WO2010067404A1 - Base station for radio communication system - Google Patents
Base station for radio communication system Download PDFInfo
- Publication number
- WO2010067404A1 WO2010067404A1 PCT/JP2008/003746 JP2008003746W WO2010067404A1 WO 2010067404 A1 WO2010067404 A1 WO 2010067404A1 JP 2008003746 W JP2008003746 W JP 2008003746W WO 2010067404 A1 WO2010067404 A1 WO 2010067404A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- channel
- base station
- unit
- allocation
- interference
- Prior art date
Links
- 238000004891 communication Methods 0.000 title claims abstract description 78
- 230000004044 response Effects 0.000 claims abstract description 5
- 238000012217 deletion Methods 0.000 claims description 69
- 230000037430 deletion Effects 0.000 claims description 69
- 230000008859 change Effects 0.000 claims description 11
- 238000012545 processing Methods 0.000 description 66
- 238000000034 method Methods 0.000 description 31
- 230000005540 biological transmission Effects 0.000 description 24
- 230000008569 process Effects 0.000 description 20
- 238000000638 solvent extraction Methods 0.000 description 15
- 238000005259 measurement Methods 0.000 description 12
- 238000010586 diagram Methods 0.000 description 8
- 230000006870 function Effects 0.000 description 8
- 230000007423 decrease Effects 0.000 description 6
- 238000010295 mobile communication Methods 0.000 description 4
- 230000003213 activating effect Effects 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 230000001186 cumulative effect Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000000284 extract Substances 0.000 description 2
- 230000001788 irregular Effects 0.000 description 2
- 238000005192 partition Methods 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- 238000013459 approach Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 210000000707 wrist Anatomy 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/50—Allocation or scheduling criteria for wireless resources
- H04W72/54—Allocation or scheduling criteria for wireless resources based on quality criteria
- H04W72/541—Allocation or scheduling criteria for wireless resources based on quality criteria using the level of interference
Definitions
- the present invention relates to a base station for a radio communication system, and more particularly to a radio base station applied to a mobile radio communication system in which each base station assigns a channel to a radio terminal by autonomous distributed control.
- each base station is connected to a radio terminal (mobile terminal) in its own cell so that radio channel signals do not interfere between cells formed by a plurality of adjacent base stations.
- a channel different from that of the adjacent base station is selectively allocated.
- the base station control station preliminarily designates a usable channel for each base station so that a plurality of adjacent base stations do not use the same channel.
- the fixed channel assignment method can suppress the channel interference between adjacent cells to the minimum, but the number of channels that can be used in each base station is limited, so that the frequency use efficiency of the entire wireless communication system is deteriorated.
- each base station autonomously determines the usage status of a radio channel in an adjacent base station, and selects an allocation channel of a radio terminal from a group of channels determined to be usable by itself. Attention has been paid to a dynamic channel allocation scheme. According to the dynamic channel allocation method, each base station can select a channel group that can be used by itself from all channels defined in the wireless communication system, so that a wireless communication system with high frequency utilization efficiency can be constructed. it can.
- each base station measures an interference wave level by carrier sense, for example, for all channels used for communication with a wireless terminal, and an interference wave level, for example, CIR (desired A channel having a wave-to-interference wave power ratio) smaller than a predetermined threshold is determined as an empty channel, and an allocation channel to the wireless terminal is selected.
- CIR safe A channel having a wave-to-interference wave power ratio
- Patent Document 1 a base station equipped with a plurality of radio transceivers for communicating with a mobile terminal sets an allocation priority for each radio channel, and sets a channel.
- a radio channel allocation control method is proposed in which a radio channel interference is measured in order of allocation priority to detect an idle channel, and an idle channel is set in each radio transceiver in a standby state.
- Patent Document 1 when a radio channel allocation request is generated by an incoming / outgoing call, a base station selects a transceiver in a standby state and notifies a terminal of a radio channel set in the transceiver.
- the base station periodically performs interference measurement for the channel assigned to the transmitter / receiver in the standby state, and if it is determined that the set channel cannot be used, another free channel is set in the transmitter / receiver. .
- Reuse partitioning is one of the channel allocation technologies that improve frequency utilization efficiency.
- reuse partitioning for example, a cell is divided into a cell center area close to the base station and a cell boundary area away from the base station, and a radio terminal located in the cell center area where radio waves from adjacent base stations are difficult to reach Is assigned to a channel common to other base stations, and a different channel is assigned to each base station for wireless terminals located in the cell boundary region.
- the frequency utilization efficiency in the cell center region can be improved, so that the number of accommodated terminals per base station can be increased without increasing frequency resources.
- Non-Patent Document 1 “Autonomous Distributed Dynamic Channel Allocation (ARP) in a Microcell Mobile Communication System” is used for autonomous distributed control of reuse partitioning.
- ARP Automatic Distributed Dynamic Channel Allocation
- Patent Document 2 proposes a reuse partitioning type base station that specifies the position of a wireless terminal in a cell using a propagation delay time in a wireless path. ing.
- the wireless channel assignment control method of Patent Document 1 is premised on that a wireless channel set in a transmitter / receiver in a standby state is in an empty state even at the time of channel assignment to a terminal. Therefore, this radio channel allocation control method is suitable for a circuit switching type radio communication system in which a terminal continuously uses the same allocated channel, such as a PHS system, and packet switching in which the allocated channel changes frequently. There is a possibility that the wireless communication system of the system does not function effectively.
- a wireless communication system using a dynamic channel assignment method in which each base station detects a free channel autonomously by periodic interference measurement and selects a channel to be assigned to a terminal from a group of free channels. Then, each base station cannot instantly know that the empty channel has been used by another base station.
- two adjacent base stations BS1 and BS2 each manage a free channel group detected autonomously, and the base station BS1 assigns a free channel CHn to a terminal in its own cell immediately before the base station BS2.
- the base station SB2 that does not know that the channel CHn has already become a busy channel assigns the channel CHn to another terminal in its own cell.
- channel interference may occur between cells.
- a base station for a radio communication system that allocates individual radio channels to a plurality of terminals located in a cell region and performs packet communication with each terminal using the allocated channels sends a channel allocation request.
- a dynamic channel allocation unit that selects an allocation channel for the terminal from a group of channels that can be allocated on the channel state table in response to a channel allocation request from the control unit.
- the dynamic channel allocating unit detects an interference channel from among a plurality of allocated channels, randomly determines whether the interference channel should be changed to an unallocated channel, and The state information of the channel state table is periodically changed.
- the base station for the radio communication system of the present invention is configured to generate a channel allocation request to be used by a terminal for each packet transmitted and received, and in response to the channel allocation request, A dynamic channel allocation unit that selects an allocation channel for the terminal from a plurality of radio channels that can be used in a radio communication system;
- the dynamic channel allocation unit includes a plurality of entries corresponding to channel numbers of radio channels that can be used in the radio communication system, and each entry includes a channel status table including status information indicating whether channel allocation is possible, and the channel
- An interference channel determination unit that selects an allocation channel to a terminal from a group of channels that can be allocated on the status table, and an interference value from among a plurality of channels that have been allocated by the allocation channel determination unit.
- a deletion channel determination unit that detects an interference channel by comparing the interference channel with a threshold and determines whether or not the interference channel should be changed to an unassignable channel, and an interference channel determined by the deletion channel determination unit as an unassignable channel
- the non-assignable channel update unit that changes the status information of the above channel status table Characterized in that it comprises a.
- the deletion channel determination unit determines, for example, whether or not the interference channel should be changed to an unassignable channel based on a random value generated for each interference channel.
- the channel group in the assignable state And means for randomly selecting a number of channels insufficient for the target value and changing the state information of the selected channel.
- the control unit associates the identifier of each terminal existing in the cell region with the subcell in which the terminal is located.
- a terminal location table storing a group identifier indicating a region is provided, and a channel assignment request including the terminal identifier and the group identifier is generated.
- the channel state table includes a plurality of sub-tables corresponding to the plurality of sub-cell regions, and each sub-table includes a plurality of entries storing state information indicating whether radio channels can be allocated in each sub-cell region.
- the allocation channel determination unit refers to the sub-table specified by the group identifier indicated by the channel allocation request, and selects an allocation channel to the terminal having the terminal identifier indicated by the channel allocation request.
- the dynamic channel allocation unit includes an interference state table that stores an interference value measured in an allocated channel, and a threshold value table that stores a threshold value in association with a group identifier, An interference channel to be changed to an unassignable channel for each subcell region based on the threshold value read by the deletion channel determination unit from the threshold value table in the group identifier order and the interference value of the assigned channel indicated by the interference state table.
- the non-assignable channel updating unit changes the state information of the channel state table for each sub-table according to the determination result by the deletion channel determining unit.
- the threshold value table stores different threshold values depending on the group number so that the threshold value decreases as the distance between the subcell area and the base station increases. Further, the channel determined by the deletion channel determination unit as an unassignable channel in a specific subcell region without comparing the interference value with a threshold value in each subcell region outside the specific subcell region, It is determined that the channel cannot be assigned.
- Another feature of the present invention is that, when the dynamic channel allocation unit counts the number of channels that can be allocated on the channel state table and the count value is smaller than a target value, the channel state table
- the assignable channel selection unit that randomly selects the number of channels that are insufficient for the target value from the channel group that is not assignable above, and the channel state for the channel selected by the assignable channel selection unit
- an allocatable channel update unit that changes the state information of the table to an allocatable state.
- the assignable channel selection unit is in an assignable state for each sub table.
- the count value is smaller than the target value, the number of channels that are insufficient for the target value is randomly selected from the channel group that is not assignable on the sub-table.
- the allocatable channel selection unit selects a channel that is in an assignable state in a specific subcell area as an assignable channel in each subcell area inside it.
- the dynamic channel allocation unit includes a channel state changing unit that determines an initial value of the state information in the channel state table, and the channel state changing unit includes the channel state table.
- a predetermined number of entries are randomly selected from a plurality of entries, and the state information of the selected entries is set to an assignable state.
- the dynamic channel allocation unit when the allocated channel becomes an interference channel, the dynamic channel allocation unit randomly determines whether the interference channel should be changed to an unallocated channel. Further, when the number of allocatable channels becomes smaller than the target value, the dynamic channel allocation unit changes a channel randomly selected from the unallocated channel group to an allocatable channel.
- the assigned channel selected based on the channel state table interferes between cells. The possibility can be reduced. Further, in the base station of the present invention, since it is determined whether or not an already allocated channel is an interference channel, interference measurement and the channel state table are compared with the method of determining the free state of all channels. Update time can be shortened.
- FIG. 1 is a schematic configuration diagram of a radio communication system to which a radio base station and a dynamic channel allocation method of the present invention are applied.
- the wireless communication system includes a plurality of wireless base stations (BS) 10 (10A, 10B,... 10N) and a base station controller (BSC) 30 to which these wireless base stations 10 are connected.
- the base station control device 30 is connected to an external communication network such as the Internet NW via an L3 switch (or router) 31 and a gateway (GW) 32.
- L3 switch or router
- GW gateway
- the function of the L3 switch 31 may be integrated with the base station control device 30.
- Each base station 10 has a plurality of mobile radio terminals (MS) 20 (20-1, 20-2,...) Located in a cell 1 (1A, 1B,... 1M) that is within a radio communication range. Communicate over a wireless channel.
- MS mobile radio terminals
- FIG. 2 shows a relationship between a cell area and an empty channel when each radio base station (hereinafter simply referred to as a base station) 10 performs channel allocation by reuse partitioning.
- a cell 1 formed by each base station 10 has a plurality of subcell areas (1A-1, 1A-2,... 1A-n), (1B-1, 1B) depending on the distance from the base station. -2, ... 1Bn), (1C-1, 1C-2, ... 1Cn), and a plurality of wireless terminals (hereinafter simply referred to as terminals) 20 in the cell
- terminals hereinafter simply referred to as terminals
- each base station 10 manages the channel state for each subcell area.
- Sub-table 2B-1 is the channel state of cell center region 1B-1 of base station 10B
- sub-table 2B-n is the channel state of the cell boundary region of base station 10B
- sub-table 2A-n is the channel state of base station 10A.
- the channel state in the cell boundary region is shown.
- the numbers in the sub-table indicate channel numbers, channel numbers with X mark indicate unassignable channels, and other channel numbers indicate assignable channels.
- all channels can be allocated in each subcell area, and the base station repeats channel allocation to a plurality of terminals, and the number of channels that cannot be allocated that interferes with channels being used in adjacent cells. Increases, and the distribution of channel numbers forming the assignable channel (empty channel) group changes. However, in the cell center region, interference radio waves from adjacent cells are weakened, so that the number of assignable channels is larger than that in the cell boundary region, as shown in sub-tables 2B-1 and 2B-n.
- each base station periodically measures the interference state for all channels that can be used in the wireless communication system, and determines that a channel whose interference value exceeds a predetermined threshold is an unassignable channel, thereby reducing interference.
- a channel to be assigned to the terminal is selected from the assignable channel group.
- each base station 10 periodically performs interference measurement and stores a channel determined to be assignable in the channel state table, at the time of actually executing channel assignment, the contents of the channel state table Since it is different from the latest state of the channel, an inappropriate channel is assigned to the terminal.
- the feature of the present invention is that even if the channel CHj is determined to be an interference channel by interference measurement performed by two adjacent base stations, for example, 10A and 10B, the base stations 10A and 10B As a result of the random handling, different channel state tables are formed in the base stations 10A and 10B, and allocation channels to terminals from different candidate channel (assignable channel) groups are selected. It is in that.
- FIG. 3 shows a basic planar arrangement of the base station (BS) 10.
- BS base station
- FIG. 4 shows an example of a radio channel configuration applied to a radio section between the base station 10 and the terminal 20 in the present invention.
- a radio communication system in which OFDMA (Orthogonal Frequency Division Multiple Access) is applied as a TDD (Time Division Duplex) access scheme as a duplex scheme in a radio section will be described.
- the present invention can also be applied to a wireless communication system in which a base station and a terminal communicate using a wireless channel other than OFDMA, such as TDMA (Time Division Multiple Access) or FDMA (Frequency Division Multiple Access).
- TDMA Time Division Multiple Access
- FDMA Frequency Division Multiple Access
- each frame period includes a downlink data communication period (Downlink) from the base station 10 to the terminal 20 and an uplink data communication from the terminal 20 to the base station 10. It consists of a period (Uplink).
- Downlink downlink data communication period
- Uplink Uplink
- one time slot period on each subchannel is one channel, which is the minimum unit of communication channels allocated from the base station 10 to the terminal 20.
- the Downlink is composed of P channels having channel numbers 1 to P
- the Uplink is composed of p channels having channel numbers 1 to p.
- the channel shown in FIG. 4 is used for transmission / reception of user packets, and the control packet is transmitted / received via a control channel different from these channels.
- the base station 10 of the present invention manages the state of each downlink and uplink channel in a channel state table to be described later, and performs dynamic channel assignment to a plurality of terminals in the own cell with reference to the channel state table.
- FIG. 5 is a block configuration diagram showing an embodiment of the base station 10.
- the base station 10 is connected to an antenna 101 that transmits and receives radio waves between the control unit 100 and the terminal 20, a transmission / reception switching switch 102 that is connected to the antenna 101, and a connection line that connects the base station controller 30.
- Line interface 103 upper layer processing unit 104 connected to the line interface 103, transmission RF (Radio Frequency) unit 106 and reception RF unit 107 connected to the switch 102, upper layer processing unit 104 and transmission RF Downstream baseband processing unit 105 connected between unit 106, upstream baseband processing unit 108 connected between upper layer processing unit 104 and reception RF unit 107, and reception RF unit 107
- Interference measuring section 109 received power measuring section 110, and dynamic channel allocating section 120 are included.
- control unit 100 and the dynamic channel assignment unit 120 are program modules executed by the processor 11, and these program modules are stored in the memory 12.
- the control unit 100 and the dynamic channel allocation unit 120 are illustrated as functional blocks having a connection relationship with other configuration requirements.
- the dynamic channel allocation unit 120 refers to various tables formed in the data memory 13 and executes channel allocation to terminals.
- the control unit 100 periodically determines the subcell region where each terminal is located based on the measurement result of the received power measurement unit 110 and the transmission power information reported from each terminal, and the terminal identifier (ID) and the current position
- the terminal location table 190 indicating the relationship with is updated.
- the current location of each terminal is converted into a group identifier assigned to each subcell area and stored.
- the dynamic channel assignment unit 120 creates a channel state table 130 described in detail in FIG. 8 based on the interference value for each channel measured by the interference measurement unit 109 or the interference value notified from the terminal.
- the channel allocation request specifying the terminal ID and the group identifier is received from the control unit 100, the channel allocated to the terminal is dynamically determined with reference to the channel state subtable 130. The allocated channel is notified to the downlink baseband processing unit together with the terminal ID.
- the channel state table 130 includes an uplink channel state table and a downlink channel state table.
- Each channel state table includes a plurality of sub-tables associated with group identifiers.
- the control unit 100 sets the reception RF unit 107 in the Uplink period and the transmission RF unit 106 in the Downlink period to the antenna 101.
- the switch 102 is periodically switched so as to be connected.
- the reception RF unit 107 converts the received signal in each uplink channel into a baseband signal and outputs the baseband signal to the uplink baseband processing unit 108.
- Uplink baseband processing section 108 extracts the received packet (user packet) of each channel from the uplink baseband signal received from reception RF section 107, and outputs it to upper layer processing section 104.
- the control packet received through the control channel is transferred to the control unit 100.
- the upper layer processing unit 104 performs higher layer protocol processing than the uplink baseband processing unit 108 for each user packet in the uplink direction, and then outputs each user packet to the line interface 104.
- the control unit 100 When receiving the control packet indicating the channel allocation request for uplink packet transmission from the terminal, the control unit 100 refers to the terminal location table to identify the group identifier of the request source terminal, and sends the terminal ID to the dynamic channel allocation unit 120. And the group identifier are specified, and uplink channel allocation is requested.
- the upper layer processing unit 104 When the upper layer processing unit 104 receives a downlink user packet from the line interface 104, the upper layer processing unit 104 performs predetermined protocol processing of the upper layer on the received packet and notifies the control unit 100 of the identifier (ID) of the destination terminal of the received packet. After that, the received packet is output to the downlink baseband processing unit 105.
- the control unit 100 When the control unit 100 is notified of the destination terminal ID (address) of the downlink packet from the upper layer processing unit 104, the control unit 100 refers to the terminal location table to identify the group identifier of the destination terminal, and A downlink channel allocation request is made by designating a terminal ID and a group identifier.
- the dynamic channel allocation unit 120 When the dynamic channel allocation unit 120 receives an uplink or downlink channel allocation request from the control unit 100, the dynamic channel allocation unit 120 refers to the channel state subtable corresponding to the group identifier specified by the control unit 100, Determine the assigned channel. The allocated channel is notified to the downlink booth band processing unit 105 together with the terminal ID.
- the downlink baseband processing unit 105 When the downlink baseband processing unit 105 receives the terminal ID and the allocation channel from the dynamic channel allocation unit 120, the downlink baseband processing unit 105 generates a control packet including these information items. The control packet generated by the downlink baseband processing unit 105 is output to the transmission RF unit 106 during the transmission period of the downlink control channel. On the other hand, the downlink user packet input from the higher layer processing unit 104 to the downlink baseband processing unit 105 is temporarily buffered by the downlink baseband processing unit 105, and then assigned to the downlink specified by the dynamic channel allocation unit 120. The signal is output to transmission RF section 106 at the channel timing.
- FIG. 6 is a block diagram showing one embodiment of the terminal 20.
- the terminal 20 transmits and receives radio waves between the base station 10 and the processor 200, the communication control unit 201, the memory 211 and the input / output (I / O) device 212 connected to the processor 200 via the internal bus 210.
- the memory 211 stores various application programs executed by the processor 200 and control routines.
- the communication control unit 201 periodically switches the switch 202 so that the transmission RF unit 206 is connected to the antenna 21 during the Uplink period and the reception RF unit 207 is connected to the antenna 21 during the Downlink period.
- the communication control unit 201 operates the reception RF unit 207 and the downlink baseband processing unit 208 during the downlink control channel reception period and the downlink channel period allocated from the base station 10, and transmits the uplink control channel transmission period.
- signal transmission from the uplink baseband processing unit 205 and the transmission RF unit 206 is enabled.
- the reception RF unit 207 converts a signal received through the downlink control channel and the downlink allocation channel into a baseband signal, and outputs the baseband signal to the downlink baseband processing unit 208.
- the downlink baseband processing unit 208 extracts the user packet and control packet addressed to the own station from the baseband signal received from the reception RF unit 207, the user packet is sent to the upper layer processing unit 204, and the control packet is sent to the control unit 201. Output.
- the upper layer processing unit 204 executes predetermined protocol processing of the upper layer on the received packet, and when the received packet is a voice packet, outputs the voice data extracted from the received packet to the CODEC 214. User packets other than voice packets and application layer control packets are output to the processor 200 via the internal bus 210. In addition, upper layer processing section 204 performs predetermined protocol processing for the upper layer on the transmission voice packet output from CODEC 214 and the transmission packet output from processor 200, and outputs the transmission packet to upstream baseband processing section 205. To do.
- the communication control unit 201 executes a communication control operation according to the control packet input from the downlink baseband processing unit 208.
- the communication control unit 201 receives downlink signals in the reception RF unit 207 and the downlink baseband processing unit 208 described above, and uplinks in the uplink baseband processing unit 205 and the transmission RF unit 206 according to the assigned channel specified by the base station 10. Control transmission on the channel.
- the communication control unit 201 generates a control packet indicating the interference value of the downlink allocated channel measured by the interference measuring unit 209 and a control packet indicating the transmission power of the packet in the uplink allocated channel, and transmits these control packets to the uplink.
- the data is input to the baseband processing unit 205 and transmitted to the base station 10 through the uplink control channel.
- FIG. 7 is a block configuration diagram showing an embodiment of the dynamic channel assignment unit 120 shown in FIG.
- the dynamic channel assignment unit 120 includes a deletion channel determination unit 121, an unassignable channel update unit 122, an assignable channel selection unit 124, an assignable channel update unit 125, and an assignment channel determination unit 126 as program modules.
- Tables referred to by these program modules include a target value table 123, an assigned channel table 127, an interference state table 128, a threshold value table 129, a channel state table 130, and channel lists 140 and 145.
- the update unit changing unit 150, the update unit table 160, and the channel state changing unit 170 are elements that constitute another embodiment of the present invention, and are not essential elements in the basic embodiment of the present invention.
- the allocated channel determination unit 126 when receiving a channel allocation request indicating a group number and a terminal ID from the control unit 100, and an allocated channel table 127 indicating currently allocated channels (channels in communication), and a channel state table 130 Referring to FIG. 6, the allocation channel of the terminal is determined, the allocation channel and the terminal ID are notified to the downlink baseband processing unit 105, and the allocation channel table 127 is updated.
- the feature of the present invention is that the assignable channels stored in the channel state table 130 are randomly distributed by the deletion channel determination unit 121 and the assignable channel selection unit 124 that are periodically activated, and each base station is adjacent to each other. This is because an allocation channel to a terminal can be selected from an allocatable channel group different from other base stations.
- the deletion channel determination unit 121 refers to the allocation channel table 127, the interference state table 128, and the threshold value table 129, determines a channel that should not be allocated among a plurality of uplink and downlink channels, and determines a channel list. 140.
- the contents of the channel list 140 are reflected in the channel state table 130 by the unallocated channel update unit 122.
- the assignable channel selection unit 124 refers to the target value table 123, the assigned channel table 127, and the channel state table 130, and selects the assignable channel from among the channel groups that are not assignable in the channel state table 130.
- the channel to be changed is selected and stored in the channel list 145.
- the contents of the channel list 145 are reflected in the channel state table 130 by the assignable channel update unit 125.
- FIG. 8 shows an embodiment of the channel state table 130.
- the channel state table 130 includes a channel state table 130D for downlink and a channel state table 130U for uplink. It is made up of.
- Each channel state table includes a table partition column 131 indicating whether it is for downlink or uplink, a channel number column 132, and a plurality of assignable flag columns 133 divided by group number 134 indicating a subcell area where the terminal is located. .
- the downlink channel state table 130D includes a plurality of sub tables 130D-1 to 130-N corresponding to the group number 134
- the uplink channel state table 130U includes a plurality of sub tables corresponding to the group number 134. 130U-1 to 130U-N.
- the assignable flag 133 of the channel state table 130 (130D, 130U) is set to “1” indicating that all channel numbers are assignable channels in the initial state.
- table entries whose assignable flag indicates “0” are randomly distributed in the channel state table 130, and a plurality of adjacent base stations The station is provided with a channel state table 130 indicating the assignable channel number groups in different combinations.
- FIG. 9 shows an example of the allocation channel table 127 updated by the allocation channel determination unit 126.
- the allocation channel table 127 also includes an allocation channel table 127D for downlink and an allocation channel table 127U for uplink.
- Each allocation channel table includes a plurality of entries indicating a correspondence relationship between the channel number 1271 and the allocation flag 1272, and the allocation flag 1272 indicates that a channel having the channel number 1271 has been allocated to a terminal in its own cell (“1”). ) Or not (“0”).
- FIG. 10 shows an example of the interference state table 128 updated by the deleted channel determination unit 121.
- the interference state table 128 includes a plurality of entries indicating the correspondence between the channel number 1281 during communication and the interference value 1282.
- the channel number 1281 during communication corresponds to the channel number in which the allocation flag 1272 is “1” in the allocation channel tables 127D and 127U.
- the deletion channel determination unit 121 stores the allocated channel number indicated by the allocation channel table 127U as the communication channel number 1281 in the interference state table 128.
- the interference measurement unit 109 measures the interference value, and stores the measurement result as the interference value 1282 in the interference state table 128.
- the interference value 1282 for example, values such as interference wave reception power, CIR (Carrier-to-Interference-Ratio), CINR (Carrier-to-Interference-plus-Noise-Ration) are stored.
- the deletion channel determination unit 121 stores the allocated channel number indicated by the allocation channel table 127D in the interference state table 128 as the communication channel number 1281 and the interference value 1282 as the terminal.
- the interference value reported from the side is stored.
- FIG. 11 shows an embodiment of the threshold value table 129 referred to by the deletion channel determination unit 121.
- the threshold value table 129 includes a plurality of entries indicating the correspondence between the group number 1291 and the threshold value 1292.
- the threshold value 1292 indicates a threshold value to be compared with an interference value when an interference channel is determined in the subcell region specified by the group number 1291. When the interference value exceeds the threshold value, it is determined as an interference channel.
- the threshold value 1292 is a small value as the subcell area is separated from the base station (the group number is increased).
- FIG. 12 shows an example of the target value table 123 referred to by the assignable channel selection unit 124.
- the target value table 123 includes a plurality of entries indicating the correspondence between the group number 1231 and the assignable channel target value 1232.
- the allocatable channel selection unit 124 selects a random number from among the unassignable channel number groups so that the number of allocatable channels becomes the target value. The channel number is selected and the assignable flag 133 is changed to “1”.
- FIG. 13 shows an example of the terminal location table 190 used by the control unit 100 of the base station 10.
- the terminal location table 190 includes a plurality of entries indicating the relationship between the terminal ID 1901 and the group identifier 1902. For example, based on the value of the received power from each terminal 10 measured by the received power measuring unit 110 and the value of the transmission power reported by the control packet from the terminal 10, the control unit 100 can The distance between the terminals is calculated, the subcell region that is the current position of each terminal is estimated, and the value of the group identifier 1902 is specified.
- GPS Global Positioning System
- FIG. 14 shows an embodiment of the channel list 140 that is updated by the deletion channel determination unit 121.
- the channel list includes a downlink channel list 140D and an uplink channel list 140U.
- Each channel list includes a table division column 141 indicating whether it is for downlink or uplink, a channel number column 142 for communication, and a plurality of determination result columns 143 divided by group number 144.
- the downlink channel list 140D includes a plurality of sublists 140D-1 to 140-N corresponding to the group number 144
- the uplink channel list 140U includes a plurality of sublists 140U- corresponding to the group number 144. 1 to 140U-N.
- the channel number column 142 in communication of the channel list 140D the channel number of the entry whose assignment flag is “1” in the assignment channel table 127D is stored.
- the channel number column 142 in communication of the channel list 140U stores the channel number of the entry whose assignment flag is “1” in the assignment channel table 127U.
- the deletion channel determination unit 121 compares the interference value with the threshold set for each subcell area for the channel in communication indicated by the channel list 140. A channel whose interference value exceeds the threshold value is randomly changed to an unassignable channel using a random number. “1” is set in the determination result column 143 for a channel in communication that has become an unassignable channel.
- FIG. 15 is a flowchart showing a first embodiment of the deletion channel determination unit (program module) 121.
- the deletion channel determination unit 121 is periodically activated by the control unit 100.
- the deletion channel determination unit 121 continuously determines a channel (deletion channel) to be changed to an unassignable channel in the downlink channel state table 130D and determination of a deletion channel in the uplink channel state table 130U. However, the determination process of the downlink deletion channel and the determination process of the uplink deletion channel are separated, and the deletion channel determination unit 121 determines the deletion channel of the link designated by the control unit 100. May be executed.
- the parameter d indicates the table division 141 in the channel list 140
- the parameter i indicates the entry number of the channel list 140 and the interference state table 128, and the parameter g indicates the group number 144 of the channel list 140.
- the processor 11 When the deletion channel determination unit 121 is activated, the processor 11 first sets an initial value 0 to the parameter d and sets a probability value for randomly determining the deletion channel to the parameter ⁇ (step 2101).
- the value of the parameter ⁇ is 0 ⁇ ⁇ 1.
- the processor 11 sets an initial value 0 to the parameter g (2105), then increments the value of g (2106), and compares the parameter g with the maximum value N of group numbers (2107). If g> N is not satisfied, the processor 11 sets an initial value 0 to the parameter i for specifying the entry number of the interference state table 128 (2108), increments the value of i (2109), and sets i and K to i and K. Compare (2110). If i> K, the processor compares the interference value 1282 indicated by the i-th entry of the interference state table 128 with the threshold value TH (g) indicated by the g-th entry of the threshold value table 129 (2120), and the interference value is TH. (G) In the following cases, the processing after step 2109 is repeated.
- step 2120 if the interference value exceeds TH (g), that is, if the communication channel of the i-th entry in the channel list is an interference channel, the processor 11 generates a random number x with a random number generator. Then, the random number x is compared with the probability parameter ⁇ (2122). If the value of x is greater than or equal to ⁇ , the processor 11 repeats the processing from step 2109 onward.
- the processor 11 determines that the channel indicated by the i-th entry is an unassignable channel (deleted channel), and the determination result of the i-th entry Cd, g (i) of the g-th group in the d-th channel list After setting “1” in the field 143 (2123), the processing from step 2109 is repeated.
- interference determination is performed by applying the threshold value TH (g) of the g-th group for all channels registered as the communication channel 142 in the downlink channel list 140D.
- the threshold value TH (g) of the g-th group for all channels registered as the communication channel 142 in the downlink channel list 140D.
- the channels randomly selected by applying the random number x are stored as deletion channels in the sublist 140D-g having the group number g in the channel list. Is done.
- the processor 11 increments the value of the group number g in step 2106, applies the new threshold value TH (g), and repeats the determination process described above.
- the value of the parameter g exceeds the maximum value N of the group numbers, the value of the parameter d indicating the table section 141 of the channel list 140 is incremented (2130).
- the selected channel is stored in the channel list 140U as a deleted channel.
- the processor 11 ends the process of the deletion channel determination unit 121.
- the control unit 100 activates the unallocated channel update unit (program module) 122.
- FIG. 16 is a flowchart illustrating an example of the unallocated channel update unit 122.
- the processor 11 sets an initial value 0 to the parameter d (2201), and counts the number of communication channel numbers 142 registered in the d-th channel list 140D.
- the parameter K is set (2102). Thereafter, the processor 11 sets an initial value 0 to the parameter g (2203), increments the value of g (2204), and compares g with the maximum value N of group numbers (2205).
- the processor 11 sets the initial value 0 to the parameter i for specifying the entry number of the channel list 140 (2206), then increments the value of i (2207), and i and K Are compared (2208). If i> K, the processor checks the determination result column 143 of the i-th entry Cd, g (i) of the g-th group in the d-th channel list (2209), and the determination result of the entry Cd, g (i) If “1” is not “1”, the processing after step 2207 is repeated.
- the processor 11 sets the value of the communication channel number 143 indicated by the entry Cd, g (i) to the parameter j (2210), and the d-th channel
- the assignable flag 133 of the j-th entry Ed, g (j) of the g-th group in the state table 130D is changed to “0” (2211), and the processing after step 2207 is repeated.
- step 2208 the processor 11 increments the value of the group number g in step 2106 and repeats the processing of steps 2205 to 2211 described above.
- step 2205 when the value of the parameter g exceeds the maximum value N, the processor 11 increments the value of the parameter d indicating the table section 141 of the channel list 140 (2212), and if d> 1 is not satisfied (2213).
- step 2202 the above-described processing is repeated for the channel numbers in communication indicated by the next channel list 140U.
- d> 1 the processor 11 ends the process of the unallocated channel update unit 122.
- the control unit 100 activates the unallocated channel update unit 122, but the unallocated channel update unit 122 ends all determination processes.
- the deletion channel determination unit 121 may be activated.
- the function of the unallocated channel update unit 122 may be integrated into the deletion channel determination unit 121.
- the downlink deletion channel determination process is completed, the downlink channel state table 130D is updated according to the downlink channel list 140D, and the uplink deletion channel determination process is completed.
- the uplink channel state table 130U may be updated according to the uplink channel list 140U.
- the allocatable channel selection unit (program module) 124 is executed in the channel state table 130 in order to secure at least the number of allocatable channels specified as the target value 1232 in the target value table 123.
- FIG. 17 shows an example of a channel list 145 that is updated by the allocatable channel selection unit 124 and referred to by the allocatable channel update unit 125.
- the channel list 145 includes a downlink channel list 145D and an uplink channel list 145U.
- Each channel list includes a table division field 146 indicating whether it is for downlink or uplink, and a plurality of assignable channel number fields 147 divided by group number 148. Therefore, the downlink channel list 145D includes a plurality of sublists 145D-1 to 145-N corresponding to the group number 148, and the uplink channel list 145U includes a plurality of sublists 145U- corresponding to the group number 148. 1 to 145U-N. In this embodiment, the number of increased channels 149 is stored at the end of each sublist.
- the increased channel number 149 indicates the number of channels to be added to the channel state table 130 as assignable channels.
- the assignable channel number column 147 stores the channel number for which the assignable flag 133 should be changed from “0” to “1”.
- FIG. 18 shows a flowchart of the assignable channel selector 124 applied to the first embodiment.
- the allocatable channel selection unit 124 is activated by the control unit 100 after the channel state table update processing by the non-allocation channel update unit 122 is completed.
- the processor 11 When the assignable channel selection unit 124 is activated, the processor 11 sets an initial value 0 to the parameter d indicating the table section (2401) and clears the contents of each sublist of the d-th channel list 145D (2402). Thereafter, an initial value 0 is set to the parameter g for specifying the group number (2403). Thereafter, the processor 11 increments the value of the parameter g, sets an initial value “1” to the parameter i (2404), and compares the parameter g with the maximum value N of group numbers (2405).
- the processor 11 sets the target value Y (g) indicated by the g-th entry in the target value table 123 to the parameter Y indicating the target value (2406), and sets the target value Y (g) in the d-th channel state table 130D.
- the processor 11 stores (2409) the value of M as the increased channel number M (g) of the g-th group in the d-th channel list, and then determines whether the value of M exceeds 0 (2410), If not M> 0, the process returns to step 2404 to increment the value of the parameter g, set the parameter i to the initial value “1”, and repeat the above-described processing with the next group number.
- step 2410 the processor 11 randomly selects 1 from the group of entries (non-assignable channels) in which the assignable flag is “0” in the g-th group of the d-th channel state table 130D.
- One entry (channel number j) is selected (2411), and the channel number j is stored in the i-th entry Cd, g (i) of the g-th group in the d-th channel list (2412).
- the processor 11 decrements the value of the parameter M, increments the value of the parameter i (2413), and repeats the processing after step 2410.
- step 2404 When the value of the parameter M becomes 0 or less, the processor 11 returns to step 2404, increments the value of the parameter g, sets the parameter i to the initial value “1”, and performs the above-described processing with the next group number. repeat.
- step 2405 when the value of the parameter g exceeds the maximum value N of group numbers, the value of the parameter d indicating the table section is incremented (2414).
- the processor 11 returns to step 2402, clears the next channel list 145U, and repeats the above-described processing for the next channel state table 130U.
- d> 1 the process of the assignable channel selection unit 124 ends.
- the control unit 100 activates the allocatable channel update unit (program module) 125.
- FIG. 19 is a flowchart of the assignable channel update unit (program module) 125.
- the processor 11 sets an initial value 0 to the parameter d (2501), sets an initial value 0 to the parameter g (2502), and increments the value of g ( 2503), g and the maximum value N of group numbers are compared (2503).
- the processor 11 sets the value of the increased channel number M (g) stored in the g-th group sublist 145D-g of the d-th channel list 145D in the parameter K (2505), An initial value 0 is set to a parameter i for specifying an entry in the sublist 145D-g (2506). Thereafter, the processor 11 increments the value of i (2507), and compares i with K (2258).
- the processor sets the value of the channel number stored in the i-th entry Cd, g (i) of the g-th group in the d-th channel list to the parameter j (2509), and the d-th channel
- the allocatable flag 133 of the j-th entry Ed, g (j) of the g-th group in the table 130D is changed to “1” (2510), and the processing after step 2507 is repeated.
- step 2508 When the value of the parameter i exceeds K in step 2508, the processor 11 increments the value of the group number g in step 2503 and repeats the processing of steps 2504 to 2510 described above.
- step 2504 when the value of the parameter g exceeds the maximum value N, the processor 11 increments the value of the parameter d indicating the table section 146 of the channel list 145 (2511). If d> 1 is not satisfied (2512). Return to Step 2502. Accordingly, the above-described processing is repeated using the next channel list 145U. When d> 1, the processor 11 ends the process of the assignable channel update unit 125.
- the control unit 100 activates the allocatable channel update unit 125, but the allocatable channel update unit 125 performs all the determination processes. It may be activated by the allocatable channel selection unit 124 that has ended. Further, the function of the assignable channel update unit 125 may be integrated into the assignable channel selection unit 124. In this case, for example, when the downlink assignable channel determination process is completed, the downlink channel state table 130D is updated according to the downlink channel list 145D, and the uplink assignable channel determination process is completed. At this time, the uplink channel state table 130U may be updated according to the uplink channel list 145U.
- the 20A and 20B show changes in the g-th sub-table 130U-g, which is a part of the channel state table 130U included in the base stations 10A and 10B, respectively.
- the fourth channel and the tenth channel are allocatable channels in both the base stations 10A and 10B. Therefore, when these channels are assigned to terminals in both the base stations 10A and 10B, interchannel interference occurs.
- the interference channel determined to be unassignable by the base station 10A is also determined to be an unassignable channel by the base station 10B.
- the deletion channel determination unit 121 changes the interference channel to an unassignable channel at random.
- the entries E1, g (4) and E1, g (10) of the sub-table 130U-g ′ the base stations 10A and 10B have different handling for the interference channel.
- entries E1, g (1) and E1, g (8) indicate
- different channels can be assigned to the base stations 10A and 10B.
- a channel state in which a plurality of adjacent base stations indicate different assignable channel groups by periodically activating the above-described deletion channel determination unit 121 and assignable channel selection unit 124. Based on the table, dynamic channel allocation can be performed.
- FIG. 21 is a flowchart showing an embodiment of the allocation channel determination unit (program module) 126.
- Allocation channel determination unit 126 is activated in response to a channel allocation request from control unit 100.
- the channel assignment request includes the terminal ID, the group number, and the identification information of the assigned link.
- the processor 11 sets the group number indicated by the channel allocation request in the parameter g (2601), and then determines the link to which the channel should be allocated (2062).
- the processor 11 sets the table partition parameter d to 1 (2603), and when the allocation link is Downlink, the processor 11 sets the parameter d to 0 (2604).
- the processor 11 sets the value of the parameter i indicating the channel number to the initial value 0 (2605), then increments the parameter i (2606), and whether or not i exceeds the maximum value (P or p) of the channel number. Is determined (2607). If the parameter i is equal to or less than the maximum value, the processor 11 checks the assignable flag 133 of the i-th entry Ed, g (i) of the g-th group in the d-th channel state table (130D or 130U) (2608), When the assignable flag is 1, the assignment flag 1272 of the i-th entry E (i) in the d-th assigned channel table (127D or 127U) is checked (2609).
- the processor 11 changes the assignment flag of the entry E (i) to 1 (2610) ), Channel number i is set to assigned channel CH (d) (2611), CH (d) and terminal ID are output to downlink baseband processing section 105 (2612), and channel assignment is terminated.
- step 2608 If the assignable flag is 0 (i-th channel is an unassignable channel) in step 2608 or if the assignment flag is 1 (i-channel is the channel in communication) in step 12609, the processing from step 2606 is repeated, and the parameters When the value of i exceeds the maximum value P of the channel number, the processor 11 notifies the control unit 100 that assignment is impossible (2613), and ends the channel assignment.
- the allocation channel determination unit 126 selects, as an allocation channel, a channel that is confirmed to be free in the allocation channel table 127 out of the allocatable channel group indicated by the channel state table 130. If the interference value is measured for the selected channel and the interference exceeds the allowable value, another channel may be selected.
- each base station can store an assignable channel group in the channel state table with a combination of channel numbers different from each other, it is possible to reduce the possibility that the terminal assigned channel interferes. Further, since the deletion channel determination unit 121 is configured to repeat the interference determination for each group number only for the channel in communication, the interference is smaller than when the interference determination is repeated for all channels of the wireless communication system. The time required for judgment can be shortened.
- FIG. 30 shows a cumulative distribution of frequency use efficiency [bps / Hz / user] per uplink user (terminal) in the wireless communication system to which the present invention is applied.
- Vertical axis C.I. D. F represents the cumulative distribution.
- a channel determined to be an interference channel in a subcell region close to a base station becomes an interference channel even in a subcell region close to a cell boundary.
- the deletion channel is determined in the subcell region of group number m, focusing on the above characteristics of reuse partitioning, the determination result in the subcell region (group number m-1) inside this Refer to
- channel i is an unassignable channel in the subcell region of group number m-1
- channel i is not assigned in the subcell region of group number m without interference determination.
- Judge Conversely, a channel that is determined to be assignable in the subcell area of group number m is made an assignable channel in the subcell area of group number m-1.
- FIG. 22 is a flowchart showing the second embodiment of the deletion channel determination unit 121.
- the parameter i for specifying the entry number in the interference state table 128 is compared with the number K of communicating channels. If i> K is not satisfied, the group number g is checked (2111). When the group number g is 1, that is, when the deletion channel is determined in the subcell region closest to the base station, the processor 11 determines the interference value (2120) and the random number determination (2122) as in the first embodiment. To select an interference channel to be changed to an unassignable channel (deleted channel).
- the processor 11 checks the determination result of the i-th entry Cd, g-1 (i) of the group number “g-1” in the d-th channel list (2112), When the determination result of the i-th entry Cd, g-1 (i) is “1”, the determination result of the entry Cd, g (i) in the d-th channel list is set to “1” (2113). ), And returns to Step 2109.
- the processor 11 performs the interference value determination (2120) and the random number determination (2122) as in the first embodiment. An interference channel to be changed to an unassignable channel is selected.
- the channel state table 130 can be updated by the non-assignable channel update unit 122 illustrated in FIG.
- FIG. 23 shows a flowchart of the second embodiment of the assignable channel selector 124.
- the same steps as those in the first embodiment described in FIG. 18 are denoted by the same reference numerals as those in FIG.
- the assignable channel selection process is executed in order from the subcell region with the larger group number g, and the channel determined to be assignable in any subcell region is All subcell areas inside are determined as assignable channels.
- the processor 11 clears the d-th channel list specified by the parameter d (2402), and then sets the parameter g indicating the group number to the maximum value N of group numbers ( 2403A), the parameter j indicating the channel number in the channel state table 130 is set to 0, the value of the parameter i specifying the entry in the channel list 140 is set to 1 (2404A), and the value of the parameter g is checked (2405A). If the parameter g is not 0, steps 2406 to 2409 are executed to calculate the number M of allocatable channels to be increased in the g-th group and store this in the channel list of the g-th group.
- the processor 11 determines whether or not the parameter g is the maximum value N of group numbers (2420).
- N that is, when the processor 11 is performing channel selection in the outermost subcell area of the cell, the steps 2410 to 2413 are repeated in the same manner as in the first embodiment, thereby making it possible to select among the unassignable channel groups. Randomly select M assignable channels.
- the processor 11 decrements the value of the parameter g (2427), initializes the values of the parameters j and i in step 2404A, and repeats the processing after step 2405A.
- the process returns to step 2421.
- the assignable flag of the entry Ed, g + 1 (j) is “1” and the assignable flag of the entry Ed, g (j) is “0”
- the processor 11 indicates the g-th group of the d-th channel list.
- the channel number j is stored in the i-th entry Cd, g (i) (2424), the value of the parameter M is decremented, the value of the parameter i is incremented (2425), and the value of M is checked (2426).
- FIG. 24 shows a flowchart of the program module part added to the unallocated channel update unit 122 shown in FIG. 16 as the third embodiment of the present invention.
- the program module portion shown here is when the unassignable channels are not enough on the channel state table 130.
- an insufficient number of channels are randomly selected from the assignable channel group and changed to channels that cannot be assigned.
- the channel status list 130 is repeatedly changed to an unassignable channel according to the channel list of the next group number.
- the flowchart of FIG. 24 is executed before proceeding to step 2204 when the change to the unassignable channel is completed in the channel state list 130.
- the processor 11 counts the number X of unassignable channels of the g-th group in the d-th channel state table 130 (2220), and compares X with a target value Z specified in advance (2221). If X is equal to or greater than Z, step 2204 in FIG. 16 is executed. When X is smaller than Z, the processor 11 randomly selects the entry Ed, g (j) from the entry group having the assignable flag 133 of “1” in the g-th group of the d-th channel state table 130. (2222) The determination result 133 of the entry Ed, g (j) is changed to “0” (2223), the value of X is incremented (2224), and step 2221 is executed.
- a target value Z common to all groups is used for simplification.
- the target value Z is the same as the target value Y of the assignable channel shown in FIG. Different values may be used depending on the number.
- the function of the update unit changing unit 150 shown in FIG. 7 will be described as a fourth embodiment of the present invention.
- the fourth embodiment for example, as shown in the channel state table 130B shown in FIG. 25, a plurality of channel numbers 132 are grouped, and the assignable flag 133 is set with the plurality of grouped channels as the update unit 135.
- two channels are grouped and an update unit number 135 is given.
- the deletion channel determination unit 122 and the allocable channel selection unit 124 only need to give the same determination result to a plurality of channels as update units, so that the channel determination process becomes easy.
- the time required for updating the channel state table can be shortened.
- the update unit changing unit 150 refers to, for example, the update unit table 160 illustrated in FIG. 26 and optimizes the number of channels serving as the update unit according to the average interference value.
- the update unit table 160 stores an update unit channel number 162 and a combining rule 163 in association with the average interference value 161.
- the average interference value 161 is an average value of all the channels of the interference values measured by the interference measuring unit 109, and the number of update unit channels 162 increases as the average interference value 161 decreases.
- the number of update unit channels is the minimum value “1”, and when the average interference value is X0 or less, the number of update unit channels is the maximum value P. . In practice, the number of update unit channels does not reach the maximum value P.
- the combination rule 163 indicates a combination rule of a plurality of channels indicated by the update unit channel number 162. As shown in FIG. 25, the simplest combination rule 163 groups m channels indicated by the number of update unit channels 162 in the order of channel numbers. However, a plurality of channels whose channel numbers are discontinuous may be grouped into an update unit.
- an interference state table 128B for each update unit shown in FIG. 27 is used instead of the interference state table 128 shown in FIG. 10, for example.
- the interference state table 128B stores a channel number 1281 and an average interference value 1283 in association with the update unit number 1280.
- the deletion channel determination unit 121 measures interference values with a plurality of channels that are update units in the interference state table 128B, stores the average value as an average interference value 1283, and sets the average interference value 1283 as a threshold value. By comparing, it is determined whether or not each channel indicated by the channel number 1281 is an assignable channel.
- FIG. 28 is a flowchart illustrating an example of the update unit changing unit 150.
- the update unit changing unit 150 is activated by the control unit 100 prior to the execution of the deletion channel determination unit 121.
- the processor 11 calculates the average interference value of all the channels registered in the channel state table (1501), refers to the update unit table 160, and corresponds to the average interference value.
- the number of update unit channels 162 to be updated and the combination rule 163 are specified (1502).
- the processor 11 groups a plurality of channel numbers in accordance with the combining rule 163, generates the channel state table 130 and the interference state table 128B described in FIGS. 25 and 27 (1503), and deletes the channel determination unit. 121 is started (1504).
- the deleted channel determination unit 121 uses the interference state table 128B instead of the interference state table 128, and stores the average interference value of multiple channels for each update unit in the interference state table 128B in step 2104. In step 2120, it is only necessary to determine whether or not the average interference value indicated by the interference state table 128B exceeds the threshold value TH (g) for each channel in communication indicated by the assigned channel table 127.
- an unassignable channel (deleted channel) is randomly determined based on the relationship between the random number x and the established value ⁇ , and the determination result is stored in the channel list 140 in step 2123. Is done.
- the deletion channel determination can be omitted for the other channels included in the same update unit if the deletion channel determination has been completed for any one of the plurality of channels serving as the update unit. Therefore, when the value of the parameter i for specifying the determination target channel is updated, the channel list 140 is referred to check whether the deletion channel determination has already been executed in the same update unit as the i-th channel and executed.
- the same determination result as before may be applied to the i channel, so that the second steps 2120 to 2123 may be omitted.
- the deletion channel determination unit 121 when activated, for example, the update unit number indicated by the channel state table 130B or the interference state table 128B is stored in the channel list 142 illustrated in FIG. It is good to keep.
- the deletion channel determination unit 121 randomly changes the interference channel to an unassignable channel according to the random number x and the probability value ⁇
- the assignable channel selection unit 124 determines whether the assignable channel group Since the part is randomly changed to an assignable channel
- the assignable channel group indicated by the channel state table 130 is set as a base by periodically activating the deletion channel determination unit 121 and the assignable channel selection unit 124. Different channel combinations can be used for each station.
- the allocatable flag 133 of the channel state table 130 is in a state indicating allocatable channels in the initial state. Therefore, as long as the allocation channel determination unit 126 performs channel allocation using the same algorithm at a plurality of adjacent base stations 10, in the initial state, the probability that channel interference will occur between adjacent cells is high.
- the channel state changing unit 170 illustrated in FIG. 7 is activated by the control unit 100 when the base station 10 is in the initial state, and randomly sets the state of the assignable flag 133 indicated by the channel state table 130 to the “1” state. It has a function to do.
- FIG. 29 is a flowchart showing an embodiment of the channel state changing unit 170.
- the processor 11 When the channel state changing unit 170 is activated, the processor 11 first clears all assignable flags 133 in the group-specific subtable of the channel state table 130 ("0" state) (1701). Thereafter, the processor 11 activates the assignable channel selection unit 124 (1702), and when the operation of the assignable channel selection unit 124 ends, activates the assignable channel update unit 125 (1703). When the operation of the allocatable channel update unit 125 ends, the controller 100 is notified of the end of initialization (1704), and the operation of the channel state change unit 170 ends.
- the count number X of allocatable channels is 0 in all the sub tables for each group. Therefore, as is apparent from the flowchart of FIG. 18, when the allocatable channel selection unit 124 is executed, Y (g) items specified in the target value table 123 in advance from each group sub-table of the channel state table 130.
- An allocatable channel can be selected at random. Since the channel number of the allocatable channel selected by the allocatable channel selection unit 124 is stored in the channel list 145, the flag indicating the allocatable channel in the channel state table 130 by executing the allocatable channel update unit 125. 133 can be stored randomly.
- the channel numbers that can be allocated in the outer subcell area can be made channels that can also be allocated in the inner subcell area. Further, by setting the target number Y (g) in the target value table 123 so that the value becomes larger in the subcell area (group number) closer to the base station, different channel combinations can be allocated depending on the subcell area. A group of channels can be generated.
- the non-assignable channel and the assignable channel are selected at random, if the target number of assignable channels stored in the channel state table is reduced, a plurality of adjacent base stations differ from each other.
- the possibility of selecting an allocation channel to the terminal from among allocatable channel groups becomes high, and interchannel interference can be avoided.
- the target number of allocatable channels is increased, the number of channels allocated to terminals increases, so that the base station can communicate with many terminals. Therefore, in the target value table 123, in the subcell region at the cell boundary where the possibility of interference is high, the target value of the assignable channel is reduced, and the target value of the assignable channel is increased as the cell center is approached.
- reuse partitioning can be performed effectively.
- the deletion channel determination unit 121, the unassignable channel update unit 122, the assignable channel selection unit 124, and the assignable channel update unit 125 are periodically started according to instructions from the control unit 100. did.
- the control unit 100 activates the deletion channel determination unit 121 and the unassignable channel update unit 122 in the unit of the frame period shown in FIG. 4, and the assignable channel selection unit 124 and the allocation in the even frame.
- the possible channel update unit 125 may be activated.
- the deletion channel determination unit 121, the unallocated channel update unit 122, the allocatable channel selection unit 124, and the allocatable channel update unit 125 may be activated every plural frames.
- the present invention can be used in a mobile radio communication system.
- the figure which shows one example of the radio channel structure applied to the radio area between the base station 10 and the terminal 20. 1 is a block configuration diagram showing an embodiment of a base station 10.
- FIG. 128 The figure which shows one Example of the interference state table 128.
- FIG. The figure which shows one Example of the threshold value table 129 which the deletion channel determination part 121 refers.
- the figure which shows one Example of the target value table 123 which the assignable channel selection part 124 refers.
- the figure which shows one Example of the terminal position table 190 which the control part 100 utilizes.
- FIG. The flowchart which shows 1st Example of the deletion channel determination part 121.
- the flowchart which shows the Example of the assignable channel update part 125 The figure for demonstrating the change of the channel state table 130U with which base station 10A, 10B is provided.
- FIG. The flowchart which shows 2nd Example of the deletion channel determination part 121.
- FIG. The flowchart of 2nd Example of the channel selection part 124 which can be allocated.
- the flowchart of the program module part of 3rd Example added to the channel allocation part 122 which cannot be allocated.
- FIG. 128B The figure which shows an example of the interference state table 128B classified by update unit used in 4th Example.
- FIG. The figure which shows one Example of the channel state change part.
- 10 base station, 20: terminal, 100: control unit, 120: dynamic channel allocation unit, 121: deletion channel determination unit, 122: unassignable channel update unit, 123: target value table, 124: allocation channel selection unit, 125: Allocation channel update unit, 126: Allocation channel determination unit, 127: Allocation channel table, 128: Interference state table, 129: Threshold table, 130: Channel state table, 140, 145: Channel list, 150: Update unit change unit 160: update unit table, 170: channel state changing unit.
Landscapes
- Engineering & Computer Science (AREA)
- Quality & Reliability (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
A base station for a radio communication system, which allocates separate radio channels to a plurality of terminals positioned in a cell region to perform packet communication with the terminals over the allocated channels comprises a dynamic channel allocation section for selecting an allocated channel for the terminals from a channel group in a state which can be allocated on a channel state table in response to the channel allocation request from a control unit. The dynamic channel allocation section detects an interference channel from a plurality of channels which have already been allocated, determines at random whether or not the interference channel should be changed to a channel which cannot be allocated, and periodically changes the state information of the channel state table.
Description
本発明は、無線通信システム用の基地局に関し、更に詳しくは、各基地局が自律分散制御によって無線端末にチャネル割当てを行う移動無線通信システムに適用される無線基地局に関する。
The present invention relates to a base station for a radio communication system, and more particularly to a radio base station applied to a mobile radio communication system in which each base station assigns a channel to a radio terminal by autonomous distributed control.
一般に、ディジタル移動体通信システムでは、隣接する複数の基地局が形成するセル間で無線チャネル信号が干渉しないように、各基地局が、自局セル内の無線端末(移動端末)に対して、隣接基地局とは異なるチャネルを選択的に割当てる。
In general, in a digital mobile communication system, each base station is connected to a radio terminal (mobile terminal) in its own cell so that radio channel signals do not interfere between cells formed by a plurality of adjacent base stations. A channel different from that of the adjacent base station is selectively allocated.
例えば、固定的チャネル割当て方式では、隣接する複数の基地局が同一チャネルを使用しないように、基地局制御局が、基地局毎に使用可能なチャネルを予め指定している。固定的チャネル割当て方式は、隣接セル間でのチャネル干渉を最小限に抑圧できる反面、各基地局で利用できるチャネル数が制限されるため、無線通信システム全体としての周波数利用効率が悪くなる。
For example, in the fixed channel assignment method, the base station control station preliminarily designates a usable channel for each base station so that a plurality of adjacent base stations do not use the same channel. The fixed channel assignment method can suppress the channel interference between adjacent cells to the minimum, but the number of channels that can be used in each base station is limited, so that the frequency use efficiency of the entire wireless communication system is deteriorated.
そこで、ディジタル移動体通信システムでは、各基地局が、隣接基地局における無線チャネルの使用状況を自律的に判断し、自局で使用できると判断したチャネル群から無線端末の割当てチャネルを選択する動的チャネル割当方式が注目されている。動的チャネル割当方式によれば、各基地局が、無線通信システムで定義された全チャネルの中から、自局で使用可能なチャネル群を選択できるため、周波数利用効率のよい無線通信システムを構築できる。
Therefore, in a digital mobile communication system, each base station autonomously determines the usage status of a radio channel in an adjacent base station, and selects an allocation channel of a radio terminal from a group of channels determined to be usable by itself. Attention has been paid to a dynamic channel allocation scheme. According to the dynamic channel allocation method, each base station can select a channel group that can be used by itself from all channels defined in the wireless communication system, so that a wireless communication system with high frequency utilization efficiency can be constructed. it can.
動的チャネル割当方式の無線通信システムでは、各基地局が、無線端末との通信に使用される全チャネルについて、例えば、キャリアセンスによって干渉波レベルを測定し、干渉波レベル、例えば、CIR(希望波対干渉波電力比)が所定閾値よりも小さいチャネルを空きチャネルと判定して、無線端末への割当てチャネルを選択している。
In a wireless communication system using a dynamic channel assignment method, each base station measures an interference wave level by carrier sense, for example, for all channels used for communication with a wireless terminal, and an interference wave level, for example, CIR (desired A channel having a wave-to-interference wave power ratio) smaller than a predetermined threshold is determined as an empty channel, and an allocation channel to the wireless terminal is selected.
例えば、特開平8-33033号公報(特許文献1)は、移動端末と通信するための複数の無線送受信機を備えた基地局が、各無線チャネルに割当て優先度を設定しておき、チャネル設定処理において、割当て優先度順に無線チャネル干渉を測定して空きチャネルを検出し、待機状態にある各無線送受信機に空きチャネルを設定する無線チャネル割当制御方法を提案している。特許文献1では、発着呼によって無線チャネルの割当て要求が発生したとき、基地局が、待機状態にある送受信機を選択し、この送受信機に設定されている無線チャネルを端末に通知している。また、待機状態にある送受信機に割当てたチャネルについて、基地局が周期的に干渉測定を実行し、設定チャネルが使用不可と判定された場合は、別の空きチャネルを送受信機に設定している。
For example, in Japanese Patent Laid-Open No. 8-33033 (Patent Document 1), a base station equipped with a plurality of radio transceivers for communicating with a mobile terminal sets an allocation priority for each radio channel, and sets a channel. In the processing, a radio channel allocation control method is proposed in which a radio channel interference is measured in order of allocation priority to detect an idle channel, and an idle channel is set in each radio transceiver in a standby state. In Patent Document 1, when a radio channel allocation request is generated by an incoming / outgoing call, a base station selects a transceiver in a standby state and notifies a terminal of a radio channel set in the transceiver. In addition, the base station periodically performs interference measurement for the channel assigned to the transmitter / receiver in the standby state, and if it is determined that the set channel cannot be used, another free channel is set in the transmitter / receiver. .
周波数利用効率を向上させるチャネル割当て技術の一つとして、リユースパーティショニング(Reuse Partitioning)がある。リユースパーティショニングでは、例えば、セルを基地局に近いセル中心領域と、基地局から離れたセル境界領域とに分割しておき、隣接基地局からの電波が届きにくいセル中心領域に位置した無線端末に対しては、他の基地局と共通のチャネルを割当て、セル境界領域に位置した無線端末に対しては、基地局毎に異なったチャネルを割当てる。リユースパーティショニングを適用すると、セル中心領域における周波数の利用効率を改善できるため、周波数リソースを増やすことなく、基地局当たりの収容端末数を増加することが可能となる。
Reuse partitioning is one of the channel allocation technologies that improve frequency utilization efficiency. In reuse partitioning, for example, a cell is divided into a cell center area close to the base station and a cell boundary area away from the base station, and a radio terminal located in the cell center area where radio waves from adjacent base stations are difficult to reach Is assigned to a channel common to other base stations, and a different channel is assigned to each base station for wireless terminals located in the cell boundary region. When reuse partitioning is applied, the frequency utilization efficiency in the cell center region can be improved, so that the number of accommodated terminals per base station can be increased without increasing frequency resources.
例えば、信学技報、RCS91-32、1991年(非特許文献1)には、“マイクロセル移動通信システムにおける自律分散ダイナミックチャネル割当て方式(ARP)”と題して、リユースパーティショニングを自律分散制御によって実現する技術が提案されている。
また、特開2002―44720号公報(特許文献2)には、無線路における伝搬遅延時間を利用してセル内の無線端末の位置を特定するようにしたリユースパーティショニング方式の基地局が提案されている。 For example, in IEICE Technical Report, RCS91-32, 1991 (Non-Patent Document 1), “Autonomous Distributed Dynamic Channel Allocation (ARP) in a Microcell Mobile Communication System” is used for autonomous distributed control of reuse partitioning. The technology realized by this is proposed.
Japanese Patent Laid-Open No. 2002-44720 (Patent Document 2) proposes a reuse partitioning type base station that specifies the position of a wireless terminal in a cell using a propagation delay time in a wireless path. ing.
また、特開2002―44720号公報(特許文献2)には、無線路における伝搬遅延時間を利用してセル内の無線端末の位置を特定するようにしたリユースパーティショニング方式の基地局が提案されている。 For example, in IEICE Technical Report, RCS91-32, 1991 (Non-Patent Document 1), “Autonomous Distributed Dynamic Channel Allocation (ARP) in a Microcell Mobile Communication System” is used for autonomous distributed control of reuse partitioning. The technology realized by this is proposed.
Japanese Patent Laid-Open No. 2002-44720 (Patent Document 2) proposes a reuse partitioning type base station that specifies the position of a wireless terminal in a cell using a propagation delay time in a wireless path. ing.
特許文献1の無線チャネル割当制御方法は、待機状態にある送受信機に設定された無線チャネルが、端末へのチャネル割当て時点でも空き状態にあることが、前提となっている。従って、この無線チャネル割当制御方法は、例えば、PHSシステムのように、端末が同一の割当てチャネルを持続的に使用する回線交換方式の無線通信システムに適しており、割当てチャネルが頻繁に変わるパケット交換方式の無線通信システムでは、有効に機能しない可能性がある。
The wireless channel assignment control method of Patent Document 1 is premised on that a wireless channel set in a transmitter / receiver in a standby state is in an empty state even at the time of channel assignment to a terminal. Therefore, this radio channel allocation control method is suitable for a circuit switching type radio communication system in which a terminal continuously uses the same allocated channel, such as a PHS system, and packet switching in which the allocated channel changes frequently. There is a possibility that the wireless communication system of the system does not function effectively.
パケット交換方式の無線通信システムでは、パケット毎にチャネル割当てが発生するため、チャネルの使用状態が頻繁に変化する。従って、干渉測定時に空きチャネルと判断されたチャネルが、その直後に他の基地局で使用されたため、端末へのチャネル割当て時点では、既に割当不可チャネルになっている可能性が高くなる。また、各基地局が、周期的な干渉測定によって、自律的に空きチャネルを検出しておき、一群の空きチャネルの中から、端末への割当てチャネルを選択する動的チャネル割当方式の無線通信システムでは、各基地局は、空きチャネルが他の基地局で使用中の状態となったことを瞬時に知ることができない。
In a packet-switched wireless communication system, channel allocation occurs for each packet, so the channel usage state changes frequently. Therefore, since a channel determined to be an empty channel at the time of interference measurement is used by another base station immediately after that, there is a high possibility that it is already an unassignable channel at the time of channel assignment to the terminal. In addition, a wireless communication system using a dynamic channel assignment method in which each base station detects a free channel autonomously by periodic interference measurement and selects a channel to be assigned to a terminal from a group of free channels. Then, each base station cannot instantly know that the empty channel has been used by another base station.
例えば、隣接する2つの基地局BS1とBS2が、それぞれ自律的に検出した空きチャネル群を管理し、基地局BS1が、基地局BS2よりも一瞬早く、空きチャネルCHnを自セル内の端末に割当てたと仮定する。チャネルCHnが、基地局BS2の空きチャネル群にも含まれていた場合、チャネルCHnが既に使用中チャネルとなったことを知らない基地局SB2が、自セル内の別の端末にチャネルCHnを割当てた結果、セル間でチャネル干渉が発生する可能性がある。
For example, two adjacent base stations BS1 and BS2 each manage a free channel group detected autonomously, and the base station BS1 assigns a free channel CHn to a terminal in its own cell immediately before the base station BS2. Assuming that If the channel CHn is also included in the vacant channel group of the base station BS2, the base station SB2 that does not know that the channel CHn has already become a busy channel assigns the channel CHn to another terminal in its own cell. As a result, channel interference may occur between cells.
リユースパーティショニング方式の無線通信システムの場合でも、各基地局がパケット毎に自律分散的にチャネル割当てを実行しようとすると、上記と同様の問題が発生する。
Even in the case of a reuse partitioning wireless communication system, if each base station attempts to perform channel allocation in an autonomous and distributed manner for each packet, the same problem as described above occurs.
本発明の目的は、パケット交換方式の無線通信システムで動的チャネル割当てを可能にする基地局を提供することにある。
本発明の他の目的は、特に、リユースパーティショニングの動的チャネル割当てに適したパケット交換無線通信システム用の基地局を提供することにある。 An object of the present invention is to provide a base station that enables dynamic channel assignment in a packet-switched wireless communication system.
Another object of the present invention is to provide a base station for a packet-switched radio communication system particularly suitable for dynamic channel assignment for reuse partitioning.
本発明の他の目的は、特に、リユースパーティショニングの動的チャネル割当てに適したパケット交換無線通信システム用の基地局を提供することにある。 An object of the present invention is to provide a base station that enables dynamic channel assignment in a packet-switched wireless communication system.
Another object of the present invention is to provide a base station for a packet-switched radio communication system particularly suitable for dynamic channel assignment for reuse partitioning.
上記目的を達成するため、本発明では、セル領域内に位置した複数の端末に個別の無線チャネルを割当て、各端末と割当チャネルでパケット通信する無線通信システム用の基地局が、チャネル割当要求を発生する制御部と、上記制御部からのチャネルの割当要求に応答して、チャネル状態テーブル上で割当可能状態となっているチャネル群から、上記端末用の割当チャネルを選択する動的チャネル割当部を備え、上記動的チャネル割当部が、割当済みとなっている複数のチャネルの中から干渉チャネルを検出し、該干渉チャネルを割当不可チャネルに変更すべきか否かをランダムに判定して、上記チャネル状態テーブルの状態情報を周期的に変更することを特徴とする。
In order to achieve the above object, according to the present invention, a base station for a radio communication system that allocates individual radio channels to a plurality of terminals located in a cell region and performs packet communication with each terminal using the allocated channels sends a channel allocation request. And a dynamic channel allocation unit that selects an allocation channel for the terminal from a group of channels that can be allocated on the channel state table in response to a channel allocation request from the control unit. The dynamic channel allocating unit detects an interference channel from among a plurality of allocated channels, randomly determines whether the interference channel should be changed to an unallocated channel, and The state information of the channel state table is periodically changed.
更に詳述すると、本発明の無線通信システム用の基地局は、送受信されるパケット毎に、端末で使用すべきチャネルの割当要求を発生する制御部と、上記チャネル割当要求に応答して、上記無線通信システムで使用可能な複数の無線チャネルの中から、上記端末用の割当チャネルを選択する動的チャネル割当部とを備え、
上記動的チャネル割当部が、上記無線通信システムで使用可能な無線チャネルのチャネル番号と対応する複数のエントリからなり、各エントリが、チャネル割当可否を示す状態情報を含むチャネル状態テーブルと、上記チャネル状態テーブル上で割当可能状態となっているチャネル群から、端末への割当チャネルを選択する割当チャネル決定部と、上記割当チャネル決定部で割当済みとなっている複数のチャネルの中から、干渉値と閾値との比較によって干渉チャネルを検出し、該干渉チャネルについて割当不可チャネルに変更すべきか否かをランダムに判定する削除チャネル判定部と、上記削除チャネル判定部が割当不可チャネルと判定した干渉チャネルについて、上記チャネル状態テーブルの状態情報を変更する割当不可チャネル更新部とを含むことを特徴とする。 More specifically, the base station for the radio communication system of the present invention is configured to generate a channel allocation request to be used by a terminal for each packet transmitted and received, and in response to the channel allocation request, A dynamic channel allocation unit that selects an allocation channel for the terminal from a plurality of radio channels that can be used in a radio communication system;
The dynamic channel allocation unit includes a plurality of entries corresponding to channel numbers of radio channels that can be used in the radio communication system, and each entry includes a channel status table including status information indicating whether channel allocation is possible, and the channel An interference channel determination unit that selects an allocation channel to a terminal from a group of channels that can be allocated on the status table, and an interference value from among a plurality of channels that have been allocated by the allocation channel determination unit. A deletion channel determination unit that detects an interference channel by comparing the interference channel with a threshold and determines whether or not the interference channel should be changed to an unassignable channel, and an interference channel determined by the deletion channel determination unit as an unassignable channel For the channel status table, the non-assignable channel update unit that changes the status information of the above channel status table Characterized in that it comprises a.
上記動的チャネル割当部が、上記無線通信システムで使用可能な無線チャネルのチャネル番号と対応する複数のエントリからなり、各エントリが、チャネル割当可否を示す状態情報を含むチャネル状態テーブルと、上記チャネル状態テーブル上で割当可能状態となっているチャネル群から、端末への割当チャネルを選択する割当チャネル決定部と、上記割当チャネル決定部で割当済みとなっている複数のチャネルの中から、干渉値と閾値との比較によって干渉チャネルを検出し、該干渉チャネルについて割当不可チャネルに変更すべきか否かをランダムに判定する削除チャネル判定部と、上記削除チャネル判定部が割当不可チャネルと判定した干渉チャネルについて、上記チャネル状態テーブルの状態情報を変更する割当不可チャネル更新部とを含むことを特徴とする。 More specifically, the base station for the radio communication system of the present invention is configured to generate a channel allocation request to be used by a terminal for each packet transmitted and received, and in response to the channel allocation request, A dynamic channel allocation unit that selects an allocation channel for the terminal from a plurality of radio channels that can be used in a radio communication system;
The dynamic channel allocation unit includes a plurality of entries corresponding to channel numbers of radio channels that can be used in the radio communication system, and each entry includes a channel status table including status information indicating whether channel allocation is possible, and the channel An interference channel determination unit that selects an allocation channel to a terminal from a group of channels that can be allocated on the status table, and an interference value from among a plurality of channels that have been allocated by the allocation channel determination unit. A deletion channel determination unit that detects an interference channel by comparing the interference channel with a threshold and determines whether or not the interference channel should be changed to an unassignable channel, and an interference channel determined by the deletion channel determination unit as an unassignable channel For the channel status table, the non-assignable channel update unit that changes the status information of the above channel status table Characterized in that it comprises a.
削除チャネル判定部は、例えば、干渉チャネル毎に発生させた乱数値に基づいて、上記干渉チャネルを割当不可チャネルに変更すべきか否かを判定する。本発明の1実施例では、上記動的チャネル割当部が、上記チャネル状態テーブル上で割当不可状態となっているチャネルの個数が目標値よりも少ない場合に、割当可能状態となっているチャネル群から、上記目標値に不足する個数のチャネルをランダムに選択し、選択されたチャネルの状態情報を変更するための手段を含む。
The deletion channel determination unit determines, for example, whether or not the interference channel should be changed to an unassignable channel based on a random value generated for each interference channel. In one embodiment of the present invention, when the number of channels in the channel state table in which the dynamic channel allocation unit is in an unassignable state is less than a target value, the channel group in the assignable state And means for randomly selecting a number of channels insufficient for the target value and changing the state information of the selected channel.
セル領域が、基地局からの距離に応じて分割された複数のサブセル領域からなる場合、上記制御部が、前記セル領域内に存在する各端末の識別子と対応づけて、該端末が位置するサブセル領域を示すグループ識別子を記憶した端末位置テーブルを備え、端末識別子とグループ識別子を含むチャネル割当要求を発生する。
この場合、チャネル状態テーブルは、上記複数のサブセル領域と対応する複数のサブテーブルからなり、各サブテーブルが、各サブセル領域内での無線チャネルの割当可否を示す状態情報を記憶する複数のエントリからなり、上記割当チャネル決定部が、上記チャネル割当要求が示すグループ識別子で特定されたサブテーブルを参照して、上記チャネル割当要求が示す端末識別子をもつ端末への割当チャネルを選択する。 When the cell region is composed of a plurality of subcell regions divided according to the distance from the base station, the control unit associates the identifier of each terminal existing in the cell region with the subcell in which the terminal is located. A terminal location table storing a group identifier indicating a region is provided, and a channel assignment request including the terminal identifier and the group identifier is generated.
In this case, the channel state table includes a plurality of sub-tables corresponding to the plurality of sub-cell regions, and each sub-table includes a plurality of entries storing state information indicating whether radio channels can be allocated in each sub-cell region. Thus, the allocation channel determination unit refers to the sub-table specified by the group identifier indicated by the channel allocation request, and selects an allocation channel to the terminal having the terminal identifier indicated by the channel allocation request.
この場合、チャネル状態テーブルは、上記複数のサブセル領域と対応する複数のサブテーブルからなり、各サブテーブルが、各サブセル領域内での無線チャネルの割当可否を示す状態情報を記憶する複数のエントリからなり、上記割当チャネル決定部が、上記チャネル割当要求が示すグループ識別子で特定されたサブテーブルを参照して、上記チャネル割当要求が示す端末識別子をもつ端末への割当チャネルを選択する。 When the cell region is composed of a plurality of subcell regions divided according to the distance from the base station, the control unit associates the identifier of each terminal existing in the cell region with the subcell in which the terminal is located. A terminal location table storing a group identifier indicating a region is provided, and a channel assignment request including the terminal identifier and the group identifier is generated.
In this case, the channel state table includes a plurality of sub-tables corresponding to the plurality of sub-cell regions, and each sub-table includes a plurality of entries storing state information indicating whether radio channels can be allocated in each sub-cell region. Thus, the allocation channel determination unit refers to the sub-table specified by the group identifier indicated by the channel allocation request, and selects an allocation channel to the terminal having the terminal identifier indicated by the channel allocation request.
本発明の1実施例では、上記動的チャネル割当部が、割当済みチャネルで測定された干渉値を記憶する干渉状態テーブルと、グループ識別子と対応付けて閾値を記憶する閾値テーブルとを備え、上記削除チャネル判定部が、上記閾値テーブルからグループ識別子順に読み出した閾値と、上記干渉状態テーブルが示す割当済みチャネルの干渉値に基づいて、上記サブセル領域毎に、割当不可チャネルに変更すべき干渉チャネルを判定し、上記割当不可チャネル更新部が、上記削除チャネル判定部による判定結果に従って、上記チャネル状態テーブルの状態情報をサブテーブル毎に変更する。
In one embodiment of the present invention, the dynamic channel allocation unit includes an interference state table that stores an interference value measured in an allocated channel, and a threshold value table that stores a threshold value in association with a group identifier, An interference channel to be changed to an unassignable channel for each subcell region based on the threshold value read by the deletion channel determination unit from the threshold value table in the group identifier order and the interference value of the assigned channel indicated by the interference state table. The non-assignable channel updating unit changes the state information of the channel state table for each sub-table according to the determination result by the deletion channel determining unit.
本発明の1実施例では、上記閾値テーブルには、サブセル領域と基地局との距離が遠くなるに従がって閾値が小さくなるように、グループ番号によって異なった閾値が記憶される。また、上記削除チャネル判定部が、特定のサブセル領域で割当不可チャネルと判定されたチャネルについては、上記特定サブセル領域よりも外側の各サブセル領域で、前記干渉値と閾値とを比較することなく、割当不可チャネルと判定する。
In one embodiment of the present invention, the threshold value table stores different threshold values depending on the group number so that the threshold value decreases as the distance between the subcell area and the base station increases. Further, the channel determined by the deletion channel determination unit as an unassignable channel in a specific subcell region without comparing the interference value with a threshold value in each subcell region outside the specific subcell region, It is determined that the channel cannot be assigned.
本発明の他の特徴は、上記動的チャネル割当部が、上記チャネル状態テーブル上で割当可能状態となっているチャネル数をカウントし、カウント値が目標値よりも少ない場合に、上記チャネル状態テーブル上で割当不可状態となっているチャネル群から、上記目標値に不足する個数のチャネルをランダムに選択する割当可能チャネル選択部と、上記割当可能チャネル選択部で選択されたチャネルについて、上記チャネル状態テーブルの状態情報を割当可能状態に変更する割当可能チャネル更新部とを備えたことにある。
Another feature of the present invention is that, when the dynamic channel allocation unit counts the number of channels that can be allocated on the channel state table and the count value is smaller than a target value, the channel state table The assignable channel selection unit that randomly selects the number of channels that are insufficient for the target value from the channel group that is not assignable above, and the channel state for the channel selected by the assignable channel selection unit And an allocatable channel update unit that changes the state information of the table to an allocatable state.
セル領域が複数のサブセル領域に分割され、上記チャネル状態テーブルが、グループ識別子で特定される複数のサブテーブルからなる場合、上記割当可能チャネル選択部は、上記サブテーブル毎に、割当可能状態となっているチャネル数をカウントし、カウント値が目標値よりも少ない場合に、該サブテーブル上で割当不可状態となっているチャネル群から、上記目標値に不足する個数のチャネルをランダムに選択する。
When the cell region is divided into a plurality of sub cell regions and the channel state table is composed of a plurality of sub tables specified by group identifiers, the assignable channel selection unit is in an assignable state for each sub table. When the count value is smaller than the target value, the number of channels that are insufficient for the target value is randomly selected from the channel group that is not assignable on the sub-table.
本発明の1実施例では、上記割当可能チャネル選択部が、特定のサブセル領域で割当可能状態になっているチャネルについては、それよりも内側の各サブセル領域でも割当可能チャネルとして選択する。
In one embodiment of the present invention, the allocatable channel selection unit selects a channel that is in an assignable state in a specific subcell area as an assignable channel in each subcell area inside it.
本発明の更に他の特徴は、上記動的チャネル割当部が、上記チャネル状態テーブルの状態情報の初期値を決定するチャネル状態変更部を有し、上記チャネル状態変更部が、上記チャネル状態テーブルの複数のエントリから所定個数のエントリをランダムに選択し、選択されたエントリの状態情報を割当可能状態に設定するようにしたことにある。
According to still another aspect of the present invention, the dynamic channel allocation unit includes a channel state changing unit that determines an initial value of the state information in the channel state table, and the channel state changing unit includes the channel state table. A predetermined number of entries are randomly selected from a plurality of entries, and the state information of the selected entries is set to an assignable state.
本発明の基地局では、割当済みチャネルが干渉チャネルとなった場合に、動的チャネル割当部が、干渉チャネルを割当不可チャネルに変更すべきか否かをランダムに判定するようになっている。また、割当可能チャネルの個数が目標値より少なくなったとき、動的チャネル割当部が、割当不可チャネル群の中からランダムに選択したチャネルを割当可能チャネルに変更している。
In the base station of the present invention, when the allocated channel becomes an interference channel, the dynamic channel allocation unit randomly determines whether the interference channel should be changed to an unallocated channel. Further, when the number of allocatable channels becomes smaller than the target value, the dynamic channel allocation unit changes a channel randomly selected from the unallocated channel group to an allocatable channel.
従って、本発明によれば、チャネル状態テーブルに記憶される割当可能チャネル群の構成が、基地局毎に異なったものとなるため、チャネル状態テーブルに基づいて選択した割当チャネルがセル間で干渉する可能性を低減できる。また、本発明の基地局では、既に割当済みのチャネルについて、干渉チャネルか否かの判定が実行されるため、全チャネルの空き状態を判定する方式に比較して、干渉測定とチャネル状態テーブルの更新所要時間を短縮できる。
Therefore, according to the present invention, since the configuration of the assignable channel group stored in the channel state table differs for each base station, the assigned channel selected based on the channel state table interferes between cells. The possibility can be reduced. Further, in the base station of the present invention, since it is determined whether or not an already allocated channel is an interference channel, interference measurement and the channel state table are compared with the method of determining the free state of all channels. Update time can be shortened.
以下、本発明の幾つかの実施例について、図面を参照して説明する。
図1は、本発明の無線基地局および動的チャネル割当て方法が適用される無線通信システムの概略的な構成図を示す。 Several embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a schematic configuration diagram of a radio communication system to which a radio base station and a dynamic channel allocation method of the present invention are applied.
図1は、本発明の無線基地局および動的チャネル割当て方法が適用される無線通信システムの概略的な構成図を示す。 Several embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a schematic configuration diagram of a radio communication system to which a radio base station and a dynamic channel allocation method of the present invention are applied.
無線通信システムは、複数の無線基地局(BS)10(10A、10B、・・・10N)と、これらの無線基地局10が接続される基地局制御装置(BSC)30とからなる。基地局制御装置30は、L3スイッチ(またはルータ)31とゲートウェイ(GW)32を介して、外部の通信ネットワーク、例えば、インターネットNWに接続されている。但し、L3スイッチ31の機能は、基地局制御装置30と一体化されてもよい。各基地局10は、無線通信圏内となるセル1(1A、1B、・・・1M)内に位置した複数の移動無線端末(MS)20(20-1、20-2、・・・)と無線チャネルで通信する。
The wireless communication system includes a plurality of wireless base stations (BS) 10 (10A, 10B,... 10N) and a base station controller (BSC) 30 to which these wireless base stations 10 are connected. The base station control device 30 is connected to an external communication network such as the Internet NW via an L3 switch (or router) 31 and a gateway (GW) 32. However, the function of the L3 switch 31 may be integrated with the base station control device 30. Each base station 10 has a plurality of mobile radio terminals (MS) 20 (20-1, 20-2,...) Located in a cell 1 (1A, 1B,... 1M) that is within a radio communication range. Communicate over a wireless channel.
図2は、各無線基地局(以下、単に基地局と言う)10が、リユースパーティショニングでチャネル割当てを行う場合のセル領域と空きチャネルの関係を示す。
リユースパーティショニングでは、各基地局10によって形成されるセル1が、基地局からの距離によって複数のサブセル領域(1A-1、1A-2、・・・1A-n)、(1B-1、1B-2、・・・1B-n)、(1C-1、1C-2、・・・1C-n)に分割され、セル内の複数の無線端末(以下、単に端末と言う)20が、現在位置となるサブセル領域と対応付けて、複数のグループに分けて管理される。 FIG. 2 shows a relationship between a cell area and an empty channel when each radio base station (hereinafter simply referred to as a base station) 10 performs channel allocation by reuse partitioning.
In reuse partitioning, acell 1 formed by each base station 10 has a plurality of subcell areas (1A-1, 1A-2,... 1A-n), (1B-1, 1B) depending on the distance from the base station. -2, ... 1Bn), (1C-1, 1C-2, ... 1Cn), and a plurality of wireless terminals (hereinafter simply referred to as terminals) 20 in the cell In association with the subcell area that is the position, it is managed by being divided into a plurality of groups.
リユースパーティショニングでは、各基地局10によって形成されるセル1が、基地局からの距離によって複数のサブセル領域(1A-1、1A-2、・・・1A-n)、(1B-1、1B-2、・・・1B-n)、(1C-1、1C-2、・・・1C-n)に分割され、セル内の複数の無線端末(以下、単に端末と言う)20が、現在位置となるサブセル領域と対応付けて、複数のグループに分けて管理される。 FIG. 2 shows a relationship between a cell area and an empty channel when each radio base station (hereinafter simply referred to as a base station) 10 performs channel allocation by reuse partitioning.
In reuse partitioning, a
リユースパーティショニング方式の無線通信システムでは、各基地局10は、サブセル領域毎にチャネル状態を管理する。サブテーブル2B-1は、基地局10Bのセル中心領域1B-1のチャネル状態、サブテーブル2B-nは、基地局10Bのセル境界領域のチャネル状態、サブテーブル2A-nは、基地局10Aのセル境界領域のチャネル状態を示しており、サブテーブル内の数字はチャネル番号、Xマークを付したチャネル番号は割当不可チャネル、その他のチャネル番号は割当可能チャネルを意味している。
In the reuse partitioning wireless communication system, each base station 10 manages the channel state for each subcell area. Sub-table 2B-1 is the channel state of cell center region 1B-1 of base station 10B, sub-table 2B-n is the channel state of the cell boundary region of base station 10B, and sub-table 2A-n is the channel state of base station 10A. The channel state in the cell boundary region is shown. The numbers in the sub-table indicate channel numbers, channel numbers with X mark indicate unassignable channels, and other channel numbers indicate assignable channels.
初期状態では、各サブセル領域において、全チャネルが割当可能となっており、基地局が、複数の端末に対してチャネル割当てを繰り返すうちに、隣接セルで使用中のチャネルと干渉する割当不可チャネル数が増加し、割当可能チャネル(空きチャネル)群を形成するチャネル番号の分布が変化する。但し、セル中心領域では、隣接セルからの干渉電波が弱くなるため、サブテーブル2B-1、2B-nが示すように、セル境界領域よりも割当可能チャネル数は多くなる。
In the initial state, all channels can be allocated in each subcell area, and the base station repeats channel allocation to a plurality of terminals, and the number of channels that cannot be allocated that interferes with channels being used in adjacent cells. Increases, and the distribution of channel numbers forming the assignable channel (empty channel) group changes. However, in the cell center region, interference radio waves from adjacent cells are weakened, so that the number of assignable channels is larger than that in the cell boundary region, as shown in sub-tables 2B-1 and 2B-n.
従来の動的チャネル割当てでは、各基地局が、無線通信システムで使用できる全チャネルについて干渉状態を周期的に測定し、干渉値が所定閾値を越えるチャネルを割当不可チャネルと判定し、干渉の少ない割当可能チャネル群の中から、端末に割当てるべきチャネルを選択するようにしている。
各基地局が、端末に対してパケット単位で頻繁にチャネル割当を行った場合、干渉測定時に割当可能と判断したチャネルが、その後の他の基地局での使用によって、短時間のうちに割当不可チャネルとなってしまう。従って、各基地局10が、周期的に干渉測定を行い、割当可能と判断したチャネルをチャネル状態テーブルに記憶したとしても、実際にチャネル割当を実行する時点では、チャネル状態テーブルの内容が、各チャネルの最新の状態とは異なったものとなっているため、適切でないチャネルが端末に割当てられることになる。 In the conventional dynamic channel assignment, each base station periodically measures the interference state for all channels that can be used in the wireless communication system, and determines that a channel whose interference value exceeds a predetermined threshold is an unassignable channel, thereby reducing interference. A channel to be assigned to the terminal is selected from the assignable channel group.
When each base station frequently assigns channels to the terminal in units of packets, channels that are determined to be assignable during interference measurement cannot be assigned in a short time due to subsequent use by other base stations. It becomes a channel. Therefore, even if eachbase station 10 periodically performs interference measurement and stores a channel determined to be assignable in the channel state table, at the time of actually executing channel assignment, the contents of the channel state table Since it is different from the latest state of the channel, an inappropriate channel is assigned to the terminal.
各基地局が、端末に対してパケット単位で頻繁にチャネル割当を行った場合、干渉測定時に割当可能と判断したチャネルが、その後の他の基地局での使用によって、短時間のうちに割当不可チャネルとなってしまう。従って、各基地局10が、周期的に干渉測定を行い、割当可能と判断したチャネルをチャネル状態テーブルに記憶したとしても、実際にチャネル割当を実行する時点では、チャネル状態テーブルの内容が、各チャネルの最新の状態とは異なったものとなっているため、適切でないチャネルが端末に割当てられることになる。 In the conventional dynamic channel assignment, each base station periodically measures the interference state for all channels that can be used in the wireless communication system, and determines that a channel whose interference value exceeds a predetermined threshold is an unassignable channel, thereby reducing interference. A channel to be assigned to the terminal is selected from the assignable channel group.
When each base station frequently assigns channels to the terminal in units of packets, channels that are determined to be assignable during interference measurement cannot be assigned in a short time due to subsequent use by other base stations. It becomes a channel. Therefore, even if each
本発明の特徴は、隣接する2つの基地局、例えば、10Aと10Bが実行した干渉測定によって、チャネルCHjが干渉チャネルと判定された場合であっても、基地局10A、10Bが、チャネルCHjをランダムに取り扱うことによって、結果的に、基地局10A、10Bで内容的に異なったチャネル状態テーブルが形成され、互いに異なった候補チャネル(割当可能チャネル)群から端末への割当チャネルが選択されるようにしたことにある。
The feature of the present invention is that even if the channel CHj is determined to be an interference channel by interference measurement performed by two adjacent base stations, for example, 10A and 10B, the base stations 10A and 10B As a result of the random handling, different channel state tables are formed in the base stations 10A and 10B, and allocation channels to terminals from different candidate channel (assignable channel) groups are selected. It is in that.
図3は、基地局(BS)10の基本的な面的配置を示す。
複数の基地局を正六角形の中心と各頂点に位置するように等間隔に配置した場合、均一半径の六角セルが規則的に配列されたセル配置となる。基地局の配列が不規則になると、半径と形状が不均一のセル配置となる。本発明は、セル配列が不規則な無線通信システムにも適用できる。 FIG. 3 shows a basic planar arrangement of the base station (BS) 10.
When a plurality of base stations are arranged at equal intervals so as to be located at the center of the regular hexagon and each vertex, a cell arrangement in which hexagonal cells having a uniform radius are regularly arranged is obtained. If the arrangement of the base stations is irregular, the cell arrangement is uneven in radius and shape. The present invention can also be applied to a wireless communication system with an irregular cell arrangement.
複数の基地局を正六角形の中心と各頂点に位置するように等間隔に配置した場合、均一半径の六角セルが規則的に配列されたセル配置となる。基地局の配列が不規則になると、半径と形状が不均一のセル配置となる。本発明は、セル配列が不規則な無線通信システムにも適用できる。 FIG. 3 shows a basic planar arrangement of the base station (BS) 10.
When a plurality of base stations are arranged at equal intervals so as to be located at the center of the regular hexagon and each vertex, a cell arrangement in which hexagonal cells having a uniform radius are regularly arranged is obtained. If the arrangement of the base stations is irregular, the cell arrangement is uneven in radius and shape. The present invention can also be applied to a wireless communication system with an irregular cell arrangement.
図4は、本発明において、基地局10と端末20との間の無線区間に適用される無線チャネル構成の1例を示す。
以下の実施例では、無線区間に、複信方式としてTDD(Time Division Duplex)アクセス方式としてOFDMA(Orthogonal Frequency Division Multiple Access)を適用した無線通信システムについて説明する。但し、本発明は、基地局と端末が、TDMA(Time Division Multiple Access)やFDMA(Frequency Division Multiple Access)など、OFDMA以外の無線チャネルで通信する無線通信システムにも適用できる。 FIG. 4 shows an example of a radio channel configuration applied to a radio section between thebase station 10 and the terminal 20 in the present invention.
In the following embodiments, a radio communication system in which OFDMA (Orthogonal Frequency Division Multiple Access) is applied as a TDD (Time Division Duplex) access scheme as a duplex scheme in a radio section will be described. However, the present invention can also be applied to a wireless communication system in which a base station and a terminal communicate using a wireless channel other than OFDMA, such as TDMA (Time Division Multiple Access) or FDMA (Frequency Division Multiple Access).
以下の実施例では、無線区間に、複信方式としてTDD(Time Division Duplex)アクセス方式としてOFDMA(Orthogonal Frequency Division Multiple Access)を適用した無線通信システムについて説明する。但し、本発明は、基地局と端末が、TDMA(Time Division Multiple Access)やFDMA(Frequency Division Multiple Access)など、OFDMA以外の無線チャネルで通信する無線通信システムにも適用できる。 FIG. 4 shows an example of a radio channel configuration applied to a radio section between the
In the following embodiments, a radio communication system in which OFDMA (Orthogonal Frequency Division Multiple Access) is applied as a TDD (Time Division Duplex) access scheme as a duplex scheme in a radio section will be described. However, the present invention can also be applied to a wireless communication system in which a base station and a terminal communicate using a wireless channel other than OFDMA, such as TDMA (Time Division Multiple Access) or FDMA (Frequency Division Multiple Access).
OFDMAでは、システム帯域幅が、サブキャリア周波数(f0~fn-1)対応の複数のサブチャネルに分割され、各サブチャネル上に、時間軸方向に複数のタイムスロットが形成される。時間軸方向には、所定周期でフレーム期間が定義され、各フレーム期間は、基地局10から端末20に向かう下りデータの通信期間(Downlink)と、端末20から基地局10に向かう上りデータの通信期間(Uplink)とからなる。
In OFDMA, the system bandwidth is divided into a plurality of subchannels corresponding to subcarrier frequencies (f 0 to f n-1 ), and a plurality of time slots are formed on each subchannel in the time axis direction. In the time axis direction, frame periods are defined with a predetermined cycle. Each frame period includes a downlink data communication period (Downlink) from the base station 10 to the terminal 20 and an uplink data communication from the terminal 20 to the base station 10. It consists of a period (Uplink).
OFDMAでは、各サブチャネル上の1タイムスロット期間が1チャネルとなり、基地局10から端末20に割当てられる通信チャネルの最小単位となる。図示した例では、Downlinkが、チャネル番号1~PをもつP個のチャネルからなり、Uplinkが、チャネル番号1~pをもつp個のチャネルからなっている。以下に説明する実施例では、図4に示したチャネルはユーザパケットの送受信に使用されるものとし、制御パケットは、これらのチャネルとは別の制御チャネルで送受信されるものとする。
In OFDMA, one time slot period on each subchannel is one channel, which is the minimum unit of communication channels allocated from the base station 10 to the terminal 20. In the illustrated example, the Downlink is composed of P channels having channel numbers 1 to P, and the Uplink is composed of p channels having channel numbers 1 to p. In the embodiment described below, the channel shown in FIG. 4 is used for transmission / reception of user packets, and the control packet is transmitted / received via a control channel different from these channels.
本発明の基地局10は、後述するチャネル状態テーブルでDownlinkとUplinkの各チャネルの状態を管理し、チャネル状態テーブルを参照して、自セル内の複数の端末に動的なチャンネル割当てを行う。
The base station 10 of the present invention manages the state of each downlink and uplink channel in a channel state table to be described later, and performs dynamic channel assignment to a plurality of terminals in the own cell with reference to the channel state table.
図5は、基地局10の1実施例を示すブロック構成図である。
基地局10は、制御部100と、端末20との間で無線電波を送受信するアンテナ101と、アンテナ101に接続された送受信切替え用のスイッチ102と、基地局制御装置30との接続回線に接続される回線インタフェース103と、回線インタフェース103に接続された上位レイヤ処理部104と、スイッチ102に接続された送信RF(Radio Frequency)部106および受信RF部107と、上位レイヤ処理部104と送信RF部106との間に接続された下りベースバンド処理部105と、上位レイヤ処理部104と受信RF部107との間に接続された上りベースバンド処理部108と、受信RF部107に接続された干渉測定部109および受信電力測定部110と、動的チャネル割当部120を含む。 FIG. 5 is a block configuration diagram showing an embodiment of thebase station 10.
Thebase station 10 is connected to an antenna 101 that transmits and receives radio waves between the control unit 100 and the terminal 20, a transmission / reception switching switch 102 that is connected to the antenna 101, and a connection line that connects the base station controller 30. Line interface 103, upper layer processing unit 104 connected to the line interface 103, transmission RF (Radio Frequency) unit 106 and reception RF unit 107 connected to the switch 102, upper layer processing unit 104 and transmission RF Downstream baseband processing unit 105 connected between unit 106, upstream baseband processing unit 108 connected between upper layer processing unit 104 and reception RF unit 107, and reception RF unit 107 Interference measuring section 109, received power measuring section 110, and dynamic channel allocating section 120 are included.
基地局10は、制御部100と、端末20との間で無線電波を送受信するアンテナ101と、アンテナ101に接続された送受信切替え用のスイッチ102と、基地局制御装置30との接続回線に接続される回線インタフェース103と、回線インタフェース103に接続された上位レイヤ処理部104と、スイッチ102に接続された送信RF(Radio Frequency)部106および受信RF部107と、上位レイヤ処理部104と送信RF部106との間に接続された下りベースバンド処理部105と、上位レイヤ処理部104と受信RF部107との間に接続された上りベースバンド処理部108と、受信RF部107に接続された干渉測定部109および受信電力測定部110と、動的チャネル割当部120を含む。 FIG. 5 is a block configuration diagram showing an embodiment of the
The
尚、制御部100と動的チャネル割当部120の実体は、プロセッサ11が実行するプログラムモジュールであり、これらのプログラムモジュールはメモリ12に格納されている。ここでは、発明の理解を容易にするために、制御部100と動的チャネル割当部120が、他の構成要件と接続関係をもつ機能ブロックとして図示されている。動的チャネル割当部120は、後述するように、データメモリ13に形成された各種のテーブルを参照して、端末へのチャネル割当てを実行する。
The entities of the control unit 100 and the dynamic channel assignment unit 120 are program modules executed by the processor 11, and these program modules are stored in the memory 12. Here, in order to facilitate understanding of the invention, the control unit 100 and the dynamic channel allocation unit 120 are illustrated as functional blocks having a connection relationship with other configuration requirements. As will be described later, the dynamic channel allocation unit 120 refers to various tables formed in the data memory 13 and executes channel allocation to terminals.
制御部100は、受信電力測定部110の測定結果と、各端末から報告された送信電力情報に基づいて、各端末が位置するサブセル領域を周期的に判定し、端末識別子(ID)と現在位置との関係を示す端末位置テーブル190を更新する。端末位置テーブル190には、各端末の現在位置が、各サブセル領域に割当てられたグループ識別子に変換して記憶される。
The control unit 100 periodically determines the subcell region where each terminal is located based on the measurement result of the received power measurement unit 110 and the transmission power information reported from each terminal, and the terminal identifier (ID) and the current position The terminal location table 190 indicating the relationship with is updated. In the terminal location table 190, the current location of each terminal is converted into a group identifier assigned to each subcell area and stored.
動的チャネル割当部120は、後述するように、干渉測定部109で測定されたチャネル別の干渉値、または端末から通知された干渉値に基づいて、図8で詳述するチャネル状態テーブル130を周期的に更新しており、制御部100から、端末IDとグループ識別子を指定したチャネル割当要求を受信すると、チャネル状態サブテーブル130を参照して、端末への割当チャネルを動的に決定する。割当チャネルは、端末IDと共に下りベースバンド処理部に通知される。
As described later, the dynamic channel assignment unit 120 creates a channel state table 130 described in detail in FIG. 8 based on the interference value for each channel measured by the interference measurement unit 109 or the interference value notified from the terminal. When the channel allocation request specifying the terminal ID and the group identifier is received from the control unit 100, the channel allocated to the terminal is dynamically determined with reference to the channel state subtable 130. The allocated channel is notified to the downlink baseband processing unit together with the terminal ID.
以下の実施例では、チャネル状態テーブル130は、Uplink用のチャネル状態テーブルとDownlink用のチャネル状態テーブルからなる。また、各チャネル状態テーブルは、グループ識別子と対応付けられた複数のサブテーブルからなる。動的チャネル割当部120は、制御部100からチャネル割当要求を受信したとき、制御部100が指定したグループ識別子と対応するチャネル状態サブテーブルを参照して、端末に割当るべきチャネルを選択する。
In the following embodiment, the channel state table 130 includes an uplink channel state table and a downlink channel state table. Each channel state table includes a plurality of sub-tables associated with group identifiers. When the dynamic channel allocation unit 120 receives a channel allocation request from the control unit 100, the dynamic channel allocation unit 120 refers to the channel state subtable corresponding to the group identifier specified by the control unit 100 and selects a channel to be allocated to the terminal.
無線フレーム期間が、図4で説明したように、UplinkとDownlinkに時分割されているため、制御部100は、Uplink期間には受信RF部107、Downlink期間には送信RF部106がアンテナ101に接続されるように、スイッチ102を周期的に切替える。
Since the radio frame period is time-divided into Uplink and Downlink as described with reference to FIG. 4, the control unit 100 sets the reception RF unit 107 in the Uplink period and the transmission RF unit 106 in the Downlink period to the antenna 101. The switch 102 is periodically switched so as to be connected.
受信RF部107は、Uplinkの各チャネルでの受信信号をベースバンド信号に変換して、上りベースバンド処理部108に出力する。上りベースバンド処理部108は、受信RF部107から受信した上りベースバンド信号から、各チャネルの受信パケット(ユーザパケット)を抽出して、上位レイヤ処理部104に出力する。制御チャネルで受信した制御パケットは、制御部100に転送される。上位レイヤ処理部104は、上り方向の各ユーザパケットに対して、上りベースバンド処理部108よりも上位レイヤのプロトコル処理を実行した後、各ユーザパケットを回線インタフェース104に出力する。制御部100は、端末から上りパケット送信用のチャネル割当要求を示す制御パケットを受信すると、端末位置テーブルを参照して要求元端末のグループ識別子を特定し、動的チャネル割当部120に、端末IDとグループ識別子を指定して、上りチャネルの割当を要求する。
The reception RF unit 107 converts the received signal in each uplink channel into a baseband signal and outputs the baseband signal to the uplink baseband processing unit 108. Uplink baseband processing section 108 extracts the received packet (user packet) of each channel from the uplink baseband signal received from reception RF section 107, and outputs it to upper layer processing section 104. The control packet received through the control channel is transferred to the control unit 100. The upper layer processing unit 104 performs higher layer protocol processing than the uplink baseband processing unit 108 for each user packet in the uplink direction, and then outputs each user packet to the line interface 104. When receiving the control packet indicating the channel allocation request for uplink packet transmission from the terminal, the control unit 100 refers to the terminal location table to identify the group identifier of the request source terminal, and sends the terminal ID to the dynamic channel allocation unit 120. And the group identifier are specified, and uplink channel allocation is requested.
上位レイヤ処理部104は、回線インタフェース104から下り方向のユーザパケットを受信すると、受信パケットに上位レイヤの所定のプロトコル処理を実行し、受信パケットの宛先端末の識別子(ID)を制御部100に通知した後、受信パケットを下りベースバンド処理部105に出力する。制御部100は、上位レイヤ処理部104から下りパケットの宛先端末ID(アドレス)を通知されたとき、端末位置テーブルを参照して宛先端末のグループ識別子を特定し、動的チャネル割当部120に、端末IDとグループ識別子を指定して下りチャネルの割当を要求する。
When the upper layer processing unit 104 receives a downlink user packet from the line interface 104, the upper layer processing unit 104 performs predetermined protocol processing of the upper layer on the received packet and notifies the control unit 100 of the identifier (ID) of the destination terminal of the received packet. After that, the received packet is output to the downlink baseband processing unit 105. When the control unit 100 is notified of the destination terminal ID (address) of the downlink packet from the upper layer processing unit 104, the control unit 100 refers to the terminal location table to identify the group identifier of the destination terminal, and A downlink channel allocation request is made by designating a terminal ID and a group identifier.
動的チャネル割当部120は、制御部100から上り(Uplink)チャネルまたは下り(Downlink)チャネルの割当要求を受信すると、制御部100が指定したグループ識別子と対応するチャネル状態サブテーブルを参照して、割当チャネルを決定する。割当チャネルは、端末IDと共に下りブースバンド処理部105に通知される。
When the dynamic channel allocation unit 120 receives an uplink or downlink channel allocation request from the control unit 100, the dynamic channel allocation unit 120 refers to the channel state subtable corresponding to the group identifier specified by the control unit 100, Determine the assigned channel. The allocated channel is notified to the downlink booth band processing unit 105 together with the terminal ID.
下りベースバンド処理部105は、動的チャネル割当部120から端末IDと割当チャネルを受信すると、これらの情報項目を含む制御パケットを生成する。下りベースバンド処理部105で生成された制御パケットは、下り制御チャネルの送信期間に、送信RF部106に出力される。一方、上位レイヤ処理部104から下りベースバンド処理部105に入力された下りユーザパケットは、下りベースバンド処理部105で一時的にバッファリングした後、動的チャネル割当部120が指定したdownlinkの割当チャネルのタイミングで、送信RF部106に出力される。
When the downlink baseband processing unit 105 receives the terminal ID and the allocation channel from the dynamic channel allocation unit 120, the downlink baseband processing unit 105 generates a control packet including these information items. The control packet generated by the downlink baseband processing unit 105 is output to the transmission RF unit 106 during the transmission period of the downlink control channel. On the other hand, the downlink user packet input from the higher layer processing unit 104 to the downlink baseband processing unit 105 is temporarily buffered by the downlink baseband processing unit 105, and then assigned to the downlink specified by the dynamic channel allocation unit 120. The signal is output to transmission RF section 106 at the channel timing.
図6は、端末20の1実施例を示すブロック構成図である。
端末20は、プロセッサ200と、内部バス210を介してプロセッサ200に接続された通信制御部201、メモリ211および入出力(I/O)装置212と、基地局10との間で無線電波を送受信するアンテナ21と、アンテナ21に接続された送受信切替え用のスイッチ202と、上位レイヤ処理部204と、スイッチ202に接続された送信RF(Radio Frequency)部206および受信RF部207と、上位レイヤ処理部204と送信RF部206との間に接続された上りベースバンド処理部205と、上位レイヤ処理部204と受信RF部107との間に接続された下りベースバンド処理部208と、受信RF部207に接続された干渉測定部209と、上位レイヤ処理部204に接続されたCODEC部214と、CODEC部214に接続された音声入出力部213とからなる。メモリ211には、プロセッサ200が実行する各種のアプリケーションプログラムと制御ルーチンが格納されている。 FIG. 6 is a block diagram showing one embodiment of the terminal 20.
The terminal 20 transmits and receives radio waves between thebase station 10 and the processor 200, the communication control unit 201, the memory 211 and the input / output (I / O) device 212 connected to the processor 200 via the internal bus 210. An antenna 21 to be transmitted, a transmission / reception switching switch 202 connected to the antenna 21, an upper layer processing unit 204, a transmission RF (Radio Frequency) unit 206 and a reception RF unit 207 connected to the switch 202, and an upper layer processing An uplink baseband processing unit 205 connected between the unit 204 and the transmission RF unit 206, a downlink baseband processing unit 208 connected between the upper layer processing unit 204 and the reception RF unit 107, and a reception RF unit. 207 connected to 207, CODEC unit 214 connected to higher layer processing unit 204, CODEC unit 2 Made from a connected voice input and output portion 213. 4. The memory 211 stores various application programs executed by the processor 200 and control routines.
端末20は、プロセッサ200と、内部バス210を介してプロセッサ200に接続された通信制御部201、メモリ211および入出力(I/O)装置212と、基地局10との間で無線電波を送受信するアンテナ21と、アンテナ21に接続された送受信切替え用のスイッチ202と、上位レイヤ処理部204と、スイッチ202に接続された送信RF(Radio Frequency)部206および受信RF部207と、上位レイヤ処理部204と送信RF部206との間に接続された上りベースバンド処理部205と、上位レイヤ処理部204と受信RF部107との間に接続された下りベースバンド処理部208と、受信RF部207に接続された干渉測定部209と、上位レイヤ処理部204に接続されたCODEC部214と、CODEC部214に接続された音声入出力部213とからなる。メモリ211には、プロセッサ200が実行する各種のアプリケーションプログラムと制御ルーチンが格納されている。 FIG. 6 is a block diagram showing one embodiment of the terminal 20.
The terminal 20 transmits and receives radio waves between the
通信制御部201は、Uplink期間には送信RF部206、Downlink期間には受信RF部207がアンテナ21に接続されるように、スイッチ202を周期的に切替える。また、通信制御部201は、下り制御チャネルの受信期間と、基地局10から割当られた下りチャネル期間に、受信RF部207、下りベースバンド処理部208を稼動し、上り制御チャネルの送信期間と、基地局10から割当てられた上りチャネル期間に、上りベースバンド処理部205、送信RF部206からの信号送信を可能にする。
The communication control unit 201 periodically switches the switch 202 so that the transmission RF unit 206 is connected to the antenna 21 during the Uplink period and the reception RF unit 207 is connected to the antenna 21 during the Downlink period. In addition, the communication control unit 201 operates the reception RF unit 207 and the downlink baseband processing unit 208 during the downlink control channel reception period and the downlink channel period allocated from the base station 10, and transmits the uplink control channel transmission period. In the uplink channel period allocated from the base station 10, signal transmission from the uplink baseband processing unit 205 and the transmission RF unit 206 is enabled.
受信RF部207は、下り制御チャネルと下り割当チャネルで受信した信号をベースバンド信号に変換して、下りベースバンド処理部208に出力する。下りベースバンド処理部208は、受信RF部207から受信したベースバンド信号から、自局宛のユーザパケットと制御パケットを抽出して、ユーザパケットは上位レイヤ処理部204、制御パケットは制御部201に出力する。
The reception RF unit 207 converts a signal received through the downlink control channel and the downlink allocation channel into a baseband signal, and outputs the baseband signal to the downlink baseband processing unit 208. The downlink baseband processing unit 208 extracts the user packet and control packet addressed to the own station from the baseband signal received from the reception RF unit 207, the user packet is sent to the upper layer processing unit 204, and the control packet is sent to the control unit 201. Output.
上位レイヤ処理部204は、受信パケットに上位レイヤの所定のプロトコル処理を実行し、受信パケットが音声パケットの場合は、受信パケットから抽出した音声データをCODEC214に出力する。音声パケット以外のユーザパケットと、アプリケーションレイヤの制御パケットは、内部バス210を介して、プロセッサ200に出力される。また、上位レイヤ処理部204は、CODEC214から出力された送信音声パケットと、プロセッサ200から出力された送信パケットに上位レイヤの所定のプロトコル処理を実行し、送信パケットを上りベースバンド処理部205に出力する。
The upper layer processing unit 204 executes predetermined protocol processing of the upper layer on the received packet, and when the received packet is a voice packet, outputs the voice data extracted from the received packet to the CODEC 214. User packets other than voice packets and application layer control packets are output to the processor 200 via the internal bus 210. In addition, upper layer processing section 204 performs predetermined protocol processing for the upper layer on the transmission voice packet output from CODEC 214 and the transmission packet output from processor 200, and outputs the transmission packet to upstream baseband processing section 205. To do.
通信制御部201は、下りベースバンド処理部208から入力される制御パケットに応じた通信制御動作を実行する。通信制御部201は、基地局10から指定された割当チャネルに従って、上述した受信RF部207と下りベースバンド処理部208における下り信号の受信と、上りベースバンド処理部205と送信RF部206における上りチャネルでの送信を制御する。また、通信制御部201は、干渉測定部209で測定されたDownlink割当チャネルの干渉値を示す制御パケットと、Uplink割当チャネルにおけるパケットの送信電力を示す制御パケットを生成し、これらの制御パケットを上りベースバンド処理部205に入力し、上り制御チャネルで基地局10に送信する。
The communication control unit 201 executes a communication control operation according to the control packet input from the downlink baseband processing unit 208. The communication control unit 201 receives downlink signals in the reception RF unit 207 and the downlink baseband processing unit 208 described above, and uplinks in the uplink baseband processing unit 205 and the transmission RF unit 206 according to the assigned channel specified by the base station 10. Control transmission on the channel. In addition, the communication control unit 201 generates a control packet indicating the interference value of the downlink allocated channel measured by the interference measuring unit 209 and a control packet indicating the transmission power of the packet in the uplink allocated channel, and transmits these control packets to the uplink. The data is input to the baseband processing unit 205 and transmitted to the base station 10 through the uplink control channel.
図7は、図5に示した動的チャネル割当部120の1実施例を示すブロック構成図である。
動的チャネル割当部120は、プログラムモジュールとして、削除チャネル判定部121と、割当不可チャネル更新部122と、割当可能チャネル選択部124と、割当可能チャネル更新部125と、割当チャネル決定部126を含み、これらのプログラムモジュールが参照するテーブルとして、目標値テーブル123と、割当チャネルテーブル127と、干渉状態テーブル128と、閾値テーブル129と、チャネル状態テーブル130と、チャネルリスト140、145を含む。更新単位変更部150、更新単位テーブル160、チャネル状態変更部170は、本発明の他の実施例を構成する要素であり、本発明の基本実施例に必須の要素ではない。 FIG. 7 is a block configuration diagram showing an embodiment of the dynamicchannel assignment unit 120 shown in FIG.
The dynamicchannel assignment unit 120 includes a deletion channel determination unit 121, an unassignable channel update unit 122, an assignable channel selection unit 124, an assignable channel update unit 125, and an assignment channel determination unit 126 as program modules. Tables referred to by these program modules include a target value table 123, an assigned channel table 127, an interference state table 128, a threshold value table 129, a channel state table 130, and channel lists 140 and 145. The update unit changing unit 150, the update unit table 160, and the channel state changing unit 170 are elements that constitute another embodiment of the present invention, and are not essential elements in the basic embodiment of the present invention.
動的チャネル割当部120は、プログラムモジュールとして、削除チャネル判定部121と、割当不可チャネル更新部122と、割当可能チャネル選択部124と、割当可能チャネル更新部125と、割当チャネル決定部126を含み、これらのプログラムモジュールが参照するテーブルとして、目標値テーブル123と、割当チャネルテーブル127と、干渉状態テーブル128と、閾値テーブル129と、チャネル状態テーブル130と、チャネルリスト140、145を含む。更新単位変更部150、更新単位テーブル160、チャネル状態変更部170は、本発明の他の実施例を構成する要素であり、本発明の基本実施例に必須の要素ではない。 FIG. 7 is a block configuration diagram showing an embodiment of the dynamic
The dynamic
割当チャネル決定部126は、制御部100から、グループ番号と端末IDを示すチャネル割当要求を受信した時、現時点で割当済みのチャネル(通信中チャネル)を示す割当チャネルテーブル127と、チャネル状態テーブル130を参照して、端末の割当チャネルを決定し、割当チャネルと端末IDを下りベースバンド処理部105に通知すると共に、割当チャネルテーブル127を更新する。
The allocated channel determination unit 126, when receiving a channel allocation request indicating a group number and a terminal ID from the control unit 100, and an allocated channel table 127 indicating currently allocated channels (channels in communication), and a channel state table 130 Referring to FIG. 6, the allocation channel of the terminal is determined, the allocation channel and the terminal ID are notified to the downlink baseband processing unit 105, and the allocation channel table 127 is updated.
本発明の特徴は、周期的に起動される削除チャネル判定部121と割当可能チャネル選択部124によって、チャネル状態テーブル130に記憶される割当可能チャネルをランダムに分散させ、各基地局が、隣接する他の基地局とは異なった割当可能チャネル群から、端末への割当チャネルを選択できるようにしたことにある。
The feature of the present invention is that the assignable channels stored in the channel state table 130 are randomly distributed by the deletion channel determination unit 121 and the assignable channel selection unit 124 that are periodically activated, and each base station is adjacent to each other. This is because an allocation channel to a terminal can be selected from an allocatable channel group different from other base stations.
削除チャネル判定部121は、割当チャネルテーブル127と、干渉状態テーブル128と、閾値テーブル129を参照して、UplinkとDownlinkの複数のチャネルのうち、割当不可とすべきチャネルを判定して、チャネルリスト140に記憶する。チャネルリスト140の内容は、割当不可チャネル更新部122によって、チャネル状態テーブル130に反映される。
The deletion channel determination unit 121 refers to the allocation channel table 127, the interference state table 128, and the threshold value table 129, determines a channel that should not be allocated among a plurality of uplink and downlink channels, and determines a channel list. 140. The contents of the channel list 140 are reflected in the channel state table 130 by the unallocated channel update unit 122.
割当可能チャネル選択部124は、目標値テーブル123と、割当チャネルテーブル127と、チャネル状態テーブル130を参照し、チャネル状態テーブル130で割当不可状態になっているチャネル群のなかから、割当可能チャネルに変更すべきチャネルを選択して、チャネルリスト145に記憶する。チャネルリスト145の内容は、割当可能チャネル更新部125によって、チャネル状態テーブル130に反映される。
The assignable channel selection unit 124 refers to the target value table 123, the assigned channel table 127, and the channel state table 130, and selects the assignable channel from among the channel groups that are not assignable in the channel state table 130. The channel to be changed is selected and stored in the channel list 145. The contents of the channel list 145 are reflected in the channel state table 130 by the assignable channel update unit 125.
図8は、チャネル状態テーブル130の1実施例を示す。
本実施例では、基地局10が、同一端末に対して、DownlinkとUplinkで別々のチャネルを割当てるものとし、チャネル状態テーブル130が、Downlink用のチャネル状態テーブル130Dと、Uplink用のチャネル状態テーブル130Uとからなっている。各チャネル状態テーブルは、Downlink用かUplink用かを示すテーブル区分欄131と、チャネル番号欄132と、端末が位置するサブセル領域を示すグループ番号134別に分割された複数の割当可能フラグ欄133を含む。従って、Downlink用のチャネル状態テーブル130Dは、グループ番号134と対応した複数のサブテーブル130D-1~130-Nからなり、Uplink用のチャネル状態テーブル130Uは、グループ番号134と対応した複数のサブテーブル130U-1~130U-Nからなっている。 FIG. 8 shows an embodiment of the channel state table 130.
In this embodiment, it is assumed that thebase station 10 allocates separate channels for downlink and uplink to the same terminal, and the channel state table 130 includes a channel state table 130D for downlink and a channel state table 130U for uplink. It is made up of. Each channel state table includes a table partition column 131 indicating whether it is for downlink or uplink, a channel number column 132, and a plurality of assignable flag columns 133 divided by group number 134 indicating a subcell area where the terminal is located. . Accordingly, the downlink channel state table 130D includes a plurality of sub tables 130D-1 to 130-N corresponding to the group number 134, and the uplink channel state table 130U includes a plurality of sub tables corresponding to the group number 134. 130U-1 to 130U-N.
本実施例では、基地局10が、同一端末に対して、DownlinkとUplinkで別々のチャネルを割当てるものとし、チャネル状態テーブル130が、Downlink用のチャネル状態テーブル130Dと、Uplink用のチャネル状態テーブル130Uとからなっている。各チャネル状態テーブルは、Downlink用かUplink用かを示すテーブル区分欄131と、チャネル番号欄132と、端末が位置するサブセル領域を示すグループ番号134別に分割された複数の割当可能フラグ欄133を含む。従って、Downlink用のチャネル状態テーブル130Dは、グループ番号134と対応した複数のサブテーブル130D-1~130-Nからなり、Uplink用のチャネル状態テーブル130Uは、グループ番号134と対応した複数のサブテーブル130U-1~130U-Nからなっている。 FIG. 8 shows an embodiment of the channel state table 130.
In this embodiment, it is assumed that the
本実施例では、チャネル状態テーブル130(130D、130U)の割当可能フラグ133は、初期状態において、全てのチャネル番号が割当可能チャネルであることを示す「1」に設定される。本発明によれば、基地局10が、端末へのチャネル割当てを繰り返すうちに、割当可能フラグが「0」を示すテーブルエントリが、チャネル状態テーブル130内でランダムに分散し、隣接する複数の基地局が、互いに異なった組み合わせで割当可能チャネル番号群を示すチャネル状態テーブル130を備えることになる。
In this embodiment, the assignable flag 133 of the channel state table 130 (130D, 130U) is set to “1” indicating that all channel numbers are assignable channels in the initial state. According to the present invention, while the base station 10 repeats channel assignment to terminals, table entries whose assignable flag indicates “0” are randomly distributed in the channel state table 130, and a plurality of adjacent base stations The station is provided with a channel state table 130 indicating the assignable channel number groups in different combinations.
図9は、割当チャネル決定部126によって更新される割当チャネルテーブル127の1実施例を示す。
本実施例では、割当チャネルテーブル127も、Downlink用の割当チャネルテーブル127Dと、Uplink用の割当チャネルテーブル127Uとからなっている。各割当チャネルテーブルは、チャネル番号1271と割当フラグ1272との対応関係を示す複数のエントリからなり、割当フラグ1272は、チャネル番号1271をもつチャネルが、自セル内の端末に割当済み(「1」)か否(「0」)かを示す。 FIG. 9 shows an example of the allocation channel table 127 updated by the allocationchannel determination unit 126.
In this embodiment, the allocation channel table 127 also includes an allocation channel table 127D for downlink and an allocation channel table 127U for uplink. Each allocation channel table includes a plurality of entries indicating a correspondence relationship between thechannel number 1271 and the allocation flag 1272, and the allocation flag 1272 indicates that a channel having the channel number 1271 has been allocated to a terminal in its own cell (“1”). ) Or not (“0”).
本実施例では、割当チャネルテーブル127も、Downlink用の割当チャネルテーブル127Dと、Uplink用の割当チャネルテーブル127Uとからなっている。各割当チャネルテーブルは、チャネル番号1271と割当フラグ1272との対応関係を示す複数のエントリからなり、割当フラグ1272は、チャネル番号1271をもつチャネルが、自セル内の端末に割当済み(「1」)か否(「0」)かを示す。 FIG. 9 shows an example of the allocation channel table 127 updated by the allocation
In this embodiment, the allocation channel table 127 also includes an allocation channel table 127D for downlink and an allocation channel table 127U for uplink. Each allocation channel table includes a plurality of entries indicating a correspondence relationship between the
図10は、削除チャネル判定部121によって更新される干渉状態テーブル128の1実施例を示す。
干渉状態テーブル128は、通信中チャネル番号1281と干渉値1282との対応関係を示す複数のエントリからなる。通信中チャネル番号1281は、割当チャネルテーブル127D、127Uにおいて、割当フラグ1272が「1」のチャネル番号に相当している。 FIG. 10 shows an example of the interference state table 128 updated by the deletedchannel determination unit 121.
The interference state table 128 includes a plurality of entries indicating the correspondence between thechannel number 1281 during communication and the interference value 1282. The channel number 1281 during communication corresponds to the channel number in which the allocation flag 1272 is “1” in the allocation channel tables 127D and 127U.
干渉状態テーブル128は、通信中チャネル番号1281と干渉値1282との対応関係を示す複数のエントリからなる。通信中チャネル番号1281は、割当チャネルテーブル127D、127Uにおいて、割当フラグ1272が「1」のチャネル番号に相当している。 FIG. 10 shows an example of the interference state table 128 updated by the deleted
The interference state table 128 includes a plurality of entries indicating the correspondence between the
削除チャネル判定部121は、Uplinkの割当不可チャネル(削除チャネル)を判定する際に、干渉状態テーブル128に、通信中チャネル番号1281として、割当チャネルテーブル127Uが示す割当済チャネルの番号を記憶し、通信中チャネル番号1281で特定される各Uplinkチャネルについて、干渉測定部109で干渉値を測定し、測定結果を干渉値1282として、干渉状態テーブル128に記憶する。干渉値1282としては、例えば、干渉波の受信電力、CIR(Carrier to Interference Ratio)、CINR(Carrier to Interference plus Noise Ration)などの値が記憶される。Downlinkの削除チャネルを判定する場合、削除チャネル判定部121は、干渉状態テーブル128に、通信中チャネル番号1281として、割当チャネルテーブル127Dが示す割当済チャネルの番号を記憶し、干渉値1282として、端末側から報告された干渉値を記憶する。
When determining the uplink unassignable channel (deleted channel), the deletion channel determination unit 121 stores the allocated channel number indicated by the allocation channel table 127U as the communication channel number 1281 in the interference state table 128. For each Uplink channel specified by the channel number 1281 during communication, the interference measurement unit 109 measures the interference value, and stores the measurement result as the interference value 1282 in the interference state table 128. As the interference value 1282, for example, values such as interference wave reception power, CIR (Carrier-to-Interference-Ratio), CINR (Carrier-to-Interference-plus-Noise-Ration) are stored. When determining the downlink deletion channel, the deletion channel determination unit 121 stores the allocated channel number indicated by the allocation channel table 127D in the interference state table 128 as the communication channel number 1281 and the interference value 1282 as the terminal. The interference value reported from the side is stored.
図11は、削除チャネル判定部121が参照する閾値テーブル129の1実施例を示す。
閾値テーブル129は、グループ番号1291と閾値1292との対応関係を示す複数のエントリからなる。ここで、閾値1292は、グループ番号1291で特定されたサブセル領域で干渉チャネルを判定するとき、干渉値と比較される閾値を示している。干渉値が閾値を超えた場合、干渉チャネルと判定される。但し、本発明では、全ての干渉チャネルが割当不可チャネルに変更される訳ではない。閾値1292は、サブセル領域が基地局から離れる(グループ番号が大きくなる)に従がって、小さい値となっている。 FIG. 11 shows an embodiment of the threshold value table 129 referred to by the deletionchannel determination unit 121.
The threshold value table 129 includes a plurality of entries indicating the correspondence between thegroup number 1291 and the threshold value 1292. Here, the threshold value 1292 indicates a threshold value to be compared with an interference value when an interference channel is determined in the subcell region specified by the group number 1291. When the interference value exceeds the threshold value, it is determined as an interference channel. However, in the present invention, not all interference channels are changed to channels that cannot be allocated. The threshold value 1292 is a small value as the subcell area is separated from the base station (the group number is increased).
閾値テーブル129は、グループ番号1291と閾値1292との対応関係を示す複数のエントリからなる。ここで、閾値1292は、グループ番号1291で特定されたサブセル領域で干渉チャネルを判定するとき、干渉値と比較される閾値を示している。干渉値が閾値を超えた場合、干渉チャネルと判定される。但し、本発明では、全ての干渉チャネルが割当不可チャネルに変更される訳ではない。閾値1292は、サブセル領域が基地局から離れる(グループ番号が大きくなる)に従がって、小さい値となっている。 FIG. 11 shows an embodiment of the threshold value table 129 referred to by the deletion
The threshold value table 129 includes a plurality of entries indicating the correspondence between the
図12は、割当可能チャネル選択部124が参照する目標値テーブル123の1実施例を示す。
目標値テーブル123は、グループ番号1231と割当可能チャネル目標値1232との対応関係を示す複数のエントリからなる。割当可能チャネル選択部124は、チャネル状態テーブル130が示す割当可能チャネルの個数が目標値1232よりも少ない場合、割当可能チャネルの個数が目標値となるように、割当不可チャネル番号群の中からランダムにチャネル番号を選択して、割当可能フラグ133を「1」に変更する。 FIG. 12 shows an example of the target value table 123 referred to by the assignablechannel selection unit 124.
The target value table 123 includes a plurality of entries indicating the correspondence between thegroup number 1231 and the assignable channel target value 1232. When the number of allocatable channels indicated by the channel state table 130 is smaller than the target value 1232, the allocatable channel selection unit 124 selects a random number from among the unassignable channel number groups so that the number of allocatable channels becomes the target value. The channel number is selected and the assignable flag 133 is changed to “1”.
目標値テーブル123は、グループ番号1231と割当可能チャネル目標値1232との対応関係を示す複数のエントリからなる。割当可能チャネル選択部124は、チャネル状態テーブル130が示す割当可能チャネルの個数が目標値1232よりも少ない場合、割当可能チャネルの個数が目標値となるように、割当不可チャネル番号群の中からランダムにチャネル番号を選択して、割当可能フラグ133を「1」に変更する。 FIG. 12 shows an example of the target value table 123 referred to by the assignable
The target value table 123 includes a plurality of entries indicating the correspondence between the
図13は、基地局10の制御部100が利用する端末位置テーブル190の1実施例を示す。
端末位置テーブル190は、端末ID1901とグループ識別子1902との関係を示す複数のエントリからなる。制御部100は、例えば、受信電力測定部110で測定された各端末10からの受信電力の値と、端末10から制御パケットによって報告された送信電力の値に基づいて、基地局と端末との間の距離を計算し、各端末の現在位置となるサブセル領域を推定して、グループ識別子1902の値を特定する。基地局10と各端末20がGPS(Global Positioning System)を備えていた場合、各端末に現在位置を報告させ、制御部100が、各端末の現在位置と基地局10の位置から、グループ識別子1902の値を特定するようにしてもよい。 FIG. 13 shows an example of the terminal location table 190 used by thecontrol unit 100 of the base station 10.
The terminal location table 190 includes a plurality of entries indicating the relationship between theterminal ID 1901 and the group identifier 1902. For example, based on the value of the received power from each terminal 10 measured by the received power measuring unit 110 and the value of the transmission power reported by the control packet from the terminal 10, the control unit 100 can The distance between the terminals is calculated, the subcell region that is the current position of each terminal is estimated, and the value of the group identifier 1902 is specified. When the base station 10 and each terminal 20 are equipped with GPS (Global Positioning System), each terminal reports the current position, and the control unit 100 determines the group identifier 1902 from the current position of each terminal and the position of the base station 10. The value of may be specified.
端末位置テーブル190は、端末ID1901とグループ識別子1902との関係を示す複数のエントリからなる。制御部100は、例えば、受信電力測定部110で測定された各端末10からの受信電力の値と、端末10から制御パケットによって報告された送信電力の値に基づいて、基地局と端末との間の距離を計算し、各端末の現在位置となるサブセル領域を推定して、グループ識別子1902の値を特定する。基地局10と各端末20がGPS(Global Positioning System)を備えていた場合、各端末に現在位置を報告させ、制御部100が、各端末の現在位置と基地局10の位置から、グループ識別子1902の値を特定するようにしてもよい。 FIG. 13 shows an example of the terminal location table 190 used by the
The terminal location table 190 includes a plurality of entries indicating the relationship between the
図14は、削除チャネル判定部121によって更新されるチャネルリスト140の1実施例を示す。
チャネルリストは、Downlink用のチャネルリスト140Dと、Uplink用のチャネルリスト140Uとからなる。各チャネルリストは、Downlink用かUplink用かを示すテーブル区分欄141と、通信中チャネル番号欄142と、グループ番号144別に分割された複数の判定結果欄143を含む。従って、Downlink用のチャネルリスト140Dは、グループ番号144と対応した複数のサブリスト140D-1~140-Nからなり、Uplink用のチャネルリスト140Uは、グループ番号144と対応した複数のサブリスト140U-1~140U-Nからなっている。 FIG. 14 shows an embodiment of thechannel list 140 that is updated by the deletion channel determination unit 121.
The channel list includes adownlink channel list 140D and an uplink channel list 140U. Each channel list includes a table division column 141 indicating whether it is for downlink or uplink, a channel number column 142 for communication, and a plurality of determination result columns 143 divided by group number 144. Accordingly, the downlink channel list 140D includes a plurality of sublists 140D-1 to 140-N corresponding to the group number 144, and the uplink channel list 140U includes a plurality of sublists 140U- corresponding to the group number 144. 1 to 140U-N.
チャネルリストは、Downlink用のチャネルリスト140Dと、Uplink用のチャネルリスト140Uとからなる。各チャネルリストは、Downlink用かUplink用かを示すテーブル区分欄141と、通信中チャネル番号欄142と、グループ番号144別に分割された複数の判定結果欄143を含む。従って、Downlink用のチャネルリスト140Dは、グループ番号144と対応した複数のサブリスト140D-1~140-Nからなり、Uplink用のチャネルリスト140Uは、グループ番号144と対応した複数のサブリスト140U-1~140U-Nからなっている。 FIG. 14 shows an embodiment of the
The channel list includes a
チャネルリスト140Dの通信中チャネル番号欄142には、割当チャネルテーブル127Dにおいて、割当フラグが「1」となっているエントリのチャネル番号が記憶される。同様に、チャネルリスト140Uの通信中チャネル番号欄142には、割当チャネルテーブル127Uにおいて、割当フラグが「1」となっているエントリのチャネル番号が記憶される。
In the channel number column 142 in communication of the channel list 140D, the channel number of the entry whose assignment flag is “1” in the assignment channel table 127D is stored. Similarly, the channel number column 142 in communication of the channel list 140U stores the channel number of the entry whose assignment flag is “1” in the assignment channel table 127U.
削除チャネル判定部121は、後述するように、チャネルリスト140が示す通信中チャネルについて、干渉値をサブセル領域毎に設定された閾値と比較する。干渉値が閾値を超えたチャネルは、乱数を利用してランダムに割当不可チャネルに変更される。割当不可チャネルとなった通信中チャネルは、判定結果欄143に「1」が設定される。
As will be described later, the deletion channel determination unit 121 compares the interference value with the threshold set for each subcell area for the channel in communication indicated by the channel list 140. A channel whose interference value exceeds the threshold value is randomly changed to an unassignable channel using a random number. “1” is set in the determination result column 143 for a channel in communication that has become an unassignable channel.
図15は、削除チャネル判定部(プログラムモジュール)121の第1実施例を示すフローチャートである。削除チャネル判定部121は、制御部100によって、周期的に起動される。
FIG. 15 is a flowchart showing a first embodiment of the deletion channel determination unit (program module) 121. The deletion channel determination unit 121 is periodically activated by the control unit 100.
本実施例では、削除チャネル判定部121が、Downlink用のチャネル状態テーブル130Dで割当不可チャネルに変更すべきチャネル(削除チャネル)の判定と、Uplink用のチャネル状態テーブル130Uにおける削除チャネルの判定を連続的に行なう場合について説明するが、Downlinkの削除チャネルの判定処理と、Uplinkの削除チャネルの判定処理を分離しておき、削除チャネル判定部121が、制御部100から指定されたリンクの削除チャネル判定を実行するようにしてもよい。
In this embodiment, the deletion channel determination unit 121 continuously determines a channel (deletion channel) to be changed to an unassignable channel in the downlink channel state table 130D and determination of a deletion channel in the uplink channel state table 130U. However, the determination process of the downlink deletion channel and the determination process of the uplink deletion channel are separated, and the deletion channel determination unit 121 determines the deletion channel of the link designated by the control unit 100. May be executed.
図15のフローチャートにおいて、パラメータdは、チャネルリスト140におけるテーブル区分141、パラメータiは、チャネルリスト140および干渉状態テーブル128のエントリ番号、パラメータgは、チャネルリスト140のグループ番号144を示す。
15, the parameter d indicates the table division 141 in the channel list 140, the parameter i indicates the entry number of the channel list 140 and the interference state table 128, and the parameter g indicates the group number 144 of the channel list 140.
削除チャネル判定部121が起動されると、プロセッサ11は、先ず、パラメータdに初期値0を設定し、パラメータβに、削除チャネルをランダムに決定するための確率値を設定する(ステップ2101)。ここで、パラメータβの値は、0<β<1となっている。
When the deletion channel determination unit 121 is activated, the processor 11 first sets an initial value 0 to the parameter d and sets a probability value for randomly determining the deletion channel to the parameter β (step 2101). Here, the value of the parameter β is 0 <β <1.
プロセッサ11は、干渉状態テーブル128と、第dチャネルリスト(d=0のときは、チャネルリスト140D)の全グループの判定結果143をクリアし(2102)、上記チャネルリストの通信中チャネル番号142に、第d割当チャネルテーブル(d=0のときは、割当チャネルテーブル127D)で割当フラグ1272が「1」となっているチャネル番号を記憶し、第dチャネルリストに記憶された通信中チャネル番号の個数をパラメータKに設定する(2103)。この後、プロセッサ11は、第dチャネルリストの通信中チャネル番号欄142が示す各チャネルについて、干渉値を測定し、通信中チャネル番号と干渉値を干渉状態テーブル128に記憶する(2104)。
The processor 11 clears the interference state table 128 and the determination results 143 of all groups in the d-th channel list (channel list 140D when d = 0) (2102), and sets the channel number 142 in communication in the channel list to The channel number for which the allocation flag 1272 is “1” in the d-th allocated channel table (allocated channel table 127D when d = 0) is stored, and the channel number in communication stored in the d-th channel list is stored. The number is set in the parameter K (2103). After that, the processor 11 measures the interference value for each channel indicated by the channel number column 142 in communication of the d-th channel list, and stores the channel number and interference value in communication in the interference state table 128 (2104).
プロセッサ11は、パラメータgに初期値0を設定(2105)した後、gの値をインクリメントし(2106)、パラメータgとグループ番号の最大値Nとを比較する(2107)。g>Nでなければ、プロセッサ11は、干渉状態テーブル128のエントリ番号を特定するパラメータiに初期値0を設定(2108)した後、iの値をインクリメントして(2109)、iとKを比較する(2110)。i>Kでなければ、プロセッサは、干渉状態テーブル128の第iエントリが示す干渉値1282と、閾値テーブル129の第gエントリが示す閾値TH(g)を比較し(2120)、干渉値がTH(g)以下の場合は、ステップ2109以降の処理を繰り返す。
The processor 11 sets an initial value 0 to the parameter g (2105), then increments the value of g (2106), and compares the parameter g with the maximum value N of group numbers (2107). If g> N is not satisfied, the processor 11 sets an initial value 0 to the parameter i for specifying the entry number of the interference state table 128 (2108), increments the value of i (2109), and sets i and K to i and K. Compare (2110). If i> K, the processor compares the interference value 1282 indicated by the i-th entry of the interference state table 128 with the threshold value TH (g) indicated by the g-th entry of the threshold value table 129 (2120), and the interference value is TH. (G) In the following cases, the processing after step 2109 is repeated.
ステップ2120で、干渉値がTH(g)を超えていた場合、すなわち、チャネルリストの第iエントリの通信中チャネルが干渉チャネルとなっていた場合、プロセッサ11は、乱数発生器で乱数xを発生し(2121)、この乱数xを確率パラメータβと比較する(2122)。xの値がβ以上の場合は、プロセッサ11は、ステップ2109以降の処理を繰り返す。x<βの場合は、プロセッサ11は、第iエントリが示すチャネルを割当不可チャネル(削除チャネル)と判定し、第dチャネルリストの第gグループの第iエントリCd,g(i)の判定結果欄143に「1」を設定(2123)した後、ステップ2109以降の処理を繰り返す。
In step 2120, if the interference value exceeds TH (g), that is, if the communication channel of the i-th entry in the channel list is an interference channel, the processor 11 generates a random number x with a random number generator. Then, the random number x is compared with the probability parameter β (2122). If the value of x is greater than or equal to β, the processor 11 repeats the processing from step 2109 onward. When x <β, the processor 11 determines that the channel indicated by the i-th entry is an unassignable channel (deleted channel), and the determination result of the i-th entry Cd, g (i) of the g-th group in the d-th channel list After setting “1” in the field 143 (2123), the processing from step 2109 is repeated.
ステップ2109~2123を繰り返すことによって、Downlink用のチャネルリスト140Dに通信中チャネル142として登録された全チャネルについて、第gグループの閾値TH(g)を適用した干渉判定が行なわれる。また、干渉値が閾値TH(g)を超えたチャネルのうち、乱数xを適用してランダムに選択されたチャネルが、チャネルリストでグループ番号gをもつサブリスト140D-gに、削除チャネルとして記憶される。
By repeating steps 2109 to 2123, interference determination is performed by applying the threshold value TH (g) of the g-th group for all channels registered as the communication channel 142 in the downlink channel list 140D. Of the channels whose interference values exceed the threshold value TH (g), the channels randomly selected by applying the random number x are stored as deletion channels in the sublist 140D-g having the group number g in the channel list. Is done.
ステップ2110でパラメータiの値がKを超えたとき、プロセッサ11は、ステップ2106でグループ番号gの値をインクリメントし、新たな閾値TH(g)を適用して、上述した判定処理を繰り返す。また、ステップ2107で、パラメータgの値がグループ番号の最大値Nを超えたとき、チャネルリスト140のテーブル区分141を示すパラメータdの値がインクリメントされる(2130)。
When the value of the parameter i exceeds K in step 2110, the processor 11 increments the value of the group number g in step 2106, applies the new threshold value TH (g), and repeats the determination process described above. In step 2107, when the value of the parameter g exceeds the maximum value N of the group numbers, the value of the parameter d indicating the table section 141 of the channel list 140 is incremented (2130).
プロセッサ11は、d>1でなければ(2131)、ステップ2102に戻り、次の割当チャネルテーブル(d=1のときは、割当チャネルテーブル127U)が示す通信中のチャネル番号について、上述した処理を繰り返す。本実施例では、d=1のとき、Uplink用のチャネルリスト140Uに、Uplink用の割当チャネルテーブル127Uが示す通信中のチャネル番号が登録され、干渉値が閾値TH(g)を超え、且つランダムに選択されたチャネルが、チャネルリスト140Uに削除チャネルとして記憶される。プロセッサ11は、d>1となったとき、削除チャネル判定部121の処理を終了する。
削除チャネル判定部121による削除チャネルの判定処理が終了すると、制御部100は、割当不可チャネル更新部(プログラムモジュール)122を起動する。 If d> 1 is not satisfied (2131), theprocessor 11 returns to step 2102, and performs the above-described processing for the channel number in communication indicated by the next allocated channel table (allocated channel table 127U when d = 1). repeat. In this embodiment, when d = 1, the channel number in communication indicated by the uplink channel list 127U is registered in the uplink channel list 140U, the interference value exceeds the threshold value TH (g), and is random. The selected channel is stored in the channel list 140U as a deleted channel. When d> 1, the processor 11 ends the process of the deletion channel determination unit 121.
When the deletion channel determination process by the deletionchannel determination unit 121 ends, the control unit 100 activates the unallocated channel update unit (program module) 122.
削除チャネル判定部121による削除チャネルの判定処理が終了すると、制御部100は、割当不可チャネル更新部(プログラムモジュール)122を起動する。 If d> 1 is not satisfied (2131), the
When the deletion channel determination process by the deletion
図16は、割当不可チャネル更新部122の1実施例を示すフローチャートである。
割当不可チャネル更新部122が起動されると、プロセッサ11は、パラメータdに初期値0を設定し(2201)、第dチャネルリスト140Dに登録されている通信中チャネル番号142の個数をカウントして、パラメータKに設定する(2102)。この後、プロセッサ11は、パラメータgに初期値0を設定し(2203)、gの値をインクリメントして(2204)、gとグループ番号の最大値Nを比較する(2205)。 FIG. 16 is a flowchart illustrating an example of the unallocatedchannel update unit 122.
When the unallocatedchannel update unit 122 is activated, the processor 11 sets an initial value 0 to the parameter d (2201), and counts the number of communication channel numbers 142 registered in the d-th channel list 140D. The parameter K is set (2102). Thereafter, the processor 11 sets an initial value 0 to the parameter g (2203), increments the value of g (2204), and compares g with the maximum value N of group numbers (2205).
割当不可チャネル更新部122が起動されると、プロセッサ11は、パラメータdに初期値0を設定し(2201)、第dチャネルリスト140Dに登録されている通信中チャネル番号142の個数をカウントして、パラメータKに設定する(2102)。この後、プロセッサ11は、パラメータgに初期値0を設定し(2203)、gの値をインクリメントして(2204)、gとグループ番号の最大値Nを比較する(2205)。 FIG. 16 is a flowchart illustrating an example of the unallocated
When the unallocated
g>Nでなければ、プロセッサ11は、チャネルリスト140のエントリ番号を特定するためのパラメータiに初期値0を設定(2206)した後、iの値をインクリメントして(2207)、iとKを比較する(2208)。i>Kでなければ、プロセッサは、第dチャネルリストの第gグループの第iエントリCd,g(i)の判定結果欄143をチェックし(2209)、エントリCd,g(i)の判定結果が「1」でなければ、ステップ2207以降の処理を繰り返す。エントリCd,g(i)の判定結果が「1」の場合、プロセッサ11は、エントリCd,g(i)が示す通信中チャネル番号143の値をパラメータjに設定し(2210)、第dチャネル状態テーブル130Dの第gグループの第jエントリEd,g(j)の割当可能フラグ133を「0」に変更して(2211)、ステップ2207以降の処理を繰り返す。
If g> N is not satisfied, the processor 11 sets the initial value 0 to the parameter i for specifying the entry number of the channel list 140 (2206), then increments the value of i (2207), and i and K Are compared (2208). If i> K, the processor checks the determination result column 143 of the i-th entry Cd, g (i) of the g-th group in the d-th channel list (2209), and the determination result of the entry Cd, g (i) If “1” is not “1”, the processing after step 2207 is repeated. When the determination result of the entry Cd, g (i) is “1”, the processor 11 sets the value of the communication channel number 143 indicated by the entry Cd, g (i) to the parameter j (2210), and the d-th channel The assignable flag 133 of the j-th entry Ed, g (j) of the g-th group in the state table 130D is changed to “0” (2211), and the processing after step 2207 is repeated.
ステップ2208でパラメータiの値がKを超えたとき、プロセッサ11は、ステップ2106でグループ番号gの値をインクリメントして、上述したステップ2205~2211の処理を繰り返す。ステップ2205で、パラメータgの値が最大値Nを超えたとき、プロセッサ11は、チャネルリスト140のテーブル区分141を示すパラメータdの値をインクリメントし(2212)、d>1でなければ(2213)、ステップ2202に戻って、次のチャネルリスト140Uが示す通信中のチャネル番号について、上述した処理を繰り返す。プロセッサ11は、d>1となったとき、割当不可チャネル更新部122の処理を終了する。
When the value of the parameter i exceeds K in step 2208, the processor 11 increments the value of the group number g in step 2106 and repeats the processing of steps 2205 to 2211 described above. In step 2205, when the value of the parameter g exceeds the maximum value N, the processor 11 increments the value of the parameter d indicating the table section 141 of the channel list 140 (2212), and if d> 1 is not satisfied (2213). Returning to step 2202, the above-described processing is repeated for the channel numbers in communication indicated by the next channel list 140U. When d> 1, the processor 11 ends the process of the unallocated channel update unit 122.
本実施例では、d=0のとき、Downlink用のチャネルリスト140Dに従って、Downlink用のチャネル状態テーブル130Dが更新され、d=1のとき、Uplink用のチャネルリスト140Uに従って、Uplink用のチャネル状態テーブル130Uが更新される。
In this embodiment, when d = 0, the downlink channel state table 130D is updated according to the downlink channel list 140D, and when d = 1, the uplink channel state table according to the uplink channel list 140U. 130U is updated.
上述した実施例では、削除チャネル判定部121の動作が終了したとき、制御部100が、割当不可チャネル更新部122を起動しているが、割当不可チャネル更新部122は、全ての判定処理を終了した削除チャネル判定部121によって起動されるようにしてもよい。また、割当不可チャネル更新部122の機能を削除チャネル判定部121に統合してもよい。この場合、例えば、Downlink用の削除チャネルの判定処理が終了したとき、Downlink用のチャネルリスト140Dに従って、Downlink用のチャネル状態テーブル130Dを更新し、Uplink用の削除チャネルの判定処理が終了したとき、Uplink用のチャネルリスト140Uに従って、Uplink用のチャネル状態テーブル130Uを更新するようにしてもよい。
In the embodiment described above, when the operation of the deletion channel determination unit 121 ends, the control unit 100 activates the unallocated channel update unit 122, but the unallocated channel update unit 122 ends all determination processes. The deletion channel determination unit 121 may be activated. Further, the function of the unallocated channel update unit 122 may be integrated into the deletion channel determination unit 121. In this case, for example, when the downlink deletion channel determination process is completed, the downlink channel state table 130D is updated according to the downlink channel list 140D, and the uplink deletion channel determination process is completed. The uplink channel state table 130U may be updated according to the uplink channel list 140U.
次に、割当可能チャネル選択部124と、割当可能チャネル更新部125の実施例について、図17~図19を参照して説明する。
前述した割当不可チャネル更新部122によって、割当可能チャネルの一部が割当不可チャネルに変更されると、チャネル状態テーブル130上では、割当可能チャネルの個数が一時的に減少する。割当可能チャネル選択部(プログラムモジュール)124は、チャネル状態テーブル130上に、目標値テーブル123で目標値1232として指定された個数以上の割当可能チャネルを確保するために実行される。 Next, embodiments of the assignablechannel selection unit 124 and the assignable channel update unit 125 will be described with reference to FIGS. 17 to 19.
When a part of the allocatable channels is changed to an unallocated channel by the above-described allocatablechannel updating unit 122, the number of allocatable channels temporarily decreases on the channel state table 130. The allocatable channel selection unit (program module) 124 is executed in the channel state table 130 in order to secure at least the number of allocatable channels specified as the target value 1232 in the target value table 123.
前述した割当不可チャネル更新部122によって、割当可能チャネルの一部が割当不可チャネルに変更されると、チャネル状態テーブル130上では、割当可能チャネルの個数が一時的に減少する。割当可能チャネル選択部(プログラムモジュール)124は、チャネル状態テーブル130上に、目標値テーブル123で目標値1232として指定された個数以上の割当可能チャネルを確保するために実行される。 Next, embodiments of the assignable
When a part of the allocatable channels is changed to an unallocated channel by the above-described allocatable
図17は、割当可能チャネル選択部124によって更新され、割当可能チャネル更新部125によって参照されるチャネルリスト145の1例を示す。
チャネルリスト145は、Downlink用のチャネルリスト145Dと、Uplink用のチャネルリスト145Uとからなる。各チャネルリストは、Downlink用かUplink用かを示すテーブル区分欄146と、グループ番号148別に分割された複数の割当可能チャネル番号欄147とを含む。従って、Downlink用のチャネルリスト145Dは、グループ番号148と対応した複数のサブリスト145D-1~145-Nからなり、Uplink用のチャネルリスト145Uは、グループ番号148と対応した複数のサブリスト145U-1~145U-Nからなる。本実施例では、各サブリストの末尾に、増加チャネル数149が記憶される。 FIG. 17 shows an example of achannel list 145 that is updated by the allocatable channel selection unit 124 and referred to by the allocatable channel update unit 125.
Thechannel list 145 includes a downlink channel list 145D and an uplink channel list 145U. Each channel list includes a table division field 146 indicating whether it is for downlink or uplink, and a plurality of assignable channel number fields 147 divided by group number 148. Therefore, the downlink channel list 145D includes a plurality of sublists 145D-1 to 145-N corresponding to the group number 148, and the uplink channel list 145U includes a plurality of sublists 145U- corresponding to the group number 148. 1 to 145U-N. In this embodiment, the number of increased channels 149 is stored at the end of each sublist.
チャネルリスト145は、Downlink用のチャネルリスト145Dと、Uplink用のチャネルリスト145Uとからなる。各チャネルリストは、Downlink用かUplink用かを示すテーブル区分欄146と、グループ番号148別に分割された複数の割当可能チャネル番号欄147とを含む。従って、Downlink用のチャネルリスト145Dは、グループ番号148と対応した複数のサブリスト145D-1~145-Nからなり、Uplink用のチャネルリスト145Uは、グループ番号148と対応した複数のサブリスト145U-1~145U-Nからなる。本実施例では、各サブリストの末尾に、増加チャネル数149が記憶される。 FIG. 17 shows an example of a
The
増加チャネル数149は、チャネル状態テーブル130に割当可能チャネルとして追加すべきチャネルの個数を示している。割当可能チャネル番号欄147には、割当可能フラグ133を「0」から「1」に変更すべきチャネル番号が記憶される。
The increased channel number 149 indicates the number of channels to be added to the channel state table 130 as assignable channels. The assignable channel number column 147 stores the channel number for which the assignable flag 133 should be changed from “0” to “1”.
図18は、第1実施例に適用される割当可能チャネル選択部124のフローチャートを示す。割当可能チャネル選択部124は、割当不可チャネル更新部122によるチャネル状態テーブルの更新処理が終了した後で、制御部100によって起動される。
FIG. 18 shows a flowchart of the assignable channel selector 124 applied to the first embodiment. The allocatable channel selection unit 124 is activated by the control unit 100 after the channel state table update processing by the non-allocation channel update unit 122 is completed.
割当可能チャネル選択部124が起動されると、プロセッサ11は、テーブル区分を示すパラメータdに初期値0を設定し(2401)、第dチャネルリスト145Dの各サブリストの内容をクリア(2402)した後、グループ番号を特定するためのパラメータgに初期値0を設定する(2403)。この後、プロセッサ11は、パラメータgの値をインクリメントし、パラメータiに初期値「1」を設定し(2404)、パラメータgとグループ番号の最大値Nとを比較する(2405)。
When the assignable channel selection unit 124 is activated, the processor 11 sets an initial value 0 to the parameter d indicating the table section (2401) and clears the contents of each sublist of the d-th channel list 145D (2402). Thereafter, an initial value 0 is set to the parameter g for specifying the group number (2403). Thereafter, the processor 11 increments the value of the parameter g, sets an initial value “1” to the parameter i (2404), and compares the parameter g with the maximum value N of group numbers (2405).
g>Nでなければ、プロセッサ11は、目標値を示すパラメータYに、目標値テーブル123の第gエントリが示す目標値Y(g)を設定し(2406)、第dチャネル状態テーブル130Dの第gグループで、割当可能フラグが「1」となっているエントリ(割当可能チャネル)の個数Xをカウントして(2407)、増加チャネル数M=Y-Xを算出する(2408)。プロセッサ11は、Mの値を第dチャネルリストの第gグループの増加チャネル数M(g)として記憶(2409)した後、Mの値が0を超えているか否かを判定し(2410)、M>0でなければ、ステップ2404に戻って、パラメータgの値をインクリメントし、パラメータiを初期値「1」にして、次のグループ番号で上述した処理を繰り返す。
If g> N is not satisfied, the processor 11 sets the target value Y (g) indicated by the g-th entry in the target value table 123 to the parameter Y indicating the target value (2406), and sets the target value Y (g) in the d-th channel state table 130D. The number X of entries (assignable channels) for which the assignable flag is “1” in the g group is counted (2407), and the increased channel number M = Y−X is calculated (2408). The processor 11 stores (2409) the value of M as the increased channel number M (g) of the g-th group in the d-th channel list, and then determines whether the value of M exceeds 0 (2410), If not M> 0, the process returns to step 2404 to increment the value of the parameter g, set the parameter i to the initial value “1”, and repeat the above-described processing with the next group number.
ステップ2410でM>0の場合、プロセッサ11は、第dチャネル状態テーブル130Dの第gグループで、割当可能フラグが「0」となっているエントリ(割当不可チャネル)群のなかから、ランダムに1つのエントリ(チャネル番号j)を選択し(2411)、第dチャネルリストの第gグループの第iエントリCd,g(i)に、チャネル番号jを記憶する(2412)。この後、プロセッサ11は、パラメータMの値をデクリメントし、パラメータiの値をインクリメントして(2413)、ステップ2410以降の処理を繰り返す。
If M> 0 in step 2410, the processor 11 randomly selects 1 from the group of entries (non-assignable channels) in which the assignable flag is “0” in the g-th group of the d-th channel state table 130D. One entry (channel number j) is selected (2411), and the channel number j is stored in the i-th entry Cd, g (i) of the g-th group in the d-th channel list (2412). Thereafter, the processor 11 decrements the value of the parameter M, increments the value of the parameter i (2413), and repeats the processing after step 2410.
パラメータMの値が0以下になったとき、プロセッサ11は、ステップ2404に戻って、パラメータgの値をインクリメントし、パラメータiを初期値「1」にして、次のグループ番号で上述した処理を繰り返す。ステップ2405で、パラメータgの値が、グループ番号の最大値Nを超えたとき、テーブル区分を示すパラメータdの値がインクリメントされる(2414)。
When the value of the parameter M becomes 0 or less, the processor 11 returns to step 2404, increments the value of the parameter g, sets the parameter i to the initial value “1”, and performs the above-described processing with the next group number. repeat. In step 2405, when the value of the parameter g exceeds the maximum value N of group numbers, the value of the parameter d indicating the table section is incremented (2414).
プロセッサ11は、d>1でなければ(2415)、ステップ2402に戻って、次のチャネルリスト145Uをクリアし、次のチャネル状態テーブル130Uについて、上述した処理を繰り返す。d>1となったとき、割当可能チャネル選択部124の処理は終了する。
割当可能チャネル選択部124によるチャネル選択処理が終了すると、制御部100は、割当可能チャネル更新部(プログラムモジュール)125を起動する。 If d> 1 is not satisfied (2415), theprocessor 11 returns to step 2402, clears the next channel list 145U, and repeats the above-described processing for the next channel state table 130U. When d> 1, the process of the assignable channel selection unit 124 ends.
When the channel selection process by the allocatablechannel selection unit 124 ends, the control unit 100 activates the allocatable channel update unit (program module) 125.
割当可能チャネル選択部124によるチャネル選択処理が終了すると、制御部100は、割当可能チャネル更新部(プログラムモジュール)125を起動する。 If d> 1 is not satisfied (2415), the
When the channel selection process by the allocatable
図19は、割当可能チャネル更新部(プログラムモジュール)125のフローチャートを示す。
割当可能チャネル更新部125が起動されると、プロセッサ11は、パラメータdに初期値0を設定し(2501)、パラメータgに初期値0を設定し(2502)、gの値をインクリメントして(2503)、gとグループ番号の最大値Nを比較する(2503)。 FIG. 19 is a flowchart of the assignable channel update unit (program module) 125.
When the allocatablechannel update unit 125 is activated, the processor 11 sets an initial value 0 to the parameter d (2501), sets an initial value 0 to the parameter g (2502), and increments the value of g ( 2503), g and the maximum value N of group numbers are compared (2503).
割当可能チャネル更新部125が起動されると、プロセッサ11は、パラメータdに初期値0を設定し(2501)、パラメータgに初期値0を設定し(2502)、gの値をインクリメントして(2503)、gとグループ番号の最大値Nを比較する(2503)。 FIG. 19 is a flowchart of the assignable channel update unit (program module) 125.
When the allocatable
g>Nでなければ、プロセッサ11は、第dチャネルリスト145Dの第gグループのサブリスト145D-gに記憶してある増加チャネル数M(g)の値をパラメータKに設定し(2505)、サブリスト145D-g内のエントリを特定するためのパラメータiに初期値0を設定する(2506)。この後、プロセッサ11は、iの値をインクリメントして(2507)、iとKを比較する(2258)。i>Kでなければ、プロセッサは、第dチャネルリストの第gグループの第iエントリCd,g(i)に記憶されているチャネル番号の値をパラメータjに設定し(2509)、第dチャネルテーブル130Dの第gグループの第jエントリEd,g(j)の割当可能フラグ133を「1」に変更して(2510)、上述したステップ2507以降の処理を繰り返す。
If g> N is not satisfied, the processor 11 sets the value of the increased channel number M (g) stored in the g-th group sublist 145D-g of the d-th channel list 145D in the parameter K (2505), An initial value 0 is set to a parameter i for specifying an entry in the sublist 145D-g (2506). Thereafter, the processor 11 increments the value of i (2507), and compares i with K (2258). If i> K, the processor sets the value of the channel number stored in the i-th entry Cd, g (i) of the g-th group in the d-th channel list to the parameter j (2509), and the d-th channel The allocatable flag 133 of the j-th entry Ed, g (j) of the g-th group in the table 130D is changed to “1” (2510), and the processing after step 2507 is repeated.
ステップ2508でパラメータiの値がKを超えたとき、プロセッサ11は、ステップ2503でグループ番号gの値をインクリメントして、上述したステップ2504~2510の処理を繰り返す。ステップ2504で、パラメータgの値が最大値Nを超えたとき、プロセッサ11は、チャネルリスト145のテーブル区分146を示すパラメータdの値をインクリメントし(2511)、d>1でなければ(2512)、ステップ2502に戻る。これによって、次のチャネルリスト145Uを使用して、上述した処理が繰り返される。プロセッサ11は、d>1となったとき、割当可能チャネル更新部125の処理を終了する。
When the value of the parameter i exceeds K in step 2508, the processor 11 increments the value of the group number g in step 2503 and repeats the processing of steps 2504 to 2510 described above. In step 2504, when the value of the parameter g exceeds the maximum value N, the processor 11 increments the value of the parameter d indicating the table section 146 of the channel list 145 (2511). If d> 1 is not satisfied (2512). Return to Step 2502. Accordingly, the above-described processing is repeated using the next channel list 145U. When d> 1, the processor 11 ends the process of the assignable channel update unit 125.
本実施例では、d=0のとき、Downlink用のチャネルリスト145Dに従って、Downlink用のチャネル状態テーブル130Dが更新され、d=1のとき、Uplink用のチャネルリスト145Uに従って、Uplink用のチャネル状態テーブル130Uが更新される。
In this embodiment, when d = 0, the downlink channel state table 130D is updated according to the downlink channel list 145D, and when d = 1, the uplink channel state table according to the uplink channel list 145U. 130U is updated.
上述した実施例では、割当可能チャネル選択部124の動作が終了したとき、制御部100が、割当可能チャネル更新部125を起動しているが、割当可能チャネル更新部125は、全ての判定処理を終了した割当可能チャネル選択部124によって起動されるようにしてもよい。また、割当可能チャネル更新部125の機能を割当可能チャネル選択部124に統合してもよい。この場合、例えば、Downlink用の割当可能チャネルの判定処理が終了したとき、Downlink用のチャネルリスト145Dに従って、Downlink用のチャネル状態テーブル130Dを更新し、Uplink用の割当可能チャネルの判定処理が終了したとき、Uplink用のチャネルリスト145Uに従って、Uplink用のチャネル状態テーブル130Uを更新するようにしてもよい。
In the above-described embodiment, when the operation of the allocatable channel selection unit 124 is completed, the control unit 100 activates the allocatable channel update unit 125, but the allocatable channel update unit 125 performs all the determination processes. It may be activated by the allocatable channel selection unit 124 that has ended. Further, the function of the assignable channel update unit 125 may be integrated into the assignable channel selection unit 124. In this case, for example, when the downlink assignable channel determination process is completed, the downlink channel state table 130D is updated according to the downlink channel list 145D, and the uplink assignable channel determination process is completed. At this time, the uplink channel state table 130U may be updated according to the uplink channel list 145U.
図20の(A)、(B)は、それぞれ基地局10A、10Bが備えるチャネル状態テーブル130Uの一部である第gサブテーブル130U-gの変化を示している。
図示した例では、エントリE1,g(4)とE1,g(10)が示すように、第4チャネルと第10チャネルが、基地局10Aと10Bの双方で、割当可能チャネルとなっている。従って、これらのチャネルが、基地局10A、10Bの双方で端末に割当てられた場合、チャネル間干渉が発生する。従来の技術では、干渉チャネルに対する扱いが、各基地局が同一となっているため、基地局10Aで割当不可と判断した干渉チャネルは、基地局10Bでも割当不可チャネルと判断される。 20A and 20B show changes in the g-th sub-table 130U-g, which is a part of the channel state table 130U included in the base stations 10A and 10B, respectively.
In the illustrated example, as indicated by the entries E1, g (4) and E1, g (10), the fourth channel and the tenth channel are allocatable channels in both the base stations 10A and 10B. Therefore, when these channels are assigned to terminals in both the base stations 10A and 10B, interchannel interference occurs. In the conventional technique, since each base station handles the interference channel in the same manner, the interference channel determined to be unassignable by the base station 10A is also determined to be an unassignable channel by the base station 10B.
図示した例では、エントリE1,g(4)とE1,g(10)が示すように、第4チャネルと第10チャネルが、基地局10Aと10Bの双方で、割当可能チャネルとなっている。従って、これらのチャネルが、基地局10A、10Bの双方で端末に割当てられた場合、チャネル間干渉が発生する。従来の技術では、干渉チャネルに対する扱いが、各基地局が同一となっているため、基地局10Aで割当不可と判断した干渉チャネルは、基地局10Bでも割当不可チャネルと判断される。 20A and 20B show changes in the g-th sub-table 130U-g, which is a part of the channel state table 130U included in the
In the illustrated example, as indicated by the entries E1, g (4) and E1, g (10), the fourth channel and the tenth channel are allocatable channels in both the
これに対して、本発明では、上記第4チャネルと第10チャネルが通信中チャネルとなったとき、削除チャネル判定部121が、干渉チャネルをランダムに割当不可チャネルに変更するようになっているため、サブテーブル130U-g’のエントリE1,g(4)、E1,g(10)が示すように、基地局10Aと10Bでは、干渉チャネルに対する扱いが異なったものとなる。また、割当可能チャネル選択部124の機能によって、割当不可チャネル群の一部がランダムに割当可能チャネルに変更されるため、例えば、エントリE1,g(1)、E1,g(8)が示すように、基地局10Aと10Bで異なったチャネルが割当可能チャネルとなる。従って、本発明によれば、上述した削除チャネル判定部121と割当可能チャネル選択部124を周期的に起動することによって、隣接する複数の基地局が、互いに異なった割当可能チャネル群を示すチャネル状態テーブルにもとづいて、動的チャネル割当てを実行することが可能となる。
On the other hand, in the present invention, when the fourth channel and the tenth channel become channels in communication, the deletion channel determination unit 121 changes the interference channel to an unassignable channel at random. As indicated by the entries E1, g (4) and E1, g (10) of the sub-table 130U-g ′, the base stations 10A and 10B have different handling for the interference channel. In addition, since a part of the unassignable channel group is randomly changed to an assignable channel by the function of the assignable channel selection unit 124, for example, entries E1, g (1) and E1, g (8) indicate In addition, different channels can be assigned to the base stations 10A and 10B. Therefore, according to the present invention, a channel state in which a plurality of adjacent base stations indicate different assignable channel groups by periodically activating the above-described deletion channel determination unit 121 and assignable channel selection unit 124. Based on the table, dynamic channel allocation can be performed.
図21は、割当チャネル決定部(プログラムモジュール)126の1実施例を示すフローチャートである。割当チャネル決定部126は、制御部100からのチャネル割当要求に応答して起動される。本実施例では、チャネル割当要求は、端末IDと、グループ番号と、割当リンクの識別情報を含む。
FIG. 21 is a flowchart showing an embodiment of the allocation channel determination unit (program module) 126. Allocation channel determination unit 126 is activated in response to a channel allocation request from control unit 100. In this embodiment, the channel assignment request includes the terminal ID, the group number, and the identification information of the assigned link.
割当チャネル決定部126が起動されると、プロセッサ11は、チャネル割当要求が示すグループ番号をパラメータgに設定(2601)した後、チャネル割当すべきリンクを判定する(2062)。割当リンクがUplinkの場合は、プロセッサ11は、テーブル区分パラメータdを1に設定し(2603)、割当リンクがDownlinkの場合は、パラメータdを0に設定する(2604)。
When the allocation channel determination unit 126 is activated, the processor 11 sets the group number indicated by the channel allocation request in the parameter g (2601), and then determines the link to which the channel should be allocated (2062). When the allocation link is Uplink, the processor 11 sets the table partition parameter d to 1 (2603), and when the allocation link is Downlink, the processor 11 sets the parameter d to 0 (2604).
プロセッサ11は、チャネル番号を示すパラメータiの値を初期値0に設定(2605)した後、パラメータiをインクリメントし(2606)、iがチャネル番号の最大値(Pまたはp)を超えたか否かを判定する(2607)。パラメータiが最大値以下であれば、プロセッサ11は、第dチャネル状態テーブル(130Dまたは130U)の第gグループの第iエントリEd,g(i)の割当可能フラグ133をチェックし(2608)、割当可能フラグが1の場合は、第d割当チャネルテーブル(127Dまたは127U)の第iエントリE(i)の割当フラグ1272をチェックする(2609)。
The processor 11 sets the value of the parameter i indicating the channel number to the initial value 0 (2605), then increments the parameter i (2606), and whether or not i exceeds the maximum value (P or p) of the channel number. Is determined (2607). If the parameter i is equal to or less than the maximum value, the processor 11 checks the assignable flag 133 of the i-th entry Ed, g (i) of the g-th group in the d-th channel state table (130D or 130U) (2608), When the assignable flag is 1, the assignment flag 1272 of the i-th entry E (i) in the d-th assigned channel table (127D or 127U) is checked (2609).
エントリE(i)の割当フラグが0の場合、すなわち、第iチャネルが割当可能チャネル、且つ、空きチャネルのとき、プロセッサ11は、上記エントリE(i)の割当フラグを1に変更し(2610)、割当チャネルCH(d)にチャネル番号iを設定して(2611)、CH(d)と端末IDを下りベースバンド処理部105に出力して(2612)、チャネル割当を終了する。
When the assignment flag of the entry E (i) is 0, that is, when the i-th channel is an assignable channel and an empty channel, the processor 11 changes the assignment flag of the entry E (i) to 1 (2610) ), Channel number i is set to assigned channel CH (d) (2611), CH (d) and terminal ID are output to downlink baseband processing section 105 (2612), and channel assignment is terminated.
ステップ2608で、割当可能フラグが0(第iチャネルが割当不可チャネル)、またはステップ12609で、割当フラグが1(第iチャネルが通信中チャネル)の場合、ステップ2606以降の処理が繰り返され、パラメータiの値がチャネル番号の最大値Pを超えたとき、プロセッサ11は、制御部100に割当不可を通知して(2613)、チャネル割当を終了する。
If the assignable flag is 0 (i-th channel is an unassignable channel) in step 2608 or if the assignment flag is 1 (i-channel is the channel in communication) in step 12609, the processing from step 2606 is repeated, and the parameters When the value of i exceeds the maximum value P of the channel number, the processor 11 notifies the control unit 100 that assignment is impossible (2613), and ends the channel assignment.
上記実施例では、割当チャネル決定部126が、チャネル状態テーブル130が示す割当可能チャネル群のうち、割当チャネルテーブル127で空き状態にあることが確認されたチャネルを割当チャネルとして選択したが、ここで選択されたチャネルについて干渉値を測定し、干渉が許容値を超えていた場合は、別のチャネルを選択するようにしてもよい。
In the above embodiment, the allocation channel determination unit 126 selects, as an allocation channel, a channel that is confirmed to be free in the allocation channel table 127 out of the allocatable channel group indicated by the channel state table 130. If the interference value is measured for the selected channel and the interference exceeds the allowable value, another channel may be selected.
上述した第1実施例によれば、各基地局が、互いに異なったチャネル番号の組み合わせで、チャネル状態テーブルに割当可能チャネル群を記憶できるため、端末割当チャネルが干渉する可能性を低減できる。また、削除チャネル判定部121が、通信中チャネルに限定して、グループ番号毎の干渉判定を繰り返すようになっているため、無線通信システムの全チャネルについて干渉判定を繰り返す場合に比較して、干渉判定の所要時間を短縮できる。
According to the first embodiment described above, since each base station can store an assignable channel group in the channel state table with a combination of channel numbers different from each other, it is possible to reduce the possibility that the terminal assigned channel interferes. Further, since the deletion channel determination unit 121 is configured to repeat the interference determination for each group number only for the channel in communication, the interference is smaller than when the interference determination is repeated for all channels of the wireless communication system. The time required for judgment can be shortened.
図30は、本発明を適用した無線通信システムにおけるUplinkのユーザ(端末)あたりの周波数利用効率[bps/Hz/user]の累積分布を示す。縦軸C.D.Fは、累積分布を表している。
FIG. 30 shows a cumulative distribution of frequency use efficiency [bps / Hz / user] per uplink user (terminal) in the wireless communication system to which the present invention is applied. Vertical axis C.I. D. F represents the cumulative distribution.
ここでは、基地局は、20m間隔の六角セル配置となっており、各セルは、セル半径の70%を境として第1、第2のサブセル領域に分割され(グループ数N=2)、全チャネル数Pを40、1基地局あたりユーザ(端末)数を16、各端末への割当チャネル数を1とし、全端末の使用チャネルが、4フレーム間隔で変更された場合を想定している。また、各端末は、基地局での受信電力が-50dBmとなるように理想的に送信電力制御されているものとする。本発明によれば、セル間のチャネル干渉を抑圧できるため、従来方式と比較して、周波数利用効率が改善されることがわかる。
Here, the base station has a hexagonal cell arrangement with an interval of 20 m, and each cell is divided into first and second subcell regions (number of groups N = 2) with 70% of the cell radius as a boundary. It is assumed that the number of channels P is 40, the number of users (terminals) per base station is 16, the number of assigned channels to each terminal is 1, and the channels used by all terminals are changed at intervals of 4 frames. Further, it is assumed that each terminal is ideally subjected to transmission power control so that the reception power at the base station is −50 dBm. According to the present invention, since channel interference between cells can be suppressed, it can be seen that the frequency utilization efficiency is improved as compared with the conventional method.
図2に示したリユースパーティショニング方式の無線通信システムでは、基地局に近いサブセル領域で干渉チャネルと判定されたチャネルは、セル境界に近いサブセル領域でも干渉チャネルとなる。本発明の第2実施例では、リユースパーティショニングの上記特性に着目して、グループ番号mのサブセル領域で削除チャネルを判定するとき、これより内側のサブセル領域(グループ番号m-1)における判定結果を参照する。
In the reuse partitioning type radio communication system shown in FIG. 2, a channel determined to be an interference channel in a subcell region close to a base station becomes an interference channel even in a subcell region close to a cell boundary. In the second embodiment of the present invention, when the deletion channel is determined in the subcell region of group number m, focusing on the above characteristics of reuse partitioning, the determination result in the subcell region (group number m-1) inside this Refer to
第2実施例では、例えば、チャネルiが、グループ番号m-1のサブセル領域で割当不可チャネルとなっていた場合、グループ番号mのサブセル領域では、干渉判定することなく、チャネルiを割当不可チャネルと判断する。逆に、グループ番号mのサブセル領域で割当可能と判定されたチャネルは、グループ番号m-1のサブセル領域でも割当可能チャネルにする。
In the second embodiment, for example, when channel i is an unassignable channel in the subcell region of group number m-1, channel i is not assigned in the subcell region of group number m without interference determination. Judge. Conversely, a channel that is determined to be assignable in the subcell area of group number m is made an assignable channel in the subcell area of group number m-1.
図22は、削除チャネル決定部121の第2実施例を示すフローチャートである。図15で説明した第1実施例と同一のステップは、図15と同一符号を付してあるため、説明を省略する。
第2実施例では、ステップ2110で、干渉状態テーブル128のエントリ番号を特定するパラメータiを通信中チャネル数Kと比較し、i>Kでなければ、グループ番号gをチェックする(2111)。グループ番号gが1、すなわち、基地局に最も近いサブセル領域で削除チャネルを判定しているときは、プロセッサ11は、第1実施例と同様、干渉値判定(2120)と、乱数判定(2122)によって、割当不可チャネル(削除チャネル)に変更すべき干渉チャネルを選択する。 FIG. 22 is a flowchart showing the second embodiment of the deletionchannel determination unit 121. The same steps as those in the first embodiment described in FIG. 15 are denoted by the same reference numerals as those in FIG.
In the second embodiment, instep 2110, the parameter i for specifying the entry number in the interference state table 128 is compared with the number K of communicating channels. If i> K is not satisfied, the group number g is checked (2111). When the group number g is 1, that is, when the deletion channel is determined in the subcell region closest to the base station, the processor 11 determines the interference value (2120) and the random number determination (2122) as in the first embodiment. To select an interference channel to be changed to an unassignable channel (deleted channel).
第2実施例では、ステップ2110で、干渉状態テーブル128のエントリ番号を特定するパラメータiを通信中チャネル数Kと比較し、i>Kでなければ、グループ番号gをチェックする(2111)。グループ番号gが1、すなわち、基地局に最も近いサブセル領域で削除チャネルを判定しているときは、プロセッサ11は、第1実施例と同様、干渉値判定(2120)と、乱数判定(2122)によって、割当不可チャネル(削除チャネル)に変更すべき干渉チャネルを選択する。 FIG. 22 is a flowchart showing the second embodiment of the deletion
In the second embodiment, in
ステップ2111で、g=1でなかった場合、プロセッサ11は、第dチャネルリストのグループ番号「g-1」の第iエントリCd,g-1(i)の判定結果をチェックし(2112)、第iエントリCd,g-1(i)の判定結果が「1」となっていた場合は、第dチャネルリストのエントリCd,g(i)の判定結果を「1」に設定して(2113)、ステップ2109に戻る。第iエントリCd,g-1(i)の判定結果が「0」となっていた場合、プロセッサ11は、第1実施例と同様、干渉値判定(2120)と、乱数判定(2122)によって、割当不可チャネルに変更すべき干渉チャネルを選択する。
If g = 1 is not satisfied in step 2111, the processor 11 checks the determination result of the i-th entry Cd, g-1 (i) of the group number “g-1” in the d-th channel list (2112), When the determination result of the i-th entry Cd, g-1 (i) is “1”, the determination result of the entry Cd, g (i) in the d-th channel list is set to “1” (2113). ), And returns to Step 2109. When the determination result of the i-th entry Cd, g-1 (i) is “0”, the processor 11 performs the interference value determination (2120) and the random number determination (2122) as in the first embodiment. An interference channel to be changed to an unassignable channel is selected.
動的チャネル割当部120に、第2実施例の削除チャネル決定部121が適用された場合でも、図16に示した割当不可チャネル更新部122によって、チャネル状態テーブル130を更新することができる。
Even when the deletion channel determination unit 121 of the second embodiment is applied to the dynamic channel assignment unit 120, the channel state table 130 can be updated by the non-assignable channel update unit 122 illustrated in FIG.
図23は、割当可能チャネル選択部124の第2実施例のフローチャートを示す。 図18で説明した第1実施例と同一のステップは、図18と同一符号を付してあるため、説明を省略する。
第2実施例では、第1実施例とは逆に、グループ番号gの大きいサブセル領域から順に割当可能チャネルの選択処理を実行し、何れかのサブセル領域で割当可能と判定されたチャネルは、それよりも内側の全てのサブセル領域で、割当可能チャネルと判定する。 FIG. 23 shows a flowchart of the second embodiment of theassignable channel selector 124. The same steps as those in the first embodiment described in FIG. 18 are denoted by the same reference numerals as those in FIG.
In the second embodiment, contrary to the first embodiment, the assignable channel selection process is executed in order from the subcell region with the larger group number g, and the channel determined to be assignable in any subcell region is All subcell areas inside are determined as assignable channels.
第2実施例では、第1実施例とは逆に、グループ番号gの大きいサブセル領域から順に割当可能チャネルの選択処理を実行し、何れかのサブセル領域で割当可能と判定されたチャネルは、それよりも内側の全てのサブセル領域で、割当可能チャネルと判定する。 FIG. 23 shows a flowchart of the second embodiment of the
In the second embodiment, contrary to the first embodiment, the assignable channel selection process is executed in order from the subcell region with the larger group number g, and the channel determined to be assignable in any subcell region is All subcell areas inside are determined as assignable channels.
図23の割当可能チャネル選択部124において、プロセッサ11は、パラメータdで特定される第dチャネルリストをクリア(2402)した後、グループ番号を示すパラメータgをグループ番号の最大値Nに設定し(2403A)、チャネル状態テーブル130におけるチャネル番号を示すパラメータjを0、チャネルリスト140におけるエントリを特定するパラメータiの値を1に設定して(2404A)、パラメータgの値をチェックする(2405A)。パラメータgが0でなければ、ステップ2406~2409を実行して、第gグループで増加すべき割当可能チャネルの個数Mを算出し、これを第gグループのチャネルリストに記憶する。
In the assignable channel selection unit 124 of FIG. 23, the processor 11 clears the d-th channel list specified by the parameter d (2402), and then sets the parameter g indicating the group number to the maximum value N of group numbers ( 2403A), the parameter j indicating the channel number in the channel state table 130 is set to 0, the value of the parameter i specifying the entry in the channel list 140 is set to 1 (2404A), and the value of the parameter g is checked (2405A). If the parameter g is not 0, steps 2406 to 2409 are executed to calculate the number M of allocatable channels to be increased in the g-th group and store this in the channel list of the g-th group.
この後、プロセッサ11は、パラメータgがグループ番号の最大値Nか否かを判定する(2420)。g=N、すなわち、プロセッサ11が、セルの最も外側のサブセル領域でチャネル選択を実行している場合は、第1実施例と同様、ステップ2410~2413を繰り返すことによって、割当不可チャネル群のなかからランダムにM個の割当可能チャネルを選択する。第gグループで割当可能チャネルの選択が終了すると、プロセッサ11は、パラメータgの値をデクリメント(2427)した後、ステップ2404Aでパラメータj、iの値を初期化し、ステップ2405A以降の処理を繰り返す。
Thereafter, the processor 11 determines whether or not the parameter g is the maximum value N of group numbers (2420). When g = N, that is, when the processor 11 is performing channel selection in the outermost subcell area of the cell, the steps 2410 to 2413 are repeated in the same manner as in the first embodiment, thereby making it possible to select among the unassignable channel groups. Randomly select M assignable channels. When the selection of the assignable channel in the g-th group is completed, the processor 11 decrements the value of the parameter g (2427), initializes the values of the parameters j and i in step 2404A, and repeats the processing after step 2405A.
ステップ2420で、g=Nでなかった場合は、プロセッサ11は、パラメータiの値をインクリメントし(2421)、iの値がチャネル番号の最大値Pを超えたか否かを判定する(2422)。i>Pでなければ、プロセッサ11は、第dチャネル状態テーブル130において、現在処理対象となっているサブセル領域の1つ外側のサブセルを示すグループ番号「g+1」の第jエントリEd,g+1(j)の割当可能フラグと、現在処理対象としているグループ番号gの第jエントリEd,g(j)の割当可能フラグをチェックする(2423)。
In step 2420, if g = N is not satisfied, the processor 11 increments the value of the parameter i (2421), and determines whether or not the value of i exceeds the maximum value P of the channel number (2422). If i> P is not satisfied, the processor 11 indicates that the jth entry Ed, g + 1 of the group number “g + 1” indicating a subcell one outside the subcell region currently being processed in the d-th channel state table 130. The assignable flag of (j) and the assignable flag of the jth entry Ed, g (j) of the group number g currently being processed are checked (2423).
エントリEd,g+1(j)の割当可能フラグが「0」、またはエントリEd,g(j)の割当可能フラグが「1」の場合は、ステップ2421に戻る。エントリEd,g+1(j)の割当可能フラグが「1」で、エントリEd,g(j)の割当可能フラグが「0」の場合、プロセッサ11は、第dチャネルリストの第gグループの第iエントリCd,g(i)にチャネル番号jを記憶し(2424)、パラメータMの値をデクリメントし、パラメータiの値をインクリメントして(2425)、Mの値をチェックする(2426)。
If the assignable flag of entry Ed, g + 1 (j) is “0” or the assignable flag of entry Ed, g (j) is “1”, the process returns to step 2421. When the assignable flag of the entry Ed, g + 1 (j) is “1” and the assignable flag of the entry Ed, g (j) is “0”, the processor 11 indicates the g-th group of the d-th channel list. The channel number j is stored in the i-th entry Cd, g (i) (2424), the value of the parameter M is decremented, the value of the parameter i is incremented (2425), and the value of M is checked (2426).
M>0の場合、プロセッサ11は、ステップ2421に戻って、上述した処理を繰り返し、M=0になったとき、ステップ2427に進む。M=0になる前に、インクリメントされたパラメータjが最大値Pを超えた場合(2422)、プロセッサ11は、割当可能チャネルの追加個数がMになるまで、ステップ2410~2413を繰り返す。
動的チャネル割当部120に、第2実施例の割当可能チャネル選択部124が適用された場合でも、図19に示した割当可能チャネル更新部125によって、チャネル状態テーブル130を更新することができる。 When M> 0, theprocessor 11 returns to step 2421 and repeats the above-described processing. When M = 0, the processor 11 proceeds to step 2427. If the incremented parameter j exceeds the maximum value P before M = 0 (2422), the processor 11 repeats steps 2410 to 2413 until the additional number of assignable channels becomes M.
Even when the assignablechannel selecting unit 124 of the second embodiment is applied to the dynamic channel assigning unit 120, the assignable channel updating unit 125 illustrated in FIG. 19 can update the channel state table 130.
動的チャネル割当部120に、第2実施例の割当可能チャネル選択部124が適用された場合でも、図19に示した割当可能チャネル更新部125によって、チャネル状態テーブル130を更新することができる。 When M> 0, the
Even when the assignable
尚、図23では、外側サブセル領域の割当可能チャネルを内側サブセル領域に複写するシーケンスにおいて、割当可能チャネルが目標値に達した時点(2426)で、グループ番号をインクリメントし(2417)、次のサブセル領域での判定処理に遷移させているが、判定ステップ2426を省略して、外側サブセル領域の全ての割当可能チャネルを内側サブセル領域に複写するようにしてもよい。
In FIG. 23, in the sequence of copying the assignable channel in the outer subcell area to the inner subcell area, when the assignable channel reaches the target value (2426), the group number is incremented (2417), and the next subcell Although transition is made to the determination process in the area, the determination step 2426 may be omitted, and all assignable channels in the outer subcell area may be copied to the inner subcell area.
図24は、本発明の第3実施例として、図16に示した割当不可チャネル更新部122に追加されるプログラムモジュール部分のフローチャートを示す。
ここに示したプログラムモジュール部分は、チャネル状態テーブル130上で、チャネルリスト140に記憶されたチャネル番号を割当不可チャネルに変更したとき、チャネル状態テーブル130上で割当不可チャネルが目標個数に足りない場合に、不足した個数のチャネルを割当可能チャネル群のなかからランダムに選択し、割当不可チャネルに変更するためのものである。 FIG. 24 shows a flowchart of the program module part added to the unallocatedchannel update unit 122 shown in FIG. 16 as the third embodiment of the present invention.
When the channel number stored in thechannel list 140 is changed to an unassignable channel on the channel state table 130, the program module portion shown here is when the unassignable channels are not enough on the channel state table 130. In addition, an insufficient number of channels are randomly selected from the assignable channel group and changed to channels that cannot be assigned.
ここに示したプログラムモジュール部分は、チャネル状態テーブル130上で、チャネルリスト140に記憶されたチャネル番号を割当不可チャネルに変更したとき、チャネル状態テーブル130上で割当不可チャネルが目標個数に足りない場合に、不足した個数のチャネルを割当可能チャネル群のなかからランダムに選択し、割当不可チャネルに変更するためのものである。 FIG. 24 shows a flowchart of the program module part added to the unallocated
When the channel number stored in the
図16の割当不可チャネル更新部122では、ステップ2207~2211で、チャネルリスト140に記憶された第gグループのK個のチャネルについて、チャネル状態リスト130で割当不可チャネルへの変更が終了したとき、ステップ2204でパラメータgの値をインクリメントすることによって、次のグループ番号のチャネルリストに従って、チャネル状態リスト130で割当不可チャネルへの変更が繰り返されるようになっている。
In the unassignable channel updating unit 122 of FIG. 16, when the change to the unassignable channel is completed in the channel state list 130 for the K channels of the g-th group stored in the channel list 140 in steps 2207 to 2211, By incrementing the value of the parameter g in step 2204, the channel status list 130 is repeatedly changed to an unassignable channel according to the channel list of the next group number.
図24のフローチャートは、チャネル状態リスト130で割当不可チャネルへの変更が終了したとき、ステップ2204に進む前に実行される。
本実施例では、プロセッサ11は、第dチャネル状態テーブル130の第gグループの割当不可チャネルの個数Xをカウントし(2220)、Xを予め指定されている目標値Zと比較する(2221)。XがZ以上の場合は、図16のステップ2204が実行される。XがZより小さい場合、プロセッサ11は、第dチャネル状態テーブル130の第gグループで、割当可能フラグ133が「1」のエントリ群のなかから、ランダムにエントリEd,g(j)を選択し(2222)、エントリEd,g(j)の判定結果133を「0」に変更し(2223)、Xの値をインクリメントして(2224)、ステップ2221を実行する。 The flowchart of FIG. 24 is executed before proceeding to step 2204 when the change to the unassignable channel is completed in thechannel state list 130.
In the present embodiment, theprocessor 11 counts the number X of unassignable channels of the g-th group in the d-th channel state table 130 (2220), and compares X with a target value Z specified in advance (2221). If X is equal to or greater than Z, step 2204 in FIG. 16 is executed. When X is smaller than Z, the processor 11 randomly selects the entry Ed, g (j) from the entry group having the assignable flag 133 of “1” in the g-th group of the d-th channel state table 130. (2222) The determination result 133 of the entry Ed, g (j) is changed to “0” (2223), the value of X is incremented (2224), and step 2221 is executed.
本実施例では、プロセッサ11は、第dチャネル状態テーブル130の第gグループの割当不可チャネルの個数Xをカウントし(2220)、Xを予め指定されている目標値Zと比較する(2221)。XがZ以上の場合は、図16のステップ2204が実行される。XがZより小さい場合、プロセッサ11は、第dチャネル状態テーブル130の第gグループで、割当可能フラグ133が「1」のエントリ群のなかから、ランダムにエントリEd,g(j)を選択し(2222)、エントリEd,g(j)の判定結果133を「0」に変更し(2223)、Xの値をインクリメントして(2224)、ステップ2221を実行する。 The flowchart of FIG. 24 is executed before proceeding to step 2204 when the change to the unassignable channel is completed in the
In the present embodiment, the
本実施例によれば、チャネル状態テーブル130上で、最低Z個のチャネルが割当不可チャネルとなり、割当可能チャネル分布のランダム性が増すため、隣接セル間で端末への割当チャネルの干渉可能性を更に低減できる。
尚、図24では、簡単化のために全てのグループに共通の目標値Zを使用しているが、目標値Zは、図12に示した割当可能チャネルの目標値Yと同じように、グループ番号によって異なった値を使用してもよい。 According to the present embodiment, since at least Z channels become unassignable channels on the channel state table 130 and the randomness of the assignable channel distribution increases, the possibility of interference of the assigned channels to terminals between adjacent cells is increased. Further reduction can be achieved.
In FIG. 24, a target value Z common to all groups is used for simplification. However, the target value Z is the same as the target value Y of the assignable channel shown in FIG. Different values may be used depending on the number.
尚、図24では、簡単化のために全てのグループに共通の目標値Zを使用しているが、目標値Zは、図12に示した割当可能チャネルの目標値Yと同じように、グループ番号によって異なった値を使用してもよい。 According to the present embodiment, since at least Z channels become unassignable channels on the channel state table 130 and the randomness of the assignable channel distribution increases, the possibility of interference of the assigned channels to terminals between adjacent cells is increased. Further reduction can be achieved.
In FIG. 24, a target value Z common to all groups is used for simplification. However, the target value Z is the same as the target value Y of the assignable channel shown in FIG. Different values may be used depending on the number.
次に、本発明に第4実施例として、図7に示した更新単位変更部150の機能について説明する。
第4実施例では、例えば、図25に示すチャネル状態テーブル130Bのように、複数のチャネル番号132をグルーピングし、グルーピングされた複数のチャネルを更新単位135として、割当可能フラグ133を設定する。図25では、2チャネルずつグルーピングして、更新単位番号135を付与してある。このチャネル状態テーブル130Bを利用すれば、削除チャネル判定部122と割当可能チャネル選択部124で、更新単位となる複数チャネルに同一の判定結果を与えれば済むため、チャネルの判定処理が容易になり、チャネル状態テーブルの更新所要時間を短縮できる。 Next, the function of the updateunit changing unit 150 shown in FIG. 7 will be described as a fourth embodiment of the present invention.
In the fourth embodiment, for example, as shown in the channel state table 130B shown in FIG. 25, a plurality ofchannel numbers 132 are grouped, and the assignable flag 133 is set with the plurality of grouped channels as the update unit 135. In FIG. 25, two channels are grouped and an update unit number 135 is given. By using this channel state table 130B, the deletion channel determination unit 122 and the allocable channel selection unit 124 only need to give the same determination result to a plurality of channels as update units, so that the channel determination process becomes easy. The time required for updating the channel state table can be shortened.
第4実施例では、例えば、図25に示すチャネル状態テーブル130Bのように、複数のチャネル番号132をグルーピングし、グルーピングされた複数のチャネルを更新単位135として、割当可能フラグ133を設定する。図25では、2チャネルずつグルーピングして、更新単位番号135を付与してある。このチャネル状態テーブル130Bを利用すれば、削除チャネル判定部122と割当可能チャネル選択部124で、更新単位となる複数チャネルに同一の判定結果を与えれば済むため、チャネルの判定処理が容易になり、チャネル状態テーブルの更新所要時間を短縮できる。 Next, the function of the update
In the fourth embodiment, for example, as shown in the channel state table 130B shown in FIG. 25, a plurality of
更新単位変更部150は、例えば、図26に示す更新単位テーブル160を参照して、更新単位となるチャネル数を平均干渉値に応じて最適化する。図示した例では、更新単位テーブル160は、平均干渉値161と対応付けて、更新単位チャネル数162と、結合規則163を記憶している。
The update unit changing unit 150 refers to, for example, the update unit table 160 illustrated in FIG. 26 and optimizes the number of channels serving as the update unit according to the average interference value. In the illustrated example, the update unit table 160 stores an update unit channel number 162 and a combining rule 163 in association with the average interference value 161.
平均干渉値161は、干渉測定部109で測定された干渉値の全チャネルの平均値であり、更新単位チャネル数162は、平均干渉値161が小さくなるに従って多くなる。図示した例では、平均干渉値がXdを超えた場合は、更新単位チャネル数が最小値「1」となり、平均干渉値がX0以下の場合は、更新単位チャネル数が最大値Pとなっている。実用上、更新単位チャネル数が最大値Pになることはない。
The average interference value 161 is an average value of all the channels of the interference values measured by the interference measuring unit 109, and the number of update unit channels 162 increases as the average interference value 161 decreases. In the illustrated example, when the average interference value exceeds Xd, the number of update unit channels is the minimum value “1”, and when the average interference value is X0 or less, the number of update unit channels is the maximum value P. . In practice, the number of update unit channels does not reach the maximum value P.
結合規則163は、更新単位チャネル数162が示す複数チャネルの組み合わせ規則を示す。最も単純な結合規則163は、図25に示すように、チャネル番号順に、更新単位チャネル数162が示すm個のチャネルをグルーピングするものである。但し、チャネル番号が不連続となる複数のチャネルをグルーピングして、更新単位にしてもよい。
The combination rule 163 indicates a combination rule of a plurality of channels indicated by the update unit channel number 162. As shown in FIG. 25, the simplest combination rule 163 groups m channels indicated by the number of update unit channels 162 in the order of channel numbers. However, a plurality of channels whose channel numbers are discontinuous may be grouped into an update unit.
本実施例では、図10に示した干渉状態テーブル128に代えて、例えば、図27に示す更新単位別の干渉状態テーブル128Bが使用される。
干渉状態テーブル128Bには、更新単位番号1280と対応づけて、チャネル番号1281と、平均干渉値1283が記憶される。削除チャネル判定部121は、干渉状態テーブル128Bで更新単位となっている複数のチャネルで干渉値を測定し、それらの平均値を平均干渉値1283として記憶しておき、平均干渉値1283を閾値と比較することによって、チャネル番号1281が示す各チャネルが割当可能チャネルか否かを判定する。 In this embodiment, instead of the interference state table 128 shown in FIG. 10, for example, an interference state table 128B for each update unit shown in FIG. 27 is used.
The interference state table 128B stores achannel number 1281 and an average interference value 1283 in association with the update unit number 1280. The deletion channel determination unit 121 measures interference values with a plurality of channels that are update units in the interference state table 128B, stores the average value as an average interference value 1283, and sets the average interference value 1283 as a threshold value. By comparing, it is determined whether or not each channel indicated by the channel number 1281 is an assignable channel.
干渉状態テーブル128Bには、更新単位番号1280と対応づけて、チャネル番号1281と、平均干渉値1283が記憶される。削除チャネル判定部121は、干渉状態テーブル128Bで更新単位となっている複数のチャネルで干渉値を測定し、それらの平均値を平均干渉値1283として記憶しておき、平均干渉値1283を閾値と比較することによって、チャネル番号1281が示す各チャネルが割当可能チャネルか否かを判定する。 In this embodiment, instead of the interference state table 128 shown in FIG. 10, for example, an interference state table 128B for each update unit shown in FIG. 27 is used.
The interference state table 128B stores a
図28は、更新単位変更部150の1実施例を示すフローチャートである。
更新単位変更部150は、削除チャネル判定部121の実行に先立って、制御部100により起動される。更新単位変更部150が起動されると、プロセッサ11は、チャネル状態テーブルに登録される全チャネルの平均干渉値を算出し(1501)、更新単位テーブル160を参照して、上記平均干渉値と対応する更新単位チャネル数162と、結合規則163を特定する(1502)。次に、プロセッサ11は、結合規則163に従って、複数のチャネル番号をグルーピングし、図25、図27で説明したチャネル状態テーブル130と、干渉状態テーブル128Bを生成して(1503)、削除チャネル判定部121を起動する(1504)。 FIG. 28 is a flowchart illustrating an example of the updateunit changing unit 150.
The updateunit changing unit 150 is activated by the control unit 100 prior to the execution of the deletion channel determination unit 121. When the update unit changing unit 150 is activated, the processor 11 calculates the average interference value of all the channels registered in the channel state table (1501), refers to the update unit table 160, and corresponds to the average interference value. The number of update unit channels 162 to be updated and the combination rule 163 are specified (1502). Next, the processor 11 groups a plurality of channel numbers in accordance with the combining rule 163, generates the channel state table 130 and the interference state table 128B described in FIGS. 25 and 27 (1503), and deletes the channel determination unit. 121 is started (1504).
更新単位変更部150は、削除チャネル判定部121の実行に先立って、制御部100により起動される。更新単位変更部150が起動されると、プロセッサ11は、チャネル状態テーブルに登録される全チャネルの平均干渉値を算出し(1501)、更新単位テーブル160を参照して、上記平均干渉値と対応する更新単位チャネル数162と、結合規則163を特定する(1502)。次に、プロセッサ11は、結合規則163に従って、複数のチャネル番号をグルーピングし、図25、図27で説明したチャネル状態テーブル130と、干渉状態テーブル128Bを生成して(1503)、削除チャネル判定部121を起動する(1504)。 FIG. 28 is a flowchart illustrating an example of the update
The update
第1実施例の削除チャネル判定部121では、図15のフローチャートのステップ2104で、干渉状態テーブル128に、割当チャネルテーブル127が示す通信中のチャネルで測定した干渉値を記憶しておき、ステップ2120で、通信中の各チャネルについて、干渉値が閾値TH(g)を超えているか否かを判定した。
第4実施例では、削除チャネル判定部121は、干渉状態テーブル128の代わりに干渉状態テーブル128Bを使用し、ステップ2104で、更新単位別の複数チャネルの平均干渉値を干渉状態テーブル128Bに記憶しておき、ステップ2120では、割当チャネルテーブル127が示す通信中の各チャネルについて、干渉状態テーブル128Bが示す平均干渉値が閾値TH(g)を超えているか否かを判定すればよい。 In the deletionchannel determination unit 121 of the first embodiment, in step 2104 of the flowchart of FIG. 15, the interference value measured in the channel in communication indicated by the allocation channel table 127 is stored in the interference state table 128, and step 2120 Thus, it is determined whether or not the interference value exceeds the threshold value TH (g) for each channel in communication.
In the fourth embodiment, the deletedchannel determination unit 121 uses the interference state table 128B instead of the interference state table 128, and stores the average interference value of multiple channels for each update unit in the interference state table 128B in step 2104. In step 2120, it is only necessary to determine whether or not the average interference value indicated by the interference state table 128B exceeds the threshold value TH (g) for each channel in communication indicated by the assigned channel table 127.
第4実施例では、削除チャネル判定部121は、干渉状態テーブル128の代わりに干渉状態テーブル128Bを使用し、ステップ2104で、更新単位別の複数チャネルの平均干渉値を干渉状態テーブル128Bに記憶しておき、ステップ2120では、割当チャネルテーブル127が示す通信中の各チャネルについて、干渉状態テーブル128Bが示す平均干渉値が閾値TH(g)を超えているか否かを判定すればよい。 In the deletion
In the fourth embodiment, the deleted
平均干渉値が閾値TH(g)を超えた場合、乱数xと確立値βとの関係によって、割当不可チャネル(削除チャネル)がランダムに決定され、ステップ2123で、判定結果がチャネルリスト140に記憶される。本実施例では、更新単位となる複数チャネルのうち、何れかのチャネルで削除チャネル判定が終わっていれば、同じ更新単位に含まれる他のチャネルについては、削除チャネル判定を省略できる。従って、判定対象チャネルを特定するためのパラメータiの値を更新したとき、チャネルリスト140を参照して、第iチャネルと同じ更新単位で既に削除チャネル判定が実行済みか否かをチェックし、実行済みの場合は、前と同じ判定結果をiチャネルに適用することによって、第ステップ2120~2123を省略するようにしてもよい。この場合、削除チャネル判定部121の起動時に、例えば、図14に示したチャネルリスト142に、通信中チャネル番号142と対応付けて、チャネル状態テーブル130Bまたは干渉状態テーブル128Bが示す更新単位番号を記憶しておくとよい。
When the average interference value exceeds the threshold value TH (g), an unassignable channel (deleted channel) is randomly determined based on the relationship between the random number x and the established value β, and the determination result is stored in the channel list 140 in step 2123. Is done. In this embodiment, the deletion channel determination can be omitted for the other channels included in the same update unit if the deletion channel determination has been completed for any one of the plurality of channels serving as the update unit. Therefore, when the value of the parameter i for specifying the determination target channel is updated, the channel list 140 is referred to check whether the deletion channel determination has already been executed in the same update unit as the i-th channel and executed. If already completed, the same determination result as before may be applied to the i channel, so that the second steps 2120 to 2123 may be omitted. In this case, when the deletion channel determination unit 121 is activated, for example, the update unit number indicated by the channel state table 130B or the interference state table 128B is stored in the channel list 142 illustrated in FIG. It is good to keep.
次に、本発明に第5実施例として、図7に示したチャネル状態変更部170の機能について説明する。
本発明では、上述したように、削除チャネル判定部121が、乱数xと確率値βに従って、干渉チャネルをランダムに割当不可チャネルに変更し、割当可能チャネル選択部124が、割当不可チャネル群の一部をランダムに割当可能チャネルに変更するようになっているため、削除チャネル判定部121と割当可能チャネル選択部124を周期的に起動することによって、チャネル状態テーブル130が示す割当可能チャネル群を基地局毎に異なったチャネル組み合わせにすることができる。 Next, the function of the channelstate changing unit 170 shown in FIG. 7 will be described as a fifth embodiment of the present invention.
In the present invention, as described above, the deletionchannel determination unit 121 randomly changes the interference channel to an unassignable channel according to the random number x and the probability value β, and the assignable channel selection unit 124 determines whether the assignable channel group Since the part is randomly changed to an assignable channel, the assignable channel group indicated by the channel state table 130 is set as a base by periodically activating the deletion channel determination unit 121 and the assignable channel selection unit 124. Different channel combinations can be used for each station.
本発明では、上述したように、削除チャネル判定部121が、乱数xと確率値βに従って、干渉チャネルをランダムに割当不可チャネルに変更し、割当可能チャネル選択部124が、割当不可チャネル群の一部をランダムに割当可能チャネルに変更するようになっているため、削除チャネル判定部121と割当可能チャネル選択部124を周期的に起動することによって、チャネル状態テーブル130が示す割当可能チャネル群を基地局毎に異なったチャネル組み合わせにすることができる。 Next, the function of the channel
In the present invention, as described above, the deletion
しかしながら、上述した第1実施例~第4実施例では、チャネル状態テーブル130の割当可能フラグ133が、初期状態では、全チャネルで割当可能チャネルを示す状態となっている。そのため、割当チャネル決定部126が、隣接する複数の基地局10で、同一アルゴリズムでチャネル割当を行う限り、初期状態では、隣接セルの間でチャネル干渉が発生する確率が高くなっている。
However, in the first to fourth embodiments described above, the allocatable flag 133 of the channel state table 130 is in a state indicating allocatable channels in the initial state. Therefore, as long as the allocation channel determination unit 126 performs channel allocation using the same algorithm at a plurality of adjacent base stations 10, in the initial state, the probability that channel interference will occur between adjacent cells is high.
図7に示したチャネル状態変更部170は、基地局10が初期状態にあるとき、制御部100によって起動され、チャネル状態テーブル130が示す割当可能フラグ133の状態をランダムに「1」状態に設定する機能を備える。
The channel state changing unit 170 illustrated in FIG. 7 is activated by the control unit 100 when the base station 10 is in the initial state, and randomly sets the state of the assignable flag 133 indicated by the channel state table 130 to the “1” state. It has a function to do.
図29は、チャネル状態変更部170の1実施例を示すフローチャートである。
チャネル状態変更部170でが起動されると、プロセッサ11は、先ず、チャネル状態テーブル130のグループ別サブテーブルの全ての割当可能フラグ133をクリア(「0」状態)する(1701)。この後、プロセッサ11は、割当可能チャネル選択部124を起動し(1702)、割当可能チャネル選択部124の動作が終了すると、割当可能チャネル更新部125を起動する(1703)。割当可能チャネル更新部125の動作が終了すると、制御部100に初期化終了を通知して(1704)、チャネル状態変更部170の動作を終了する。 FIG. 29 is a flowchart showing an embodiment of the channelstate changing unit 170.
When the channelstate changing unit 170 is activated, the processor 11 first clears all assignable flags 133 in the group-specific subtable of the channel state table 130 ("0" state) (1701). Thereafter, the processor 11 activates the assignable channel selection unit 124 (1702), and when the operation of the assignable channel selection unit 124 ends, activates the assignable channel update unit 125 (1703). When the operation of the allocatable channel update unit 125 ends, the controller 100 is notified of the end of initialization (1704), and the operation of the channel state change unit 170 ends.
チャネル状態変更部170でが起動されると、プロセッサ11は、先ず、チャネル状態テーブル130のグループ別サブテーブルの全ての割当可能フラグ133をクリア(「0」状態)する(1701)。この後、プロセッサ11は、割当可能チャネル選択部124を起動し(1702)、割当可能チャネル選択部124の動作が終了すると、割当可能チャネル更新部125を起動する(1703)。割当可能チャネル更新部125の動作が終了すると、制御部100に初期化終了を通知して(1704)、チャネル状態変更部170の動作を終了する。 FIG. 29 is a flowchart showing an embodiment of the channel
When the channel
チャネル状態テーブル130の割当可能フラグ133が全て「0」状態にあるとき、グループ別の全てのサブテーブルで、割当可能チャネルのカウント数Xが0個となる。従って、図18のフローチャートから明らかなように、割当可能チャネル選択部124を実行すると、チャネル状態テーブル130のグループ別の各サブテーブルから、予め目標値テーブル123で指定されたY(g)個の割当可能チャネルをランダムに選択することができる。割当可能チャネル選択部124で選択された割当可能チャネルのチャネル番号は、チャネルリスト145に記憶されるため、割当可能チャネル更新部125を実行することによって、チャネル状態テーブル130に割当可能チャネルを示すフラグ133をランダムに記憶することができる。
When the allocatable flags 133 of the channel state table 130 are all in the “0” state, the count number X of allocatable channels is 0 in all the sub tables for each group. Therefore, as is apparent from the flowchart of FIG. 18, when the allocatable channel selection unit 124 is executed, Y (g) items specified in the target value table 123 in advance from each group sub-table of the channel state table 130. An allocatable channel can be selected at random. Since the channel number of the allocatable channel selected by the allocatable channel selection unit 124 is stored in the channel list 145, the flag indicating the allocatable channel in the channel state table 130 by executing the allocatable channel update unit 125. 133 can be stored randomly.
ステップ1702で、図23に示した第2実施例の割当可能チャネル選択部124を起動すれば、外側サブセル領域で割当可能なチャネル番号を内側サブセル領域でも割当可能なチャネルにできる。また、目標値テーブル123に、基地局に近いサブセル領域(グループ番号)ほど値が大きくなるように、目標個数Y(g)を設定しておくことによって、サブセル領域によって異なったチャネル組み合わせの割当可能チャネル群を生成できる。
23. When the allocatable channel selection unit 124 of the second embodiment shown in FIG. 23 is activated in step 1702, the channel numbers that can be allocated in the outer subcell area can be made channels that can also be allocated in the inner subcell area. Further, by setting the target number Y (g) in the target value table 123 so that the value becomes larger in the subcell area (group number) closer to the base station, different channel combinations can be allocated depending on the subcell area. A group of channels can be generated.
上述した削除チャネル判定部121において、閾値TH(g)を低くすると、チャネル干渉に敏感になるため、割当可能チャネルから割当不可チャネルへの変更が頻繁に発生し、チャネル状態テーブル上で、割当可能チャネル群の構成変更が活発に行われる。逆に、閾値TH(g)を大きくすると、割当不可チャネルへの変更が抑制されるため、割当可能チャネル群の構成が安定する。従って、閾値テーブル129において、セル境界のサブセル領域(グループ番号=N)では、閾値TH(g)を低くし、セル中心(基地局)に近づく(グループ番号が小さくなる)に従って、閾値TH(g)を高くしておくことによって、リユースパーティショニングを効果的に行なうことが可能となる。
In the above-described deletion channel determination unit 121, if the threshold value TH (g) is lowered, it becomes sensitive to channel interference. Therefore, a change from an assignable channel to an unassignable channel frequently occurs, and assignment is possible on the channel state table. The channel group configuration is actively changed. Conversely, when the threshold value TH (g) is increased, the change to the unassignable channel is suppressed, and the configuration of the assignable channel group is stabilized. Accordingly, in the threshold table 129, in the sub-cell region (group number = N) at the cell boundary, the threshold value TH (g) decreases as the threshold value TH (g) decreases and the cell center (base station) approaches (the group number decreases). ) Is made high, reuse partitioning can be performed effectively.
本発明では、割当不可チャネルと割当可能チャネルがランダムに選択されているため、チャネル状態テーブルに記憶される割当可能チャネルの目標個数を少なくしておくと、隣接する複数の基地局が、互いに異なった割当可能チャネル群の中から端末への割当チャネルを選択できる可能性が高くなり、チャネル間干渉を回避できる。逆に、割当可能チャネルの目標個数を多くすると、端末への割当チャネル数が増えるため、基地局が、多くの端末と通信できる。従って、目標値テーブル123において、干渉の可能性が高いセル境界のサブセル領域では、割当可能チャネルの目標値を小さくしておき、セル中心に近づくに従って、割当可能チャネルの目標値を大きくしておくことによって、リユースパーティショニングを効果的に行うことができる。
In the present invention, since the non-assignable channel and the assignable channel are selected at random, if the target number of assignable channels stored in the channel state table is reduced, a plurality of adjacent base stations differ from each other. The possibility of selecting an allocation channel to the terminal from among allocatable channel groups becomes high, and interchannel interference can be avoided. On the contrary, if the target number of allocatable channels is increased, the number of channels allocated to terminals increases, so that the base station can communicate with many terminals. Therefore, in the target value table 123, in the subcell region at the cell boundary where the possibility of interference is high, the target value of the assignable channel is reduced, and the target value of the assignable channel is increased as the cell center is approached. Thus, reuse partitioning can be performed effectively.
以上の実施例では、削除チャネル判定部121と割当不可チャネル更新部122、割当可能チャネル選択部124と割当可能チャネル更新部125が、制御部100からの指示に従って周期的に起動されるものとして説明した。制御部100は、図4に示したフレーム期間を単位として、例えば、奇数フレームでは、削除チャネル判定部121と割当不可チャネル更新部122を起動し、偶数フレームでは、割当可能チャネル選択部124と割当可能チャネル更新部125を起動すればよい。また、削除チャネル判定部121と割当不可チャネル更新部122、割当可能チャネル選択部124と割当可能チャネル更新部125を複数フレームおきに起動するようにしてもよい。
In the above embodiment, it is assumed that the deletion channel determination unit 121, the unassignable channel update unit 122, the assignable channel selection unit 124, and the assignable channel update unit 125 are periodically started according to instructions from the control unit 100. did. For example, in the odd frame, the control unit 100 activates the deletion channel determination unit 121 and the unassignable channel update unit 122 in the unit of the frame period shown in FIG. 4, and the assignable channel selection unit 124 and the allocation in the even frame. The possible channel update unit 125 may be activated. Alternatively, the deletion channel determination unit 121, the unallocated channel update unit 122, the allocatable channel selection unit 124, and the allocatable channel update unit 125 may be activated every plural frames.
本発明は、移動無線通信システムに利用できる。
The present invention can be used in a mobile radio communication system.
10:基地局、20:端末、100:制御部、120:動的チャネル割当部、121:削除チャネル判定部、122:割当不可チャネル更新部、123:目標値テーブル、124:割当チャネル選択部、125:割当チャネル更新部、126:割当チャネル決定部、127:割当チャネルテーブル、128:干渉状態テーブル、129:閾値テーブル、130:チャネル状態テーブル、140,145:チャネルリスト、150:更新単位変更部、160:更新単位テーブル、170:チャネル状態変更部。
10: base station, 20: terminal, 100: control unit, 120: dynamic channel allocation unit, 121: deletion channel determination unit, 122: unassignable channel update unit, 123: target value table, 124: allocation channel selection unit, 125: Allocation channel update unit, 126: Allocation channel determination unit, 127: Allocation channel table, 128: Interference state table, 129: Threshold table, 130: Channel state table, 140, 145: Channel list, 150: Update unit change unit 160: update unit table, 170: channel state changing unit.
Claims (16)
- セル領域内に位置した複数の端末に個別の無線チャネルを割当て、割当チャネルで各端末とパケット通信する無線通信システム用の基地局であって、
送受信されるパケット毎に、端末で使用すべきチャネルの割当要求を発生する制御部と、
上記チャネル割当要求に応答して、上記無線通信システムで使用可能な複数の無線チャネルの中から、上記端末用の割当チャネルを選択する動的チャネル割当部とを備え、
上記動的チャネル割当部が、
上記無線通信システムで使用可能な無線チャネルのチャネル番号と対応する複数のエントリからなり、各エントリが、チャネル割当可否を示す状態情報を含むチャネル状態テーブルと、
上記チャネル状態テーブル上で割当可能状態となっているチャネル群から、端末への割当チャネルを選択する割当チャネル決定部と、
上記割当チャネル決定部で割当済みとなっている複数のチャネルの中から、干渉値と閾値との比較によって干渉チャネルを検出し、該干渉チャネルについて割当不可チャネルに変更すべきか否かをランダムに判定する削除チャネル判定部と、
上記削除チャネル判定部で割当不可チャネルと判定した干渉チャネルについて、上記チャネル状態テーブルの状態情報を変更する割当不可チャネル更新部を含むことを特徴とする基地局。 A base station for a radio communication system that assigns individual radio channels to a plurality of terminals located in a cell region and performs packet communication with each terminal using an assigned channel,
A control unit that generates an allocation request for a channel to be used by the terminal for each packet transmitted and received;
In response to the channel allocation request, a dynamic channel allocation unit that selects an allocation channel for the terminal from a plurality of radio channels usable in the radio communication system,
The dynamic channel allocation unit is
A channel state table including a plurality of entries corresponding to channel numbers of wireless channels usable in the wireless communication system, each entry including state information indicating whether channel allocation is possible;
An allocation channel determination unit that selects an allocation channel to a terminal from a group of channels that can be allocated on the channel state table;
An interference channel is detected by comparing an interference value with a threshold from a plurality of channels already allocated by the allocation channel determination unit, and it is randomly determined whether or not the interference channel should be changed to an unassignable channel. A deletion channel determination unit to perform,
A base station, comprising: an unassignable channel update unit that changes state information in the channel state table for an interference channel determined by the deletion channel determination unit as an unassignable channel. - 請求項1に記載の基地局において、
前記削除チャネル判定部が、干渉チャネル毎に発生させた乱数値に基づいて、前記干渉チャネルを割当不可チャネルに変更すべきか否かを判定することを特徴とする基地局。 In the base station according to claim 1,
The base station characterized in that the deletion channel determination unit determines whether or not to change the interference channel to an unassignable channel based on a random value generated for each interference channel. - 請求項1に記載の基地局において、
前記動的チャネル割当部が、前記チャネル状態テーブル上で割当不可状態となっているチャネルの個数が目標値よりも少ない場合に、割当可能状態となっているチャネル群から、上記目標値に不足する個数のチャネルをランダムに選択し、選択されたチャネルを割当不可状態に変更するための手段を含むことを特徴とする基地局。 In the base station according to claim 1,
When the number of channels in the channel state table that cannot be allocated is less than the target value, the dynamic channel allocation unit lacks the target value from the channel group that is in an allocatable state. A base station comprising means for randomly selecting a number of channels and changing the selected channels to an unassignable state. - 請求項1~請求項3の何れかに記載の基地局において、
前記動的チャネル割当部が、前記チャネル状態テーブルの状態情報の初期値を決定するチャネル状態変更部を有し、上記チャネル状態変更部が、上記チャネル状態テーブルの複数のエントリから所定個数のエントリをランダムに選択し、選択されたエントリの状態情報を割当可能状態に設定することを特徴とする基地局。 In the base station according to any one of claims 1 to 3,
The dynamic channel allocation unit includes a channel state changing unit that determines an initial value of the state information in the channel state table, and the channel state changing unit receives a predetermined number of entries from a plurality of entries in the channel state table. A base station characterized by selecting at random and setting the status information of the selected entry to an allocatable status. - 請求項1~請求項3の何れかに記載の基地局において、
前記セル領域が、基地局からの距離に応じて分割された複数のサブセル領域からなり、
前記制御部が、前記セル領域内に存在する各端末の識別子と対応づけて、該端末が位置するサブセル領域を示すグループ識別子を記憶した端末位置テーブルを有し、
前記チャネル割当要求が、端末識別子とグループ識別子を含み、
前記チャネル状態テーブルが、上記複数のサブセル領域と対応する複数のサブテーブルからなり、各サブテーブルが、各サブセル領域内での前記無線チャネルの割当可否を示す状態情報を示す複数のエントリからなり
前記割当チャネル決定部が、前記チャネル割当要求が示すグループ識別子で特定されたサブテーブルを参照して、上記チャネル割当要求が示す端末識別子をもつ端末への割当チャネルを選択することを特徴とする基地局。 In the base station according to any one of claims 1 to 3,
The cell area is composed of a plurality of subcell areas divided according to the distance from the base station,
The control unit has a terminal location table storing a group identifier indicating a subcell region in which the terminal is located in association with an identifier of each terminal existing in the cell region;
The channel assignment request includes a terminal identifier and a group identifier;
The channel state table includes a plurality of sub-tables corresponding to the plurality of sub-cell regions, and each sub-table includes a plurality of entries indicating state information indicating whether the radio channel can be allocated within each sub-cell region. An allocation channel determination unit selects an allocation channel to a terminal having a terminal identifier indicated by the channel assignment request with reference to a subtable specified by a group identifier indicated by the channel assignment request . - 請求項5に記載の基地局において、
前記動的チャネル割当部が、
前記割当済みチャネルを示す割当チャネルテーブルを備え、
前記割当チャネル決定部が、上記割当チャネルテーブルと、前記チャネル割当要求が示すグループ識別子で特定されたサブテーブルを参照して、前記端末への割当チャネルを選択することを特徴とする基地局。 In the base station according to claim 5,
The dynamic channel allocation unit is
An allocated channel table indicating the allocated channels;
The base station, wherein the allocation channel determination unit selects an allocation channel to the terminal with reference to the allocation channel table and a sub-table specified by a group identifier indicated by the channel allocation request. - 請求項5に記載の基地局において、
前記動的チャネル割当部が、
前記割当済みチャネルで測定された干渉値を記憶する干渉状態テーブルと、
前記各グループ識別子と対応付けて閾値を記憶する閾値テーブルとを備え、
前記削除チャネル判定部が、上記閾値テーブルからグループ識別子順に読み出した閾値と、上記干渉状態テーブルが示す割当済みのチャネルの干渉値に基づいて、前記サブセル領域毎に、前記割当不可チャネルに変更すべき干渉チャネルを判定し、
前記割当不可チャネル更新部が、上記削除チャネル判定部による判定結果に従って、前記チャネル状態テーブルの状態情報をサブテーブル毎に変更することを特徴とする基地局。 In the base station according to claim 5,
The dynamic channel allocation unit is
An interference state table for storing interference values measured in the allocated channels;
A threshold value table storing threshold values in association with each group identifier,
The deletion channel determination unit should change the channel to the non-assignable channel for each subcell area based on the threshold value read from the threshold value table in order of group identifier and the interference value of the assigned channel indicated by the interference state table. Determine the interference channel,
The base station, wherein the non-assignable channel update unit changes the state information of the channel state table for each sub-table according to the determination result by the deletion channel determination unit. - 請求項7に記載の基地局において、
前記閾値テーブルが、サブセル領域と基地局との距離が遠くなるに従って閾値が小さくなるように、前記グループ番号毎に異なった閾値を記憶していることを特徴とする基地局。 The base station according to claim 7,
The base station, wherein the threshold value table stores a different threshold value for each group number so that the threshold value becomes smaller as the distance between the subcell area and the base station becomes longer. - 請求項8に記載の基地局において、
前記削除チャネル判定部が、特定のサブセル領域で割当不可チャネルと判定されたチャネルについては、上記特定サブセル領域よりも外側の各サブセル領域で、前記干渉値と閾値とを比較することなく、割当不可チャネルと判定することを特徴とする基地局。 The base station according to claim 8,
For the channel determined by the deletion channel determination unit as an unassignable channel in a specific subcell region, the channel cannot be assigned without comparing the interference value and the threshold in each subcell region outside the specific subcell region. A base station characterized by determining a channel. - 請求項5~請求項9の何れかに記載の基地局において、
前記動的チャネル割当部が、前記チャネル状態テーブルの状態情報の初期値を決定するチャネル状態変更部を有し、上記チャネル状態変更部が、上記チャネル状態テーブルの各サブテーブルから所定個数のエントリをランダムに選択し、選択されたエントリの状態情報を割当可能状態に設定することを特徴とする基地局。 In the base station according to any one of claims 5 to 9,
The dynamic channel allocation unit includes a channel state changing unit that determines an initial value of the state information of the channel state table, and the channel state changing unit receives a predetermined number of entries from each sub-table of the channel state table. A base station characterized by selecting at random and setting the status information of the selected entry to an allocatable status. - 請求項5~請求項9の何れかに記載の基地局において、
前記チャネル状態テーブルが、更新単位となる所定個数のチャネル番号をグルーピングして、更新単位毎に割当可否を示す状態情報を記憶しており、
前記削除チャネル判定部が、更新単位となる複数のチャネルに同一の判定結果を与えることを特徴とする基地局。 In the base station according to any one of claims 5 to 9,
The channel state table groups a predetermined number of channel numbers as update units, and stores state information indicating whether allocation is possible for each update unit,
The base station characterized in that the deletion channel determination unit gives the same determination result to a plurality of channels as update units. - 請求項1~請求項11の何れかに記載の基地局において、
前記削除チャネル判定部が、前記制御部によって、所定周期で起動されることを特徴とする基地局。 In the base station according to any one of claims 1 to 11,
The base station, wherein the deletion channel determination unit is activated by the control unit at a predetermined cycle. - 請求項1~請求項4の何れかに記載の基地局において、
前記動的チャネル割当部が、
前記チャネル状態テーブル上で割当可能状態にあるチャネル数をカウントし、カウント値が目標値よりも少ない場合に、上記チャネル状態テーブル上で割当不可状態にあるチャネル群から、上記目標値に不足する個数のチャネルをランダムに選択する割当可能チャネル選択部と、
上記割当可能チャネル選択部で選択されたチャネルについて、上記チャネル状態テーブルの状態情報を割当可能状態に変更する割当可能チャネル更新部を含むことを特徴とする基地局。 In the base station according to any one of claims 1 to 4,
The dynamic channel allocation unit is
The number of channels that can be assigned on the channel state table is counted, and when the count value is smaller than the target value, the number that is insufficient for the target value from the channel group that is not assignable on the channel state table. An allocatable channel selector that randomly selects a channel;
A base station, comprising: an assignable channel update unit that changes the state information of the channel state table to an assignable state for the channel selected by the assignable channel selection unit. - 請求項5~請求項11の何れかに記載の基地局において、
前記サブテーブル毎に、割当可能状態にあるチャネル数をカウントし、カウント値が目標値よりも少ない場合に、該サブテーブル上で割当不可状態にあるチャネル群から、上記目標値に不足する個数のチャネルをランダムに選択する割当可能チャネル選択部と、
上記サブテーブル毎に、上記割当可能チャネル選択部で選択されたチャネルについて、状態情報を割当可能状態に変更する割当可能チャネル更新部を含むことを特徴とする基地局。 In the base station according to any one of claims 5 to 11,
For each sub-table, the number of channels that can be allocated is counted, and when the count value is smaller than the target value, the number of channels that are insufficient for the target value from the channel group that cannot be allocated on the sub-table. An assignable channel selector that randomly selects a channel;
A base station, comprising: an assignable channel update unit that changes state information to an assignable state for each channel selected by the assignable channel selection unit for each sub-table. - 請求項14に記載の基地局において、
前記割当可能チャネル選択部が、特定のサブセル領域で割当可能状態になっているチャネルについては、上記特定サブセル領域よりも内側の各サブセル領域でも割当可能チャネルとして選択することを特徴とする基地局。 The base station according to claim 14,
The base station, wherein the assignable channel selection unit selects a channel that can be assigned in a specific subcell area as an assignable channel in each subcell area inside the specific subcell area. - 請求項13~請求項15の何れかに記載の基地局において、
前記割当可能チャネル選択部が、前記制御部によって所定の周期で起動されることを特徴とする基地局。 In the base station according to any one of claims 13 to 15,
The base station characterized in that the assignable channel selection unit is activated by the control unit at a predetermined cycle.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010541898A JP5161979B2 (en) | 2008-12-12 | 2008-12-12 | Base station for wireless communication system |
PCT/JP2008/003746 WO2010067404A1 (en) | 2008-12-12 | 2008-12-12 | Base station for radio communication system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2008/003746 WO2010067404A1 (en) | 2008-12-12 | 2008-12-12 | Base station for radio communication system |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010067404A1 true WO2010067404A1 (en) | 2010-06-17 |
Family
ID=42242415
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2008/003746 WO2010067404A1 (en) | 2008-12-12 | 2008-12-12 | Base station for radio communication system |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5161979B2 (en) |
WO (1) | WO2010067404A1 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012235375A (en) * | 2011-05-06 | 2012-11-29 | Hitachi Ltd | Base station, interference control method, and radio communication system |
WO2012160683A1 (en) * | 2011-05-25 | 2012-11-29 | 富士通株式会社 | Base station apparatus, communication system, and radio resource allocating method |
JP2015095689A (en) * | 2013-11-08 | 2015-05-18 | 日本電信電話株式会社 | Communication device and communication control method |
JP2017526245A (en) * | 2014-07-11 | 2017-09-07 | テレフオンアクチーボラゲット エルエム エリクソン(パブル) | Scheduling based on media or channel detection |
JP2017168893A (en) * | 2016-03-14 | 2017-09-21 | 日本電気株式会社 | Frequency arrangement device, processing method, and program therefor |
JP2018530182A (en) * | 2015-07-15 | 2018-10-11 | シスコ テクノロジー インコーポレーテッド | Characterization of interference relationships in a full-duplex cable network environment. |
JP2021007208A (en) * | 2019-06-28 | 2021-01-21 | パナソニック株式会社 | Base station, and notification method |
JP7340338B2 (en) | 2019-02-22 | 2023-09-07 | パナソニックホールディングス株式会社 | Base station, wireless communication system, and control method |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001320761A (en) * | 2000-03-01 | 2001-11-16 | Yrp Mobile Telecommunications Key Tech Res Lab Co Ltd | Method and device for channel allocation |
JP2005027189A (en) * | 2003-07-04 | 2005-01-27 | Ntt Docomo Inc | Control station, radio communication system, and frequency allocation method |
JP2007235683A (en) * | 2006-03-02 | 2007-09-13 | Kddi Corp | Wireless communication system, base station apparatus, mobile station apparatus, and wireless communication control method |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7724777B2 (en) * | 2004-06-18 | 2010-05-25 | Qualcomm Incorporated | Quasi-orthogonal multiplexing for a multi-carrier communication system |
CN108540245A (en) * | 2007-01-31 | 2018-09-14 | 夏普株式会社 | The method of the interference information index table of base station apparatus and establishment base station apparatus |
JP5152472B2 (en) * | 2007-04-28 | 2013-02-27 | 日本電気株式会社 | Resource allocation control method and apparatus in radio communication system |
-
2008
- 2008-12-12 JP JP2010541898A patent/JP5161979B2/en not_active Expired - Fee Related
- 2008-12-12 WO PCT/JP2008/003746 patent/WO2010067404A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001320761A (en) * | 2000-03-01 | 2001-11-16 | Yrp Mobile Telecommunications Key Tech Res Lab Co Ltd | Method and device for channel allocation |
JP2005027189A (en) * | 2003-07-04 | 2005-01-27 | Ntt Docomo Inc | Control station, radio communication system, and frequency allocation method |
JP2007235683A (en) * | 2006-03-02 | 2007-09-13 | Kddi Corp | Wireless communication system, base station apparatus, mobile station apparatus, and wireless communication control method |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012235375A (en) * | 2011-05-06 | 2012-11-29 | Hitachi Ltd | Base station, interference control method, and radio communication system |
WO2012160683A1 (en) * | 2011-05-25 | 2012-11-29 | 富士通株式会社 | Base station apparatus, communication system, and radio resource allocating method |
JPWO2012160683A1 (en) * | 2011-05-25 | 2014-07-31 | 富士通株式会社 | Base station apparatus, communication system, and radio resource allocation method |
US9125232B2 (en) | 2011-05-25 | 2015-09-01 | Fujitsu Limited | Base station, communication system, and wireless resource allocation method |
JP2015095689A (en) * | 2013-11-08 | 2015-05-18 | 日本電信電話株式会社 | Communication device and communication control method |
JP2017526245A (en) * | 2014-07-11 | 2017-09-07 | テレフオンアクチーボラゲット エルエム エリクソン(パブル) | Scheduling based on media or channel detection |
JP2018530182A (en) * | 2015-07-15 | 2018-10-11 | シスコ テクノロジー インコーポレーテッド | Characterization of interference relationships in a full-duplex cable network environment. |
JP2017168893A (en) * | 2016-03-14 | 2017-09-21 | 日本電気株式会社 | Frequency arrangement device, processing method, and program therefor |
JP7340338B2 (en) | 2019-02-22 | 2023-09-07 | パナソニックホールディングス株式会社 | Base station, wireless communication system, and control method |
JP2021007208A (en) * | 2019-06-28 | 2021-01-21 | パナソニック株式会社 | Base station, and notification method |
JP7340367B2 (en) | 2019-06-28 | 2023-09-07 | パナソニックホールディングス株式会社 | Base station and notification method |
Also Published As
Publication number | Publication date |
---|---|
JP5161979B2 (en) | 2013-03-13 |
JPWO2010067404A1 (en) | 2012-05-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5161979B2 (en) | Base station for wireless communication system | |
US10764909B2 (en) | System and method for sectorized transmission in a wireless network | |
US5491837A (en) | Method and system for channel allocation using power control and mobile-assisted handover measurements | |
US11109411B2 (en) | Channel sense method, network side device, and terminal | |
US6940845B2 (en) | Asymmetric measurement-based dynamic packet assignment system and method for wireless data services | |
RU2474980C2 (en) | Method and apparatus for frequency reuse in multi-carrier communication system | |
US10021702B2 (en) | Measurement-assisted dynamic frequency-reuse in cellular telecommunications networks | |
JP3880554B2 (en) | Space division multiple access wireless medium access controller | |
JP4664303B2 (en) | Inter-cell interference mitigation technology using reservation indicator | |
KR102268439B1 (en) | Interference Coordination by Dynamic Spectrum Management in Communication Systems | |
EP2064816A2 (en) | Interference management techniques for wireless networks | |
JP2006050549A (en) | Channel allocation method | |
KR20060129807A (en) | Relay system and method for cellular communication | |
JP2000059287A (en) | Satellite communication system | |
US20090290560A1 (en) | Method and base station for uplink resource allocation in time-sharing channel mode | |
Kamruzzaman | An energy efficient multichannel MAC protocol for cognitive radio ad hoc networks | |
US10667284B2 (en) | Method and communication node of scheduling radio resources | |
US9538387B2 (en) | Radio resource assignment coordination in superdense networks | |
CN110505696A (en) | A kind of beam allocation method, apparatus, equipment and computer storage medium | |
US20090168798A1 (en) | Time-division-based channel collision collaboration in a dynamic frequency hopping wireless regional area network (wran) | |
KR20180129063A (en) | The method and apparatus for guaranteeing quality of service in wireless communication system | |
CN109644469B (en) | Apparatus and method for allocating radio resources | |
US20090262690A1 (en) | Efficient radio resource management in a mobile radio communication system | |
Ni et al. | Maximizing throughput with minimum channel assignment for cellular-vanet het-nets | |
Wang et al. | A probing process for dynamic resource allocation in fixed broadband wireless access networks |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 08878703 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010541898 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 08878703 Country of ref document: EP Kind code of ref document: A1 |