WO2010130539A1 - Verfahren und vorrichtung zur überwachung eines in einem abgasbereich einer brennkraftmaschine angeordneten bauteils - Google Patents

Verfahren und vorrichtung zur überwachung eines in einem abgasbereich einer brennkraftmaschine angeordneten bauteils Download PDF

Info

Publication number
WO2010130539A1
WO2010130539A1 PCT/EP2010/055268 EP2010055268W WO2010130539A1 WO 2010130539 A1 WO2010130539 A1 WO 2010130539A1 EP 2010055268 W EP2010055268 W EP 2010055268W WO 2010130539 A1 WO2010130539 A1 WO 2010130539A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor unit
temperature
sensor
exhaust gas
internal combustion
Prior art date
Application number
PCT/EP2010/055268
Other languages
English (en)
French (fr)
Inventor
Andreas Genssle
Enno Baars
Markus Eitel
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to EP10714011A priority Critical patent/EP2430295B1/de
Priority to KR1020117026862A priority patent/KR101701536B1/ko
Priority to US13/320,436 priority patent/US8915645B2/en
Priority to CN201080020730.8A priority patent/CN102421998B/zh
Publication of WO2010130539A1 publication Critical patent/WO2010130539A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N11/00Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
    • F01N11/002Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity the diagnostic devices measuring or estimating temperature or pressure in, or downstream of the exhaust apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1439Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the position of the sensor
    • F02D41/1441Plural sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1446Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being exhaust temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1466Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being a soot concentration or content
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • F02D41/221Safety or indicating devices for abnormal conditions relating to the failure of actuators or electrically driven elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K13/00Thermometers specially adapted for specific purposes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K15/00Testing or calibrating of thermometers
    • G01K15/007Testing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2550/00Monitoring or diagnosing the deterioration of exhaust systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2550/00Monitoring or diagnosing the deterioration of exhaust systems
    • F01N2550/24Determining the presence or absence of an exhaust treating device
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/20Sensor having heating means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • F02D2041/228Warning displays
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/027Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
    • F02D41/029Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus the exhaust gas treating apparatus being a particulate filter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • F02D41/222Safety or indicating devices for abnormal conditions relating to the failure of sensors or parameter detection devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the invention relates to a method for monitoring a sensor unit arranged in an exhaust area of an internal combustion engine.
  • the invention further relates to a corresponding device for carrying out the method.
  • oxidation catalysts for example, oxidation catalysts, diesel particulate filters (DPF), SCR catalysts and NO x catalysts are known.
  • DPF diesel particulate filters
  • SCR catalysts SCR catalysts
  • NO x catalysts for example, SCR catalysts, SCR catalysts, NO x catalysts.
  • Corresponding sensor systems are, for example, lambda probes, NO x -
  • DPF diesel particulate filter
  • a load forecast of the diesel particulate filter for regeneration control is required in order to achieve high system security and to be able to use cost-effective filter materials.
  • a regulation of the combustion properties of the internal combustion engine can be provided on the basis of the information about the particulate emissions.
  • OBD on-board diagnosis
  • the state of the component which is located in the flow direction of the exhaust gas between the two temperature sensors, can be assessed. For example, it is also possible to detect impermissible manipulations on this component up to complete removal of the component.
  • the object of the method is solved by the features of claims 1 to 7. It is provided that with the sensor unit determines a sensor temperature directly or indirectly and from a comparison of the directly or indirectly determined sensor temperature with a determined by a further sensor unit exhaust gas temperature and / or model sizes and / or defined thresholds detection on expansion and / or not functionally correct installation of the sensor unit is closed.
  • the object relating to the device is achieved in that the sensor unit can directly or indirectly determine a sensor temperature which is comparable in an engine control with an exhaust gas temperature determined by means of a further sensor unit and / or with model sizes and / or with defined threshold values the comparison, an error entry and / or a warning message is derivable.
  • a method variant according to the invention provides that the absolute sensor temperature of the sensor unit is continuously compared with the exhaust gas temperature. If, for example, larger deviations occur, they can be detected by means of corresponding comparators. Likewise, corresponding comparisons with model values stored in a map are possible.
  • the exhaust gas temperature can be derived from already available measured values or from model values within an engine control unit. However, it may also be advantageous if variables derived from the absolute temperature profile of the sensor unit are continuously compared with correspondingly derived variables of the exhaust gas temperature.
  • moving average values or time derivatives of the temperature profiles with one another or the sensor temperature profile can be compared with stored values.
  • diagnosis can be eliminated with such mathematical operations, for example, short-term disturbances in the waveform when, for example, a moving average value is determined. This allows false alarms to be avoided.
  • Another method example relates to a comparison of a gradient of the temperature profile of the sensor unit with a gradient of the course of the exhaust gas temperature. This offers particular advantages if the dynamics of the waveforms are evaluated.
  • Another method provides that the dynamic temperature profile of the sensor unit is evaluated when heating the sensor unit with respect to a model size for the sensor unit when heated.
  • a significantly different temperature profile is recorded by a properly installed sensor unit.
  • a required heating power is evaluated for the purpose of controlling a setpoint temperature taking into account an exhaust gas mass flow and the exhaust gas temperature. If, for example, too low a heating power is determined, this may indicate an expansion of the sensor unit.
  • the evaluation periodically at certain time intervals, for example during a regeneration of the diesel particulate filter (DPF) in a diesel internal combustion engine, and / or in certain operating conditions of the internal combustion engine, for example, during the overrun operation of the internal combustion engine is performed.
  • DPF diesel particulate filter
  • the sensor unit has a temperature sensor in the form of a platinum meander, since this type of temperature sensor has an almost linear resistance-temperature characteristic which can be evaluated with a simple electronic circuit complexity.
  • Temperature sensors are used, which have a different resistance characteristic.
  • the sensor unit may have a heating element.
  • the temperature of the sensor unit can be determined, for example, indirectly from the required heating power taking into account the exhaust gas mass flow and the exhaust gas temperature.
  • the sensor unit is designed as a particle sensor. This may already contain a temperature sensor and / or a heating element for direct or indirect temperature determination. Particle sensors are now important monitoring sensors in the exhaust system of a diesel internal combustion engine.
  • a preferred application of the method variants, as described above, therefore provides on-board diagnosis in a diesel internal combustion engine.
  • Exhaust line of the diesel internal combustion engine arranged soot particulate filter (DPF) is detected and monitored in the on-board diagnosis.
  • the functionality of the method can be integrated as a software and / or hardware-based solution in a motor control. In diesel engines, this can be integrated in particular in an electronic diesel control EDC (Electronic Diesel Control).
  • EDC Electronic Diesel Control
  • the method according to the invention can also be used as sensor units in the case of lambda sensors or NO x sensors.
  • the invention will be explained in more detail below with reference to an embodiment shown in FIGS. Show it:
  • FIG. 1 is a schematic representation of the technical environment in which the method can be used
  • FIG. 2 is a schematic plan view of a sensor unit designed as a particle sensor.
  • FIG. 3 shows a schematic representation of a particle sensor in a side view
  • FIG. 4 shows a course diagram for an exhaust gas mass flow, an exhaust gas temperature and a particle sensor temperature.
  • FIG. 1 shows schematically as an example the technical environment in which the method according to the invention can be used.
  • the technical environment may also include exhaust aftertreatment devices that include measures to mitigate at least one other legally limited component, such as, for example, NO x reduction measures.
  • An internal combustion engine 10 which can be designed as a diesel engine gets
  • the amount of air of the combustion air can be determined by means of an air mass meter 12 in the air supply 1 1.
  • the amount of air can be used in a correction of an accumulation probability of existing in the exhaust gas of the internal combustion engine 10 particles.
  • the exhaust gas of the internal combustion engine 10 is discharged via an exhaust line 17, in which an exhaust gas purification system 16 is arranged.
  • This emission control system 16 may be designed as a diesel particulate filter.
  • an exhaust gas probe 15 designed as a lambda probe and a sensor unit 20 embodied as a particle sensor are arranged in the exhaust gas line 17, the signals of which are fed to a motor control 14.
  • the engine controller 14 is further connected to the
  • Air mass meter 12 is connected and determined based on the data supplied to it, an amount of fuel that can be supplied via a fuel metering 13 of the internal combustion engine 10.
  • the sensor unit 20 can also be arranged in the flow direction of the exhaust gas behind the exhaust gas purification system 16. With the devices shown is an observation of the particle emissions of the internal combustion engine 10th (On-board diagnosis) and a prediction of the loading of the designed as a diesel particulate filter (DPF) emission control system 16 possible.
  • DPF diesel particulate filter
  • FIG. 2 shows, in a schematic representation, a sensor unit 20 designed as a particle sensor according to the prior art in plan view.
  • a first electrode 22 and a second electrode 23 are applied on an insulating support 21, for example made of aluminum oxide.
  • the electrodes 22, 23 are designed in the form of two interdigital, intermeshing comb electrodes.
  • At the front ends of the electrodes 22, 23 are a first terminal 24 and a second
  • Terminal 25 is provided, via which the electrodes for power supply and for carrying out the measurement can be connected to a control unit, not shown.
  • the sensor unit 20 has a temperature sensor 29, with which a sensor temperature 31, 32 can be determined directly.
  • the temperature sensor 29 may be designed in the form of a platinum meander, with additional
  • Electrodes a temperature-dependent resistance is determined and evaluated within the engine control 14.
  • FIG. 3 shows a schematic representation of a section of the particle sensor 20 in a side view.
  • a heating element 26 which is integrated in the carrier 21, and an optional protective layer 27 and a layer of particles 28 are also shown in side view. It can be provided that the heating element 26 is simultaneously designed as a temperature sensor 29 or that the heating element 26 and the temperature sensor 29 are designed as separate electrical conductors with separate electrodes.
  • particles 28 are deposited from the gas flow at the sensor unit 20.
  • the particles 28 are soot particles with a corresponding electrical conductivity. ability.
  • the deposition rate of the particles 28 at the sensor unit 20 in addition to the particle concentration in the exhaust gas, inter alia, also depends on the voltage applied to the electrodes 22, 23. The applied voltage generates an electric field which exerts a corresponding attraction on electrically charged particles 28 and on particles 28 with a dipole charge.
  • the electrodes 22, 23 and the carrier 21 are coated on the electrode side with a protective layer 27.
  • the optional protective layer 27 protects the electrodes 22, 23 and the carrier 21.
  • Electrodes 22, 23 at the mostly prevailing high operating temperatures of the sensor unit 20 from corrosion. It is made in the present embodiment of a material having a low conductivity, but may also be made of an insulator.
  • particles 28 have been deposited from the gas stream in the form of a layer. Due to the low conductive protective layer 27, the particles 28 form a conductive path between the electrodes 22, 23, so that, depending on the amount of the deposited particles 28, a change in resistance between the electrodes 22, 23 results. This can be measured, for example, by applying a constant voltage to the terminals 24, 25 of the electrodes 22, 23 and determining the change in the current through the deposited particles 28.
  • the deposited particles 28 lead to a change in the ohmic resistance of the sensor unit 20, which can be evaluated by a corresponding measurement, preferably with a DC voltage.
  • the diagnostic method according to the invention provides that a sensor temperature is determined directly or indirectly with the sensor unit, and a detection on removal and / or comparison of the directly or indirectly determined sensor temperature with an exhaust gas temperature determined by means of a further sensor unit and / or with model sizes and / or with defined threshold values / or non-functional installation of the sensor unit is closed.
  • the functionality of the method according to the invention with the variants described above can be particularly advantageous as software be implemented in the engine control 14 of the internal combustion engine 10, in diesel internal combustion engines in the electronic diesel control EDC (Electronic Diesel Control).
  • FIG. 4 shows in a flow diagram 30 an exhaust gas mass flow 34 and the temperature profiles of the sensor temperature 31, 32 of a sensor unit 20 arranged behind the exhaust gas purification system 16 (DPF) designed as a diesel particle filter as a function of time 35, wherein the sensor unit 20 is designed as a particle sensor. Furthermore, an exhaust gas temperature 33 is shown.
  • the time profile of the sensor temperature 31 shows the temperature profile for a
  • Particle sensor which is properly installed in the exhaust line 17 of the internal combustion engine 10.
  • the time profile of the sensor temperature 32 results when the particle sensor is removed or not installed correctly.
  • a drying / protection phase 36 the sensor unit 20 is initially dried by means of active energization of the heating element 26, drying the sensor unit 20 until a dew point end is reached. This is followed in time by a regeneration phase 37, within which accumulated soot is burned off. In this phase, the sensor temperature 31, 32 rises sharply. In this phase, a diagnosis can be made, taking into account the heating power.
  • the heating element 26 is de-energized, in which based on the evaluation method, such as grade comparisons or comparisons of the dynamic range of the sensor temperature 31 of a sensor unit 20 installed correctly and the sensor temperature 32 expanded or improperly installed sensor unit 20, the diagnosis is carried out.
  • the sensor temperature 31 of a correctly installed sensor unit 20 increases in this phase for accumulation of soot particles 38 again in accordance with the increasing exhaust gas temperature 33 and is slightly modulated according to the course of the exhaust mass flow 34, which can be supported by simultaneous evaluation of the exhaust gas mass flow 34.
  • the sensor temperature 32 of a removed or improperly installed sensor unit 20 drops and remains at a low level until again active heating takes place.
  • a particularly advantageous application of the method according to the invention and use of the corresponding device provides an on-board diagnosis of a particle sensor in the exhaust gas region of a diesel internal combustion engine.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Testing Of Engines (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zur Überwachung einer in einem Abgasbereich einer Brennkraftmaschine (10) angeordneten Sensoreinheit (20). Erfindungsgemäß ist vorgesehen, dass mit der Sensoreinheit (20) eine Sensortemperatur (31, 32) direkt oder indirekt bestimmt und aus einem Vergleich der direkt oder indirekt bestimmten Sensortemperatur (31, 32) mit einer mittels einer weiteren Sensoreinheit bestimmten Abgastemperatur (33) und/oder mit Modellgrößen und/oder mit definierten Schwellwerten eine Erkennung auf Ausbau und/oder nicht funktionsgerechten Einbau der Sensoreinheit geschlossen wird. Die Erfindung betrifft weiterhin eine Vorrichtung zur Überwachung einer in einem Abgasbereich einer Brennkraftmaschine (10) angeordneten Sensoreinheit (20), wobei mit der Sensoreinheit eine Sensortemperatur (31, 32) direkt oder indirekt bestimmbar ist, welche in einer Motorsteuerung (14) mit einer mittels einer weiteren Sensoreinheit bestimmten Abgastemperatur (33) und/oder mit Modellgrößen und/oder mit definierten Schwellwerten vergleichbar ist und aus dem Vergleich ein Fehlereintrag und/oder eine Warnmeldung ableitbar ist.

Description

Beschreibung
Titel
Verfahren und Vorrichtung zur Überwachung eines in einem Abgasbereich einer Brennkraftmaschine angeordneten Bauteils
Stand der Technik
Die Erfindung betrifft ein Verfahren zur Überwachung einer in einem Abgasbereich ei- ner Brennkraftmaschine angeordneten Sensoreinheit.
Die Erfindung betrifft weiterhin eine entsprechende Vorrichtung zur Durchführung des Verfahrens.
Zur Einhaltung der gesetzlichen Grenzwerte für Emissionen von Brennkraftmaschinen werden verschiedene Komponenten zur Abgasnachbehandlung sowie Sensoreinheiten zur Regelung dieser Systeme und zur Überwachung der Emissionen eingesetzt. Als Komponenten zur Abgasnachbehandlung sind beispielsweise Oxidations-Kataly- satoren, Diesel-Partikelfilter (DPF), SCR-Katalysatoren sowie NOx-Katalysatoren be- kannt. Entsprechende Sensorsysteme sind beispielsweise Lambdasonden, NOx-
Sensoren oder Partikelsensoren.
Aufgrund derzeit geplanter gesetzlicher Vorschriften muss beispielsweise der Partikelausstoß einer Brennkraftmaschine, insbesondere eines Dieselmotors, vor und / oder nach dem Diesel-Partikelfilter (DPF), während des Fahrbetriebs überwacht werden.
Weiterhin ist eine Beladungsprognose des Diesel-Partikelfilters zur Regenerationskontrolle erforderlich, um eine hohe Systemsicherheit zu erreichen und kostengünstige Filtermaterialien einsetzen zu können. Weiterhin kann eine Regelung der Verbrennungseigenschaften der Brennkraftmaschine auf Basis der Information über den Parti- kelausstoß vorgesehen sein. Im Rahmen neuer Gesetzgebungen ist weiterhin die Überwachung dieser Komponenten und Sensoreinheiten gegen Fehlfunktion und missbräuchlichen Ausbau sicherzustellen. Dies ist im Rahmen einer so genannten On-Board-Diagnose (OBD) sicher zu gewährleisten.
Aus der DE 103 58 195 A1 ist beispielsweise ein Verfahren zur Überwachung eines in einem Abgasbereich einer Brennkraftmaschine angeordnetem Bauteils, bei dem ein Maß für eine erste Abgastemperatur vor dem Bauteil ermittelt wird, und bei dem eine zweite Abgastemperatur von einem zweiten Temperatursensor gemessen wird, die nach dem Bauteil auftritt. Dabei ist vorgesehen, dass das Tiefpassverhalten, welches durch die Wärmekapazität des Bauteils bestimmt ist, überprüft wird durch eine Bewertung der ersten Abgastemperatur in Bezug auf die zweite Abgastemperatur und dass bei einer Änderung eines vorgegebenen Maßes für das Tiefpassverhalten des Bauteils ein Fehlsignal ausgegeben wird.
Mit diesem Verfahren kann der Zustand des Bauteils, welches sich in Strömungsrichtung des Abgases zwischen den beiden Temperatursensoren befindet, beurteilt werden. So lassen sich beispielsweise auch unzulässige Manipulationen an diesem Bau- teil bis hin zur vollständigen Entfernung des Bauteils detektieren.
Allerdings kann damit nicht erkannt werden, ob die Sensoreinheit, beispielsweise der Partikelsensor, selbst manipuliert oder gar unzulässigerweise entfernt wird.
Es ist daher Aufgabe der Erfindung, ein Verfahren bereit zustellen, mit dem ein miss- bräuchlicher Ausbau der Sensoreinheit im Abgasstrang von Brennkraftmaschinen überwacht und sicher angezeigt wird.
Es ist weiterhin Aufgabe der Erfindung, eine zur Durchführung des Verfahrens entspre- chende Vorrichtung bereitzustellen.
Offenbarung der Erfindung
Die das Verfahren betreffende Aufgabe wird durch die Merkmale der Ansprüche 1 bis 7 gelöst. Dabei ist vorgesehen, dass mit der Sensoreinheit eine Sensortemperatur direkt oder indirekt bestimmt und aus einem Vergleich der direkt oder indirekt bestimmten Sensortemperatur mit einer mittels einer weiteren Sensoreinheit bestimmten Abgastemperatur und/ oder mit Modellgrößen und/ oder mit definierten Schwellwerten eine Erkennung auf Ausbau und/ oder nicht funktionsgerechten Einbau der Sensoreinheit geschlossen wird.
Die die Vorrichtung betreffende Aufgabe wird dadurch gelöst, dass mit der Sensoreinheit eine Sensortemperatur direkt oder indirekt bestimmbar ist, welche in einer Mo- torsteuerung mit einer mittels einer weiteren Sensoreinheit bestimmten Abgastemperatur und/ oder mit Modellgrößen und/ oder mit definierten Schwellwerten vergleichbar ist und aus dem Vergleich ein Fehlereintrag und/ oder eine Warnmeldung ableitbar ist.
Mit dem vorgestellten Verfahren und der Vorrichtung zur Durchführung dieses Verfah- rens können bauliche Veränderungen oder Schäden im Bereich des Abgasbereichs der Brennkraftmaschine detektiert werden. Gegenüber dem oben zitierten Stand der Technik lassen sich damit im Rahmen einer erweiterten On-Board-Diagnose (OBD) Fehlfunktionen oder gar ein missbräuchlicher Ausbau der Sensoreinheit sicher detek- tieren. Zudem können auch bauliche Veränderungen oder Defekte der Abgasanlage stromaufwärts der Sensoreinheit erkannt werden. So können beispielsweise ein Ausbau von einzelnen Komponenten einer Abgasnachbehandlungsanlage oder Löcher im Abgasstrang erkannt werden, da sich dann das Wärmespeicherverhalten der Anlage bzw. das Anströmverhalten der Sensoreinheit ändert, welche beispielsweise gegenüber modellhaft ermittelten Werten des Temperaturverlaufs einen geänderten Tempe- raturverlauf ergeben, welcher als Abweichung detektiert und angezeigt werden kann.
Eine erfindungsgemäße Verfahrensvariante sieht vor, dass die absolute Sensortemperatur der Sensoreinheit mit der Abgastemperatur kontinuierlich verglichen wird. Ergeben sich dabei beispielsweise größere Abweichungen, können diese mittels entspre- chender Komparatoren detektiert werden. Ebenso sind entsprechende Vergleiche mit in einem Kennfeld gespeicherten Modellwerten möglich. Die Abgastemperatur kann dabei aus bereits zur Verfügung stehenden Messwerten oder aus Modellwerten innerhalb einer Motorsteuereinheit abgeleitet werden. Es kann aber auch vorteilhaft sein, wenn aus dem absoluten Temperaturverlauf der Sensoreinheit abgeleitete Größen mit entsprechend abgeleiteten Größen der Abgastemperatur kontinuierlich verglichen werden. So lassen sich beispielsweise gleitende Mittelwerte oder zeitliche Ableitungen der Temperaturverläufe untereinander bzw. der Sensor-Temperaturverlauf mit gespeicherten Werten vergleichen. Neben der Diagnose können mit derartigen mathematischen Operationen beispielsweise kurzzeitig auftretende Störungen im Signalverlauf eliminiert werden, wenn beispielsweise ein gleitender Durchschnittswert ermittelt wird. Damit können Fehlalarme vermieden werden.
Ein weiteres Verfahrensbeispiel betrifft einen Vergleich eines Gradienten des Temperaturverlaufs der Sensoreinheit mit einem Gradienten des Verlaufs der Abgastemperatur. Dies bietet insbesondere Vorteile, wenn die Dynamik der Signalverläufe ausgewertet werden.
Eine weitere Methode sieht vor, dass der dynamische Temperaturverlauf der Sensoreinheit bei Beheizung der Sensoreinheit gegenüber einer Modellgröße für die Sensoreinheit bei Beheizung ausgewertet wird. Hier macht man sich zu Nutze, dass bei einer missbräuchlich ausgebauten oder fehlerhaft eingebauten Sensoreinheit ein von einer ordnungsgemäß eingebauten Sensoreinheit deutlich anderer Temperaturverlauf ver- zeichnet wird.
Dabei kann beispielsweise vorgesehen sein, dass eine benötigte Heizleistung zur Ein- regelung einer Solltemperatur unter Berücksichtigung eines Abgasmassenstroms und der Abgastemperatur ausgewertet wird. Wird beispielsweise eine zu kleine Heizleis- tung bestimmt, kann dies auf einen Ausbau der Sensoreinheit hindeuten.
In weiteren Verfahrensvarianten ist vorgesehen, dass die Auswertung periodisch in bestimmten Zeitabständen, beispielsweise während einer Regeneration des Dieselpartikelfilters (DPF) bei einer Diesel-Brennkraftmaschine, und/ oder bei bestimmten Be- triebszuständen der Brennkraftmaschine, beispielsweise während des Schubbetriebs der Brennkraftmaschine, durchgeführt wird. Dies ist vorteilhaft, da hier bekannte bzw. relativ konstante Betriebsbedingungen vorherrschen und äußere Störgrößen leicht erkannt oder nur geringfügig vorhanden sind. Eine besonders genaue Temperaturmesseinrichtung kann realisiert werden, wenn die Sensoreinheit einen Temperatursensor in Form eines Platinmäanders aufweist, da diese Art von Temperatursensoren eine nahezu lineare Widerstands-Temperatur-Kennlinie aufweist, die mit einem einfachen elektronischen Schaltungsaufwand auswertbar ist. In anderen Ausführungsbeispielen können auch andere Metall-Legierungen als
Temperaturfühler eingesetzt werden, die eine andere Widerstandscharakteristik aufweisen.
In einer weiteren bevorzugten Ausführungsform kann die Sensoreinheit ein Heizele- ment aufweisen. Dabei kann die Temperatur der Sensoreinheit beispielsweise indirekt aus der benötigten Heizleistung unter Berücksichtigung des Abgasmassenstroms und der Abgastemperatur bestimmt werden.
In einer besonders bevorzugten Ausführungsform ist die Sensoreinheit als Partikelsen- sor ausgeführt. Dieser kann bereits einen Temperatursensor und/ oder ein Heizelement zur direkten oder zur indirekten Temperaturbestimmung enthalten. Partikelsensoren stellen inzwischen wichtige Überwachungssensoren im Abgassystem einer Diesel- Brennkraftmaschine dar.
Eine bevorzugte Anwendung der Verfahrensvarianten, wie sie zuvor beschrieben wurde, sieht daher die On-Board-Diagnose bei einer Diesel-Brennkraftmaschine vor. In dieser Anwendung kommt es insbesondere darauf an, das der Partikelsensor ordnungsgemäß eingebaut ist bzw. nicht unzulässigerweise ausgebaut ist. Dies kann sicher mit dem vorgestellten Diagnoseverfahren detektiert werden. Damit ist sicherge- stellt, dass eine genaue und reproduzierbare Diagnose der Partikelemission eines im
Abgasstrang der Diesel-Brennkraftmaschine angeordneten Russpartikelfilters (DPF) detektiert und im Rahmen der On-Board-Diagnose überwacht wird.
Die Funktionalität des Verfahrens kann dabei als Software- und/ oder Hardware- basierte Lösung in einer Motorsteuerung integriert sein. Bei Dieselmotoren kann dies insbesondere in einer elektronischen Dieselregelung EDC (Electronic Diesel Control) integriert sein.
Das erfindungsgemäße Verfahren kann auch bei Lambdasonden oder NOx-Sensoren als Sensoreinheiten angewendet werden. Die Erfindung wird im Folgenden anhand eines in den Figuren dargestellten Ausführungsbeispiels näher erläutert. Es zeigen:
Figur 1 in einer schematischen Darstellung das technische Umfeld, in der das Verfahren angewendet werden kann,
Figur 2 schematisch eine als Partikelsensor ausgeführten Sensoreinheit in der Draufsicht,
Figur 3 in einer schematischen Darstellung einen Partikelsensor in einer Seitenan- Sicht,
Figur 4 ein Verlaufsdiagramm für einen Abgasmassenstrom, eine Abgastemperatur und eine Partikelsensortemperatur.
Figur 1 zeigt schematisch als ein Beispiel das technische Umfeld, in dem das erfin- dungsgemäße Verfahren angewendet werden kann. Das technische Umfeld kann weiterhin auch Abgasnachbehandlungseinrichtungen umfassen, die Maßnahmen zur Minderung mindestens einer weiteren gesetzlich limitierten Komponente enthalten, wie z.B. NOχ-Minderungsmaßnahmen.
Eine Brennkraftmaschine 10, die als Dieselmotor ausgeführt sein kann, bekommt
Verbrennungsluft über eine Luftzuführung 1 1 zugeführt. Dabei kann die Luftmenge der Verbrennungsluft mittels eines Luftmassenmessers 12 in der Luftzuführung 1 1 bestimmt werden. Die Luftmenge kann bei einer Korrektur einer Anlagerungswahrscheinlichkeit von im Abgas der Brennkraftmaschine 10 vorhandenen Partikeln verwendet werden. Das Abgas der Brennkraftmaschine 10 wird über einen Abgasstrang 17 abgeführt, in dem eine Abgasreinigungsanlage 16 angeordnet ist. Diese Abgasreinigungsanlage 16 kann als Diesel-Partikelfilter ausgeführt sein. Weiterhin sind im gezeigten Beispiel im Abgasstrang 17 eine als Lambdasonde ausgeführte Abgassonde 15 und eine als Partikelsensor ausgeführte Sensoreinheit 20 angeordnet, deren Signale einer Motorsteuerung 14 zugeführt werden. Die Motorsteuerung 14 ist weiterhin mit dem
Luftmassenmesser 12 verbunden und bestimmt auf Basis der ihr zugeführten Daten eine Kraftstoffmenge, die über eine Kraftstoff-Dosierung 13 der Brennkraftmaschine 10 zugeführt werden kann. Die Sensoreinheit 20 kann dabei auch in Strömungsrichtung des Abgases hinter der Abgasreinigungsanlage 16 angeordnet sein. Mit den gezeigten Vorrichtungen ist eine Beobachtung des Partikelausstoßes der Brennkraftmaschine 10 (On-Board-Diagnose) und eine Prognose der Beladung der als Diesel-Partikelfilter (DPF) ausgebildeten Abgasreinigungsanlage 16 möglich.
Figur 2 zeigt in einer schematischen Darstellung eine als Partikelsensor ausgeführte Sensoreinheit 20 entsprechend dem Stand der Technik in der Draufsicht.
Auf einem isolierenden Träger 21 , beispielsweise aus Aluminiumoxid, sind eine erste Elektrode 22 und eine zweite Elektrode 23 aufgebracht. Die Elektroden 22, 23 sind in Form zweier interdigitaler, ineinander greifender Kammelektroden ausgeführt. An den stirnseitigen Enden der Elektroden 22, 23 sind ein erster Anschluss 24 und ein zweiter
Anschluss 25 vorgesehen, über welche die Elektroden zur Spannungsversorgung und zur Durchführung der Messung mit einer nicht dargestellten Steuereinheit verbunden werden können. Zusätzlich weist die Sensoreinheit 20 einen Temperatursensor 29 auf, mit dem eine Sensortemperatur 31 , 32 direkt bestimmt werden kann. Der Temperatur- sensor 29 kann in Form eines Platinmäanders ausgeführt sein, wobei über zusätzliche
Elektroden ein temperaturabhängiger Widerstand bestimmt und innerhalb der Motorsteuerung 14 auswertbar ist.
In Figur 3 ist in einer schematischen Darstellung ein Ausschnitt des Partikelsensors 20 in einer Seitenansicht gezeigt.
Zusätzlich zu den bereits in Figur 2 gezeigten Bauelementen ist in der Seitenansicht noch ein Heizelement 26, welches in dem Träger 21 integriert ist, sowie eine optionale Schutzschicht 27 und eine Schicht aus Partikeln 28 dargestellt. Dabei kann vorgese- hen sein, dass das Heizelement 26 gleichzeitig als Temperatursensor 29 ausgeführt ist oder dass das Heizelement 26 und der Temperatursensor 29 als separate elektrische Leiter mit separaten Elektroden ausgeführt sind.
Die Funktionsweise derartiger Partikelsensoren ist in der Literatur bereits hinreichend beschrieben und soll daher im Folgenden nur kurz beschrieben werden.
Wird eine solche Sensoreinheit 20 in einem Partikel 28 führenden Gasstrom, beispielsweise in einem Abgaskanal eines Dieselmotors, betrieben, so lagern sich Partikel 28 aus dem Gasstrom an der Sensoreinheit 20 ab. Im Falle des Dieselmotors handelt es sich bei den Partikeln 28 um Rußpartikel mit einer entsprechenden elektrischen Leitfä- higkeit. Dabei hängt die Ablagerungsrate der Partikel 28 an der Sensoreinheit 20 neben der Partikelkonzentration in dem Abgas unter anderem auch von der Spannung ab, welche an den Elektroden 22, 23 anliegt. Durch die anliegende Spannung wird ein elektrisches Feld erzeugt, welches auf elektrisch geladene Partikel 28 und auf Partikel 28 mit einer Dipol-Ladung eine entsprechende Anziehung ausübt. Durch geeignete
Wahl der an den Elektroden 22, 23 anliegenden Spannung kann daher die Ablagerungsrate der Partikel 28 beeinflusst werden.
In dem Ausführungsbeispiel sind die Elektroden 22, 23 und der Träger 21 elektroden- seitig mit einer Schutzschicht 27 überzogen. Die optionale Schutzschicht 27 schützt die
Elektroden 22, 23 bei den zumeist vorherrschenden hohen Betriebstemperaturen der Sensoreinheit 20 vor Korrosion. Sie ist in dem vorliegenden Ausführungsbeispiel aus einem Material mit einer geringen Leitfähigkeit hergestellt, kann jedoch auch aus einem Isolator gefertigt sein.
Auf der Schutzschicht 27 haben sich Partikel 28 aus dem Gasstrom in Form einer Schicht abgelagert. Durch die gering leitfähige Schutzschicht 27 bilden die Partikel 28 einen leitfähigen Pfad zwischen den Elektroden 22, 23, so dass sich, abhängig von der Menge der abgelagerten Partikel 28, eine Widerstandsänderung zwischen den Elekt- roden 22, 23 ergibt. Diese kann zum Beispiel gemessen werden, in dem eine konstante Spannung an die Anschlüsse 24, 25 der Elektroden 22, 23 angelegt und die Änderung des Stromes durch die angelagerten Partikel 28 bestimmt wird.
Ist die Schutzschicht 27 isolierend aufgebaut, führen die abgelagerten Partikel 28 zu einer Änderung des ohmschen Widerstandes der Sensoreinheit 20, was durch eine entsprechende Messung, bevorzugt mit einer Gleichspannung, ausgewertet werden kann.
Das erfindungsgemäße Diagnoseverfahren sieht vor, dass mit der Sensoreinheit eine Sensortemperatur direkt oder indirekt bestimmt und aus einem Vergleich der direkt oder indirekt bestimmten Sensortemperatur mit einer mittels einer weiteren Sensoreinheit bestimmten Abgastemperatur und/ oder mit Modellgrößen und/ oder mit definierten Schwellwerten eine Erkennung auf Ausbau und/ oder nicht funktionsgerechten Einbau der Sensoreinheit geschlossen wird. Die Funktionalität des erfindungsgemäßen Verfah- rens mit den oben beschrieben Varianten kann dabei besonders vorteilhaft als Software in der Motorsteuerung 14 der Brennkraftmaschine 10, bei Diesel-Brennkraftmaschinen in der elektronischen Dieselregelung EDC (Electronic Diesel Control) implementiert sein.
So ist beispielhaft in Figur 4 in einem Verlaufsdiagramm 30 ein Abgasmassenstrom 34 sowie die Temperaturverläufe der Sensortemperatur 31 , 32 einer, hinter der als Diesel- Partikelfilter ausgelegten Abgasreinigungsanlage 16 (DPF) angeordneten Sensoreinheit 20 in Abhängigkeit von der Zeit 35 dargestellt, wobei die Sensoreinheit 20 als Partikelsensor ausgebildet ist. Weiterhin ist eine Abgastemperatur 33 dargestellt. Dabei zeigt der zeitliche Verlauf der Sensortemperatur 31 den Temperaturverlauf für einen
Partikelsensor, der ordnungsgemäß im Abgasstrang 17 der Brennkraftmaschine 10 eingebaut ist. Der zeitliche Verlauf der Sensortemperatur 32 ergibt sich hingegen, wenn der Partikelsensor ausgebaut bzw. nicht richtig eingebaut ist.
In einer Trocknungs-/Schutzphase 36 erfolgt zunächst mittels einer aktiven Bestro- mung des Heizelements 26 der Sensoreinheit 20 eine Trocknung der Sensoreinheit 20, bis ein Taupunktende erreicht ist. Daran schließt sich zeitlich eine Regenerationsphase 37 an, innerhalb der angelagerter Ruß abgebrannt wird. In dieser Phase steigt die Sensortemperatur 31 , 32 stark an. In dieser Phase kann eine Diagnose unter Berück- sichtigung der Heizleistung erfolgen.
Im Anschluss daran ist in einer Phase zur Anlagerung von Rußpartikeln 38 das Heizelement 26 stromlos geschaltet, in der auf Basis der Auswerteverfahren, wie Gradian- tenvergleiche bzw. Vergleiche der Verlaufsdynamik der Sensortemperatur 31 einer kor- rekt eingebauten Sensoreinheit 20 und der Sensortemperatur 32 einer ausgebaut bzw. nicht richtig eingebauten Sensoreinheit 20, die Diagnose erfolgt. So steigt die Sensortemperatur 31 einer korrekt eingebauten Sensoreinheit 20 in dieser Phase zur Anlagerung von Rußpartikeln 38 wieder entsprechend der zunehmenden Abgastemperatur 33 leicht an und wird dabei leicht, entsprechend dem Verlauf des Abgasmassensstroms 34 moduliert, was durch gleichzeitige Auswertung des Abgasmassenstroms 34 unterstützt werden kann. Die Sensortemperatur 32 einer ausgebaut bzw. nicht richtig eingebauten Sensoreinheit 20 fällt hingegen ab und verbleibt auf niedrigem Niveau, bis wieder eine aktive Beheizung erfolgt. Mit dem vorgestellten Verfahren und der Vorrichtung zur Durchführung dieses Verfahrens können bauliche Veränderungen oder Schäden im Bereich des Abgasbereichs der Brennkraftmaschine detektiert werden. Insbesondere lassen sich damit im Rahmen einer erweiterten On-Board-Diagnose (OBD) Fehlfunktionen oder gar ein missbräuchli- eher Ausbau der Sensoreinheit sicher detektieren.
Eine besonders vorteilhafte Anwendung des erfindungsgemäßen Verfahrens und Verwendung der entsprechenden Vorrichtung sieht eine On-Board-Diagnose eines Partikelsensors im Abgasbereich einer Diesel-Brennkraftmaschine vor.

Claims

Ansprüche
1. Verfahren zur Überwachung einer in einem Abgasbereich einer Brennkraftmaschine (10) angeordneten Sensoreinheit (20), dadurch gekennzeichnet, dass mit der Sensoreinheit (20) eine Sensortemperatur (31 , 32) direkt oder indirekt bestimmt und aus einem Vergleich der direkt oder indirekt bestimmten Sensortemperatur (31 ,
32) mit einer mittels einer weiteren Sensoreinheit bestimmten Abgastemperatur (33) und/ oder mit Modellgrößen und/ oder mit definierten Schwellwerten eine Erkennung auf Ausbau und/ oder nicht funktionsgerechten Einbau der Sensoreinheit (20) geschlossen wird.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass die absolute Sensortemperatur (31 , 32) der Sensoreinheit (20) mit der Abgastemperatur (33) kontinuierlich verglichen wird.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass aus dem absoluten Temperaturverlauf der Sensoreinheit (20) abgeleitete Größen mit entsprechend abgeleiteten Größen der Abgastemperatur (33) kontinuierlich verglichen werden.
4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass ein Gradient des Tem- peraturverlaufs der Sensoreinheit (20) mit einem Gradienten des Verlaufs der Abgastemperatur (33) verglichen wird.
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass der dynamische Temperaturverlauf der Sensoreinheit (20) bei Beheizung der Sensoreinheit (20) gegenüber einer Modellgröße für die Sensoreinheit (20) bei Beheizung ausgewertet wird.
6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass eine benötigte Heizleistung zur Einregelung einer Solltemperatur unter Berücksichtigung eines Abgasmassenstroms (34) und der Abgastemperatur (33) ausgewertet wird.
7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die
Auswertung periodisch in bestimmten Zeitabständen und/ oder bei bestimmten Be- triebszuständen der Brennkraftmaschine (10) durchgeführt wird.
8. Vorrichtung zur Überwachung einer in einem Abgasbereich einer Brennkraftma- schine (10) angeordneten Sensoreinheit (20), dadurch gekennzeichnet, dass mit der Sensoreinheit (20) eine Sensortemperatur (31 , 32) direkt oder indirekt bestimmbar ist, welche in einer Motorsteuerung (14) mit einer mittels einer weiteren Sensoreinheit bestimmten Abgastemperatur (33) und/ oder mit Modellgrößen und/ oder mit definierten Schwellwerten vergleichbar ist und aus dem Vergleich ein Feh- lereintrag und/ oder eine Warnmeldung ableitbar ist.
9. Vorrichtung nach Anspruch 8, dadurch gekennzeichnet, dass die Sensoreinheit (20) einen Temperatursensor (29) in Form eines Platinmäanders aufweist.
10. Vorrichtung nach einem der Ansprüche 8 oder 9, dadurch gekennzeichnet, dass die Sensoreinheit (20) ein Heizelement (26) aufweist.
1 1 . Vorrichtung nach einem der Ansprüche 8 bis 10, dadurch gekennzeichnet, dass die Sensoreinheit (20) ein Partikelsensor ist.
12. Anwendung des Verfahrens nach einem der Ansprüche 1 bis 7 sowie Verwendung der Vorrichtung nach Anspruch 8 bis 1 1 im Rahmen einer On-Board-Diagnose bei einer als Dieselmotor ausgebildeten Brennkraftmaschine (10).
PCT/EP2010/055268 2009-05-14 2010-04-21 Verfahren und vorrichtung zur überwachung eines in einem abgasbereich einer brennkraftmaschine angeordneten bauteils WO2010130539A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP10714011A EP2430295B1 (de) 2009-05-14 2010-04-21 Verfahren und vorrichtung zur überwachung eines in einem abgasbereich einer brennkraftmaschine angeordneten bauteils
KR1020117026862A KR101701536B1 (ko) 2009-05-14 2010-04-21 내연 기관의 배기 가스 영역에 배치된 부품을 모니터링하기 위한 방법 및 장치
US13/320,436 US8915645B2 (en) 2009-05-14 2010-04-21 Method and device for monitoring a component arranged in an exhaust region of an internal combustion engine
CN201080020730.8A CN102421998B (zh) 2009-05-14 2010-04-21 用于对布置在内燃机的废气区域中的构件进行监控的方法和装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009003091A DE102009003091A1 (de) 2009-05-14 2009-05-14 Verfahren und Vorrichtung zur Überwachung eines in einem Abgasbereich einer Brennkraftmaschine angeordneten Bauteils
DE102009003091.3 2009-05-14

Publications (1)

Publication Number Publication Date
WO2010130539A1 true WO2010130539A1 (de) 2010-11-18

Family

ID=42215066

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2010/055268 WO2010130539A1 (de) 2009-05-14 2010-04-21 Verfahren und vorrichtung zur überwachung eines in einem abgasbereich einer brennkraftmaschine angeordneten bauteils

Country Status (6)

Country Link
US (1) US8915645B2 (de)
EP (1) EP2430295B1 (de)
KR (1) KR101701536B1 (de)
CN (1) CN102421998B (de)
DE (1) DE102009003091A1 (de)
WO (1) WO2010130539A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2883752A1 (de) * 2013-12-14 2015-06-17 Audi Ag Kraftfahrzeug mit zu justierendem und/oder zu kalibrierenden Sensor, Sensor und Verfahren zur Überwachung eines Sensors
WO2020065147A1 (fr) 2018-09-28 2020-04-02 Psa Automobiles Sa Commande de moteur thermique en fonction d'une estimation de la temperature de gaz d'echappement
US20200109654A1 (en) * 2016-03-02 2020-04-09 Watlow Electric Manufacturing Company Virtual sensing system

Families Citing this family (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8448511B2 (en) * 2009-09-02 2013-05-28 Ford Global Technologies, Llc Method for evaluating degradation of a particulate matter sensor after an engine start
DE102010003198B4 (de) 2010-03-24 2024-10-17 Robert Bosch Gmbh Verfahren und Vorrichtung zur Überwachung eines Abgassensors
JP2011247650A (ja) * 2010-05-24 2011-12-08 Denso Corp 粒子状物質検出センサ、及び粒子状物質検出センサユニット
DE102010054671A1 (de) * 2010-12-15 2012-06-21 Continental Automotive Gmbh Verfahren zum Betreiben eines Rußsensors
FR2979949B1 (fr) * 2011-09-13 2015-02-20 Peugeot Citroen Automobiles Sa Procede et dispositif de detection d'un organe de depollution dans une ligne d'echappement d'un vehicule automobile, ligne d'echappement et vehicule automobile comprenant un tel dispositif
US9206727B2 (en) * 2011-11-28 2015-12-08 GM Global Technology Operations LLC Regeneration diagnostic methods and systems
DE102012212588B4 (de) 2012-07-18 2024-10-10 Robert Bosch Gmbh Verfahren und Vorrichtung zur Diagnose der Funktionsfähigkeit eines Abgassensors
WO2014035322A1 (en) 2012-08-30 2014-03-06 Scania Cv Ab Method and system to establish a sensor function for a pm sensor
WO2014035323A1 (en) 2012-08-30 2014-03-06 Scania Cv Ab Method and system to establish a sensor function for a pm sensor
DE102014204327B4 (de) 2013-03-20 2016-11-03 Ford Global Technologies, Llc Verfahren und Vorrichtung zum Überprüfen des Ausfalls bzw. des Vorhandenseins von Komponenten in einem Abgassystem
DE102013209872A1 (de) 2013-05-28 2014-12-04 Robert Bosch Gmbh Verfahren und Vorrichtung zum Betreiben eines Partikelsensors
DE102013221598A1 (de) 2013-10-24 2015-05-13 Robert Bosch Gmbh Verfahren und Vorrichtung zur Überwachung eines Partikelfilters
DE102013223630A1 (de) * 2013-11-20 2015-05-21 Robert Bosch Gmbh Verfahren und Vorrichtung zum Betreiben eines Partikelsensors
DE102014223444A1 (de) * 2013-12-05 2015-06-11 Robert Bosch Gmbh Verfahren zur Überwachung eines Abgassensors
DE102013226175A1 (de) 2013-12-17 2015-07-02 Robert Bosch Gmbh Verfahren und Vorrichtung zum Betreiben von Abgassensoren
DE102013226565A1 (de) 2013-12-19 2015-06-25 Robert Bosch Gmbh Verfahren zur Überwachung eines in einem Abgaskanal einer Brennkraftmaschine angeordneten Bauteils, Vorrichtung zur Durchführung des Verfahrens, Computer-Programm und Computer-Programmprodukt
FR3017412B1 (fr) * 2014-02-10 2018-11-02 Psa Automobiles Sa. Procede de detection de la presence d'un filtre a particules dans une ligne d'echappement de vehicule automobile
FR3019212B1 (fr) * 2014-03-28 2019-03-22 Psa Automobiles Sa. Moteur a combustion de vehicule automobile a detection d'absence de filtre a particules
DE102014209794A1 (de) * 2014-05-22 2015-11-26 Robert Bosch Gmbh Verfahren und Vorrichtung zur Diagnose eines Ausbaus einer Komponente einer Abgasreinigungsanlage
DE102014217402A1 (de) * 2014-09-01 2016-03-03 Robert Bosch Gmbh Verfahren und Vorrichtung zur Diagnose der Funktion eines Abgassensors
JP6290771B2 (ja) * 2014-11-14 2018-03-07 日本特殊陶業株式会社 計測装置
US10190470B2 (en) * 2015-06-15 2019-01-29 Deere & Company Catalytic device detection system
DE102015219981A1 (de) 2015-10-14 2017-04-20 Bayerische Motoren Werke Aktiengesellschaft Verfahren zum Überprüfen eines in einem Kraftfahrzeug mit einem Verbrennungsmotor vorgesehenen SCR-Systems
KR101724499B1 (ko) * 2015-12-11 2017-04-07 현대자동차 주식회사 입자상 물질 센서 및 이를 이용한 측정방법
FR3053390B1 (fr) * 2016-07-04 2018-07-27 Peugeot Citroen Automobiles Sa Procede de diagnostic d’un dispositif de depollution des gaz d’echappement d’un vehicule automobile
DE102016222418A1 (de) * 2016-11-15 2018-05-17 Robert Bosch Gmbh Verfahren zur Regelung einer Füllung eines Speichers eines Katalysators für eine Abgaskomponente
SE540695C2 (en) 2017-02-20 2018-10-16 Scania Cv Ab A system and a method for determining a correct or incorrect position of a temperature sensor of an emission control sys tem
AT521736B1 (de) * 2018-09-27 2022-04-15 Avl List Gmbh Verfahren zur Funktionsüberprüfung einer Temperatursensor-Anordnung
JP7087985B2 (ja) * 2018-12-20 2022-06-21 株式会社デンソー 粒子状物質検出装置
US11149615B2 (en) * 2018-12-25 2021-10-19 Toyota Jidosha Kabushiki Kaisha Control device for internal combustion engine
JP6780763B2 (ja) * 2018-12-25 2020-11-04 トヨタ自動車株式会社 内燃機関の制御装置
JP7172861B2 (ja) * 2019-05-29 2022-11-16 株式会社デンソー 排ガスセンサ
JP2021004575A (ja) * 2019-06-26 2021-01-14 日野自動車株式会社 排気ガスセンサの取り外し判定装置
DE102019212807A1 (de) * 2019-08-27 2021-03-04 Robert Bosch Gmbh Verfahren zur Überwachung eines Partikelfilters mittels eines Partikelsensors
US11813926B2 (en) 2020-08-20 2023-11-14 Denso International America, Inc. Binding agent and olfaction sensor
US11881093B2 (en) 2020-08-20 2024-01-23 Denso International America, Inc. Systems and methods for identifying smoking in vehicles
US11636870B2 (en) 2020-08-20 2023-04-25 Denso International America, Inc. Smoking cessation systems and methods
US12017506B2 (en) 2020-08-20 2024-06-25 Denso International America, Inc. Passenger cabin air control systems and methods
US11760170B2 (en) 2020-08-20 2023-09-19 Denso International America, Inc. Olfaction sensor preservation systems and methods
US11828210B2 (en) 2020-08-20 2023-11-28 Denso International America, Inc. Diagnostic systems and methods of vehicles using olfaction
US11932080B2 (en) 2020-08-20 2024-03-19 Denso International America, Inc. Diagnostic and recirculation control systems and methods
US11760169B2 (en) 2020-08-20 2023-09-19 Denso International America, Inc. Particulate control systems and methods for olfaction sensors
DE102020212231A1 (de) 2020-09-29 2022-03-31 Robert Bosch Gesellschaft mit beschränkter Haftung Verfahren zur Überwachung eines in einem Abgasbereich einer Brennkraftmaschine angeordneten Sensors
JP2022086151A (ja) * 2020-11-30 2022-06-09 プライムプラネットエナジー&ソリューションズ株式会社 検出方法、検出装置、検出システム
KR20230052767A (ko) * 2021-10-13 2023-04-20 엘에스오토모티브테크놀로지스 주식회사 배기 가스 후처리 장치

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001035065A1 (de) * 1999-11-10 2001-05-17 Robert Bosch Gmbh Verfahren zur prüfung der funktionsfähigkeit und/oder zum abgleichen eines abgastemperatursensors
WO2004003355A1 (de) * 2002-06-27 2004-01-08 Daimlerchrysler Ag Verfahren zur überwachung einer abgasanlage eines kraftfahrzeuges
DE10331334A1 (de) * 2003-07-10 2005-02-24 Volkswagen Ag Verfahren zum Betreiben einer Brennkraftmaschine
DE10358195A1 (de) 2003-12-12 2005-07-14 Robert Bosch Gmbh Verfahren zur Überwachung eines in einem Abgasbereich einer Brennkraftmaschine angeordneten Bauteils
WO2006110071A1 (en) * 2005-04-14 2006-10-19 Volvo Lastvagnar Ab Method of diagnosing the presence of an exhaust after-treatment component and a use of the method for vehicle on-board diagnosis

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6405122B1 (en) * 1997-10-14 2002-06-11 Yamaha Hatsudoki Kabushiki Kaisha Method and apparatus for estimating data for engine control
DE10112139A1 (de) 2001-03-14 2002-09-19 Bosch Gmbh Robert Verfahren und Vorrichtung zur Überwachung eines Sensors
US6634210B1 (en) * 2002-04-17 2003-10-21 Delphi Technologies, Inc. Particulate sensor system
SE526488C2 (sv) * 2003-06-10 2005-09-27 Scania Cv Abp Förfarande och anordning för övervakning av en SCR-katalysator där uppmätta och beräknade temperaturvärden jämförs
BRPI0411322A (pt) * 2003-06-12 2006-07-18 Donaldson Co Inc método de distribuir combustìvel em fluxo transiente de um sistema de descarga
JP4325367B2 (ja) * 2003-11-10 2009-09-02 株式会社デンソー 排気温度センサの故障検出装置
CN101163962A (zh) 2005-04-20 2008-04-16 贺利氏传感技术有限公司 煤烟传感器
DE102006041478A1 (de) * 2006-09-05 2008-03-06 Robert Bosch Gmbh Verfahren zur Ermittlung einer Rußkonzentration im Abgas einer Brennkraftmaschine
DE102007022590A1 (de) * 2007-05-14 2008-11-27 Robert Bosch Gmbh Verfahren zum Betreiben eines stromabwärts nach einem Partikelfilter angeordneten Partikelsensors und Vorrichtung zur Durchführung des Verfahrens
US7861515B2 (en) * 2007-07-13 2011-01-04 Ford Global Technologies, Llc Monitoring of exhaust gas oxygen sensor performance
US8112990B2 (en) 2007-09-14 2012-02-14 GM Global Technology Operations LLC Low exhaust temperature electrically heated particulate matter filter system
US7609068B2 (en) * 2007-10-04 2009-10-27 Delphi Technologies, Inc. System and method for particulate sensor diagnostic
US8515710B2 (en) * 2009-03-16 2013-08-20 GM Global Technology Operations LLC On-board diagnostics of temperature sensors for selective catalyst reduction system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001035065A1 (de) * 1999-11-10 2001-05-17 Robert Bosch Gmbh Verfahren zur prüfung der funktionsfähigkeit und/oder zum abgleichen eines abgastemperatursensors
WO2004003355A1 (de) * 2002-06-27 2004-01-08 Daimlerchrysler Ag Verfahren zur überwachung einer abgasanlage eines kraftfahrzeuges
DE10331334A1 (de) * 2003-07-10 2005-02-24 Volkswagen Ag Verfahren zum Betreiben einer Brennkraftmaschine
DE10358195A1 (de) 2003-12-12 2005-07-14 Robert Bosch Gmbh Verfahren zur Überwachung eines in einem Abgasbereich einer Brennkraftmaschine angeordneten Bauteils
WO2006110071A1 (en) * 2005-04-14 2006-10-19 Volvo Lastvagnar Ab Method of diagnosing the presence of an exhaust after-treatment component and a use of the method for vehicle on-board diagnosis

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2883752A1 (de) * 2013-12-14 2015-06-17 Audi Ag Kraftfahrzeug mit zu justierendem und/oder zu kalibrierenden Sensor, Sensor und Verfahren zur Überwachung eines Sensors
DE102013021459A1 (de) * 2013-12-14 2015-06-18 Audi Ag Kraftfahrzeug mit zu justierendem und/oder zu kalibrierenden Sensor, Sensor und Verfahren zur Überwachung eines Sensors
US20200109654A1 (en) * 2016-03-02 2020-04-09 Watlow Electric Manufacturing Company Virtual sensing system
US11970964B2 (en) * 2016-03-02 2024-04-30 Watlow Electric Manufacturing Company Virtual sensing system
WO2020065147A1 (fr) 2018-09-28 2020-04-02 Psa Automobiles Sa Commande de moteur thermique en fonction d'une estimation de la temperature de gaz d'echappement
FR3086697A1 (fr) 2018-09-28 2020-04-03 Psa Automobiles Sa Estimation de la temperature de gaz d’echappement

Also Published As

Publication number Publication date
EP2430295A1 (de) 2012-03-21
CN102421998A (zh) 2012-04-18
DE102009003091A1 (de) 2010-11-18
EP2430295B1 (de) 2012-12-19
KR20120019442A (ko) 2012-03-06
US8915645B2 (en) 2014-12-23
CN102421998B (zh) 2014-11-05
US20120120981A1 (en) 2012-05-17
KR101701536B1 (ko) 2017-02-01

Similar Documents

Publication Publication Date Title
EP2430295B1 (de) Verfahren und vorrichtung zur überwachung eines in einem abgasbereich einer brennkraftmaschine angeordneten bauteils
EP2864757B1 (de) Verfahren zur funktionskontrolle eines sensors zur detektion von teilchen und sensor zur detektion von teilchen
EP3004837B1 (de) Verfahren zum betreiben eines partikelsensors
EP3071945B1 (de) Verfahren zum betreiben eines partikelsensors
DE112011104817B4 (de) Controller einer Verbrennungsmaschine
DE102009028239A1 (de) Verfahren und Vorrichtung zur Eigendiagnose eines Partikelsensors
DE102010030634A1 (de) Verfahren und Vorrichtung zum Betreiben eines Partikelsensors
DE102016111031A1 (de) Dualraten-Dieselpartikelfilter-Lecküberwachung
DE102010027975A1 (de) Verfahren und Vorrichtung zur Eigendiagnose einer Abgassonde
DE102007014761A1 (de) Verfahren zum Betreiben eines sammelnden Partikelsensors und Vorrichtung zur Durchführung des Verfahrens
WO2009074380A1 (de) Verfahren und vorrichtung zur diagnose eines partikelfilters
DE102009028283A1 (de) Verfahren und Vorrichtung zur Eigendiagnose eines Partikelsensors
WO2015091273A1 (de) Verfahren und vorrichtung zum betreiben von abgassensoren
DE102009028319A1 (de) Verfahren und Vorrichtung zum Betrieb eines Partikelsensors
DE102011086148A1 (de) Verfahren und Vorrichtung zum Betreiben eines resistiven Sensors im Abgaskanal einer Brennkraftmaschine
DE102011013544B4 (de) Verfahren und Vorrichtung zum Betreiben eines Partikelsensors
DE102014220398A1 (de) Verfahren zur Funktionskontrolle eines Sensors zur Detektion von Teilchen
DE102009046315A1 (de) Verfahren und Vorrichtung zum Betreiben eines Partikelsensors
DE102012001044A1 (de) Verfahren zum Überwachen eines Rußsensors
DE102010003198B4 (de) Verfahren und Vorrichtung zur Überwachung eines Abgassensors
DE102011004119A1 (de) Verfahren und Vorrichtung zur Überwachung eines sammelnden Abgas-Sensors
DE10056320A1 (de) Verfahren und Vorrichtung zur Endstufendiagnose
WO2017029074A1 (de) VERFAHREN ZUR FUNKTIONSÜBERWACHUNG EINES ELEKTROSTATISCHEN RUßSENSORS
DE102009028953A1 (de) Verfahren zum Ermitteln eines Maßes für das Auftreten von Reagenzmitteltropfen im Abgasbereich einer Brennkraftmaschine und Vorrichtung zur Durchführung des Verfahrens
DE102013216899A1 (de) Verfahren und Vorrichtung zum Betrieb eines sammelnden Partikelsensors

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080020730.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10714011

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010714011

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 8325/DELNP/2011

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 20117026862

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13320436

Country of ref document: US