WO2008072700A1 - 送信装置 - Google Patents
送信装置 Download PDFInfo
- Publication number
- WO2008072700A1 WO2008072700A1 PCT/JP2007/074043 JP2007074043W WO2008072700A1 WO 2008072700 A1 WO2008072700 A1 WO 2008072700A1 JP 2007074043 W JP2007074043 W JP 2007074043W WO 2008072700 A1 WO2008072700 A1 WO 2008072700A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- amplitude
- signal
- correction
- unit
- modulation signal
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F3/00—Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
- H03F3/20—Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
- H03F3/24—Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F1/00—Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
- H03F1/02—Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F1/00—Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
- H03F1/02—Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
- H03F1/0205—Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F1/00—Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
- H03F1/02—Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
- H03F1/0205—Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
- H03F1/0261—Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers with control of the polarisation voltage or current, e.g. gliding Class A
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F1/00—Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
- H03F1/32—Modifications of amplifiers to reduce non-linear distortion
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F2200/00—Indexing scheme relating to amplifiers
- H03F2200/324—An amplitude modulator or demodulator being used in the amplifier circuit
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F2200/00—Indexing scheme relating to amplifiers
- H03F2200/451—Indexing scheme relating to amplifiers the amplifier being a radio frequency amplifier
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F2200/00—Indexing scheme relating to amplifiers
- H03F2200/504—Indexing scheme relating to amplifiers the supply voltage or current being continuously controlled by a controlling signal, e.g. the controlling signal of a transistor implemented as variable resistor in a supply path for, an IC-block showed amplifier
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B1/00—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
- H04B1/02—Transmitters
- H04B1/04—Circuits
- H04B2001/0408—Circuits with power amplifiers
- H04B2001/045—Circuits with power amplifiers with means for improving efficiency
Definitions
- the present invention relates to a transmission device that amplifies and transmits a modulation signal including an amplitude modulation component and a phase modulation component.
- a transmitter using the EER system includes an input terminal 1, a limiter 2, an amplitude detector 3, a power supply voltage controller 4, and a power amplifier 5.
- the input terminal 1 receives a modulation signal as shown in FIG. 2A having a phase modulation component and an amplitude modulation component.
- the modulated signal input from the input terminal 1 is branched into two, one being input to the limiter 2 and the other being input to the amplitude detector 3.
- the limiter 2 removes the amplitude modulation component of the input modulation signal and outputs a phase modulation signal having a constant envelope as shown in FIG. 2B.
- the amplitude detector 3 detects the amplitude component of the input modulation signal and outputs an amplitude signal as shown in FIG. 2C.
- the power supply voltage control unit 4 controls the power supply voltage of the power amplifier 5 according to the amplitude of the output signal of the amplitude detection unit 3.
- the power amplifier 5 amplifies the phase modulation signal having a constant envelope that is the output signal of the limiter 2. At this time, since the power supply voltage of the power amplifier 5 changes according to the amplitude signal of FIG. 2C, the gain of the power amplifier 5 changes. As a result, the output signal of the power amplifier 5 is an amplified input signal as shown in FIG. 2D.
- the EER system has an operation limit when the output power of the power amplifier becomes low, that is, on the low output side.
- the power amplifier is operated linearly when the amplitude of the input modulation signal is equal to or smaller than a predetermined threshold value, and the power amplifier is operated when the amplitude is equal to or larger than the predetermined threshold value.
- Patent Document 1 Various methods have been proposed for switching between linear operation and EER operation of power amplifiers (for example, Patent Documents 2 and 3).
- Patent Document 1 Japanese Patent Application Laid-Open No. 2004-104194 (Page 9, Figure 4)
- Patent Document 2 JP 2005-184273 A (page 16, Fig. 7)
- Patent Document 3 Japanese Patent Laid-Open No. 2005-198109 (page 11, Fig. 5)
- Non-Patent Document 1 F. H. Raab, Proc. Sixth Int. Conf. HF Radio Syst ems and Techniques (HR '94), pp. 21— 25, July 4— 7, 1994.
- the amplitude detector has a nonlinear characteristic. Therefore, the band of the amplitude signal for controlling the power supply voltage is widened. Specifically, the bandwidth of the amplitude signal that is the output signal of the amplitude detection unit is expanded several times that of the input signal.
- the power supply voltage control unit needs to control the power supply voltage of the power amplifier at a high frequency. This strict! / Power supply voltage control unit that satisfies the requirements is generally expensive and has low power efficiency. When the power efficiency of the power supply voltage control unit is lowered, there is a problem that the power efficiency of the entire transmission device is lowered even if the power efficiency of the main power amplifier is high.
- An object of the present invention is to provide a transmitter capable of realizing a reduction in price and increasing power efficiency by relaxing requirements for a power supply voltage control unit. Means for solving the problem
- a transmission apparatus includes a power amplifier that amplifies an input modulation signal according to an applied power supply voltage, and a power supply voltage control that controls an applied power supply voltage of the power amplifier according to an amplitude component of the modulation signal. And an amplitude component for correcting the amplitude width between the maximum amplitude and the minimum amplitude of the amplitude component to be small and further removing a high frequency component from the corrected amplitude component. And a correction means.
- FIG. 1 is a block diagram showing a configuration of a conventional transmission device
- FIG. 2 is a diagram showing signal waveforms at various parts in a conventional transmitter.
- FIG. 3 Diagram showing characteristics of components in a conventional transmitter
- FIG. 4 is a block diagram showing a configuration of a transmission apparatus according to Embodiment 1 of the present invention.
- FIG. 5 is a block diagram showing the configuration of the amplitude signal correction unit in FIG.
- FIG. 6 is a diagram showing the characteristics of the low-amplitude component limiting unit and the low-pass filter unit of FIG.
- FIG. 7 is a block diagram showing the configuration of the modulation signal correction unit in FIG.
- FIG. 8 is a block diagram showing the configuration of the correction coefficient calculation unit in FIG.
- FIG. 9 is a diagram showing phase characteristics and amplitude characteristics of the modulation signal correction unit in FIG.
- FIG. 10 is a diagram showing signal waveforms at various parts of the amplitude signal correction unit in FIG.
- FIG. 11 is a block diagram showing a configuration of a transmitting apparatus according to Embodiment 2.
- FIG. 12 is a block diagram showing the configuration of the correction characteristic updating unit in FIG.
- FIG. 4 is a block diagram showing a configuration of transmitting apparatus 100 according to Embodiment 1 of the present invention.
- Transmitting apparatus 100 to which the EER scheme in this embodiment is applied includes an input unit 101 to which a modulation signal having a phase modulation component and an amplitude modulation component is input, and a transmission unit 102 that outputs a high-frequency signal from the input modulation signal
- a power amplifier 103 that amplifies the high-frequency signal that is the output of the transmitter 102, an amplitude detector 104 that detects the amplitude component of the modulated signal input to the input unit 101, and a detected amplitude component signal (in the figure,
- An amplitude signal correction unit 105 that corrects the amplitude signal c) and outputs the corrected signal as a control signal
- a power source that controls the power supply voltage of the power amplifier 103 based on the control signal output from the amplitude signal correction unit 105
- a voltage control unit 106 and a force are also configured.
- the amplitude signal correction unit 105 determines the amplitude width between the maximum amplitude and the minimum amplitude of the amplitude component signal detected by the amplitude detection unit 104 (hereinafter referred to as "maximum minimum amplitude width"). Amplitude signal correction processing is performed in which correction is performed to reduce the amplitude and further, high-frequency components are removed from the corrected amplitude component signal.
- the power supply voltage control unit 106 controls the power supply voltage of the power amplifier 103 based on the amplitude component signal after the amplitude signal correction processing.
- the amplitude signal correcting unit 105 includes a low amplitude component limiting unit 203 and a low-pass filter unit 204.
- the low amplitude component limiting unit 203 corrects the amplitude component signal so as to reduce the maximum and minimum amplitude width of the amplitude component signal detected by the amplitude detection unit 104.
- the low-amplitude component limiting unit 203 corrects the input signal by amplifying the amplitude of the portion below the predetermined threshold value from the amplitude component signal to the threshold value.
- the low-amplitude component limiting unit 203 sets an output signal having a certain amplitude value for a portion of the input signal up to a certain amplitude, and exceeds the certain amplitude value.
- An output signal having an amplitude value corresponding to the amplitude of the part has an output characteristic.
- the low-pass filter unit 204 passes only the low frequency component of the amplitude component signal corrected by the low amplitude component limiting unit 203. In other words, the low-pass filter unit 204 removes a sharp portion (first-order differential discontinuity) generated in the amplitude component signal by the correction in the low amplitude component limiting unit 203. That is, the low-pass filter unit 204 has a filter characteristic as shown in FIG. 6B.
- the transmission unit 102 sends an input signal of the power amplifier 103 necessary for obtaining an output signal of the desired power amplifier 103 to the input unit 101 at an applied power supply voltage applied to the power source of the power amplifier 103. Formed from the input modulation signal.
- Transmitting section 102 has modulation signal correction section 111 that corrects the amplitude component and phase component of the input modulation signal based on the applied power supply voltage and the desired output signal of power amplifier 103, and the amplitude component and phase component are And a signal level conversion unit 112 for converting the level of the corrected modulation signal.
- the modulation signal correction unit 111 includes a correction coefficient calculation unit 303, a modulation signal phase correction unit 304, and a modulation signal amplitude correction unit 305.
- the correction coefficient calculation unit 303 calculates the amplitude component correction amount and the phase component correction amount based on the applied power supply voltage and the desired output signal of the power amplifier 103.
- the correction coefficient calculation unit 303 includes an amplitude calculation unit 404, a power supply voltage calculation unit 405, a phase correction coefficient calculation unit 406, and an amplitude correction coefficient calculation unit 407.
- the amplitude calculation unit 404 calculates the amplitude value of the input modulation signal, and outputs the obtained amplitude value to the phase correction coefficient calculation unit 406 and the amplitude correction coefficient calculation unit 407.
- the power supply voltage calculation unit 405 calculates the power supply voltage of the power amplifier 103 corresponding to the modulation signal from the input modulation signal, and outputs the obtained power supply voltage to the phase correction coefficient calculation unit 406 and the amplitude correction coefficient calculation unit 407.
- the phase correction coefficient calculation unit 406 determines the amplitude value of the input modulation signal and the modulation signal.
- the phase correction coefficient (phase component correction amount) is calculated based on the power supply voltage corresponding to the signal. As shown in FIG.
- the phase correction coefficient calculation unit 406 has a calculation characteristic of a phase correction coefficient with respect to an amplitude value that is different for each power supply voltage.
- the amplitude correction coefficient calculation unit 407 calculates an amplitude correction coefficient (amplitude component correction amount) based on the amplitude value of the input modulation signal and the power supply voltage corresponding to the modulation signal.
- the amplitude correction coefficient calculation unit 407 has a calculation characteristic of the amplitude correction coefficient with respect to the amplitude value, which is different for each power supply voltage.
- FIG. 9A is a diagram showing the passing phase of the output signal output from the output terminal 302 with respect to the amplitude of the input signal input to the input terminal 301
- FIG. FIG. 4 is a diagram showing the amplitude of an output signal output from an output terminal 302 with respect to the input signal amplitude.
- the passing phase and amplitude characteristics of the modulation signal correcting unit 111 are not a single curve but a set of a plurality of curves. This is because the output of the power supply voltage calculation unit 405 is not uniquely determined with respect to the output of the amplitude calculation unit 404.
- modulation signal phase correction section 304 corrects the phase of the input modulation signal in accordance with the phase correction coefficient calculated by correction coefficient calculation section 303.
- the modulation signal amplitude correction unit 305 corrects the amplitude of the input modulation signal in accordance with the amplitude correction coefficient calculated by the correction coefficient calculation unit 303.
- An input signal a having a phase modulation component and an amplitude modulation component input from the input unit 101 is branched into two and input to the transmission unit 102 and the amplitude detection unit 104.
- the amplitude signal correction unit 105 performs correction to reduce the maximum / minimum amplitude width of the amplitude component signal (amplitude signal c in the figure) detected by the amplitude detection unit 104, and further performs amplitude correction after the correction. Amplitude signal correction processing is performed to remove high frequency components from the minute signal.
- the input amplitude signal c has a small amplitude portion as shown in FIG. 10A.
- the amplitude signal correction unit 105 performs correction to reduce the maximum / minimum amplitude width of the amplitude component signal detected by the amplitude detection unit 104.
- the amplitude of the portion of the amplitude signal c less than the predetermined threshold is amplified to the threshold value. That is, the corrected signal (intermediate signal f) has a shape in which the amplitude is raised to a predetermined threshold as shown in FIG. 10B.
- the intermediate signal f a sharp portion (a point that cannot be differentiated, a discontinuous point of the first derivative) generated in the modulation signal due to the correction occurs. That is, the intermediate signal f still contains a high-frequency component.
- the power supply voltage control unit 106 has a wide band from low frequency to high frequency. It is necessary to have a configuration that can handle this. In other words, the bandwidth requirement for the power supply voltage control unit 106 remains severe, and as a result, the expensive power supply voltage control unit 106 needs to be mounted on the transmission device 100.
- the amplitude signal correction unit 105 further performs a process of removing the high frequency component from the corrected amplitude component signal. Specifically, the amplitude signal correction unit 105 passes the low frequency component of the input intermediate signal f without attenuation, and passes the high frequency component of the intermediate signal f attenuated at a predetermined rate. That is, the band-limited signal (control signal d) has a smooth shape as shown in FIG. 10C. By doing so, the sharp portion generated by the correction in the intermediate signal f can be removed, so that the control signal d having a narrow band can be obtained.
- the bandwidth of the amplitude signal input to the power supply voltage control unit 106 in the output stage can be narrowed, and the request regarding the bandwidth to the power supply voltage control unit 106 can be relaxed.
- the high-frequency component is reduced compared to the amplitude signal c, and the dynamic range of the control signal d and the intermediate signal f is equivalent. Since the dynamic range is reduced compared to the amplitude signal c, the demand on the power supply voltage control unit 106 can be relaxed, so that the power supply voltage control unit 106 can be made smaller and less expensive.
- the output signal of the power amplifier 103 becomes the desired power. There is a possibility of deviating from the value and phase. In other words, the distortion caused by the correction of the amplitude signal and the distortion caused by the change of the power supply voltage are the power amplifier 103. May occur in the output signal.
- the input signal of the power amplifier 103 necessary for obtaining the output signal of the desired power amplifier 103 at the applied power supply voltage in which the transmission unit 102 is applied to the power supply of the power amplifier 103 Formed from the input modulation signal.
- the modulation signal correction unit 111 calculates the amplitude component correction amount and the phase component correction amount based on the calculated amplitude value of the input modulation signal and the applied power supply voltage of the power amplifier 103, and calculates the calculated amplitude.
- the phase and amplitude of the input modulation signal are corrected using the component correction amount and the phase component correction amount.
- the output signal is converted to the desired power value and phase based on the applied power supply voltage and the desired output signal of the power amplifier 103. Therefore, the input signal (modulation signal) of the power amplifier 103 can be corrected in a form necessary to achieve the above. In this way, it is possible to realize the transmitting apparatus 100 that can simultaneously compensate for both distortion caused by the correction of the amplitude component signal and distortion caused by a change in the power supply voltage.
- the modulation signal correction unit 111 receives a modulation signal (input signal a) from the input terminal 301 and outputs a signal whose amplitude and phase are corrected from the output terminal 302.
- the modulation signal input from the input terminal 301 is branched into two, one input to the correction coefficient calculation unit 303 and the other input to the modulation signal phase correction unit 304.
- the correction coefficient calculation unit 303 calculates the amount of phase and amplitude correction from the input signal a that has been input, and outputs it to the modulation signal phase correction unit 304 and the modulation signal amplitude correction unit 305, respectively. More specifically, the input signal a input from the input terminal 401 is branched into two, one being input to the amplitude calculator 404 and the other being input to the power supply voltage calculator 405. The amplitude calculation unit 404 calculates the amplitude value of the input signal a inputted, and outputs the calculation result to the phase correction coefficient calculation unit 406 and the amplitude correction coefficient calculation unit 407.
- the power supply voltage calculation unit 405 calculates the power supply voltage supplied to the power amplifier 103 from the input signal a input, and outputs the calculation result to the phase correction coefficient calculation unit 406 and the amplitude correction coefficient calculation unit 407.
- Phase correction coefficient calculation section 406 calculates a phase correction coefficient using the amplitude value of input signal a obtained from amplitude calculation section 404 and the power supply voltage applied to power amplifier 103 obtained from power supply voltage calculation section 405. The calculated phase correction coefficient is output from the phase correction coefficient output terminal 402, and the modulated signal Used in the phase correction unit 304.
- the amplitude correction coefficient calculation unit 407 calculates the amplitude correction coefficient using the amplitude value of the input signal a obtained from the amplitude calculation unit 404 and the power supply voltage applied to the power amplifier 103 obtained from the power supply voltage calculation unit 405.
- the calculated amplitude correction coefficient is output from the amplitude correction coefficient output terminal 403 and used in the modulation signal amplitude correction unit 305.
- the modulation signal phase correction unit 304 corrects the phase of the input signal a input from the input terminal 301 in accordance with the phase correction amount input from the correction coefficient calculation unit 303.
- the corrected input signal is input to the modulation signal amplitude correction unit 305.
- the modulation signal amplitude correction unit 305 corrects the amplitude of the input signal in which the phase input from the modulation signal phase correction unit 304 is corrected according to the amplitude correction amount input from the correction coefficient calculation unit 303.
- the signal whose phase and amplitude are corrected by the modulation signal phase correction unit 304 and the modulation signal amplitude correction unit 305 is output to the output terminal 302.
- the amplitude correction is performed after the phase correction! /, And the modulation signal level complementary correction unit 304 and the modulation signal amplitude correction unit 305 are characteristic in the present invention even if the order of the modulation signal amplitude correction unit 305 is reversed. Functions can be realized as well.
- the amplitude signal c that is the output signal of the amplitude detection unit 104 can be used as a signal used for the calculation of the amplitude correction coefficient and the phase correction coefficient.
- a control signal d that is an output signal of the amplitude signal correction unit 105 can be used instead of the output signal of the power supply voltage calculation unit 405.
- the amplitude and phase of the output signal e also change depending on the high-frequency signal b that is the output signal of the transmission unit 102 and only the power supply voltage that is the output signal of the power supply voltage control unit 106.
- the amplitude signal correction unit 105 since the amplitude signal correction unit 105 includes the low-pass filter 204, the power supply voltage of the power amplifier 103 is not uniquely determined with respect to the amplitude of the input signal a.
- the amplitude signal correction unit 105 includes the low amplitude component limiting unit 203, the input signal is supplied to the power supply voltage of the power amplifier 103.
- the amplitude of issue a is not uniquely determined. Therefore, in order to minimize the distortion generated in the power amplifier 103, it is necessary to correct the phase and amplitude of the input signal a according to the power supply voltage applied to the power amplifier 103 and the amplitude of the input signal a. .
- the modulation signal correction unit 111 having the configuration as shown in FIG. 7 appropriate phase correction and amplitude correction can be performed on the input signal a. At this time, in order to minimize the distortion included in the output signal e of the power amplifier 103, the appropriate phase correction amount and amplitude correction amount change according to the power supply voltage applied to the power amplifier 103 and the amplitude of the input signal a. Therefore, the characteristics of the modulation signal correction unit 111 have the characteristics shown in FIG.
- phase and amplitude of the input signal a can be corrected according to the power supply voltage of the power amplifier 103 and the amplitude of the input signal a, and the distortion included in the output signal e of the power amplifier 103 can be reduced to the maximum.
- the transmission unit 102 may include a frequency conversion circuit.
- a band-pass filter may be included to suppress unwanted radiation components that accompany frequency conversion. In either case, the functions characteristic of the present invention can be realized in the same manner.
- one or more of the! / And the deviation of the amplitude detection unit 104, the amplitude signal correction unit 105, and the modulation signal correction unit 111 shown in the present embodiment may be a circuit using digital signal processing. Achieving power S At this time, if the above block is realized by a circuit using digital signal processing, the apparatus size can be reduced. Even when digital signal processing is used, the functions characteristic of the present invention can be similarly realized.
- the transmission device 100 uses a digital-analog converter.
- the transmission unit 102 may include a low-pass filter for removing image components associated with digital-analog conversion.
- the transmission unit 102 may include a frequency conversion circuit.
- a band pass filter may be included to suppress the minutes. In either case, the functions characteristic of the present invention can be realized in the same way.
- the phase and amplitude can be corrected at a time by multiplying the input signal a by a complex number.
- the modulation signal phase correction unit 304 and the modulation signal amplitude correction unit 305 can be realized by a single block.
- the phase correction coefficient calculation unit 406 and the amplitude correction coefficient calculation unit 407 can be realized by a single block for calculating a complex correction coefficient.
- any one or both of the transmission unit 102 and the amplitude signal correction unit 105 described in the present embodiment may include a delay unit that delays an input signal. Since the above block includes a delay unit that includes an appropriate delay amount, the power supply voltage in the power amplifier 103 and the timing of the high-frequency signal can be accurately matched, and distortion included in the output signal e of the power amplifier 103 can be minimized. It is possible to
- transmission apparatus 100 has power supply voltage control unit 106 that controls the applied power supply voltage of the power amplifier in accordance with the amplitude component of the modulation signal, and inputs of power supply voltage control unit 106.
- an amplitude signal correction unit 105 that is provided in a stage and corrects the amplitude width between the maximum amplitude and the minimum amplitude of the amplitude component to be small and further removes a high frequency component from the corrected amplitude component.
- the amplitude width between the maximum amplitude and the minimum amplitude of the amplitude component can be reduced, and the band can be narrowed by removing the high frequency component. Range and bandwidth requirements can be relaxed. For this reason, it is possible to use a small and inexpensive power supply voltage control unit 106, which can reduce the price of the transmitter 100 using the EER method and increase the power efficiency. Touch with power.
- the amplitude signal correction unit 105 includes a low amplitude component limiting unit 203 that corrects the amplitude component by amplifying the amplitude of the portion of the amplitude component that is less than the threshold value to the threshold value, and the corrected amplitude component. And a low-pass filter unit 204 for removing high-frequency components from the filter.
- the amplitude of the amplitude component that is less than the threshold is reduced to the threshold. Therefore, the amplitude width between the maximum amplitude and the minimum amplitude in the input signal of the amplitude signal correction unit 105 can be reduced, and the high frequency component is removed from the corrected amplitude component. The bandwidth of the input signal can be reduced.
- transmitter 100 is provided at the input stage of power amplifier 103, and the amplitude and phase of the modulation signal are corrected based on the amplitude component of the modulation signal and the applied power supply voltage of power amplifier 103. Further, a modulation signal correction unit 111 is provided.
- the amplitude and phase of the modulation signal that is the input signal of the power amplifier 103 are corrected based on the amplitude component of the modulation signal and the applied power supply voltage of the power amplifier 103. It is possible to compensate for a deviation from a desired power value and phase in the output signal of the power amplifier 103 that may occur.
- FIG. 11 is a block diagram showing a configuration of transmitting apparatus 500 according to Embodiment 2 of the present invention.
- the transmission device 500 calculates a correction coefficient in the amplitude phase correction process according to the difference. Adjust the characteristics.
- transmitting apparatus 500 is connected to power amplifier 103 and includes force-pla section 501 that extracts a part of the output signal of power amplifier 103, and output of force-pla section 501 connected to force-pla section 501.
- Receiving unit 502 that converts the signal into a form comparable to input signal a, and correction using the output signal of receiving unit 502 connected to receiving unit 502 and input unit 101 and input signal a input from input unit 101
- a correction characteristic updating unit 503 that updates coefficient calculation characteristics and a transmission unit 504 that is connected to the input unit 101 and outputs a high-frequency signal b from the input signal a are input.
- Transmitting section 504 is connected to input signal terminal 101 and correction characteristic updating section 503, and corrects the phase and amplitude of input signal a input from input section 101 according to a predetermined correction coefficient calculation characteristic and A modulation signal correction unit 511 that sequentially adjusts coefficient calculation characteristics according to the output of the correction characteristic update unit 503 is included.
- Receiving section 502 performs the reverse process when transmitting section 504 and power amplifier 103 operate under ideal conditions.
- the transmission unit 504 and the power amplifier 103 operate ideally, distortion included in the power amplifier 103 is canceled by the amplitude phase correction processing in the transmission unit 504.
- the signal contains a certain amount of signal delay and a certain amount of phase rotation. Therefore, receiving section 502 performs signal level conversion, signal phase conversion, and signal delay adjustment.
- the signal thus obtained can be compared with the input signal a by the correction characteristic updating unit 503, that is, a signal having the same signal level, signal phase, and signal delay as the input signal a corresponding to the actual output signal of the power amplifier 103. It has become.
- the correction characteristic updating unit 503 is configured to detect the difference in amplitude and phase between the output signal of the reception unit 502 corresponding to the actual output signal of the power amplifier 103 and the input modulation signal (that is, the power amplifier 103 The distortion included in the actual output power is calculated, and the correction coefficient calculation characteristic in the modulation signal correction unit 511 is adjusted based on the difference regarding the amplitude and phase.
- the correction characteristic updating unit 503 calculates a correction coefficient calculation characteristic that minimizes the difference based on the difference regarding the amplitude and phase, and is set in the modulation signal correction unit 511 at the present time with the calculated correction coefficient calculation characteristic. Update the correction coefficient calculation characteristics.
- the correction characteristic updating unit 503 includes a comparison unit 604 that detects a difference regarding amplitude and phase, and an applied power supply voltage and modulation of the power amplifier 103 at the time of detection by the comparison unit 604.
- the correction coefficient calculation unit 605 for calculating the correction characteristic (correction coefficient calculation characteristic) corresponding to the signal and the correction characteristic (correction coefficient calculation) of the modulation signal correction unit 511 using the calculated correction characteristic (correction coefficient calculation characteristic)
- a correction coefficient updating unit 606 for updating the characteristics).
- the comparison unit 604 calculates a difference regarding the amplitude and phase between the output signal of the reception unit 502 corresponding to the actual output signal of the power amplifier 103 and the input modulation signal.
- the difference regarding the amplitude and phase obtained in this way corresponds to the difference between the target output signal of the power amplifier 103 and the actual output signal.
- the difference related to the amplitude and phase is output to the update correction coefficient calculation unit 605 in relation to the input modulation signal and the power supply voltage of the power amplifier 103 at that time.
- the update correction coefficient calculation unit 605 calculates a correction coefficient based on the difference regarding the amplitude and the phase from the comparison unit 604 and the power supply voltage of the power amplifier 103 so that the difference regarding the amplitude and the phase is minimized. Calculate the characteristics.
- the calculated correction factor calculation characteristic is the ratio Similar to the comparison unit 604, the input modulation signal and the power supply voltage of the power amplifier 103 at that time are related and output to the correction coefficient update unit 606.
- the correction coefficient update unit 606 uses the correction coefficient calculation characteristic calculated by the update correction coefficient calculation unit 605 as the input modulation signal from the update correction coefficient calculation unit 605 and the power source of the power amplifier 103 at that time. Temporarily hold in association with the voltage.
- the correction coefficient updating unit 606 outputs the correction coefficient calculation characteristics accumulated after the previous output, and the input modulation signal and the power supply voltage of the power amplifier 103, which are associated with the correction coefficient calculation characteristics, at predetermined time intervals. Then, the correction coefficient calculation characteristic in the modulation signal correction unit 511 is updated.
- receiving section 502 a signal having the same signal level, signal phase, and signal delay as input signal a corresponding to the actual output signal of power amplifier 103 is formed.
- correction characteristic updating section 503 based on the difference in amplitude and phase between the output signal of receiving section 502 corresponding to the actual output signal of power amplifier 103 and input signal a (input modulation signal), An update correction coefficient calculation characteristic for updating the correction coefficient calculation characteristic of the modulation signal correction unit 511 is calculated.
- the correction characteristic updating unit 503 calculates correction coefficient calculation characteristics that minimize the difference in amplitude and phase, in other words, between the target output signal of the power amplifier 103 and the actual output signal. Correction coefficient calculation characteristics that minimize the difference in amplitude and phase are calculated.
- the calculated correction coefficient calculation characteristic is reflected in the modulation signal correction unit 511.
- comparison section 604 compares output signal e of power amplifier 103 with input signal a, and calculates the difference in association with input signal a.
- the update correction coefficient calculation unit 605 uses the difference calculated by the comparison unit 604 to calculate a correction coefficient that minimizes the difference between the output signal e and the input signal a in association with the input signal a.
- the correction coefficient update unit 606 holds the correction coefficient calculated by the update correction coefficient calculation unit 605 in association with the input signal a. Further, after a sufficient time has elapsed, the correction coefficient updating unit 606 outputs the held correction coefficient to the output terminal 603, and updates the correction characteristic of the modulation signal correction unit 511.
- the correction characteristic updating unit 503 can be realized using a digital signal processor (DSP).
- DSP digital signal processor
- the receiving unit 502 includes an analog-digital converter and a frequency conversion circuit.
- an analog / digital converter that converts the input signal a into a digital signal is required.
- a converter for converting the input signal a into a digital signal is not necessary.
- LMS Least Mean Square
- RMS Recursive Mean Square
- the transmitter 500 receives from the output signal of the power amplifier 103 the input signal a input from the input unit 101 corresponding to the output signal, and the signal level. Based on the difference in amplitude and phase between the reception unit 502 that calculates a signal with the same signal phase and signal delay, and the signal calculated by the input signal a and the reception unit 502, the correction characteristics of the modulation signal correction unit 51 1 1 And a correction characteristic updating unit 503 for adjustment.
- the correction characteristics (correction coefficient calculation characteristics) of the modulation signal correction unit 511 are appropriately set, that is, the power amplifier 103 Can be updated to reduce distortion contained in the output signal.
- the apparatus can be mounted on a communication terminal apparatus and a base station apparatus in a mobile communication system, thereby providing a communication terminal apparatus, a base station apparatus, and a mobile communication system having the same operational effects as described above. be able to.
- each functional block used in the description of each of the above embodiments is typically realized as an LSI which is an integrated circuit. These may be individually made into one chip, or may be made into one chip so as to include a part or all of them.
- IC system LSI
- super LSI super LSI
- ultra LSI depending on the difference in power integration as LSI.
- the method of circuit integration is not limited to LSI, and may be realized by a dedicated circuit or a general-purpose processor.
- Field programmable gate arrays (FPGAs) that can be programmed after LSI manufacturing and reconfigurable processors that can reconfigure the connection and settings of circuit cells inside the LSI may be used.
- FPGAs Field programmable gate arrays
- reconfigurable processors that can reconfigure the connection and settings of circuit cells inside the LSI may be used.
- the transmission device of the present invention has the effects of reducing the cost by relaxing the requirements for the power supply voltage control unit and increasing the power efficiency, and particularly uses the EER method. This is useful as a transmission device.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- Amplifiers (AREA)
- Transmitters (AREA)
Abstract
電源電圧制御部への要求条件を緩和することにより低価格化を実現し、且つ、電力効率を高くすることができる送信装置。送信装置(100)においては、電源電圧制御部(106)が変調信号の振幅成分に応じて電力増幅器の印加電源電圧を制御し、振幅信号補正部(105)が電源電圧制御部(106)の入力段に設けられ、振幅成分の最大振幅と最小振幅との振幅幅を小さく補正し、さらに補正後の振幅成分から高周波数成分を除去する。これにより、振幅成分の最大振幅と最小振幅との振幅幅を減少し、さらに高周波数成分を除去することにより帯域を狭くすることができるので、電源電圧制御部(106)に対するダイナミックレンジおよび帯域に関する要求を緩和することができる。そのため、この電源電圧制御部(106)を搭載する送信装置(100)の低価格化が実現されるとともに、電力効率を高くすることができる。
Description
明 細 書
送信装置
技術分野
[0001] 本発明は、振幅変調成分と位相変調成分を含む変調信号を増幅して送信する送 信装置に関する。
背景技術
[0002] 昨今の移動体通信技術の発展に伴い、移動端末や基地局装置の低消費電力化 の要求が高まっている。移動端末や基地局装置の低消費電力化には、その消費電 力の大部分を占める送信装置の高効率化が有効である。また、通信品質の確保や 他通信システムへの影響を小さくするため、送信装置は振幅変調成分と位相変調成 分を含む変調信号を歪み無く送信することが要求される。これらの要求を満たす送信 装置の構成とし飞、 EER (Envelope Elimination and Restoratioru方式を用 V、た送信装置が提案されてレ、る (たとえば、非特許文献 1参照)。
[0003] 図 1と図 2を参照し、 EER方式を用いた送信装置の動作を説明する。 EER方式を 用いた送信装置は、入力端子 1と、リミッタ 2と、振幅検出部 3と、電源電圧制御部 4と 、電力増幅器 5から構成される。入力端子 1には、位相変調成分と振幅変調成分を持 つ図 2Aのような変調信号が入力される。入力端子 1から入力された変調信号は 2分 岐され、一方はリミッタ 2へ、他方は振幅検出部 3へ入力される。リミッタ 2は、入力され た変調信号の振幅変調成分を除去し、図 2Bのような一定の包絡線を持つ位相変調 信号を出力する。振幅検出部 3は、入力された変調信号の振幅成分を検出し、図 2C のような振幅信号を出力する。電源電圧制御部 4は、振幅検出部 3の出力信号の振 幅に応じて電力増幅器 5の電源電圧を制御する。電力増幅器 5は、リミッタ 2の出力 信号である一定の包絡線を持つ位相変調信号を増幅する。このとき、電力増幅器 5 の電源電圧が図 2Cの振幅信号に応じて変化するため、電力増幅器 5の利得が変化 する。その結果、電力増幅器 5の出力信号は図 2Dに示すような、入力信号を増幅し たものとなる。
[0004] このような EER方式を用いた送信装置では、一定の包絡線を持つ位相変調信号を
電力増幅器 5で増幅するので、電力増幅器に入力される高周波信号の振幅変動に よる歪みを避けること力 Sできる。この結果として、振幅変動に起因する歪みは大きいが 電力効率が高レ、E級増幅器や F級増幅器とレ、つた非線形増幅器を電力増幅器とし て用いることができるので、送信装置の高電力効率化が可能である。
[0005] ところで EER方式には、電力増幅器の出力電力が低くなつたときに、つまり低出力 側に動作限界が存在することが知られている。この課題を解決する方法としては、入 力された変調信号の振幅が所定のしきい値以下の場合は電力増幅器を線形動作さ せ、振幅が所定のしきレ、値以上の場合は電力増幅器を EER動作させるとレ、うものが ある(たとえば、特許文献 1)。また、電力増幅器の線形動作と EER動作の切り替え方 法として、さまざまな方法が提案されている(たとえば、特許文献 2、 3)。
[0006] 図 3を用いて、線形動作と EER動作を切り替える方法について説明する。線形動 作と EER動作を切り替える場合、図 1のリミッタ 2および振幅検出部 3の特性を、図 3 に示したようなものに変更する。図 3に示した特性を持つリミッタ 2および振幅検出部 3 を用いると、入力信号の振幅が所定のしきい値より小さいとき、リミッタ 2の出力信号の 包絡線は入力信号に応じて変化する。また、振幅検出部 3の出力信号は一定の値と なる。入力信号の振幅が所定のしきい値より大きいとき、リミッタ 2の出力信号は一定 の包絡線を持つ位相変調信号となり、振幅検出部 3の出力信号は入力信号の振幅 に応じて変化する。よって、入力信号の振幅が所定のしきい値より小さいとき、電力増 幅器 5は電源電圧一定の線形動作で入力信号を増幅し、入力信号の振幅が所定の しきい値より大きいとき、電力増幅器 5は EER方式で入力信号を増幅することになる。 特許文献 1 :特開 2004— 104194号公報(第 9頁、図 4)
特許文献 2 :特開 2005— 184273号公報(第 16頁、図 7)
特許文献 3 :特開 2005— 198109号公報(第 11頁、図 5)
非特許文献 1 : F. H. Raab, Proc. Sixth Int. Conf. HF Radio Syst ems and Techniques (HR ' 94) , pp. 21— 25, July 4— 7, 1994.
発明の開示
発明が解決しょうとする課題
[0007] ところで、上記従来の EER方式を用いた送信装置では、振幅検出部が非線形特性
を持っため、電源電圧を制御する振幅信号の帯域が広くなる。具体的には、振幅検 出部の出力信号である振幅信号の帯域は、入力信号の数倍に広がってしまう。
[0008] このように振幅信号の帯域が広い場合には、電源電圧制御部は高い周波数で電 力増幅器の電源電圧を制御する必要がある。この厳し!/、要求を満たす電源電圧制 御部は、一般的に高価であり、また低電力効率である。電源電圧制御部の電力効率 が低くなると、主電力増幅器の電力効率が高くても送信装置全体の電力効率が低下 してしまう課題がある。
[0009] 本発明の目的は、電源電圧制御部への要求条件を緩和することにより低価格化を 実現し、且つ、電力効率を高くすることができる送信装置を提供することである。 課題を解決するための手段
[0010] 本発明の送信装置は、入力する変調信号を印加電源電圧に応じて増幅する電力 増幅器と、前記変調信号の振幅成分に応じて前記電力増幅器の印加電源電圧を制 御する電源電圧制御部と、前記電源電制御部の入力段に設けられ、前記振幅成分 の最大振幅と最小振幅との振幅幅を小さく補正し、さらに当該補正後の振幅成分か ら高周波数成分を除去する振幅成分補正手段と、を具備する構成を採る。
発明の効果
[0011] 本発明によれば、電源電圧制御部への要求条件を緩和することにより低価格化を 実現し、且つ、電力効率を高くすることができる送信装置を提供することができる。 図面の簡単な説明
[0012] [図 1]従来の送信装置の構成を示すブロック図
[図 2]従来の送信装置における各部の信号波形を示す図
[図 3]従来の送信装置における構成要素の特性を示す図
[図 4]本発明の実施の形態 1に係る送信装置の構成を示すブロック図
[図 5]図 4の振幅信号補正部の構成を示すブロック図
[図 6]図 5の低振幅成分制限部および低域通過フィルタ部の特性を示す図
[図 7]図 4の変調信号補正部の構成を示すブロック図
[図 8]図 7の補正係数算出部の構成を示すブロック図
[図 9]図 7の変調信号補正部の位相特性および振幅特性を示す図
[図 10]図 5の振幅信号補正部の各部の信号波形を示す図
[図 11]実施の形態 2に係る送信装置の構成を示すブロック図
[図 12]図 11の補正特性更新部の構成を示すブロック図
発明を実施するための最良の形態
[0013] 以下、本発明の実施の形態について図面を参照して詳細に説明する。なお、実施 の形態において、同一の構成要素には同一の符号を付し、その説明は重複するの で省略する。
[0014] (実施の形態 1)
図 4は、本発明の実施の形態 1における送信装置 100の構成を示すブロック図であ る。本実施の形態における EER方式が適用される送信装置 100は、位相変調成分と 振幅変調成分を持つ変調信号が入力される入力部 101と、入力された変調信号から 高周波信号を出力する送信部 102と、送信部 102の出力である高周波信号を増幅 する電力増幅器 103と、入力部 101に入力された変調信号の振幅成分を検出する 振幅検出部 104と、検出された振幅成分信号(図中では振幅信号 c)を補正し、補正 後の信号を制御信号として出力する振幅信号補正部 105と、振幅信号補正部 105 の出力である制御信号に基づいて、電力増幅器 103の電源電圧を制御する電源電 圧制御部 106と、力も構成される。
[0015] 振幅信号補正部 105は、振幅検出部 104にて検出された振幅成分信号の最大振 幅と最小振幅との振幅幅(以下、「最大最小振幅幅」と呼ぶこと力 Sある)を小さくする補 正をし、さらに当該補正後の振幅成分信号から高周波数成分を除去する、振幅信号 補正処理を行う。電源電圧制御部 106は、振幅信号補正処理後の振幅成分信号に 基づいて、電力増幅器 103の電源電圧を制御する。
[0016] 図 5に示すように振幅信号補正部 105は、低振幅成分制限部 203と、低域通過フィ ルタ部 204とを有する。
[0017] 低振幅成分制限部 203は、振幅検出部 104にて検出された振幅成分信号の最大 最小振幅幅を小さくするように、振幅成分信号を補正する。低振幅成分制限部 203 は、振幅成分信号のうち所定のしきレ、値未満の部分の振幅をそのしきレ、値まで増幅 することにより、入力信号を補正する。振幅成分信号のうち所定のしきい値以上の部
分に対しては、その部分の振幅に応じた振幅値とすることにより、入力信号を補正す る。すなわち、低振幅成分制限部 203は、図 6Aに示すように、入力信号のうち一定 の振幅までの部分に対してはその一定の振幅値を持つ出力信号とし、その一定の振 幅値以上の部分に対してはその部分の振幅に応じた振幅値を持つ出力信号とする 、出力特性を有している。
[0018] 低域通過フィルタ部 204は、低振幅成分制限部 203にて補正された後の振幅成分 信号のうち低い周波数成分のみを通過させる。換言すれば、低域通過フィルタ部 20 4は、低振幅成分制限部 203における補正により振幅成分信号に発生した尖った部 分(1次微分の不連続点)を除去する。すなわち、低域通過フィルタ部 204は、図 6B に示すようなフィルタ特性を有して!/、る。
[0019] 送信部 102は、電力増幅器 103の電源に加えられている印加電源電圧において 所望の電力増幅器 103の出力信号が得られるために必要な電力増幅器 103の入力 信号を、入力部 101への入力変調信号から形成する。
[0020] 送信部 102は、印加電源電圧と電力増幅器 103の所望出力信号とに基づいて入 力変調信号の振幅成分および位相成分を補正する変調信号補正部 111と、振幅成 分および位相成分が補正された変調信号をレベル変換する信号レベル変換部 112 とを有する。
[0021] 図 7に示すように変調信号補正部 111は、補正係数算出部 303と、変調信号位相 補正部 304と、変調信号振幅補正部 305とを有する。
[0022] 補正係数算出部 303は、印加電源電圧と電力増幅器 103の所望出力信号とに基 づレ、て、振幅成分補正量および位相成分補正量を算出する。
[0023] 図 8に示すように補正係数算出部 303は、振幅算出部 404と、電源電圧算出部 40 5と、位相補正係数算出部 406と、振幅補正係数算出部 407とを有する。
[0024] 振幅算出部 404は、入力変調信号の振幅値を算出し、得られた振幅値を位相補正 係数算出部 406および振幅補正係数算出部 407に出力する。電源電圧算出部 405 は、入力変調信号から当該変調信号に対応する電力増幅器 103の電源電圧を算出 し、得られた電源電圧を位相補正係数算出部 406および振幅補正係数算出部 407 に出力する。位相補正係数算出部 406は、入力変調信号の振幅値と、その変調信
号に対応する電源電圧とに基づいて、位相補正係数 (位相成分補正量)を算出する 。位相補正係数算出部 406は、図 9Aに示すように電源電圧ごとに異なる、振幅値に 対する位相補正係数の算出特性を有している。振幅補正係数算出部 407は、入力 変調信号の振幅値と、その変調信号に対応する電源電圧とに基づいて、振幅補正 係数 (振幅成分補正量)を算出する。振幅補正係数算出部 407は、図 9Bに示すよう に電源電圧ごとに異なる、振幅値に対する振幅補正係数の算出特性を有して!/、る。
[0025] なお、図 9Aは、入力端子 301に入力される入力信号の振幅に対する、出力端子 3 02から出力される出力信号の通過位相を示した図であり、図 9Bは、入力端子 301に 入力される入力信号の振幅に対する、出力端子 302から出力される出力信号の振幅 を示した図である。変調信号補正部 111の通過位相および振幅特性は単一の曲線 ではなぐ複数の曲線の集合となる。これは、振幅算出部 404の出力に対して電源電 圧算出部 405の出力が一意に決まらないためである。
[0026] 図 7に戻り、変調信号位相補正部 304は、補正係数算出部 303にて算出された位 相補正係数に応じて、入力変調信号の位相を補正する。変調信号振幅補正部 305 は、補正係数算出部 303にて算出された振幅補正係数に応じて、入力変調信号の 振幅を補正する。
[0027] 次に上記構成を有する送信装置 100の動作について説明する。
[0028] 入力部 101から入力された位相変調成分と振幅変調成分を持つ入力信号 aは、 2 分岐されて送信部 102と振幅検出部 104に入力される。
[0029] 振幅信号補正部 105では、振幅検出部 104にて検出された振幅成分信号(図中で は振幅信号 c)の最大最小振幅幅を小さくする補正をし、さらに当該補正後の振幅成 分信号から高周波数成分を除去する、振幅信号補正処理を行う。
[0030] 入力される振幅信号 cは、図 10Aに示すように振幅が小さい部分が存在する。さら に振幅ゼロ付近で微分不可能な振幅変化がある。そこでまず、振幅信号補正部 105 では、振幅検出部 104にて検出された振幅成分信号の最大最小振幅幅を小さくする 補正を行う。具体的には振幅信号 cのうち所定のしきい値未満の部分の振幅をそのし きい値まで増幅する。すなわち、この補正された後の信号(中間信号 f)は、図 10Bに 示すように所定のしきい値まで振幅が底上げされたような形状を有することになる。こ
うすることにより、出力段の電源電圧制御部 106のダイナミックレンジを小さくすること ができ、電源電圧制御部 106に対するダイナミックレンジに関する要求を緩和するこ と力 Sできる。
[0031] ただし、中間信号 fには、補正により変調信号に発生した尖った部分 (微分不可能 な点、 1次微分の不連続点)が発生してしまう。すなわち、中間信号 fには、依然として 高周波数成分が含まれており、この形のままで電源電圧制御部 106にて利用する場 合には、電源電圧制御部 106は低周波数から高周波数まで広帯域に対応可能な構 成を有する必要がある。つまり、電源電圧制御部 106に対する、帯域に関する要求 は厳しいままであり、結果として高価な電源電圧制御部 106を送信装置 100に搭載 する必要がある。
[0032] そこで振幅信号補正部 105では、さらに補正後の振幅成分信号から高周波数成分 を除去する処理が行われる。具体的には、振幅信号補正部 105では、入力された中 間信号 fの低周波数成分は減衰させずに通過させ、中間信号 fの高周波数成分は所 定の割合で減衰させて通過させる。すなわち、この帯域制限された後の信号 (制御 信号 d)は、図 10Cに示すように滑らかな形状を有することになる。こうすることにより、 中間信号 fにおける補正により発生した尖った部分を除去することができるので、帯 域が狭められた制御信号 dが得られる。この結果として出力段の電源電圧制御部 10 6に入力される振幅信号の帯域幅を狭くすることができ、電源電圧制御部 106に対す る帯域幅に関する要求を緩和することができる。こうして図 10A、 Bで見られたような 微分不可能な変化を示す点を無くすことで、振幅信号 cに比べて高周波成分を少な くし、また制御信号 dと中間信号 fのダイナミックレンジが同等であり振幅信号 cに比べ てダイナミックレンジを小さくしていることにより、電源電圧制御部 106に対する要求を 緩和することができるため、電源電圧制御部 106を小型で且つ安価にすることができ
[0033] この一方で、上記振幅成分信号の補正に伴い電源電圧が変化すると、電力増幅器 103の入力信号に対して何ら調整を行わない場合には、電力増幅器 103の出力信 号が所望の電力値および位相からずれてしまう可能性がある。つまり、振幅信号の補 正により発生する歪みと、電源電圧の変化により発生する歪みとが、電力増幅器 103
の出力信号に発生してしまう可能性がある。
[0034] そこで送信装置 100では、送信部 102が電力増幅器 103の電源に加えられている 印加電源電圧において所望の電力増幅器 103の出力信号が得られるために必要な 電力増幅器 103の入力信号を、入力変調信号から形成する。具体的には、変調信 号補正部 11 1で、入力変調信号の算出振幅値および電力増幅器 103の印加電源 電圧に基づいて振幅成分補正量および位相成分補正量が算出され、算出された振 幅成分補正量および位相成分補正量を用いて入力変調信号の位相および振幅の 補正が行われる。こうすることにより、振幅成分信号の補正により印加電源電圧が刻 々と変化しても、印加電源電圧と電力増幅器 103の所望出力信号とに基づいて、当 該出力信号を所望の電力値および位相にするために必要な形に、電力増幅器 103 の入力信号 (変調信号)を補正することができる。こうして振幅成分信号の補正により 発生する歪みと、電源電圧の変化により発生する歪みの両方を同時に補償すること ができる送信装置 100を実現することができる。
[0035] 詳細には変調信号補正部 1 11は、入力端子 301から変調信号 (入力信号 a)が入 力され、出力端子 302から振幅と位相が補正された信号が出力される。入力端子 30 1から入力された変調信号は 2分岐され、一方は補正係数算出部 303へ、他方は変 調信号位相補正部 304へ入力される。
[0036] 補正係数算出部 303は、入力された入力信号 aから位相と振幅の補正量を算出し 、それぞれ変調信号位相補正部 304と変調信号振幅補正部 305に出力する。さらに 詳細には、入力端子 401から入力された入力信号 aは 2分岐され、一方は振幅算出 部 404へ、他方は電源電圧算出部 405へ入力される。振幅算出部 404は、入力され た入力信号 aの振幅値を計算し、その計算結果を位相補正係数算出部 406と、振幅 補正係数算出部 407に出力する。電源電圧算出部 405は、入力された入力信号 aか ら電力増幅器 103に与えられる電源電圧を計算し、その計算結果を位相補正係数 算出部 406と、振幅補正係数算出部 407に出力する。位相補正係数算出部 406は 、振幅算出部 404から得られる入力信号 aの振幅値と、電源電圧算出部 405から得 られる電力増幅器 103に与えられる電源電圧を用いて、位相補正係数を算出する。 算出された位相補正係数は、位相補正係数出力端子 402より出力され、変調信号
位相補正部 304で用いられる。振幅補正係数算出部 407は、振幅算出部 404から 得られる入力信号 aの振幅値と、電源電圧算出部 405から得られる電力増幅器 103 に与えられる電源電圧を用いて、振幅補正係数を算出する。算出された振幅補正係 数は、振幅補正係数出力端子 403より出力され、変調信号振幅補正部 305で使用さ れる。
[0037] 変調信号位相補正部 304は、補正係数算出部 303より入力された位相補正量に 応じて、入力端子 301より入力された入力信号 aの位相を補正する。補正された入力 信号は変調信号振幅補正部 305に入力される。変調信号振幅補正部 305は、補正 係数算出部 303より入力された振幅補正量に応じて、変調信号位相補正部 304より 入力された位相が補正された入力信号の振幅を補正する。変調信号位相補正部 30 4と変調信号振幅補正部 305により位相と振幅が補正された信号は、出力端子 302 力 出力される。
[0038] なお上記説明では、位相補正した後に振幅補正を行って!/、る力 変調信号位相補 正部 304と変調信号振幅補正部 305の順序は逆であっても本発明に特徴的な機能 は同様に実現することができる。
[0039] また、振幅補正係数算出および位相補正係数算出に用いる信号として、振幅算出 部 404の出力信号の代わりに、振幅検出部 104の出力信号である振幅信号 cを用い ることができる。また、振幅補正係数算出および位相補正係数算出に用いる信号とし て、電源電圧算出部 405の出力信号の代わりに、振幅信号補正部 105の出力信号 である制御信号 dを用いることができる。
[0040] 次に図 7から 9に示したような構成、特性を持つ変調信号補正部 11 1を用いた理由 について説明する。
[0041] 電力増幅器 103の特性に注目すると、出力信号 eの振幅、位相は、電源電圧制御 部 106の出力信号である電源電圧だけでなぐ送信部 102の出力信号である高周波 信号 bによっても変化する。本発明の送信装置 100においては、振幅信号補正部 10 5に低域通過フィルタ 204が含まれているため、入力信号 aの振幅に対して電力増幅 器 103の電源電圧は一意に決まらない。同様に、振幅信号補正部 105には低振幅 成分制限部 203が含まれているため、電力増幅器 103の電源電圧に対して入力信
号 aの振幅は一意に決まらない。よって、電力増幅器 103で生じる歪みを最小限にす るためには、電力増幅器 103に与えられる電源電圧と、入力信号 aの振幅に応じて、 入力信号 aの位相と振幅を補正する必要がある。
[0042] 図 8に示したような構成を持つ補正係数算出部 303を用いることで、電力増幅器 10 3に与えられる電源電圧と、入力信号 aの振幅に応じて適切な位相補正量と振幅補 正量を算出することができる。また、図 7に示したような構成を持つ変調信号補正部 1 11を用いることで、入力信号 aに対して適切な位相補正と振幅補正を行うことができ る。このとき、電力増幅器 103の出力信号 eに含まれる歪みを最小とするには、電力 増幅器 103に与えられる電源電圧と、入力信号 aの振幅に応じて適切な位相補正量 と振幅補正量が変化するため、変調信号補正部 111の特性は図 9に示したような特 性となる。
[0043] このように電力増幅器 103の電源電圧と入力信号 aの振幅に応じて、入力信号 aの 位相と振幅を補正することができ、電力増幅器 103の出力信号 eに含まれる歪みを最 /J、にすることカでさる。
[0044] なお、入力信号 aが中間周波数 (IF)帯の信号である場合、送信部 102には周波数 変換回路を含むことがある。また、周波数変換に伴って生じる不要放射成分を抑圧 するために、帯域通過フィルタを含むことがある。いずれの場合でも、本発明に特徴 的な機能は同様に実現することが可能である。
[0045] また、本実施の形態で示した振幅検出部 104、振幅信号補正部 105、変調信号補 正部 11 1の!/、ずれか一つまたは複数は、ディジタル信号処理を用いた回路でも実現 すること力 Sできる。このとき、ディジタル信号処理を用いた回路で上記のブロックを実 現すると、装置サイズの小型化が可能となる。ディジタル信号処理を用いた場合でも 、本発明に特徴的な機能は同様に実現することが可能である。
[0046] そしてディジタル信号処理を用いて振幅検出部 104、振幅信号補正部 105、変調 信号補正部 11 1のいずれか一つまたは複数を実現した場合、送信装置 100はディ ジタルーアナログ変換器を含む。また、送信部 102はディジタル アナログ変換に伴 うイメージ成分を除去するための低域通過フィルタを含むことがある。また、送信部 10 2は周波数変換回路を含むことがある。また、周波数変換に伴って生じるスプリアス成
分を抑圧するために、帯域通過フィルタを含むことがある。いずれの場合でも、本発 明に特徴的な機能は同様に実現することが可能である。
[0047] また、ディジタル信号処理を用いて変調信号補正部 111を構成した場合、入力信 号 aに対して複素数を乗算することで一度に位相と振幅を補正することが可能である 。この場合には、変調信号位相補正部 304と変調信号振幅補正部 305は、単一のブ ロックで実現することが可能である。さらに、位相補正係数算出部 406と振幅補正係 数算出部 407は、複素数の補正係数を算出する単一のブロックで実現することが可 能である。
[0048] また、本実施の形態で示した送信部 102と振幅信号補正部 105のいずれか一つま たは両方は、入力された信号を遅延させる遅延部を含むことがある。上記のブロック が適切な遅延量を含む遅延部を備えることで、電力増幅器 103における電源電圧と 高周波信号のタイミングを正確に合わせることができ、電力増幅器 103の出力信号 e に含まれる歪みを最小限にすることが可能である。
[0049] このように本実施の形態によれば、送信装置 100に、変調信号の振幅成分に応じ て電力増幅器の印加電源電圧を制御する電源電圧制御部 106と、電源電圧制御部 106の入力段に設けられ、振幅成分の最大振幅と最小振幅との振幅幅を小さく補正 し、さらに補正後の振幅成分から高周波数成分を除去する振幅信号補正部 105と、 を設けた。
[0050] こうすることにより、振幅成分の最大振幅と最小振幅との振幅幅を減少し、さらに高 周波数成分を除去することにより帯域を狭くすることができるので、電源電圧制御部 1 06に対するダイナミックレンジおよび帯域に関する要求を緩和することができる。そ のため、電源電圧制御部 106として小型で且つ安価なものを利用することが可能とな り、 EER方式を用いた送信装置 100の低価格化が実現されるとともに、電力効率を 高くすること力でさる。
[0051] 振幅信号補正部 105は、振幅成分におけるしきい値未満の部分の振幅をそのしき い値まで増幅することにより、振幅成分を補正する低振幅成分制限部 203と、補正後 の振幅成分から高周波数成分を除去する低域通過フィルタ部 204と、を設けた。
[0052] こうすることにより、振幅成分におけるしきい値未満の部分の振幅をそのしきい値ま
で増幅するので振幅信号補正部 105の入力信号における最大振幅と最小振幅との 振幅幅を小さくすることができ、さらに補正後の振幅成分から高周波数成分を除去す るので振幅信号補正部 105の入力信号の帯域幅を狭くすることができる。
[0053] また送信装置 100に、電力増幅器 103の入力段に設けられ、変調信号の振幅およ び位相を、変調信号の振幅成分および電力増幅器 103の印加電源電圧に基づ!/、て 補正する変調信号補正部 111をさらに設けた。
[0054] こうすることにより、変調信号の振幅成分および電力増幅器 103の印加電源電圧に 基づいて、電力増幅器 103の入力信号である変調信号の振幅および位相を補正す るので、振幅信号の補正に伴い発生する可能性の有る、電力増幅器 103の出力信 号における所望の電力値および位相からずれを補償することができる。
[0055] (実施の形態 2)
図 11は、本発明の実施の形態 2の送信装置 500の構成を示すブロック図である。こ の送信装置 500は、所望の電力増幅器 103の出力信号 (ターゲット出力信号)と、実 際の出力信号との差を補正するために、その差に応じて振幅位相補正処理における 補正係数の算出特性を調整する。
[0056] 同図に示すように送信装置 500は、電力増幅器 103に接続され電力増幅器 103の 出力信号の一部を取り出す力プラ部 501と、力プラ部 501に接続され力プラ部 501の 出力信号を入力信号 aと比較可能な形態へ変換する受信部 502と、受信部 502と入 力部 101に接続され受信部 502の出力信号と入力部 101から入力された入力信号 a を用いて補正係数算出特性を更新する補正特性更新部 503と、入力部 101に接続 され入力された入力信号 aから高周波信号 bを出力する送信部 504と、から構成され る。送信部 504は、入力信号端子 101と補正特性更新部 503に接続され、入力部 1 01から入力された入力信号 aの位相および振幅を所定の補正係数算出特性に従つ て補正するとともに、補正係数算出特性を補正特性更新部 503の出力に応じて順次 調整する変調信号補正部 511を含む。
[0057] 受信部 502は、送信部 504と電力増幅器 103が理想的な条件で動作した際の逆 の処理を行う。送信部 504と電力増幅器 103が理想的に動作した場合、電力増幅器 103に含まれる歪は送信部 504における振幅位相補正処理により打ち消される。す
なわち、送信部 504と電力増幅器 103が理想的に動作すると、電力増幅器 103の出 力信号は、入力部 101から入力された入力信号 aの信号レベルが変換され、送信部 504および電力増幅器 103を通過することによる一定量の信号遅延と一定量の位相 回転を含む信号となる。よって、受信部 502では、信号レベル変換、信号位相の変 換、信号遅延の調整が行なわれる。こうして得られる信号は、補正特性更新部 503に て入力信号 aと比較できる形、つまり電力増幅器 103の実際の出力信号に対応する 入力信号 aと信号レベル、信号位相、信号遅延が同等の信号となっている。
[0058] 補正特性更新部 503は、電力増幅器 103の実際の出力信号に対応する受信部 50 2の出力信号と、入力変調信号との間の振幅および位相に関する差 (つまり、電力増 幅器 103の実際の出力電力に含まれる歪み)を算出し、当該振幅および位相に関す る差に基づいて変調信号補正部 511における補正係数算出特性を調整する。補正 特性更新部 503は、振幅および位相に関する差に基づいてその差が最小となるよう な補正係数算出特性を算出し、算出された補正係数算出特性で変調信号補正部 5 11に現時点で設定されて!/、る補正係数算出特性を更新する。
[0059] 図 12に示すように、補正特性更新部 503は、振幅および位相に関する差を検出す る比較部 604と、比較部 604による検出時の、電力増幅器 103の印加電源電圧およ び変調信号に対応する、補正特性 (補正係数算出特性)を算出する更新用補正係 数算出部 605と、算出された補正特性 (補正係数算出特性)で変調信号補正部 511 の補正特性 (補正係数算出特性)を更新する補正係数更新部 606と、を具備する。
[0060] 比較部 604は、電力増幅器 103の実際の出力信号に対応する受信部 502の出力 信号と、入力変調信号との間の振幅および位相に関する差を算出する。こうして得ら れる振幅および位相に関する差は、電力増幅器 103のターゲット出力信号と、実際 の出力信号との差に相当する。振幅および位相に関する差は、入力変調信号および その時点の電力増幅器 103の電源電圧と関係づけられて更新用補正係数算出部 6 05に出力される。
[0061] 更新用補正係数算出部 605は、比較部 604からの振幅および位相に関する差お よび電力増幅器 103の電源電圧に基づいて、この振幅および位相に関する差が最 小となるような補正係数算出特性を算出する。算出された補正係数算出特性は、比
較部 604と同様に、入力変調信号およびその時点の電力増幅器 103の電源電圧と 関係づけられて補正係数更新部 606に出力される。
[0062] 補正係数更新部 606は、更新用補正係数算出部 605にて算出された補正係数算 出特性を、更新用補正係数算出部 605からの入力変調信号およびその時点の電力 増幅器 103の電源電圧と対応づけて一時保持する。補正係数更新部 606は、前回 の出力後に蓄積された補正係数算出特性、および、これと対応づけられている入力 変調信号および電力増幅器 103の電源電圧を所定の時間間隔で出力することによ り、変調信号補正部 511における補正係数算出特性を更新する。
[0063] 次に上記構成を有する送信装置 500の動作につ!/、て説明する。
[0064] 受信部 502では、電力増幅器 103の実際の出力信号に対応する入力信号 aと信号 レベル、信号位相、信号遅延が同等の信号が形成される。
[0065] 補正特性更新部 503では、電力増幅器 103の実際の出力信号に対応する受信部 502の出力信号と、入力信号 a (入力変調信号)との間の振幅および位相に関する差 に基づいて、変調信号補正部 511の補正係数算出特性を更新するための更新用補 正係数算出特性が算出される。補正特性更新部 503では、振幅および位相に関す る差が最小となるような補正係数算出特性が算出されており、言い換えれば、電力増 幅器 103のターゲット出力信号と実際の出力信号との間の振幅および位相に関する 差を最小とするような補正係数算出特性が算出されている。この算出された補正係 数算出特性は、変調信号補正部 511に反映される。
[0066] 具体的には、補正特性更新部 503においては、比較部 604が、電力増幅器 103の 出力信号 eと入力信号 aを比較し、その差を入力信号 aに関連付けて算出する。更新 用補正係数算出部 605は、比較部 604で算出された差を用いて、出力信号 eと入力 信号 aの差が最小となるような補正係数を、入力信号 aに関連付けて算出する。補正 係数更新部 606は、更新用補正係数算出部 605で算出された補正係数を入力信号 aに関連付けて保持する。さらに、十分な時間が経過した後、補正係数更新部 606は 保持している補正係数を出力端子 603に出力し、変調信号補正部 511の補正特性 を更新する。
[0067] こうして電力増幅器 103の特性が動作環境、経年劣化などにより変化した場合でも
、変調信号補正部 511が持つ補正係数算出特性を適切に、すなわち電力増幅器 10 3の出力信号 eに含まれる歪みを小さくするように、更新すること力 Sできる。また、補正 係数算出特性が定期的に更新されるので、電力増幅器 103の特性変化に追従した 適切な補正係数算出特性の更新が可能になる。その結果として送信装置 500の安 定動作が可能となる。
[0068] なお、補正特性更新部 503は、ディジタル信号処理プロセッサ(DSP)を用いて実 現すること力 Sできる。このとき、補正特性更新部 503はディジタル信号に変換された 出力信号 bが必要となるので、受信部 502はアナログ ディジタル変換器と周波数変 換回路を含む。同様に、ディジタル信号に変換された入力信号 aが必要であるので、 入力信号 aをディジタル信号に変換するアナログ ディジタル変換器が必要となる。 ただし、入力信号 aがディジタル信号で入力部 101に入力されている場合、入力信号 aをディジタル信号に変換するための変換器は不要である。
[0069] また、更新用補正係数算出部 605において、入力信号 aと出力信号 eの差から補正 係数算出特性を算出するアルゴリズムとして、 LMS (Least Mean Square)ァルゴ リズムや RMS (Recursive Mean Square)アルゴリズムがある。また、差を用いず に直接補正係数算出特性を算出するアルゴリズムとして遺伝的アルゴリズムなどがあ る。いずれのアルゴリズムを用いた場合でも出力信号 eに含まれる歪みを小さくする 補正係数を算出することができる。
[0070] このように本実施の形態によれば、送信装置 500に、電力増幅器 103の出力信号 から、当該出力信号に対応する、入力部 101から入力された入力信号 aと信号レべ ノレ、信号位相、信号遅延が同等の信号を算出する受信部 502と、入力信号 aと受信 部 502により算出された信号との振幅および位相に関する差に基づいて、変調信号 補正部 51 1の補正特性を調整する補正特性更新部 503と、を設けた。
[0071] こうすることにより、電力増幅器 103の特性が動作環境、経年劣化などにより変化し た場合でも、変調信号補正部 511が持つ補正特性 (補正係数算出特性)を適切に、 すなわち電力増幅器 103の出力信号に含まれる歪みを小さくするように、更新するこ と力 Sできる。
[0072] 以上、本発明の実施の形態を説明した。以上から明らかなように本発明に係る送信
装置は、移動体通信システムにおける通信端末装置および基地局装置に搭載する ことが可能であり、これにより上記と同様の作用効果を有する通信端末装置、基地局 装置、および移動体通信システムを提供することができる。
[0073] なお、上記各実施の形態の説明に用いた各機能ブロックは、典型的には集積回路 である LSIとして実現される。これらは個別に 1チップ化されても良いし、一部又は全 てを含むように 1チップ化されても良い。ここでは、 LSIとした力 集積度の違いにより 、 IC、システム LSI、スーパー LSI、ウルトラ LSIと呼称されることもある。また、集積回 路化の手法は LSIに限るものではなぐ専用回路又は汎用プロセッサで実現しても良 い。 LSI製造後に、プログラムすることが可能な FPGA (Field Programmable Gate Arr ay)や、 LSI内部の回路セルの接続や設定を再構成可能なリコンフィギユラブル 'プロ セッサ一を利用しても良い。さらには、半導体技術の進歩又は派生する別技術により LSIに置き換わる集積回路化の技術が登場すれば、当然、その技術を用いて機能ブ ロックの集積化を行っても良い。例えば、ノ^オ技術の適用等が可能性としてありえる
〇
[0074] 2006年 12月 14曰出願の特願 2006— 337026の曰本出願に含まれる明細書、図 面および要約書の開示内容は、すべて本願に援用される。
産業上の利用可能性
[0075] 本発明の送信装置は、電源電圧制御部への要求条件を緩和することにより低価格 化を実現し、且つ、電力効率を高くすることができる効果を有し、特に EER方式を用 いた送信装置等として有用である。
Claims
[1] 入力する変調信号を印加電源電圧に応じて増幅する電力増幅器と、
前記変調信号の振幅成分に応じて前記電力増幅器の印加電源電圧を制御する電 源電圧制御部と、
前記電源電圧制御部の入力段に設けられ、前記振幅成分の最大振幅と最小振幅 との振幅幅を小さく補正し、さらに当該補正後の振幅成分から高周波数成分を除去 する振幅成分補正手段と、
を具備する送信装置。
[2] 前記振幅成分補正手段は、
前記振幅成分におけるしきレ、値未満の部分の振幅をそのしきレ、値まで増幅するこ とにより、前記振幅成分を補正する低振幅成分制限手段と、
前記補正後の振幅成分から高周波数成分を除去する低域通過フィルタと、 を具備する請求項 1に記載の送信装置。
[3] 前記電力増幅器の入力段に設けられ、前記変調信号の振幅および位相を、前記 振幅成分および前記印加電源電圧に基づいて補正する変調信号補正手段をさらに 具備する請求項 1に記載の送信装置。
[4] 前記電力増幅器の出力信号から、当該出力信号に対応する、前記変調信号補正 手段に入力する変調信号と同等の信号を算出する算出手段と、
前記変調信号と前記算出手段により算出された信号との振幅および位相に関する 差に基づいて、前記変調信号補正手段の補正特性を調整する調整手段と、 をさらに具備する請求項 3に記載の送信装置。
[5] 前記調整手段は、
前記振幅および位相に関する差を検出する検出手段と、
前記検出手段による検出時の前記印加電源電圧および前記変調信号に対応する 、前記補正特性を算出する補正特性算出手段と、
前記算出された補正特性で前記変調信号補正手段の補正特性を更新する補正特 性更新手段と、
を具備する請求項 4に記載の送信装置。
前記振幅成分補正手段の処理に起因する、前記電力増幅器の出力信号における 目標値からのずれを補償するように、前記電力増幅器に入力される変調信号の振幅 および位相を補正する変調信号補正手段をさらに具備する請求項 1に記載の送信 装置。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006-337026 | 2006-12-14 | ||
JP2006337026 | 2006-12-14 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2008072700A1 true WO2008072700A1 (ja) | 2008-06-19 |
Family
ID=39511716
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2007/074043 WO2008072700A1 (ja) | 2006-12-14 | 2007-12-13 | 送信装置 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2008072700A1 (ja) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010081406A (ja) * | 2008-09-26 | 2010-04-08 | Kyocera Corp | 送信機および信号処理方法 |
JP2011010107A (ja) * | 2009-06-26 | 2011-01-13 | Fujitsu Ltd | 送信装置、歪み補償装置及び歪み補償方法 |
WO2011108103A1 (ja) * | 2010-03-04 | 2011-09-09 | 三菱電機株式会社 | 送信モジュールおよびフェーズドアレイアンテナ装置 |
JP2011193153A (ja) * | 2010-03-12 | 2011-09-29 | Fujitsu Ltd | 増幅器、増幅器制御方法及び送信機 |
WO2012086830A1 (ja) * | 2010-12-20 | 2012-06-28 | 日本電気株式会社 | 増幅装置およびその制御方法 |
JP2012519441A (ja) * | 2009-03-02 | 2012-08-23 | アルカテル−ルーセント | 電力増幅器によって信号を増幅するための方法、電力増幅器システム、デバイス、コンピュータ・プログラム製品、およびそのデジタル記憶媒体 |
WO2013145748A1 (ja) * | 2012-03-30 | 2013-10-03 | 日本電気株式会社 | 増幅器および増幅方法 |
JP5446021B2 (ja) * | 2010-07-27 | 2014-03-19 | 株式会社日立国際電気 | 増幅装置 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005184273A (ja) * | 2003-12-17 | 2005-07-07 | Nec Corp | 高出力増幅器 |
JP2005198109A (ja) * | 2004-01-08 | 2005-07-21 | Matsushita Electric Ind Co Ltd | 送信装置 |
JP2006197537A (ja) * | 2004-06-29 | 2006-07-27 | Matsushita Electric Ind Co Ltd | 歪補償回路 |
-
2007
- 2007-12-13 WO PCT/JP2007/074043 patent/WO2008072700A1/ja active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005184273A (ja) * | 2003-12-17 | 2005-07-07 | Nec Corp | 高出力増幅器 |
JP2005198109A (ja) * | 2004-01-08 | 2005-07-21 | Matsushita Electric Ind Co Ltd | 送信装置 |
JP2006197537A (ja) * | 2004-06-29 | 2006-07-27 | Matsushita Electric Ind Co Ltd | 歪補償回路 |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010081406A (ja) * | 2008-09-26 | 2010-04-08 | Kyocera Corp | 送信機および信号処理方法 |
JP2012519441A (ja) * | 2009-03-02 | 2012-08-23 | アルカテル−ルーセント | 電力増幅器によって信号を増幅するための方法、電力増幅器システム、デバイス、コンピュータ・プログラム製品、およびそのデジタル記憶媒体 |
US8536940B2 (en) | 2009-03-02 | 2013-09-17 | Alcatel Lucent | Method for amplifying a signal by a power amplifier, power amplifier system, device, computer program product, and digital storage medium thereof |
JP2011010107A (ja) * | 2009-06-26 | 2011-01-13 | Fujitsu Ltd | 送信装置、歪み補償装置及び歪み補償方法 |
JP5349679B2 (ja) * | 2010-03-04 | 2013-11-20 | 三菱電機株式会社 | 送信モジュールおよびフェーズドアレイアンテナ装置 |
WO2011108103A1 (ja) * | 2010-03-04 | 2011-09-09 | 三菱電機株式会社 | 送信モジュールおよびフェーズドアレイアンテナ装置 |
US8774737B2 (en) | 2010-03-04 | 2014-07-08 | Mitsubishi Electric Corporation | Transmission module and phased array antenna apparatus |
JP2011193153A (ja) * | 2010-03-12 | 2011-09-29 | Fujitsu Ltd | 増幅器、増幅器制御方法及び送信機 |
JP5446021B2 (ja) * | 2010-07-27 | 2014-03-19 | 株式会社日立国際電気 | 増幅装置 |
US8884697B2 (en) | 2010-07-27 | 2014-11-11 | Hitachi Kokusai Electric Inc. | Amplifying device |
WO2012086830A1 (ja) * | 2010-12-20 | 2012-06-28 | 日本電気株式会社 | 増幅装置およびその制御方法 |
US9106188B2 (en) | 2010-12-20 | 2015-08-11 | Nec Corporation | Amplifying device and method for controlling the same |
WO2013145748A1 (ja) * | 2012-03-30 | 2013-10-03 | 日本電気株式会社 | 増幅器および増幅方法 |
US9219448B2 (en) | 2012-03-30 | 2015-12-22 | Nec Corporation | Amplifier and amplification method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2008072700A1 (ja) | 送信装置 | |
JP4921976B2 (ja) | 適応送信電力制御システム | |
US9065393B2 (en) | Power amplifier, radio-frequency power amplification device, and amplification control method | |
US7970364B2 (en) | Strategy for using the envelope information within a closed loop power control system | |
EP1192710B1 (en) | Method and apparatus for linearizing an amplifier | |
EP2795792B1 (en) | Adaptive predistortion for a non-linear subsystem based on a model as a concatenation of a non-linear model followed by a linear model | |
US7904045B2 (en) | Phase detector comprising a switch configured to select a phase offset closest to a phase of an amplifier | |
US9276533B2 (en) | Distortion compensation apparatus and method | |
US9231624B2 (en) | Time alignment for an amplification stage | |
CN104811149A (zh) | 使用具有增强模数转换的集成信号分析器的rf功率放大器中的自适应控制的数字预失真 | |
JP2002076785A (ja) | 歪補償装置 | |
US9106188B2 (en) | Amplifying device and method for controlling the same | |
WO2003096526A1 (fr) | Procede de correction de distorsion hybride et dispositif de correction de distorsion hybride | |
US9344041B2 (en) | Polar amplification transmitter distortion reduction | |
JP2002100940A (ja) | 歪補償増幅器 | |
WO2008019287A2 (en) | Replica linearized power amplifier | |
TW200838125A (en) | Amplifying circuit and wireless communication device | |
WO2012086379A1 (ja) | 増幅回路及び無線通信装置 | |
KR20100069454A (ko) | 도허티 전력 증폭기의 성능 개선 방법 및 장치 | |
KR101481725B1 (ko) | 무선 통신시스템의 전력 송신 장치 및 방법 | |
US8576944B2 (en) | Signal transmitting apparatus for OFDM system and parameter adjusting method thereof | |
JP6098178B2 (ja) | 増幅装置、歪補償装置および歪補償方法 | |
EP1831990B1 (en) | Load mismatch adaptation in coupler-based amplifiers | |
US20130241658A1 (en) | Power supply circuit and power supply control method | |
US9035700B2 (en) | Variable gain amplifier |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 07850563 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 07850563 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |