WO2007003807A2 - Device for determining the height of the chassis of a vehicle - Google Patents
Device for determining the height of the chassis of a vehicle Download PDFInfo
- Publication number
- WO2007003807A2 WO2007003807A2 PCT/FR2006/050430 FR2006050430W WO2007003807A2 WO 2007003807 A2 WO2007003807 A2 WO 2007003807A2 FR 2006050430 W FR2006050430 W FR 2006050430W WO 2007003807 A2 WO2007003807 A2 WO 2007003807A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- suspension system
- vehicle
- chassis
- magnet
- sensor
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60G—VEHICLE SUSPENSION ARRANGEMENTS
- B60G17/00—Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
- B60G17/015—Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
- B60G17/019—Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by the type of sensor or the arrangement thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60G—VEHICLE SUSPENSION ARRANGEMENTS
- B60G7/00—Pivoted suspension arms; Accessories thereof
- B60G7/02—Attaching arms to sprung part of vehicle
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D5/00—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
- G01D5/12—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
- G01D5/14—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
- G01D5/20—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature
- G01D5/204—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature by influencing the mutual induction between two or more coils
- G01D5/2046—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature by influencing the mutual induction between two or more coils by a movable ferromagnetic element, e.g. a core
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60G—VEHICLE SUSPENSION ARRANGEMENTS
- B60G2200/00—Indexing codes relating to suspension types
- B60G2200/10—Independent suspensions
- B60G2200/14—Independent suspensions with lateral arms
- B60G2200/142—Independent suspensions with lateral arms with a single lateral arm, e.g. MacPherson type
- B60G2200/1424—Independent suspensions with lateral arms with a single lateral arm, e.g. MacPherson type the lateral arm having an L-shape
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60G—VEHICLE SUSPENSION ARRANGEMENTS
- B60G2204/00—Indexing codes related to suspensions per se or to auxiliary parts
- B60G2204/10—Mounting of suspension elements
- B60G2204/11—Mounting of sensors thereon
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60G—VEHICLE SUSPENSION ARRANGEMENTS
- B60G2204/00—Indexing codes related to suspensions per se or to auxiliary parts
- B60G2204/10—Mounting of suspension elements
- B60G2204/11—Mounting of sensors thereon
- B60G2204/116—Sensors coupled to the suspension arm
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60G—VEHICLE SUSPENSION ARRANGEMENTS
- B60G2204/00—Indexing codes related to suspensions per se or to auxiliary parts
- B60G2204/10—Mounting of suspension elements
- B60G2204/12—Mounting of springs or dampers
- B60G2204/122—Mounting of torsion springs
- B60G2204/1224—End mounts of stabiliser on wheel suspension
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60G—VEHICLE SUSPENSION ARRANGEMENTS
- B60G2204/00—Indexing codes related to suspensions per se or to auxiliary parts
- B60G2204/10—Mounting of suspension elements
- B60G2204/14—Mounting of suspension arms
- B60G2204/143—Mounting of suspension arms on the vehicle body or chassis
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60G—VEHICLE SUSPENSION ARRANGEMENTS
- B60G2204/00—Indexing codes related to suspensions per se or to auxiliary parts
- B60G2204/40—Auxiliary suspension parts; Adjustment of suspensions
- B60G2204/422—Links for mounting suspension elements
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60G—VEHICLE SUSPENSION ARRANGEMENTS
- B60G2400/00—Indexing codes relating to detected, measured or calculated conditions or factors
- B60G2400/05—Attitude
- B60G2400/051—Angle
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60G—VEHICLE SUSPENSION ARRANGEMENTS
- B60G2400/00—Indexing codes relating to detected, measured or calculated conditions or factors
- B60G2400/25—Stroke; Height; Displacement
- B60G2400/252—Stroke; Height; Displacement vertical
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60G—VEHICLE SUSPENSION ARRANGEMENTS
- B60G2401/00—Indexing codes relating to the type of sensors based on the principle of their operation
- B60G2401/17—Magnetic/Electromagnetic
- B60G2401/172—Hall effect
Definitions
- the present invention relates to the technical field of devices designed to determine the height of the chassis of a vehicle in the general sense, in the context of systems adapted to improve the comfort and / or safety of vehicles.
- a device for determining the height of the chassis of a vehicle using a rotary sensor magnetic or inductive type.
- the sensor housing is attached to the chassis while the motion can be made on the anti-roll bar via a system of linkages reported.
- Such a device has the advantage that the sensor can be adapted to many vehicles using a system of rods and plates adapted to each particular type of vehicle.
- such a device has a major drawback related to the implementation of a rotary system making it very sensitive to the environment and in particular to the gel.
- such a system has a kinematic nonlinear measurement given the presence of rods.
- US Pat. No. 6,234,654 describes a sensor for measuring the height of a vehicle comprising, on the one hand, means for generating a magnetic field mounted on one of the parts of the chassis or of the suspension system and on the other hand, a magnetic field detection means mounted on the other part of the chassis or the suspension system. It turns out in practice that such a sensor is very sensitive to the relative position between the two parts of the frame, which does not allow to obtain accurate measurements. Thus, this sensor is very sensitive to the effects of temperature and its response is not linear as a function of the relative displacement.
- the object of the invention is therefore to overcome the disadvantages of prior known devices by providing a device for determining the height of the chassis of a vehicle, designed to have a low cost, a fast assembly, virtually universal while being insensitive to conditions, especially atmospheric, in which the system is placed.
- the device for determining the height of the chassis of a vehicle using at least one displacement sensor mounted between the chassis and a suspension system of the vehicle and adapted to detect the relative vertical displacement between the chassis and the system suspension.
- the device comprises, as displacement sensor, a non-contacting linear position magnetic sensor comprising two distinct parts, one of which comprises, in a housing fixed to the frame, on the one hand, a magnetic core magnetized by a minus one excitation coil energized with alternating current and secondly, at least one detection coil coupled to the magnetic core, the other part of the magnetic sensor fixed on the suspension system and comprising a magnet creating a virtual gap in the magnetic core and influencing, depending on its position, the leakage magnetic flux and, consequently, the voltage delivered by the detection coil.
- the magnet is mounted on the suspension triangle forming part of the suspension system.
- the magnet is mounted on the anti-roll bar forming part of the suspension system.
- Another object of the invention is to propose a vehicle chassis comprising at least one device for determining the height of the chassis of a vehicle, according to the invention, using a magnetic position displacement sensor. Linear contactless, made in two separate parts, one of which is fixed directly to the chassis and the other directly to the suspension system of the vehicle.
- Figure 1 is a schematic perspective view illustrating a device for determining the height of the chassis of a vehicle according to the invention.
- Figure 2 is a schematic elevational view showing a device according to the invention.
- Figure 3 is a schematic view of an exemplary embodiment of a displacement sensor implemented in the device according to the invention.
- Figure 4 is an example of the response curve of a sensor according to the invention.
- the object of the invention relates to a device 1 adapted to determine the height of a frame 2 of a vehicle in the general sense.
- the device 1 comprises at least one displacement sensor 3 adapted to detect the relative vertical displacement between the chassis 2 and a suspension system 4.
- suspension means all the components of a vehicle which ensures the flexible connection between the axles and chassis also called frame.
- the displacement sensor 3 is a non-contact linear magnetic position sensor comprising at least two distinct parts 3i and 32, one of which is fixed on the frame 2 while the other is fixed on the control system. suspension 4. It should be noted that the relative movement considered linear between the frame 2 and the suspension system 4 is transferred to the two parts 3i, 3 2 of the sensor.
- the two parts 3i, 3 2 of the sensor are mounted without contact in relation to each other so that the change of position of a portion of the sensor relative to the other part of the sensor influences the magnetic magnitude.
- the measurement of this variation makes it possible to determine the relative position between the two parts of the sensor. It turns out that such a device makes it possible to determine the height of the chassis of a vehicle while overcoming the drawbacks associated with a rotary contact sensor such as sensitivity to freezing.
- the part 3i of the sensor is fixed to the frame 2 while the part 3 2 is fixed to the suspension 4.
- the two parts 3i, 3 2 of the linear position sensor function without contact with respect to each other and are mounted integrally directly to either the chassis 2 or the suspension system 4.
- the two parts 3i, 3 ⁇ of the sensor are thus fixed directly to the frame 2 and the suspension system 4, without the interposition of a motion transformation system or resumption of movement.
- one of the parts for example 3i of the magnetic sensor comprises in a housing 6, a magnetic core with high permeability 7.
- the magnetic core 7 is made of a soft magnetic material with a low saturation field.
- Such a magnetic core 7 is magnetized by at least one and in the illustrated example an excitation coil 8 supplied with alternating current by a source not shown but known per se.
- This part 3i of the sensor also comprises at least one and in the illustrated example two detection coils Hi, II 2 coupled to the magnetic core 7 and wound in the example shown on each of the ends of the magnetic core 7.
- the other part 3 2 of the magnetic sensor comprises a magnet 12 delimiting a virtual gap 13 in the magnetic core at the place where is placed such a magnet.
- the housing 6 is fixed on the frame 2 of the vehicle while the magnet 12 is integrally mounted to the suspension system 4. According to this example, the magnet 12 moves relative to the housing 6 in a linear path represented by the axis A in FIG. 3.
- the magnet 12 is mounted on the suspension triangle 4i forming part of the suspension system 4. According to another embodiment, it should be noted that the magnet 12 can be mounted on the anti-roll bar 4 2 forming part of the suspension system 4. According to another exemplary embodiment, the displacement sensor 3 is integrated in the articulation ball of the vehicle so that the magnet 12 is mounted on a piece of the hinge joint forming part of the suspension system 4.
- the magnet 12 is mounted without any intermediate part to take the movement of the suspension system 4.
- the magnet 12 can be mounted using a support on the suspension system 4.
- the operation of such a non-contact magnetic position sensor 3 follows from the foregoing description.
- the excitation coil 8 which is powered by an alternating current creates an alternating magnetic field in the magnetic core 7.
- Part of the magnetic flux lines propagates in the magnetic core 7 to pass through the detection coils Hi, H2, which each deliver an alternating voltage.
- the magnetic field passing inside the magnetic core creates a saturation zone having an effect comparable to a virtual gap.
- the magnetic circuit is divided into two parts.
- one of the detection coils Hi sees the magnetic field created by the turns of the excitation coil 8 situated between this detection coil and the magnet 12, while the other detection coil H 2 sees the lines of fields created by the turns of the excitation coil 8 situated between this other detection coil and the magnet 12. It must therefore be understood that the voltage induced in each detection coil Hi, H 2 depends on the position of the 'magnet.
- This sensor makes it possible to measure not the magnetic flux of the magnet 12 but the position of the saturation zone created by the magnet on the magnetic core 7.
- the voltage induced in each detection coil Hi, H 2 varies so linear with its displacement.
- Fig. 4 clearly shows that the analog signal S delivered by the displacement sensor comprises a measuring zone Z which varies linearly as a function of the position X of the magnet 12.
- the device according to the invention is thus very insensitive to the effects of the temperature that does not change the position of the saturation zone, that is to say the magnet 12.
- the position of the magnet is deduced from the formula:
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
- Vehicle Body Suspensions (AREA)
Abstract
The invention relates to a device for determining the height of the chassis (2) of a vehicle using at least one displacement sensor (3) which is mounted between the chassis (2) and a vehicle suspension system (4) and which is designed to detect a relative vertical movement between the chassis (2) and the suspension system (4). According to the invention, the device consists of a contactless linear magnetic position sensor having two different parts (31, 32), namely: one part comprising (i) a magnetic core which is magnetised by at least one field coil which is supplied with alternating current and (ii) at least one detection coil which is coupled to the magnetic core; and another part which is fixed to the suspension system (4) and which comprises a magnet that creates a virtual gap in the magnetic core, the position of said magnet affecting the magnetic flux leakage and, consequently, the voltage delivered by the detection coil.
Description
DISPOSITIF POUR DETERMINER LA HAUTEUR DU CHASSIS DEVICE FOR DETERMINING THE HEIGHT OF THE CHASSIS
D'UN VEHICULEOF A VEHICLE
La présente invention concerne le domaine technique des dispositifs conçus pour déterminer la hauteur du châssis d'un véhicule au sens général, dans le cadre des systèmes adaptés pour améliorer notamment le confort et/ou la sécurité des véhicules.The present invention relates to the technical field of devices designed to determine the height of the chassis of a vehicle in the general sense, in the context of systems adapted to improve the comfort and / or safety of vehicles.
Il apparaît de plus en plus le besoin d'adapter les paramètres de la suspension d'un véhicule suivant le comportement du conducteur et la réponse du véhicule. Il s'avère ainsi judicieux de régler la hauteur du châssis en fonction de la vitesse pour minimiser la consommation du véhicule. De même, la suspension est ajustée pour optimiser la tenue de route et mieux maîtriser les mouvements du châssis. Par ailleurs, il s'avère nécessaire de régler l'assiette des phares du véhicule en fonction de l'assiette du véhicule dans le cas notamment d'utilisation de phares au xénon. Pour la mise en œuvre de l'une et/ou l'autre de ces fonctions, il est nécessaire de connaître la hauteur du châssis.There is a growing need to adapt the suspension settings of a vehicle according to driver behavior and vehicle response. It is therefore wise to adjust the height of the chassis according to the speed to minimize the consumption of the vehicle. Similarly, the suspension is adjusted to optimize handling and better control the movement of the chassis. Moreover, it is necessary to adjust the attitude of the headlights of the vehicle according to the attitude of the vehicle in the case in particular of use of xenon headlights. For the implementation of one and / or the other of these functions, it is necessary to know the height of the chassis.
Dans l'état de la technique, il est connu un dispositif pour déterminer la hauteur du châssis d'un véhicule, mettant en œuvre un capteur rotatif de type magnétique ou inductif. Le boîtier du capteur est fixé au châssis tandis que la prise du mouvement peut être réalisée sur la barre anti-roulis via un système de biellettes rapportées. Un tel dispositif présente l'avantage que le capteur peut être adapté à de nombreux véhicules en utilisant un système de biellettes et de platines adaptées à chaque type particulier de véhicule. Toutefois, un tel dispositif présente un inconvénient majeur lié à la mise en œuvre d'un système rotatif le rendant très sensible à l'environnement et notamment au gel. Par ailleurs, un tel système présente une cinématique de mesure non linéaire compte tenu de la présence des biellettes. Enfin, les mesures effectuées sont entachées d'une erreur dans la mesure où la prise de mouvement du capteur est réalisée sur la barre anti-roulis qui se déforme lors du roulement du véhicule.
Dans l'état de la technique, il est connu un autre dispositif pour déterminer la hauteur du châssis d'un véhicule, reposant sur la mise en œuvre d'un capteur linéaire monté sur l'amortisseur d'un système de suspension. L'inconvénient principal d'un tel dispositif est son coût dans la mesure où le changement de l'amortisseur impose également le remplacement du dispositif de détermination de la hauteur du châssis.In the state of the art, it is known a device for determining the height of the chassis of a vehicle, using a rotary sensor magnetic or inductive type. The sensor housing is attached to the chassis while the motion can be made on the anti-roll bar via a system of linkages reported. Such a device has the advantage that the sensor can be adapted to many vehicles using a system of rods and plates adapted to each particular type of vehicle. However, such a device has a major drawback related to the implementation of a rotary system making it very sensitive to the environment and in particular to the gel. Moreover, such a system has a kinematic nonlinear measurement given the presence of rods. Finally, the measurements made are tainted by an error insofar as the movement of the sensor is effected on the anti-roll bar which deforms during the rolling of the vehicle. In the state of the art, there is known another device for determining the height of the chassis of a vehicle, based on the implementation of a linear sensor mounted on the damper of a suspension system. The main disadvantage of such a device is its cost in that the change of the damper also requires the replacement of the device for determining the height of the chassis.
Il est connu aussi par le brevet US 6 565 073, un système de suspension électromagnétique pour véhicule comportant deux bobines alimentées électriquement, montées coaxialement l'une à l'autre et apte à pouvoir déterminer la hauteur du véhicule. Si un tel système est capable de donner une mesure de la hauteur du véhicule, la mesure ne peut être obtenue pour une suspension mécanique.It is also known from US Pat. No. 6,565,073, an electromagnetic suspension system for a vehicle comprising two electrically powered coils, mounted coaxially to one another and able to determine the height of the vehicle. If such a system is able to give a measurement of the height of the vehicle, the measurement can not be obtained for a mechanical suspension.
Par ailleurs, le brevet US 6 234 654 décrit un capteur de mesure de la hauteur d'un véhicule comportant d'une part un moyen de génération d'un champ magnétique monté sur l'une des parties du châssis ou du système de suspension et d'autre part, un moyen de détection du champ magnétique monté sur l'autre partie du châssis ou du système de suspension. Il s'avère en pratique qu'un tel capteur de mesure est très sensible à la position relative entre les deux parties du châssis, ce qui ne permet pas d'obtenir des mesures précises. Ainsi, ce capteur est très sensible aux effets de la température et sa réponse n'est pas linéaire en fonction du déplacement relatif.Furthermore, US Pat. No. 6,234,654 describes a sensor for measuring the height of a vehicle comprising, on the one hand, means for generating a magnetic field mounted on one of the parts of the chassis or of the suspension system and on the other hand, a magnetic field detection means mounted on the other part of the chassis or the suspension system. It turns out in practice that such a sensor is very sensitive to the relative position between the two parts of the frame, which does not allow to obtain accurate measurements. Thus, this sensor is very sensitive to the effects of temperature and its response is not linear as a function of the relative displacement.
L'objet de l'invention vise donc à remédier aux inconvénients des dispositifs antérieurs connus en proposant un dispositif pour déterminer la hauteur du châssis d'un véhicule, conçu pour présenter un coût faible, un montage rapide, pratiquement universel tout en étant insensible aux conditions, notamment atmosphériques, dans lequel le système est placé.The object of the invention is therefore to overcome the disadvantages of prior known devices by providing a device for determining the height of the chassis of a vehicle, designed to have a low cost, a fast assembly, virtually universal while being insensitive to conditions, especially atmospheric, in which the system is placed.
Pour atteindre un tel objectif, le dispositif pour déterminer la hauteur du châssis d'un véhicule à l'aide d'au moins un capteur de déplacement monté entre le châssis et un système de suspension du véhicule et adapté pour détecter le déplacement vertical relatif entre le châssis et le système de
suspension. Selon l'invention, le dispositif comporte en tant que capteur de déplacement, un capteur magnétique de position linéaire sans contact comportant deux parties distinctes dont l'une comporte dans un boîtier fixé au châssis, d'une part, un noyau magnétique magnétisé par au moins une bobine d'excitation alimentée en courant alternatif et d'autre part, au moins une bobine de détection couplée au noyau magnétique, l'autre partie du capteur magnétique fixée sur le système de suspension et comportant un aimant créant un entrefer virtuel dans le noyau magnétique et influençant, en fonction de sa position, le flux magnétique de fuite et, par suite, la tension délivrée par la bobine de détection.To achieve such an objective, the device for determining the height of the chassis of a vehicle using at least one displacement sensor mounted between the chassis and a suspension system of the vehicle and adapted to detect the relative vertical displacement between the chassis and the system suspension. According to the invention, the device comprises, as displacement sensor, a non-contacting linear position magnetic sensor comprising two distinct parts, one of which comprises, in a housing fixed to the frame, on the one hand, a magnetic core magnetized by a minus one excitation coil energized with alternating current and secondly, at least one detection coil coupled to the magnetic core, the other part of the magnetic sensor fixed on the suspension system and comprising a magnet creating a virtual gap in the magnetic core and influencing, depending on its position, the leakage magnetic flux and, consequently, the voltage delivered by the detection coil.
Selon un exemple préféré d'application, l'aimant est monté sur le triangle de suspension faisant partie du système de suspension.According to a preferred example of application, the magnet is mounted on the suspension triangle forming part of the suspension system.
Selon une autre variante d'application de l'invention, l'aimant est monté sur la barre anti-roulis faisant partie du système de suspension. Un autre objet de l'invention est de proposer un châssis de véhicule comportant au moins un dispositif de détermination de la hauteur du châssis d'un véhicule, conforme à l'invention, à l'aide d'un capteur de déplacement magnétique de position linéaire sans contact, réalisé en deux parties distinctes dont l'une est fixée directement sur le châssis et l'autre directement sur le système de suspension du véhicule.According to another variant of application of the invention, the magnet is mounted on the anti-roll bar forming part of the suspension system. Another object of the invention is to propose a vehicle chassis comprising at least one device for determining the height of the chassis of a vehicle, according to the invention, using a magnetic position displacement sensor. Linear contactless, made in two separate parts, one of which is fixed directly to the chassis and the other directly to the suspension system of the vehicle.
Diverses autres caractéristiques ressortent de la description faite ci-dessous en référence aux dessins annexés qui montrent, à titre d'exemples non limitatifs, des formes de réalisation de l'objet de l'invention.Various other characteristics appear from the description given below with reference to the accompanying drawings which show, by way of non-limiting examples, embodiments of the subject of the invention.
La Figure 1 est une vue schématique en perspective illustrant un dispositif de détermination de la hauteur du châssis d'un véhicule conforme à l'invention.Figure 1 is a schematic perspective view illustrating a device for determining the height of the chassis of a vehicle according to the invention.
La Figure 2 est une vue schématique en élévation montrant un dispositif conforme à l'invention.Figure 2 is a schematic elevational view showing a device according to the invention.
La Figure 3 est une vue schématique d'un exemple de réalisation d'un capteur de déplacement mis en œuvre dans le dispositif conforme à l'invention.
La Figure 4 est un exemple de la courbe de réponse d'un capteur conforme à l'invention.Figure 3 is a schematic view of an exemplary embodiment of a displacement sensor implemented in the device according to the invention. Figure 4 is an example of the response curve of a sensor according to the invention.
Tel que cela ressort plus précisément des Fig. 1 et 2, l'objet de l'invention concerne un dispositif 1 adapté pour déterminer la hauteur d'un châssis 2 d'un véhicule au sens général. Le dispositif 1 comporte au moins un capteur de déplacement 3 adapté pour détecter le déplacement vertical relatif entre le châssis 2 et un système de suspension 4. Par suspension, on entend l'ensemble des organes d'un véhicule qui assure la liaison flexible entre les essieux et le châssis appelé aussi cadre. Conformément à l'invention, le capteur de déplacement 3 est un capteur magnétique de position linéaire sans contact comportant au moins deux parties distinctes 3i et 32 dont l'une est fixée sur le châssis 2 tandis que l'autre est fixé sur le système de suspension 4. Il doit être noté que le mouvement relatif considéré comme linéaire entre le châssis 2 et le système de suspension 4 est reporté sur les deux parties 3i, 32 du capteur. Les deux parties 3i, 32 du capteur sont montées sans contact en relation l'une de l'autre de sorte que le changement de position d'une partie du capteur relativement à l'autre partie du capteur influence la grandeur magnétique. La mesure de cette variation permet de déterminer la position relative entre les deux parties du capteur. Il s'avère qu'un tel dispositif permet de déterminer la hauteur du châssis d'un véhicule tout en s'affranchissant des inconvénients liés à un capteur rotatif à contact comme la sensibilité au gel.As is more particularly apparent from Figs. 1 and 2, the object of the invention relates to a device 1 adapted to determine the height of a frame 2 of a vehicle in the general sense. The device 1 comprises at least one displacement sensor 3 adapted to detect the relative vertical displacement between the chassis 2 and a suspension system 4. By suspension means all the components of a vehicle which ensures the flexible connection between the axles and chassis also called frame. According to the invention, the displacement sensor 3 is a non-contact linear magnetic position sensor comprising at least two distinct parts 3i and 32, one of which is fixed on the frame 2 while the other is fixed on the control system. suspension 4. It should be noted that the relative movement considered linear between the frame 2 and the suspension system 4 is transferred to the two parts 3i, 3 2 of the sensor. The two parts 3i, 3 2 of the sensor are mounted without contact in relation to each other so that the change of position of a portion of the sensor relative to the other part of the sensor influences the magnetic magnitude. The measurement of this variation makes it possible to determine the relative position between the two parts of the sensor. It turns out that such a device makes it possible to determine the height of the chassis of a vehicle while overcoming the drawbacks associated with a rotary contact sensor such as sensitivity to freezing.
Dans l'exemple illustré plus particulièrement à la Fig. 2, la partie 3i du capteur est fixée au châssis 2 tandis que la partie 32 est fixée à la suspension 4. Les deux parties 3i, 32 du capteur de position linéaire fonctionnent sans contact l'une par rapport à l'autre et se trouvent montées solidaires directement soit du châssis 2 soit du système de suspension 4. Les deux parties 3i, 3∑ du capteur sont ainsi fixées directement sur le châssis 2 et le système de suspension 4, sans l'interposition de système de transformation de mouvement ou de reprise de mouvement.
Selon l'exemple de réalisation illustré plus particulièrement à la Fig. 3, l'une des parties par exemple 3i du capteur magnétique comporte dans un boîtier 6, un noyau magnétique à haute perméabilité 7. De manière classique, le noyau magnétique 7 est réalisé avec un matériau magnétique doux et à faible champ de saturation. Un tel noyau magnétique 7 est magnétisé par au moins une et dans l'exemple illustré une bobine d'excitation 8 alimentée en courant alternatif par une source non représentée mais connue en soi. Cette partie 3i du capteur comporte également au moins une et dans l'exemple illustré deux bobines de détection Hi, II2 couplées au noyau magnétique 7 et enroulées dans l'exemple illustré sur chacune des extrémités du noyau magnétique 7. L'autre partie 32 du capteur magnétique comporte un aimant 12 délimitant un entrefer virtuel 13 dans le noyau magnétique à l'endroit où est placé un tel aimant. Avantageusement, le boîtier 6 est fixé sur le châssis 2 du véhicule tandis que l'aimant 12 est monté de manière solidaire au système de suspension 4. Selon cet exemple, l'aimant 12 se déplace relativement par rapport au boîtier 6 selon un trajet linéaire représenté par l'axe A à la Fig. 3. Selon une caractéristique préférée de réalisation, l'aimant 12 est monté sur le triangle de suspension 4i faisant partie du système de suspension 4. Selon un autre exemple de réalisation, il est à noter que l'aimant 12 peut être monté sur la barre anti-roulis 42 faisant partie du système de suspension 4. Selon un autre exemple de réalisation, le capteur de déplacement 3 est intégré dans la rotule d'articulation du véhicule de sorte que l'aimant 12 se trouve monté sur une pièce de la rotule d'articulation faisant partie du système de suspension 4.In the example illustrated more particularly in FIG. 2, the part 3i of the sensor is fixed to the frame 2 while the part 3 2 is fixed to the suspension 4. The two parts 3i, 3 2 of the linear position sensor function without contact with respect to each other and are mounted integrally directly to either the chassis 2 or the suspension system 4. The two parts 3i, 3 Σ of the sensor are thus fixed directly to the frame 2 and the suspension system 4, without the interposition of a motion transformation system or resumption of movement. According to the embodiment illustrated more particularly in FIG. 3, one of the parts for example 3i of the magnetic sensor comprises in a housing 6, a magnetic core with high permeability 7. Conventionally, the magnetic core 7 is made of a soft magnetic material with a low saturation field. Such a magnetic core 7 is magnetized by at least one and in the illustrated example an excitation coil 8 supplied with alternating current by a source not shown but known per se. This part 3i of the sensor also comprises at least one and in the illustrated example two detection coils Hi, II 2 coupled to the magnetic core 7 and wound in the example shown on each of the ends of the magnetic core 7. The other part 3 2 of the magnetic sensor comprises a magnet 12 delimiting a virtual gap 13 in the magnetic core at the place where is placed such a magnet. Advantageously, the housing 6 is fixed on the frame 2 of the vehicle while the magnet 12 is integrally mounted to the suspension system 4. According to this example, the magnet 12 moves relative to the housing 6 in a linear path represented by the axis A in FIG. 3. According to a preferred embodiment, the magnet 12 is mounted on the suspension triangle 4i forming part of the suspension system 4. According to another embodiment, it should be noted that the magnet 12 can be mounted on the anti-roll bar 4 2 forming part of the suspension system 4. According to another exemplary embodiment, the displacement sensor 3 is integrated in the articulation ball of the vehicle so that the magnet 12 is mounted on a piece of the hinge joint forming part of the suspension system 4.
Il est à noter que l'aimant 12 est monté sans pièce intermédiaire pour prendre le mouvement du système de suspension 4. Bien entendu, l'aimant 12 peut être monté à l'aide d'un support sur le système de suspension 4.
Le fonctionnement d'un tel capteur 3 magnétique de position sans contact découle de la description qui précède. La bobine d'excitation 8 qui est alimentée par un courant alternatif crée un champ magnétique alternatif dans le noyau magnétique 7. Une partie des lignes de flux magnétique se propage dans le noyau magnétique 7 pour traverser les bobines de détection Hi, H2 qui délivrent chacune une tension électrique alternative.It should be noted that the magnet 12 is mounted without any intermediate part to take the movement of the suspension system 4. Of course, the magnet 12 can be mounted using a support on the suspension system 4. The operation of such a non-contact magnetic position sensor 3 follows from the foregoing description. The excitation coil 8 which is powered by an alternating current creates an alternating magnetic field in the magnetic core 7. Part of the magnetic flux lines propagates in the magnetic core 7 to pass through the detection coils Hi, H2, which each deliver an alternating voltage.
Une autre partie des lignes de flux dite ligne de fuite sort du noyau magnétique 7 sans traverser les bobines de détection Hi, H2. En l'absence de l'aimant 12, la répartition de la ligne de flux est symétrique par rapport au centre du noyau magnétique et les tensions induites dans les deux bobines de détection Hi, H2 sont identiques.Another part of the so-called leakage line flows out of the magnetic core 7 without passing through the detection coils Hi, H 2 . In the absence of the magnet 12, the distribution of the flux line is symmetrical with respect to the center of the magnetic core and the voltages induced in the two detection coils Hi, H 2 are identical.
En présence de l'aimant 12 situé à proximité du noyau magnétique 7, le champ magnétique passant à l'intérieur du noyau magnétique crée une zone de saturation ayant un effet comparable à un entrefer virtuel. Il apparaît donc de nombreuses lignes de fuite au niveau de la position de l'aimant 12 de sorte qu'il peut être considéré que le circuit magnétique est divisé en deux parties. Ainsi, l'une des bobines de détection Hi voit le champ magnétique créé par les spires de la bobine d'excitation 8 situées entre cette bobine de détection et l'aimant 12, tandis que l'autre bobine de détection H2 voit les lignes de champ créées par les spires de la bobine d'excitation 8 situées entre cette autre bobine de détection et l'aimant 12. Il doit donc être compris que la tension induite dans chaque bobine de détection Hi, H2 dépend de la position de l'aimant. Ce capteur permet de mesurer non pas le flux magnétique de l'aimant 12 mais la position de la zone de saturation créée par l'aimant sur le noyau magnétique 7. La tension induite dans chaque bobine de détection Hi, H2 varie ainsi de manière linéaire avec son déplacement. La Fig. 4 montre clairement que le signal analogique S délivré par le capteur de déplacement comporte une zone de mesure Z qui varie linéairement en fonction de la position X de l'aimant 12. Le dispositif selon l'invention est ainsi très peu sensible aux effets de la
température qui ne change pas la position de la zone de saturation, c'est-à-dire de l'aimant 12.In the presence of the magnet 12 located near the magnetic core 7, the magnetic field passing inside the magnetic core creates a saturation zone having an effect comparable to a virtual gap. There are therefore many vanishing lines at the position of the magnet 12 so that it can be considered that the magnetic circuit is divided into two parts. Thus, one of the detection coils Hi sees the magnetic field created by the turns of the excitation coil 8 situated between this detection coil and the magnet 12, while the other detection coil H 2 sees the lines of fields created by the turns of the excitation coil 8 situated between this other detection coil and the magnet 12. It must therefore be understood that the voltage induced in each detection coil Hi, H 2 depends on the position of the 'magnet. This sensor makes it possible to measure not the magnetic flux of the magnet 12 but the position of the saturation zone created by the magnet on the magnetic core 7. The voltage induced in each detection coil Hi, H 2 varies so linear with its displacement. Fig. 4 clearly shows that the analog signal S delivered by the displacement sensor comprises a measuring zone Z which varies linearly as a function of the position X of the magnet 12. The device according to the invention is thus very insensitive to the effects of the temperature that does not change the position of the saturation zone, that is to say the magnet 12.
De manière préférée, il est prévu d'utiliser un traitement ratiométrique des signaux délivrés par les bobines d'excitation H1, H2 afin de minimiser les dérives thermiques. Ainsi, la position de l'aimant se déduit de la formule :Preferably, it is intended to use a ratiometric processing of the signals delivered by the excitation coils H 1 , H 2 in order to minimize the thermal drifts. Thus, the position of the magnet is deduced from the formula:
V1 - V2 / V1 + V2 avec V1 et V2 étant les signaux délivrés par les bobines de détection Hi et H2.V 1 - V 2 / V 1 + V 2 with V 1 and V 2 being the signals delivered by the detection coils Hi and H 2 .
L'invention n'est pas limitée aux exemples décrits et représentés car diverses modifications peuvent y être apportées sans sortir de son cadre.
The invention is not limited to the examples described and shown because various modifications can be made without departing from its scope.
Claims
REVENDICATIONS
1 - Dispositif pour déterminer la hauteur du châssis (2) d'un véhicule à l'aide d'au moins un capteur de déplacement (3) monté entre le châssis (2) et un système de suspension du véhicule (4) et adapté pour détecter le déplacement vertical relatif entre le châssis (2) et le système de suspension (4), caractérisé en ce qu'il comporte en tant que capteur de déplacement (3), un capteur magnétique de position linéaire sans contact comportant deux parties distinctes (3i, 32) dont l'une comporte dans un boîtier (6) fixé au châssis (2), d'une part, un noyau magnétique magnétisé (7) par au moins une bobine d'excitation (8) alimentée en courant alternatif et d'autre part, au moins une bobine de détection (Hi, H2) couplée au noyau magnétique, l'autre partie du capteur magnétique fixée sur le système de suspension (4) et comportant un aimant (12) créant un entrefer virtuel dans le noyau magnétique (7) et influençant, en fonction de sa position, le flux magnétique de fuite et, par suite, la tension délivrée par la bobine de détection.1 - Device for determining the height of the chassis (2) of a vehicle using at least one displacement sensor (3) mounted between the chassis (2) and a vehicle suspension system (4) and adapted for detecting the relative vertical displacement between the frame (2) and the suspension system (4), characterized in that it comprises as a displacement sensor (3) a non-contact linear position magnetic sensor comprising two distinct parts (3i, 3 2 ) one of which comprises in a housing (6) fixed to the frame (2), on the one hand, a magnetized magnetic core (7) by at least one excitation coil (8) supplied with current alternating and on the other hand, at least one detection coil (Hi, H 2 ) coupled to the magnetic core, the other part of the magnetic sensor fixed on the suspension system (4) and having a magnet (12) creating a gap in the magnetic core (7) and influencing, depending on its position, the magnetic flux tick leakage and, consequently, the voltage delivered by the sensor coil.
2 - Dispositif selon la revendication 1, caractérisé en ce que l'aimant (12) est monté sur le triangle de suspension (4i) faisant partie du système de suspension (4). 3 - Dispositif selon la revendication 1, caractérisé en ce que l'aimant (12) est monté sur la barre anti-roulis (42) faisant partie du système de suspension (4).2 - Device according to claim 1, characterized in that the magnet (12) is mounted on the suspension triangle (4i) forming part of the suspension system (4). 3 - Device according to claim 1, characterized in that the magnet (12) is mounted on the anti-roll bar (42) forming part of the suspension system (4).
4 - Dispositif selon la revendication 1, caractérisé en ce que l'aimant (12) est monté sur une pièce de la rotule d'articulation faisant partie du système de suspension (4).4 - Device according to claim 1, characterized in that the magnet (12) is mounted on a part of the ball joint forming part of the suspension system (4).
5 - Châssis de véhicule caractérisé en ce qu'il comporte au moins un dispositif (1) conforme à la revendication 1 pour détecter la hauteur du châssis (2) à l'aide d'un capteur de déplacement (3) magnétique de position linéaire sans contact, réalisé en deux parties distinctes dont l'une est fixée directement sur le châssis (2) et l'autre directement sur le système de suspension (4) du véhicule.
5 - Vehicle chassis characterized in that it comprises at least one device (1) according to claim 1 for detecting the height of the frame (2) using a displacement sensor (3) magnetic linear position without contact, made in two distinct parts, one of which is fixed directly on the frame (2) and the other directly on the suspension system (4) of the vehicle.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR0504725 | 2005-05-11 | ||
FR0504725A FR2885687B1 (en) | 2005-05-11 | 2005-05-11 | DEVICE FOR DETERMINING THE HEIGHT OF THE CHASSIS OF A VEHICLE |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2007003807A2 true WO2007003807A2 (en) | 2007-01-11 |
WO2007003807A3 WO2007003807A3 (en) | 2007-04-05 |
Family
ID=35601854
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/FR2006/050430 WO2007003807A2 (en) | 2005-05-11 | 2006-05-11 | Device for determining the height of the chassis of a vehicle |
Country Status (2)
Country | Link |
---|---|
FR (1) | FR2885687B1 (en) |
WO (1) | WO2007003807A2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2550467A (en) * | 2016-04-04 | 2017-11-22 | Ford Global Tech Llc | Encoded electromagnetic based ride height sensing |
US10252594B2 (en) | 2016-10-21 | 2019-04-09 | Ford Global Technologies, Llc | Extensions and performance improvements for non-contact ride height sensing |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2800459A1 (en) * | 1999-10-27 | 2001-05-04 | Siemens Automotive Sa | Differential coupled non contact linear or angular moving magnet flat inductive type position sensor for automobile control systems or motors |
US6234654B1 (en) * | 1998-04-27 | 2001-05-22 | Denso Corporation | Height sensor and vehicular headlight beam axis leveling apparatus |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2064125A (en) * | 1979-11-27 | 1981-06-10 | Atomic Energy Authority Uk | Position indicating apparatus |
US6565073B1 (en) * | 2002-04-17 | 2003-05-20 | Meritor Light Vehicle Technology, Llc | Electromagnetic suspension system |
FR2856474B1 (en) * | 2003-06-17 | 2005-10-21 | Electricfil | MAGNETIC SENSOR OF CONTROLLED MAGNETIC LEAK POSITION |
-
2005
- 2005-05-11 FR FR0504725A patent/FR2885687B1/en not_active Expired - Fee Related
-
2006
- 2006-05-11 WO PCT/FR2006/050430 patent/WO2007003807A2/en active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6234654B1 (en) * | 1998-04-27 | 2001-05-22 | Denso Corporation | Height sensor and vehicular headlight beam axis leveling apparatus |
FR2800459A1 (en) * | 1999-10-27 | 2001-05-04 | Siemens Automotive Sa | Differential coupled non contact linear or angular moving magnet flat inductive type position sensor for automobile control systems or motors |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2550467A (en) * | 2016-04-04 | 2017-11-22 | Ford Global Tech Llc | Encoded electromagnetic based ride height sensing |
US9925840B2 (en) | 2016-04-04 | 2018-03-27 | Ford Global Technologies, Llc | Encoded electromagnetic based ride height sensing |
RU2668825C2 (en) * | 2016-04-04 | 2018-10-02 | ФОРД ГЛОУБАЛ ТЕКНОЛОДЖИЗ, ЭлЭлСи | Vehicle and method of measuring a road lamp for a vehicle |
US10252594B2 (en) | 2016-10-21 | 2019-04-09 | Ford Global Technologies, Llc | Extensions and performance improvements for non-contact ride height sensing |
Also Published As
Publication number | Publication date |
---|---|
FR2885687A1 (en) | 2006-11-17 |
FR2885687B1 (en) | 2007-12-21 |
WO2007003807A3 (en) | 2007-04-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2326919B2 (en) | Linear or rotary position sensor with a permanent magnet for detecting a ferromagnetic target | |
EP1173659B1 (en) | Electromagnetic linear actuator with position sensor | |
FR2629210A1 (en) | SENSOR FOR MOTOR VEHICLE WITH ELECTRONIC REGULATION OF CERTAIN VARIABLES CONCERNING ITS DYNAMICS | |
CA2551512C (en) | Revolution counter for aircraft wheel | |
EP1790950A1 (en) | Magnetic position sensor for a mobile device having a limited linear course | |
FR2692986A1 (en) | Device for measuring a torque on a rotating shaft. | |
FR2847516A1 (en) | Stop for vehicle suspension, comprises upper fixed ring, ball bearings and attached to suspension spring a lower moving ring which has a coder adjacent to a fixed captor | |
WO2007148028B1 (en) | Method and system for adjusting the sensitivity of a magnetoresistive sensor | |
FR3019892A1 (en) | MEASURING DEVICE FOR NON-CONTACT ENTRY OF A ROTATION ANGLE | |
EP1424227B1 (en) | Suspension axial rolling bearing with a strain measuring device | |
FR2816047A1 (en) | BEARING DEVICE WITH INSTRUMENT BEARING, IN PARTICULAR FOR CONTROL WHEEL | |
FR2858673A1 (en) | Control arms connecting joint for motor vehicle, has an elastomeric body that is elastically deformable to permit relative displacement of inner and outer frames, and sensor for producing signal representing intensity of magnetic field | |
EP2504665B1 (en) | Measurement method and magnetic sensor for contactlessly detecting movement | |
WO2007003807A2 (en) | Device for determining the height of the chassis of a vehicle | |
EP3111173A1 (en) | Magnetic sensor for determining the relative position between a magnetized target and a measurement system | |
FR2723888A1 (en) | APPARATUS FOR DETECTING THE LEVEL OF A VEHICLE | |
FR2664538A1 (en) | DEVICE FOR DETERMINING THE RELATIVE POSITION OF TWO MOBILE MOUNTED PARTS RELATIVE TO THE OTHER, AND CONNECTED BY AT LEAST ONE TELESCOPIC SHOCK ABSORBER. | |
FR2860867A1 (en) | DEVICE FOR CORRECTING INTERFERENCE ERRORS BETWEEN MAGNETIC SENSORS FOR MEASURING MOBILE POSITION | |
EP1634037A2 (en) | Magnetic sensor for determining the location of controlled magnetic leakages | |
WO2004092682A2 (en) | Contactless magnetic sensor for determination of the linear position of a moving body | |
EP4105767A1 (en) | Haptic actuator and display system comprising such an actuator | |
FR3098633A1 (en) | Drive system for rotating a first device relative to a second device about an axis of rotation. | |
FR2635588A1 (en) | TYPE ACCELERATION SENSOR COMPRISING A SEISMIC SPRING-MASS SYSTEM | |
FR2911955A1 (en) | Magnetic sensor for determining position of braking device of motor vehicle, has measurement units measuring components of magnetic induction and determining position of mobile on travel relative to torque of induction values of components | |
FR2879286A1 (en) | Linear magnetic position sensor for detecting object position, has target that relatively displaces with respect to open loop magnetic circuit as object moves, so that signal from sensor varies to vary object position representing signal |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWW | Wipo information: withdrawn in national office |
Country of ref document: DE |
|
NENP | Non-entry into the national phase |
Ref country code: RU |
|
WWW | Wipo information: withdrawn in national office |
Country of ref document: RU |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 06794415 Country of ref document: EP Kind code of ref document: A2 |