alnylam Pharmaceuticals, Inc. Angiopoietin-like 3 (ANGPTL3) iRNA compositions and methods of use thereof
US11306314B2 (en) 2011-06-21 2022-04-19 Alnylam Pharmaceuticals, Inc. Angiopoietin-like 3 (ANGPTL3) iRNA compositions and methods of use thereof
US10934545B2 (en) 2011-06-21 2021-03-02 Alnylam Pharmaceuticals, Inc. Angiopoietin-like 3 (ANGPTL3) iRNA compositions and methods of use thereof
US11332743B2 (en) 2011-06-21 2022-05-17 Alnylam Pharmaceuticals, Inc. Angiopoietin-like 3 (ANGPTL3) iRNA compositions and methods of use thereof
JP2018074999A (en) * 2011-06-21 2018-05-17 アルナイラム ファーマシューティカルズ, インコーポレイテッドAlnylam Pharmaceuticals, Inc. Compositions and methods for inhibition of expression of apolipoprotein c-iii (apoc3)
CN107287202A (en) * 2011-06-21 2017-10-24 阿尔尼拉姆医药品有限公司 Angiopoietin-like 3(ANGPTL3)IRNA compositions and its application method
JP2021072843A (en) * 2011-06-21 2021-05-13 アルナイラム ファーマシューティカルズ, インコーポレイテッドAlnylam Pharmaceuticals, Inc. Compositions and methods for inhibition of expression of apolipoprotein c-iii (apoc3)
JP2019213535A (en) * 2011-06-21 2019-12-19 アルナイラム ファーマシューティカルズ, インコーポレイテッドAlnylam Pharmaceuticals, Inc. Composition and method for inhibiting expression of apolipoprotein c-iii(apoc3)
EP2723758A2 (en) * 2011-06-21 2014-04-30 Alnylam Pharmaceuticals Angiopoietin-like 3 (angptl3) irna compostions and methods of use thereof
CN103890000B (en) * 2011-06-21 2017-09-01 阿尔尼拉姆医药品有限公司 (ANGPTL3) the iRNA compositions of angiopoietin-like 3 and its application method
CN107287202B (en) * 2011-06-21 2021-03-16 阿尔尼拉姆医药品有限公司 Angiopoietin-like 3(ANGPTL3) iRNA compositions and methods of use thereof
US11896636B2 (en) 2011-07-06 2024-02-13 Glaxosmithkline Biologicals Sa Immunogenic combination compositions and uses thereof
US10023861B2 (en) 2011-08-29 2018-07-17 Ionis Pharmaceuticals, Inc. Oligomer-conjugate complexes and their use
US10022425B2 (en) 2011-09-12 2018-07-17 Modernatx, Inc. Engineered nucleic acids and methods of use thereof
US10751386B2 (en) 2011-09-12 2020-08-25 Modernatx, Inc. Engineered nucleic acids and methods of use thereof
US9464124B2 (en) 2011-09-12 2016-10-11 Moderna Therapeutics, Inc. Engineered nucleic acids and methods of use thereof
US9428535B2 (en) 2011-10-03 2016-08-30 Moderna Therapeutics, Inc. Modified nucleosides, nucleotides, and nucleic acids, and uses thereof
US10570391B2 (en) 2011-11-18 2020-02-25 Alnylam Pharmaceuticals, Inc. RNAi agents, compositions and methods of use thereof for treating transthyretin (TTR) associated diseases
US9399775B2 (en) 2011-11-18 2016-07-26 Alnylam Pharmaceuticals, Inc. RNAi agents, compositions and methods of use thereof for treating transthyretin (TTR) associated diseases
US11633479B2 (en) 2011-12-07 2023-04-25 Alnylam Pharmaceuticals, Inc. Biodegradable lipids for the delivery of active agents
US11612657B2 (en) 2011-12-07 2023-03-28 Alnylam Pharmaceuticals, Inc. Biodegradable lipids for the delivery of active agents
US11590229B2 (en) 2011-12-07 2023-02-28 Alnylam Pharmaceuticals, Inc. Biodegradable lipids for the delivery of active agents
US11633480B2 (en) 2011-12-07 2023-04-25 Alnylam Pharmaceuticals, Inc. Biodegradable lipids for the delivery of active agents
US11679158B2 (en) 2011-12-07 2023-06-20 Alnylam Pharmaceuticals, Inc. Biodegradable lipids for the delivery of active agents
US9186372B2 (en) 2011-12-16 2015-11-17 Moderna Therapeutics, Inc. Split dose administration
US9271996B2 (en) 2011-12-16 2016-03-01 Moderna Therapeutics, Inc. Formulation and delivery of PLGA microspheres
EP2791160B1 (en) * 2011-12-16 2022-03-02 ModernaTX, Inc. Modified mrna compositions
US9295689B2 (en) 2011-12-16 2016-03-29 Moderna Therapeutics, Inc. Formulation and delivery of PLGA microspheres
US20130245107A1 (en) * 2011-12-16 2013-09-19 modeRNA Therapeutics Dlin-mc3-dma lipid nanoparticle delivery of modified polynucleotides
US9035039B2 (en) 2011-12-22 2015-05-19 Protiva Biotherapeutics, Inc. Compositions and methods for silencing SMAD4
US9255129B2 (en) 2012-04-02 2016-02-09 Moderna Therapeutics, Inc. Modified polynucleotides encoding SIAH E3 ubiquitin protein ligase 1
US20180002393A1 (en) * 2012-04-02 2018-01-04 Modernatx, Inc. Modified polynucleotides for the production of oncology-related proteins and peptides
JP2015519881A (en) * 2012-04-02 2015-07-16 モデルナ セラピューティクス インコーポレイテッドModerna Therapeutics,Inc. Modified polynucleotides for the production of nucleoproteins
JP2015518705A (en) * 2012-04-02 2015-07-06 モデルナ セラピューティクス インコーポレイテッドModerna Therapeutics,Inc. Modified polynucleotides for the production of biologics and proteins associated with human diseases
US9572897B2 (en) 2012-04-02 2017-02-21 Modernatx, Inc. Modified polynucleotides for the production of cytoplasmic and cytoskeletal proteins
US9061059B2 (en) 2012-04-02 2015-06-23 Moderna Therapeutics, Inc. Modified polynucleotides for treating protein deficiency
US9089604B2 (en) 2012-04-02 2015-07-28 Moderna Therapeutics, Inc. Modified polynucleotides for treating galactosylceramidase protein deficiency
US9050297B2 (en) 2012-04-02 2015-06-09 Moderna Therapeutics, Inc. Modified polynucleotides encoding aryl hydrocarbon receptor nuclear translocator
JP2015516143A (en) * 2012-04-02 2015-06-08 モデルナ セラピューティクス インコーポレイテッドModerna Therapeutics,Inc. Modified polynucleotides for the production of proteins associated with human disease
US9095552B2 (en) 2012-04-02 2015-08-04 Moderna Therapeutics, Inc. Modified polynucleotides encoding copper metabolism (MURR1) domain containing 1
US20160375134A1 (en) * 2012-04-02 2016-12-29 Moderna Therapeutics, Inc. Modified polynucleotides for the production of secreted proteins
US9107886B2 (en) 2012-04-02 2015-08-18 Moderna Therapeutics, Inc. Modified polynucleotides encoding basic helix-loop-helix family member E41
JP2015513912A (en) * 2012-04-02 2015-05-18 モデルナ セラピューティクス インコーポレイテッドModerna Therapeutics,Inc. Modified polynucleotides for the production of proteins
US10385106B2 (en) * 2012-04-02 2019-08-20 Modernatx, Inc. Modified polynucleotides for the production of secreted proteins
US9114113B2 (en) 2012-04-02 2015-08-25 Moderna Therapeutics, Inc. Modified polynucleotides encoding citeD4
CN112390871A (en) * 2012-04-02 2021-02-23 现代泰克斯公司 In vivo production of proteins
US10772975B2 (en) 2012-04-02 2020-09-15 Modernatx, Inc. Modified Polynucleotides for the production of biologics and proteins associated with human disease
CN104870022A (en) * 2012-04-02 2015-08-26 现代治疗公司 In vivo production of proteins
US9675668B2 (en) 2012-04-02 2017-06-13 Moderna Therapeutics, Inc. Modified polynucleotides encoding hepatitis A virus cellular receptor 2
US10463751B2 (en) 2012-04-02 2019-11-05 Modernatx, Inc. Modified polynucleotides for the production of cytoplasmic and cytoskeletal proteins
US20140010861A1 (en) * 2012-04-02 2014-01-09 modeRNA Therapeutics Modified polynucleotides for the production of proteins associated with human disease
US9149506B2 (en) 2012-04-02 2015-10-06 Moderna Therapeutics, Inc. Modified polynucleotides encoding septin-4
US9782462B2 (en) 2012-04-02 2017-10-10 Modernatx, Inc. Modified polynucleotides for the production of proteins associated with human disease
US10493167B2 (en) 2012-04-02 2019-12-03 Modernatx, Inc. In vivo production of proteins
US8999380B2 (en) 2012-04-02 2015-04-07 Moderna Therapeutics, Inc. Modified polynucleotides for the production of biologics and proteins associated with human disease
US10703789B2 (en) 2012-04-02 2020-07-07 Modernatx, Inc. Modified polynucleotides for the production of secreted proteins
US11564998B2 (en) 2012-04-02 2023-01-31 Modernatx, Inc. Modified polynucleotides for the production of cytoplasmic and cytoskeletal proteins
US20180311381A1 (en) * 2012-04-02 2018-11-01 Modernatx, Inc. Modified polynucleotides for the production of biologics and proteins associated with human disease
US9814760B2 (en) 2012-04-02 2017-11-14 Modernatx, Inc. Modified polynucleotides for the production of biologics and proteins associated with human disease
US9828416B2 (en) 2012-04-02 2017-11-28 Modernatx, Inc. Modified polynucleotides for the production of secreted proteins
US10501512B2 (en) 2012-04-02 2019-12-10 Modernatx, Inc. Modified polynucleotides
US10501513B2 (en) 2012-04-02 2019-12-10 Modernatx, Inc. Modified polynucleotides for the production of oncology-related proteins and peptides
US9827332B2 (en) 2012-04-02 2017-11-28 Modernatx, Inc. Modified polynucleotides for the production of proteins
US9192651B2 (en) 2012-04-02 2015-11-24 Moderna Therapeutics, Inc. Modified polynucleotides for the production of secreted proteins
US9216205B2 (en) 2012-04-02 2015-12-22 Moderna Therapeutics, Inc. Modified polynucleotides encoding granulysin
JP2019216733A (en) * 2012-04-02 2019-12-26 モデルナティエックス インコーポレイテッドModernaTX,Inc. Modified polynucleotides for secreted protein production
US9220755B2 (en) 2012-04-02 2015-12-29 Moderna Therapeutics, Inc. Modified polynucleotides for the production of proteins associated with blood and lymphatic disorders
US20170368200A1 (en) * 2012-04-02 2017-12-28 Modernatx, Inc. Modified polynucleotides for the production of cytoplasmic and cytoskeletal proteins
US9221891B2 (en) 2012-04-02 2015-12-29 Moderna Therapeutics, Inc. In vivo production of proteins
US9220792B2 (en) 2012-04-02 2015-12-29 Moderna Therapeutics, Inc. Modified polynucleotides encoding aquaporin-5
US9301993B2 (en) 2012-04-02 2016-04-05 Moderna Therapeutics, Inc. Modified polynucleotides encoding apoptosis inducing factor 1
US9233141B2 (en) 2012-04-02 2016-01-12 Moderna Therapeutics, Inc. Modified polynucleotides for the production of proteins associated with blood and lymphatic disorders
US9254311B2 (en) 2012-04-02 2016-02-09 Moderna Therapeutics, Inc. Modified polynucleotides for the production of proteins
US10577403B2 (en) 2012-04-02 2020-03-03 Modernatx, Inc. Modified polynucleotides for the production of secreted proteins
CN104870022B (en) * 2012-04-02 2024-11-12 现代泰克斯公司 In vivo production of proteins
US9587003B2 (en) 2012-04-02 2017-03-07 Modernatx, Inc. Modified polynucleotides for the production of oncology-related proteins and peptides
US10583203B2 (en) 2012-04-02 2020-03-10 Modernatx, Inc. In vivo production of proteins
US9303079B2 (en) 2012-04-02 2016-04-05 Moderna Therapeutics, Inc. Modified polynucleotides for the production of cytoplasmic and cytoskeletal proteins
US9283287B2 (en) 2012-04-02 2016-03-15 Moderna Therapeutics, Inc. Modified polynucleotides for the production of nuclear proteins
US9878056B2 (en) 2012-04-02 2018-01-30 Modernatx, Inc. Modified polynucleotides for the production of cosmetic proteins and peptides
EP3434667A1 (en) 2012-04-19 2019-01-30 Sirna Therapeutics, Inc. Novel diester and triester based low molecular weight, biodegradable cationic lipids for oligonucleotide delivery
JP2022000022A (en) * 2012-04-26 2022-01-04 ジェンザイム・コーポレーション SERPINC1 iRNA COMPOSITIONS AND METHODS OF USE THEREOF
JP2019068848A (en) * 2012-04-26 2019-05-09 ジェンザイム・コーポレーション Serpinc1 irna compositions and use methods thereof
JP2015519047A (en) * 2012-04-26 2015-07-09 アルナイラム ファーマシューティカルズ, インコーポレイテッドAlnylam Pharmaceuticals, Inc. Serpin1 iRNA compositions and methods of use thereof
JP7478121B2 (en) 2012-04-26 2024-05-02 ジェンザイム・コーポレーション Serpincl iRNA Compositions and Methods of Use Thereof
US11976307B2 (en) 2012-04-27 2024-05-07 Duke University Genetic correction of mutated genes
US11254936B2 (en) 2012-06-08 2022-02-22 Translate Bio, Inc. Nuclease resistant polynucleotides and uses thereof
WO2014008334A1 (en) 2012-07-06 2014-01-09 Alnylam Pharmaceuticals, Inc. Stable non-aggregating nucleic acid lipid particle formulations
US9415109B2 (en) 2012-07-06 2016-08-16 Alnylam Pharmaceuticals, Inc. Stable non-aggregating nucleic acid lipid particle formulations
US9597380B2 (en) 2012-11-26 2017-03-21 Modernatx, Inc. Terminally modified RNA
US20180086816A1 (en) * 2013-03-13 2018-03-29 Modernatx, Inc. Long-lived polynucleotide molecules
US11603399B2 (en) * 2013-03-13 2023-03-14 Modernatx, Inc. Long-lived polynucleotide molecules
US10876104B2 (en) 2013-03-14 2020-12-29 Translate Bio, Inc. Methods for purification of messenger RNA
US9181321B2 (en) 2013-03-14 2015-11-10 Shire Human Genetic Therapies, Inc. CFTR mRNA compositions and related methods and uses
US11510937B2 (en) 2013-03-14 2022-11-29 Translate Bio, Inc. CFTR MRNA compositions and related methods and uses
US9713626B2 (en) 2013-03-14 2017-07-25 Rana Therapeutics, Inc. CFTR mRNA compositions and related methods and uses
US11692189B2 (en) 2013-03-14 2023-07-04 Translate Bio, Inc. Methods for purification of messenger RNA
US10420791B2 (en) 2013-03-14 2019-09-24 Translate Bio, Inc. CFTR MRNA compositions and related methods and uses
US9957499B2 (en) 2013-03-14 2018-05-01 Translate Bio, Inc. Methods for purification of messenger RNA
US11820977B2 (en) 2013-03-14 2023-11-21 Translate Bio, Inc. Methods for purification of messenger RNA
US8980864B2 (en) 2013-03-15 2015-03-17 Moderna Therapeutics, Inc. Compositions and methods of altering cholesterol levels
US11377470B2 (en) 2013-03-15 2022-07-05 Modernatx, Inc. Ribonucleic acid purification
US10590161B2 (en) 2013-03-15 2020-03-17 Modernatx, Inc. Ion exchange purification of mRNA
US11845772B2 (en) 2013-03-15 2023-12-19 Modernatx, Inc. Ribonucleic acid purification
US10883104B2 (en) 2013-05-01 2021-01-05 Ionis Pharmaceuticals, Inc. Compositions and methods for modulating apolipoprotein (a) expression
US9163239B2 (en) 2013-05-01 2015-10-20 Isis Pharmaceuticals, Inc. Compositions and methods for modulating apolipoprotein C-III expression
WO2014179627A2 (en) 2013-05-01 2014-11-06 Isis Pharmaceuticals, Inc. Compositions and methods for modulating hbv and ttr expression
WO2014179620A1 (en) 2013-05-01 2014-11-06 Isis Pharmaceuticals, Inc. Conjugated antisense compounds and their use
WO2014179626A2 (en) 2013-05-01 2014-11-06 Isis Pharmaceuticals, Inc. Compositions and methods for modulating apolipoprotein c-iii expression
EP4438129A2 (en) 2013-05-01 2024-10-02 Ionis Pharmaceuticals, Inc. Compositions and methods for modulating apolipoprotein c-iii expression
EP3633039A1 (en) 2013-05-01 2020-04-08 Ionis Pharmaceuticals, Inc. Compositions and methods
WO2014179629A2 (en) 2013-05-01 2014-11-06 Isis Pharmaceuticals, Inc. Compositions and methods
WO2014179625A1 (en) 2013-05-01 2014-11-06 Isis Pharmaceuticals, Inc. COMPOSITIONS AND METHODS FOR MODULATING APOLIPOPROTEIN (a) EXPRESSION
US11299736B1 (en) 2013-05-01 2022-04-12 Ionis Pharmaceuticals, Inc. Conjugated antisense compounds and their use
US9932581B2 (en) 2013-05-01 2018-04-03 Ionis Pharmaceuticals, Inc. Compositions and methods for modulating apolipoprotein C-III expression
US9127276B2 (en) 2013-05-01 2015-09-08 Isis Pharmaceuticals, Inc. Conjugated antisense compounds and their use
US9145558B2 (en) 2013-05-01 2015-09-29 Isis Pharmaceuticals, Inc. Compositions and methods for modulating HBV expression
US9957504B2 (en) 2013-05-01 2018-05-01 Ionis Pharmaceuticals, Inc. Compositions and methods for modulating apolipoprotein (a) expression
US9181550B2 (en) 2013-05-01 2015-11-10 Isis Pharmaceuticals, Inc. Compositions and methods for modulating apolipoprotein (a) expression
US9181549B2 (en) 2013-05-01 2015-11-10 Isis Pharmaceuticals, Inc. Conjugated antisense compounds and their use
US9932580B2 (en) 2013-05-01 2018-04-03 Ionis Pharmaceuticals, Inc. Compositions and methods for modulating HBV expression
EP3524680A1 (en) 2013-05-01 2019-08-14 Ionis Pharmaceuticals, Inc. Compositions and methods for modulating ttr expression
US9714421B2 (en) 2013-05-01 2017-07-25 Ionis Pharmaceuticals, Inc. Compositions and methods
EP3690049A1 (en) 2013-05-01 2020-08-05 Ionis Pharmaceuticals, Inc. Compositions and methods for modulating apolipoprotein c-iii expression
US11851655B2 (en) 2013-05-01 2023-12-26 Ionis Pharmaceuticals, Inc. Compositions and methods for modulating apolipoprotein (a) expression
US10683499B2 (en) 2013-05-01 2020-06-16 Ionis Pharmaceuticals, Inc. Compositions and methods for modulating TTR expression
EP3828275A1 (en) 2013-05-01 2021-06-02 Ionis Pharmaceuticals, Inc. Compositions and methods for modulating ttr expression
US11027025B2 (en) * 2013-07-11 2021-06-08 Modernatx, Inc. Compositions comprising synthetic polynucleotides encoding CRISPR related proteins and synthetic sgRNAs and methods of use
US10815291B2 (en) 2013-09-30 2020-10-27 Modernatx, Inc. Polynucleotides encoding immune modulating polypeptides
US10385088B2 (en) 2013-10-02 2019-08-20 Modernatx, Inc. Polynucleotide molecules and uses thereof
US10323076B2 (en) 2013-10-03 2019-06-18 Modernatx, Inc. Polynucleotides encoding low density lipoprotein receptor
US11224642B2 (en) 2013-10-22 2022-01-18 Translate Bio, Inc. MRNA therapy for argininosuccinate synthetase deficiency
US11377642B2 (en) 2013-10-22 2022-07-05 Translate Bio, Inc. mRNA therapy for phenylketonuria
US9522176B2 (en) 2013-10-22 2016-12-20 Shire Human Genetic Therapies, Inc. MRNA therapy for phenylketonuria
US10208295B2 (en) 2013-10-22 2019-02-19 Translate Bio, Inc. MRNA therapy for phenylketonuria
WO2015075557A2 (en) 2013-11-22 2015-05-28 Mina Alpha Limited C/ebp alpha compositions and methods of use
EP3985118A1 (en) 2013-11-22 2022-04-20 MiNA Therapeutics Limited C/ebp alpha short activating rna compositions and methods of use
EP3594348A1 (en) 2013-11-22 2020-01-15 Mina Therapeutics Limited C/ebp alpha short activating rna compositions and methods of use
US9873669B2 (en) 2014-01-09 2018-01-23 Eisai R&D Management Co., Ltd. Cationic lipid
US10131633B2 (en) 2014-01-09 2018-11-20 Eisai R&D Management Co., Ltd. Cationic lipid
US11406706B2 (en) 2014-02-25 2022-08-09 Merck Sharp & Dohme Llc Lipid nanoparticle vaccine adjuvants and antigen delivery systems
US10821175B2 (en) 2014-02-25 2020-11-03 Merck Sharp & Dohme Corp. Lipid nanoparticle vaccine adjuvants and antigen delivery systems
US9872900B2 (en) 2014-04-23 2018-01-23 Modernatx, Inc. Nucleic acid vaccines
US10022435B2 (en) 2014-04-23 2018-07-17 Modernatx, Inc. Nucleic acid vaccines
US10709779B2 (en) 2014-04-23 2020-07-14 Modernatx, Inc. Nucleic acid vaccines
US9850269B2 (en) 2014-04-25 2017-12-26 Translate Bio, Inc. Methods for purification of messenger RNA
US11059841B2 (en) 2014-04-25 2021-07-13 Translate Bio, Inc. Methods for purification of messenger RNA
US11884692B2 (en) 2014-04-25 2024-01-30 Translate Bio, Inc. Methods for purification of messenger RNA
US10155785B2 (en) 2014-04-25 2018-12-18 Translate Bio, Inc. Methods for purification of messenger RNA
US12060381B2 (en) 2014-04-25 2024-08-13 Translate Bio, Inc. Methods for purification of messenger RNA
EP3647318A1 (en) 2014-04-28 2020-05-06 Ionis Pharmaceuticals, Inc. Linkage modified oligomeric compounds
WO2015168172A1 (en) 2014-04-28 2015-11-05 Isis Pharmaceuticals, Inc. Linkage modified oligomeric compounds
US9926556B2 (en) 2014-04-28 2018-03-27 Ionis Pharmaceuticals, Inc. Linkage modified oligomeric compounds
EP4219718A2 (en) 2014-05-01 2023-08-02 Ionis Pharmaceuticals, Inc. Compositions and methods for modulating complement factor b expression
WO2015168589A2 (en) 2014-05-01 2015-11-05 Isis Pharmaceuticals, Inc. Compositions and methods for modulating angiopoietin-like 3 expression
US10875884B2 (en) 2014-05-01 2020-12-29 Isis Pharmaceuticals, Inc. Compositions and methods for modulating angiopoietin-like 3 expression
EP3608406A1 (en) 2014-05-01 2020-02-12 Ionis Pharmaceuticals, Inc. Compositions and methods for modulating complement factor b expression
EP3974534A1 (en) 2014-05-01 2022-03-30 Ionis Pharmaceuticals, Inc. Compositions and methods for modulating growth hormone receptor expression
EP3757215A2 (en) 2014-05-01 2020-12-30 Ionis Pharmaceuticals, Inc. Compositions and methods for modulating growth hormone receptor expression
US11312964B2 (en) 2014-05-01 2022-04-26 Ionis Pharmaceuticals, Inc. Compositions and methods for modulating growth hormone receptor expression
EP3845547A1 (en) 2014-05-01 2021-07-07 Ionis Pharmaceuticals, Inc. Galnac3 conjugated modified oligonucleotide for modulating angiopoietin-like 3 expression
US10793862B2 (en) 2014-05-01 2020-10-06 Ionis Pharmaceuticals, Inc. Compositions and methods for modulating growth hormone receptor expression
US10280423B2 (en) 2014-05-01 2019-05-07 Ionis Pharmaceuticals, Inc. Compositions and methods for modulating complement factor B expression
WO2015168618A2 (en) 2014-05-01 2015-11-05 Isis Pharmaceuticals, Inc. Compositions and methods for modulating growth hormone receptor expression
EP3862362A2 (en) 2014-05-01 2021-08-11 Ionis Pharmaceuticals, Inc. Conjugates of modified antisense oligonucleotides and their use for modulating pkk expression
US9994855B2 (en) 2014-05-01 2018-06-12 Ionis Pharmaceuticals, Inc. Compositions and methods for modulating growth hormone receptor expression
US9382540B2 (en) 2014-05-01 2016-07-05 Isis Pharmaceuticals, Inc Compositions and methods for modulating angiopoietin-like 3 expression
US11732265B2 (en) 2014-05-01 2023-08-22 Ionis Pharmaceuticals, Inc. Compositions and methods for modulating complement factor B expression
US10570169B2 (en) 2014-05-22 2020-02-25 Ionis Pharmaceuticals, Inc. Conjugated antisense compounds and their use
EP3151839A4 (en) * 2014-06-06 2018-02-28 Ionis Pharmaceuticals, Inc. Compositions and methods for enhanced intestinal absorption of conjugated oligomeric compounds
US10060921B2 (en) 2014-08-29 2018-08-28 Alnylam Pharmaceuticals, Inc. Methods of treating transthyretin (TTR) mediated amyloidosis
US11079379B2 (en) 2014-08-29 2021-08-03 Alnylam Pharmaceuticals, Inc. Methods of treating transthyretin (TTR) mediated amyloidosis
US12013403B2 (en) 2014-09-12 2024-06-18 Biogen Ma Inc. Compositions and methods for detection of SMN protein in a subject and treatment of a subject
WO2016069694A3 (en) * 2014-10-30 2016-06-23 Alnylam Pharmaceuticals, Inc. Polynucleotide agents targeting serpinc1 (at3) and methods of use thereof
EP3904519A1 (en) * 2014-10-30 2021-11-03 Genzyme Corporation Polynucleotide agents targeting serpinc1 (at3) and methods of use thereof
EP3212794B1 (en) * 2014-10-30 2021-04-07 Genzyme Corporation Polynucleotide agents targeting serpinc1 (at3) and methods of use thereof
US10081598B2 (en) 2014-12-26 2018-09-25 Eisai R&D Management Co., Ltd. Cationic lipid
US11198872B2 (en) 2015-04-13 2021-12-14 Alnylam Pharmaceuticals, Inc. Angiopoietin-like 3 (ANGPTL3) iRNA compositions and methods of use thereof
EP4092119A2 (en) 2015-07-10 2022-11-23 Ionis Pharmaceuticals, Inc. Modulators of diacyglycerol acyltransferase 2 (dgat2)
US10208307B2 (en) 2015-07-31 2019-02-19 Alnylam Pharmaceuticals, Inc. Transthyretin (TTR) iRNA compositions and methods of use thereof for treating or preventing TTR-associated diseases
US11286486B2 (en) 2015-07-31 2022-03-29 Alnylam Pharmaceuticals, Inc. Transthyretin (TTR) iRNA compositions and methods of use thereof for treating or preventing TTR-associated diseases
US10683501B2 (en) 2015-07-31 2020-06-16 Alnylam Pharmaceuticals, Inc. Transthyretin (TTR) iRNA compositions and methods of use thereof for treating or preventing TTR-associated diseases
US12049628B2 (en) 2015-07-31 2024-07-30 Alnylam Pharmaceuticals, Inc. Transthyretin (TTR) iRNA compositions and methods of use thereof for treating or preventing TTR-associated diseases
US12109274B2 (en) 2015-09-17 2024-10-08 Modernatx, Inc. Polynucleotides containing a stabilizing tail region
WO2017053722A1 (en) 2015-09-24 2017-03-30 Ionis Pharmaceuticals, Inc. Modulators of kras expression
US11555050B2 (en) 2015-10-02 2023-01-17 Roche Innovation Center Copenhagen A/S Oligonucleotide conjugation process
US11970710B2 (en) 2015-10-13 2024-04-30 Duke University Genome engineering with Type I CRISPR systems in eukaryotic cells
WO2017079745A1 (en) 2015-11-06 2017-05-11 Ionis Pharmaceuticals, Inc. Conjugated antisense compounds for use in therapy
EP4119569A1 (en) 2015-11-06 2023-01-18 Ionis Pharmaceuticals, Inc. Conjugated antisense compounds for use in therapy
US11319536B2 (en) 2015-11-06 2022-05-03 Ionis Pharmacueticals, Inc. Modulating apolipoprotein (a) expression
US10557137B2 (en) 2015-11-06 2020-02-11 Ionis Pharmaceuticals, Inc. Modulating apolipoprotein (a) expression
US11091759B2 (en) 2015-12-07 2021-08-17 Genzyme Corporation Methods and compositions for treating a Serpinc1-associated disorder
WO2017099823A1 (en) * 2015-12-10 2017-06-15 Modernatx, Inc. Compositions and methods for delivery of therapeutic agents
US11458106B2 (en) 2016-05-09 2022-10-04 Astrazeneca Ab Lipid nanoparticles comprising lipophilic anti-inflammatory agents and methods of use thereof
US12103955B2 (en) 2016-05-18 2024-10-01 Modernatx, Inc. Polynucleotides encoding relaxin
US10730924B2 (en) 2016-05-18 2020-08-04 Modernatx, Inc. Polynucleotides encoding relaxin
KR20190021218A (en) 2016-06-24 2019-03-05 에자이 알앤드디 매니지먼트 가부시키가이샤 Cationic lipid
WO2017222016A1 (en) 2016-06-24 2017-12-28 エーザイ・アール・アンド・ディー・マネジメント株式会社 Cationic lipid
US10501416B2 (en) 2016-06-24 2019-12-10 Eisai R&D Management Co., Ltd. Cationic lipid
EP4206213A1 (en) 2016-07-15 2023-07-05 Ionis Pharmaceuticals, Inc. Compounds and methods for modulation of smn2
WO2018014041A2 (en) 2016-07-15 2018-01-18 Ionis Pharmaceuticals, Inc. Compounds and methods for modulation of smn2
WO2018033883A3 (en) * 2016-08-18 2019-01-31 University Of Kwazulu Natal Ph-responsive lipids
US11400161B2 (en) 2016-10-06 2022-08-02 Ionis Pharmaceuticals, Inc. Method of conjugating oligomeric compounds
WO2018146506A1 (en) * 2017-02-10 2018-08-16 Universitat Politècnica De València Therapeutic derivatives
US11253605B2 (en) 2017-02-27 2022-02-22 Translate Bio, Inc. Codon-optimized CFTR MRNA
EP4309732A2 (en) 2017-03-24 2024-01-24 Ionis Pharmaceuticals, Inc. Modulators of pcsk9 expression
US11173190B2 (en) 2017-05-16 2021-11-16 Translate Bio, Inc. Treatment of cystic fibrosis by delivery of codon-optimized mRNA encoding CFTR
WO2018213476A1 (en) 2017-05-16 2018-11-22 Translate Bio, Inc. Treatment of cystic fibrosis by delivery of codon-optimized mrna encoding cftr
WO2018236849A1 (en) 2017-06-19 2018-12-27 Translate Bio, Inc. Messenger rna therapy for the treatment of friedreich's ataxia
WO2019048645A1 (en) 2017-09-08 2019-03-14 Mina Therapeutics Limited Stabilized cebpa sarna compositions and methods of use
EP4233880A2 (en) 2017-09-08 2023-08-30 MiNA Therapeutics Limited Hnf4a sarna compositions and methods of use
EP4219715A2 (en) 2017-09-08 2023-08-02 MiNA Therapeutics Limited Stabilized cebpa sarna compositions and methods of use
EP4183882A1 (en) 2017-09-08 2023-05-24 MiNA Therapeutics Limited Stabilized hnf4a sarna compositions and methods of use
WO2019048631A1 (en) 2017-09-08 2019-03-14 Mina Therapeutics Limited Hnf4a sarna compositions and methods of use
WO2019048632A1 (en) 2017-09-08 2019-03-14 Mina Therapeutics Limited Stabilized hnf4a sarna compositions and methods of use
US11806360B2 (en) 2017-09-19 2023-11-07 Alnylam Pharmaceuticals, Inc. Compositions and methods for treating transthyretin (TTR) mediated amyloidosis
WO2019126593A1 (en) 2017-12-20 2019-06-27 Translate Bio, Inc. Improved composition and methods for treatment of ornithine transcarbamylase deficiency
US10947193B2 (en) 2017-12-27 2021-03-16 Eisai R&D Management Co., Ltd. Cationic lipid
WO2019131580A1 (en) 2017-12-27 2019-07-04 エーザイ・アール・アンド・ディー・マネジメント株式会社 Cationic lipid
WO2019140452A1 (en) 2018-01-15 2019-07-18 Ionis Pharmaceuticals, Inc. Modulators of dnm2 expression
US11149264B2 (en) 2018-02-12 2021-10-19 Ionis Pharmaceuticals, Inc. Modified compounds and uses thereof
US11332733B2 (en) 2018-02-12 2022-05-17 lonis Pharmaceuticals, Inc. Modified compounds and uses thereof
WO2019198068A1 (en) * 2018-04-09 2019-10-17 Sabina Glozman Bioxomes particles, redoxomes, method and composition
CN112739332A (en) * 2018-04-09 2021-04-30 奥尔吉尼西丝公司 Bioparticle, redox, methods and compositions
WO2019197845A1 (en) 2018-04-12 2019-10-17 Mina Therapeutics Limited Sirt1-sarna compositions and methods of use
EP4242307A2 (en) 2018-04-12 2023-09-13 MiNA Therapeutics Limited Sirt1-sarna compositions and methods of use
WO2019217527A1 (en) 2018-05-09 2019-11-14 Ionis Pharmaceuticals, Inc. Compounds and methods for reducing fxi expression
WO2019226925A1 (en) 2018-05-24 2019-11-28 Translate Bio, Inc. Thioester cationic lipids
WO2019232208A1 (en) 2018-05-30 2019-12-05 Translate Bio, Inc. Cationic lipids comprising a steroidal moiety
EP4442831A2 (en) 2018-05-30 2024-10-09 Translate Bio, Inc. Cationic lipids comprising a steroidal moiety
WO2019232103A1 (en) 2018-05-30 2019-12-05 Translate Bio, Inc. Messenger rna vaccines and uses thereof
WO2019232095A1 (en) 2018-05-30 2019-12-05 Translate Bio, Inc. Vitamin cationic lipids
WO2019232097A1 (en) 2018-05-30 2019-12-05 Translate Bio, Inc. Phosphoester cationic lipids
KR20230079232A (en) 2018-06-08 2023-06-05 후지필름 가부시키가이샤 Compound, salt thereof and lipid particles
KR20210015948A (en) 2018-06-08 2021-02-10 후지필름 가부시키가이샤 Compound or its salt and lipid particle
WO2019235635A1 (en) 2018-06-08 2019-12-12 富士フイルム株式会社 Compound, salt thereof and lipid particles
EP3805198A4 (en) * 2018-06-08 2021-07-14 FUJIFILM Corporation Compound, salt thereof and lipid particles
WO2020023533A1 (en) 2018-07-23 2020-01-30 Translate Bio, Inc. Dry power formulations for messenger rna
WO2020033748A1 (en) 2018-08-08 2020-02-13 Arcturus Therapeutics, Inc. Compositions and agents against nonalcoholic steatohepatitis
US12084702B2 (en) 2018-08-24 2024-09-10 Translate Bio, Inc. Methods for purification of messenger RNA
US11174500B2 (en) 2018-08-24 2021-11-16 Translate Bio, Inc. Methods for purification of messenger RNA
WO2020047061A1 (en) 2018-08-29 2020-03-05 Translate Bio, Inc. Improved process of preparing mrna-loaded lipid nanoparticles
WO2020056294A1 (en) 2018-09-14 2020-03-19 Translate Bio, Inc. Composition and methods for treatment of methylmalonic acidemia
WO2020061200A1 (en) 2018-09-19 2020-03-26 Ionis Pharmaceuticals, Inc. Modulators of pnpla3 expression
WO2020081933A1 (en) 2018-10-19 2020-04-23 Translate Bio, Inc. Pumpless encapsulation of messenger rna
WO2020097511A2 (en) 2018-11-09 2020-05-14 Translate Bio, Inc. Messenger rna therapy for treatment of ocular diseases
WO2020097376A1 (en) 2018-11-09 2020-05-14 Translate Bio, Inc. Multi-peg lipid compounds
WO2020097384A1 (en) 2018-11-09 2020-05-14 Translate Bio, Inc. 2,5-dioxopiperazine lipids with intercalated ester, thioester, disulfide and anhydride moieities
WO2020097379A2 (en) 2018-11-09 2020-05-14 Translate Bio, Inc. Peg lipidoid compounds
WO2020102172A2 (en) 2018-11-12 2020-05-22 Translate Bio, Inc. Methods for inducing immune tolerance
WO2020106903A1 (en) 2018-11-21 2020-05-28 Translate Bio, Inc. Cationic lipid compounds and compositions thereof for use in the delivery of messenger rna
WO2020146344A1 (en) 2019-01-07 2020-07-16 Translate Bio, Inc. Composition and methods for treatment of primary ciliary dyskinesia
WO2020206231A1 (en) 2019-04-05 2020-10-08 Precision Biosciences, Inc. Methods of preparing populations of genetically-modified immune cells
WO2020208361A1 (en) 2019-04-12 2020-10-15 Mina Therapeutics Limited Sirt1-sarna compositions and methods of use
WO2020214946A1 (en) 2019-04-18 2020-10-22 Translate Bio, Inc. Cystine cationic lipids
WO2020219427A1 (en) 2019-04-22 2020-10-29 Translate Bio, Inc. Thioester cationic lipids
WO2020227085A1 (en) 2019-05-03 2020-11-12 Translate Bio, Inc. Di-thioester cationic lipids
WO2020243540A1 (en) 2019-05-31 2020-12-03 Translate Bio, Inc. Macrocyclic lipids
WO2020246581A1 (en) 2019-06-07 2020-12-10 富士フイルム株式会社 Lipid composition
KR20220007121A (en) 2019-06-07 2022-01-18 후지필름 가부시키가이샤 Lipid composition
WO2020257716A1 (en) 2019-06-21 2020-12-24 Translate Bio, Inc. Tricine and citric acid lipids
WO2020257611A1 (en) 2019-06-21 2020-12-24 Translate Bio, Inc. Cationic lipids comprising an hydroxy moiety
WO2021007278A1 (en) 2019-07-08 2021-01-14 Translate Bio, Inc. Improved mrna-loaded lipid nanoparticles and processes of making the same
WO2021016430A1 (en) 2019-07-23 2021-01-28 Translate Bio, Inc. Stable compositions of mrna-loaded lipid nanoparticles and processes of making
DE112020003843T5 (en) 2019-08-14 2022-05-19 Acuitas Therapeutics, Inc. Improved lipid nanoparticles for delivery of nucleic acids
EP4454640A2 (en) 2019-08-14 2024-10-30 Acuitas Therapeutics Inc. Improved lipid nanoparticles for delivery of nucleic acids
WO2021030701A1 (en) 2019-08-14 2021-02-18 Acuitas Therapeutics, Inc. Improved lipid nanoparticles for delivery of nucleic acids
EP4036232A4 (en) * 2019-09-20 2023-01-11 Ractigen Therapeutics Nucleic acid molecule for treating immune thrombocytopenia and application thereof
WO2021052470A1 (en) 2019-09-20 2021-03-25 中美瑞康核酸技术(南通)研究院有限公司 Nucleic acid molecule for treating immune thrombocytopenia and application thereof
WO2021055609A1 (en) 2019-09-20 2021-03-25 Translate Bio, Inc. Mrna encoding engineered cftr
WO2021074772A1 (en) 2019-10-14 2021-04-22 Astrazeneca Ab Modulators of pnpla3 expression
WO2021081058A1 (en) 2019-10-21 2021-04-29 Translate Bio, Inc. Compositions, methods and uses of messenger rna
KR20220082885A (en) 2019-11-15 2022-06-17 후지필름 가부시키가이샤 Lipid composition
EP4328309A2 (en) 2019-11-15 2024-02-28 FUJIFILM Corporation Lipid composition
KR20240090627A (en) 2019-11-15 2024-06-21 후지필름 가부시키가이샤 Lipid composition
WO2021095876A1 (en) 2019-11-15 2021-05-20 富士フイルム株式会社 Lipid composition
WO2021127394A2 (en) 2019-12-20 2021-06-24 Translate Bio, Inc. Rectal delivery of messenger rna
WO2021127641A1 (en) 2019-12-20 2021-06-24 Translate Bio, Inc. Improved process of preparing mrna-loaded lipid nanoparticles
WO2021142245A1 (en) 2020-01-10 2021-07-15 Translate Bio, Inc. Compounds, pharmaceutical compositions and methods for modulating expression of muc5b in lung cells and tissues
WO2021173840A1 (en) 2020-02-25 2021-09-02 Translate Bio, Inc. Improved processes of preparing mrna-loaded lipid nanoparticles
US11299737B1 (en) 2020-02-28 2022-04-12 Ionis Pharmaceuticals, Inc. Compounds and methods for modulating SMN2
WO2021195214A1 (en) 2020-03-24 2021-09-30 Generation Bio Co. Non-viral dna vectors and uses thereof for expressing factor ix therapeutics
WO2021195218A1 (en) 2020-03-24 2021-09-30 Generation Bio Co. Non-viral dna vectors and uses thereof for expressing gaucher therapeutics
WO2021226463A1 (en) 2020-05-07 2021-11-11 Translate Bio, Inc. Composition and methods for treatment of primary ciliary dyskinesia
WO2021226468A1 (en) 2020-05-07 2021-11-11 Translate Bio, Inc. Improved compositions for cftr mrna therapy
WO2021226436A1 (en) 2020-05-07 2021-11-11 Translate Bio, Inc. Optimized nucleotide sequences encoding sars-cov-2 antigens
WO2021231697A1 (en) 2020-05-14 2021-11-18 Translate Bio, Inc. Peg lipidoid compounds
WO2021231901A1 (en) 2020-05-15 2021-11-18 Translate Bio, Inc. Lipid nanoparticle formulations for mrna delivery
WO2022006527A1 (en) 2020-07-02 2022-01-06 Maritime Therapeutics, Inc. Compositions and methods for reverse gene therapy
WO2022023284A1 (en) 2020-07-27 2022-02-03 Anjarium Biosciences Ag Compositions of dna molecules, methods of making therefor, and methods of use thereof
WO2022054955A1 (en) 2020-09-14 2022-03-17 富士フイルム株式会社 Lipid composition
WO2022066678A1 (en) 2020-09-23 2022-03-31 Translate Bio, Inc. Tes-based cationic lipids
WO2022066916A1 (en) 2020-09-23 2022-03-31 Translate Bio, Inc. Piperazine-based cationic lipids
WO2022076562A1 (en) 2020-10-06 2022-04-14 Translate Bio, Inc. Improved process and formulation of lipid nanoparticles
WO2022076547A1 (en) 2020-10-07 2022-04-14 Precision Biosciences, Inc. Lipid nanoparticle compositions
WO2022081544A1 (en) 2020-10-12 2022-04-21 Translate Bio, Inc. Improved process of preparing mrna-loaded lipid nanoparticles
WO2022081548A1 (en) 2020-10-12 2022-04-21 Translate Bio, Inc. Improved process of preparing ice-based lipid nanoparticles
WO2022099194A1 (en) 2020-11-09 2022-05-12 Translate Bio, Inc. Improved compositions for delivery of codon-optimized mrna
US11447521B2 (en) 2020-11-18 2022-09-20 Ionis Pharmaceuticals, Inc. Compounds and methods for modulating angiotensinogen expression
WO2022115547A1 (en) 2020-11-25 2022-06-02 Translate Bio, Inc. Stable liquid lipid nanoparticle formulations
WO2022112855A1 (en) 2020-11-27 2022-06-02 Guangzhou Ribobio Co., Ltd Lipid compound and the composition thereof
WO2022122872A1 (en) 2020-12-09 2022-06-16 Ucl Business Ltd Therapeutics for the treatment of neurodegenerative disorders
WO2022155404A1 (en) 2021-01-14 2022-07-21 Translate Bio, Inc. Methods and compositions for delivering mrna coded antibodies
WO2022168884A1 (en) 2021-02-04 2022-08-11 塩野義製薬株式会社 Cationic lipid
WO2022169508A1 (en) 2021-02-08 2022-08-11 The Board Of Regents Of The University Of Texas System Unsaturated dendrimers compositions,related formulations, and methods of use thereof
US11613751B2 (en) 2021-03-04 2023-03-28 Alnylam Pharmaceuticals, Inc. Angiopoietin-like 3 (ANGPTL3) iRNA compositions and methods of use thereof
US12121610B2 (en) 2021-03-22 2024-10-22 Recode Therapeutics, Inc. Compositions and methods for targeted delivery to cells
WO2022204549A1 (en) 2021-03-25 2022-09-29 Translate Bio, Inc. Optimized nucleotide sequences encoding the extracellular domain of human ace2 protein or a portion thereof
WO2022200810A1 (en) 2021-03-26 2022-09-29 Mina Therapeutics Limited Tmem173 sarna compositions and methods of use
WO2022221688A1 (en) 2021-04-15 2022-10-20 Translate Bio, Inc. "good"buffer-based cationic lipids
WO2022225918A1 (en) 2021-04-19 2022-10-27 Translate Bio, Inc. Improved compositions for delivery of mrna
WO2022223556A1 (en) 2021-04-20 2022-10-27 Anjarium Biosciences Ag Compositions of dna molecules encoding amylo-alpha-1, 6-glucosidase, 4-alpha-glucanotransferase, methods of making thereof, and methods of use thereof
WO2022232286A1 (en) 2021-04-27 2022-11-03 Generation Bio Co. Non-viral dna vectors expressing anti-coronavirus antibodies and uses thereof
WO2022232289A1 (en) 2021-04-27 2022-11-03 Generation Bio Co. Non-viral dna vectors expressing therapeutic antibodies and uses thereof
CN113546180A (en) * 2021-05-25 2021-10-26 重庆医科大学 Gene delivery vector with myocardial targeting and preparation method thereof
WO2022246571A1 (en) * 2021-05-28 2022-12-01 Nanovation Therapeutics Inc. Mc3-type lipids and use thereof in the preparation of lipid nanoparticles
WO2023278754A1 (en) 2021-07-01 2023-01-05 Translate Bio, Inc. Compositions for delivery of mrna
WO2023278811A1 (en) 2021-07-01 2023-01-05 Indapta Therapeutics, Inc. Engineered natural killer (nk) cells and related methods
WO2023010135A1 (en) 2021-07-30 2023-02-02 Tune Therapeutics, Inc. Compositions and methods for modulating expression of methyl-cpg binding protein 2 (mecp2)
WO2023010133A2 (en) 2021-07-30 2023-02-02 Tune Therapeutics, Inc. Compositions and methods for modulating expression of frataxin (fxn)
US11959081B2 (en) 2021-08-03 2024-04-16 Alnylam Pharmaceuticals, Inc. Transthyretin (TTR) iRNA compositions and methods of use thereof
WO2023056440A1 (en) 2021-10-01 2023-04-06 Adarx Pharmaceuticals, Inc. Prekallikrein-modulating compositions and methods of use thereof
WO2023081526A1 (en) 2021-11-08 2023-05-11 Orna Therapeutics, Inc. Lipid nanoparticle compositions for delivering circular polynucleotides
KR20230068047A (en) 2021-11-10 2023-05-17 주식회사 에스엠엘바이오팜 A pharmaceutical composition of lipid nano particle for delivering nucleic acid drug comprising trehalose derivitive and novel structural lipid compound
WO2023086893A1 (en) 2021-11-10 2023-05-19 Translate Bio, Inc. Composition and methods for treatment of primary ciliary dyskinesia
WO2023089522A1 (en) 2021-11-18 2023-05-25 Astrazeneca Ab Novel lipids for delivery of nucleic acid segments
WO2023099884A1 (en) 2021-12-01 2023-06-08 Mina Therapeutics Limited Pax6 sarna compositions and methods of use
WO2023104964A1 (en) 2021-12-09 2023-06-15 Ucl Business Ltd Therapeutics for the treatment of neurodegenerative disorders
WO2023133595A2 (en) 2022-01-10 2023-07-13 Sana Biotechnology, Inc. Methods of ex vivo dosing and administration of lipid particles or viral vectors and related systems and uses
WO2023135273A2 (en) 2022-01-14 2023-07-20 Anjarium Biosciences Ag Compositions of dna molecules encoding factor viii, methods of making thereof, and methods of use thereof
WO2023150647A1 (en) 2022-02-02 2023-08-10 Sana Biotechnology, Inc. Methods of repeat dosing and administration of lipid particles or viral vectors and related systems and uses
WO2023170435A1 (en) 2022-03-07 2023-09-14 Mina Therapeutics Limited Il10 sarna compositions and methods of use
WO2023177655A1 (en) 2022-03-14 2023-09-21 Generation Bio Co. Heterologous prime boost vaccine compositions and methods of use
WO2023176821A1 (en) 2022-03-15 2023-09-21 富士フイルム株式会社 Lipid composition
WO2023178167A1 (en) 2022-03-16 2023-09-21 Translate Bio, Inc. Asymmetric piperazine-based cationic lipids
WO2023198857A1 (en) 2022-04-13 2023-10-19 Sanofi "good" buffer-based cationic lipids
WO2023239756A1 (en) 2022-06-07 2023-12-14 Generation Bio Co. Lipid nanoparticle compositions and uses thereof
US12098399B2 (en) 2022-06-24 2024-09-24 Tune Therapeutics, Inc. Compositions, systems, and methods for epigenetic regulation of proprotein convertase subtilisin/kexin type 9 (PCSK9) gene expression
WO2023250511A2 (en) 2022-06-24 2023-12-28 Tune Therapeutics, Inc. Compositions, systems, and methods for reducing low-density lipoprotein through targeted gene repression
WO2024007020A1 (en) 2022-06-30 2024-01-04 Indapta Therapeutics, Inc. Combination of engineered natural killer (nk) cells and antibody therapy and related methods
WO2024015881A2 (en) 2022-07-12 2024-01-18 Tune Therapeutics, Inc. Compositions, systems, and methods for targeted transcriptional activation
WO2024040222A1 (en) 2022-08-19 2024-02-22 Generation Bio Co. Cleavable closed-ended dna (cedna) and methods of use thereof
WO2024040254A2 (en) 2022-08-19 2024-02-22 Tune Therapeutics, Inc. Compositions, systems, and methods for regulation of hepatitis b virus through targeted gene repression
WO2024064642A2 (en) 2022-09-19 2024-03-28 Tune Therapeutics, Inc. Compositions, systems, and methods for modulating t cell function
WO2024102677A1 (en) 2022-11-08 2024-05-16 Orna Therapeutics, Inc. Circular rna compositions
WO2024102730A1 (en) 2022-11-08 2024-05-16 Orna Therapeutics, Inc. Lipids and nanoparticle compositions for delivering polynucleotides
WO2024102762A1 (en) 2022-11-08 2024-05-16 Orna Therapeutics, Inc. Lipids and lipid nanoparticle compositions for delivering polynucleotides
WO2024112652A1 (en) 2022-11-21 2024-05-30 Translate Bio, Inc. Compositions of dry powder formulations of messenger rna and methods of use thereof
WO2024119074A1 (en) 2022-12-01 2024-06-06 Generation Bio Co. Stealth lipid nanoparticle compositions for cell targeting
WO2024119051A1 (en) 2022-12-01 2024-06-06 Generation Bio Co. Novel polyglycerol-conjugated lipids and lipid nanoparticle compositions comprising the same
WO2024119103A1 (en) 2022-12-01 2024-06-06 Generation Bio Co. Lipid nanoparticles comprising nucleic acids and lipid-anchored polymers
WO2024119039A2 (en) 2022-12-01 2024-06-06 Generation Bio Co. Stealth lipid nanoparticles and uses thereof
EP4385523A1 (en) 2022-12-14 2024-06-19 Beijing Jitai Pharmaceutical Technology Co., Ltd. Lipid-based topical injection formulations
WO2024126809A1 (en) 2022-12-15 2024-06-20 Sanofi Mrna encoding influenza virus-like particle
WO2024133515A1 (en) 2022-12-20 2024-06-27 Sanofi Rhinovirus mrna vaccine
WO2024131810A1 (en) * 2022-12-21 2024-06-27 Suzhou Abogen Biosciences Co., Ltd. Lipid nanoparticles comprising sterol-modified phospholipids
WO2024134199A1 (en) 2022-12-22 2024-06-27 Mina Therapeutics Limited Chemically modified sarna compositions and methods of use
WO2024141786A2 (en) 2022-12-29 2024-07-04 Popvax Private Limited Multitarget vaccines and therapeutics
WO2024141784A2 (en) 2022-12-29 2024-07-04 Popvax Private Limited Broadly protective betacoronavirus vaccines and compositions
WO2024163678A2 (en) 2023-02-01 2024-08-08 Tune Therapeutics, Inc. Fusion proteins and systems for targeted activation of frataxin (fxn) and related methods
WO2024163683A2 (en) 2023-02-01 2024-08-08 Tune Therapeutics, Inc. Systems, compositions, and methods for modulating expression of methyl-cpg binding protein 2 (mecp2) and x-inactive specific transcript (xist)
WO2024205657A2 (en) 2023-03-29 2024-10-03 Orna Therapeutics, Inc. Lipids and lipid nanoparticle compositions for delivering polynucleotides
WO2024218166A1 (en) 2023-04-17 2024-10-24 Sanofi Reconstitutable dry powder formulations and methods of use thereof
WO2024220930A2 (en) 2023-04-20 2024-10-24 Adarx Pharmaceuticals, Inc. Mapt-modulating compositions and methods of use thereof
US12133923B2 (en) 2024-01-16 2024-11-05 Recode Therapeutics, Inc. Lipid nanoparticle compositions and uses thereof

Also Published As

Publication number Publication date
IL244945A0 (en) 2016-05-31
JP6132321B2 (en) 2017-05-24
AU2010259984A1 (en) 2012-01-12
JP2015232048A (en) 2015-12-24
KR20190065474A (en) 2019-06-11
IL274826A (en) 2020-07-30
DK3431076T3 (en) 2021-12-20
EP2440183B1 (en) 2018-07-18
NZ622843A (en) 2015-10-30
CN104873464A (en) 2015-09-02
HK1212620A1 (en) 2016-06-17
AU2021201228A1 (en) 2021-03-11
IL216876A0 (en) 2012-02-29
IL244945B (en) 2020-06-30
AU2017202702B2 (en) 2019-05-02
CN102625696B (en) 2015-06-03
US20170143631A1 (en) 2017-05-25
EA201791744A3 (en) 2018-07-31
AU2017202702A1 (en) 2017-05-18
NZ712719A (en) 2017-03-31
ES2689168T3 (en) 2018-11-08
EA201690312A1 (en) 2016-08-31
HUE038796T2 (en) 2018-11-28
EA201791744A2 (en) 2018-03-30
CA2764609C (en) 2018-10-02
JP5819291B2 (en) 2015-11-24
TR201811076T4 (en) 2018-08-27
CY1120641T1 (en) 2019-12-11
EP3431076B1 (en) 2021-10-06
PL3431076T3 (en) 2022-01-31
AU2019204984A1 (en) 2019-08-01
JP6592144B2 (en) 2019-10-16
ES2901627T3 (en) 2022-03-23
US8802644B2 (en) 2014-08-12
KR102205886B1 (en) 2021-01-21
CN102625696A (en) 2012-08-01
LT3431076T (en) 2021-10-25
CN104873464B (en) 2018-06-22
KR20230098713A (en) 2023-07-04
JP2012530059A (en) 2012-11-29
EA201190306A1 (en) 2013-01-30
US9394234B2 (en) 2016-07-19
SG10201912450XA (en) 2020-03-30
MX2019010340A (en) 2019-10-14
MX342785B (en) 2016-10-12
HRP20211619T1 (en) 2022-02-04
MX2011013320A (en) 2012-02-28
KR20170091798A (en) 2017-08-09
PT3431076T (en) 2021-10-26
DK2440183T3 (en) 2018-10-01
US20120183602A1 (en) 2012-07-19
SI3431076T1 (en) 2022-04-29
SG10201403054SA (en) 2014-10-30
KR20220038506A (en) 2022-03-28
KR20120081065A (en) 2012-07-18
JP2017122126A (en) 2017-07-13
JP6359719B2 (en) 2018-07-18
IL290077A (en) 2022-03-01
EP3431076A1 (en) 2019-01-23
HUE056773T2 (en) 2022-03-28
EP2440183A4 (en) 2013-02-27
JP2018141019A (en) 2018-09-13
EA024960B1 (en) 2016-11-30
CY1124769T1 (en) 2022-11-25
EA028860B1 (en) 2018-01-31
KR102374518B1 (en) 2022-03-16
LT2440183T (en) 2018-08-10
US8158601B2 (en) 2012-04-17
CA2764609A1 (en) 2010-12-16
KR20210008938A (en) 2021-01-25
IL216876A (en) 2016-04-21
AU2010259984B2 (en) 2017-03-09
KR101766408B1 (en) 2017-08-10
US20100324120A1 (en) 2010-12-23
US20150166465A1 (en) 2015-06-18
PL2440183T3 (en) 2019-01-31
KR102066189B1 (en) 2020-01-14
CA3014827A1 (en) 2010-12-16
KR20200006176A (en) 2020-01-17
MX367665B (en) 2019-08-30
AU2019204984B2 (en) 2021-01-28
EP2440183A1 (en) 2012-04-18
PT2440183T (en) 2018-10-30
HRP20181221T1 (en) 2018-10-05
SI2440183T1 (en) 2018-10-30
NZ596958A (en) 2014-04-30
SG176786A1 (en) 2012-01-30
AU2021201228B2 (en) 2022-07-07
KR101987962B1 (en) 2019-06-11

Similar Documents

Publication Publication Date Title
AU2021201228B2 (en) Improved lipid formulation
KR102459839B1 (en) Novel lipids and compositions for the delivery of therapeutics
CHEN et al. Patent 2764609 Summary

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080026228.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10786869

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2764609

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2010259984

Country of ref document: AU

Ref document number: 2646/MUMNP/2011

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 201190306

Country of ref document: EA

Ref document number: MX/A/2011/013320

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012515160

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2010786869

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20127000749

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2010259984

Country of ref document: AU

Date of ref document: 20100610

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 244945

Country of ref document: IL