WO2009142069A1 - Method for automatically judging skin texture and/or crease - Google Patents
Method for automatically judging skin texture and/or crease Download PDFInfo
- Publication number
- WO2009142069A1 WO2009142069A1 PCT/JP2009/056892 JP2009056892W WO2009142069A1 WO 2009142069 A1 WO2009142069 A1 WO 2009142069A1 JP 2009056892 W JP2009056892 W JP 2009056892W WO 2009142069 A1 WO2009142069 A1 WO 2009142069A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- skin
- texture
- image
- physical quantity
- discrimination
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/44—Detecting, measuring or recording for evaluating the integumentary system, e.g. skin, hair or nails
- A61B5/441—Skin evaluation, e.g. for skin disorder diagnosis
- A61B5/442—Evaluating skin mechanical properties, e.g. elasticity, hardness, texture, wrinkle assessment
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P17/00—Drugs for dermatological disorders
- A61P17/16—Emollients or protectives, e.g. against radiation
Definitions
- the present invention relates to a technique for discriminating the state of the skin, and more particularly, to a technique for discriminating skin texture and / or wrinkles using the physical quantity of the skin as an index.
- Patent Document 1 a technique for extracting and analyzing a skin groove pattern by illumination of a skin replica
- Patent Document 2 a technique for analyzing an image directly from the skin surface
- Patent Document 3 Technology for performing image processing such as gradation processing
- Patent Document 4 technology for measuring the depth of wrinkles from a replica using electromagnetic waves
- Patent Document 5 technology for thinning a single color pixel image or processed pixel image in the skin state, and measuring texture using the peak width interval of the fine lines as an index
- the present invention has been made under such circumstances, and it is an object of the present invention to provide a technique for distinguishing between skin texture and / or wrinkles that can quickly and accurately distinguish skin texture and / or wrinkles. And It is another object of the present invention to provide a method for selecting an external preparation for skin based on the result of the discrimination.
- the inventors of the present invention have intensively researched a skin texture and / or wrinkle discrimination method capable of quickly and accurately discriminating skin texture and / or wrinkles.
- Skin texture and / or wrinkles are identified with high accuracy and quickly by substituting the physical quantity of the skin obtained by performing the skin treatment and / or the short straight line matching processing into an estimation formula prepared in advance.
- this invention relates to the technique shown below. (1) Performing a cross binarization process and / or a short straight line matching process on the skin image to obtain the physical quantity of the skin, and substituting the physical quantity of the skin obtained in the process into a prediction formula prepared in advance.
- a method for distinguishing skin texture and / or wrinkles comprising a step of distinguishing the obtained evaluation value from an evaluation value of skin texture and / or wrinkles.
- An apparatus for distinguishing skin texture and / or wrinkles comprising: means for calculating an evaluation value of skin texture and / or wrinkles; and means for displaying the calculated evaluation value.
- the computer function as means for calculating a physical quantity from the acquired skin image, a prediction formula prepared in advance, and means for calculating an evaluation value of skin texture and / or wrinkles from the physical quantity of the skin Skin discrimination program.
- a method for selecting an external preparation for skin comprising a step of selecting an external preparation and, in the case of a discrimination result that the skin texture and / or wrinkle state of the subject is good, selecting an external preparation for skin containing only a moisturizing component.
- the present invention it is possible to provide a technique for distinguishing skin texture and / or wrinkles that can quickly and accurately distinguish skin texture and / or wrinkles. Moreover, the technique can be applied and the skin external preparation suitable for a user can be provided.
- the discrimination method of the present invention it is possible to discriminate the texture of the skin, the wrinkle of the skin, or both from the skin image.
- a skin image is used.
- the method for acquiring the skin image may be a method for directly capturing the skin and obtaining the skin image, or a method for obtaining the skin image through a replica specimen collected from the skin.
- a method for acquiring an image for example, a digital video camera can be used through a stereomicroscope, or a commercially available digital microscope can be used. Examples of such a digital microscope include a cosmetic microscope manufactured by Moritex Co., Ltd. and a digital microscope manufactured by Keyence Co., Ltd.
- a skin image through a replica specimen collected from the skin it is preferable to obtain a skin image through a replica specimen collected from the skin.
- a skin image through a replica specimen collected from the skin it is possible to exclude only color information on the surface of the skin and obtain only morphological information, thereby preventing noise such as spots.
- unevenness on the skin surface that is not necessary for analysis is canceled by replica collection, so that the analysis becomes easy.
- a method for obtaining a skin image through a replica specimen will be described below.
- a microscope lens is arranged at a 90 ° position with respect to the replica specimen, light is irradiated to the replica specimen at an appropriate angle, and a shadow image of the surface irregularities of the replica specimen caused by incident light is captured as an image through the microscope.
- the replica specimen is a solvent-softening transparent plastic plate that is coated with a softening solvent and softened, and then the softened part is pressed onto the skin, and the unevenness on the skin is applied to the softened part. It is a technique for indirectly observing the unevenness on the skin by transferring and observing the unevenness, and the “Kawai method” is known as a representative technique.
- Such a replica specimen is preferably collected from the cheek, or from the corner of the eye corner to the lower portion of the corner of the eye 1.5 cm ⁇ 1.5 cm.
- a replica specimen is generally irradiated with light from a lower surface perpendicular to the replica surface, and transmitted light is observed. That is, the unevenness is observed as an image by utilizing the fact that the irradiated light is scattered by the transferred unevenness and the amount of transmitted light is reduced.
- the replica is preferably observed as follows.
- the uneven surface of the replica is directed in the image-capturing direction, and light is irradiated to this surface at an angle of 10 to 40 degrees, more preferably 20 to 30 degrees. Capture). This is because by adopting such a form, the unevenness transferred to the replica surface appears more clearly as a light intensity difference.
- Table 1 shows the evaluation of clarity when the same sample is observed with different incident angles. The evaluation criteria are ⁇ : clear, ⁇ : slightly unclear, ⁇ : unclear.
- image processing including cross binarization processing and / or short straight line matching processing is performed on the obtained skin image.
- image processing is described in Japanese Patent Laid-Open No. 2008-061892 (Patent Document 7), and will be described below.
- the processing area of the dynamic threshold processing method is generally rectangular, but this cross binarization processing method has a feature of a cross shape suitable for extracting the shape of the skin groove (see FIG. 2).
- this cross-binarization processing method By using this cross-binarization processing method, shadows formed by the convex parts of the skin groove can be detected without being affected by uneven illumination of the replica, and the entire screen from thick and clear skin grooves to fine skin grooves Therefore, a highly accurate cross-binarized image (see FIG. 3) can be obtained without unevenness.
- the cross binarization process can be performed using an epidermis tissue quantification apparatus described in Japanese Patent Application Laid-Open No. 2008-061892.
- the short straight line matching method is a method for calculating a physical quantity of an object shape in a binarized image. While the conventional method measures the number of target pixels in units of one pixel of the binarized image and calculates physical quantities such as area, length, and center of gravity, this short straight line matching method is composed of a plurality of pixels. The physical quantity is calculated using a short straight line (a length of several pixels to several tens of pixels and a width of one pixel) as a unit. Specifically, if the end point of the target area is the start point of the short line and the end point of the short line is within the target area, the next short line is connected with the end point as a new start point.
- the connection is terminated. This operation is repeated until the target area is covered with a short straight line. Thereafter, the number of short straight lines fitted to the target region, the angle, and the like are measured, and the feature amount of the target object is calculated (see FIG. 4).
- the short straight line matching process can be performed using an epidermis tissue quantification apparatus described in Japanese Patent Application Laid-Open No. 2008-061892.
- image processing only one of the image processing may be performed, but the physical quantity can be calculated more accurately by performing both image processing.
- other image processing such as luminance conversion processing, binarization processing, filter processing, general image processing (area, perimeter, aspect ratio, center of gravity, needle ratio, enlargement, inversion) as necessary. You may go.
- the physical quantity of the skin image can be obtained by performing image processing including the cross binarization processing and / or the short straight line matching processing.
- the obtained physical quantity is a physical quantity obtained by quantifying the features such as the skin groove and skin.
- Such physical quantities include, for example, physical quantities such as skin groove area, skin groove average thickness, skin groove thickness variation, skin groove spacing, skin groove parallelism, skin groove direction, skin groove density, etc.
- the maximum number of short straight lines for each angle at 95 ° or more the maximum number of short straight lines for each angle of 10 ° to 90 °, the maximum number of short straight lines for each thickness, More detailed physical quantities, such as the thickness of the number of short straight lines for each thickness, the total value of the short straight line frequency data, the total value of the thickness of the number of short straight lines for each thickness, etc.
- a physical quantity that is considered to be closely related to texture and wrinkles is calculated from these physical quantities.
- skin groove area area occupied by skin groove or total number of matching short lines in the image range to be processed
- skin groove average thickness (total sum of skin groove thickness for each matching start point / Total number of starting points)
- variation in skin groove thickness standard deviation or variance calculated from histogram of thickness and number of skin grooves
- average interval of skin grooves 1 / (area of skin groove / average skin groove) (Thickness)
- parallelism of skin groove concentration or dispersion of peaks calculated from histogram of skin groove angle and number
- direction and density of skin groove number of short straight lines at angle ⁇ (histogram height) / skin It can be defined as the total length of the groove.
- Other physical quantities can be appropriately calculated from the above calculation formulas.
- ⁇ Prediction formula> In order to discriminate the texture and / or wrinkles of the skin, a prediction formula indicating the relationship between the physical quantity of the skin and the visual evaluation values of the texture and / or wrinkles of the skin is obtained in advance.
- the prediction formula can be created by the following method, for example.
- ⁇ Visual evaluation of texture and / or wrinkles by the evaluator is performed on skin replicas (hereinafter referred to as samples) with sufficient consideration of skin condition and age.
- samples skin replicas
- the number of samples is preferably 100 or more, more preferably 500 or more.
- the visual evaluation of texture and / or wrinkles is suitable for representing a third party with reference to a 3 to 10-level reference photo to judge whether the texture is good to bad or low to wrinkle to many
- a plurality of evaluators, preferably 5 or more, are allowed to evaluate the sample and have an evaluation value corresponding to the reference photograph.
- the evaluator suitable for representing the third party is preferably one who has experience in beauty, aesthetics or skin evaluation research for more than one year and is continuously conducting skin evaluation training. .
- the average value obtained by excluding the maximum value and the minimum value of the evaluation value of each sample is taken as the visual evaluation value of texture and / or wrinkle of the sample.
- FIG. 6 and FIG. 7 show an example of a standard photograph of texture (five-level evaluation) and wrinkle (three-level evaluation) standardized based on statistical processing.
- a reference photo can be determined to be a reference photo having a certain degree of reliability if the population serving as a basis for creation is about 100, and the population exceeds 1,000. In this case, it can be determined that the reference photo has a considerably high reliability, and it is not necessary to consider the difference between the reference photos.
- a reference photo standardized based on such statistical processing can be used, and the population in the creation of the reference photo is preferably 1,000 or more.
- the prediction formula can be a formula obtained by multivariate analysis of the physical quantity of skin and the visual evaluation value of texture and / or wrinkles as the prediction formula of the present invention.
- multivariate analysis those that can use the relationship between explanatory variables and objective variables are preferable.
- discriminant analysis principal component analysis, factor analysis, quantification theory class 1, quantification theory class 2, quantification theory class 3, Regression analysis (MLR, PLS, PCR, logistic), multidimensional scaling method, supervised clustering, neural network, ensemble learning method, etc. can be illustrated, and a prediction formula is created using free software or commercially available one Can do.
- multiple regression analysis, discriminant analysis, and quantification theory are particularly preferable. It is preferable to perform multiple regression analysis by performing multiple regression analysis using the texture and / or wrinkle visual evaluation value obtained above as an objective variable, using the physical quantity of skin as an explanatory variable, and using the multiple regression formula as a prediction formula It can be illustrated.
- the physical quantity of the skin used in the calculation of the prediction formula there are various physical quantities in the physical quantity of the skin used in the calculation of the prediction formula, but from the viewpoint of improving the accuracy of this discrimination method, it is preferable to contain physical quantities related to the skin groove, and the accuracy of the discrimination method is further increased. From the viewpoint of improving, it is more preferable to contain physical quantities relating to 10 or more kinds of skin grooves.
- the total number of physical quantities used for calculating the prediction formula is preferably 10 or more.
- ⁇ Difference process> By substituting the physical quantity of the skin into the prediction formula set in this way and obtaining an evaluation value, it is possible to distinguish between skin texture and / or wrinkles. By assigning the physical quantity of the skin calculated from the obtained image to the prediction formula, a visual evaluation value of skin texture and / or wrinkles can be obtained.
- the present invention can identify skin texture and / or wrinkles with extremely high accuracy through the above-described steps. Furthermore, the physical quantity and visual evaluation value of a new sample are incorporated into a database, and updated and corrected, so that the accuracy of the prediction formula is further improved and high-precision discrimination is expected.
- Another aspect of the present invention is a program for performing the above steps. That is, the computer functions as a means for calculating a physical quantity from the acquired skin image, a prediction formula prepared in advance, and a means for calculating an evaluation value of skin texture and / or wrinkles from the calculated physical quantity of skin. It is a skin discrimination program.
- the discrimination program of the present invention can be used by installing it on hardware such as a personal computer.
- another aspect of the present invention is a discrimination apparatus that performs the above steps.
- a means for inputting a prediction formula prepared in advance a means for acquiring a skin image, a means for calculating a physical quantity of the skin from the acquired skin image, a skin from the prediction formula prepared in advance and the calculated physical quantity of the skin
- An apparatus for distinguishing skin texture and / or wrinkles comprising: means for calculating an evaluation value of the texture and / or wrinkle of the skin; and means for displaying the calculated evaluation value.
- the identification device of the present invention may be a general-purpose computer such as a personal computer or a dedicated computer for identification.
- the input unit 1 is an input unit for the prediction formula, and inputs a prediction formula to be used for discrimination in advance.
- an input device such as a keyboard can be used.
- the image acquisition unit 2 is a means for acquiring a skin image, and a digital video camera or a commercially available digital microscope can be used.
- CPU 3 Central Processing Unit
- CPU 3 Central Processing Unit
- a RAM 4 Random Access Memory
- the display unit 5 is a means for outputting the calculated evaluation value, and can be, for example, a display device such as a liquid crystal display or an output device such as a printer.
- a skin image is acquired from an image acquisition unit such as a digital video camera. As already explained, it can also be taken directly from the skin of the subject or via a replica specimen.
- the acquired skin image is subjected to image processing such as cross binarization processing and short straight line matching processing in the CPU, and the physical quantity of the skin image is also calculated.
- the type of the physical quantity of the skin image to be calculated is appropriately set depending on the type of the physical quantity used for calculating the prediction formula input in advance from the input unit.
- the calculated physical quantity of the skin image is also substituted into a prediction formula input in advance in the CPU, and its evaluation value is calculated.
- the calculated evaluation value is output from output means such as a liquid crystal display.
- ⁇ Selection method of external preparation for skin based on identified skin texture evaluation value> Based on the evaluation value of the texture discriminated by the discrimination method or the discrimination device, a skin external preparation suitable for the subject having the skin image used can be selected.
- the discrimination method or the discrimination device of the present invention it is possible to quickly discriminate with high accuracy almost the same as when an expert evaluates the skin, and based on the result, the skin texture state is maintained. Therefore, a skin external preparation useful for prevention or improvement can be selected.
- a cosmetic suitable for the skin of the subject can be selected.
- Such components include turnover promoting components, collagen synthesis promoters, stratum corneum detachment promoters, collagen fiber bundle restructuring agents, and the like, and one or more of these can be contained. .
- the collagen fiber bundle restructuring agent is most effective in improving texture.
- retinoic acid As the above-mentioned turnover promoting component, retinoic acid, phytosteside, phytosterol, sphingosine, steroid and the like can be mentioned.
- the collagen synthesis promoter examples include bakugankon extract.
- the stratum corneum elimination promoter examples include ⁇ -hydroxy acids.
- the collagen fiber bundle restructuring agent examples include rosemary extract and ursolic acid derivative.
- the condition of the texture can be maintained by selecting the cosmetic containing only the moisturizing component, An appropriate cosmetic amount can be selected.
- the moisturizing component include heparin-like substances. These components may be contained so as to exhibit the effects when contained in cosmetics, and preferably 0.01 to 5.0% by mass, respectively. Appropriate cosmetics can be selected by a person skilled in the art appropriately selecting these components based on the displayed texture discrimination values. As an example, selection examples of cosmetic ingredients with respect to the texture discrimination value in five stages are shown below. In addition, naturally these ingredients can be contained not only in cosmetics but also in other skin external preparations.
- ⁇ Selection method of external preparation for skin based on differentiated skin wrinkle evaluation value> Based on the evaluation value of wrinkles discriminated by the discrimination method or the discrimination device, it is possible to select a skin external preparation suitable for the subject having the differentiated skin image, as in the case of texture.
- examples of selecting cosmetic ingredients for the three-stage wrinkle discrimination values are shown below.
- skin characteristic values such as transepidermal water transpiration (TEWL) and conductance
- characteristic values of stratum corneum cells obtained by tape stripping for example, cell Area, cell volume, cell area dispersion, cell flatness, cell arrangement regularity, stratum corneum detachment, presence of nucleated cells
- water retention function of skin estimated by the characteristic values
- sebum secretion Examples are the amount, age of skin, melanin production ability, skin color, skin properties and skin quality.
- a water retention function deeply related to the textured state and the wrinkled state is particularly preferable.
- group A and group B each having 500 sheets randomly so that the visual evaluation values of 1 to 5 are 100 sheets each, and the purpose is to visually evaluate the texture of 500 sheets of group A
- Multiple regression analysis manufactured by SPS Co., Ltd.
- the visual evaluation value automated discrimination value of the texture was discriminated.
- Table 2 A list of physical quantities used is shown in Table 2, and the results are shown in Table 3.
- Table 3 shows an aggregation table of the texture visual evaluation value (automatic discrimination value) obtained by the present invention and the texture visual evaluation value.
- the Spearman correlation coefficient is 0.887, the perfect match between the two evaluation values is 62%, and 98% when one-step deviation is allowed, indicating that the texture discrimination method of the present invention has a sufficiently satisfactory accuracy.
- Table 4 shows a tabulation table of texture visual evaluation values (automatic discrimination values) obtained by the present invention and texture visual evaluation values.
- the Spearman correlation coefficient is 0.861, the perfect match between the two evaluation values is 53%, and 97% when one-step deviation is allowed. From these results, it can be seen that automatic discrimination with high accuracy can always be performed on unknown data.
- Example 2 ⁇ Automatic identification of visual evaluation of wrinkles>
- a digital image having skin wrinkle evaluation values 1 to 3 was selected in a total of 600 images, each having 200 evaluation values, and the same procedure as in Example 2 was performed.
- the multiple correlation coefficient of the multiple regression equation obtained by the multiple regression analysis is 0.912
- the Spearman correlation coefficient between the visual evaluation value of wrinkles (automatic discrimination value) and the visual evaluation value of wrinkles is 0.705
- the perfect match between the two evaluation values is 65% and 100% when one step deviation is allowed, and it can be seen that the wrinkle discrimination method of the present invention has a sufficiently satisfactory accuracy.
- Example 2 ⁇ Automatic identification of texture visual evaluation>
- the multiple regression analysis was replaced with a neural network (manufactured by NeuralWare) and used for supervised learning for the group A, and learning was performed with physical quantities using the textured visual evaluation value as a response variable to obtain a prediction formula.
- the physical quantity of the skin was substituted into the obtained prediction formula, and the visual evaluation value (automatic discrimination value) of texture of Group B was discriminated.
- Table 5 The results are shown in Table 5.
- Table 5 shows a tabulation table of the texture visual evaluation value (automatic discrimination value) obtained in the present invention and the texture visual evaluation value.
- the Spearman correlation coefficient is 0.871, the perfect match between the two evaluation values is 62%, and 99% when one-step deviation is allowed. From these results, it can be seen that even when a prediction formula is created using a multivariate analysis method other than multiple regression analysis, automatic discrimination with high accuracy can be performed.
- the Spearman correlation coefficient was 0.831, the perfect match rate between the two evaluation values was 47%, and 95% when one-stage deviation was allowed.
- the discrimination can be performed with high accuracy even if the number of physical quantities is small, it can be seen that the accuracy increases as the number of physical quantities increases.
- Tables 7 and 8 show the agreement rate of evaluation and the required time (seconds) of evaluation per sample for Examples and Comparative Examples for distinguishing texture and wrinkles. That is, texture evaluation (comparative example 1) and wrinkle evaluation (comparative example 2) by three specialist skin evaluators (trainers), which are the standards for visual evaluation, and non-trainers (standards of FIGS. 6 and 7). It is texture evaluation (Comparative Example 3) and wrinkle evaluation (Comparative Example 4) by explaining and using a photograph. Further, in the first and second embodiments, the binarization process and the thin line process (without using the cross binarization and the short straight line matching process) (connectivity is added to the connected figure in the binarized image obtained by sampling).
- Cosmetics 1 Cosmetics for automatic identification value 1
- Component Content Glycerin 5% by mass 1,3-butanediol 5% by mass Soy protein 0.1% by mass Heparin-like substance 0.1% by mass Ethanol 5% by mass Methylparaben 0.1% by mass Water remaining
- Cosmetics 2 Cosmetic for automatic texture identification value 2
- Cosmetics 4 Cosmetic for automatic texture identification value 4
- a texture discrimination value is automatically calculated from the cheek replica specimen using the multiple regression equation obtained in Example 2, and cosmetics 1 to 5 corresponding to the texture automatic discrimination values 1 to 5 are provided. I gave it.
- the automatic texture discrimination value was calculated in the same manner for the B group, but the cosmetic 5 for the automatic texture discrimination value 5 was handed over ignoring the automatic texture discrimination value.
- the panelists of both groups A and B were allowed to use the delivered cosmetic for 3 months, and the automatic texture discrimination value was calculated in the same manner after use.
- the subject complained that the cosmetic used during the test period was “not suitable for the skin” the use of the cosmetic was interrupted and excluded from the evaluation.
- the results are shown in Table 9. From Table 9, when the cosmetics selection method of this invention is employ
- Cosmetics 1 Cosmetics for automatic wrinkle discrimination value 1
- Component Content Glycerin 5% by mass 1,3-butanediol 5% by mass Bakugakon Extract 0.1% by mass Soy protein 0.1% by mass Heparin-like substance 0.1% by mass Ethanol 10% by mass Methylparaben 0.1% by mass Water remaining
- Cosmetics 2 Cosmetics for automatic wrinkle discrimination value 2 Content Glycerin 5% by mass 1,3-butanediol 5% by mass Bakugakon Extract 0.1% by mass Sodium lactate 0.1% by mass Soy protein 0.1% by mass Heparin-like substance 0.1% by mass Ethanol 10% by mass Methylparaben 0.1% by mass Water remaining
- the present invention can provide a technique for easily and quickly discriminating skin texture or wrinkles anywhere with ease.
- information useful for skin and beauty counseling and cosmetics selection can be provided, for example, at department stores and stores.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Veterinary Medicine (AREA)
- Engineering & Computer Science (AREA)
- Public Health (AREA)
- Dermatology (AREA)
- General Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- Organic Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Medicinal Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Toxicology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Biophysics (AREA)
- Pathology (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Surgery (AREA)
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
- Measuring And Recording Apparatus For Diagnosis (AREA)
Abstract
Description
(1)肌画像に対して十字二値化処理及び/又は短直線マッチング処理を行い、肌の物理量を得る工程と、前記工程で得られた肌の物理量を、予め用意した予測式に代入し、得られた評価値を皮膚のキメ及び/又はシワの評価値と鑑別する工程とを含む、肌のキメ及び/又はシワの鑑別法。
(2)予め用意した予測式を入力する手段と、肌画像を取得する手段と、該取得した肌画像から肌の物理量を算出する手段と、予め用意した予測式と前記算出した肌の物理量から肌のキメ及び/又はシワの評価値を算出する手段と、前記算出した評価値を表示する手段、とを含む肌のキメ及び/又はシワの鑑別装置。
(3)コンピュータを、取得した肌画像から物理量を算出する手段と、予め用意した予測式と、前記肌の物理量から肌のキメ及び/又はシワの評価値を算出する手段と、して機能させる肌の鑑別プログラム。
(4)前記(1)に記載の鑑別法、又は(2)に記載の鑑別装置を用いて肌のキメ及び/又はシワを鑑別する工程、及び
前記鑑別工程により鑑別された肌のキメ及び/又はシワの評価値に基づき、被験者の皮膚のキメ及び/又はシワの状態が良くないという鑑別結果の場合には、キメ状態の改善やキメ状態の乱れを予防するための成分を含有する皮膚外用剤を選択し、被験者の皮膚のキメ及び/又はシワの状態が良いという鑑別結果の場合には、保湿成分のみを含有する皮膚外用剤を選択する工程、を含む皮膚外用剤の選択方法。 The inventors of the present invention have intensively researched a skin texture and / or wrinkle discrimination method capable of quickly and accurately discriminating skin texture and / or wrinkles. Skin texture and / or wrinkles are identified with high accuracy and quickly by substituting the physical quantity of the skin obtained by performing the skin treatment and / or the short straight line matching processing into an estimation formula prepared in advance. We found out what we could do and came to complete the invention. That is, this invention relates to the technique shown below.
(1) Performing a cross binarization process and / or a short straight line matching process on the skin image to obtain the physical quantity of the skin, and substituting the physical quantity of the skin obtained in the process into a prediction formula prepared in advance. A method for distinguishing skin texture and / or wrinkles, comprising a step of distinguishing the obtained evaluation value from an evaluation value of skin texture and / or wrinkles.
(2) Means for inputting a prediction formula prepared in advance, means for acquiring a skin image, means for calculating a physical quantity of skin from the acquired skin image, a prediction formula prepared in advance and the physical quantity of the calculated skin An apparatus for distinguishing skin texture and / or wrinkles, comprising: means for calculating an evaluation value of skin texture and / or wrinkles; and means for displaying the calculated evaluation value.
(3) Let the computer function as means for calculating a physical quantity from the acquired skin image, a prediction formula prepared in advance, and means for calculating an evaluation value of skin texture and / or wrinkles from the physical quantity of the skin Skin discrimination program.
(4) The step of discriminating skin texture and / or wrinkles using the discrimination method according to (1) or the discrimination device according to (2), and the skin texture and / Or, based on the evaluation value of the wrinkle, in the case of the discrimination result that the skin texture and / or wrinkle state of the subject is not good, the topical skin containing ingredients for improving the texture state and preventing the disorder of the texture state A method for selecting an external preparation for skin, comprising a step of selecting an external preparation and, in the case of a discrimination result that the skin texture and / or wrinkle state of the subject is good, selecting an external preparation for skin containing only a moisturizing component.
本発明では、肌画像を用いる。肌画像を取得する方法は、肌を直接撮像して肌画像を得る方法でも良く、肌より採取したレプリカ標本を介して肌画像を得る方法でもよい。画像を取得する方法は、例えば、実体顕微鏡を通してデジタルビデオカメラで取り込むか、市販のデジタル式マイクロスコープを利用することができる。このようなデジタル式マイクロスコープとしては、例えば、(株)モリテックスのコスメティック用マイクロスコープや(株)キーエンスのデジタルマイクロスコープ等が例示できる。 <Acquisition of skin image used in the present invention>
In the present invention, a skin image is used. The method for acquiring the skin image may be a method for directly capturing the skin and obtaining the skin image, or a method for obtaining the skin image through a replica specimen collected from the skin. As a method for acquiring an image, for example, a digital video camera can be used through a stereomicroscope, or a commercially available digital microscope can be used. Examples of such a digital microscope include a cosmetic microscope manufactured by Moritex Co., Ltd. and a digital microscope manufactured by Keyence Co., Ltd.
本発明では、上記得られた肌画像に対して、十字二値化処理及び/又は短直線マッチング処理を含む画像処理を行う。これらの画像処理については、特開2008-061892号公報(特許文献7)に記載されており、以下説明をする。 <Cross-binarization as image processing>
In the present invention, image processing including cross binarization processing and / or short straight line matching processing is performed on the obtained skin image. Such image processing is described in Japanese Patent Laid-Open No. 2008-061892 (Patent Document 7), and will be described below.
なお、上記の十字二値化処理は、特開2008-061892号公報に記載の表皮組織定量化装置を使用して、行うことができる。 As the most basic image processing method, there is a binarization processing method that separates a background and an object from an image and extracts the object as a shape. If there is sufficient contrast between the target and the background, the binarization process is easy. However, in practice, since there is a subtle change in shading mainly at the boundary between the object and the background, it is difficult to set a threshold value for binarization processing for the purpose of highly accurate shape extraction. Also, even when the background gray level varies due to uneven illumination, accurate shape extraction is difficult with a threshold fixed to the entire screen. In such a case, dynamic threshold processing (variable threshold processing) that changes the threshold value for each pixel instead of a fixed threshold value is preferable, and this cross binarization processing method belongs to the dynamic threshold processing method. The processing area of the dynamic threshold processing method is generally rectangular, but this cross binarization processing method has a feature of a cross shape suitable for extracting the shape of the skin groove (see FIG. 2). By using this cross-binarization processing method, shadows formed by the convex parts of the skin groove can be detected without being affected by uneven illumination of the replica, and the entire screen from thick and clear skin grooves to fine skin grooves Therefore, a highly accurate cross-binarized image (see FIG. 3) can be obtained without unevenness.
The cross binarization process can be performed using an epidermis tissue quantification apparatus described in Japanese Patent Application Laid-Open No. 2008-061892.
前記短直線マッチング法は、二値化された画像中の対象物形状の物理量を算出するための方法である。従来法が二値化画像の1画素を単位として対象の画素数を計測して、面積、長さ、重心等の物理量を算出するのに対し、本短直線マッチング法は複数画素から構成される短直線(数画素から数十画素の長さ、幅は1画素)を単位として、物理量を算出する。具体的には、対象領域の端点を短直線の始点とし、短直線の終点が対象領域内であれば、その終点を新たな始点として次の短直線を連結する。短直線の終点が対象領域外であれば連結を終了する。この操作を、対象領域が短直線で覆われるまで繰り返す。その後、対象領域に当てはめた短直線の本数、角度等を計測し、対象物の特徴量を算出する(図4参照)。本法によって、細長く連続した、方向性を有する皮溝の特長の短直線マッチング画像を得ることができる(図5参照)。
なお、上記の短直線マッチング処理は、特開2008-061892号公報に記載の表皮組織定量化装置を使用して、行うことができる。 <Short straight line matching as image processing>
The short straight line matching method is a method for calculating a physical quantity of an object shape in a binarized image. While the conventional method measures the number of target pixels in units of one pixel of the binarized image and calculates physical quantities such as area, length, and center of gravity, this short straight line matching method is composed of a plurality of pixels. The physical quantity is calculated using a short straight line (a length of several pixels to several tens of pixels and a width of one pixel) as a unit. Specifically, if the end point of the target area is the start point of the short line and the end point of the short line is within the target area, the next short line is connected with the end point as a new start point. If the end point of the short straight line is outside the target area, the connection is terminated. This operation is repeated until the target area is covered with a short straight line. Thereafter, the number of short straight lines fitted to the target region, the angle, and the like are measured, and the feature amount of the target object is calculated (see FIG. 4). By this method, it is possible to obtain a short straight line matching image of a feature of a skin groove having directionality that is continuous long and narrow (see FIG. 5).
The short straight line matching process can be performed using an epidermis tissue quantification apparatus described in Japanese Patent Application Laid-Open No. 2008-061892.
本発明では、上記十字二値化処理及び/又は短直線マッチング処理を含有する画像処理を行い、肌画像の物理量を得ることができる。得られた物理量は、肌の皮溝・皮丘などの特徴を定量化した物理量である。かような物理量としては、例えば、皮溝面積、皮溝平均太さ、皮溝太さのバラツキ、皮溝の間隔、皮溝の平行度、皮溝の方向、皮溝の密度等の物理量を始め、角度ごとの短直線本数のうち95°以上における最大本数、角度ごとの短直線本数のうち10°以上90°以下における最大本数、太さごとの短直線本数のうち最大となる本数、太さ毎の短直線本数のうち本数が最大となる太さ、短直線連結数度数データの合計値、太さごとの短直線本数の太さの値の合計値、等の更に細かな物理量が例示でき、本発明においては、これらの物理量の中から、キメ・シワに深く関係していると思われる物理量を算出する。具体的には;皮溝面積=対象とする処理すべき画像範囲における皮溝の占有面積或いはマッチング短直線の総本数;皮溝平均太さ=(各マッチング開始点毎の皮溝太さの総和/開始点総数);皮溝太さのバラツキ=皮溝太さの太さと本数のヒストグラムより算出される標準偏差或いは分散;皮溝の平均間隔=1/(皮溝の面積/皮溝の平均太さ);皮溝の平行度=皮溝の角度と本数のヒストグラムより算出されるピークの集中度或いは分散;皮溝の方向・密度=角度θにおける短直線数(ヒストグラムの高さ)/皮溝の全長、として定義できる。その他の物理量は、上記の算出式から適宜算出することができる。本発明において得られる物理量は上記のとおり多数存在するが、その中から後述する予測式を算出するために好ましい物理量と選択する。かような物理量の算出は、上記十字二値化処理及び/又は短直線マッチング処理を含む画像処理を含めて、コンピュータ上のプログラムによって処理することができる。 <Calculation of physical quantity of texture and / or wrinkles>
In the present invention, the physical quantity of the skin image can be obtained by performing image processing including the cross binarization processing and / or the short straight line matching processing. The obtained physical quantity is a physical quantity obtained by quantifying the features such as the skin groove and skin. Such physical quantities include, for example, physical quantities such as skin groove area, skin groove average thickness, skin groove thickness variation, skin groove spacing, skin groove parallelism, skin groove direction, skin groove density, etc. First, the maximum number of short straight lines for each angle at 95 ° or more, the maximum number of short straight lines for each angle of 10 ° to 90 °, the maximum number of short straight lines for each thickness, More detailed physical quantities, such as the thickness of the number of short straight lines for each thickness, the total value of the short straight line frequency data, the total value of the thickness of the number of short straight lines for each thickness, etc. In the present invention, a physical quantity that is considered to be closely related to texture and wrinkles is calculated from these physical quantities. Specifically: skin groove area = area occupied by skin groove or total number of matching short lines in the image range to be processed; skin groove average thickness = (total sum of skin groove thickness for each matching start point / Total number of starting points); variation in skin groove thickness = standard deviation or variance calculated from histogram of thickness and number of skin grooves; average interval of skin grooves = 1 / (area of skin groove / average skin groove) (Thickness); parallelism of skin groove = concentration or dispersion of peaks calculated from histogram of skin groove angle and number; direction and density of skin groove = number of short straight lines at angle θ (histogram height) / skin It can be defined as the total length of the groove. Other physical quantities can be appropriately calculated from the above calculation formulas. There are a large number of physical quantities obtained in the present invention as described above. From among them, a preferable physical quantity is selected in order to calculate a prediction formula described later. Such calculation of the physical quantity can be processed by a program on a computer including image processing including the cross binarization processing and / or the short straight line matching processing.
肌のキメ及び/又はシワを鑑別するためには、予め、上記肌の物理量と肌のキメ及び/又はシワの目視評価値との関係を示す予測式を求めておく。予測式は、例えば以下のような方法で作成できる。 <Prediction formula>
In order to discriminate the texture and / or wrinkles of the skin, a prediction formula indicating the relationship between the physical quantity of the skin and the visual evaluation values of the texture and / or wrinkles of the skin is obtained in advance. The prediction formula can be created by the following method, for example.
かようにして設定された予測式に上記の肌の物理量を代入し評価値を得ることで、肌のキメ及び/又はシワの鑑別を行うことができる。得られた画像から算出された肌の物理量を、該予測式に代入することで、肌のキメ及び/又はシワの目視評価値が得られる。本願発明は、上記の工程を経ることで、極めて高精度で肌のキメ及び/又はシワを鑑別できる。さらに、新規なサンプルの物理量や目視評価値等はデータベースに組み入れられ、更新及び補正することで、該予測式の精度が更に向上し、高精度の鑑別が期待される。 <Difference process>
By substituting the physical quantity of the skin into the prediction formula set in this way and obtaining an evaluation value, it is possible to distinguish between skin texture and / or wrinkles. By assigning the physical quantity of the skin calculated from the obtained image to the prediction formula, a visual evaluation value of skin texture and / or wrinkles can be obtained. The present invention can identify skin texture and / or wrinkles with extremely high accuracy through the above-described steps. Furthermore, the physical quantity and visual evaluation value of a new sample are incorporated into a database, and updated and corrected, so that the accuracy of the prediction formula is further improved and high-precision discrimination is expected.
また、本発明の別の態様は、上記の工程を行うプログラムである。即ち、コンピュータを、取得した肌画像から物理量を算出する手段と、予め用意した予測式と、前記算出された肌の物理量から肌のキメ及び/又はシワの評価値を算出する手段、として機能させる肌の鑑別プログラムである。本願発明の鑑別プログラムは、パソコンなどのハードウエアにインストールすることにより、使用することができる。
更に、本発明の別の態様は、上記の工程を行う鑑別装置である。即ち、予め用意した予測式を入力する手段と、肌画像を取得する手段と、該取得した肌画像から肌の物理量を算出する手段と、予め用意した予測式と前記算出した肌の物理量から肌のキメ及び/又はシワの評価値を算出する手段と、前記算出した評価値を表示する手段、とを含む肌のキメ及び/又はシワの鑑別装置である。 <Difference device / program>
Another aspect of the present invention is a program for performing the above steps. That is, the computer functions as a means for calculating a physical quantity from the acquired skin image, a prediction formula prepared in advance, and a means for calculating an evaluation value of skin texture and / or wrinkles from the calculated physical quantity of skin. It is a skin discrimination program. The discrimination program of the present invention can be used by installing it on hardware such as a personal computer.
Furthermore, another aspect of the present invention is a discrimination apparatus that performs the above steps. That is, a means for inputting a prediction formula prepared in advance, a means for acquiring a skin image, a means for calculating a physical quantity of the skin from the acquired skin image, a skin from the prediction formula prepared in advance and the calculated physical quantity of the skin An apparatus for distinguishing skin texture and / or wrinkles, comprising: means for calculating an evaluation value of the texture and / or wrinkle of the skin; and means for displaying the calculated evaluation value.
まず、デジタルビデオカメラなどの画像取得部から、肌画像を取得する。すでに説明したように、被験者の肌から直接撮像することもでき、レプリカ標本を介してもよい。上記取得された肌画像は、CPUにおいて十字二値化処理や短直線マッチング処理などの画像処理を行い、併せて肌画像の物理量を算出する。算出される肌画像の物理量の種類は、予め入力手段から入力した予測式の算出に用いた物理量の種類に依り、適宜設定される。算出された肌画像の物理量は、同じくCPUにおいて予め入力した予測式に代入され、その評価値が算出される。そして算出された評価値は、液晶ディスプレイなどの出力手段から出力される。 The processing flow of the discrimination device will be described with reference to FIG.
First, a skin image is acquired from an image acquisition unit such as a digital video camera. As already explained, it can also be taken directly from the skin of the subject or via a replica specimen. The acquired skin image is subjected to image processing such as cross binarization processing and short straight line matching processing in the CPU, and the physical quantity of the skin image is also calculated. The type of the physical quantity of the skin image to be calculated is appropriately set depending on the type of the physical quantity used for calculating the prediction formula input in advance from the input unit. The calculated physical quantity of the skin image is also substituted into a prediction formula input in advance in the CPU, and its evaluation value is calculated. The calculated evaluation value is output from output means such as a liquid crystal display.
上記鑑別法又は鑑別装置により鑑別されたキメの評価値に基づいて、用いた肌画像の被験者に適した皮膚外用剤を選択することができる。本発明の鑑別法又は鑑別装置を用いることで、専門家が肌の評価をする場合とほぼ同様の高精度で迅速に鑑別することができるため、その結果に基づいて、肌のキメ状態を維持、予防又は改善するのに有用な皮膚外用剤を選択することができる。 <Selection method of external preparation for skin based on identified skin texture evaluation value>
Based on the evaluation value of the texture discriminated by the discrimination method or the discrimination device, a skin external preparation suitable for the subject having the skin image used can be selected. By using the discrimination method or the discrimination device of the present invention, it is possible to quickly discriminate with high accuracy almost the same as when an expert evaluates the skin, and based on the result, the skin texture state is maintained. Therefore, a skin external preparation useful for prevention or improvement can be selected.
<キメ鑑別値-化粧料成分>
1(良)-保湿成分
2 -コラーゲン合成促進剤、保湿成分
3 -コラーゲン合成促進剤、角層脱離促進剤、保湿成分
4 -コラーゲン線維束再構築剤、コラーゲン合成促進剤、保湿成分
5(悪)-コラーゲン線維束再構築剤、コラーゲン合成促進剤、角層脱離促進剤、保湿成分 On the other hand, when the display of the discrimination value that the condition of the texture of the subject's skin is good is output, the condition of the texture can be maintained by selecting the cosmetic containing only the moisturizing component, An appropriate cosmetic amount can be selected. Examples of the moisturizing component include heparin-like substances. These components may be contained so as to exhibit the effects when contained in cosmetics, and preferably 0.01 to 5.0% by mass, respectively. Appropriate cosmetics can be selected by a person skilled in the art appropriately selecting these components based on the displayed texture discrimination values. As an example, selection examples of cosmetic ingredients with respect to the texture discrimination value in five stages are shown below. In addition, naturally these ingredients can be contained not only in cosmetics but also in other skin external preparations.
<Kime discrimination value-cosmetic ingredient>
1 (Good)-Moisturizing component 2-Collagen synthesis promoter, moisturizing component 3-Collagen synthesis promoter, stratum corneum release promoter, moisturizing component 4-Collagen fiber bundle restructuring agent, collagen synthesis promoter, moisturizing component 5 ( Evil)-Collagen fiber bundle restructuring agent, collagen synthesis promoter, stratum corneum detachment promoter, moisturizing ingredient
上記鑑別法又は鑑別装置により鑑別されたシワの評価値に基づいて、キメの場合と同様に、鑑別した肌画像の被験者に適した皮膚外用剤を選択することができる。鑑別されたシワの評価値に基づいて選択する化粧料の一例として、以下に3段階のシワ鑑別値に対する化粧料成分の選択例を以下に示す。
<シワ鑑別値-化粧料成分>
1(良)-保湿成分
2 -コラーゲン合成促進剤、角層脱離促進剤、保湿成分
3(悪)-コラーゲン線維束再構築剤、コラーゲン合成促進剤、角層脱離促進剤、保湿成分 <Selection method of external preparation for skin based on differentiated skin wrinkle evaluation value>
Based on the evaluation value of wrinkles discriminated by the discrimination method or the discrimination device, it is possible to select a skin external preparation suitable for the subject having the differentiated skin image, as in the case of texture. As an example of cosmetics to be selected based on the evaluated evaluation value of wrinkles, examples of selecting cosmetic ingredients for the three-stage wrinkle discrimination values are shown below.
<Wrinkle discrimination value-cosmetic ingredient>
1 (good)-moisturizing component 2-collagen synthesis promoter, stratum corneum detachment promoter, moisturizing component 3 (bad)-collagen fiber bundle restructuring agent, collagen synthesis promoter, horny layer detachment promoter, moisturizing component
10~50代の30名の女性の頬部中央よりレプリカ標本を採取し、(株)モリテックスのコスメティック用マイクロスコープを用いてレプリカ標本よりデジタルデータとして画像を保存した。前記の画像処理を行うためのソフトウエアを組み込んだ汎用パソコンを用い、この画像に対してノイズ処理を行って輝度画像に変換した後、十字二値化処理及び短直線マッチング処理を行い、皮溝に関する物理量を算出した。物理量として、皮溝面積(図8参照)、皮溝平均太さ(図9参照)、皮溝太さのバラツキ、皮溝の間隔、皮溝の平行度、皮溝の方向、皮溝の密度をはじめとする17の物理量を算出した。図8及び図9から分かるように、これらの物理量は皮溝や皮丘の凹凸の特徴を明瞭に示しており、視覚的に非常に評価し易い指標であることが分かる。 <Process for visual evaluation of texture and wrinkles>
Replica specimens were collected from the center of the cheeks of 30 women in their 10s and 50s, and images were stored as digital data from the replica specimens using a Moritex cosmetic microscope. Using a general-purpose personal computer incorporating software for performing the image processing described above, noise processing is performed on the image to convert it to a luminance image, cross binarization processing and short straight line matching processing are performed, The physical quantity for was calculated. As physical quantities, the skin groove area (see FIG. 8), skin groove average thickness (see FIG. 9), skin groove thickness variation, skin groove spacing, skin groove parallelism, skin groove direction, skin groove density 17 physical quantities were calculated. As can be seen from FIG. 8 and FIG. 9, these physical quantities clearly show the features of the unevenness of the skin grooves and the hills, and it can be seen that they are indexes that are very easy to evaluate visually.
女性の頬部中央から採取したレプリカ標本の、キメの5段階評価用の基準写真(図6参照:母集団1000枚を基に発明者らが作成。)を利用して、3名の専門の肌の評価者によって評価された肌のレプリカのデジタル画像及びその目視評価値のデータ15,000枚の中から、肌のキメの評価値1~5(1:良い~5:悪い)のデジタル画像各評価値200枚ずつ、計1000枚を選択した。上記専門の肌の評価者は、美容、エステティック又は肌評価研究に1年以上携わった経験を有し、且つ断続的に肌評価訓練を行っている者である。この1000枚を対象に、実施例1に示した方法を用いて物理量を算出した。次に、1~5の目視評価値がそれぞれ100枚となるようにランダムに500枚ずつのA群とB群の2群に分け、A群の500枚を対象に、キメの目視評価を目的変数に、17の物理量を説明変数として、重回帰分析(エス・ピー・エス・エス株式会社製)を行って予測式である重回帰式を算出した(重相関係数=0.909)。残りB群の500枚の画像に対して、先に算出した物理量を、この重回帰式の説明変数に代入し、キメの目視評価値(自動鑑別値)を鑑別した。使用した物理量の一覧を表2に示し、結果を表3に示す。 <Automatic identification of texture visual evaluation>
Using a reference photograph (see Fig. 6: created by the inventors based on a population of 1000) of a five-stage evaluation of a replica specimen collected from the center of a woman's cheek, three specialists Digital image of skin
実施例2において、肌のシワの評価値1~3のデジタル画像を各評価値200枚ずつ、計600枚を選択し、実施例2と同様に実施した。重回帰分析により得られた重回帰式の重相関係数は0.912であり、シワの目視評価値(自動鑑別値)とシワの目視評価値とのSpearmanの相関係数が0.705、両評価値の完全一致は65%、1段階のずれを許容すると100%であり、本発明のシワの鑑別法が十分満足できる精度を有することが分かる。 <Automatic identification of visual evaluation of wrinkles>
In Example 2, a digital image having skin
実施例2において、重回帰分析をニューラルネットワーク(NeuralWare社製)に代え、A群を対象に教師あり学習に用い、キメの目視評価値を応答変数として物理量によって学習を行い、予測式を得た。得られた予測式に肌の物理量を代入し、B群のキメの目視評価値(自動鑑別値)を鑑別した。結果を表5に示す。 <Automatic identification of texture visual evaluation>
In Example 2, the multiple regression analysis was replaced with a neural network (manufactured by NeuralWare) and used for supervised learning for the group A, and learning was performed with physical quantities using the textured visual evaluation value as a response variable to obtain a prediction formula. . The physical quantity of the skin was substituted into the obtained prediction formula, and the visual evaluation value (automatic discrimination value) of texture of Group B was discriminated. The results are shown in Table 5.
女性被験者を対象に、キメ鑑別値に基づく化粧料選択法の有用性について、化粧料の長期使用テストを行った。
まず、以下に示す処方に基づき、通常の化粧料の調製方法に従い、肌のキメ状態に対応した5種類の化粧料(化粧料1~5)を調製した。 <Use test by cosmetic selection method based on automatic texture discrimination value>
A long-term use test of cosmetics was conducted on the effectiveness of the cosmetics selection method based on the texture discrimination value for female subjects.
First, five types of cosmetics (
成分 含有量
グリセリン 5 質量%
1,3-ブタンジオール 5 質量%
大豆蛋白 0.1質量%
ヘパリン類似物質 0.1質量%
エタノール 5 質量%
メチルパラベン 0.1質量%
水 残量 (Cosmetics 1: Cosmetics for automatic identification value 1)
Component Content Glycerin 5% by mass
1,3-butanediol 5% by mass
Soy protein 0.1% by mass
Heparin-like substance 0.1% by mass
Ethanol 5% by mass
Methylparaben 0.1% by mass
Water remaining
グリセリン 5 質量%
1,3-ブタンジオール 5 質量%
バクガコンエキス 0.1質量%
大豆蛋白 0.1質量%
ヘパリン類似物質 0.1質量%
エタノール 5 質量%
メチルパラベン 0.1質量%
水 残量 (Cosmetics 2: Cosmetic for automatic texture identification value 2) Content Glycerin 5% by mass
1,3-butanediol 5% by mass
Bakugakon Extract 0.1% by mass
Soy protein 0.1% by mass
Heparin-like substance 0.1% by mass
Ethanol 5% by mass
Methylparaben 0.1% by mass
Water remaining
グリセリン 5 質量%
1,3-ブタンジオール 5 質量%
バクガコンエキス 0.1質量%
乳酸ナトリウム 0.1質量%
大豆蛋白 0.1質量%
ヘパリン類似物質 0.1質量%
エタノール 5 質量%
メチルパラベン 0.1質量%
水 残量 (Cosmetics 3: Cosmetic for automatic texture discrimination value 3) Content Glycerin 5% by mass
1,3-butanediol 5% by mass
Bakugakon Extract 0.1% by mass
Sodium lactate 0.1% by mass
Soy protein 0.1% by mass
Heparin-like substance 0.1% by mass
Ethanol 5% by mass
Methylparaben 0.1% by mass
Water remaining
グリセリン 6 質量%
1,3-ブタンジオール 5 質量%
ローズマリーエキス 0.1質量%
バクガコンエキス 0.1質量%
大豆蛋白 0.1質量%
ステアリルウルソレート 0.1質量%
ヘパリン類似物質 0.1質量%
エタノール 10 質量%
メチルパラベン 0.1質量%
水 残量 (Cosmetics 4: Cosmetic for automatic texture identification value 4) Content Glycerin 6% by mass
1,3-butanediol 5% by mass
Rosemary extract 0.1% by mass
Bakugakon Extract 0.1% by mass
Soy protein 0.1% by mass
Stearyl ursolate 0.1% by mass
Heparin-like substance 0.1% by mass
Ethanol 10% by mass
Methylparaben 0.1% by mass
Water remaining
グリセリン 7 質量%
1,3-ブタンジオール 5 質量%
ローズマリーエキス 0.1質量%
バクガコンエキス 0.1質量%
乳酸ナトリウム 0.1質量%
大豆蛋白 0.1質量%
ステアリルウルソレート 0.1質量%
ヘパリン類似物質 0.1質量%
エタノール 15 質量%
メチルパラベン 0.1質量%
水 残量 (Cosmetic 5: Cosmetic for automatic texture discrimination value 5) Content Glycerol 7% by mass
1,3-butanediol 5% by mass
Rosemary extract 0.1% by mass
Bakugakon Extract 0.1% by mass
Sodium lactate 0.1% by mass
Soy protein 0.1% by mass
Stearyl ursolate 0.1% by mass
Heparin-like substance 0.1% by mass
Ethanol 15 mass%
Methylparaben 0.1% by mass
Water remaining
女性被験者を対象に、シワ鑑別値に基づく化粧料選択法の有用性について、化粧料の長期使用テストを行った。
まず、以下に示す処方に基づき、通常の化粧料の調製方法に従い、肌のシワ状態に対応した3種類の化粧料(化粧料1~3)を調製した。 <Use test by cosmetic selection method based on automatic wrinkle discrimination value>
A long-term use test of cosmetics was conducted on the effectiveness of the cosmetic selection method based on wrinkle discrimination values for female subjects.
First, based on the formulation shown below, three types of cosmetics (
成分 含有量
グリセリン 5 質量%
1,3-ブタンジオール 5 質量%
バクガコンエキス 0.1質量%
大豆蛋白 0.1質量%
ヘパリン類似物質 0.1質量%
エタノール 10 質量%
メチルパラベン 0.1質量%
水 残量 (Cosmetics 1: Cosmetics for automatic wrinkle discrimination value 1)
Component Content Glycerin 5% by mass
1,3-butanediol 5% by mass
Bakugakon Extract 0.1% by mass
Soy protein 0.1% by mass
Heparin-like substance 0.1% by mass
Ethanol 10% by mass
Methylparaben 0.1% by mass
Water remaining
グリセリン 5 質量%
1,3-ブタンジオール 5 質量%
バクガコンエキス 0.1質量%
乳酸ナトリウム 0.1質量%
大豆蛋白 0.1質量%
ヘパリン類似物質 0.1質量%
エタノール 10 質量%
メチルパラベン 0.1質量%
水 残量 (Cosmetics 2: Cosmetics for automatic wrinkle discrimination value 2) Content Glycerin 5% by mass
1,3-butanediol 5% by mass
Bakugakon Extract 0.1% by mass
Sodium lactate 0.1% by mass
Soy protein 0.1% by mass
Heparin-like substance 0.1% by mass
Ethanol 10% by mass
Methylparaben 0.1% by mass
Water remaining
グリセリン 7 質量%
1,3-ブタンジオール 5 質量%
ローズマリーエキス 0.1質量%
バクガコンエキス 0.1質量%
乳酸ナトリウム 0.1質量%
大豆蛋白 0.1質量%
ステアリルウルソレート 0.1質量%
ヘパリン類似物質 0.1質量%
エタノール 15 質量%
メチルパラベン 0.1質量%
水 残量 (Cosmetics 3: Cosmetics for automatic wrinkle discrimination value 3) Content Glycerin 7% by mass
1,3-butanediol 5% by mass
Rosemary extract 0.1% by mass
Bakugakon Extract 0.1% by mass
Sodium lactate 0.1% by mass
Soy protein 0.1% by mass
Stearyl ursolate 0.1% by mass
Heparin-like substance 0.1% by mass
Ethanol 15 mass%
Methylparaben 0.1% by mass
Water remaining
Claims (11)
- 肌画像に対して十字二値化処理及び/又は短直線マッチング処理を含む画像処理を行い、肌の物理量を得る工程と、
前記工程で得られた肌の物理量を、予め用意した予測式に代入し、得られた評価値を皮膚のキメ及び/又はシワの評価値と鑑別する工程とを含む、肌のキメ及び/又はシワの鑑別法。 Performing image processing including cross binarization processing and / or short straight line matching processing on a skin image to obtain a physical quantity of the skin;
Substituting the physical quantity of the skin obtained in the step into a prediction formula prepared in advance, and distinguishing the obtained evaluation value from the skin texture and / or wrinkle evaluation value, and skin texture and / or Wrinkle discrimination method. - 前記予測式が、肌の物理量とキメ及び/又はシワの目視評価値を多変量解析して得られた式であることを特徴とする、請求項1に記載の肌のキメ及び/又はシワの鑑別法。 The skin texture and / or wrinkle according to claim 1, wherein the prediction formula is a formula obtained by multivariate analysis of a physical quantity of skin and a visual evaluation value of texture and / or wrinkles. Identification method.
- 前記肌の物理量が、皮溝に関する物理量を含むことを特徴とする、請求項1または2に記載の肌のキメ及び/又はシワの鑑別法。 3. The method for distinguishing skin texture and / or wrinkles according to claim 1 or 2, wherein the physical quantity of the skin includes a physical quantity related to a skin groove.
- 前記肌の物理量が、10種類以上の皮溝に関する物理量を含有することを特徴とする、請求項1~3のいずれかに記載の肌のキメ及び/又はシワの鑑別法。 The method for distinguishing skin texture and / or wrinkles according to any one of claims 1 to 3, wherein the physical quantity of the skin contains physical quantities relating to 10 or more kinds of skin grooves.
- 前記肌画像が、肌のレプリカ標本を介して得られた肌画像であることを特徴とする、請求項1~4のいずれかに記載の肌のキメ及び/又はシワの鑑別法。 The method for distinguishing skin texture and / or wrinkles according to any one of claims 1 to 4, wherein the skin image is a skin image obtained through a skin replica specimen.
- 前記肌画像が、前記レプリカ標本に対して10~40度の角度で光を照射し、この反射光からなる像を撮像した画像であることを特徴とする、請求項5に記載の肌のキメ及び/又はシワの鑑別法。 6. The skin texture according to claim 5, wherein the skin image is an image obtained by irradiating the replica specimen with light at an angle of 10 to 40 degrees and capturing an image made of the reflected light. And / or wrinkle discrimination method.
- 予め用意した予測式を入力する手段と、
肌画像を取得する手段と、
該取得した肌画像から肌の物理量を算出する手段と、
予め用意した予測式と前記算出した肌の物理量から肌のキメ及び/又はシワの評価値を算出する手段と、
前記算出した評価値を表示する手段、とを含む肌のキメ及び/又はシワの鑑別装置。 Means for inputting a prediction formula prepared in advance;
Means for acquiring a skin image;
Means for calculating a physical quantity of the skin from the acquired skin image;
Means for calculating an evaluation value of skin texture and / or wrinkles from a prediction formula prepared in advance and the calculated physical quantity of the skin;
A skin texture and / or wrinkle discrimination device comprising: means for displaying the calculated evaluation value. - コンピュータを、
取得した肌画像から物理量を算出する手段と、
予め用意した予測式と、前記算出された肌の物理量から肌のキメ及び/又はシワの評価値を算出する手段、として機能させる肌の鑑別プログラム。 Computer
Means for calculating a physical quantity from the acquired skin image;
A skin discrimination program that functions as a prediction formula prepared in advance and a means for calculating an evaluation value of skin texture and / or wrinkles from the calculated physical quantity of the skin. - 請求項1~6のいずれかに記載の鑑別法、又は請求項7に記載の鑑別装置を用いて肌のキメ及び/又はシワを鑑別する工程、及び
前記鑑別工程により鑑別された肌のキメ及び/又はシワの評価値に基づき、被験者の皮膚のキメ及び/又はシワの状態が良くないという鑑別結果の場合には、キメ状態の改善やキメ状態の乱れを予防するための成分を含有する皮膚外用剤を選択し、被験者の皮膚のキメ及び/又はシワの状態が良いという鑑別結果の場合には、保湿成分のみを含有する皮膚外用剤を選択する工程、を含む皮膚外用剤の選択方法。 A step of discriminating skin texture and / or wrinkles using the discrimination method according to any one of claims 1 to 6 or the discrimination device according to claim 7, and the skin texture discriminated by the discrimination step and In the case of a discrimination result that the texture and / or wrinkle state of the subject's skin is not good based on the evaluation value of the wrinkle, the skin containing a component for improving the texture state and preventing disturbance of the texture state A method for selecting a skin external preparation, comprising a step of selecting an external preparation and, in the case of a discrimination result that the skin texture and / or wrinkle state of the subject is good, selecting a skin external preparation containing only a moisturizing component. - 前記皮膚外用剤が化粧料である、請求項9に記載の皮膚外用剤の選択方法。 The method for selecting an external preparation for skin according to claim 9, wherein the external preparation for skin is a cosmetic.
- 前記化粧料が、保湿成分、コラーゲン合成促進剤、角質脱離促進剤及びコラーゲン線維束再構築剤からなる群から選択される1種乃至は2種以上を含有する、請求項10に記載の皮膚外用剤の選択方法。 The skin according to claim 10, wherein the cosmetic contains one or more selected from the group consisting of a moisturizing component, a collagen synthesis promoter, a keratin detachment promoter, and a collagen fiber bundle restructuring agent. Selection method of external preparation.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200980118762.9A CN102036607B (en) | 2008-05-23 | 2009-04-02 | Method for automatically judging skin texture and/or crease |
JP2010512971A JP5263991B2 (en) | 2008-05-23 | 2009-04-02 | Skin texture and / or wrinkle discrimination method and discrimination device, skin discrimination program, and method for selecting an external preparation for skin |
RU2010152571/14A RU2470576C2 (en) | 2008-05-23 | 2009-04-02 | Method of automatic assessment of skin and/or wrinkle texture |
HK11108196.2A HK1153920A1 (en) | 2008-05-23 | 2011-08-05 | Method for automatically judging skin texture and or crease |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008-135710 | 2008-05-23 | ||
JP2008135710 | 2008-05-23 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2009142069A1 true WO2009142069A1 (en) | 2009-11-26 |
Family
ID=41340008
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/056892 WO2009142069A1 (en) | 2008-05-23 | 2009-04-02 | Method for automatically judging skin texture and/or crease |
Country Status (6)
Country | Link |
---|---|
JP (1) | JP5263991B2 (en) |
CN (1) | CN102036607B (en) |
HK (1) | HK1153920A1 (en) |
RU (1) | RU2470576C2 (en) |
TW (1) | TWI454736B (en) |
WO (1) | WO2009142069A1 (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2544150A3 (en) * | 2011-05-23 | 2014-07-23 | Sony Corporation | Image processing device, image processing method, program, and recording medium |
WO2015015793A1 (en) | 2013-07-31 | 2015-02-05 | パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ | Skin analysis method, skin analysis device, and method for controlling skin analysis device |
WO2015029452A1 (en) * | 2013-08-30 | 2015-03-05 | 株式会社ニュートリション・アクト | Analyzer, analysis method, program, and skin sample collection kit |
JP2016193175A (en) * | 2015-03-31 | 2016-11-17 | ポーラ化成工業株式会社 | Extraction method of determination part for apparent face impression, extraction method of determining factor for apparent face impression, and differentiation method for apparent face impression |
JP2017012384A (en) * | 2015-06-30 | 2017-01-19 | 花王株式会社 | Wrinkle state analysis device and wrinkle state analysis method |
JP2017140206A (en) * | 2016-02-10 | 2017-08-17 | 株式会社ファンケル | Texture evaluation method |
JP2019217253A (en) * | 2018-06-14 | 2019-12-26 | 株式会社コーセー | Method of evaluating transparent feeling of skin |
JP2020085856A (en) * | 2018-11-30 | 2020-06-04 | ポーラ化成工業株式会社 | Estimation device, estimation method and estimation program |
WO2021256339A1 (en) * | 2020-06-15 | 2021-12-23 | 株式会社コーセー | Skin wrinkle evaluation method |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103654724B (en) * | 2012-09-04 | 2016-06-22 | 宝丽化成工业有限公司 | Differential method based on the skin condition that filamentary structure is analyzed |
BR112017004944A2 (en) * | 2014-09-16 | 2017-12-05 | Koninklijke Philips Nv | measuring system and skin treatment system |
US10664686B2 (en) | 2014-11-04 | 2020-05-26 | Samsung Electronics Co., Ltd. | Electronic device, and method for analyzing face information in electronic device |
CN105023017A (en) * | 2015-07-16 | 2015-11-04 | 广州市皓品信息科技有限公司 | Obtaining method and device of skin link lines |
KR102429838B1 (en) * | 2016-03-11 | 2022-08-05 | (주)아모레퍼시픽 | Evaluation device for skin texture based on skin blob and method thereof |
CN107303172A (en) * | 2016-04-18 | 2017-10-31 | 重庆大学 | A kind of method of quantitative analysis human body keratoderma moisture content change |
CN112603259B (en) * | 2019-09-18 | 2022-04-19 | 荣耀终端有限公司 | Skin roughness detection method and electronic equipment |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004230117A (en) * | 2003-01-30 | 2004-08-19 | Pola Chem Ind Inc | Method for discriminating wrinkle by replica image |
JP2006061170A (en) * | 2004-07-30 | 2006-03-09 | Pola Chem Ind Inc | Discrimination method for skin |
JP2008061892A (en) * | 2006-09-08 | 2008-03-21 | Tokyo Univ Of Science | Epidermal tissue quantification device and program |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2142634C1 (en) * | 1997-09-15 | 1999-12-10 | Беленький Валерий Яковлевич | Method for estimating effectiveness of cosmetic remedies and procedures application |
RU2191000C2 (en) * | 2000-08-04 | 2002-10-20 | Общество с ограниченной ответственностью Научно-производственное предприятие "Тульская индустрия LTD" | Cosmetic mask |
KR100458148B1 (en) * | 2001-10-29 | 2004-11-26 | 포라 가세이 고교 가부시키가이샤 | A skin analysis system |
RU2253437C1 (en) * | 2004-05-14 | 2005-06-10 | Закрытое акционерное общество "Косметический центр "ЛАКРИМА" | Method for skin rejuvenation |
CN1300741C (en) * | 2004-08-06 | 2007-02-14 | 上海大学 | Pre-processing method for skin micro image |
JP4579046B2 (en) * | 2005-04-28 | 2010-11-10 | 株式会社資生堂 | Skin condition analysis method, skin condition analysis apparatus, skin condition analysis program, and recording medium on which the program is recorded |
US20090054744A1 (en) * | 2005-04-28 | 2009-02-26 | Naomi Kitamura | Skin state analyzing method, skin state analyzing apparatus, and computer-readable medium storing skin state analyzing program |
TW200816087A (en) * | 2006-09-18 | 2008-04-01 | Ming-Yih Lee | Automatic inspection system using image of skin pathological changes |
-
2009
- 2009-04-02 WO PCT/JP2009/056892 patent/WO2009142069A1/en active Application Filing
- 2009-04-02 CN CN200980118762.9A patent/CN102036607B/en active Active
- 2009-04-02 RU RU2010152571/14A patent/RU2470576C2/en active
- 2009-04-02 JP JP2010512971A patent/JP5263991B2/en active Active
- 2009-05-21 TW TW098116818A patent/TWI454736B/en active
-
2011
- 2011-08-05 HK HK11108196.2A patent/HK1153920A1/en unknown
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004230117A (en) * | 2003-01-30 | 2004-08-19 | Pola Chem Ind Inc | Method for discriminating wrinkle by replica image |
JP2006061170A (en) * | 2004-07-30 | 2006-03-09 | Pola Chem Ind Inc | Discrimination method for skin |
JP2008061892A (en) * | 2006-09-08 | 2008-03-21 | Tokyo Univ Of Science | Epidermal tissue quantification device and program |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2544150A3 (en) * | 2011-05-23 | 2014-07-23 | Sony Corporation | Image processing device, image processing method, program, and recording medium |
US9875394B2 (en) | 2013-07-31 | 2018-01-23 | Panasonic Intellectual Property Corporation Of America | Skin analysis method, skin analysis device, and method for controlling skin analysis device |
WO2015015793A1 (en) | 2013-07-31 | 2015-02-05 | パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ | Skin analysis method, skin analysis device, and method for controlling skin analysis device |
WO2015029452A1 (en) * | 2013-08-30 | 2015-03-05 | 株式会社ニュートリション・アクト | Analyzer, analysis method, program, and skin sample collection kit |
JPWO2015029452A1 (en) * | 2013-08-30 | 2017-03-02 | 株式会社ニュートリション・アクト | Analysis device, analysis method, program, and skin sample collection kit |
JP2016193175A (en) * | 2015-03-31 | 2016-11-17 | ポーラ化成工業株式会社 | Extraction method of determination part for apparent face impression, extraction method of determining factor for apparent face impression, and differentiation method for apparent face impression |
JP2017012384A (en) * | 2015-06-30 | 2017-01-19 | 花王株式会社 | Wrinkle state analysis device and wrinkle state analysis method |
JP2017140206A (en) * | 2016-02-10 | 2017-08-17 | 株式会社ファンケル | Texture evaluation method |
JP2019217253A (en) * | 2018-06-14 | 2019-12-26 | 株式会社コーセー | Method of evaluating transparent feeling of skin |
JP7307544B2 (en) | 2018-06-14 | 2023-07-12 | 株式会社コーセー | Method for evaluating skin clarity |
JP2020085856A (en) * | 2018-11-30 | 2020-06-04 | ポーラ化成工業株式会社 | Estimation device, estimation method and estimation program |
WO2021256339A1 (en) * | 2020-06-15 | 2021-12-23 | 株式会社コーセー | Skin wrinkle evaluation method |
KR20230023611A (en) | 2020-06-15 | 2023-02-17 | 가부시키가이샤 코세 | Method for evaluating skin wrinkles |
Also Published As
Publication number | Publication date |
---|---|
CN102036607A (en) | 2011-04-27 |
TWI454736B (en) | 2014-10-01 |
RU2010152571A (en) | 2012-06-27 |
HK1153920A1 (en) | 2012-04-13 |
RU2470576C2 (en) | 2012-12-27 |
CN102036607B (en) | 2014-06-18 |
JP5263991B2 (en) | 2013-08-14 |
TW200949291A (en) | 2009-12-01 |
JPWO2009142069A1 (en) | 2011-09-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5263991B2 (en) | Skin texture and / or wrinkle discrimination method and discrimination device, skin discrimination program, and method for selecting an external preparation for skin | |
Monnier et al. | In vivo characterization of healthy human skin with a novel, non‐invasive imaging technique: line‐field confocal optical coherence tomography | |
Langley et al. | In vivo confocal scanning laser microscopy of benign lentigines: comparison to conventional histology and in vivo characteristics of lentigo maligna | |
JP2009509708A (en) | Method and apparatus for evaluating characteristics of defective part of skin and method for evaluating anti-aging effect of cosmetic product | |
JP2007252891A (en) | Estimation method of evaluation value by visual recognition of beauty of skin | |
JP6380988B2 (en) | Skin evaluation apparatus, method and program | |
JP6814172B2 (en) | Skin internal structure estimation method, skin internal structure estimation program, and skin internal structure estimation device | |
JP5635762B2 (en) | Method for calculating nipple shape or collagen-like structure | |
JP6499823B2 (en) | Skin condition discrimination method based on fibrous structure analysis | |
JP2011118671A (en) | Apparatus, method and system for processing image, skin evaluation method | |
JP2021121328A (en) | Skin condition discrimination method, cosmetic evaluation method, and cosmetic design method | |
JP2007252892A (en) | Estimation method of evaluation value by visual recognition of three-dimensional shape of skin surface | |
Alsayyah | Differentiating Between Early Melanomas and Melanocytic Nevi: A State-of-the-Art Review | |
JP2005034350A (en) | Differentiation method for skin condition and monitoring method using this differentiation result | |
JP2015064823A (en) | Cosmetic evaluation method, and facial expression wrinkle quantitation method | |
WO2008001558A1 (en) | Method of estimating evaluation data on the skin smoothness with naked eye and estimation apparatus | |
JP4460988B2 (en) | How to differentiate stratum corneum | |
Groh et al. | Quantitative assessment of cyanoacrylate follicular biopsies by image analysis | |
Suihko et al. | Fluorescent fibre‐optic confocal imaging of lesional and non‐lesional psoriatic skin compared with normal skin in vivo | |
JP2006095223A (en) | Horny layer discrimination | |
Prow et al. | Cutaneous photoaging: Description and algorithms | |
Vergilio et al. | Enhancing skin aging parameter assessment in clinical trials: AI-Driven analysis of ultrasound images | |
CN116681661A (en) | Method for evaluating improvement degree of human face pores and application | |
Jebli et al. | Journal Club: Non-invasive imaging tools in daily onco-dermatology practice | |
Sharif et al. | The impact of filling procedure for labial augmentation (FPLA) therapy on the stability of lip print: A longitudinal study |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200980118762.9 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09750431 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010512971 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010152571 Country of ref document: RU |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 09750431 Country of ref document: EP Kind code of ref document: A1 |