WO2008069594A1 - A method and an apparatus for processing an audio signal - Google Patents
A method and an apparatus for processing an audio signal Download PDFInfo
- Publication number
- WO2008069594A1 WO2008069594A1 PCT/KR2007/006316 KR2007006316W WO2008069594A1 WO 2008069594 A1 WO2008069594 A1 WO 2008069594A1 KR 2007006316 W KR2007006316 W KR 2007006316W WO 2008069594 A1 WO2008069594 A1 WO 2008069594A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- information
- signal
- downmix
- channel
- processing
- Prior art date
Links
- 238000012545 processing Methods 0.000 title claims abstract description 129
- 230000005236 sound signal Effects 0.000 title claims abstract description 48
- 238000000034 method Methods 0.000 title claims abstract description 37
- 238000004091 panning Methods 0.000 claims description 35
- 238000010586 diagram Methods 0.000 description 37
- 238000009877 rendering Methods 0.000 description 27
- 239000000203 mixture Substances 0.000 description 26
- 230000015572 biosynthetic process Effects 0.000 description 24
- 238000003786 synthesis reaction Methods 0.000 description 23
- 239000011159 matrix material Substances 0.000 description 22
- 230000001276 controlling effect Effects 0.000 description 20
- 230000000875 corresponding effect Effects 0.000 description 18
- 238000011965 cell line development Methods 0.000 description 16
- 238000013507 mapping Methods 0.000 description 4
- 230000002596 correlated effect Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 101150087426 Gnal gene Proteins 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000012937 correction Methods 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000002868 homogeneous time resolved fluorescence Methods 0.000 description 2
- 230000033764 rhythmic process Effects 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- NNJPGOLRFBJNIW-HNNXBMFYSA-N (-)-demecolcine Chemical compound C1=C(OC)C(=O)C=C2[C@@H](NC)CCC3=CC(OC)=C(OC)C(OC)=C3C2=C1 NNJPGOLRFBJNIW-HNNXBMFYSA-N 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 229940040566 latrix Drugs 0.000 description 1
- 239000002674 ointment Substances 0.000 description 1
- 238000013139 quantization Methods 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
- G10L19/00—Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
- G10L19/008—Multichannel audio signal coding or decoding using interchannel correlation to reduce redundancy, e.g. joint-stereo, intensity-coding or matrixing
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
- G10L19/00—Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
- G10L19/04—Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using predictive techniques
- G10L19/16—Vocoder architecture
- G10L19/18—Vocoders using multiple modes
- G10L19/20—Vocoders using multiple modes using sound class specific coding, hybrid encoders or object based coding
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04S—STEREOPHONIC SYSTEMS
- H04S3/00—Systems employing more than two channels, e.g. quadraphonic
- H04S3/008—Systems employing more than two channels, e.g. quadraphonic in which the audio signals are in digital form, i.e. employing more than two discrete digital channels
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04S—STEREOPHONIC SYSTEMS
- H04S7/00—Indicating arrangements; Control arrangements, e.g. balance control
- H04S7/30—Control circuits for electronic adaptation of the sound field
- H04S7/302—Electronic adaptation of stereophonic sound system to listener position or orientation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04S—STEREOPHONIC SYSTEMS
- H04S2420/00—Techniques used stereophonic systems covered by H04S but not provided for in its groups
- H04S2420/01—Enhancing the perception of the sound image or of the spatial distribution using head related transfer functions [HRTF's] or equivalents thereof, e.g. interaural time difference [ITD] or interaural level difference [ILD]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04S—STEREOPHONIC SYSTEMS
- H04S2420/00—Techniques used stereophonic systems covered by H04S but not provided for in its groups
- H04S2420/03—Application of parametric coding in stereophonic audio systems
Definitions
- the present invention relates to a method and an apparatus for processing an audio signal, and more particularly, to a method and an apparatus for decoding an audio signal received on a digital medium, as a broadcast signal, and so on.
- the present invention is directed to a method and an apparatus :or processing an audio signal that substantially obviates one or more problems due to limitations and disadvantages of the related art.
- An object of the present invention is to provide a method and an apparatus for processing an audio signal to control object gain and panning unrestrictedly.
- Another object of the present invention is to provide a method and an apparatus for processing an audio signal to control object gain and panning based on user selection.
- the present invention provides the following effects or advantages. First of all, the present invention is able to provide a method and an pparatus for processing an audio signal to control object gain and panning .nrestrictedly.
- the present invention is able to provide a method and an pparatus for processing an audio signal to control object gain and panning based >n user selection.
- FIG. 1 is an exemplary block diagram to explain to basic concept of rendering a downmix signal based on playback configuration and user control.
- FIG. 2 is an exemplary block diagram of an apparatus for processing an audio signal according to one embodiment of the present invention corresponding to the first scheme.
- FIG. 3 is an exemplary block diagram of an apparatus for processing an audio signal according to another embodiment of the present invention corresponding to the first scheme.
- FIG. 4 is an exemplary block diagram of an apparatus for processing an udio signal according to one embodiment of present invention corresponding to tie second scheme.
- FIG. 5 is an exemplary block diagram of an apparatus for processing an udio signal according to another embodiment of present invention corresponding o the second scheme.
- FIG. 6 is an exemplary block diagram of an apparatus for processing an iudio signal according to the other embodiment of present invention orresponding to the second scheme.
- FIG. 7 is an exemplary block diagram of an apparatus for processing an Ludio signal according to one embodiment of the present invention corresponding o the third scheme.
- FIG. 8 is an exemplary block diagram of an apparatus for processing an iudio signal according to another embodiment of the present invention :orresponding to the third scheme.
- FIG. 9 is an exemplary block diagram to explain to basic concept of • endering unit.
- FIGS. 1OA to 1OC are exemplary block diagrams of a first embodiment of a lownmix processing unit illustrated in FIG. 7.
- FIG. 11 is an exemplary block diagram of a second embodiment of a iownmix processing unit illustrated in FIG. 7.
- FIG. 12 is an exemplary block diagram of a third embodiment of a downmix processing unit illustrated in FIG. 7.
- FIG. 13 is an exemplary block diagram of a fourth embodiment of a iownmix processing unit illustrated in FIG. 7.
- FIG. 14 is an exemplary block diagram of a bitstream structure of a :ompressed audio signal according to a second embodiment of present invention.
- FIG. 15 is an exemplary block diagram of an apparatus for processing an audio signal according to a second embodiment of present invention.
- FIG. 16 is an exemplary block diagram of a bitstream structure of a compressed audio signal according to a third embodiment of present invention.
- FIG. 17 is an exemplary block diagram of an apparatus for processing an audio signal according to a fourth embodiment of present invention.
- FIG. 18 is an exemplary block diagram to explain transmitting scheme for variable type of object.
- FIG. 19 is an exemplary block diagram to an apparatus for processing an audio signal according to a fifth embodiment of present invention.
- a method for processing an audio signal comprising: receiving a downmix signal in time iomain; if the downmix signal corresponds to a mono signal, bypassing the iownmix signal; if the number of channel of the downmix signal corresponds to at [east two, decomposing the downmix signal into a subband signal, and processing the subband signal using a downmix processing information, wherein the downmix processing information is estimated based on an object information and a mix information.
- the number of channel of the downmix signal is equal to the number of channel of the processed downmix signal.
- the object information is included in a side information
- the side information includes a correlation flag information indicating whether an object is part of at least two channel object.
- the object information includes at least one of an object level information and an object correlation information.
- the downmix processing information corresponds to an information for controlling object panning if the number of channel the downmix signal corresponds to at least two.
- the downmix processing tformation corresponds to an information for controlling object gain.
- the present invention further comprising, generating a multi- hannel information using the object information and the mix information, wherein he multi-channel signal is generated based on the multi-channel information.
- the present invention further comprising, downmixing the lownmix signal to be a mono signal if the downmix signal corresponds to a stereo ignal.
- the mix information is generated using at least one of an object position information and a playback :onfiguration information.
- the downmix signal is received is a broadcast signal.
- the downmix signal is received 3n a digital medium.
- a computer-readable medium having instructions stored thereon, which, when executed by a processor, causes the processor to perform operations, comprising: receiving a downmix signal in ime domain; if the downmix signal corresponds to a mono signal, bypassing the lownmix signal; if the number of channel of the downmix signal corresponds to at east two, decomposing the downmix signal into a subband signal, and processing he subband signal using a downmix processing information, wherein the lownmix processing information is estimated based on an object information and a nix information.
- an apparatus for processing an iudio signal comprising: a receiving unit receiving a downmix signal in time ⁇ omain; and, a downmix processing unit bypassing the downmix signal if the lownmix signal corresponds to a mono signal, and decomposing the downmix dgnal into a subband signal and processing the subband signal using a downmix processing information if the number of channel of the downmix signal :orresponds to at least two, wherein the downmix processing information is estimated based on an object information and a mix information.
- 'parameter' in the following description means information tcluding values, parameters of narrow sense, coefficients, elements, and so on. Iereinafter 'parameter' term will be used instead of 'information' term like an bject parameter, a mix parameter, a downmix processing parameter, and so on, ⁇ ch does not put limitation on the present invention.
- an object parameter nd a spatial parameter can be extracted.
- a decoder can generate output signal Lsing a downmix signal and the object parameter (or the spatial parameter).
- the iutput signal may be rendered based on playback configuration and user control y the decoder. The rendering process shall be explained in details with reference ) the FIG. 1 as follow.
- FIG. 1 is an exemplary diagram to explain to basic concept of rendering ownmix based on playback configuration and user control.
- a ecoder 100 may include a rendering information generating unit 110 and a endering unit 120, and also may include a Tenderer 110a and a synthesis 120a astead of the rendering information generating unit 110 and the rendering unit 120.
- a rendering information generating unit 110 can be configured to receive a ide information including an object parameter or a spatial parameter from an ⁇ ncoder, and also to receive a playback configuration or a user control from a levice setting or a user interface.
- the object parameter may correspond to a jarameter extracted in downmixing at least one object signal
- the spatial >arameter may correspond to a parameter extracted in downmixing at least one :hannel signal.
- type information and characteristic information for ⁇ ach object may be included in the side information.
- Type information and iharacteristic information may describe instrument name, player name, and so on.
- the playback configuration may include speaker position and ambient information ⁇ speaker's virtual position), and the user control may correspond to a control information inputted by a user in order to control object positions and object gains, and also may correspond to a control information in order to the playback mfiguration. Meanwhile the payback configuration and user control can be ⁇ presented as a mix information, which does not put limitation on the present Lvention.
- a rendering information generating unit 110 can be configured to generate a ⁇ ndering information using a mix information (the playback configuration and ser control) and the received side information.
- a rendering unit 120 can jnfigured to generate a multi-channel parameter using the rendering information i case that the downmix of an audio signal (abbreviated 'downmix signal') is not ⁇ ansmitted, and generate multi-channel signals using the rendering information nd downmix in case that the downmix of an audio signal is transmitted.
- a renderer 110a can be configured to generate multi-channel signals using a iix information (the playback configuration and the user control) and the received ide information.
- a synthesis 120a can be configured to synthesis the multi-channel ignals using the multi-channel signals generated by the renderer 110a.
- the decoder may render the downmix signal based on •layback configuration and user control. Meanwhile, in order to control the ndividual object signals, a decoder can receive an object parameter as a side nformation and control object panning and object gain based on the transmitted )bject parameter.
- Controlling gain and panning of object signals may be >rovided.
- a decoder receives an object parameter and generates the individual object signals using the object parameter, then, can control he individual object signals base on a mix information (the playback configuration, he object level, etc.)
- the multi-channel decoder can upmix a lownmix signal received from an encoder using the multi-channel parameter.
- the Lbove-mention second method may be classified into three types of scheme. In ⁇ articular, 1) using a conventional multi-channel decoder, 2) modifying a multi- :hannel decoder, 3) processing downmix of audio signals before being inputted to i multi-channel decoder may be provided.
- the conventional multi-channel decoder nay correspond to a channel-oriented spatial audio coding (ex: MPEG Surround ⁇ ecoder), which does not put limitation on the present invention. Details of three ypes of scheme shall be explained as follow.
- First scheme may use a conventional multi-channel decoder as it is without nodifying a multi-channel decoder.
- ADG arbitrary lownmix gain
- 5-2-5 :onfiguration for controlling object panning
- FIG. 2 is an exemplary block diagram of an apparatus for processing an udio signal according to one embodiment of the present invention corresponding D first scheme.
- an apparatus for processing an audio signal 200 hereinafter simply 'a decoder 200' may include an information generating unit .10 and a multi-channel decoder 230.
- the information generating unit 210 may eceive a side information including an object parameter from an encoder and a nix information from a user interface, and may generate a multi-channel >arameter including a arbitrary downmix gain or a gain modification ;ain(hereinafter simple 'ADG').
- the ADG may describe a ratio of a first gain :stimated based on the mix information and the obejct information over a second ⁇ ain extimated based on the object information.
- the information generating unit 210 may generate the ADG only if the downmix signal corresponds :o a mono signal.
- the multi-channel decoder 230 may receive a downmix of an iudio signal from an encoder and a multi-channel parameter from the information generating unit 210, and may generate a multi-channel output using the downmix signal and the multi-channel parameter.
- the multi-channel parameter may include a channel level difference hereinafter abbreviated 'CLD'), an inter channel correlation (hereinafter abbreviated 'ICC), a channel prediction coefficient (hereinafter abbreviated 'CPC).
- CLD Since CLD, ICC 7 and CPC describe intensity difference or correlation between two channels, and is to control object panning and correlation. It is able to :ontrol object positions and object diffuseness (sonority) using the CLD, the ICC, ⁇ tc. Meanwhile, the CLD describe the relative level difference instead of the absolute level, and energy of the splitted two channels is conserved. Therefore it is enable to control object gains by handling CLD, etc. In other words, specific object :annot be mute or volume up by using the CLD, etc.
- the ADG describes time and frequency dependent gain for :ontrolling correction factor by a user. If this correction factor be applied, it is able to handle modification of down-mix signal prior to a multi-channel upmixing. Therefore, in case that ADG parameter is received from the information generating unit 210, the multi-channel decoder 230 can control object gains of specific time and frequency using the ADG parameter.
- W12 and W 21 iay be a cross-talk component (in other words, cross-term).
- the above-mentioned case corresponds to 2-2-2 configuration, which means -channel input, 2-channel transmission, and 2-channel output.
- 5-2-5 configuration (2-channel input, 5-channel ransmission, and 2 channel output) of conventional channel-oriented spatial audio oding (ex: MPEG surround) can be used.
- certain channel among 5 output channels of 5-2-5 configuration an be set to a disable channel (a fake channel).
- the above-mentioned CLD and CPC • nay be adjusted.
- gain factor g x in the formula 1 is obtained using the above mentioned ADG, and weighting factor wn ⁇ W22 in the formula 1 is obtained using CLD and CPC.
- default mode of conventional spatial audio coding may be applied. Since characteristic of default CLD is supposed to output 2-channel, it is ible to reduce computing amount if the default CLD is applied. Particularly, since :here is no need to synthesis a fake channel, it is able to reduce computing amount argely. Therefore, applying the default mode is proper. In particular, only default 2LD of 3 CLDs (corresponding to 0, 1, and 2 in MPEG surround standard) is used or decoding.
- CLDs corresponding 3 and 5 describe channel level iifference between left channel plus right channel and center channel ((l+r)/c) is proper to set to 15OdB (approximately infinite) in order to mute center channel, ⁇ nd, in order to implement cross-talk, energy based up-mix or prediction based ip-mix may be performed, which is invoked in case that TTT mode "bsTttModeLow' in the MPEG surround standard) corresponds to energy-based node (with subtraction, matrix compatibility enabled) (3 rd mode), or prediction node (1 st mode or 2 nd mode).
- FIG. 3 is an exemplary block diagram of an apparatus for processing an audio signal according to another embodiment of the present invention orresponding to first scheme.
- an apparatus for processing an iudio signal according to another embodiment of the present invention 300 hereinafter simply a decoder 300 may include a information generating unit 310, a cene rendering unit 320, a multi-channel decoder 330, and a scene remixing unit •50.
- the information generating unit 310 can be configured to receive a side nformation including an object parameter from an encoder if the downmix signal :orresponds to mono channel signal (i.e., the number of downmix channel is 'V), nay receive a mix information from a user interface, and may generate a multi- :hannel parameter using the side information and the mix information.
- the lumber of downmix channel can be estimated based on a flag information ncluded in the side information as well as the downmix signal itself and user ielection.
- the information generating unit 310 may have the same configuration of he former information generating unit 210.
- the multi-channel parameter is nputted to the multi-channel decoder 330, the multi-channel decoder 330 may lave the same configuration of the former multi-channel decoder 230.
- the scene rendering unit 320 can be configured to receive a side information ncluding an object parameter from and encoder if the downmix signal corresponds :o non-mono channel signal (i.e., the number of downmix channel is more than '2'), nay receive a mix information from a user interface, and may generate a remixing iarameter using the side information and the mix information.
- the remixing iarameter corresponds to a parameter in order to remix a stereo channel and ;enerate more than 2-channel outputs.
- the remixing parameter is inputted to the cene remixing unit 350.
- the scene remixing unit 350 can be configured to remix he downmix signal using the remixing parameter if the downmix signal is more han 2-channel signal.
- Second scheme may modify a conventional multi-channel decoder.
- a :ase of using virtual output for controlling object gains and a case of modifying a levice setting for controlling object panning shall be explained with reference to ?IG. 4 as follow.
- a case of Performing TBT(2x2) functionality in a ⁇ iulti-channel decoder shall be explained with reference to FIG. 5.
- FIG. 4 is an exemplary block diagram of an apparatus for processing an audio signal according to one embodiment of present invention corresponding to the second scheme.
- an apparatus for processing an audio signal according to one embodiment of present invention corresponding to the second scheme 400 may include an information generating unit 410, an internal multi-channel synthesis 420, and an output lapping unit 430.
- the internal multi-channel synthesis 420 and the output ⁇ apping unit 430 may be included in a synthesis unit.
- the information generating unit 410 can be configured to receive a side information including an object parameter from an encoder, and a mix parameter rom a user interface. And the information generating unit 410 can be configured to generate a multi-channel parameter and a device setting information using the side nf ormation and the mix information.
- the multi-channel parameter may have the ⁇ ame configuration of the former multi-channel parameter. So, details of the multi- :hannel parameter shall be omitted in the following description.
- the device setting nformation may correspond to parameterized HRTF for binaural processing, /vhich shall be explained in the description of '1.2.2 Using a device setting nformation'.
- the internal multi-channel synthesis 420 can be configured to receive a multi-channel parameter and a device setting information from the parameter generation unit 410 and downmix signal from an encoder.
- the internal multichannel synthesis 420 can be configured to generate a temporal multi-channel output including a virtual output, which shall be explained in the description of '1.2.1 Using a virtual output'.
- multi-channel parameter (ex: CLD) can control object panning, it is ird to control object gain as well as object panning by a conventional multi- iannel decoder.
- the decoder 400 may map relative energy of object to a virtual channel 'x: center channel).
- the relative energy of object corresponds to energy to be ⁇ duced.
- the decoder 400 may map tore than 99.9% of object energy to a virtual channel.
- the decoder 400 especially, the output mapping unit 430 does not output the virtual channel to /hich the rest energy of object is mapped. In conclusion, if more than 99.9% of bject is mapped to a virtual channel which is not outputted, the desired object can >e almost mute.
- the decoder 400 can adjust a device setting information in order to control >bject panning and object gain.
- the decoder can be configured to generate a parameterized HRTF for binaural processing in MPEG Surround standard.
- the parameterized HRTF can be variable according to device setting. It is able to assume that object signals can be controlled according to the following formula 2. [formula 2]
- Rnew bl * ⁇ bjl + bl * ⁇ bJ2 + b3 * ⁇ bJ3 + •• + bn * ⁇ bj n/
- objk is object signals
- L ne w and R ne w is a desired stereo signal
- ak md bk are coefficients for object control.
- An object information of the object signals objk may be estimated from an )bject parameter included in the transmitted side information.
- the coefficients ak, >k which are defined according to object gain and object panning may be estimated rom the mix information.
- the desired object gain and object panning can be idjusted using the coefficients ak, bk.
- the coefficients ak, bk can be set to correspond to HRTF parameter for ⁇ naural processing, which shall be explained in details as follow.
- FIG. 5 is an exemplary block diagram of an apparatus for processing an mdio signal according to another embodiment of present invention corresponding :o the second scheme.
- FIG. 5 is an exemplary block diagram of TBT functionality in i multi-channel decoder.
- a TBT module 510 can be configured :o receive input signals and a TBT control information, and generate output signals.
- the TBT module 510 may be included in the decoder 200 of the FIG. 2 (or in particular, the multi-channel decoder 230).
- the multi-channel decoder 230 may be implemented according to the MPEG Surround standard, which does not put Limitation on the present invention, [formula 9] where x is input channels, y is output channels, and w is weight.
- the output yi may correspond to a combination input xi of the downmix multiplied by a first gain Wi 1 and input X2 multiplied by a second gain W12.
- the TBT control information inputted in the TBT module 510 includes elements which can compose the weight w (wu, Wi 2 , Wa 1 , W22).
- OTT(One-To-Two) module and TTT(Two-To- Three) module is not proper to remix input signal although OTT module and TTT module can upmix the input signal.
- TBT (2x2) module 510 (hereinafter bbreviated 'TBT module 510') may be provided.
- the TBT module 510 may can be igured to receive a stereo signal and output the remixed stereo signal.
- the weight v may be composed using CLD (s) and ICC(s).
- the lecoder may control object gain as well as object panning using the received veight term.
- variable scheme may be provided. ⁇ t first, a TBT control information includes cross term like the W12 and W21. jecondly, a TBT control information does not include the cross term like the W 12 md W21. Thirdly, the number of the term as a TBT control information varies idaptively.
- the terms which lumber is NxM may be transmitted as TBT control information.
- the terms can be quantized based on a CLD parameter quantization table introduced in a MPEG Surround, which does not put limitation on the present invention.
- the number of the TBT control information varies adaptively ccording to need of cross term in order to reduce the bit rate of a TBT control iformation.
- a flag information / cross_flag' indicating whether the cross term is 'resent or not is set to be transmitted as a TBT control information. Meaning of the Lag information 'cross_flag' is shown in the following table 1. [table 1] meaning of cross_flag
- the TBT control information does not nclude the cross term, only the non-cross term like the wn and W22 is present. Dtherwise ('cross_flag' is equal to 1), the TBT control information includes the cross erm.
- flag information / reverse_flag / indicating whether cross term is present or non-cross term is present is set to be transmitted as a TBT control information.
- Meaning of flag information / reverse_flag' is shown in the following :able 2. [table 2] meaning of reverse_flag
- the TBT control information does not nclude the cross term, only the non-cross term like the W 11 and W22 is present. )therwise ('reverse_flag' is equal to 1), the TBT control information includes only he cross term.
- Futhermore a flag information 'side_flag' indicating whether cross term is •resent and non-cross is present is set to be transmitted as a TBT control nformation. Meaning of flag information / side_flag / is shown in the following table
- FIG. 6 is an exemplary block diagram of an apparatus for processing an udio signal according to the other embodiment of present invention orresponding to the second scheme.
- an apparatus for processing an udio signal 630 shown in the FIG. 6 may correspond to a binaural decoder ncluded in the multi-channel decoder 230 of FIG. 2 or the synthesis unit of FIG. 4, vhich does not put limitation on the present invention.
- An apparatus for processing an audio signal 630 may include a QMF analysis 632, a parameter conversion 634, a spatial synthesis 636, and a QMF synthesis 638.
- Elements of the binaural decoder 330 may have the same configuration of MPEG Surround binaural decoder in VlPEG Surround standard.
- the spatial synthesis 636 can be configured to consist of 1 2x2 (filter) matrix, according to the following formula 10: [formula 10] with yo being the QMF-domain input channels and ye, being the binaural >utput channels, k represents the hybrid QMF channel index, and i is the HRTF ilter tap index, and n is the QMF slot index.
- the binaural decoder 630 can be :onfigured to perform the above-mentioned functionality described in subclause 1.2.2 Using a device setting information'. However, the elements hi j may be generated using a multi-channel parameter and a mix information instead of a nulti-channel parameter and HRTF parameter. In this case, the binaural decoder )00 can perform the functionality of the TBT module 510 in the FIG. 5. Details of the elements of the binaural decoder 630 shall be omitted.
- the binaural decoder 630 can be operated according to a flag information binaural_flag'. In particular, the binaural decoder 630 can be skipped in case that a lag information binaural_flag is '0', otherwise (the binaural_flag is 'V), the binaural decoder 630 can be operated as below.
- the first scheme of using a conventional multi-channel decoder have been xplained in subclause in '1.V
- the second scheme of modifying a multi-channel ecoder have been explained in subclause in '1.2'.
- the third scheme of processing ownmix of audio signals before being inputted to a multi-channel decoder shall e explained as follow.
- FIG. 7 is an exemplary block diagram of an apparatus for processing an udio signal according to one embodiment of the present invention corresponding o the third scheme.
- FIG. 8 is an exemplary block diagram of an apparatus for >rocessing an audio signal according to another embodiment of the present nvention corresponding to the third scheme.
- an Lpparatus for processing an audio signal 700 (hereinafter simply 'a decoder 700') nay include an information generating unit 710, a downmix processing unit 720, md a multi-channel decoder 730.
- an apparatus for processing m audio signal 800 may include an information generating unit 810 and a multi-channel synthesis unit 840 having a nulti-channel decoder 830.
- the decoder 800 may be another aspect of the decoder 700.
- the information generating unit 810 has the same configuration of the information generating unit 710
- the multi-channel decoder 830 has the same >nfiguration of the multi-channel decoder 730
- the multi-channel synthesis lit 840 may has the same configuration of the downmix processing unit 720 and Lulti-channel unit 730. Therefore, elements of the decoder 700 shall be explained in stails, but details of elements of the decoder 800 shall be omitted.
- the information generating unit 710 can be configured to receive a side if ormation including an object parameter from an encoder and a mix information om an user-interface, and to generate a multi-channel parameter to be outputted ) the multi-channel decoder 730. From this point of view, the information enerating unit 710 has the same configuration of the former information enerating unit 210 of FIG. 2.
- the downmix processing parameter may correspond > a parameter for controlling object gain and object panning. For example, it is able D change either the object position or the object gain in case that the object signal is Dcated at both left channel and right channel.
- he downmix processing unit 720 can be a TBT module (2x2 matrix operation).
- the information generating unit 710 can be configured to generate ADG lescribed with reference to FIG 2. in order to control object gain, the downmix )rocessing parameter may include parameter for controlling object panning but )bject gain.
- the information generating unit 710 can be configured to ceive HRTF information from HRTF database, and to generate an extra multi- annel parameter including a HRTF parameter to be inputted to the multi-channel :coder 730.
- the information generating unit 710 may generate multi- iannel parameter and extra multi-channel parameter in the same subband domain id transmit in syncronization with each other to the multi-channel decoder 730.
- extra multi-channel parameter including the HRTF parameter shall be cplained in details in subclause '3. Processing Binaural Mode'.
- the downmix processing unit 720 can be configured to receive downmix of i audio signal from an encoder and the downmix processing parameter from the [formation generating unit 710, and to decompose a subband domain signal using ibband analysis filter bank.
- the downmix processing unit 720 can be configured > generate the processed downmix signal using the downmix signal and the ownmix processing parameter. In these processing, it is able to pre-process the ownmix signal in order to control object panning and object gain.
- the processed ownmix signal may be inputted to the multi-channel decoder 730 to be upmixed.
- the processed downmix signal may be outputted and laybacked via speaker as well.
- the downmix processing unit 720 may perform synthesis filterbank using he prepossed subband domain signal and output a time-domain PCM signal. It is ble to select whether to directly output as PCM signal or input to the multi- hannel decoder by user selection.
- the multi-channel decoder 730 can be configured to generate multi-channel utput signal using the processed downmix and the multi-channel parameter.
- the aulti-channel decoder 730 may introduce a delay when the processed downmix ignal and the multi-channel parameter are inputted in the multi-channel decoder '30.
- the processed downmix signal can be synthesized in frequency domain (ex: 2MF domain, hybrid QMF domain, etc), and the multi-channel parameter can be ynthesized in time domain.
- delay and lynchronization for connecting HE-AAC is introduced. Therefore, the multichannel decoder 730 may introduce the delay according to MPEG Surround standard.
- downmix processing unit 720 shall be explained in detail with reference to FIG. 9 ⁇ FIG. 13.
- FIG. 9 is an exemplary block diagram to explain to basic concept of rendering unit.
- a rendering module 900 can be configured to generate M output signals using N input signals, a playback configuration, and a user control.
- the N input signals may correspond to either object signals or channel signals.
- the N input signals may correspond to either object arameter or multi-channel parameter.
- Configuration of the rendering module 900 in be implemented in one of downmix processing unit 720 of FIG. 7, the former ⁇ ndering unit 120 of FIG. 1, and the former renderer 110a of FIG. 1, which does not ut limitation on the present invention.
- the rendering module 900 can be configured to directly generate M hannel signals using N object signals without summing individual object signals orresponding certain channel, the configuration of the rendering module 900 can e represented the following formula 11.
- Ci is a i* channel signal
- Oj is j* input signal
- Rji is a matrix mapping j 1 * 1 nput signal to i* channel.
- R matrix is separated into energy component E and de-correlation zomponent, the formula 11 may be represented as follow.
- ⁇ j _i is gain portion mapped to j th channel
- ⁇ k_i is gain portion mapped to k th :hannel
- ⁇ is diffuseness level
- D(o;) is de-correlated output.
- weight values for all inputs mapped to certain channel are estimated cording to the above-stated method, it is able to obtain weight values for each iannel by the following method.
- the dominant channel pair may correspond to left channel and center channel in case that certain input is positioned at point between left and center.
- downmix processing unit includes a mixing part orresponding to 2x4 matrix
- FIGS. 1OA to 1OC are exemplary block diagrams of a first embodiment of a lownmix processing unit illustrated in FIG. 7.
- a first mbodiment of a downmix processing unit 720a (hereinafter simply 'a downmix >rocessing unit 720a') may be implementation of rendering module 900.
- a downmix processing unit 720a can be configured to ypass input signal in case of mono input signal (m), and to process input signal in ise of stereo input signal (L, R).
- the downmix processing unit 720a may include a e-correlating part 722a and a mixing part 724a.
- the de-correlating part 722a has a e-correlator aD and de-correlator bD which can be configured to de-correlate iput signal.
- the de-correlating part 722a may correspond to a 2x2 matrix.
- the lixing part 724a can be configured to map input signal and the de-correlated ignal to each channel.
- the mixing part 724a may correspond to a 2x4 matrix.
- the downmix processing unit according to the formula 15 is illustrated FIG. LOB.
- D2 can be configured to generate de-correlated signals Di(a*Oi+b* ⁇ 2), 3 2 (c*Oi+d*O 2 ).
- the downmix processing unit according to the formula 15 is illustrated FIG. OC.
- a de-correlating part 722" including two de-correlators )i, D 2 can be configured to generate de-correlated signals Di(O 1 ), D 2 ( ⁇ 2).
- downmix processing unit includes a mixing part :orresponding to 2x3 matrix
- the matrix R is a 2x3 matrix
- the matrix O is a 3x1 matrix
- the C is a 2x1 matrix.
- FIG. 11 is an exemplary block diagram of a second embodiment of a downmix processing unit illustrated in FIG. 7.
- a second embodiment of a downmix processing unit 720b (hereinafter simply 'a downmix processing unit 720b') may be implementation of rendering module 900 like the downmix processing unit 720a.
- a downmix processing unit [Ob can be configured to skip input signal in case of mono input signal (m), and to rocess input signal in case of stereo input signal (L, R).
- the downmix processing ait 720b may include a de-correlating part 722b and a mixing part 724b.
- the de- >rrelating part 722b has a de-correlator D which can be configured to de-correlate iput signal Ch, O2 and output the de-correlated signal D(O ⁇ O 2 ).
- the de- ⁇ rrelating part 722b may correspond to a 1x2 matrix.
- the mixing part 724b can be Dnfigured to map input signal and the de-correlated signal to each channel.
- the lixing part 724b may correspond to a 2x3 matrix which can be shown as a matrix [ in the formula 16.
- the de-correlating part 722b can be configured to de-correlate a lifference signal O 1 -Ch as common signal of two input signal Oi, O2.
- the mixing >art 724b can be configured to map input signal and the de-correlated common ignal to each channel.
- downmix processing unit includes a mixing part with leveral matrixes
- Certain object signal can be audible as a similar impression anywhere /vithout being positioned at a specified position, which may be called as a 'spatial sound signal'.
- a 'spatial sound signal' For example, applause or noises of a concert hall can be an example Df the spatial sound signal.
- the spatial sound signal needs to be playback via all speakers. If the spatial sound signal playbacks as the same signal via all speakers, it hard to feel spatialness of the signal because of high inter-correlation (IC) of the
- FIG. 12 is an exemplary block diagram of a third embodiment of a downmix
- FIG.12 a third embodiment of a
- Dwnmix processing unit 720c (hereinafter simply 'a downmix processing unit
- IQc' can be configured to generate spatial sound signal using input signal Oi
- liich may include a de-correlating part 722c with N de-correlators and a mixing
- the de-correlating part 722c may have N de-correlators Di, Oi, ", DN
- Oi is i th input signal
- R/ is a matrix mapping i th input signal Oi to j th channel
- the md C j-i is j th output signal.
- the ⁇ j_i value is de-correlation rate.
- the ⁇ jj value can be estimated base on ICC included in multi-channel >arameter.
- the mixing part 724c can generate output signals base on patialness information composing de-correlation rate ⁇ j j received from user- nterface via the information generating unit 710, which does not put limitation on >resent invention.
- the number of de-correlators (N) can be equal to the number of output hannels.
- the de-correlated signal can be added to output hannels selected by user. For example, it is able to position certain spatial sound ignal at left, right, and center and to output as a spatial sound signal via left hannel speaker.
- FIG. 13 is an exemplary block diagram of a fourth embodiment of a lownmix processing unit illustrated in FIG. 7.
- a fourth embodiment of a downmix processing unit 72Od (hereinafter simply 'a downmix processing unit 72Od') can be :onfigured to bypass if the input signal corresponds to a mono signal (m).
- the lownmix processing unit 72Od includes a further downmixing part 722d which can )e configured to downmix the stereo signal to be mono signal if the input signal :orresponds to a stereo signal.
- the further downmixed mono channel (m) is used is input to the multi-channel decoder 730.
- the multi-channel decoder 730 can )ntrol object panning (especially cross-talk) by using the mono input signal.
- the information generating unit 710 may generate a multi-channel arameter base on 5-1 -5i configuration of MPEG Surround standard.
- the ADG may be generated by the information enerating unit 710 based on mix information.
- FIG. 14 is an exemplary block diagram of a bitstream structure of a ompressed audio signal according to a second embodiment of present invention.
- 3 IG. 15 is an exemplary block diagram of an apparatus for processing an audio signal according to a second embodiment of present invention.
- downmix signal ⁇ , multi-channel parameter ⁇ , and object parameter ⁇ are ncluded in the bitstream structure.
- the multi-channel parameter ⁇ is a parameter : or upmixing the downmix signal.
- the object parameter ⁇ is a parameter for controlling object panning and object gain.
- downmix signal ⁇ , a default parameter ⁇ ', and object parameter ⁇ are included in the bitstream structure.
- the default parameter ⁇ ' may include preset information for controlling object gain and object panning.
- the preset information may orrespond to an example suggested by a producer of an encoder side.
- ireset information may describes that guitar signal is located at a point between ⁇ ft and center, and guitar's level is set to a certain volume, and the number of output channel in this time is set to a certain channel.
- the default parameter for ither each frame or specified frame may be present in the bitstream.
- Flag nformation indicating whether default parameter for this frame is different from lefault parameter of previous frame or not may be present in the bitstream. By ncluding default parameter in the bitstream, it is able to take less bitrates than side nformation with object parameter is included in the bitstream.
- leader information of the bitstream is omitted in the FIG. 14. Sequence of the >itstream can be rearranged.
- an apparatus for processing an audio signal according o a second embodiment of present invention 1000 may include a bitstream de-multiplexer 1005, an information generating unit 010, a downmix processing unit 1020, and a multil-channel decoder 1030.
- the de- nultiplexer 1005 can be configured to divide the multiplexed audio signal into a lownmix ⁇ , a first multi-channel parameter ⁇ , and an object parameter ⁇ .
- the nformation generating unit 1010 can be configured to generate a second multi- :hannel parameter using an object parameter ⁇ and a mix parameter.
- the mix parameter comprises a mode information indicating whether the first multi- iannel information ⁇ is applied to the processed downmix.
- the mode information iay corresponds to an information for selecting by a user. According to the mode lformation, the information generating information 1020 decides whether to •ansmit the first multi-channel parameter ⁇ or the second multi-channel parameter.
- the downmix processing unit 1020 can be configured to determining a •rocessing scheme according to the mode information included in the mix nformation. Furthermore, the downmix processing unit 1020 can be configured to •rocess the downmix ⁇ according to the determined processing scheme. Then the lownmix processing unit 1020 transmits the processed downmix to multi-channel lecoder 1030.
- the multi-channel decoder 1030 can be configured to receive either the first nulti-channel parameter ⁇ or the second multi-channel parameter. In case that iefault parameter ⁇ ' is included in the bitstream, the multi-channel decoder 1030 :an use the default parameter ⁇ ' instead of multi-channel parameter ⁇ .
- the multi-channel decoder 1030 can be configured to generate multi- :hannel output using the processed downmix signal and the received multichannel parameter.
- the multi-channel decoder 1030 may have the same configuration of the former multi-channel decoder 730, which does not put limitation on the present invention. 3. Binaural Processing
- a multi-channel decoder can be operated in a binaural mode. This enables a ⁇ ulti-channel impression over headphones by means of Head Related Transfer 'unction (HRTF) filtering.
- HRTF Head Related Transfer 'unction
- the downmix signal and nulti-channel parameters are used in combination with HRTF filters supplied to he decoder.
- FIG. 16 is an exemplary block diagram of an apparatus for processing an Ludio signal according to a third embodiment of present invention.
- an apparatus for processing an audio signal according to a third embodiment may comprise an information generating unit 1110, a downmix processing unit 1120, and a multi-channel iecoder 1130 with a sync matching part 1130a.
- the information generating unit 1110 may have the same configuration of :he information generating unit 710 of FIG. 7, with generating dynamic HRTF.
- the iownmix processing unit 1120 may have the same configuration of the downmix processing unit 720 of FIG. 7.
- multi-channel decoder 1130 except for the sync matching part 1130a is the same case of the former elements.
- the dynamic HRTF describes the relation between object signals and virtual peaker signals corresponding to the HRTF azimuth and elevation angles, which is ime-dependent information according to real-time user control.
- the dynamic HRTF may correspond to one of HTRF filter coefficients itself, •arameterized coefficient information, and index information in case that the aulti-channel decoder comprise all HRTF filter set.
- tag information may >e included in ancillary field in MPEG Surround standard.
- the tag information nay be represented as a time information, a counter information, a index nformation, etc.
- FIG. 17 is an exemplary block diagram of an apparatus for processing an iudio signal according to a fourth embodiment of present invention.
- the apparatus or processing an audio signal according to a fourth embodiment of present .nvention 1200 (hereinafter simply 'a processor 1200') may comprise an encoder 1210 at encoder side 1200A, and a rendering unit 1220 and a synthesis unit 1230 at ecoder side 1200B.
- the encoder 1210 can be configured to receive multi-channel bject signal and generate a downmix of audio signal and a side information.
- the ⁇ ndering unit 1220 can be configured to receive side information from the encoder 210, playback configuration and user control from a device setting or a user- iterface, and generate rendering information using the side information, playback onfiguration, and user control.
- the synthesis unit 1230 can be configured to ynthesis multi-channel output signal using the rendering information and the eceived downmix signal from an encoder 1210.
- the effect-mode is a mode for remixed or reconstructed signal.
- ive mode club band mode, karaoke mode, etc may be present.
- the effect-mode information may correspond to a mix parameter set generated by a producer, other iser, etc. If the effect-mode information is applied, an end user don't have to :ontrol object panning and object gain in full because user can select one of predetermined effect-mode informations.
- effect-mode information Two methods of generating an effect-mode information can be distinguished. First of all, it is possible that an effect-mode information is generated by encoder 1200A and transmitted to the decoder 1200B. Secondly, the effect-mode information may be generated automatically at the decoder side. Details of two methods shall be described as follow. 4.1.1 Transmitting effect-mode information to decoder side
- the effect-mode information may be generated at an encoder 1200A by a •roducer.
- the decoder 1200B can be configured to eceive side information including the effect-mode information and output user- nterface by which a user can select one of effect-mode informations.
- the decoder 200B can be configured to generate output channel base on the selected effect- node information.
- the effect-mode information may be generated at a decoder 1200B.
- the decoder 1200B can be configured to search appropriate effect-mode informations cor the downmix signal. Then the decoder 1200B can be configured to select one of the searched effect-mode by itself (automatic adjustment mode) or enable a user to select one of them (user selection mode). Then the decoder 1200B can be configured to obtain object information (number of objects, instrument names, etc) included in side information, and control object based on the selected effect-mode information and the object information. Furthermore, it is able to control similar objects in a lump. For example, ⁇ struments associated with a rhythm may be similar objects in case of 'rhythm tnpression mode'. Controlling in a lump means controlling each object imultaneously rather than controlling objects using the same parameter.
- the input signal inputted to an encoder 1200A may be classified into three ;ypes as follow.
- Mono object is most general type of object. It is possible to synthesis internal downmix signal by simply summing objects. It is also possible to synthesis internal downmix signal using object gain and object panning which may be one of user control and provided information. In generating internal downmix signal, it is also possible to generate rendering information using at least one of object characteristic, user input, and information provided with object. In case that external downmix signal is present, it is possible to extract and ansmit information indicating relation between external downmix and object.
- multi-channel object it is able to perform the above mentioned nethod described with mono object and stereo object. Furthermore, it is able to .nput multi-channel object as a form of MPEG Surround. In this case, it is able to snerate object-based downmix (ex: SAOC downmix) using object downmix lannel, and use multi-channel information (ex: spatial information in MPEG urround) for generating multi-channel information and rendering information, [ence, it is possible to reduce computing amount because multi-channel object resent in form of MPEG Surround don't have to decode and encode using object- riented encoder (ex: SAOC encoder). If object downmix corresponds to stereo and bject-based downmix (ex: SAOC downmix) corresponds to mono in this case, it is ossible to apply the above-mentioned method described with stereo object.
- SAOC downmix object-based downmix
- SAOC encoder object-riented encoder
- variable type of object may be transmitted from the encoder 1200A to the decoder. 1200B.
- Transmitting scheme for variable type of object can be provided as follow:
- a side nf ormation includes information for each object. For example, when a plural object onsists of Nth mono object (A), left channel of N+lth object (B), and right channel )f N+lth object (C), a side information includes information for 3 objects (A, B, C).
- the side information may comprise correlation flag information indicating ⁇ rhether an object is part of a stereo or multi-channel object, for example, mono ⁇ ject, one channel (L or R) of stereo object, and so on.
- correlation flag nformation is '0' if mono object is present
- correlation flag information is '1' if one Lannel of stereo object is present.
- correlation flag information for other irt of stereo object may be any value (ex: 1 O', "Y 1 or whatever).
- >rrelation flag information for other part of stereo object may be not transmitted.
- correlation flag information for we part of multi-channel object may be value describing number of multi-channel bject.
- correlation flag information for ft channel of 5.1 channel may be '5'
- correlation flag information for the other tiannel (R, Lr, Rr, C, LFE) of 5.1 channel may be either '0' or not transmitted.
- Object may have the three kinds of attribute as follows: a) Single object
- Single object can be configured as a source. It is able to apply one parameter o single object for controlling object panning and object gain in generating lownmix signal and reproducing.
- the 'one parameter' may mean not only one )arameter for all time/ frequency domain but also one parameter for each ime/ frequency slot. b) Grouped object
- m encoder 1300 includes a grouping unit 1310 and a downmix unit 1320.
- the grouping unit 1310 can be configured to group at least two objects among inputted nulti-object input, base on a grouping information.
- the grouping information may oe generated by producer at encoder side.
- the downmix unit 1320 can be :onfigured to generate downmix signal using the grouped object generated by the grouping unit 1310.
- the downmix unit 1320 can be configured to generate a side information for the grouped object.
- Combination object is an object combined with at least one source. It is possible to control object panning and gain in a lump, but keep relation between combined objects unchanged. For example, in case of drum, it is possible to control drum, but keep relation between base drum, tam-tam, and symbol unchanged. For example, when base drum is located at center point and symbol is located at left point, it is possible to positioning base drum at right point and positioning symbol at point between center and right in case that drum is moved to right direction.
- Relation information between combined objects may be transmitted to a decoder.
- decoder can extract the relation information using combination object.
- the present invention is applicable to encode and decode an Lidio signal.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Acoustics & Sound (AREA)
- Signal Processing (AREA)
- Multimedia (AREA)
- Computational Linguistics (AREA)
- Audiology, Speech & Language Pathology (AREA)
- Human Computer Interaction (AREA)
- Health & Medical Sciences (AREA)
- Mathematical Physics (AREA)
- Stereophonic System (AREA)
- Compression, Expansion, Code Conversion, And Decoders (AREA)
- Stereo-Broadcasting Methods (AREA)
Abstract
Description
Claims
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP07851287A EP2102856A4 (en) | 2006-12-07 | 2007-12-06 | A method and an apparatus for processing an audio signal |
KR1020097014213A KR101100222B1 (en) | 2006-12-07 | 2007-12-06 | A method an apparatus for processing an audio signal |
JP2009540164A JP5450085B2 (en) | 2006-12-07 | 2007-12-06 | Audio processing method and apparatus |
CN2007800453353A CN101553865B (en) | 2006-12-07 | 2007-12-06 | A method and an apparatus for processing an audio signal |
Applications Claiming Priority (20)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US86907706P | 2006-12-07 | 2006-12-07 | |
US60/869,077 | 2006-12-07 | ||
US87713406P | 2006-12-27 | 2006-12-27 | |
US60/877,134 | 2006-12-27 | ||
US88356907P | 2007-01-05 | 2007-01-05 | |
US60/883,569 | 2007-01-05 | ||
US88404307P | 2007-01-09 | 2007-01-09 | |
US60/884,043 | 2007-01-09 | ||
US88434707P | 2007-01-10 | 2007-01-10 | |
US60/884,347 | 2007-01-10 | ||
US88458507P | 2007-01-11 | 2007-01-11 | |
US60/884,585 | 2007-01-11 | ||
US88534707P | 2007-01-17 | 2007-01-17 | |
US88534307P | 2007-01-17 | 2007-01-17 | |
US60/885,343 | 2007-01-17 | ||
US60/885,347 | 2007-01-17 | ||
US88971507P | 2007-02-13 | 2007-02-13 | |
US60/889,715 | 2007-02-13 | ||
US95539507P | 2007-08-13 | 2007-08-13 | |
US60/955,395 | 2007-08-13 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2008069594A1 true WO2008069594A1 (en) | 2008-06-12 |
Family
ID=39492395
Family Applications (5)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2007/006317 WO2008069595A1 (en) | 2006-12-07 | 2007-12-06 | A method and an apparatus for processing an audio signal |
PCT/KR2007/006319 WO2008069597A1 (en) | 2006-12-07 | 2007-12-06 | A method and an apparatus for processing an audio signal |
PCT/KR2007/006318 WO2008069596A1 (en) | 2006-12-07 | 2007-12-06 | A method and an apparatus for processing an audio signal |
PCT/KR2007/006316 WO2008069594A1 (en) | 2006-12-07 | 2007-12-06 | A method and an apparatus for processing an audio signal |
PCT/KR2007/006315 WO2008069593A1 (en) | 2006-12-07 | 2007-12-06 | A method and an apparatus for processing an audio signal |
Family Applications Before (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2007/006317 WO2008069595A1 (en) | 2006-12-07 | 2007-12-06 | A method and an apparatus for processing an audio signal |
PCT/KR2007/006319 WO2008069597A1 (en) | 2006-12-07 | 2007-12-06 | A method and an apparatus for processing an audio signal |
PCT/KR2007/006318 WO2008069596A1 (en) | 2006-12-07 | 2007-12-06 | A method and an apparatus for processing an audio signal |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2007/006315 WO2008069593A1 (en) | 2006-12-07 | 2007-12-06 | A method and an apparatus for processing an audio signal |
Country Status (11)
Country | Link |
---|---|
US (11) | US7986788B2 (en) |
EP (6) | EP2102857B1 (en) |
JP (5) | JP5290988B2 (en) |
KR (5) | KR101111521B1 (en) |
CN (5) | CN101568958B (en) |
AU (1) | AU2007328614B2 (en) |
BR (1) | BRPI0719884B1 (en) |
CA (1) | CA2670864C (en) |
MX (1) | MX2009005969A (en) |
TW (1) | TWI371743B (en) |
WO (5) | WO2008069595A1 (en) |
Families Citing this family (103)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1691348A1 (en) * | 2005-02-14 | 2006-08-16 | Ecole Polytechnique Federale De Lausanne | Parametric joint-coding of audio sources |
JP4988717B2 (en) | 2005-05-26 | 2012-08-01 | エルジー エレクトロニクス インコーポレイティド | Audio signal decoding method and apparatus |
US8577686B2 (en) | 2005-05-26 | 2013-11-05 | Lg Electronics Inc. | Method and apparatus for decoding an audio signal |
US8082157B2 (en) * | 2005-06-30 | 2011-12-20 | Lg Electronics Inc. | Apparatus for encoding and decoding audio signal and method thereof |
AU2006266655B2 (en) * | 2005-06-30 | 2009-08-20 | Lg Electronics Inc. | Apparatus for encoding and decoding audio signal and method thereof |
JP4651668B2 (en) * | 2005-07-11 | 2011-03-16 | パナソニック株式会社 | Ultrasonic flaw detection method and ultrasonic flaw detection apparatus |
JP4787331B2 (en) * | 2006-01-19 | 2011-10-05 | エルジー エレクトロニクス インコーポレイティド | Media signal processing method and apparatus |
JP5054034B2 (en) * | 2006-02-07 | 2012-10-24 | エルジー エレクトロニクス インコーポレイティド | Encoding / decoding apparatus and method |
US8611547B2 (en) * | 2006-07-04 | 2013-12-17 | Electronics And Telecommunications Research Institute | Apparatus and method for restoring multi-channel audio signal using HE-AAC decoder and MPEG surround decoder |
WO2008069595A1 (en) * | 2006-12-07 | 2008-06-12 | Lg Electronics Inc. | A method and an apparatus for processing an audio signal |
US8634577B2 (en) * | 2007-01-10 | 2014-01-21 | Koninklijke Philips N.V. | Audio decoder |
CN101675472B (en) | 2007-03-09 | 2012-06-20 | Lg电子株式会社 | A method and an apparatus for processing an audio signal |
KR20080082916A (en) * | 2007-03-09 | 2008-09-12 | 엘지전자 주식회사 | A method and an apparatus for processing an audio signal |
CN103299363B (en) * | 2007-06-08 | 2015-07-08 | Lg电子株式会社 | A method and an apparatus for processing an audio signal |
EP2191462A4 (en) | 2007-09-06 | 2010-08-18 | Lg Electronics Inc | A method and an apparatus of decoding an audio signal |
KR101461685B1 (en) | 2008-03-31 | 2014-11-19 | 한국전자통신연구원 | Method and apparatus for generating side information bitstream of multi object audio signal |
KR101596504B1 (en) | 2008-04-23 | 2016-02-23 | 한국전자통신연구원 | / method for generating and playing object-based audio contents and computer readable recordoing medium for recoding data having file format structure for object-based audio service |
WO2010008198A2 (en) * | 2008-07-15 | 2010-01-21 | Lg Electronics Inc. | A method and an apparatus for processing an audio signal |
WO2010008200A2 (en) * | 2008-07-15 | 2010-01-21 | Lg Electronics Inc. | A method and an apparatus for processing an audio signal |
EP2146522A1 (en) * | 2008-07-17 | 2010-01-20 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Apparatus and method for generating audio output signals using object based metadata |
EP2175670A1 (en) * | 2008-10-07 | 2010-04-14 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Binaural rendering of a multi-channel audio signal |
WO2010041877A2 (en) * | 2008-10-08 | 2010-04-15 | Lg Electronics Inc. | A method and an apparatus for processing a signal |
EP2356825A4 (en) * | 2008-10-20 | 2014-08-06 | Genaudio Inc | Audio spatialization and environment simulation |
US8861739B2 (en) | 2008-11-10 | 2014-10-14 | Nokia Corporation | Apparatus and method for generating a multichannel signal |
WO2010064877A2 (en) * | 2008-12-05 | 2010-06-10 | Lg Electronics Inc. | A method and an apparatus for processing an audio signal |
KR20100065121A (en) * | 2008-12-05 | 2010-06-15 | 엘지전자 주식회사 | Method and apparatus for processing an audio signal |
JP5309944B2 (en) * | 2008-12-11 | 2013-10-09 | 富士通株式会社 | Audio decoding apparatus, method, and program |
US8620008B2 (en) | 2009-01-20 | 2013-12-31 | Lg Electronics Inc. | Method and an apparatus for processing an audio signal |
KR101187075B1 (en) * | 2009-01-20 | 2012-09-27 | 엘지전자 주식회사 | A method for processing an audio signal and an apparatus for processing an audio signal |
KR101137361B1 (en) | 2009-01-28 | 2012-04-26 | 엘지전자 주식회사 | A method and an apparatus for processing an audio signal |
US8139773B2 (en) * | 2009-01-28 | 2012-03-20 | Lg Electronics Inc. | Method and an apparatus for decoding an audio signal |
US8255821B2 (en) * | 2009-01-28 | 2012-08-28 | Lg Electronics Inc. | Method and an apparatus for decoding an audio signal |
US20100324915A1 (en) * | 2009-06-23 | 2010-12-23 | Electronic And Telecommunications Research Institute | Encoding and decoding apparatuses for high quality multi-channel audio codec |
AU2010305717B2 (en) * | 2009-10-16 | 2014-06-26 | Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. | Apparatus, method and computer program for providing one or more adjusted parameters for provision of an upmix signal representation on the basis of a downmix signal representation and a parametric side information associated with the downmix signal representation, using an average value |
JP5719372B2 (en) | 2009-10-20 | 2015-05-20 | フラウンホーファー−ゲゼルシャフト・ツール・フェルデルング・デル・アンゲヴァンテン・フォルシュング・アインゲトラーゲネル・フェライン | Apparatus and method for generating upmix signal representation, apparatus and method for generating bitstream, and computer program |
KR101106465B1 (en) * | 2009-11-09 | 2012-01-20 | 네오피델리티 주식회사 | Method for adjusting gain of multiband drc system and multiband drc system using the same |
ES2569779T3 (en) * | 2009-11-20 | 2016-05-12 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Apparatus for providing a representation of upstream signal based on the representation of downlink signal, apparatus for providing a bit stream representing a multichannel audio signal, methods, computer programs and bit stream representing an audio signal multichannel using a linear combination parameter |
WO2011071336A2 (en) * | 2009-12-11 | 2011-06-16 | 한국전자통신연구원 | Audio authoring apparatus and audio playback apparatus for an object-based audio service, and audio authoring method and audio playback method using same |
EP2522016A4 (en) | 2010-01-06 | 2015-04-22 | Lg Electronics Inc | An apparatus for processing an audio signal and method thereof |
WO2011122589A1 (en) * | 2010-03-29 | 2011-10-06 | 日立金属株式会社 | Initial ultrafine crystal alloy, nanocrystal soft magnetic alloy and method for producing same, and magnetic component formed from nanocrystal soft magnetic alloy |
KR20120004909A (en) * | 2010-07-07 | 2012-01-13 | 삼성전자주식회사 | Method and apparatus for 3d sound reproducing |
EP2586025A4 (en) | 2010-07-20 | 2015-03-11 | Huawei Tech Co Ltd | Audio signal synthesizer |
US8948403B2 (en) * | 2010-08-06 | 2015-02-03 | Samsung Electronics Co., Ltd. | Method of processing signal, encoding apparatus thereof, decoding apparatus thereof, and signal processing system |
JP5903758B2 (en) * | 2010-09-08 | 2016-04-13 | ソニー株式会社 | Signal processing apparatus and method, program, and data recording medium |
EP3893521B1 (en) | 2011-07-01 | 2024-06-19 | Dolby Laboratories Licensing Corporation | System and method for adaptive audio signal generation, coding and rendering |
EP2560161A1 (en) | 2011-08-17 | 2013-02-20 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Optimal mixing matrices and usage of decorrelators in spatial audio processing |
CN103050124B (en) | 2011-10-13 | 2016-03-30 | 华为终端有限公司 | Sound mixing method, Apparatus and system |
RU2618383C2 (en) * | 2011-11-01 | 2017-05-03 | Конинклейке Филипс Н.В. | Encoding and decoding of audio objects |
BR112014017457A8 (en) * | 2012-01-19 | 2017-07-04 | Koninklijke Philips Nv | spatial audio transmission apparatus; space audio coding apparatus; method of generating spatial audio output signals; and spatial audio coding method |
US9479886B2 (en) * | 2012-07-20 | 2016-10-25 | Qualcomm Incorporated | Scalable downmix design with feedback for object-based surround codec |
US9761229B2 (en) | 2012-07-20 | 2017-09-12 | Qualcomm Incorporated | Systems, methods, apparatus, and computer-readable media for audio object clustering |
CN104541524B (en) | 2012-07-31 | 2017-03-08 | 英迪股份有限公司 | A kind of method and apparatus for processing audio signal |
KR20140017338A (en) * | 2012-07-31 | 2014-02-11 | 인텔렉추얼디스커버리 주식회사 | Apparatus and method for audio signal processing |
JP6141978B2 (en) * | 2012-08-03 | 2017-06-07 | フラウンホーファー−ゲゼルシャフト・ツール・フェルデルング・デル・アンゲヴァンテン・フォルシュング・アインゲトラーゲネル・フェライン | Decoder and method for multi-instance spatial acoustic object coding employing parametric concept for multi-channel downmix / upmix configuration |
BR122021021487B1 (en) * | 2012-09-12 | 2022-11-22 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e. V | APPARATUS AND METHOD FOR PROVIDING ENHANCED GUIDED DOWNMIX CAPABILITIES FOR 3D AUDIO |
US9385674B2 (en) * | 2012-10-31 | 2016-07-05 | Maxim Integrated Products, Inc. | Dynamic speaker management for multichannel audio systems |
BR112015013154B1 (en) * | 2012-12-04 | 2022-04-26 | Samsung Electronics Co., Ltd | Audio delivery device, and audio delivery method |
BR112015016593B1 (en) * | 2013-01-15 | 2021-10-05 | Koninklijke Philips N.V. | APPLIANCE FOR PROCESSING AN AUDIO SIGNAL; APPARATUS TO GENERATE A BITS FLOW; AUDIO PROCESSING METHOD; METHOD FOR GENERATING A BITS FLOW; AND BITS FLOW |
RU2656717C2 (en) | 2013-01-17 | 2018-06-06 | Конинклейке Филипс Н.В. | Binaural audio processing |
EP2757559A1 (en) * | 2013-01-22 | 2014-07-23 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Apparatus and method for spatial audio object coding employing hidden objects for signal mixture manipulation |
US9208775B2 (en) | 2013-02-21 | 2015-12-08 | Qualcomm Incorporated | Systems and methods for determining pitch pulse period signal boundaries |
US9497560B2 (en) | 2013-03-13 | 2016-11-15 | Panasonic Intellectual Property Management Co., Ltd. | Audio reproducing apparatus and method |
CN108806704B (en) | 2013-04-19 | 2023-06-06 | 韩国电子通信研究院 | Multi-channel audio signal processing device and method |
KR102150955B1 (en) | 2013-04-19 | 2020-09-02 | 한국전자통신연구원 | Processing appratus mulit-channel and method for audio signals |
EP2989631A4 (en) * | 2013-04-26 | 2016-12-21 | Nokia Technologies Oy | Audio signal encoder |
KR20140128564A (en) * | 2013-04-27 | 2014-11-06 | 인텔렉추얼디스커버리 주식회사 | Audio system and method for sound localization |
CN105247611B (en) | 2013-05-24 | 2019-02-15 | 杜比国际公司 | To the coding of audio scene |
CN105229731B (en) | 2013-05-24 | 2017-03-15 | 杜比国际公司 | Reconstruct according to lower mixed audio scene |
WO2014187987A1 (en) * | 2013-05-24 | 2014-11-27 | Dolby International Ab | Methods for audio encoding and decoding, corresponding computer-readable media and corresponding audio encoder and decoder |
US9763019B2 (en) * | 2013-05-29 | 2017-09-12 | Qualcomm Incorporated | Analysis of decomposed representations of a sound field |
KR101454342B1 (en) * | 2013-05-31 | 2014-10-23 | 한국산업은행 | Apparatus for creating additional channel audio signal using surround channel audio signal and method thereof |
CN105378826B (en) * | 2013-05-31 | 2019-06-11 | 诺基亚技术有限公司 | Audio scene device |
EP2830334A1 (en) | 2013-07-22 | 2015-01-28 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Multi-channel audio decoder, multi-channel audio encoder, methods, computer program and encoded audio representation using a decorrelation of rendered audio signals |
BR112016001250B1 (en) | 2013-07-22 | 2022-07-26 | Fraunhofer-Gesellschaft Zur Forderung Der Angewandten Forschung E.V. | MULTI-CHANNEL AUDIO DECODER, MULTI-CHANNEL AUDIO ENCODER, METHODS, AND AUDIO REPRESENTATION ENCODED USING A DECORRELATION OF RENDERED AUDIO SIGNALS |
EP2830045A1 (en) | 2013-07-22 | 2015-01-28 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Concept for audio encoding and decoding for audio channels and audio objects |
EP2830047A1 (en) | 2013-07-22 | 2015-01-28 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Apparatus and method for low delay object metadata coding |
EP2830050A1 (en) * | 2013-07-22 | 2015-01-28 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Apparatus and method for enhanced spatial audio object coding |
US9319819B2 (en) * | 2013-07-25 | 2016-04-19 | Etri | Binaural rendering method and apparatus for decoding multi channel audio |
KR102243395B1 (en) * | 2013-09-05 | 2021-04-22 | 한국전자통신연구원 | Apparatus for encoding audio signal, apparatus for decoding audio signal, and apparatus for replaying audio signal |
TWI713018B (en) | 2013-09-12 | 2020-12-11 | 瑞典商杜比國際公司 | Decoding method, and decoding device in multichannel audio system, computer program product comprising a non-transitory computer-readable medium with instructions for performing decoding method, audio system comprising decoding device |
KR102163266B1 (en) | 2013-09-17 | 2020-10-08 | 주식회사 윌러스표준기술연구소 | Method and apparatus for processing audio signals |
CN105659320B (en) * | 2013-10-21 | 2019-07-12 | 杜比国际公司 | Audio coder and decoder |
EP2866227A1 (en) * | 2013-10-22 | 2015-04-29 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Method for decoding and encoding a downmix matrix, method for presenting audio content, encoder and decoder for a downmix matrix, audio encoder and audio decoder |
EP3062534B1 (en) | 2013-10-22 | 2021-03-03 | Electronics and Telecommunications Research Institute | Method for generating filter for audio signal and parameterizing device therefor |
US9933989B2 (en) | 2013-10-31 | 2018-04-03 | Dolby Laboratories Licensing Corporation | Binaural rendering for headphones using metadata processing |
EP2879131A1 (en) | 2013-11-27 | 2015-06-03 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Decoder, encoder and method for informed loudness estimation in object-based audio coding systems |
CN108922552B (en) | 2013-12-23 | 2023-08-29 | 韦勒斯标准与技术协会公司 | Method for generating a filter for an audio signal and parameterization device therefor |
WO2015104447A1 (en) | 2014-01-13 | 2015-07-16 | Nokia Technologies Oy | Multi-channel audio signal classifier |
CN108600935B (en) | 2014-03-19 | 2020-11-03 | 韦勒斯标准与技术协会公司 | Audio signal processing method and apparatus |
EP3128766A4 (en) | 2014-04-02 | 2018-01-03 | Wilus Institute of Standards and Technology Inc. | Audio signal processing method and device |
CN110636415B (en) | 2014-08-29 | 2021-07-23 | 杜比实验室特许公司 | Method, system, and storage medium for processing audio |
US20170289724A1 (en) * | 2014-09-12 | 2017-10-05 | Dolby Laboratories Licensing Corporation | Rendering audio objects in a reproduction environment that includes surround and/or height speakers |
TWI587286B (en) | 2014-10-31 | 2017-06-11 | 杜比國際公司 | Method and system for decoding and encoding of audio signals, computer program product, and computer-readable medium |
US9609383B1 (en) * | 2015-03-23 | 2017-03-28 | Amazon Technologies, Inc. | Directional audio for virtual environments |
US10504528B2 (en) | 2015-06-17 | 2019-12-10 | Samsung Electronics Co., Ltd. | Method and device for processing internal channels for low complexity format conversion |
CN111970630B (en) | 2015-08-25 | 2021-11-02 | 杜比实验室特许公司 | Audio decoder and decoding method |
CN109427337B (en) | 2017-08-23 | 2021-03-30 | 华为技术有限公司 | Method and device for reconstructing a signal during coding of a stereo signal |
TWI703557B (en) * | 2017-10-18 | 2020-09-01 | 宏達國際電子股份有限公司 | Sound reproducing method, apparatus and non-transitory computer readable storage medium thereof |
DE102018206025A1 (en) * | 2018-02-19 | 2019-08-22 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Apparatus and method for object-based spatial audio mastering |
KR102471718B1 (en) * | 2019-07-25 | 2022-11-28 | 한국전자통신연구원 | Broadcastiong transmitting and reproducing apparatus and method for providing the object audio |
WO2021034983A2 (en) * | 2019-08-19 | 2021-02-25 | Dolby Laboratories Licensing Corporation | Steering of binauralization of audio |
CN111654745B (en) * | 2020-06-08 | 2022-10-14 | 海信视像科技股份有限公司 | Multi-channel signal processing method and display device |
US20240359870A1 (en) | 2023-04-25 | 2024-10-31 | Mabuchi Motor Co., Ltd. | Packaging structure |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005086139A1 (en) * | 2004-03-01 | 2005-09-15 | Dolby Laboratories Licensing Corporation | Multichannel audio coding |
US20060115100A1 (en) * | 2004-11-30 | 2006-06-01 | Christof Faller | Parametric coding of spatial audio with cues based on transmitted channels |
US20060133618A1 (en) * | 2004-11-02 | 2006-06-22 | Lars Villemoes | Stereo compatible multi-channel audio coding |
JP2006323408A (en) * | 2006-07-07 | 2006-11-30 | Victor Co Of Japan Ltd | Audio encoding method and audio decoding method |
Family Cites Families (67)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3175209D1 (en) | 1981-05-29 | 1986-10-02 | Ibm | Aspirator for an ink jet printer |
FR2567984B1 (en) * | 1984-07-20 | 1986-08-14 | Centre Techn Ind Mecanique | PROPORTIONAL HYDRAULIC DISTRIBUTOR |
WO1992012607A1 (en) | 1991-01-08 | 1992-07-23 | Dolby Laboratories Licensing Corporation | Encoder/decoder for multidimensional sound fields |
US6141446A (en) * | 1994-09-21 | 2000-10-31 | Ricoh Company, Ltd. | Compression and decompression system with reversible wavelets and lossy reconstruction |
US5838664A (en) * | 1997-07-17 | 1998-11-17 | Videoserver, Inc. | Video teleconferencing system with digital transcoding |
US5956674A (en) * | 1995-12-01 | 1999-09-21 | Digital Theater Systems, Inc. | Multi-channel predictive subband audio coder using psychoacoustic adaptive bit allocation in frequency, time and over the multiple channels |
EP0798866A2 (en) | 1996-03-27 | 1997-10-01 | Kabushiki Kaisha Toshiba | Digital data processing system |
US6128597A (en) | 1996-05-03 | 2000-10-03 | Lsi Logic Corporation | Audio decoder with a reconfigurable downmixing/windowing pipeline and method therefor |
US5912976A (en) | 1996-11-07 | 1999-06-15 | Srs Labs, Inc. | Multi-channel audio enhancement system for use in recording and playback and methods for providing same |
US6131084A (en) | 1997-03-14 | 2000-10-10 | Digital Voice Systems, Inc. | Dual subframe quantization of spectral magnitudes |
DE69817181T2 (en) | 1997-06-18 | 2004-06-17 | Clarity, L.L.C., Ann Arbor | METHOD AND DEVICE FOR BLIND SEPARATING SIGNALS |
US6026168A (en) * | 1997-11-14 | 2000-02-15 | Microtek Lab, Inc. | Methods and apparatus for automatically synchronizing and regulating volume in audio component systems |
EP1072036B1 (en) * | 1998-04-15 | 2004-09-22 | STMicroelectronics Asia Pacific Pte Ltd. | Fast frame optimisation in an audio encoder |
US6122619A (en) | 1998-06-17 | 2000-09-19 | Lsi Logic Corporation | Audio decoder with programmable downmixing of MPEG/AC-3 and method therefor |
FI114833B (en) * | 1999-01-08 | 2004-12-31 | Nokia Corp | A method, a speech encoder and a mobile station for generating speech coding frames |
US7103187B1 (en) | 1999-03-30 | 2006-09-05 | Lsi Logic Corporation | Audio calibration system |
US6539357B1 (en) | 1999-04-29 | 2003-03-25 | Agere Systems Inc. | Technique for parametric coding of a signal containing information |
NZ521411A (en) * | 2000-03-03 | 2004-03-26 | Cardiac M | Magnetic resonance specimen analysis apparatus |
JP4870896B2 (en) | 2000-07-19 | 2012-02-08 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | Multi-channel stereo converter to obtain stereo surround and / or audio center signal |
US7292901B2 (en) * | 2002-06-24 | 2007-11-06 | Agere Systems Inc. | Hybrid multi-channel/cue coding/decoding of audio signals |
US7583805B2 (en) | 2004-02-12 | 2009-09-01 | Agere Systems Inc. | Late reverberation-based synthesis of auditory scenes |
SE0202159D0 (en) * | 2001-07-10 | 2002-07-09 | Coding Technologies Sweden Ab | Efficientand scalable parametric stereo coding for low bitrate applications |
US7032116B2 (en) | 2001-12-21 | 2006-04-18 | Intel Corporation | Thermal management for computer systems running legacy or thermal management operating systems |
ATE426235T1 (en) | 2002-04-22 | 2009-04-15 | Koninkl Philips Electronics Nv | DECODING DEVICE WITH DECORORATION UNIT |
BR0304542A (en) | 2002-04-22 | 2004-07-20 | Koninkl Philips Electronics Nv | Method and encoder for encoding a multichannel audio signal, apparatus for providing an audio signal, encoded audio signal, storage medium, and method and decoder for decoding an audio signal |
JP4013822B2 (en) | 2002-06-17 | 2007-11-28 | ヤマハ株式会社 | Mixer device and mixer program |
BR0305555A (en) | 2002-07-16 | 2004-09-28 | Koninkl Philips Electronics Nv | Method and encoder for encoding an audio signal, apparatus for providing an audio signal, encoded audio signal, storage medium, and method and decoder for decoding an encoded audio signal |
KR100542129B1 (en) * | 2002-10-28 | 2006-01-11 | 한국전자통신연구원 | Object-based three dimensional audio system and control method |
JP4084990B2 (en) | 2002-11-19 | 2008-04-30 | 株式会社ケンウッド | Encoding device, decoding device, encoding method and decoding method |
JP4496379B2 (en) | 2003-09-17 | 2010-07-07 | 財団法人北九州産業学術推進機構 | Reconstruction method of target speech based on shape of amplitude frequency distribution of divided spectrum series |
US6937737B2 (en) | 2003-10-27 | 2005-08-30 | Britannia Investment Corporation | Multi-channel audio surround sound from front located loudspeakers |
TWI233091B (en) * | 2003-11-18 | 2005-05-21 | Ali Corp | Audio mixing output device and method for dynamic range control |
US7394903B2 (en) * | 2004-01-20 | 2008-07-01 | Fraunhofer-Gesellschaft Zur Forderung Der Angewandten Forschung E.V. | Apparatus and method for constructing a multi-channel output signal or for generating a downmix signal |
US7805313B2 (en) * | 2004-03-04 | 2010-09-28 | Agere Systems Inc. | Frequency-based coding of channels in parametric multi-channel coding systems |
SE0400998D0 (en) | 2004-04-16 | 2004-04-16 | Cooding Technologies Sweden Ab | Method for representing multi-channel audio signals |
SE0400997D0 (en) * | 2004-04-16 | 2004-04-16 | Cooding Technologies Sweden Ab | Efficient coding or multi-channel audio |
US8843378B2 (en) | 2004-06-30 | 2014-09-23 | Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. | Multi-channel synthesizer and method for generating a multi-channel output signal |
CA2572805C (en) | 2004-07-02 | 2013-08-13 | Matsushita Electric Industrial Co., Ltd. | Audio signal decoding device and audio signal encoding device |
US7391870B2 (en) | 2004-07-09 | 2008-06-24 | Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E V | Apparatus and method for generating a multi-channel output signal |
KR100745688B1 (en) | 2004-07-09 | 2007-08-03 | 한국전자통신연구원 | Apparatus for encoding and decoding multichannel audio signal and method thereof |
WO2006006809A1 (en) | 2004-07-09 | 2006-01-19 | Electronics And Telecommunications Research Institute | Method and apparatus for encoding and cecoding multi-channel audio signal using virtual source location information |
KR100663729B1 (en) | 2004-07-09 | 2007-01-02 | 한국전자통신연구원 | Method and apparatus for encoding and decoding multi-channel audio signal using virtual source location information |
ATE444549T1 (en) * | 2004-07-14 | 2009-10-15 | Koninkl Philips Electronics Nv | SOUND CHANNEL CONVERSION |
KR101147187B1 (en) | 2004-07-14 | 2012-07-09 | 돌비 인터네셔널 에이비 | Method, device, encoder apparatus, decoder apparatus and audio system |
JP4892184B2 (en) * | 2004-10-14 | 2012-03-07 | パナソニック株式会社 | Acoustic signal encoding apparatus and acoustic signal decoding apparatus |
US7720230B2 (en) * | 2004-10-20 | 2010-05-18 | Agere Systems, Inc. | Individual channel shaping for BCC schemes and the like |
US8204261B2 (en) | 2004-10-20 | 2012-06-19 | Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. | Diffuse sound shaping for BCC schemes and the like |
SE0402652D0 (en) * | 2004-11-02 | 2004-11-02 | Coding Tech Ab | Methods for improved performance of prediction based multi-channel reconstruction |
KR100682904B1 (en) | 2004-12-01 | 2007-02-15 | 삼성전자주식회사 | Apparatus and method for processing multichannel audio signal using space information |
US7903824B2 (en) | 2005-01-10 | 2011-03-08 | Agere Systems Inc. | Compact side information for parametric coding of spatial audio |
EP1691348A1 (en) | 2005-02-14 | 2006-08-16 | Ecole Polytechnique Federale De Lausanne | Parametric joint-coding of audio sources |
US8346564B2 (en) * | 2005-03-30 | 2013-01-01 | Koninklijke Philips Electronics N.V. | Multi-channel audio coding |
US20060262936A1 (en) | 2005-05-13 | 2006-11-23 | Pioneer Corporation | Virtual surround decoder apparatus |
KR20060122694A (en) * | 2005-05-26 | 2006-11-30 | 엘지전자 주식회사 | Method of inserting spatial bitstream in at least two channel down-mix audio signal |
WO2006126856A2 (en) | 2005-05-26 | 2006-11-30 | Lg Electronics Inc. | Method of encoding and decoding an audio signal |
BRPI0611505A2 (en) | 2005-06-03 | 2010-09-08 | Dolby Lab Licensing Corp | channel reconfiguration with secondary information |
US20070055510A1 (en) * | 2005-07-19 | 2007-03-08 | Johannes Hilpert | Concept for bridging the gap between parametric multi-channel audio coding and matrixed-surround multi-channel coding |
RU2414741C2 (en) | 2005-07-29 | 2011-03-20 | ЭлДжи ЭЛЕКТРОНИКС ИНК. | Method of generating multichannel signal |
US20070083365A1 (en) | 2005-10-06 | 2007-04-12 | Dts, Inc. | Neural network classifier for separating audio sources from a monophonic audio signal |
EP1640972A1 (en) | 2005-12-23 | 2006-03-29 | Phonak AG | System and method for separation of a users voice from ambient sound |
CN101356573B (en) | 2006-01-09 | 2012-01-25 | 诺基亚公司 | Control for decoding of binaural audio signal |
JP5134623B2 (en) | 2006-07-07 | 2013-01-30 | フラウンホッファー−ゲゼルシャフト ツァ フェルダールング デァ アンゲヴァンテン フォアシュンク エー.ファオ | Concept for synthesizing multiple parametrically encoded sound sources |
BRPI0716854B1 (en) | 2006-09-18 | 2020-09-15 | Koninklijke Philips N.V. | ENCODER FOR ENCODING AUDIO OBJECTS, DECODER FOR DECODING AUDIO OBJECTS, TELECONFERENCE DISTRIBUTOR CENTER, AND METHOD FOR DECODING AUDIO SIGNALS |
AU2007300814B2 (en) * | 2006-09-29 | 2010-05-13 | Lg Electronics Inc. | Methods and apparatuses for encoding and decoding object-based audio signals |
UA94117C2 (en) * | 2006-10-16 | 2011-04-11 | Долби Свиден Ав | Improved coding and parameter dysplaying of mixed object multichannel coding |
EP2437257B1 (en) | 2006-10-16 | 2018-01-24 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Saoc to mpeg surround transcoding |
WO2008069595A1 (en) | 2006-12-07 | 2008-06-12 | Lg Electronics Inc. | A method and an apparatus for processing an audio signal |
-
2007
- 2007-12-06 WO PCT/KR2007/006317 patent/WO2008069595A1/en active Application Filing
- 2007-12-06 WO PCT/KR2007/006319 patent/WO2008069597A1/en active Application Filing
- 2007-12-06 MX MX2009005969A patent/MX2009005969A/en active IP Right Grant
- 2007-12-06 CN CN2007800452685A patent/CN101568958B/en active Active
- 2007-12-06 WO PCT/KR2007/006318 patent/WO2008069596A1/en active Application Filing
- 2007-12-06 KR KR1020097014214A patent/KR101111521B1/en active IP Right Grant
- 2007-12-06 EP EP07851288.6A patent/EP2102857B1/en active Active
- 2007-12-06 CA CA2670864A patent/CA2670864C/en active Active
- 2007-12-06 WO PCT/KR2007/006316 patent/WO2008069594A1/en active Application Filing
- 2007-12-06 EP EP07851286.0A patent/EP2122612B1/en not_active Not-in-force
- 2007-12-06 JP JP2009540166A patent/JP5290988B2/en active Active
- 2007-12-06 KR KR1020097014212A patent/KR101111520B1/en active IP Right Grant
- 2007-12-06 CN CN2007800453936A patent/CN101553867B/en active Active
- 2007-12-06 AU AU2007328614A patent/AU2007328614B2/en active Active
- 2007-12-06 KR KR1020097014215A patent/KR101100223B1/en active IP Right Grant
- 2007-12-06 JP JP2009540164A patent/JP5450085B2/en active Active
- 2007-12-06 JP JP2009540167A patent/JP5302207B2/en active Active
- 2007-12-06 BR BRPI0719884-1A patent/BRPI0719884B1/en active IP Right Grant
- 2007-12-06 CN CN2007800453673A patent/CN101553866B/en active Active
- 2007-12-06 EP EP07851287A patent/EP2102856A4/en not_active Ceased
- 2007-12-06 KR KR1020097014213A patent/KR101100222B1/en active IP Right Grant
- 2007-12-06 EP EP07851289.4A patent/EP2122613B1/en active Active
- 2007-12-06 CN CN2007800454197A patent/CN101553868B/en active Active
- 2007-12-06 KR KR1020097014216A patent/KR101128815B1/en active IP Right Grant
- 2007-12-06 WO PCT/KR2007/006315 patent/WO2008069593A1/en active Application Filing
- 2007-12-06 EP EP07851290A patent/EP2102858A4/en not_active Withdrawn
- 2007-12-06 JP JP2009540165A patent/JP5270566B2/en active Active
- 2007-12-06 JP JP2009540163A patent/JP5209637B2/en active Active
- 2007-12-06 EP EP10001843.1A patent/EP2187386B1/en active Active
- 2007-12-06 CN CN2007800453353A patent/CN101553865B/en active Active
- 2007-12-07 US US11/952,918 patent/US7986788B2/en active Active
- 2007-12-07 TW TW096146865A patent/TWI371743B/en not_active IP Right Cessation
- 2007-12-07 US US11/952,916 patent/US8488797B2/en active Active
- 2007-12-07 US US11/952,957 patent/US8428267B2/en active Active
- 2007-12-07 US US11/952,949 patent/US8340325B2/en active Active
- 2007-12-07 US US11/952,919 patent/US8311227B2/en active Active
-
2009
- 2009-03-16 US US12/405,164 patent/US8005229B2/en active Active
- 2009-10-02 US US12/573,077 patent/US7715569B2/en active Active
- 2009-10-02 US US12/573,067 patent/US7783051B2/en active Active
- 2009-10-02 US US12/573,044 patent/US7783049B2/en active Active
- 2009-10-02 US US12/572,998 patent/US7783048B2/en active Active
- 2009-10-02 US US12/573,061 patent/US7783050B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005086139A1 (en) * | 2004-03-01 | 2005-09-15 | Dolby Laboratories Licensing Corporation | Multichannel audio coding |
US20060133618A1 (en) * | 2004-11-02 | 2006-06-22 | Lars Villemoes | Stereo compatible multi-channel audio coding |
US20060115100A1 (en) * | 2004-11-30 | 2006-06-01 | Christof Faller | Parametric coding of spatial audio with cues based on transmitted channels |
JP2006323408A (en) * | 2006-07-07 | 2006-11-30 | Victor Co Of Japan Ltd | Audio encoding method and audio decoding method |
Non-Patent Citations (1)
Title |
---|
See also references of EP2102856A4 * |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2102856A1 (en) | A method and an apparatus for processing an audio signal |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200780045335.3 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 07851287 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2009540164 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: KR Ref document number: 1020097014213 Country of ref document: KR Ref document number: 2007851287 Country of ref document: EP |