WO2007067341A2 - Compositions and methods for increasing insulin sensitivity - Google Patents

Compositions and methods for increasing insulin sensitivity Download PDF

Info

Publication number
WO2007067341A2
WO2007067341A2 PCT/US2006/044966 US2006044966W WO2007067341A2 WO 2007067341 A2 WO2007067341 A2 WO 2007067341A2 US 2006044966 W US2006044966 W US 2006044966W WO 2007067341 A2 WO2007067341 A2 WO 2007067341A2
Authority
WO
WIPO (PCT)
Prior art keywords
anticonvulsant
insulin
opioid antagonist
psychotherapeutic agent
pharmaceutically
Prior art date
Application number
PCT/US2006/044966
Other languages
French (fr)
Other versions
WO2007067341A3 (en
Inventor
Michael A. Cowley
Anthony A. Mckinney
Gary Tollefson
Original Assignee
Orexigen Therapeutics, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=38016941&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2007067341(A2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Orexigen Therapeutics, Inc. filed Critical Orexigen Therapeutics, Inc.
Priority to CA2630624A priority Critical patent/CA2630624C/en
Priority to AU2006323048A priority patent/AU2006323048B2/en
Priority to EP16179626.3A priority patent/EP3132792B1/en
Priority to EP06847477A priority patent/EP1951212A2/en
Priority to JP2008542399A priority patent/JP5180092B2/en
Priority to BRPI0618918A priority patent/BRPI0618918B8/en
Priority to MX2013007864A priority patent/MX337422B/en
Priority to CN2006800511570A priority patent/CN101370488B/en
Publication of WO2007067341A2 publication Critical patent/WO2007067341A2/en
Publication of WO2007067341A3 publication Critical patent/WO2007067341A3/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/22Hormones
    • A61K38/28Insulins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/13Amines
    • A61K31/135Amines having aromatic rings, e.g. ketamine, nortriptyline
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/13Amines
    • A61K31/135Amines having aromatic rings, e.g. ketamine, nortriptyline
    • A61K31/137Arylalkylamines, e.g. amphetamine, epinephrine, salbutamol, ephedrine or methadone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/13Amines
    • A61K31/135Amines having aromatic rings, e.g. ketamine, nortriptyline
    • A61K31/138Aryloxyalkylamines, e.g. propranolol, tamoxifen, phenoxybenzamine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/35Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/357Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having two or more oxygen atoms in the same ring, e.g. crown ethers, guanadrel
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/42Oxazoles
    • A61K31/423Oxazoles condensed with carbocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • A61K31/445Non condensed piperidines, e.g. piperocaine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • A61K31/445Non condensed piperidines, e.g. piperocaine
    • A61K31/4523Non condensed piperidines, e.g. piperocaine containing further heterocyclic ring systems
    • A61K31/4525Non condensed piperidines, e.g. piperocaine containing further heterocyclic ring systems containing a five-membered ring with oxygen as a ring hetero atom
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/47Quinolines; Isoquinolines
    • A61K31/485Morphinan derivatives, e.g. morphine, codeine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/519Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim ortho- or peri-condensed with heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/54Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one sulfur as the ring hetero atoms, e.g. sulthiame
    • A61K31/5415Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one sulfur as the ring hetero atoms, e.g. sulthiame ortho- or peri-condensed with carbocyclic ring systems, e.g. phenothiazine, chlorpromazine, piroxicam
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/55Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having seven-membered rings, e.g. azelastine, pentylenetetrazole
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/55Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having seven-membered rings, e.g. azelastine, pentylenetetrazole
    • A61K31/551Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having seven-membered rings, e.g. azelastine, pentylenetetrazole having two nitrogen atoms, e.g. dilazep
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/55Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having seven-membered rings, e.g. azelastine, pentylenetetrazole
    • A61K31/551Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having seven-membered rings, e.g. azelastine, pentylenetetrazole having two nitrogen atoms, e.g. dilazep
    • A61K31/55131,4-Benzodiazepines, e.g. diazepam or clozapine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/55Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having seven-membered rings, e.g. azelastine, pentylenetetrazole
    • A61K31/554Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having seven-membered rings, e.g. azelastine, pentylenetetrazole having at least one nitrogen and one sulfur as ring hetero atoms, e.g. clothiapine, diltiazem
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7042Compounds having saccharide radicals and heterocyclic rings
    • A61K31/7048Compounds having saccharide radicals and heterocyclic rings having oxygen as a ring hetero atom, e.g. leucoglucosan, hesperidin, erythromycin, nystatin, digitoxin or digoxin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P5/00Drugs for disorders of the endocrine system
    • A61P5/48Drugs for disorders of the endocrine system of the pancreatic hormones
    • A61P5/50Drugs for disorders of the endocrine system of the pancreatic hormones for increasing or potentiating the activity of insulin

Definitions

  • the present invention is in the field of pharmaceutical compositions and methods for the treatment of insulin related disorders in individuals.
  • Diabetes is a chronic disease that has no cure.
  • Diabetes is a group of diseases characterized by high blood glucose levels, which result from defects in insulin production, insulin action, or both. Because diabetes can remain undiagnosed for years, many people become aware that they have diabetes only after the development of one of its life-threatening complications. It is well- accepted that both genetics and environmental factors, such as obesity and lack of exercise, are important factors in the onset of diabetes.
  • Type 1 diabetes or insulin-dependent diabetes mellitus or juvenile-onset diabetes
  • pancreatic cells that make the hormone insulin, which regulates blood glucose levels.
  • Type 1 diabetes usually occurs in children and young adults, although disease onset can occur at any age.
  • Type 1 diabetes accounts for about 5 to 10 percent of all diagnosed cases of diabetes. Risk factors for Type 1 diabetes include autoimmune, genetic,- and environmental factors. Individuals diagnosed with Type 1 diabetes require daily delivery of insulin via injections or pumps.
  • Type 2 diabetes non-insulin- dependent diabetes mellitus (NIDDM) or adult-onset diabetes
  • NIDDM non-insulin- dependent diabetes mellitus
  • Type 2 diabetes results from the body's inability to make either sufficient insulin (abnormal insulin secretion) or its inability to effectively use insulin (resistance to insulin action in target organs and tissues).
  • This disease usually begins as insulin resistance, a disorder in which the cells do not use insulin properly, and as the need for insulin rises, the pancreas gradually loses its ability to produce insulin.
  • Patients suffering from Type 2 diabetes have a relative insulin deficiency.
  • Type 2 diabetes is the most common form of the disease accounting for 90-95% of diabetes. Type 2 diabetes is nearing epidemic proportions, due to an increased number of older Americans and a greater prevalence of obesity and a sedentary lifestyle.
  • Type II diabetes mellitus is characterized by the following clinical signs or symptoms: persistently elevated plasma glucose concentration or hyperglycemia; polyuria; polydipsia and/or polyphagia; chronic microvascular complications such as retinopathy, nephropathy and neuropathy; and macrovascular complications such as hyperlipidemia and hypertension.
  • These micro-and macro-vascular complications can lead to blindness, end-stage renal disease, limb amputation and myocardial infarction
  • Gestational diabetes refers to a form of glucose intolerance that is diagnosed in pregnant women. During pregnancy, gestational diabetes requires treatment to normalize maternal blood glucose levels to avoid complications in the infant. A percentage (5-10 percent) of women with gestational diabetes have Type 2 diabetes after pregnancy. Women who have had gestational diabetes also have a 20-50 percent chance of developing diabetes in the next 5-10 years.
  • GK liver glucokinase
  • Van Schaftingen E. et al., Adv. Enzyme Regul. 32:133-148, 1992
  • Studies involving transgenic diabetic mice have shown that increased GK copy number results in increased hepatic glucose metabolism and decreased plasma glucose levels (Ferre, T. et al., Proc. Natl. Acad. Sci. USA, 93:7225-7230, 1996; FASEB J., 10:1213-1218, 1996; Niswender, K. D. et al., J. Biol. Chem., 272:22570-22575, 1997), demonstrating that increasing liver GK may be effective in reducing hyperglycemia in diabetes.
  • U.S. Patent No. 5,714,519 discloses methods for controlling either hyperinsulinemia or insulin resistance by administering panthethine (see claims 1-18; col. 5, lines 6-15) or cysteamine (see claims 19-27; col. 5, lines 16-22) at predetermined intervals during the day.
  • panthethine or cysteamine for example, 500 mg of cysteamine
  • cysteamine or panthethine can also cause undesirable gastrointestinal symptoms, such as increased acid output or even ulcers (Srivastava, P. K. & L. Field, J. Med. Chem., 18(8):798-802, 1975).
  • U.S. Patent No. 6,686,337 discloses methods for treating Type II diabetes using a combination of a specified sulfamate and an antidiabetic agent.
  • An embodiment provides a method of treating a blood-glucose condition, comprising identifying a subject having a blood-glucose condition in need of treatment and administering to the subject an amount of a composition that is effective to modulate a blood-glucose level, wherein the composition comprises at least one selected from a non-sulfamate anticonvulsant; a psychotherapeutic agent; an opioid antagonist; a combination of a psychotherapeutic agent and an opioid antagonist; a combination of a psychotherapeutic agent and an anticonvulsant; a combination of an opioid antagonist and an anticonvulsant; and a combination of an opioid antagonist, an anticonvulsant, and a psychotherapeutic agent.
  • the subject can suffer from at least one condition selected from diabetes, insulin resistance, hyperinsulinemia, impaired glucose metabolism, and hyperglycemia.
  • the condition is insulin resistance.
  • the condition is Type 2 diabetes.
  • Suitable psychotherapeutic agents include: ami tripty line, aripiprazole, benzodiazepines, bupropion, carbamezepine, clomipramine, clozapine, desipramine, dothiapen, doxepin, elatriptan, other triptans, fluoxetine, imipramine, lamotrogine, lithium, maprotiline, mirtazapine, nortriptyline, olanzapine, oxycarbamezepine, paroxetine, protriptyline, quetiapine, risperidone, setiptiline, sumatriptan, tiagabine, trimipramine, valproate, ziprasidone, and zolmitriptan, or a pharmaceutically-acceptable salt or prodrug thereof.
  • the psychotherapeutic agent is selected from: bupropion, mirtazapine, olanzapine, setiptiline, fluoxetine, and
  • anticonvulsants include: 5,5-diphenylhydantoin, benzodiazepine, carbamazepine, clonazepam, clorazepate, diazepam, divalproex, ethosuximide, felbamate, fosphenytoin, gabapentin, lamotrigine, levetiracetam, methsuximide, oxcarbazepine, phenytoin, pregabalin, tiagabine, topiramate, valproate, valproic acid, and zonisamide, or a pharmaceutically-acceptable salt or prodrug thereof.
  • the anticonvulsant is zonisamide.
  • the non-sulfamate anticonvulsant can be selected from zonisamide, valproate, and valproic acid, or a pharmaceutically-acceptable salt or prodrug thereof.
  • opioid antagonists include: alvimopan, buprenorphine, lofexidine, nalmefene, nalorphine, naloxone, naltrexone, norbinaltorphimine, methylnaltrexone, pentacozine, and propiram, or a pharmaceutically- acceptable salt or prodrug thereof.
  • the opioid antagonist is selected from: nalmefene, nalorphine, naloxone, naltrexone, and methylnaltrexone, or a pharmaceutically-acceptable salt or prodrug thereof.
  • the composition that is effective to modulate a blood-glucose level can comprise a combination of a psychotherapeutic agent and an opioid antagonist.
  • the psychotherapeutic agent can be selected from bupropion, mirtazapine, olanzapine, setiptiline, fluoxetine, and valproate, or a pharmaceutically- acceptable salt or prodrug thereof; and the opioid antagonist can be selected from nalmefene, nalorphine, naloxone, naltrexone, and methylnaltrexone, or a pharmaceutically-acceptable salt or prodrug thereof.
  • the psychotherapeutic agent can be administered to the subject separately from the opioid antagonist.
  • the composition that is effective to modulate a blood-glucose level comprises a combination of a psychotherapeutic agent and an anticonvulsant.
  • the psychotherapeutic agent can be selected from bupropion, mirtazapine, olanzapine, setiptiline, fluoxetine, and valproate, or a pharmaceutically- acceptable salt or prodrug thereof; and the anticonvulsant can be selected from topiramate, valproate, valproic acid, and zonisamide, or a pharmaceutically-acceptable salt or prodrug thereof.
  • the psychotherapeutic agent can be administered to the subject separately from the anticonvulsant.
  • the composition that is effective to modulate a blood-glucose level comprises a combination of an opioid antagonist and an anticonvulsant.
  • the opioid antagonist can be selected from: alvimopan, buprenorphine, lofexidine, nalmefene, nalorphine, naloxone, naltrexone, norbinaltorphimine, methylnaltrexone, pentacozine, and propiram, or a pharmaceutically-acceptable salt or prodrug thereof; and the anticonvulsant can be selected from topiramate, valproate, valproic acid, and zonisamide, or a pharmaceutically-acceptable salt or. prodrug thereof.
  • the opioid antagonist is administered to the subject separately from the anticonvulsant.
  • the composition that is effective to modulate a blood-glucose level comprises a combination of an opioid antagonist, an anticonvulsant, and a psychotherapeutic agent.
  • the opioid antagonist can be selected from: alvimopan, buprenorphine, lofexidine, nalmefene, nalorphine, naloxone, naltrexone, norbinaltorphimine, methylnaltrexone, pentacozine, and propiram, or a pharmaceutically- acceptable salt or prodrug thereof;
  • the anticonvulsant can be selected from topiramate, valproate, valproic acid, and zonisamide, or a pharmaceutically-acceptable salt or prodrug thereof;
  • the psychotherapeutic agent can be selected from bupropion, mirtazapine, olanzapine, setiptiline, fluoxetine, and valproate, or a pharmaceutically-acceptable salt or prodrug thereof.
  • Any disclosed composition can further comprise insulin.
  • Any disclosed composition can comprise a controlled release formulation, which can, in some embodiments, be a sustained release formulation.
  • the disclosed methods comprise obtaining a measurement of the subject's blood glucose level.
  • a dosage of the composition can be adjusted after obtaining the measurement of the subject's blood glucose level.
  • the disclosed methods may comprise providing dietary instructions to the subject.
  • the present invention relates to a package comprising a blood-glucose modulating composition in unit dosage form and written instructions advising the reader to monitor the blood-glucose level of an intended human recipient of the composition, wherein the blood glucose-modulating composition comprises at least one selected from: a non-sulfamate anticonvulsant; a psychotherapeutic agent; an opioid antagonist; a combination of a psychotherapeutic agent and an opioid antagonist; a combination of a psychotherapeutic agent and an anticonvulsant; a combination of an opioid antagonist and an anticonvulsant; and a combination of an opioid antagonist, an anticonvulsant, and a psychotherapeutic agent.
  • the blood glucose-modulating composition comprises at least one selected from: a non-sulfamate anticonvulsant; a psychotherapeutic agent; an opioid antagonist; a combination of a psychotherapeutic agent and an opioid antagonist; a combination of a psychotherapeutic agent and an anticonvulsant; a combination of an opioid antagonist, an anticonvuls
  • melanocortin neurons influence insulin sensitivity (conversely, known as insulin insensitivity or insulin resistance).
  • Embodiments of this invention include administering compositions that influence the activity of these neurons, thereby modulating blood-glucose levels and, e.g., altering, compensating for, or inhibiting the severity, risk, onset, and/or occurrence of blood- glucose conditions.
  • these blood-glucose modulating (BGM) compositions comprise at least one selected from a non-sulfamate anticonvulsant (e.g., zonisamide); a psychotherapeutic agent (e.g., an anti-depressant such as fluoxetine, bupropion, mirtazapine, olanzapine and/or paroxetine); an opioid antagonist e.g., naltrexone, nalmafene and.or naloxone); a combination of a psychotherapeutic agent and an opioid antagonist; a combination of a psychotherapeutic agent and an anticonvulsant; a combination of an opioid antagonist and an anticonvulsant; and a combination of an opioid antagonist, an anticonvulsant, and a psychotherapeutic agent.
  • a non-sulfamate anticonvulsant e.g., zonisamide
  • a psychotherapeutic agent e.g., an anti-depressant such as fluoxetine, bupropion,
  • Examples of compounds that alter the activity of melanocortin neurons include compounds that increase agonism of a melanocortin 3 receptor (MC3-R) or a melanocortin 4 receptor (MC4-R) compared to normal physiological conditions.
  • the compounds can include those that enhance ⁇ -MSH activity.
  • These compounds can include psychotherapeutics. In some embodiments these also include anticonvulsants.
  • combinations of psychotherapeutics and anticonvulsants; psychotherapeutics and opioid antagonists; anticonvulsant and opioid antagonists; and/or psychotherapeutics, anticonvulsants, and opioid antagonists can have an even larger impact on melanocortin neurons and thus an even larger impact on insulin resistance.
  • embodiments of this invention can provide a way to modulate blood glucose levels and thereby control, inhibit and/or prevent the onset, severity, risk, and/or occurrence of blood-glucose conditions.
  • various compositions comprising compounds that influence cells having melanocortin receptors are also provided.
  • a BGM composition having multiple compounds is provided.
  • the BGM composition is used for treating insulin resistance and can comprise a first compound, which is an opioid antagonist, a second compound, which is a psychotherapeutic, and the third compound, which is an anticonvulsant, wherein each of the compounds is in present in sufficient amount to inhibit a blood- glucose condition. Any one, or combination of these compounds, can be administered to a person at risk of developing, or having, a blood-glucose condition and thereby decrease the patient's risk of developing a blood-glucose condition or inhibiting the severity, progression, and/or duration of a patient's blood-glucose condition.
  • the BGM composition comprises insulin or is further combined or administered with insulin, and thus can be used directly to treat and/or inhibit a blood-glucose condition, such as diabetes or insulin resistance, as well as reducing the risk and/or reversing any onset of a blood-glucose condition.
  • a blood-glucose condition such as diabetes or insulin resistance
  • the BGM composition comprises (1) an opioid antagonist and insulin, (2) a psychotherapeutic agent and insulin, (3) an anticonvulsant and insulin, (4) an opioid antagonist, insulin, and a psychotherapeutic agent, (5) an opioid antagonist, insulin, and an anticonvulsant, (6) insulin, a psychotherapeutic, and an anticonvulsant; or (7) insulin, a psychotherapeutic agent, an anticonvulsant, and an opioid antagonist.
  • BGM compositions can be effective for treating insulin resistance as well as other blood- glucose conditions, including Type 1 diabetes, Type 2 diabetes, diabetes associated with obesity or obsessive-compulsive disorder, "pre-diabetes” (e.g., pre-diabetic obesity) in which the blood glucose level is between about 110 and 125 mg/dl (fasting), drug-induced diabetes, gestational diabetes and diabetes associated with various medical disorders such as Cushing's syndrome.
  • pre-diabetes e.g., pre-diabetic obesity
  • other BGM combinations are also contemplated.
  • a combination of insulin with a compound or method that alters the activity of melanocortin cells ⁇ e.g. , neurons with melanocortin receptors) in a composition or method is contemplated.
  • blood-glucose condition refers to a condition in which it is desirable to modulate a patient's glucose levels.
  • blood-glucose conditions include conditions in which it is desirable to reduce blood-glucose levels.
  • high blood-glucose levels can be a blood-glucose condition.
  • blood-glucose conditions include conditions in which it is desirable to maintain blood-glucose levels at a specific value or within a range of values.
  • blood-glucose conditions include conditions in which it is desirable to increase blood-glucose levels.
  • Blood-glucose conditions include conditions in which a patient is at risk of developing a blood-glucose condition.
  • insulin resistance is a blood-glucose condition.
  • diabetes is a blood-glucose condition.
  • insulin refers to a polypeptide hormone (molecular weight of approximately 5700) naturally produced by the pancreas (secreted by beta cells in the islets of Langerhans) of a mammal which controls the amounts of glucose present in the blood by stimulating the uptake of glucose by muscle and adipose tissue. Insulin can exist in various states, such as preproinsulin and proinsulin. The term “insulin” also refers to synthetic versions, such as Humulin® (available commercially from Eli Lilly).
  • insulin sensitivity refers to the capacity of a cell, for example, a muscle cell (e.g., skeletal muscle cell) or fat cell (e.g., an adipocyte), or organism to sense or respond to stimulation by insulin or to insulin signaling.
  • a muscle cell e.g., skeletal muscle cell
  • fat cell e.g., an adipocyte
  • glucose uptake is glucose uptake.
  • insulin resistance refers to a condition or disorder in which the tissues of the body fail to respond normally to insulin. Insulin resistance manifests itself in pathologically elevated endogenous insulin and glucose levels and predisposes a mammal to the development of a cluster of abnormalities, including some degree of impaired glucose tolerance, an increase in plasma triglycerides and low density lipoprotein cholesterol (LDL) levels, a decrease in high-density lipoprotein cholesterol (HDL) levels, high blood pressure, hyperuricemia, a decrease in plasma fibrinolytic activity, an increase in cardiovascular disease and atherosclerosis (Reaven, G. M. Physiol Rev. 75(3): 473-86, 1995).
  • LDL low density lipoprotein cholesterol
  • HDL high-density lipoprotein cholesterol
  • NIDDM non-insulin dependent diabetes mellitus
  • Hyperinsulinemia refers to the overproduction of insulin by pancreatic cells. Often, hyperinsulinemia occurs as a result of insulin resistance, which is a condition defined by cellular resistance to the action of insulin. Insulin resistance, as defined above, is a state/disorder in which a normal amount of insulin produces a subnormal biologic (metabolic) response. In insulin-treated patients with diabetes, insulin resistance is considered to be present whenever the therapeutic dose of insulin exceeds the secretory rate of insulin in normal person.
  • Impaired glucose homeostasis refers to a condition in which blood sugar levels are higher than normal but not high enough to be classified as diabetes. There are two categories that are considered risk factors for future diabetes and cardiovascular disease.
  • Impaired glucose tolerance occurs when the glucose levels following a 2-hour oral glucose tolerance test are between 140 and 199 mg/dl. IGT is a major risk factor for Type 2 diabetes and is present in about 1 1% of adults, or approximately 20 million Americans. About 40-45% of persons age 65 years or older have either Type 2 diabetes or IGT.
  • Impaired fasting glucose IGF occurs when the glucose levels following an 8-hour fasting plasma glucose test are between 110 and 126 mg/dl.
  • Hyperglycemia a common feature of diabetes, is caused by decreased glucose utilization by liver and peripheral tissues and an increased glucose production by liver.
  • the term "compound” can refer to many different substances.
  • the first compound generally denotes an opioid antagonist
  • the second compound generally denotes an ⁇ -MSH activity enhancer or psychotherapeutic
  • the third compound generally denotes an anticonvulsant.
  • these terms can take on different meanings.
  • “compound” does not encompass insulin, unless explicitly denoted.
  • pharmaceutically-acceptable salt refers to a formulation of a compound that does not cause significant irritation to an organism to which it is administered and does not abrogate the biological activity and properties of the compound.
  • Pharmaceutically-acceptable salts can be obtained by reacting a compound of the invention with inorganic acids such as hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid, phosphoric acid, methanesulfonic acid, ethanesulfonic acid, p- toluenesulfonic acid, salicylic acid and the like.
  • Pharmaceutically-acceptable salts can also be obtained by reacting a compound of the invention with a base to form a salt such as an ammonium salt, an alkali metal salt, such as a sodium or a potassium salt, an alkaline earth metal salt, such as a calcium or a magnesium salt, a salt of organic bases such as dicyclohexylamine, N-methyl-D-glucamine, tris(hydroxymethyl) methylamine, and salts thereof with amino acids such as arginine, lysine, and the like.
  • a salt such as an ammonium salt, an alkali metal salt, such as a sodium or a potassium salt, an alkaline earth metal salt, such as a calcium or a magnesium salt, a salt of organic bases such as dicyclohexylamine, N-methyl-D-glucamine, tris(hydroxymethyl) methylamine, and salts thereof with amino acids such as arginine, lysine, and the like.
  • a “prodrug” refers to an agent that is converted into the parent drug in vivo. Prodrugs are often useful because, in some situations, they may be easier to administer than the parent drug. They may, for instance, be bioavailable by oral administration whereas the parent is not. The prodrug may also have improved solubility in pharmaceutical compositions over the parent drug or may demonstrate increased palatability or be easier to formulate.
  • An example, without limitation, of a prodrug would be a compound of the present invention which is administered as an ester (the "prodrug") to facilitate transmittal across a cell membrane where water solubility is detrimental to mobility but which then is metabolically hydrolyzed to the carboxylic acid, the active entity, once inside the cell where water solubility is beneficial.
  • a further example of a prodrug might be a short peptide (polyaminoacid) bonded to an acid group where the peptide is metabolized to provide the active moiety.
  • composition refers to a mixture of an active compound (or combination of active compounds) with other chemical components, such as diluents or carriers.
  • the pharmaceutical composition facilitates administration of the active compound to an organism. Multiple techniques of administering a compound exist in the art including, but not limited to, oral, injection, aerosol, parenteral, and topical administration, and a variety of chemical components have been developed for admixture with the active compound(s) to facilitate such administration.
  • compositions can also be obtained by reacting compounds with inorganic or organic acids such as hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid, phosphoric acid, methanesulfonic acid, ethanesulfonic acid, p-toluenesulfonic acid, salicylic acid and the like.
  • inorganic or organic acids such as hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid, phosphoric acid, methanesulfonic acid, ethanesulfonic acid, p-toluenesulfonic acid, salicylic acid and the like.
  • carrier defines a chemical compound that facilitates the incorporation of a compound into cells or tissues.
  • DMSO dimethyl sulfoxide
  • carrier facilitates the uptake of many organic compounds into the cells or tissues of an organism.
  • diot defines chemical compounds diluted in solutions, such as water, that will dissolve the compound of interest as well as stabilize the biologically active form of the compound. Salts dissolved in buffered solutions are utilized as diluents in the art.
  • buffered solution is phosphate buffered saline (PBS) because it mimics the salt conditions of human blood. Since buffer salts can control the pH of a solution at low concentrations, a buffered diluent rarely modifies the biological activity of a compound.
  • treatment does not necessarily mean curing a disease or disorder.
  • a reduction in symptoms associated with the disorder or disease can also be characterized as a treatment.
  • a slowing in the progression of the disorder or disease can also be characterized as a treatment.
  • insulin sensitizing denotes that the compound makes a host or subject more sensitive to the presence of insulin, whether it be exogenous or endogenous insulin.
  • physiologically acceptable characterizes a carrier or diluent that does not abrogate the biological activity and properties of the compound.
  • an effective amount denotes the amount of a substance required to achieve the particular utility. Thus, an effective amount can vary depending upon a particular use.
  • the term "inhibit" characterizes a decrease in the risk, time of onset, side effects, symptoms, and/or progression of a condition during a specified treatment compared to the risk, time of onset, side effects, symptoms, and/or progression of the condition predicted without the specified treatment. Comparisons can also be performed between two treatment options. For example, an opioid antagonist would be said to inhibit a condition if the risk, time of onset, side effects, symptoms and/or progression of the condition were decreased when a patient was administered both an opioid antagonist and insulin compared to administration of insulin. In some embodiments, a condition is inhibited if the condition is completely reversed or prevented from occurring.
  • the severity of a symptom can be measured as a deviation in the host of some quantifiable amount from the norm (e.g. , blood sugar or insulin levels), or, for example, as an amount of a medication that is given to the host (e.g., the host requires 30% less externally administered insulin for the desired effect when the host is also administered an anticonvulsant).
  • some quantifiable amount e.g. , blood sugar or insulin levels
  • an amount of a medication that is given to the host e.g., the host requires 30% less externally administered insulin for the desired effect when the host is also administered an anticonvulsant.
  • contemplated herein is a composition comprising the S enantiomer substantially free of the R enantiomer, or a composition comprising the R enantiomer substantially free of the S enantiomer.
  • substantially free it is meant that the composition comprises less than 10%, or less than 8%, or less than 5%, or less than 3%, or less than 1% of the minor enantiomer. If the named compound comprises more than one chiral center, the scope of the present disclosure also includes compositions comprising a mixture of the various diastereomers, as well as compositions comprising each diastereomer substantially free of the other diastereomers.
  • mirtazapine is a racemic mixture comprising two separate enantiomers.
  • the recitation of "mirtazapine" throughout this disclosure includes compositions that comprise the racemic mixture of mirtazapine, the compositions that comprise the (+) enantiomer substantially free of the (-) enantiomer, and the compositions that comprise the (-) enantiomer substantially free of the (+) enantiomer.
  • active metabolites of the various compounds described herein are also within the scope of the present invention.
  • the 6- ⁇ - hydroxynaltrexone metabolite of naltrexone is active, as is the norfluoxetine.
  • metabolite of fluoxetine Fluoxetine is converted into both S-norfluoxetine (80% of total) and R- norfluoxetine (20% of total). Both of these metabolites are active and are contemplated for use in the compositions and methods described herein.
  • a BGM composition for the treatment or inhibition of blood-glucose conditions comprises one or more active compounds selected from the group consisting of an opioid antagonist (e.g., naltrexone), an MC3-R/MC3-R agonist or ⁇ -MSH activity enhancer (e.g., psychotherapeutic agent), and an anticonvulsant (e.g., zonisamide).
  • an opioid antagonist e.g., naltrexone
  • an MC3-R/MC3-R agonist or ⁇ -MSH activity enhancer e.g., psychotherapeutic agent
  • an anticonvulsant e.g., zonisamide
  • Non- sulfamate anticonvulsants are preferably included in BGM compositions that do not contain BGM amounts of an opioid antagonist or MC3-R/MC3-R agonist or ⁇ -MSH activity enhancer.
  • the anticonvulsant when an anticonvulsant in not administered in combination with BGM amounts of an opioid antagonist or MC3-R/MC3-R agonist or ⁇ -MSH activity enhancer, is preferably a non-sulfamate anticonvulsant.
  • BGM compositions can be used in amounts effective for the inhibition of insulin resistance. Additionally, they can also be used to inhibit or treat Type 1 or Type 2 diabetes, or any disorder of glucose dysregulation, including those mentioned above.
  • the BGM composition further comprises insulin, which can be used to treat a blood-glucose condition, such as Type 1 diabetes, while reducing the risk that insulin resistance will occur.
  • this combination of the BGM composition and insulin can be used to treat a blood-glucose condition, such as Type 2 diabetes, by allowing additional exogenous insulin to be administered to the subject while the insulin resistance aspect of the disorder is addressed by one or more of the above compounds.
  • the BGM composition can comprise any one of the compounds or any combination of the compounds and the insulin in an effective amount.
  • the amount of each compound and insulin used is at least an effective amount and is preferably less than an amount that results in significant, unwanted side effects. In some embodiments, the amount is about a minimal amount that is at least an effective amount.
  • the psychotherapeutic agent, or ⁇ -MSH activity enhancer is an antidepressant, an antimigrane, an antibipolar, an antimania drug, a mood stabilizer, or an antiepileptic.
  • antidepressants include bupropion, paroxetine, fluoxetine and mirtazapine.
  • antimigrane drugs include sumatriptan, zolmitriptan, elatriptan and other triptans.
  • antibipolar drugs examples include lithium, valproate, carbamezepine, oxycarbamezepine, lamotrogine, tiagabine, olanzapine, clozapine, risperidone, quetiapine, aripiprazole, ziprasidone, and benzodiazepines.
  • the psychotherapeutic comprises a salt of lithium.
  • the psychotherapeutic is valproate, which includes both the salt of valproate and the free acid form of valproic acid.
  • pharmaceutically acceptable salts or prodrugs of these drugs controlled release (e.g., sustained or extended release) formulations of the above drugs, as well as combinations of the above drugs.
  • the lithium salt may be lithium carbonate or lithium citrate.
  • the lithium drug is in an extended release formulation.
  • more than one psychotherapeutic agent is included in the BGM composition and/or method.
  • the present invention is directed to BGM compositions comprising insulin, zonisamide, and a salt of lithium, as described herein and in formulations described herein.
  • the present invention is directed to compositions comprising insulin, zonisamide, and valproic acid, and/or a pharmaceutically-acceptable salt, such as different salts of valproate, ester, amide, or prodrugs thereof.
  • Zonisamide is a marketed anticonvulsant indicated as adjunctive therapy for adults with partial onset seizures. Without being bound by any particular theory, it is believed that the mechanism of antiepileptic activity appears to be: 1) sodium- channel blocking; and, 2) reduction of inward T-type calcium currents.
  • zonisamide binds to the GABA/benzodiazepine receptor complex without producing change in chloride flux. Further, zonisamide facilitates serotonergic and dopaminergic neurotransmission and possesses a weak inhibitory effect on carbonic anhydrase.
  • the antidepressant is mirtazapine or an analogous compound of Formula I
  • W is nitrogen, CH, oxygen, or sulfur
  • Ri is selected from the group consisting of hydrogen, optionally substituted Ci_ 6 alkyl, optionally substituted C3-S cycloalkyl, optionally substituted C 2 - 6 alkenyl, optionally substituted C 2-6 alkynyl, optionally substituted Cue alkoxyalkyl, and optionally substituted aryl and arylalkyl;
  • R 2 , R 3 , R 4 , and R 5 are each independently selected from the group consisting of hydrogen, halogen, optionally substituted Cj -6 alkyl, optionally substituted C 1-6 alkyloxy, optionally substituted C 2 -6 alkenyl, optionally substituted C 2 - 6 alkynyl, optionally substituted Ci-6-alkoxyalkyl, optionally substituted C].
  • R 6 , R 7 , R 8 J and R 9 are each independently selected from the group consisting of hydrogen, halogen, optionally substituted Cj -6 alkyl, optionally substituted C 1-6 alkyloxy, optionally substituted C2. 6 alkenyl, optionally substituted C 2-6 alkynyl, optionally substituted Ci.6-alkoxyalkyl s optionally substituted Cj -6 alkylthio, perhaloalkyl, CN, CORio, CONHRio, heteroalkyl, and NO 2 ; and Ri 0 is C )-6 alkyl.
  • the administration of both an opioid antagonist and a psychotherapeutic agent can have a synergistic effect on modulating blood glucose and/or inhibiting insulin resistance compared to the effect of the compounds alone.
  • the administration of both an opioid antagonist and an anticonvulsant can have a synergistic effect on modulating blood glucose and/or inhibiting insulin resistance compared to the effect of the compounds alone.
  • the administration of both an anticonvulsant and a psychotherapeutic agent can have a synergistic effect on modulating blood glucose and/or inhibiting insulin resistance compared to the effect of the compounds alone.
  • an anti-diabetic medication and an opioid antagonist, a psychotherapeutic agent, an anticonvulsant or a combination thereof can also have a synergistic effect on modulating blood glucose and/or inhibiting insulin resistance.
  • opioid antagonists include alvimopan, norbinaltorphimine, nalmefene, naloxone, naltrexone, methylnaltrexone, and nalorphine, and pharmaceutically-acceptable salts or prodrugs thereof.
  • the antidepressant to be administered either by itself or with or combined with other compounds and/or insulin is a tricyclic antidepressant.
  • tricyclic antidepressants include, but are not limited to, imipramine, desipramine, trimipramine, nortriptyline, clomipramine, doxepin, amitriptyline, protriptyline, dothiapen, and maprotiline.
  • Maprotiline a very effective antidepressant, is not used widely because it carries risk of seizures.
  • the combination of maprotiline and zonisamide or other anticonvulsants has the added benefit of reducing the risk of seizures, in addition to reducing the risk of weight gain due to the use of the antidepressant.
  • useful antidepressants include fluoxetine, bupropion, mirtazapine, olanzapine and/or paroxetine,
  • the antidepressant to be administered either by itself or with or combined with other compounds and/or insulin is a monoamine oxidase inhibitor (MAO inhibitor).
  • MAO inhibitors include, but are not limited to, phenelzine (Nardil®), tranylcypromine (Parnate®), isocarboxazid (Marplan®) and moclobemide (Aurorix®).
  • the antihistamine to be administered either by itself or with or combined with other compounds and/or insulin is one of setiptiline, teciptiline, ORG 8282 (Organon, Netherlands), or MO 8282 (Mochida, Japan).
  • the 5HT 2 c receptor antagonist to be administered either by itself or with or combined with other compounds and/or insulin is selected from colozapine, N-desmethylclozapine, and clozapine-N-oxide.
  • the first or second compound is an anticonvulsant, which is to be administered either by itself or with or combined with other compounds and/or insulin.
  • anticonvulsants include barbiturates, benzodiazepines, GABA analogues, hydantoins, miscellaneous anticonvulsants, phenyltriazines, and succinimides.
  • An example of a barbiturate includes pentobarbital.
  • benzodiazepines include clonazepam, clorazepate, benzodiazepine, and diazepam.
  • GABA analogues include tiagabine, pregabalin, and gabapentin.
  • hydantoins include fosphenytoin, phenytoin, and 5,5-Diphenylhydantoin.
  • miscellaneous anticonvulsants include carbamazepine, valproate, valproic acid, divalproex, felbamate, levetiracetam, carbamazepine, topiramate, oxcarbazepine, and zonisamide.
  • An example of a phenyltriazine is lamotrigine.
  • succinimides include methsuximide and ethosuximide. Also included are extended release formulations of the above drugs, pharmaceutically-acceptable salts or prodrugs thereof, as well as combinations of the above drugs.
  • the present invention is directed to a BGM composition for the treatment of insulin resistance comprising zonisamide and mirtazapine.
  • the present invention is directed to a BGM composition for the treatment of insulin resistance comprising zonisamide and paroxetine.
  • the present invention is directed to a BGM composition for the treatment of insulin resistance comprising zonisamide and venlafaxine.
  • the above embodiments are further combined with insulin, allowing for the treatment or inhibition of a blood-glucose condition upon the administration of the insulin.
  • the present invention is directed to a BGM composition for inhibiting a blood-glucose condition, comprising bupropion and mirtazapine.
  • the present invention is directed to a BGM composition for inhibiting a blood-glucose condition, comprising zonisamide and setiptiline.
  • the present invention is directed to a BGM composition for inhibiting a blood-glucose condition comprising, bupropion and setiptiline.
  • the present invention is directed to a BGM composition for inhibiting a blood-glucose condition, comprising bupropion and naltrexone.
  • the present invention is directed to a BGM composition for inhibiting a blood-glucose condition, comprising fluoxetine and naltrexone. In other embodiments, the present invention is directed to a BGM composition for inhibiting a blood-glucose condition, comprising zonisamide, bupropion, and mirtazapine. In yet other embodiments, the present invention is directed to a BGM composition for inhibiting a blood-glucose condition, comprising zonisamide, bupropion, and setiptiline. In some embodiments, in each of the above embodiments, insulin is also included.
  • the amount of insulin used may be an amount that is effective for the treatment of a subject's diabetes in the presence of the above compounds.
  • basal insulin levels are contemplated as well as bolus levels (e.g., for meals).
  • the administration of insulin with the above compounds allows for lower levels of insulin to be more effective in resulting in a desired goal (e.g., a particular insulin or blood sugar level).
  • a desired goal e.g., a particular insulin or blood sugar level
  • the use of lower levels of insulin will help to inhibit the onset of a blood- glucose condition.
  • the amount of insulin administered, when administered with one or more of the compounds described herein is less than would otherwise be administered to achieve the same blood sugar level in the subject.
  • the amount of insulin can be reduced by 1-10, 10-20, 20-30, 30-40, 450-50, 50- 60, 60-70, 70-80, 80-90, 90-99% or more when the above compounds are used.
  • Insulin can be part of the composition(s) by which the compounds are administered.
  • insulin is contained in the pharmaceutical preparation with the above compounds.
  • the insulin is separate from the above compounds.
  • a subject no longer needs to take exogenous insulin, as the patient is only suffering from insulin resistance, which was reduced or reversed by the above compounds, allowing the normal doses of endogenous insulin to be sufficient for the subject.
  • the present invention relates to a method of inhibiting a blood-glucose condition comprising identifying an individual in need thereof and treating that individual with an amount of a BGM composition as described herein that is effective to modulate a blood glucose level.
  • the BGM composition comprises a psychotherapeutic agent (e.g. an ⁇ -MSH activity enhancer) and an anticonvulsant.
  • the psychotherapeutic agent and the anticonvulsant are as described above.
  • the above BGM compositions and the following methods are used to inhibit Type 2 diabetes.
  • they are used to inhibit Type 1 diabetes.
  • these are administered with insulin, allowing for less insulin to be administered to a subject.
  • the method involves identifying a subject in need of treatment or preventative measures and then administering the above compounds or BGM compositions to the subject.
  • exogenous insulin can also be administered to the subject.
  • the amount of the compounds or insulin is low enough to minimize side effects, but high enough to be effective for inhibiting a blood-glucose condition.
  • the blood-glucose condition is caused by administration of a psychotherapeutic agent and/or anticonvulsant.
  • the present invention relates to inhibiting a blood- glucose condition comprising identifying an individual in need thereof and treating that individual with a BGM composition as described herein.
  • the BGM composition comprises a first compound that antagonizes opioid receptor activity and a second compound that enhances ⁇ -MSH activity.
  • opioid receptor activity is antagonized by administering an opioid receptor antagonist.
  • the opioid receptor antagonist may be a ⁇ -opioid receptor (MOP-R) antagonist.
  • MOP-R ⁇ -opioid receptor
  • the opioid receptor antagonist is selected from alvimopan, norbinaltorphimine, nalmefene, naloxone, naltrexone, methylnaltrexone, and nalorphine, and pharmaceutically-acceptable salts or prodrugs thereof.
  • ⁇ -MSH activity is enhanced by administering a psychotherapeutic compound, e.g., as the second compound in the combinations described herein, where the psychotherapeutic compound triggers release of ⁇ -MSH or increases the activity of neurons that express ⁇ -MSH.
  • the psychotherapeutic compound is a selective serotonin reuptake inhibitor (SSRI) or a specific 5-HT receptor agonist (e.g. 2C agonist, IB agonist, 5HTIb agonist or 5HT2c agonist).
  • SSRIs that can be used in the present invention include fluoxetine, fluvoxamine, sertraline, paroxetine, citalopram, escitalopram, sibutramine, duloxetine, and venlafaxine, and pharmaceutically-acceptable salts or prodrugs thereof.
  • the second compound is a ⁇ -amino butyric acid (GABA) inhibitor, a GABA receptor antagonist or a GABA channel antagonist.
  • GABA inhibitor it is meant a compound that reduces the production of GABA in the cells, reduces the release of GABA from the cells, or reduces the activity of GABA on its receptors, either by preventing the binding of GABA to GABA receptors or by minimizing the effect of such binding.
  • the GABA inhibitor may be a 5-HTlb receptor agonist.
  • the GABA inhibitor may suppress the expression of the agouti-related peptide (AgRP) gene, or it may suppress the production or release of AgRP.
  • the GABA inhibitor may suppress the suppression or release of neuropeptide Y (NPY).
  • the GABA inhibitor suppresses the activity of neurons that express AgRP.
  • the GABA inhibitor may be topiramate, l-(2- (((diphenylmethylene)amino)oxy)ethyl)-l, 2, 5, ⁇ -tetrahydro-S-pyridinecarboxylic acid hydrochloride (NNC-711), or vigabatrin. It is, however, understood that a 5-HTlb agonist may inhibit the NPY/AgRP/GABA neuron (and therefore activate POMC neurons) without acting as an inhibitor of the GABA pathway.
  • the GABA inhibitor increases the expression of proopiomelanocortin (POMC) neurons, leading to greater agonism at MC3- R and/or MC4-R. In some of these embodiments, the GABA inhibitor increases the production or release of POMC protein. In certain other of these embodiments, the GABA inhibitor increases the activity on POMC expressing neurons. In some embodiments, the GABA inhibitor is topiramate.
  • POMC proopiomelanocortin
  • the second compound is a dopamine reuptake inhibitor. Phentermine is an example of a dopamine reuptake inhibitor.
  • the second compound is a norepinephrine reuptake inhibitor. Examples of norepinephrine reuptake inhibitors include bupropion, thionisoxetine and reboxetine. Other embodiments include those in which the second compound is a dopamine agonist. Dopamine agonists include cabergoline, amantadine, lisuride, pergolide, ropinirole, pramipexole and bromocriptine.
  • the second compound is a norepinephrine releaser, for example diethylpropion, or a mixed dopamine/norepinephrine reuptake inhibitor, for example, atomoxatine.
  • the second compound is a 5-HTlb agonist, such as sumatriptan, almotriptan, naratriptan, frovatriptan, rizatriptan, zomitriptan and/or elitriptan.
  • 5-HTlb agonist such as sumatriptan, almotriptan, naratriptan, frovatriptan, rizatriptan, zomitriptan and/or elitriptan.
  • the present invention relates to inhibiting a blood- glucose condition comprising identifying an individual in need thereof and treating that individual with a an effective amount of a BGM composition comprising a first compound and a second compound, where the first compound is an opioid antagonist and the second compound causes increased agonism of a melanocortin 3 receptor (MC3-R) or a melanocortin 4 receptor (MC4-R) compared to normal physiological conditions.
  • a BGM composition comprising a first compound and a second compound, where the first compound is an opioid antagonist and the second compound causes increased agonism of a melanocortin 3 receptor (MC3-R) or a melanocortin 4 receptor (MC4-R) compared to normal physiological conditions.
  • MC3-R melanocortin 3 receptor
  • MC4-R melanocortin 4 receptor
  • the opioid antagonist antagonizes a MOP-R in a mammal.
  • the mammal may be selected from the group consisting of mice; rats; rabbits; guinea pigs; dogs; cats; sheep; goats; cows; primates, such as monkeys, chimpanzees and apes; and humans.
  • the opioid antagonist is selected from alvimopan, norbinaltorphimine, nalmefene, naloxone, naltrexone, methylnaltrexone, and nalorphine, and pharmaceutically-acceptable salts or prodrugs thereof.
  • the opioid antagonist is a partial opioid agonist. Compounds of this class have some agonist activity at opioid receptors. Examples of partial opioid agonists include pentacozine, buprenorphine, nalorphine, propiram and lofexidine.
  • a subject or patient to receive the treatment is identified by identifying a patient with diabetes; this can be Type 1 and/or Type 2 diabetes.
  • the patient or subject is identified by identifying a patient with insulin resistance.
  • the patient or subject is identified by identifying a patient with insulin resistance.
  • the patient or subject is identified by identifying a patient with hyperinsulinemia.
  • the patient or subject is identified by identifying a patient with impaired glucose metabolism (impaired glucose tolerance or impaired fasting glucose).
  • the patient or subject is identified by identifying a patient with hyperglycemia.
  • any patient or subject taking insulin can benefit from the above compositions or methods.
  • any of the above compounds e.g., opioid antagonist, psychotherapeutic, anticonvulsant, or combinations thereof
  • a patient is already being administered composition comprising a psychotherapeutic agent (e.g., an antipsychotic), an opioid antagonist, an anticonvulsant, or some combination thereof for a non-glucose- related purpose and is in need of treatment of a blood-glucose condition.
  • a psychotherapeutic agent e.g., an antipsychotic
  • an opioid antagonist e.g., an opioid antagonist
  • an anticonvulsant e.g., an anticonvulsant
  • the quantity of the composition being administered can be modulated in order to inhibit the blood-glucose condition.
  • the blood- glucose condition is one in which it is desirable to increase blood glucose levels.
  • the amount of the composition being administered can be reduced.
  • inhibiting a blood-glucose condition comprises administering to the individual an effective amount of a BGM composition comprising a psychotherapeutic agent (an ⁇ -MSH activity enhancer) and an anticonvulsant.
  • a psychotherapeutic agent an ⁇ -MSH activity enhancer
  • the psychotherapeutic agent and the anticonvulsant are administered more or less simultaneously.
  • the psychotherapeutic agent is administered prior to the anticonvulsant.
  • the psychotherapeutic agent is administered subsequent to the anticonvulsant.
  • These compounds can be administered substantially simultaneously with insulin, thereby making insulin more effective in lowering blood sugar levels.
  • insulin can be administered with one compound and the other compound added later.
  • insulin can be administered before the compounds.
  • the speed with which the above compounds act and the duration for which they act can determine when, how, and how much insulin should be added. Of course, these orders and methods can apply to any of the compounds, including the opioid antagonist.
  • the compounds of the BGM composition are administered individually or separately; in other embodiments they are administered together.
  • the compounds are covalently linked to each other such that they form a single chemical entity.
  • the single chemical entity is then digested and is metabolized into two separate physiologically active chemical entities; one of which is one compound (e.g., a psychotherapeutic) and the other one is the other compound (e.g., anticonvulsant).
  • the linked compound can be mixed with insulin for administration.
  • insulin is also linked to one or both of the compounds.
  • the chemical linkage is selected such that after entry into the body, the linkage is broken, such as by enzymatic action, acid hydrolysis, base hydrolysis, or the like, and the two separate compounds are then formed.
  • aspects of the present invention provide, at least in part, for methods of inhibiting the risk, side effects, or symptoms of a blood-glucose condition, such as insulin resistance or type 2 diabetes. These methods can involve the use of BGM compoitions comprising anticonvulsants and/or any of the compounds disclosed herein. In some embodiments, insulin resistance is completely reversed or prevented from occurring. In other embodiments, the symptoms are only lessened or delayed from symptoms predicted without administration of the composition.
  • the addition of one of the above compounds to insulin can be used to reduce a symptom(s) by 1- 10, 10-20, 20-30, 30-40, 40-50, 50-60, 60-70, 70-80, 80-90, 90-99, or 100%.
  • Symptoms or the severity of a symptom can be measured as a deviation in the host of some quantifiable amount from the norm (e.g. , blood sugar or insulin levels), or, for example, as an amount of a medication that is given to the host (e.g., the host requires 30% less externally administered insulin for the desired effect when the host is also administered an anticonvulsant).
  • the anticonvulsant is effective in reducing convulsions associated with a blood-glucose condition in a mammal.
  • the mammal may be selected from the group consisting of mice; rats; rabbits; guinea pigs; dogs; cats; sheep; goats; cows; primates, such as monkeys, chimpanzees, and apes; and humans.
  • the anticonvulsant need not actually prevent a convulsion in a subject that is not suffering from a risk or likelihood of a convulsion.
  • the phrase "reducing convulsions" denotes the fact that, if the particular treatment had been administered to a patient suffering from a risk of a convulsion, that, the patient's risk of a convulsion would have decreased. However, a risk of convulsion actually need not occur in a patient who is not at risk of suffering from a convulsion. Rather, what is denoted is that similar biochemical mechanisms or pathways are being activated or suppressed in both patients.
  • the first compound of the BGM composition is zonisamide and the second compound is mirtazapine. In other embodiments, the first compound is bupropion and the second compound is mirtazapine.
  • the first compound is zonisamide and the second compound is setiptiline.
  • the first compound is bupropion and the second compound is setiptiline.
  • the first compound is a combination of zonisamide and bupropion and the second compound is mirtazapine.
  • the first compound is a combination of zonisamide and bupropion and the second compound is setiptiline.
  • the first compound is zonisamide and the second compound is a salt of lithium, as described herein and in formulations described herein.
  • the first compound is zonisamide and the second compound is valproic acid, or a pharmaceutically-acceptable salt, such as different salts of valproate, ester, amide, or prodrugs thereof.
  • any of the above compounds can be mixed with insulin or administered with insulin.
  • the first compound of the BGM composition is topiramate and the second compound is a salt of lithium, as described herein and in formulations described herein.
  • the first compound is topiramate and the second compound is valproic acid, or a pharmaceutically-acceptable salt, such as different salts of valproate, ester, amide, or prodrugs thereof.
  • any of the above compounds can be mixed with insulin or administered with insulin.
  • the methods comprise administering to a mammal receiving insulin an amount of zonisamide, at least sufficient to inhibit the risk of a subject experiencing a blood-glucose condition.
  • the methods comprise administering to mammal receiving an antidepressant; a combination of zonisamide or topiramate, or other anticonvulsant (including agents that block kainate/AMPA (D,L- ⁇ -amino-3-hydroxy-5-methyl-isoxazole propionic acid) subtype glutamate receptors); and bupropion, or other compound that enhances the activity of norepinephrine and/or dopamine via uptake inhibition or other mechanism, in an amount sufficient to reduce the risk that a subject will experience a blood-glucose condition.
  • an antidepressant including agents that block kainate/AMPA (D,L- ⁇ -amino-3-hydroxy-5-methyl-isoxazole propionic acid) subtype glutamate receptors
  • bupropion or other compound that enhances the activity of nore
  • the insulin sensitizing agents for use in the methods of the present invention include zonisamide or topiramate (and pharmaceutically-acceptable salts thereof)-
  • other methane- sulfonamide derivatives such as those described in U.S. Patent 4,172,896, or other sulfamates (including sulfamate-substituted monosaccharides), such as those described in U.S. Patent 4,513,006 are used. Both of these references are incorporated by reference herein in its entirety.
  • the anticonvulsant is a non-sulfamiate anticonvulsant.
  • Zonisamide is an example of a non-sulfamate anticonvulsant.
  • the insulin sensitizing agent is bupropion; while in other embodiments, one or more compounds disclosed in U.S. Patent Nos. 3,819,706 and 3,885,046, both of which are incorporated by reference herein in their entirety, is used.
  • the insulin sensitizing agent is a compound that enhances the activity of norepinephrine and/or dopamine, such as by reuptake inhibition or other mechanism.
  • An insulin sensitizing agent is one that reduces the likelihood that a blood-glucose condition will occur in a patient and can include, for example, opioid antagonists, psychotherapeutic, and anticonvulsants.
  • norepinephrine agonists such as phendimetrazine and benzphetamine
  • norepinephrine reuptake inhibitors such as atomoxetine, bupropion, thionisoxetine, and reboxetine
  • dopamine agonists such as cabergoline, amantadine, lisuride, pergolide, ropinirole, pramipexole, and/or bromocriptine
  • norepinephrine releasers for example diethylpropion
  • a mixed dopamine/norepinephrine reuptake inhibitor for example, bupropion
  • a combination of a dopamine reuptake inhibitor and a norepinephrine reuptake inhibitor e.g.
  • Patients and subjects suitable for treatment include those identified as such, as described above, as well as those receiving insulin, an insulin derivative, or a compound that modulates blood sugar levels in a subject or patient.
  • SSRI selective serotonin reuptake inhibitor
  • norepinephrine reuptake inhibitor such as sibutramine, venlafaxine, and duloxetine.
  • the combination of, for example, zonisamide or topiramate with bupropion provides an effective means of inhibiting a blood-glucose condition.
  • the combination can be more effective than, for example, zonisamide or topiramate treatment alone and with fewer side effects.
  • Neuropharmacologically, all three major nerve transmitters, e.g., serotonin, norepinephrine and dopamine, are targeted with the combination of, for example, bupropion with either zonisamide or topiramate.
  • zonisamide or topiramate can be offset by insomnia, activation, psychomotor agitation and antidepressant effects of, for example, bupropion.
  • zonisamide or topiramate for example, can reduce the seizure risk associated with, for example, bupropion.
  • Lower doses of both types of medication can be used in the combination treatment, thereby further reducing the overall side effect burden.
  • insulin can be added to any of the above combinations in order to provide a convenient and reliable means for administering the desired compounds to a subject with the insulin the subject is to receive.
  • the invention in another aspect, relates to a pharmaceutical composition
  • a pharmaceutical composition comprising a combination of a psychotherapeutic agent, an anticonvulsant, and/or insulin, as described above, or comprising a linked molecule, as described herein, and a physiologically-acceptable carrier, diluent, or excipient, or a combination thereof.
  • a physiologically-acceptable carrier diluent, or excipient, or a combination thereof.
  • compositions described herein can be administered to a human patient per se, or in pharmaceutical compositions where they are mixed with other active ingredients, as in combination therapy, or suitable carriers or excipient(s).
  • Techniques for formulation and administration of the compounds of the instant application may be found in "Remington's Pharmaceutical Sciences,” Mack Publishing Co., Easton, PA, 18th edition, 1990. The following discussion, regarding pharmaceutical compositions and methods of administration, can apply not only to the compounds, but the compositions as a whole and any insulin as well.
  • Suitable routes of administration may, for example, include oral, rectal, transmucosal, or intestinal administration; parenteral delivery, including intramuscular, subcutaneous, intravenous, intramedullary injections, as well as intrathecal, direct intraventricular, intraperitoneal, intranasal, or intraocular injections.
  • at least one component of the composition can be administered by one administration route while at least one other component of the composition can be administered by another administration route.
  • insulin can be administered by subcutaneous injections and an antipsychotic can be administered orally.
  • compositions of the present invention may be manufactured in a manner that is itself known, e.g., by means of conventional mixing, dissolving, granulating, dragee-making, levigating, emulsifying, encapsulating, entrapping or tabletting processes.
  • compositions for use in accordance with the present invention thus may be formulated in conventional manner using one or more physiologically acceptable carriers comprising excipients and auxiliaries which facilitate processing of the active compounds into preparations which can be used pharmaceutically. Proper formulation is dependent upon the route of administration chosen. Any of the well-known techniques, carriers, and excipients may be used as suitable and as understood in the art; e.g., in Remington's Pharmaceutical Sciences, above.
  • the compounds of the invention and/or insulin may be formulated in aqueous solutions, preferably in physiologically-compatible buffers such as Hanks's solution, Ringer's solution, or physiological saline buffer.
  • physiologically-compatible buffers such as Hanks's solution, Ringer's solution, or physiological saline buffer.
  • penetrants appropriate to the barrier to be permeated are used in the formulation. Such penetrants are generally known in the art.
  • the compounds and/or insulin can be formulated readily by combining the active compounds with pharmaceutically-acceptablecarriers well known in the art.
  • Such carriers enable the compounds and/or insulin of the invention to be formulated as tablets, pills, dragees, capsules, liquids, gels, syrups, slurries, suspensions and the like, for oral ingestion by a patient to be treated.
  • Pharmaceutical preparations for oral use can be obtained by mixing one or more solid excipients with pharmaceutical combination of the invention, optionally grinding the resulting mixture, and processing the mixture of granules, after adding suitable auxiliaries, if desired, to obtain tablets or dragee cores.
  • Suitable excipients are, in particular, fillers such as sugars, including lactose, sucrose, mannitol, or sorbitol; cellulose preparations such as, for example, maize starch, wheat starch, rice starch, potato starch, gelatin, gum tragacanth, methyl cellulose, hydroxypropylmethyl-cellulose, sodium carboxymethylcellulose, and/or polyvinylpyrrolidone (PVP).
  • disintegrating agents may be added, such as the cross-linked polyvinyl pyrrolidone, agar, or alginic acid or a salt thereof such as sodium alginate.
  • Controlled release forms of the BGM compositions described herein are specifically contemplated, including sustained release formulations. Methods for formulating controlled release forms are known to those skilled in the art and may be applied to make controlled release BGM compositions using routine experimentation informed by the guidance provided herein.
  • Dragee cores are provided with suitable coatings.
  • suitable coatings may be used, which may optionally contain gum arabic, talc, polyvinyl pyrrolidone, carbopol gel, polyethylene glycol, and/or titanium dioxide, lacquer solutions, and suitable organic solvents or solvent mixtures.
  • Dyestuffs or pigments may be added to the tablets or dragee coatings for identification or to characterize different combinations of active compound doses.
  • compositions which can be used orally, including sublingually which include push-fit capsules made of gelatin, as well as soft, sealed capsules made of gelatin and a plasticizer, such as glycerol or sorbitol.
  • the push-fit capsules can contain the active ingredients in admixture with filler such as lactose, binders such as starches, and/or lubricants such as talc or magnesium stearate and, optionally, stabilizers.
  • the active compounds and/or insulin may be dissolved or suspended in suitable liquids, such as fatty oils, liquid paraffin, or liquid polyethylene glycols.
  • stabilizers may be added. All formulations for oral administration should be in dosages suitable for such administration.
  • the BGM compositions may take the form of tablets or lozenges formulated in conventional manner.
  • the compounds and/or insulin for use according to the present invention are conveniently delivered in the form of an aerosol spray presentation from pressurized packs or a nebulizer, with the use of a suitable propellant, e.g., dichlorodifluoromethane, trichlorofluoromethane, dichlorotetrafluoroethane, carbon dioxide, or other suitable gas.
  • a suitable propellant e.g., dichlorodifluoromethane, trichlorofluoromethane, dichlorotetrafluoroethane, carbon dioxide, or other suitable gas.
  • the dosage unit may be determined by providing a valve to deliver a metered amount.
  • Capsules and cartridges of, e.g., gelatin for use in an inhaler or insufflator may be formulated containing a powder mix of the compound and a suitable powder base such as lactose or starch.
  • the BGM compositions and/or insulin may be formulated for parenteral administration by injection, e.g., by bolus injection or continuous infusion. Formulations for injection may be presented in unit dosage form, e.g., in ampoules or in multi-dose containers, with an added preservative.
  • the BGM compositions may take such forms as suspensions, solutions or emulsions in oily or aqueous vehicles, and may contain formulatory agents such as suspending, stabilizing and/or dispersing agents.
  • compositions for parenteral administration include aqueous solutions of the active compounds in water-soluble form. Additionally, suspensions of the active compounds and/or insulin may be prepared as appropriate oily injection suspensions. Suitable lipophilic solvents or vehicles include fatty oils such as sesame oil, or synthetic fatty acid esters, such as ethyl oleate or triglycerides, or liposomes. Aqueous injection suspensions may contain substances which increase the viscosity of the suspension, such as sodium carboxymethyl cellulose, sorbitol, or dextran. Optionally, the suspension may also contain suitable stabilizers or agents which increase the solubility of the compounds and/or insulin to allow for the preparation of highly concentrated solutions.
  • the active ingredient may be in powder form for constitution with a suitable vehicle, e.g., sterile pyrogen-free water, before use.
  • a suitable vehicle e.g., sterile pyrogen-free water
  • the compounds and/or insulin may also be formulated in rectal compositions such as suppositories or retention enemas, e.g., containing conventional suppository bases such as cocoa butter or other glycerides.
  • the compounds and/or insulin may also be formulated as a depot preparation.
  • Such long acting formulations may be administered by implantation (for example subcutaneously or intramuscularly) or by intramuscular injection.
  • the compounds may be formulated with suitable polymeric or hydrophobic materials (for example as an emulsion in an acceptable oil) or ion exchange resins, or as sparingly soluble derivatives, for example, as a sparingly soluble salt.
  • a pharmaceutical carrier for the hydrophobic compounds and/or insulin of the invention is a cosolvent system comprising benzyl alcohol, a nonpolar surfactant, a water-miscible organic polymer, and an aqueous phase.
  • a common cosolvent system used is the VPD co-solvent system, which is a solution of 3% w/v benzyl alcohol, 8% w/v of the nonpolar surfactant Polysorbate 80TM, and 65% w/v polyethylene glycol 300, made up to volume in absolute ethanol.
  • VPD co-solvent system which is a solution of 3% w/v benzyl alcohol, 8% w/v of the nonpolar surfactant Polysorbate 80TM, and 65% w/v polyethylene glycol 300, made up to volume in absolute ethanol.
  • the proportions of a co-solvent system may be varied considerably without destroying its solubility and toxicity characteristics.
  • co-solvent components may be varied: for example, other low-toxicity nonpolar surfactants may be used instead of POLYSORBATE 80TM; the fraction size of polyethylene glycol may be varied; other biocompatible polymers may replace polyethylene glycol, e.g., polyvinyl pyrrolidone; and other sugars or polysaccharides may substitute for dextrose.
  • hydrophobic pharmaceutical compounds and/or insulin may be employed.
  • Liposomes and emulsions are well known examples of delivery vehicles or carriers for hydrophobic drugs.
  • the compounds may be delivered using a sustained-release system, such as semipermeable matrices of solid hydrophobic polymers containing the therapeutic agent.
  • sustained-release materials have been established and are well known by those skilled in the art. Sustained-release capsules may, depending on their chemical nature, release the compounds for a few weeks up to over 100 days. Depending on the chemical nature and the biological stability of the therapeutic reagent, additional strategies for protein stabilization may be employed.
  • compositions of the invention may be provided as salts with pharmaceutically-compatible counterions.
  • Pharmaceutically-compatible salts may be formed with many acids, including but not limited to hydrochloric, sulfuric, acetic, lactic, tartaric, malic, succinic, etc. Salts tend to be more soluble in aqueous or other protonic solvents than are the corresponding free acid or base forms.
  • compositions where the active ingredients are contained in an amount effective to achieve its intended purpose. More specifically, a therapeutically-effective amount means an amount of a compound or composition effective to prevent, stabilize, alleviate or ameliorate symptoms of disease, worsening of the disease, or prolong the survival of the subject being treated. Determination of a therapeutically-effective amount is well within the capability of those skilled in the art, especially in light of the detailed disclosure provided herein.
  • compositions of the present invention can be chosen by the individual physician in view of the patient's condition. (See e.g., Fingl et al. 1975, in "The Pharmacological Basis of Therapeutics", Ch. 1 p. 1). Typically, the dose range of the composition administered to the patient can be from about 0.5 to 1000 mg/kg of the patient's body weight. The dosage may be a single one or a series of two or more given in the course of one or more days, as is needed by the patient. Note that for almost all of the specific compounds and insulin mentioned in the present disclosure, human dosages for treatment of at least some condition have been established.
  • the present invention will use those same dosages, or dosages that are between about 0.1% and 500%, about 1% and about 500%, about 10% and about 500%, about 25% and about 500%, about 50% and about 500%, about 100% and about 500%, about 250% and about 500%, about 0.1% and about 250%, about 1% and about 250%, about 10% and about 250%, about 25% and about 250%, about 50% and about 250%, about 100% and about 250%, about 0.1% and about 100%, about 1% and about 100%, about 10% and about 100%, about 25% and about 100%, about 50% and about 100%, about 0.1% and about 50%, about 1% and about 50%, about 10% and about 50%, about 25% and about 50%, about 0.1% and about 25%, about 1% and about 25%, about 10% and about 25%, about 0.1% and about 10%, about 1% about and 10%, or about 0.1% and 1% of the established human dosage.
  • a suitable human dosage can be inferred from EDso or IDso values, or other appropriate values derived from in vitro or in vivo studies, as qualified by toxicity studies and efficacy studies in animals.
  • a lower amount can be required as a unit dose, in some embodiments, due to the effect of the other compounds.
  • this lower dose can readily be determined by using the teachings and methods disclosed herein and the knowledge of one of skill in the art.
  • the amount of the various compounds (e.g., opioid antagonist, psychotherapeutic, and/or anticonvulsant) and insulin can vary depending upon the particular situation. The exact doses or amounts can be determined by one of skill in the art in light of the present disclosure.
  • the amount of insulin administered with or in each composition can vary, depending upon the particular circumstances in which it is to be used. In some embodiments, only a fraction of a unit (e.g., 0.1-0.2, 0.2-0.3, 0.3-0.4, 0.4-0.5, 0.5-0.6, 0.6- 0.7, 0.7-0.8, 0.9-0.99 U) to one or two units of insulin is included. Such levels of insulin can be useful for basal insulin treatment. The amount of additional compounds (e.g., anticonvulsant or psychotherapeutic) can be adjusted accordingly. In other embodiments, the amount of insulin is higher, for example, 2-5, 5-10, 10-15, or 15-20 U.
  • the amount of insulin to add can depend upon the activity of the subject, the size and sex of the subject, as well as the amount of time that the insulin is supposed to alter a patient's blood sugar. Additionally, as the above compounds increase a subject's insulin sensitivity, the amount of the above compounds can also lower the amount of insulin to add. For example, 99-90, 90-80, 80-70, 70-60, 60-50, 50-40, 40-30, 30-20, 20-10, 10-1% of the above amounts of insulin can be used depending upon the amount of the above compounds used.
  • the daily dosage regimen for an adult human patient may be, for example, an oral dose of between 0.1 mg and 6000 mg of each ingredient, preferably between 1 mg and 5000 mg, e.g. 25 to 5000 mg or an intravenous, subcutaneous, or intramuscular dose of each ingredient between 0.01 mg and 100 mg, preferably between 0.1 mg and 60 mg, e.g.
  • compositions of the present invention may be administered by continuous intravenous infusion, preferably at a dose of each ingredient up to 400 mg per day.
  • the total daily dosage by oral administration of each ingredient will typically be in the range 1 to 2500 mg and the total daily dosage by parenteral administration will typically be in the range 0.1 to 400 mg.
  • the compounds will be administered for a period of continuous therapy, for example for a week or more, or for months or years. Particular examples of amounts of the various compounds that can be mixed with insulin are described below.
  • the dosage range for lithium carbonate, for an oral dose will result in blood levels of lithium being between about 0.5 and about 1.5 meq/1. In a preferred embodiment, the lithium carbonate dosage range, for an oral dose, will be about 900 mg/day.
  • the dosage range for valproate, for an oral dose is in the range of about 250 to about 5000 mg/day. In a preferred embodiment, the valproate dosage range, for an oral dose, will be about 1500 mg/day.
  • the dosage range for zonisamide, for an oral dose is in the range of about 25 to about 600 mg per day. In some embodiments, the dosage is 25 mg per day. In other embodiments, the dosage is 50 mg per day. In yet other embodiments, the dosage is 100 mg per day.
  • the dosage range for mitrazepine, for an oral dose is in the range of about 5 to about 500 mg per day. In some embodiments, the dosage is 8 mg per day. In other embodiments, the dosage is 16 mg per day. In yet other embodiments, the dosage is 32 mg per day. In some embodiments, the dosage is 15 mg per day. In other embodiments, the dosage is 30 mg per day. In yet other embodiments, the dosage is 45 mg per day.
  • the dosage range for venlafaxinor venlafaxin XR, for an oral dose is in the range of about 20 mg to about 600 mg per day. In some embodiments, the dosage is 25 mg per day. In other embodiments, the dosage is 37.5 mg per day. In yet other embodiments, the dosage is 50 mg per day. In some embodiments, the dosage is 75 mg per day. In other embodiments, the dosage is 100 mg per day. In yet other embodiments, the dosage is 150 mg per day.
  • any of the above compounds can further be mixed with insulin in either a method or composition.
  • Dosage amount and interval may be adjusted individually to provide plasma levels of the compound(s) and/or insulin which are sufficient to maintain the modulating effects, or minimal effective concentration (MEC).
  • MEC minimal effective concentration
  • the MEC will vary for each compound but can be estimated from in vitro data. Dosages necessary to achieve the MEC will depend on individual characteristics and route of administration. However, HPLC assays or bioassays can be used to determine plasma concentrations.
  • Dosage intervals can also be determined using MEC value.
  • Compositions should be administered using a regimen that maintains plasma levels above the MEC for 10-90% of the time, preferably between 30-90% and most preferably between 50-90%.
  • the relevant time period need not be the whole and can be, for example, during feeding, or during sleep.
  • the effective local concentration of the drug may not be related to plasma concentration.
  • composition administered will, of course, be dependent on the subject being treated, on the subject's weight, the severity of the affliction, the manner of administration and the judgment of the prescribing physician.
  • composition or compounds may, if desired, be presented in a pack or dispenser device which may contain one or more unit dosage forms containing the active ingredient(s).
  • the pack may for example comprise metal or plastic foil, such as a blister pack.
  • the pack or dispenser device may be accompanied by instructions for administration.
  • the pack or dispenser may also be accompanied with a notice associated with the container in form prescribed by a governmental agency regulating the manufacture, use, or sale of pharmaceuticals, which notice is reflective of approval by the agency of the form of the drug for human or veterinary administration.
  • Such notice for example, may be the labeling approved by the U.S. Food and Drug Administration for prescription drugs, or the approved product insert.
  • compositions comprising a compound of the invention formulated in a compatible pharmaceutical carrier may also be prepared, placed in an appropriate container, and labeled for treatment of an indicated condition.
  • the above pack or kit above comprises the compounds (e.g., opioid antagonist, psychotherapeutic, and/or anticonvulsant) as well as insulin.
  • the kit can also contain a means for administering the insulin, such as a needle and syringe for subcutaneous injection.
  • any of the above methods or compositions that include insulin can be modified so that they do not include insulin.
  • any of the above methods or compositions that do not include insulin can be modified so that they include insulin if they do not already explicitly include insulin.
  • a pharmaceutical composition comprising insulin and an ⁇ - MSH activity enhancer or psychotherapeutic can be administered to a patient as a method for inhibiting a blood-glucose condition, a patient can get the benefit from simply the administration of the ⁇ -MSH activity enhancer, and thus the insulin need not be added as part of the method itself.
  • Methods of administering the BGM compositions to a subject as described herein may comprise obtaining a measurement of the subject's blood glucose level.
  • a method of administering the BGM compositions to a subject as described herein further comprises adjusting a dosage of the composition after obtaining the measurement of the subject's blood glucose level.
  • a method of administering the BGM compositions to a subject as described herein further comprises providing dietary instructions to the subject.
  • An embodiment provides a package comprising a BGM composition as described herein, along with instructions advising the reader to monitor the blood glucose level of the intended recipient of the BGM composition.
  • the invention relates to a composition for the inhibition a blood-glucose condition comprising a psychotherapeutic agent, an anticonvulsant, or both the psychotherapeutic agent and the anticonvulsant, and insulin.
  • the invention relates to a composition of the first embodiment, wherein said psychotherapeutic agent is selected from the group consisting of buproprion, lithium carbonate, lithium citrate, valproate, olanzapine, mixtures thereof, and pharmaceutically acceptable salts or prodrugs thereof.
  • the invention relates to a composition of the first embodiment wherein said anticonvulsant is selected from the group consisting of topiramate and zonisamide, and pharmaceutically-acceptable salts or prodrugs thereof, and combinations thereof.
  • the invention relates to a composition of the first embodiment, wherein said anticonvulsant is zonisamide.
  • the invention relates to a composition of the fourth embodiment, wherein said psychotherapeutic agent is lithium carbonate or lithium citrate.
  • the invention relates to a composition of the fourth embodiment, wherein said psychotherapeutic agent is valproate.
  • the invention relates to a composition of the first embodiment, wherein said psychotherapeutic agent is a salt of lithium and said anticonvulsant is zonisamide.
  • the invention relates to a composition of the first embodiment, wherein said psychotherapeutic agent is valproic acid, or a pharmaceutically-acceptable salt; ester, amide, or prodrug thereof, and said anticonvulsant is zonisamide.
  • the invention relates to a composition of the first embodiment, wherein said psychotherapeutic agent is mirtazapine and said anticonvulsant is zonisamide.
  • the invention relates to a composition of the first embodiment, wherein said psychotherapeutic agent is bupropion and said anticonvulsant is zonisamide.
  • the invention relates to a composition of the first embodiment, wherein said psychotherapeutic agent is setiptiline and said anticonvulsant is zonisamide.
  • the invention relates to a composition of the first embodiment, wherein said psychotherapeutic agent is bupropion and said anticonvulsant is topiramate.
  • the invention relates to a composition of the first embodiment, wherein said psychotherapeutic agent is a combination of bupropion and mirtazapine and said anticonvulsant is zonisamide.
  • the invention relates to a composition of the first embodiment, wherein said psychotherapeutic agent is a combination of bupropion and setiptiline and said anticonvulsant is zonisamide.
  • the invention relates to a method of inhibiting a blood-glucose condition comprising identifying a subject in need thereof, administering to the subject a psychotherapeutic agent, an anticonvulsant, or both to the subject.
  • the invention relates to a method of the fifteenth embodiment, wherein the psychotherapeutic agent is selected from the group consisting of lithium carbonate, lithium citrate, and valproate, and pharmaceutically- acceptable salts, esters, amides, or prodrugs thereof, and said anticonvulsant is zonisamide.
  • the psychotherapeutic agent is selected from the group consisting of lithium carbonate, lithium citrate, and valproate, and pharmaceutically- acceptable salts, esters, amides, or prodrugs thereof, and said anticonvulsant is zonisamide.
  • the invention relates to a method of the fifteenth embodiment, wherein the psychotherapeutic agent is selected from the group consisting of mirtazapine, and setiptiline, and pharmaceutically-acceptable salts, esters, amides, or prodrugs thereof, and said anticonvulsant is zonisamide.
  • the psychotherapeutic agent is selected from the group consisting of mirtazapine, and setiptiline, and pharmaceutically-acceptable salts, esters, amides, or prodrugs thereof, and said anticonvulsant is zonisamide.
  • the invention relates to a method of the fifteenth embodiment, further comprising administering insulin, wherein the insulin is administered at approximately the same time as the psychotherapeutic agent, the anticonvulsant, or both is administered to the individual.
  • the invention relates to a method of the fifteenth embodiment, further comprising administering insulin, wherein said insulin is administered after the psychotherapeutic agent, the anticonvulsant, or both is administered to the subject.
  • the invention relates to a method of the fifteenth embodiment, further comprising administering insulin to the subject, wherein the insulin is administered before the psychotherapeutic agent, the anticonvulsant, or both is administered to the subject.
  • the invention relates to a method of inhibiting loss of insulin sensitivity, said method comprising identifying a subject in need of a inhbition in the loss of insulin sensitivity and administering a compound selected from the group consisting of a psychotherapeutic agent, an anticonvulsant, an opioid receptor antagonist or some combination thereof.
  • the invention relates to a pharmaceutical composition for the inhibition of a blood-glucose condition comprising a psychotherapeutic agent, an opioid antagonist, or both the psychotherapeutic agent and the opioid antagonist and insulin.
  • the invention relates to a composition of the twenty second embodiment, wherein the opioid antagonist comprises naltrexone.
  • the invention relates to a composition comprising any of the above compositions, wherein the amount of the compound(s) is no more than about an effective amount for increasing insulin sensitivity.
  • the invention relates to a composition comprising a psychotherapeutic agent, an anticonvulsant, or some combination thereof, wherein said psychotherapeutic agent and said anticonvulsant are present in at least an effective amount.
  • the invention relates to the method of the twenty first embodiment, wherein the psychotherapeutic agent is bupropion and the opioid receptor antagonist is naltrexone.
  • the invention relates to the method of the twenty first embodiment, wherein the psychotherapeutic agent is fluoxetine and the opioid receptor antagonist is naltrexone.
  • the invention relates to a composition for the inhibition of a blood-glucose condition comprising an anticonvulsant and an opioid receptor antagonist.
  • the invention relates to a composition for the inhibition of a blood-glucose condition comprising a psychotherapeutic agent and an opioid receptor antagonist.
  • the invention relates to the twenty ninth embodiment in which the psychotherapeutic agent is bupropion and the opioid receptor antagonist is naltrexone.
  • the invention relates to the twenty ninth embodiment in which the psychotherapeutic agent is fluoxetine and the opioid receptor antagonist is naltrexone.
  • the invention relates to a composition for inhibition of a blood-glucose condition, wherein said composition comprises a psychotherapeutic agent and an anticonvulsant.
  • the invention relates to the composition of the thirty second embodiment, in which the psychotherapeutic agent is olanzapine and the anticonvulsant is zonisamide.
  • the invention relates to a method of inhibition of a blood-glucose condition, comprising identifying a subject in need thereof, and administering both a psychotherapeutic agent and an anticonvulsant to the subject.
  • the invention relates to the method of the thirty fourth embodiment in which the psychotherapeutic agent is olanzapine and the anticonvulsant is zonisamide.
  • the invention relates to a composition for reversing insulin resistance caused by administration of a psychotherapeutic agent or an anticonvulsant, wherein said composition comprises a psychotherapeutic agent and an anticonvulsant.
  • the invention relates to the composition of the thirty sixth embodiment, in which the psychotherapeutic agent is olanzapine and the anticonvulsant is zonisamide.
  • the invention relates to a method of reversing a blood-glucose condition caused by administration of a psychotherapeutic agent or an anticonvulsant, comprising identifying a subject in need thereof, and administering a psychotherapeutic agent and an anticonvulsant to the subject.
  • the invention relates to the method of the thirty eighth embodiment, in which the psychotherapeutic agent is olanzapine and the anticonvulsant is zonisamide.
  • the individuals are monitored for a period of months. It is recommended that the dosage be adjusted so that each individual remains sensitive to their dose of insulin and to maintain a healthy blood sugar level; thus the insulin levels may have to be decreased.
  • the dosage of zonisamide can be from about 25 mg to about 800 mg per day, generally given once per day or divided (e.g., equally) into multiple doses.
  • the dose is from about 100 mg to about 600 mg per day, more preferably, the dose is from about 200 mg to about 400 mg per day.
  • Zonisamide tablets are usually made and marketed in 25 mg, 50 mg, and 100 mg doses. Individual tablets, or combination of tablets can be used to achieve the desired dosing.
  • the insulin is administered subcutaneously in amounts varying from 1-10 units.
  • Example 2 Use of Topiramate: [0173] Individuals taking insulin are identified. Each individual is instructed to take one 25 mg tablet of topiramate on a daily basis, in addition to the insulin therapy.
  • the dosage of topiramate can be from about 25 mg to about 1600 mg, preferably from about 50 mg to about 600 mg, more preferably from about 100 mg to about 400 mg. However, it may be necessary to use dosages outside these ranges.
  • the dosing scheme of the individual's insulin is reduced by 10%.
  • this reduction in insulin, in combination with topiramate, will not adversely impact the individual, lower doses of insulin will be effective for maintaining the individual's desired blood sugar levels and the risk that the individual will develop insulin resistance is reduced.
  • Each individual is instructed to take one tablet of zonisamide on a daily basis, in addition to one tablet of mitrazepine on a daily basis, and the individual's dosing scheme for insulin is reduced gradually over time.
  • the drugs are administered as follows: 8 mg mitrazepine and 64 mg zonisamide; or 16 mg mitrazepine and 128 mg zonisamide; or 32 mg mitrazepine and 252 mg zonisamide; generally with an mitrazepine/zonisamide ratio of 1 :8.
  • the individual's dosing scheme of insulin is reduced by 5%, then 1O 5 20, 30, 40, 50% and so on.
  • the individual's blood sugar levels are monitored. The reduction in insulin level is continued until the individual's blood sugar level is no longer safe.
  • the initial dosages are not effective, they can be increased.
  • Example 4 Combination of Zonisamide and Paroxetine: [0180] Individuals suffering from insulin resistance are identified. The amount of insulin administered to the individual (initial level of insulin) and the resulting impact of that insulin on the individual's blood sugar is determined.
  • Each individual is instructed to take one tablet of zonisamide on a daily basis, in addition to one tablet of paroxetine on a daily basis, in addition to their normal dose of insulin.
  • the drugs are administered as follows: 10 mg paroxetine and 60 mg zonisamide; or 20 mg paroxetine and 120 mg zonisamide; or 30 mg paroxetine and 180 mg zonisamide; or 40 mg paroxetine and 240 mg zonisamide; generally with a paroxetine/zonisamide ratio of 1 :6.
  • the amount of insulin can vary, and is generally between about 1 unit and 10 units.
  • the individuals are monitored for a period of months. Following this, the amount of insulin administered is lowered to a point beneath the initial level of insulin, and closer to the amount of insulin that was administered to the individual before the individual suffered from insulin resistance (pre-insulin resistance level of insulin).
  • pre-insulin resistance level of insulin The blood sugar levels of the individual are then examined to determine if the lower level of insulin is still effective in maintaining the individual's blood sugar levels at the desired levels. The above compounds will be effective in reversing insulin resistance.
  • the initial dosages are not effective, they can be increased.
  • the bupropion dosage can be increased by 20 mg intervals up to 3000 mg per day. If the initial dosage results in a more rapid increase in insulin sensitivity than the above rate, the dosage of each of zonisamide or bupropion can be reduced.
  • Example 6 Treatment of Type 2 Diabetes: [0187] An individual with Type 2 diabetes is identified. The individual's blood sugar is monitored as well as the daily dose of insulin. The individual is administered 50 mg of zonisamide and 250 mg of bupropion per day. The individual's blood sugar is again measured. The amount of insulin administered to the individual will be decreased accordingly to maintain the desired blood sugar levels. If there is no need for a decrease in the amount of insulin (e.g, the individual's previous dose of insulin is not too much), then the amount of zonisamide and bupropion can be increased until the amount of insulin administered can be decreased. Supplemental amounts of insulin can still be administered to the individual, if required. Thus, one can treat Type 2 diabetes.
  • This example can be used for any of the above compounds and combinations thereof to determine the amount and frequency of each of the compounds to be administered. This can also be used for treating and/or inhibiting insulin resistance and Type 2 diabetes.
  • LP. intraperitoneal
  • a baseline blood glucose determination was made two hours post-injection.
  • Mice were then given a standard LP. injection of insulin. .Blood glucose levels were then followed for two hours (at 15 min, 30 min, 1 h and 2 h).
  • Tables 1-4 for vehicle, fluoxetine, naltrexone and naltrexone+bupropion, respectively. Glucose levels are in mg/dl.
  • Total areas under the curve (AUC) were calculated based on glucose levels at each time point for each mouse.
  • AUC is a summation of glucose levels observed at each time point.
  • the animals were housed individually and supplied with standard laboratory chow. Food consumed and animal weights were recorded every days. There were 5 animals in the control (vehicle) group, 5 animals in the zonisamide only group, 5 animals in the olanzapine only group, and 6 animals in the olanzapine + zonisamide group.
  • Rats were allowed to recover after pump implantation, and then received twice daily injections of zonisamide 26 mg/kg. Blood was drawn by saphenous venepuncture 13 days after olanzapine implant, 6 days after twice daily zonisamide injections began and blood glucose levels were measured by handheld glucometer (Roche Accucheck, Advantage) with glucose strips. The results are shown below (Table 5).

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Chemical & Material Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Diabetes (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Emergency Medicine (AREA)
  • Endocrinology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Zoology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Immunology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Molecular Biology (AREA)
  • Obesity (AREA)
  • Hematology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicinal Preparation (AREA)

Abstract

Methods and compositions for treating a blood glucose condition involve identifying a suitable subject and administering an effective amount of a composition that contains one or more of an opioid antagonist, an anticonvulsant, and a psychotherapeutic agent. The compositions can include insulin. In some embodiments, such methods and compositions can be used to modulate a blood glucose level. In preferred embodiments, such methods and compositions are useful for increasing a subject's sensitivity to insulin.

Description

COMPOSITIONS AND METHODS FOR INCREASING INSULIN SENSITIVITY
Related Application Information
[0001] This application claims priority to U.S. Provisional Patent Application Serial Nos. 60/738,893, filed November 22, 2005, and 60/759,117, filed January 12, 2006, both of which are hereby incorporated by reference in their entireties.
Background of the Invention
Field of the Invention
[0002] The present invention is in the field of pharmaceutical compositions and methods for the treatment of insulin related disorders in individuals.
Description of the Related Art
[0003] Diabetes is a chronic disease that has no cure. Currently, about 18.2 million people or 6.3% of the population in the United States have diabetes. While roughly 13 million have been diagnosed, it is estimated that 5.2 million people are not aware that they have the disease. As the sixth leading cause of death by disease in 2000, ^diabetes is costing the U.S. health care system an estimated $132 billion annually. See National Diabetes Information Clearinghouse, NIH Publication No. 04-3892, November 2003. More serious than the economic costs associated with diabetes is the decrease in the quality of life, serious health complications/consequences, and deaths associated with diabetes.
[0004] Diabetes is a group of diseases characterized by high blood glucose levels, which result from defects in insulin production, insulin action, or both. Because diabetes can remain undiagnosed for years, many people become aware that they have diabetes only after the development of one of its life-threatening complications. It is well- accepted that both genetics and environmental factors, such as obesity and lack of exercise, are important factors in the onset of diabetes.
[0005] One group of diabetes, Type 1 (or insulin-dependent diabetes mellitus or juvenile-onset diabetes), develops when the body's immune system destroys pancreatic cells that make the hormone insulin, which regulates blood glucose levels. Type 1 diabetes usually occurs in children and young adults, although disease onset can occur at any age. Type 1 diabetes accounts for about 5 to 10 percent of all diagnosed cases of diabetes. Risk factors for Type 1 diabetes include autoimmune, genetic,- and environmental factors. Individuals diagnosed with Type 1 diabetes require daily delivery of insulin via injections or pumps.
[0006] Another group of diabetes, Type 2 (or Type II) diabetes (non-insulin- dependent diabetes mellitus (NIDDM) or adult-onset diabetes), is a metabolic disorder involving dysregulation of glucose metabolism and insulin resistance, which can result in long-term complications involving the eyes, kidneys, nerves, and blood vessels. Type 2 diabetes results from the body's inability to make either sufficient insulin (abnormal insulin secretion) or its inability to effectively use insulin (resistance to insulin action in target organs and tissues). This disease usually begins as insulin resistance, a disorder in which the cells do not use insulin properly, and as the need for insulin rises, the pancreas gradually loses its ability to produce insulin. Patients suffering from Type 2 diabetes have a relative insulin deficiency. That is, in these patients, plasma insulin levels are normal to high in absolute terms, although they are lower than predicted for the level of plasma glucose that is present. Type 2 diabetes is the most common form of the disease accounting for 90-95% of diabetes. Type 2 diabetes is nearing epidemic proportions, due to an increased number of older Americans and a greater prevalence of obesity and a sedentary lifestyle.
[0007] Type II diabetes mellitus is characterized by the following clinical signs or symptoms: persistently elevated plasma glucose concentration or hyperglycemia; polyuria; polydipsia and/or polyphagia; chronic microvascular complications such as retinopathy, nephropathy and neuropathy; and macrovascular complications such as hyperlipidemia and hypertension. These micro-and macro-vascular complications can lead to blindness, end-stage renal disease, limb amputation and myocardial infarction
[0008] Gestational diabetes refers to a form of glucose intolerance that is diagnosed in pregnant women. During pregnancy, gestational diabetes requires treatment to normalize maternal blood glucose levels to avoid complications in the infant. A percentage (5-10 percent) of women with gestational diabetes have Type 2 diabetes after pregnancy. Women who have had gestational diabetes also have a 20-50 percent chance of developing diabetes in the next 5-10 years.
[00091 Many pharmaceutical compositions and methods have been proposed to treat and/or cure diabetes. For example, one approach to reducing hyperglycemia in diabetes involves increasing liver glucokinase (GK) activity (Van Schaftingen, E. et al., Adv. Enzyme Regul. 32:133-148, 1992). Studies involving transgenic diabetic mice have shown that increased GK copy number results in increased hepatic glucose metabolism and decreased plasma glucose levels (Ferre, T. et al., Proc. Natl. Acad. Sci. USA, 93:7225-7230, 1996; FASEB J., 10:1213-1218, 1996; Niswender, K. D. et al., J. Biol. Chem., 272:22570-22575, 1997), demonstrating that increasing liver GK may be effective in reducing hyperglycemia in diabetes.
[00101 U.S. Patent No. 5,714,519 (hereinafter the '519 patent) discloses methods for controlling either hyperinsulinemia or insulin resistance by administering panthethine (see claims 1-18; col. 5, lines 6-15) or cysteamine (see claims 19-27; col. 5, lines 16-22) at predetermined intervals during the day. Unfortunately, some of the dosages of panthethine or cysteamine (for example, 500 mg of cysteamine) disclosed in the '519 patent are toxic to humans. In fact, such dosage amounts of cysteamine or panthethine can also cause undesirable gastrointestinal symptoms, such as increased acid output or even ulcers (Srivastava, P. K. & L. Field, J. Med. Chem., 18(8):798-802, 1975). U.S. Patent No. 6,686,337 discloses methods for treating Type II diabetes using a combination of a specified sulfamate and an antidiabetic agent.
Summary of the Invention
[0011] An embodiment provides a method of treating a blood-glucose condition, comprising identifying a subject having a blood-glucose condition in need of treatment and administering to the subject an amount of a composition that is effective to modulate a blood-glucose level, wherein the composition comprises at least one selected from a non-sulfamate anticonvulsant; a psychotherapeutic agent; an opioid antagonist; a combination of a psychotherapeutic agent and an opioid antagonist; a combination of a psychotherapeutic agent and an anticonvulsant; a combination of an opioid antagonist and an anticonvulsant; and a combination of an opioid antagonist, an anticonvulsant, and a psychotherapeutic agent.
[0012] In some embodiments, the subject can suffer from at least one condition selected from diabetes, insulin resistance, hyperinsulinemia, impaired glucose metabolism, and hyperglycemia. In some embodiments, the condition is insulin resistance. In some embodiments, the condition is Type 2 diabetes.
[0013] Examples of suitable psychotherapeutic agents include: ami tripty line, aripiprazole, benzodiazepines, bupropion, carbamezepine, clomipramine, clozapine, desipramine, dothiapen, doxepin, elatriptan, other triptans, fluoxetine, imipramine, lamotrogine, lithium, maprotiline, mirtazapine, nortriptyline, olanzapine, oxycarbamezepine, paroxetine, protriptyline, quetiapine, risperidone, setiptiline, sumatriptan, tiagabine, trimipramine, valproate, ziprasidone, and zolmitriptan, or a pharmaceutically-acceptable salt or prodrug thereof. In some preferred embodiments, the psychotherapeutic agent is selected from: bupropion, mirtazapine, olanzapine, setiptiline, fluoxetine, and valproate, or a pharmaceutically-acceptable salt or prodrug thereof
[0014] Examples of suitable anticonvulsants include: 5,5-diphenylhydantoin, benzodiazepine, carbamazepine, clonazepam, clorazepate, diazepam, divalproex, ethosuximide, felbamate, fosphenytoin, gabapentin, lamotrigine, levetiracetam, methsuximide, oxcarbazepine, phenytoin, pregabalin, tiagabine, topiramate, valproate, valproic acid, and zonisamide, or a pharmaceutically-acceptable salt or prodrug thereof. In some preferred embodiments, the anticonvulsant is zonisamide. The non-sulfamate anticonvulsant can be selected from zonisamide, valproate, and valproic acid, or a pharmaceutically-acceptable salt or prodrug thereof.
[0015] Examples of suitable opioid antagonists include: alvimopan, buprenorphine, lofexidine, nalmefene, nalorphine, naloxone, naltrexone, norbinaltorphimine, methylnaltrexone, pentacozine, and propiram, or a pharmaceutically- acceptable salt or prodrug thereof. In some preferred embodiments, the opioid antagonist is selected from: nalmefene, nalorphine, naloxone, naltrexone, and methylnaltrexone, or a pharmaceutically-acceptable salt or prodrug thereof.
[0016] In some embodiments, the composition that is effective to modulate a blood-glucose level can comprise a combination of a psychotherapeutic agent and an opioid antagonist. The psychotherapeutic agent can be selected from bupropion, mirtazapine, olanzapine, setiptiline, fluoxetine, and valproate, or a pharmaceutically- acceptable salt or prodrug thereof; and the opioid antagonist can be selected from nalmefene, nalorphine, naloxone, naltrexone, and methylnaltrexone, or a pharmaceutically-acceptable salt or prodrug thereof. In some embodiments, the psychotherapeutic agent can be administered to the subject separately from the opioid antagonist.
[0017] In some embodiments, the composition that is effective to modulate a blood-glucose level comprises a combination of a psychotherapeutic agent and an anticonvulsant. The psychotherapeutic agent can be selected from bupropion, mirtazapine, olanzapine, setiptiline, fluoxetine, and valproate, or a pharmaceutically- acceptable salt or prodrug thereof; and the anticonvulsant can be selected from topiramate, valproate, valproic acid, and zonisamide, or a pharmaceutically-acceptable salt or prodrug thereof. In some embodiments, the psychotherapeutic agent can be administered to the subject separately from the anticonvulsant.
[0018] In some embodiments, the composition that is effective to modulate a blood-glucose level comprises a combination of an opioid antagonist and an anticonvulsant. The opioid antagonist can be selected from: alvimopan, buprenorphine, lofexidine, nalmefene, nalorphine, naloxone, naltrexone, norbinaltorphimine, methylnaltrexone, pentacozine, and propiram, or a pharmaceutically-acceptable salt or prodrug thereof; and the anticonvulsant can be selected from topiramate, valproate, valproic acid, and zonisamide, or a pharmaceutically-acceptable salt or. prodrug thereof. In some embodiments, the opioid antagonist is administered to the subject separately from the anticonvulsant.
[0019] In some embodiments, the composition that is effective to modulate a blood-glucose level comprises a combination of an opioid antagonist, an anticonvulsant, and a psychotherapeutic agent. The opioid antagonist can be selected from: alvimopan, buprenorphine, lofexidine, nalmefene, nalorphine, naloxone, naltrexone, norbinaltorphimine, methylnaltrexone, pentacozine, and propiram, or a pharmaceutically- acceptable salt or prodrug thereof; the anticonvulsant can be selected from topiramate, valproate, valproic acid, and zonisamide, or a pharmaceutically-acceptable salt or prodrug thereof; and the psychotherapeutic agent can be selected from bupropion, mirtazapine, olanzapine, setiptiline, fluoxetine, and valproate, or a pharmaceutically-acceptable salt or prodrug thereof. In some embodiments, at least one of the opioid antagonist, the anticonvulsant, and the psychotherapeutic agent can be administered to the subject separately from at least one of the others.
(0020] Any disclosed composition can further comprise insulin. Any disclosed composition can comprise a controlled release formulation, which can, in some embodiments, be a sustained release formulation.
[0021] In some embodiments, the disclosed methods comprise obtaining a measurement of the subject's blood glucose level. A dosage of the composition can be adjusted after obtaining the measurement of the subject's blood glucose level. The disclosed methods may comprise providing dietary instructions to the subject.
[0022] In some embodiments, the present invention relates to a package comprising a blood-glucose modulating composition in unit dosage form and written instructions advising the reader to monitor the blood-glucose level of an intended human recipient of the composition, wherein the blood glucose-modulating composition comprises at least one selected from: a non-sulfamate anticonvulsant; a psychotherapeutic agent; an opioid antagonist; a combination of a psychotherapeutic agent and an opioid antagonist; a combination of a psychotherapeutic agent and an anticonvulsant; a combination of an opioid antagonist and an anticonvulsant; and a combination of an opioid antagonist, an anticonvulsant, and a psychotherapeutic agent.
[0023] These and other embodiments are described in greater detail below.
Detailed Description of the Preferred Embodiment
[0024] It has been realized that melanocortin neurons influence insulin sensitivity (conversely, known as insulin insensitivity or insulin resistance). Embodiments of this invention include administering compositions that influence the activity of these neurons, thereby modulating blood-glucose levels and, e.g., altering, compensating for, or inhibiting the severity, risk, onset, and/or occurrence of blood- glucose conditions. In some embodiments, these blood-glucose modulating (BGM) compositions comprise at least one selected from a non-sulfamate anticonvulsant (e.g., zonisamide); a psychotherapeutic agent (e.g., an anti-depressant such as fluoxetine, bupropion, mirtazapine, olanzapine and/or paroxetine); an opioid antagonist e.g., naltrexone, nalmafene and.or naloxone); a combination of a psychotherapeutic agent and an opioid antagonist; a combination of a psychotherapeutic agent and an anticonvulsant; a combination of an opioid antagonist and an anticonvulsant; and a combination of an opioid antagonist, an anticonvulsant, and a psychotherapeutic agent. Examples of compounds that alter the activity of melanocortin neurons include compounds that increase agonism of a melanocortin 3 receptor (MC3-R) or a melanocortin 4 receptor (MC4-R) compared to normal physiological conditions. The compounds can include those that enhance α-MSH activity. These compounds can include psychotherapeutics. In some embodiments these also include anticonvulsants. Moreover, it has been realized that combinations of psychotherapeutics and anticonvulsants; psychotherapeutics and opioid antagonists; anticonvulsant and opioid antagonists; and/or psychotherapeutics, anticonvulsants, and opioid antagonists can have an even larger impact on melanocortin neurons and thus an even larger impact on insulin resistance. As such, by controlling the activity of melanocortin neurons, embodiments of this invention can provide a way to modulate blood glucose levels and thereby control, inhibit and/or prevent the onset, severity, risk, and/or occurrence of blood-glucose conditions. Similarly, various compositions comprising compounds that influence cells having melanocortin receptors are also provided.
[0025] In some aspects, a BGM composition having multiple compounds is provided. In some aspects, the BGM composition is used for treating insulin resistance and can comprise a first compound, which is an opioid antagonist, a second compound, which is a psychotherapeutic, and the third compound, which is an anticonvulsant, wherein each of the compounds is in present in sufficient amount to inhibit a blood- glucose condition. Any one, or combination of these compounds, can be administered to a person at risk of developing, or having, a blood-glucose condition and thereby decrease the patient's risk of developing a blood-glucose condition or inhibiting the severity, progression, and/or duration of a patient's blood-glucose condition.
[0026] In other aspects, the BGM composition comprises insulin or is further combined or administered with insulin, and thus can be used directly to treat and/or inhibit a blood-glucose condition, such as diabetes or insulin resistance, as well as reducing the risk and/or reversing any onset of a blood-glucose condition. Thus, in some embodiments, for example, the BGM composition comprises (1) an opioid antagonist and insulin, (2) a psychotherapeutic agent and insulin, (3) an anticonvulsant and insulin, (4) an opioid antagonist, insulin, and a psychotherapeutic agent, (5) an opioid antagonist, insulin, and an anticonvulsant, (6) insulin, a psychotherapeutic, and an anticonvulsant; or (7) insulin, a psychotherapeutic agent, an anticonvulsant, and an opioid antagonist. These BGM compositions can be effective for treating insulin resistance as well as other blood- glucose conditions, including Type 1 diabetes, Type 2 diabetes, diabetes associated with obesity or obsessive-compulsive disorder, "pre-diabetes" (e.g., pre-diabetic obesity) in which the blood glucose level is between about 110 and 125 mg/dl (fasting), drug-induced diabetes, gestational diabetes and diabetes associated with various medical disorders such as Cushing's syndrome. As will be appreciated by one of skill in the art, other BGM combinations are also contemplated. In some embodiments, a combination of insulin with a compound or method that alters the activity of melanocortin cells {e.g. , neurons with melanocortin receptors) in a composition or method, is contemplated. These and other embodiments are discussed in greater detail below. The following definitions are provided to clarify some aspects of the relevant components and diseases.
Definitions
[0027] The term "blood-glucose condition" refers to a condition in which it is desirable to modulate a patient's glucose levels. In some embodiments, blood-glucose conditions include conditions in which it is desirable to reduce blood-glucose levels. For example, high blood-glucose levels can be a blood-glucose condition. In other embodiments, blood-glucose conditions include conditions in which it is desirable to maintain blood-glucose levels at a specific value or within a range of values. In still other embodiments, blood-glucose conditions include conditions in which it is desirable to increase blood-glucose levels. In some embodiments, methods and compositions described herein can be used to first reduce blood-glucose levels and to then maintain the blood-glucose levels at a specific value or within a range of values. Blood-glucose conditions include conditions in which a patient is at risk of developing a blood-glucose condition. In one embodiment, insulin resistance is a blood-glucose condition. In another embodiment, diabetes is a blood-glucose condition.
[0028] The term "insulin" refers to a polypeptide hormone (molecular weight of approximately 5700) naturally produced by the pancreas (secreted by beta cells in the islets of Langerhans) of a mammal which controls the amounts of glucose present in the blood by stimulating the uptake of glucose by muscle and adipose tissue. Insulin can exist in various states, such as preproinsulin and proinsulin. The term "insulin" also refers to synthetic versions, such as Humulin® (available commercially from Eli Lilly).
[0029] The term "insulin sensitivity" refers to the capacity of a cell, for example, a muscle cell (e.g., skeletal muscle cell) or fat cell (e.g., an adipocyte), or organism to sense or respond to stimulation by insulin or to insulin signaling. The preferred response to insulin or insulin signaling is glucose uptake.
[0030] The term "insulin resistance" refers to a condition or disorder in which the tissues of the body fail to respond normally to insulin. Insulin resistance manifests itself in pathologically elevated endogenous insulin and glucose levels and predisposes a mammal to the development of a cluster of abnormalities, including some degree of impaired glucose tolerance, an increase in plasma triglycerides and low density lipoprotein cholesterol (LDL) levels, a decrease in high-density lipoprotein cholesterol (HDL) levels, high blood pressure, hyperuricemia, a decrease in plasma fibrinolytic activity, an increase in cardiovascular disease and atherosclerosis (Reaven, G. M. Physiol Rev. 75(3): 473-86, 1995). Decompensated insulin resistance is widely believed to be an underlying cause of non-insulin dependent diabetes mellitus (NIDDM). Hyperinsulinemia refers to the overproduction of insulin by pancreatic cells. Often, hyperinsulinemia occurs as a result of insulin resistance, which is a condition defined by cellular resistance to the action of insulin. Insulin resistance, as defined above, is a state/disorder in which a normal amount of insulin produces a subnormal biologic (metabolic) response. In insulin-treated patients with diabetes, insulin resistance is considered to be present whenever the therapeutic dose of insulin exceeds the secretory rate of insulin in normal person.
[0031] Impaired glucose homeostasis (or metabolism) refers to a condition in which blood sugar levels are higher than normal but not high enough to be classified as diabetes. There are two categories that are considered risk factors for future diabetes and cardiovascular disease. Impaired glucose tolerance (IGT) occurs when the glucose levels following a 2-hour oral glucose tolerance test are between 140 and 199 mg/dl. IGT is a major risk factor for Type 2 diabetes and is present in about 1 1% of adults, or approximately 20 million Americans. About 40-45% of persons age 65 years or older have either Type 2 diabetes or IGT. Impaired fasting glucose (IFG) occurs when the glucose levels following an 8-hour fasting plasma glucose test are between 110 and 126 mg/dl.
[0032] Hyperglycemia, a common feature of diabetes, is caused by decreased glucose utilization by liver and peripheral tissues and an increased glucose production by liver.
[0033] The term "compound" can refer to many different substances. For example, the first compound generally denotes an opioid antagonist, the second compound generally denotes an α-MSH activity enhancer or psychotherapeutic, and the third compound generally denotes an anticonvulsant. However, where explicitly denoted, these terms can take on different meanings. Generally, "compound" does not encompass insulin, unless explicitly denoted.
[0034] The term "pharmaceutically-acceptable salt" refers to a formulation of a compound that does not cause significant irritation to an organism to which it is administered and does not abrogate the biological activity and properties of the compound. Pharmaceutically-acceptable salts can be obtained by reacting a compound of the invention with inorganic acids such as hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid, phosphoric acid, methanesulfonic acid, ethanesulfonic acid, p- toluenesulfonic acid, salicylic acid and the like. Pharmaceutically-acceptable salts can also be obtained by reacting a compound of the invention with a base to form a salt such as an ammonium salt, an alkali metal salt, such as a sodium or a potassium salt, an alkaline earth metal salt, such as a calcium or a magnesium salt, a salt of organic bases such as dicyclohexylamine, N-methyl-D-glucamine, tris(hydroxymethyl) methylamine, and salts thereof with amino acids such as arginine, lysine, and the like.
[0035] A "prodrug" refers to an agent that is converted into the parent drug in vivo. Prodrugs are often useful because, in some situations, they may be easier to administer than the parent drug. They may, for instance, be bioavailable by oral administration whereas the parent is not. The prodrug may also have improved solubility in pharmaceutical compositions over the parent drug or may demonstrate increased palatability or be easier to formulate. An example, without limitation, of a prodrug would be a compound of the present invention which is administered as an ester (the "prodrug") to facilitate transmittal across a cell membrane where water solubility is detrimental to mobility but which then is metabolically hydrolyzed to the carboxylic acid, the active entity, once inside the cell where water solubility is beneficial. A further example of a prodrug might be a short peptide (polyaminoacid) bonded to an acid group where the peptide is metabolized to provide the active moiety.
[0036] The term "pharmaceutical composition" refers to a mixture of an active compound (or combination of active compounds) with other chemical components, such as diluents or carriers. The pharmaceutical composition facilitates administration of the active compound to an organism. Multiple techniques of administering a compound exist in the art including, but not limited to, oral, injection, aerosol, parenteral, and topical administration, and a variety of chemical components have been developed for admixture with the active compound(s) to facilitate such administration. Pharmaceutical compositions can also be obtained by reacting compounds with inorganic or organic acids such as hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid, phosphoric acid, methanesulfonic acid, ethanesulfonic acid, p-toluenesulfonic acid, salicylic acid and the like.
[0037] The term "carrier" defines a chemical compound that facilitates the incorporation of a compound into cells or tissues. For example dimethyl sulfoxide (DMSO) is a commonly utilized carrier as it facilitates the uptake of many organic compounds into the cells or tissues of an organism.
[0038] The term "diluent" defines chemical compounds diluted in solutions, such as water, that will dissolve the compound of interest as well as stabilize the biologically active form of the compound. Salts dissolved in buffered solutions are utilized as diluents in the art. One commonly used buffered solution is phosphate buffered saline (PBS) because it mimics the salt conditions of human blood. Since buffer salts can control the pH of a solution at low concentrations, a buffered diluent rarely modifies the biological activity of a compound.
[0039] The term "treatment" does not necessarily mean curing a disease or disorder. A reduction in symptoms associated with the disorder or disease can also be characterized as a treatment. Further, a slowing in the progression of the disorder or disease can also be characterized as a treatment.
[0040] The term "insulin sensitizing" denotes that the compound makes a host or subject more sensitive to the presence of insulin, whether it be exogenous or endogenous insulin.
[0041] The term "physiologically acceptable" characterizes a carrier or diluent that does not abrogate the biological activity and properties of the compound.
[0042] The term "effective amount" denotes the amount of a substance required to achieve the particular utility. Thus, an effective amount can vary depending upon a particular use.
[0043] The term "inhibit" characterizes a decrease in the risk, time of onset, side effects, symptoms, and/or progression of a condition during a specified treatment compared to the risk, time of onset, side effects, symptoms, and/or progression of the condition predicted without the specified treatment. Comparisons can also be performed between two treatment options. For example, an opioid antagonist would be said to inhibit a condition if the risk, time of onset, side effects, symptoms and/or progression of the condition were decreased when a patient was administered both an opioid antagonist and insulin compared to administration of insulin. In some embodiments, a condition is inhibited if the condition is completely reversed or prevented from occurring. The severity of a symptom can be measured as a deviation in the host of some quantifiable amount from the norm (e.g. , blood sugar or insulin levels), or, for example, as an amount of a medication that is given to the host (e.g., the host requires 30% less externally administered insulin for the desired effect when the host is also administered an anticonvulsant).
[0044] Throughout the present disclosure, when a particular compound is mentioned by name, for example, zonisamide, bupropion, naltrexone, fluoxetine, setiptiline, mirtazapine, or valproate, it is understood that the scope of the present disclosure encompasses active metabolites, pharmaceutically-acceptable salts, esters, amides, and/or prodrugs of the named compound. Also, if the named compound comprises a chiral center, the scope of the present disclosure also includes compositions comprising the racemic mixture of the two enantiomers, as well as compositions comprising each enantiomer individually substantially free of the other enantiomer. Thus, for example, contemplated herein is a composition comprising the S enantiomer substantially free of the R enantiomer, or a composition comprising the R enantiomer substantially free of the S enantiomer. By "substantially free" it is meant that the composition comprises less than 10%, or less than 8%, or less than 5%, or less than 3%, or less than 1% of the minor enantiomer. If the named compound comprises more than one chiral center, the scope of the present disclosure also includes compositions comprising a mixture of the various diastereomers, as well as compositions comprising each diastereomer substantially free of the other diastereomers. Thus, for example, commercially available mirtazapine is a racemic mixture comprising two separate enantiomers. The recitation of "mirtazapine" throughout this disclosure includes compositions that comprise the racemic mixture of mirtazapine, the compositions that comprise the (+) enantiomer substantially free of the (-) enantiomer, and the compositions that comprise the (-) enantiomer substantially free of the (+) enantiomer.
[0045] In addition, active metabolites of the various compounds described herein are also within the scope of the present invention. For example, the 6-β- hydroxynaltrexone metabolite of naltrexone is active, as is the norfluoxetine. metabolite of fluoxetine. Fluoxetine is converted into both S-norfluoxetine (80% of total) and R- norfluoxetine (20% of total). Both of these metabolites are active and are contemplated for use in the compositions and methods described herein.
Compounds
[0046] As discussed above, in one aspect, a BGM composition for the treatment or inhibition of blood-glucose conditions is provided. In general, these BGM compositions comprise one or more active compounds selected from the group consisting of an opioid antagonist (e.g., naltrexone), an MC3-R/MC3-R agonist or α-MSH activity enhancer (e.g., psychotherapeutic agent), and an anticonvulsant (e.g., zonisamide). Non- sulfamate anticonvulsants are preferably included in BGM compositions that do not contain BGM amounts of an opioid antagonist or MC3-R/MC3-R agonist or α-MSH activity enhancer. Likewise, when an anticonvulsant in not administered in combination with BGM amounts of an opioid antagonist or MC3-R/MC3-R agonist or α-MSH activity enhancer, the anticonvulsant is preferably a non-sulfamate anticonvulsant. These BGM compositions can be used in amounts effective for the inhibition of insulin resistance. Additionally, they can also be used to inhibit or treat Type 1 or Type 2 diabetes, or any disorder of glucose dysregulation, including those mentioned above. In some embodiments, the BGM composition further comprises insulin, which can be used to treat a blood-glucose condition, such as Type 1 diabetes, while reducing the risk that insulin resistance will occur. Additionally, this combination of the BGM composition and insulin can be used to treat a blood-glucose condition, such as Type 2 diabetes, by allowing additional exogenous insulin to be administered to the subject while the insulin resistance aspect of the disorder is addressed by one or more of the above compounds. The BGM composition can comprise any one of the compounds or any combination of the compounds and the insulin in an effective amount. In some embodiments, the amount of each compound and insulin used is at least an effective amount and is preferably less than an amount that results in significant, unwanted side effects. In some embodiments, the amount is about a minimal amount that is at least an effective amount.
[0047] In some embodiments the psychotherapeutic agent, or α-MSH activity enhancer, is an antidepressant, an antimigrane, an antibipolar, an antimania drug, a mood stabilizer, or an antiepileptic. Examples of antidepressants include bupropion, paroxetine, fluoxetine and mirtazapine. Examples of antimigrane drugs include sumatriptan, zolmitriptan, elatriptan and other triptans. Examples of antibipolar drugs include lithium, valproate, carbamezepine, oxycarbamezepine, lamotrogine, tiagabine, olanzapine, clozapine, risperidone, quetiapine, aripiprazole, ziprasidone, and benzodiazepines. In some embodiments, the psychotherapeutic comprises a salt of lithium. In other embodiments, the psychotherapeutic is valproate, which includes both the salt of valproate and the free acid form of valproic acid. Also included are pharmaceutically acceptable salts or prodrugs of these drugs, controlled release (e.g., sustained or extended release) formulations of the above drugs, as well as combinations of the above drugs. In some embodiments, the lithium salt may be lithium carbonate or lithium citrate. In some embodiments, the lithium drug is in an extended release formulation. In other embodiments, more than one psychotherapeutic agent is included in the BGM composition and/or method.
[0048] In some embodiments, the present invention is directed to BGM compositions comprising insulin, zonisamide, and a salt of lithium, as described herein and in formulations described herein. In other embodiments, the present invention is directed to compositions comprising insulin, zonisamide, and valproic acid, and/or a pharmaceutically-acceptable salt, such as different salts of valproate, ester, amide, or prodrugs thereof.
[0049] Zonisamide is a marketed anticonvulsant indicated as adjunctive therapy for adults with partial onset seizures. Without being bound by any particular theory, it is believed that the mechanism of antiepileptic activity appears to be: 1) sodium- channel blocking; and, 2) reduction of inward T-type calcium currents. In addition, zonisamide binds to the GABA/benzodiazepine receptor complex without producing change in chloride flux. Further, zonisamide facilitates serotonergic and dopaminergic neurotransmission and possesses a weak inhibitory effect on carbonic anhydrase.
[0050] In certain embodiments, the antidepressant is mirtazapine or an analogous compound of Formula I
Figure imgf000016_0001
where
W is nitrogen, CH, oxygen, or sulfur;
Ri is selected from the group consisting of hydrogen, optionally substituted Ci_6 alkyl, optionally substituted C3-S cycloalkyl, optionally substituted C2-6 alkenyl, optionally substituted C2-6 alkynyl, optionally substituted Cue alkoxyalkyl, and optionally substituted aryl and arylalkyl;
R2, R3, R4, and R5, are each independently selected from the group consisting of hydrogen, halogen, optionally substituted Cj-6 alkyl, optionally substituted C1-6 alkyloxy, optionally substituted C2-6 alkenyl, optionally substituted C2-6 alkynyl, optionally substituted Ci-6-alkoxyalkyl, optionally substituted C].6 alkylthio, perhaloalkyl, CN, COR10, CONHRi o, heteroalkyl, and NO2;
R6, R7, R8J and R9, are each independently selected from the group consisting of hydrogen, halogen, optionally substituted Cj-6 alkyl, optionally substituted C 1-6 alkyloxy, optionally substituted C2.6 alkenyl, optionally substituted C2-6 alkynyl, optionally substituted Ci.6-alkoxyalkyls optionally substituted Cj-6 alkylthio, perhaloalkyl, CN, CORio, CONHRio, heteroalkyl, and NO2; and Ri0 is C)-6 alkyl.
[0051] The administration of both an opioid antagonist and a psychotherapeutic agent can have a synergistic effect on modulating blood glucose and/or inhibiting insulin resistance compared to the effect of the compounds alone. The administration of both an opioid antagonist and an anticonvulsant can have a synergistic effect on modulating blood glucose and/or inhibiting insulin resistance compared to the effect of the compounds alone. The administration of both an anticonvulsant and a psychotherapeutic agent can have a synergistic effect on modulating blood glucose and/or inhibiting insulin resistance compared to the effect of the compounds alone. Further, the administration of an anti-diabetic medication and an opioid antagonist, a psychotherapeutic agent, an anticonvulsant or a combination thereof can also have a synergistic effect on modulating blood glucose and/or inhibiting insulin resistance. Examples of opioid antagonists include alvimopan, norbinaltorphimine, nalmefene, naloxone, naltrexone, methylnaltrexone, and nalorphine, and pharmaceutically-acceptable salts or prodrugs thereof.
[0052] As will be appreciated by one of skill in the art, there are a variety of ways in which the compounds above can be administered and the timing involved in the administration. Some of these are discussed below; others will be appreciated from the present description by one of skill in the art.
[0053] In another embodiment, the antidepressant to be administered either by itself or with or combined with other compounds and/or insulin is a tricyclic antidepressant. Examples of tricyclic antidepressants include, but are not limited to, imipramine, desipramine, trimipramine, nortriptyline, clomipramine, doxepin, amitriptyline, protriptyline, dothiapen, and maprotiline. Maprotiline, a very effective antidepressant, is not used widely because it carries risk of seizures. The combination of maprotiline and zonisamide or other anticonvulsants has the added benefit of reducing the risk of seizures, in addition to reducing the risk of weight gain due to the use of the antidepressant. Non-limiting examples of useful antidepressants include fluoxetine, bupropion, mirtazapine, olanzapine and/or paroxetine,
[0054] In further embodiments, the antidepressant to be administered either by itself or with or combined with other compounds and/or insulin is a monoamine oxidase inhibitor (MAO inhibitor). Examples of MAO inhibitors include, but are not limited to, phenelzine (Nardil®), tranylcypromine (Parnate®), isocarboxazid (Marplan®) and moclobemide (Aurorix®).
[0055] In certain embodiments, the antihistamine to be administered either by itself or with or combined with other compounds and/or insulin is one of setiptilinie, teciptiline, ORG 8282 (Organon, Netherlands), or MO 8282 (Mochida, Japan).
[0056] In some embodiments, the 5HT2c receptor antagonist to be administered either by itself or with or combined with other compounds and/or insulin is selected from colozapine, N-desmethylclozapine, and clozapine-N-oxide.
[0057] In some embodiments, the first or second compound is an anticonvulsant, which is to be administered either by itself or with or combined with other compounds and/or insulin. Examples of anticonvulsants include barbiturates, benzodiazepines, GABA analogues, hydantoins, miscellaneous anticonvulsants, phenyltriazines, and succinimides. An example of a barbiturate includes pentobarbital. Examples of benzodiazepines include clonazepam, clorazepate, benzodiazepine, and diazepam. Examples of GABA analogues include tiagabine, pregabalin, and gabapentin. Examples of hydantoins include fosphenytoin, phenytoin, and 5,5-Diphenylhydantoin. Examples of miscellaneous anticonvulsants include carbamazepine, valproate, valproic acid, divalproex, felbamate, levetiracetam, carbamazepine, topiramate, oxcarbazepine, and zonisamide. An example of a phenyltriazine is lamotrigine. Examples of succinimides include methsuximide and ethosuximide. Also included are extended release formulations of the above drugs, pharmaceutically-acceptable salts or prodrugs thereof, as well as combinations of the above drugs. [0058] In one embodiment, the present invention is directed to a BGM composition for the treatment of insulin resistance comprising zonisamide and mirtazapine. In another embodiment, the present invention is directed to a BGM composition for the treatment of insulin resistance comprising zonisamide and paroxetine. In yet another embodiment, the present invention is directed to a BGM composition for the treatment of insulin resistance comprising zonisamide and venlafaxine. In some embodiments, the above embodiments are further combined with insulin, allowing for the treatment or inhibition of a blood-glucose condition upon the administration of the insulin.
[0059] In some embodiments, the present invention is directed to a BGM composition for inhibiting a blood-glucose condition, comprising bupropion and mirtazapine. In further embodiments, the present invention is directed to a BGM composition for inhibiting a blood-glucose condition, comprising zonisamide and setiptiline. In other embodiments, the present invention is directed to a BGM composition for inhibiting a blood-glucose condition comprising, bupropion and setiptiline. In other embodiments, the present invention is directed to a BGM composition for inhibiting a blood-glucose condition, comprising bupropion and naltrexone. In yet other embodiments, the present invention is directed to a BGM composition for inhibiting a blood-glucose condition, comprising fluoxetine and naltrexone. In other embodiments, the present invention is directed to a BGM composition for inhibiting a blood-glucose condition, comprising zonisamide, bupropion, and mirtazapine. In yet other embodiments, the present invention is directed to a BGM composition for inhibiting a blood-glucose condition, comprising zonisamide, bupropion, and setiptiline. In some embodiments, in each of the above embodiments, insulin is also included.
[0060] As will be appreciated by one of skill in the art, when insulin is included with the above compounds, the amount of insulin used may be an amount that is effective for the treatment of a subject's diabetes in the presence of the above compounds. Thus, basal insulin levels are contemplated as well as bolus levels (e.g., for meals). The administration of insulin with the above compounds allows for lower levels of insulin to be more effective in resulting in a desired goal (e.g., a particular insulin or blood sugar level). Thus, the use of lower levels of insulin will help to inhibit the onset of a blood- glucose condition. In some embodiments, the amount of insulin administered, when administered with one or more of the compounds described herein is less than would otherwise be administered to achieve the same blood sugar level in the subject. For example, the amount of insulin can be reduced by 1-10, 10-20, 20-30, 30-40, 450-50, 50- 60, 60-70, 70-80, 80-90, 90-99% or more when the above compounds are used.
[0061] Insulin can be part of the composition(s) by which the compounds are administered. Thus, in some embodiments, insulin is contained in the pharmaceutical preparation with the above compounds. In other embodiments, the insulin is separate from the above compounds. In other embodiments, a subject no longer needs to take exogenous insulin, as the patient is only suffering from insulin resistance, which was reduced or reversed by the above compounds, allowing the normal doses of endogenous insulin to be sufficient for the subject.
Method of Treatment
[0062] In another aspect, the present invention relates to a method of inhibiting a blood-glucose condition comprising identifying an individual in need thereof and treating that individual with an amount of a BGM composition as described herein that is effective to modulate a blood glucose level. In an embodiment, the BGM composition comprises a psychotherapeutic agent (e.g. an α-MSH activity enhancer) and an anticonvulsant. The psychotherapeutic agent and the anticonvulsant are as described above. In some embodiments, the above BGM compositions and the following methods are used to inhibit Type 2 diabetes. In other embodiments, they are used to inhibit Type 1 diabetes. In some embodiments, these are administered with insulin, allowing for less insulin to be administered to a subject. In some embodiments, the method involves identifying a subject in need of treatment or preventative measures and then administering the above compounds or BGM compositions to the subject. Optionally, exogenous insulin can also be administered to the subject. Preferably, the amount of the compounds or insulin is low enough to minimize side effects, but high enough to be effective for inhibiting a blood-glucose condition. In one embodiment, the blood-glucose condition is caused by administration of a psychotherapeutic agent and/or anticonvulsant. [0063] In another aspect, the present invention relates to inhibiting a blood- glucose condition comprising identifying an individual in need thereof and treating that individual with a BGM composition as described herein. In an embodiment, the BGM composition comprises a first compound that antagonizes opioid receptor activity and a second compound that enhances α-MSH activity. In some embodiments, opioid receptor activity is antagonized by administering an opioid receptor antagonist. The opioid receptor antagonist may be a μ-opioid receptor (MOP-R) antagonist. In some embodiments, the opioid receptor antagonist is selected from alvimopan, norbinaltorphimine, nalmefene, naloxone, naltrexone, methylnaltrexone, and nalorphine, and pharmaceutically-acceptable salts or prodrugs thereof.
[0064] In some of the embodiments set forth above, α-MSH activity is enhanced by administering a psychotherapeutic compound, e.g., as the second compound in the combinations described herein, where the psychotherapeutic compound triggers release of α-MSH or increases the activity of neurons that express α-MSH. In some embodiments, the psychotherapeutic compound is a selective serotonin reuptake inhibitor (SSRI) or a specific 5-HT receptor agonist (e.g. 2C agonist, IB agonist, 5HTIb agonist or 5HT2c agonist). Although these specific receptors are more commonly found in rodents, it is understood by those of skill in the art that other mammals have serotonin receptors on various neurons that are analogous in function and form to these receptors. Agonists (or antagonists) of these non-rodent, preferably human, serotonin receptors are within the scope of the present invention. Examples of SSRIs that can be used in the present invention include fluoxetine, fluvoxamine, sertraline, paroxetine, citalopram, escitalopram, sibutramine, duloxetine, and venlafaxine, and pharmaceutically-acceptable salts or prodrugs thereof.
[0065] In other embodiments, the second compound is a γ-amino butyric acid (GABA) inhibitor, a GABA receptor antagonist or a GABA channel antagonist. By "GABA inhibitor" it is meant a compound that reduces the production of GABA in the cells, reduces the release of GABA from the cells, or reduces the activity of GABA on its receptors, either by preventing the binding of GABA to GABA receptors or by minimizing the effect of such binding. The GABA inhibitor may be a 5-HTlb receptor agonist. The GABA inhibitor may suppress the expression of the agouti-related peptide (AgRP) gene, or it may suppress the production or release of AgRP. The GABA inhibitor may suppress the suppression or release of neuropeptide Y (NPY). In certain embodiments, the GABA inhibitor suppresses the activity of neurons that express AgRP. For example, the GABA inhibitor may be topiramate, l-(2- (((diphenylmethylene)amino)oxy)ethyl)-l, 2, 5, ό-tetrahydro-S-pyridinecarboxylic acid hydrochloride (NNC-711), or vigabatrin. It is, however, understood that a 5-HTlb agonist may inhibit the NPY/AgRP/GABA neuron (and therefore activate POMC neurons) without acting as an inhibitor of the GABA pathway.
[0066] In certain other embodiments, the GABA inhibitor increases the expression of proopiomelanocortin (POMC) neurons, leading to greater agonism at MC3- R and/or MC4-R. In some of these embodiments, the GABA inhibitor increases the production or release of POMC protein. In certain other of these embodiments, the GABA inhibitor increases the activity on POMC expressing neurons. In some embodiments, the GABA inhibitor is topiramate.
[0067] In other embodiments, the second compound is a dopamine reuptake inhibitor. Phentermine is an example of a dopamine reuptake inhibitor. In certain other embodiments, the second compound is a norepinephrine reuptake inhibitor. Examples of norepinephrine reuptake inhibitors include bupropion, thionisoxetine and reboxetine. Other embodiments include those in which the second compound is a dopamine agonist. Dopamine agonists include cabergoline, amantadine, lisuride, pergolide, ropinirole, pramipexole and bromocriptine. In further embodiments, the second compound is a norepinephrine releaser, for example diethylpropion, or a mixed dopamine/norepinephrine reuptake inhibitor, for example, atomoxatine.
[0068] In certain other embodiments, the second compound is a 5-HTlb agonist, such as sumatriptan, almotriptan, naratriptan, frovatriptan, rizatriptan, zomitriptan and/or elitriptan.
[0069] In another aspect, the present invention relates to inhibiting a blood- glucose condition comprising identifying an individual in need thereof and treating that individual with a an effective amount of a BGM composition comprising a first compound and a second compound, where the first compound is an opioid antagonist and the second compound causes increased agonism of a melanocortin 3 receptor (MC3-R) or a melanocortin 4 receptor (MC4-R) compared to normal physiological conditions.
[0070] In certain embodiments, the opioid antagonist antagonizes a MOP-R in a mammal. The mammal may be selected from the group consisting of mice; rats; rabbits; guinea pigs; dogs; cats; sheep; goats; cows; primates, such as monkeys, chimpanzees and apes; and humans.
[0071] In some embodiments, the opioid antagonist is selected from alvimopan, norbinaltorphimine, nalmefene, naloxone, naltrexone, methylnaltrexone, and nalorphine, and pharmaceutically-acceptable salts or prodrugs thereof. In other embodiments, the opioid antagonist is a partial opioid agonist. Compounds of this class have some agonist activity at opioid receptors. Examples of partial opioid agonists include pentacozine, buprenorphine, nalorphine, propiram and lofexidine.
[0072] In some embodiments, a subject or patient to receive the treatment is identified by identifying a patient with diabetes; this can be Type 1 and/or Type 2 diabetes. In some embodiments, the patient or subject is identified by identifying a patient with insulin resistance. In some embodiments, the patient or subject is identified by identifying a patient with insulin resistance. In other embodiments, the patient or subject is identified by identifying a patient with hyperinsulinemia. In other embodiments, the patient or subject is identified by identifying a patient with impaired glucose metabolism (impaired glucose tolerance or impaired fasting glucose). In other embodiments, the patient or subject is identified by identifying a patient with hyperglycemia. This can be done by measuring the absolute or relative amount of insulin given to the patient and the resulting change in blood sugar therefrom, or by simply determining the amount of insulin given to a patient and if that amount is greater than the expected endogenous amount. Alternatively, this can be done by noting an increase in the amount of insulin required for a patient to get a particular goal or result. In some embodiments, any patient or subject taking insulin can benefit from the above compositions or methods. In other embodiments, any of the above compounds (e.g., opioid antagonist, psychotherapeutic, anticonvulsant, or combinations thereof) can be used alone to one or more of the above conditions, simply by administering the compound(s) to the subject and allowing the subject's endogenous insulin levels to control the subject's blood sugar levels.
[0073] In further embodiments of this invention, a patient is already being administered composition comprising a psychotherapeutic agent (e.g., an antipsychotic), an opioid antagonist, an anticonvulsant, or some combination thereof for a non-glucose- related purpose and is in need of treatment of a blood-glucose condition. In these embodiments the quantity of the composition being administered can be modulated in order to inhibit the blood-glucose condition. In some of these embodiments, the blood- glucose condition is one in which it is desirable to increase blood glucose levels. In some of these embodiments, the amount of the composition being administered can be reduced.
[0074] In some embodiments, inhibiting a blood-glucose condition comprises administering to the individual an effective amount of a BGM composition comprising a psychotherapeutic agent (an α-MSH activity enhancer) and an anticonvulsant. In some embodiments the psychotherapeutic agent and the anticonvulsant are administered more or less simultaneously. In other embodiments the psychotherapeutic agent is administered prior to the anticonvulsant. In yet other embodiments, the psychotherapeutic agent is administered subsequent to the anticonvulsant. These compounds can be administered substantially simultaneously with insulin, thereby making insulin more effective in lowering blood sugar levels. Alternatively, insulin can be administered with one compound and the other compound added later. Alternatively, insulin can be administered before the compounds. As will be appreciated by one of skill in the art, the speed with which the above compounds act and the duration for which they act can determine when, how, and how much insulin should be added. Of course, these orders and methods can apply to any of the compounds, including the opioid antagonist.
[0075] In certain embodiments, the compounds of the BGM composition are administered individually or separately; in other embodiments they are administered together. In other embodiments, the compounds are covalently linked to each other such that they form a single chemical entity. The single chemical entity is then digested and is metabolized into two separate physiologically active chemical entities; one of which is one compound (e.g., a psychotherapeutic) and the other one is the other compound (e.g., anticonvulsant). The linked compound can be mixed with insulin for administration. In some embodiments, insulin is also linked to one or both of the compounds. The chemical linkage is selected such that after entry into the body, the linkage is broken, such as by enzymatic action, acid hydrolysis, base hydrolysis, or the like, and the two separate compounds are then formed.
10076] Aspects of the present invention provide, at least in part, for methods of inhibiting the risk, side effects, or symptoms of a blood-glucose condition, such as insulin resistance or type 2 diabetes. These methods can involve the use of BGM compoitions comprising anticonvulsants and/or any of the compounds disclosed herein. In some embodiments, insulin resistance is completely reversed or prevented from occurring. In other embodiments, the symptoms are only lessened or delayed from symptoms predicted without administration of the composition. In some embodiments, the addition of one of the above compounds to insulin (e.g., an anticonvulsant, a psychotherapeutic, and/or an opioid antagonist) can be used to reduce a symptom(s) by 1- 10, 10-20, 20-30, 30-40, 40-50, 50-60, 60-70, 70-80, 80-90, 90-99, or 100%. Symptoms or the severity of a symptom can be measured as a deviation in the host of some quantifiable amount from the norm (e.g. , blood sugar or insulin levels), or, for example, as an amount of a medication that is given to the host (e.g., the host requires 30% less externally administered insulin for the desired effect when the host is also administered an anticonvulsant).
[0077] In certain embodiments, the anticonvulsant is effective in reducing convulsions associated with a blood-glucose condition in a mammal. The mammal may be selected from the group consisting of mice; rats; rabbits; guinea pigs; dogs; cats; sheep; goats; cows; primates, such as monkeys, chimpanzees, and apes; and humans. As will be appreciated by one of skill in the art, the anticonvulsant need not actually prevent a convulsion in a subject that is not suffering from a risk or likelihood of a convulsion. When the phrase "reducing convulsions" is used, it denotes the fact that, if the particular treatment had been administered to a patient suffering from a risk of a convulsion, that, the patient's risk of a convulsion would have decreased. However, a risk of convulsion actually need not occur in a patient who is not at risk of suffering from a convulsion. Rather, what is denoted is that similar biochemical mechanisms or pathways are being activated or suppressed in both patients. [0078] In certain embodiments, the first compound of the BGM composition is zonisamide and the second compound is mirtazapine. In other embodiments, the first compound is bupropion and the second compound is mirtazapine. In further embodiments, the first compound is zonisamide and the second compound is setiptiline. In other embodiments, the first compound is bupropion and the second compound is setiptiline. In additional embodiments, the first compound is a combination of zonisamide and bupropion and the second compound is mirtazapine. In yet other embodiments, the first compound is a combination of zonisamide and bupropion and the second compound is setiptiline. As will be appreciated by one of skill in the art, any of the above compounds can be mixed with insulin or administered with insulin.
[0079] In some embodiments, the first compound is zonisamide and the second compound is a salt of lithium, as described herein and in formulations described herein. In other embodiments, the first compound is zonisamide and the second compound is valproic acid, or a pharmaceutically-acceptable salt, such as different salts of valproate, ester, amide, or prodrugs thereof. As will be appreciated by one of skill in the art, any of the above compounds can be mixed with insulin or administered with insulin.
[0080] In some embodiments, the first compound of the BGM composition is topiramate and the second compound is a salt of lithium, as described herein and in formulations described herein. In other embodiments, the first compound is topiramate and the second compound is valproic acid, or a pharmaceutically-acceptable salt, such as different salts of valproate, ester, amide, or prodrugs thereof. As will be appreciated by one of skill in the art, any of the above compounds can be mixed with insulin or administered with insulin.
[0081] In one embodiment, the methods comprise administering to a mammal receiving insulin an amount of zonisamide, at least sufficient to inhibit the risk of a subject experiencing a blood-glucose condition. In an alternative embodiment, the methods comprise administering to mammal receiving an antidepressant; a combination of zonisamide or topiramate, or other anticonvulsant (including agents that block kainate/AMPA (D,L-α-amino-3-hydroxy-5-methyl-isoxazole propionic acid) subtype glutamate receptors); and bupropion, or other compound that enhances the activity of norepinephrine and/or dopamine via uptake inhibition or other mechanism, in an amount sufficient to reduce the risk that a subject will experience a blood-glucose condition.
[0082] In certain embodiments, the insulin sensitizing agents for use in the methods of the present invention include zonisamide or topiramate (and pharmaceutically-acceptable salts thereof)- In other embodiments, other methane- sulfonamide derivatives, such as those described in U.S. Patent 4,172,896, or other sulfamates (including sulfamate-substituted monosaccharides), such as those described in U.S. Patent 4,513,006 are used. Both of these references are incorporated by reference herein in its entirety. In other embodiments, particularly those involving the use of an anticonvulsant without a psychotherapeutic agent or an opioid agonist, the anticonvulsant is a non-sulfamiate anticonvulsant. Zonisamide is an example of a non-sulfamate anticonvulsant.
(0083] In further embodiments, the insulin sensitizing agent is bupropion; while in other embodiments, one or more compounds disclosed in U.S. Patent Nos. 3,819,706 and 3,885,046, both of which are incorporated by reference herein in their entirety, is used. In additional embodiments, the insulin sensitizing agent is a compound that enhances the activity of norepinephrine and/or dopamine, such as by reuptake inhibition or other mechanism. An insulin sensitizing agent is one that reduces the likelihood that a blood-glucose condition will occur in a patient and can include, for example, opioid antagonists, psychotherapeutic, and anticonvulsants.
[0084] Compounds that enhance the activity of norepinephrine and/or dopamine include norepinephrine agonists, such as phendimetrazine and benzphetamine; norepinephrine reuptake inhibitors such as atomoxetine, bupropion, thionisoxetine, and reboxetine; dopamine agonists, such as cabergoline, amantadine, lisuride, pergolide, ropinirole, pramipexole, and/or bromocriptine; norepinephrine releasers, for example diethylpropion; a mixed dopamine/norepinephrine reuptake inhibitor, for example, bupropion; a combination of a dopamine reuptake inhibitor and a norepinephrine reuptake inhibitor, e.g. bupropion and mazindol; or a combination of a selective serotonin reuptake inhibitor (SSRI) and a norepinephrine reuptake inhibitor, such as sibutramine, venlafaxine, and duloxetine. [0085] Patients and subjects suitable for treatment include those identified as such, as described above, as well as those receiving insulin, an insulin derivative, or a compound that modulates blood sugar levels in a subject or patient.
[0086] In accordance with the invention, the combination of, for example, zonisamide or topiramate with bupropion (including contolled release forms such as sustained release preparations) provides an effective means of inhibiting a blood-glucose condition. The combination can be more effective than, for example, zonisamide or topiramate treatment alone and with fewer side effects. Neuropharmacologically, all three major nerve transmitters, e.g., serotonin, norepinephrine and dopamine, are targeted with the combination of, for example, bupropion with either zonisamide or topiramate. Side effects of, for example, zonisamide or topiramate (such as somnolence, psychomotor slowing, cognitive impairment, fatigue and depression) can be offset by insomnia, activation, psychomotor agitation and antidepressant effects of, for example, bupropion. On the other hand, zonisamide or topiramate, for example, can reduce the seizure risk associated with, for example, bupropion. Lower doses of both types of medication can be used in the combination treatment, thereby further reducing the overall side effect burden. Of course, insulin can be added to any of the above combinations in order to provide a convenient and reliable means for administering the desired compounds to a subject with the insulin the subject is to receive.
[0087] With regard to the pharmacokinetics of zonisamide, its renal excretion and minimal potential for inhibition or induction of hepatic microsomal enzymes, are favorable qualities in the concept of combination use with antidepressants, particularly newer generation antidepressants. The following section describes various pharmaceutical compositions which can be further embodiments of the compositions described above and used in the methods described above as well.
Pharmaceutical Compositions
[0088] In another aspect, the invention relates to a pharmaceutical composition comprising a combination of a psychotherapeutic agent, an anticonvulsant, and/or insulin, as described above, or comprising a linked molecule, as described herein, and a physiologically-acceptable carrier, diluent, or excipient, or a combination thereof. [0089] Details of some embodiments of the appropriate routes of administration and compositions suitable for same can be found in, for example, U.S. Patent Nos. 6,1 10,973, 5,763,493, 5,731,000, 5,541,231, 5,427,798, 5,358,970 and 4,172,896, as well as in patents cited therein, all of which are incorporated by reference herein in their entirety, including any drawing. As will be appreciated by one of skill in the art, any method that is appropriate for delivery of insulin or for at least one of the compounds can be appropriate for delivery of the combination. For example, the compounds can be administered subcutaneously, all in one injection.
[0090J The pharmaceutical compositions described herein can be administered to a human patient per se, or in pharmaceutical compositions where they are mixed with other active ingredients, as in combination therapy, or suitable carriers or excipient(s). Techniques for formulation and administration of the compounds of the instant application may be found in "Remington's Pharmaceutical Sciences," Mack Publishing Co., Easton, PA, 18th edition, 1990. The following discussion, regarding pharmaceutical compositions and methods of administration, can apply not only to the compounds, but the compositions as a whole and any insulin as well.
[0091] Suitable routes of administration may, for example, include oral, rectal, transmucosal, or intestinal administration; parenteral delivery, including intramuscular, subcutaneous, intravenous, intramedullary injections, as well as intrathecal, direct intraventricular, intraperitoneal, intranasal, or intraocular injections. In some embodiments, at least one component of the composition can be administered by one administration route while at least one other component of the composition can be administered by another administration route. For example, insulin can be administered by subcutaneous injections and an antipsychotic can be administered orally.
[0092] Alternatively, one may administer the compound and/or insulin in a local rather than systemic manner, for example, via injection of the compound directly in the renal or cardiac area, often in a depot or sustained release formulation. Furthermore, one may administer the drug in a targeted drug delivery system, for example, in a liposome coated with a tissue-specific antibody. The liposomes will be targeted to and taken up selectively by the organ. [0093] The pharmaceutical compositions of the present invention may be manufactured in a manner that is itself known, e.g., by means of conventional mixing, dissolving, granulating, dragee-making, levigating, emulsifying, encapsulating, entrapping or tabletting processes.
[0094] Pharmaceutical compositions for use in accordance with the present invention thus may be formulated in conventional manner using one or more physiologically acceptable carriers comprising excipients and auxiliaries which facilitate processing of the active compounds into preparations which can be used pharmaceutically. Proper formulation is dependent upon the route of administration chosen. Any of the well-known techniques, carriers, and excipients may be used as suitable and as understood in the art; e.g., in Remington's Pharmaceutical Sciences, above.
[0095] For injection, the compounds of the invention and/or insulin may be formulated in aqueous solutions, preferably in physiologically-compatible buffers such as Hanks's solution, Ringer's solution, or physiological saline buffer. For transmucosal administration, penetrants appropriate to the barrier to be permeated are used in the formulation. Such penetrants are generally known in the art.
[0096] For oral administration, the compounds and/or insulin can be formulated readily by combining the active compounds with pharmaceutically-acceptablecarriers well known in the art. Such carriers enable the compounds and/or insulin of the invention to be formulated as tablets, pills, dragees, capsules, liquids, gels, syrups, slurries, suspensions and the like, for oral ingestion by a patient to be treated. Pharmaceutical preparations for oral use can be obtained by mixing one or more solid excipients with pharmaceutical combination of the invention, optionally grinding the resulting mixture, and processing the mixture of granules, after adding suitable auxiliaries, if desired, to obtain tablets or dragee cores. Suitable excipients are, in particular, fillers such as sugars, including lactose, sucrose, mannitol, or sorbitol; cellulose preparations such as, for example, maize starch, wheat starch, rice starch, potato starch, gelatin, gum tragacanth, methyl cellulose, hydroxypropylmethyl-cellulose, sodium carboxymethylcellulose, and/or polyvinylpyrrolidone (PVP). If desired, disintegrating agents may be added, such as the cross-linked polyvinyl pyrrolidone, agar, or alginic acid or a salt thereof such as sodium alginate. Controlled release forms of the BGM compositions described herein are specifically contemplated, including sustained release formulations. Methods for formulating controlled release forms are known to those skilled in the art and may be applied to make controlled release BGM compositions using routine experimentation informed by the guidance provided herein.
[0097] Dragee cores are provided with suitable coatings. For this purpose, concentrated sugar solutions may be used, which may optionally contain gum arabic, talc, polyvinyl pyrrolidone, carbopol gel, polyethylene glycol, and/or titanium dioxide, lacquer solutions, and suitable organic solvents or solvent mixtures. Dyestuffs or pigments may be added to the tablets or dragee coatings for identification or to characterize different combinations of active compound doses.
[0098] Pharmaceutical preparations which can be used orally, including sublingually, which include push-fit capsules made of gelatin, as well as soft, sealed capsules made of gelatin and a plasticizer, such as glycerol or sorbitol. The push-fit capsules can contain the active ingredients in admixture with filler such as lactose, binders such as starches, and/or lubricants such as talc or magnesium stearate and, optionally, stabilizers. In soft capsules, the active compounds and/or insulin may be dissolved or suspended in suitable liquids, such as fatty oils, liquid paraffin, or liquid polyethylene glycols. In addition, stabilizers may be added. All formulations for oral administration should be in dosages suitable for such administration.
[0099] For buccal administration, the BGM compositions may take the form of tablets or lozenges formulated in conventional manner.
[0100] For administration by inhalation, the compounds and/or insulin for use according to the present invention are conveniently delivered in the form of an aerosol spray presentation from pressurized packs or a nebulizer, with the use of a suitable propellant, e.g., dichlorodifluoromethane, trichlorofluoromethane, dichlorotetrafluoroethane, carbon dioxide, or other suitable gas. In the case of a pressurized aerosol the dosage unit may be determined by providing a valve to deliver a metered amount. Capsules and cartridges of, e.g., gelatin for use in an inhaler or insufflator may be formulated containing a powder mix of the compound and a suitable powder base such as lactose or starch. [0101] The BGM compositions and/or insulin may be formulated for parenteral administration by injection, e.g., by bolus injection or continuous infusion. Formulations for injection may be presented in unit dosage form, e.g., in ampoules or in multi-dose containers, with an added preservative. The BGM compositions may take such forms as suspensions, solutions or emulsions in oily or aqueous vehicles, and may contain formulatory agents such as suspending, stabilizing and/or dispersing agents.
[0102] Pharmaceutical formulations for parenteral administration include aqueous solutions of the active compounds in water-soluble form. Additionally, suspensions of the active compounds and/or insulin may be prepared as appropriate oily injection suspensions. Suitable lipophilic solvents or vehicles include fatty oils such as sesame oil, or synthetic fatty acid esters, such as ethyl oleate or triglycerides, or liposomes. Aqueous injection suspensions may contain substances which increase the viscosity of the suspension, such as sodium carboxymethyl cellulose, sorbitol, or dextran. Optionally, the suspension may also contain suitable stabilizers or agents which increase the solubility of the compounds and/or insulin to allow for the preparation of highly concentrated solutions.
[0103] Alternatively, the active ingredient may be in powder form for constitution with a suitable vehicle, e.g., sterile pyrogen-free water, before use.
[0104] The compounds and/or insulin may also be formulated in rectal compositions such as suppositories or retention enemas, e.g., containing conventional suppository bases such as cocoa butter or other glycerides.
[0105] In addition to the formulations described previously, the compounds and/or insulin may also be formulated as a depot preparation. Such long acting formulations may be administered by implantation (for example subcutaneously or intramuscularly) or by intramuscular injection. Thus, for example, the compounds may be formulated with suitable polymeric or hydrophobic materials (for example as an emulsion in an acceptable oil) or ion exchange resins, or as sparingly soluble derivatives, for example, as a sparingly soluble salt.
[0106] A pharmaceutical carrier for the hydrophobic compounds and/or insulin of the invention is a cosolvent system comprising benzyl alcohol, a nonpolar surfactant, a water-miscible organic polymer, and an aqueous phase. A common cosolvent system used is the VPD co-solvent system, which is a solution of 3% w/v benzyl alcohol, 8% w/v of the nonpolar surfactant Polysorbate 80™, and 65% w/v polyethylene glycol 300, made up to volume in absolute ethanol. Naturally, the proportions of a co-solvent system may be varied considerably without destroying its solubility and toxicity characteristics. Furthermore, the identity of the co-solvent components may be varied: for example, other low-toxicity nonpolar surfactants may be used instead of POLYSORBATE 80™; the fraction size of polyethylene glycol may be varied; other biocompatible polymers may replace polyethylene glycol, e.g., polyvinyl pyrrolidone; and other sugars or polysaccharides may substitute for dextrose.
[0107] Alternatively, other delivery systems for hydrophobic pharmaceutical compounds and/or insulin may be employed. Liposomes and emulsions are well known examples of delivery vehicles or carriers for hydrophobic drugs. Certain organic solvents, such as dimethylsulfoxide, also may be employed, although usually at the cost of greater toxicity. Additionally, the compounds may be delivered using a sustained-release system, such as semipermeable matrices of solid hydrophobic polymers containing the therapeutic agent. Various sustained-release materials have been established and are well known by those skilled in the art. Sustained-release capsules may, depending on their chemical nature, release the compounds for a few weeks up to over 100 days. Depending on the chemical nature and the biological stability of the therapeutic reagent, additional strategies for protein stabilization may be employed.
[0108] Many of the compounds and/or insulin used in the pharmaceutical compositions of the invention may be provided as salts with pharmaceutically-compatible counterions. Pharmaceutically-compatible salts may be formed with many acids, including but not limited to hydrochloric, sulfuric, acetic, lactic, tartaric, malic, succinic, etc. Salts tend to be more soluble in aqueous or other protonic solvents than are the corresponding free acid or base forms.
[0109] Pharmaceutical BGM positions suitable for use in the present invention include compositions where the active ingredients are contained in an amount effective to achieve its intended purpose. More specifically, a therapeutically-effective amount means an amount of a compound or composition effective to prevent, stabilize, alleviate or ameliorate symptoms of disease, worsening of the disease, or prolong the survival of the subject being treated. Determination of a therapeutically-effective amount is well within the capability of those skilled in the art, especially in light of the detailed disclosure provided herein.
Doses and Combinations
[0110] The exact formulation, route of administration and dosage for the pharmaceutical compositions of the present invention can be chosen by the individual physician in view of the patient's condition. (See e.g., Fingl et al. 1975, in "The Pharmacological Basis of Therapeutics", Ch. 1 p. 1). Typically, the dose range of the composition administered to the patient can be from about 0.5 to 1000 mg/kg of the patient's body weight. The dosage may be a single one or a series of two or more given in the course of one or more days, as is needed by the patient. Note that for almost all of the specific compounds and insulin mentioned in the present disclosure, human dosages for treatment of at least some condition have been established. Thus, in most instances, the present invention will use those same dosages, or dosages that are between about 0.1% and 500%, about 1% and about 500%, about 10% and about 500%, about 25% and about 500%, about 50% and about 500%, about 100% and about 500%, about 250% and about 500%, about 0.1% and about 250%, about 1% and about 250%, about 10% and about 250%, about 25% and about 250%, about 50% and about 250%, about 100% and about 250%, about 0.1% and about 100%, about 1% and about 100%, about 10% and about 100%, about 25% and about 100%, about 50% and about 100%, about 0.1% and about 50%, about 1% and about 50%, about 10% and about 50%, about 25% and about 50%, about 0.1% and about 25%, about 1% and about 25%, about 10% and about 25%, about 0.1% and about 10%, about 1% about and 10%, or about 0.1% and 1% of the established human dosage. Where no human dosage is established, as will be the case for newly-discovered pharmaceutical compounds, a suitable human dosage can be inferred from EDso or IDso values, or other appropriate values derived from in vitro or in vivo studies, as qualified by toxicity studies and efficacy studies in animals. For the doses of insulin, a lower amount can be required as a unit dose, in some embodiments, due to the effect of the other compounds. However, this lower dose can readily be determined by using the teachings and methods disclosed herein and the knowledge of one of skill in the art. [0111] As will be appreciated by one of skill in the art, the amount of the various compounds (e.g., opioid antagonist, psychotherapeutic, and/or anticonvulsant) and insulin can vary depending upon the particular situation. The exact doses or amounts can be determined by one of skill in the art in light of the present disclosure.
[0112] The amount of insulin administered with or in each composition can vary, depending upon the particular circumstances in which it is to be used. In some embodiments, only a fraction of a unit (e.g., 0.1-0.2, 0.2-0.3, 0.3-0.4, 0.4-0.5, 0.5-0.6, 0.6- 0.7, 0.7-0.8, 0.9-0.99 U) to one or two units of insulin is included. Such levels of insulin can be useful for basal insulin treatment. The amount of additional compounds (e.g., anticonvulsant or psychotherapeutic) can be adjusted accordingly. In other embodiments, the amount of insulin is higher, for example, 2-5, 5-10, 10-15, or 15-20 U. Of course, the amount of insulin to add can depend upon the activity of the subject, the size and sex of the subject, as well as the amount of time that the insulin is supposed to alter a patient's blood sugar. Additionally, as the above compounds increase a subject's insulin sensitivity, the amount of the above compounds can also lower the amount of insulin to add. For example, 99-90, 90-80, 80-70, 70-60, 60-50, 50-40, 40-30, 30-20, 20-10, 10-1% of the above amounts of insulin can be used depending upon the amount of the above compounds used.
[0113] Although the exact dosage of the compounds (e.g., opioid antagonist, psychotherapeutic, and/or anticonvulsant) will be determined on a drug-by-drug basis, in most cases, some generalizations regarding the dosage can be made. The daily dosage regimen for an adult human patient may be, for example, an oral dose of between 0.1 mg and 6000 mg of each ingredient, preferably between 1 mg and 5000 mg, e.g. 25 to 5000 mg or an intravenous, subcutaneous, or intramuscular dose of each ingredient between 0.01 mg and 100 mg, preferably between 0.1 mg and 60 mg, e.g. 1 to 40 mg of each ingredient of the pharmaceutical compositions of the present invention or a pharmaceutically-acceptable salt thereof calculated as the free base, the composition being administered 1 to 4 times per day. Alternatively the compositions of the invention may be administered by continuous intravenous infusion, preferably at a dose of each ingredient up to 400 mg per day. Thus, the total daily dosage by oral administration of each ingredient will typically be in the range 1 to 2500 mg and the total daily dosage by parenteral administration will typically be in the range 0.1 to 400 mg. Suitably the compounds will be administered for a period of continuous therapy, for example for a week or more, or for months or years. Particular examples of amounts of the various compounds that can be mixed with insulin are described below.
[0114] In some embodiments, the dosage range for lithium carbonate, for an oral dose, will result in blood levels of lithium being between about 0.5 and about 1.5 meq/1. In a preferred embodiment, the lithium carbonate dosage range, for an oral dose, will be about 900 mg/day.
[0115] In certain embodiments, the dosage range for valproate, for an oral dose, is in the range of about 250 to about 5000 mg/day. In a preferred embodiment, the valproate dosage range, for an oral dose, will be about 1500 mg/day.
[0116] In further embodiments, the dosage range for zonisamide, for an oral dose, is in the range of about 25 to about 600 mg per day. In some embodiments, the dosage is 25 mg per day. In other embodiments, the dosage is 50 mg per day. In yet other embodiments, the dosage is 100 mg per day.
[0117] In further embodiments, the dosage range for mitrazepine, for an oral dose, is in the range of about 5 to about 500 mg per day. In some embodiments, the dosage is 8 mg per day. In other embodiments, the dosage is 16 mg per day. In yet other embodiments, the dosage is 32 mg per day. In some embodiments, the dosage is 15 mg per day. In other embodiments, the dosage is 30 mg per day. In yet other embodiments, the dosage is 45 mg per day.
[0118] In other embodiments, the dosage range for venlafaxinor venlafaxin XR, for an oral dose, is in the range of about 20 mg to about 600 mg per day. In some embodiments, the dosage is 25 mg per day. In other embodiments, the dosage is 37.5 mg per day. In yet other embodiments, the dosage is 50 mg per day. In some embodiments, the dosage is 75 mg per day. In other embodiments, the dosage is 100 mg per day. In yet other embodiments, the dosage is 150 mg per day.
[0119] As noted above, any of the above compounds can further be mixed with insulin in either a method or composition.
[0120] Dosage amount and interval may be adjusted individually to provide plasma levels of the compound(s) and/or insulin which are sufficient to maintain the modulating effects, or minimal effective concentration (MEC). The MEC will vary for each compound but can be estimated from in vitro data. Dosages necessary to achieve the MEC will depend on individual characteristics and route of administration. However, HPLC assays or bioassays can be used to determine plasma concentrations.
[0121] Dosage intervals can also be determined using MEC value. Compositions should be administered using a regimen that maintains plasma levels above the MEC for 10-90% of the time, preferably between 30-90% and most preferably between 50-90%. The relevant time period need not be the whole and can be, for example, during feeding, or during sleep.
[0122] In cases of local administration or selective uptake, the effective local concentration of the drug may not be related to plasma concentration.
[0123] The amount of composition administered will, of course, be dependent on the subject being treated, on the subject's weight, the severity of the affliction, the manner of administration and the judgment of the prescribing physician.
[0124] The composition or compounds may, if desired, be presented in a pack or dispenser device which may contain one or more unit dosage forms containing the active ingredient(s). The pack may for example comprise metal or plastic foil, such as a blister pack. The pack or dispenser device may be accompanied by instructions for administration. The pack or dispenser may also be accompanied with a notice associated with the container in form prescribed by a governmental agency regulating the manufacture, use, or sale of pharmaceuticals, which notice is reflective of approval by the agency of the form of the drug for human or veterinary administration. Such notice, for example, may be the labeling approved by the U.S. Food and Drug Administration for prescription drugs, or the approved product insert. Compositions comprising a compound of the invention formulated in a compatible pharmaceutical carrier may also be prepared, placed in an appropriate container, and labeled for treatment of an indicated condition. In some embodiments, the above pack or kit above comprises the compounds (e.g., opioid antagonist, psychotherapeutic, and/or anticonvulsant) as well as insulin. The kit can also contain a means for administering the insulin, such as a needle and syringe for subcutaneous injection. [0125] It will be understood by those of skill in the art that numerous and various modifications can be made without departing from the spirit of the present invention. Therefore, it should be clearly understood that the forms of the present invention are illustrative only and are not intended to limit the scope of the present invention. Additionally, the various sections of the above text are for ease of use only and are not meant to exclude relevant sections from one part from another part.
[0126] All documents and other information sources cited above are hereby incorporated in their entirety by reference, as are Gadde et al, Obesity Res. 9:544-551 (2001) and Gadde et al, JAMA 289:1820-1825 (2003).
[0127] As will be appreciated by one of skill in the art, any of the above methods or compositions that include insulin can be modified so that they do not include insulin. Likewise, any of the above methods or compositions that do not include insulin can be modified so that they include insulin if they do not already explicitly include insulin. For example, while a pharmaceutical composition comprising insulin and an α- MSH activity enhancer or psychotherapeutic can be administered to a patient as a method for inhibiting a blood-glucose condition, a patient can get the benefit from simply the administration of the α-MSH activity enhancer, and thus the insulin need not be added as part of the method itself. Methods of administering the BGM compositions to a subject as described herein may comprise obtaining a measurement of the subject's blood glucose level. Such measurements may be made by the subject or by another person, such as by a medical professional, using methods known to those skilled in the art. In an embodiment, a method of administering the BGM compositions to a subject as described herein further comprises adjusting a dosage of the composition after obtaining the measurement of the subject's blood glucose level. In an embodiment, a method of administering the BGM compositions to a subject as described herein further comprises providing dietary instructions to the subject.
[0128] An embodiment provides a package comprising a BGM composition as described herein, along with instructions advising the reader to monitor the blood glucose level of the intended recipient of the BGM composition.
Some Embodiments of the Invention [0129] Some of the embodiments of the present invention are as follows:
[0130] In a first embodiment, the invention relates to a composition for the inhibition a blood-glucose condition comprising a psychotherapeutic agent, an anticonvulsant, or both the psychotherapeutic agent and the anticonvulsant, and insulin.
[0131] In the second embodiment, the invention relates to a composition of the first embodiment, wherein said psychotherapeutic agent is selected from the group consisting of buproprion, lithium carbonate, lithium citrate, valproate, olanzapine, mixtures thereof, and pharmaceutically acceptable salts or prodrugs thereof.
[0132] In the third embodiment, the invention relates to a composition of the first embodiment wherein said anticonvulsant is selected from the group consisting of topiramate and zonisamide, and pharmaceutically-acceptable salts or prodrugs thereof, and combinations thereof.
[0133] In the fourth embodiment, the invention relates to a composition of the first embodiment, wherein said anticonvulsant is zonisamide.
[0134] In the fifth embodiment, the invention relates to a composition of the fourth embodiment, wherein said psychotherapeutic agent is lithium carbonate or lithium citrate.
[0135] In the sixth embodiment, the invention relates to a composition of the fourth embodiment, wherein said psychotherapeutic agent is valproate.
[0136] In the seventh embodiment, the invention relates to a composition of the first embodiment, wherein said psychotherapeutic agent is a salt of lithium and said anticonvulsant is zonisamide.
[0137] In the eighth embodiment, the invention relates to a composition of the first embodiment, wherein said psychotherapeutic agent is valproic acid, or a pharmaceutically-acceptable salt; ester, amide, or prodrug thereof, and said anticonvulsant is zonisamide.
[0138] In the ninth embodiment, the invention relates to a composition of the first embodiment, wherein said psychotherapeutic agent is mirtazapine and said anticonvulsant is zonisamide. [0139] In the tenth embodiment, the invention relates to a composition of the first embodiment, wherein said psychotherapeutic agent is bupropion and said anticonvulsant is zonisamide.
[0140] In the eleventh embodiment, the invention relates to a composition of the first embodiment, wherein said psychotherapeutic agent is setiptiline and said anticonvulsant is zonisamide.
[0141] In the twelfth embodiment, the invention relates to a composition of the first embodiment, wherein said psychotherapeutic agent is bupropion and said anticonvulsant is topiramate.
[0142] In the thirteenth embodiment, the invention relates to a composition of the first embodiment, wherein said psychotherapeutic agent is a combination of bupropion and mirtazapine and said anticonvulsant is zonisamide.
[0143] In the fourteenth embodiment, the invention relates to a composition of the first embodiment, wherein said psychotherapeutic agent is a combination of bupropion and setiptiline and said anticonvulsant is zonisamide.
[0144] In the fifteenth embodiment, the invention relates to a method of inhibiting a blood-glucose condition comprising identifying a subject in need thereof, administering to the subject a psychotherapeutic agent, an anticonvulsant, or both to the subject.
[0145] In the sixteenth embodiment, the invention relates to a method of the fifteenth embodiment, wherein the psychotherapeutic agent is selected from the group consisting of lithium carbonate, lithium citrate, and valproate, and pharmaceutically- acceptable salts, esters, amides, or prodrugs thereof, and said anticonvulsant is zonisamide.
[0146] In the seventeenth embodiment, the invention relates to a method of the fifteenth embodiment, wherein the psychotherapeutic agent is selected from the group consisting of mirtazapine, and setiptiline, and pharmaceutically-acceptable salts, esters, amides, or prodrugs thereof, and said anticonvulsant is zonisamide.
[0147] In the eighteenth embodiment, the invention relates to a method of the fifteenth embodiment, further comprising administering insulin, wherein the insulin is administered at approximately the same time as the psychotherapeutic agent, the anticonvulsant, or both is administered to the individual.
{0148] In the nineteenth embodiment, the invention relates to a method of the fifteenth embodiment, further comprising administering insulin, wherein said insulin is administered after the psychotherapeutic agent, the anticonvulsant, or both is administered to the subject.
[0149] In the twentieth embodiment, the invention relates to a method of the fifteenth embodiment, further comprising administering insulin to the subject, wherein the insulin is administered before the psychotherapeutic agent, the anticonvulsant, or both is administered to the subject.
[0150] In the twenty first embodiment, the invention relates to a method of inhibiting loss of insulin sensitivity, said method comprising identifying a subject in need of a inhbition in the loss of insulin sensitivity and administering a compound selected from the group consisting of a psychotherapeutic agent, an anticonvulsant, an opioid receptor antagonist or some combination thereof.
[0151] In the twenty second embodiment, the invention relates to a pharmaceutical composition for the inhibition of a blood-glucose condition comprising a psychotherapeutic agent, an opioid antagonist, or both the psychotherapeutic agent and the opioid antagonist and insulin.
[0152] In the twenty third embodiment, the invention relates to a composition of the twenty second embodiment, wherein the opioid antagonist comprises naltrexone.
[0153] In the twenty fourth embodiment, the invention relates to a composition comprising any of the above compositions, wherein the amount of the compound(s) is no more than about an effective amount for increasing insulin sensitivity.
[0154] In the twenty fifth embodiment, the invention relates to a composition comprising a psychotherapeutic agent, an anticonvulsant, or some combination thereof, wherein said psychotherapeutic agent and said anticonvulsant are present in at least an effective amount.
[0155] In the twenty sixth embodiment, the invention relates to the method of the twenty first embodiment, wherein the psychotherapeutic agent is bupropion and the opioid receptor antagonist is naltrexone. [0156] In the twenty seventh embodiment, the invention relates to the method of the twenty first embodiment, wherein the psychotherapeutic agent is fluoxetine and the opioid receptor antagonist is naltrexone.
[0157] In the twenty eighth embodiment, the invention relates to a composition for the inhibition of a blood-glucose condition comprising an anticonvulsant and an opioid receptor antagonist.
[0158] In the twenty ninth embodiment, the invention relates to a composition for the inhibition of a blood-glucose condition comprising a psychotherapeutic agent and an opioid receptor antagonist.
[0159] In the thirtieth embodiment, the invention relates to the twenty ninth embodiment in which the psychotherapeutic agent is bupropion and the opioid receptor antagonist is naltrexone.
[0160] In the thirty first embodiment, the invention relates to the twenty ninth embodiment in which the psychotherapeutic agent is fluoxetine and the opioid receptor antagonist is naltrexone.
[0161] In the thirty second embodiment, the invention relates to a composition for inhibition of a blood-glucose condition, wherein said composition comprises a psychotherapeutic agent and an anticonvulsant.
[0162] In the thirty third embodiment, the invention relates to the composition of the thirty second embodiment, in which the psychotherapeutic agent is olanzapine and the anticonvulsant is zonisamide.
[0163] In the thirty fourth embodiment, the invention relates to a method of inhibition of a blood-glucose condition, comprising identifying a subject in need thereof, and administering both a psychotherapeutic agent and an anticonvulsant to the subject.
[0164] In the thirty fifth embodiment, the invention relates to the method of the thirty fourth embodiment in which the psychotherapeutic agent is olanzapine and the anticonvulsant is zonisamide.
[0165] In the thirty sixth embodiment, the invention relates to a composition for reversing insulin resistance caused by administration of a psychotherapeutic agent or an anticonvulsant, wherein said composition comprises a psychotherapeutic agent and an anticonvulsant. [0166] In the thirty seventh embodiment, the invention relates to the composition of the thirty sixth embodiment, in which the psychotherapeutic agent is olanzapine and the anticonvulsant is zonisamide.
[0167] In the thirty eighth embodiment, the invention relates to a method of reversing a blood-glucose condition caused by administration of a psychotherapeutic agent or an anticonvulsant, comprising identifying a subject in need thereof, and administering a psychotherapeutic agent and an anticonvulsant to the subject.
[0168] In the thirty ninth embodiment, the invention relates to the method of the thirty eighth embodiment, in which the psychotherapeutic agent is olanzapine and the anticonvulsant is zonisamide.
Examples
[0169] The examples below are non-limiting and are merely representative of various aspects of the invention.
Example 1: Use of Zonisamide:
[0170] Individuals taking insulin are identified. Each individual is instructed to take one 25 mg tablet of zonisamide on a daily basis, in addition to the insulin therapy.
[0171] The individuals are monitored for a period of months. It is recommended that the dosage be adjusted so that each individual remains sensitive to their dose of insulin and to maintain a healthy blood sugar level; thus the insulin levels may have to be decreased.
[0172] The dosage of zonisamide can be from about 25 mg to about 800 mg per day, generally given once per day or divided (e.g., equally) into multiple doses. Preferably, the dose is from about 100 mg to about 600 mg per day, more preferably, the dose is from about 200 mg to about 400 mg per day. However, it may be necessary to use dosages outside these ranges. Zonisamide tablets are usually made and marketed in 25 mg, 50 mg, and 100 mg doses. Individual tablets, or combination of tablets can be used to achieve the desired dosing. The insulin is administered subcutaneously in amounts varying from 1-10 units.
Example 2: Use of Topiramate: [0173] Individuals taking insulin are identified. Each individual is instructed to take one 25 mg tablet of topiramate on a daily basis, in addition to the insulin therapy.
[0174] The individuals are monitored for a period of months. It is recommended that the dosage be adjusted so that each remains sensitive to their current dosing scheme of insulin.
[0175] The dosage of topiramate can be from about 25 mg to about 1600 mg, preferably from about 50 mg to about 600 mg, more preferably from about 100 mg to about 400 mg. However, it may be necessary to use dosages outside these ranges.
[0176] Alternatively, upon the administration of the topiramate, the dosing scheme of the individual's insulin is reduced by 10%. As this reduction in insulin, in combination with topiramate, will not adversely impact the individual, lower doses of insulin will be effective for maintaining the individual's desired blood sugar levels and the risk that the individual will develop insulin resistance is reduced.
Example 3: Combination of Zonisamide and Mitrazepine:
[0177] Individuals taking insulin are identified. Each individual's dosing scheme for insulin is noted as well as the resulting blood sugar of the individual from the particular doses of insulin.
[0178] Each individual is instructed to take one tablet of zonisamide on a daily basis, in addition to one tablet of mitrazepine on a daily basis, and the individual's dosing scheme for insulin is reduced gradually over time. Initially, the drugs are administered as follows: 8 mg mitrazepine and 64 mg zonisamide; or 16 mg mitrazepine and 128 mg zonisamide; or 32 mg mitrazepine and 252 mg zonisamide; generally with an mitrazepine/zonisamide ratio of 1 :8. Over a period of weeks, the individual's dosing scheme of insulin is reduced by 5%, then 1O5 20, 30, 40, 50% and so on. During this reduction in administered insulin levels, the individual's blood sugar levels are monitored. The reduction in insulin level is continued until the individual's blood sugar level is no longer safe. Thus, the ability of these compounds to sensitize an individual to insulin, allowing the individual to take less insulin, can be determined.
[0179] If the initial dosages are not effective, they can be increased.
Example 4: Combination of Zonisamide and Paroxetine: [0180] Individuals suffering from insulin resistance are identified. The amount of insulin administered to the individual (initial level of insulin) and the resulting impact of that insulin on the individual's blood sugar is determined.
[0181] Each individual is instructed to take one tablet of zonisamide on a daily basis, in addition to one tablet of paroxetine on a daily basis, in addition to their normal dose of insulin. Initially, the drugs are administered as follows: 10 mg paroxetine and 60 mg zonisamide; or 20 mg paroxetine and 120 mg zonisamide; or 30 mg paroxetine and 180 mg zonisamide; or 40 mg paroxetine and 240 mg zonisamide; generally with a paroxetine/zonisamide ratio of 1 :6. The amount of insulin can vary, and is generally between about 1 unit and 10 units.
[0182] The individuals are monitored for a period of months. Following this, the amount of insulin administered is lowered to a point beneath the initial level of insulin, and closer to the amount of insulin that was administered to the individual before the individual suffered from insulin resistance (pre-insulin resistance level of insulin). The blood sugar levels of the individual are then examined to determine if the lower level of insulin is still effective in maintaining the individual's blood sugar levels at the desired levels. The above compounds will be effective in reversing insulin resistance.
[0183] If the initial dosages are not effective, they can be increased.
Example 5: Combination of Zonisamide and Bupropion:
[0184] Individuals at risk of developing insulin resistance are identified. Each individual is instructed to take one 50 mg tablet of zonisamide on a daily basis. In addition, each individual is instructed to take one 250 mg tablet of bupropion on a daily basis.
[0185] The individuals are monitored for a period of months. It is recommended that the dosage be adjusted so that each individual maintains or reduces their daily intake of insulin to obtain their desired blood sugar levels.
[0186] If the initial dosage is not effective, then the bupropion dosage can be increased by 20 mg intervals up to 3000 mg per day. If the initial dosage results in a more rapid increase in insulin sensitivity than the above rate, the dosage of each of zonisamide or bupropion can be reduced.
Example 6: Treatment of Type 2 Diabetes: [0187] An individual with Type 2 diabetes is identified. The individual's blood sugar is monitored as well as the daily dose of insulin. The individual is administered 50 mg of zonisamide and 250 mg of bupropion per day. The individual's blood sugar is again measured. The amount of insulin administered to the individual will be decreased accordingly to maintain the desired blood sugar levels. If there is no need for a decrease in the amount of insulin (e.g, the individual's previous dose of insulin is not too much), then the amount of zonisamide and bupropion can be increased until the amount of insulin administered can be decreased. Supplemental amounts of insulin can still be administered to the individual, if required. Thus, one can treat Type 2 diabetes.
[0188] This example can be used for any of the above compounds and combinations thereof to determine the amount and frequency of each of the compounds to be administered. This can also be used for treating and/or inhibiting insulin resistance and Type 2 diabetes.
Example 7: Combination of Naltrexone and Fluoxetine (Insulin Tolerance Test)
[0189] Mice (n=3) were fed overnight then given an intraperitoneal (LP.) injection of one of the following: vehicle, fluoxetine (8.5 mg/kg), naltrexone (2.5 mg/kg) or fluoxetine + naltrexone (8.5 mg/kg fluoxetine, 2.5 mg/kg naltrexone). A baseline blood glucose determination was made two hours post-injection. Mice were then given a standard LP. injection of insulin. .Blood glucose levels were then followed for two hours (at 15 min, 30 min, 1 h and 2 h). The results are summarized in Tables 1-4 for vehicle, fluoxetine, naltrexone and naltrexone+bupropion, respectively. Glucose levels are in mg/dl.
Table 1 - vehicle
Baseline 15 min 30 min I h 2 h
126 76 85 89 187
123 79 96 112 137
139 78 72 96 143
Table 2 - fluoxetine
Baseline 15 min 30 min I h 2 h
135 63 93 118 228
161 82 90 138 169
Figure imgf000047_0001
[0190] The data show that, at these dosages, neither fluoxetine nor naltrexone alone had an effect on insulin tolerance beginning 2 hours post-injection since glucose levels in mice injected with either of these compounds do not differ from mice injected with vehicle at each time point tested. However, the combination of fluoxetine and naltrexone had a significant effect on insulin resistance since glucose levels were significantly lower after two hours compared to mice which were administered either compound alone. Thus, this combination was effective in inhibiting insulin resistance. Example 8: Combination of Naltrexone and Bupropion (Insulin Tolerance Test)
[0191] The same study described in Example 7 was performed, except that mice (n=12) were treated with vehicle, naltrexone (3 mg/kg), bupropion (50 mg/kg) or naltrexone (3 mg/kg) + bupropion (50 mg/kg). Total areas under the curve (AUC) were calculated based on glucose levels at each time point for each mouse. AUC is a summation of glucose levels observed at each time point. AUC values for the mice were (ND=not determined):
[0192] Vehicle: 13575, 10485, ND, 12038, 9353, 9990, 8160, ND, 14258, 10883, 12555 and 10065 (mean = 11136.2)
[01931 Bupropion: 13613, 9083, 11438, ND, 14003, 9668, 8003, 10725, 8715, 8715, 12038, 11280 (mean = 10661.91, which is 95.7% of vehicle AUC, representing a 4.3% decrease in AUC). [0194] Naltrexone: 11445, ND, 7208, 14783, 7215, 13058, 10493, 9045, 8003, 10193, 10763, 15990 (mean = 10745.09, which is 96.5% of vehicle AUC5 representing a 3.5% decrease in AUC).
[01951 Naltrexone+Bupropion: 7740, 7680, 12300, 8685, ND, 8775, ND, 8550, 12300, 8625, ND, ND (mean = 9331.875, which is 83.8% of vehicle AUC, representing a 16.2% decrease in AUC).
[0196] Thus, the administration of bupropion and naltrexone exhibited a synergistic effect in inhibiting insulin resistance compared to either compound administered alone. Since naltrexone resulted in a 3.5% decrease and bupropion resulted in a 4.3% decrease, the co-administration would have been expected to reduce the AUC by 7.8%. In fact, the observed effect was twice the expected effect.
Example 9: Combination of olanzapine and zonisamide (Insulin Tolerance Test)
[0197] Female Sprague-Dawley rats, weighing about 235 grams at the start of the experiment were used. They were trained to sham injections, using the zonisamide vehicle for 2 weeks before the study commenced. Under isoflurane anesthesia, Alzet osmotic minipumps (2ml2) were implanted subcutaneously, between the shoulder blades. The rats were subsequently returned to their home cages after recovery. The minipumps delivered 5 μL per hour for 14 days. Olanzapine was dissolved in 1.5% lactic acid in dH2O. Zonisamide was dissolved in 10% DMSO, 13.4% EtOH, 20.1% PPG, and 66.5% saline. Olanzapine dose was 1.75 mg/day. The animals were housed individually and supplied with standard laboratory chow. Food consumed and animal weights were recorded every days. There were 5 animals in the control (vehicle) group, 5 animals in the zonisamide only group, 5 animals in the olanzapine only group, and 6 animals in the olanzapine + zonisamide group.
[0198] Rats were allowed to recover after pump implantation, and then received twice daily injections of zonisamide 26 mg/kg. Blood was drawn by saphenous venepuncture 13 days after olanzapine implant, 6 days after twice daily zonisamide injections began and blood glucose levels were measured by handheld glucometer (Roche Accucheck, Advantage) with glucose strips. The results are shown below (Table 5).
Table 5— olanzapine + zonisamide
Figure imgf000049_0001
[0199] Thus, while either compound administered alone resulted in increased insulin resistance (elevated glucose levels), the co-administration of olanzapine and zonisamide inhibited insulin resistance and resulted in blood glucose levels similar to vehicle-treated animals.

Claims

WHAT IS CLAIMED IS:
1. A method of treating a blood-glucose condition, comprising:
identifying a subject having a blood-glucose condition in need . of treatment; and
administering to the subject an amount of a composition that is effective to modulate a blood glucose level, wherein the composition comprises at least one selected from:
a non-sulfamate anticonvulsant;
a psychotherapeutic agent;
an opioid antagonist;
a combination of a psychotherapeutic agent and an opioid antagonist;
a combination of a psychotherapeutic agent and an anticonvulsant;
a combination of an opioid antagonist and an anticonvulsant; and a combination of an opioid antagonist, an anticonvulsant, and a psychotherapeutic agent.
2. The method of Claim 1, wherein the subject suffers from at least one condition selected from diabetes, insulin resistance, hyperinsulinemia, impaired glucose metabolism, and hyperglycemia.
3. The method of Claim 2, wherein the condition is insulin resistance.
4. The method of Claim 2, wherein the condition is Type 2 diabetes.
5. The method of any one of Claims 1 to 4, wherein the psychotherapeutic agent is selected from: amitriptyline, aripiprazole, benzodiazepines, bupropion, carbamezepine, clomipramine, clozapine, desipramine, dothiapen, doxepin, elatriptan, other triptans, fluoxetine, imipramine, lamotrogine, lithium, maprotiline, mirtazapine, nortriptyline, olanzapine, oxycarbamezepine, paroxetine, protriptyline, quetiapine, risperidone, setiptiline, sumatriptan, tiagabine, trimipramine, valproate, ziprasidone, and zolmitriptan, or a pharmaceutically-acceptable salt or prodrug thereof.
6. The method of Claim 5, wherein the psychotherapeutic agent is selected from: bupropion, mirtazapine, olanzapine, setiptiline, fluoxetine, and valproate, or a pharmaceutically-acceptable salt or prodrug thereof.
7. The method of any one of Claims 1 to 6, wherein the anticonvulsant is selected from: 5,5-diphenylhydantoin, benzodiazepine, carbamazepine, clonazepam, clorazepate, diazepam, divalproex, ethosuximide, felbamate, fosphenytoin, gabapentin, lamotrigine, levetiracetam, methsuximide, oxcarbazepine, phenytoin, pregabalin, tiagabine, topiramate, valproate, valproic acid, and zonisamide, or a pharmaceutically- acceptable salt or prodrug thereof.
8. The method of any one of Claims 1 to 6, wherein the non-sulfamate anticonvulsant is selected from zonisamide, valproate, and valproic acid, or a pharmaceutically-acceptable salt or prodrug thereof.
9. The method of Claim 8, wherein the anticonvulsant is zonisamide.
10. The method of any one of Claims 1 to 9, wherein the opioid antagonist is selected from: alvimopan, buprenorphine, lofexidine, nalmefene, nalorphine, naloxone, naltrexone, norbinaltorphimine, methylnaltrexone, pentacozine, and propiram, or a pharmaceutically-acceptable salt or prodrug thereof.
11. The method of Claim 10, wherein the opioid antagonist is selected from: nalmefene, nalorphine, naloxone, naltrexone, and methylnaltrexone, or a pharmaceutically-acceptable salt or prodrug thereof.
12. The method of any one of Claims 1 to 4, wherein the composition comprises a combination of a psychotherapeutic agent and an opioid antagonist.
13. The method of Claim 12, wherein the psychotherapeutic agent is selected from bupropion, mirtazapine, olanzapine, setiptiline, fluoxetine, and valproate, or a pharmaceutically-acceptable salt or prodrug thereof; and wherein the opioid antagonist is selected from nalmefene, nalorphine, naloxone, naltrexone, and methylnaltrexone, or a pharmaceutically-acceptable salt or prodrug thereof.
14. The method of any one of Claims 12 to 13, wherein the psychotherapeutic agent is administered to the subject separately from the opioid antagonist.
15. The method of any one of Claims 1 to 4, wherein the composition comprises a combination of a psychotherapeutic agent and an anticonvulsant.
16. The method of Claim 15, wherein the psychotherapeutic agent is selected from bupropion, mirtazapine, olanzapine, setiptiline, fluoxetine, and valproate, or a pharmaceutically-acceptable salt or prodrug thereof; and wherein the anticonvulsant is selected from topiramate, valproate, valproic acid, and zonisamide, or a pharmaceutically- acceptable salt or prodrug thereof.
17. The method of any one of Claims 15 to 16, wherein the psychotherapeutic agent is administered to the subject separately from the anticonvulsant.
18. The method of any one of Claims 1 to 4, wherein the composition comprises a combination of an opioid antagonist and an anticonvulsant.
19. The method of Claim 18, wherein the opioid antagonist is selected from: alvimopan, buprenorphine, lofexidine, nalmefene, nalorphine, naloxone, naltrexone, norbinaJtorphimine, methylnaltrexone, pentacozine, and propiram, or a pharmaceutically- acceptable salt or prodrug thereof; and wherein the anticonvulsant is selected from topiramate, valproate, valproic acid, and zonisamide, or a pharmaceutically-acceptable salt or prodrug thereof.
20. The method of any one of Claims 18 to 19, wherein the opioid antagonist is administered to the subject separately from the anticonvulsant.
21. The method of any one of Claims 1 to 4, wherein the composition comprises a combination of an opioid antagonist, an anticonvulsant, and a psychotherapeutic agent.
22. The method of Claim 21, wherein the opioid antagonist is selected from: alvimopan, buprenorphine, lofexidine, nalmefene, nalorphine, naloxone, naltrexone, norbinaltorphimine, methylnaltrexone, pentacozine, and propiram, or a pharmaceutically- acceptable salt or prodrug thereof; wherein the anticonvulsant is selected from topiramate, valproate, valproic acid, and zonisamide, or a pharmaceutically-acceptable salt or prodrug thereof; and wherein the psychotherapeutic agent is selected from bupropion, mirtazapine, olanzapine, setiptiline, fluoxetine, and valproate, or a pharmaceutically-acceptable salt or prodrug thereof.
23. The method of any one of Claims 21 to 22, wherein at least one of the opioid antagonist, an anticonvulsant, and a psychotherapeutic agent is administered to the subject separately from at least one of the others.
24. The method of any one of Claims 1 to 23, wherein the composition further comprises insulin.
25. The method of any one of Claims 1 to 24, wherein the composition comprises a controlled release formulation.
26. The method of Claim 25, wherein the controlled release formulation is a sustained release formulation.
27. The method of any one of Claims 1 to 26, further comprising obtaining a measurement of the subject's blood glucose level.
28. The method of Claim 27, further comprising adjusting a dosage of the composition after obtaining the measurement of the subject's blood glucose level.
29. The method of any one of Claims 1 to 28, further comprising providing dietary instructions to the subject. .
30. A package comprising:
a blood glucose-modulating composition in unit dosage form; and written instructions advising the reader to monitor the blood glucose level of an intended human recipient of the composition;
wherein the blood glucose-modulating composition comprises at least one selected from:
a non-sulfamate anticonvulsant;
a psychotherapeutic agent;
an opioid antagonist;
a combination of a psychotherapeutic agent and an opioid antagonist;
a combination of a psychotherapeutic agent and an anticonvulsant;
a combination of an opioid antagonist and an anticonvulsant; and a combination of an opioid antagonist, an anticonvulsant, and a psychotherapeutic agent.
PCT/US2006/044966 2005-11-22 2006-11-20 Compositions and methods for increasing insulin sensitivity WO2007067341A2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
CA2630624A CA2630624C (en) 2005-11-22 2006-11-20 Compositions and methods for increasing insulin sensitivity
AU2006323048A AU2006323048B2 (en) 2005-11-22 2006-11-20 Compositions and methods for increasing insulin sensitivity
EP16179626.3A EP3132792B1 (en) 2005-11-22 2006-11-20 Composition and methods for increasing insulin sensitivity
EP06847477A EP1951212A2 (en) 2005-11-22 2006-11-20 Compositions and methods for increasing insulin sensitivity
JP2008542399A JP5180092B2 (en) 2005-11-22 2006-11-20 Compositions and methods for increasing insulin sensitivity
BRPI0618918A BRPI0618918B8 (en) 2005-11-22 2006-11-20 use of a first compound and a second compound to treat a blood glucose condition
MX2013007864A MX337422B (en) 2005-11-22 2006-11-20 Compositions and methods for increasing insulin sensitivity.
CN2006800511570A CN101370488B (en) 2005-11-22 2006-11-20 Compositions for increasing insulin sensitivity

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US73889305P 2005-11-22 2005-11-22
US60/738,893 2005-11-22
US75911706P 2006-01-12 2006-01-12
US60/759,117 2006-01-12

Publications (2)

Publication Number Publication Date
WO2007067341A2 true WO2007067341A2 (en) 2007-06-14
WO2007067341A3 WO2007067341A3 (en) 2008-01-17

Family

ID=38016941

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2006/044966 WO2007067341A2 (en) 2005-11-22 2006-11-20 Compositions and methods for increasing insulin sensitivity

Country Status (15)

Country Link
US (5) US8815889B2 (en)
EP (4) EP1951212A2 (en)
JP (3) JP5180092B2 (en)
CN (1) CN101370488B (en)
AR (1) AR057631A1 (en)
AU (1) AU2006323048B2 (en)
BR (1) BRPI0618918B8 (en)
CA (1) CA2630624C (en)
DK (1) DK2135603T3 (en)
ES (2) ES2402522T3 (en)
MX (1) MX337422B (en)
PL (1) PL2135603T3 (en)
PT (1) PT2135603E (en)
TW (3) TWI598094B (en)
WO (1) WO2007067341A2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007145863A2 (en) * 2006-06-05 2007-12-21 Orexigen Therapeutics, Inc. Sustained release formulation of naltrexone
US7713959B2 (en) 2004-01-13 2010-05-11 Duke University Compositions of an anticonvulsant and mirtazapine to prevent weight gain
JP2013144690A (en) * 2007-11-05 2013-07-25 Ipsen Pharma Sas Use of melanocortins to treat insulin sensitivity
US8652527B1 (en) 2013-03-13 2014-02-18 Upsher-Smith Laboratories, Inc Extended-release topiramate capsules
US8969371B1 (en) 2013-12-06 2015-03-03 Orexigen Therapeutics, Inc. Compositions and methods for weight loss in at risk patient populations
US9101545B2 (en) 2013-03-15 2015-08-11 Upsher-Smith Laboratories, Inc. Extended-release topiramate capsules
US9278094B2 (en) 2013-01-30 2016-03-08 Pharmorx Therapeutics, Inc. Treatments for depression and other diseases with a low dose agent
US9463173B2 (en) 2014-03-04 2016-10-11 The Johns Hopkins University Compositions and methods for treating obesity and obesity-related conditions

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK1617832T3 (en) 2003-04-29 2008-07-07 Orexigen Therapeutics Inc Preparations for the effect of weight loss
EP1951212A2 (en) * 2005-11-22 2008-08-06 Orexigen Therapeutics, Inc. Compositions and methods for increasing insulin sensitivity
WO2007089318A2 (en) * 2005-11-23 2007-08-09 Orexigen Therapeutics, Inc. Compositions and methods for reducing food cravings
US8916195B2 (en) 2006-06-05 2014-12-23 Orexigen Therapeutics, Inc. Sustained release formulation of naltrexone
US7511054B2 (en) * 2006-09-22 2009-03-31 Alltranz Inc. Transdermally deliverable opioid prodrugs, abuse-resistant compositions and methods of using opioid prodrugs
KR101654176B1 (en) 2006-11-09 2016-09-09 오렉시젠 세러퓨틱스 인크. Layered pharmaceutical formulations comprising an intermediate rapidly dissolving layer
TW200829235A (en) 2006-11-09 2008-07-16 Orexigen Therapeutics Inc Methods for administering weight loss medications
EP2254561A2 (en) * 2008-03-26 2010-12-01 AllTranz Inc. Abuse deterrent transdermal formulations of opiate agonists and agonist-antagonists
JP2011521973A (en) 2008-05-30 2011-07-28 オレキシジェン・セラピューティクス・インコーポレーテッド Methods for treating visceral fat conditions
EP2523557B1 (en) 2010-01-11 2019-09-25 Nalpropion Pharmaceuticals, Inc. Methods of providing weight loss therapy in patients with major depression
US20110269802A1 (en) * 2010-05-03 2011-11-03 Ligon Brook Method of delivery of perishable liquid mixtures using mixing cap and container system
US9089531B2 (en) 2010-09-28 2015-07-28 The Regents Of The University Of California GABA agonists in the treatment of disorders associated with metabolic syndrome and GABA combinations in treatment or prophylaxis of type I diabetes
DK3222280T3 (en) 2010-12-03 2021-04-19 Nalpropion Pharmaceuticals Llc INCREASE OF DRUG BIO AVAILABILITY IN NALTREXONE TREATMENT
US9744155B2 (en) 2012-03-28 2017-08-29 Ixcela, Inc. IPA as a therapeutic agent, as a protective agent, and as a biomarker of disease risk
KR20150016405A (en) 2012-06-06 2015-02-11 오렉시젠 세러퓨틱스 인크. Methods of treating overweight and obesity
US9157883B2 (en) * 2013-03-07 2015-10-13 Lifescan Scotland Limited Methods and systems to determine fill direction and fill error in analyte measurements
GB2513904A (en) * 2013-05-10 2014-11-12 Nec Corp Communication system
TWM462492U (en) 2013-06-05 2013-09-21 Yi-Chuan Chen Throat vibration audio wireless transmission device
CN105579575A (en) * 2013-06-13 2016-05-11 维罗技术有限责任公司 Compositions and methods for treating metabolic disorders
CN105934520A (en) * 2014-01-31 2016-09-07 伊克斯塞拉有限公司 Covalently bound metabolites as biomarkers
PL3261645T3 (en) 2015-02-27 2021-12-06 Dechra Limited Stimulation of appetite, management of weight loss, and treatment of anorexia in dogs and cats
US10954307B2 (en) * 2016-12-22 2021-03-23 Lipidair, Llc Targeted delivery methods and compositions for antihistamines
US11041847B1 (en) 2019-01-25 2021-06-22 Ixcela, Inc. Detection and modification of gut microbial population

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0294028A2 (en) * 1987-05-04 1988-12-07 Eli Lilly And Company Fluoxetine useful for the treatment of diabetes
EP0541192A1 (en) * 1991-11-02 1993-05-12 Ferring Arzneimittel GmbH Use of opiate antagonists for the treatment of endogen hyperinsulinemia
WO2000061139A1 (en) * 1999-04-08 2000-10-19 Ortho-Mcneil Pharmaceutical, Inc. Anticonvulsant derivatives useful in reducing blood glucose levels
US20020055512A1 (en) * 2000-01-21 2002-05-09 Cortendo Ab. Compositions for delivery of a cortisol antagonist
WO2005110405A1 (en) * 2004-05-03 2005-11-24 Duke University Compositions for affecting weight loss

Family Cites Families (240)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE759838A (en) 1969-12-04 1971-06-03 Wellcome Found KETONES WITH BIOLOGICAL ACTIVITY
US3885046A (en) 1969-12-04 1975-05-20 Burroughs Wellcome Co Meta chloro or fluoro substituted alpha-T-butylaminopropionphenones in the treatment of depression
US3942641A (en) 1972-05-05 1976-03-09 Syntex Corporation Dispensing packages containing novel cyclic progestogen-interrupted estrogen oral contraceptive regimens
US4089855A (en) 1976-04-23 1978-05-16 Cornell Research Foundation, Inc. Process for the stereoselective reduction of 6- and 8-keto morphine and morphinan derivatives with formamidinesulfinic acid and compounds obtained thereby
US4218433A (en) 1977-03-03 1980-08-19 Nippon Kayaku Kabushiki Kaisha Constant-rate eluting tablet and method of producing same
US4217353A (en) 1978-05-19 1980-08-12 E. I. Du Pont De Nemours And Company Method for inducing anorexia
US4172896A (en) 1978-06-05 1979-10-30 Dainippon Pharmaceutical Co., Ltd. Methane-sulfonamide derivatives, the preparation thereof and composition comprising the same
IL58649A (en) 1978-11-10 1982-04-30 Beecham Group Ltd Pharmaceutical dispensing container
JPS58134019A (en) 1982-02-05 1983-08-10 Ono Pharmaceut Co Ltd Slow-releasing triple-layered film pharmaceutical containing prostaglandin and its preparation
WO1983003197A1 (en) 1982-03-16 1983-09-29 Univ Rockefeller Method for controlling gastrointestinal dysmotility
US4513006A (en) 1983-09-26 1985-04-23 Mcneil Lab., Inc. Anticonvulsant sulfamate derivatives
US5266574A (en) 1984-04-09 1993-11-30 Ian S. Zagon Growth regulation and related applications of opioid antagonists
US4689332A (en) 1984-04-09 1987-08-25 Research Corporation Growth regulation and related applications of opioid antagonists
US4673679A (en) 1986-05-14 1987-06-16 E. I. Du Pont De Nemours And Company Use of prodrugs of 3-hydroxymorphinans to prevent bitter taste upon buccal, nasal or sublingual administration
GB8613689D0 (en) 1986-06-05 1986-07-09 Euro Celtique Sa Pharmaceutical composition
US4895845A (en) 1986-09-15 1990-01-23 Seed John C Method of assisting weight loss
NL8800823A (en) 1987-04-10 1988-11-01 Sandoz Ag METHOD FOR USING DOPAMINE RECEPTOR AGONISTS AND PHARMACEUTICAL PREPARATIONS CONTAINING THESE AGONISTS
US5000886A (en) 1987-05-26 1991-03-19 American Cyanamid Company Silicone-hardened pharmaceutical microcapsules and process of making the same
US5364841A (en) 1988-01-11 1994-11-15 Amylin Pharmaceuticals, Inc. Treatment of obesity and essential hypertension and related disorders
US4831031A (en) 1988-01-22 1989-05-16 Pfizer Inc. Aryl piperazinyl-(C2 or C4) alkylene heterocyclic compounds having neuroleptic activity
US5719197A (en) 1988-03-04 1998-02-17 Noven Pharmaceuticals, Inc. Compositions and methods for topical administration of pharmaceutically active agents
US5202128A (en) 1989-01-06 1993-04-13 F. H. Faulding & Co. Limited Sustained release pharmaceutical composition
US5114976A (en) 1989-01-06 1992-05-19 Norden Michael J Method for treating certain psychiatric disorders and certain psychiatric symptoms
AU5439890A (en) 1989-05-09 1990-11-29 Whitby Research, Inc. A method of reducing body weight and food intake using a dopamine d2 receptor agonist
DK469989D0 (en) 1989-09-22 1989-09-22 Bukh Meditec PHARMACEUTICAL PREPARATION
EP0431663B1 (en) 1989-12-06 1994-01-12 Akzo Nobel N.V. Stabilized solutions of psychotropic agents
FR2657350B1 (en) 1990-01-19 1992-05-15 Centre Nat Rech Scient COMPOUNDS FOR ENCAPSULATION IN ERYTHROCYTES - NEW DERIVATIVES OF NALOXONE AND NALTREXONE.
US5028612A (en) 1990-03-22 1991-07-02 Hillel Glover Method for treating emotional numbness
US5213807A (en) 1990-05-03 1993-05-25 Chemburkar Pramod B Pharmaceutical composition containing ibuprofen and a prostaglandin
US5403595A (en) 1991-05-07 1995-04-04 Dynagen, Inc. Controlled, sustained release delivery system for smoking cessation
US5486362A (en) 1991-05-07 1996-01-23 Dynagen, Inc. Controlled, sustained release delivery system for treating drug dependency
GB9217295D0 (en) 1992-08-14 1992-09-30 Wellcome Found Controlled released tablets
US5312925A (en) 1992-09-01 1994-05-17 Pfizer Inc. Monohydrate of 5-(2-(4-(1,2-benzisothiazol-3-yl)-1-piperazinyl)-ethyl)-6-chloro-1,3-dihydro-2H-indol-2-one-hydrochloride
IT1255522B (en) 1992-09-24 1995-11-09 Ubaldo Conte COMPRESSED FOR THERAPEUTIC USE SUITABLE FOR SELLING ONE OR MORE ACTIVE SUBSTANCES WITH DIFFERENT SPEEDS
IT1256393B (en) 1992-11-17 1995-12-04 Inverni Della Beffa Spa MULTI-LAYER MATERIAL FORMS FOR THE CONTROLLED RELEASE OF ACTIVE INGREDIENTS
US5512593A (en) 1993-03-02 1996-04-30 John S. Nagle Composition and method of treating depression using natoxone or naltrexone in combination with a serotonin reuptake inhibitor
GB9315856D0 (en) 1993-07-30 1993-09-15 Wellcome Found Stabilized pharmaceutical
US5358970A (en) 1993-08-12 1994-10-25 Burroughs Wellcome Co. Pharmaceutical composition containing bupropion hydrochloride and a stabilizer
US5541231A (en) 1993-07-30 1996-07-30 Glaxo Wellcome Inc. Stabilized Pharmaceutical
US6183778B1 (en) 1993-09-21 2001-02-06 Jagotec Ag Pharmaceutical tablet capable of liberating one or more drugs at different release rates
IT1265240B1 (en) 1993-11-30 1996-10-31 Ekita Investments Nv CONTROLLED RELEASE PHARMACEUTICAL TABLET, LENTICULAR
ATE214276T1 (en) 1994-09-19 2002-03-15 Du Pont Pharm Co COMPOSITIONS OF OPIOID ANTAGONISTS WITH SELECTIVE SEROTONIN UPtake INHIBITORS, FOR THE TREATMENT OF ALCOHOLISM AND ALCOHOL DEPENDENCE
US5627187A (en) 1995-04-12 1997-05-06 Katz; Bruce E. 5-FU for treating actinic kerotoses
US5714519A (en) 1995-06-07 1998-02-03 Ergo Science Incorporated Method for regulating glucose metabolism
EP0844870B1 (en) 1995-08-17 2001-11-21 Csir Controlled release products
GB9517062D0 (en) 1995-08-18 1995-10-25 Scherer Ltd R P Pharmaceutical compositions
ATE211906T1 (en) 1996-03-12 2002-02-15 Alza Corp COMPOSITION AND DOSAGE FORM CONTAINING AN OPIOID ANTAGONIST
EP0828489A4 (en) 1996-03-13 2001-04-04 Univ Yale Smoking cessation treatments using naltrexone and related compounds
EP0795327A1 (en) 1996-03-13 1997-09-17 Pfizer Inc. Use of Amlodipine for the treatment and prophylaxis of congestive cardiac failure of non-ischaemic origin
US5716976A (en) 1996-03-13 1998-02-10 Bernstein; Richard K. Method of treatment for carbohydrate addiction
ES2393303T3 (en) 1996-05-07 2012-12-20 Veroscience Llc Medical use and composition for the treatment of disorders of lipid and glucose metabolism
IL121076A (en) 1996-06-19 2000-10-31 Akzo Nobel Nv Pharmaceutical combinations comprising mirtazapine and one or more selective serotonin reuptake inhibitors
US6087386A (en) 1996-06-24 2000-07-11 Merck & Co., Inc. Composition of enalapril and losartan
CN1106193C (en) 1996-06-28 2003-04-23 奥索·麦克尼尔药品公司 Anticonvulsant sulfamate derivs. useful in treating obesity
US5878750A (en) 1996-11-14 1999-03-09 Clemens; Anton H. Method of treating the syndrome of coronary heart disease risk factors in humans
FR2758723B1 (en) 1997-01-28 1999-04-23 Sanofi Sa USE OF CENTRAL CANNABINOID RECEPTOR ANTAGONISTS FOR THE PREPARATION OF DRUGS
CA2216215A1 (en) 1997-04-05 1998-10-05 Isa Odidi Controlled release formulations using intelligent polymers having opposing wettability characteristics of hydrophobicity and hydrophilicity
WO1999007342A1 (en) 1997-08-11 1999-02-18 Alza Corporation Prolonged release active agent dosage form adapted for gastric retention
US6622036B1 (en) 2000-02-09 2003-09-16 Cns Response Method for classifying and treating physiologic brain imbalances using quantitative EEG
DE69811378T2 (en) 1997-10-03 2004-02-12 Cary Pharmaceuticals Inc. (n.d.Ges.d. Staates Delaware) COMPOSITIONS FOR TREATING NICOTINE DEPENDENCY, CONTAINING MECAMYLAMINE AND BUPROPION
US6652882B1 (en) 1997-10-06 2003-11-25 Intellipharmaceutics Corp Controlled release formulation containing bupropion
US6262049B1 (en) 1997-10-28 2001-07-17 Schering Corporation Method of reducing nicotine and tobacco craving in mammals
IL127497A (en) 1997-12-18 2002-07-25 Pfizer Prod Inc Pharmaceutical compositions containing piperazinyl-heterocyclic compounds for treating psychiatric disorders
ATE297204T1 (en) 1997-12-26 2005-06-15 Dainippon Pharmaceutical Co REMEDIES FOR NEURODEGENERATIVE DISEASES
HUP0100900A3 (en) 1998-01-21 2002-08-28 Glaxo Group Ltd Pharmaceutically active morpholinol and medicaments containing them
US6110973A (en) 1998-01-29 2000-08-29 Sepracor Methods for treating obesity and weight gain using optically pure (-)-bupropion
US6048322A (en) 1998-04-15 2000-04-11 Kushida; Clete Morphometric measurement tool
US6153223A (en) 1998-06-05 2000-11-28 Watson Pharmaceuticals, Inc. Stabilized pharmaceutical compositions
US6150366A (en) 1998-06-15 2000-11-21 Pfizer Inc. Ziprasidone formulations
US8236352B2 (en) 1998-10-01 2012-08-07 Alkermes Pharma Ireland Limited Glipizide compositions
US6096341A (en) 1998-10-30 2000-08-01 Pharma Pass Llc Delayed release tablet of bupropion hydrochloride
US6033686A (en) 1998-10-30 2000-03-07 Pharma Pass Llc Controlled release tablet of bupropion hydrochloride
EP1005863A1 (en) 1998-12-04 2000-06-07 Synthelabo Controlled-release dosage forms comprising a short acting hypnotic or a salt thereof
US20030144174A1 (en) 1998-12-09 2003-07-31 Miles B. Brennan Methods for identifying compounds useful for the regulation of body weight and associated conditions
US6238697B1 (en) 1998-12-21 2001-05-29 Pharmalogix, Inc. Methods and formulations for making bupropion hydrochloride tablets using direct compression
US6797283B1 (en) 1998-12-23 2004-09-28 Alza Corporation Gastric retention dosage form having multiple layers
US6635281B2 (en) 1998-12-23 2003-10-21 Alza Corporation Gastric retaining oral liquid dosage form
US6706283B1 (en) 1999-02-10 2004-03-16 Pfizer Inc Controlled release by extrusion of solid amorphous dispersions of drugs
BR0008477A (en) 1999-02-24 2002-01-22 Univ Cincinnati Method to treat an impulse control disorder
US6589553B2 (en) 2001-02-08 2003-07-08 Andrx Pharmaceuticals, Inc. Controlled release oral dosage form
US20030035840A1 (en) 2001-02-08 2003-02-20 Boyong Li Controlled release oral dosage form
US6294192B1 (en) 1999-02-26 2001-09-25 Lipocine, Inc. Triglyceride-free compositions and methods for improved delivery of hydrophobic therapeutic agents
US8545880B2 (en) 1999-02-26 2013-10-01 Andrx Pharmaceuticals, Llc Controlled release oral dosage form
US6210716B1 (en) 1999-02-26 2001-04-03 Andrx Pharmaceuticals, Inc. Controlled release bupropion formulation
US6248363B1 (en) 1999-11-23 2001-06-19 Lipocine, Inc. Solid carriers for improved delivery of active ingredients in pharmaceutical compositions
US6337328B1 (en) 1999-03-01 2002-01-08 Sepracor, Inc. Bupropion metabolites and methods of use
US6342496B1 (en) 1999-03-01 2002-01-29 Sepracor Inc. Bupropion metabolites and methods of use
US6387956B1 (en) 1999-03-24 2002-05-14 University Of Cincinnati Methods of treating obsessive-compulsive spectrum disorders
AU779784B2 (en) 1999-04-01 2005-02-10 Esperion Therapeutics Inc. Ether compounds, compositions, and uses thereof
US6383471B1 (en) 1999-04-06 2002-05-07 Lipocine, Inc. Compositions and methods for improved delivery of ionizable hydrophobic therapeutic agents
ATE397581T1 (en) 1999-04-06 2008-06-15 Sepracor Inc O-DESMETHYLVENLAFAXINE SUCCINATE
GB9908921D0 (en) 1999-04-19 1999-06-16 Britannia Pharmaceuticals Ltd Spray dispenser for opiod antagonists
US6420369B1 (en) 1999-05-24 2002-07-16 Ortho-Mcneil Pharmaceutical, Inc. Anticonvulsant derivatives useful in treating dementia
US7056890B2 (en) 1999-06-14 2006-06-06 Vivus, Inc. Combination therapy for effecting weight loss and treating obesity
ES2542891T3 (en) 1999-06-14 2015-08-12 Vivus, Inc. Combination therapy for the treatment of sleep apnea associated with obesity
US20040115134A1 (en) 1999-06-22 2004-06-17 Elan Pharma International Ltd. Novel nifedipine compositions
CN1660108A (en) 1999-07-01 2005-08-31 法玛西雅厄普约翰美国公司 Highly selective norepinephrine reuptake inhibitors and methods of using the same
US6500459B1 (en) 1999-07-21 2002-12-31 Harinderpal Chhabra Controlled onset and sustained release dosage forms and the preparation thereof
US6071918A (en) 1999-07-21 2000-06-06 Dupont Pharmaceuticals Company Combination of an opioid antagonist and a selective serotonin reuptake inhibitor for treatment of alcoholism and alcohol dependence
CO5210862A1 (en) 1999-09-15 2002-10-30 Alza Corp DOSAGE FORMS AND METHODS TO PROVIDE REBOXETINE EFFECTIVE THERAPY WITH DOSAGE ONCE A DAY
US6403657B1 (en) 1999-10-04 2002-06-11 Martin C. Hinz Comprehensive pharmacologic therapy for treatment of obesity
GB2355191A (en) 1999-10-12 2001-04-18 Laxdale Ltd Combination formulations for fatigue, head injury and strokes
EP1220673A2 (en) 1999-10-13 2002-07-10 Glaxo Group Limited Morpholinol derivatives for the treatment of obesity
US6410736B1 (en) 1999-11-29 2002-06-25 Pfizer Inc. Biaryl ether derivatives useful as monoamine reuptake inhibitors
AR031682A1 (en) 1999-11-19 2003-10-01 Reckitt Benckiser Helthcare Uk PHARMACEUTICAL COMPOSITIONS
GB0001449D0 (en) 2000-01-21 2000-03-08 Cortendo Ab Compositions
WO2001052851A1 (en) 2000-01-22 2001-07-26 Albert Shulman Methods for the treatment of substance abuse
US20030144271A1 (en) 2000-01-22 2003-07-31 Albert Shulman Methods for the treatment of substance abuse
US20020090615A1 (en) 2000-01-31 2002-07-11 Rosen Craig A. Nucleic acids, proteins, and antibodies
CN100563656C (en) 2000-02-08 2009-12-02 欧罗赛铁克股份有限公司 Tamper-resistant oral opioid agonist formulations
US6627223B2 (en) 2000-02-11 2003-09-30 Eurand Pharmaceuticals Ltd. Timed pulsatile drug delivery systems
DE60119696T2 (en) 2000-03-15 2007-01-25 Wolfgang Ross Sadee NALOXONE AND NALTREXONE ANALOGUES IN THE TREATMENT OF DRUG ABUSE
AU2001247474A1 (en) 2000-03-16 2001-09-24 The Mclean Hospital Corporation Compounds for the treatment of psychiatric or substance abuse disorders
US6437147B1 (en) 2000-03-17 2002-08-20 Novo Nordisk Imidazole compounds
AU5066101A (en) 2000-04-13 2001-10-30 Synthon B.V. Modified release formulations containing a hypnotic agent
US6761895B2 (en) 2000-04-17 2004-07-13 Yamanouchi Pharmaceutical Co., Ltd. Drug delivery system for averting pharmacokinetic drug interaction and method thereof
AU2001250646A1 (en) 2000-04-17 2001-10-30 Yamanouchi Pharmaceutical Co..Ltd. Drug delivery system for avoiding pharmacokinetic interaction between drugs and method thereof
US6306436B1 (en) 2000-04-28 2001-10-23 Teva Pharmaceuticals Usa, Inc. Stabilized, acid-free formulation for sustained release of bupropion hydrochloride
JP2004515455A (en) 2000-05-05 2004-05-27 ペイン・セラピューティクス・インコーポレイテッド Opioid antagonist compositions and dosage forms
US20020044962A1 (en) 2000-06-06 2002-04-18 Cherukuri S. Rao Encapsulation products for controlled or extended release
US6191117B1 (en) 2000-07-10 2001-02-20 Walter E. Kozachuk Methods of producing weight loss and treatment of obesity
US6627653B2 (en) 2000-08-02 2003-09-30 Ortho-Mcneil Pharmaceutical, Inc. Anticonvulsant derivatives useful for the treatment of depression
US6528520B2 (en) * 2000-08-15 2003-03-04 Cpd, Llc Method of treating the syndrome of coronary heart disease risk factors in humans
DE60134251D1 (en) 2000-09-18 2008-07-10 Sanos Bioscience As USE OF GLP-2 PEPTIDES
US6686337B2 (en) 2000-10-30 2004-02-03 Ortho-Mcneil Pharmaceutical, Inc. Combination therapy comprising anti-diabetic and anticonvulsant agents
US6569449B1 (en) 2000-11-13 2003-05-27 University Of Kentucky Research Foundation Transdermal delivery of opioid antagonist prodrugs
JP3624825B2 (en) * 2000-12-14 2005-03-02 日産自動車株式会社 Rotating electric machine and method of manufacturing rotating electric machine
JP2002299452A (en) * 2001-03-30 2002-10-11 Fujitsu Ltd Semiconductor integrated circuit and method for designing layout of power source
WO2002087590A1 (en) 2001-04-26 2002-11-07 Ortho-Mcneil Pharmaceutical, Inc. Treatment of psychotic disorders comprising co-therapy with anticonvulsant derivatives and atypical antipsychotics
EP1262196A3 (en) 2001-05-23 2002-12-18 Pfizer Products Inc. Combination of a monoamine reuptake inhibitor and an opioid antagonist for use in alcoholism and alcohol dependence
US6960357B2 (en) 2001-05-25 2005-11-01 Mistral Pharma Inc. Chemical delivery device
EP2260837A1 (en) 2001-06-01 2010-12-15 Pozen, Inc. Pharmaceutical compositions for the coordinated delivery of NSAIDs
CA2449519A1 (en) 2001-06-08 2002-12-19 Endo Pharmaceuticals, Inc. Controlled release dosage forms using acrylic polymer, and process for making the same
US6462237B1 (en) 2001-06-14 2002-10-08 Usv Limited Cyclodextrin stabilized pharmaceutical compositions of bupropion hydrochloride
JP4504013B2 (en) 2001-08-06 2010-07-14 ユーロ−セルティーク エス.エイ. Opioid agonist formulations having releasable and sequestered antagonists
US7842307B2 (en) 2001-08-06 2010-11-30 Purdue Pharma L.P. Pharmaceutical formulation containing opioid agonist, opioid antagonist and gelling agent
AU2002319774B2 (en) 2001-08-06 2005-04-21 Euro-Celtique S.A. Compositions and methods to prevent abuse of opioids
US20030068375A1 (en) 2001-08-06 2003-04-10 Curtis Wright Pharmaceutical formulation containing gelling agent
US20030087896A1 (en) 2001-08-09 2003-05-08 Hillel Glover Treatment of refractory depression with an opiate antagonist and an antidepressant
US20030044462A1 (en) 2001-08-20 2003-03-06 Kali Laboratories, Inc. Sustained release tablets containing bupropion hydrochloride
US6576256B2 (en) 2001-08-28 2003-06-10 The Brigham And Women's Hospital, Inc. Treatment of patients at elevated cardiovascular risk with a combination of a cholesterol-lowering agent, an inhibitor of the renin-angiotensin system, and aspirin
US20030091630A1 (en) 2001-10-25 2003-05-15 Jenny Louie-Helm Formulation of an erodible, gastric retentive oral dosage form using in vitro disintegration test data
BR0215262A (en) 2001-12-20 2004-12-28 Pharmacia Corp Zero-order sustained release dosage forms and manufacturing process
US20040102440A1 (en) 2002-07-01 2004-05-27 Wong Erik Ho Fong Method of promoting smoking cessation
US6682759B2 (en) 2002-02-01 2004-01-27 Depomed, Inc. Manufacture of oral dosage forms delivering both immediate-release and sustained-release drugs
US20040029941A1 (en) * 2002-05-06 2004-02-12 Jennings Julianne E. Zonisamide use in obesity and eating disorders
US20050215552A1 (en) 2002-05-17 2005-09-29 Gadde Kishore M Method for treating obesity
DE60327315D1 (en) 2002-05-17 2009-06-04 Tioga Pharmaceuticals Inc USE OF COMPOUNDS WHICH ARE EFFECTIVE AS SELECTIVE OPIAT RECEPTOR MODULATORS
WO2003097046A1 (en) 2002-05-17 2003-11-27 Duke University Method for treating obesity
US20040005368A1 (en) 2002-07-01 2004-01-08 Morris Mann Novel approach to weight loss comprising a modified protein composition that regulates blood sugar in conjunction with compositions that increase oxygen uptake and suppress appetite
US6972291B2 (en) * 2002-07-02 2005-12-06 Bernstein Richard K Method for reducing food intake
AU2003261167A1 (en) 2002-07-16 2004-02-02 Elan Pharma International, Ltd Liquid dosage compositions of stable nanoparticulate active agents
EP1534074A4 (en) 2002-07-18 2008-01-09 Merck & Co Inc Combination therapy for the treatment of obesity
US7086532B2 (en) 2003-07-16 2006-08-08 Allergan, Inc. Titration/compliance pack with increasing doses
US7985422B2 (en) 2002-08-05 2011-07-26 Torrent Pharmaceuticals Limited Dosage form
US8216609B2 (en) 2002-08-05 2012-07-10 Torrent Pharmaceuticals Limited Modified release composition of highly soluble drugs
US8268352B2 (en) 2002-08-05 2012-09-18 Torrent Pharmaceuticals Limited Modified release composition for highly soluble drugs
ATE487470T1 (en) 2002-09-11 2010-11-15 Elan Pharma Int Ltd GEL-STABILIZED ACTIVE COMPOSITIONS IN NANOPARTICLE SIZE
EP1539145A2 (en) 2002-09-13 2005-06-15 Eisai Co., Ltd. Method of treating tremors
US20040105778A1 (en) 2002-10-04 2004-06-03 Elan Pharma International Limited Gamma irradiation of solid nanoparticulate active agents
US20040092504A1 (en) 2002-11-12 2004-05-13 Anuthep Benja-Athon Definitive medications for treating fibromyalgia
US6893660B2 (en) 2002-11-21 2005-05-17 Andrx Pharmaceuticals, Inc. Stable pharmaceutical compositions without a stabilizer
US20040122033A1 (en) 2002-12-10 2004-06-24 Nargund Ravi P. Combination therapy for the treatment of obesity
US20040115265A1 (en) 2002-12-11 2004-06-17 Loutfy Benkerrour Multilayered tablet containing pravastatin and aspirin and method
AU2003296672A1 (en) 2002-12-13 2004-07-09 Cilag Ag Controlled release preparations comprising tramadol and topiramate
CA2414500A1 (en) 2002-12-17 2004-06-17 Purepharm Inc. Agonist-aversive combination medicines
US20040185097A1 (en) 2003-01-31 2004-09-23 Glenmark Pharmaceuticals Ltd. Controlled release modifying complex and pharmaceutical compositions thereof
US20040192715A1 (en) 2003-02-05 2004-09-30 Mark Chasin Methods of administering opioid antagonists and compositions thereof
US20040158194A1 (en) 2003-02-06 2004-08-12 Wolff Andy And Beiski Ben Z. Oral devices and methods for controlled drug release
US20040204472A1 (en) * 2003-03-04 2004-10-14 Pharmacia Corporation Treatment and prevention of obesity with COX-2 inhibitors alone or in combination with weight-loss agents
EP1772147A2 (en) 2003-03-17 2007-04-11 Japan Tobacco, Inc. Method for increasing the oral bioavailability of S-[2-([[1-(2-ethylbutyl)cyclohexyl]carbonyl]amino)phenyl]-2-methylpropanethioate
JP2006522099A (en) 2003-04-04 2006-09-28 ファルマシア コーポレーション Oral sustained-release compressed tablet composed of composite granules
US20050038062A1 (en) * 2003-04-14 2005-02-17 Burns Lindsay H. Methods and materials for the treatment of pain comprising opioid antagonists
MY135852A (en) 2003-04-21 2008-07-31 Euro Celtique Sa Pharmaceutical products
DK1617832T3 (en) * 2003-04-29 2008-07-07 Orexigen Therapeutics Inc Preparations for the effect of weight loss
BRPI0419067A (en) 2003-05-16 2007-12-11 Pfizer Prod Inc method for enhancing cognition using ziprasidone
CN1791430A (en) 2003-05-16 2006-06-21 辉瑞产品公司 Therapeutic combinations of atypical antipsychotics with GABA modulators, anticonvulsants or benzodiazapines
EP1635773A2 (en) 2003-06-06 2006-03-22 Merck & Co., Inc. (a New Jersey corp.) Combination therapy for the treatment of hypertension
EP1635813A4 (en) 2003-06-06 2009-07-01 Merck & Co Inc Combination therapy for the treatment of dyslipidemia
US20070099884A1 (en) 2003-06-06 2007-05-03 Erondu Ngozi E Combination therapy for the treatment of diabetes
US20050013863A1 (en) 2003-07-18 2005-01-20 Depomed, Inc., A Corporation Of The State Of California Dual drug dosage forms with improved separation of drugs
US20050019385A1 (en) 2003-07-21 2005-01-27 Noven Pharmaceuticals, Inc. Composition and method for controlling drug delivery from silicone adhesive blends
US7759358B2 (en) 2003-07-23 2010-07-20 Crooks Peter A Oral bioavailable prodrugs
DE602004018150D1 (en) 2003-08-08 2009-01-15 Elan Pharma Int Ltd NEW METAXALON COMPOSITIONS
RS20060132A (en) 2003-08-08 2008-06-05 Biovail Laboratories International Srl., Modified-release tablet of bupropion hydrochloride
US20050043705A1 (en) 2003-08-21 2005-02-24 Eisai Co., Ltd. Methods of using zonisamide as an adjunctive therapy for partial seizures
WO2005018652A1 (en) 2003-08-21 2005-03-03 Duchesnay Inc. Micronutrient supplement
KR100965580B1 (en) * 2003-08-21 2010-06-23 엘지디스플레이 주식회사 Liquid crystal display apparatus and driving method thereof
US20050043704A1 (en) 2003-08-21 2005-02-24 Eisai Co., Ltd Methods of using zonisamide as an adjunctive therapy for partial seizures
US20050043773A1 (en) 2003-08-21 2005-02-24 Ivan Lieberburg Methods of improving the safety of zonisamide therapy
PT1663229E (en) 2003-09-25 2010-07-13 Euro Celtique Sa Pharmaceutical combinations of hydrocodone and naltrexone
US20050112198A1 (en) 2003-10-27 2005-05-26 Challapalli Prasad V. Bupropion formulation for sustained delivery
US20050096311A1 (en) 2003-10-30 2005-05-05 Cns Response Compositions and methods for treatment of nervous system disorders
US20050147664A1 (en) 2003-11-13 2005-07-07 Elan Pharma International Ltd. Compositions comprising antibodies and methods of using the same for targeting nanoparticulate active agent delivery
US20070149451A1 (en) * 2003-11-17 2007-06-28 Holmes David G Combination of a dpp IV inhibitor and an antiobesity or appetite regulating agent
WO2005049043A1 (en) 2003-11-18 2005-06-02 Ortho-Mcneil Pharmaceutical, Inc. Combination therapy comprising metformin and anticonvulsant agents
US20050181049A1 (en) 2003-11-19 2005-08-18 Dong Liang C. Composition and method for enhancing bioavailability
CA2552221A1 (en) 2003-12-31 2005-07-21 Actavis Group Hf Donepezil formulations
US20060160750A1 (en) 2004-01-13 2006-07-20 Krishnan K R R Compositions of an anticonvulsant and an antipsychotic drug and methods of using the same for affecting weight loss
EP1734955A2 (en) 2004-01-13 2006-12-27 Duke University Compositions of an anticonvulsant and an antipsychotic drug for affecting weigt loss
US7713959B2 (en) 2004-01-13 2010-05-11 Duke University Compositions of an anticonvulsant and mirtazapine to prevent weight gain
EP1727538A2 (en) 2004-02-13 2006-12-06 Neuromolecular Inc. Combination of an nmda receptor antagonist and an anti-epileptic drug for the treatment of epilepsy and other cns disorders
SE0400378D0 (en) 2004-02-17 2004-02-17 Jan Hedner Methods to treat and diagnose respiratory disorders in sleep and agents to perform the procedure
US20050214372A1 (en) 2004-03-03 2005-09-29 Simona Di Capua Stable pharmaceutical composition comprising an acid labile drug
US20050245541A1 (en) * 2004-03-19 2005-11-03 Elliot Ehrich Methods for treating alcoholism
WO2005107806A1 (en) 2004-04-21 2005-11-17 Orexigen Therapeutics, Inc. Compositions for affecting weight loss
US20050250838A1 (en) 2004-05-04 2005-11-10 Challapalli Prasad V Formulation for sustained delivery
RU2007103313A (en) 2004-08-03 2008-09-10 ОРЕКСИДЖЕН ТЕРАПЬЮТИКС, ИНК. (Канада/США) (US) COMBINATION OF BUPROPINE AND OTHER COMPOSITION FOR EFFECTIVE WEIGHT LOSS
ATE463249T1 (en) 2004-08-25 2010-04-15 Essentialis Inc PHARMACEUTICAL FORMULATIONS OF POTASSIUM ATP CHANNEL OPENER AND USES THEREOF
JP2008514612A (en) 2004-09-23 2008-05-08 ミシャロウ、アレクサンダー Methods of modulating neurotransmitter systems by inducing counter adaptation
WO2006049941A2 (en) 2004-10-27 2006-05-11 Neurogen Corporation Diaryl ureas as cb1 antagonists
WO2006052542A2 (en) 2004-11-04 2006-05-18 Neurogen Corporation Arylalkyl ureas as cb1 antagonists
US20060122127A1 (en) 2004-11-17 2006-06-08 Cypress Bioscience, Inc. Methods for reducing the side effects associated with mirtzapine treatment
JP2008536950A (en) 2005-04-18 2008-09-11 ニューロジェン・コーポレーション Substituted heteroaryl CB1 antagonists
US20060246131A1 (en) 2005-04-28 2006-11-02 Cottlingham Elizabeth M Use of metformin to counteract weight gain associated with psychotropic medications
WO2006130522A2 (en) 2005-05-31 2006-12-07 Orexigen Therapeutics, Inc. Methods and compositions for managing psychotic disorders
WO2007012064A2 (en) 2005-07-20 2007-01-25 Cypress Bioscience, Inc. Prevention and treatment of hearing disorders
KR20080042092A (en) 2005-07-27 2008-05-14 오렉시젠 세러퓨틱스 인크. Compositions for affecting weight loss
WO2007047351A2 (en) * 2005-10-13 2007-04-26 Orexigen Therapeutics, Inc. Methods for treating hypertension in overweight and obese individuals
US20070099947A1 (en) 2005-11-03 2007-05-03 Alkermes, Inc. Methods and compositions for the treatment of brain reward system disorders by combination therapy
EP1951212A2 (en) * 2005-11-22 2008-08-06 Orexigen Therapeutics, Inc. Compositions and methods for increasing insulin sensitivity
WO2007089318A2 (en) 2005-11-23 2007-08-09 Orexigen Therapeutics, Inc. Compositions and methods for reducing food cravings
WO2007064586A1 (en) 2005-11-28 2007-06-07 Orexigen Therapeutics, Inc. Methods of treating anxiety disorders
PT1954241E (en) 2005-11-28 2012-06-01 Orexigen Therapeutics Inc Sustained-release formulation of zonisamide
WO2007084290A2 (en) 2006-01-12 2007-07-26 Orexigen Therapeutics, Inc. Compositions of an anticonvulsant and psychotherapeutic and methods of using the same for reversing weight gain
EP1813276A1 (en) 2006-01-27 2007-08-01 Euro-Celtique S.A. Tamper resistant dosage forms
US8916195B2 (en) 2006-06-05 2014-12-23 Orexigen Therapeutics, Inc. Sustained release formulation of naltrexone
ES2622576T3 (en) 2006-06-19 2017-07-06 Alpharma Pharmaceuticals Llc Pharmaceutical compositions
CA2693992C (en) 2006-07-20 2017-01-31 Somaxon Pharmaceuticals, Inc. Methods of improving the pharmacokinetics of doxepin
US8682445B2 (en) 2006-07-28 2014-03-25 Cyberonics, Inc. Patient management system for treating depression using an implantable medical device
TW200829235A (en) 2006-11-09 2008-07-16 Orexigen Therapeutics Inc Methods for administering weight loss medications
KR101654176B1 (en) 2006-11-09 2016-09-09 오렉시젠 세러퓨틱스 인크. Layered pharmaceutical formulations comprising an intermediate rapidly dissolving layer
GB2447949B (en) 2007-03-29 2010-03-31 Renasci Consultancy Ltd A method for identifying a compound for treating a disorder or condition associated with dysfunction of monoamine neurotransmission
US8318813B2 (en) 2007-09-13 2012-11-27 Lcs Group, Llc Method of treating binge eating disorder
JP2011521973A (en) 2008-05-30 2011-07-28 オレキシジェン・セラピューティクス・インコーポレーテッド Methods for treating visceral fat conditions
EP2523557B1 (en) 2010-01-11 2019-09-25 Nalpropion Pharmaceuticals, Inc. Methods of providing weight loss therapy in patients with major depression
DK3222280T3 (en) 2010-12-03 2021-04-19 Nalpropion Pharmaceuticals Llc INCREASE OF DRUG BIO AVAILABILITY IN NALTREXONE TREATMENT
EP2646011B1 (en) 2010-12-03 2017-08-16 Orexigen Therapeutics, Inc. Methods for reducing binge or compulsive eating
KR20150016405A (en) 2012-06-06 2015-02-11 오렉시젠 세러퓨틱스 인크. Methods of treating overweight and obesity
US8969371B1 (en) 2013-12-06 2015-03-03 Orexigen Therapeutics, Inc. Compositions and methods for weight loss in at risk patient populations

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0294028A2 (en) * 1987-05-04 1988-12-07 Eli Lilly And Company Fluoxetine useful for the treatment of diabetes
EP0541192A1 (en) * 1991-11-02 1993-05-12 Ferring Arzneimittel GmbH Use of opiate antagonists for the treatment of endogen hyperinsulinemia
WO2000061139A1 (en) * 1999-04-08 2000-10-19 Ortho-Mcneil Pharmaceutical, Inc. Anticonvulsant derivatives useful in reducing blood glucose levels
US20020055512A1 (en) * 2000-01-21 2002-05-09 Cortendo Ab. Compositions for delivery of a cortisol antagonist
WO2005110405A1 (en) * 2004-05-03 2005-11-24 Duke University Compositions for affecting weight loss

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
DATABASE CA [Online] CHEMICAL ABSTRACTS SERVICE, COLUMBUS, OHIO, US; 1984, CHING, KING-NIEN: "Influence of diphenylhydantoin upon the oral glucose tolerance test in obesity" XP002442009 retrieved from STN Database accession no. 1980:525833 & ZHONGHUA YIXUE ZAZHI (TAIPEI) , 27(1), 432-9 CODEN: CIHCDM; ISSN: 0376-2491, 1980, *
DATABASE CA [Online] CHEMICAL ABSTRACTS SERVICE, COLUMBUS, OHIO, US; 1984, SCHIMMEL, R. J. ET AL: "Inhibition by diphenylhydantoin of the diabetogenic action of streptozotocin" XP002442010 retrieved from STN Database accession no. 1975:119052 & HORMONE AND METABOLIC RESEARCH , 6(6), 475-7 CODEN: HMMRA2; ISSN: 0018-5043, 1974, *
DATABASE CA [Online] CHEMICAL ABSTRACTS SERVICE, COLUMBUS, OHIO, US; SNEER, A. ET AL: "Protective effect of diphenylhydantoin on the diabetes -inducing effect of alloxan" XP002442011 retrieved from STN Database accession no. 1980:34024 & REVISTA MEDICO-CHIRURGICALA , 83(1), 87-91 CODEN: RMNIBN; ISSN: 0300-8738, 1979, *
ESPOSITO-AVELLA M ET AL: "Studies on the protective effect of diphenylhydantoin against alloxan diabetes in mice" PROCEEDINGS OF THE SOCIETY FOR EXPERIMENTAL BIOLOGY & MEDICINE, WILLIAMS AND WILKINS, XX, vol. 142, no. 1, January 1973 (1973-01), pages 82-85, XP008080793 ISSN: 0037-9727 *
GERICH JOHN E ET AL: "In vitro inhibition of pancreatic glucagon secretion by diphenylhydantoin" JOURNAL OF CLINICAL ENDOCRINOLOGY AND METABOLISM, ENDOCRINE SOCIETY, CHEVY CHASE, MD, US, vol. 35, no. 6, 1972, pages 823-824, XP008080824 ISSN: 0021-972X *

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7713959B2 (en) 2004-01-13 2010-05-11 Duke University Compositions of an anticonvulsant and mirtazapine to prevent weight gain
WO2007145863A3 (en) * 2006-06-05 2008-05-29 Orexigen Therapeutics Inc Sustained release formulation of naltrexone
EP3626236A1 (en) * 2006-06-05 2020-03-25 Nalpropion Pharmaceuticals, Inc. Sustained release formulation of naltrexone
WO2007145863A2 (en) * 2006-06-05 2007-12-21 Orexigen Therapeutics, Inc. Sustained release formulation of naltrexone
US9155777B2 (en) 2007-11-05 2015-10-13 Ipsen Pharma S.A.S. Use of melanocortins to treat insulin sensitivity
JP2013144690A (en) * 2007-11-05 2013-07-25 Ipsen Pharma Sas Use of melanocortins to treat insulin sensitivity
US9827286B2 (en) 2007-11-05 2017-11-28 Ipsen Pharma S.A.S. Use of melanocortins to treat insulin sensitivity
US9439943B2 (en) 2007-11-05 2016-09-13 Ipsen Pharma S.A.S. Use of melanocortins to treat insulin sensitivity
JP2015131827A (en) * 2007-11-05 2015-07-23 イプセン ファルマ ソシエテ パール アクシオン サンプリフィエIpsen Pharma S.A.S. Use of melanocortins to treat insulin sensitivity
US9278094B2 (en) 2013-01-30 2016-03-08 Pharmorx Therapeutics, Inc. Treatments for depression and other diseases with a low dose agent
US8889190B2 (en) 2013-03-13 2014-11-18 Upsher-Smith Laboratories, Inc. Extended-release topiramate capsules
US10363224B2 (en) 2013-03-13 2019-07-30 Upsher-Smith Laboratories, Llc Extended-release topiramate capsules
US8652527B1 (en) 2013-03-13 2014-02-18 Upsher-Smith Laboratories, Inc Extended-release topiramate capsules
US9101545B2 (en) 2013-03-15 2015-08-11 Upsher-Smith Laboratories, Inc. Extended-release topiramate capsules
US9555005B2 (en) 2013-03-15 2017-01-31 Upsher-Smith Laboratories, Inc. Extended-release topiramate capsules
US10172878B2 (en) 2013-03-15 2019-01-08 Upsher-Smith Laboratories, Llc Extended-release topiramate capsules
US8969371B1 (en) 2013-12-06 2015-03-03 Orexigen Therapeutics, Inc. Compositions and methods for weight loss in at risk patient populations
US9801875B2 (en) 2013-12-06 2017-10-31 Orexigen Therapeutics, Inc. Compositions and methods for weight loss in at risk patient populations
US10231962B2 (en) 2013-12-06 2019-03-19 Nalpropion Pharmaceuticals, Inc. Compositions and methods for reducing major adverse cardiovascular events
US9463173B2 (en) 2014-03-04 2016-10-11 The Johns Hopkins University Compositions and methods for treating obesity and obesity-related conditions

Also Published As

Publication number Publication date
EP2292220A2 (en) 2011-03-09
PL2135603T3 (en) 2013-09-30
CN101370488B (en) 2012-07-18
PT2135603E (en) 2013-04-03
US20140323399A1 (en) 2014-10-30
EP2135603B1 (en) 2013-01-02
CN101370488A (en) 2009-02-18
US20210346469A1 (en) 2021-11-11
AR057631A1 (en) 2007-12-05
WO2007067341A3 (en) 2008-01-17
TWI381849B (en) 2013-01-11
EP1951212A2 (en) 2008-08-06
TW201524500A (en) 2015-07-01
TWI598094B (en) 2017-09-11
JP2009516744A (en) 2009-04-23
CA2630624C (en) 2013-08-06
AU2006323048B2 (en) 2013-07-04
EP2135603A2 (en) 2009-12-23
JP5980840B2 (en) 2016-08-31
TWI458479B (en) 2014-11-01
JP2014159482A (en) 2014-09-04
JP5180092B2 (en) 2013-04-10
BRPI0618918B8 (en) 2021-05-25
US8815889B2 (en) 2014-08-26
MX337422B (en) 2016-03-04
DK2135603T3 (en) 2013-03-25
US20190231852A1 (en) 2019-08-01
BRPI0618918B1 (en) 2021-03-16
EP3132792B1 (en) 2019-09-11
BRPI0618918A2 (en) 2011-09-13
EP3132792A1 (en) 2017-02-22
TW200735890A (en) 2007-10-01
ES2761812T3 (en) 2020-05-21
ES2402522T3 (en) 2013-05-06
US20170020990A1 (en) 2017-01-26
TW201249428A (en) 2012-12-16
US9457005B2 (en) 2016-10-04
AU2006323048A1 (en) 2007-06-14
EP2135603A3 (en) 2010-11-24
EP2292220A3 (en) 2012-01-04
CA2630624A1 (en) 2007-06-14
US20070128298A1 (en) 2007-06-07
JP2013047272A (en) 2013-03-07

Similar Documents

Publication Publication Date Title
US9457005B2 (en) Compositions and methods for increasing insulin sensitivity
US7429580B2 (en) Compositions of an anticonvulsant and an antipsychotic drug and methods of using the same for affecting weight loss
US20100179129A1 (en) Compositions of an anticonvulsant and mirtazapine to prevent weight gain
US20060160750A1 (en) Compositions of an anticonvulsant and an antipsychotic drug and methods of using the same for affecting weight loss
EP1773308A1 (en) Combination of bupropion and a second compound for affecting weight loss
MXPA06007770A (en) Compositions of an anticonvulsant and an antipsychotic drug for affecting weight loss

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: MX/a/2008/006515

Country of ref document: MX

Ref document number: 2008542399

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2630624

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006847477

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 4732/DELNP/2008

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2006323048

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2006323048

Country of ref document: AU

Date of ref document: 20061120

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 200680051157.0

Country of ref document: CN

ENP Entry into the national phase

Ref document number: PI0618918

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20080521