WO2008001558A1 - Method of estimating evaluation data on the skin smoothness with naked eye and estimation apparatus - Google Patents
Method of estimating evaluation data on the skin smoothness with naked eye and estimation apparatus Download PDFInfo
- Publication number
- WO2008001558A1 WO2008001558A1 PCT/JP2007/060348 JP2007060348W WO2008001558A1 WO 2008001558 A1 WO2008001558 A1 WO 2008001558A1 JP 2007060348 W JP2007060348 W JP 2007060348W WO 2008001558 A1 WO2008001558 A1 WO 2008001558A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- skin
- smoothness
- visual evaluation
- evaluation value
- fractal dimension
- Prior art date
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/0059—Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/44—Detecting, measuring or recording for evaluating the integumentary system, e.g. skin, hair or nails
- A61B5/441—Skin evaluation, e.g. for skin disorder diagnosis
- A61B5/442—Evaluating skin mechanical properties, e.g. elasticity, hardness, texture, wrinkle assessment
Definitions
- the present invention relates to a method and an apparatus for estimating a visual evaluation value of the smoothness of a skin, and more specifically, easily estimates a visual evaluation value of a smoothness of a skin at a store selling cosmetics.
- the present invention relates to a method, and an apparatus and program used for the method.
- “Smoothness of the skin” is formed by a combination of various factors such as fineness of texture, uniformity of texture direction, unevenness and smoothness. Therefore, in order to accurately estimate the smoothness of the skin by the third party's visual observation, that is, the “visual evaluation value of the smoothness of the skin”, the form and moisture content of the subject's skin surface are measured, It has been necessary to analyze the results of these measurements and to have a skin assessment specialist observe the subject's skin and perform a visual functional assessment based on his specialized knowledge. However, these methods are difficult to say as simple evaluation methods because they require a large amount of data collection, complex data analysis, and training and training of skin evaluation specialists.
- Patent Document 1 a method of measuring the three-dimensional shape of a replica of the skin surface and converting the measurement data into a pitch signal to evaluate the state of the skin surface morphology (Patent Document 1), using a parameter representing the skin surface roughness as an index And a method for detecting morphological characteristics of the skin surface (Patent Document 2) and a method for evaluating the skin surface condition by analyzing unevenness data of the skin surface (see Patent Document 3).
- Patent Document 1 a method of measuring the three-dimensional shape of a replica of the skin surface and converting the measurement data into a pitch signal to evaluate the state of the skin surface morphology
- Patent Document 2 a method for detecting morphological characteristics of the skin surface
- Patent Document 3 a method for evaluating the skin surface condition by analyzing unevenness data of the skin surface
- the concept of fractal is a geometric concept used for self-similar figures created in mathematics research. Also, it is known that there are many things in nature that have a fractal shape! It is known to obtain the fractal dimension as one means of expressing the shape of the fractal nature. In recent years, a method of determining a specific state in a living body by calculating a fractal dimension has been reported. For example, the biological signal of the subject's characteristic anxiety level is analyzed by fractal analysis, and the anxiety level is evaluated from correlation with statistical data (Patent Document 6).
- Patent Document 7 A method for investigating a tissue state by fractal analysis of a sound pulse signal (Patent Document 7) and an automatic detection system for malignant cells using a fractal analysis (Patent Document 8) have been disclosed. Further, a method for evaluating the distribution of skin melanin pigments from the correlation between the pigment distribution of melanin and the like and the fractal dimension of the luminance of the pixels constituting the skin image has been disclosed (Patent Document 9). It has also been reported that skin age may be estimated using the fractal dimension of skin property values as an index (Non-patent Document 1).
- Patent Document 1 Japanese Patent Application Laid-Open No. 05-146412
- Patent Document 2 Japanese Patent Laid-Open No. 05-329329
- Patent Document 3 JP 04-305113 A
- Patent Document 4 Japanese Unexamined Patent Publication No. 61-64232
- Patent Document 5 Japanese Patent Laid-Open No. 02-46833
- Patent Document 6 JP 2001-299702 A
- Patent Document 7 Special Table of Japanese Patent Publication 11--507846
- Patent Literature 8 Special Table 2001--512824
- Patent Document 9 JP 2000-135207 A
- Non-patent document 1 “Skin age estimation method using skin image features and application to prevention of skin aging” (Masao Kasuga, New Technology Briefing Meeting from Northern University of Northern Tokyo, December 2, 2005) Document)
- the color system of skin surface images image A method for estimating the visual evaluation value of the three-dimensional shape of the skin surface from the fractal dimension of the signal distribution or the distribution of the undulation value of the skin (Japanese Patent Application No. 2006-046654), the color system of the image of the skin surface This is a method for estimating the visual evaluation value of the beauty of skin from the fractal dimension of the distribution of image signals or the fractal dimension of the distribution of skin relief (Japanese Patent Application No. 2006-046659).
- the present invention provides a method for estimating the visual evaluation value of the smoothness of the skin, an apparatus and a program for estimating the visual evaluation value of the smoothness of the skin, and the visual evaluation of the smoothness of the skin.
- the task is to enable anyone to easily and objectively and quantitatively estimate values.
- the present invention finds a skin property value largely related to a visual evaluation value of skin smoothness, a processed value thereof, and a combination of these values, and obtains a visual evaluation value of skin smoothness accurately and easily.
- the challenge is to provide a method.
- the present inventors seek a means for accurately estimating the visual evaluation value of the smoothness of the skin, and combine various skin property values, processed values, and these numerical values. In particular, we have been examining it.
- the present inventors paid attention to the relationship between the parameter representing the surface properties of the skin surface and the fractal dimension of the distribution of undulation values and the actual evaluation of the skin by a third party. Analyze how the fractal dimension of the cross-sectional curve parameter, roughness parameter, waviness parameter, and skin property values that represent the surface properties of the skin surface is related to the visual evaluation of the skin surface. It has been repeated. As a result, it was found that the roughness parameter and the fractal dimension calculated from the undulation value on the skin surface are values indicating important factors that form the smoothness of the skin. They found that there is a relationship between these values and age, and the results of evaluating the smoothness of the skin by a third party. And by using this relationship, it was found that the visual evaluation value of the smoothness of the skin can be accurately estimated using the roughness parameter and fractal dimension of the skin surface of the subject, and the present invention has been completed.
- the present invention is as follows. (1) a step of acquiring the undulation value of the subject's skin surface;
- a method for estimating a visual evaluation value of the smoothness of the skin is a method for estimating a visual evaluation value of the smoothness of the skin.
- Means for obtaining the undulation value of the skin surface of the subject
- a visual evaluation value estimation device for the smoothness of the skin is provided.
- Means for calculating the skin surface roughness parameter from the undulation value of the subject's skin surface means for calculating the fractal dimension of the skin surface from the undulation value of the subject's skin surface, a prepared skin surface roughness parameter, skin
- FIG. 1 is a diagram showing an example of a measurement target region of a face part.
- FIG. 2 is a diagram showing undulation value data obtained from a replica corrected by a Sine function.
- FIG. 3 is a diagram showing the concept of division in the box counting method.
- FIG. 4 is a diagram showing the concept of counting in the box counting method.
- FIG. 5 is a diagram showing a fractal dimension.
- FIG. 6 is a hardware block diagram of an estimation apparatus a that is an example of the estimation apparatus of the present invention.
- FIG. 7 is a diagram illustrating the concept of undulation value filtering.
- FIG. 8 is a diagram showing an example of a skin image used for visual evaluation (photo).
- FIG. 9 is a view showing a tin plate shape in the aging process.
- FIG. 10 is a diagram showing a relationship (scatter diagram) between the visual evaluation value of the smoothness of the skin estimated using Equation (7) and the visual evaluation value of the actual smoothness of the skin.
- FIG. 11 is a diagram showing the relationship (scatter plot) between the visual evaluation value of the smoothness of the skin estimated using equation (9) and the visual evaluation value of the actual smoothness of the skin.
- the method for estimating the visual evaluation value of the smoothness of the skin of the present invention includes the following steps.
- the "visual evaluation value of the smoothness of the skin” is a statistical evaluation value that represents how smooth the skin looks when a third party looks at the skin. Yes, specifically, it is a statistical evaluation value obtained by repeatedly determining which skin looks smooth when comparing one skin with another. That is, in the estimation method of the present invention, the “visual evaluation value of the smoothness of the skin” is not a subjective evaluation value obtained by processing and processing information obtained by visual observation using human spiritual activity.
- the undulation value is a numerical value indicating how high the reference surface force is at a point covering the surface of an object.
- the method of measuring the undulation value on the skin surface can be performed by a commonly used method, and may be measured directly from the skin or may be made by measuring a replica of the skin. It is preferable to measure the viewpoint power to be obtained by making a replica of the skin.
- the replica agent used for producing the skin replica can be used without particular limitation as long as it is usually used for skin diagnosis or the like.
- a replica agent using a silicon or polyvinyl alcohol (PVA) film is preferably shown.
- An example of such a replica agent is Asahi Biomed's Silicon ASB-01-WW, etc.
- the skin part for which a replica of the skin surface of the subject is acquired is not particularly limited as long as it is a part for which a visual evaluation value of the smoothness of the skin is to be estimated. Part. When the visual evaluation value of the smoothness of the skin is used for selection of cosmetics, it is preferable to obtain a replica of wrinkles.
- the replica can be obtained by a conventional method used for diagnosing skin shape and the like. For example, after washing your face, apply it to your skin for 20 minutes at 20 ° C and 50% humidity. Apply a power agent and collect it.
- the method for obtaining the undulation value from the replica is not particularly limited, and a normal method can be used.
- a normal method can be used.
- “Guide Evaluation Method Guidance”, Journal of the Japan Cosmetic Science Association, Vol. 28, No. 2 (2004) can be referred to.
- 3D roughness meters include high-precision 3D image processing equipment LIP (for example, LIP-50) from Science Systems Inc., SURFCOM from Tokyo Seimitsu Co., Ltd., VLH, PRIMOS (GFM Derma-TOP-blue (Breuckmann).
- LIP high-precision 3D image processing equipment
- LIP for example, LIP-50
- SURFCOM from Tokyo Seimitsu Co., Ltd., VLH, PRIMOS (GFM Derma-TOP-blue (Breuckmann).
- the scan interval when measuring the undulation value using these instruments is not particularly limited as long as sufficient data can be obtained to calculate the roughness parameter, but the interval is 10 / zm or less. It is preferable.
- LIP-50 perform 1000 scans at 10 m intervals in the x-direction and the Z- or y-direction vertical direction in the replica
- the replica is irradiated with oblique illumination using an optical projection device or the like, and the shadow portion of the replica convex portion is extracted, and the area, width, etc., the depth of the concave portion of the skin, the area ratio, etc. are measured.
- undulation values can also be obtained. Obtaining the relief value by irradiation with such oblique illumination is preferable because it is simple.
- the undulation value can be obtained by this method using, for example, a reflective 3D replica analysis system (Asahi Biomed).
- the roughness parameter of the subject's skin surface is calculated from the undulation value of the skin surface obtained as described above.
- Randomness parameter refers to parameters for calculating the roughness curve force defined by JIS standards, and 3D extended versions of these parameters (3D surface texture parameters).
- the meter that also calculates the roughness curve force defined in JIS standard is “Product geometric characteristics specification (GPS) —Surface property: Contour curve method—Terminology, definition and surface property parameter, JISB0601: 2001 J Ra (arithmetic mean length of roughness curve), RSm (average length of roughness curve), Rmr (load length ratio of roughness curve), Rp (maximum peak height of roughness curve) , Rv (Maximum depth of roughness curve), Rz (Maximum height of roughness curve), Rc (Average height of roughness curve), Rt (Maximum section height of roughness curve), Rq (Roughness) The root mean square height of the roughness curve, Rsk (the roughness curve skewness), Rku (the roughness curve kurtosis), etc.
- GPS General geometric characteristics specification
- Ra, RSm and Rmr are used. It is particularly preferred to use Rmr because these roughness parameters are in any direction obtained from the area where the undulation values are measured. If Rmr (Rmr in the horizontal direction) is used as the roughness parameter, it is preferable to obtain it from the extracted roughness curve in the horizontal direction (see Fig. 1). Yes.
- Examples of the three-dimensional surface property parameter include Sa, Sp, Sv, Sz, Sq, Ssk, Sku, and Smr.
- the section curve parameters such as Pa, PSm, and Pmr can be used as roughness parameters.
- the calculation of the skin surface roughness parameter is performed as follows. First, a cross-sectional curve of the skin surface is obtained from the obtained undulation value, and this is filtered to separate into a waviness curve (long wavelength component) and a roughness curve (short wavelength component). Examples of filter processing include Gaussian filter processing and 2CR filter processing. In the estimation method of the present invention, it is preferable to use Gaussian filter processing.
- the cutoff value c of the filter is preferably 3.5 to 0.5 mm.
- the calculation of the roughness parameter from the roughness curve is performed by a method based on the JIS standard.
- the parameters of Rmr, RSm, Ra, Rp, Rv, Rz, Rc, Rt, Rq, Rsk, Rku see “Product Geometric Characteristics Specification (GPS) —Surface Properties: Contour Curve Method—Terminology, Definitions and Surface Properties”
- GPS Product Geometric Characteristics Specification
- HYPERLINK https://orion.nagaokaut.ac.jp/ 3Dpara / index.html https://onon.nagaoKaut.ac.jp/3Dpara/index.html
- ASA— 03 General purpose software such as TalyHobson's Talymap3D analysis software or custom software can be used.
- the fractal dimension of the skin surface is calculated from the undulation value of the skin surface acquired above.
- Examples of methods for calculating the fractal dimension include a box counting method (box-counting), a correlation dimension method, and a fractional Brownian motion model.
- a square (cube) that completely covers an object is divided into squares (cubes) of any size, and a divided square that covers the size of the square (cube) and part of the object.
- This is a method for obtaining a fractal dimension from the relationship with the number of (cubes).
- N (h) the number of squares (cubes) that cover part of the object.
- the object is a fractal shape.
- D in Eq. (1) is the fractal dimension. Therefore, to obtain the fractal dimension D by the box counting method, c ⁇ h and N (h) are logarithmically plotted. Find the slope of the straight line.
- Such a box counting method is very simple and can be processed at high speed by a computer. However, the farther the target fractal dimension is from the half-integer value, the lower the analysis accuracy. Therefore, the effective box size is determined based on the standard deviation of the data in the box rather than simply determining whether or not a part of the object enters the box as in the general box counting method, It is preferred to use a method that includes the step of determining whether a portion of the object falls within the box.
- the two-dimensional discrete data f (x, y) existing in size XX Y is divided into areas S (X, y) of size hX h (m).
- the data in the present invention is data of the undulation value obtained above, that is, the height of the reference surface force. h can be arbitrarily determined.
- N (h) at size h is calculated by the following equation (3).
- a multiple regression equation showing the relationship between the skin surface roughness parameter, the fractal dimension and age of the skin surface, and the visual evaluation value of the three-dimensional shape of the skin surface used for estimation of the visual evaluation value is prepared in advance as follows. Keep it. The multiple regression equation created in this way is preferably stored so that it can be used for estimation of the visual evaluation value described later.
- the multiple regression equation is, for example, a force that can be created by the following method, but is not limited to this method.
- sample Acquire the undulation value of skin with sufficient distribution of skin condition and age (hereinafter also referred to as “sample”), and calculate the obtained undulation value force roughness parameter and fractal dimension.
- the undulation value acquisition, roughness parameter, and fractal dimension calculation can be performed in the same manner as described above.
- the number of samples used at this time is 30 or more, preferably 50 or more, and more preferably 200 or more.
- an evaluator suitable for representing a third party is prepared, the sample is presented, and the smoothness of the skin is visually evaluated.
- the sample used for this evaluation may be the skin itself or a photograph or image of the skin. When using photographs or images, it is preferable to use gray scale to remove the tint elements.
- These assessments may be absolute assessments such as scoring, but compared to another sample to ensure objectivity. Relative evaluation such as ranking is preferable. In ranking, if there is a difference, the ranking can be the same. In this case, in order to further ensure objectivity, it is preferable to explain that the evaluation is based only on skin elements that can be recognized only by visual observation.
- an evaluator suitable for representing a third party may be of any age or gender as long as it can at least understand the meaning of “smoothness of skin”.
- the number of evaluators is usually 4 or more, preferably 10 or more.
- the evaluation result of (3) is statistically processed, and a visual evaluation value of the smoothness of the skin surface is calculated for each sample.
- the visual evaluation value used in this statistical process may be the score obtained as it is, or when performing a relative evaluation by ranking, the smoothness of the skin is good even with the ranking itself. It may be a score given a high numerical value in ascending order.
- these visual evaluation values may be a total for each sample or may be an average value. For example, when ranking is performed for n samples, the average value of the total score of each sample can be obtained by setting the i-th score to n i + 1 and can be used as the visual evaluation value.
- the average value and standard deviation force of the sample can also be obtained as a visual evaluation value by obtaining a deviation value of each sample, or these values can be divided into arbitrary stages to obtain a visual evaluation value.
- the roughness parameter and fractal dimension of the skin surface of the subject obtained in (B) and (C) above, and the age of the subject were prepared in advance using the method of (D-1), etc. Substitute into the multiple regression equation indicating the relationship between the fractal dimension and age of the skin surface and the visual evaluation value of the smoothness of the skin, and estimate the visual evaluation value of the subject's skin smoothness. Estimated in this way The visual evaluation value of the smoothness of the applied skin can be displayed as it is, and it can be easily used in counseling and advice situations by processing it into data such as force deviation values and predefined ranks. It is preferable because it becomes a thing.
- the minimum and maximum values of the visual evaluation value of the sample used are equally divided into a plurality of arbitrary ranks. If the rank of the subject is displayed in alphabets or numbers, or in words indicating the level of smoothness, the visual evaluation value estimated for the subject can be displayed in terms of rank or language. .
- the estimation method of the present invention can be applied to the evaluation of an external preparation for skin.
- external preparations for skin it can be suitably applied particularly to the evaluation of cosmetics.
- the method for evaluating an external preparation for skin using the estimation method of the present invention (hereinafter also referred to as “the evaluation method for external preparation for skin of the present invention”) is used before and after the use of the external preparation for skin by the estimation method of the present invention.
- the visual evaluation value of the smoothness of the skin is estimated, and the result of the comparison of the visual evaluation values is used as an index to evaluate the external preparation for skin.
- the roughness parameter and fractal dimension of the subject's skin surface are calculated, and the roughness parameter and fractal dimension calculated according to the multiple regression equation prepared in advance and the age of the subject are calculated. Substituting and estimating the visual evaluation value of the smoothness of the skin before using the external preparation for skin.
- the visual evaluation value of the smoothness of the skin is estimated in the same procedure after the use of the external preparation for skin, and the visual evaluation value of the smoothness of the skin before and after the use of the external preparation for skin is compared. If the visual evaluation value of the smoothness of the skin after use of the obtained external preparation for skin shows a better value than the visual evaluation value of the smoothness of the skin before use of the external preparation for skin, then the external preparation for skin Can be evaluated as having the effect of improving the smoothness of the skin, and the greater the degree of increase, the higher the effectiveness of the external preparation for skin against the smoothness of the skin.
- the topical skin preparation can be evaluated as having an effect of not affecting the smoothness of the skin or reducing the smoothness of the skin.
- the method for evaluating an external preparation for skin of the present invention varies in result even if the evaluator changes. There is an advantage that a change with a small change amount can be accurately captured.
- estimation apparatus of the present invention includes the following means.
- the calculated skin surface roughness of the test subject is expressed in a multiple regression equation indicating the relationship between the skin surface roughness parameter, the fractal dimension and age of the skin surface, and the visual evaluation value of the smoothness of the skin.
- a method to obtain a visual evaluation value of skin smoothness by substituting parameters, fractal dimensions, and age is expressed in a multiple regression equation indicating the relationship between the skin surface roughness parameter, the fractal dimension and age of the skin surface, and the visual evaluation value of the smoothness of the skin.
- Figure 6 shows the input of the subject's age and the installation of a replica of the subject's skin surface. After obtaining the undulation value of the replica force skin surface, the roughness parameter and fractal dimension of the undulation value force skin surface are calculated. Substituting these numerical values and the input age into the multiple regression equation stored in the device to obtain a visual evaluation value of the smoothness of the skin and displaying it (estimation device a) It is a hardware block diagram of.
- the estimation device a includes an age input unit 1, an undulating value acquisition unit 2, a CPU (Central Processing Unit) 3, a ROM (Read Only Memory) 4, a RAM (Random Acces Memory) 5, and a magnetic disk.
- a device 6, a recording unit 7, an operation unit 8, and a display unit 9 are provided. They are connected to each other via a bus.
- the age input unit 1 is (A) a means for inputting the age of the subject, and can be an input device such as a keyboard or a microphone.
- the undulation value acquisition unit 2 (B) is a means for acquiring the undulation value of the subject's skin surface, such as a three-dimensional roughness meter It can be set as the apparatus which measures the undulation value of the surface of the skin.
- CPU3 includes (C) means for calculating the skin surface roughness parameter, (D) means for calculating the fractal dimension of the skin surface, and (E) a multiple regression equation to calculate the roughness of the subject's skin surface.
- This is a means of substituting parameters and fractal dimensions and age to obtain a visual evaluation value of the smoothness of the skin.
- the roughness parameter is calculated from the obtained relief values and the fractal dimension is obtained.
- ROM4 stores a program necessary for the function of the estimation device A and a multiple regression equation necessary for calculating a visual evaluation value.
- the RAM 5 temporarily stores a part of an OS (Operating System) program and application programs to be executed by the CPU 3.
- the magnetic disk device 6 is used as an external storage of the RAM 5 and has a recording unit 7.
- the operation unit 8 is operated when inputting necessary data such as a predetermined regression command.
- the display unit (F) is a means for outputting the obtained visual evaluation value, and can be, for example, a display device such as a liquid crystal display, an audio output device such as a speaker, or an output device such as a printer.
- the present invention also provides a program that causes a computer, another device, a machine, or the like to execute part or all of the processing.
- the present invention also provides a program in which such a program is recorded on a recording medium readable by a computer or the like.
- samples For the buttock of 248 women in their 10s and 50s (hereinafter also referred to as “samples”), the skin surface roughness parameters, the fractal dimension and age of the skin surface, and the visual evaluation value of the smoothness of the skin The relationship was analyzed.
- D100, lens: 60mm Macro lens was taken at a distance of 20cm to obtain an image.
- a 1.5 cm square from the center of the region shown in Fig. 1 was cut out from this image with a resolution of 300 pixels, and used as a sample image.
- a replica of the buttocks was collected, and then a highly accurate 3D image processing device LIP- from Science Systems Co., Ltd.
- the lcm * 1cm region in the center of the replica was scanned by 1000 laser scans at 10 m intervals in the y direction (vertical direction) (see Fig. 1) to obtain relief values.
- This undulating force force is obtained by filtering the obtained cross section curve (see Fig. 7), and the roughness parameters Rmr, RSm, Ra, Rp, Rv, Rz, Rc, Rt, Rq, Rsk, Rk based on JIS B0601: 2001 u was calculated.
- the roughness parameters were obtained from the horizontal and vertical cross-sectional curves, respectively.
- the five samplers evaluated the sample images visually.
- the image was grayscaled with Adobe Photoshop (registered trademark) of Adobe Systems Co., Ltd. (see FIG. 8) in order to remove the color element.
- this sample image is divided into 5 groups (50 people x 4 groups + 48 people XI group) so that each age is evenly included by random numbers, and each group, 5 evaluators in order of smooth skin.
- the scores were evenly distributed so that each group had 1 to 50 points with the smoothest to the least smoothness.
- the total score of each sample image was also averaged and used as a visual evaluation value for the smoothness of the skin.
- the horizontal regression curve force The multiple regression equation showing the relationship between the obtained Rmr, fractal dimension and age, and the visual evaluation value of the smoothness of the skin,
- the multiple correlation coefficient was 0.706 and P ⁇ 0.01.
- the multiple correlation coefficient was 0.710 and P was 0.01.
- Equation (7) and Equation (8) it can be seen that the fractal dimension and the surface roughness parameter have a high correlation with the visual evaluation value of the smoothness of the skin.
- a regression analysis (prediction formula) was performed by performing a regression analysis using the visual evaluation value (z) as an objective variable and the fractal dimension (b) of each skin surface obtained above as an explanatory variable. Obtained.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Biophysics (AREA)
- Pathology (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Veterinary Medicine (AREA)
- Physics & Mathematics (AREA)
- Molecular Biology (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Dermatology (AREA)
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
- Measuring And Recording Apparatus For Diagnosis (AREA)
Abstract
It is intended to provide a method of estimating the evaluation data on the skin smoothness with the naked eye, an apparatus for estimating the evaluation data on the skin smoothness with the naked eye and a program therefor so that the evaluation data on the skin smoothness with the naked eye can be conveniently, objectively and quantitatively estimated by anyone, Based on the irregularities on the skin surface of a subject, a roughness parameter and a fractal dimension are calculated. Then, the roughness parameter, fractal dimension and age of the subject are assigned to a multiple regression formula, which has been preliminarily prepared to indicate the relationship between the roughness parameter, the fractal dimension and the age and the evaluation data on the skin smoothness with the naked eye, to thereby estimate the evaluation data on the skin smoothness with the naked eye.
Description
明 細 書 Specification
肌のなめらかさの目視評価値の推定方法及び推定装置 Method and apparatus for estimating visual evaluation value of smoothness of skin
技術分野 Technical field
[0001] 本発明は、肌のなめらかさの目視評価値の推定方法及び推定装置に関し、更に詳 しくは、化粧料を販売する店頭などで、肌のなめらかさの目視評価値を簡便に推定 する方法、並びにこの方法に用いる装置及びプログラムに関する。 [0001] The present invention relates to a method and an apparatus for estimating a visual evaluation value of the smoothness of a skin, and more specifically, easily estimates a visual evaluation value of a smoothness of a skin at a store selling cosmetics. The present invention relates to a method, and an apparatus and program used for the method.
背景技術 Background art
[0002] 第三者によって、美 、肌であると認識されることは、女性のみならず多くの人の大 きな願いの一つである。このため、美しい肌に見せるための化粧料や美容法の研究 開発が盛んに行われている。し力しながら、肌の状態は個人によって大きく異なり、さ らに加齢や生活環境によっても変化するものであるため、化粧料の種類やィ匕粧方法 、肌の手入れ法等を適切に選択するためには、対象となる肌が第三者にどのように 見える力を客観的に判断することが必要である。例えば、デパートの化粧品売り場、 薬局、化粧品店の店頭においては、被験者の見た目の肌の美しさの程度を客観的 に評価する簡便な方法が求められている。 [0002] Recognizing beauty and skin by a third party is one of the great wishes of many people as well as women. For this reason, research and development of cosmetics and beauty methods to make the skin look beautiful is being actively conducted. However, since the skin condition varies greatly depending on the individual, and also changes depending on the aging and living environment, the type of cosmetics, makeup method, skin care method, etc. are selected appropriately. In order to do this, it is necessary to objectively determine how the target skin looks to a third party. For example, at department stores' cosmetics stores, pharmacies, and cosmetics stores, there is a need for a simple method that objectively evaluates the degree of skin beauty of the subject.
第三者の目視による肌の美しさは、大きく分けると「肌トラブルがな!/、」 、うネガティ ブな因子と、「肌がなめら力」というポジティブな因子により形成されることが、各種の 調査結果より明らかにされている。 The skin beauty of a third party can be broadly divided into “skin trouble! /,” A negative factor and a positive factor “skin smoothness”. It is made clear from the results of various surveys.
[0003] 「肌のなめらかさ」は、キメの細かさ、キメの方向の均一性、凹凸感やさらさら感等の 数々の因子が複合的に関連し合って形成されている。従って、第三者の目視による 肌のなめらかさ、すなわち、 "肌のなめら力さの目視評価値"を的確に推定するため には、被験者の肌表面の形態や水分量などを測定し、これらの測定結果を分析した り、肌の評価の専門家が被験者の肌を観察し、専門的知識に基づいて視覚的な官 能評価を行うことが必要とされてきた。し力しながら、これらの方法は、多くのデータ収 集、複雑なデータ分析、肌評価の専門家の育成'訓練などを必要とするため、簡便な 評価法とは言い難力つた。 [0003] "Smoothness of the skin" is formed by a combination of various factors such as fineness of texture, uniformity of texture direction, unevenness and smoothness. Therefore, in order to accurately estimate the smoothness of the skin by the third party's visual observation, that is, the “visual evaluation value of the smoothness of the skin”, the form and moisture content of the subject's skin surface are measured, It has been necessary to analyze the results of these measurements and to have a skin assessment specialist observe the subject's skin and perform a visual functional assessment based on his specialized knowledge. However, these methods are difficult to say as simple evaluation methods because they require a large amount of data collection, complex data analysis, and training and training of skin evaluation specialists.
一方、肌表面の形態を計測し、肌表面の性状を評価する技術が開発されている。
例えば、皮膚表面のレプリカの 3次元形状を測定し、測定データを音程信号に変換 して皮膚表面形態の状態を評価する方法 (特許文献 1)、皮膚の表面粗さを表すパラ メータを指標として、皮膚表面の形態的な特徴を検出する方法 (特許文献 2)、皮膚 表面の凹凸のデータを解析することにより肌表面状態の良好さを評価する方法 (特 許文献 3参照)が開示されている。 On the other hand, techniques for measuring the shape of the skin surface and evaluating the properties of the skin surface have been developed. For example, a method of measuring the three-dimensional shape of a replica of the skin surface and converting the measurement data into a pitch signal to evaluate the state of the skin surface morphology (Patent Document 1), using a parameter representing the skin surface roughness as an index And a method for detecting morphological characteristics of the skin surface (Patent Document 2) and a method for evaluating the skin surface condition by analyzing unevenness data of the skin surface (see Patent Document 3). Yes.
また、肌表面の性状を様々な方法で計測し、計測値の加工値などを用いて、肌の 状態を簡便に評価する技術も開発されている。例えば、皮膚表面やそのレプリカを適 当な光電変換手段で撮像して得られた画像情報をプログラムにより処理し、皮膚表 面形状や光学的性質を定量的に評価する方法も報告されている。例えば、皮膚のレ プリカに複数の光源を照射し、皮溝のパターンを抽出することにより、皮溝間隔や皮 溝方向を解析する装置 (特許文献 4参照)や皮膚表面画像の輝度を多段階のデジタ ル信号値に変換し、これを統計処理することにより皮膚表面形状を測定する方法 (特 許文献 5参照)等が開示されて 、る。 In addition, techniques have been developed to measure skin surface properties by various methods and to easily evaluate the skin condition using the processed values of the measured values. For example, a method for quantitatively evaluating the skin surface shape and optical properties by processing image information obtained by imaging the skin surface and its replica with an appropriate photoelectric conversion means by a program has been reported. For example, by applying multiple light sources to the skin replica and extracting the skin groove pattern, the device can analyze the skin gap spacing and skin direction (see Patent Document 4) and the brightness of the skin surface image in multiple stages. A method for measuring the skin surface shape by converting the digital signal value into a digital signal value and statistically processing the digital signal value is disclosed (see Patent Document 5).
このような方法により、高速'高精度に皮膚表面の形態情報を収集し、この常法に 基づいて肌の評価を簡便に行うことが可能になってきている。し力しながら、第三者 の目視による肌のなめらかさを形成する因子は未知のものもあり、さらにこれらの因子 どうしが複雑に関連していると考えられるため、現在の技術では肌のなめらかさの目 視評価値を的確に推定することは未だ困難である。 By such a method, it has become possible to collect skin surface morphology information at high speed and with high accuracy, and to easily evaluate the skin based on this conventional method. However, the factors that form the smoothness of the skin visually by third parties are unknown, and these factors are considered to be related in a complex manner. It is still difficult to accurately estimate the visual evaluation value.
このような背景において、第三者の目視による肌のなめらかさを形成する重要な因 子を見出し、より、高速'高精度に肌のなめらかさの目視評価値を推定する技術の開 発が求められている。 Under such circumstances, it is necessary to find an important factor that forms the smoothness of the skin visually by a third party, and to develop a technique for estimating the visual evaluation value of the smoothness of the skin at a higher speed and with higher accuracy. It has been.
一方、フラクタルという概念は、数学分野の研究において創造された自己相似的な 図形に用いられる幾何学的概念である。また、自然界には、フラクタルな形状を有し て!、るものが数多く存在して 、ることが知られて!/、る。フラクタルな性質の形状を表現 する 1つの手段として、フラクタル次元を求めることが知られている。近年では、フラク タル次元を算出することにより、生体における特定の状態を判断する方法が報告され ている。例えば、被験者の特性不安レベルの生体信号をフラクタル解析し、統計的 データとの相関から不安レベルを評価する方法や (特許文献 6)、組織からの反射超
音波パルス信号をフラクタル解析して、組織の状態を調査する方法 (特許文献 7)、フ ラタタル解析を利用した悪性細胞の自動検出システム (特許文献 8)が開示されて ヽ る。また、メラニン等の色素分布と肌の画像を構成する画素の輝度のフラクタル次元 の相関関係から、肌のメラニン色素分布を評価する方法が開示されている (特許文 献 9)。また、肌の性状値のフラクタル次元を指標とすれば、肌年齢の推定等が行え る可能性があることが報告されている(非特許文献 1)。し力しながら、フラクタル次元 の具体的な利用方法については明らかにされておらず、フラクタル次元と肌年齢の 関係やフラクタル次元と皮膚表面の立体形状の目視評価値等との関係は見出され ていない。 On the other hand, the concept of fractal is a geometric concept used for self-similar figures created in mathematics research. Also, it is known that there are many things in nature that have a fractal shape! It is known to obtain the fractal dimension as one means of expressing the shape of the fractal nature. In recent years, a method of determining a specific state in a living body by calculating a fractal dimension has been reported. For example, the biological signal of the subject's characteristic anxiety level is analyzed by fractal analysis, and the anxiety level is evaluated from correlation with statistical data (Patent Document 6). A method for investigating a tissue state by fractal analysis of a sound pulse signal (Patent Document 7) and an automatic detection system for malignant cells using a fractal analysis (Patent Document 8) have been disclosed. Further, a method for evaluating the distribution of skin melanin pigments from the correlation between the pigment distribution of melanin and the like and the fractal dimension of the luminance of the pixels constituting the skin image has been disclosed (Patent Document 9). It has also been reported that skin age may be estimated using the fractal dimension of skin property values as an index (Non-patent Document 1). However, the specific method of using the fractal dimension has not been clarified, and the relationship between the fractal dimension and the skin age, the relationship between the fractal dimension and the visual evaluation value of the three-dimensional shape of the skin surface, etc. has been found. Not.
[0005] 特許文献 1 特開平 05 - 146412号公報 [0005] Patent Document 1 Japanese Patent Application Laid-Open No. 05-146412
特許文献 2特開平 05 - - 329133号公報 Patent Document 2 Japanese Patent Laid-Open No. 05-329329
特許文献 3特開平 04 - - 305113号公報 Patent Document 3 JP 04-305113 A
特許文献 4特開昭 61 - -64232号公報 Patent Document 4 Japanese Unexamined Patent Publication No. 61-64232
特許文献 5特開平 02 - -46833号公報 Patent Document 5 Japanese Patent Laid-Open No. 02-46833
特許文献 6特開 2001 - - 299702号公報 Patent Document 6 JP 2001-299702 A
特許文献 7特表平 11 - - 507846号公報 Patent Document 7 Special Table of Japanese Patent Publication 11--507846
特許文献 8特表 2001 - - 512824号公報 Patent Literature 8 Special Table 2001--512824
特許文献 9特開 2000- - 135207号公報 Patent Document 9 JP 2000-135207 A
非特許文献 1:「肌画像の特徴量を利用した肌年齢推定方式と肌老化予防への対応 応用」(春日 正男、首都圏北部四大学発 新技術説明会 平成 17年 12月 2日 説 明資料) Non-patent document 1: “Skin age estimation method using skin image features and application to prevention of skin aging” (Masao Kasuga, New Technology Briefing Meeting from Northern University of Northern Tokyo, December 2, 2005) Document)
発明の開示 Disclosure of the invention
[0006] このような状況下、本発明者らは、肌の形態、性質などを表す種々の性状値と、肌 の美しさや皮膚の立体形状などの目視評価値との関係について分析を行ってきた。 そして、これらの結果に基づいて、簡便、客観的かつ定量的に、肌の美しさや皮膚の 立体形状などの目視評価値を推定する方法を発明し、既に特許出願を行っている。 例えば、肌のレプリカの Raなどの粗さパラメータを使用し、目に見える肌の美しさを客 観的に評価する方法 (特願 2005— 327355号)、肌の表面の画像の表色系の画像
信号の分布のフラクタル次元又は肌の起伏値の分布のフラクタル次元から、皮膚表 面の立体形状の目視評価値を推定する方法 (特願 2006— 046654号)、肌の表面 の画像の表色系の画像信号の分布のフラクタル次元又は肌の起伏値の分布のフラ クタル次元から、肌の美しさの目視評価値を推定する方法 (特願 2006— 046659号 )である。 [0006] Under such circumstances, the present inventors have analyzed the relationship between various property values representing the form and properties of the skin and visual evaluation values such as the beauty of the skin and the three-dimensional shape of the skin. I came. Based on these results, we have invented a method for estimating visual evaluation values such as the beauty of the skin and the three-dimensional shape of the skin simply, objectively and quantitatively, and have already filed patent applications. For example, using a roughness parameter such as Ra for skin replicas to objectively evaluate visible skin beauty (Japanese Patent Application No. 2005-327355), the color system of skin surface images image A method for estimating the visual evaluation value of the three-dimensional shape of the skin surface from the fractal dimension of the signal distribution or the distribution of the undulation value of the skin (Japanese Patent Application No. 2006-046654), the color system of the image of the skin surface This is a method for estimating the visual evaluation value of the beauty of skin from the fractal dimension of the distribution of image signals or the fractal dimension of the distribution of skin relief (Japanese Patent Application No. 2006-046659).
本発明は、肌状態の鑑別やィヒ粧料の適切な選択に有用な情報を与えるためのさら なる手段を提供することを目的とする。より具体的には、本発明は、肌のなめらかさの 目視評価値を推定する方法、肌のなめらかさの目視評価値を推定するための装置 及びプログラムを提供し、肌のなめらかさの目視評価値の推定を誰にでも簡便に客 観的かつ定量的に行えるようにすることを課題とする。また、本発明は、肌のなめらか さの目視評価値と大きく関係する肌の性状値、その加工値、これらの値の組み合わ せを見出し、肌のなめらかさの目視評価値を精度よく簡便に得る方法を提供すること を課題とする。 It is an object of the present invention to provide a further means for providing useful information for discrimination of skin condition and appropriate selection of a cosmetic. More specifically, the present invention provides a method for estimating the visual evaluation value of the smoothness of the skin, an apparatus and a program for estimating the visual evaluation value of the smoothness of the skin, and the visual evaluation of the smoothness of the skin. The task is to enable anyone to easily and objectively and quantitatively estimate values. In addition, the present invention finds a skin property value largely related to a visual evaluation value of skin smoothness, a processed value thereof, and a combination of these values, and obtains a visual evaluation value of skin smoothness accurately and easily. The challenge is to provide a method.
本発明者らは、上記課題を解決するために肌のなめらかさの目視評価値を的確に 推定する手段を求めて、さまざまな肌の性状値、その加工値、これらの数値を組み合 わせることにつ 、て検討を行ってきた。 In order to solve the above problems, the present inventors seek a means for accurately estimating the visual evaluation value of the smoothness of the skin, and combine various skin property values, processed values, and these numerical values. In particular, we have been examining it.
その過程で、本発明者らは、肌表面の表面性状を表すパラメータや起伏値の分布 のフラクタル次元と、肌を第三者が目視した実際の評価との関連性に着目した。そし て、肌表面の表面性状を表すパラメータである断面曲線パラメータ、粗さパラメータ、 うねりパラメータと、肌の性状値のフラクタル次元が、肌表面の目視評価とどのように 関連しているかについて分析を重ねてきた。その結果、肌表面の起伏値から算出し た粗さパラメータ及びフラクタル次元は、それぞれ肌のなめらかさを形成する重要な 因子を示す数値であることを見出した。そして、これらの数値及び年齢と、第三者の 目視による肌のなめらかさの評価結果の間には、ある関係があることを見出した。そし て、この関係を利用すれば、被験者の肌表面の粗さパラメータ及びフラクタル次元を 用いて肌のなめらかさの目視評価値を的確に推定できることを見出し、本発明を完 成するに至った。 In the process, the present inventors paid attention to the relationship between the parameter representing the surface properties of the skin surface and the fractal dimension of the distribution of undulation values and the actual evaluation of the skin by a third party. Analyze how the fractal dimension of the cross-sectional curve parameter, roughness parameter, waviness parameter, and skin property values that represent the surface properties of the skin surface is related to the visual evaluation of the skin surface. It has been repeated. As a result, it was found that the roughness parameter and the fractal dimension calculated from the undulation value on the skin surface are values indicating important factors that form the smoothness of the skin. They found that there is a relationship between these values and age, and the results of evaluating the smoothness of the skin by a third party. And by using this relationship, it was found that the visual evaluation value of the smoothness of the skin can be accurately estimated using the roughness parameter and fractal dimension of the skin surface of the subject, and the present invention has been completed.
すなわち、本発明は以下の通りである。
(1)被験者の肌表面の起伏値を取得する工程と、 That is, the present invention is as follows. (1) a step of acquiring the undulation value of the subject's skin surface;
該起伏値力 肌表面の粗さパラメータを算出する工程と、 A step of calculating a roughness parameter of the undulation force force skin surface;
該起伏値力 肌表面のフラクタル次元を算出する工程と、 Calculating the fractal force force fractal dimension of the skin surface;
予め用意した肌表面の粗さパラメータ、肌表面のフラクタル次元及び年齢と、肌の なめらかさの目視評価値の関係を示す重回帰式に、被験者の、前記算出した粗さパ ラメータ及びフラクタル次元、並びに年齢を代入し、肌のなめら力さの目視評価値を 得る工程 In the multiple regression equation showing the relationship between the skin surface roughness parameter, the skin surface fractal dimension and age, and the visual evaluation value of the smoothness of the skin, the calculated roughness parameter and fractal dimension of the subject, And assigning age to obtain visual evaluation value of smoothness of skin
とを含む、肌のなめらかさの目視評価値の推定方法。 A method for estimating a visual evaluation value of the smoothness of the skin.
(2)前記粗さパラメータ力 Rmr、 RSm及び Raの少なくとも 1つであることを特徴と する、(1)に記載の方法。 (2) The method according to (1), wherein the roughness parameter force is at least one of Rmr, RSm, and Ra.
(3)前記フラクタル次元が、ボックスカウンティング法により算出されることを特徴と する、(1)又は(2)に記載の方法。 (3) The method according to (1) or (2), wherein the fractal dimension is calculated by a box counting method.
(4)前記ボックスカウンティング法におけるボックスサイズの決定力 ボックス内の前 記起伏値の標準偏差に基づいて行われることを特徴とする、 (3)に記載の方法。 (4) Determining power of box size in the box counting method The method according to (3), characterized in that it is performed based on the standard deviation of the undulation value in the box.
(5)前記起伏値は、肌のレプリカ力も算出されることを特徴とする、(1)〜(4)の何 れか一に記載の方法。 (5) The method according to any one of (1) to (4), wherein the undulation value also calculates skin replica force.
(6) (1)〜(5)の何れか一に記載の肌のなめらかさの目視評価値の推定方法により 、皮膚外用剤の使用前後の肌のなめらかさの目視評価値を推定し、これらの目視評 価値を比較した結果を指標として皮膚外用剤を評価することを特徴とする、皮膚外用 剤の評価方法。 (6) Estimate the visual evaluation value of the smoothness of the skin before and after the use of the external preparation for skin by the method for estimating the visual evaluation value of the smoothness of the skin as described in any one of (1) to (5). A method for evaluating an external preparation for skin, characterized in that the external preparation for skin is evaluated using the result of comparing the visual evaluation values of as an index.
(7)被験者の年齢を入力する手段と、 (7) means for inputting the age of the subject;
被験者の肌表面の起伏値を取得する手段と、 Means for obtaining the undulation value of the skin surface of the subject;
該起伏値力 肌表面の粗さパラメータを算出する手段と、 Means for calculating a roughness parameter of the undulating force force,
該起伏値から肌表面のフラクタル次元を算出する手段と、 Means for calculating the fractal dimension of the skin surface from the undulation value;
予め用意した肌表面の粗さパラメータ、肌表面のフラクタル次元及び年齢と、肌の なめらかさの目視評価値の関係を示す重回帰式に、被験者の、前記算出した粗さパ ラメータ及びフラクタル次元、並びに年齢を代入し、肌のなめら力さの目視評価値を 得る手段と、
得られた目視評価値を表示する手段 In the multiple regression equation showing the relationship between the skin surface roughness parameter, the skin surface fractal dimension and age, and the visual evaluation value of the smoothness of the skin, the calculated roughness parameter and fractal dimension of the subject, And a means for substituting the age and obtaining a visual evaluation value of the smoothness of the skin, Means for displaying the obtained visual evaluation value
とを含む、肌のなめらかさの目視評価値の推定装置。 A visual evaluation value estimation device for the smoothness of the skin.
(8)コンピュータを、 (8) computer
被験者の肌表面の起伏値から肌表面の粗さパラメータを算出する手段と、 被験者の肌表面の起伏値から肌表面のフラクタル次元を算出する手段と、 予め用意した肌表面の粗さパラメータ、肌表面のフラクタル次元及び年齢と、肌の なめらかさの目視評価値の関係を示す重回帰式に、被験者の、前記算出した粗さパ ラメータ及びフラクタル次元、並びに年齢を代入し、肌のなめら力さの目視評価値を 得る手段 Means for calculating the skin surface roughness parameter from the undulation value of the subject's skin surface, means for calculating the fractal dimension of the skin surface from the undulation value of the subject's skin surface, a prepared skin surface roughness parameter, skin By substituting the calculated roughness parameter, fractal dimension, and age of the subject into the multiple regression equation showing the relationship between the surface fractal dimension and age and the visual evaluation value of the smoothness of the skin, the smoothness power of the skin Means for obtaining visual evaluation values
として機能させるための肌のなめら力さの目視評価値の推定プログラム。 図面の簡単な説明 Program for visual evaluation value of smoothness of skin for functioning as Brief Description of Drawings
[0009] [図 1]顔部位の計測対象領域の例を示す図である。 FIG. 1 is a diagram showing an example of a measurement target region of a face part.
[図 2]レプリカから得た起伏値データを Sine関数により補正したものを示す図である。 FIG. 2 is a diagram showing undulation value data obtained from a replica corrected by a Sine function.
[図 3]ボックスカウンティング法における、分割の概念を示す図である。 FIG. 3 is a diagram showing the concept of division in the box counting method.
[図 4]ボックスカウンティング法のカウントの概念を示す図である。 FIG. 4 is a diagram showing the concept of counting in the box counting method.
[図 5]フラクタル次元を示す図である。 FIG. 5 is a diagram showing a fractal dimension.
[図 6]本発明の推定装置の一例である、推定装置 aのハードウェアブロック図である。 FIG. 6 is a hardware block diagram of an estimation apparatus a that is an example of the estimation apparatus of the present invention.
[図 7]起伏値のフィルター処理の概念を示す図である。 FIG. 7 is a diagram illustrating the concept of undulation value filtering.
[図 8]目視評価に用いる肌の画像の例を示す図である(写真)。 FIG. 8 is a diagram showing an example of a skin image used for visual evaluation (photo).
[図 9]加齢プロセスにおけるトタン板状ィ匕を示す図である。 FIG. 9 is a view showing a tin plate shape in the aging process.
[図 10]式 (7)を用いて推定した肌のなめらかさの目視評価値と、実際の肌のなめらか さの目視評価値との関係 (散布図)を示す図である。 FIG. 10 is a diagram showing a relationship (scatter diagram) between the visual evaluation value of the smoothness of the skin estimated using Equation (7) and the visual evaluation value of the actual smoothness of the skin.
[図 11]式 (9)を用いて推定した肌のなめらかさの目視評価値と、実際の肌のなめらか さの目視評価値と関係 (散布図)を示す図である。 FIG. 11 is a diagram showing the relationship (scatter plot) between the visual evaluation value of the smoothness of the skin estimated using equation (9) and the visual evaluation value of the actual smoothness of the skin.
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
[0010] 本発明の肌のなめらかさの目視評価値の推定方法 (以下、「本発明の推定方法」と もいう。)は、以下の工程を含むことを特徴とする。 [0010] The method for estimating the visual evaluation value of the smoothness of the skin of the present invention (hereinafter, also referred to as "estimation method of the present invention") includes the following steps.
(A)被験者の肌表面の起伏値を取得する工程
(B)該起伏値力 肌表面の粗さパラメータを算出する工程 (A) The process of acquiring the undulation value of the skin surface of the subject (B) Step for calculating the roughness value force skin surface roughness parameter
(C)該起伏値力 肌表面のフラクタル次元を算出する工程 (C) Step of calculating the fractal dimension of the undulating force force on the skin surface
(D)予め用意した肌表面の粗さパラメータ、肌表面のフラクタル次元及び年齢と、 肌のなめらかさの目視評価値の関係を示す重回帰式に、被験者の、前記算出した粗 さパラメータ、フラクタル次元、及び年齢を代入し、肌のなめらかさの目視評価値を得 る工程 (D) In the multiple regression equation showing the relationship between the skin surface roughness parameter, the skin surface fractal dimension and age, and the visual evaluation value of the smoothness of the skin prepared in advance, the subject's calculated roughness parameter, fractal Substituting dimensions and age to obtain a visual evaluation value of the smoothness of the skin
[0011] 本発明の推定方法において、「肌のなめらかさの目視評価値」とは、第三者が肌を 目視した場合に、肌がどの程度なめらかに見えるかを現す統計的な評価値であり、 具体的には、ある肌と別の肌とを見比べた場合に、どちらの肌がなめらかに見えるか の判定を繰り返して得られる統計的な評価値である。すなわち、本発明の推定方法 において、「肌のなめらかさの目視評価値」は、目視により得られた情報を人間の精 神活動により加工、処理して得られる主観的な評価値ではな 、。 [0011] In the estimation method of the present invention, the "visual evaluation value of the smoothness of the skin" is a statistical evaluation value that represents how smooth the skin looks when a third party looks at the skin. Yes, specifically, it is a statistical evaluation value obtained by repeatedly determining which skin looks smooth when comparing one skin with another. That is, in the estimation method of the present invention, the “visual evaluation value of the smoothness of the skin” is not a subjective evaluation value obtained by processing and processing information obtained by visual observation using human spiritual activity.
[0012] (A)被験者の肌表面の起伏値を取得する工程 [0012] (A) A step of acquiring the undulation value of the skin surface of the subject
起伏値とは、ある対象の表面を覆う点が、基準面力もどれぐらいの高さであるかを示 す数値である。肌表面の起伏値の測定方法は、通常用いられる方法で行うことがで き、肌から直接測定してもよいし、肌のレプリカを作製して測定してもよいが、正確な 計測値を得る観点力もは、肌のレプリカを作製して測定することが好ま 、。 The undulation value is a numerical value indicating how high the reference surface force is at a point covering the surface of an object. The method of measuring the undulation value on the skin surface can be performed by a commonly used method, and may be measured directly from the skin or may be made by measuring a replica of the skin. It is preferable to measure the viewpoint power to be obtained by making a replica of the skin.
[0013] 肌のレプリカを作製するのに用いられるレプリカ剤は、通常肌の診断などに用いら れるものであれば特に制限なく用いることができる。例えば、シリコンやポリビニール アルコール (PVA)被膜を利用したレプリカ剤が好ましく示される。このようなレプリカ 剤としては、有限会社アサヒバイオメッドのシリコン ASB— 01—WW等が例示できる 。また、被験者の肌の表面のレプリカを取得する対象とする肌の部位は、肌のなめら 力さの目視評価値を推定したい部分であれば特に制限されず、頰などの顔面皮膚、 上腕内側部などが挙げられる。肌のなめらかさの目視評価値を化粧料の選択などに 利用する場合には、頰のレプリカを取得することが好ましい。例えば、頰部の 2cm * 2cm (図 1参照)の測定領域を設定し、これを含む部分のレプリカを取得すればょ 、。 また、レプリカを取得する方法は、肌の形状などを診断するのに用いられる常法によ り行うことができる。例えば、洗顔後 20°C、 50%湿度下で 20分程度おいた肌にレプリ
力剤を適用し、これを採取すればよい。 [0013] The replica agent used for producing the skin replica can be used without particular limitation as long as it is usually used for skin diagnosis or the like. For example, a replica agent using a silicon or polyvinyl alcohol (PVA) film is preferably shown. An example of such a replica agent is Asahi Biomed's Silicon ASB-01-WW, etc. In addition, the skin part for which a replica of the skin surface of the subject is acquired is not particularly limited as long as it is a part for which a visual evaluation value of the smoothness of the skin is to be estimated. Part. When the visual evaluation value of the smoothness of the skin is used for selection of cosmetics, it is preferable to obtain a replica of wrinkles. For example, if you set a measurement area of 2cm * 2cm (see Figure 1) on the buttock and get a replica of the part that contains it. The replica can be obtained by a conventional method used for diagnosing skin shape and the like. For example, after washing your face, apply it to your skin for 20 minutes at 20 ° C and 50% humidity. Apply a power agent and collect it.
[0014] レプリカから起伏値を取得する方法は、特に制限されず、通常の方法を用いること ができる。例えば、「シヮ評価法ガイダンス」、日本香粧品科学会誌別冊 Vol. 28, No .2 (2004)を参照することができる。 [0014] The method for obtaining the undulation value from the replica is not particularly limited, and a normal method can be used. For example, “Guide Evaluation Method Guidance”, Journal of the Japan Cosmetic Science Association, Vol. 28, No. 2 (2004) can be referred to.
具体的には、例えば、市販のレーザータイプの 3次元表面粗さ計を利用して、図 1 に示すような顔の部分力 採取したレプリカに対して水平方向(X方向)及び垂直方 向(y方向)にレーザースキャンを行って測定する方法が挙げられる。このような 3次元 粗さ計として、例えば、株式会社サイエンスシステムズ社の高精度 3次元画像処理装 置 LIP (例えば LIP— 50)、株式会社東京精密の SURFCOM、レーザーテック株式 会社の VLH、 PRIMOS (GFM社製)、 derma- TOP- blue (Breuckmann社製)等が 挙げられる。これらの機器を用いて起伏値を測定する際のスキャンの間隔は、粗さパ ラメータを算出するのに十分なデータが得られる範囲であれば特に制限されないが、 10 /z m以下の間隔で行うことが好ましい。例えば、 LIP— 50を用いてスキャンする場 合には、 x* yが lcm * 1cmのレプリカ領域に対して、 x方向及び Z又は y方向垂直 方向について 10 m間隔で 1000本の走査を行うことができる。 Specifically, for example, using a commercially available laser-type 3D surface roughness meter, the horizontal force (X direction) and vertical direction ( and a method of measuring by performing a laser scan in the y direction). Examples of such 3D roughness meters include high-precision 3D image processing equipment LIP (for example, LIP-50) from Science Systems Inc., SURFCOM from Tokyo Seimitsu Co., Ltd., VLH, PRIMOS (GFM Derma-TOP-blue (Breuckmann). The scan interval when measuring the undulation value using these instruments is not particularly limited as long as sufficient data can be obtained to calculate the roughness parameter, but the interval is 10 / zm or less. It is preferable. For example, when scanning with LIP-50, perform 1000 scans at 10 m intervals in the x-direction and the Z- or y-direction vertical direction in the replica area where x * y is lcm * 1 cm. Can do.
また、このようにして起伏値を得る際、 X方向と y方向のサンプリング周期が異なる場 合は、 Sine関数を用いてサンプリング周期を補正することが好ましい(図 2参照)。か ような補正によって、後述するフラクタル次元を正確に算出することができるからであ る。 In addition, when obtaining the undulation value in this way, if the sampling periods in the X and y directions are different, it is preferable to correct the sampling period using the Sine function (see Fig. 2). This is because the fractal dimension described later can be accurately calculated by such correction.
[0015] また、光投射装置などを用いて斜光照明をレプリカに照射し、レプリカ凸部の影部 分を抽出し、その面積 ·幅等力 肌の凹部の深さ、面積率等を計測する方法によって 、起伏値を得ることもできる。このような斜光照明の照射による起伏値の取得は、簡便 である点で好ましい。この方法による起伏値の取得は、例えば反射用 3Dレプリカ解 析システム (アサヒバイオメッド)等を用いて行うことができる。 [0015] In addition, the replica is irradiated with oblique illumination using an optical projection device or the like, and the shadow portion of the replica convex portion is extracted, and the area, width, etc., the depth of the concave portion of the skin, the area ratio, etc. are measured. Depending on the method, undulation values can also be obtained. Obtaining the relief value by irradiation with such oblique illumination is preferable because it is simple. The undulation value can be obtained by this method using, for example, a reflective 3D replica analysis system (Asahi Biomed).
[0016] また、半透明レプリカに光を照射し、透過した光量からレプリカの厚さを求め、レプリ 力の起伏値を得ることもできる(半透明レプリカ光透過法)。この方法による起伏値の 取得は、例えば、 3D皮膚解析システム ASA— 03 (アサヒバイオメッド)等を用いて行 うことができる。
[0017] また、肌から直接起伏値を得る方法として、例えば、格子状の光を肌に当てその光 のゆがみの特性を起伏値に換算する方法が挙げられ、市販されている機器を用いて 行うことができる。例えば、前記の PRIMOSや derma- TOP- blue等の機器を用いるこ とがでさる。 [0016] It is also possible to irradiate light to a translucent replica, obtain the thickness of the replica from the amount of transmitted light, and obtain the undulation value of the replica force (translucent replica light transmission method). For example, 3D skin analysis system ASA-03 (Asahi BioMed) can be used to acquire the relief values by this method. [0017] In addition, as a method for obtaining the relief value directly from the skin, for example, a method in which lattice-shaped light is applied to the skin and the characteristic of the light distortion is converted into the relief value, and a commercially available device is used. It can be carried out. For example, it is possible to use devices such as PRIMOS and derma-TOP-blue.
[0018] (B)粗さパラメータの算出 [0018] (B) Calculation of roughness parameter
上記のようにして求めた肌表面の起伏値から、被験者の肌表面の粗さパラメータを 算出する。 The roughness parameter of the subject's skin surface is calculated from the undulation value of the skin surface obtained as described above.
「粗さパラメータ」とは、 JIS規格で定められる粗さ曲線力 計算されるパラメータ、及 びこれらのパラメータの 3次元拡張版 (3次元表面性状パラメータ)をいう。 “Roughness parameter” refers to parameters for calculating the roughness curve force defined by JIS standards, and 3D extended versions of these parameters (3D surface texture parameters).
[0019] JIS規格で定められる粗さ曲線力も計算されるノ メータとしては、「製品の幾何学 特性仕様 (GPS)—表面性状:輪郭曲線方式—用語,定義及び表面性状パラメータ 、 JISB0601 : 2001 Jに規定される、 Ra (粗さ曲線の算術平均長さ)、 RSm (粗さ曲線 の平均長さ)、 Rmr (粗さ曲線の負荷長さ率)、 Rp (粗さ曲線の最大山高さ)、 Rv (粗さ 曲線の最大山深さ)、 Rz (粗さ曲線の最大高さ)、 Rc (粗さ曲線の平均高さ)、 Rt (粗 さ曲線の最大断面高さ)、 Rq (粗さ曲線の二乗平均平方根高さ)、 Rsk (粗さ曲線のス キューネス)、 Rku (粗さ曲線のクルトシス)等が挙げられる。本発明の推定方法にお いては、 Ra、 RSm及び Rmrを用いることが好ましぐ Rmrを用いることが特に好まし い。これらの粗さパラメータは、起伏値を測定した領域から得られるどの方向の断面 曲線カゝら抽出してもよ ヽ。粗さパラメータとして Rmr (水平方向の Rmr)を用いる場合 には水平方向(図 1参照)の断面曲線力 抽出した粗さ曲線から求めることが好まし い。 [0019] The meter that also calculates the roughness curve force defined in JIS standard is “Product geometric characteristics specification (GPS) —Surface property: Contour curve method—Terminology, definition and surface property parameter, JISB0601: 2001 J Ra (arithmetic mean length of roughness curve), RSm (average length of roughness curve), Rmr (load length ratio of roughness curve), Rp (maximum peak height of roughness curve) , Rv (Maximum depth of roughness curve), Rz (Maximum height of roughness curve), Rc (Average height of roughness curve), Rt (Maximum section height of roughness curve), Rq (Roughness) The root mean square height of the roughness curve, Rsk (the roughness curve skewness), Rku (the roughness curve kurtosis), etc. In the estimation method of the present invention, Ra, RSm and Rmr are used. It is particularly preferred to use Rmr because these roughness parameters are in any direction obtained from the area where the undulation values are measured. If Rmr (Rmr in the horizontal direction) is used as the roughness parameter, it is preferable to obtain it from the extracted roughness curve in the horizontal direction (see Fig. 1). Yes.
また、 3次元表面'性状ノ ラメータとしては、 Sa、 Sp、 Sv、 Sz、 Sq、 Ssk、 Sku、 Smr 等が挙げられる。 Examples of the three-dimensional surface property parameter include Sa, Sp, Sv, Sz, Sq, Ssk, Sku, and Smr.
[0020] また、本発明の推定方法においては、前記解析の面積が可及的に小さい場合、或 いは解析面のうねりの平坦さが確保できているような場合など、断面曲線の長波長成 分が小さい場合には、 Pa、 PSm、 Pmrなどの断面曲線パラメータを、粗さパラメータ とみなして用いることちでさる。 [0020] Further, in the estimation method of the present invention, when the area of the analysis is as small as possible, or when the waviness of the analysis surface is ensured, the long wavelength of the cross-sectional curve is obtained. If the component is small, the section curve parameters such as Pa, PSm, and Pmr can be used as roughness parameters.
[0021] 肌表面の粗さパラメータの算出は、以下のようにして行う。
まず、取得した起伏値から肌表面の断面曲線を得て、これをフィルター処理してう ねり曲線 (長波長成分)と粗さ曲線 (短波長成分)に分離する。フィルター処理として は、ガウシアン(Gaussian)フィルター処理、 2CRフィルター処理等が挙げられる。本 発明の推定方法においては、ガウシアンフィルター処理を用いることが好ましい。フィ ルターのカットオフ値え cは 3. 5〜0. 5mmが好ましい。 The calculation of the skin surface roughness parameter is performed as follows. First, a cross-sectional curve of the skin surface is obtained from the obtained undulation value, and this is filtered to separate into a waviness curve (long wavelength component) and a roughness curve (short wavelength component). Examples of filter processing include Gaussian filter processing and 2CR filter processing. In the estimation method of the present invention, it is preferable to use Gaussian filter processing. The cutoff value c of the filter is preferably 3.5 to 0.5 mm.
粗さ曲線からの粗さパラメータの算出は、 JIS規格に基づいた方法により行う。 Rmr 、 RSm、 Ra、 Rp、 Rv、 Rz、 Rc、 Rt、 Rq、 Rsk、 Rkuのパラメータについては、「製品 の幾何学特性仕様 (GPS)—表面性状:輪郭曲線方式-用語,定義及び表面性状 パラメータ, JIS B 0601 : 2001」に基づいた方法で算出すればよい。 3次元表面性 状パラメータの算出方法としては、例えば、 HYPERLINK "https://orion.nagaokaut.ac . jp/ 3Dpara/ index.html https://onon.nagaoKaut.ac.jp/3Dpara/index.htmlを参照する ことができる。また、これらの表面粗さパラメータを算出するには、例えば、 3次元表面 粗さ計に付属のソフトウェア、(有)アサヒバィォメッドのレプリカ解析ソフト ASA— 03 — R、 TalorHobson社の Talymap3D分析ソフトウェア等の汎用ソフトウェア、又は 特注したソフトウェアを用いることができる。 The calculation of the roughness parameter from the roughness curve is performed by a method based on the JIS standard. For the parameters of Rmr, RSm, Ra, Rp, Rv, Rz, Rc, Rt, Rq, Rsk, Rku, see “Product Geometric Characteristics Specification (GPS) —Surface Properties: Contour Curve Method—Terminology, Definitions and Surface Properties” The calculation should be based on the parameter, JIS B 0601: 2001. For example, HYPERLINK "https://orion.nagaokaut.ac.jp/ 3Dpara / index.html https://onon.nagaoKaut.ac.jp/3Dpara/index.html In order to calculate these surface roughness parameters, for example, the software included with the 3D surface roughness meter, Asahi Biomed's replica analysis software ASA— 03 — R General purpose software such as TalyHobson's Talymap3D analysis software or custom software can be used.
[0022] (C)フラクタル次元の算出 [0022] (C) Calculation of fractal dimension
上記で取得した肌表面の起伏値から、肌表面のフラクタル次元を算出する。 The fractal dimension of the skin surface is calculated from the undulation value of the skin surface acquired above.
フラクタル次元を算出する方法としては、ボックスカウンティング法 (box -counting) 、相関次元法、 fractional Brownian motion modelなどが挙げられる。 Examples of methods for calculating the fractal dimension include a box counting method (box-counting), a correlation dimension method, and a fractional Brownian motion model.
[0023] ボックスカウンティング法とは、対象を完全に覆う正方形(立方体)を任意の大きさの 正方形 (立方体)で分割し、その正方形 (立方体)の大きさとその対象の一部を覆う分 割正方形(立方体)の数との関係から、フラクタル次元を求める方法である。ある形状 が具体的には、対象を完全に覆う正方形 (立方体)を一辺の長さ hで分割した場合の 対象の一部を覆う正方形(立方体)の数を N (h)とした場合に、 rと N (h)の間に、 N (h) =c'h— D (cは定係数) …ひ) [0023] In the box counting method, a square (cube) that completely covers an object is divided into squares (cubes) of any size, and a divided square that covers the size of the square (cube) and part of the object. This is a method for obtaining a fractal dimension from the relationship with the number of (cubes). When a certain shape is specifically a square (cube) that completely covers the object divided by the length h of one side, the number of squares (cubes) that cover part of the object is N (h), Between r and N (h), N (h) = c'h— D (c is a constant coefficient)…
という近似式がよい相関で成り立つ場合に、その対象はフラクタルな形状であるとい え、このとき、式(1)における Dがフラクタル次元となる。従って、ボックスカウンティン グ法により、フラクタル次元 Dを求めるためには、 c ·hとN (h)を対数プロットし、得られ
た直線の傾きを求めればょ 、。 If the above approximate expression holds with a good correlation, the object is a fractal shape. At this time, D in Eq. (1) is the fractal dimension. Therefore, to obtain the fractal dimension D by the box counting method, c · h and N (h) are logarithmically plotted. Find the slope of the straight line.
[0024] このようなボックスカウンティング法は、非常に簡便であり、計算機での高速処理が 可能であるが、対象のフラクタル次元が半整数値カゝら遠いほど、その解析精度が低 下する。そこで、一般的なボックスカウンティング法のように単に対象の一部がボック ス内に入る力否かを判定するのではなぐボックス内のデータの標準偏差に基づいて 有効的なボックスサイズを決定し、対象の一部がボックス内に入るか否かを判定する 工程を含む方法を用いることが好まし 、。 [0024] Such a box counting method is very simple and can be processed at high speed by a computer. However, the farther the target fractal dimension is from the half-integer value, the lower the analysis accuracy. Therefore, the effective box size is determined based on the standard deviation of the data in the box rather than simply determining whether or not a part of the object enters the box as in the general box counting method, It is preferred to use a method that includes the step of determining whether a portion of the object falls within the box.
[0025] このようなフラクタル次元の算出は、具体的に以下のような方法で行うことができる。 [0025] The calculation of such a fractal dimension can be specifically performed by the following method.
(1)まず図 3に示すように、サイズ XX Yに存在する 2次元離散データ f (x, y)をサイ ズ hX h (m個)の領域 S (X, y)に分割する。本発明におけるデータは、上記で取得し た起伏値、すなわち基準面力もの高さのデータである。 hは、任意に決定することが できる。 (1) First, as shown in Fig. 3, the two-dimensional discrete data f (x, y) existing in size XX Y is divided into areas S (X, y) of size hX h (m). The data in the present invention is data of the undulation value obtained above, that is, the height of the reference surface force. h can be arbitrarily determined.
[0026] (2)領域 S〜Sのそれぞれについて、起伏値の標準偏差 σ σ を以下の式(2) [0026] (2) For each of the regions S to S, the standard deviation σ σ of the undulation value is expressed by the following equation (2)
1 m 1 m
により求める(図 4参照) (See Fig. 4)
[0027] [数 1] [0027] [Equation 1]
Λ:領域 Sのデータ数(Λ χ /;) Λ: Number of data in region S (Λ χ /;)
σ,. = JJ:領域 sをラスタ走査したときの j点でのデ—タ値 :領域 s内のデータの平均 σ ,. = JJ: Data value at point j when raster scanning area s: Average of data in area s
• · · ( 2 ) • · · (2)
[0028] (3)サイズ hでの N (h)を以下の式(3)により計算する。 [0028] (3) N (h) at size h is calculated by the following equation (3).
[0029] [数 2] [0029] [Equation 2]
[0030] このようにして N (h)を計算することにより、 11 11の領域3における標準偏差を有効
的なボックスの高さとしてボックスの個数をカウントすることができるため、データ計測 のノイズ等の突発的なノイズの影響を抑制することが可能となる。また、フラクタル次 元の推定に不可欠である、 1〜2桁近くの広いスケーリング範囲が得られる。 [0030] By calculating N (h) in this way, the standard deviation in region 11 of 11 11 is valid. Since the number of boxes can be counted as a typical box height, it is possible to suppress the influence of sudden noise such as noise in data measurement. In addition, a wide scaling range of 1 to 2 digits, which is indispensable for fractal dimension estimation, is obtained.
[0031] (4)サイズ hを大きくして f (x, y)を再分割し、(1)〜(3)の手順を用いて同様に N (h )を計算する。 (4) The size h is increased and f (x, y) is subdivided, and N (h) is calculated in the same manner using the procedures (1) to (3).
(5) h=X、又は h=Yとなるまで (4)を繰り返し、 N (h)を計算する。 (5) Repeat (4) until h = X or h = Y, and calculate N (h).
(6) logN (h)と loghの関係を表すグラフの傾き力 フラクタル次元 Dを求める(図 5 参照)。 (6) Obtain the gradient force D of the graph representing the relationship between logN (h) and logh (see Fig. 5).
[0032] (D)重回帰式を用いた肌のなめらかさの目視評価値の推定 [D] Estimation of visual evaluation value of smoothness of skin using multiple regression equation
(D— 1)重回帰式の作成 (D—1) Creating multiple regression equations
上記 (b)で求めた被験者の肌表面の粗さパラメータ、 (c)で求めた被験者の肌表面 のフラクタル次元、及び被験者の年齢を用いて、被験者の肌のなめらかさの目視評 価値を推定する。該目視評価値の推定に利用する肌表面の粗さパラメータ、肌表面 のフラクタル次元及び年齢と、皮膚表面の立体形状の目視評価値の関係を示す重 回帰式は、以下のようにして予め用意しておく。このようにして作成した重回帰式は、 後述する目視評価値の推定に利用可能なように、保存しておくことが好ましい。 Estimate the visual evaluation of the smoothness of the subject's skin using the roughness parameter of the subject's skin obtained in (b) above, the fractal dimension of the subject's skin obtained in (c), and the age of the subject. To do. A multiple regression equation showing the relationship between the skin surface roughness parameter, the fractal dimension and age of the skin surface, and the visual evaluation value of the three-dimensional shape of the skin surface used for estimation of the visual evaluation value is prepared in advance as follows. Keep it. The multiple regression equation created in this way is preferably stored so that it can be used for estimation of the visual evaluation value described later.
[0033] 重回帰式は、例えば以下の方法で作成することができる力 該方法に限定されな 、 [0033] The multiple regression equation is, for example, a force that can be created by the following method, but is not limited to this method.
(1)肌の状態や年齢などが十分に分布した肌 (以下、「サンプル」ともいう。)の起伏 値を取得し、取得した起伏値力 粗さパラメータと、フラクタル次元を算出する。起伏 値の取得、粗さパラメータ及びフラクタル次元の算出は、上述した方法と同様に行う ことができる。このとき用いるサンプルの数は、 30以上、好ましくは 50以上、さらに好 ましくは 200以上である。 (1) Acquire the undulation value of skin with sufficient distribution of skin condition and age (hereinafter also referred to as “sample”), and calculate the obtained undulation value force roughness parameter and fractal dimension. The undulation value acquisition, roughness parameter, and fractal dimension calculation can be performed in the same manner as described above. The number of samples used at this time is 30 or more, preferably 50 or more, and more preferably 200 or more.
[0034] (2)次に、第三者を代表するのに適当な評価者を用意し、前記サンプルを提示し、 肌のなめらかさを目視により評価してもらう。この評価に用いるサンプルは、肌そのも のでも良いし、肌の写真や画像でも良い。写真や画像を用いる場合には、色味要素 を除くため、グレイスケールィ匕することが好ましい。これらの評価は、得点付けのような 絶対的な評価であってもよ 、が、客観性を担保するために別のサンプルと比較して
順位付けを行うなどの相対的な評価であることが好ましい。順位付けにおいては、差 力 い場合は、同順位とすることもできる。この際、さらに客観性を担保するために、 評価は目視によってのみ認識できる肌の要素のみに基づいて行うことを説明すること が好ましい。ここで、第三者を代表するのに適当な評価者とは、少なくとも「肌のなめ らかさ」の意味を理解できるものであればよぐ年齢や性別は問わない。また、評価者 の数は、通常 4名以上、好ましくは 10名以上である。 [0034] (2) Next, an evaluator suitable for representing a third party is prepared, the sample is presented, and the smoothness of the skin is visually evaluated. The sample used for this evaluation may be the skin itself or a photograph or image of the skin. When using photographs or images, it is preferable to use gray scale to remove the tint elements. These assessments may be absolute assessments such as scoring, but compared to another sample to ensure objectivity. Relative evaluation such as ranking is preferable. In ranking, if there is a difference, the ranking can be the same. In this case, in order to further ensure objectivity, it is preferable to explain that the evaluation is based only on skin elements that can be recognized only by visual observation. Here, an evaluator suitable for representing a third party may be of any age or gender as long as it can at least understand the meaning of “smoothness of skin”. The number of evaluators is usually 4 or more, preferably 10 or more.
[0035] (3) (2)の評価は、繰り返し行うことが好ましい。繰り返しの回数は、評価者の数など により適宜調節すればよい。客観的な評価結果を得るために、通常 3回以上、好まし くは 4回以上、さらに好ましくは 5回以上評価を繰り返すのがよい。 [0035] (3) It is preferable to repeatedly evaluate (2). The number of repetitions may be appropriately adjusted according to the number of evaluators. In order to obtain an objective evaluation result, the evaluation should be repeated usually 3 times or more, preferably 4 times or more, more preferably 5 times or more.
[0036] (4)次に、(3)の評価結果を統計処理し、各サンプルごとに皮膚表面のなめらかさ の目視評価値を算出する。この統計処理に用いる目視評価値は、得られた得点その ものであってもよいし、順位付けによる相対的な評価を行った場合は、順位そのもの であっても、肌のなめらかさが良好な昇順に高い数値を与えた得点であってもよい。 またこれらの目視評価値は、サンプルごとの合計であってもよいし、平均値であっても よい。例えば、 n個のサンプルについて順位付けを行った場合に、 i番目のスコアを n i+ 1として、各サンプルの合計スコアの平均値を求め、目視評価値とすることがで きる。また、サンプルの平均値と標準偏差力も各サンプルの偏差値を求め、目視評価 値としたり、これらの値を任意の段階に分割して目視評価値とすることもできる。 (4) Next, the evaluation result of (3) is statistically processed, and a visual evaluation value of the smoothness of the skin surface is calculated for each sample. The visual evaluation value used in this statistical process may be the score obtained as it is, or when performing a relative evaluation by ranking, the smoothness of the skin is good even with the ranking itself. It may be a score given a high numerical value in ascending order. Further, these visual evaluation values may be a total for each sample or may be an average value. For example, when ranking is performed for n samples, the average value of the total score of each sample can be obtained by setting the i-th score to n i + 1 and can be used as the visual evaluation value. In addition, the average value and standard deviation force of the sample can also be obtained as a visual evaluation value by obtaining a deviation value of each sample, or these values can be divided into arbitrary stages to obtain a visual evaluation value.
[0037] (5)次に、(1)で求めた粗さパラメータ及びフラクタル次元、並びに年齢を説明変数 とし、 4)で求めた肌のなめらかさの評価値を目的変数として、重回帰分析 (MRA)し 、重回帰式を求める。このような重回帰分析は、常法により行うことができ、例えば、巿 販されて!/、る統計処理用ソフトウエアを用いて行うことができる。このときに用いる粗さ パラメータは、一種であっても、複数種であってもよい。 [0037] (5) Next, using the roughness parameter and fractal dimension obtained in (1) and age as explanatory variables, and the evaluation value of skin smoothness obtained in 4) as the objective variable, multiple regression analysis ( MRA) and obtain a multiple regression equation. Such a multiple regression analysis can be performed by an ordinary method, for example, using statistical processing software sold on the market! The roughness parameter used at this time may be one kind or plural kinds.
[0038] (D— 2)肌のなめら力さの目視評価値の推定 [0038] (D—2) Estimation of visual evaluation value of smoothness of skin
上記 (B)、(C)で求めた被験者の肌表面の粗さパラメータとフラクタル次元、及び被 験者の年齢を、(D—1)の方法等より予め用意した、肌表面の粗さパラメータ、肌表 面のフラクタル次元及び年齢と、肌のなめら力さの目視評価値の関係を示す重回帰 式に代入し、被験者の肌のなめらかさの目視評価値を推定する。このようにして推定
された肌のなめらかさの目視評価値は、そのまま得られた数値で表示することもでき る力 偏差値や予め規定したランクなどのデータに加工することにより、カウンセリング やアドバイスの場面において使用しやすいものとなるため好ましい。例えば、肌のな めらかさの目視評価値の推定に用いる重回帰式の作成において、用いたサンプル の目視評価値の最低値と最大値の間を任意の複数のランクに等分し、それぞれのラ ンクをアルファベットや数字で表示したり、なめら力さの程度を示す言葉などで表示し ておけば、被験者について推定された目視評価値を、ランクや言葉により表示するこ とがでさる。 The roughness parameter and fractal dimension of the skin surface of the subject obtained in (B) and (C) above, and the age of the subject were prepared in advance using the method of (D-1), etc. Substitute into the multiple regression equation indicating the relationship between the fractal dimension and age of the skin surface and the visual evaluation value of the smoothness of the skin, and estimate the visual evaluation value of the subject's skin smoothness. Estimated in this way The visual evaluation value of the smoothness of the applied skin can be displayed as it is, and it can be easily used in counseling and advice situations by processing it into data such as force deviation values and predefined ranks. It is preferable because it becomes a thing. For example, in the creation of the multiple regression equation used to estimate the visual evaluation value of the smoothness of the skin, the minimum and maximum values of the visual evaluation value of the sample used are equally divided into a plurality of arbitrary ranks. If the rank of the subject is displayed in alphabets or numbers, or in words indicating the level of smoothness, the visual evaluation value estimated for the subject can be displayed in terms of rank or language. .
本発明の推定方法は、皮膚外用剤の評価に応用することができる。皮膚外用剤の 中でも、特に化粧料の評価に好適に応用することができる。 The estimation method of the present invention can be applied to the evaluation of an external preparation for skin. Among external preparations for skin, it can be suitably applied particularly to the evaluation of cosmetics.
すなわち、本発明の推定方法を用いた皮膚外用剤の評価方法 (以下、「本発明の 皮膚外用剤の評価方法」ともいう。)は、本発明の推定方法により、皮膚外用剤の使 用前後の肌のなめらかさの目視評価値を推定し、これらの目視評価値を比較した結 果を指標として、皮膚外用剤を評価することを特徴とする。具体的には、皮膚外用剤 の使用前に、被験者の肌表面の粗さパラメータ及びフラクタル次元を算出し、予め用 意した重回帰式に算出した粗さパラメータ及びフラクタル次元、並びに被験者の年齢 を代入して、皮膚外用剤の使用前の肌のなめらかさの目視評価値を推定する。そし て、皮膚外用剤の使用後に同じ手順で、肌のなめらかさの目視評価値を推定し、皮 膚外用剤の使用前後の肌のなめらかさの目視評価値を比較する。得られた皮膚外 用剤の使用後の肌のなめらかさの目視評価値が、皮膚外用剤の使用前の肌のなめ らかさの目視評価値より、良好な値を示せば、その皮膚外用剤は肌のなめらかさを向 上させる作用を有すると評価することができ、その増大の程度が大きいほど皮膚外用 剤の肌のなめらかさに対する有効性が高いと評価することができる。反対に、皮膚外 用剤の使用後の肌のなめらかさの目視評価値が、皮膚外用剤の使用前の肌のなめ らかさの目視評価値と同じか、これより良好でない値を示せば、その皮膚外用剤は、 肌のなめらかさに対して影響を与えない、又は肌のなめらかさを低下させる作用を有 すると評価することができる。 That is, the method for evaluating an external preparation for skin using the estimation method of the present invention (hereinafter also referred to as “the evaluation method for external preparation for skin of the present invention”) is used before and after the use of the external preparation for skin by the estimation method of the present invention. The visual evaluation value of the smoothness of the skin is estimated, and the result of the comparison of the visual evaluation values is used as an index to evaluate the external preparation for skin. Specifically, before the use of the external preparation for skin, the roughness parameter and fractal dimension of the subject's skin surface are calculated, and the roughness parameter and fractal dimension calculated according to the multiple regression equation prepared in advance and the age of the subject are calculated. Substituting and estimating the visual evaluation value of the smoothness of the skin before using the external preparation for skin. Then, the visual evaluation value of the smoothness of the skin is estimated in the same procedure after the use of the external preparation for skin, and the visual evaluation value of the smoothness of the skin before and after the use of the external preparation for skin is compared. If the visual evaluation value of the smoothness of the skin after use of the obtained external preparation for skin shows a better value than the visual evaluation value of the smoothness of the skin before use of the external preparation for skin, then the external preparation for skin Can be evaluated as having the effect of improving the smoothness of the skin, and the greater the degree of increase, the higher the effectiveness of the external preparation for skin against the smoothness of the skin. On the other hand, if the visual evaluation value of the smoothness of the skin after the use of the external preparation for skin is the same as or less than the visual evaluation value of the smoothness of the skin before the use of the external preparation for skin, The topical skin preparation can be evaluated as having an effect of not affecting the smoothness of the skin or reducing the smoothness of the skin.
本発明の皮膚外用剤の評価方法は、評価者が変わっても結果にばらつきが生じる
ことがなぐ変化量の小さい変化も的確に捉えることができるという利点を有する。 The method for evaluating an external preparation for skin of the present invention varies in result even if the evaluator changes. There is an advantage that a change with a small change amount can be accurately captured.
[0040] 本発明の推定方法を実施するためには、以下に説明する肌のなめらかさの目視評 価値の推定装置 (以下、「本発明の推定装置」ともいう。)を用いることが好ましい。本 発明の推定装置は、以下の手段を含むことを特徴とする。 [0040] In order to carry out the estimation method of the present invention, it is preferable to use an apparatus for estimating the visual evaluation of the smoothness of skin described below (hereinafter also referred to as "estimation apparatus of the present invention"). The estimation apparatus of the present invention includes the following means.
(A)被験者の年齢を入力する手段 (A) Means to input subject's age
(B)被験者の肌表面の起伏値を取得する手段 (B) Means for obtaining the undulation value of the subject's skin surface
(C)該起伏値力も肌表面の粗さパラメータを算出する手段 (C) Means for calculating the roughness parameter of the skin surface
(D)該起伏値力 肌表面のフラクタル次元を算出する手段 (D) Means for calculating the undulation force force Fractal dimension of the skin surface
(E)予め用意した肌表面の粗さパラメータ、肌表面のフラクタル次元及び年齢と、 肌のなめらかさの目視評価値の関係を示す重回帰式に、被験者の、前記算出した肌 表面の粗さパラメータ及びフラクタル次元、並びに年齢を代入し、肌のなめらかさの 目視評価値を得る手段 (E) The calculated skin surface roughness of the test subject is expressed in a multiple regression equation indicating the relationship between the skin surface roughness parameter, the fractal dimension and age of the skin surface, and the visual evaluation value of the smoothness of the skin. A method to obtain a visual evaluation value of skin smoothness by substituting parameters, fractal dimensions, and age
(F)得られた目視評価値を出力する手段 (F) Means for outputting the obtained visual evaluation value
本発明の推定装置における各用語の定義は、上記本発明の推定方法における定 義と同じである。 The definition of each term in the estimation apparatus of the present invention is the same as the definition in the estimation method of the present invention.
[0041] 以下、図面を参照して、この発明を実施するための最良の形態を具体的に説明す る。但し、以下の構成は例示であり、本発明は実施形態の構成に限定されない。 図 6は、被験者の年齢の入力、被験者の肌表面のレプリカの設置を行うと、レプリカ 力 肌表面の起伏値を取得した後、該起伏値力 肌表面の粗さパラメータ及びフラク タル次元を算出し、これらの数値と入力された年齢を装置内に格納されている重回 帰式に代入して、肌のなめらかさの目視評価値を得て、これを表示する装置 (推定装 置 a)のハードウェアブロック図である。 Hereinafter, the best mode for carrying out the present invention will be specifically described with reference to the drawings. However, the following configuration is an example, and the present invention is not limited to the configuration of the embodiment. Figure 6 shows the input of the subject's age and the installation of a replica of the subject's skin surface. After obtaining the undulation value of the replica force skin surface, the roughness parameter and fractal dimension of the undulation value force skin surface are calculated. Substituting these numerical values and the input age into the multiple regression equation stored in the device to obtain a visual evaluation value of the smoothness of the skin and displaying it (estimation device a) It is a hardware block diagram of.
図 6に示すように、推定装置 aは、年齢入力部 1、起伏値取得部 2、 CPU (Central Processing Unit) 3、 ROM (Read Only Memory) 4、 RAM (Random Acc es Memory) 5、磁気ディスク装置 6、記録部 7、操作部 8、表示部 9を有している。こ れらは、相互にバスを介して接続されている。年齢入力部 1は、(A)被験者の年齢を 入力する手段であり、キーボード、マイクなどの入力装置とすることができる。起伏値 取得部 2は、(B)被験者の肌表面の起伏値を取得する手段であり、 3次元粗さ計など
の肌の表面の起伏値を計測する装置とすることができる。 CPU3は、(C)肌表面の粗 さパラメータを算出する手段、及び (D)肌表面のフラクタル次元を算出する手段、(E )重回帰式に、被験者の、前記算出した肌表面の粗さパラメータ及びフラクタル次元 、並びに年齢を代入し、肌のなめらかさの目視評価値を得る手段であり、 ROM4に 記憶されているプログラムに従って、取得された起伏値から、粗さパラメータの算出及 びフラクタル次元の算出や、 ROM4に記憶されている重回帰式によって肌のなめら かさの目視評価値の算出を行う処理等を実行する。 ROM4には、推定装置 Aが機能 する上で必要なプログラムゃ目視評価値の算出に必要な重回帰式などが記憶され ている。 RAM5は、 CPU3に実行させる OS (Operating System)のプログラムや アプリケーションプログラムの一部が一時的に格納される。磁気ディスク装置 6は、 R AM5の外部記憶として用いられ、記録部 7を有している。操作部 8は、所定のコマン ドゃ重回帰式などの必要なデータを入力するときなどに操作される。表示部 9は、 (F )得られた目視評価値を出力する手段であり、例えば、液晶ディスプレイなどの表示 装置やスピーカーなどの音声出力装置、プリンタなどの出力装置とすることができる。 As shown in FIG. 6, the estimation device a includes an age input unit 1, an undulating value acquisition unit 2, a CPU (Central Processing Unit) 3, a ROM (Read Only Memory) 4, a RAM (Random Acces Memory) 5, and a magnetic disk. A device 6, a recording unit 7, an operation unit 8, and a display unit 9 are provided. They are connected to each other via a bus. The age input unit 1 is (A) a means for inputting the age of the subject, and can be an input device such as a keyboard or a microphone. The undulation value acquisition unit 2 (B) is a means for acquiring the undulation value of the subject's skin surface, such as a three-dimensional roughness meter It can be set as the apparatus which measures the undulation value of the surface of the skin. CPU3 includes (C) means for calculating the skin surface roughness parameter, (D) means for calculating the fractal dimension of the skin surface, and (E) a multiple regression equation to calculate the roughness of the subject's skin surface. This is a means of substituting parameters and fractal dimensions and age to obtain a visual evaluation value of the smoothness of the skin. According to the program stored in ROM4, the roughness parameter is calculated from the obtained relief values and the fractal dimension is obtained. And a process for calculating a visual evaluation value of the smoothness of the skin using the multiple regression equation stored in ROM4. ROM4 stores a program necessary for the function of the estimation device A and a multiple regression equation necessary for calculating a visual evaluation value. The RAM 5 temporarily stores a part of an OS (Operating System) program and application programs to be executed by the CPU 3. The magnetic disk device 6 is used as an external storage of the RAM 5 and has a recording unit 7. The operation unit 8 is operated when inputting necessary data such as a predetermined regression command. The display unit (F) is a means for outputting the obtained visual evaluation value, and can be, for example, a display device such as a liquid crystal display, an audio output device such as a speaker, or an output device such as a printer.
[0042] また、本発明は、コンピュータ、その他の装置、機械等に前記処理の一部又は全部 を実行させるプログラムも提供する。また、本発明は、このようなプログラムをコンビュ ータ等が読み取り可能な記録媒体に記録したものも提供する。 [0042] The present invention also provides a program that causes a computer, another device, a machine, or the like to execute part or all of the processing. The present invention also provides a program in which such a program is recorded on a recording medium readable by a computer or the like.
実施例 Example
[0043] 以下に、本発明を実施例などを参照して詳細に説明する力 これにより本発明の範 囲が限定されることはない。 [0043] Hereinafter, the present invention will be described in detail with reference to examples and the like. This does not limit the scope of the present invention.
[0044] <重回帰式の作成 > [0044] <Create multiple regression equation>
10〜50代の 248名の女性の頰部(以下、「サンプル」ともいう。 )について、肌表面 の粗さパラメータ、肌表面のフラクタル次元及び年齢と、肌のなめらかさの目視評価 値との関係を解析した。 For the buttock of 248 women in their 10s and 50s (hereinafter also referred to as “samples”), the skin surface roughness parameters, the fractal dimension and age of the skin surface, and the visual evaluation value of the smoothness of the skin The relationship was analyzed.
まず、洗顔 20分後に、図 1に示す部位を中心として、市販のデジタルカメラ (Nikon First, 20 minutes after washing the face, the digital camera (Nikon)
D100,レンズ: 60mm Macroレンズ)を利用して 20cmの距離で撮影して画像を得た。 この画像から図 1に示す部位の中心から 1. 5cm四方を 300ピクセルの解像度で切り 出して、サンプル画像とした。
次に同部位の 2cm * 2cmより(有)アサヒバイオメッドのシリコン ABS— 01— WWを 用いて、頰部のレプリカを採取した後、株式会社サイエンスシステムズ社の高精度 3 次元画像処理装置 LIP— 50を用い、レプリカの中央部の lcm* 1cmの領域につい て、 y方向(垂直方向)(図 1参照)に 10 m間隔で 1000本のレーザースキャンを行 つて起伏値を得た。次に、 LIP— 50の X方向と y方向のサンプリング周期は、それぞ れ 9. 4 /ζ πι、 10 /z mと異なることから、 Sine関数を用いて x方向と y方向の間隔が何 れも 10 mとなるように補完処理をした。 D100, lens: 60mm Macro lens) was taken at a distance of 20cm to obtain an image. A 1.5 cm square from the center of the region shown in Fig. 1 was cut out from this image with a resolution of 300 pixels, and used as a sample image. Next, using Asahi Biomed's silicon ABS-01-WW from 2cm * 2cm of the same site, a replica of the buttocks was collected, and then a highly accurate 3D image processing device LIP- from Science Systems Co., Ltd. Using the 50, the lcm * 1cm region in the center of the replica was scanned by 1000 laser scans at 10 m intervals in the y direction (vertical direction) (see Fig. 1) to obtain relief values. Next, since the sampling period in the X and y directions of LIP-50 is different from 9.4 / ζ πι and 10 / zm, respectively, what is the interval between the x and y directions using the Sine function? Was also supplemented to 10 m.
この起伏値力 得た断面曲線をフィルター処理し(図 7参照)、 JIS B0601 : 2001 に基づいて粗さパラメータの Rmr、 RSm、 Ra、 Rp、 Rv、 Rz、 Rc、 Rt、 Rq、 Rsk、 Rk uを算出した。それぞれの粗さパラメータは、水平方向及び垂直方向の断面曲線そ れぞれから得た。 This undulating force force is obtained by filtering the obtained cross section curve (see Fig. 7), and the roughness parameters Rmr, RSm, Ra, Rp, Rv, Rz, Rc, Rt, Rq, Rsk, Rk based on JIS B0601: 2001 u was calculated. The roughness parameters were obtained from the horizontal and vertical cross-sectional curves, respectively.
また、前記ボックスカウンティング法をコンピュータに実行させるプログラムを用いて 、フラクタル次元を算出した。すなわち、前記ボックスカウンティング法において、 X= 1000、 Y= 1000、 hを 2、 4、 8、 16 · · · 2ηと変化させ、各 hに対して N (h)を算出した この算出結果から、 loghに対して logN (h)をプロットし、各サンプルについてフラク タル次元を求めた。 Further, the fractal dimension was calculated using a program for causing a computer to execute the box counting method. That is, in the box counting method, X = 1000, Y = 1000, h was changed to 2, 4, 8, 16 ... 2 η, and N (h) was calculated for each h. Then, logN (h) was plotted against logh, and the fractal dimension was obtained for each sample.
[0045] 上記で撮影してぉ 、たサンプル画像にっ 、て、 5人の評価者に目視評価を行って もらった。画像は、色味要素を除くためアドビシステムズ (株)の AdobePhotoshop ( 登録商標)でグレイスケールィ匕した(図 8参照)。続いて、このサンプル画像を乱数で 各年代が均等に含まれるように 5群に分け(50名 X 4群 +48名 X I群)、各群、 5人の 評価者によって肌がなめらかである順に順位付けを行ってもら 、、それぞれの群に おいて、最もなめらか〜最もなめらかでないで、 1〜50点となるように点数を均等分 配した。各サンプル画像の合計スコア力も平均値を得て、肌のなめらかさの目視評価 値とした。 [0045] After taking a picture of the above, the five samplers evaluated the sample images visually. The image was grayscaled with Adobe Photoshop (registered trademark) of Adobe Systems Co., Ltd. (see FIG. 8) in order to remove the color element. Subsequently, this sample image is divided into 5 groups (50 people x 4 groups + 48 people XI group) so that each age is evenly included by random numbers, and each group, 5 evaluators in order of smooth skin. When ranking was performed, the scores were evenly distributed so that each group had 1 to 50 points with the smoothest to the least smoothness. The total score of each sample image was also averaged and used as a visual evaluation value for the smoothness of the skin.
[0046] 続いて、上記で算出した粗さパラメータと年齢の関連性について解析した。その結 果、 Ra及び垂直方向の断面曲線から得られた Rmrが、年齢と共に単調に増加する のに対し、 RSmと水平方向の断面曲線力 得られた Rmrは、 30才代で最大ピークを
示すことが明ら力となった。これより、代表的な加齢プロセスにおいては、肌表面に毛 穴レベルの凹凸の形成 ·拡大にカ卩え、凹凸構造のふちの後退とたるみに基づぐ方 向性を持った凹凸構造の出現、すなわちトタン板状ィ匕が起こることが確認された(図 9 参照)。さらに、これらの粗さパラメータのうち、 Rmr、特に水平方向の Rmrは、フラク タル次元との関連性が低 、ことも判った。 [0046] Subsequently, the relationship between the roughness parameter calculated above and age was analyzed. As a result, Rmr obtained from Ra and the vertical cross-sectional curve monotonically increases with age, whereas RSm and horizontal cross-sectional curve force obtained Rmr peaked in the 30s. It became clear that showing. As a result, in a typical aging process, the unevenness structure with directionality based on the recession and sagging of the edge of the concavo-convex structure was observed in favor of the formation and expansion of pore-level concavo-convex on the skin surface. Appearance, that is, tin plate-like defects were confirmed (see Fig. 9). It was also found that among these roughness parameters, Rmr, especially Rmr in the horizontal direction, has a low relevance to the fractal dimension.
次に、前記で得た肌のなめらかさの目視評価値 (z)を目的変数として、上記で得た それぞれの肌表面の粗さパラメータ (a)、フラクタル次元 (b)、年齢 (c)を説明変数と して、重回帰分析を行って重回帰式 (予測式)を得た。 Next, using the visual evaluation value (z) of the smoothness of the skin obtained above as the objective variable, the roughness parameter (a), fractal dimension (b), and age (c) of each skin surface obtained above were calculated. As an explanatory variable, multiple regression analysis (prediction formula) was obtained by conducting multiple regression analysis.
その結果、粗さパラメータとして、 Ra、 RSm又は Rmrを用いると、肌のなめらかさの 目視評価値と高い相関が得られることが判明した。中でも、水平方向及び垂直方向 の断面曲線力 得られた Ra又は水平方向の断面曲線力 得られた Rmrを用いると、 肌のなめらかさの目視評価値と高い相関が得られることが判明した。 As a result, it was found that when Ra, RSm or Rmr was used as the roughness parameter, a high correlation was obtained with the visual evaluation value of the smoothness of the skin. In particular, it was found that using the obtained cross-sectional curve force in the horizontal direction and the vertical direction Ra or the obtained cross-sectional curve force in the horizontal direction gave a high correlation with the visual evaluation value of the smoothness of the skin.
水平方向の断面曲線力 得られた Rmr、フラクタル次元及び年齢と、肌のなめらか さの目視評価値の関係を示す重回帰式は、 The horizontal regression curve force The multiple regression equation showing the relationship between the obtained Rmr, fractal dimension and age, and the visual evaluation value of the smoothness of the skin,
z (肌のなめらかさの目視評価値) = 3. 77 * a (Rmr) + 117. 3 * b (フラクタル次元 )— 0. 379 * c (年齢)— 235. 62 …(7) z (Visual evaluation value of skin smoothness) = 3. 77 * a (Rmr) + 117. 3 * b (fractal dimension) — 0. 379 * c (age) — 235. 62… (7)
であり、重相関係数は 0. 706、 P< 0. 01であった。 The multiple correlation coefficient was 0.706 and P <0.01.
また、水平方向の Ra、フラクタル次元及び年齢と、肌のなめらかさの目視評価値の 関係をを示す重回帰式は、 The multiple regression equation showing the relationship between the horizontal Ra, fractal dimension and age and the visual evaluation value of the smoothness of the skin is
z (肌のなめら力さの目視評価値)=ー0. 694 * a (Ra) +83. 7 * b (フラクタル次 元)— 0. 388 * c (年齢)— 155. 63 …(8) z (Visual evaluation of skin smoothness) = -0.694 * a (Ra) +83. 7 * b (fractal dimension) — 0. 388 * c (age) — 155. 63… (8 )
であり、重相関係数は 0. 710、 Pく 0. 01であった。 The multiple correlation coefficient was 0.710 and P was 0.01.
式(7)及び式 (8)に示すように、フラクタル次元及び表面粗さパラメータと肌のなめ らかさの目視評価値とは、高い相関関係を有することが分かる。 As shown in Equation (7) and Equation (8), it can be seen that the fractal dimension and the surface roughness parameter have a high correlation with the visual evaluation value of the smoothness of the skin.
なお、垂直方向の Raを用いた場合も、水平方向の Raを用いた場合と同様に、高い 重相関係数が得られた。 When using Ra in the vertical direction, a high multiple correlation coefficient was obtained as in the case of using Ra in the horizontal direction.
また、比較のために、目視評価値 (z)を目的変数として、上記で得たそれぞれの肌 表面のフラクタル次元 (b)を説明変数として、回帰分析を行って回帰式 (予測式)を
得た。フラクタル次元と肌のなめらかさの目視評価値の関係を示す回帰式は、 z (肌のなめらかさの目視評価値) =— 162. 81b (フラクタル次元) + 396. 96 · · · ( 9) For comparison, a regression analysis (prediction formula) was performed by performing a regression analysis using the visual evaluation value (z) as an objective variable and the fractal dimension (b) of each skin surface obtained above as an explanatory variable. Obtained. The regression equation showing the relationship between the fractal dimension and the visual evaluation value of the smoothness of the skin is z (visual evaluation value of the smoothness of the skin) = — 162. 81b (fractal dimension) + 396. 96 · · · (9)
であり、相関係数は。. 603、 P< 0. 001であった。 And the correlation coefficient. 603, P <0. 001.
[0047] 式(7)及び式(9)を用いて得られた上記 248個の各サンプルの肌のなめらかさの 目視評価値 (Measured)と、上記評価者の評価により得られた目視評価値の関係( 散布図)を、それぞれ図 10及び図 11に示す。これらの図より、フラクタル次元のみを 用いても、肌のなめらかさの目視評価値を推定できるが、フラクタル次元とは相関性 が極めて低い粗さパラメータと年齢をさらに用いると、高精度に肌のなめら力さの目 視評価値を推定できることが判る。 [0047] The visual evaluation value (Measured) of the smoothness of the skin of each of the 248 samples obtained by using the equations (7) and (9), and the visual evaluation value obtained by the evaluation by the evaluator Fig. 10 and Fig. 11 show the relationship (scatter diagram). From these figures, the visual evaluation value of the smoothness of the skin can be estimated using only the fractal dimension, but if the roughness parameter and age, which are extremely low in correlation with the fractal dimension, are further used, the skin can be accurately estimated. It can be seen that the visual evaluation value of the smoothness can be estimated.
[0048] <実施例 1 > <Example 1>
レプリカを用いた肌のなめら力さの目視評価値の推定 Estimation of visual evaluation value of skin smoothness using replica
前記 248名に含まれない 18〜53才の 5名の女性被験者を対象に、前記の方法に て、頰部のレプリカを採取し、粗さパラメータ及びフラクタル次元を算出した後、前記 式(7)及び式 (8)に、これらの算出した粗さパラメータ及びフラクタル次元、並びに女 性被験者の年齢を代入して、肌のなめらかさの目視評価値を推定した。 For the five female subjects aged 18 to 53 years, not included in the 248 subjects, replicas of the buttocks were collected by the above method, and the roughness parameter and fractal dimension were calculated. ) And Eq. (8) were substituted for the calculated roughness parameter and fractal dimension, and the age of the female subject, and the visual evaluation value of the smoothness of the skin was estimated.
また、前記の方法と同様に、頰部の画像を用いて肌のなめらかさの目視評価値を 得て、この目視評価値を、上記の式 (7)及び式 (8)を用いて推定した目視評価値と 比較した (表 1)。表 1より、式 (7)及び式 (8)を用いて推定した目視評価値と、頰部の 画像の目視評価により得られた目視評価値は、極めて近い値であることが分かる。こ れより、本発明の推定方法によれば、極めて簡便、高精度に肌のなめらかさの目視 評価値の推定が行えることが判る。 Further, similarly to the above method, a visual evaluation value of the smoothness of the skin was obtained using the image of the buttock, and this visual evaluation value was estimated using the above formulas (7) and (8). Comparison with visual evaluation values (Table 1). From Table 1, it can be seen that the visual evaluation value estimated using Equation (7) and Equation (8) and the visual evaluation value obtained by visual evaluation of the image of the buttock are very close. From this, it can be seen that according to the estimation method of the present invention, the visual evaluation value of the smoothness of the skin can be estimated extremely simply and with high accuracy.
[0049] [表 1]
表 1 [0049] [Table 1] table 1
[0050] <実施例 2 > [0050] <Example 2>
皮膚外用剤の評価 Evaluation of topical skin preparation
30〜50才の 10名の女性被験者に、現在使用中のクリームに代えて、下記表 2に 示すコラーゲン線維束再構築剤入りの皮膚外用剤を用いて、 1ヶ月間の実使用テス トを行った。実使用テストの前後に、肌の頰部よりレプリカを採取し、前記方法に従つ て、水平方向の断面曲線力 得られる Rmr及びフラクタル次元を算出した後、これら の数値と、女性被験者の年齢を上記で得た式 (7)に代入して、第三者の目に映る肌 のなめら力さの目視評価値の推定値を求めた。実使用テスト前の三者の目に映る肌 のなめらかさの推定値は、 31. 7± 9. 0であったが、実使用テスト後は、 27. 9±8. 7 と減少した (対応ある t 検定で有意な差あり、 P< 0. 001)。これより、当該皮膚外用 剤は、肌のなめらかさを向上させる作用を有すると評価することができた。 Ten female subjects aged 30 to 50 years will be tested for one month using a skin external preparation containing a collagen fiber bundle remodeling agent shown in Table 2 below instead of the cream currently in use. went. Before and after the actual use test, replicas were collected from the heels of the skin, and the Rmr and fractal dimensions obtained for the horizontal cross-sectional curve force were calculated according to the method described above. Was substituted into Equation (7) obtained above to obtain an estimate of the visual evaluation value of the smoothness of the skin as seen by a third party. The estimated value of the smoothness of the skin as seen by the three people before the actual use test was 31.7 ± 9.0, but decreased to 27.9 ± 8.7 after the actual use test. There is a significant difference in some t-tests, P <0.001). From this, it was possible to evaluate that the external preparation for skin had an action of improving the smoothness of the skin.
[0051] [表 2]
[0051] [Table 2]
表 2 Table 2
(A) POE (3) セチノレエーテノレ 2 0 質量% グリセリ ンモノステアレー ト 1 0 0 質量% 流動バラフィン 1 0 0 質量% (A) POE (3) Cetinoreatenore 20% by mass Glycerin monostearate 10% by mass Flowable paraffin 100% by mass
2ーェチルへキサン酸ト リ グリセライ ド 4 9 質量% セタノ一ル 5 0 質量% ゥルソール酸べンジル 0 1 質量% 防腐剤 0. 2 質量%2-Ethylhexanoic acid triglyceride 4 9% by weight Cetanol 50% by weight Benzyl ursolate 0 1% by weight Preservative 0.2% by weight
(B) プロピレングリ コール 1 0. 0 質量% 精製水 5 7. 8 質量% 調製方法 (A) の各成分を合わせ、 8 0°Cに加熱する。 (B) の各成分を合 わせ、 8 0°Cに加熱する。 (A) の処方分を撹拌しながら、 それに (B) の処方分を加え撹拌乳化し、 その後冷却する。 産業上の利用の可能性 (B) Propylene glycol 1 0.0 mass% Purified water 5 7. 8 mass% Preparation method Combine the components of (A) and heat to 80 ° C. Combine the ingredients in (B) and heat to 80 ° C. While stirring the prescription of (A), add the prescription of (B) and emulsify with stirring, and then cool. Industrial applicability
本発明によれば、第三者の目視による肌のなめら力さを、誰でも簡便且つ的確に推 定することができる。本発明の方法を用いて肌のなめらかさを評価することにより、肌 のカウンセリングやィ匕粧料の適切な選択において、被験者に簡便に有用な情報を与 えることができる。
According to the present invention, anyone can easily and accurately estimate the smoothness of the skin visually observed by a third party. By evaluating the smoothness of the skin using the method of the present invention, useful information can be easily provided to the subject in the appropriate selection of skin counseling and cosmetics.
Claims
[1] 被験者の肌表面の起伏値を取得する工程と、 [1] A process of obtaining the undulation value of the skin surface of the subject;
該起伏値力 肌表面の粗さパラメータを算出する工程と、 A step of calculating a roughness parameter of the undulation force force skin surface;
該起伏値力 肌表面のフラクタル次元を算出する工程と、 Calculating the fractal force force fractal dimension of the skin surface;
予め用意した肌表面の粗さパラメータ、肌表面のフラクタル次元及び年齢と、肌の なめらかさの目視評価値の関係を示す重回帰式に、被験者の、前記算出した粗さパ ラメータ及びフラクタル次元、並びに年齢を代入し、肌のなめら力さの目視評価値を 得る工程 In the multiple regression equation showing the relationship between the skin surface roughness parameter, the skin surface fractal dimension and age, and the visual evaluation value of the smoothness of the skin, the calculated roughness parameter and fractal dimension of the subject, And assigning age to obtain visual evaluation value of smoothness of skin
とを含む、肌のなめらかさの目視評価値の推定方法。 A method for estimating a visual evaluation value of the smoothness of the skin.
[2] 前記粗さパラメータ力 Rmr、 RSm及び Raの少なくとも 1つであることを特徴とする [2] The roughness parameter force is at least one of Rmr, RSm and Ra
、請求項 1に記載の方法。 The method of claim 1.
[3] 前記フラクタル次元が、ボックスカウンティング法により算出されることを特徴とする、 請求項 1又は 2に記載の方法。 [3] The method according to claim 1 or 2, wherein the fractal dimension is calculated by a box counting method.
[4] 前記ボックスカウンティング法におけるボックスサイズの決定力 ボックス内の前記 起伏値の標準偏差に基づ 、て行われることを特徴とする、請求項 3に記載の方法。 [4] The method according to claim 3, wherein the determining power of the box size in the box counting method is performed based on a standard deviation of the undulation value in a box.
[5] 前記起伏値は、肌のレプリカ力も算出されることを特徴とする、請求項 1〜4の何れ か一項に記載の方法。 [5] The method according to any one of claims 1 to 4, wherein the undulation value is also calculated as a skin replica force.
[6] 請求項 1〜5の何れか一項に記載の肌のなめら力さの目視評価値の推定方法によ り、皮膚外用剤の使用前後の肌のなめらかさの目視評価値を推定し、これらの目視 評価値を比較した結果を指標として皮膚外用剤を評価することを特徴とする、皮膚外 用剤の評価方法。 [6] Estimate the visual evaluation value of the smoothness of the skin before and after using the skin external preparation by the method for estimating the visual evaluation value of the smoothness of the skin as described in any one of claims 1 to 5. And evaluating the external preparation for skin using the result of comparison of these visual evaluation values as an index.
[7] 被験者の年齢を入力する手段と、 [7] means to input the age of the subject;
被験者の肌表面の起伏値を取得する手段と、 Means for obtaining the undulation value of the skin surface of the subject;
該起伏値力 肌表面の粗さパラメータを算出する手段と、 Means for calculating a roughness parameter of the undulating force force,
該起伏値から肌表面のフラクタル次元を算出する手段と、 Means for calculating the fractal dimension of the skin surface from the undulation value;
予め用意した肌表面の粗さパラメータ、肌表面のフラクタル次元及び年齢と、肌の なめらかさの目視評価値の関係を示す重回帰式に、被験者の、前記算出した粗さパ ラメータ及びフラクタル次元、並びに年齢を代入し、肌のなめら力さの目視評価値を
得る手段と、 In the multiple regression equation showing the relationship between the skin surface roughness parameter, the skin surface fractal dimension and age, and the visual evaluation value of the smoothness of the skin, the calculated roughness parameter and fractal dimension of the subject, Substituting age and visual evaluation value of smoothness of skin Means to obtain,
得られた目視評価値を表示する手段 Means for displaying the obtained visual evaluation value
とを含む、肌のなめらかさの目視評価値の推定装置。 A visual evaluation value estimation device for the smoothness of the skin.
コンピュータを、 Computer
被験者の肌表面の起伏値から肌表面の粗さパラメータを算出する手段と、 被験者の肌表面の起伏値から肌表面のフラクタル次元を算出する手段と、 予め用意した肌表面の粗さパラメータ、肌表面のフラクタル次元及び年齢と、肌の なめらかさの目視評価値の関係を示す重回帰式に、被験者の、前記算出した粗さパ ラメータ及びフラクタル次元、並びに年齢を代入し、肌のなめら力さの目視評価値を 得る手段 Means for calculating the skin surface roughness parameter from the undulation value of the subject's skin surface, means for calculating the fractal dimension of the skin surface from the undulation value of the subject's skin surface, a prepared skin surface roughness parameter, skin By substituting the calculated roughness parameter, fractal dimension, and age of the subject into the multiple regression equation showing the relationship between the surface fractal dimension and age and the visual evaluation value of the smoothness of the skin, the smoothness power of the skin Means for obtaining visual evaluation values
として機能させるための肌のなめら力さの目視評価値の推定プログラム。
Program for visual evaluation value of smoothness of skin for functioning as
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008522347A JPWO2008001558A1 (en) | 2006-06-28 | 2007-05-21 | Method and apparatus for estimating visual evaluation value of smoothness of skin |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006177559 | 2006-06-28 | ||
JP2006-177565 | 2006-06-28 | ||
JP2006177565 | 2006-06-28 | ||
JP2006-177559 | 2006-06-28 | ||
JP2007042429 | 2007-02-22 | ||
JP2007-042429 | 2007-02-22 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2008001558A1 true WO2008001558A1 (en) | 2008-01-03 |
Family
ID=38845330
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2007/060348 WO2008001558A1 (en) | 2006-06-28 | 2007-05-21 | Method of estimating evaluation data on the skin smoothness with naked eye and estimation apparatus |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2008001558A1 (en) |
WO (1) | WO2008001558A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011152603A (en) * | 2010-01-27 | 2011-08-11 | Toyo Seiko Kk | Coverage measuring device |
JP2017140206A (en) * | 2016-02-10 | 2017-08-17 | 株式会社ファンケル | Texture evaluation method |
JP2021149632A (en) * | 2020-03-19 | 2021-09-27 | 株式会社マンダム | Information processor, method for evaluation, and information processing program |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001000419A (en) * | 1999-06-14 | 2001-01-09 | Procter & Gamble Co:The | Skin imaging and analyzing system and method for the same |
JP2007050158A (en) * | 2005-08-19 | 2007-03-01 | Utsunomiya Univ | Processing method and processor for skin image and method for estimating skin age using the same |
-
2007
- 2007-05-21 WO PCT/JP2007/060348 patent/WO2008001558A1/en active Application Filing
- 2007-05-21 JP JP2008522347A patent/JPWO2008001558A1/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001000419A (en) * | 1999-06-14 | 2001-01-09 | Procter & Gamble Co:The | Skin imaging and analyzing system and method for the same |
JP2007050158A (en) * | 2005-08-19 | 2007-03-01 | Utsunomiya Univ | Processing method and processor for skin image and method for estimating skin age using the same |
Non-Patent Citations (3)
Title |
---|
DOROGI P.L. ET AL.: "Assessment of Skin Conditions Using Profilometry", COSMETICS & TOILETRIES, vol. 104, March 1989 (1989-03-01), pages 39 - 43, XP003020207 * |
KURITA Y. ET AL.: "Hado no 3 Jigen Keisoku Data no Fractal Kaiseki (Fractal Analysis of Three Dimensional Skin Data)", DAI 25 KAI NIPPON SIMULATION GAKKAI TAIKAI HAHHYO RONBUNSHU, 22 June 2006 (2006-06-22), pages 179 - 182, XP003020206 * |
SAKAMOTO K. ET AL.: "Fractal Jigen o Tokucho Ryo to shite Riyo suru Hada Gazo Shori no Kento (Image Processing Using Fractal Dimension as a Skin Feature)", ITE TECHNICAL REPORT, vol. 29, no. 17, 26 February 2005 (2005-02-26), pages 41 - 42, XP003020208 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011152603A (en) * | 2010-01-27 | 2011-08-11 | Toyo Seiko Kk | Coverage measuring device |
JP2017140206A (en) * | 2016-02-10 | 2017-08-17 | 株式会社ファンケル | Texture evaluation method |
JP2021149632A (en) * | 2020-03-19 | 2021-09-27 | 株式会社マンダム | Information processor, method for evaluation, and information processing program |
Also Published As
Publication number | Publication date |
---|---|
JPWO2008001558A1 (en) | 2009-11-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI454736B (en) | Method for discriminating lines or wrinkles of skin and discriminating apparatus, discriminating program, and method for selecting external preparation for skin | |
Tilbury et al. | Second harmonic generation microscopy analysis of extracellular matrix changes in human idiopathic pulmonary fibrosis | |
Boone et al. | Differentiating allergic and irritant contact dermatitis by high-definition optical coherence tomography: a pilot study | |
JP2007252891A (en) | Estimation method of evaluation value by visual recognition of beauty of skin | |
JP2004174254A5 (en) | ||
US20080304736A1 (en) | Method of estimating a visual evaluation value of skin beauty | |
US10489906B2 (en) | Processing optical coherency tomography scans | |
TW201302154A (en) | Device and method for determining a skin inflammation score | |
JP6380988B2 (en) | Skin evaluation apparatus, method and program | |
Masuda et al. | Three‐dimensional morphological characterization of the skin surface micro‐topography using a skin replica and changes with age | |
Bargo et al. | Measurement of skin texture through polarization imaging | |
Zou et al. | Age‐dependent changes in skin surface assessed by a novel two‐dimensional image analysis | |
JP2009082338A (en) | Skin discrimination method using entropy | |
JP5635762B2 (en) | Method for calculating nipple shape or collagen-like structure | |
Koseki et al. | Assessment of skin barrier function using skin images with topological data analysis | |
Schmidlin et al. | Facial ageing in South African adult males | |
JP4800008B2 (en) | Skin beauty discrimination method | |
WO2008001558A1 (en) | Method of estimating evaluation data on the skin smoothness with naked eye and estimation apparatus | |
JP2007252892A (en) | Estimation method of evaluation value by visual recognition of three-dimensional shape of skin surface | |
Houser et al. | Shadow analysis via the C+ K Visioline: A technical note | |
Mikhael et al. | Clinimetric analysis of recently applied quantitative tools in evaluation of vitiligo treatment | |
Park et al. | Quantitative evaluation of severity in psoriatic lesions using three‐dimensional morphometry | |
JP2017217445A (en) | Skin condition discrimination method, cosmetic evaluation method, and cosmetic design method | |
EP1917908A1 (en) | Method and apparatus for obtaining a measurement of sun damage | |
Marin et al. | Analysis of correlation and construction of a predictive model of skin transparency using parameters from digital images of the face |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 07743782 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2008522347 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
NENP | Non-entry into the national phase |
Ref country code: RU |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 07743782 Country of ref document: EP Kind code of ref document: A1 |